nir/spirv: Move CF emit code into vtn_cfg.c
[mesa.git] / src / glsl / ast_to_hir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file ast_to_hir.c
26 * Convert abstract syntax to to high-level intermediate reprensentation (HIR).
27 *
28 * During the conversion to HIR, the majority of the symantic checking is
29 * preformed on the program. This includes:
30 *
31 * * Symbol table management
32 * * Type checking
33 * * Function binding
34 *
35 * The majority of this work could be done during parsing, and the parser could
36 * probably generate HIR directly. However, this results in frequent changes
37 * to the parser code. Since we do not assume that every system this complier
38 * is built on will have Flex and Bison installed, we have to store the code
39 * generated by these tools in our version control system. In other parts of
40 * the system we've seen problems where a parser was changed but the generated
41 * code was not committed, merge conflicts where created because two developers
42 * had slightly different versions of Bison installed, etc.
43 *
44 * I have also noticed that running Bison generated parsers in GDB is very
45 * irritating. When you get a segfault on '$$ = $1->foo', you can't very
46 * well 'print $1' in GDB.
47 *
48 * As a result, my preference is to put as little C code as possible in the
49 * parser (and lexer) sources.
50 */
51
52 #include "glsl_symbol_table.h"
53 #include "glsl_parser_extras.h"
54 #include "ast.h"
55 #include "glsl_types.h"
56 #include "program/hash_table.h"
57 #include "main/shaderobj.h"
58 #include "ir.h"
59 #include "ir_builder.h"
60
61 using namespace ir_builder;
62
63 static void
64 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
65 exec_list *instructions);
66 static void
67 remove_per_vertex_blocks(exec_list *instructions,
68 _mesa_glsl_parse_state *state, ir_variable_mode mode);
69
70 /**
71 * Visitor class that finds the first instance of any write-only variable that
72 * is ever read, if any
73 */
74 class read_from_write_only_variable_visitor : public ir_hierarchical_visitor
75 {
76 public:
77 read_from_write_only_variable_visitor() : found(NULL)
78 {
79 }
80
81 virtual ir_visitor_status visit(ir_dereference_variable *ir)
82 {
83 if (this->in_assignee)
84 return visit_continue;
85
86 ir_variable *var = ir->variable_referenced();
87 /* We can have image_write_only set on both images and buffer variables,
88 * but in the former there is a distinction between reads from
89 * the variable itself (write_only) and from the memory they point to
90 * (image_write_only), while in the case of buffer variables there is
91 * no such distinction, that is why this check here is limited to
92 * buffer variables alone.
93 */
94 if (!var || var->data.mode != ir_var_shader_storage)
95 return visit_continue;
96
97 if (var->data.image_write_only) {
98 found = var;
99 return visit_stop;
100 }
101
102 return visit_continue;
103 }
104
105 ir_variable *get_variable() {
106 return found;
107 }
108
109 private:
110 ir_variable *found;
111 };
112
113 void
114 _mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
115 {
116 _mesa_glsl_initialize_variables(instructions, state);
117
118 state->symbols->separate_function_namespace = state->language_version == 110;
119
120 state->current_function = NULL;
121
122 state->toplevel_ir = instructions;
123
124 state->gs_input_prim_type_specified = false;
125 state->tcs_output_vertices_specified = false;
126 state->cs_input_local_size_specified = false;
127
128 /* Section 4.2 of the GLSL 1.20 specification states:
129 * "The built-in functions are scoped in a scope outside the global scope
130 * users declare global variables in. That is, a shader's global scope,
131 * available for user-defined functions and global variables, is nested
132 * inside the scope containing the built-in functions."
133 *
134 * Since built-in functions like ftransform() access built-in variables,
135 * it follows that those must be in the outer scope as well.
136 *
137 * We push scope here to create this nesting effect...but don't pop.
138 * This way, a shader's globals are still in the symbol table for use
139 * by the linker.
140 */
141 state->symbols->push_scope();
142
143 foreach_list_typed (ast_node, ast, link, & state->translation_unit)
144 ast->hir(instructions, state);
145
146 detect_recursion_unlinked(state, instructions);
147 detect_conflicting_assignments(state, instructions);
148
149 state->toplevel_ir = NULL;
150
151 /* Move all of the variable declarations to the front of the IR list, and
152 * reverse the order. This has the (intended!) side effect that vertex
153 * shader inputs and fragment shader outputs will appear in the IR in the
154 * same order that they appeared in the shader code. This results in the
155 * locations being assigned in the declared order. Many (arguably buggy)
156 * applications depend on this behavior, and it matches what nearly all
157 * other drivers do.
