glsl: Add ir_variable::interface_type field
[mesa.git] / src / glsl / ast_to_hir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file ast_to_hir.c
26 * Convert abstract syntax to to high-level intermediate reprensentation (HIR).
27 *
28 * During the conversion to HIR, the majority of the symantic checking is
29 * preformed on the program. This includes:
30 *
31 * * Symbol table management
32 * * Type checking
33 * * Function binding
34 *
35 * The majority of this work could be done during parsing, and the parser could
36 * probably generate HIR directly. However, this results in frequent changes
37 * to the parser code. Since we do not assume that every system this complier
38 * is built on will have Flex and Bison installed, we have to store the code
39 * generated by these tools in our version control system. In other parts of
40 * the system we've seen problems where a parser was changed but the generated
41 * code was not committed, merge conflicts where created because two developers
42 * had slightly different versions of Bison installed, etc.
43 *
44 * I have also noticed that running Bison generated parsers in GDB is very
45 * irritating. When you get a segfault on '$$ = $1->foo', you can't very
46 * well 'print $1' in GDB.
47 *
48 * As a result, my preference is to put as little C code as possible in the
49 * parser (and lexer) sources.
50 */
51
52 #include "main/core.h" /* for struct gl_extensions */
53 #include "glsl_symbol_table.h"
54 #include "glsl_parser_extras.h"
55 #include "ast.h"
56 #include "glsl_types.h"
57 #include "program/hash_table.h"
58 #include "ir.h"
59
60 static void
61 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
62 exec_list *instructions);
63
64 void
65 _mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
66 {
67 _mesa_glsl_initialize_variables(instructions, state);
68
69 state->symbols->separate_function_namespace = state->language_version == 110;
70
71 state->current_function = NULL;
72
73 state->toplevel_ir = instructions;
74
75 /* Section 4.2 of the GLSL 1.20 specification states:
76 * "The built-in functions are scoped in a scope outside the global scope
77 * users declare global variables in. That is, a shader's global scope,
78 * available for user-defined functions and global variables, is nested
79 * inside the scope containing the built-in functions."
80 *
81 * Since built-in functions like ftransform() access built-in variables,
82 * it follows that those must be in the outer scope as well.
83 *
84 * We push scope here to create this nesting effect...but don't pop.
85 * This way, a shader's globals are still in the symbol table for use
86 * by the linker.
87 */
88 state->symbols->push_scope();
89
90 foreach_list_typed (ast_node, ast, link, & state->translation_unit)
91 ast->hir(instructions, state);
92
93 detect_recursion_unlinked(state, instructions);
94 detect_conflicting_assignments(state, instructions);
95
96 state->toplevel_ir = NULL;
97 }
98
99
100 /**
101 * If a conversion is available, convert one operand to a different type
102 *
103 * The \c from \c ir_rvalue is converted "in place".
104 *
105 * \param to Type that the operand it to be converted to
106 * \param from Operand that is being converted
107 * \param state GLSL compiler state
108 *
109 * \return
110 * If a conversion is possible (or unnecessary), \c true is returned.
111 * Otherwise \c false is returned.
112 */
113 bool
114 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
115 struct _mesa_glsl_parse_state *state)
116 {
117 void *ctx = state;
118 if (to->base_type == from->type->base_type)
119 return true;
120
121 /* This conversion was added in GLSL 1.20. If the compilation mode is
122 * GLSL 1.10, the conversion is skipped.
123 */
124 if (!state->is_version(120, 0))
125 return false;
126
127 /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
128 *
129 * "There are no implicit array or structure conversions. For
130 * example, an array of int cannot be implicitly converted to an
131 * array of float. There are no implicit conversions between
132 * signed and unsigned integers."
133 */
134 /* FINISHME: The above comment is partially a lie. There is int/uint
135 * FINISHME: conversion for immediate constants.
136 */
137 if (!to->is_float() || !from->type->is_numeric())
138 return false;
139
140 /* Convert to a floating point type with the same number of components
141 * as the original type - i.e. int to float, not int to vec4.
142 */
143 to = glsl_type::get_instance(GLSL_TYPE_FLOAT, from->type->vector_elements,
144 from->type->matrix_columns);
145
146 switch (from->type->base_type) {
147 case GLSL_TYPE_INT:
148 from = new(ctx) ir_expression(ir_unop_i2f, to, from, NULL);
149 break;
150 case GLSL_TYPE_UINT:
151 from = new(ctx) ir_expression(ir_unop_u2f, to, from, NULL);
152 break;
153 case GLSL_TYPE_BOOL:
154 from = new(ctx) ir_expression(ir_unop_b2f, to, from, NULL);
155 break;
156 default:
157 assert(0);
158 }
159
160 return true;
161 }
162
163
164 static const struct glsl_type *
165 arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
166 bool multiply,
167 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
168 {
169 const glsl_type *type_a = value_a->type;
170 const glsl_type *type_b = value_b->type;
171
172 /* From GLSL 1.50 spec, page 56:
173 *
174 * "The arithmetic binary operators add (+), subtract (-),
175 * multiply (*), and divide (/) operate on integer and
176 * floating-point scalars, vectors, and matrices."
177 */
178 if (!type_a->is_numeric() || !type_b->is_numeric()) {
179 _mesa_glsl_error(loc, state,
180 "Operands to arithmetic operators must be numeric");
181 return glsl_type::error_type;
182 }
183
184
185 /* "If one operand is floating-point based and the other is
186 * not, then the conversions from Section 4.1.10 "Implicit
187 * Conversions" are applied to the non-floating-point-based operand."
188 */
189 if (!apply_implicit_conversion(type_a, value_b, state)
190 && !apply_implicit_conversion(type_b, value_a, state)) {
191 _mesa_glsl_error(loc, state,
192 "Could not implicitly convert operands to "
193 "arithmetic operator");
194 return glsl_type::error_type;
195 }
196 type_a = value_a->type;
197 type_b = value_b->type;
198
199 /* "If the operands are integer types, they must both be signed or
200 * both be unsigned."
201 *
202 * From this rule and the preceeding conversion it can be inferred that
203 * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
204 * The is_numeric check above already filtered out the case where either
205 * type is not one of these, so now the base types need only be tested for
206 * equality.
207 */
208 if (type_a->base_type != type_b->base_type) {
209 _mesa_glsl_error(loc, state,
210 "base type mismatch for arithmetic operator");
211 return glsl_type::error_type;
212 }
213
214 /* "All arithmetic binary operators result in the same fundamental type
215 * (signed integer, unsigned integer, or floating-point) as the
216 * operands they operate on, after operand type conversion. After
217 * conversion, the following cases are valid
218 *
219 * * The two operands are scalars. In this case the operation is
220 * applied, resulting in a scalar."
221 */
222 if (type_a->is_scalar() && type_b->is_scalar())
223 return type_a;
224
225 /* "* One operand is a scalar, and the other is a vector or matrix.
226 * In this case, the scalar operation is applied independently to each
227 * component of the vector or matrix, resulting in the same size
228 * vector or matrix."
229 */
230 if (type_a->is_scalar()) {
231 if (!type_b->is_scalar())
232 return type_b;
233 } else if (type_b->is_scalar()) {
234 return type_a;
235 }
236
237 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
238 * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
239 * handled.
240 */
241 assert(!type_a->is_scalar());
242 assert(!type_b->is_scalar());
243
244 /* "* The two operands are vectors of the same size. In this case, the
245 * operation is done component-wise resulting in the same size
246 * vector."
247 */
248 if (type_a->is_vector() && type_b->is_vector()) {
249 if (type_a == type_b) {
250 return type_a;
251 } else {
252 _mesa_glsl_error(loc, state,
253 "vector size mismatch for arithmetic operator");
254 return glsl_type::error_type;
255 }
256 }
257
258 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
259 * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
260 * <vector, vector> have been handled. At least one of the operands must
261 * be matrix. Further, since there are no integer matrix types, the base
262 * type of both operands must be float.
263 */
264 assert(type_a->is_matrix() || type_b->is_matrix());
265 assert(type_a->base_type == GLSL_TYPE_FLOAT);
266 assert(type_b->base_type == GLSL_TYPE_FLOAT);
267
268 /* "* The operator is add (+), subtract (-), or divide (/), and the
269 * operands are matrices with the same number of rows and the same
270 * number of columns. In this case, the operation is done component-
271 * wise resulting in the same size matrix."
272 * * The operator is multiply (*), where both operands are matrices or
273 * one operand is a vector and the other a matrix. A right vector
274 * operand is treated as a column vector and a left vector operand as a
275 * row vector. In all these cases, it is required that the number of
276 * columns of the left operand is equal to the number of rows of the
277 * right operand. Then, the multiply (*) operation does a linear
278 * algebraic multiply, yielding an object that has the same number of
279 * rows as the left operand and the same number of columns as the right
280 * operand. Section 5.10 "Vector and Matrix Operations" explains in
281 * more detail how vectors and matrices are operated on."
282 */
283 if (! multiply) {
284 if (type_a == type_b)
285 return type_a;
286 } else {
287 if (type_a->is_matrix() && type_b->is_matrix()) {
288 /* Matrix multiply. The columns of A must match the rows of B. Given
289 * the other previously tested constraints, this means the vector type
290 * of a row from A must be the same as the vector type of a column from
291 * B.
292 */
293 if (type_a->row_type() == type_b->column_type()) {
294 /* The resulting matrix has the number of columns of matrix B and
295 * the number of rows of matrix A. We get the row count of A by
296 * looking at the size of a vector that makes up a column. The
297 * transpose (size of a row) is done for B.
298 */
299 const glsl_type *const type =
300 glsl_type::get_instance(type_a->base_type,
301 type_a->column_type()->vector_elements,
302 type_b->row_type()->vector_elements);
303 assert(type != glsl_type::error_type);
304
305 return type;
306 }
307 } else if (type_a->is_matrix()) {
308 /* A is a matrix and B is a column vector. Columns of A must match
309 * rows of B. Given the other previously tested constraints, this
310 * means the vector type of a row from A must be the same as the
311 * vector the type of B.
312 */
313 if (type_a->row_type() == type_b) {
314 /* The resulting vector has a number of elements equal to
315 * the number of rows of matrix A. */
316 const glsl_type *const type =
317 glsl_type::get_instance(type_a->base_type,
318 type_a->column_type()->vector_elements,
319 1);
320 assert(type != glsl_type::error_type);
321
322 return type;
323 }
324 } else {
325 assert(type_b->is_matrix());
326
327 /* A is a row vector and B is a matrix. Columns of A must match rows
328 * of B. Given the other previously tested constraints, this means
329 * the type of A must be the same as the vector type of a column from
330 * B.
331 */
332 if (type_a == type_b->column_type()) {
333 /* The resulting vector has a number of elements equal to
334 * the number of columns of matrix B. */
335 const glsl_type *const type =
336 glsl_type::get_instance(type_a->base_type,
337 type_b->row_type()->vector_elements,
338 1);
339 assert(type != glsl_type::error_type);
340
341 return type;
342 }
343 }
344
345 _mesa_glsl_error(loc, state, "size mismatch for matrix multiplication");
346 return glsl_type::error_type;
347 }
348
349
350 /* "All other cases are illegal."
351 */
352 _mesa_glsl_error(loc, state, "type mismatch");
353 return glsl_type::error_type;
354 }
355
356
357 static const struct glsl_type *
358 unary_arithmetic_result_type(const struct glsl_type *type,
359 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
360 {
361 /* From GLSL 1.50 spec, page 57:
362 *
363 * "The arithmetic unary operators negate (-), post- and pre-increment
364 * and decrement (-- and ++) operate on integer or floating-point
365 * values (including vectors and matrices). All unary operators work
366 * component-wise on their operands. These result with the same type
367 * they operated on."
368 */
369 if (!type->is_numeric()) {
370 _mesa_glsl_error(loc, state,
371 "Operands to arithmetic operators must be numeric");
372 return glsl_type::error_type;
373 }
374
375 return type;
376 }
377
378 /**
379 * \brief Return the result type of a bit-logic operation.
380 *
381 * If the given types to the bit-logic operator are invalid, return
382 * glsl_type::error_type.
383 *
384 * \param type_a Type of LHS of bit-logic op
385 * \param type_b Type of RHS of bit-logic op
386 */
387 static const struct glsl_type *
388 bit_logic_result_type(const struct glsl_type *type_a,
389 const struct glsl_type *type_b,
390 ast_operators op,
391 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
392 {
393 if (!state->check_bitwise_operations_allowed(loc)) {
394 return glsl_type::error_type;
395 }
396
397 /* From page 50 (page 56 of PDF) of GLSL 1.30 spec:
398 *
399 * "The bitwise operators and (&), exclusive-or (^), and inclusive-or
400 * (|). The operands must be of type signed or unsigned integers or
401 * integer vectors."
402 */
403 if (!type_a->is_integer()) {
404 _mesa_glsl_error(loc, state, "LHS of `%s' must be an integer",
405 ast_expression::operator_string(op));
406 return glsl_type::error_type;
407 }
408 if (!type_b->is_integer()) {
409 _mesa_glsl_error(loc, state, "RHS of `%s' must be an integer",
410 ast_expression::operator_string(op));
411 return glsl_type::error_type;
412 }
413
414 /* "The fundamental types of the operands (signed or unsigned) must
415 * match,"
416 */
417 if (type_a->base_type != type_b->base_type) {
418 _mesa_glsl_error(loc, state, "operands of `%s' must have the same "
419 "base type", ast_expression::operator_string(op));
420 return glsl_type::error_type;
421 }
422
423 /* "The operands cannot be vectors of differing size." */
424 if (type_a->is_vector() &&
425 type_b->is_vector() &&
426 type_a->vector_elements != type_b->vector_elements) {
427 _mesa_glsl_error(loc, state, "operands of `%s' cannot be vectors of "
428 "different sizes", ast_expression::operator_string(op));
429 return glsl_type::error_type;
430 }
431
432 /* "If one operand is a scalar and the other a vector, the scalar is
433 * applied component-wise to the vector, resulting in the same type as
434 * the vector. The fundamental types of the operands [...] will be the
435 * resulting fundamental type."
436 */
437 if (type_a->is_scalar())
438 return type_b;
439 else
440 return type_a;
441 }
442
443 static const struct glsl_type *
444 modulus_result_type(const struct glsl_type *type_a,
445 const struct glsl_type *type_b,
446 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
447 {
448 if (!state->check_version(130, 300, loc, "operator '%%' is reserved")) {
449 return glsl_type::error_type;
450 }
451
452 /* From GLSL 1.50 spec, page 56:
453 * "The operator modulus (%) operates on signed or unsigned integers or
454 * integer vectors. The operand types must both be signed or both be
455 * unsigned."
456 */
457 if (!type_a->is_integer()) {
458 _mesa_glsl_error(loc, state, "LHS of operator %% must be an integer.");
459 return glsl_type::error_type;
460 }
461 if (!type_b->is_integer()) {
462 _mesa_glsl_error(loc, state, "RHS of operator %% must be an integer.");
463 return glsl_type::error_type;
464 }
465 if (type_a->base_type != type_b->base_type) {
466 _mesa_glsl_error(loc, state,
467 "operands of %% must have the same base type");
468 return glsl_type::error_type;
469 }
470
471 /* "The operands cannot be vectors of differing size. If one operand is
472 * a scalar and the other vector, then the scalar is applied component-
473 * wise to the vector, resulting in the same type as the vector. If both
474 * are vectors of the same size, the result is computed component-wise."
475 */
476 if (type_a->is_vector()) {
477 if (!type_b->is_vector()
478 || (type_a->vector_elements == type_b->vector_elements))
479 return type_a;
480 } else
481 return type_b;
482
483 /* "The operator modulus (%) is not defined for any other data types
484 * (non-integer types)."
485 */
486 _mesa_glsl_error(loc, state, "type mismatch");
487 return glsl_type::error_type;
488 }
489
490
491 static const struct glsl_type *
492 relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
493 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
494 {
495 const glsl_type *type_a = value_a->type;
496 const glsl_type *type_b = value_b->type;
497
498 /* From GLSL 1.50 spec, page 56:
499 * "The relational operators greater than (>), less than (<), greater
500 * than or equal (>=), and less than or equal (<=) operate only on
501 * scalar integer and scalar floating-point expressions."
502 */
503 if (!type_a->is_numeric()
504 || !type_b->is_numeric()
505 || !type_a->is_scalar()
506 || !type_b->is_scalar()) {
507 _mesa_glsl_error(loc, state,
508 "Operands to relational operators must be scalar and "
509 "numeric");
510 return glsl_type::error_type;
511 }
512
513 /* "Either the operands' types must match, or the conversions from
514 * Section 4.1.10 "Implicit Conversions" will be applied to the integer
515 * operand, after which the types must match."
516 */
517 if (!apply_implicit_conversion(type_a, value_b, state)
518 && !apply_implicit_conversion(type_b, value_a, state)) {
519 _mesa_glsl_error(loc, state,
520 "Could not implicitly convert operands to "
521 "relational operator");
522 return glsl_type::error_type;
523 }
524 type_a = value_a->type;
525 type_b = value_b->type;
526
527 if (type_a->base_type != type_b->base_type) {
528 _mesa_glsl_error(loc, state, "base type mismatch");
529 return glsl_type::error_type;
530 }
531
532 /* "The result is scalar Boolean."
533 */
534 return glsl_type::bool_type;
535 }
536
537 /**
538 * \brief Return the result type of a bit-shift operation.
539 *
540 * If the given types to the bit-shift operator are invalid, return
541 * glsl_type::error_type.
542 *
543 * \param type_a Type of LHS of bit-shift op
544 * \param type_b Type of RHS of bit-shift op
545 */
546 static const struct glsl_type *
547 shift_result_type(const struct glsl_type *type_a,
548 const struct glsl_type *type_b,
549 ast_operators op,
550 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
551 {
552 if (!state->check_bitwise_operations_allowed(loc)) {
553 return glsl_type::error_type;
554 }
555
556 /* From page 50 (page 56 of the PDF) of the GLSL 1.30 spec:
557 *
558 * "The shift operators (<<) and (>>). For both operators, the operands
559 * must be signed or unsigned integers or integer vectors. One operand
560 * can be signed while the other is unsigned."
561 */
562 if (!type_a->is_integer()) {
563 _mesa_glsl_error(loc, state, "LHS of operator %s must be an integer or "
564 "integer vector", ast_expression::operator_string(op));
565 return glsl_type::error_type;
566
567 }
568 if (!type_b->is_integer()) {
569 _mesa_glsl_error(loc, state, "RHS of operator %s must be an integer or "
570 "integer vector", ast_expression::operator_string(op));
571 return glsl_type::error_type;
572 }
573
574 /* "If the first operand is a scalar, the second operand has to be
575 * a scalar as well."
576 */
577 if (type_a->is_scalar() && !type_b->is_scalar()) {
578 _mesa_glsl_error(loc, state, "If the first operand of %s is scalar, the "
579 "second must be scalar as well",
580 ast_expression::operator_string(op));
581 return glsl_type::error_type;
582 }
583
584 /* If both operands are vectors, check that they have same number of
585 * elements.
586 */
587 if (type_a->is_vector() &&
588 type_b->is_vector() &&
589 type_a->vector_elements != type_b->vector_elements) {
590 _mesa_glsl_error(loc, state, "Vector operands to operator %s must "
591 "have same number of elements",
592 ast_expression::operator_string(op));
593 return glsl_type::error_type;
594 }
595
596 /* "In all cases, the resulting type will be the same type as the left
597 * operand."
