glsl: shader outputs cannot have initializers
[mesa.git] / src / glsl / ast_to_hir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file ast_to_hir.c
26 * Convert abstract syntax to to high-level intermediate reprensentation (HIR).
27 *
28 * During the conversion to HIR, the majority of the symantic checking is
29 * preformed on the program. This includes:
30 *
31 * * Symbol table management
32 * * Type checking
33 * * Function binding
34 *
35 * The majority of this work could be done during parsing, and the parser could
36 * probably generate HIR directly. However, this results in frequent changes
37 * to the parser code. Since we do not assume that every system this complier
38 * is built on will have Flex and Bison installed, we have to store the code
39 * generated by these tools in our version control system. In other parts of
40 * the system we've seen problems where a parser was changed but the generated
41 * code was not committed, merge conflicts where created because two developers
42 * had slightly different versions of Bison installed, etc.
43 *
44 * I have also noticed that running Bison generated parsers in GDB is very
45 * irritating. When you get a segfault on '$$ = $1->foo', you can't very
46 * well 'print $1' in GDB.
47 *
48 * As a result, my preference is to put as little C code as possible in the
49 * parser (and lexer) sources.
50 */
51
52 #include "glsl_symbol_table.h"
53 #include "glsl_parser_extras.h"
54 #include "ast.h"
55 #include "glsl_types.h"
56 #include "program/hash_table.h"
57 #include "main/shaderobj.h"
58 #include "ir.h"
59 #include "ir_builder.h"
60
61 using namespace ir_builder;
62
63 static void
64 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
65 exec_list *instructions);
66 static void
67 remove_per_vertex_blocks(exec_list *instructions,
68 _mesa_glsl_parse_state *state, ir_variable_mode mode);
69
70 /**
71 * Visitor class that finds the first instance of any write-only variable that
72 * is ever read, if any
73 */
74 class read_from_write_only_variable_visitor : public ir_hierarchical_visitor
75 {
76 public:
77 read_from_write_only_variable_visitor() : found(NULL)
78 {
79 }
80
81 virtual ir_visitor_status visit(ir_dereference_variable *ir)
82 {
83 if (this->in_assignee)
84 return visit_continue;
85
86 ir_variable *var = ir->variable_referenced();
87 /* We can have image_write_only set on both images and buffer variables,
88 * but in the former there is a distinction between reads from
89 * the variable itself (write_only) and from the memory they point to
90 * (image_write_only), while in the case of buffer variables there is
91 * no such distinction, that is why this check here is limited to
92 * buffer variables alone.
93 */
94 if (!var || var->data.mode != ir_var_shader_storage)
95 return visit_continue;
96
97 if (var->data.image_write_only) {
98 found = var;
99 return visit_stop;
100 }
101
102 return visit_continue;
103 }
104
105 ir_variable *get_variable() {
106 return found;
107 }
108
109 private:
110 ir_variable *found;
111 };
112
113 void
114 _mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
115 {
116 _mesa_glsl_initialize_variables(instructions, state);
117
118 state->symbols->separate_function_namespace = state->language_version == 110;
119
120 state->current_function = NULL;
121
122 state->toplevel_ir = instructions;
123
124 state->gs_input_prim_type_specified = false;
125 state->tcs_output_vertices_specified = false;
126 state->cs_input_local_size_specified = false;
127
128 /* Section 4.2 of the GLSL 1.20 specification states:
129 * "The built-in functions are scoped in a scope outside the global scope
130 * users declare global variables in. That is, a shader's global scope,
131 * available for user-defined functions and global variables, is nested
132 * inside the scope containing the built-in functions."
133 *
134 * Since built-in functions like ftransform() access built-in variables,
135 * it follows that those must be in the outer scope as well.
136 *
137 * We push scope here to create this nesting effect...but don't pop.
138 * This way, a shader's globals are still in the symbol table for use
139 * by the linker.
140 */
141 state->symbols->push_scope();
142
143 foreach_list_typed (ast_node, ast, link, & state->translation_unit)
144 ast->hir(instructions, state);
145
146 detect_recursion_unlinked(state, instructions);
147 detect_conflicting_assignments(state, instructions);
148
149 state->toplevel_ir = NULL;
150
151 /* Move all of the variable declarations to the front of the IR list, and
152 * reverse the order. This has the (intended!) side effect that vertex
153 * shader inputs and fragment shader outputs will appear in the IR in the
154 * same order that they appeared in the shader code. This results in the
155 * locations being assigned in the declared order. Many (arguably buggy)
156 * applications depend on this behavior, and it matches what nearly all
157 * other drivers do.
158 */
159 foreach_in_list_safe(ir_instruction, node, instructions) {
160 ir_variable *const var = node->as_variable();
161
162 if (var == NULL)
163 continue;
164
165 var->remove();
166 instructions->push_head(var);
167 }
168
169 /* Figure out if gl_FragCoord is actually used in fragment shader */
170 ir_variable *const var = state->symbols->get_variable("gl_FragCoord");
171 if (var != NULL)
172 state->fs_uses_gl_fragcoord = var->data.used;
173
174 /* From section 7.1 (Built-In Language Variables) of the GLSL 4.10 spec:
175 *
176 * If multiple shaders using members of a built-in block belonging to
177 * the same interface are linked together in the same program, they
178 * must all redeclare the built-in block in the same way, as described
179 * in section 4.3.7 "Interface Blocks" for interface block matching, or
180 * a link error will result.
181 *
182 * The phrase "using members of a built-in block" implies that if two
183 * shaders are linked together and one of them *does not use* any members
184 * of the built-in block, then that shader does not need to have a matching
185 * redeclaration of the built-in block.
186 *
187 * This appears to be a clarification to the behaviour established for
188 * gl_PerVertex by GLSL 1.50, therefore implement it regardless of GLSL
189 * version.
190 *
191 * The definition of "interface" in section 4.3.7 that applies here is as
192 * follows:
193 *
194 * The boundary between adjacent programmable pipeline stages: This
195 * spans all the outputs in all compilation units of the first stage
196 * and all the inputs in all compilation units of the second stage.
197 *
198 * Therefore this rule applies to both inter- and intra-stage linking.
199 *
200 * The easiest way to implement this is to check whether the shader uses
201 * gl_PerVertex right after ast-to-ir conversion, and if it doesn't, simply
202 * remove all the relevant variable declaration from the IR, so that the
203 * linker won't see them and complain about mismatches.
204 */
205 remove_per_vertex_blocks(instructions, state, ir_var_shader_in);
206 remove_per_vertex_blocks(instructions, state, ir_var_shader_out);
207
208 /* Check that we don't have reads from write-only variables */
209 read_from_write_only_variable_visitor v;
210 v.run(instructions);
211 ir_variable *error_var = v.get_variable();
212 if (error_var) {
213 /* It would be nice to have proper location information, but for that
214 * we would need to check this as we process each kind of AST node
215 */
216 YYLTYPE loc;
217 memset(&loc, 0, sizeof(loc));
218 _mesa_glsl_error(&loc, state, "Read from write-only variable `%s'",
219 error_var->name);
220 }
221 }
222
223
224 static ir_expression_operation
225 get_conversion_operation(const glsl_type *to, const glsl_type *from,
226 struct _mesa_glsl_parse_state *state)
227 {
228 switch (to->base_type) {
229 case GLSL_TYPE_FLOAT:
230 switch (from->base_type) {
231 case GLSL_TYPE_INT: return ir_unop_i2f;
232 case GLSL_TYPE_UINT: return ir_unop_u2f;
233 case GLSL_TYPE_DOUBLE: return ir_unop_d2f;
234 default: return (ir_expression_operation)0;
235 }
236
237 case GLSL_TYPE_UINT:
238 if (!state->is_version(400, 0) && !state->ARB_gpu_shader5_enable)
239 return (ir_expression_operation)0;
240 switch (from->base_type) {
241 case GLSL_TYPE_INT: return ir_unop_i2u;
242 default: return (ir_expression_operation)0;
243 }
244
245 case GLSL_TYPE_DOUBLE:
246 if (!state->has_double())
247 return (ir_expression_operation)0;
248 switch (from->base_type) {
249 case GLSL_TYPE_INT: return ir_unop_i2d;
250 case GLSL_TYPE_UINT: return ir_unop_u2d;
251 case GLSL_TYPE_FLOAT: return ir_unop_f2d;
252 default: return (ir_expression_operation)0;
253 }
254
255 default: return (ir_expression_operation)0;
256 }
257 }
258
259
260 /**
261 * If a conversion is available, convert one operand to a different type
262 *
263 * The \c from \c ir_rvalue is converted "in place".
264 *
265 * \param to Type that the operand it to be converted to
266 * \param from Operand that is being converted
267 * \param state GLSL compiler state
268 *
269 * \return
270 * If a conversion is possible (or unnecessary), \c true is returned.
271 * Otherwise \c false is returned.
272 */
273 bool
274 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
275 struct _mesa_glsl_parse_state *state)
276 {
277 void *ctx = state;
278 if (to->base_type == from->type->base_type)
279 return true;
280
281 /* Prior to GLSL 1.20, there are no implicit conversions */
282 if (!state->is_version(120, 0))
283 return false;
284
285 /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
286 *
287 * "There are no implicit array or structure conversions. For
288 * example, an array of int cannot be implicitly converted to an
289 * array of float.
290 */
291 if (!to->is_numeric() || !from->type->is_numeric())
292 return false;
293
294 /* We don't actually want the specific type `to`, we want a type
295 * with the same base type as `to`, but the same vector width as
296 * `from`.
297 */
298 to = glsl_type::get_instance(to->base_type, from->type->vector_elements,
299 from->type->matrix_columns);
300
301 ir_expression_operation op = get_conversion_operation(to, from->type, state);
302 if (op) {
303 from = new(ctx) ir_expression(op, to, from, NULL);
304 return true;
305 } else {
306 return false;
307 }
308 }
309
310
311 static const struct glsl_type *
312 arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
313 bool multiply,
314 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
315 {
316 const glsl_type *type_a = value_a->type;
317 const glsl_type *type_b = value_b->type;
318
319 /* From GLSL 1.50 spec, page 56:
320 *
321 * "The arithmetic binary operators add (+), subtract (-),
322 * multiply (*), and divide (/) operate on integer and
323 * floating-point scalars, vectors, and matrices."
324 */
325 if (!type_a->is_numeric() || !type_b->is_numeric()) {
326 _mesa_glsl_error(loc, state,
327 "operands to arithmetic operators must be numeric");
328 return glsl_type::error_type;
329 }
330
331
332 /* "If one operand is floating-point based and the other is
333 * not, then the conversions from Section 4.1.10 "Implicit
334 * Conversions" are applied to the non-floating-point-based operand."
335 */
336 if (!apply_implicit_conversion(type_a, value_b, state)
337 && !apply_implicit_conversion(type_b, value_a, state)) {
338 _mesa_glsl_error(loc, state,
339 "could not implicitly convert operands to "
340 "arithmetic operator");
341 return glsl_type::error_type;
342 }
343 type_a = value_a->type;
344 type_b = value_b->type;
345
346 /* "If the operands are integer types, they must both be signed or
347 * both be unsigned."
348 *
349 * From this rule and the preceeding conversion it can be inferred that
350 * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
351 * The is_numeric check above already filtered out the case where either
352 * type is not one of these, so now the base types need only be tested for
353 * equality.
354 */
355 if (type_a->base_type != type_b->base_type) {
356 _mesa_glsl_error(loc, state,
357 "base type mismatch for arithmetic operator");
358 return glsl_type::error_type;
359 }
360
361 /* "All arithmetic binary operators result in the same fundamental type
362 * (signed integer, unsigned integer, or floating-point) as the
363 * operands they operate on, after operand type conversion. After
364 * conversion, the following cases are valid
365 *
366 * * The two operands are scalars. In this case the operation is
367 * applied, resulting in a scalar."
368 */
369 if (type_a->is_scalar() && type_b->is_scalar())
370 return type_a;
371
372 /* "* One operand is a scalar, and the other is a vector or matrix.
373 * In this case, the scalar operation is applied independently to each
374 * component of the vector or matrix, resulting in the same size
375 * vector or matrix."
376 */
377 if (type_a->is_scalar()) {
378 if (!type_b->is_scalar())
379 return type_b;
380 } else if (type_b->is_scalar()) {
381 return type_a;
382 }
383
384 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
385 * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
386 * handled.
387 */
388 assert(!type_a->is_scalar());
389 assert(!type_b->is_scalar());
390
391 /* "* The two operands are vectors of the same size. In this case, the
392 * operation is done component-wise resulting in the same size
393 * vector."
394 */
395 if (type_a->is_vector() && type_b->is_vector()) {
396 if (type_a == type_b) {
397 return type_a;
398 } else {
399 _mesa_glsl_error(loc, state,
400 "vector size mismatch for arithmetic operator");
401 return glsl_type::error_type;
402 }
403 }
404
405 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
406 * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
407 * <vector, vector> have been handled. At least one of the operands must
408 * be matrix. Further, since there are no integer matrix types, the base
409 * type of both operands must be float.
410 */
411 assert(type_a->is_matrix() || type_b->is_matrix());
412 assert(type_a->base_type == GLSL_TYPE_FLOAT ||
413 type_a->base_type == GLSL_TYPE_DOUBLE);
414 assert(type_b->base_type == GLSL_TYPE_FLOAT ||
415 type_b->base_type == GLSL_TYPE_DOUBLE);
416
417 /* "* The operator is add (+), subtract (-), or divide (/), and the
418 * operands are matrices with the same number of rows and the same
419 * number of columns. In this case, the operation is done component-
420 * wise resulting in the same size matrix."
421 * * The operator is multiply (*), where both operands are matrices or
422 * one operand is a vector and the other a matrix. A right vector
423 * operand is treated as a column vector and a left vector operand as a
424 * row vector. In all these cases, it is required that the number of
425 * columns of the left operand is equal to the number of rows of the
426 * right operand. Then, the multiply (*) operation does a linear
427 * algebraic multiply, yielding an object that has the same number of
428 * rows as the left operand and the same number of columns as the right
429 * operand. Section 5.10 "Vector and Matrix Operations" explains in
430 * more detail how vectors and matrices are operated on."
431 */
432 if (! multiply) {
433 if (type_a == type_b)
434 return type_a;
435 } else {
436 const glsl_type *type = glsl_type::get_mul_type(type_a, type_b);
437
438 if (type == glsl_type::error_type) {
439 _mesa_glsl_error(loc, state,
440 "size mismatch for matrix multiplication");
441 }
442
443 return type;
444 }
445
446
447 /* "All other cases are illegal."
448 */
449 _mesa_glsl_error(loc, state, "type mismatch");
450 return glsl_type::error_type;
451 }
452
453
454 static const struct glsl_type *
455 unary_arithmetic_result_type(const struct glsl_type *type,
456 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
457 {
458 /* From GLSL 1.50 spec, page 57:
459 *
460 * "The arithmetic unary operators negate (-), post- and pre-increment
461 * and decrement (-- and ++) operate on integer or floating-point
462 * values (including vectors and matrices). All unary operators work
463 * component-wise on their operands. These result with the same type
464 * they operated on."
465 */
466 if (!type->is_numeric()) {
467 _mesa_glsl_error(loc, state,
468 "operands to arithmetic operators must be numeric");
469 return glsl_type::error_type;
470 }
471
472 return type;
473 }
474
475 /**
476 * \brief Return the result type of a bit-logic operation.
477 *
478 * If the given types to the bit-logic operator are invalid, return
479 * glsl_type::error_type.
480 *
481 * \param type_a Type of LHS of bit-logic op
482 * \param type_b Type of RHS of bit-logic op
483 */
484 static const struct glsl_type *
485 bit_logic_result_type(const struct glsl_type *type_a,
486 const struct glsl_type *type_b,
487 ast_operators op,
488 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
489 {
490 if (!state->check_bitwise_operations_allowed(loc)) {
491 return glsl_type::error_type;
492 }
493
494 /* From page 50 (page 56 of PDF) of GLSL 1.30 spec:
495 *
496 * "The bitwise operators and (&), exclusive-or (^), and inclusive-or
497 * (|). The operands must be of type signed or unsigned integers or
498 * integer vectors."
499 */
500 if (!type_a->is_integer()) {
501 _mesa_glsl_error(loc, state, "LHS of `%s' must be an integer",
502 ast_expression::operator_string(op));
503 return glsl_type::error_type;
504 }
505 if (!type_b->is_integer()) {
506 _mesa_glsl_error(loc, state, "RHS of `%s' must be an integer",
507 ast_expression::operator_string(op));
508 return glsl_type::error_type;
509 }
510
511 /* "The fundamental types of the operands (signed or unsigned) must
512 * match,"
513 */
514 if (type_a->base_type != type_b->base_type) {
515 _mesa_glsl_error(loc, state, "operands of `%s' must have the same "
516 "base type", ast_expression::operator_string(op));
517 return glsl_type::error_type;
518 }
519
520 /* "The operands cannot be vectors of differing size." */
521 if (type_a->is_vector() &&
522 type_b->is_vector() &&
523 type_a->vector_elements != type_b->vector_elements) {
524 _mesa_glsl_error(loc, state, "operands of `%s' cannot be vectors of "
525 "different sizes", ast_expression::operator_string(op));
526 return glsl_type::error_type;
527 }
528
529 /* "If one operand is a scalar and the other a vector, the scalar is
530 * applied component-wise to the vector, resulting in the same type as
531 * the vector. The fundamental types of the operands [...] will be the
532 * resulting fundamental type."
533 */
534 if (type_a->is_scalar())
535 return type_b;
536 else
537 return type_a;
538 }
539
540 static const struct glsl_type *
541 modulus_result_type(const struct glsl_type *type_a,
542 const struct glsl_type *type_b,
543 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
544 {
545 if (!state->check_version(130, 300, loc, "operator '%%' is reserved")) {
546 return glsl_type::error_type;
547 }
548
549 /* From GLSL 1.50 spec, page 56:
550 * "The operator modulus (%) operates on signed or unsigned integers or
551 * integer vectors. The operand types must both be signed or both be
552 * unsigned."
553 */
554 if (!type_a->is_integer()) {
555 _mesa_glsl_error(loc, state, "LHS of operator %% must be an integer");
556 return glsl_type::error_type;
557 }
558 if (!type_b->is_integer()) {
559 _mesa_glsl_error(loc, state, "RHS of operator %% must be an integer");
560 return glsl_type::error_type;
561 }
562 if (type_a->base_type != type_b->base_type) {
563 _mesa_glsl_error(loc, state,
564 "operands of %% must have the same base type");
565 return glsl_type::error_type;
566 }
567
568 /* "The operands cannot be vectors of differing size. If one operand is
569 * a scalar and the other vector, then the scalar is applied component-
570 * wise to the vector, resulting in the same type as the vector. If both
571 * are vectors of the same size, the result is computed component-wise."
572 */
573 if (type_a->is_vector()) {
574 if (!type_b->is_vector()
575 || (type_a->vector_elements == type_b->vector_elements))
576 return type_a;
577 } else
578 return type_b;
579
580 /* "The operator modulus (%) is not defined for any other data types
581 * (non-integer types)."
582 */
583 _mesa_glsl_error(loc, state, "type mismatch");
584 return glsl_type::error_type;
585 }
586
587
588 static const struct glsl_type *
589 relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
590 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
591 {
592 const glsl_type *type_a = value_a->type;
593 const glsl_type *type_b = value_b->type;
594
595 /* From GLSL 1.50 spec, page 56:
596 * "The relational operators greater than (>), less than (<), greater
597 * than or equal (>=), and less than or equal (<=) operate only on
598 * scalar integer and scalar floating-point expressions."
599 */
600 if (!type_a->is_numeric()
601 || !type_b->is_numeric()
602 || !type_a->is_scalar()
603 || !type_b->is_scalar()) {
604 _mesa_glsl_error(loc, state,
605 "operands to relational operators must be scalar and "
606 "numeric");
607 return glsl_type::error_type;
608 }
609
610 /* "Either the operands' types must match, or the conversions from
611 * Section 4.1.10 "Implicit Conversions" will be applied to the integer
612 * operand, after which the types must match."
613 */
614 if (!apply_implicit_conversion(type_a, value_b, state)
615 && !apply_implicit_conversion(type_b, value_a, state)) {
616 _mesa_glsl_error(loc, state,
617 "could not implicitly convert operands to "
618 "relational operator");
619 return glsl_type::error_type;
620 }
621 type_a = value_a->type;
622 type_b = value_b->type;
623
624 if (type_a->base_type != type_b->base_type) {
625 _mesa_glsl_error(loc, state, "base type mismatch");
626 return glsl_type::error_type;
627 }
628
629 /* "The result is scalar Boolean."
630 */
631 return glsl_type::bool_type;
632 }
633
634 /**
635 * \brief Return the result type of a bit-shift operation.
636 *
637 * If the given types to the bit-shift operator are invalid, return
638 * glsl_type::error_type.
639 *
640 * \param type_a Type of LHS of bit-shift op
641 * \param type_b Type of RHS of bit-shift op
642 */
643 static const struct glsl_type *
644 shift_result_type(const struct glsl_type *type_a,
645 const struct glsl_type *type_b,
646 ast_operators op,
647 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
648 {
649 if (!state->check_bitwise_operations_allowed(loc)) {
650 return glsl_type::error_type;
651 }
652
653 /* From page 50 (page 56 of the PDF) of the GLSL 1.30 spec:
654 *
655 * "The shift operators (<<) and (>>). For both operators, the operands
656 * must be signed or unsigned integers or integer vectors. One operand
657 * can be signed while the other is unsigned."
658 */
659 if (!type_a->is_integer()) {
660 _mesa_glsl_error(loc, state, "LHS of operator %s must be an integer or "
661 "integer vector", ast_expression::operator_string(op));
662 return glsl_type::error_type;
663
664 }
665 if (!type_b->is_integer()) {
666 _mesa_glsl_error(loc, state, "RHS of operator %s must be an integer or "
667 "integer vector", ast_expression::operator_string(op));
668 return glsl_type::error_type;
669 }
670
671 /* "If the first operand is a scalar, the second operand has to be
672 * a scalar as well."
673 */
674 if (type_a->is_scalar() && !type_b->is_scalar()) {
675 _mesa_glsl_error(loc, state, "if the first operand of %s is scalar, the "
676 "second must be scalar as well",
677 ast_expression::operator_string(op));
678 return glsl_type::error_type;
679 }
680
681 /* If both operands are vectors, check that they have same number of
682 * elements.
683 */
684 if (type_a->is_vector() &&
685 type_b->is_vector() &&
686 type_a->vector_elements != type_b->vector_elements) {
687 _mesa_glsl_error(loc, state, "vector operands to operator %s must "
688 "have same number of elements",
689 ast_expression::operator_string(op));
690 return glsl_type::error_type;
691 }
692
693 /* "In all cases, the resulting type will be the same type as the left
694 * operand."
695 */
696 return type_a;
697 }
698
699 /**
700 * Returns the innermost array index expression in an rvalue tree.
701 * This is the largest indexing level -- if an array of blocks, then
702 * it is the block index rather than an indexing expression for an
703 * array-typed member of an array of blocks.
704 */
705 static ir_rvalue *
706 find_innermost_array_index(ir_rvalue *rv)
707 {
708 ir_dereference_array *last = NULL;
709 while (rv) {
710 if (rv->as_dereference_array()) {
711 last = rv->as_dereference_array();
712 rv = last->array;
713 } else if (rv->as_dereference_record())
714 rv = rv->as_dereference_record()->record;
715 else if (rv->as_swizzle())
716 rv = rv->as_swizzle()->val;
717 else
718 rv = NULL;
719 }
720
721 if (last)
722 return last->array_index;
723
724 return NULL;
725 }
726
727 /**
728 * Validates that a value can be assigned to a location with a specified type
729 *
730 * Validates that \c rhs can be assigned to some location. If the types are
731 * not an exact match but an automatic conversion is possible, \c rhs will be
732 * converted.
733 *
734 * \return
735 * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
736 * Otherwise the actual RHS to be assigned will be returned. This may be
737 * \c rhs, or it may be \c rhs after some type conversion.
738 *
739 * \note
740 * In addition to being used for assignments, this function is used to
741 * type-check return values.
742 */
743 static ir_rvalue *
744 validate_assignment(struct _mesa_glsl_parse_state *state,
745 YYLTYPE loc, ir_rvalue *lhs,
746 ir_rvalue *rhs, bool is_initializer)
747 {
748 /* If there is already some error in the RHS, just return it. Anything
749 * else will lead to an avalanche of error message back to the user.
750 */
751 if (rhs->type->is_error())
752 return rhs;
753
754 /* In the Tessellation Control Shader:
755 * If a per-vertex output variable is used as an l-value, it is an error
756 * if the expression indicating the vertex number is not the identifier
757 * `gl_InvocationID`.
758 */
759 if (state->stage == MESA_SHADER_TESS_CTRL) {
760 ir_variable *var = lhs->variable_referenced();
761 if (var->data.mode == ir_var_shader_out && !var->data.patch) {
762 ir_rvalue *index = find_innermost_array_index(lhs);
763 ir_variable *index_var = index ? index->variable_referenced() : NULL;
764 if (!index_var || strcmp(index_var->name, "gl_InvocationID") != 0) {
765 _mesa_glsl_error(&loc, state,
766 "Tessellation control shader outputs can only "
767 "be indexed by gl_InvocationID");
768 return NULL;
769 }
770 }
771 }
772
773 /* If the types are identical, the assignment can trivially proceed.
774 */
775 if (rhs->type == lhs->type)
776 return rhs;
777
778 /* If the array element types are the same and the LHS is unsized,
779 * the assignment is okay for initializers embedded in variable
780 * declarations.
781 *
782 * Note: Whole-array assignments are not permitted in GLSL 1.10, but this
783 * is handled by ir_dereference::is_lvalue.
784 */
785 if (lhs->type->is_unsized_array() && rhs->type->is_array()
786 && (lhs->type->fields.array == rhs->type->fields.array)) {
787 if (is_initializer) {
788 return rhs;
789 } else {
790 _mesa_glsl_error(&loc, state,
791 "implicitly sized arrays cannot be assigned");
792 return NULL;
793 }
794 }
795
796 /* Check for implicit conversion in GLSL 1.20 */
797 if (apply_implicit_conversion(lhs->type, rhs, state)) {
798 if (rhs->type == lhs->type)
799 return rhs;
800 }
801
802 _mesa_glsl_error(&loc, state,
803 "%s of type %s cannot be assigned to "
804 "variable of type %s",
805 is_initializer ? "initializer" : "value",
806 rhs->type->name, lhs->type->name);
807
808 return NULL;
809 }
810
811 static void
812 mark_whole_array_access(ir_rvalue *access)
813 {
814 ir_dereference_variable *deref = access->as_dereference_variable();
815
816 if (deref && deref->var) {
817 deref->var->data.max_array_access = deref->type->length - 1;
818 }
819 }
820
821 static bool
822 do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state,
823 const char *non_lvalue_description,
824 ir_rvalue *lhs, ir_rvalue *rhs,
825 ir_rvalue **out_rvalue, bool needs_rvalue,
826 bool is_initializer,
827 YYLTYPE lhs_loc)
828 {
829 void *ctx = state;
830 bool error_emitted = (lhs->type->is_error() || rhs->type->is_error());
831 ir_rvalue *extract_channel = NULL;
832
833 /* If the assignment LHS comes back as an ir_binop_vector_extract
834 * expression, move it to the RHS as an ir_triop_vector_insert.
835 */
836 if (lhs->ir_type == ir_type_expression) {
837 ir_expression *const lhs_expr = lhs->as_expression();
838
839 if (unlikely(lhs_expr->operation == ir_binop_vector_extract)) {
840 ir_rvalue *new_rhs =
841 validate_assignment(state, lhs_loc, lhs,
842 rhs, is_initializer);
843
844 if (new_rhs == NULL) {
845 return lhs;
846 } else {
847 /* This converts:
848 * - LHS: (expression float vector_extract <vec> <channel>)
849 * - RHS: <scalar>
850 * into:
851 * - LHS: <vec>
852 * - RHS: (expression vec2 vector_insert <vec> <channel> <scalar>)
853 *
854 * The LHS type is now a vector instead of a scalar. Since GLSL
855 * allows assignments to be used as rvalues, we need to re-extract
856 * the channel from assignment_temp when returning the rvalue.
857 */
858 extract_channel = lhs_expr->operands[1];
859 rhs = new(ctx) ir_expression(ir_triop_vector_insert,
860 lhs_expr->operands[0]->type,
861 lhs_expr->operands[0],
862 new_rhs,
863 extract_channel);
864 lhs = lhs_expr->operands[0]->clone(ctx, NULL);
865 }
866 }
867 }
868
869 ir_variable *lhs_var = lhs->variable_referenced();
870 if (lhs_var)
871 lhs_var->data.assigned = true;
872
873 if (!error_emitted) {
874 if (non_lvalue_description != NULL) {
875 _mesa_glsl_error(&lhs_loc, state,
876 "assignment to %s",
877 non_lvalue_description);
878 error_emitted = true;
879 } else if (lhs_var != NULL && (lhs_var->data.read_only ||
880 (lhs_var->data.mode == ir_var_shader_storage &&
881 lhs_var->data.image_read_only))) {
882 /* We can have image_read_only set on both images and buffer variables,
883 * but in the former there is a distinction between assignments to
884 * the variable itself (read_only) and to the memory they point to
885 * (image_read_only), while in the case of buffer variables there is
886 * no such distinction, that is why this check here is limited to
887 * buffer variables alone.
888 */
889 _mesa_glsl_error(&lhs_loc, state,
890 "assignment to read-only variable '%s'",
891 lhs_var->name);
892 error_emitted = true;
893 } else if (lhs->type->is_array() &&
894 !state->check_version(120, 300, &lhs_loc,
895 "whole array assignment forbidden")) {
896 /* From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
897 *
898 * "Other binary or unary expressions, non-dereferenced
899 * arrays, function names, swizzles with repeated fields,
900 * and constants cannot be l-values."
901 *
902 * The restriction on arrays is lifted in GLSL 1.20 and GLSL ES 3.00.
903 */
904 error_emitted = true;
905 } else if (!lhs->is_lvalue()) {
906 _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment");
907 error_emitted = true;
908 }
909 }
910
911 ir_rvalue *new_rhs =
912 validate_assignment(state, lhs_loc, lhs, rhs, is_initializer);
913 if (new_rhs != NULL) {
914 rhs = new_rhs;
915
916 /* If the LHS array was not declared with a size, it takes it size from
917 * the RHS. If the LHS is an l-value and a whole array, it must be a
918 * dereference of a variable. Any other case would require that the LHS
919 * is either not an l-value or not a whole array.