158 */
159 foreach_in_list_safe(ir_instruction, node, instructions) {
160 ir_variable *const var = node->as_variable();
161
162 if (var == NULL)
163 continue;
164
165 var->remove();
166 instructions->push_head(var);
167 }
168
169 /* Figure out if gl_FragCoord is actually used in fragment shader */
170 ir_variable *const var = state->symbols->get_variable("gl_FragCoord");
171 if (var != NULL)
172 state->fs_uses_gl_fragcoord = var->data.used;
173
174 /* From section 7.1 (Built-In Language Variables) of the GLSL 4.10 spec:
175 *
176 * If multiple shaders using members of a built-in block belonging to
177 * the same interface are linked together in the same program, they
178 * must all redeclare the built-in block in the same way, as described
179 * in section 4.3.7 "Interface Blocks" for interface block matching, or
180 * a link error will result.
181 *
182 * The phrase "using members of a built-in block" implies that if two
183 * shaders are linked together and one of them *does not use* any members
184 * of the built-in block, then that shader does not need to have a matching
185 * redeclaration of the built-in block.
186 *
187 * This appears to be a clarification to the behaviour established for
188 * gl_PerVertex by GLSL 1.50, therefore implement it regardless of GLSL
189 * version.
190 *
191 * The definition of "interface" in section 4.3.7 that applies here is as
192 * follows:
193 *
194 * The boundary between adjacent programmable pipeline stages: This
195 * spans all the outputs in all compilation units of the first stage
196 * and all the inputs in all compilation units of the second stage.
197 *
198 * Therefore this rule applies to both inter- and intra-stage linking.
199 *
200 * The easiest way to implement this is to check whether the shader uses
201 * gl_PerVertex right after ast-to-ir conversion, and if it doesn't, simply
202 * remove all the relevant variable declaration from the IR, so that the
203 * linker won't see them and complain about mismatches.
204 */
205 remove_per_vertex_blocks(instructions, state, ir_var_shader_in);
206 remove_per_vertex_blocks(instructions, state, ir_var_shader_out);
207
208 /* Check that we don't have reads from write-only variables */
209 read_from_write_only_variable_visitor v;
210 v.run(instructions);
211 ir_variable *error_var = v.get_variable();
212 if (error_var) {
213 /* It would be nice to have proper location information, but for that
214 * we would need to check this as we process each kind of AST node
215 */
216 YYLTYPE loc;
217 memset(&loc, 0, sizeof(loc));
218 _mesa_glsl_error(&loc, state, "Read from write-only variable `%s'",
219 error_var->name);
220 }
221 }
222
223
224 static ir_expression_operation
225 get_conversion_operation(const glsl_type *to, const glsl_type *from,
226 struct _mesa_glsl_parse_state *state)
227 {
228 switch (to->base_type) {
229 case GLSL_TYPE_FLOAT:
230 switch (from->base_type) {
231 case GLSL_TYPE_INT: return ir_unop_i2f;
232 case GLSL_TYPE_UINT: return ir_unop_u2f;
233 case GLSL_TYPE_DOUBLE: return ir_unop_d2f;
234 default: return (ir_expression_operation)0;
235 }
236
237 case GLSL_TYPE_UINT:
238 if (!state->is_version(400, 0) && !state->ARB_gpu_shader5_enable)
239 return (ir_expression_operation)0;
240 switch (from->base_type) {
241 case GLSL_TYPE_INT: return ir_unop_i2u;
242 default: return (ir_expression_operation)0;
243 }
244
245 case GLSL_TYPE_DOUBLE:
246 if (!state->has_double())
247 return (ir_expression_operation)0;
248 switch (from->base_type) {
249 case GLSL_TYPE_INT: return ir_unop_i2d;
250 case GLSL_TYPE_UINT: return ir_unop_u2d;
251 case GLSL_TYPE_FLOAT: return ir_unop_f2d;
252 default: return (ir_expression_operation)0;
253 }
254
255 default: return (ir_expression_operation)0;
256 }
257 }
258
259
260 /**
261 * If a conversion is available, convert one operand to a different type
262 *
263 * The \c from \c ir_rvalue is converted "in place".
264 *
265 * \param to Type that the operand it to be converted to
266 * \param from Operand that is being converted
267 * \param state GLSL compiler state
268 *
269 * \return
270 * If a conversion is possible (or unnecessary), \c true is returned.