598 */
599 return type_a;
600 }
601
602 /**
603 * Validates that a value can be assigned to a location with a specified type
604 *
605 * Validates that \c rhs can be assigned to some location. If the types are
606 * not an exact match but an automatic conversion is possible, \c rhs will be
607 * converted.
608 *
609 * \return
610 * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
611 * Otherwise the actual RHS to be assigned will be returned. This may be
612 * \c rhs, or it may be \c rhs after some type conversion.
613 *
614 * \note
615 * In addition to being used for assignments, this function is used to
616 * type-check return values.
617 */
618 ir_rvalue *
619 validate_assignment(struct _mesa_glsl_parse_state *state,
620 const glsl_type *lhs_type, ir_rvalue *rhs,
621 bool is_initializer)
622 {
623 /* If there is already some error in the RHS, just return it. Anything
624 * else will lead to an avalanche of error message back to the user.
625 */
626 if (rhs->type->is_error())
627 return rhs;
628
629 /* If the types are identical, the assignment can trivially proceed.
630 */
631 if (rhs->type == lhs_type)
632 return rhs;
633
634 /* If the array element types are the same and the size of the LHS is zero,
635 * the assignment is okay for initializers embedded in variable
636 * declarations.
637 *
638 * Note: Whole-array assignments are not permitted in GLSL 1.10, but this
639 * is handled by ir_dereference::is_lvalue.
640 */
641 if (is_initializer && lhs_type->is_array() && rhs->type->is_array()
642 && (lhs_type->element_type() == rhs->type->element_type())
643 && (lhs_type->array_size() == 0)) {
644 return rhs;
645 }
646
647 /* Check for implicit conversion in GLSL 1.20 */
648 if (apply_implicit_conversion(lhs_type, rhs, state)) {
649 if (rhs->type == lhs_type)
650 return rhs;
651 }
652
653 return NULL;
654 }
655
656 static void
657 mark_whole_array_access(ir_rvalue *access)
658 {
659 ir_dereference_variable *deref = access->as_dereference_variable();
660
661 if (deref && deref->var) {
662 deref->var->max_array_access = deref->type->length - 1;
663 }
664 }
665
666 ir_rvalue *
667 do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state,
668 const char *non_lvalue_description,
669 ir_rvalue *lhs, ir_rvalue *rhs, bool is_initializer,
670 YYLTYPE lhs_loc)
671 {
672 void *ctx = state;
673 bool error_emitted = (lhs->type->is_error() || rhs->type->is_error());
674
675 ir_variable *lhs_var = lhs->variable_referenced();
676 if (lhs_var)
677 lhs_var->assigned = true;
678
679 if (!error_emitted) {
680 if (non_lvalue_description != NULL) {
681 _mesa_glsl_error(&lhs_loc, state,
682 "assignment to %s",
683 non_lvalue_description);
684 error_emitted = true;
685 } else if (lhs->variable_referenced() != NULL
686 && lhs->variable_referenced()->read_only) {
687 _mesa_glsl_error(&lhs_loc, state,
688 "assignment to read-only variable '%s'",
689 lhs->variable_referenced()->name);
690 error_emitted = true;
691
692 } else if (lhs->type->is_array() &&
693 !state->check_version(120, 300, &lhs_loc,
694 "whole array assignment forbidden")) {
695 /* From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
696 *
697 * "Other binary or unary expressions, non-dereferenced
698 * arrays, function names, swizzles with repeated fields,
699 * and constants cannot be l-values."
700 *
701 * The restriction on arrays is lifted in GLSL 1.20 and GLSL ES 3.00.
702 */
703 error_emitted = true;
704 } else if (!lhs->is_lvalue()) {
705 _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment");
706 error_emitted = true;
707 }
708 }
709
710 ir_rvalue *new_rhs =
711 validate_assignment(state, lhs->type, rhs, is_initializer);
712 if (new_rhs == NULL) {
713 _mesa_glsl_error(& lhs_loc, state, "type mismatch");
714 } else {
715 rhs = new_rhs;
716
717 /* If the LHS array was not declared with a size, it takes it size from
718 * the RHS. If the LHS is an l-value and a whole array, it must be a
719 * dereference of a variable. Any other case would require that the LHS
720 * is either not an l-value or not a whole array.
721 */
722 if (lhs->type->array_size() == 0) {
723 ir_dereference *const d = lhs->as_dereference();
724
725 assert(d != NULL);
726
727 ir_variable *const var = d->variable_referenced();
728
729 assert(var != NULL);
730
731 if (var->max_array_access >= unsigned(rhs->type->array_size())) {
732 /* FINISHME: This should actually log the location of the RHS. */
733 _mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to "
734 "previous access",
735 var->max_array_access);
736 }
737
738 var->type = glsl_type::get_array_instance(lhs->type->element_type(),
739 rhs->type->array_size());
740 d->type = var->type;
741 }
742 mark_whole_array_access(rhs);
743 mark_whole_array_access(lhs);
744 }
745
746 /* Most callers of do_assignment (assign, add_assign, pre_inc/dec,
747 * but not post_inc) need the converted assigned value as an rvalue
748 * to handle things like:
749 *
750 * i = j += 1;
751 *
752 * So we always just store the computed value being assigned to a
753 * temporary and return a deref of that temporary. If the rvalue
754 * ends up not being used, the temp will get copy-propagated out.
755 */
756 ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp",
757 ir_var_temporary);
758 ir_dereference_variable *deref_var = new(ctx) ir_dereference_variable(var);
759 instructions->push_tail(var);
760 instructions->push_tail(new(ctx) ir_assignment(deref_var, rhs));
761 deref_var = new(ctx) ir_dereference_variable(var);
762
763 if (!error_emitted)
764 instructions->push_tail(new(ctx) ir_assignment(lhs, deref_var));
765
766 return new(ctx) ir_dereference_variable(var);
767 }
768
769 static ir_rvalue *
770 get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue)
771 {
772 void *ctx = ralloc_parent(lvalue);
773 ir_variable *var;
774
775 var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp",
776 ir_var_temporary);
777 instructions->push_tail(var);
778 var->mode = ir_var_auto;
779
780 instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
781 lvalue));
782
783 return new(ctx) ir_dereference_variable(var);
784 }
785
786
787 ir_rvalue *
788 ast_node::hir(exec_list *instructions,
789 struct _mesa_glsl_parse_state *state)
790 {
791 (void) instructions;
792 (void) state;
793
794 return NULL;
795 }
796
797 static ir_rvalue *
798 do_comparison(void *mem_ctx, int operation, ir_rvalue *op0, ir_rvalue *op1)
799 {
800 int join_op;
801 ir_rvalue *cmp = NULL;
802
803 if (operation == ir_binop_all_equal)
804 join_op = ir_binop_logic_and;
805 else
806 join_op = ir_binop_logic_or;
807
808 switch (op0->type->base_type) {
809 case GLSL_TYPE_FLOAT:
810 case GLSL_TYPE_UINT:
811 case GLSL_TYPE_INT:
812 case GLSL_TYPE_BOOL:
813 return new(mem_ctx) ir_expression(operation, op0, op1);
814
815 case GLSL_TYPE_ARRAY: {
816 for (unsigned int i = 0; i < op0->type->length; i++) {
817 ir_rvalue *e0, *e1, *result;
818
819 e0 = new(mem_ctx) ir_dereference_array(op0->clone(mem_ctx, NULL),
820 new(mem_ctx) ir_constant(i));
821 e1 = new(mem_ctx) ir_dereference_array(op1->clone(mem_ctx, NULL),
822 new(mem_ctx) ir_constant(i));
823 result = do_comparison(mem_ctx, operation, e0, e1);
824
825 if (cmp) {
826 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
827 } else {
828 cmp = result;
829 }
830 }
831
832 mark_whole_array_access(op0);
833 mark_whole_array_access(op1);
834 break;
835 }
836
837 case GLSL_TYPE_STRUCT: {
838 for (unsigned int i = 0; i < op0->type->length; i++) {
839 ir_rvalue *e0, *e1, *result;
840 const char *field_name = op0->type->fields.structure[i].name;
841
842 e0 = new(mem_ctx) ir_dereference_record(op0->clone(mem_ctx, NULL),
843 field_name);
844 e1 = new(mem_ctx) ir_dereference_record(op1->clone(mem_ctx, NULL),
845 field_name);
846 result = do_comparison(mem_ctx, operation, e0, e1);
847
848 if (cmp) {
849 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
850 } else {
851 cmp = result;
852 }
853 }
854 break;
855 }
856
857 case GLSL_TYPE_ERROR:
858 case GLSL_TYPE_VOID:
859 case GLSL_TYPE_SAMPLER:
860 case GLSL_TYPE_INTERFACE:
861 /* I assume a comparison of a struct containing a sampler just
862 * ignores the sampler present in the type.
863 */
864 break;
865 }
866
867 if (cmp == NULL)
868 cmp = new(mem_ctx) ir_constant(true);
869
870 return cmp;
871 }
872
873 /* For logical operations, we want to ensure that the operands are
874 * scalar booleans. If it isn't, emit an error and return a constant
875 * boolean to avoid triggering cascading error messages.
876 */
877 ir_rvalue *
878 get_scalar_boolean_operand(exec_list *instructions,
879 struct _mesa_glsl_parse_state *state,
880 ast_expression *parent_expr,
881 int operand,
882 const char *operand_name,
883 bool *error_emitted)
884 {
885 ast_expression *expr = parent_expr->subexpressions[operand];
886 void *ctx = state;
887 ir_rvalue *val = expr->hir(instructions, state);
888
889 if (val->type->is_boolean() && val->type->is_scalar())
890 return val;
891
892 if (!*error_emitted) {
893 YYLTYPE loc = expr->get_location();
894 _mesa_glsl_error(&loc, state, "%s of `%s' must be scalar boolean",
895 operand_name,
896 parent_expr->operator_string(parent_expr->oper));
897 *error_emitted = true;
898 }
899
900 return new(ctx) ir_constant(true);
901 }
902
903 /**
904 * If name refers to a builtin array whose maximum allowed size is less than
905 * size, report an error and return true. Otherwise return false.
906 */
907 static bool
908 check_builtin_array_max_size(const char *name, unsigned size,
909 YYLTYPE loc, struct _mesa_glsl_parse_state *state)
910 {
911 if ((strcmp("gl_TexCoord", name) == 0)
912 && (size > state->Const.MaxTextureCoords)) {
913 /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec:
914 *
915 * "The size [of gl_TexCoord] can be at most
916 * gl_MaxTextureCoords."
917 */
918 _mesa_glsl_error(&loc, state, "`gl_TexCoord' array size cannot "
919 "be larger than gl_MaxTextureCoords (%u)\n",
920 state->Const.MaxTextureCoords);
921 return true;
922 } else if (strcmp("gl_ClipDistance", name) == 0
923 && size > state->Const.MaxClipPlanes) {
924 /* From section 7.1 (Vertex Shader Special Variables) of the
925 * GLSL 1.30 spec:
926 *
927 * "The gl_ClipDistance array is predeclared as unsized and
928 * must be sized by the shader either redeclaring it with a
929 * size or indexing it only with integral constant
930 * expressions. ... The size can be at most
931 * gl_MaxClipDistances."
932 */
933 _mesa_glsl_error(&loc, state, "`gl_ClipDistance' array size cannot "
934 "be larger than gl_MaxClipDistances (%u)\n",
935 state->Const.MaxClipPlanes);
936 return true;
937 }
938 return false;
939 }
940
941 /**
942 * Create the constant 1, of a which is appropriate for incrementing and
943 * decrementing values of the given GLSL type. For example, if type is vec4,
944 * this creates a constant value of 1.0 having type float.
945 *
946 * If the given type is invalid for increment and decrement operators, return
947 * a floating point 1--the error will be detected later.
948 */
949 static ir_rvalue *
950 constant_one_for_inc_dec(void *ctx, const glsl_type *type)
951 {
952 switch (type->base_type) {
953 case GLSL_TYPE_UINT:
954 return new(ctx) ir_constant((unsigned) 1);
955 case GLSL_TYPE_INT:
956 return new(ctx) ir_constant(1);
957 default:
958 case GLSL_TYPE_FLOAT:
959 return new(ctx) ir_constant(1.0f);
960 }
961 }
962
963 ir_rvalue *
964 ast_expression::hir(exec_list *instructions,
965 struct _mesa_glsl_parse_state *state)
966 {
967 void *ctx = state;
968 static const int operations[AST_NUM_OPERATORS] = {
969 -1, /* ast_assign doesn't convert to ir_expression. */
970 -1, /* ast_plus doesn't convert to ir_expression. */
971 ir_unop_neg,
972 ir_binop_add,
973 ir_binop_sub,
974 ir_binop_mul,
975 ir_binop_div,
976 ir_binop_mod,
977 ir_binop_lshift,
978 ir_binop_rshift,
979 ir_binop_less,
980 ir_binop_greater,
981 ir_binop_lequal,
982 ir_binop_gequal,
983 ir_binop_all_equal,
984 ir_binop_any_nequal,
985 ir_binop_bit_and,
986 ir_binop_bit_xor,
987 ir_binop_bit_or,
988 ir_unop_bit_not,
989 ir_binop_logic_and,
990 ir_binop_logic_xor,
991 ir_binop_logic_or,
992 ir_unop_logic_not,
993
994 /* Note: The following block of expression types actually convert
995 * to multiple IR instructions.
996 */
997 ir_binop_mul, /* ast_mul_assign */
998 ir_binop_div, /* ast_div_assign */
999 ir_binop_mod, /* ast_mod_assign */
1000 ir_binop_add, /* ast_add_assign */
1001 ir_binop_sub, /* ast_sub_assign */
1002 ir_binop_lshift, /* ast_ls_assign */
1003 ir_binop_rshift, /* ast_rs_assign */
1004 ir_binop_bit_and, /* ast_and_assign */
1005 ir_binop_bit_xor, /* ast_xor_assign */
1006 ir_binop_bit_or, /* ast_or_assign */
1007
1008 -1, /* ast_conditional doesn't convert to ir_expression. */
1009 ir_binop_add, /* ast_pre_inc. */
1010 ir_binop_sub, /* ast_pre_dec. */
1011 ir_binop_add, /* ast_post_inc. */
1012 ir_binop_sub, /* ast_post_dec. */
1013 -1, /* ast_field_selection doesn't conv to ir_expression. */
1014 -1, /* ast_array_index doesn't convert to ir_expression. */
1015 -1, /* ast_function_call doesn't conv to ir_expression. */
1016 -1, /* ast_identifier doesn't convert to ir_expression. */
1017 -1, /* ast_int_constant doesn't convert to ir_expression. */
1018 -1, /* ast_uint_constant doesn't conv to ir_expression. */
1019 -1, /* ast_float_constant doesn't conv to ir_expression. */
1020 -1, /* ast_bool_constant doesn't conv to ir_expression. */
1021 -1, /* ast_sequence doesn't convert to ir_expression. */
1022 };
1023 ir_rvalue *result = NULL;
1024 ir_rvalue *op[3];
1025 const struct glsl_type *type; /* a temporary variable for switch cases */
1026 bool error_emitted = false;
1027 YYLTYPE loc;
1028
1029 loc = this->get_location();
1030
1031 switch (this->oper) {
1032 case ast_assign: {
1033 op[0] = this->subexpressions[0]->hir(instructions, state);
1034 op[1] = this->subexpressions[1]->hir(instructions, state);
1035
1036 result = do_assignment(instructions, state,
1037 this->subexpressions[0]->non_lvalue_description,
1038 op[0], op[1], false,
1039 this->subexpressions[0]->get_location());
1040 error_emitted = result->type->is_error();
1041 break;
1042 }
1043
1044 case ast_plus:
1045 op[0] = this->subexpressions[0]->hir(instructions, state);
1046
1047 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1048
1049 error_emitted = type->is_error();
1050
1051 result = op[0];
1052 break;
1053
1054 case ast_neg:
1055 op[0] = this->subexpressions[0]->hir(instructions, state);
1056
1057 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1058
1059 error_emitted = type->is_error();
1060
1061 result = new(ctx) ir_expression(operations[this->oper], type,
1062 op[0], NULL);
1063 break;
1064
1065 case ast_add:
1066 case ast_sub:
1067 case ast_mul:
1068 case ast_div:
1069 op[0] = this->subexpressions[0]->hir(instructions, state);
1070 op[1] = this->subexpressions[1]->hir(instructions, state);
1071
1072 type = arithmetic_result_type(op[0], op[1],
1073 (this->oper == ast_mul),
1074 state, & loc);
1075 error_emitted = type->is_error();
1076
1077 result = new(ctx) ir_expression(operations[this->oper], type,
1078 op[0], op[1]);
1079 break;
1080
1081 case ast_mod:
1082 op[0] = this->subexpressions[0]->hir(instructions, state);
1083 op[1] = this->subexpressions[1]->hir(instructions, state);
1084
1085 type = modulus_result_type(op[0]->type, op[1]->type, state, & loc);
1086
1087 assert(operations[this->oper] == ir_binop_mod);
1088
1089 result = new(ctx) ir_expression(operations[this->oper], type,
1090 op[0], op[1]);
1091 error_emitted = type->is_error();
1092 break;
1093
1094 case ast_lshift:
1095 case ast_rshift:
1096 if (!state->check_bitwise_operations_allowed(&loc)) {
1097 error_emitted = true;
1098 }
1099
1100 op[0] = this->subexpressions[0]->hir(instructions, state);
1101 op[1] = this->subexpressions[1]->hir(instructions, state);
1102 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1103 &loc);
1104 result = new(ctx) ir_expression(operations[this->oper], type,
1105 op[0], op[1]);
1106 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1107 break;
1108
1109 case ast_less:
1110 case ast_greater:
1111 case ast_lequal:
1112 case ast_gequal:
1113 op[0] = this->subexpressions[0]->hir(instructions, state);
1114 op[1] = this->subexpressions[1]->hir(instructions, state);
1115
1116 type = relational_result_type(op[0], op[1], state, & loc);
1117
1118 /* The relational operators must either generate an error or result
1119 * in a scalar boolean. See page 57 of the GLSL 1.50 spec.
1120 */
1121 assert(type->is_error()
1122 || ((type->base_type == GLSL_TYPE_BOOL)
1123 && type->is_scalar()));
1124
1125 result = new(ctx) ir_expression(operations[this->oper], type,
1126 op[0], op[1]);
1127 error_emitted = type->is_error();
1128 break;
1129
1130 case ast_nequal:
1131 case ast_equal:
1132 op[0] = this->subexpressions[0]->hir(instructions, state);
1133 op[1] = this->subexpressions[1]->hir(instructions, state);
1134
1135 /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
1136 *
1137 * "The equality operators equal (==), and not equal (!=)
1138 * operate on all types. They result in a scalar Boolean. If
1139 * the operand types do not match, then there must be a
1140 * conversion from Section 4.1.10 "Implicit Conversions"
1141 * applied to one operand that can make them match, in which
1142 * case this conversion is done."