920 */
921 if (lhs->type->is_unsized_array()) {
922 ir_dereference *const d = lhs->as_dereference();
923
924 assert(d != NULL);
925
926 ir_variable *const var = d->variable_referenced();
927
928 assert(var != NULL);
929
930 if (var->data.max_array_access >= unsigned(rhs->type->array_size())) {
931 /* FINISHME: This should actually log the location of the RHS. */
932 _mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to "
933 "previous access",
934 var->data.max_array_access);
935 }
936
937 var->type = glsl_type::get_array_instance(lhs->type->fields.array,
938 rhs->type->array_size());
939 d->type = var->type;
940 }
941 if (lhs->type->is_array()) {
942 mark_whole_array_access(rhs);
943 mark_whole_array_access(lhs);
944 }
945 }
946
947 /* Most callers of do_assignment (assign, add_assign, pre_inc/dec,
948 * but not post_inc) need the converted assigned value as an rvalue
949 * to handle things like:
950 *
951 * i = j += 1;
952 */
953 if (needs_rvalue) {
954 ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp",
955 ir_var_temporary);
956 instructions->push_tail(var);
957 instructions->push_tail(assign(var, rhs));
958
959 if (!error_emitted) {
960 ir_dereference_variable *deref_var = new(ctx) ir_dereference_variable(var);
961 instructions->push_tail(new(ctx) ir_assignment(lhs, deref_var));
962 }
963 ir_rvalue *rvalue = new(ctx) ir_dereference_variable(var);
964
965 if (extract_channel) {
966 rvalue = new(ctx) ir_expression(ir_binop_vector_extract,
967 rvalue,
968 extract_channel->clone(ctx, NULL));
969 }
970
971 *out_rvalue = rvalue;
972 } else {
973 if (!error_emitted)
974 instructions->push_tail(new(ctx) ir_assignment(lhs, rhs));
975 *out_rvalue = NULL;
976 }
977
978 return error_emitted;
979 }
980
981 static ir_rvalue *
982 get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue)
983 {
984 void *ctx = ralloc_parent(lvalue);
985 ir_variable *var;
986
987 var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp",
988 ir_var_temporary);
989 instructions->push_tail(var);
990
991 instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
992 lvalue));
993
994 return new(ctx) ir_dereference_variable(var);
995 }
996
997
998 ir_rvalue *
999 ast_node::hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
1000 {
1001 (void) instructions;
1002 (void) state;
1003
1004 return NULL;
1005 }
1006
1007 void
1008 ast_function_expression::hir_no_rvalue(exec_list *instructions,
1009 struct _mesa_glsl_parse_state *state)
1010 {
1011 (void)hir(instructions, state);
1012 }
1013
1014 void
1015 ast_aggregate_initializer::hir_no_rvalue(exec_list *instructions,
1016 struct _mesa_glsl_parse_state *state)
1017 {
1018 (void)hir(instructions, state);
1019 }
1020
1021 static ir_rvalue *
1022 do_comparison(void *mem_ctx, int operation, ir_rvalue *op0, ir_rvalue *op1)
1023 {
1024 int join_op;
1025 ir_rvalue *cmp = NULL;
1026
1027 if (operation == ir_binop_all_equal)
1028 join_op = ir_binop_logic_and;
1029 else
1030 join_op = ir_binop_logic_or;
1031
1032 switch (op0->type->base_type) {
1033 case GLSL_TYPE_FLOAT:
1034 case GLSL_TYPE_UINT:
1035 case GLSL_TYPE_INT:
1036 case GLSL_TYPE_BOOL:
1037 case GLSL_TYPE_DOUBLE:
1038 return new(mem_ctx) ir_expression(operation, op0, op1);
1039
1040 case GLSL_TYPE_ARRAY: {
1041 for (unsigned int i = 0; i < op0->type->length; i++) {
1042 ir_rvalue *e0, *e1, *result;
1043
1044 e0 = new(mem_ctx) ir_dereference_array(op0->clone(mem_ctx, NULL),
1045 new(mem_ctx) ir_constant(i));
1046 e1 = new(mem_ctx) ir_dereference_array(op1->clone(mem_ctx, NULL),
1047 new(mem_ctx) ir_constant(i));
1048 result = do_comparison(mem_ctx, operation, e0, e1);
1049
1050 if (cmp) {
1051 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
1052 } else {
1053 cmp = result;
1054 }
1055 }
1056
1057 mark_whole_array_access(op0);
1058 mark_whole_array_access(op1);
1059 break;
1060 }
1061
1062 case GLSL_TYPE_STRUCT: {
1063 for (unsigned int i = 0; i < op0->type->length; i++) {
1064 ir_rvalue *e0, *e1, *result;
1065 const char *field_name = op0->type->fields.structure[i].name;
1066
1067 e0 = new(mem_ctx) ir_dereference_record(op0->clone(mem_ctx, NULL),
1068 field_name);
1069 e1 = new(mem_ctx) ir_dereference_record(op1->clone(mem_ctx, NULL),
1070 field_name);
1071 result = do_comparison(mem_ctx, operation, e0, e1);
1072
1073 if (cmp) {
1074 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
1075 } else {
1076 cmp = result;
1077 }
1078 }
1079 break;
1080 }
1081
1082 case GLSL_TYPE_ERROR:
1083 case GLSL_TYPE_VOID:
1084 case GLSL_TYPE_SAMPLER:
1085 case GLSL_TYPE_IMAGE:
1086 case GLSL_TYPE_INTERFACE:
1087 case GLSL_TYPE_ATOMIC_UINT:
1088 case GLSL_TYPE_SUBROUTINE:
1089 /* I assume a comparison of a struct containing a sampler just
1090 * ignores the sampler present in the type.
1091 */
1092 break;
1093 }
1094
1095 if (cmp == NULL)
1096 cmp = new(mem_ctx) ir_constant(true);
1097
1098 return cmp;
1099 }
1100
1101 /* For logical operations, we want to ensure that the operands are
1102 * scalar booleans. If it isn't, emit an error and return a constant
1103 * boolean to avoid triggering cascading error messages.
1104 */
1105 ir_rvalue *
1106 get_scalar_boolean_operand(exec_list *instructions,
1107 struct _mesa_glsl_parse_state *state,
1108 ast_expression *parent_expr,
1109 int operand,
1110 const char *operand_name,
1111 bool *error_emitted)
1112 {
1113 ast_expression *expr = parent_expr->subexpressions[operand];
1114 void *ctx = state;
1115 ir_rvalue *val = expr->hir(instructions, state);
1116
1117 if (val->type->is_boolean() && val->type->is_scalar())
1118 return val;
1119
1120 if (!*error_emitted) {
1121 YYLTYPE loc = expr->get_location();
1122 _mesa_glsl_error(&loc, state, "%s of `%s' must be scalar boolean",
1123 operand_name,
1124 parent_expr->operator_string(parent_expr->oper));
1125 *error_emitted = true;
1126 }
1127
1128 return new(ctx) ir_constant(true);
1129 }
1130
1131 /**
1132 * If name refers to a builtin array whose maximum allowed size is less than
1133 * size, report an error and return true. Otherwise return false.
1134 */
1135 void
1136 check_builtin_array_max_size(const char *name, unsigned size,
1137 YYLTYPE loc, struct _mesa_glsl_parse_state *state)
1138 {
1139 if ((strcmp("gl_TexCoord", name) == 0)
1140 && (size > state->Const.MaxTextureCoords)) {
1141 /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec:
1142 *
1143 * "The size [of gl_TexCoord] can be at most
1144 * gl_MaxTextureCoords."
1145 */
1146 _mesa_glsl_error(&loc, state, "`gl_TexCoord' array size cannot "
1147 "be larger than gl_MaxTextureCoords (%u)",
1148 state->Const.MaxTextureCoords);
1149 } else if (strcmp("gl_ClipDistance", name) == 0
1150 && size > state->Const.MaxClipPlanes) {
1151 /* From section 7.1 (Vertex Shader Special Variables) of the
1152 * GLSL 1.30 spec:
1153 *
1154 * "The gl_ClipDistance array is predeclared as unsized and
1155 * must be sized by the shader either redeclaring it with a
1156 * size or indexing it only with integral constant
1157 * expressions. ... The size can be at most
1158 * gl_MaxClipDistances."
1159 */
1160 _mesa_glsl_error(&loc, state, "`gl_ClipDistance' array size cannot "
1161 "be larger than gl_MaxClipDistances (%u)",
1162 state->Const.MaxClipPlanes);
1163 }
1164 }
1165
1166 /**
1167 * Create the constant 1, of a which is appropriate for incrementing and
1168 * decrementing values of the given GLSL type. For example, if type is vec4,
1169 * this creates a constant value of 1.0 having type float.
1170 *
1171 * If the given type is invalid for increment and decrement operators, return
1172 * a floating point 1--the error will be detected later.
1173 */
1174 static ir_rvalue *
1175 constant_one_for_inc_dec(void *ctx, const glsl_type *type)
1176 {
1177 switch (type->base_type) {
1178 case GLSL_TYPE_UINT:
1179 return new(ctx) ir_constant((unsigned) 1);
1180 case GLSL_TYPE_INT:
1181 return new(ctx) ir_constant(1);
1182 default:
1183 case GLSL_TYPE_FLOAT:
1184 return new(ctx) ir_constant(1.0f);
1185 }
1186 }
1187
1188 ir_rvalue *
1189 ast_expression::hir(exec_list *instructions,
1190 struct _mesa_glsl_parse_state *state)
1191 {
1192 return do_hir(instructions, state, true);
1193 }
1194
1195 void
1196 ast_expression::hir_no_rvalue(exec_list *instructions,
1197 struct _mesa_glsl_parse_state *state)
1198 {
1199 do_hir(instructions, state, false);
1200 }
1201
1202 ir_rvalue *
1203 ast_expression::do_hir(exec_list *instructions,
1204 struct _mesa_glsl_parse_state *state,
1205 bool needs_rvalue)
1206 {
1207 void *ctx = state;
1208 static const int operations[AST_NUM_OPERATORS] = {
1209 -1, /* ast_assign doesn't convert to ir_expression. */
1210 -1, /* ast_plus doesn't convert to ir_expression. */
1211 ir_unop_neg,
1212 ir_binop_add,
1213 ir_binop_sub,
1214 ir_binop_mul,
1215 ir_binop_div,
1216 ir_binop_mod,
1217 ir_binop_lshift,
1218 ir_binop_rshift,
1219 ir_binop_less,
1220 ir_binop_greater,
1221 ir_binop_lequal,
1222 ir_binop_gequal,
1223 ir_binop_all_equal,
1224 ir_binop_any_nequal,
1225 ir_binop_bit_and,
1226 ir_binop_bit_xor,
1227 ir_binop_bit_or,
1228 ir_unop_bit_not,
1229 ir_binop_logic_and,
1230 ir_binop_logic_xor,
1231 ir_binop_logic_or,
1232 ir_unop_logic_not,
1233
1234 /* Note: The following block of expression types actually convert
1235 * to multiple IR instructions.
1236 */
1237 ir_binop_mul, /* ast_mul_assign */
1238 ir_binop_div, /* ast_div_assign */
1239 ir_binop_mod, /* ast_mod_assign */
1240 ir_binop_add, /* ast_add_assign */
1241 ir_binop_sub, /* ast_sub_assign */
1242 ir_binop_lshift, /* ast_ls_assign */
1243 ir_binop_rshift, /* ast_rs_assign */
1244 ir_binop_bit_and, /* ast_and_assign */
1245 ir_binop_bit_xor, /* ast_xor_assign */
1246 ir_binop_bit_or, /* ast_or_assign */
1247
1248 -1, /* ast_conditional doesn't convert to ir_expression. */
1249 ir_binop_add, /* ast_pre_inc. */
1250 ir_binop_sub, /* ast_pre_dec. */
1251 ir_binop_add, /* ast_post_inc. */
1252 ir_binop_sub, /* ast_post_dec. */
1253 -1, /* ast_field_selection doesn't conv to ir_expression. */
1254 -1, /* ast_array_index doesn't convert to ir_expression. */
1255 -1, /* ast_function_call doesn't conv to ir_expression. */
1256 -1, /* ast_identifier doesn't convert to ir_expression. */
1257 -1, /* ast_int_constant doesn't convert to ir_expression. */
1258 -1, /* ast_uint_constant doesn't conv to ir_expression. */
1259 -1, /* ast_float_constant doesn't conv to ir_expression. */
1260 -1, /* ast_bool_constant doesn't conv to ir_expression. */
1261 -1, /* ast_sequence doesn't convert to ir_expression. */
1262 };
1263 ir_rvalue *result = NULL;
1264 ir_rvalue *op[3];
1265 const struct glsl_type *type; /* a temporary variable for switch cases */
1266 bool error_emitted = false;
1267 YYLTYPE loc;
1268
1269 loc = this->get_location();
1270
1271 switch (this->oper) {
1272 case ast_aggregate:
1273 assert(!"ast_aggregate: Should never get here.");
1274 break;
1275
1276 case ast_assign: {
1277 op[0] = this->subexpressions[0]->hir(instructions, state);
1278 op[1] = this->subexpressions[1]->hir(instructions, state);
1279
1280 error_emitted =
1281 do_assignment(instructions, state,
1282 this->subexpressions[0]->non_lvalue_description,
1283 op[0], op[1], &result, needs_rvalue, false,
1284 this->subexpressions[0]->get_location());
1285 break;
1286 }
1287
1288 case ast_plus:
1289 op[0] = this->subexpressions[0]->hir(instructions, state);
1290
1291 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1292
1293 error_emitted = type->is_error();
1294
1295 result = op[0];
1296 break;
1297
1298 case ast_neg:
1299 op[0] = this->subexpressions[0]->hir(instructions, state);
1300
1301 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1302
1303 error_emitted = type->is_error();
1304
1305 result = new(ctx) ir_expression(operations[this->oper], type,
1306 op[0], NULL);
1307 break;
1308
1309 case ast_add:
1310 case ast_sub:
1311 case ast_mul:
1312 case ast_div:
1313 op[0] = this->subexpressions[0]->hir(instructions, state);
1314 op[1] = this->subexpressions[1]->hir(instructions, state);
1315
1316 type = arithmetic_result_type(op[0], op[1],
1317 (this->oper == ast_mul),
1318 state, & loc);
1319 error_emitted = type->is_error();
1320
1321 result = new(ctx) ir_expression(operations[this->oper], type,
1322 op[0], op[1]);
1323 break;
1324
1325 case ast_mod:
1326 op[0] = this->subexpressions[0]->hir(instructions, state);
1327 op[1] = this->subexpressions[1]->hir(instructions, state);
1328
1329 type = modulus_result_type(op[0]->type, op[1]->type, state, & loc);
1330
1331 assert(operations[this->oper] == ir_binop_mod);
1332
1333 result = new(ctx) ir_expression(operations[this->oper], type,
1334 op[0], op[1]);
1335 error_emitted = type->is_error();
1336 break;
1337
1338 case ast_lshift:
1339 case ast_rshift:
1340 if (!state->check_bitwise_operations_allowed(&loc)) {
1341 error_emitted = true;
1342 }
1343
1344 op[0] = this->subexpressions[0]->hir(instructions, state);
1345 op[1] = this->subexpressions[1]->hir(instructions, state);
1346 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1347 &loc);
1348 result = new(ctx) ir_expression(operations[this->oper], type,
1349 op[0], op[1]);
1350 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1351 break;
1352
1353 case ast_less:
1354 case ast_greater:
1355 case ast_lequal:
1356 case ast_gequal:
1357 op[0] = this->subexpressions[0]->hir(instructions, state);
1358 op[1] = this->subexpressions[1]->hir(instructions, state);
1359
1360 type = relational_result_type(op[0], op[1], state, & loc);
1361
1362 /* The relational operators must either generate an error or result
1363 * in a scalar boolean. See page 57 of the GLSL 1.50 spec.
1364 */
1365 assert(type->is_error()
1366 || ((type->base_type == GLSL_TYPE_BOOL)
1367 && type->is_scalar()));
1368
1369 result = new(ctx) ir_expression(operations[this->oper], type,
1370 op[0], op[1]);
1371 error_emitted = type->is_error();
1372 break;
1373
1374 case ast_nequal:
1375 case ast_equal:
1376 op[0] = this->subexpressions[0]->hir(instructions, state);
1377 op[1] = this->subexpressions[1]->hir(instructions, state);
1378
1379 /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
1380 *
1381 * "The equality operators equal (==), and not equal (!=)
1382 * operate on all types. They result in a scalar Boolean. If
1383 * the operand types do not match, then there must be a
1384 * conversion from Section 4.1.10 "Implicit Conversions"
1385 * applied to one operand that can make them match, in which
1386 * case this conversion is done."
1387 */
1388
1389 if (op[0]->type == glsl_type::void_type || op[1]->type == glsl_type::void_type) {
1390 _mesa_glsl_error(& loc, state, "`%s': wrong operand types: "
1391 "no operation `%1$s' exists that takes a left-hand "
1392 "operand of type 'void' or a right operand of type "
1393 "'void'", (this->oper == ast_equal) ? "==" : "!=");
1394 error_emitted = true;
1395 } else if ((!apply_implicit_conversion(op[0]->type, op[1], state)
1396 && !apply_implicit_conversion(op[1]->type, op[0], state))
1397 || (op[0]->type != op[1]->type)) {
1398 _mesa_glsl_error(& loc, state, "operands of `%s' must have the same "
1399 "type", (this->oper == ast_equal) ? "==" : "!=");
1400 error_emitted = true;
1401 } else if ((op[0]->type->is_array() || op[1]->type->is_array()) &&
1402 !state->check_version(120, 300, &loc,
1403 "array comparisons forbidden")) {
1404 error_emitted = true;
1405 } else if ((op[0]->type->contains_opaque() ||
1406 op[1]->type->contains_opaque())) {
1407 _mesa_glsl_error(&loc, state, "opaque type comparisons forbidden");
1408 error_emitted = true;
1409 }
1410
1411 if (error_emitted) {
1412 result = new(ctx) ir_constant(false);
1413 } else {
1414 result = do_comparison(ctx, operations[this->oper], op[0], op[1]);
1415 assert(result->type == glsl_type::bool_type);
1416 }
1417 break;
1418
1419 case ast_bit_and:
1420 case ast_bit_xor:
1421 case ast_bit_or:
1422 op[0] = this->subexpressions[0]->hir(instructions, state);
1423 op[1] = this->subexpressions[1]->hir(instructions, state);
1424 type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
1425 state, &loc);
1426 result = new(ctx) ir_expression(operations[this->oper], type,
1427 op[0], op[1]);
1428 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1429 break;
1430
1431 case ast_bit_not:
1432 op[0] = this->subexpressions[0]->hir(instructions, state);
1433
1434 if (!state->check_bitwise_operations_allowed(&loc)) {
1435 error_emitted = true;
1436 }
1437
1438 if (!op[0]->type->is_integer()) {
1439 _mesa_glsl_error(&loc, state, "operand of `~' must be an integer");
1440 error_emitted = true;
1441 }
1442
1443 type = error_emitted ? glsl_type::error_type : op[0]->type;
1444 result = new(ctx) ir_expression(ir_unop_bit_not, type, op[0], NULL);
1445 break;
1446
1447 case ast_logic_and: {
1448 exec_list rhs_instructions;
1449 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1450 "LHS", &error_emitted);
1451 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1452 "RHS", &error_emitted);
1453
1454 if (rhs_instructions.is_empty()) {
1455 result = new(ctx) ir_expression(ir_binop_logic_and, op[0], op[1]);
1456 type = result->type;
1457 } else {
1458 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1459 "and_tmp",
1460 ir_var_temporary);
1461 instructions->push_tail(tmp);
1462
1463 ir_if *const stmt = new(ctx) ir_if(op[0]);
1464 instructions->push_tail(stmt);
1465
1466 stmt->then_instructions.append_list(&rhs_instructions);
1467 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1468 ir_assignment *const then_assign =
1469 new(ctx) ir_assignment(then_deref, op[1]);
1470 stmt->then_instructions.push_tail(then_assign);
1471
1472 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1473 ir_assignment *const else_assign =
1474 new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false));
1475 stmt->else_instructions.push_tail(else_assign);
1476
1477 result = new(ctx) ir_dereference_variable(tmp);
1478 type = tmp->type;
1479 }
1480 break;
1481 }
1482
1483 case ast_logic_or: {
1484 exec_list rhs_instructions;
1485 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1486 "LHS", &error_emitted);
1487 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1488 "RHS", &error_emitted);
1489
1490 if (rhs_instructions.is_empty()) {
1491 result = new(ctx) ir_expression(ir_binop_logic_or, op[0], op[1]);
1492 type = result->type;
1493 } else {
1494 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1495 "or_tmp",
1496 ir_var_temporary);
1497 instructions->push_tail(tmp);
1498
1499 ir_if *const stmt = new(ctx) ir_if(op[0]);
1500 instructions->push_tail(stmt);
1501
1502 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1503 ir_assignment *const then_assign =
1504 new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true));
1505 stmt->then_instructions.push_tail(then_assign);
1506
1507 stmt->else_instructions.append_list(&rhs_instructions);
1508 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1509 ir_assignment *const else_assign =
1510 new(ctx) ir_assignment(else_deref, op[1]);
1511 stmt->else_instructions.push_tail(else_assign);
1512
1513 result = new(ctx) ir_dereference_variable(tmp);
1514 type = tmp->type;
1515 }
1516 break;
1517 }
1518
1519 case ast_logic_xor:
1520 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1521 *
1522 * "The logical binary operators and (&&), or ( | | ), and
1523 * exclusive or (^^). They operate only on two Boolean
1524 * expressions and result in a Boolean expression."
1525 */
1526 op[0] = get_scalar_boolean_operand(instructions, state, this, 0, "LHS",
1527 &error_emitted);
1528 op[1] = get_scalar_boolean_operand(instructions, state, this, 1, "RHS",
1529 &error_emitted);
1530
1531 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1532 op[0], op[1]);
1533 break;
1534
1535 case ast_logic_not:
1536 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1537 "operand", &error_emitted);
1538
1539 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1540 op[0], NULL);
1541 break;
1542
1543 case ast_mul_assign:
1544 case ast_div_assign:
1545 case ast_add_assign:
1546 case ast_sub_assign: {
1547 op[0] = this->subexpressions[0]->hir(instructions, state);
1548 op[1] = this->subexpressions[1]->hir(instructions, state);
1549
1550 type = arithmetic_result_type(op[0], op[1],
1551 (this->oper == ast_mul_assign),
1552 state, & loc);
1553
1554 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1555 op[0], op[1]);
1556
1557 error_emitted =
1558 do_assignment(instructions, state,
1559 this->subexpressions[0]->non_lvalue_description,
1560 op[0]->clone(ctx, NULL), temp_rhs,
1561 &result, needs_rvalue, false,
1562 this->subexpressions[0]->get_location());
1563
1564 /* GLSL 1.10 does not allow array assignment. However, we don't have to
1565 * explicitly test for this because none of the binary expression
1566 * operators allow array operands either.
1567 */
1568
1569 break;
1570 }
1571
1572 case ast_mod_assign: {
1573 op[0] = this->subexpressions[0]->hir(instructions, state);
1574 op[1] = this->subexpressions[1]->hir(instructions, state);
1575
1576 type = modulus_result_type(op[0]->type, op[1]->type, state, & loc);
1577
1578 assert(operations[this->oper] == ir_binop_mod);
1579
1580 ir_rvalue *temp_rhs;
1581 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1582 op[0], op[1]);
1583
1584 error_emitted =
1585 do_assignment(instructions, state,
1586 this->subexpressions[0]->non_lvalue_description,
1587 op[0]->clone(ctx, NULL), temp_rhs,
1588 &result, needs_rvalue, false,
1589 this->subexpressions[0]->get_location());
1590 break;
1591 }
1592
1593 case ast_ls_assign:
1594 case ast_rs_assign: {
1595 op[0] = this->subexpressions[0]->hir(instructions, state);
1596 op[1] = this->subexpressions[1]->hir(instructions, state);
1597 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1598 &loc);
1599 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1600 type, op[0], op[1]);
1601 error_emitted =
1602 do_assignment(instructions, state,
1603 this->subexpressions[0]->non_lvalue_description,
1604 op[0]->clone(ctx, NULL), temp_rhs,
1605 &result, needs_rvalue, false,
1606 this->subexpressions[0]->get_location());
1607 break;
1608 }
1609
1610 case ast_and_assign:
1611 case ast_xor_assign:
1612 case ast_or_assign: {
1613 op[0] = this->subexpressions[0]->hir(instructions, state);
1614 op[1] = this->subexpressions[1]->hir(instructions, state);
1615 type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
1616 state, &loc);
1617 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1618 type, op[0], op[1]);
1619 error_emitted =
1620 do_assignment(instructions, state,
1621 this->subexpressions[0]->non_lvalue_description,
1622 op[0]->clone(ctx, NULL), temp_rhs,
1623 &result, needs_rvalue, false,
1624 this->subexpressions[0]->get_location());
1625 break;
1626 }
1627
1628 case ast_conditional: {
1629 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1630 *
1631 * "The ternary selection operator (?:). It operates on three
1632 * expressions (exp1 ? exp2 : exp3). This operator evaluates the
1633 * first expression, which must result in a scalar Boolean."
1634 */
1635 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1636 "condition", &error_emitted);
1637
1638 /* The :? operator is implemented by generating an anonymous temporary
1639 * followed by an if-statement. The last instruction in each branch of
1640 * the if-statement assigns a value to the anonymous temporary. This
1641 * temporary is the r-value of the expression.
1642 */
1643 exec_list then_instructions;
1644 exec_list else_instructions;
1645
1646 op[1] = this->subexpressions[1]->hir(&then_instructions, state);
1647 op[2] = this->subexpressions[2]->hir(&else_instructions, state);
1648
1649 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1650 *
1651 * "The second and third expressions can be any type, as
1652 * long their types match, or there is a conversion in
1653 * Section 4.1.10 "Implicit Conversions" that can be applied
1654 * to one of the expressions to make their types match. This
1655 * resulting matching type is the type of the entire
1656 * expression."
1657 */
1658 if ((!apply_implicit_conversion(op[1]->type, op[2], state)
1659 && !apply_implicit_conversion(op[2]->type, op[1], state))
1660 || (op[1]->type != op[2]->type)) {
1661 YYLTYPE loc = this->subexpressions[1]->get_location();
1662
1663 _mesa_glsl_error(& loc, state, "second and third operands of ?: "
1664 "operator must have matching types");
1665 error_emitted = true;
1666 type = glsl_type::error_type;
1667 } else {
1668 type = op[1]->type;
1669 }
1670
1671 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1672 *
1673 * "The second and third expressions must be the same type, but can
1674 * be of any type other than an array."
1675 */
1676 if (type->is_array() &&
1677 !state->check_version(120, 300, &loc,
1678 "second and third operands of ?: operator "
1679 "cannot be arrays")) {
1680 error_emitted = true;
1681 }
1682
1683 /* From section 4.1.7 of the GLSL 4.50 spec (Opaque Types):
1684 *
1685 * "Except for array indexing, structure member selection, and
1686 * parentheses, opaque variables are not allowed to be operands in
1687 * expressions; such use results in a compile-time error."
1688 */
1689 if (type->contains_opaque()) {
1690 _mesa_glsl_error(&loc, state, "opaque variables cannot be operands "
1691 "of the ?: operator");
1692 error_emitted = true;
1693 }
1694
1695 ir_constant *cond_val = op[0]->constant_expression_value();
1696
1697 if (then_instructions.is_empty()
1698 && else_instructions.is_empty()
1699 && cond_val != NULL) {
1700 result = cond_val->value.b[0] ? op[1] : op[2];
1701 } else {
1702 /* The copy to conditional_tmp reads the whole array. */
1703 if (type->is_array()) {
1704 mark_whole_array_access(op[1]);
1705 mark_whole_array_access(op[2]);
1706 }
1707
1708 ir_variable *const tmp =
1709 new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary);
1710 instructions->push_tail(tmp);
1711
1712 ir_if *const stmt = new(ctx) ir_if(op[0]);
1713 instructions->push_tail(stmt);
1714
1715 then_instructions.move_nodes_to(& stmt->then_instructions);
1716 ir_dereference *const then_deref =
1717 new(ctx) ir_dereference_variable(tmp);
1718 ir_assignment *const then_assign =
1719 new(ctx) ir_assignment(then_deref, op[1]);
1720 stmt->then_instructions.push_tail(then_assign);
1721
1722 else_instructions.move_nodes_to(& stmt->else_instructions);
1723 ir_dereference *const else_deref =
1724 new(ctx) ir_dereference_variable(tmp);
1725 ir_assignment *const else_assign =
1726 new(ctx) ir_assignment(else_deref, op[2]);
1727 stmt->else_instructions.push_tail(else_assign);
1728
1729 result = new(ctx) ir_dereference_variable(tmp);
1730 }
1731 break;
1732 }
1733
1734 case ast_pre_inc:
1735 case ast_pre_dec: {
1736 this->non_lvalue_description = (this->oper == ast_pre_inc)
1737 ? "pre-increment operation" : "pre-decrement operation";
1738
1739 op[0] = this->subexpressions[0]->hir(instructions, state);
1740 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1741
1742 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1743
1744 ir_rvalue *temp_rhs;
1745 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1746 op[0], op[1]);
1747
1748 error_emitted =
1749 do_assignment(instructions, state,
1750 this->subexpressions[0]->non_lvalue_description,
1751 op[0]->clone(ctx, NULL), temp_rhs,
1752 &result, needs_rvalue, false,
1753 this->subexpressions[0]->get_location());
1754 break;
1755 }
1756
1757 case ast_post_inc:
1758 case ast_post_dec: {
1759 this->non_lvalue_description = (this->oper == ast_post_inc)
1760 ? "post-increment operation" : "post-decrement operation";
1761 op[0] = this->subexpressions[0]->hir(instructions, state);
1762 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1763
1764 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1765
1766 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1767
1768 ir_rvalue *temp_rhs;
1769 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1770 op[0], op[1]);
1771
1772 /* Get a temporary of a copy of the lvalue before it's modified.
1773 * This may get thrown away later.
1774 */
1775 result = get_lvalue_copy(instructions, op[0]->clone(ctx, NULL));
1776
1777 ir_rvalue *junk_rvalue;
1778 error_emitted =
1779 do_assignment(instructions, state,
1780 this->subexpressions[0]->non_lvalue_description,
1781 op[0]->clone(ctx, NULL), temp_rhs,
1782 &junk_rvalue, false, false,
1783 this->subexpressions[0]->get_location());
1784
1785 break;
1786 }
1787
1788 case ast_field_selection:
1789 result = _mesa_ast_field_selection_to_hir(this, instructions, state);
1790 break;
1791
1792 case ast_array_index: {
1793 YYLTYPE index_loc = subexpressions[1]->get_location();
1794
1795 op[0] = subexpressions[0]->hir(instructions, state);
1796 op[1] = subexpressions[1]->hir(instructions, state);
1797
1798 result = _mesa_ast_array_index_to_hir(ctx, state, op[0], op[1],
1799 loc, index_loc);
1800
1801 if (result->type->is_error())
1802 error_emitted = true;
1803
1804 break;
1805 }
1806
1807 case ast_function_call:
1808 /* Should *NEVER* get here. ast_function_call should always be handled
1809 * by ast_function_expression::hir.
1810 */
1811 assert(0);
1812 break;
1813
1814 case ast_identifier: {
1815 /* ast_identifier can appear several places in a full abstract syntax
1816 * tree. This particular use must be at location specified in the grammar
1817 * as 'variable_identifier'.
1818 */
1819 ir_variable *var =
1820 state->symbols->get_variable(this->primary_expression.identifier);
1821
1822 if (var != NULL) {
1823 var->data.used = true;
1824 result = new(ctx) ir_dereference_variable(var);
1825 } else {
1826 _mesa_glsl_error(& loc, state, "`%s' undeclared",
1827 this->primary_expression.identifier);
1828
1829 result = ir_rvalue::error_value(ctx);
1830 error_emitted = true;
1831 }
1832 break;
1833 }
1834
1835 case ast_int_constant:
1836 result = new(ctx) ir_constant(this->primary_expression.int_constant);
1837 break;
1838
1839 case ast_uint_constant:
1840 result = new(ctx) ir_constant(this->primary_expression.uint_constant);
1841 break;
1842
1843 case ast_float_constant:
1844 result = new(ctx) ir_constant(this->primary_expression.float_constant);
1845 break;
1846
1847 case ast_bool_constant:
1848 result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant));
1849 break;
1850
1851 case ast_double_constant:
1852 result = new(ctx) ir_constant(this->primary_expression.double_constant);
1853 break;
1854
1855 case ast_sequence: {
1856 /* It should not be possible to generate a sequence in the AST without
1857 * any expressions in it.