271 * Otherwise \c false is returned.
272 */
273 bool
274 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
275 struct _mesa_glsl_parse_state *state)
276 {
277 void *ctx = state;
278 if (to->base_type == from->type->base_type)
279 return true;
280
281 /* Prior to GLSL 1.20, there are no implicit conversions */
282 if (!state->is_version(120, 0))
283 return false;
284
285 /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
286 *
287 * "There are no implicit array or structure conversions. For
288 * example, an array of int cannot be implicitly converted to an
289 * array of float.
290 */
291 if (!to->is_numeric() || !from->type->is_numeric())
292 return false;
293
294 /* We don't actually want the specific type `to`, we want a type
295 * with the same base type as `to`, but the same vector width as
296 * `from`.
297 */
298 to = glsl_type::get_instance(to->base_type, from->type->vector_elements,
299 from->type->matrix_columns);
300
301 ir_expression_operation op = get_conversion_operation(to, from->type, state);
302 if (op) {
303 from = new(ctx) ir_expression(op, to, from, NULL);
304 return true;
305 } else {
306 return false;
307 }
308 }
309
310
311 static const struct glsl_type *
312 arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
313 bool multiply,
314 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
315 {
316 const glsl_type *type_a = value_a->type;
317 const glsl_type *type_b = value_b->type;
318
319 /* From GLSL 1.50 spec, page 56:
320 *
321 * "The arithmetic binary operators add (+), subtract (-),
322 * multiply (*), and divide (/) operate on integer and
323 * floating-point scalars, vectors, and matrices."
324 */
325 if (!type_a->is_numeric() || !type_b->is_numeric()) {
326 _mesa_glsl_error(loc, state,
327 "operands to arithmetic operators must be numeric");
328 return glsl_type::error_type;
329 }
330
331
332 /* "If one operand is floating-point based and the other is
333 * not, then the conversions from Section 4.1.10 "Implicit
334 * Conversions" are applied to the non-floating-point-based operand."
335 */
336 if (!apply_implicit_conversion(type_a, value_b, state)
337 && !apply_implicit_conversion(type_b, value_a, state)) {
338 _mesa_glsl_error(loc, state,
339 "could not implicitly convert operands to "
340 "arithmetic operator");
341 return glsl_type::error_type;
342 }
343 type_a = value_a->type;
344 type_b = value_b->type;
345
346 /* "If the operands are integer types, they must both be signed or
347 * both be unsigned."
348 *
349 * From this rule and the preceeding conversion it can be inferred that
350 * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
351 * The is_numeric check above already filtered out the case where either
352 * type is not one of these, so now the base types need only be tested for
353 * equality.
354 */
355 if (type_a->base_type != type_b->base_type) {
356 _mesa_glsl_error(loc, state,
357 "base type mismatch for arithmetic operator");
358 return glsl_type::error_type;
359 }
360
361 /* "All arithmetic binary operators result in the same fundamental type
362 * (signed integer, unsigned integer, or floating-point) as the
363 * operands they operate on, after operand type conversion. After
364 * conversion, the following cases are valid
365 *
366 * * The two operands are scalars. In this case the operation is
367 * applied, resulting in a scalar."
368 */
369 if (type_a->is_scalar() && type_b->is_scalar())
370 return type_a;
371
372 /* "* One operand is a scalar, and the other is a vector or matrix.
373 * In this case, the scalar operation is applied independently to each
374 * component of the vector or matrix, resulting in the same size
375 * vector or matrix."
376 */
377 if (type_a->is_scalar()) {
378 if (!type_b->is_scalar())
379 return type_b;
380 } else if (type_b->is_scalar()) {
381 return type_a;
382 }
383
384 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
385 * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
386 * handled.
387 */
388 assert(!type_a->is_scalar());
389 assert(!type_b->is_scalar());
390
391 /* "* The two operands are vectors of the same size. In this case, the
392 * operation is done component-wise resulting in the same size
393 * vector."
394 */
395 if (type_a->is_vector() && type_b->is_vector()) {
396 if (type_a == type_b) {
397 return type_a;
398 } else {
399 _mesa_glsl_error(loc, state,
400 "vector size mismatch for arithmetic operator");
401 return glsl_type::error_type;
402 }
403 }
404
405 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
406 * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
407 * <vector, vector> have been handled. At least one of the operands must
408 * be matrix. Further, since there are no integer matrix types, the base
409 * type of both operands must be float.