1143 */
1144 if ((!apply_implicit_conversion(op[0]->type, op[1], state)
1145 && !apply_implicit_conversion(op[1]->type, op[0], state))
1146 || (op[0]->type != op[1]->type)) {
1147 _mesa_glsl_error(& loc, state, "operands of `%s' must have the same "
1148 "type", (this->oper == ast_equal) ? "==" : "!=");
1149 error_emitted = true;
1150 } else if ((op[0]->type->is_array() || op[1]->type->is_array()) &&
1151 !state->check_version(120, 300, &loc,
1152 "array comparisons forbidden")) {
1153 error_emitted = true;
1154 }
1155
1156 if (error_emitted) {
1157 result = new(ctx) ir_constant(false);
1158 } else {
1159 result = do_comparison(ctx, operations[this->oper], op[0], op[1]);
1160 assert(result->type == glsl_type::bool_type);
1161 }
1162 break;
1163
1164 case ast_bit_and:
1165 case ast_bit_xor:
1166 case ast_bit_or:
1167 op[0] = this->subexpressions[0]->hir(instructions, state);
1168 op[1] = this->subexpressions[1]->hir(instructions, state);
1169 type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
1170 state, &loc);
1171 result = new(ctx) ir_expression(operations[this->oper], type,
1172 op[0], op[1]);
1173 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1174 break;
1175
1176 case ast_bit_not:
1177 op[0] = this->subexpressions[0]->hir(instructions, state);
1178
1179 if (!state->check_bitwise_operations_allowed(&loc)) {
1180 error_emitted = true;
1181 }
1182
1183 if (!op[0]->type->is_integer()) {
1184 _mesa_glsl_error(&loc, state, "operand of `~' must be an integer");
1185 error_emitted = true;
1186 }
1187
1188 type = error_emitted ? glsl_type::error_type : op[0]->type;
1189 result = new(ctx) ir_expression(ir_unop_bit_not, type, op[0], NULL);
1190 break;
1191
1192 case ast_logic_and: {
1193 exec_list rhs_instructions;
1194 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1195 "LHS", &error_emitted);
1196 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1197 "RHS", &error_emitted);
1198
1199 if (rhs_instructions.is_empty()) {
1200 result = new(ctx) ir_expression(ir_binop_logic_and, op[0], op[1]);
1201 type = result->type;
1202 } else {
1203 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1204 "and_tmp",
1205 ir_var_temporary);
1206 instructions->push_tail(tmp);
1207
1208 ir_if *const stmt = new(ctx) ir_if(op[0]);
1209 instructions->push_tail(stmt);
1210
1211 stmt->then_instructions.append_list(&rhs_instructions);
1212 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1213 ir_assignment *const then_assign =
1214 new(ctx) ir_assignment(then_deref, op[1]);
1215 stmt->then_instructions.push_tail(then_assign);
1216
1217 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1218 ir_assignment *const else_assign =
1219 new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false));
1220 stmt->else_instructions.push_tail(else_assign);
1221
1222 result = new(ctx) ir_dereference_variable(tmp);
1223 type = tmp->type;
1224 }
1225 break;
1226 }
1227
1228 case ast_logic_or: {
1229 exec_list rhs_instructions;
1230 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1231 "LHS", &error_emitted);
1232 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1233 "RHS", &error_emitted);
1234
1235 if (rhs_instructions.is_empty()) {
1236 result = new(ctx) ir_expression(ir_binop_logic_or, op[0], op[1]);
1237 type = result->type;
1238 } else {
1239 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1240 "or_tmp",
1241 ir_var_temporary);
1242 instructions->push_tail(tmp);
1243
1244 ir_if *const stmt = new(ctx) ir_if(op[0]);
1245 instructions->push_tail(stmt);
1246
1247 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1248 ir_assignment *const then_assign =
1249 new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true));
1250 stmt->then_instructions.push_tail(then_assign);
1251
1252 stmt->else_instructions.append_list(&rhs_instructions);
1253 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1254 ir_assignment *const else_assign =
1255 new(ctx) ir_assignment(else_deref, op[1]);
1256 stmt->else_instructions.push_tail(else_assign);
1257
1258 result = new(ctx) ir_dereference_variable(tmp);
1259 type = tmp->type;
1260 }
1261 break;
1262 }
1263
1264 case ast_logic_xor:
1265 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1266 *
1267 * "The logical binary operators and (&&), or ( | | ), and
1268 * exclusive or (^^). They operate only on two Boolean
1269 * expressions and result in a Boolean expression."
1270 */
1271 op[0] = get_scalar_boolean_operand(instructions, state, this, 0, "LHS",
1272 &error_emitted);
1273 op[1] = get_scalar_boolean_operand(instructions, state, this, 1, "RHS",
1274 &error_emitted);
1275
1276 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1277 op[0], op[1]);
1278 break;
1279
1280 case ast_logic_not:
1281 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1282 "operand", &error_emitted);
1283
1284 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1285 op[0], NULL);
1286 break;
1287
1288 case ast_mul_assign:
1289 case ast_div_assign:
1290 case ast_add_assign:
1291 case ast_sub_assign: {
1292 op[0] = this->subexpressions[0]->hir(instructions, state);
1293 op[1] = this->subexpressions[1]->hir(instructions, state);
1294
1295 type = arithmetic_result_type(op[0], op[1],
1296 (this->oper == ast_mul_assign),
1297 state, & loc);
1298
1299 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1300 op[0], op[1]);
1301
1302 result = do_assignment(instructions, state,
1303 this->subexpressions[0]->non_lvalue_description,
1304 op[0]->clone(ctx, NULL), temp_rhs, false,
1305 this->subexpressions[0]->get_location());
1306 error_emitted = (op[0]->type->is_error());
1307
1308 /* GLSL 1.10 does not allow array assignment. However, we don't have to
1309 * explicitly test for this because none of the binary expression
1310 * operators allow array operands either.
1311 */
1312
1313 break;
1314 }
1315
1316 case ast_mod_assign: {
1317 op[0] = this->subexpressions[0]->hir(instructions, state);
1318 op[1] = this->subexpressions[1]->hir(instructions, state);
1319
1320 type = modulus_result_type(op[0]->type, op[1]->type, state, & loc);
1321
1322 assert(operations[this->oper] == ir_binop_mod);
1323
1324 ir_rvalue *temp_rhs;
1325 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1326 op[0], op[1]);
1327
1328 result = do_assignment(instructions, state,
1329 this->subexpressions[0]->non_lvalue_description,
1330 op[0]->clone(ctx, NULL), temp_rhs, false,
1331 this->subexpressions[0]->get_location());
1332 error_emitted = type->is_error();
1333 break;
1334 }
1335
1336 case ast_ls_assign:
1337 case ast_rs_assign: {
1338 op[0] = this->subexpressions[0]->hir(instructions, state);
1339 op[1] = this->subexpressions[1]->hir(instructions, state);
1340 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1341 &loc);
1342 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1343 type, op[0], op[1]);
1344 result = do_assignment(instructions, state,
1345 this->subexpressions[0]->non_lvalue_description,
1346 op[0]->clone(ctx, NULL), temp_rhs, false,
1347 this->subexpressions[0]->get_location());
1348 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1349 break;
1350 }
1351
1352 case ast_and_assign:
1353 case ast_xor_assign:
1354 case ast_or_assign: {
1355 op[0] = this->subexpressions[0]->hir(instructions, state);
1356 op[1] = this->subexpressions[1]->hir(instructions, state);
1357 type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
1358 state, &loc);
1359 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1360 type, op[0], op[1]);
1361 result = do_assignment(instructions, state,
1362 this->subexpressions[0]->non_lvalue_description,
1363 op[0]->clone(ctx, NULL), temp_rhs, false,
1364 this->subexpressions[0]->get_location());
1365 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1366 break;
1367 }
1368
1369 case ast_conditional: {
1370 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1371 *
1372 * "The ternary selection operator (?:). It operates on three
1373 * expressions (exp1 ? exp2 : exp3). This operator evaluates the
1374 * first expression, which must result in a scalar Boolean."
1375 */
1376 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1377 "condition", &error_emitted);
1378
1379 /* The :? operator is implemented by generating an anonymous temporary
1380 * followed by an if-statement. The last instruction in each branch of
1381 * the if-statement assigns a value to the anonymous temporary. This
1382 * temporary is the r-value of the expression.
1383 */
1384 exec_list then_instructions;
1385 exec_list else_instructions;
1386
1387 op[1] = this->subexpressions[1]->hir(&then_instructions, state);
1388 op[2] = this->subexpressions[2]->hir(&else_instructions, state);
1389
1390 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1391 *
1392 * "The second and third expressions can be any type, as
1393 * long their types match, or there is a conversion in
1394 * Section 4.1.10 "Implicit Conversions" that can be applied
1395 * to one of the expressions to make their types match. This
1396 * resulting matching type is the type of the entire
1397 * expression."
1398 */
1399 if ((!apply_implicit_conversion(op[1]->type, op[2], state)
1400 && !apply_implicit_conversion(op[2]->type, op[1], state))
1401 || (op[1]->type != op[2]->type)) {
1402 YYLTYPE loc = this->subexpressions[1]->get_location();
1403
1404 _mesa_glsl_error(& loc, state, "Second and third operands of ?: "
1405 "operator must have matching types.");
1406 error_emitted = true;
1407 type = glsl_type::error_type;
1408 } else {
1409 type = op[1]->type;
1410 }
1411
1412 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1413 *
1414 * "The second and third expressions must be the same type, but can
1415 * be of any type other than an array."
1416 */
1417 if (type->is_array() &&
1418 !state->check_version(120, 300, &loc,
1419 "Second and third operands of ?: operator "
1420 "cannot be arrays")) {
1421 error_emitted = true;
1422 }
1423
1424 ir_constant *cond_val = op[0]->constant_expression_value();
1425 ir_constant *then_val = op[1]->constant_expression_value();
1426 ir_constant *else_val = op[2]->constant_expression_value();
1427
1428 if (then_instructions.is_empty()
1429 && else_instructions.is_empty()
1430 && (cond_val != NULL) && (then_val != NULL) && (else_val != NULL)) {
1431 result = (cond_val->value.b[0]) ? then_val : else_val;
1432 } else {
1433 ir_variable *const tmp =
1434 new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary);
1435 instructions->push_tail(tmp);
1436
1437 ir_if *const stmt = new(ctx) ir_if(op[0]);
1438 instructions->push_tail(stmt);
1439
1440 then_instructions.move_nodes_to(& stmt->then_instructions);
1441 ir_dereference *const then_deref =
1442 new(ctx) ir_dereference_variable(tmp);
1443 ir_assignment *const then_assign =
1444 new(ctx) ir_assignment(then_deref, op[1]);
1445 stmt->then_instructions.push_tail(then_assign);
1446
1447 else_instructions.move_nodes_to(& stmt->else_instructions);
1448 ir_dereference *const else_deref =
1449 new(ctx) ir_dereference_variable(tmp);
1450 ir_assignment *const else_assign =
1451 new(ctx) ir_assignment(else_deref, op[2]);
1452 stmt->else_instructions.push_tail(else_assign);
1453
1454 result = new(ctx) ir_dereference_variable(tmp);
1455 }
1456 break;
1457 }
1458
1459 case ast_pre_inc:
1460 case ast_pre_dec: {
1461 this->non_lvalue_description = (this->oper == ast_pre_inc)
1462 ? "pre-increment operation" : "pre-decrement operation";
1463
1464 op[0] = this->subexpressions[0]->hir(instructions, state);
1465 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1466
1467 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1468
1469 ir_rvalue *temp_rhs;
1470 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1471 op[0], op[1]);
1472
1473 result = do_assignment(instructions, state,
1474 this->subexpressions[0]->non_lvalue_description,
1475 op[0]->clone(ctx, NULL), temp_rhs, false,
1476 this->subexpressions[0]->get_location());
1477 error_emitted = op[0]->type->is_error();
1478 break;
1479 }
1480
1481 case ast_post_inc:
1482 case ast_post_dec: {
1483 this->non_lvalue_description = (this->oper == ast_post_inc)
1484 ? "post-increment operation" : "post-decrement operation";
1485 op[0] = this->subexpressions[0]->hir(instructions, state);
1486 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1487
1488 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1489
1490 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1491
1492 ir_rvalue *temp_rhs;
1493 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1494 op[0], op[1]);
1495
1496 /* Get a temporary of a copy of the lvalue before it's modified.
1497 * This may get thrown away later.
1498 */
1499 result = get_lvalue_copy(instructions, op[0]->clone(ctx, NULL));
1500
1501 (void)do_assignment(instructions, state,
1502 this->subexpressions[0]->non_lvalue_description,
1503 op[0]->clone(ctx, NULL), temp_rhs, false,
1504 this->subexpressions[0]->get_location());
1505
1506 error_emitted = op[0]->type->is_error();
1507 break;
1508 }
1509
1510 case ast_field_selection:
1511 result = _mesa_ast_field_selection_to_hir(this, instructions, state);
1512 break;
1513
1514 case ast_array_index: {
1515 YYLTYPE index_loc = subexpressions[1]->get_location();
1516
1517 op[0] = subexpressions[0]->hir(instructions, state);
1518 op[1] = subexpressions[1]->hir(instructions, state);
1519
1520 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1521
1522 ir_rvalue *const array = op[0];
1523
1524 result = new(ctx) ir_dereference_array(op[0], op[1]);
1525
1526 /* Do not use op[0] after this point. Use array.
1527 */
1528 op[0] = NULL;
1529
1530
1531 if (error_emitted)
1532 break;
1533
1534 if (!array->type->is_array()
1535 && !array->type->is_matrix()
1536 && !array->type->is_vector()) {
1537 _mesa_glsl_error(& index_loc, state,
1538 "cannot dereference non-array / non-matrix / "
1539 "non-vector");
1540 error_emitted = true;
1541 }
1542
1543 if (!op[1]->type->is_integer()) {
1544 _mesa_glsl_error(& index_loc, state,
1545 "array index must be integer type");
1546 error_emitted = true;
1547 } else if (!op[1]->type->is_scalar()) {
1548 _mesa_glsl_error(& index_loc, state,
1549 "array index must be scalar");
1550 error_emitted = true;
1551 }
1552
1553 /* If the array index is a constant expression and the array has a
1554 * declared size, ensure that the access is in-bounds. If the array
1555 * index is not a constant expression, ensure that the array has a
1556 * declared size.
1557 */
1558 ir_constant *const const_index = op[1]->constant_expression_value();
1559 if (const_index != NULL) {
1560 const int idx = const_index->value.i[0];
1561 const char *type_name;
1562 unsigned bound = 0;
1563
1564 if (array->type->is_matrix()) {
1565 type_name = "matrix";
1566 } else if (array->type->is_vector()) {
1567 type_name = "vector";
1568 } else {
1569 type_name = "array";
1570 }
1571
1572 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec:
1573 *
1574 * "It is illegal to declare an array with a size, and then
1575 * later (in the same shader) index the same array with an
1576 * integral constant expression greater than or equal to the
1577 * declared size. It is also illegal to index an array with a
1578 * negative constant expression."
1579 */
1580 if (array->type->is_matrix()) {
1581 if (array->type->row_type()->vector_elements <= idx) {
1582 bound = array->type->row_type()->vector_elements;
1583 }
1584 } else if (array->type->is_vector()) {
1585 if (array->type->vector_elements <= idx) {
1586 bound = array->type->vector_elements;
1587 }
1588 } else {
1589 if ((array->type->array_size() > 0)
1590 && (array->type->array_size() <= idx)) {
1591 bound = array->type->array_size();
1592 }
1593 }
1594
1595 if (bound > 0) {
1596 _mesa_glsl_error(& loc, state, "%s index must be < %u",
1597 type_name, bound);
1598 error_emitted = true;
1599 } else if (idx < 0) {
1600 _mesa_glsl_error(& loc, state, "%s index must be >= 0",
1601 type_name);
1602 error_emitted = true;
1603 }
1604
1605 if (array->type->is_array()) {
1606 /* If the array is a variable dereference, it dereferences the
1607 * whole array, by definition. Use this to get the variable.
1608 *
1609 * FINISHME: Should some methods for getting / setting / testing
1610 * FINISHME: array access limits be added to ir_dereference?
1611 */
1612 ir_variable *const v = array->whole_variable_referenced();
1613 if ((v != NULL) && (unsigned(idx) > v->max_array_access)) {
1614 v->max_array_access = idx;
1615
1616 /* Check whether this access will, as a side effect, implicitly
1617 * cause the size of a built-in array to be too large.
1618 */
1619 if (check_builtin_array_max_size(v->name, idx+1, loc, state))
1620 error_emitted = true;
1621 }
1622 }
1623 } else if (array->type->array_size() == 0) {
1624 _mesa_glsl_error(&loc, state, "unsized array index must be constant");
1625 } else {
1626 if (array->type->is_array()) {
1627 /* whole_variable_referenced can return NULL if the array is a
1628 * member of a structure. In this case it is safe to not update
1629 * the max_array_access field because it is never used for fields
1630 * of structures.
1631 */
1632 ir_variable *v = array->whole_variable_referenced();
1633 if (v != NULL)
1634 v->max_array_access = array->type->array_size() - 1;
1635 }
1636 }
1637
1638 /* From page 23 (29 of the PDF) of the GLSL 1.30 spec:
1639 *
1640 * "Samplers aggregated into arrays within a shader (using square
1641 * brackets [ ]) can only be indexed with integral constant
1642 * expressions [...]."
1643 *
1644 * This restriction was added in GLSL 1.30. Shaders using earlier version
1645 * of the language should not be rejected by the compiler front-end for
1646 * using this construct. This allows useful things such as using a loop
1647 * counter as the index to an array of samplers. If the loop in unrolled,
1648 * the code should compile correctly. Instead, emit a warning.
1649 */
1650 if (array->type->is_array() &&
1651 array->type->element_type()->is_sampler() &&
1652 const_index == NULL) {
1653
1654 if (!state->is_version(130, 100)) {
1655 if (state->es_shader) {
1656 _mesa_glsl_warning(&loc, state,
1657 "sampler arrays indexed with non-constant "
1658 "expressions is optional in %s",
1659 state->get_version_string());
1660 } else {
1661 _mesa_glsl_warning(&loc, state,
1662 "sampler arrays indexed with non-constant "
1663 "expressions will be forbidden in GLSL 1.30 and "
1664 "later");
1665 }
1666 } else {
1667 _mesa_glsl_error(&loc, state,
1668 "sampler arrays indexed with non-constant "
1669 "expressions is forbidden in GLSL 1.30 and "
1670 "later");
1671 error_emitted = true;
1672 }
1673 }
1674
1675 if (error_emitted)
1676 result->type = glsl_type::error_type;
1677
1678 break;
1679 }
1680
1681 case ast_function_call:
1682 /* Should *NEVER* get here. ast_function_call should always be handled
1683 * by ast_function_expression::hir.
1684 */
1685 assert(0);
1686 break;
1687
1688 case ast_identifier: {
1689 /* ast_identifier can appear several places in a full abstract syntax
1690 * tree. This particular use must be at location specified in the grammar
1691 * as 'variable_identifier'.