1858 */
1859 assert(!this->expressions.is_empty());
1860
1861 /* The r-value of a sequence is the last expression in the sequence. If
1862 * the other expressions in the sequence do not have side-effects (and
1863 * therefore add instructions to the instruction list), they get dropped
1864 * on the floor.
1865 */
1866 exec_node *previous_tail_pred = NULL;
1867 YYLTYPE previous_operand_loc = loc;
1868
1869 foreach_list_typed (ast_node, ast, link, &this->expressions) {
1870 /* If one of the operands of comma operator does not generate any
1871 * code, we want to emit a warning. At each pass through the loop
1872 * previous_tail_pred will point to the last instruction in the
1873 * stream *before* processing the previous operand. Naturally,
1874 * instructions->tail_pred will point to the last instruction in the
1875 * stream *after* processing the previous operand. If the two
1876 * pointers match, then the previous operand had no effect.
1877 *
1878 * The warning behavior here differs slightly from GCC. GCC will
1879 * only emit a warning if none of the left-hand operands have an
1880 * effect. However, it will emit a warning for each. I believe that
1881 * there are some cases in C (especially with GCC extensions) where
1882 * it is useful to have an intermediate step in a sequence have no
1883 * effect, but I don't think these cases exist in GLSL. Either way,
1884 * it would be a giant hassle to replicate that behavior.
1885 */
1886 if (previous_tail_pred == instructions->tail_pred) {
1887 _mesa_glsl_warning(&previous_operand_loc, state,
1888 "left-hand operand of comma expression has "
1889 "no effect");
1890 }
1891
1892 /* tail_pred is directly accessed instead of using the get_tail()
1893 * method for performance reasons. get_tail() has extra code to
1894 * return NULL when the list is empty. We don't care about that
1895 * here, so using tail_pred directly is fine.
1896 */
1897 previous_tail_pred = instructions->tail_pred;
1898 previous_operand_loc = ast->get_location();
1899
1900 result = ast->hir(instructions, state);
1901 }
1902
1903 /* Any errors should have already been emitted in the loop above.
1904 */
1905 error_emitted = true;
1906 break;
1907 }
1908 }
1909 type = NULL; /* use result->type, not type. */
1910 assert(result != NULL || !needs_rvalue);
1911
1912 if (result && result->type->is_error() && !error_emitted)
1913 _mesa_glsl_error(& loc, state, "type mismatch");
1914
1915 return result;
1916 }
1917
1918
1919 ir_rvalue *
1920 ast_expression_statement::hir(exec_list *instructions,
1921 struct _mesa_glsl_parse_state *state)
1922 {
1923 /* It is possible to have expression statements that don't have an
1924 * expression. This is the solitary semicolon:
1925 *
1926 * for (i = 0; i < 5; i++)
1927 * ;
1928 *
1929 * In this case the expression will be NULL. Test for NULL and don't do
1930 * anything in that case.
1931 */
1932 if (expression != NULL)
1933 expression->hir_no_rvalue(instructions, state);
1934
1935 /* Statements do not have r-values.
1936 */
1937 return NULL;
1938 }
1939
1940
1941 ir_rvalue *
1942 ast_compound_statement::hir(exec_list *instructions,
1943 struct _mesa_glsl_parse_state *state)
1944 {
1945 if (new_scope)
1946 state->symbols->push_scope();
1947
1948 foreach_list_typed (ast_node, ast, link, &this->statements)
1949 ast->hir(instructions, state);
1950
1951 if (new_scope)
1952 state->symbols->pop_scope();
1953
1954 /* Compound statements do not have r-values.
1955 */
1956 return NULL;
1957 }
1958
1959 /**
1960 * Evaluate the given exec_node (which should be an ast_node representing
1961 * a single array dimension) and return its integer value.
1962 */
1963 static unsigned
1964 process_array_size(exec_node *node,
1965 struct _mesa_glsl_parse_state *state)
1966 {
1967 exec_list dummy_instructions;
1968
1969 ast_node *array_size = exec_node_data(ast_node, node, link);
1970 ir_rvalue *const ir = array_size->hir(& dummy_instructions, state);
1971 YYLTYPE loc = array_size->get_location();
1972
1973 if (ir == NULL) {
1974 _mesa_glsl_error(& loc, state,
1975 "array size could not be resolved");
1976 return 0;
1977 }
1978
1979 if (!ir->type->is_integer()) {
1980 _mesa_glsl_error(& loc, state,
1981 "array size must be integer type");
1982 return 0;
1983 }
1984
1985 if (!ir->type->is_scalar()) {
1986 _mesa_glsl_error(& loc, state,
1987 "array size must be scalar type");
1988 return 0;
1989 }
1990
1991 ir_constant *const size = ir->constant_expression_value();
1992 if (size == NULL) {
1993 _mesa_glsl_error(& loc, state, "array size must be a "
1994 "constant valued expression");
1995 return 0;
1996 }
1997
1998 if (size->value.i[0] <= 0) {
1999 _mesa_glsl_error(& loc, state, "array size must be > 0");
2000 return 0;
2001 }
2002
2003 assert(size->type == ir->type);
2004
2005 /* If the array size is const (and we've verified that
2006 * it is) then no instructions should have been emitted
2007 * when we converted it to HIR. If they were emitted,
2008 * then either the array size isn't const after all, or
2009 * we are emitting unnecessary instructions.
2010 */
2011 assert(dummy_instructions.is_empty());
2012
2013 return size->value.u[0];
2014 }
2015
2016 static const glsl_type *
2017 process_array_type(YYLTYPE *loc, const glsl_type *base,
2018 ast_array_specifier *array_specifier,
2019 struct _mesa_glsl_parse_state *state)
2020 {
2021 const glsl_type *array_type = base;
2022
2023 if (array_specifier != NULL) {
2024 if (base->is_array()) {
2025
2026 /* From page 19 (page 25) of the GLSL 1.20 spec:
2027 *
2028 * "Only one-dimensional arrays may be declared."
2029 */
2030 if (!state->ARB_arrays_of_arrays_enable) {
2031 _mesa_glsl_error(loc, state,
2032 "invalid array of `%s'"
2033 "GL_ARB_arrays_of_arrays "
2034 "required for defining arrays of arrays",
2035 base->name);
2036 return glsl_type::error_type;
2037 }
2038
2039 if (base->length == 0) {
2040 _mesa_glsl_error(loc, state,
2041 "only the outermost array dimension can "
2042 "be unsized",
2043 base->name);
2044 return glsl_type::error_type;
2045 }
2046 }
2047
2048 for (exec_node *node = array_specifier->array_dimensions.tail_pred;
2049 !node->is_head_sentinel(); node = node->prev) {
2050 unsigned array_size = process_array_size(node, state);
2051 array_type = glsl_type::get_array_instance(array_type, array_size);
2052 }
2053
2054 if (array_specifier->is_unsized_array)
2055 array_type = glsl_type::get_array_instance(array_type, 0);
2056 }
2057
2058 return array_type;
2059 }
2060
2061
2062 const glsl_type *
2063 ast_type_specifier::glsl_type(const char **name,
2064 struct _mesa_glsl_parse_state *state) const
2065 {
2066 const struct glsl_type *type;
2067
2068 type = state->symbols->get_type(this->type_name);
2069 *name = this->type_name;
2070
2071 YYLTYPE loc = this->get_location();
2072 type = process_array_type(&loc, type, this->array_specifier, state);
2073
2074 return type;
2075 }
2076
2077 const glsl_type *
2078 ast_fully_specified_type::glsl_type(const char **name,
2079 struct _mesa_glsl_parse_state *state) const
2080 {
2081 const struct glsl_type *type = this->specifier->glsl_type(name, state);
2082
2083 if (type == NULL)
2084 return NULL;
2085
2086 if (type->base_type == GLSL_TYPE_FLOAT
2087 && state->es_shader
2088 && state->stage == MESA_SHADER_FRAGMENT
2089 && this->qualifier.precision == ast_precision_none
2090 && state->symbols->get_variable("#default precision") == NULL) {
2091 YYLTYPE loc = this->get_location();
2092 _mesa_glsl_error(&loc, state,
2093 "no precision specified this scope for type `%s'",
2094 type->name);
2095 }
2096
2097 return type;
2098 }
2099
2100 /**
2101 * Determine whether a toplevel variable declaration declares a varying. This
2102 * function operates by examining the variable's mode and the shader target,
2103 * so it correctly identifies linkage variables regardless of whether they are
2104 * declared using the deprecated "varying" syntax or the new "in/out" syntax.
2105 *
2106 * Passing a non-toplevel variable declaration (e.g. a function parameter) to
2107 * this function will produce undefined results.
2108 */
2109 static bool
2110 is_varying_var(ir_variable *var, gl_shader_stage target)
2111 {
2112 switch (target) {
2113 case MESA_SHADER_VERTEX:
2114 return var->data.mode == ir_var_shader_out;
2115 case MESA_SHADER_FRAGMENT:
2116 return var->data.mode == ir_var_shader_in;
2117 default:
2118 return var->data.mode == ir_var_shader_out || var->data.mode == ir_var_shader_in;
2119 }
2120 }
2121
2122
2123 /**
2124 * Matrix layout qualifiers are only allowed on certain types
2125 */
2126 static void
2127 validate_matrix_layout_for_type(struct _mesa_glsl_parse_state *state,
2128 YYLTYPE *loc,
2129 const glsl_type *type,
2130 ir_variable *var)
2131 {
2132 if (var && !var->is_in_buffer_block()) {
2133 /* Layout qualifiers may only apply to interface blocks and fields in
2134 * them.
2135 */
2136 _mesa_glsl_error(loc, state,
2137 "uniform block layout qualifiers row_major and "
2138 "column_major may not be applied to variables "
2139 "outside of uniform blocks");
2140 } else if (!type->is_matrix()) {
2141 /* The OpenGL ES 3.0 conformance tests did not originally allow
2142 * matrix layout qualifiers on non-matrices. However, the OpenGL
2143 * 4.4 and OpenGL ES 3.0 (revision TBD) specifications were
2144 * amended to specifically allow these layouts on all types. Emit
2145 * a warning so that people know their code may not be portable.
2146 */
2147 _mesa_glsl_warning(loc, state,
2148 "uniform block layout qualifiers row_major and "
2149 "column_major applied to non-matrix types may "
2150 "be rejected by older compilers");
2151 } else if (type->is_record()) {
2152 /* We allow 'layout(row_major)' on structure types because it's the only
2153 * way to get row-major layouts on matrices contained in structures.
2154 */
2155 _mesa_glsl_warning(loc, state,
2156 "uniform block layout qualifiers row_major and "
2157 "column_major applied to structure types is not "
2158 "strictly conformant and may be rejected by other "
2159 "compilers");
2160 }
2161 }
2162
2163 static bool
2164 validate_binding_qualifier(struct _mesa_glsl_parse_state *state,
2165 YYLTYPE *loc,
2166 const glsl_type *type,
2167 const ast_type_qualifier *qual)
2168 {
2169 if (!qual->flags.q.uniform && !qual->flags.q.buffer) {
2170 _mesa_glsl_error(loc, state,
2171 "the \"binding\" qualifier only applies to uniforms and "
2172 "shader storage buffer objects");
2173 return false;
2174 }
2175
2176 if (qual->binding < 0) {
2177 _mesa_glsl_error(loc, state, "binding values must be >= 0");
2178 return false;
2179 }
2180
2181 const struct gl_context *const ctx = state->ctx;
2182 unsigned elements = type->is_array() ? type->arrays_of_arrays_size() : 1;
2183 unsigned max_index = qual->binding + elements - 1;
2184 const glsl_type *base_type = type->without_array();
2185
2186 if (base_type->is_interface()) {
2187 /* UBOs. From page 60 of the GLSL 4.20 specification:
2188 * "If the binding point for any uniform block instance is less than zero,
2189 * or greater than or equal to the implementation-dependent maximum
2190 * number of uniform buffer bindings, a compilation error will occur.
2191 * When the binding identifier is used with a uniform block instanced as
2192 * an array of size N, all elements of the array from binding through
2193 * binding + N – 1 must be within this range."
2194 *
2195 * The implementation-dependent maximum is GL_MAX_UNIFORM_BUFFER_BINDINGS.
2196 */
2197 if (qual->flags.q.uniform &&
2198 max_index >= ctx->Const.MaxUniformBufferBindings) {
2199 _mesa_glsl_error(loc, state, "layout(binding = %d) for %d UBOs exceeds "
2200 "the maximum number of UBO binding points (%d)",
2201 qual->binding, elements,
2202 ctx->Const.MaxUniformBufferBindings);
2203 return false;
2204 }
2205
2206 /* SSBOs. From page 67 of the GLSL 4.30 specification:
2207 * "If the binding point for any uniform or shader storage block instance
2208 * is less than zero, or greater than or equal to the
2209 * implementation-dependent maximum number of uniform buffer bindings, a
2210 * compile-time error will occur. When the binding identifier is used
2211 * with a uniform or shader storage block instanced as an array of size
2212 * N, all elements of the array from binding through binding + N – 1 must
2213 * be within this range."
2214 */
2215 if (qual->flags.q.buffer &&
2216 max_index >= ctx->Const.MaxShaderStorageBufferBindings) {
2217 _mesa_glsl_error(loc, state, "layout(binding = %d) for %d SSBOs exceeds "
2218 "the maximum number of SSBO binding points (%d)",
2219 qual->binding, elements,
2220 ctx->Const.MaxShaderStorageBufferBindings);
2221 return false;
2222 }
2223 } else if (base_type->is_sampler()) {
2224 /* Samplers. From page 63 of the GLSL 4.20 specification:
2225 * "If the binding is less than zero, or greater than or equal to the
2226 * implementation-dependent maximum supported number of units, a
2227 * compilation error will occur. When the binding identifier is used
2228 * with an array of size N, all elements of the array from binding
2229 * through binding + N - 1 must be within this range."
2230 */
2231 unsigned limit = ctx->Const.MaxCombinedTextureImageUnits;
2232
2233 if (max_index >= limit) {
2234 _mesa_glsl_error(loc, state, "layout(binding = %d) for %d samplers "
2235 "exceeds the maximum number of texture image units "
2236 "(%d)", qual->binding, elements, limit);
2237
2238 return false;
2239 }
2240 } else if (base_type->contains_atomic()) {
2241 assert(ctx->Const.MaxAtomicBufferBindings <= MAX_COMBINED_ATOMIC_BUFFERS);
2242 if (unsigned(qual->binding) >= ctx->Const.MaxAtomicBufferBindings) {
2243 _mesa_glsl_error(loc, state, "layout(binding = %d) exceeds the "
2244 " maximum number of atomic counter buffer bindings"
2245 "(%d)", qual->binding,
2246 ctx->Const.MaxAtomicBufferBindings);
2247
2248 return false;
2249 }
2250 } else if (state->is_version(420, 310) && base_type->is_image()) {
2251 assert(ctx->Const.MaxImageUnits <= MAX_IMAGE_UNITS);
2252 if (max_index >= ctx->Const.MaxImageUnits) {
2253 _mesa_glsl_error(loc, state, "Image binding %d exceeds the "
2254 " maximum number of image units (%d)", max_index,
2255 ctx->Const.MaxImageUnits);
2256 return false;
2257 }
2258
2259 } else {
2260 _mesa_glsl_error(loc, state,
2261 "the \"binding\" qualifier only applies to uniform "
2262 "blocks, opaque variables, or arrays thereof");
2263 return false;
2264 }
2265
2266 return true;
2267 }
2268
2269
2270 static glsl_interp_qualifier
2271 interpret_interpolation_qualifier(const struct ast_type_qualifier *qual,
2272 ir_variable_mode mode,
2273 struct _mesa_glsl_parse_state *state,
2274 YYLTYPE *loc)
2275 {
2276 glsl_interp_qualifier interpolation;
2277 if (qual->flags.q.flat)
2278 interpolation = INTERP_QUALIFIER_FLAT;
2279 else if (qual->flags.q.noperspective)
2280 interpolation = INTERP_QUALIFIER_NOPERSPECTIVE;
2281 else if (qual->flags.q.smooth)
2282 interpolation = INTERP_QUALIFIER_SMOOTH;
2283 else
2284 interpolation = INTERP_QUALIFIER_NONE;
2285
2286 if (interpolation != INTERP_QUALIFIER_NONE) {
2287 if (mode != ir_var_shader_in && mode != ir_var_shader_out) {
2288 _mesa_glsl_error(loc, state,
2289 "interpolation qualifier `%s' can only be applied to "
2290 "shader inputs or outputs.",
2291 interpolation_string(interpolation));
2292
2293 }
2294
2295 if ((state->stage == MESA_SHADER_VERTEX && mode == ir_var_shader_in) ||
2296 (state->stage == MESA_SHADER_FRAGMENT && mode == ir_var_shader_out)) {
2297 _mesa_glsl_error(loc, state,
2298 "interpolation qualifier `%s' cannot be applied to "
2299 "vertex shader inputs or fragment shader outputs",
2300 interpolation_string(interpolation));
2301 }
2302 }
2303
2304 return interpolation;
2305 }
2306
2307
2308 static void
2309 validate_explicit_location(const struct ast_type_qualifier *qual,
2310 ir_variable *var,
2311 struct _mesa_glsl_parse_state *state,
2312 YYLTYPE *loc)
2313 {
2314 bool fail = false;
2315
2316 /* Checks for GL_ARB_explicit_uniform_location. */
2317 if (qual->flags.q.uniform) {
2318 if (!state->check_explicit_uniform_location_allowed(loc, var))
2319 return;
2320
2321 const struct gl_context *const ctx = state->ctx;
2322 unsigned max_loc = qual->location + var->type->uniform_locations() - 1;
2323
2324 /* ARB_explicit_uniform_location specification states:
2325 *
2326 * "The explicitly defined locations and the generated locations
2327 * must be in the range of 0 to MAX_UNIFORM_LOCATIONS minus one."
2328 *
2329 * "Valid locations for default-block uniform variable locations
2330 * are in the range of 0 to the implementation-defined maximum
2331 * number of uniform locations."
2332 */
2333 if (qual->location < 0) {
2334 _mesa_glsl_error(loc, state,
2335 "explicit location < 0 for uniform %s", var->name);
2336 return;
2337 }
2338
2339 if (max_loc >= ctx->Const.MaxUserAssignableUniformLocations) {
2340 _mesa_glsl_error(loc, state, "location(s) consumed by uniform %s "
2341 ">= MAX_UNIFORM_LOCATIONS (%u)", var->name,
2342 ctx->Const.MaxUserAssignableUniformLocations);
2343 return;
2344 }
2345
2346 var->data.explicit_location = true;
2347 var->data.location = qual->location;
2348 return;
2349 }
2350
2351 /* Between GL_ARB_explicit_attrib_location an
2352 * GL_ARB_separate_shader_objects, the inputs and outputs of any shader
2353 * stage can be assigned explicit locations. The checking here associates
2354 * the correct extension with the correct stage's input / output:
2355 *
2356 * input output
2357 * ----- ------
2358 * vertex explicit_loc sso
2359 * tess control sso sso
2360 * tess eval sso sso
2361 * geometry sso sso
2362 * fragment sso explicit_loc
2363 */
2364 switch (state->stage) {
2365 case MESA_SHADER_VERTEX:
2366 if (var->data.mode == ir_var_shader_in) {
2367 if (!state->check_explicit_attrib_location_allowed(loc, var))
2368 return;
2369
2370 break;
2371 }
2372
2373 if (var->data.mode == ir_var_shader_out) {
2374 if (!state->check_separate_shader_objects_allowed(loc, var))
2375 return;
2376
2377 break;
2378 }
2379
2380 fail = true;
2381 break;
2382
2383 case MESA_SHADER_TESS_CTRL:
2384 case MESA_SHADER_TESS_EVAL:
2385 case MESA_SHADER_GEOMETRY:
2386 if (var->data.mode == ir_var_shader_in || var->data.mode == ir_var_shader_out) {
2387 if (!state->check_separate_shader_objects_allowed(loc, var))
2388 return;
2389
2390 break;
2391 }
2392
2393 fail = true;
2394 break;
2395
2396 case MESA_SHADER_FRAGMENT:
2397 if (var->data.mode == ir_var_shader_in) {
2398 if (!state->check_separate_shader_objects_allowed(loc, var))
2399 return;
2400
2401 break;
2402 }
2403
2404 if (var->data.mode == ir_var_shader_out) {
2405 if (!state->check_explicit_attrib_location_allowed(loc, var))
2406 return;
2407
2408 break;
2409 }
2410
2411 fail = true;
2412 break;
2413
2414 case MESA_SHADER_COMPUTE:
2415 _mesa_glsl_error(loc, state,
2416 "compute shader variables cannot be given "
2417 "explicit locations");
2418 return;
2419 };
2420
2421 if (fail) {
2422 _mesa_glsl_error(loc, state,
2423 "%s cannot be given an explicit location in %s shader",
2424 mode_string(var),
2425 _mesa_shader_stage_to_string(state->stage));
2426 } else {
2427 var->data.explicit_location = true;
2428
2429 /* This bit of silliness is needed because invalid explicit locations
2430 * are supposed to be flagged during linking. Small negative values
2431 * biased by VERT_ATTRIB_GENERIC0 or FRAG_RESULT_DATA0 could alias
2432 * built-in values (e.g., -16+VERT_ATTRIB_GENERIC0 = VERT_ATTRIB_POS).
2433 * The linker needs to be able to differentiate these cases. This
2434 * ensures that negative values stay negative.
2435 */
2436 if (qual->location >= 0) {
2437 switch (state->stage) {
2438 case MESA_SHADER_VERTEX:
2439 var->data.location = (var->data.mode == ir_var_shader_in)
2440 ? (qual->location + VERT_ATTRIB_GENERIC0)
2441 : (qual->location + VARYING_SLOT_VAR0);
2442 break;
2443
2444 case MESA_SHADER_TESS_CTRL:
2445 case MESA_SHADER_TESS_EVAL:
2446 case MESA_SHADER_GEOMETRY:
2447 if (var->data.patch)
2448 var->data.location = qual->location + VARYING_SLOT_PATCH0;
2449 else
2450 var->data.location = qual->location + VARYING_SLOT_VAR0;
2451 break;
2452
2453 case MESA_SHADER_FRAGMENT:
2454 var->data.location = (var->data.mode == ir_var_shader_out)
2455 ? (qual->location + FRAG_RESULT_DATA0)
2456 : (qual->location + VARYING_SLOT_VAR0);
2457 break;
2458 case MESA_SHADER_COMPUTE:
2459 assert(!"Unexpected shader type");
2460 break;
2461 }
2462 } else {
2463 var->data.location = qual->location;
2464 }
2465
2466 if (qual->flags.q.explicit_index) {
2467 /* From the GLSL 4.30 specification, section 4.4.2 (Output
2468 * Layout Qualifiers):
2469 *
2470 * "It is also a compile-time error if a fragment shader
2471 * sets a layout index to less than 0 or greater than 1."
2472 *
2473 * Older specifications don't mandate a behavior; we take
2474 * this as a clarification and always generate the error.
2475 */
2476 if (qual->index < 0 || qual->index > 1) {
2477 _mesa_glsl_error(loc, state,
2478 "explicit index may only be 0 or 1");
2479 } else {
2480 var->data.explicit_index = true;
2481 var->data.index = qual->index;
2482 }
2483 }
2484 }
2485 }
2486
2487 static void
2488 apply_image_qualifier_to_variable(const struct ast_type_qualifier *qual,
2489 ir_variable *var,
2490 struct _mesa_glsl_parse_state *state,
2491 YYLTYPE *loc)
2492 {
2493 const glsl_type *base_type = var->type->without_array();
2494
2495 if (base_type->is_image()) {
2496 if (var->data.mode != ir_var_uniform &&
2497 var->data.mode != ir_var_function_in) {
2498 _mesa_glsl_error(loc, state, "image variables may only be declared as "
2499 "function parameters or uniform-qualified "
2500 "global variables");
2501 }
2502
2503 var->data.image_read_only |= qual->flags.q.read_only;
2504 var->data.image_write_only |= qual->flags.q.write_only;
2505 var->data.image_coherent |= qual->flags.q.coherent;
2506 var->data.image_volatile |= qual->flags.q._volatile;
2507 var->data.image_restrict |= qual->flags.q.restrict_flag;
2508 var->data.read_only = true;
2509
2510 if (qual->flags.q.explicit_image_format) {
2511 if (var->data.mode == ir_var_function_in) {
2512 _mesa_glsl_error(loc, state, "format qualifiers cannot be "
2513 "used on image function parameters");
2514 }
2515
2516 if (qual->image_base_type != base_type->sampler_type) {
2517 _mesa_glsl_error(loc, state, "format qualifier doesn't match the "
2518 "base data type of the image");
2519 }
2520
2521 var->data.image_format = qual->image_format;
2522 } else {
2523 if (var->data.mode == ir_var_uniform) {
2524 if (state->es_shader) {
2525 _mesa_glsl_error(loc, state, "all image uniforms "
2526 "must have a format layout qualifier");
2527
2528 } else if (!qual->flags.q.write_only) {
2529 _mesa_glsl_error(loc, state, "image uniforms not qualified with "
2530 "`writeonly' must have a format layout "
2531 "qualifier");
2532 }
2533 }
2534
2535 var->data.image_format = GL_NONE;
2536 }
2537
2538 /* From page 70 of the GLSL ES 3.1 specification:
2539 *
2540 * "Except for image variables qualified with the format qualifiers
2541 * r32f, r32i, and r32ui, image variables must specify either memory
2542 * qualifier readonly or the memory qualifier writeonly."
2543 */
2544 if (state->es_shader &&
2545 var->data.image_format != GL_R32F &&
2546 var->data.image_format != GL_R32I &&
2547 var->data.image_format != GL_R32UI &&
2548 !var->data.image_read_only &&
2549 !var->data.image_write_only) {
2550 _mesa_glsl_error(loc, state, "image variables of format other than "
2551 "r32f, r32i or r32ui must be qualified `readonly' or "
2552 "`writeonly'");
2553 }
2554
2555 } else if (qual->flags.q.read_only ||
2556 qual->flags.q.write_only ||
2557 qual->flags.q.coherent ||
2558 qual->flags.q._volatile ||
2559 qual->flags.q.restrict_flag ||
2560 qual->flags.q.explicit_image_format) {
2561 _mesa_glsl_error(loc, state, "memory qualifiers may only be applied to "
2562 "images");
2563 }
2564 }
2565
2566 static inline const char*
2567 get_layout_qualifier_string(bool origin_upper_left, bool pixel_center_integer)
2568 {
2569 if (origin_upper_left && pixel_center_integer)
2570 return "origin_upper_left, pixel_center_integer";
2571 else if (origin_upper_left)
2572 return "origin_upper_left";
2573 else if (pixel_center_integer)
2574 return "pixel_center_integer";
2575 else
2576 return " ";
2577 }
2578
2579 static inline bool
2580 is_conflicting_fragcoord_redeclaration(struct _mesa_glsl_parse_state *state,
2581 const struct ast_type_qualifier *qual)
2582 {
2583 /* If gl_FragCoord was previously declared, and the qualifiers were
2584 * different in any way, return true.
2585 */
2586 if (state->fs_redeclares_gl_fragcoord) {
2587 return (state->fs_pixel_center_integer != qual->flags.q.pixel_center_integer
2588 || state->fs_origin_upper_left != qual->flags.q.origin_upper_left);
2589 }
2590
2591 return false;
2592 }
2593
2594 static void
2595 apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
2596 ir_variable *var,
2597 struct _mesa_glsl_parse_state *state,
2598 YYLTYPE *loc,
2599 bool is_parameter)
2600 {
2601 STATIC_ASSERT(sizeof(qual->flags.q) <= sizeof(qual->flags.i));
2602
2603 if (qual->flags.q.invariant) {
2604 if (var->data.used) {
2605 _mesa_glsl_error(loc, state,
2606 "variable `%s' may not be redeclared "
2607 "`invariant' after being used",
2608 var->name);
2609 } else {
2610 var->data.invariant = 1;
2611 }
2612 }
2613
2614 if (qual->flags.q.precise) {
2615 if (var->data.used) {
2616 _mesa_glsl_error(loc, state,
2617 "variable `%s' may not be redeclared "
2618 "`precise' after being used",
2619 var->name);
2620 } else {
2621 var->data.precise = 1;
2622 }
2623 }
2624
2625 if (qual->flags.q.subroutine && !qual->flags.q.uniform) {
2626 _mesa_glsl_error(loc, state,
2627 "`subroutine' may only be applied to uniforms, "
2628 "subroutine type declarations, or function definitions");
2629 }
2630
2631 if (qual->flags.q.constant || qual->flags.q.attribute
2632 || qual->flags.q.uniform
2633 || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
2634 var->data.read_only = 1;
2635
2636 if (qual->flags.q.centroid)
2637 var->data.centroid = 1;
2638
2639 if (qual->flags.q.sample)
2640 var->data.sample = 1;
2641
2642 if (state->stage == MESA_SHADER_GEOMETRY &&
2643 qual->flags.q.out && qual->flags.q.stream) {
2644 var->data.stream = qual->stream;
2645 }
2646
2647 if (qual->flags.q.patch)
2648 var->data.patch = 1;
2649
2650 if (qual->flags.q.attribute && state->stage != MESA_SHADER_VERTEX) {
2651 var->type = glsl_type::error_type;
2652 _mesa_glsl_error(loc, state,
2653 "`attribute' variables may not be declared in the "
2654 "%s shader",
2655 _mesa_shader_stage_to_string(state->stage));
2656 }
2657
2658 /* Disallow layout qualifiers which may only appear on layout declarations. */
2659 if (qual->flags.q.prim_type) {
2660 _mesa_glsl_error(loc, state,
2661 "Primitive type may only be specified on GS input or output "
2662 "layout declaration, not on variables.");
2663 }
2664
2665 /* Section 6.1.1 (Function Calling Conventions) of the GLSL 1.10 spec says:
2666 *
2667 * "However, the const qualifier cannot be used with out or inout."
2668 *
2669 * The same section of the GLSL 4.40 spec further clarifies this saying:
2670 *
2671 * "The const qualifier cannot be used with out or inout, or a
2672 * compile-time error results."
2673 */
2674 if (is_parameter && qual->flags.q.constant && qual->flags.q.out) {
2675 _mesa_glsl_error(loc, state,
2676 "`const' may not be applied to `out' or `inout' "
2677 "function parameters");
2678 }
2679
2680 /* If there is no qualifier that changes the mode of the variable, leave
2681 * the setting alone.