410 */
411 assert(type_a->is_matrix() || type_b->is_matrix());
412 assert(type_a->base_type == GLSL_TYPE_FLOAT ||
413 type_a->base_type == GLSL_TYPE_DOUBLE);
414 assert(type_b->base_type == GLSL_TYPE_FLOAT ||
415 type_b->base_type == GLSL_TYPE_DOUBLE);
416
417 /* "* The operator is add (+), subtract (-), or divide (/), and the
418 * operands are matrices with the same number of rows and the same
419 * number of columns. In this case, the operation is done component-
420 * wise resulting in the same size matrix."
421 * * The operator is multiply (*), where both operands are matrices or
422 * one operand is a vector and the other a matrix. A right vector
423 * operand is treated as a column vector and a left vector operand as a
424 * row vector. In all these cases, it is required that the number of
425 * columns of the left operand is equal to the number of rows of the
426 * right operand. Then, the multiply (*) operation does a linear
427 * algebraic multiply, yielding an object that has the same number of
428 * rows as the left operand and the same number of columns as the right
429 * operand. Section 5.10 "Vector and Matrix Operations" explains in
430 * more detail how vectors and matrices are operated on."
431 */
432 if (! multiply) {
433 if (type_a == type_b)
434 return type_a;
435 } else {
436 const glsl_type *type = glsl_type::get_mul_type(type_a, type_b);
437
438 if (type == glsl_type::error_type) {
439 _mesa_glsl_error(loc, state,
440 "size mismatch for matrix multiplication");
441 }
442
443 return type;
444 }
445
446
447 /* "All other cases are illegal."
448 */
449 _mesa_glsl_error(loc, state, "type mismatch");
450 return glsl_type::error_type;
451 }
452
453
454 static const struct glsl_type *
455 unary_arithmetic_result_type(const struct glsl_type *type,
456 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
457 {
458 /* From GLSL 1.50 spec, page 57:
459 *
460 * "The arithmetic unary operators negate (-), post- and pre-increment
461 * and decrement (-- and ++) operate on integer or floating-point
462 * values (including vectors and matrices). All unary operators work
463 * component-wise on their operands. These result with the same type
464 * they operated on."
465 */
466 if (!type->is_numeric()) {
467 _mesa_glsl_error(loc, state,
468 "operands to arithmetic operators must be numeric");
469 return glsl_type::error_type;
470 }
471
472 return type;
473 }
474
475 /**
476 * \brief Return the result type of a bit-logic operation.
477 *
478 * If the given types to the bit-logic operator are invalid, return
479 * glsl_type::error_type.
480 *
481 * \param type_a Type of LHS of bit-logic op
482 * \param type_b Type of RHS of bit-logic op
483 */
484 static const struct glsl_type *
485 bit_logic_result_type(const struct glsl_type *type_a,
486 const struct glsl_type *type_b,
487 ast_operators op,
488 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
489 {
490 if (!state->check_bitwise_operations_allowed(loc)) {
491 return glsl_type::error_type;
492 }
493
494 /* From page 50 (page 56 of PDF) of GLSL 1.30 spec:
495 *
496 * "The bitwise operators and (&), exclusive-or (^), and inclusive-or
497 * (|). The operands must be of type signed or unsigned integers or
498 * integer vectors."
499 */
500 if (!type_a->is_integer()) {
501 _mesa_glsl_error(loc, state, "LHS of `%s' must be an integer",
502 ast_expression::operator_string(op));
503 return glsl_type::error_type;
504 }
505 if (!type_b->is_integer()) {
506 _mesa_glsl_error(loc, state, "RHS of `%s' must be an integer",
507 ast_expression::operator_string(op));
508 return glsl_type::error_type;
509 }
510
511 /* "The fundamental types of the operands (signed or unsigned) must
512 * match,"
513 */
514 if (type_a->base_type != type_b->base_type) {
515 _mesa_glsl_error(loc, state, "operands of `%s' must have the same "
516 "base type", ast_expression::operator_string(op));
517 return glsl_type::error_type;
518 }
519
520 /* "The operands cannot be vectors of differing size." */
521 if (type_a->is_vector() &&
522 type_b->is_vector() &&
523 type_a->vector_elements != type_b->vector_elements) {
524 _mesa_glsl_error(loc, state, "operands of `%s' cannot be vectors of "
525 "different sizes", ast_expression::operator_string(op));
526 return glsl_type::error_type;
527 }
528
529 /* "If one operand is a scalar and the other a vector, the scalar is
530 * applied component-wise to the vector, resulting in the same type as
531 * the vector. The fundamental types of the operands [...] will be the
532 * resulting fundamental type."