1692 */
1693 ir_variable *var =
1694 state->symbols->get_variable(this->primary_expression.identifier);
1695
1696 if (var != NULL) {
1697 var->used = true;
1698 result = new(ctx) ir_dereference_variable(var);
1699 } else {
1700 _mesa_glsl_error(& loc, state, "`%s' undeclared",
1701 this->primary_expression.identifier);
1702
1703 result = ir_rvalue::error_value(ctx);
1704 error_emitted = true;
1705 }
1706 break;
1707 }
1708
1709 case ast_int_constant:
1710 result = new(ctx) ir_constant(this->primary_expression.int_constant);
1711 break;
1712
1713 case ast_uint_constant:
1714 result = new(ctx) ir_constant(this->primary_expression.uint_constant);
1715 break;
1716
1717 case ast_float_constant:
1718 result = new(ctx) ir_constant(this->primary_expression.float_constant);
1719 break;
1720
1721 case ast_bool_constant:
1722 result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant));
1723 break;
1724
1725 case ast_sequence: {
1726 /* It should not be possible to generate a sequence in the AST without
1727 * any expressions in it.
1728 */
1729 assert(!this->expressions.is_empty());
1730
1731 /* The r-value of a sequence is the last expression in the sequence. If
1732 * the other expressions in the sequence do not have side-effects (and
1733 * therefore add instructions to the instruction list), they get dropped
1734 * on the floor.
1735 */
1736 exec_node *previous_tail_pred = NULL;
1737 YYLTYPE previous_operand_loc = loc;
1738
1739 foreach_list_typed (ast_node, ast, link, &this->expressions) {
1740 /* If one of the operands of comma operator does not generate any
1741 * code, we want to emit a warning. At each pass through the loop
1742 * previous_tail_pred will point to the last instruction in the
1743 * stream *before* processing the previous operand. Naturally,
1744 * instructions->tail_pred will point to the last instruction in the
1745 * stream *after* processing the previous operand. If the two
1746 * pointers match, then the previous operand had no effect.
1747 *
1748 * The warning behavior here differs slightly from GCC. GCC will
1749 * only emit a warning if none of the left-hand operands have an
1750 * effect. However, it will emit a warning for each. I believe that
1751 * there are some cases in C (especially with GCC extensions) where
1752 * it is useful to have an intermediate step in a sequence have no
1753 * effect, but I don't think these cases exist in GLSL. Either way,
1754 * it would be a giant hassle to replicate that behavior.
1755 */
1756 if (previous_tail_pred == instructions->tail_pred) {
1757 _mesa_glsl_warning(&previous_operand_loc, state,
1758 "left-hand operand of comma expression has "
1759 "no effect");
1760 }
1761
1762 /* tail_pred is directly accessed instead of using the get_tail()
1763 * method for performance reasons. get_tail() has extra code to
1764 * return NULL when the list is empty. We don't care about that
1765 * here, so using tail_pred directly is fine.
1766 */
1767 previous_tail_pred = instructions->tail_pred;
1768 previous_operand_loc = ast->get_location();
1769
1770 result = ast->hir(instructions, state);
1771 }
1772
1773 /* Any errors should have already been emitted in the loop above.
1774 */
1775 error_emitted = true;
1776 break;
1777 }
1778 }
1779 type = NULL; /* use result->type, not type. */
1780 assert(result != NULL);
1781
1782 if (result->type->is_error() && !error_emitted)
1783 _mesa_glsl_error(& loc, state, "type mismatch");
1784
1785 return result;
1786 }
1787
1788
1789 ir_rvalue *
1790 ast_expression_statement::hir(exec_list *instructions,
1791 struct _mesa_glsl_parse_state *state)
1792 {
1793 /* It is possible to have expression statements that don't have an
1794 * expression. This is the solitary semicolon:
1795 *
1796 * for (i = 0; i < 5; i++)
1797 * ;
1798 *
1799 * In this case the expression will be NULL. Test for NULL and don't do
1800 * anything in that case.
1801 */
1802 if (expression != NULL)
1803 expression->hir(instructions, state);
1804
1805 /* Statements do not have r-values.
1806 */
1807 return NULL;
1808 }
1809
1810
1811 ir_rvalue *
1812 ast_compound_statement::hir(exec_list *instructions,
1813 struct _mesa_glsl_parse_state *state)
1814 {
1815 if (new_scope)
1816 state->symbols->push_scope();
1817
1818 foreach_list_typed (ast_node, ast, link, &this->statements)
1819 ast->hir(instructions, state);
1820
1821 if (new_scope)
1822 state->symbols->pop_scope();
1823
1824 /* Compound statements do not have r-values.
1825 */
1826 return NULL;
1827 }
1828
1829
1830 static const glsl_type *
1831 process_array_type(YYLTYPE *loc, const glsl_type *base, ast_node *array_size,
1832 struct _mesa_glsl_parse_state *state)
1833 {
1834 unsigned length = 0;
1835
1836 /* From page 19 (page 25) of the GLSL 1.20 spec:
1837 *
1838 * "Only one-dimensional arrays may be declared."
1839 */
1840 if (base->is_array()) {
1841 _mesa_glsl_error(loc, state,
1842 "invalid array of `%s' (only one-dimensional arrays "
1843 "may be declared)",
1844 base->name);
1845 return glsl_type::error_type;
1846 }
1847
1848 if (array_size != NULL) {
1849 exec_list dummy_instructions;
1850 ir_rvalue *const ir = array_size->hir(& dummy_instructions, state);
1851 YYLTYPE loc = array_size->get_location();
1852
1853 if (ir != NULL) {
1854 if (!ir->type->is_integer()) {
1855 _mesa_glsl_error(& loc, state, "array size must be integer type");
1856 } else if (!ir->type->is_scalar()) {
1857 _mesa_glsl_error(& loc, state, "array size must be scalar type");
1858 } else {
1859 ir_constant *const size = ir->constant_expression_value();
1860
1861 if (size == NULL) {
1862 _mesa_glsl_error(& loc, state, "array size must be a "
1863 "constant valued expression");
1864 } else if (size->value.i[0] <= 0) {
1865 _mesa_glsl_error(& loc, state, "array size must be > 0");
1866 } else {
1867 assert(size->type == ir->type);
1868 length = size->value.u[0];
1869
1870 /* If the array size is const (and we've verified that
1871 * it is) then no instructions should have been emitted
1872 * when we converted it to HIR. If they were emitted,
1873 * then either the array size isn't const after all, or
1874 * we are emitting unnecessary instructions.
1875 */
1876 assert(dummy_instructions.is_empty());
1877 }
1878 }
1879 }
1880 } else if (state->es_shader) {
1881 /* Section 10.17 of the GLSL ES 1.00 specification states that unsized
1882 * array declarations have been removed from the language.
1883 */
1884 _mesa_glsl_error(loc, state, "unsized array declarations are not "
1885 "allowed in GLSL ES 1.00.");
1886 }
1887
1888 return glsl_type::get_array_instance(base, length);
1889 }
1890
1891
1892 const glsl_type *
1893 ast_type_specifier::glsl_type(const char **name,
1894 struct _mesa_glsl_parse_state *state) const
1895 {
1896 const struct glsl_type *type;
1897
1898 type = state->symbols->get_type(this->type_name);
1899 *name = this->type_name;
1900
1901 if (this->is_array) {
1902 YYLTYPE loc = this->get_location();
1903 type = process_array_type(&loc, type, this->array_size, state);
1904 }
1905
1906 return type;
1907 }
1908
1909
1910 /**
1911 * Determine whether a toplevel variable declaration declares a varying. This
1912 * function operates by examining the variable's mode and the shader target,
1913 * so it correctly identifies linkage variables regardless of whether they are
1914 * declared using the deprecated "varying" syntax or the new "in/out" syntax.
1915 *
1916 * Passing a non-toplevel variable declaration (e.g. a function parameter) to
1917 * this function will produce undefined results.
1918 */
1919 static bool
1920 is_varying_var(ir_variable *var, _mesa_glsl_parser_targets target)
1921 {
1922 switch (target) {
1923 case vertex_shader:
1924 return var->mode == ir_var_shader_out;
1925 case fragment_shader:
1926 return var->mode == ir_var_shader_in;
1927 default:
1928 return var->mode == ir_var_shader_out || var->mode == ir_var_shader_in;
1929 }
1930 }
1931
1932
1933 /**
1934 * Matrix layout qualifiers are only allowed on certain types
1935 */
1936 static void
1937 validate_matrix_layout_for_type(struct _mesa_glsl_parse_state *state,
1938 YYLTYPE *loc,
1939 const glsl_type *type)
1940 {
1941 if (!type->is_matrix() && !type->is_record()) {
1942 _mesa_glsl_error(loc, state,
1943 "uniform block layout qualifiers row_major and "
1944 "column_major can only be applied to matrix and "
1945 "structure types");
1946 } else if (type->is_record()) {
1947 /* We allow 'layout(row_major)' on structure types because it's the only
1948 * way to get row-major layouts on matrices contained in structures.
1949 */
1950 _mesa_glsl_warning(loc, state,
1951 "uniform block layout qualifiers row_major and "
1952 "column_major applied to structure types is not "
1953 "strictly conformant and my be rejected by other "
1954 "compilers");
1955 }
1956 }
1957
1958 static void
1959 apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
1960 ir_variable *var,
1961 struct _mesa_glsl_parse_state *state,
1962 YYLTYPE *loc,
1963 bool ubo_qualifiers_valid,
1964 bool is_parameter)
1965 {
1966 if (qual->flags.q.invariant) {
1967 if (var->used) {
1968 _mesa_glsl_error(loc, state,
1969 "variable `%s' may not be redeclared "
1970 "`invariant' after being used",
1971 var->name);
1972 } else {
1973 var->invariant = 1;
1974 }
1975 }
1976
1977 if (qual->flags.q.constant || qual->flags.q.attribute
1978 || qual->flags.q.uniform
1979 || (qual->flags.q.varying && (state->target == fragment_shader)))
1980 var->read_only = 1;
1981
1982 if (qual->flags.q.centroid)
1983 var->centroid = 1;
1984
1985 if (qual->flags.q.attribute && state->target != vertex_shader) {
1986 var->type = glsl_type::error_type;
1987 _mesa_glsl_error(loc, state,
1988 "`attribute' variables may not be declared in the "
1989 "%s shader",
1990 _mesa_glsl_shader_target_name(state->target));
1991 }
1992
1993 /* If there is no qualifier that changes the mode of the variable, leave
1994 * the setting alone.
1995 */
1996 if (qual->flags.q.in && qual->flags.q.out)
1997 var->mode = ir_var_function_inout;
1998 else if (qual->flags.q.in)
1999 var->mode = is_parameter ? ir_var_function_in : ir_var_shader_in;
2000 else if (qual->flags.q.attribute
2001 || (qual->flags.q.varying && (state->target == fragment_shader)))
2002 var->mode = ir_var_shader_in;
2003 else if (qual->flags.q.out)
2004 var->mode = is_parameter ? ir_var_function_out : ir_var_shader_out;
2005 else if (qual->flags.q.varying && (state->target == vertex_shader))
2006 var->mode = ir_var_shader_out;
2007 else if (qual->flags.q.uniform)
2008 var->mode = ir_var_uniform;
2009
2010 if (!is_parameter && is_varying_var(var, state->target)) {
2011 /* This variable is being used to link data between shader stages (in
2012 * pre-glsl-1.30 parlance, it's a "varying"). Check that it has a type
2013 * that is allowed for such purposes.
2014 *
2015 * From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
2016 *
2017 * "The varying qualifier can be used only with the data types
2018 * float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
2019 * these."
2020 *
2021 * This was relaxed in GLSL version 1.30 and GLSL ES version 3.00. From
2022 * page 31 (page 37 of the PDF) of the GLSL 1.30 spec:
2023 *
2024 * "Fragment inputs can only be signed and unsigned integers and
2025 * integer vectors, float, floating-point vectors, matrices, or
2026 * arrays of these. Structures cannot be input.
2027 *
2028 * Similar text exists in the section on vertex shader outputs.
2029 *
2030 * Similar text exists in the GLSL ES 3.00 spec, except that the GLSL ES
2031 * 3.00 spec allows structs as well. Varying structs are also allowed
2032 * in GLSL 1.50.
2033 */
2034 switch (var->type->get_scalar_type()->base_type) {
2035 case GLSL_TYPE_FLOAT:
2036 /* Ok in all GLSL versions */
2037 break;
2038 case GLSL_TYPE_UINT:
2039 case GLSL_TYPE_INT:
2040 if (state->is_version(130, 300))
2041 break;
2042 _mesa_glsl_error(loc, state,
2043 "varying variables must be of base type float in %s",
2044 state->get_version_string());
2045 break;
2046 case GLSL_TYPE_STRUCT:
2047 if (state->is_version(150, 300))
2048 break;
2049 _mesa_glsl_error(loc, state,
2050 "varying variables may not be of type struct");
2051 break;
2052 default:
2053 _mesa_glsl_error(loc, state, "illegal type for a varying variable");
2054 break;
2055 }
2056 }
2057
2058 if (state->all_invariant && (state->current_function == NULL)) {
2059 switch (state->target) {
2060 case vertex_shader:
2061 if (var->mode == ir_var_shader_out)
2062 var->invariant = true;
2063 break;
2064 case geometry_shader:
2065 if ((var->mode == ir_var_shader_in)
2066 || (var->mode == ir_var_shader_out))
2067 var->invariant = true;
2068 break;
2069 case fragment_shader:
2070 if (var->mode == ir_var_shader_in)
2071 var->invariant = true;
2072 break;
2073 }
2074 }
2075
2076 if (qual->flags.q.flat)
2077 var->interpolation = INTERP_QUALIFIER_FLAT;
2078 else if (qual->flags.q.noperspective)
2079 var->interpolation = INTERP_QUALIFIER_NOPERSPECTIVE;
2080 else if (qual->flags.q.smooth)
2081 var->interpolation = INTERP_QUALIFIER_SMOOTH;
2082 else
2083 var->interpolation = INTERP_QUALIFIER_NONE;
2084
2085 if (var->interpolation != INTERP_QUALIFIER_NONE &&
2086 !(state->target == vertex_shader && var->mode == ir_var_shader_out) &&
2087 !(state->target == fragment_shader && var->mode == ir_var_shader_in)) {
2088 _mesa_glsl_error(loc, state,
2089 "interpolation qualifier `%s' can only be applied to "
2090 "vertex shader outputs and fragment shader inputs.",
2091 var->interpolation_string());
2092 }
2093
2094 var->pixel_center_integer = qual->flags.q.pixel_center_integer;
2095 var->origin_upper_left = qual->flags.q.origin_upper_left;
2096 if ((qual->flags.q.origin_upper_left || qual->flags.q.pixel_center_integer)
2097 && (strcmp(var->name, "gl_FragCoord") != 0)) {
2098 const char *const qual_string = (qual->flags.q.origin_upper_left)
2099 ? "origin_upper_left" : "pixel_center_integer";
2100
2101 _mesa_glsl_error(loc, state,
2102 "layout qualifier `%s' can only be applied to "
2103 "fragment shader input `gl_FragCoord'",
2104 qual_string);
2105 }
2106
2107 if (qual->flags.q.explicit_location) {
2108 const bool global_scope = (state->current_function == NULL);
2109 bool fail = false;
2110 const char *string = "";
2111
2112 /* In the vertex shader only shader inputs can be given explicit
2113 * locations.
2114 *
2115 * In the fragment shader only shader outputs can be given explicit
2116 * locations.
2117 */
2118 switch (state->target) {
2119 case vertex_shader:
2120 if (!global_scope || (var->mode != ir_var_shader_in)) {
2121 fail = true;
2122 string = "input";
2123 }
2124 break;
2125
2126 case geometry_shader:
2127 _mesa_glsl_error(loc, state,
2128 "geometry shader variables cannot be given "
2129 "explicit locations\n");
2130 break;
2131
2132 case fragment_shader:
2133 if (!global_scope || (var->mode != ir_var_shader_out)) {
2134 fail = true;
2135 string = "output";
2136 }
2137 break;
2138 };
2139
2140 if (fail) {
2141 _mesa_glsl_error(loc, state,
2142 "only %s shader %s variables can be given an "
2143 "explicit location\n",
2144 _mesa_glsl_shader_target_name(state->target),
2145 string);
2146 } else {
2147 var->explicit_location = true;
2148
2149 /* This bit of silliness is needed because invalid explicit locations
2150 * are supposed to be flagged during linking. Small negative values
2151 * biased by VERT_ATTRIB_GENERIC0 or FRAG_RESULT_DATA0 could alias
2152 * built-in values (e.g., -16+VERT_ATTRIB_GENERIC0 = VERT_ATTRIB_POS).
2153 * The linker needs to be able to differentiate these cases. This
2154 * ensures that negative values stay negative.
2155 */
2156 if (qual->location >= 0) {
2157 var->location = (state->target == vertex_shader)
2158 ? (qual->location + VERT_ATTRIB_GENERIC0)
2159 : (qual->location + FRAG_RESULT_DATA0);
2160 } else {
2161 var->location = qual->location;
2162 }
2163
2164 if (qual->flags.q.explicit_index) {
2165 /* From the GLSL 4.30 specification, section 4.4.2 (Output
2166 * Layout Qualifiers):
2167 *
2168 * "It is also a compile-time error if a fragment shader
2169 * sets a layout index to less than 0 or greater than 1."
2170 *
2171 * Older specifications don't mandate a behavior; we take
2172 * this as a clarification and always generate the error.
2173 */
2174 if (qual->index < 0 || qual->index > 1) {
2175 _mesa_glsl_error(loc, state,
2176 "explicit index may only be 0 or 1\n");
2177 } else {
2178 var->explicit_index = true;
2179 var->index = qual->index;
2180 }
2181 }
2182 }
2183 } else if (qual->flags.q.explicit_index) {
2184 _mesa_glsl_error(loc, state,
2185 "explicit index requires explicit location\n");
2186 }
2187
2188 /* Does the declaration use the 'layout' keyword?
2189 */
2190 const bool uses_layout = qual->flags.q.pixel_center_integer
2191 || qual->flags.q.origin_upper_left
2192 || qual->flags.q.explicit_location; /* no need for index since it relies on location */
2193
2194 /* Does the declaration use the deprecated 'attribute' or 'varying'
2195 * keywords?
2196 */
2197 const bool uses_deprecated_qualifier = qual->flags.q.attribute
2198 || qual->flags.q.varying;
2199
2200 /* Is the 'layout' keyword used with parameters that allow relaxed checking.
2201 * Many implementations of GL_ARB_fragment_coord_conventions_enable and some
2202 * implementations (only Mesa?) GL_ARB_explicit_attrib_location_enable
2203 * allowed the layout qualifier to be used with 'varying' and 'attribute'.
2204 * These extensions and all following extensions that add the 'layout'
2205 * keyword have been modified to require the use of 'in' or 'out'.
2206 *
2207 * The following extension do not allow the deprecated keywords:
2208 *
2209 * GL_AMD_conservative_depth
2210 * GL_ARB_conservative_depth
2211 * GL_ARB_gpu_shader5
2212 * GL_ARB_separate_shader_objects
2213 * GL_ARB_tesselation_shader
2214 * GL_ARB_transform_feedback3
2215 * GL_ARB_uniform_buffer_object
2216 *
2217 * It is unknown whether GL_EXT_shader_image_load_store or GL_NV_gpu_shader5
2218 * allow layout with the deprecated keywords.