2682 */
2683 assert(var->data.mode != ir_var_temporary);
2684 if (qual->flags.q.in && qual->flags.q.out)
2685 var->data.mode = ir_var_function_inout;
2686 else if (qual->flags.q.in)
2687 var->data.mode = is_parameter ? ir_var_function_in : ir_var_shader_in;
2688 else if (qual->flags.q.attribute
2689 || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
2690 var->data.mode = ir_var_shader_in;
2691 else if (qual->flags.q.out)
2692 var->data.mode = is_parameter ? ir_var_function_out : ir_var_shader_out;
2693 else if (qual->flags.q.varying && (state->stage == MESA_SHADER_VERTEX))
2694 var->data.mode = ir_var_shader_out;
2695 else if (qual->flags.q.uniform)
2696 var->data.mode = ir_var_uniform;
2697 else if (qual->flags.q.buffer)
2698 var->data.mode = ir_var_shader_storage;
2699
2700 if (!is_parameter && is_varying_var(var, state->stage)) {
2701 /* User-defined ins/outs are not permitted in compute shaders. */
2702 if (state->stage == MESA_SHADER_COMPUTE) {
2703 _mesa_glsl_error(loc, state,
2704 "user-defined input and output variables are not "
2705 "permitted in compute shaders");
2706 }
2707
2708 /* This variable is being used to link data between shader stages (in
2709 * pre-glsl-1.30 parlance, it's a "varying"). Check that it has a type
2710 * that is allowed for such purposes.
2711 *
2712 * From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
2713 *
2714 * "The varying qualifier can be used only with the data types
2715 * float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
2716 * these."
2717 *
2718 * This was relaxed in GLSL version 1.30 and GLSL ES version 3.00. From
2719 * page 31 (page 37 of the PDF) of the GLSL 1.30 spec:
2720 *
2721 * "Fragment inputs can only be signed and unsigned integers and
2722 * integer vectors, float, floating-point vectors, matrices, or
2723 * arrays of these. Structures cannot be input.
2724 *
2725 * Similar text exists in the section on vertex shader outputs.
2726 *
2727 * Similar text exists in the GLSL ES 3.00 spec, except that the GLSL ES
2728 * 3.00 spec allows structs as well. Varying structs are also allowed
2729 * in GLSL 1.50.
2730 */
2731 switch (var->type->get_scalar_type()->base_type) {
2732 case GLSL_TYPE_FLOAT:
2733 /* Ok in all GLSL versions */
2734 break;
2735 case GLSL_TYPE_UINT:
2736 case GLSL_TYPE_INT:
2737 if (state->is_version(130, 300))
2738 break;
2739 _mesa_glsl_error(loc, state,
2740 "varying variables must be of base type float in %s",
2741 state->get_version_string());
2742 break;
2743 case GLSL_TYPE_STRUCT:
2744 if (state->is_version(150, 300))
2745 break;
2746 _mesa_glsl_error(loc, state,
2747 "varying variables may not be of type struct");
2748 break;
2749 case GLSL_TYPE_DOUBLE:
2750 break;
2751 default:
2752 _mesa_glsl_error(loc, state, "illegal type for a varying variable");
2753 break;
2754 }
2755 }
2756
2757 if (state->all_invariant && (state->current_function == NULL)) {
2758 switch (state->stage) {
2759 case MESA_SHADER_VERTEX:
2760 if (var->data.mode == ir_var_shader_out)
2761 var->data.invariant = true;
2762 break;
2763 case MESA_SHADER_TESS_CTRL:
2764 case MESA_SHADER_TESS_EVAL:
2765 case MESA_SHADER_GEOMETRY:
2766 if ((var->data.mode == ir_var_shader_in)
2767 || (var->data.mode == ir_var_shader_out))
2768 var->data.invariant = true;
2769 break;
2770 case MESA_SHADER_FRAGMENT:
2771 if (var->data.mode == ir_var_shader_in)
2772 var->data.invariant = true;
2773 break;
2774 case MESA_SHADER_COMPUTE:
2775 /* Invariance isn't meaningful in compute shaders. */
2776 break;
2777 }
2778 }
2779
2780 var->data.interpolation =
2781 interpret_interpolation_qualifier(qual, (ir_variable_mode) var->data.mode,
2782 state, loc);
2783
2784 var->data.pixel_center_integer = qual->flags.q.pixel_center_integer;
2785 var->data.origin_upper_left = qual->flags.q.origin_upper_left;
2786 if ((qual->flags.q.origin_upper_left || qual->flags.q.pixel_center_integer)
2787 && (strcmp(var->name, "gl_FragCoord") != 0)) {
2788 const char *const qual_string = (qual->flags.q.origin_upper_left)
2789 ? "origin_upper_left" : "pixel_center_integer";
2790
2791 _mesa_glsl_error(loc, state,
2792 "layout qualifier `%s' can only be applied to "
2793 "fragment shader input `gl_FragCoord'",
2794 qual_string);
2795 }
2796
2797 if (var->name != NULL && strcmp(var->name, "gl_FragCoord") == 0) {
2798
2799 /* Section 4.3.8.1, page 39 of GLSL 1.50 spec says:
2800 *
2801 * "Within any shader, the first redeclarations of gl_FragCoord
2802 * must appear before any use of gl_FragCoord."
2803 *
2804 * Generate a compiler error if above condition is not met by the
2805 * fragment shader.
2806 */
2807 ir_variable *earlier = state->symbols->get_variable("gl_FragCoord");
2808 if (earlier != NULL &&
2809 earlier->data.used &&
2810 !state->fs_redeclares_gl_fragcoord) {
2811 _mesa_glsl_error(loc, state,
2812 "gl_FragCoord used before its first redeclaration "
2813 "in fragment shader");
2814 }
2815
2816 /* Make sure all gl_FragCoord redeclarations specify the same layout
2817 * qualifiers.
2818 */
2819 if (is_conflicting_fragcoord_redeclaration(state, qual)) {
2820 const char *const qual_string =
2821 get_layout_qualifier_string(qual->flags.q.origin_upper_left,
2822 qual->flags.q.pixel_center_integer);
2823
2824 const char *const state_string =
2825 get_layout_qualifier_string(state->fs_origin_upper_left,
2826 state->fs_pixel_center_integer);
2827
2828 _mesa_glsl_error(loc, state,
2829 "gl_FragCoord redeclared with different layout "
2830 "qualifiers (%s) and (%s) ",
2831 state_string,
2832 qual_string);
2833 }
2834 state->fs_origin_upper_left = qual->flags.q.origin_upper_left;
2835 state->fs_pixel_center_integer = qual->flags.q.pixel_center_integer;
2836 state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers =
2837 !qual->flags.q.origin_upper_left && !qual->flags.q.pixel_center_integer;
2838 state->fs_redeclares_gl_fragcoord =
2839 state->fs_origin_upper_left ||
2840 state->fs_pixel_center_integer ||
2841 state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers;
2842 }
2843
2844 if (qual->flags.q.explicit_location) {
2845 validate_explicit_location(qual, var, state, loc);
2846 } else if (qual->flags.q.explicit_index) {
2847 _mesa_glsl_error(loc, state, "explicit index requires explicit location");
2848 }
2849
2850 if (qual->flags.q.explicit_binding &&
2851 validate_binding_qualifier(state, loc, var->type, qual)) {
2852 var->data.explicit_binding = true;
2853 var->data.binding = qual->binding;
2854 }
2855
2856 if (var->type->contains_atomic()) {
2857 if (var->data.mode == ir_var_uniform) {
2858 if (var->data.explicit_binding) {
2859 unsigned *offset =
2860 &state->atomic_counter_offsets[var->data.binding];
2861
2862 if (*offset % ATOMIC_COUNTER_SIZE)
2863 _mesa_glsl_error(loc, state,
2864 "misaligned atomic counter offset");
2865
2866 var->data.atomic.offset = *offset;
2867 *offset += var->type->atomic_size();
2868
2869 } else {
2870 _mesa_glsl_error(loc, state,
2871 "atomic counters require explicit binding point");
2872 }
2873 } else if (var->data.mode != ir_var_function_in) {
2874 _mesa_glsl_error(loc, state, "atomic counters may only be declared as "
2875 "function parameters or uniform-qualified "
2876 "global variables");
2877 }
2878 }
2879
2880 /* Does the declaration use the deprecated 'attribute' or 'varying'
2881 * keywords?
2882 */
2883 const bool uses_deprecated_qualifier = qual->flags.q.attribute
2884 || qual->flags.q.varying;
2885
2886
2887 /* Validate auxiliary storage qualifiers */
2888
2889 /* From section 4.3.4 of the GLSL 1.30 spec:
2890 * "It is an error to use centroid in in a vertex shader."
2891 *
2892 * From section 4.3.4 of the GLSL ES 3.00 spec:
2893 * "It is an error to use centroid in or interpolation qualifiers in
2894 * a vertex shader input."
2895 */
2896
2897 /* Section 4.3.6 of the GLSL 1.30 specification states:
2898 * "It is an error to use centroid out in a fragment shader."
2899 *
2900 * The GL_ARB_shading_language_420pack extension specification states:
2901 * "It is an error to use auxiliary storage qualifiers or interpolation
2902 * qualifiers on an output in a fragment shader."
2903 */
2904 if (qual->flags.q.sample && (!is_varying_var(var, state->stage) || uses_deprecated_qualifier)) {
2905 _mesa_glsl_error(loc, state,
2906 "sample qualifier may only be used on `in` or `out` "
2907 "variables between shader stages");
2908 }
2909 if (qual->flags.q.centroid && !is_varying_var(var, state->stage)) {
2910 _mesa_glsl_error(loc, state,
2911 "centroid qualifier may only be used with `in', "
2912 "`out' or `varying' variables between shader stages");
2913 }
2914
2915
2916 /* Is the 'layout' keyword used with parameters that allow relaxed checking.
2917 * Many implementations of GL_ARB_fragment_coord_conventions_enable and some
2918 * implementations (only Mesa?) GL_ARB_explicit_attrib_location_enable
2919 * allowed the layout qualifier to be used with 'varying' and 'attribute'.
2920 * These extensions and all following extensions that add the 'layout'
2921 * keyword have been modified to require the use of 'in' or 'out'.
2922 *
2923 * The following extension do not allow the deprecated keywords:
2924 *
2925 * GL_AMD_conservative_depth
2926 * GL_ARB_conservative_depth
2927 * GL_ARB_gpu_shader5
2928 * GL_ARB_separate_shader_objects
2929 * GL_ARB_tessellation_shader
2930 * GL_ARB_transform_feedback3
2931 * GL_ARB_uniform_buffer_object
2932 *
2933 * It is unknown whether GL_EXT_shader_image_load_store or GL_NV_gpu_shader5
2934 * allow layout with the deprecated keywords.
2935 */
2936 const bool relaxed_layout_qualifier_checking =
2937 state->ARB_fragment_coord_conventions_enable;
2938
2939 if (qual->has_layout() && uses_deprecated_qualifier) {
2940 if (relaxed_layout_qualifier_checking) {
2941 _mesa_glsl_warning(loc, state,
2942 "`layout' qualifier may not be used with "
2943 "`attribute' or `varying'");
2944 } else {
2945 _mesa_glsl_error(loc, state,
2946 "`layout' qualifier may not be used with "
2947 "`attribute' or `varying'");
2948 }
2949 }
2950
2951 /* Layout qualifiers for gl_FragDepth, which are enabled by extension
2952 * AMD_conservative_depth.
2953 */
2954 int depth_layout_count = qual->flags.q.depth_any
2955 + qual->flags.q.depth_greater
2956 + qual->flags.q.depth_less
2957 + qual->flags.q.depth_unchanged;
2958 if (depth_layout_count > 0
2959 && !state->AMD_conservative_depth_enable
2960 && !state->ARB_conservative_depth_enable) {
2961 _mesa_glsl_error(loc, state,
2962 "extension GL_AMD_conservative_depth or "
2963 "GL_ARB_conservative_depth must be enabled "
2964 "to use depth layout qualifiers");
2965 } else if (depth_layout_count > 0
2966 && strcmp(var->name, "gl_FragDepth") != 0) {
2967 _mesa_glsl_error(loc, state,
2968 "depth layout qualifiers can be applied only to "
2969 "gl_FragDepth");
2970 } else if (depth_layout_count > 1
2971 && strcmp(var->name, "gl_FragDepth") == 0) {
2972 _mesa_glsl_error(loc, state,
2973 "at most one depth layout qualifier can be applied to "
2974 "gl_FragDepth");
2975 }
2976 if (qual->flags.q.depth_any)
2977 var->data.depth_layout = ir_depth_layout_any;
2978 else if (qual->flags.q.depth_greater)
2979 var->data.depth_layout = ir_depth_layout_greater;
2980 else if (qual->flags.q.depth_less)
2981 var->data.depth_layout = ir_depth_layout_less;
2982 else if (qual->flags.q.depth_unchanged)
2983 var->data.depth_layout = ir_depth_layout_unchanged;
2984 else
2985 var->data.depth_layout = ir_depth_layout_none;
2986
2987 if (qual->flags.q.std140 ||
2988 qual->flags.q.std430 ||
2989 qual->flags.q.packed ||
2990 qual->flags.q.shared) {
2991 _mesa_glsl_error(loc, state,
2992 "uniform and shader storage block layout qualifiers "
2993 "std140, std430, packed, and shared can only be "
2994 "applied to uniform or shader storage blocks, not "
2995 "members");
2996 }
2997
2998 if (qual->flags.q.row_major || qual->flags.q.column_major) {
2999 validate_matrix_layout_for_type(state, loc, var->type, var);
3000 }
3001
3002 apply_image_qualifier_to_variable(qual, var, state, loc);
3003
3004 /* From section 4.4.1.3 of the GLSL 4.50 specification (Fragment Shader
3005 * Inputs):
3006 *
3007 * "Fragment shaders also allow the following layout qualifier on in only
3008 * (not with variable declarations)
3009 * layout-qualifier-id
3010 * early_fragment_tests
3011 * [...]"
3012 */
3013 if (qual->flags.q.early_fragment_tests) {
3014 _mesa_glsl_error(loc, state, "early_fragment_tests layout qualifier only "
3015 "valid in fragment shader input layout declaration.");
3016 }
3017 }
3018
3019 /**
3020 * Get the variable that is being redeclared by this declaration
3021 *
3022 * Semantic checks to verify the validity of the redeclaration are also
3023 * performed. If semantic checks fail, compilation error will be emitted via
3024 * \c _mesa_glsl_error, but a non-\c NULL pointer will still be returned.
3025 *
3026 * \returns
3027 * A pointer to an existing variable in the current scope if the declaration
3028 * is a redeclaration, \c NULL otherwise.
3029 */
3030 static ir_variable *
3031 get_variable_being_redeclared(ir_variable *var, YYLTYPE loc,
3032 struct _mesa_glsl_parse_state *state,
3033 bool allow_all_redeclarations)
3034 {
3035 /* Check if this declaration is actually a re-declaration, either to
3036 * resize an array or add qualifiers to an existing variable.
3037 *
3038 * This is allowed for variables in the current scope, or when at
3039 * global scope (for built-ins in the implicit outer scope).
3040 */
3041 ir_variable *earlier = state->symbols->get_variable(var->name);
3042 if (earlier == NULL ||
3043 (state->current_function != NULL &&
3044 !state->symbols->name_declared_this_scope(var->name))) {
3045 return NULL;
3046 }
3047
3048
3049 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
3050 *
3051 * "It is legal to declare an array without a size and then
3052 * later re-declare the same name as an array of the same
3053 * type and specify a size."
3054 */
3055 if (earlier->type->is_unsized_array() && var->type->is_array()
3056 && (var->type->fields.array == earlier->type->fields.array)) {
3057 /* FINISHME: This doesn't match the qualifiers on the two
3058 * FINISHME: declarations. It's not 100% clear whether this is
3059 * FINISHME: required or not.
3060 */
3061
3062 const unsigned size = unsigned(var->type->array_size());
3063 check_builtin_array_max_size(var->name, size, loc, state);
3064 if ((size > 0) && (size <= earlier->data.max_array_access)) {
3065 _mesa_glsl_error(& loc, state, "array size must be > %u due to "
3066 "previous access",
3067 earlier->data.max_array_access);
3068 }
3069
3070 earlier->type = var->type;
3071 delete var;
3072 var = NULL;
3073 } else if ((state->ARB_fragment_coord_conventions_enable ||
3074 state->is_version(150, 0))
3075 && strcmp(var->name, "gl_FragCoord") == 0
3076 && earlier->type == var->type
3077 && earlier->data.mode == var->data.mode) {
3078 /* Allow redeclaration of gl_FragCoord for ARB_fcc layout
3079 * qualifiers.
3080 */
3081 earlier->data.origin_upper_left = var->data.origin_upper_left;
3082 earlier->data.pixel_center_integer = var->data.pixel_center_integer;
3083
3084 /* According to section 4.3.7 of the GLSL 1.30 spec,
3085 * the following built-in varaibles can be redeclared with an
3086 * interpolation qualifier:
3087 * * gl_FrontColor
3088 * * gl_BackColor
3089 * * gl_FrontSecondaryColor
3090 * * gl_BackSecondaryColor
3091 * * gl_Color
3092 * * gl_SecondaryColor
3093 */
3094 } else if (state->is_version(130, 0)
3095 && (strcmp(var->name, "gl_FrontColor") == 0
3096 || strcmp(var->name, "gl_BackColor") == 0
3097 || strcmp(var->name, "gl_FrontSecondaryColor") == 0
3098 || strcmp(var->name, "gl_BackSecondaryColor") == 0
3099 || strcmp(var->name, "gl_Color") == 0
3100 || strcmp(var->name, "gl_SecondaryColor") == 0)
3101 && earlier->type == var->type
3102 && earlier->data.mode == var->data.mode) {
3103 earlier->data.interpolation = var->data.interpolation;
3104
3105 /* Layout qualifiers for gl_FragDepth. */
3106 } else if ((state->AMD_conservative_depth_enable ||
3107 state->ARB_conservative_depth_enable)
3108 && strcmp(var->name, "gl_FragDepth") == 0
3109 && earlier->type == var->type
3110 && earlier->data.mode == var->data.mode) {
3111
3112 /** From the AMD_conservative_depth spec:
3113 * Within any shader, the first redeclarations of gl_FragDepth
3114 * must appear before any use of gl_FragDepth.
3115 */
3116 if (earlier->data.used) {
3117 _mesa_glsl_error(&loc, state,
3118 "the first redeclaration of gl_FragDepth "
3119 "must appear before any use of gl_FragDepth");
3120 }
3121
3122 /* Prevent inconsistent redeclaration of depth layout qualifier. */
3123 if (earlier->data.depth_layout != ir_depth_layout_none
3124 && earlier->data.depth_layout != var->data.depth_layout) {
3125 _mesa_glsl_error(&loc, state,
3126 "gl_FragDepth: depth layout is declared here "
3127 "as '%s, but it was previously declared as "
3128 "'%s'",
3129 depth_layout_string(var->data.depth_layout),
3130 depth_layout_string(earlier->data.depth_layout));
3131 }
3132
3133 earlier->data.depth_layout = var->data.depth_layout;
3134
3135 } else if (allow_all_redeclarations) {
3136 if (earlier->data.mode != var->data.mode) {
3137 _mesa_glsl_error(&loc, state,
3138 "redeclaration of `%s' with incorrect qualifiers",
3139 var->name);
3140 } else if (earlier->type != var->type) {
3141 _mesa_glsl_error(&loc, state,
3142 "redeclaration of `%s' has incorrect type",
3143 var->name);
3144 }
3145 } else {
3146 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
3147 }
3148
3149 return earlier;
3150 }
3151
3152 /**
3153 * Generate the IR for an initializer in a variable declaration
3154 */
3155 ir_rvalue *
3156 process_initializer(ir_variable *var, ast_declaration *decl,
3157 ast_fully_specified_type *type,
3158 exec_list *initializer_instructions,
3159 struct _mesa_glsl_parse_state *state)
3160 {
3161 ir_rvalue *result = NULL;
3162
3163 YYLTYPE initializer_loc = decl->initializer->get_location();
3164
3165 /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
3166 *
3167 * "All uniform variables are read-only and are initialized either
3168 * directly by an application via API commands, or indirectly by
3169 * OpenGL."
3170 */
3171 if (var->data.mode == ir_var_uniform) {
3172 state->check_version(120, 0, &initializer_loc,
3173 "cannot initialize uniforms");
3174 }
3175
3176 /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec:
3177 *
3178 * "Buffer variables cannot have initializers."
3179 */
3180 if (var->data.mode == ir_var_shader_storage) {
3181 _mesa_glsl_error(& initializer_loc, state,
3182 "SSBO variables cannot have initializers");
3183 }
3184
3185 /* From section 4.1.7 of the GLSL 4.40 spec:
3186 *
3187 * "Opaque variables [...] are initialized only through the
3188 * OpenGL API; they cannot be declared with an initializer in a
3189 * shader."
3190 */
3191 if (var->type->contains_opaque()) {
3192 _mesa_glsl_error(& initializer_loc, state,
3193 "cannot initialize opaque variable");
3194 }
3195
3196 if ((var->data.mode == ir_var_shader_in) && (state->current_function == NULL)) {
3197 _mesa_glsl_error(& initializer_loc, state,
3198 "cannot initialize %s shader input / %s",
3199 _mesa_shader_stage_to_string(state->stage),
3200 (state->stage == MESA_SHADER_VERTEX)
3201 ? "attribute" : "varying");
3202 }
3203
3204 if (var->data.mode == ir_var_shader_out && state->current_function == NULL) {
3205 _mesa_glsl_error(&initializer_loc, state,
3206 "cannot initialize %s shader output",
3207 _mesa_shader_stage_to_string(state->stage));
3208 }
3209
3210 /* If the initializer is an ast_aggregate_initializer, recursively store
3211 * type information from the LHS into it, so that its hir() function can do
3212 * type checking.
3213 */
3214 if (decl->initializer->oper == ast_aggregate)
3215 _mesa_ast_set_aggregate_type(var->type, decl->initializer);
3216
3217 ir_dereference *const lhs = new(state) ir_dereference_variable(var);
3218 ir_rvalue *rhs = decl->initializer->hir(initializer_instructions, state);
3219
3220 /* Calculate the constant value if this is a const or uniform
3221 * declaration.
3222 */
3223 if (type->qualifier.flags.q.constant
3224 || type->qualifier.flags.q.uniform) {
3225 ir_rvalue *new_rhs = validate_assignment(state, initializer_loc,
3226 lhs, rhs, true);
3227 if (new_rhs != NULL) {
3228 rhs = new_rhs;
3229
3230 ir_constant *constant_value = rhs->constant_expression_value();
3231 if (!constant_value) {
3232 /* If ARB_shading_language_420pack is enabled, initializers of
3233 * const-qualified local variables do not have to be constant
3234 * expressions. Const-qualified global variables must still be
3235 * initialized with constant expressions.
3236 */
3237 if (!state->ARB_shading_language_420pack_enable
3238 || state->current_function == NULL) {
3239 _mesa_glsl_error(& initializer_loc, state,
3240 "initializer of %s variable `%s' must be a "
3241 "constant expression",
3242 (type->qualifier.flags.q.constant)
3243 ? "const" : "uniform",
3244 decl->identifier);
3245 if (var->type->is_numeric()) {
3246 /* Reduce cascading errors. */
3247 var->constant_value = ir_constant::zero(state, var->type);
3248 }
3249 }
3250 } else {
3251 rhs = constant_value;
3252 var->constant_value = constant_value;
3253 }
3254 } else {
3255 if (var->type->is_numeric()) {
3256 /* Reduce cascading errors. */
3257 var->constant_value = ir_constant::zero(state, var->type);
3258 }
3259 }
3260 }
3261
3262 if (rhs && !rhs->type->is_error()) {
3263 bool temp = var->data.read_only;
3264 if (type->qualifier.flags.q.constant)
3265 var->data.read_only = false;
3266
3267 /* Never emit code to initialize a uniform.
3268 */
3269 const glsl_type *initializer_type;
3270 if (!type->qualifier.flags.q.uniform) {
3271 do_assignment(initializer_instructions, state,
3272 NULL,
3273 lhs, rhs,
3274 &result, true,
3275 true,
3276 type->get_location());
3277 initializer_type = result->type;
3278 } else
3279 initializer_type = rhs->type;
3280
3281 var->constant_initializer = rhs->constant_expression_value();
3282 var->data.has_initializer = true;
3283
3284 /* If the declared variable is an unsized array, it must inherrit
3285 * its full type from the initializer. A declaration such as
3286 *
3287 * uniform float a[] = float[](1.0, 2.0, 3.0, 3.0);
3288 *
3289 * becomes
3290 *
3291 * uniform float a[4] = float[](1.0, 2.0, 3.0, 3.0);
3292 *
3293 * The assignment generated in the if-statement (below) will also
3294 * automatically handle this case for non-uniforms.
3295 *
3296 * If the declared variable is not an array, the types must
3297 * already match exactly. As a result, the type assignment
3298 * here can be done unconditionally. For non-uniforms the call
3299 * to do_assignment can change the type of the initializer (via
3300 * the implicit conversion rules). For uniforms the initializer
3301 * must be a constant expression, and the type of that expression
3302 * was validated above.
3303 */
3304 var->type = initializer_type;
3305
3306 var->data.read_only = temp;
3307 }
3308
3309 return result;
3310 }
3311
3312 static void
3313 validate_layout_qualifier_vertex_count(struct _mesa_glsl_parse_state *state,
3314 YYLTYPE loc, ir_variable *var,
3315 unsigned num_vertices,
3316 unsigned *size,
3317 const char *var_category)
3318 {
3319 if (var->type->is_unsized_array()) {
3320 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec says:
3321 *
3322 * All geometry shader input unsized array declarations will be
3323 * sized by an earlier input layout qualifier, when present, as per
3324 * the following table.
3325 *
3326 * Followed by a table mapping each allowed input layout qualifier to
3327 * the corresponding input length.
3328 *
3329 * Similarly for tessellation control shader outputs.
3330 */
3331 if (num_vertices != 0)
3332 var->type = glsl_type::get_array_instance(var->type->fields.array,
3333 num_vertices);
3334 } else {
3335 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec
3336 * includes the following examples of compile-time errors:
3337 *
3338 * // code sequence within one shader...
3339 * in vec4 Color1[]; // size unknown
3340 * ...Color1.length()...// illegal, length() unknown
3341 * in vec4 Color2[2]; // size is 2
3342 * ...Color1.length()...// illegal, Color1 still has no size
3343 * in vec4 Color3[3]; // illegal, input sizes are inconsistent
3344 * layout(lines) in; // legal, input size is 2, matching
3345 * in vec4 Color4[3]; // illegal, contradicts layout
3346 * ...
3347 *
3348 * To detect the case illustrated by Color3, we verify that the size of
3349 * an explicitly-sized array matches the size of any previously declared
3350 * explicitly-sized array. To detect the case illustrated by Color4, we
3351 * verify that the size of an explicitly-sized array is consistent with
3352 * any previously declared input layout.
3353 */
3354 if (num_vertices != 0 && var->type->length != num_vertices) {
3355 _mesa_glsl_error(&loc, state,
3356 "%s size contradicts previously declared layout "
3357 "(size is %u, but layout requires a size of %u)",
3358 var_category, var->type->length, num_vertices);
3359 } else if (*size != 0 && var->type->length != *size) {
3360 _mesa_glsl_error(&loc, state,
3361 "%s sizes are inconsistent (size is %u, but a "
3362 "previous declaration has size %u)",
3363 var_category, var->type->length, *size);
3364 } else {
3365 *size = var->type->length;
3366 }
3367 }
3368 }
3369
3370 static void
3371 handle_tess_ctrl_shader_output_decl(struct _mesa_glsl_parse_state *state,
3372 YYLTYPE loc, ir_variable *var)
3373 {
3374 unsigned num_vertices = 0;
3375
3376 if (state->tcs_output_vertices_specified) {
3377 num_vertices = state->out_qualifier->vertices;
3378 }
3379
3380 if (!var->type->is_array() && !var->data.patch) {
3381 _mesa_glsl_error(&loc, state,
3382 "tessellation control shader outputs must be arrays");
3383
3384 /* To avoid cascading failures, short circuit the checks below. */
3385 return;
3386 }
3387
3388 if (var->data.patch)
3389 return;
3390
3391 validate_layout_qualifier_vertex_count(state, loc, var, num_vertices,
3392 &state->tcs_output_size,
3393 "tessellation control shader output");
3394 }
3395
3396 /**
3397 * Do additional processing necessary for tessellation control/evaluation shader
3398 * input declarations. This covers both interface block arrays and bare input
3399 * variables.
3400 */
3401 static void
3402 handle_tess_shader_input_decl(struct _mesa_glsl_parse_state *state,
3403 YYLTYPE loc, ir_variable *var)
3404 {
3405 if (!var->type->is_array() && !var->data.patch) {
3406 _mesa_glsl_error(&loc, state,
3407 "per-vertex tessellation shader inputs must be arrays");
3408 /* Avoid cascading failures. */
3409 return;
3410 }
3411
3412 if (var->data.patch)
3413 return;
3414
3415 /* Unsized arrays are implicitly sized to gl_MaxPatchVertices. */
3416 if (var->type->is_unsized_array()) {
3417 var->type = glsl_type::get_array_instance(var->type->fields.array,
3418 state->Const.MaxPatchVertices);
3419 }
3420 }
3421
3422
3423 /**
3424 * Do additional processing necessary for geometry shader input declarations
3425 * (this covers both interface blocks arrays and bare input variables).
3426 */
3427 static void
3428 handle_geometry_shader_input_decl(struct _mesa_glsl_parse_state *state,
3429 YYLTYPE loc, ir_variable *var)
3430 {
3431 unsigned num_vertices = 0;
3432
3433 if (state->gs_input_prim_type_specified) {
3434 num_vertices = vertices_per_prim(state->in_qualifier->prim_type);
3435 }
3436
3437 /* Geometry shader input variables must be arrays. Caller should have
3438 * reported an error for this.
3439 */
3440 if (!var->type->is_array()) {
3441 assert(state->error);
3442
3443 /* To avoid cascading failures, short circuit the checks below. */
3444 return;
3445 }
3446
3447 validate_layout_qualifier_vertex_count(state, loc, var, num_vertices,
3448 &state->gs_input_size,
3449 "geometry shader input");
3450 }
3451
3452 void
3453 validate_identifier(const char *identifier, YYLTYPE loc,
3454 struct _mesa_glsl_parse_state *state)
3455 {
3456 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
3457 *
3458 * "Identifiers starting with "gl_" are reserved for use by
3459 * OpenGL, and may not be declared in a shader as either a
3460 * variable or a function."
3461 */
3462 if (is_gl_identifier(identifier)) {
3463 _mesa_glsl_error(&loc, state,
3464 "identifier `%s' uses reserved `gl_' prefix",
3465 identifier);
3466 } else if (strstr(identifier, "__")) {
3467 /* From page 14 (page 20 of the PDF) of the GLSL 1.10
3468 * spec:
3469 *
3470 * "In addition, all identifiers containing two
3471 * consecutive underscores (__) are reserved as
3472 * possible future keywords."
3473 *
3474 * The intention is that names containing __ are reserved for internal
3475 * use by the implementation, and names prefixed with GL_ are reserved
3476 * for use by Khronos. Names simply containing __ are dangerous to use,
3477 * but should be allowed.
3478 *
3479 * A future version of the GLSL specification will clarify this.
3480 */
3481 _mesa_glsl_warning(&loc, state,
3482 "identifier `%s' uses reserved `__' string",
3483 identifier);
3484 }
3485 }
3486
3487 static bool
3488 precision_qualifier_allowed(const glsl_type *type)
3489 {
3490 /* Precision qualifiers apply to floating point, integer and opaque
3491 * types.
3492 *
3493 * Section 4.5.2 (Precision Qualifiers) of the GLSL 1.30 spec says:
3494 * "Any floating point or any integer declaration can have the type
3495 * preceded by one of these precision qualifiers [...] Literal
3496 * constants do not have precision qualifiers. Neither do Boolean
3497 * variables.