533 */
534 if (type_a->is_scalar())
535 return type_b;
536 else
537 return type_a;
538 }
539
540 static const struct glsl_type *
541 modulus_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
542 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
543 {
544 const glsl_type *type_a = value_a->type;
545 const glsl_type *type_b = value_b->type;
546
547 if (!state->check_version(130, 300, loc, "operator '%%' is reserved")) {
548 return glsl_type::error_type;
549 }
550
551 /* Section 5.9 (Expressions) of the GLSL 4.00 specification says:
552 *
553 * "The operator modulus (%) operates on signed or unsigned integers or
554 * integer vectors."
555 */
556 if (!type_a->is_integer()) {
557 _mesa_glsl_error(loc, state, "LHS of operator %% must be an integer");
558 return glsl_type::error_type;
559 }
560 if (!type_b->is_integer()) {
561 _mesa_glsl_error(loc, state, "RHS of operator %% must be an integer");
562 return glsl_type::error_type;
563 }
564
565 /* "If the fundamental types in the operands do not match, then the
566 * conversions from section 4.1.10 "Implicit Conversions" are applied
567 * to create matching types."
568 *
569 * Note that GLSL 4.00 (and GL_ARB_gpu_shader5) introduced implicit
570 * int -> uint conversion rules. Prior to that, there were no implicit
571 * conversions. So it's harmless to apply them universally - no implicit
572 * conversions will exist. If the types don't match, we'll receive false,
573 * and raise an error, satisfying the GLSL 1.50 spec, page 56:
574 *
575 * "The operand types must both be signed or unsigned."
576 */
577 if (!apply_implicit_conversion(type_a, value_b, state) &&
578 !apply_implicit_conversion(type_b, value_a, state)) {
579 _mesa_glsl_error(loc, state,
580 "could not implicitly convert operands to "
581 "modulus (%%) operator");
582 return glsl_type::error_type;
583 }
584 type_a = value_a->type;
585 type_b = value_b->type;
586
587 /* "The operands cannot be vectors of differing size. If one operand is
588 * a scalar and the other vector, then the scalar is applied component-
589 * wise to the vector, resulting in the same type as the vector. If both
590 * are vectors of the same size, the result is computed component-wise."
591 */
592 if (type_a->is_vector()) {
593 if (!type_b->is_vector()
594 || (type_a->vector_elements == type_b->vector_elements))
595 return type_a;
596 } else
597 return type_b;
598
599 /* "The operator modulus (%) is not defined for any other data types
600 * (non-integer types)."
601 */
602 _mesa_glsl_error(loc, state, "type mismatch");
603 return glsl_type::error_type;
604 }
605
606
607 static const struct glsl_type *
608 relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
609 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
610 {
611 const glsl_type *type_a = value_a->type;
612 const glsl_type *type_b = value_b->type;
613
614 /* From GLSL 1.50 spec, page 56:
615 * "The relational operators greater than (>), less than (<), greater
616 * than or equal (>=), and less than or equal (<=) operate only on
617 * scalar integer and scalar floating-point expressions."
618 */
619 if (!type_a->is_numeric()
620 || !type_b->is_numeric()
621 || !type_a->is_scalar()
622 || !type_b->is_scalar()) {
623 _mesa_glsl_error(loc, state,
624 "operands to relational operators must be scalar and "
625 "numeric");
626 return glsl_type::error_type;
627 }
628
629 /* "Either the operands' types must match, or the conversions from
630 * Section 4.1.10 "Implicit Conversions" will be applied to the integer
631 * operand, after which the types must match."
632 */
633 if (!apply_implicit_conversion(type_a, value_b, state)
634 && !apply_implicit_conversion(type_b, value_a, state)) {
635 _mesa_glsl_error(loc, state,
636 "could not implicitly convert operands to "
637 "relational operator");
638 return glsl_type::error_type;
639 }
640 type_a = value_a->type;
641 type_b = value_b->type;
642
643 if (type_a->base_type != type_b->base_type) {
644 _mesa_glsl_error(loc, state, "base type mismatch");
645 return glsl_type::error_type;
646 }
647
648 /* "The result is scalar Boolean."
649 */
650 return glsl_type::bool_type;
651 }
652
653 /**
654 * \brief Return the result type of a bit-shift operation.
655 *
656 * If the given types to the bit-shift operator are invalid, return
657 * glsl_type::error_type.