2219 */
2220 const bool relaxed_layout_qualifier_checking =
2221 state->ARB_fragment_coord_conventions_enable;
2222
2223 if (uses_layout && uses_deprecated_qualifier) {
2224 if (relaxed_layout_qualifier_checking) {
2225 _mesa_glsl_warning(loc, state,
2226 "`layout' qualifier may not be used with "
2227 "`attribute' or `varying'");
2228 } else {
2229 _mesa_glsl_error(loc, state,
2230 "`layout' qualifier may not be used with "
2231 "`attribute' or `varying'");
2232 }
2233 }
2234
2235 /* Layout qualifiers for gl_FragDepth, which are enabled by extension
2236 * AMD_conservative_depth.
2237 */
2238 int depth_layout_count = qual->flags.q.depth_any
2239 + qual->flags.q.depth_greater
2240 + qual->flags.q.depth_less
2241 + qual->flags.q.depth_unchanged;
2242 if (depth_layout_count > 0
2243 && !state->AMD_conservative_depth_enable
2244 && !state->ARB_conservative_depth_enable) {
2245 _mesa_glsl_error(loc, state,
2246 "extension GL_AMD_conservative_depth or "
2247 "GL_ARB_conservative_depth must be enabled "
2248 "to use depth layout qualifiers");
2249 } else if (depth_layout_count > 0
2250 && strcmp(var->name, "gl_FragDepth") != 0) {
2251 _mesa_glsl_error(loc, state,
2252 "depth layout qualifiers can be applied only to "
2253 "gl_FragDepth");
2254 } else if (depth_layout_count > 1
2255 && strcmp(var->name, "gl_FragDepth") == 0) {
2256 _mesa_glsl_error(loc, state,
2257 "at most one depth layout qualifier can be applied to "
2258 "gl_FragDepth");
2259 }
2260 if (qual->flags.q.depth_any)
2261 var->depth_layout = ir_depth_layout_any;
2262 else if (qual->flags.q.depth_greater)
2263 var->depth_layout = ir_depth_layout_greater;
2264 else if (qual->flags.q.depth_less)
2265 var->depth_layout = ir_depth_layout_less;
2266 else if (qual->flags.q.depth_unchanged)
2267 var->depth_layout = ir_depth_layout_unchanged;
2268 else
2269 var->depth_layout = ir_depth_layout_none;
2270
2271 if (qual->flags.q.std140 ||
2272 qual->flags.q.packed ||
2273 qual->flags.q.shared) {
2274 _mesa_glsl_error(loc, state,
2275 "uniform block layout qualifiers std140, packed, and "
2276 "shared can only be applied to uniform blocks, not "
2277 "members");
2278 }
2279
2280 if (qual->flags.q.row_major || qual->flags.q.column_major) {
2281 if (!ubo_qualifiers_valid) {
2282 _mesa_glsl_error(loc, state,
2283 "uniform block layout qualifiers row_major and "
2284 "column_major can only be applied to uniform block "
2285 "members");
2286 } else
2287 validate_matrix_layout_for_type(state, loc, var->type);
2288 }
2289 }
2290
2291 /**
2292 * Get the variable that is being redeclared by this declaration
2293 *
2294 * Semantic checks to verify the validity of the redeclaration are also
2295 * performed. If semantic checks fail, compilation error will be emitted via
2296 * \c _mesa_glsl_error, but a non-\c NULL pointer will still be returned.
2297 *
2298 * \returns
2299 * A pointer to an existing variable in the current scope if the declaration
2300 * is a redeclaration, \c NULL otherwise.
2301 */
2302 ir_variable *
2303 get_variable_being_redeclared(ir_variable *var, ast_declaration *decl,
2304 struct _mesa_glsl_parse_state *state)
2305 {
2306 /* Check if this declaration is actually a re-declaration, either to
2307 * resize an array or add qualifiers to an existing variable.
2308 *
2309 * This is allowed for variables in the current scope, or when at
2310 * global scope (for built-ins in the implicit outer scope).
2311 */
2312 ir_variable *earlier = state->symbols->get_variable(decl->identifier);
2313 if (earlier == NULL ||
2314 (state->current_function != NULL &&
2315 !state->symbols->name_declared_this_scope(decl->identifier))) {
2316 return NULL;
2317 }
2318
2319
2320 YYLTYPE loc = decl->get_location();
2321
2322 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
2323 *
2324 * "It is legal to declare an array without a size and then
2325 * later re-declare the same name as an array of the same
2326 * type and specify a size."
2327 */
2328 if ((earlier->type->array_size() == 0)
2329 && var->type->is_array()
2330 && (var->type->element_type() == earlier->type->element_type())) {
2331 /* FINISHME: This doesn't match the qualifiers on the two
2332 * FINISHME: declarations. It's not 100% clear whether this is
2333 * FINISHME: required or not.
2334 */
2335
2336 const unsigned size = unsigned(var->type->array_size());
2337 check_builtin_array_max_size(var->name, size, loc, state);
2338 if ((size > 0) && (size <= earlier->max_array_access)) {
2339 _mesa_glsl_error(& loc, state, "array size must be > %u due to "
2340 "previous access",
2341 earlier->max_array_access);
2342 }
2343
2344 earlier->type = var->type;
2345 delete var;
2346 var = NULL;
2347 } else if (state->ARB_fragment_coord_conventions_enable
2348 && strcmp(var->name, "gl_FragCoord") == 0
2349 && earlier->type == var->type
2350 && earlier->mode == var->mode) {
2351 /* Allow redeclaration of gl_FragCoord for ARB_fcc layout
2352 * qualifiers.
2353 */
2354 earlier->origin_upper_left = var->origin_upper_left;
2355 earlier->pixel_center_integer = var->pixel_center_integer;
2356
2357 /* According to section 4.3.7 of the GLSL 1.30 spec,
2358 * the following built-in varaibles can be redeclared with an
2359 * interpolation qualifier:
2360 * * gl_FrontColor
2361 * * gl_BackColor
2362 * * gl_FrontSecondaryColor
2363 * * gl_BackSecondaryColor
2364 * * gl_Color
2365 * * gl_SecondaryColor
2366 */
2367 } else if (state->is_version(130, 0)
2368 && (strcmp(var->name, "gl_FrontColor") == 0
2369 || strcmp(var->name, "gl_BackColor") == 0
2370 || strcmp(var->name, "gl_FrontSecondaryColor") == 0
2371 || strcmp(var->name, "gl_BackSecondaryColor") == 0
2372 || strcmp(var->name, "gl_Color") == 0
2373 || strcmp(var->name, "gl_SecondaryColor") == 0)
2374 && earlier->type == var->type
2375 && earlier->mode == var->mode) {
2376 earlier->interpolation = var->interpolation;
2377
2378 /* Layout qualifiers for gl_FragDepth. */
2379 } else if ((state->AMD_conservative_depth_enable ||
2380 state->ARB_conservative_depth_enable)
2381 && strcmp(var->name, "gl_FragDepth") == 0
2382 && earlier->type == var->type
2383 && earlier->mode == var->mode) {
2384
2385 /** From the AMD_conservative_depth spec:
2386 * Within any shader, the first redeclarations of gl_FragDepth
2387 * must appear before any use of gl_FragDepth.
2388 */
2389 if (earlier->used) {
2390 _mesa_glsl_error(&loc, state,
2391 "the first redeclaration of gl_FragDepth "
2392 "must appear before any use of gl_FragDepth");
2393 }
2394
2395 /* Prevent inconsistent redeclaration of depth layout qualifier. */
2396 if (earlier->depth_layout != ir_depth_layout_none
2397 && earlier->depth_layout != var->depth_layout) {
2398 _mesa_glsl_error(&loc, state,
2399 "gl_FragDepth: depth layout is declared here "
2400 "as '%s, but it was previously declared as "
2401 "'%s'",
2402 depth_layout_string(var->depth_layout),
2403 depth_layout_string(earlier->depth_layout));
2404 }
2405
2406 earlier->depth_layout = var->depth_layout;
2407
2408 } else {
2409 _mesa_glsl_error(&loc, state, "`%s' redeclared", decl->identifier);
2410 }
2411
2412 return earlier;
2413 }
2414
2415 /**
2416 * Generate the IR for an initializer in a variable declaration
2417 */
2418 ir_rvalue *
2419 process_initializer(ir_variable *var, ast_declaration *decl,
2420 ast_fully_specified_type *type,
2421 exec_list *initializer_instructions,
2422 struct _mesa_glsl_parse_state *state)
2423 {
2424 ir_rvalue *result = NULL;
2425
2426 YYLTYPE initializer_loc = decl->initializer->get_location();
2427
2428 /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
2429 *
2430 * "All uniform variables are read-only and are initialized either
2431 * directly by an application via API commands, or indirectly by
2432 * OpenGL."
2433 */
2434 if (var->mode == ir_var_uniform) {
2435 state->check_version(120, 0, &initializer_loc,
2436 "cannot initialize uniforms");
2437 }
2438
2439 if (var->type->is_sampler()) {
2440 _mesa_glsl_error(& initializer_loc, state,
2441 "cannot initialize samplers");
2442 }
2443
2444 if ((var->mode == ir_var_shader_in) && (state->current_function == NULL)) {
2445 _mesa_glsl_error(& initializer_loc, state,
2446 "cannot initialize %s shader input / %s",
2447 _mesa_glsl_shader_target_name(state->target),
2448 (state->target == vertex_shader)
2449 ? "attribute" : "varying");
2450 }
2451
2452 ir_dereference *const lhs = new(state) ir_dereference_variable(var);
2453 ir_rvalue *rhs = decl->initializer->hir(initializer_instructions,
2454 state);
2455
2456 /* Calculate the constant value if this is a const or uniform
2457 * declaration.
2458 */
2459 if (type->qualifier.flags.q.constant
2460 || type->qualifier.flags.q.uniform) {
2461 ir_rvalue *new_rhs = validate_assignment(state, var->type, rhs, true);
2462 if (new_rhs != NULL) {
2463 rhs = new_rhs;
2464
2465 ir_constant *constant_value = rhs->constant_expression_value();
2466 if (!constant_value) {
2467 _mesa_glsl_error(& initializer_loc, state,
2468 "initializer of %s variable `%s' must be a "
2469 "constant expression",
2470 (type->qualifier.flags.q.constant)
2471 ? "const" : "uniform",
2472 decl->identifier);
2473 if (var->type->is_numeric()) {
2474 /* Reduce cascading errors. */
2475 var->constant_value = ir_constant::zero(state, var->type);
2476 }
2477 } else {
2478 rhs = constant_value;
2479 var->constant_value = constant_value;
2480 }
2481 } else {
2482 _mesa_glsl_error(&initializer_loc, state,
2483 "initializer of type %s cannot be assigned to "
2484 "variable of type %s",
2485 rhs->type->name, var->type->name);
2486 if (var->type->is_numeric()) {
2487 /* Reduce cascading errors. */
2488 var->constant_value = ir_constant::zero(state, var->type);
2489 }
2490 }
2491 }
2492
2493 if (rhs && !rhs->type->is_error()) {
2494 bool temp = var->read_only;
2495 if (type->qualifier.flags.q.constant)
2496 var->read_only = false;
2497
2498 /* Never emit code to initialize a uniform.
2499 */
2500 const glsl_type *initializer_type;
2501 if (!type->qualifier.flags.q.uniform) {
2502 result = do_assignment(initializer_instructions, state,
2503 NULL,
2504 lhs, rhs, true,
2505 type->get_location());
2506 initializer_type = result->type;
2507 } else
2508 initializer_type = rhs->type;
2509
2510 var->constant_initializer = rhs->constant_expression_value();
2511 var->has_initializer = true;
2512
2513 /* If the declared variable is an unsized array, it must inherrit
2514 * its full type from the initializer. A declaration such as
2515 *
2516 * uniform float a[] = float[](1.0, 2.0, 3.0, 3.0);
2517 *
2518 * becomes
2519 *
2520 * uniform float a[4] = float[](1.0, 2.0, 3.0, 3.0);
2521 *
2522 * The assignment generated in the if-statement (below) will also
2523 * automatically handle this case for non-uniforms.
2524 *
2525 * If the declared variable is not an array, the types must
2526 * already match exactly. As a result, the type assignment
2527 * here can be done unconditionally. For non-uniforms the call
2528 * to do_assignment can change the type of the initializer (via
2529 * the implicit conversion rules). For uniforms the initializer
2530 * must be a constant expression, and the type of that expression
2531 * was validated above.
2532 */
2533 var->type = initializer_type;
2534
2535 var->read_only = temp;
2536 }
2537
2538 return result;
2539 }
2540
2541 ir_rvalue *
2542 ast_declarator_list::hir(exec_list *instructions,
2543 struct _mesa_glsl_parse_state *state)
2544 {
2545 void *ctx = state;
2546 const struct glsl_type *decl_type;
2547 const char *type_name = NULL;
2548 ir_rvalue *result = NULL;
2549 YYLTYPE loc = this->get_location();
2550
2551 /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec:
2552 *
2553 * "To ensure that a particular output variable is invariant, it is
2554 * necessary to use the invariant qualifier. It can either be used to
2555 * qualify a previously declared variable as being invariant
2556 *
2557 * invariant gl_Position; // make existing gl_Position be invariant"
2558 *
2559 * In these cases the parser will set the 'invariant' flag in the declarator
2560 * list, and the type will be NULL.
2561 */
2562 if (this->invariant) {
2563 assert(this->type == NULL);
2564
2565 if (state->current_function != NULL) {
2566 _mesa_glsl_error(& loc, state,
2567 "All uses of `invariant' keyword must be at global "
2568 "scope\n");
2569 }
2570
2571 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
2572 assert(!decl->is_array);
2573 assert(decl->array_size == NULL);
2574 assert(decl->initializer == NULL);
2575
2576 ir_variable *const earlier =
2577 state->symbols->get_variable(decl->identifier);
2578 if (earlier == NULL) {
2579 _mesa_glsl_error(& loc, state,
2580 "Undeclared variable `%s' cannot be marked "
2581 "invariant\n", decl->identifier);
2582 } else if ((state->target == vertex_shader)
2583 && (earlier->mode != ir_var_shader_out)) {
2584 _mesa_glsl_error(& loc, state,
2585 "`%s' cannot be marked invariant, vertex shader "
2586 "outputs only\n", decl->identifier);
2587 } else if ((state->target == fragment_shader)
2588 && (earlier->mode != ir_var_shader_in)) {
2589 _mesa_glsl_error(& loc, state,
2590 "`%s' cannot be marked invariant, fragment shader "
2591 "inputs only\n", decl->identifier);
2592 } else if (earlier->used) {
2593 _mesa_glsl_error(& loc, state,
2594 "variable `%s' may not be redeclared "
2595 "`invariant' after being used",
2596 earlier->name);
2597 } else {
2598 earlier->invariant = true;
2599 }
2600 }
2601
2602 /* Invariant redeclarations do not have r-values.
2603 */
2604 return NULL;
2605 }
2606
2607 assert(this->type != NULL);
2608 assert(!this->invariant);
2609
2610 /* The type specifier may contain a structure definition. Process that
2611 * before any of the variable declarations.
2612 */
2613 (void) this->type->specifier->hir(instructions, state);
2614
2615 decl_type = this->type->specifier->glsl_type(& type_name, state);
2616 if (this->declarations.is_empty()) {
2617 /* If there is no structure involved in the program text, there are two
2618 * possible scenarios:
2619 *
2620 * - The program text contained something like 'vec4;'. This is an
2621 * empty declaration. It is valid but weird. Emit a warning.
2622 *
2623 * - The program text contained something like 'S;' and 'S' is not the
2624 * name of a known structure type. This is both invalid and weird.
2625 * Emit an error.
2626 *
2627 * Note that if decl_type is NULL and there is a structure involved,
2628 * there must have been some sort of error with the structure. In this
2629 * case we assume that an error was already generated on this line of
2630 * code for the structure. There is no need to generate an additional,
2631 * confusing error.
2632 */
2633 assert(this->type->specifier->structure == NULL || decl_type != NULL
2634 || state->error);
2635 if (this->type->specifier->structure == NULL) {
2636 if (decl_type != NULL) {
2637 _mesa_glsl_warning(&loc, state, "empty declaration");
2638 } else {
2639 _mesa_glsl_error(&loc, state,
2640 "invalid type `%s' in empty declaration",
2641 type_name);
2642 }
2643 }
2644 }
2645
2646 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
2647 const struct glsl_type *var_type;
2648 ir_variable *var;
2649
2650 /* FINISHME: Emit a warning if a variable declaration shadows a
2651 * FINISHME: declaration at a higher scope.
2652 */
2653
2654 if ((decl_type == NULL) || decl_type->is_void()) {
2655 if (type_name != NULL) {
2656 _mesa_glsl_error(& loc, state,
2657 "invalid type `%s' in declaration of `%s'",
2658 type_name, decl->identifier);
2659 } else {
2660 _mesa_glsl_error(& loc, state,
2661 "invalid type in declaration of `%s'",
2662 decl->identifier);
2663 }
2664 continue;
2665 }
2666
2667 if (decl->is_array) {
2668 var_type = process_array_type(&loc, decl_type, decl->array_size,
2669 state);
2670 if (var_type->is_error())
2671 continue;
2672 } else {
2673 var_type = decl_type;
2674 }
2675
2676 var = new(ctx) ir_variable(var_type, decl->identifier, ir_var_auto);
2677
2678 /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
2679 *
2680 * "Global variables can only use the qualifiers const,
2681 * attribute, uni form, or varying. Only one may be
2682 * specified.
2683 *
2684 * Local variables can only use the qualifier const."
2685 *
2686 * This is relaxed in GLSL 1.30 and GLSL ES 3.00. It is also relaxed by
2687 * any extension that adds the 'layout' keyword.
2688 */
2689 if (!state->is_version(130, 300)
2690 && !state->ARB_explicit_attrib_location_enable
2691 && !state->ARB_fragment_coord_conventions_enable) {
2692 if (this->type->qualifier.flags.q.out) {
2693 _mesa_glsl_error(& loc, state,
2694 "`out' qualifier in declaration of `%s' "
2695 "only valid for function parameters in %s.",
2696 decl->identifier, state->get_version_string());
2697 }
2698 if (this->type->qualifier.flags.q.in) {
2699 _mesa_glsl_error(& loc, state,
2700 "`in' qualifier in declaration of `%s' "
2701 "only valid for function parameters in %s.",
2702 decl->identifier, state->get_version_string());
2703 }
2704 /* FINISHME: Test for other invalid qualifiers. */
2705 }
2706
2707 apply_type_qualifier_to_variable(& this->type->qualifier, var, state,
2708 & loc, this->ubo_qualifiers_valid, false);
2709
2710 if (this->type->qualifier.flags.q.invariant) {
2711 if ((state->target == vertex_shader) &&
2712 var->mode != ir_var_shader_out) {
2713 _mesa_glsl_error(& loc, state,
2714 "`%s' cannot be marked invariant, vertex shader "
2715 "outputs only\n", var->name);
2716 } else if ((state->target == fragment_shader) &&
2717 var->mode != ir_var_shader_in) {
2718 /* FINISHME: Note that this doesn't work for invariant on
2719 * a function signature inval
2720 */
2721 _mesa_glsl_error(& loc, state,
2722 "`%s' cannot be marked invariant, fragment shader "
2723 "inputs only\n", var->name);
2724 }
2725 }
2726
2727 if (state->current_function != NULL) {
2728 const char *mode = NULL;
2729 const char *extra = "";
2730
2731 /* There is no need to check for 'inout' here because the parser will
2732 * only allow that in function parameter lists.