3498 *
3499 * Section 4.5 (Precision and Precision Qualifiers) of the GLSL 1.30
3500 * spec also says:
3501 *
3502 * "Precision qualifiers are added for code portability with OpenGL
3503 * ES, not for functionality. They have the same syntax as in OpenGL
3504 * ES."
3505 *
3506 * Section 8 (Built-In Functions) of the GLSL ES 1.00 spec says:
3507 *
3508 * "uniform lowp sampler2D sampler;
3509 * highp vec2 coord;
3510 * ...
3511 * lowp vec4 col = texture2D (sampler, coord);
3512 * // texture2D returns lowp"
3513 *
3514 * From this, we infer that GLSL 1.30 (and later) should allow precision
3515 * qualifiers on sampler types just like float and integer types.
3516 */
3517 return type->is_float()
3518 || type->is_integer()
3519 || type->is_record()
3520 || type->contains_opaque();
3521 }
3522
3523 ir_rvalue *
3524 ast_declarator_list::hir(exec_list *instructions,
3525 struct _mesa_glsl_parse_state *state)
3526 {
3527 void *ctx = state;
3528 const struct glsl_type *decl_type;
3529 const char *type_name = NULL;
3530 ir_rvalue *result = NULL;
3531 YYLTYPE loc = this->get_location();
3532
3533 /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec:
3534 *
3535 * "To ensure that a particular output variable is invariant, it is
3536 * necessary to use the invariant qualifier. It can either be used to
3537 * qualify a previously declared variable as being invariant
3538 *
3539 * invariant gl_Position; // make existing gl_Position be invariant"
3540 *
3541 * In these cases the parser will set the 'invariant' flag in the declarator
3542 * list, and the type will be NULL.
3543 */
3544 if (this->invariant) {
3545 assert(this->type == NULL);
3546
3547 if (state->current_function != NULL) {
3548 _mesa_glsl_error(& loc, state,
3549 "all uses of `invariant' keyword must be at global "
3550 "scope");
3551 }
3552
3553 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
3554 assert(decl->array_specifier == NULL);
3555 assert(decl->initializer == NULL);
3556
3557 ir_variable *const earlier =
3558 state->symbols->get_variable(decl->identifier);
3559 if (earlier == NULL) {
3560 _mesa_glsl_error(& loc, state,
3561 "undeclared variable `%s' cannot be marked "
3562 "invariant", decl->identifier);
3563 } else if (!is_varying_var(earlier, state->stage)) {
3564 _mesa_glsl_error(&loc, state,
3565 "`%s' cannot be marked invariant; interfaces between "
3566 "shader stages only.", decl->identifier);
3567 } else if (earlier->data.used) {
3568 _mesa_glsl_error(& loc, state,
3569 "variable `%s' may not be redeclared "
3570 "`invariant' after being used",
3571 earlier->name);
3572 } else {
3573 earlier->data.invariant = true;
3574 }
3575 }
3576
3577 /* Invariant redeclarations do not have r-values.
3578 */
3579 return NULL;
3580 }
3581
3582 if (this->precise) {
3583 assert(this->type == NULL);
3584
3585 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
3586 assert(decl->array_specifier == NULL);
3587 assert(decl->initializer == NULL);
3588
3589 ir_variable *const earlier =
3590 state->symbols->get_variable(decl->identifier);
3591 if (earlier == NULL) {
3592 _mesa_glsl_error(& loc, state,
3593 "undeclared variable `%s' cannot be marked "
3594 "precise", decl->identifier);
3595 } else if (state->current_function != NULL &&
3596 !state->symbols->name_declared_this_scope(decl->identifier)) {
3597 /* Note: we have to check if we're in a function, since
3598 * builtins are treated as having come from another scope.
3599 */
3600 _mesa_glsl_error(& loc, state,
3601 "variable `%s' from an outer scope may not be "
3602 "redeclared `precise' in this scope",
3603 earlier->name);
3604 } else if (earlier->data.used) {
3605 _mesa_glsl_error(& loc, state,
3606 "variable `%s' may not be redeclared "
3607 "`precise' after being used",
3608 earlier->name);
3609 } else {
3610 earlier->data.precise = true;
3611 }
3612 }
3613
3614 /* Precise redeclarations do not have r-values either. */
3615 return NULL;
3616 }
3617
3618 assert(this->type != NULL);
3619 assert(!this->invariant);
3620 assert(!this->precise);
3621
3622 /* The type specifier may contain a structure definition. Process that
3623 * before any of the variable declarations.
3624 */
3625 (void) this->type->specifier->hir(instructions, state);
3626
3627 decl_type = this->type->glsl_type(& type_name, state);
3628
3629 /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec:
3630 * "Buffer variables may only be declared inside interface blocks
3631 * (section 4.3.9 “Interface Blocks”), which are then referred to as
3632 * shader storage blocks. It is a compile-time error to declare buffer
3633 * variables at global scope (outside a block)."
3634 */
3635 if (type->qualifier.flags.q.buffer && !decl_type->is_interface()) {
3636 _mesa_glsl_error(&loc, state,
3637 "buffer variables cannot be declared outside "
3638 "interface blocks");
3639 }
3640
3641 /* An offset-qualified atomic counter declaration sets the default
3642 * offset for the next declaration within the same atomic counter
3643 * buffer.
3644 */
3645 if (decl_type && decl_type->contains_atomic()) {
3646 if (type->qualifier.flags.q.explicit_binding &&
3647 type->qualifier.flags.q.explicit_offset)
3648 state->atomic_counter_offsets[type->qualifier.binding] =
3649 type->qualifier.offset;
3650 }
3651
3652 if (this->declarations.is_empty()) {
3653 /* If there is no structure involved in the program text, there are two
3654 * possible scenarios:
3655 *
3656 * - The program text contained something like 'vec4;'. This is an
3657 * empty declaration. It is valid but weird. Emit a warning.
3658 *
3659 * - The program text contained something like 'S;' and 'S' is not the
3660 * name of a known structure type. This is both invalid and weird.
3661 * Emit an error.
3662 *
3663 * - The program text contained something like 'mediump float;'
3664 * when the programmer probably meant 'precision mediump
3665 * float;' Emit a warning with a description of what they
3666 * probably meant to do.
3667 *
3668 * Note that if decl_type is NULL and there is a structure involved,
3669 * there must have been some sort of error with the structure. In this
3670 * case we assume that an error was already generated on this line of
3671 * code for the structure. There is no need to generate an additional,
3672 * confusing error.
3673 */
3674 assert(this->type->specifier->structure == NULL || decl_type != NULL
3675 || state->error);
3676
3677 if (decl_type == NULL) {
3678 _mesa_glsl_error(&loc, state,
3679 "invalid type `%s' in empty declaration",
3680 type_name);
3681 } else if (decl_type->base_type == GLSL_TYPE_ATOMIC_UINT) {
3682 /* Empty atomic counter declarations are allowed and useful
3683 * to set the default offset qualifier.
3684 */
3685 return NULL;
3686 } else if (this->type->qualifier.precision != ast_precision_none) {
3687 if (this->type->specifier->structure != NULL) {
3688 _mesa_glsl_error(&loc, state,
3689 "precision qualifiers can't be applied "
3690 "to structures");
3691 } else {
3692 static const char *const precision_names[] = {
3693 "highp",
3694 "highp",
3695 "mediump",
3696 "lowp"
3697 };
3698
3699 _mesa_glsl_warning(&loc, state,
3700 "empty declaration with precision qualifier, "
3701 "to set the default precision, use "
3702 "`precision %s %s;'",
3703 precision_names[this->type->qualifier.precision],
3704 type_name);
3705 }
3706 } else if (this->type->specifier->structure == NULL) {
3707 _mesa_glsl_warning(&loc, state, "empty declaration");
3708 }
3709 }
3710
3711 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
3712 const struct glsl_type *var_type;
3713 ir_variable *var;
3714 const char *identifier = decl->identifier;
3715 /* FINISHME: Emit a warning if a variable declaration shadows a
3716 * FINISHME: declaration at a higher scope.
3717 */
3718
3719 if ((decl_type == NULL) || decl_type->is_void()) {
3720 if (type_name != NULL) {
3721 _mesa_glsl_error(& loc, state,
3722 "invalid type `%s' in declaration of `%s'",
3723 type_name, decl->identifier);
3724 } else {
3725 _mesa_glsl_error(& loc, state,
3726 "invalid type in declaration of `%s'",
3727 decl->identifier);
3728 }
3729 continue;
3730 }
3731
3732 if (this->type->qualifier.flags.q.subroutine) {
3733 const glsl_type *t;
3734 const char *name;
3735
3736 t = state->symbols->get_type(this->type->specifier->type_name);
3737 if (!t)
3738 _mesa_glsl_error(& loc, state,
3739 "invalid type in declaration of `%s'",
3740 decl->identifier);
3741 name = ralloc_asprintf(ctx, "%s_%s", _mesa_shader_stage_to_subroutine_prefix(state->stage), decl->identifier);
3742
3743 identifier = name;
3744
3745 }
3746 var_type = process_array_type(&loc, decl_type, decl->array_specifier,
3747 state);
3748
3749 var = new(ctx) ir_variable(var_type, identifier, ir_var_auto);
3750
3751 /* The 'varying in' and 'varying out' qualifiers can only be used with
3752 * ARB_geometry_shader4 and EXT_geometry_shader4, which we don't support
3753 * yet.
3754 */
3755 if (this->type->qualifier.flags.q.varying) {
3756 if (this->type->qualifier.flags.q.in) {
3757 _mesa_glsl_error(& loc, state,
3758 "`varying in' qualifier in declaration of "
3759 "`%s' only valid for geometry shaders using "
3760 "ARB_geometry_shader4 or EXT_geometry_shader4",
3761 decl->identifier);
3762 } else if (this->type->qualifier.flags.q.out) {
3763 _mesa_glsl_error(& loc, state,
3764 "`varying out' qualifier in declaration of "
3765 "`%s' only valid for geometry shaders using "
3766 "ARB_geometry_shader4 or EXT_geometry_shader4",
3767 decl->identifier);
3768 }
3769 }
3770
3771 /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
3772 *
3773 * "Global variables can only use the qualifiers const,
3774 * attribute, uniform, or varying. Only one may be
3775 * specified.
3776 *
3777 * Local variables can only use the qualifier const."
3778 *
3779 * This is relaxed in GLSL 1.30 and GLSL ES 3.00. It is also relaxed by
3780 * any extension that adds the 'layout' keyword.
3781 */
3782 if (!state->is_version(130, 300)
3783 && !state->has_explicit_attrib_location()
3784 && !state->has_separate_shader_objects()
3785 && !state->ARB_fragment_coord_conventions_enable) {
3786 if (this->type->qualifier.flags.q.out) {
3787 _mesa_glsl_error(& loc, state,
3788 "`out' qualifier in declaration of `%s' "
3789 "only valid for function parameters in %s",
3790 decl->identifier, state->get_version_string());
3791 }
3792 if (this->type->qualifier.flags.q.in) {
3793 _mesa_glsl_error(& loc, state,
3794 "`in' qualifier in declaration of `%s' "
3795 "only valid for function parameters in %s",
3796 decl->identifier, state->get_version_string());
3797 }
3798 /* FINISHME: Test for other invalid qualifiers. */
3799 }
3800
3801 apply_type_qualifier_to_variable(& this->type->qualifier, var, state,
3802 & loc, false);
3803
3804 if (this->type->qualifier.flags.q.invariant) {
3805 if (!is_varying_var(var, state->stage)) {
3806 _mesa_glsl_error(&loc, state,
3807 "`%s' cannot be marked invariant; interfaces between "
3808 "shader stages only", var->name);
3809 }
3810 }
3811
3812 if (state->current_function != NULL) {
3813 const char *mode = NULL;
3814 const char *extra = "";
3815
3816 /* There is no need to check for 'inout' here because the parser will
3817 * only allow that in function parameter lists.
3818 */
3819 if (this->type->qualifier.flags.q.attribute) {
3820 mode = "attribute";
3821 } else if (this->type->qualifier.flags.q.subroutine) {
3822 mode = "subroutine uniform";
3823 } else if (this->type->qualifier.flags.q.uniform) {
3824 mode = "uniform";
3825 } else if (this->type->qualifier.flags.q.varying) {
3826 mode = "varying";
3827 } else if (this->type->qualifier.flags.q.in) {
3828 mode = "in";
3829 extra = " or in function parameter list";
3830 } else if (this->type->qualifier.flags.q.out) {
3831 mode = "out";
3832 extra = " or in function parameter list";
3833 }
3834
3835 if (mode) {
3836 _mesa_glsl_error(& loc, state,
3837 "%s variable `%s' must be declared at "
3838 "global scope%s",
3839 mode, var->name, extra);
3840 }
3841 } else if (var->data.mode == ir_var_shader_in) {
3842 var->data.read_only = true;
3843
3844 if (state->stage == MESA_SHADER_VERTEX) {
3845 bool error_emitted = false;
3846
3847 /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
3848 *
3849 * "Vertex shader inputs can only be float, floating-point
3850 * vectors, matrices, signed and unsigned integers and integer
3851 * vectors. Vertex shader inputs can also form arrays of these
3852 * types, but not structures."
3853 *
3854 * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
3855 *
3856 * "Vertex shader inputs can only be float, floating-point
3857 * vectors, matrices, signed and unsigned integers and integer
3858 * vectors. They cannot be arrays or structures."
3859 *
3860 * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
3861 *
3862 * "The attribute qualifier can be used only with float,
3863 * floating-point vectors, and matrices. Attribute variables
3864 * cannot be declared as arrays or structures."
3865 *
3866 * From page 33 (page 39 of the PDF) of the GLSL ES 3.00 spec:
3867 *
3868 * "Vertex shader inputs can only be float, floating-point
3869 * vectors, matrices, signed and unsigned integers and integer
3870 * vectors. Vertex shader inputs cannot be arrays or
3871 * structures."
3872 */
3873 const glsl_type *check_type = var->type->without_array();
3874
3875 switch (check_type->base_type) {
3876 case GLSL_TYPE_FLOAT:
3877 break;
3878 case GLSL_TYPE_UINT:
3879 case GLSL_TYPE_INT:
3880 if (state->is_version(120, 300))
3881 break;
3882 case GLSL_TYPE_DOUBLE:
3883 if (check_type->base_type == GLSL_TYPE_DOUBLE && (state->is_version(410, 0) || state->ARB_vertex_attrib_64bit_enable))
3884 break;
3885 /* FALLTHROUGH */
3886 default:
3887 _mesa_glsl_error(& loc, state,
3888 "vertex shader input / attribute cannot have "
3889 "type %s`%s'",
3890 var->type->is_array() ? "array of " : "",
3891 check_type->name);
3892 error_emitted = true;
3893 }
3894
3895 if (!error_emitted && var->type->is_array() &&
3896 !state->check_version(150, 0, &loc,
3897 "vertex shader input / attribute "
3898 "cannot have array type")) {
3899 error_emitted = true;
3900 }
3901 } else if (state->stage == MESA_SHADER_GEOMETRY) {
3902 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
3903 *
3904 * Geometry shader input variables get the per-vertex values
3905 * written out by vertex shader output variables of the same
3906 * names. Since a geometry shader operates on a set of
3907 * vertices, each input varying variable (or input block, see
3908 * interface blocks below) needs to be declared as an array.
3909 */
3910 if (!var->type->is_array()) {
3911 _mesa_glsl_error(&loc, state,
3912 "geometry shader inputs must be arrays");
3913 }
3914
3915 handle_geometry_shader_input_decl(state, loc, var);
3916 } else if (state->stage == MESA_SHADER_FRAGMENT) {
3917 /* From section 4.3.4 (Input Variables) of the GLSL ES 3.10 spec:
3918 *
3919 * It is a compile-time error to declare a fragment shader
3920 * input with, or that contains, any of the following types:
3921 *
3922 * * A boolean type
3923 * * An opaque type
3924 * * An array of arrays
3925 * * An array of structures
3926 * * A structure containing an array
3927 * * A structure containing a structure
3928 */
3929 if (state->es_shader) {
3930 const glsl_type *check_type = var->type->without_array();
3931 if (check_type->is_boolean() ||
3932 check_type->contains_opaque()) {
3933 _mesa_glsl_error(&loc, state,
3934 "fragment shader input cannot have type %s",
3935 check_type->name);
3936 }
3937 if (var->type->is_array() &&
3938 var->type->fields.array->is_array()) {
3939 _mesa_glsl_error(&loc, state,
3940 "%s shader output "
3941 "cannot have an array of arrays",
3942 _mesa_shader_stage_to_string(state->stage));
3943 }
3944 if (var->type->is_array() &&
3945 var->type->fields.array->is_record()) {
3946 _mesa_glsl_error(&loc, state,
3947 "fragment shader input "
3948 "cannot have an array of structs");
3949 }
3950 if (var->type->is_record()) {
3951 for (unsigned i = 0; i < var->type->length; i++) {
3952 if (var->type->fields.structure[i].type->is_array() ||
3953 var->type->fields.structure[i].type->is_record())
3954 _mesa_glsl_error(&loc, state,
3955 "fragement shader input cannot have "
3956 "a struct that contains an "
3957 "array or struct");
3958 }
3959 }
3960 }
3961 } else if (state->stage == MESA_SHADER_TESS_CTRL ||
3962 state->stage == MESA_SHADER_TESS_EVAL) {
3963 handle_tess_shader_input_decl(state, loc, var);
3964 }
3965 } else if (var->data.mode == ir_var_shader_out) {
3966 const glsl_type *check_type = var->type->without_array();
3967
3968 /* From section 4.3.6 (Output variables) of the GLSL 4.40 spec:
3969 *
3970 * It is a compile-time error to declare a vertex, tessellation
3971 * evaluation, tessellation control, or geometry shader output
3972 * that contains any of the following:
3973 *
3974 * * A Boolean type (bool, bvec2 ...)
3975 * * An opaque type
3976 */
3977 if (check_type->is_boolean() || check_type->contains_opaque())
3978 _mesa_glsl_error(&loc, state,
3979 "%s shader output cannot have type %s",
3980 _mesa_shader_stage_to_string(state->stage),
3981 check_type->name);
3982
3983 /* From section 4.3.6 (Output variables) of the GLSL 4.40 spec:
3984 *
3985 * It is a compile-time error to declare a fragment shader output
3986 * that contains any of the following:
3987 *
3988 * * A Boolean type (bool, bvec2 ...)
3989 * * A double-precision scalar or vector (double, dvec2 ...)
3990 * * An opaque type
3991 * * Any matrix type
3992 * * A structure
3993 */
3994 if (state->stage == MESA_SHADER_FRAGMENT) {
3995 if (check_type->is_record() || check_type->is_matrix())
3996 _mesa_glsl_error(&loc, state,
3997 "fragment shader output "
3998 "cannot have struct or matrix type");
3999 switch (check_type->base_type) {
4000 case GLSL_TYPE_UINT:
4001 case GLSL_TYPE_INT:
4002 case GLSL_TYPE_FLOAT:
4003 break;
4004 default:
4005 _mesa_glsl_error(&loc, state,
4006 "fragment shader output cannot have "
4007 "type %s", check_type->name);
4008 }
4009 }
4010
4011 /* From section 4.3.6 (Output Variables) of the GLSL ES 3.10 spec:
4012 *
4013 * It is a compile-time error to declare a vertex shader output
4014 * with, or that contains, any of the following types:
4015 *
4016 * * A boolean type
4017 * * An opaque type
4018 * * An array of arrays
4019 * * An array of structures
4020 * * A structure containing an array
4021 * * A structure containing a structure
4022 *
4023 * It is a compile-time error to declare a fragment shader output
4024 * with, or that contains, any of the following types:
4025 *
4026 * * A boolean type
4027 * * An opaque type
4028 * * A matrix
4029 * * A structure
4030 * * An array of array
4031 */
4032 if (state->es_shader) {
4033 if (var->type->is_array() &&
4034 var->type->fields.array->is_array()) {
4035 _mesa_glsl_error(&loc, state,
4036 "%s shader output "
4037 "cannot have an array of arrays",
4038 _mesa_shader_stage_to_string(state->stage));
4039 }
4040 if (state->stage == MESA_SHADER_VERTEX) {
4041 if (var->type->is_array() &&
4042 var->type->fields.array->is_record()) {
4043 _mesa_glsl_error(&loc, state,
4044 "vertex shader output "
4045 "cannot have an array of structs");
4046 }
4047 if (var->type->is_record()) {
4048 for (unsigned i = 0; i < var->type->length; i++) {
4049 if (var->type->fields.structure[i].type->is_array() ||
4050 var->type->fields.structure[i].type->is_record())
4051 _mesa_glsl_error(&loc, state,
4052 "vertex shader output cannot have a "
4053 "struct that contains an "
4054 "array or struct");
4055 }
4056 }
4057 }
4058 }
4059
4060 if (state->stage == MESA_SHADER_TESS_CTRL) {
4061 handle_tess_ctrl_shader_output_decl(state, loc, var);
4062 }
4063 } else if (var->type->contains_subroutine()) {
4064 /* declare subroutine uniforms as hidden */
4065 var->data.how_declared = ir_var_hidden;
4066 }
4067
4068 /* Integer fragment inputs must be qualified with 'flat'. In GLSL ES,
4069 * so must integer vertex outputs.
4070 *
4071 * From section 4.3.4 ("Inputs") of the GLSL 1.50 spec:
4072 * "Fragment shader inputs that are signed or unsigned integers or
4073 * integer vectors must be qualified with the interpolation qualifier
4074 * flat."
4075 *
4076 * From section 4.3.4 ("Input Variables") of the GLSL 3.00 ES spec:
4077 * "Fragment shader inputs that are, or contain, signed or unsigned
4078 * integers or integer vectors must be qualified with the
4079 * interpolation qualifier flat."
4080 *
4081 * From section 4.3.6 ("Output Variables") of the GLSL 3.00 ES spec:
4082 * "Vertex shader outputs that are, or contain, signed or unsigned
4083 * integers or integer vectors must be qualified with the
4084 * interpolation qualifier flat."
4085 *
4086 * Note that prior to GLSL 1.50, this requirement applied to vertex
4087 * outputs rather than fragment inputs. That creates problems in the
4088 * presence of geometry shaders, so we adopt the GLSL 1.50 rule for all
4089 * desktop GL shaders. For GLSL ES shaders, we follow the spec and
4090 * apply the restriction to both vertex outputs and fragment inputs.
4091 *
4092 * Note also that the desktop GLSL specs are missing the text "or
4093 * contain"; this is presumably an oversight, since there is no
4094 * reasonable way to interpolate a fragment shader input that contains
4095 * an integer.
4096 */
4097 if (state->is_version(130, 300) &&
4098 var->type->contains_integer() &&
4099 var->data.interpolation != INTERP_QUALIFIER_FLAT &&
4100 ((state->stage == MESA_SHADER_FRAGMENT && var->data.mode == ir_var_shader_in)
4101 || (state->stage == MESA_SHADER_VERTEX && var->data.mode == ir_var_shader_out
4102 && state->es_shader))) {
4103 const char *var_type = (state->stage == MESA_SHADER_VERTEX) ?
4104 "vertex output" : "fragment input";
4105 _mesa_glsl_error(&loc, state, "if a %s is (or contains) "
4106 "an integer, then it must be qualified with 'flat'",
4107 var_type);
4108 }
4109
4110 /* Double fragment inputs must be qualified with 'flat'. */
4111 if (var->type->contains_double() &&
4112 var->data.interpolation != INTERP_QUALIFIER_FLAT &&
4113 state->stage == MESA_SHADER_FRAGMENT &&
4114 var->data.mode == ir_var_shader_in) {
4115 _mesa_glsl_error(&loc, state, "if a fragment input is (or contains) "
4116 "a double, then it must be qualified with 'flat'",
4117 var_type);
4118 }
4119
4120 /* Interpolation qualifiers cannot be applied to 'centroid' and
4121 * 'centroid varying'.
4122 *
4123 * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
4124 * "interpolation qualifiers may only precede the qualifiers in,
4125 * centroid in, out, or centroid out in a declaration. They do not apply
4126 * to the deprecated storage qualifiers varying or centroid varying."
4127 *
4128 * These deprecated storage qualifiers do not exist in GLSL ES 3.00.
4129 */
4130 if (state->is_version(130, 0)
4131 && this->type->qualifier.has_interpolation()
4132 && this->type->qualifier.flags.q.varying) {
4133
4134 const char *i = this->type->qualifier.interpolation_string();
4135 assert(i != NULL);
4136 const char *s;
4137 if (this->type->qualifier.flags.q.centroid)
4138 s = "centroid varying";
4139 else
4140 s = "varying";
4141
4142 _mesa_glsl_error(&loc, state,
4143 "qualifier '%s' cannot be applied to the "
4144 "deprecated storage qualifier '%s'", i, s);
4145 }
4146
4147
4148 /* Interpolation qualifiers can only apply to vertex shader outputs and
4149 * fragment shader inputs.
4150 *
4151 * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
4152 * "Outputs from a vertex shader (out) and inputs to a fragment
4153 * shader (in) can be further qualified with one or more of these
4154 * interpolation qualifiers"
4155 *
4156 * From page 31 (page 37 of the PDF) of the GLSL ES 3.00 spec:
4157 * "These interpolation qualifiers may only precede the qualifiers
4158 * in, centroid in, out, or centroid out in a declaration. They do
4159 * not apply to inputs into a vertex shader or outputs from a
4160 * fragment shader."
4161 */
4162 if (state->is_version(130, 300)
4163 && this->type->qualifier.has_interpolation()) {
4164
4165 const char *i = this->type->qualifier.interpolation_string();
4166 assert(i != NULL);
4167
4168 switch (state->stage) {
4169 case MESA_SHADER_VERTEX:
4170 if (this->type->qualifier.flags.q.in) {
4171 _mesa_glsl_error(&loc, state,
4172 "qualifier '%s' cannot be applied to vertex "
4173 "shader inputs", i);
4174 }
4175 break;
4176 case MESA_SHADER_FRAGMENT:
4177 if (this->type->qualifier.flags.q.out) {
4178 _mesa_glsl_error(&loc, state,
4179 "qualifier '%s' cannot be applied to fragment "
4180 "shader outputs", i);
4181 }
4182 break;
4183 default:
4184 break;
4185 }
4186 }
4187
4188
4189 /* From section 4.3.4 of the GLSL 4.00 spec:
4190 * "Input variables may not be declared using the patch in qualifier
4191 * in tessellation control or geometry shaders."
4192 *
4193 * From section 4.3.6 of the GLSL 4.00 spec:
4194 * "It is an error to use patch out in a vertex, tessellation
4195 * evaluation, or geometry shader."
4196 *
4197 * This doesn't explicitly forbid using them in a fragment shader, but
4198 * that's probably just an oversight.
4199 */
4200 if (state->stage != MESA_SHADER_TESS_EVAL
4201 && this->type->qualifier.flags.q.patch
4202 && this->type->qualifier.flags.q.in) {
4203
4204 _mesa_glsl_error(&loc, state, "'patch in' can only be used in a "
4205 "tessellation evaluation shader");
4206 }
4207
4208 if (state->stage != MESA_SHADER_TESS_CTRL
4209 && this->type->qualifier.flags.q.patch
4210 && this->type->qualifier.flags.q.out) {
4211
4212 _mesa_glsl_error(&loc, state, "'patch out' can only be used in a "
4213 "tessellation control shader");
4214 }
4215
4216 /* Precision qualifiers exists only in GLSL versions 1.00 and >= 1.30.
4217 */
4218 if (this->type->qualifier.precision != ast_precision_none) {
4219 state->check_precision_qualifiers_allowed(&loc);
4220 }
4221
4222
4223 /* If a precision qualifier is allowed on a type, it is allowed on
4224 * an array of that type.
4225 */
4226 if (!(this->type->qualifier.precision == ast_precision_none
4227 || precision_qualifier_allowed(var->type->without_array()))) {
4228
4229 _mesa_glsl_error(&loc, state,
4230 "precision qualifiers apply only to floating point"
4231 ", integer and opaque types");
4232 }
4233
4234 /* From section 4.1.7 of the GLSL 4.40 spec:
4235 *
4236 * "[Opaque types] can only be declared as function
4237 * parameters or uniform-qualified variables."
4238 */
4239 if (var_type->contains_opaque() &&
4240 !this->type->qualifier.flags.q.uniform) {
4241 _mesa_glsl_error(&loc, state,
4242 "opaque variables must be declared uniform");
4243 }
4244
4245 /* Process the initializer and add its instructions to a temporary
4246 * list. This list will be added to the instruction stream (below) after
4247 * the declaration is added. This is done because in some cases (such as
4248 * redeclarations) the declaration may not actually be added to the
4249 * instruction stream.
4250 */
4251 exec_list initializer_instructions;
4252
4253 /* Examine var name here since var may get deleted in the next call */
4254 bool var_is_gl_id = is_gl_identifier(var->name);
4255
4256 ir_variable *earlier =
4257 get_variable_being_redeclared(var, decl->get_location(), state,
4258 false /* allow_all_redeclarations */);
4259 if (earlier != NULL) {
4260 if (var_is_gl_id &&
4261 earlier->data.how_declared == ir_var_declared_in_block) {
4262 _mesa_glsl_error(&loc, state,
4263 "`%s' has already been redeclared using "
4264 "gl_PerVertex", earlier->name);
4265 }
4266 earlier->data.how_declared = ir_var_declared_normally;
4267 }
4268
4269 if (decl->initializer != NULL) {
4270 result = process_initializer((earlier == NULL) ? var : earlier,
4271 decl, this->type,
4272 &initializer_instructions, state);
4273 }
4274
4275 /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
4276 *
4277 * "It is an error to write to a const variable outside of
4278 * its declaration, so they must be initialized when
4279 * declared."
4280 */
4281 if (this->type->qualifier.flags.q.constant && decl->initializer == NULL) {
4282 _mesa_glsl_error(& loc, state,
4283 "const declaration of `%s' must be initialized",
4284 decl->identifier);
4285 }
4286
4287 if (state->es_shader) {
4288 const glsl_type *const t = (earlier == NULL)
4289 ? var->type : earlier->type;
4290
4291 if (t->is_unsized_array())
4292 /* Section 10.17 of the GLSL ES 1.00 specification states that
4293 * unsized array declarations have been removed from the language.
4294 * Arrays that are sized using an initializer are still explicitly
4295 * sized. However, GLSL ES 1.00 does not allow array
4296 * initializers. That is only allowed in GLSL ES 3.00.
4297 *
4298 * Section 4.1.9 (Arrays) of the GLSL ES 3.00 spec says:
4299 *
4300 * "An array type can also be formed without specifying a size
4301 * if the definition includes an initializer:
4302 *
4303 * float x[] = float[2] (1.0, 2.0); // declares an array of size 2
4304 * float y[] = float[] (1.0, 2.0, 3.0); // declares an array of size 3
4305 *
4306 * float a[5];
4307 * float b[] = a;"
4308 */
4309 _mesa_glsl_error(& loc, state,
4310 "unsized array declarations are not allowed in "
4311 "GLSL ES");
4312 }
4313
4314 /* If the declaration is not a redeclaration, there are a few additional
4315 * semantic checks that must be applied. In addition, variable that was
4316 * created for the declaration should be added to the IR stream.
4317 */
4318 if (earlier == NULL) {
4319 validate_identifier(decl->identifier, loc, state);
4320
4321 /* Add the variable to the symbol table. Note that the initializer's
4322 * IR was already processed earlier (though it hasn't been emitted
4323 * yet), without the variable in scope.