658 *
659 * \param type_a Type of LHS of bit-shift op
660 * \param type_b Type of RHS of bit-shift op
661 */
662 static const struct glsl_type *
663 shift_result_type(const struct glsl_type *type_a,
664 const struct glsl_type *type_b,
665 ast_operators op,
666 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
667 {
668 if (!state->check_bitwise_operations_allowed(loc)) {
669 return glsl_type::error_type;
670 }
671
672 /* From page 50 (page 56 of the PDF) of the GLSL 1.30 spec:
673 *
674 * "The shift operators (<<) and (>>). For both operators, the operands
675 * must be signed or unsigned integers or integer vectors. One operand
676 * can be signed while the other is unsigned."
677 */
678 if (!type_a->is_integer()) {
679 _mesa_glsl_error(loc, state, "LHS of operator %s must be an integer or "
680 "integer vector", ast_expression::operator_string(op));
681 return glsl_type::error_type;
682
683 }
684 if (!type_b->is_integer()) {
685 _mesa_glsl_error(loc, state, "RHS of operator %s must be an integer or "
686 "integer vector", ast_expression::operator_string(op));
687 return glsl_type::error_type;
688 }
689
690 /* "If the first operand is a scalar, the second operand has to be
691 * a scalar as well."
692 */
693 if (type_a->is_scalar() && !type_b->is_scalar()) {
694 _mesa_glsl_error(loc, state, "if the first operand of %s is scalar, the "
695 "second must be scalar as well",
696 ast_expression::operator_string(op));
697 return glsl_type::error_type;
698 }
699
700 /* If both operands are vectors, check that they have same number of
701 * elements.
702 */
703 if (type_a->is_vector() &&
704 type_b->is_vector() &&
705 type_a->vector_elements != type_b->vector_elements) {
706 _mesa_glsl_error(loc, state, "vector operands to operator %s must "
707 "have same number of elements",
708 ast_expression::operator_string(op));
709 return glsl_type::error_type;
710 }
711
712 /* "In all cases, the resulting type will be the same type as the left
713 * operand."
714 */
715 return type_a;
716 }
717
718 /**
719 * Returns the innermost array index expression in an rvalue tree.
720 * This is the largest indexing level -- if an array of blocks, then
721 * it is the block index rather than an indexing expression for an
722 * array-typed member of an array of blocks.
723 */
724 static ir_rvalue *
725 find_innermost_array_index(ir_rvalue *rv)
726 {
727 ir_dereference_array *last = NULL;
728 while (rv) {
729 if (rv->as_dereference_array()) {
730 last = rv->as_dereference_array();
731 rv = last->array;
732 } else if (rv->as_dereference_record())
733 rv = rv->as_dereference_record()->record;
734 else if (rv->as_swizzle())
735 rv = rv->as_swizzle()->val;
736 else
737 rv = NULL;
738 }
739
740 if (last)
741 return last->array_index;
742
743 return NULL;
744 }
745
746 /**
747 * Validates that a value can be assigned to a location with a specified type
748 *
749 * Validates that \c rhs can be assigned to some location. If the types are
750 * not an exact match but an automatic conversion is possible, \c rhs will be
751 * converted.
752 *
753 * \return
754 * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
755 * Otherwise the actual RHS to be assigned will be returned. This may be
756 * \c rhs, or it may be \c rhs after some type conversion.
757 *
758 * \note
759 * In addition to being used for assignments, this function is used to
760 * type-check return values.
761 */
762 static ir_rvalue *
763 validate_assignment(struct _mesa_glsl_parse_state *state,
764 YYLTYPE loc, ir_rvalue *lhs,
765 ir_rvalue *rhs, bool is_initializer)
766 {
767 /* If there is already some error in the RHS, just return it. Anything
768 * else will lead to an avalanche of error message back to the user.
769 */
770 if (rhs->type->is_error())
771 return rhs;
772
773 /* In the Tessellation Control Shader:
774 * If a per-vertex output variable is used as an l-value, it is an error
775 * if the expression indicating the vertex number is not the identifier
776 * `gl_InvocationID`.
777 */
778 if (state->stage == MESA_SHADER_TESS_CTRL) {
779 ir_variable *var = lhs->variable_referenced();
780 if (var->data.mode == ir_var_shader_out && !var->data.patch) {
781 ir_rvalue *index = find_innermost_array_index(lhs);
782 ir_variable *index_var = index ? index->variable_referenced() : NULL;
783 if (!index_var || strcmp(index_var->name, "gl_InvocationID") != 0) {
784 _mesa_glsl_error(&loc, state,
785 "Tessellation control shader outputs can only "
786 "be indexed by gl_InvocationID");
787 return NULL;
788 }
789 }
790 }
791
792 /* If the types are identical, the assignment can trivially proceed.