2733 */
2734 if (this->type->qualifier.flags.q.attribute) {
2735 mode = "attribute";
2736 } else if (this->type->qualifier.flags.q.uniform) {
2737 mode = "uniform";
2738 } else if (this->type->qualifier.flags.q.varying) {
2739 mode = "varying";
2740 } else if (this->type->qualifier.flags.q.in) {
2741 mode = "in";
2742 extra = " or in function parameter list";
2743 } else if (this->type->qualifier.flags.q.out) {
2744 mode = "out";
2745 extra = " or in function parameter list";
2746 }
2747
2748 if (mode) {
2749 _mesa_glsl_error(& loc, state,
2750 "%s variable `%s' must be declared at "
2751 "global scope%s",
2752 mode, var->name, extra);
2753 }
2754 } else if (var->mode == ir_var_shader_in) {
2755 var->read_only = true;
2756
2757 if (state->target == vertex_shader) {
2758 bool error_emitted = false;
2759
2760 /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
2761 *
2762 * "Vertex shader inputs can only be float, floating-point
2763 * vectors, matrices, signed and unsigned integers and integer
2764 * vectors. Vertex shader inputs can also form arrays of these
2765 * types, but not structures."
2766 *
2767 * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
2768 *
2769 * "Vertex shader inputs can only be float, floating-point
2770 * vectors, matrices, signed and unsigned integers and integer
2771 * vectors. They cannot be arrays or structures."
2772 *
2773 * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
2774 *
2775 * "The attribute qualifier can be used only with float,
2776 * floating-point vectors, and matrices. Attribute variables
2777 * cannot be declared as arrays or structures."
2778 *
2779 * From page 33 (page 39 of the PDF) of the GLSL ES 3.00 spec:
2780 *
2781 * "Vertex shader inputs can only be float, floating-point
2782 * vectors, matrices, signed and unsigned integers and integer
2783 * vectors. Vertex shader inputs cannot be arrays or
2784 * structures."
2785 */
2786 const glsl_type *check_type = var->type->is_array()
2787 ? var->type->fields.array : var->type;
2788
2789 switch (check_type->base_type) {
2790 case GLSL_TYPE_FLOAT:
2791 break;
2792 case GLSL_TYPE_UINT:
2793 case GLSL_TYPE_INT:
2794 if (state->is_version(120, 300))
2795 break;
2796 /* FALLTHROUGH */
2797 default:
2798 _mesa_glsl_error(& loc, state,
2799 "vertex shader input / attribute cannot have "
2800 "type %s`%s'",
2801 var->type->is_array() ? "array of " : "",
2802 check_type->name);
2803 error_emitted = true;
2804 }
2805
2806 if (!error_emitted && var->type->is_array() &&
2807 !state->check_version(140, 0, &loc,
2808 "vertex shader input / attribute "
2809 "cannot have array type")) {
2810 error_emitted = true;
2811 }
2812 }
2813 }
2814
2815 /* Integer vertex outputs must be qualified with 'flat'.
2816 *
2817 * From section 4.3.6 of the GLSL 1.30 spec:
2818 * "If a vertex output is a signed or unsigned integer or integer
2819 * vector, then it must be qualified with the interpolation qualifier
2820 * flat."
2821 *
2822 * From section 4.3.4 of the GLSL 3.00 ES spec:
2823 * "Fragment shader inputs that are signed or unsigned integers or
2824 * integer vectors must be qualified with the interpolation qualifier
2825 * flat."
2826 *
2827 * Since vertex outputs and fragment inputs must have matching
2828 * qualifiers, these two requirements are equivalent.
2829 */
2830 if (state->is_version(130, 300)
2831 && state->target == vertex_shader
2832 && state->current_function == NULL
2833 && var->type->is_integer()
2834 && var->mode == ir_var_shader_out
2835 && var->interpolation != INTERP_QUALIFIER_FLAT) {
2836
2837 _mesa_glsl_error(&loc, state, "If a vertex output is an integer, "
2838 "then it must be qualified with 'flat'");
2839 }
2840
2841
2842 /* Interpolation qualifiers cannot be applied to 'centroid' and
2843 * 'centroid varying'.
2844 *
2845 * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
2846 * "interpolation qualifiers may only precede the qualifiers in,
2847 * centroid in, out, or centroid out in a declaration. They do not apply
2848 * to the deprecated storage qualifiers varying or centroid varying."
2849 *
2850 * These deprecated storage qualifiers do not exist in GLSL ES 3.00.
2851 */
2852 if (state->is_version(130, 0)
2853 && this->type->qualifier.has_interpolation()
2854 && this->type->qualifier.flags.q.varying) {
2855
2856 const char *i = this->type->qualifier.interpolation_string();
2857 assert(i != NULL);
2858 const char *s;
2859 if (this->type->qualifier.flags.q.centroid)
2860 s = "centroid varying";
2861 else
2862 s = "varying";
2863
2864 _mesa_glsl_error(&loc, state,
2865 "qualifier '%s' cannot be applied to the "
2866 "deprecated storage qualifier '%s'", i, s);
2867 }
2868
2869
2870 /* Interpolation qualifiers can only apply to vertex shader outputs and
2871 * fragment shader inputs.
2872 *
2873 * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
2874 * "Outputs from a vertex shader (out) and inputs to a fragment
2875 * shader (in) can be further qualified with one or more of these
2876 * interpolation qualifiers"
2877 *
2878 * From page 31 (page 37 of the PDF) of the GLSL ES 3.00 spec:
2879 * "These interpolation qualifiers may only precede the qualifiers
2880 * in, centroid in, out, or centroid out in a declaration. They do
2881 * not apply to inputs into a vertex shader or outputs from a
2882 * fragment shader."
2883 */
2884 if (state->is_version(130, 300)
2885 && this->type->qualifier.has_interpolation()) {
2886
2887 const char *i = this->type->qualifier.interpolation_string();
2888 assert(i != NULL);
2889
2890 switch (state->target) {
2891 case vertex_shader:
2892 if (this->type->qualifier.flags.q.in) {
2893 _mesa_glsl_error(&loc, state,
2894 "qualifier '%s' cannot be applied to vertex "
2895 "shader inputs", i);
2896 }
2897 break;
2898 case fragment_shader:
2899 if (this->type->qualifier.flags.q.out) {
2900 _mesa_glsl_error(&loc, state,
2901 "qualifier '%s' cannot be applied to fragment "
2902 "shader outputs", i);
2903 }
2904 break;
2905 default:
2906 assert(0);
2907 }
2908 }
2909
2910
2911 /* From section 4.3.4 of the GLSL 1.30 spec:
2912 * "It is an error to use centroid in in a vertex shader."
2913 *
2914 * From section 4.3.4 of the GLSL ES 3.00 spec:
2915 * "It is an error to use centroid in or interpolation qualifiers in
2916 * a vertex shader input."
2917 */
2918 if (state->is_version(130, 300)
2919 && this->type->qualifier.flags.q.centroid
2920 && this->type->qualifier.flags.q.in
2921 && state->target == vertex_shader) {
2922
2923 _mesa_glsl_error(&loc, state,
2924 "'centroid in' cannot be used in a vertex shader");
2925 }
2926
2927
2928 /* Precision qualifiers exists only in GLSL versions 1.00 and >= 1.30.
2929 */
2930 if (this->type->specifier->precision != ast_precision_none) {
2931 state->check_precision_qualifiers_allowed(&loc);
2932 }
2933
2934
2935 /* Precision qualifiers only apply to floating point and integer types.
2936 *
2937 * From section 4.5.2 of the GLSL 1.30 spec:
2938 * "Any floating point or any integer declaration can have the type
2939 * preceded by one of these precision qualifiers [...] Literal
2940 * constants do not have precision qualifiers. Neither do Boolean
2941 * variables.
2942 *
2943 * In GLSL ES, sampler types are also allowed.
2944 *
2945 * From page 87 of the GLSL ES spec:
2946 * "RESOLUTION: Allow sampler types to take a precision qualifier."
2947 */
2948 if (this->type->specifier->precision != ast_precision_none
2949 && !var->type->is_float()
2950 && !var->type->is_integer()
2951 && !(var->type->is_sampler() && state->es_shader)
2952 && !(var->type->is_array()
2953 && (var->type->fields.array->is_float()
2954 || var->type->fields.array->is_integer()))) {
2955
2956 _mesa_glsl_error(&loc, state,
2957 "precision qualifiers apply only to floating point"
2958 "%s types", state->es_shader ? ", integer, and sampler"
2959 : "and integer");
2960 }
2961
2962 /* From page 17 (page 23 of the PDF) of the GLSL 1.20 spec:
2963 *
2964 * "[Sampler types] can only be declared as function
2965 * parameters or uniform variables (see Section 4.3.5
2966 * "Uniform")".
2967 */
2968 if (var_type->contains_sampler() &&
2969 !this->type->qualifier.flags.q.uniform) {
2970 _mesa_glsl_error(&loc, state, "samplers must be declared uniform");
2971 }
2972
2973 /* Process the initializer and add its instructions to a temporary
2974 * list. This list will be added to the instruction stream (below) after
2975 * the declaration is added. This is done because in some cases (such as
2976 * redeclarations) the declaration may not actually be added to the
2977 * instruction stream.
2978 */
2979 exec_list initializer_instructions;
2980 ir_variable *earlier = get_variable_being_redeclared(var, decl, state);
2981
2982 if (decl->initializer != NULL) {
2983 result = process_initializer((earlier == NULL) ? var : earlier,
2984 decl, this->type,
2985 &initializer_instructions, state);
2986 }
2987
2988 /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
2989 *
2990 * "It is an error to write to a const variable outside of
2991 * its declaration, so they must be initialized when
2992 * declared."
2993 */
2994 if (this->type->qualifier.flags.q.constant && decl->initializer == NULL) {
2995 _mesa_glsl_error(& loc, state,
2996 "const declaration of `%s' must be initialized",
2997 decl->identifier);
2998 }
2999
3000 /* If the declaration is not a redeclaration, there are a few additional
3001 * semantic checks that must be applied. In addition, variable that was
3002 * created for the declaration should be added to the IR stream.
3003 */
3004 if (earlier == NULL) {
3005 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
3006 *
3007 * "Identifiers starting with "gl_" are reserved for use by
3008 * OpenGL, and may not be declared in a shader as either a
3009 * variable or a function."
3010 */
3011 if (strncmp(decl->identifier, "gl_", 3) == 0)
3012 _mesa_glsl_error(& loc, state,
3013 "identifier `%s' uses reserved `gl_' prefix",
3014 decl->identifier);
3015 else if (strstr(decl->identifier, "__")) {
3016 /* From page 14 (page 20 of the PDF) of the GLSL 1.10
3017 * spec:
3018 *
3019 * "In addition, all identifiers containing two
3020 * consecutive underscores (__) are reserved as
3021 * possible future keywords."
3022 */
3023 _mesa_glsl_error(& loc, state,
3024 "identifier `%s' uses reserved `__' string",
3025 decl->identifier);
3026 }
3027
3028 /* Add the variable to the symbol table. Note that the initializer's
3029 * IR was already processed earlier (though it hasn't been emitted
3030 * yet), without the variable in scope.
3031 *
3032 * This differs from most C-like languages, but it follows the GLSL
3033 * specification. From page 28 (page 34 of the PDF) of the GLSL 1.50
3034 * spec:
3035 *
3036 * "Within a declaration, the scope of a name starts immediately
3037 * after the initializer if present or immediately after the name
3038 * being declared if not."
3039 */
3040 if (!state->symbols->add_variable(var)) {
3041 YYLTYPE loc = this->get_location();
3042 _mesa_glsl_error(&loc, state, "name `%s' already taken in the "
3043 "current scope", decl->identifier);
3044 continue;
3045 }
3046
3047 /* Push the variable declaration to the top. It means that all the
3048 * variable declarations will appear in a funny last-to-first order,
3049 * but otherwise we run into trouble if a function is prototyped, a
3050 * global var is decled, then the function is defined with usage of
3051 * the global var. See glslparsertest's CorrectModule.frag.
3052 */
3053 instructions->push_head(var);
3054 }
3055
3056 instructions->append_list(&initializer_instructions);
3057 }
3058
3059
3060 /* Generally, variable declarations do not have r-values. However,
3061 * one is used for the declaration in
3062 *
3063 * while (bool b = some_condition()) {
3064 * ...
3065 * }
3066 *
3067 * so we return the rvalue from the last seen declaration here.
3068 */
3069 return result;
3070 }
3071
3072
3073 ir_rvalue *
3074 ast_parameter_declarator::hir(exec_list *instructions,
3075 struct _mesa_glsl_parse_state *state)
3076 {
3077 void *ctx = state;
3078 const struct glsl_type *type;
3079 const char *name = NULL;
3080 YYLTYPE loc = this->get_location();
3081
3082 type = this->type->specifier->glsl_type(& name, state);
3083
3084 if (type == NULL) {
3085 if (name != NULL) {
3086 _mesa_glsl_error(& loc, state,
3087 "invalid type `%s' in declaration of `%s'",
3088 name, this->identifier);
3089 } else {
3090 _mesa_glsl_error(& loc, state,
3091 "invalid type in declaration of `%s'",
3092 this->identifier);
3093 }
3094
3095 type = glsl_type::error_type;
3096 }
3097
3098 /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
3099 *
3100 * "Functions that accept no input arguments need not use void in the
3101 * argument list because prototypes (or definitions) are required and
3102 * therefore there is no ambiguity when an empty argument list "( )" is
3103 * declared. The idiom "(void)" as a parameter list is provided for
3104 * convenience."
3105 *
3106 * Placing this check here prevents a void parameter being set up
3107 * for a function, which avoids tripping up checks for main taking
3108 * parameters and lookups of an unnamed symbol.
3109 */
3110 if (type->is_void()) {
3111 if (this->identifier != NULL)
3112 _mesa_glsl_error(& loc, state,
3113 "named parameter cannot have type `void'");
3114
3115 is_void = true;
3116 return NULL;
3117 }
3118
3119 if (formal_parameter && (this->identifier == NULL)) {
3120 _mesa_glsl_error(& loc, state, "formal parameter lacks a name");
3121 return NULL;
3122 }
3123
3124 /* This only handles "vec4 foo[..]". The earlier specifier->glsl_type(...)
3125 * call already handled the "vec4[..] foo" case.
3126 */
3127 if (this->is_array) {
3128 type = process_array_type(&loc, type, this->array_size, state);
3129 }
3130
3131 if (!type->is_error() && type->array_size() == 0) {
3132 _mesa_glsl_error(&loc, state, "arrays passed as parameters must have "
3133 "a declared size.");
3134 type = glsl_type::error_type;
3135 }
3136
3137 is_void = false;
3138 ir_variable *var = new(ctx)
3139 ir_variable(type, this->identifier, ir_var_function_in);
3140
3141 /* Apply any specified qualifiers to the parameter declaration. Note that
3142 * for function parameters the default mode is 'in'.
3143 */
3144 apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc,
3145 false, true);
3146
3147 /* From page 17 (page 23 of the PDF) of the GLSL 1.20 spec:
3148 *
3149 * "Samplers cannot be treated as l-values; hence cannot be used
3150 * as out or inout function parameters, nor can they be assigned
3151 * into."
3152 */
3153 if ((var->mode == ir_var_function_inout || var->mode == ir_var_function_out)
3154 && type->contains_sampler()) {
3155 _mesa_glsl_error(&loc, state, "out and inout parameters cannot contain samplers");
3156 type = glsl_type::error_type;
3157 }
3158
3159 /* From page 39 (page 45 of the PDF) of the GLSL 1.10 spec:
3160 *
3161 * "When calling a function, expressions that do not evaluate to
3162 * l-values cannot be passed to parameters declared as out or inout."
3163 *
3164 * From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
3165 *
3166 * "Other binary or unary expressions, non-dereferenced arrays,
3167 * function names, swizzles with repeated fields, and constants
3168 * cannot be l-values."
3169 *
3170 * So for GLSL 1.10, passing an array as an out or inout parameter is not
3171 * allowed. This restriction is removed in GLSL 1.20, and in GLSL ES.
3172 */
3173 if ((var->mode == ir_var_function_inout || var->mode == ir_var_function_out)
3174 && type->is_array()
3175 && !state->check_version(120, 100, &loc,
3176 "Arrays cannot be out or inout parameters")) {
3177 type = glsl_type::error_type;
3178 }
3179
3180 instructions->push_tail(var);
3181
3182 /* Parameter declarations do not have r-values.
3183 */
3184 return NULL;
3185 }
3186
3187
3188 void
3189 ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters,
3190 bool formal,
3191 exec_list *ir_parameters,
3192 _mesa_glsl_parse_state *state)
3193 {
3194 ast_parameter_declarator *void_param = NULL;
3195 unsigned count = 0;
3196
3197 foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) {
3198 param->formal_parameter = formal;
3199 param->hir(ir_parameters, state);
3200
3201 if (param->is_void)
3202 void_param = param;
3203
3204 count++;
3205 }
3206
3207 if ((void_param != NULL) && (count > 1)) {
3208 YYLTYPE loc = void_param->get_location();
3209
3210 _mesa_glsl_error(& loc, state,
3211 "`void' parameter must be only parameter");
3212 }
3213 }
3214
3215
3216 void
3217 emit_function(_mesa_glsl_parse_state *state, ir_function *f)
3218 {
3219 /* IR invariants disallow function declarations or definitions
3220 * nested within other function definitions. But there is no
3221 * requirement about the relative order of function declarations
3222 * and definitions with respect to one another. So simply insert
3223 * the new ir_function block at the end of the toplevel instruction
3224 * list.
3225 */
3226 state->toplevel_ir->push_tail(f);
3227 }
3228
3229
3230 ir_rvalue *
3231 ast_function::hir(exec_list *instructions,
3232 struct _mesa_glsl_parse_state *state)
3233 {
3234 void *ctx = state;
3235 ir_function *f = NULL;
3236 ir_function_signature *sig = NULL;
3237 exec_list hir_parameters;
3238
3239 const char *const name = identifier;
3240
3241 /* New functions are always added to the top-level IR instruction stream,
3242 * so this instruction list pointer is ignored. See also emit_function
3243 * (called below).
3244 */
3245 (void) instructions;
3246
3247 /* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec,
3248 *
3249 * "Function declarations (prototypes) cannot occur inside of functions;
3250 * they must be at global scope, or for the built-in functions, outside
3251 * the global scope."
3252 *
3253 * From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec,
3254 *
3255 * "User defined functions may only be defined within the global scope."
3256 *
3257 * Note that this language does not appear in GLSL 1.10.
3258 */
3259 if ((state->current_function != NULL) &&
3260 state->is_version(120, 100)) {
3261 YYLTYPE loc = this->get_location();
3262 _mesa_glsl_error(&loc, state,
3263 "declaration of function `%s' not allowed within "
3264 "function body", name);
3265 }
3266
3267 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
3268 *
3269 * "Identifiers starting with "gl_" are reserved for use by
3270 * OpenGL, and may not be declared in a shader as either a
3271 * variable or a function."
3272 */
3273 if (strncmp(name, "gl_", 3) == 0) {
3274 YYLTYPE loc = this->get_location();
3275 _mesa_glsl_error(&loc, state,
3276 "identifier `%s' uses reserved `gl_' prefix", name);
3277 }
3278
3279 /* Convert the list of function parameters to HIR now so that they can be
3280 * used below to compare this function's signature with previously seen
3281 * signatures for functions with the same name.