4324 *
4325 * This differs from most C-like languages, but it follows the GLSL
4326 * specification. From page 28 (page 34 of the PDF) of the GLSL 1.50
4327 * spec:
4328 *
4329 * "Within a declaration, the scope of a name starts immediately
4330 * after the initializer if present or immediately after the name
4331 * being declared if not."
4332 */
4333 if (!state->symbols->add_variable(var)) {
4334 YYLTYPE loc = this->get_location();
4335 _mesa_glsl_error(&loc, state, "name `%s' already taken in the "
4336 "current scope", decl->identifier);
4337 continue;
4338 }
4339
4340 /* Push the variable declaration to the top. It means that all the
4341 * variable declarations will appear in a funny last-to-first order,
4342 * but otherwise we run into trouble if a function is prototyped, a
4343 * global var is decled, then the function is defined with usage of
4344 * the global var. See glslparsertest's CorrectModule.frag.
4345 */
4346 instructions->push_head(var);
4347 }
4348
4349 instructions->append_list(&initializer_instructions);
4350 }
4351
4352
4353 /* Generally, variable declarations do not have r-values. However,
4354 * one is used for the declaration in
4355 *
4356 * while (bool b = some_condition()) {
4357 * ...
4358 * }
4359 *
4360 * so we return the rvalue from the last seen declaration here.
4361 */
4362 return result;
4363 }
4364
4365
4366 ir_rvalue *
4367 ast_parameter_declarator::hir(exec_list *instructions,
4368 struct _mesa_glsl_parse_state *state)
4369 {
4370 void *ctx = state;
4371 const struct glsl_type *type;
4372 const char *name = NULL;
4373 YYLTYPE loc = this->get_location();
4374
4375 type = this->type->glsl_type(& name, state);
4376
4377 if (type == NULL) {
4378 if (name != NULL) {
4379 _mesa_glsl_error(& loc, state,
4380 "invalid type `%s' in declaration of `%s'",
4381 name, this->identifier);
4382 } else {
4383 _mesa_glsl_error(& loc, state,
4384 "invalid type in declaration of `%s'",
4385 this->identifier);
4386 }
4387
4388 type = glsl_type::error_type;
4389 }
4390
4391 /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
4392 *
4393 * "Functions that accept no input arguments need not use void in the
4394 * argument list because prototypes (or definitions) are required and
4395 * therefore there is no ambiguity when an empty argument list "( )" is
4396 * declared. The idiom "(void)" as a parameter list is provided for
4397 * convenience."
4398 *
4399 * Placing this check here prevents a void parameter being set up
4400 * for a function, which avoids tripping up checks for main taking
4401 * parameters and lookups of an unnamed symbol.
4402 */
4403 if (type->is_void()) {
4404 if (this->identifier != NULL)
4405 _mesa_glsl_error(& loc, state,
4406 "named parameter cannot have type `void'");
4407
4408 is_void = true;
4409 return NULL;
4410 }
4411
4412 if (formal_parameter && (this->identifier == NULL)) {
4413 _mesa_glsl_error(& loc, state, "formal parameter lacks a name");
4414 return NULL;
4415 }
4416
4417 /* This only handles "vec4 foo[..]". The earlier specifier->glsl_type(...)
4418 * call already handled the "vec4[..] foo" case.
4419 */
4420 type = process_array_type(&loc, type, this->array_specifier, state);
4421
4422 if (!type->is_error() && type->is_unsized_array()) {
4423 _mesa_glsl_error(&loc, state, "arrays passed as parameters must have "
4424 "a declared size");
4425 type = glsl_type::error_type;
4426 }
4427
4428 is_void = false;
4429 ir_variable *var = new(ctx)
4430 ir_variable(type, this->identifier, ir_var_function_in);
4431
4432 /* Apply any specified qualifiers to the parameter declaration. Note that
4433 * for function parameters the default mode is 'in'.
4434 */
4435 apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc,
4436 true);
4437
4438 /* From section 4.1.7 of the GLSL 4.40 spec:
4439 *
4440 * "Opaque variables cannot be treated as l-values; hence cannot
4441 * be used as out or inout function parameters, nor can they be
4442 * assigned into."
4443 */
4444 if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
4445 && type->contains_opaque()) {
4446 _mesa_glsl_error(&loc, state, "out and inout parameters cannot "
4447 "contain opaque variables");
4448 type = glsl_type::error_type;
4449 }
4450
4451 /* From page 39 (page 45 of the PDF) of the GLSL 1.10 spec:
4452 *
4453 * "When calling a function, expressions that do not evaluate to
4454 * l-values cannot be passed to parameters declared as out or inout."
4455 *
4456 * From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
4457 *
4458 * "Other binary or unary expressions, non-dereferenced arrays,
4459 * function names, swizzles with repeated fields, and constants
4460 * cannot be l-values."
4461 *
4462 * So for GLSL 1.10, passing an array as an out or inout parameter is not
4463 * allowed. This restriction is removed in GLSL 1.20, and in GLSL ES.
4464 */
4465 if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
4466 && type->is_array()
4467 && !state->check_version(120, 100, &loc,
4468 "arrays cannot be out or inout parameters")) {
4469 type = glsl_type::error_type;
4470 }
4471
4472 instructions->push_tail(var);
4473
4474 /* Parameter declarations do not have r-values.
4475 */
4476 return NULL;
4477 }
4478
4479
4480 void
4481 ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters,
4482 bool formal,
4483 exec_list *ir_parameters,
4484 _mesa_glsl_parse_state *state)
4485 {
4486 ast_parameter_declarator *void_param = NULL;
4487 unsigned count = 0;
4488
4489 foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) {
4490 param->formal_parameter = formal;
4491 param->hir(ir_parameters, state);
4492
4493 if (param->is_void)
4494 void_param = param;
4495
4496 count++;
4497 }
4498
4499 if ((void_param != NULL) && (count > 1)) {
4500 YYLTYPE loc = void_param->get_location();
4501
4502 _mesa_glsl_error(& loc, state,
4503 "`void' parameter must be only parameter");
4504 }
4505 }
4506
4507
4508 void
4509 emit_function(_mesa_glsl_parse_state *state, ir_function *f)
4510 {
4511 /* IR invariants disallow function declarations or definitions
4512 * nested within other function definitions. But there is no
4513 * requirement about the relative order of function declarations
4514 * and definitions with respect to one another. So simply insert
4515 * the new ir_function block at the end of the toplevel instruction
4516 * list.
4517 */
4518 state->toplevel_ir->push_tail(f);
4519 }
4520
4521
4522 ir_rvalue *
4523 ast_function::hir(exec_list *instructions,
4524 struct _mesa_glsl_parse_state *state)
4525 {
4526 void *ctx = state;
4527 ir_function *f = NULL;
4528 ir_function_signature *sig = NULL;
4529 exec_list hir_parameters;
4530 YYLTYPE loc = this->get_location();
4531
4532 const char *const name = identifier;
4533
4534 /* New functions are always added to the top-level IR instruction stream,
4535 * so this instruction list pointer is ignored. See also emit_function
4536 * (called below).
4537 */
4538 (void) instructions;
4539
4540 /* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec,
4541 *
4542 * "Function declarations (prototypes) cannot occur inside of functions;
4543 * they must be at global scope, or for the built-in functions, outside
4544 * the global scope."
4545 *
4546 * From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec,
4547 *
4548 * "User defined functions may only be defined within the global scope."
4549 *
4550 * Note that this language does not appear in GLSL 1.10.
4551 */
4552 if ((state->current_function != NULL) &&
4553 state->is_version(120, 100)) {
4554 YYLTYPE loc = this->get_location();
4555 _mesa_glsl_error(&loc, state,
4556 "declaration of function `%s' not allowed within "
4557 "function body", name);
4558 }
4559
4560 validate_identifier(name, this->get_location(), state);
4561
4562 /* Convert the list of function parameters to HIR now so that they can be
4563 * used below to compare this function's signature with previously seen
4564 * signatures for functions with the same name.
4565 */
4566 ast_parameter_declarator::parameters_to_hir(& this->parameters,
4567 is_definition,
4568 & hir_parameters, state);
4569
4570 const char *return_type_name;
4571 const glsl_type *return_type =
4572 this->return_type->glsl_type(& return_type_name, state);
4573
4574 if (!return_type) {
4575 YYLTYPE loc = this->get_location();
4576 _mesa_glsl_error(&loc, state,
4577 "function `%s' has undeclared return type `%s'",
4578 name, return_type_name);
4579 return_type = glsl_type::error_type;
4580 }
4581
4582 /* ARB_shader_subroutine states:
4583 * "Subroutine declarations cannot be prototyped. It is an error to prepend
4584 * subroutine(...) to a function declaration."
4585 */
4586 if (this->return_type->qualifier.flags.q.subroutine_def && !is_definition) {
4587 YYLTYPE loc = this->get_location();
4588 _mesa_glsl_error(&loc, state,
4589 "function declaration `%s' cannot have subroutine prepended",
4590 name);
4591 }
4592
4593 /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec:
4594 * "No qualifier is allowed on the return type of a function."
4595 */
4596 if (this->return_type->has_qualifiers()) {
4597 YYLTYPE loc = this->get_location();
4598 _mesa_glsl_error(& loc, state,
4599 "function `%s' return type has qualifiers", name);
4600 }
4601
4602 /* Section 6.1 (Function Definitions) of the GLSL 1.20 spec says:
4603 *
4604 * "Arrays are allowed as arguments and as the return type. In both
4605 * cases, the array must be explicitly sized."
4606 */
4607 if (return_type->is_unsized_array()) {
4608 YYLTYPE loc = this->get_location();
4609 _mesa_glsl_error(& loc, state,
4610 "function `%s' return type array must be explicitly "
4611 "sized", name);
4612 }
4613
4614 /* From section 4.1.7 of the GLSL 4.40 spec:
4615 *
4616 * "[Opaque types] can only be declared as function parameters
4617 * or uniform-qualified variables."
4618 */
4619 if (return_type->contains_opaque()) {
4620 YYLTYPE loc = this->get_location();
4621 _mesa_glsl_error(&loc, state,
4622 "function `%s' return type can't contain an opaque type",
4623 name);
4624 }
4625
4626 /* Create an ir_function if one doesn't already exist. */
4627 f = state->symbols->get_function(name);
4628 if (f == NULL) {
4629 f = new(ctx) ir_function(name);
4630 if (!this->return_type->qualifier.flags.q.subroutine) {
4631 if (!state->symbols->add_function(f)) {
4632 /* This function name shadows a non-function use of the same name. */
4633 YYLTYPE loc = this->get_location();
4634 _mesa_glsl_error(&loc, state, "function name `%s' conflicts with "
4635 "non-function", name);
4636 return NULL;
4637 }
4638 }
4639 emit_function(state, f);
4640 }
4641
4642 /* From GLSL ES 3.0 spec, chapter 6.1 "Function Definitions", page 71:
4643 *
4644 * "A shader cannot redefine or overload built-in functions."
4645 *
4646 * While in GLSL ES 1.0 specification, chapter 8 "Built-in Functions":
4647 *
4648 * "User code can overload the built-in functions but cannot redefine
4649 * them."
4650 */
4651 if (state->es_shader && state->language_version >= 300) {
4652 /* Local shader has no exact candidates; check the built-ins. */
4653 _mesa_glsl_initialize_builtin_functions();
4654 if (_mesa_glsl_find_builtin_function_by_name(name)) {
4655 YYLTYPE loc = this->get_location();
4656 _mesa_glsl_error(& loc, state,
4657 "A shader cannot redefine or overload built-in "
4658 "function `%s' in GLSL ES 3.00", name);
4659 return NULL;
4660 }
4661 }
4662
4663 /* Verify that this function's signature either doesn't match a previously
4664 * seen signature for a function with the same name, or, if a match is found,
4665 * that the previously seen signature does not have an associated definition.
4666 */
4667 if (state->es_shader || f->has_user_signature()) {
4668 sig = f->exact_matching_signature(state, &hir_parameters);
4669 if (sig != NULL) {
4670 const char *badvar = sig->qualifiers_match(&hir_parameters);
4671 if (badvar != NULL) {
4672 YYLTYPE loc = this->get_location();
4673
4674 _mesa_glsl_error(&loc, state, "function `%s' parameter `%s' "
4675 "qualifiers don't match prototype", name, badvar);
4676 }
4677
4678 if (sig->return_type != return_type) {
4679 YYLTYPE loc = this->get_location();
4680
4681 _mesa_glsl_error(&loc, state, "function `%s' return type doesn't "
4682 "match prototype", name);
4683 }
4684
4685 if (sig->is_defined) {
4686 if (is_definition) {
4687 YYLTYPE loc = this->get_location();
4688 _mesa_glsl_error(& loc, state, "function `%s' redefined", name);
4689 } else {
4690 /* We just encountered a prototype that exactly matches a
4691 * function that's already been defined. This is redundant,
4692 * and we should ignore it.
4693 */
4694 return NULL;
4695 }
4696 }
4697 }
4698 }
4699
4700 /* Verify the return type of main() */
4701 if (strcmp(name, "main") == 0) {
4702 if (! return_type->is_void()) {
4703 YYLTYPE loc = this->get_location();
4704
4705 _mesa_glsl_error(& loc, state, "main() must return void");
4706 }
4707
4708 if (!hir_parameters.is_empty()) {
4709 YYLTYPE loc = this->get_location();
4710
4711 _mesa_glsl_error(& loc, state, "main() must not take any parameters");
4712 }
4713 }
4714
4715 /* Finish storing the information about this new function in its signature.
4716 */
4717 if (sig == NULL) {
4718 sig = new(ctx) ir_function_signature(return_type);
4719 f->add_signature(sig);
4720 }
4721
4722 sig->replace_parameters(&hir_parameters);
4723 signature = sig;
4724
4725 if (this->return_type->qualifier.flags.q.subroutine_def) {
4726 int idx;
4727
4728 f->num_subroutine_types = this->return_type->qualifier.subroutine_list->declarations.length();
4729 f->subroutine_types = ralloc_array(state, const struct glsl_type *,
4730 f->num_subroutine_types);
4731 idx = 0;
4732 foreach_list_typed(ast_declaration, decl, link, &this->return_type->qualifier.subroutine_list->declarations) {
4733 const struct glsl_type *type;
4734 /* the subroutine type must be already declared */
4735 type = state->symbols->get_type(decl->identifier);
4736 if (!type) {
4737 _mesa_glsl_error(& loc, state, "unknown type '%s' in subroutine function definition", decl->identifier);
4738 }
4739 f->subroutine_types[idx++] = type;
4740 }
4741 state->subroutines = (ir_function **)reralloc(state, state->subroutines,
4742 ir_function *,
4743 state->num_subroutines + 1);
4744 state->subroutines[state->num_subroutines] = f;
4745 state->num_subroutines++;
4746
4747 }
4748
4749 if (this->return_type->qualifier.flags.q.subroutine) {
4750 if (!state->symbols->add_type(this->identifier, glsl_type::get_subroutine_instance(this->identifier))) {
4751 _mesa_glsl_error(& loc, state, "type '%s' previously defined", this->identifier);
4752 return NULL;
4753 }
4754 state->subroutine_types = (ir_function **)reralloc(state, state->subroutine_types,
4755 ir_function *,
4756 state->num_subroutine_types + 1);
4757 state->subroutine_types[state->num_subroutine_types] = f;
4758 state->num_subroutine_types++;
4759
4760 f->is_subroutine = true;
4761 }
4762
4763 /* Function declarations (prototypes) do not have r-values.
4764 */
4765 return NULL;
4766 }
4767
4768
4769 ir_rvalue *
4770 ast_function_definition::hir(exec_list *instructions,
4771 struct _mesa_glsl_parse_state *state)
4772 {
4773 prototype->is_definition = true;
4774 prototype->hir(instructions, state);
4775
4776 ir_function_signature *signature = prototype->signature;
4777 if (signature == NULL)
4778 return NULL;
4779
4780 assert(state->current_function == NULL);
4781 state->current_function = signature;
4782 state->found_return = false;
4783
4784 /* Duplicate parameters declared in the prototype as concrete variables.
4785 * Add these to the symbol table.
4786 */
4787 state->symbols->push_scope();
4788 foreach_in_list(ir_variable, var, &signature->parameters) {
4789 assert(var->as_variable() != NULL);
4790
4791 /* The only way a parameter would "exist" is if two parameters have
4792 * the same name.
4793 */
4794 if (state->symbols->name_declared_this_scope(var->name)) {
4795 YYLTYPE loc = this->get_location();
4796
4797 _mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name);
4798 } else {
4799 state->symbols->add_variable(var);
4800 }
4801 }
4802
4803 /* Convert the body of the function to HIR. */
4804 this->body->hir(&signature->body, state);
4805 signature->is_defined = true;
4806
4807 state->symbols->pop_scope();
4808
4809 assert(state->current_function == signature);
4810 state->current_function = NULL;
4811
4812 if (!signature->return_type->is_void() && !state->found_return) {
4813 YYLTYPE loc = this->get_location();
4814 _mesa_glsl_error(& loc, state, "function `%s' has non-void return type "
4815 "%s, but no return statement",
4816 signature->function_name(),
4817 signature->return_type->name);
4818 }
4819
4820 /* Function definitions do not have r-values.
4821 */
4822 return NULL;
4823 }
4824
4825
4826 ir_rvalue *
4827 ast_jump_statement::hir(exec_list *instructions,
4828 struct _mesa_glsl_parse_state *state)
4829 {
4830 void *ctx = state;
4831
4832 switch (mode) {
4833 case ast_return: {
4834 ir_return *inst;
4835 assert(state->current_function);
4836
4837 if (opt_return_value) {
4838 ir_rvalue *ret = opt_return_value->hir(instructions, state);
4839
4840 /* The value of the return type can be NULL if the shader says
4841 * 'return foo();' and foo() is a function that returns void.
4842 *
4843 * NOTE: The GLSL spec doesn't say that this is an error. The type
4844 * of the return value is void. If the return type of the function is
4845 * also void, then this should compile without error. Seriously.
4846 */
4847 const glsl_type *const ret_type =
4848 (ret == NULL) ? glsl_type::void_type : ret->type;
4849
4850 /* Implicit conversions are not allowed for return values prior to
4851 * ARB_shading_language_420pack.
4852 */
4853 if (state->current_function->return_type != ret_type) {
4854 YYLTYPE loc = this->get_location();
4855
4856 if (state->ARB_shading_language_420pack_enable) {
4857 if (!apply_implicit_conversion(state->current_function->return_type,
4858 ret, state)) {
4859 _mesa_glsl_error(& loc, state,
4860 "could not implicitly convert return value "
4861 "to %s, in function `%s'",
4862 state->current_function->return_type->name,
4863 state->current_function->function_name());
4864 }
4865 } else {
4866 _mesa_glsl_error(& loc, state,
4867 "`return' with wrong type %s, in function `%s' "
4868 "returning %s",
4869 ret_type->name,
4870 state->current_function->function_name(),
4871 state->current_function->return_type->name);
4872 }
4873 } else if (state->current_function->return_type->base_type ==
4874 GLSL_TYPE_VOID) {
4875 YYLTYPE loc = this->get_location();
4876
4877 /* The ARB_shading_language_420pack, GLSL ES 3.0, and GLSL 4.20
4878 * specs add a clarification:
4879 *
4880 * "A void function can only use return without a return argument, even if
4881 * the return argument has void type. Return statements only accept values:
4882 *
4883 * void func1() { }
4884 * void func2() { return func1(); } // illegal return statement"
4885 */
4886 _mesa_glsl_error(& loc, state,
4887 "void functions can only use `return' without a "
4888 "return argument");
4889 }
4890
4891 inst = new(ctx) ir_return(ret);
4892 } else {
4893 if (state->current_function->return_type->base_type !=
4894 GLSL_TYPE_VOID) {
4895 YYLTYPE loc = this->get_location();
4896
4897 _mesa_glsl_error(& loc, state,
4898 "`return' with no value, in function %s returning "
4899 "non-void",
4900 state->current_function->function_name());
4901 }
4902 inst = new(ctx) ir_return;
4903 }
4904
4905 state->found_return = true;
4906 instructions->push_tail(inst);
4907 break;
4908 }
4909
4910 case ast_discard:
4911 if (state->stage != MESA_SHADER_FRAGMENT) {
4912 YYLTYPE loc = this->get_location();
4913
4914 _mesa_glsl_error(& loc, state,
4915 "`discard' may only appear in a fragment shader");
4916 }
4917 instructions->push_tail(new(ctx) ir_discard);
4918 break;
4919
4920 case ast_break:
4921 case ast_continue:
4922 if (mode == ast_continue &&
4923 state->loop_nesting_ast == NULL) {
4924 YYLTYPE loc = this->get_location();
4925
4926 _mesa_glsl_error(& loc, state, "continue may only appear in a loop");
4927 } else if (mode == ast_break &&
4928 state->loop_nesting_ast == NULL &&
4929 state->switch_state.switch_nesting_ast == NULL) {
4930 YYLTYPE loc = this->get_location();
4931
4932 _mesa_glsl_error(& loc, state,
4933 "break may only appear in a loop or a switch");
4934 } else {
4935 /* For a loop, inline the for loop expression again, since we don't
4936 * know where near the end of the loop body the normal copy of it is
4937 * going to be placed. Same goes for the condition for a do-while
4938 * loop.
4939 */
4940 if (state->loop_nesting_ast != NULL &&
4941 mode == ast_continue && !state->switch_state.is_switch_innermost) {
4942 if (state->loop_nesting_ast->rest_expression) {
4943 state->loop_nesting_ast->rest_expression->hir(instructions,
4944 state);
4945 }
4946 if (state->loop_nesting_ast->mode ==
4947 ast_iteration_statement::ast_do_while) {
4948 state->loop_nesting_ast->condition_to_hir(instructions, state);
4949 }
4950 }
4951
4952 if (state->switch_state.is_switch_innermost &&
4953 mode == ast_continue) {
4954 /* Set 'continue_inside' to true. */
4955 ir_rvalue *const true_val = new (ctx) ir_constant(true);
4956 ir_dereference_variable *deref_continue_inside_var =
4957 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
4958 instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
4959 true_val));
4960
4961 /* Break out from the switch, continue for the loop will
4962 * be called right after switch. */
4963 ir_loop_jump *const jump =
4964 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
4965 instructions->push_tail(jump);
4966
4967 } else if (state->switch_state.is_switch_innermost &&
4968 mode == ast_break) {
4969 /* Force break out of switch by inserting a break. */
4970 ir_loop_jump *const jump =
4971 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
4972 instructions->push_tail(jump);
4973 } else {
4974 ir_loop_jump *const jump =
4975 new(ctx) ir_loop_jump((mode == ast_break)
4976 ? ir_loop_jump::jump_break
4977 : ir_loop_jump::jump_continue);
4978 instructions->push_tail(jump);
4979 }
4980 }
4981
4982 break;
4983 }
4984
4985 /* Jump instructions do not have r-values.
4986 */
4987 return NULL;
4988 }
4989
4990
4991 ir_rvalue *
4992 ast_selection_statement::hir(exec_list *instructions,
4993 struct _mesa_glsl_parse_state *state)
4994 {
4995 void *ctx = state;
4996
4997 ir_rvalue *const condition = this->condition->hir(instructions, state);
4998
4999 /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
5000 *
5001 * "Any expression whose type evaluates to a Boolean can be used as the
5002 * conditional expression bool-expression. Vector types are not accepted
5003 * as the expression to if."
5004 *
5005 * The checks are separated so that higher quality diagnostics can be
5006 * generated for cases where both rules are violated.
5007 */
5008 if (!condition->type->is_boolean() || !condition->type->is_scalar()) {
5009 YYLTYPE loc = this->condition->get_location();
5010
5011 _mesa_glsl_error(& loc, state, "if-statement condition must be scalar "
5012 "boolean");
5013 }
5014
5015 ir_if *const stmt = new(ctx) ir_if(condition);
5016
5017 if (then_statement != NULL) {
5018 state->symbols->push_scope();
5019 then_statement->hir(& stmt->then_instructions, state);
5020 state->symbols->pop_scope();
5021 }
5022
5023 if (else_statement != NULL) {
5024 state->symbols->push_scope();
5025 else_statement->hir(& stmt->else_instructions, state);
5026 state->symbols->pop_scope();
5027 }
5028
5029 instructions->push_tail(stmt);
5030
5031 /* if-statements do not have r-values.
5032 */
5033 return NULL;
5034 }
5035
5036
5037 ir_rvalue *
5038 ast_switch_statement::hir(exec_list *instructions,
5039 struct _mesa_glsl_parse_state *state)
5040 {
5041 void *ctx = state;
5042
5043 ir_rvalue *const test_expression =
5044 this->test_expression->hir(instructions, state);
5045
5046 /* From page 66 (page 55 of the PDF) of the GLSL 1.50 spec:
5047 *
5048 * "The type of init-expression in a switch statement must be a
5049 * scalar integer."
5050 */
5051 if (!test_expression->type->is_scalar() ||
5052 !test_expression->type->is_integer()) {
5053 YYLTYPE loc = this->test_expression->get_location();
5054
5055 _mesa_glsl_error(& loc,
5056 state,
5057 "switch-statement expression must be scalar "
5058 "integer");
5059 }
5060
5061 /* Track the switch-statement nesting in a stack-like manner.
5062 */
5063 struct glsl_switch_state saved = state->switch_state;
5064
5065 state->switch_state.is_switch_innermost = true;
5066 state->switch_state.switch_nesting_ast = this;
5067 state->switch_state.labels_ht = hash_table_ctor(0, hash_table_pointer_hash,
5068 hash_table_pointer_compare);
5069 state->switch_state.previous_default = NULL;
5070
5071 /* Initalize is_fallthru state to false.
5072 */
5073 ir_rvalue *const is_fallthru_val = new (ctx) ir_constant(false);
5074 state->switch_state.is_fallthru_var =
5075 new(ctx) ir_variable(glsl_type::bool_type,
5076 "switch_is_fallthru_tmp",
5077 ir_var_temporary);
5078 instructions->push_tail(state->switch_state.is_fallthru_var);
5079
5080 ir_dereference_variable *deref_is_fallthru_var =
5081 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
5082 instructions->push_tail(new(ctx) ir_assignment(deref_is_fallthru_var,
5083 is_fallthru_val));
5084
5085 /* Initialize continue_inside state to false.
5086 */
5087 state->switch_state.continue_inside =
5088 new(ctx) ir_variable(glsl_type::bool_type,
5089 "continue_inside_tmp",
5090 ir_var_temporary);
5091 instructions->push_tail(state->switch_state.continue_inside);
5092
5093 ir_rvalue *const false_val = new (ctx) ir_constant(false);
5094 ir_dereference_variable *deref_continue_inside_var =
5095 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
5096 instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
5097 false_val));
5098
5099 state->switch_state.run_default =
5100 new(ctx) ir_variable(glsl_type::bool_type,
5101 "run_default_tmp",
5102 ir_var_temporary);
5103 instructions->push_tail(state->switch_state.run_default);
5104
5105 /* Loop around the switch is used for flow control. */
5106 ir_loop * loop = new(ctx) ir_loop();
5107 instructions->push_tail(loop);
5108
5109 /* Cache test expression.
5110 */
5111 test_to_hir(&loop->body_instructions, state);
5112
5113 /* Emit code for body of switch stmt.
5114 */
5115 body->hir(&loop->body_instructions, state);
5116
5117 /* Insert a break at the end to exit loop. */
5118 ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
5119 loop->body_instructions.push_tail(jump);
5120
5121 /* If we are inside loop, check if continue got called inside switch. */
5122 if (state->loop_nesting_ast != NULL) {
5123 ir_dereference_variable *deref_continue_inside =
5124 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
5125 ir_if *irif = new(ctx) ir_if(deref_continue_inside);
5126 ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_continue);
5127
5128 if (state->loop_nesting_ast != NULL) {
5129 if (state->loop_nesting_ast->rest_expression) {
5130 state->loop_nesting_ast->rest_expression->hir(&irif->then_instructions,
5131 state);
5132 }
5133 if (state->loop_nesting_ast->mode ==
5134 ast_iteration_statement::ast_do_while) {
5135 state->loop_nesting_ast->condition_to_hir(&irif->then_instructions, state);
5136 }
5137 }
5138 irif->then_instructions.push_tail(jump);
5139 instructions->push_tail(irif);
5140 }
5141
5142 hash_table_dtor(state->switch_state.labels_ht);
5143
5144 state->switch_state = saved;
5145
5146 /* Switch statements do not have r-values. */
5147 return NULL;
5148 }
5149
5150
5151 void
5152 ast_switch_statement::test_to_hir(exec_list *instructions,
5153 struct _mesa_glsl_parse_state *state)
5154 {
5155 void *ctx = state;
5156
5157 /* Cache value of test expression. */
5158 ir_rvalue *const test_val =
5159 test_expression->hir(instructions,
5160 state);
5161
5162 state->switch_state.test_var = new(ctx) ir_variable(test_val->type,
5163 "switch_test_tmp",
5164 ir_var_temporary);
5165 ir_dereference_variable *deref_test_var =
5166 new(ctx) ir_dereference_variable(state->switch_state.test_var);
5167
5168 instructions->push_tail(state->switch_state.test_var);
5169 instructions->push_tail(new(ctx) ir_assignment(deref_test_var, test_val));
5170 }
5171
5172
5173 ir_rvalue *
5174 ast_switch_body::hir(exec_list *instructions,
5175 struct _mesa_glsl_parse_state *state)
5176 {
5177 if (stmts != NULL)
5178 stmts->hir(instructions, state);
5179
5180 /* Switch bodies do not have r-values. */
5181 return NULL;
5182 }
5183
5184 ir_rvalue *
5185 ast_case_statement_list::hir(exec_list *instructions,
5186 struct _mesa_glsl_parse_state *state)
5187 {
5188 exec_list default_case, after_default, tmp;
5189
5190 foreach_list_typed (ast_case_statement, case_stmt, link, & this->cases) {
5191 case_stmt->hir(&tmp, state);
5192
5193 /* Default case. */
5194 if (state->switch_state.previous_default && default_case.is_empty()) {
5195 default_case.append_list(&tmp);
5196 continue;
5197 }
5198
5199 /* If default case found, append 'after_default' list. */
5200 if (!default_case.is_empty())
5201 after_default.append_list(&tmp);
5202 else
5203 instructions->append_list(&tmp);
5204 }
5205
5206 /* Handle the default case. This is done here because default might not be
5207 * the last case. We need to add checks against following cases first to see
5208 * if default should be chosen or not.
5209 */
5210 if (!default_case.is_empty()) {
5211
5212 ir_rvalue *const true_val = new (state) ir_constant(true);
5213 ir_dereference_variable *deref_run_default_var =
5214 new(state) ir_dereference_variable(state->switch_state.run_default);
5215
5216 /* Choose to run default case initially, following conditional
5217 * assignments might change this.