793 */
794 if (rhs->type == lhs->type)
795 return rhs;
796
797 /* If the array element types are the same and the LHS is unsized,
798 * the assignment is okay for initializers embedded in variable
799 * declarations.
800 *
801 * Note: Whole-array assignments are not permitted in GLSL 1.10, but this
802 * is handled by ir_dereference::is_lvalue.
803 */
804 const glsl_type *lhs_t = lhs->type;
805 const glsl_type *rhs_t = rhs->type;
806 bool unsized_array = false;
807 while(lhs_t->is_array()) {
808 if (rhs_t == lhs_t)
809 break; /* the rest of the inner arrays match so break out early */
810 if (!rhs_t->is_array()) {
811 unsized_array = false;
812 break; /* number of dimensions mismatch */
813 }
814 if (lhs_t->length == rhs_t->length) {
815 lhs_t = lhs_t->fields.array;
816 rhs_t = rhs_t->fields.array;
817 continue;
818 } else if (lhs_t->is_unsized_array()) {
819 unsized_array = true;
820 } else {
821 unsized_array = false;
822 break; /* sized array mismatch */
823 }
824 lhs_t = lhs_t->fields.array;
825 rhs_t = rhs_t->fields.array;
826 }
827 if (unsized_array) {
828 if (is_initializer) {
829 return rhs;
830 } else {
831 _mesa_glsl_error(&loc, state,
832 "implicitly sized arrays cannot be assigned");
833 return NULL;
834 }
835 }
836
837 /* Check for implicit conversion in GLSL 1.20 */
838 if (apply_implicit_conversion(lhs->type, rhs, state)) {
839 if (rhs->type == lhs->type)
840 return rhs;
841 }
842
843 _mesa_glsl_error(&loc, state,
844 "%s of type %s cannot be assigned to "
845 "variable of type %s",
846 is_initializer ? "initializer" : "value",
847 rhs->type->name, lhs->type->name);
848
849 return NULL;
850 }
851
852 static void
853 mark_whole_array_access(ir_rvalue *access)
854 {
855 ir_dereference_variable *deref = access->as_dereference_variable();
856
857 if (deref && deref->var) {
858 deref->var->data.max_array_access = deref->type->length - 1;
859 }
860 }
861
862 static bool
863 do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state,
864 const char *non_lvalue_description,
865 ir_rvalue *lhs, ir_rvalue *rhs,
866 ir_rvalue **out_rvalue, bool needs_rvalue,
867 bool is_initializer,
868 YYLTYPE lhs_loc)
869 {
870 void *ctx = state;
871 bool error_emitted = (lhs->type->is_error() || rhs->type->is_error());
872
873 ir_variable *lhs_var = lhs->variable_referenced();
874 if (lhs_var)
875 lhs_var->data.assigned = true;
876
877 if (!error_emitted) {
878 if (non_lvalue_description != NULL) {
879 _mesa_glsl_error(&lhs_loc, state,
880 "assignment to %s",
881 non_lvalue_description);
882 error_emitted = true;
883 } else if (lhs_var != NULL && (lhs_var->data.read_only ||
884 (lhs_var->data.mode == ir_var_shader_storage &&
885 lhs_var->data.image_read_only))) {
886 /* We can have image_read_only set on both images and buffer variables,
887 * but in the former there is a distinction between assignments to
888 * the variable itself (read_only) and to the memory they point to
889 * (image_read_only), while in the case of buffer variables there is
890 * no such distinction, that is why this check here is limited to
891 * buffer variables alone.
892 */
893 _mesa_glsl_error(&lhs_loc, state,
894 "assignment to read-only variable '%s'",
895 lhs_var->name);
896 error_emitted = true;
897 } else if (lhs->type->is_array() &&
898 !state->check_version(120, 300, &lhs_loc,
899 "whole array assignment forbidden")) {
900 /* From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
901 *
902 * "Other binary or unary expressions, non-dereferenced
903 * arrays, function names, swizzles with repeated fields,
904 * and constants cannot be l-values."
905 *
906 * The restriction on arrays is lifted in GLSL 1.20 and GLSL ES 3.00.