3282 */
3283 ast_parameter_declarator::parameters_to_hir(& this->parameters,
3284 is_definition,
3285 & hir_parameters, state);
3286
3287 const char *return_type_name;
3288 const glsl_type *return_type =
3289 this->return_type->specifier->glsl_type(& return_type_name, state);
3290
3291 if (!return_type) {
3292 YYLTYPE loc = this->get_location();
3293 _mesa_glsl_error(&loc, state,
3294 "function `%s' has undeclared return type `%s'",
3295 name, return_type_name);
3296 return_type = glsl_type::error_type;
3297 }
3298
3299 /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec:
3300 * "No qualifier is allowed on the return type of a function."
3301 */
3302 if (this->return_type->has_qualifiers()) {
3303 YYLTYPE loc = this->get_location();
3304 _mesa_glsl_error(& loc, state,
3305 "function `%s' return type has qualifiers", name);
3306 }
3307
3308 /* From page 17 (page 23 of the PDF) of the GLSL 1.20 spec:
3309 *
3310 * "[Sampler types] can only be declared as function parameters
3311 * or uniform variables (see Section 4.3.5 "Uniform")".
3312 */
3313 if (return_type->contains_sampler()) {
3314 YYLTYPE loc = this->get_location();
3315 _mesa_glsl_error(&loc, state,
3316 "function `%s' return type can't contain a sampler",
3317 name);
3318 }
3319
3320 /* Verify that this function's signature either doesn't match a previously
3321 * seen signature for a function with the same name, or, if a match is found,
3322 * that the previously seen signature does not have an associated definition.
3323 */
3324 f = state->symbols->get_function(name);
3325 if (f != NULL && (state->es_shader || f->has_user_signature())) {
3326 sig = f->exact_matching_signature(&hir_parameters);
3327 if (sig != NULL) {
3328 const char *badvar = sig->qualifiers_match(&hir_parameters);
3329 if (badvar != NULL) {
3330 YYLTYPE loc = this->get_location();
3331
3332 _mesa_glsl_error(&loc, state, "function `%s' parameter `%s' "
3333 "qualifiers don't match prototype", name, badvar);
3334 }
3335
3336 if (sig->return_type != return_type) {
3337 YYLTYPE loc = this->get_location();
3338
3339 _mesa_glsl_error(&loc, state, "function `%s' return type doesn't "
3340 "match prototype", name);
3341 }
3342
3343 if (is_definition && sig->is_defined) {
3344 YYLTYPE loc = this->get_location();
3345
3346 _mesa_glsl_error(& loc, state, "function `%s' redefined", name);
3347 }
3348 }
3349 } else {
3350 f = new(ctx) ir_function(name);
3351 if (!state->symbols->add_function(f)) {
3352 /* This function name shadows a non-function use of the same name. */
3353 YYLTYPE loc = this->get_location();
3354
3355 _mesa_glsl_error(&loc, state, "function name `%s' conflicts with "
3356 "non-function", name);
3357 return NULL;
3358 }
3359
3360 emit_function(state, f);
3361 }
3362
3363 /* Verify the return type of main() */
3364 if (strcmp(name, "main") == 0) {
3365 if (! return_type->is_void()) {
3366 YYLTYPE loc = this->get_location();
3367
3368 _mesa_glsl_error(& loc, state, "main() must return void");
3369 }
3370
3371 if (!hir_parameters.is_empty()) {
3372 YYLTYPE loc = this->get_location();
3373
3374 _mesa_glsl_error(& loc, state, "main() must not take any parameters");
3375 }
3376 }
3377
3378 /* Finish storing the information about this new function in its signature.
3379 */
3380 if (sig == NULL) {
3381 sig = new(ctx) ir_function_signature(return_type);
3382 f->add_signature(sig);
3383 }
3384
3385 sig->replace_parameters(&hir_parameters);
3386 signature = sig;
3387
3388 /* Function declarations (prototypes) do not have r-values.
3389 */
3390 return NULL;
3391 }
3392
3393
3394 ir_rvalue *
3395 ast_function_definition::hir(exec_list *instructions,
3396 struct _mesa_glsl_parse_state *state)
3397 {
3398 prototype->is_definition = true;
3399 prototype->hir(instructions, state);
3400
3401 ir_function_signature *signature = prototype->signature;
3402 if (signature == NULL)
3403 return NULL;
3404
3405 assert(state->current_function == NULL);
3406 state->current_function = signature;
3407 state->found_return = false;
3408
3409 /* Duplicate parameters declared in the prototype as concrete variables.
3410 * Add these to the symbol table.
3411 */
3412 state->symbols->push_scope();
3413 foreach_iter(exec_list_iterator, iter, signature->parameters) {
3414 ir_variable *const var = ((ir_instruction *) iter.get())->as_variable();
3415
3416 assert(var != NULL);
3417
3418 /* The only way a parameter would "exist" is if two parameters have
3419 * the same name.
3420 */
3421 if (state->symbols->name_declared_this_scope(var->name)) {
3422 YYLTYPE loc = this->get_location();
3423
3424 _mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name);
3425 } else {
3426 state->symbols->add_variable(var);
3427 }
3428 }
3429
3430 /* Convert the body of the function to HIR. */
3431 this->body->hir(&signature->body, state);
3432 signature->is_defined = true;
3433
3434 state->symbols->pop_scope();
3435
3436 assert(state->current_function == signature);
3437 state->current_function = NULL;
3438
3439 if (!signature->return_type->is_void() && !state->found_return) {
3440 YYLTYPE loc = this->get_location();
3441 _mesa_glsl_error(& loc, state, "function `%s' has non-void return type "
3442 "%s, but no return statement",
3443 signature->function_name(),
3444 signature->return_type->name);
3445 }
3446
3447 /* Function definitions do not have r-values.
3448 */
3449 return NULL;
3450 }
3451
3452
3453 ir_rvalue *
3454 ast_jump_statement::hir(exec_list *instructions,
3455 struct _mesa_glsl_parse_state *state)
3456 {
3457 void *ctx = state;
3458
3459 switch (mode) {
3460 case ast_return: {
3461 ir_return *inst;
3462 assert(state->current_function);
3463
3464 if (opt_return_value) {
3465 ir_rvalue *const ret = opt_return_value->hir(instructions, state);
3466
3467 /* The value of the return type can be NULL if the shader says
3468 * 'return foo();' and foo() is a function that returns void.
3469 *
3470 * NOTE: The GLSL spec doesn't say that this is an error. The type
3471 * of the return value is void. If the return type of the function is
3472 * also void, then this should compile without error. Seriously.
3473 */
3474 const glsl_type *const ret_type =
3475 (ret == NULL) ? glsl_type::void_type : ret->type;
3476
3477 /* Implicit conversions are not allowed for return values. */
3478 if (state->current_function->return_type != ret_type) {
3479 YYLTYPE loc = this->get_location();
3480
3481 _mesa_glsl_error(& loc, state,
3482 "`return' with wrong type %s, in function `%s' "
3483 "returning %s",
3484 ret_type->name,
3485 state->current_function->function_name(),
3486 state->current_function->return_type->name);
3487 }
3488
3489 inst = new(ctx) ir_return(ret);
3490 } else {
3491 if (state->current_function->return_type->base_type !=
3492 GLSL_TYPE_VOID) {
3493 YYLTYPE loc = this->get_location();
3494
3495 _mesa_glsl_error(& loc, state,
3496 "`return' with no value, in function %s returning "
3497 "non-void",
3498 state->current_function->function_name());
3499 }
3500 inst = new(ctx) ir_return;
3501 }
3502
3503 state->found_return = true;
3504 instructions->push_tail(inst);
3505 break;
3506 }
3507
3508 case ast_discard:
3509 if (state->target != fragment_shader) {
3510 YYLTYPE loc = this->get_location();
3511
3512 _mesa_glsl_error(& loc, state,
3513 "`discard' may only appear in a fragment shader");
3514 }
3515 instructions->push_tail(new(ctx) ir_discard);
3516 break;
3517
3518 case ast_break:
3519 case ast_continue:
3520 if (mode == ast_continue &&
3521 state->loop_nesting_ast == NULL) {
3522 YYLTYPE loc = this->get_location();
3523
3524 _mesa_glsl_error(& loc, state,
3525 "continue may only appear in a loop");
3526 } else if (mode == ast_break &&
3527 state->loop_nesting_ast == NULL &&
3528 state->switch_state.switch_nesting_ast == NULL) {
3529 YYLTYPE loc = this->get_location();
3530
3531 _mesa_glsl_error(& loc, state,
3532 "break may only appear in a loop or a switch");
3533 } else {
3534 /* For a loop, inline the for loop expression again,
3535 * since we don't know where near the end of
3536 * the loop body the normal copy of it
3537 * is going to be placed.
3538 */
3539 if (state->loop_nesting_ast != NULL &&
3540 mode == ast_continue &&
3541 state->loop_nesting_ast->rest_expression) {
3542 state->loop_nesting_ast->rest_expression->hir(instructions,
3543 state);
3544 }
3545
3546 if (state->switch_state.is_switch_innermost &&
3547 mode == ast_break) {
3548 /* Force break out of switch by setting is_break switch state.
3549 */
3550 ir_variable *const is_break_var = state->switch_state.is_break_var;
3551 ir_dereference_variable *const deref_is_break_var =
3552 new(ctx) ir_dereference_variable(is_break_var);
3553 ir_constant *const true_val = new(ctx) ir_constant(true);
3554 ir_assignment *const set_break_var =
3555 new(ctx) ir_assignment(deref_is_break_var, true_val);
3556
3557 instructions->push_tail(set_break_var);
3558 }
3559 else {
3560 ir_loop_jump *const jump =
3561 new(ctx) ir_loop_jump((mode == ast_break)
3562 ? ir_loop_jump::jump_break
3563 : ir_loop_jump::jump_continue);
3564 instructions->push_tail(jump);
3565 }
3566 }
3567
3568 break;
3569 }
3570
3571 /* Jump instructions do not have r-values.
3572 */
3573 return NULL;
3574 }
3575
3576
3577 ir_rvalue *
3578 ast_selection_statement::hir(exec_list *instructions,
3579 struct _mesa_glsl_parse_state *state)
3580 {
3581 void *ctx = state;
3582
3583 ir_rvalue *const condition = this->condition->hir(instructions, state);
3584
3585 /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
3586 *
3587 * "Any expression whose type evaluates to a Boolean can be used as the
3588 * conditional expression bool-expression. Vector types are not accepted
3589 * as the expression to if."
3590 *
3591 * The checks are separated so that higher quality diagnostics can be
3592 * generated for cases where both rules are violated.
3593 */
3594 if (!condition->type->is_boolean() || !condition->type->is_scalar()) {
3595 YYLTYPE loc = this->condition->get_location();
3596
3597 _mesa_glsl_error(& loc, state, "if-statement condition must be scalar "
3598 "boolean");
3599 }
3600
3601 ir_if *const stmt = new(ctx) ir_if(condition);
3602
3603 if (then_statement != NULL) {
3604 state->symbols->push_scope();
3605 then_statement->hir(& stmt->then_instructions, state);
3606 state->symbols->pop_scope();
3607 }
3608
3609 if (else_statement != NULL) {
3610 state->symbols->push_scope();
3611 else_statement->hir(& stmt->else_instructions, state);
3612 state->symbols->pop_scope();
3613 }
3614
3615 instructions->push_tail(stmt);
3616
3617 /* if-statements do not have r-values.
3618 */
3619 return NULL;
3620 }
3621
3622
3623 ir_rvalue *
3624 ast_switch_statement::hir(exec_list *instructions,
3625 struct _mesa_glsl_parse_state *state)
3626 {
3627 void *ctx = state;
3628
3629 ir_rvalue *const test_expression =
3630 this->test_expression->hir(instructions, state);
3631
3632 /* From page 66 (page 55 of the PDF) of the GLSL 1.50 spec:
3633 *
3634 * "The type of init-expression in a switch statement must be a
3635 * scalar integer."
3636 */
3637 if (!test_expression->type->is_scalar() ||
3638 !test_expression->type->is_integer()) {
3639 YYLTYPE loc = this->test_expression->get_location();
3640
3641 _mesa_glsl_error(& loc,
3642 state,
3643 "switch-statement expression must be scalar "
3644 "integer");
3645 }
3646
3647 /* Track the switch-statement nesting in a stack-like manner.
3648 */
3649 struct glsl_switch_state saved = state->switch_state;
3650
3651 state->switch_state.is_switch_innermost = true;
3652 state->switch_state.switch_nesting_ast = this;
3653 state->switch_state.labels_ht = hash_table_ctor(0, hash_table_pointer_hash,
3654 hash_table_pointer_compare);
3655 state->switch_state.previous_default = NULL;
3656
3657 /* Initalize is_fallthru state to false.
3658 */
3659 ir_rvalue *const is_fallthru_val = new (ctx) ir_constant(false);
3660 state->switch_state.is_fallthru_var =
3661 new(ctx) ir_variable(glsl_type::bool_type,
3662 "switch_is_fallthru_tmp",
3663 ir_var_temporary);
3664 instructions->push_tail(state->switch_state.is_fallthru_var);
3665
3666 ir_dereference_variable *deref_is_fallthru_var =
3667 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
3668 instructions->push_tail(new(ctx) ir_assignment(deref_is_fallthru_var,
3669 is_fallthru_val));
3670
3671 /* Initalize is_break state to false.
3672 */
3673 ir_rvalue *const is_break_val = new (ctx) ir_constant(false);
3674 state->switch_state.is_break_var = new(ctx) ir_variable(glsl_type::bool_type,
3675 "switch_is_break_tmp",
3676 ir_var_temporary);
3677 instructions->push_tail(state->switch_state.is_break_var);
3678
3679 ir_dereference_variable *deref_is_break_var =
3680 new(ctx) ir_dereference_variable(state->switch_state.is_break_var);
3681 instructions->push_tail(new(ctx) ir_assignment(deref_is_break_var,
3682 is_break_val));
3683
3684 /* Cache test expression.
3685 */
3686 test_to_hir(instructions, state);
3687
3688 /* Emit code for body of switch stmt.
3689 */
3690 body->hir(instructions, state);
3691
3692 hash_table_dtor(state->switch_state.labels_ht);
3693
3694 state->switch_state = saved;
3695
3696 /* Switch statements do not have r-values. */
3697 return NULL;
3698 }
3699
3700
3701 void
3702 ast_switch_statement::test_to_hir(exec_list *instructions,
3703 struct _mesa_glsl_parse_state *state)
3704 {
3705 void *ctx = state;
3706
3707 /* Cache value of test expression. */
3708 ir_rvalue *const test_val =
3709 test_expression->hir(instructions,
3710 state);
3711
3712 state->switch_state.test_var = new(ctx) ir_variable(test_val->type,
3713 "switch_test_tmp",
3714 ir_var_temporary);
3715 ir_dereference_variable *deref_test_var =
3716 new(ctx) ir_dereference_variable(state->switch_state.test_var);
3717
3718 instructions->push_tail(state->switch_state.test_var);
3719 instructions->push_tail(new(ctx) ir_assignment(deref_test_var, test_val));
3720 }
3721
3722
3723 ir_rvalue *
3724 ast_switch_body::hir(exec_list *instructions,
3725 struct _mesa_glsl_parse_state *state)
3726 {
3727 if (stmts != NULL)
3728 stmts->hir(instructions, state);
3729
3730 /* Switch bodies do not have r-values. */
3731 return NULL;
3732 }
3733
3734 ir_rvalue *
3735 ast_case_statement_list::hir(exec_list *instructions,
3736 struct _mesa_glsl_parse_state *state)
3737 {
3738 foreach_list_typed (ast_case_statement, case_stmt, link, & this->cases)
3739 case_stmt->hir(instructions, state);
3740
3741 /* Case statements do not have r-values. */
3742 return NULL;
3743 }
3744
3745 ir_rvalue *
3746 ast_case_statement::hir(exec_list *instructions,
3747 struct _mesa_glsl_parse_state *state)
3748 {
3749 labels->hir(instructions, state);
3750
3751 /* Conditionally set fallthru state based on break state. */
3752 ir_constant *const false_val = new(state) ir_constant(false);
3753 ir_dereference_variable *const deref_is_fallthru_var =
3754 new(state) ir_dereference_variable(state->switch_state.is_fallthru_var);
3755 ir_dereference_variable *const deref_is_break_var =
3756 new(state) ir_dereference_variable(state->switch_state.is_break_var);
3757 ir_assignment *const reset_fallthru_on_break =
3758 new(state) ir_assignment(deref_is_fallthru_var,
3759 false_val,
3760 deref_is_break_var);
3761 instructions->push_tail(reset_fallthru_on_break);
3762
3763 /* Guard case statements depending on fallthru state. */
3764 ir_dereference_variable *const deref_fallthru_guard =
3765 new(state) ir_dereference_variable(state->switch_state.is_fallthru_var);
3766 ir_if *const test_fallthru = new(state) ir_if(deref_fallthru_guard);
3767
3768 foreach_list_typed (ast_node, stmt, link, & this->stmts)
3769 stmt->hir(& test_fallthru->then_instructions, state);
3770
3771 instructions->push_tail(test_fallthru);
3772
3773 /* Case statements do not have r-values. */
3774 return NULL;
3775 }
3776
3777
3778 ir_rvalue *
3779 ast_case_label_list::hir(exec_list *instructions,
3780 struct _mesa_glsl_parse_state *state)
3781 {
3782 foreach_list_typed (ast_case_label, label, link, & this->labels)
3783 label->hir(instructions, state);
3784
3785 /* Case labels do not have r-values. */
3786 return NULL;
3787 }
3788
3789 ir_rvalue *
3790 ast_case_label::hir(exec_list *instructions,
3791 struct _mesa_glsl_parse_state *state)
3792 {
3793 void *ctx = state;
3794
3795 ir_dereference_variable *deref_fallthru_var =
3796 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
3797
3798 ir_rvalue *const true_val = new(ctx) ir_constant(true);
3799
3800 /* If not default case, ... */
3801 if (this->test_value != NULL) {
3802 /* Conditionally set fallthru state based on
3803 * comparison of cached test expression value to case label.