5218 */
5219 ir_assignment *const init_var =
5220 new(state) ir_assignment(deref_run_default_var, true_val);
5221 instructions->push_tail(init_var);
5222
5223 /* Default case was the last one, no checks required. */
5224 if (after_default.is_empty()) {
5225 instructions->append_list(&default_case);
5226 return NULL;
5227 }
5228
5229 foreach_in_list(ir_instruction, ir, &after_default) {
5230 ir_assignment *assign = ir->as_assignment();
5231
5232 if (!assign)
5233 continue;
5234
5235 /* Clone the check between case label and init expression. */
5236 ir_expression *exp = (ir_expression*) assign->condition;
5237 ir_expression *clone = exp->clone(state, NULL);
5238
5239 ir_dereference_variable *deref_var =
5240 new(state) ir_dereference_variable(state->switch_state.run_default);
5241 ir_rvalue *const false_val = new (state) ir_constant(false);
5242
5243 ir_assignment *const set_false =
5244 new(state) ir_assignment(deref_var, false_val, clone);
5245
5246 instructions->push_tail(set_false);
5247 }
5248
5249 /* Append default case and all cases after it. */
5250 instructions->append_list(&default_case);
5251 instructions->append_list(&after_default);
5252 }
5253
5254 /* Case statements do not have r-values. */
5255 return NULL;
5256 }
5257
5258 ir_rvalue *
5259 ast_case_statement::hir(exec_list *instructions,
5260 struct _mesa_glsl_parse_state *state)
5261 {
5262 labels->hir(instructions, state);
5263
5264 /* Guard case statements depending on fallthru state. */
5265 ir_dereference_variable *const deref_fallthru_guard =
5266 new(state) ir_dereference_variable(state->switch_state.is_fallthru_var);
5267 ir_if *const test_fallthru = new(state) ir_if(deref_fallthru_guard);
5268
5269 foreach_list_typed (ast_node, stmt, link, & this->stmts)
5270 stmt->hir(& test_fallthru->then_instructions, state);
5271
5272 instructions->push_tail(test_fallthru);
5273
5274 /* Case statements do not have r-values. */
5275 return NULL;
5276 }
5277
5278
5279 ir_rvalue *
5280 ast_case_label_list::hir(exec_list *instructions,
5281 struct _mesa_glsl_parse_state *state)
5282 {
5283 foreach_list_typed (ast_case_label, label, link, & this->labels)
5284 label->hir(instructions, state);
5285
5286 /* Case labels do not have r-values. */
5287 return NULL;
5288 }
5289
5290 ir_rvalue *
5291 ast_case_label::hir(exec_list *instructions,
5292 struct _mesa_glsl_parse_state *state)
5293 {
5294 void *ctx = state;
5295
5296 ir_dereference_variable *deref_fallthru_var =
5297 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
5298
5299 ir_rvalue *const true_val = new(ctx) ir_constant(true);
5300
5301 /* If not default case, ... */
5302 if (this->test_value != NULL) {
5303 /* Conditionally set fallthru state based on
5304 * comparison of cached test expression value to case label.
5305 */
5306 ir_rvalue *const label_rval = this->test_value->hir(instructions, state);
5307 ir_constant *label_const = label_rval->constant_expression_value();
5308
5309 if (!label_const) {
5310 YYLTYPE loc = this->test_value->get_location();
5311
5312 _mesa_glsl_error(& loc, state,
5313 "switch statement case label must be a "
5314 "constant expression");
5315
5316 /* Stuff a dummy value in to allow processing to continue. */
5317 label_const = new(ctx) ir_constant(0);
5318 } else {
5319 ast_expression *previous_label = (ast_expression *)
5320 hash_table_find(state->switch_state.labels_ht,
5321 (void *)(uintptr_t)label_const->value.u[0]);
5322
5323 if (previous_label) {
5324 YYLTYPE loc = this->test_value->get_location();
5325 _mesa_glsl_error(& loc, state, "duplicate case value");
5326
5327 loc = previous_label->get_location();
5328 _mesa_glsl_error(& loc, state, "this is the previous case label");
5329 } else {
5330 hash_table_insert(state->switch_state.labels_ht,
5331 this->test_value,
5332 (void *)(uintptr_t)label_const->value.u[0]);
5333 }
5334 }
5335
5336 ir_dereference_variable *deref_test_var =
5337 new(ctx) ir_dereference_variable(state->switch_state.test_var);
5338
5339 ir_expression *test_cond = new(ctx) ir_expression(ir_binop_all_equal,
5340 label_const,
5341 deref_test_var);
5342
5343 /*
5344 * From GLSL 4.40 specification section 6.2 ("Selection"):
5345 *
5346 * "The type of the init-expression value in a switch statement must
5347 * be a scalar int or uint. The type of the constant-expression value
5348 * in a case label also must be a scalar int or uint. When any pair
5349 * of these values is tested for "equal value" and the types do not
5350 * match, an implicit conversion will be done to convert the int to a
5351 * uint (see section 4.1.10 “Implicit Conversions”) before the compare
5352 * is done."
5353 */
5354 if (label_const->type != state->switch_state.test_var->type) {
5355 YYLTYPE loc = this->test_value->get_location();
5356
5357 const glsl_type *type_a = label_const->type;
5358 const glsl_type *type_b = state->switch_state.test_var->type;
5359
5360 /* Check if int->uint implicit conversion is supported. */
5361 bool integer_conversion_supported =
5362 glsl_type::int_type->can_implicitly_convert_to(glsl_type::uint_type,
5363 state);
5364
5365 if ((!type_a->is_integer() || !type_b->is_integer()) ||
5366 !integer_conversion_supported) {
5367 _mesa_glsl_error(&loc, state, "type mismatch with switch "
5368 "init-expression and case label (%s != %s)",
5369 type_a->name, type_b->name);
5370 } else {
5371 /* Conversion of the case label. */
5372 if (type_a->base_type == GLSL_TYPE_INT) {
5373 if (!apply_implicit_conversion(glsl_type::uint_type,
5374 test_cond->operands[0], state))
5375 _mesa_glsl_error(&loc, state, "implicit type conversion error");
5376 } else {
5377 /* Conversion of the init-expression value. */
5378 if (!apply_implicit_conversion(glsl_type::uint_type,
5379 test_cond->operands[1], state))
5380 _mesa_glsl_error(&loc, state, "implicit type conversion error");
5381 }
5382 }
5383 }
5384
5385 ir_assignment *set_fallthru_on_test =
5386 new(ctx) ir_assignment(deref_fallthru_var, true_val, test_cond);
5387
5388 instructions->push_tail(set_fallthru_on_test);
5389 } else { /* default case */
5390 if (state->switch_state.previous_default) {
5391 YYLTYPE loc = this->get_location();
5392 _mesa_glsl_error(& loc, state,
5393 "multiple default labels in one switch");
5394
5395 loc = state->switch_state.previous_default->get_location();
5396 _mesa_glsl_error(& loc, state, "this is the first default label");
5397 }
5398 state->switch_state.previous_default = this;
5399
5400 /* Set fallthru condition on 'run_default' bool. */
5401 ir_dereference_variable *deref_run_default =
5402 new(ctx) ir_dereference_variable(state->switch_state.run_default);
5403 ir_rvalue *const cond_true = new(ctx) ir_constant(true);
5404 ir_expression *test_cond = new(ctx) ir_expression(ir_binop_all_equal,
5405 cond_true,
5406 deref_run_default);
5407
5408 /* Set falltrhu state. */
5409 ir_assignment *set_fallthru =
5410 new(ctx) ir_assignment(deref_fallthru_var, true_val, test_cond);
5411
5412 instructions->push_tail(set_fallthru);
5413 }
5414
5415 /* Case statements do not have r-values. */
5416 return NULL;
5417 }
5418
5419 void
5420 ast_iteration_statement::condition_to_hir(exec_list *instructions,
5421 struct _mesa_glsl_parse_state *state)
5422 {
5423 void *ctx = state;
5424
5425 if (condition != NULL) {
5426 ir_rvalue *const cond =
5427 condition->hir(instructions, state);
5428
5429 if ((cond == NULL)
5430 || !cond->type->is_boolean() || !cond->type->is_scalar()) {
5431 YYLTYPE loc = condition->get_location();
5432
5433 _mesa_glsl_error(& loc, state,
5434 "loop condition must be scalar boolean");
5435 } else {
5436 /* As the first code in the loop body, generate a block that looks
5437 * like 'if (!condition) break;' as the loop termination condition.
5438 */
5439 ir_rvalue *const not_cond =
5440 new(ctx) ir_expression(ir_unop_logic_not, cond);
5441
5442 ir_if *const if_stmt = new(ctx) ir_if(not_cond);
5443
5444 ir_jump *const break_stmt =
5445 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
5446
5447 if_stmt->then_instructions.push_tail(break_stmt);
5448 instructions->push_tail(if_stmt);
5449 }
5450 }
5451 }
5452
5453
5454 ir_rvalue *
5455 ast_iteration_statement::hir(exec_list *instructions,
5456 struct _mesa_glsl_parse_state *state)
5457 {
5458 void *ctx = state;
5459
5460 /* For-loops and while-loops start a new scope, but do-while loops do not.
5461 */
5462 if (mode != ast_do_while)
5463 state->symbols->push_scope();
5464
5465 if (init_statement != NULL)
5466 init_statement->hir(instructions, state);
5467
5468 ir_loop *const stmt = new(ctx) ir_loop();
5469 instructions->push_tail(stmt);
5470
5471 /* Track the current loop nesting. */
5472 ast_iteration_statement *nesting_ast = state->loop_nesting_ast;
5473
5474 state->loop_nesting_ast = this;
5475
5476 /* Likewise, indicate that following code is closest to a loop,
5477 * NOT closest to a switch.
5478 */
5479 bool saved_is_switch_innermost = state->switch_state.is_switch_innermost;
5480 state->switch_state.is_switch_innermost = false;
5481
5482 if (mode != ast_do_while)
5483 condition_to_hir(&stmt->body_instructions, state);
5484
5485 if (body != NULL)
5486 body->hir(& stmt->body_instructions, state);
5487
5488 if (rest_expression != NULL)
5489 rest_expression->hir(& stmt->body_instructions, state);
5490
5491 if (mode == ast_do_while)
5492 condition_to_hir(&stmt->body_instructions, state);
5493
5494 if (mode != ast_do_while)
5495 state->symbols->pop_scope();
5496
5497 /* Restore previous nesting before returning. */
5498 state->loop_nesting_ast = nesting_ast;
5499 state->switch_state.is_switch_innermost = saved_is_switch_innermost;
5500
5501 /* Loops do not have r-values.
5502 */
5503 return NULL;
5504 }
5505
5506
5507 /**
5508 * Determine if the given type is valid for establishing a default precision
5509 * qualifier.
5510 *
5511 * From GLSL ES 3.00 section 4.5.4 ("Default Precision Qualifiers"):
5512 *
5513 * "The precision statement
5514 *
5515 * precision precision-qualifier type;
5516 *
5517 * can be used to establish a default precision qualifier. The type field
5518 * can be either int or float or any of the sampler types, and the
5519 * precision-qualifier can be lowp, mediump, or highp."
5520 *
5521 * GLSL ES 1.00 has similar language. GLSL 1.30 doesn't allow precision
5522 * qualifiers on sampler types, but this seems like an oversight (since the
5523 * intention of including these in GLSL 1.30 is to allow compatibility with ES
5524 * shaders). So we allow int, float, and all sampler types regardless of GLSL
5525 * version.
5526 */
5527 static bool
5528 is_valid_default_precision_type(const struct glsl_type *const type)
5529 {
5530 if (type == NULL)
5531 return false;
5532
5533 switch (type->base_type) {
5534 case GLSL_TYPE_INT:
5535 case GLSL_TYPE_FLOAT:
5536 /* "int" and "float" are valid, but vectors and matrices are not. */
5537 return type->vector_elements == 1 && type->matrix_columns == 1;
5538 case GLSL_TYPE_SAMPLER:
5539 case GLSL_TYPE_IMAGE:
5540 case GLSL_TYPE_ATOMIC_UINT:
5541 return true;
5542 default:
5543 return false;
5544 }
5545 }
5546
5547
5548 ir_rvalue *
5549 ast_type_specifier::hir(exec_list *instructions,
5550 struct _mesa_glsl_parse_state *state)
5551 {
5552 if (this->default_precision == ast_precision_none && this->structure == NULL)
5553 return NULL;
5554
5555 YYLTYPE loc = this->get_location();
5556
5557 /* If this is a precision statement, check that the type to which it is
5558 * applied is either float or int.
5559 *
5560 * From section 4.5.3 of the GLSL 1.30 spec:
5561 * "The precision statement
5562 * precision precision-qualifier type;
5563 * can be used to establish a default precision qualifier. The type
5564 * field can be either int or float [...]. Any other types or
5565 * qualifiers will result in an error.
5566 */
5567 if (this->default_precision != ast_precision_none) {
5568 if (!state->check_precision_qualifiers_allowed(&loc))
5569 return NULL;
5570
5571 if (this->structure != NULL) {
5572 _mesa_glsl_error(&loc, state,
5573 "precision qualifiers do not apply to structures");
5574 return NULL;
5575 }
5576
5577 if (this->array_specifier != NULL) {
5578 _mesa_glsl_error(&loc, state,
5579 "default precision statements do not apply to "
5580 "arrays");
5581 return NULL;
5582 }
5583
5584 const struct glsl_type *const type =
5585 state->symbols->get_type(this->type_name);
5586 if (!is_valid_default_precision_type(type)) {
5587 _mesa_glsl_error(&loc, state,
5588 "default precision statements apply only to "
5589 "float, int, and opaque types");
5590 return NULL;
5591 }
5592
5593 if (type->base_type == GLSL_TYPE_FLOAT
5594 && state->es_shader
5595 && state->stage == MESA_SHADER_FRAGMENT) {
5596 /* Section 4.5.3 (Default Precision Qualifiers) of the GLSL ES 1.00
5597 * spec says:
5598 *
5599 * "The fragment language has no default precision qualifier for
5600 * floating point types."
5601 *
5602 * As a result, we have to track whether or not default precision has
5603 * been specified for float in GLSL ES fragment shaders.
5604 *
5605 * Earlier in that same section, the spec says:
5606 *
5607 * "Non-precision qualified declarations will use the precision
5608 * qualifier specified in the most recent precision statement
5609 * that is still in scope. The precision statement has the same
5610 * scoping rules as variable declarations. If it is declared
5611 * inside a compound statement, its effect stops at the end of
5612 * the innermost statement it was declared in. Precision
5613 * statements in nested scopes override precision statements in
5614 * outer scopes. Multiple precision statements for the same basic
5615 * type can appear inside the same scope, with later statements
5616 * overriding earlier statements within that scope."
5617 *
5618 * Default precision specifications follow the same scope rules as
5619 * variables. So, we can track the state of the default float
5620 * precision in the symbol table, and the rules will just work. This
5621 * is a slight abuse of the symbol table, but it has the semantics
5622 * that we want.
5623 */
5624 ir_variable *const junk =
5625 new(state) ir_variable(type, "#default precision",
5626 ir_var_auto);
5627
5628 state->symbols->add_variable(junk);
5629 }
5630
5631 /* FINISHME: Translate precision statements into IR. */
5632 return NULL;
5633 }
5634
5635 /* _mesa_ast_set_aggregate_type() sets the <structure> field so that
5636 * process_record_constructor() can do type-checking on C-style initializer
5637 * expressions of structs, but ast_struct_specifier should only be translated
5638 * to HIR if it is declaring the type of a structure.
5639 *
5640 * The ->is_declaration field is false for initializers of variables
5641 * declared separately from the struct's type definition.
5642 *
5643 * struct S { ... }; (is_declaration = true)
5644 * struct T { ... } t = { ... }; (is_declaration = true)
5645 * S s = { ... }; (is_declaration = false)
5646 */
5647 if (this->structure != NULL && this->structure->is_declaration)
5648 return this->structure->hir(instructions, state);
5649
5650 return NULL;
5651 }
5652
5653
5654 /**
5655 * Process a structure or interface block tree into an array of structure fields
5656 *
5657 * After parsing, where there are some syntax differnces, structures and
5658 * interface blocks are almost identical. They are similar enough that the
5659 * AST for each can be processed the same way into a set of
5660 * \c glsl_struct_field to describe the members.
5661 *
5662 * If we're processing an interface block, var_mode should be the type of the
5663 * interface block (ir_var_shader_in, ir_var_shader_out, ir_var_uniform or
5664 * ir_var_shader_storage). If we're processing a structure, var_mode should be
5665 * ir_var_auto.
5666 *
5667 * \return
5668 * The number of fields processed. A pointer to the array structure fields is
5669 * stored in \c *fields_ret.
5670 */
5671 unsigned
5672 ast_process_structure_or_interface_block(exec_list *instructions,
5673 struct _mesa_glsl_parse_state *state,
5674 exec_list *declarations,
5675 YYLTYPE &loc,
5676 glsl_struct_field **fields_ret,
5677 bool is_interface,
5678 enum glsl_matrix_layout matrix_layout,
5679 bool allow_reserved_names,
5680 ir_variable_mode var_mode,
5681 ast_type_qualifier *layout)
5682 {
5683 unsigned decl_count = 0;
5684
5685 /* For blocks that accept memory qualifiers (i.e. shader storage), verify
5686 * that we don't have incompatible qualifiers
5687 */
5688 if (layout && layout->flags.q.read_only && layout->flags.q.write_only) {
5689 _mesa_glsl_error(&loc, state,
5690 "Interface block sets both readonly and writeonly");
5691 }
5692
5693 /* Make an initial pass over the list of fields to determine how
5694 * many there are. Each element in this list is an ast_declarator_list.
5695 * This means that we actually need to count the number of elements in the
5696 * 'declarations' list in each of the elements.
5697 */
5698 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
5699 decl_count += decl_list->declarations.length();
5700 }
5701
5702 /* Allocate storage for the fields and process the field
5703 * declarations. As the declarations are processed, try to also convert
5704 * the types to HIR. This ensures that structure definitions embedded in
5705 * other structure definitions or in interface blocks are processed.
5706 */
5707 glsl_struct_field *const fields = ralloc_array(state, glsl_struct_field,
5708 decl_count);
5709
5710 unsigned i = 0;
5711 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
5712 const char *type_name;
5713
5714 decl_list->type->specifier->hir(instructions, state);
5715
5716 /* Section 10.9 of the GLSL ES 1.00 specification states that
5717 * embedded structure definitions have been removed from the language.
5718 */
5719 if (state->es_shader && decl_list->type->specifier->structure != NULL) {
5720 _mesa_glsl_error(&loc, state, "embedded structure definitions are "
5721 "not allowed in GLSL ES 1.00");
5722 }
5723
5724 const glsl_type *decl_type =
5725 decl_list->type->glsl_type(& type_name, state);
5726
5727 foreach_list_typed (ast_declaration, decl, link,
5728 &decl_list->declarations) {
5729 if (!allow_reserved_names)
5730 validate_identifier(decl->identifier, loc, state);
5731
5732 /* From section 4.3.9 of the GLSL 4.40 spec:
5733 *
5734 * "[In interface blocks] opaque types are not allowed."
5735 *
5736 * It should be impossible for decl_type to be NULL here. Cases that
5737 * might naturally lead to decl_type being NULL, especially for the
5738 * is_interface case, will have resulted in compilation having
5739 * already halted due to a syntax error.
5740 */
5741 assert(decl_type);
5742
5743 if (is_interface && decl_type->contains_opaque()) {
5744 YYLTYPE loc = decl_list->get_location();
5745 _mesa_glsl_error(&loc, state,
5746 "uniform/buffer in non-default interface block contains "
5747 "opaque variable");
5748 }
5749
5750 if (decl_type->contains_atomic()) {
5751 /* From section 4.1.7.3 of the GLSL 4.40 spec:
5752 *
5753 * "Members of structures cannot be declared as atomic counter
5754 * types."
5755 */
5756 YYLTYPE loc = decl_list->get_location();
5757 _mesa_glsl_error(&loc, state, "atomic counter in structure, "
5758 "shader storage block or uniform block");
5759 }
5760
5761 if (decl_type->contains_image()) {
5762 /* FINISHME: Same problem as with atomic counters.
5763 * FINISHME: Request clarification from Khronos and add
5764 * FINISHME: spec quotation here.
5765 */
5766 YYLTYPE loc = decl_list->get_location();
5767 _mesa_glsl_error(&loc, state,
5768 "image in structure, shader storage block or "
5769 "uniform block");
5770 }
5771
5772 const struct ast_type_qualifier *const qual =
5773 & decl_list->type->qualifier;
5774
5775 if (qual->flags.q.explicit_binding)
5776 validate_binding_qualifier(state, &loc, decl_type, qual);
5777
5778 if (qual->flags.q.std140 ||
5779 qual->flags.q.std430 ||
5780 qual->flags.q.packed ||
5781 qual->flags.q.shared) {
5782 _mesa_glsl_error(&loc, state,
5783 "uniform/shader storage block layout qualifiers "
5784 "std140, std430, packed, and shared can only be "
5785 "applied to uniform/shader storage blocks, not "
5786 "members");
5787 }
5788
5789 if (qual->flags.q.constant) {
5790 YYLTYPE loc = decl_list->get_location();
5791 _mesa_glsl_error(&loc, state,
5792 "const storage qualifier cannot be applied "
5793 "to struct or interface block members");
5794 }
5795
5796 const struct glsl_type *field_type =
5797 process_array_type(&loc, decl_type, decl->array_specifier, state);
5798 fields[i].type = field_type;
5799 fields[i].name = decl->identifier;
5800 fields[i].location = -1;
5801 fields[i].interpolation =
5802 interpret_interpolation_qualifier(qual, var_mode, state, &loc);
5803 fields[i].centroid = qual->flags.q.centroid ? 1 : 0;
5804 fields[i].sample = qual->flags.q.sample ? 1 : 0;
5805 fields[i].patch = qual->flags.q.patch ? 1 : 0;
5806
5807 /* Only save explicitly defined streams in block's field */
5808 fields[i].stream = qual->flags.q.explicit_stream ? qual->stream : -1;
5809
5810 if (qual->flags.q.row_major || qual->flags.q.column_major) {
5811 if (!qual->flags.q.uniform && !qual->flags.q.buffer) {
5812 _mesa_glsl_error(&loc, state,
5813 "row_major and column_major can only be "
5814 "applied to interface blocks");
5815 } else
5816 validate_matrix_layout_for_type(state, &loc, field_type, NULL);
5817 }
5818
5819 if (qual->flags.q.uniform && qual->has_interpolation()) {
5820 _mesa_glsl_error(&loc, state,
5821 "interpolation qualifiers cannot be used "
5822 "with uniform interface blocks");
5823 }
5824
5825 if ((qual->flags.q.uniform || !is_interface) &&
5826 qual->has_auxiliary_storage()) {
5827 _mesa_glsl_error(&loc, state,
5828 "auxiliary storage qualifiers cannot be used "
5829 "in uniform blocks or structures.");
5830 }
5831
5832 /* Propogate row- / column-major information down the fields of the
5833 * structure or interface block. Structures need this data because
5834 * the structure may contain a structure that contains ... a matrix
5835 * that need the proper layout.
5836 */
5837 if (field_type->without_array()->is_matrix()
5838 || field_type->without_array()->is_record()) {
5839 /* If no layout is specified for the field, inherit the layout
5840 * from the block.
5841 */
5842 fields[i].matrix_layout = matrix_layout;
5843
5844 if (qual->flags.q.row_major)
5845 fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
5846 else if (qual->flags.q.column_major)
5847 fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
5848
5849 /* If we're processing an interface block, the matrix layout must
5850 * be decided by this point.
5851 */
5852 assert(!is_interface
5853 || fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR
5854 || fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_COLUMN_MAJOR);
5855 }
5856
5857 /* Image qualifiers are allowed on buffer variables, which can only
5858 * be defined inside shader storage buffer objects
5859 */
5860 if (layout && var_mode == ir_var_shader_storage) {
5861 if (qual->flags.q.read_only && qual->flags.q.write_only) {
5862 _mesa_glsl_error(&loc, state,
5863 "buffer variable `%s' can't be "
5864 "readonly and writeonly.", fields[i].name);
5865 }
5866
5867 /* For readonly and writeonly qualifiers the field definition,
5868 * if set, overwrites the layout qualifier.
5869 */
5870 bool read_only = layout->flags.q.read_only;
5871 bool write_only = layout->flags.q.write_only;
5872
5873 if (qual->flags.q.read_only) {
5874 read_only = true;
5875 write_only = false;
5876 } else if (qual->flags.q.write_only) {
5877 read_only = false;
5878 write_only = true;
5879 }
5880
5881 fields[i].image_read_only = read_only;
5882 fields[i].image_write_only = write_only;
5883
5884 /* For other qualifiers, we set the flag if either the layout
5885 * qualifier or the field qualifier are set
5886 */
5887 fields[i].image_coherent = qual->flags.q.coherent ||
5888 layout->flags.q.coherent;
5889 fields[i].image_volatile = qual->flags.q._volatile ||
5890 layout->flags.q._volatile;
5891 fields[i].image_restrict = qual->flags.q.restrict_flag ||
5892 layout->flags.q.restrict_flag;
5893 }
5894
5895 i++;
5896 }
5897 }
5898
5899 assert(i == decl_count);
5900
5901 *fields_ret = fields;
5902 return decl_count;
5903 }
5904
5905
5906 ir_rvalue *
5907 ast_struct_specifier::hir(exec_list *instructions,
5908 struct _mesa_glsl_parse_state *state)
5909 {
5910 YYLTYPE loc = this->get_location();
5911
5912 /* Section 4.1.8 (Structures) of the GLSL 1.10 spec says:
5913 *
5914 * "Anonymous structures are not supported; so embedded structures must
5915 * have a declarator. A name given to an embedded struct is scoped at
5916 * the same level as the struct it is embedded in."
5917 *
5918 * The same section of the GLSL 1.20 spec says:
5919 *
5920 * "Anonymous structures are not supported. Embedded structures are not
5921 * supported.
5922 *
5923 * struct S { float f; };
5924 * struct T {
5925 * S; // Error: anonymous structures disallowed
5926 * struct { ... }; // Error: embedded structures disallowed
5927 * S s; // Okay: nested structures with name are allowed
5928 * };"
5929 *
5930 * The GLSL ES 1.00 and 3.00 specs have similar langauge and examples. So,
5931 * we allow embedded structures in 1.10 only.
5932 */
5933 if (state->language_version != 110 && state->struct_specifier_depth != 0)
5934 _mesa_glsl_error(&loc, state,
5935 "embedded structure declarations are not allowed");
5936
5937 state->struct_specifier_depth++;
5938
5939 glsl_struct_field *fields;
5940 unsigned decl_count =
5941 ast_process_structure_or_interface_block(instructions,
5942 state,
5943 &this->declarations,
5944 loc,
5945 &fields,
5946 false,
5947 GLSL_MATRIX_LAYOUT_INHERITED,
5948 false /* allow_reserved_names */,
5949 ir_var_auto,
5950 NULL);
5951
5952 validate_identifier(this->name, loc, state);
5953
5954 const glsl_type *t =
5955 glsl_type::get_record_instance(fields, decl_count, this->name);
5956
5957 if (!state->symbols->add_type(name, t)) {
5958 _mesa_glsl_error(& loc, state, "struct `%s' previously defined", name);
5959 } else {
5960 const glsl_type **s = reralloc(state, state->user_structures,
5961 const glsl_type *,
5962 state->num_user_structures + 1);
5963 if (s != NULL) {
5964 s[state->num_user_structures] = t;
5965 state->user_structures = s;
5966 state->num_user_structures++;
5967 }
5968 }
5969
5970 state->struct_specifier_depth--;
5971
5972 /* Structure type definitions do not have r-values.
5973 */
5974 return NULL;
5975 }
5976
5977
5978 /**
5979 * Visitor class which detects whether a given interface block has been used.
5980 */
5981 class interface_block_usage_visitor : public ir_hierarchical_visitor
5982 {
5983 public:
5984 interface_block_usage_visitor(ir_variable_mode mode, const glsl_type *block)
5985 : mode(mode), block(block), found(false)
5986 {
5987 }
5988
5989 virtual ir_visitor_status visit(ir_dereference_variable *ir)
5990 {
5991 if (ir->var->data.mode == mode && ir->var->get_interface_type() == block) {
5992 found = true;
5993 return visit_stop;
5994 }
5995 return visit_continue;
5996 }
5997
5998 bool usage_found() const
5999 {
6000 return this->found;
6001 }
6002
6003 private:
6004 ir_variable_mode mode;
6005 const glsl_type *block;
6006 bool found;
6007 };
6008
6009 static bool
6010 is_unsized_array_last_element(ir_variable *v)
6011 {
6012 const glsl_type *interface_type = v->get_interface_type();
6013 int length = interface_type->length;
6014
6015 assert(v->type->is_unsized_array());
6016
6017 /* Check if it is the last element of the interface */
6018 if (strcmp(interface_type->fields.structure[length-1].name, v->name) == 0)
6019 return true;
6020 return false;
6021 }
6022
6023 ir_rvalue *
6024 ast_interface_block::hir(exec_list *instructions,
6025 struct _mesa_glsl_parse_state *state)
6026 {
6027 YYLTYPE loc = this->get_location();
6028
6029 /* Interface blocks must be declared at global scope */
6030 if (state->current_function != NULL) {
6031 _mesa_glsl_error(&loc, state,
6032 "Interface block `%s' must be declared "
6033 "at global scope",
6034 this->block_name);
6035 }
6036
6037 if (!this->layout.flags.q.buffer &&
6038 this->layout.flags.q.std430) {
6039 _mesa_glsl_error(&loc, state,
6040 "std430 storage block layout qualifier is supported "
6041 "only for shader storage blocks");
6042 }
6043
6044 /* The ast_interface_block has a list of ast_declarator_lists. We
6045 * need to turn those into ir_variables with an association
6046 * with this uniform block.
6047 */
6048 enum glsl_interface_packing packing;
6049 if (this->layout.flags.q.shared) {
6050 packing = GLSL_INTERFACE_PACKING_SHARED;
6051 } else if (this->layout.flags.q.packed) {
6052 packing = GLSL_INTERFACE_PACKING_PACKED;
6053 } else if (this->layout.flags.q.std430) {
6054 packing = GLSL_INTERFACE_PACKING_STD430;
6055 } else {
6056 /* The default layout is std140.
6057 */
6058 packing = GLSL_INTERFACE_PACKING_STD140;
6059 }
6060
6061 ir_variable_mode var_mode;
6062 const char *iface_type_name;
6063 if (this->layout.flags.q.in) {
6064 var_mode = ir_var_shader_in;
6065 iface_type_name = "in";
6066 } else if (this->layout.flags.q.out) {
6067 var_mode = ir_var_shader_out;
6068 iface_type_name = "out";
6069 } else if (this->layout.flags.q.uniform) {
6070 var_mode = ir_var_uniform;
6071 iface_type_name = "uniform";
6072 } else if (this->layout.flags.q.buffer) {
6073 var_mode = ir_var_shader_storage;
6074 iface_type_name = "buffer";
6075 } else {
6076 var_mode = ir_var_auto;
6077 iface_type_name = "UNKNOWN";
6078 assert(!"interface block layout qualifier not found!");
6079 }
6080
6081 enum glsl_matrix_layout matrix_layout = GLSL_MATRIX_LAYOUT_INHERITED;
6082 if (this->layout.flags.q.row_major)
6083 matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
6084 else if (this->layout.flags.q.column_major)
6085 matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
6086
6087 bool redeclaring_per_vertex = strcmp(this->block_name, "gl_PerVertex") == 0;
6088 exec_list declared_variables;
6089 glsl_struct_field *fields;
6090
6091 /* Treat an interface block as one level of nesting, so that embedded struct
6092 * specifiers will be disallowed.
6093 */
6094 state->struct_specifier_depth++;
6095
6096 unsigned int num_variables =
6097 ast_process_structure_or_interface_block(&declared_variables,
6098 state,
6099 &this->declarations,
6100 loc,
6101 &fields,
6102 true,
6103 matrix_layout,
6104 redeclaring_per_vertex,
6105 var_mode,
6106 &this->layout);
6107
6108 state->struct_specifier_depth--;
6109
6110 if (!redeclaring_per_vertex) {
6111 validate_identifier(this->block_name, loc, state);
6112
6113 /* From section 4.3.9 ("Interface Blocks") of the GLSL 4.50 spec:
6114 *
6115 * "Block names have no other use within a shader beyond interface
6116 * matching; it is a compile-time error to use a block name at global
6117 * scope for anything other than as a block name."
6118 */
6119 ir_variable *var = state->symbols->get_variable(this->block_name);
6120 if (var && !var->type->is_interface()) {
6121 _mesa_glsl_error(&loc, state, "Block name `%s' is "
6122 "already used in the scope.",
6123 this->block_name);
6124 }
6125 }
6126
6127 const glsl_type *earlier_per_vertex = NULL;
6128 if (redeclaring_per_vertex) {
6129 /* Find the previous declaration of gl_PerVertex. If we're redeclaring
6130 * the named interface block gl_in, we can find it by looking at the
6131 * previous declaration of gl_in. Otherwise we can find it by looking
6132 * at the previous decalartion of any of the built-in outputs,
6133 * e.g. gl_Position.
6134 *
6135 * Also check that the instance name and array-ness of the redeclaration
6136 * are correct.
6137 */
6138 switch (var_mode) {
6139 case ir_var_shader_in:
6140 if (ir_variable *earlier_gl_in =
6141 state->symbols->get_variable("gl_in")) {
6142 earlier_per_vertex = earlier_gl_in->get_interface_type();
6143 } else {
6144 _mesa_glsl_error(&loc, state,
6145 "redeclaration of gl_PerVertex input not allowed "
6146 "in the %s shader",
6147 _mesa_shader_stage_to_string(state->stage));
6148 }
6149 if (this->instance_name == NULL ||
6150 strcmp(this->instance_name, "gl_in") != 0 || this->array_specifier == NULL) {
6151 _mesa_glsl_error(&loc, state,
6152 "gl_PerVertex input must be redeclared as "
6153 "gl_in[]");
6154 }
6155 break;
6156 case ir_var_shader_out:
6157 if (ir_variable *earlier_gl_Position =
6158 state->symbols->get_variable("gl_Position")) {
6159 earlier_per_vertex = earlier_gl_Position->get_interface_type();
6160 } else if (ir_variable *earlier_gl_out =
6161 state->symbols->get_variable("gl_out")) {
6162 earlier_per_vertex = earlier_gl_out->get_interface_type();
6163 } else {
6164 _mesa_glsl_error(&loc, state,
6165 "redeclaration of gl_PerVertex output not "
6166 "allowed in the %s shader",
6167 _mesa_shader_stage_to_string(state->stage));
6168 }
6169 if (state->stage == MESA_SHADER_TESS_CTRL) {
6170 if (this->instance_name == NULL ||
6171 strcmp(this->instance_name, "gl_out") != 0 || this->array_specifier == NULL) {
6172 _mesa_glsl_error(&loc, state,
6173 "gl_PerVertex output must be redeclared as "
6174 "gl_out[]");
6175 }
6176 } else {
6177 if (this->instance_name != NULL) {
6178 _mesa_glsl_error(&loc, state,
6179 "gl_PerVertex output may not be redeclared with "
6180 "an instance name");
6181 }
6182 }
6183 break;
6184 default:
6185 _mesa_glsl_error(&loc, state,
6186 "gl_PerVertex must be declared as an input or an "
6187 "output");
6188 break;
6189 }
6190
6191 if (earlier_per_vertex == NULL) {
6192 /* An error has already been reported. Bail out to avoid null
6193 * dereferences later in this function.
6194 */
6195 return NULL;
6196 }
6197
6198 /* Copy locations from the old gl_PerVertex interface block. */
6199 for (unsigned i = 0; i < num_variables; i++) {
6200 int j = earlier_per_vertex->field_index(fields[i].name);
6201 if (j == -1) {
6202 _mesa_glsl_error(&loc, state,
6203 "redeclaration of gl_PerVertex must be a subset "
6204 "of the built-in members of gl_PerVertex");
6205 } else {
6206 fields[i].location =
6207 earlier_per_vertex->fields.structure[j].location;
6208 fields[i].interpolation =
6209 earlier_per_vertex->fields.structure[j].interpolation;
6210 fields[i].centroid =
6211 earlier_per_vertex->fields.structure[j].centroid;
6212 fields[i].sample =
6213 earlier_per_vertex->fields.structure[j].sample;
6214 fields[i].patch =
6215 earlier_per_vertex->fields.structure[j].patch;
6216 }
6217 }
6218
6219 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10
6220 * spec:
6221 *
6222 * If a built-in interface block is redeclared, it must appear in
6223 * the shader before any use of any member included in the built-in
6224 * declaration, or a compilation error will result.
6225 *
6226 * This appears to be a clarification to the behaviour established for
6227 * gl_PerVertex by GLSL 1.50, therefore we implement this behaviour
6228 * regardless of GLSL version.
6229 */
6230 interface_block_usage_visitor v(var_mode, earlier_per_vertex);
6231 v.run(instructions);
6232 if (v.usage_found()) {
6233 _mesa_glsl_error(&loc, state,
6234 "redeclaration of a built-in interface block must "
6235 "appear before any use of any member of the "
6236 "interface block");
6237 }
6238 }
6239
6240 const glsl_type *block_type =
6241 glsl_type::get_interface_instance(fields,
6242 num_variables,
6243 packing,
6244 this->block_name);
6245 if (this->layout.flags.q.explicit_binding)
6246 validate_binding_qualifier(state, &loc, block_type, &this->layout);
6247
6248 if (!state->symbols->add_interface(block_type->name, block_type, var_mode)) {
6249 YYLTYPE loc = this->get_location();
6250 _mesa_glsl_error(&loc, state, "interface block `%s' with type `%s' "
6251 "already taken in the current scope",
6252 this->block_name, iface_type_name);
6253 }
6254
6255 /* Since interface blocks cannot contain statements, it should be
6256 * impossible for the block to generate any instructions.
6257 */
6258 assert(declared_variables.is_empty());
6259
6260 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
6261 *
6262 * Geometry shader input variables get the per-vertex values written
6263 * out by vertex shader output variables of the same names. Since a
6264 * geometry shader operates on a set of vertices, each input varying
6265 * variable (or input block, see interface blocks below) needs to be
6266 * declared as an array.
6267 */
6268 if (state->stage == MESA_SHADER_GEOMETRY && this->array_specifier == NULL &&
6269 var_mode == ir_var_shader_in) {
6270 _mesa_glsl_error(&loc, state, "geometry shader inputs must be arrays");
6271 } else if ((state->stage == MESA_SHADER_TESS_CTRL ||
6272 state->stage == MESA_SHADER_TESS_EVAL) &&
6273 this->array_specifier == NULL &&
6274 var_mode == ir_var_shader_in) {
6275 _mesa_glsl_error(&loc, state, "per-vertex tessellation shader inputs must be arrays");
6276 } else if (state->stage == MESA_SHADER_TESS_CTRL &&
6277 this->array_specifier == NULL &&
6278 var_mode == ir_var_shader_out) {
6279 _mesa_glsl_error(&loc, state, "tessellation control shader outputs must be arrays");
6280 }
6281
6282
6283 /* Page 39 (page 45 of the PDF) of section 4.3.7 in the GLSL ES 3.00 spec
6284 * says:
6285 *
6286 * "If an instance name (instance-name) is used, then it puts all the
6287 * members inside a scope within its own name space, accessed with the
6288 * field selector ( . ) operator (analogously to structures)."
6289 */
6290 if (this->instance_name) {
6291 if (redeclaring_per_vertex) {
6292 /* When a built-in in an unnamed interface block is redeclared,
6293 * get_variable_being_redeclared() calls
6294 * check_builtin_array_max_size() to make sure that built-in array
6295 * variables aren't redeclared to illegal sizes. But we're looking
6296 * at a redeclaration of a named built-in interface block. So we
6297 * have to manually call check_builtin_array_max_size() for all parts
6298 * of the interface that are arrays.
6299 */
6300 for (unsigned i = 0; i < num_variables; i++) {
6301 if (fields[i].type->is_array()) {
6302 const unsigned size = fields[i].type->array_size();
6303 check_builtin_array_max_size(fields[i].name, size, loc, state);
6304 }
6305 }
6306 } else {
6307 validate_identifier(this->instance_name, loc, state);
6308 }
6309
6310 ir_variable *var;
6311
6312 if (this->array_specifier != NULL) {
6313 /* Section 4.3.7 (Interface Blocks) of the GLSL 1.50 spec says:
6314 *
6315 * For uniform blocks declared an array, each individual array
6316 * element corresponds to a separate buffer object backing one
6317 * instance of the block. As the array size indicates the number
6318 * of buffer objects needed, uniform block array declarations
6319 * must specify an array size.
6320 *
6321 * And a few paragraphs later:
6322 *
6323 * Geometry shader input blocks must be declared as arrays and
6324 * follow the array declaration and linking rules for all
6325 * geometry shader inputs. All other input and output block
6326 * arrays must specify an array size.
6327 *
6328 * The same applies to tessellation shaders.
6329 *
6330 * The upshot of this is that the only circumstance where an
6331 * interface array size *doesn't* need to be specified is on a
6332 * geometry shader input, tessellation control shader input,
6333 * tessellation control shader output, and tessellation evaluation
6334 * shader input.
6335 */
6336 if (this->array_specifier->is_unsized_array) {
6337 bool allow_inputs = state->stage == MESA_SHADER_GEOMETRY ||
6338 state->stage == MESA_SHADER_TESS_CTRL ||
6339 state->stage == MESA_SHADER_TESS_EVAL;
6340 bool allow_outputs = state->stage == MESA_SHADER_TESS_CTRL;
6341
6342 if (this->layout.flags.q.in) {
6343 if (!allow_inputs)
6344 _mesa_glsl_error(&loc, state,
6345 "unsized input block arrays not allowed in "
6346 "%s shader",
6347 _mesa_shader_stage_to_string(state->stage));
6348 } else if (this->layout.flags.q.out) {
6349 if (!allow_outputs)
6350 _mesa_glsl_error(&loc, state,
6351 "unsized output block arrays not allowed in "
6352 "%s shader",
6353 _mesa_shader_stage_to_string(state->stage));
6354 } else {
6355 /* by elimination, this is a uniform block array */
6356 _mesa_glsl_error(&loc, state,
6357 "unsized uniform block arrays not allowed in "
6358 "%s shader",
6359 _mesa_shader_stage_to_string(state->stage));
6360 }
6361 }
6362
6363 const glsl_type *block_array_type =
6364 process_array_type(&loc, block_type, this->array_specifier, state);
6365
6366 /* From section 4.3.9 (Interface Blocks) of the GLSL ES 3.10 spec:
6367 *
6368 * * Arrays of arrays of blocks are not allowed
6369 */
6370 if (state->es_shader && block_array_type->is_array() &&
6371 block_array_type->fields.array->is_array()) {
6372 _mesa_glsl_error(&loc, state,
6373 "arrays of arrays interface blocks are "
6374 "not allowed");
6375 }
6376
6377 if (this->layout.flags.q.explicit_binding)
6378 validate_binding_qualifier(state, &loc, block_array_type,
6379 &this->layout);
6380
6381 var = new(state) ir_variable(block_array_type,
6382 this->instance_name,
6383 var_mode);
6384 } else {
6385 var = new(state) ir_variable(block_type,
6386 this->instance_name,
6387 var_mode);
6388 }
6389
6390 var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
6391 ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
6392
6393 if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
6394 var->data.read_only = true;
6395
6396 if (state->stage == MESA_SHADER_GEOMETRY && var_mode == ir_var_shader_in)
6397 handle_geometry_shader_input_decl(state, loc, var);
6398 else if ((state->stage == MESA_SHADER_TESS_CTRL ||
6399 state->stage == MESA_SHADER_TESS_EVAL) && var_mode == ir_var_shader_in)
6400 handle_tess_shader_input_decl(state, loc, var);
6401 else if (state->stage == MESA_SHADER_TESS_CTRL && var_mode == ir_var_shader_out)
6402 handle_tess_ctrl_shader_output_decl(state, loc, var);
6403
6404 for (unsigned i = 0; i < num_variables; i++) {
6405 if (fields[i].type->is_unsized_array()) {
6406 if (var_mode == ir_var_shader_storage) {
6407 if (i != (num_variables - 1)) {
6408 _mesa_glsl_error(&loc, state, "unsized array `%s' definition: "
6409 "only last member of a shader storage block "
6410 "can be defined as unsized array",
6411 fields[i].name);
6412 }
6413 } else {
6414 /* From GLSL ES 3.10 spec, section 4.1.9 "Arrays":
6415 *
6416 * "If an array is declared as the last member of a shader storage
6417 * block and the size is not specified at compile-time, it is
6418 * sized at run-time. In all other cases, arrays are sized only
6419 * at compile-time."
6420 */
6421 if (state->es_shader) {
6422 _mesa_glsl_error(&loc, state, "unsized array `%s' definition: "
6423 "only last member of a shader storage block "
6424 "can be defined as unsized array",
6425 fields[i].name);
6426 }
6427 }
6428 }
6429 }
6430
6431 if (ir_variable *earlier =
6432 state->symbols->get_variable(this->instance_name)) {
6433 if (!redeclaring_per_vertex) {
6434 _mesa_glsl_error(&loc, state, "`%s' redeclared",
6435 this->instance_name);
6436 }
6437 earlier->data.how_declared = ir_var_declared_normally;
6438 earlier->type = var->type;
6439 earlier->reinit_interface_type(block_type);
6440 delete var;
6441 } else {
6442 /* Propagate the "binding" keyword into this UBO's fields;
6443 * the UBO declaration itself doesn't get an ir_variable unless it
6444 * has an instance name. This is ugly.
6445 */
6446 var->data.explicit_binding = this->layout.flags.q.explicit_binding;
6447 var->data.binding = this->layout.binding;
6448
6449 state->symbols->add_variable(var);
6450 instructions->push_tail(var);
6451 }
6452 } else {
6453 /* In order to have an array size, the block must also be declared with
6454 * an instance name.
6455 */
6456 assert(this->array_specifier == NULL);
6457
6458 for (unsigned i = 0; i < num_variables; i++) {
6459 ir_variable *var =
6460 new(state) ir_variable(fields[i].type,
6461 ralloc_strdup(state, fields[i].name),
6462 var_mode);
6463 var->data.interpolation = fields[i].interpolation;
6464 var->data.centroid = fields[i].centroid;
6465 var->data.sample = fields[i].sample;
6466 var->data.patch = fields[i].patch;
6467 var->init_interface_type(block_type);
6468
6469 if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
6470 var->data.read_only = true;
6471
6472 if (fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED) {
6473 var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
6474 ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
6475 } else {
6476 var->data.matrix_layout = fields[i].matrix_layout;
6477 }
6478
6479 if (fields[i].stream != -1 &&
6480 ((unsigned)fields[i].stream) != this->layout.stream) {
6481 _mesa_glsl_error(&loc, state,
6482 "stream layout qualifier on "
6483 "interface block member `%s' does not match "
6484 "the interface block (%d vs %d)",
6485 var->name, fields[i].stream, this->layout.stream);
6486 }
6487
6488 var->data.stream = this->layout.stream;
6489
6490 if (var->data.mode == ir_var_shader_storage) {
6491 var->data.image_read_only = fields[i].image_read_only;
6492 var->data.image_write_only = fields[i].image_write_only;
6493 var->data.image_coherent = fields[i].image_coherent;
6494 var->data.image_volatile = fields[i].image_volatile;
6495 var->data.image_restrict = fields[i].image_restrict;
6496 }
6497
6498 /* Examine var name here since var may get deleted in the next call */
6499 bool var_is_gl_id = is_gl_identifier(var->name);
6500
6501 if (redeclaring_per_vertex) {
6502 ir_variable *earlier =
6503 get_variable_being_redeclared(var, loc, state,
6504 true /* allow_all_redeclarations */);
6505 if (!var_is_gl_id || earlier == NULL) {
6506 _mesa_glsl_error(&loc, state,
6507 "redeclaration of gl_PerVertex can only "
6508 "include built-in variables");
6509 } else if (earlier->data.how_declared == ir_var_declared_normally) {
6510 _mesa_glsl_error(&loc, state,
6511 "`%s' has already been redeclared",
6512 earlier->name);
6513 } else {
6514 earlier->data.how_declared = ir_var_declared_in_block;
6515 earlier->reinit_interface_type(block_type);
6516 }
6517 continue;
6518 }
6519
6520 if (state->symbols->get_variable(var->name) != NULL)
6521 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
6522
6523 /* Propagate the "binding" keyword into this UBO/SSBO's fields.
6524 * The UBO declaration itself doesn't get an ir_variable unless it
6525 * has an instance name. This is ugly.
6526 */
6527 var->data.explicit_binding = this->layout.flags.q.explicit_binding;
6528 var->data.binding = this->layout.binding;
6529
6530 if (var->type->is_unsized_array()) {
6531 if (var->is_in_shader_storage_block()) {
6532 if (!is_unsized_array_last_element(var)) {
6533 _mesa_glsl_error(&loc, state, "unsized array `%s' definition: "
6534 "only last member of a shader storage block "
6535 "can be defined as unsized array",
6536 var->name);
6537 }
6538 var->data.from_ssbo_unsized_array = true;
6539 } else {
6540 /* From GLSL ES 3.10 spec, section 4.1.9 "Arrays":
6541 *
6542 * "If an array is declared as the last member of a shader storage
6543 * block and the size is not specified at compile-time, it is
6544 * sized at run-time. In all other cases, arrays are sized only
6545 * at compile-time."
6546 */
6547 if (state->es_shader) {
6548 _mesa_glsl_error(&loc, state, "unsized array `%s' definition: "
6549 "only last member of a shader storage block "
6550 "can be defined as unsized array",
6551 var->name);
6552 }
6553 }
6554 }
6555
6556 state->symbols->add_variable(var);
6557 instructions->push_tail(var);
6558 }
6559
6560 if (redeclaring_per_vertex && block_type != earlier_per_vertex) {
6561 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10 spec:
6562 *
6563 * It is also a compilation error ... to redeclare a built-in
6564 * block and then use a member from that built-in block that was
6565 * not included in the redeclaration.
6566 *
6567 * This appears to be a clarification to the behaviour established
6568 * for gl_PerVertex by GLSL 1.50, therefore we implement this
6569 * behaviour regardless of GLSL version.
6570 *
6571 * To prevent the shader from using a member that was not included in
6572 * the redeclaration, we disable any ir_variables that are still
6573 * associated with the old declaration of gl_PerVertex (since we've
6574 * already updated all of the variables contained in the new
6575 * gl_PerVertex to point to it).
6576 *
6577 * As a side effect this will prevent
6578 * validate_intrastage_interface_blocks() from getting confused and
6579 * thinking there are conflicting definitions of gl_PerVertex in the
6580 * shader.
6581 */
6582 foreach_in_list_safe(ir_instruction, node, instructions) {
6583 ir_variable *const var = node->as_variable();
6584 if (var != NULL &&
6585 var->get_interface_type() == earlier_per_vertex &&
6586 var->data.mode == var_mode) {
6587 if (var->data.how_declared == ir_var_declared_normally) {
6588 _mesa_glsl_error(&loc, state,
6589 "redeclaration of gl_PerVertex cannot "
6590 "follow a redeclaration of `%s'",
6591 var->name);
6592 }
6593 state->symbols->disable_variable(var->name);
6594 var->remove();
6595 }
6596 }
6597 }
6598 }
6599
6600 return NULL;
6601 }
6602
6603
6604 ir_rvalue *
6605 ast_tcs_output_layout::hir(exec_list *instructions,
6606 struct _mesa_glsl_parse_state *state)
6607 {
6608 YYLTYPE loc = this->get_location();
6609
6610 /* If any tessellation control output layout declaration preceded this
6611 * one, make sure it was consistent with this one.
6612 */
6613 if (state->tcs_output_vertices_specified &&
6614 state->out_qualifier->vertices != this->vertices) {
6615 _mesa_glsl_error(&loc, state,
6616 "tessellation control shader output layout does not "
6617 "match previous declaration");
6618 return NULL;
6619 }
6620
6621 /* If any shader outputs occurred before this declaration and specified an
6622 * array size, make sure the size they specified is consistent with the
6623 * primitive type.
6624 */
6625 unsigned num_vertices = this->vertices;
6626 if (state->tcs_output_size != 0 && state->tcs_output_size != num_vertices) {
6627 _mesa_glsl_error(&loc, state,
6628 "this tessellation control shader output layout "
6629 "specifies %u vertices, but a previous output "
6630 "is declared with size %u",
6631 num_vertices, state->tcs_output_size);
6632 return NULL;
6633 }
6634
6635 state->tcs_output_vertices_specified = true;
6636
6637 /* If any shader outputs occurred before this declaration and did not
6638 * specify an array size, their size is determined now.
6639 */
6640 foreach_in_list (ir_instruction, node, instructions) {
6641 ir_variable *var = node->as_variable();
6642 if (var == NULL || var->data.mode != ir_var_shader_out)
6643 continue;
6644
6645 /* Note: Not all tessellation control shader output are arrays. */
6646 if (!var->type->is_unsized_array() || var->data.patch)
6647 continue;
6648
6649 if (var->data.max_array_access >= num_vertices) {
6650 _mesa_glsl_error(&loc, state,
6651 "this tessellation control shader output layout "
6652 "specifies %u vertices, but an access to element "
6653 "%u of output `%s' already exists", num_vertices,
6654 var->data.max_array_access, var->name);
6655 } else {
6656 var->type = glsl_type::get_array_instance(var->type->fields.array,
6657 num_vertices);
6658 }
6659 }
6660
6661 return NULL;
6662 }
6663
6664
6665 ir_rvalue *
6666 ast_gs_input_layout::hir(exec_list *instructions,
6667 struct _mesa_glsl_parse_state *state)
6668 {
6669 YYLTYPE loc = this->get_location();
6670
6671 /* If any geometry input layout declaration preceded this one, make sure it
6672 * was consistent with this one.
6673 */
6674 if (state->gs_input_prim_type_specified &&
6675 state->in_qualifier->prim_type != this->prim_type) {
6676 _mesa_glsl_error(&loc, state,
6677 "geometry shader input layout does not match"
6678 " previous declaration");
6679 return NULL;
6680 }
6681
6682 /* If any shader inputs occurred before this declaration and specified an
6683 * array size, make sure the size they specified is consistent with the
6684 * primitive type.
6685 */
6686 unsigned num_vertices = vertices_per_prim(this->prim_type);
6687 if (state->gs_input_size != 0 && state->gs_input_size != num_vertices) {
6688 _mesa_glsl_error(&loc, state,
6689 "this geometry shader input layout implies %u vertices"
6690 " per primitive, but a previous input is declared"
6691 " with size %u", num_vertices, state->gs_input_size);
6692 return NULL;
6693 }
6694
6695 state->gs_input_prim_type_specified = true;
6696
6697 /* If any shader inputs occurred before this declaration and did not
6698 * specify an array size, their size is determined now.
6699 */
6700 foreach_in_list(ir_instruction, node, instructions) {
6701 ir_variable *var = node->as_variable();
6702 if (var == NULL || var->data.mode != ir_var_shader_in)
6703 continue;
6704
6705 /* Note: gl_PrimitiveIDIn has mode ir_var_shader_in, but it's not an
6706 * array; skip it.
6707 */
6708
6709 if (var->type->is_unsized_array()) {
6710 if (var->data.max_array_access >= num_vertices) {
6711 _mesa_glsl_error(&loc, state,
6712 "this geometry shader input layout implies %u"
6713 " vertices, but an access to element %u of input"
6714 " `%s' already exists", num_vertices,
6715 var->data.max_array_access, var->name);
6716 } else {
6717 var->type = glsl_type::get_array_instance(var->type->fields.array,
6718 num_vertices);
6719 }
6720 }
6721 }
6722
6723 return NULL;
6724 }
6725
6726
6727 ir_rvalue *
6728 ast_cs_input_layout::hir(exec_list *instructions,
6729 struct _mesa_glsl_parse_state *state)
6730 {
6731 YYLTYPE loc = this->get_location();
6732
6733 /* If any compute input layout declaration preceded this one, make sure it
6734 * was consistent with this one.
6735 */
6736 if (state->cs_input_local_size_specified) {
6737 for (int i = 0; i < 3; i++) {
6738 if (state->cs_input_local_size[i] != this->local_size[i]) {
6739 _mesa_glsl_error(&loc, state,
6740 "compute shader input layout does not match"
6741 " previous declaration");
6742 return NULL;
6743 }
6744 }
6745 }
6746
6747 /* From the ARB_compute_shader specification:
6748 *
6749 * If the local size of the shader in any dimension is greater
6750 * than the maximum size supported by the implementation for that
6751 * dimension, a compile-time error results.
6752 *
6753 * It is not clear from the spec how the error should be reported if
6754 * the total size of the work group exceeds
6755 * MAX_COMPUTE_WORK_GROUP_INVOCATIONS, but it seems reasonable to
6756 * report it at compile time as well.
6757 */
6758 GLuint64 total_invocations = 1;
6759 for (int i = 0; i < 3; i++) {
6760 if (this->local_size[i] > state->ctx->Const.MaxComputeWorkGroupSize[i]) {
6761 _mesa_glsl_error(&loc, state,
6762 "local_size_%c exceeds MAX_COMPUTE_WORK_GROUP_SIZE"
6763 " (%d)", 'x' + i,
6764 state->ctx->Const.MaxComputeWorkGroupSize[i]);
6765 break;
6766 }
6767 total_invocations *= this->local_size[i];
6768 if (total_invocations >
6769 state->ctx->Const.MaxComputeWorkGroupInvocations) {
6770 _mesa_glsl_error(&loc, state,
6771 "product of local_sizes exceeds "
6772 "MAX_COMPUTE_WORK_GROUP_INVOCATIONS (%d)",
6773 state->ctx->Const.MaxComputeWorkGroupInvocations);
6774 break;
6775 }
6776 }
6777
6778 state->cs_input_local_size_specified = true;
6779 for (int i = 0; i < 3; i++)
6780 state->cs_input_local_size[i] = this->local_size[i];
6781
6782 /* We may now declare the built-in constant gl_WorkGroupSize (see
6783 * builtin_variable_generator::generate_constants() for why we didn't
6784 * declare it earlier).
6785 */
6786 ir_variable *var = new(state->symbols)
6787 ir_variable(glsl_type::uvec3_type, "gl_WorkGroupSize", ir_var_auto);
6788 var->data.how_declared = ir_var_declared_implicitly;
6789 var->data.read_only = true;
6790 instructions->push_tail(var);
6791 state->symbols->add_variable(var);
6792 ir_constant_data data;
6793 memset(&data, 0, sizeof(data));
6794 for (int i = 0; i < 3; i++)
6795 data.u[i] = this->local_size[i];
6796 var->constant_value = new(var) ir_constant(glsl_type::uvec3_type, &data);
6797 var->constant_initializer =
6798 new(var) ir_constant(glsl_type::uvec3_type, &data);
6799 var->data.has_initializer = true;
6800
6801 return NULL;
6802 }
6803
6804
6805 static void
6806 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
6807 exec_list *instructions)
6808 {
6809 bool gl_FragColor_assigned = false;
6810 bool gl_FragData_assigned = false;
6811 bool user_defined_fs_output_assigned = false;
6812 ir_variable *user_defined_fs_output = NULL;
6813
6814 /* It would be nice to have proper location information. */
6815 YYLTYPE loc;
6816 memset(&loc, 0, sizeof(loc));
6817
6818 foreach_in_list(ir_instruction, node, instructions) {
6819 ir_variable *var = node->as_variable();
6820
6821 if (!var || !var->data.assigned)
6822 continue;
6823
6824 if (strcmp(var->name, "gl_FragColor") == 0)
6825 gl_FragColor_assigned = true;
6826 else if (strcmp(var->name, "gl_FragData") == 0)
6827 gl_FragData_assigned = true;
6828 else if (!is_gl_identifier(var->name)) {
6829 if (state->stage == MESA_SHADER_FRAGMENT &&
6830 var->data.mode == ir_var_shader_out) {
6831 user_defined_fs_output_assigned = true;
6832 user_defined_fs_output = var;
6833 }
6834 }
6835 }
6836
6837 /* From the GLSL 1.30 spec:
6838 *
6839 * "If a shader statically assigns a value to gl_FragColor, it
6840 * may not assign a value to any element of gl_FragData. If a
6841 * shader statically writes a value to any element of
6842 * gl_FragData, it may not assign a value to
6843 * gl_FragColor. That is, a shader may assign values to either
6844 * gl_FragColor or gl_FragData, but not both. Multiple shaders
6845 * linked together must also consistently write just one of
6846 * these variables. Similarly, if user declared output
6847 * variables are in use (statically assigned to), then the
6848 * built-in variables gl_FragColor and gl_FragData may not be
6849 * assigned to. These incorrect usages all generate compile
6850 * time errors."
6851 */
6852 if (gl_FragColor_assigned && gl_FragData_assigned) {
6853 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
6854 "`gl_FragColor' and `gl_FragData'");
6855 } else if (gl_FragColor_assigned && user_defined_fs_output_assigned) {
6856 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
6857 "`gl_FragColor' and `%s'",
6858 user_defined_fs_output->name);
6859 } else if (gl_FragData_assigned && user_defined_fs_output_assigned) {
6860 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
6861 "`gl_FragData' and `%s'",
6862 user_defined_fs_output->name);
6863 }
6864 }
6865
6866
6867 static void
6868 remove_per_vertex_blocks(exec_list *instructions,
6869 _mesa_glsl_parse_state *state, ir_variable_mode mode)
6870 {
6871 /* Find the gl_PerVertex interface block of the appropriate (in/out) mode,
6872 * if it exists in this shader type.
6873 */
6874 const glsl_type *per_vertex = NULL;
6875 switch (mode) {
6876 case ir_var_shader_in:
6877 if (ir_variable *gl_in = state->symbols->get_variable("gl_in"))
6878 per_vertex = gl_in->get_interface_type();
6879 break;
6880 case ir_var_shader_out:
6881 if (ir_variable *gl_Position =
6882 state->symbols->get_variable("gl_Position")) {
6883 per_vertex = gl_Position->get_interface_type();
6884 }
6885 break;
6886 default:
6887 assert(!"Unexpected mode");
6888 break;
6889 }
6890
6891 /* If we didn't find a built-in gl_PerVertex interface block, then we don't
6892 * need to do anything.
6893 */
6894 if (per_vertex == NULL)
6895 return;
6896
6897 /* If the interface block is used by the shader, then we don't need to do
6898 * anything.
6899 */
6900 interface_block_usage_visitor v(mode, per_vertex);
6901 v.run(instructions);
6902 if (v.usage_found())
6903 return;
6904
6905 /* Remove any ir_variable declarations that refer to the interface block
6906 * we're removing.
6907 */
6908 foreach_in_list_safe(ir_instruction, node, instructions) {
6909 ir_variable *const var = node->as_variable();
6910 if (var != NULL && var->get_interface_type() == per_vertex &&
6911 var->data.mode == mode) {
6912 state->symbols->disable_variable(var->name);
6913 var->remove();
6914 }
6915 }
6916 }