3804 */
3805 ir_rvalue *const label_rval = this->test_value->hir(instructions, state);
3806 ir_constant *label_const = label_rval->constant_expression_value();
3807
3808 if (!label_const) {
3809 YYLTYPE loc = this->test_value->get_location();
3810
3811 _mesa_glsl_error(& loc, state,
3812 "switch statement case label must be a "
3813 "constant expression");
3814
3815 /* Stuff a dummy value in to allow processing to continue. */
3816 label_const = new(ctx) ir_constant(0);
3817 } else {
3818 ast_expression *previous_label = (ast_expression *)
3819 hash_table_find(state->switch_state.labels_ht,
3820 (void *)(uintptr_t)label_const->value.u[0]);
3821
3822 if (previous_label) {
3823 YYLTYPE loc = this->test_value->get_location();
3824 _mesa_glsl_error(& loc, state,
3825 "duplicate case value");
3826
3827 loc = previous_label->get_location();
3828 _mesa_glsl_error(& loc, state,
3829 "this is the previous case label");
3830 } else {
3831 hash_table_insert(state->switch_state.labels_ht,
3832 this->test_value,
3833 (void *)(uintptr_t)label_const->value.u[0]);
3834 }
3835 }
3836
3837 ir_dereference_variable *deref_test_var =
3838 new(ctx) ir_dereference_variable(state->switch_state.test_var);
3839
3840 ir_rvalue *const test_cond = new(ctx) ir_expression(ir_binop_all_equal,
3841 label_const,
3842 deref_test_var);
3843
3844 ir_assignment *set_fallthru_on_test =
3845 new(ctx) ir_assignment(deref_fallthru_var,
3846 true_val,
3847 test_cond);
3848
3849 instructions->push_tail(set_fallthru_on_test);
3850 } else { /* default case */
3851 if (state->switch_state.previous_default) {
3852 YYLTYPE loc = this->get_location();
3853 _mesa_glsl_error(& loc, state,
3854 "multiple default labels in one switch");
3855
3856 loc = state->switch_state.previous_default->get_location();
3857 _mesa_glsl_error(& loc, state,
3858 "this is the first default label");
3859 }
3860 state->switch_state.previous_default = this;
3861
3862 /* Set falltrhu state. */
3863 ir_assignment *set_fallthru =
3864 new(ctx) ir_assignment(deref_fallthru_var, true_val);
3865
3866 instructions->push_tail(set_fallthru);
3867 }
3868
3869 /* Case statements do not have r-values. */
3870 return NULL;
3871 }
3872
3873 void
3874 ast_iteration_statement::condition_to_hir(ir_loop *stmt,
3875 struct _mesa_glsl_parse_state *state)
3876 {
3877 void *ctx = state;
3878
3879 if (condition != NULL) {
3880 ir_rvalue *const cond =
3881 condition->hir(& stmt->body_instructions, state);
3882
3883 if ((cond == NULL)
3884 || !cond->type->is_boolean() || !cond->type->is_scalar()) {
3885 YYLTYPE loc = condition->get_location();
3886
3887 _mesa_glsl_error(& loc, state,
3888 "loop condition must be scalar boolean");
3889 } else {
3890 /* As the first code in the loop body, generate a block that looks
3891 * like 'if (!condition) break;' as the loop termination condition.
3892 */
3893 ir_rvalue *const not_cond =
3894 new(ctx) ir_expression(ir_unop_logic_not, cond);
3895
3896 ir_if *const if_stmt = new(ctx) ir_if(not_cond);
3897
3898 ir_jump *const break_stmt =
3899 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
3900
3901 if_stmt->then_instructions.push_tail(break_stmt);
3902 stmt->body_instructions.push_tail(if_stmt);
3903 }
3904 }
3905 }
3906
3907
3908 ir_rvalue *
3909 ast_iteration_statement::hir(exec_list *instructions,
3910 struct _mesa_glsl_parse_state *state)
3911 {
3912 void *ctx = state;
3913
3914 /* For-loops and while-loops start a new scope, but do-while loops do not.
3915 */
3916 if (mode != ast_do_while)
3917 state->symbols->push_scope();
3918
3919 if (init_statement != NULL)
3920 init_statement->hir(instructions, state);
3921
3922 ir_loop *const stmt = new(ctx) ir_loop();
3923 instructions->push_tail(stmt);
3924
3925 /* Track the current loop nesting. */
3926 ast_iteration_statement *nesting_ast = state->loop_nesting_ast;
3927
3928 state->loop_nesting_ast = this;
3929
3930 /* Likewise, indicate that following code is closest to a loop,
3931 * NOT closest to a switch.
3932 */
3933 bool saved_is_switch_innermost = state->switch_state.is_switch_innermost;
3934 state->switch_state.is_switch_innermost = false;
3935
3936 if (mode != ast_do_while)
3937 condition_to_hir(stmt, state);
3938
3939 if (body != NULL)
3940 body->hir(& stmt->body_instructions, state);
3941
3942 if (rest_expression != NULL)
3943 rest_expression->hir(& stmt->body_instructions, state);
3944
3945 if (mode == ast_do_while)
3946 condition_to_hir(stmt, state);
3947
3948 if (mode != ast_do_while)
3949 state->symbols->pop_scope();
3950
3951 /* Restore previous nesting before returning. */
3952 state->loop_nesting_ast = nesting_ast;
3953 state->switch_state.is_switch_innermost = saved_is_switch_innermost;
3954
3955 /* Loops do not have r-values.
3956 */
3957 return NULL;
3958 }
3959
3960
3961 ir_rvalue *
3962 ast_type_specifier::hir(exec_list *instructions,
3963 struct _mesa_glsl_parse_state *state)
3964 {
3965 if (!this->is_precision_statement && this->structure == NULL)
3966 return NULL;
3967
3968 YYLTYPE loc = this->get_location();
3969
3970 if (this->precision != ast_precision_none
3971 && !state->check_precision_qualifiers_allowed(&loc)) {
3972 return NULL;
3973 }
3974 if (this->precision != ast_precision_none
3975 && this->structure != NULL) {
3976 _mesa_glsl_error(&loc, state,
3977 "precision qualifiers do not apply to structures");
3978 return NULL;
3979 }
3980
3981 /* If this is a precision statement, check that the type to which it is
3982 * applied is either float or int.
3983 *
3984 * From section 4.5.3 of the GLSL 1.30 spec:
3985 * "The precision statement
3986 * precision precision-qualifier type;
3987 * can be used to establish a default precision qualifier. The type
3988 * field can be either int or float [...]. Any other types or
3989 * qualifiers will result in an error.
3990 */
3991 if (this->is_precision_statement) {
3992 assert(this->precision != ast_precision_none);
3993 assert(this->structure == NULL); /* The check for structures was
3994 * performed above. */
3995 if (this->is_array) {
3996 _mesa_glsl_error(&loc, state,
3997 "default precision statements do not apply to "
3998 "arrays");
3999 return NULL;
4000 }
4001 if (strcmp(this->type_name, "float") != 0 &&
4002 strcmp(this->type_name, "int") != 0) {
4003 _mesa_glsl_error(&loc, state,
4004 "default precision statements apply only to types "
4005 "float and int");
4006 return NULL;
4007 }
4008
4009 /* FINISHME: Translate precision statements into IR. */
4010 return NULL;
4011 }
4012
4013 if (this->structure != NULL)
4014 return this->structure->hir(instructions, state);
4015
4016 return NULL;
4017 }
4018
4019
4020 /**
4021 * Process a structure or interface block tree into an array of structure fields
4022 *
4023 * After parsing, where there are some syntax differnces, structures and
4024 * interface blocks are almost identical. They are similar enough that the
4025 * AST for each can be processed the same way into a set of
4026 * \c glsl_struct_field to describe the members.
4027 *
4028 * \return
4029 * The number of fields processed. A pointer to the array structure fields is
4030 * stored in \c *fields_ret.
4031 */
4032 unsigned
4033 ast_process_structure_or_interface_block(exec_list *instructions,
4034 struct _mesa_glsl_parse_state *state,
4035 exec_list *declarations,
4036 YYLTYPE &loc,
4037 glsl_struct_field **fields_ret,
4038 bool is_interface,
4039 bool block_row_major)
4040 {
4041 unsigned decl_count = 0;
4042
4043 /* Make an initial pass over the list of fields to determine how
4044 * many there are. Each element in this list is an ast_declarator_list.
4045 * This means that we actually need to count the number of elements in the
4046 * 'declarations' list in each of the elements.
4047 */
4048 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
4049 foreach_list_const (decl_ptr, & decl_list->declarations) {
4050 decl_count++;
4051 }
4052 }
4053
4054 /* Allocate storage for the fields and process the field
4055 * declarations. As the declarations are processed, try to also convert
4056 * the types to HIR. This ensures that structure definitions embedded in
4057 * other structure definitions or in interface blocks are processed.
4058 */
4059 glsl_struct_field *const fields = ralloc_array(state, glsl_struct_field,
4060 decl_count);
4061
4062 unsigned i = 0;
4063 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
4064 const char *type_name;
4065
4066 decl_list->type->specifier->hir(instructions, state);
4067
4068 /* Section 10.9 of the GLSL ES 1.00 specification states that
4069 * embedded structure definitions have been removed from the language.
4070 */
4071 if (state->es_shader && decl_list->type->specifier->structure != NULL) {
4072 _mesa_glsl_error(&loc, state, "Embedded structure definitions are "
4073 "not allowed in GLSL ES 1.00.");
4074 }
4075
4076 const glsl_type *decl_type =
4077 decl_list->type->specifier->glsl_type(& type_name, state);
4078
4079 foreach_list_typed (ast_declaration, decl, link,
4080 &decl_list->declarations) {
4081 /* From the GL_ARB_uniform_buffer_object spec:
4082 *
4083 * "Sampler types are not allowed inside of uniform
4084 * blocks. All other types, arrays, and structures
4085 * allowed for uniforms are allowed within a uniform
4086 * block."
4087 */
4088 const struct glsl_type *field_type = decl_type;
4089
4090 if (is_interface && field_type->contains_sampler()) {
4091 YYLTYPE loc = decl_list->get_location();
4092 _mesa_glsl_error(&loc, state,
4093 "Uniform in non-default uniform block contains sampler\n");
4094 }
4095
4096 const struct ast_type_qualifier *const qual =
4097 & decl_list->type->qualifier;
4098 if (qual->flags.q.std140 ||
4099 qual->flags.q.packed ||
4100 qual->flags.q.shared) {
4101 _mesa_glsl_error(&loc, state,
4102 "uniform block layout qualifiers std140, packed, and "
4103 "shared can only be applied to uniform blocks, not "
4104 "members");
4105 }
4106
4107 if (decl->is_array) {
4108 field_type = process_array_type(&loc, decl_type, decl->array_size,
4109 state);
4110 }
4111 fields[i].type = (field_type != NULL)
4112 ? field_type : glsl_type::error_type;
4113 fields[i].name = decl->identifier;
4114
4115 if (qual->flags.q.row_major || qual->flags.q.column_major) {
4116 if (!field_type->is_matrix() && !field_type->is_record()) {
4117 _mesa_glsl_error(&loc, state,
4118 "uniform block layout qualifiers row_major and "
4119 "column_major can only be applied to matrix and "
4120 "structure types");
4121 } else
4122 validate_matrix_layout_for_type(state, &loc, field_type);
4123 }
4124
4125 if (field_type->is_matrix() ||
4126 (field_type->is_array() && field_type->fields.array->is_matrix())) {
4127 fields[i].row_major = block_row_major;
4128 if (qual->flags.q.row_major)
4129 fields[i].row_major = true;
4130 else if (qual->flags.q.column_major)
4131 fields[i].row_major = false;
4132 }
4133
4134 i++;
4135 }
4136 }
4137
4138 assert(i == decl_count);
4139
4140 *fields_ret = fields;
4141 return decl_count;
4142 }
4143
4144
4145 ir_rvalue *
4146 ast_struct_specifier::hir(exec_list *instructions,
4147 struct _mesa_glsl_parse_state *state)
4148 {
4149 YYLTYPE loc = this->get_location();
4150 glsl_struct_field *fields;
4151 unsigned decl_count =
4152 ast_process_structure_or_interface_block(instructions,
4153 state,
4154 &this->declarations,
4155 loc,
4156 &fields,
4157 false,
4158 false);
4159
4160 const glsl_type *t =
4161 glsl_type::get_record_instance(fields, decl_count, this->name);
4162
4163 if (!state->symbols->add_type(name, t)) {
4164 _mesa_glsl_error(& loc, state, "struct `%s' previously defined", name);
4165 } else {
4166 const glsl_type **s = reralloc(state, state->user_structures,
4167 const glsl_type *,
4168 state->num_user_structures + 1);
4169 if (s != NULL) {
4170 s[state->num_user_structures] = t;
4171 state->user_structures = s;
4172 state->num_user_structures++;
4173 }
4174 }
4175
4176 /* Structure type definitions do not have r-values.
4177 */
4178 return NULL;
4179 }
4180
4181 static struct gl_uniform_block *
4182 get_next_uniform_block(struct _mesa_glsl_parse_state *state)
4183 {
4184 if (state->num_uniform_blocks >= state->uniform_block_array_size) {
4185 state->uniform_block_array_size *= 2;
4186 if (state->uniform_block_array_size <= 4)
4187 state->uniform_block_array_size = 4;
4188
4189 state->uniform_blocks = reralloc(state,
4190 state->uniform_blocks,
4191 struct gl_uniform_block,
4192 state->uniform_block_array_size);
4193 }
4194
4195 memset(&state->uniform_blocks[state->num_uniform_blocks],
4196 0, sizeof(*state->uniform_blocks));
4197 return &state->uniform_blocks[state->num_uniform_blocks++];
4198 }
4199
4200 ir_rvalue *
4201 ast_uniform_block::hir(exec_list *instructions,
4202 struct _mesa_glsl_parse_state *state)
4203 {
4204 YYLTYPE loc = this->get_location();
4205
4206 /* The ast_uniform_block has a list of ast_declarator_lists. We
4207 * need to turn those into ir_variables with an association
4208 * with this uniform block.
4209 */
4210 struct gl_uniform_block *ubo = get_next_uniform_block(state);
4211 ubo->Name = ralloc_strdup(state->uniform_blocks, this->block_name);
4212
4213 if (!state->symbols->add_uniform_block(ubo)) {
4214 YYLTYPE loc = this->get_location();
4215 _mesa_glsl_error(&loc, state, "Uniform block name `%s' already taken in "
4216 "the current scope.\n", ubo->Name);
4217 }
4218
4219 if (this->layout.flags.q.shared) {
4220 ubo->_Packing = ubo_packing_shared;
4221 } else if (this->layout.flags.q.packed) {
4222 ubo->_Packing = ubo_packing_packed;
4223 } else {
4224 /* The default layout is std140.
4225 */
4226 ubo->_Packing = ubo_packing_std140;
4227 }
4228
4229 bool block_row_major = this->layout.flags.q.row_major;
4230 exec_list declared_variables;
4231 glsl_struct_field *fields;
4232 unsigned int num_variables =
4233 ast_process_structure_or_interface_block(&declared_variables,
4234 state,
4235 &this->declarations,
4236 loc,
4237 &fields,
4238 true,
4239 block_row_major);
4240
4241 STATIC_ASSERT(unsigned(GLSL_INTERFACE_PACKING_STD140)
4242 == unsigned(ubo_packing_std140));
4243 STATIC_ASSERT(unsigned(GLSL_INTERFACE_PACKING_SHARED)
4244 == unsigned(ubo_packing_shared));
4245 STATIC_ASSERT(unsigned(GLSL_INTERFACE_PACKING_PACKED)
4246 == unsigned(ubo_packing_packed));
4247
4248 const glsl_type *block_type =
4249 glsl_type::get_interface_instance(fields,
4250 num_variables,
4251 (enum glsl_interface_packing) ubo->_Packing,
4252 this->block_name);
4253
4254 /* Since interface blocks cannot contain statements, it should be
4255 * impossible for the block to generate any instructions.
4256 */
4257 assert(declared_variables.is_empty());
4258
4259 /* Page 39 (page 45 of the PDF) of section 4.3.7 in the GLSL ES 3.00 spec
4260 * says:
4261 *
4262 * "If an instance name (instance-name) is used, then it puts all the
4263 * members inside a scope within its own name space, accessed with the
4264 * field selector ( . ) operator (analogously to structures)."
4265 */
4266 if (this->instance_name) {
4267 ir_variable *var = new(state) ir_variable(block_type,
4268 this->instance_name,
4269 ir_var_uniform);
4270
4271 var->interface_type = block_type;
4272 state->symbols->add_variable(var);
4273 instructions->push_tail(var);
4274 } else {
4275 for (unsigned i = 0; i < num_variables; i++) {
4276 ir_variable *var =
4277 new(state) ir_variable(fields[i].type,
4278 ralloc_strdup(state, fields[i].name),
4279 ir_var_uniform);
4280 var->uniform_block = ubo - state->uniform_blocks;
4281 var->interface_type = block_type;
4282
4283 state->symbols->add_variable(var);
4284 instructions->push_tail(var);
4285 }
4286 }
4287
4288 /* FINISHME: Eventually the rest of this code needs to be moved into the
4289 * FINISHME: linker.
4290 */
4291 ubo->Uniforms = rzalloc_array(state->uniform_blocks,
4292 struct gl_uniform_buffer_variable,
4293 num_variables);
4294
4295 for (unsigned i = 0; i < num_variables; i++) {
4296 struct gl_uniform_buffer_variable *ubo_var =
4297 &ubo->Uniforms[ubo->NumUniforms++];
4298
4299 ubo_var->Name = ralloc_strdup(state->uniform_blocks, fields[i].name);
4300 ubo_var->Type = fields[i].type;
4301 ubo_var->Offset = 0; /* Assigned at link time. */
4302 ubo_var->RowMajor = fields[i].row_major;
4303 }
4304
4305 return NULL;
4306 }
4307
4308 static void
4309 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
4310 exec_list *instructions)
4311 {
4312 bool gl_FragColor_assigned = false;
4313 bool gl_FragData_assigned = false;
4314 bool user_defined_fs_output_assigned = false;
4315 ir_variable *user_defined_fs_output = NULL;
4316
4317 /* It would be nice to have proper location information. */
4318 YYLTYPE loc;
4319 memset(&loc, 0, sizeof(loc));
4320
4321 foreach_list(node, instructions) {
4322 ir_variable *var = ((ir_instruction *)node)->as_variable();
4323
4324 if (!var || !var->assigned)
4325 continue;
4326
4327 if (strcmp(var->name, "gl_FragColor") == 0)
4328 gl_FragColor_assigned = true;
4329 else if (strcmp(var->name, "gl_FragData") == 0)
4330 gl_FragData_assigned = true;
4331 else if (strncmp(var->name, "gl_", 3) != 0) {
4332 if (state->target == fragment_shader &&
4333 var->mode == ir_var_shader_out) {
4334 user_defined_fs_output_assigned = true;
4335 user_defined_fs_output = var;
4336 }
4337 }
4338 }
4339
4340 /* From the GLSL 1.30 spec:
4341 *
4342 * "If a shader statically assigns a value to gl_FragColor, it
4343 * may not assign a value to any element of gl_FragData. If a
4344 * shader statically writes a value to any element of
4345 * gl_FragData, it may not assign a value to
4346 * gl_FragColor. That is, a shader may assign values to either
4347 * gl_FragColor or gl_FragData, but not both. Multiple shaders
4348 * linked together must also consistently write just one of
4349 * these variables. Similarly, if user declared output
4350 * variables are in use (statically assigned to), then the
4351 * built-in variables gl_FragColor and gl_FragData may not be
4352 * assigned to. These incorrect usages all generate compile
4353 * time errors."
4354 */
4355 if (gl_FragColor_assigned && gl_FragData_assigned) {
4356 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
4357 "`gl_FragColor' and `gl_FragData'\n");
4358 } else if (gl_FragColor_assigned && user_defined_fs_output_assigned) {
4359 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
4360 "`gl_FragColor' and `%s'\n",
4361 user_defined_fs_output->name);
4362 } else if (gl_FragData_assigned && user_defined_fs_output_assigned) {
4363 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
4364 "`gl_FragData' and `%s'\n",
4365 user_defined_fs_output->name);
4366 }
4367 }