907 */
908 error_emitted = true;
909 } else if (!lhs->is_lvalue()) {
910 _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment");
911 error_emitted = true;
912 }
913 }
914
915 ir_rvalue *new_rhs =
916 validate_assignment(state, lhs_loc, lhs, rhs, is_initializer);
917 if (new_rhs != NULL) {
918 rhs = new_rhs;
919
920 /* If the LHS array was not declared with a size, it takes it size from
921 * the RHS. If the LHS is an l-value and a whole array, it must be a
922 * dereference of a variable. Any other case would require that the LHS
923 * is either not an l-value or not a whole array.
924 */
925 if (lhs->type->is_unsized_array()) {
926 ir_dereference *const d = lhs->as_dereference();
927
928 assert(d != NULL);
929
930 ir_variable *const var = d->variable_referenced();
931
932 assert(var != NULL);
933
934 if (var->data.max_array_access >= unsigned(rhs->type->array_size())) {
935 /* FINISHME: This should actually log the location of the RHS. */
936 _mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to "
937 "previous access",
938 var->data.max_array_access);
939 }
940
941 var->type = glsl_type::get_array_instance(lhs->type->fields.array,
942 rhs->type->array_size());
943 d->type = var->type;
944 }
945 if (lhs->type->is_array()) {
946 mark_whole_array_access(rhs);
947 mark_whole_array_access(lhs);
948 }
949 }
950
951 /* Most callers of do_assignment (assign, add_assign, pre_inc/dec,
952 * but not post_inc) need the converted assigned value as an rvalue
953 * to handle things like:
954 *
955 * i = j += 1;
956 */
957 if (needs_rvalue) {
958 ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp",
959 ir_var_temporary);
960 instructions->push_tail(var);
961 instructions->push_tail(assign(var, rhs));
962
963 if (!error_emitted) {
964 ir_dereference_variable *deref_var = new(ctx) ir_dereference_variable(var);
965 instructions->push_tail(new(ctx) ir_assignment(lhs, deref_var));
966 }
967 ir_rvalue *rvalue = new(ctx) ir_dereference_variable(var);
968
969 *out_rvalue = rvalue;
970 } else {
971 if (!error_emitted)
972 instructions->push_tail(new(ctx) ir_assignment(lhs, rhs));
973 *out_rvalue = NULL;
974 }
975
976 return error_emitted;
977 }
978
979 static ir_rvalue *
980 get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue)
981 {
982 void *ctx = ralloc_parent(lvalue);
983 ir_variable *var;
984
985 var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp",
986 ir_var_temporary);
987 instructions->push_tail(var);
988
989 instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
990 lvalue));
991
992 return new(ctx) ir_dereference_variable(var);
993 }
994
995
996 ir_rvalue *
997 ast_node::hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
998 {
999 (void) instructions;
1000 (void) state;
1001
1002 return NULL;
1003 }
1004
1005 bool
1006 ast_node::has_sequence_subexpression() const
1007 {
1008 return false;
1009 }
1010
1011 void
1012 ast_function_expression::hir_no_rvalue(exec_list *instructions,
1013 struct _mesa_glsl_parse_state *state)
1014 {
1015 (void)hir(instructions, state);
1016 }
1017
1018 void
1019 ast_aggregate_initializer::hir_no_rvalue(exec_list *instructions,
1020 struct _mesa_glsl_parse_state *state)
1021 {
1022 (void)hir(instructions, state);
1023 }
1024
1025 static ir_rvalue *
1026 do_comparison(void *mem_ctx, int operation, ir_rvalue *op0, ir_rvalue *op1)
1027 {
1028 int join_op;
1029 ir_rvalue *cmp = NULL;
1030
1031 if (operation == ir_binop_all_equal)
1032 join_op = ir_binop_logic_and;
1033 else
1034 join_op = ir_binop_logic_or;
1035
1036 switch (op0->type->base_type) {
1037 case GLSL_TYPE_FLOAT:
1038 case GLSL_TYPE_UINT:
1039 case GLSL_TYPE_INT:
1040 case GLSL_TYPE_BOOL:
1041 case GLSL_TYPE_DOUBLE:
1042 return new(mem_ctx) ir_expression(operation, op0, op1);
1043
1044 case GLSL_TYPE_ARRAY: {
1045 for (unsigned int i = 0; i < op0->type->length; i++) {
1046 ir_rvalue *e0, *e1, *result;
1047
1048 e0 = new(mem_ctx) ir_dereference_array(op0->clone(mem_ctx, NULL),
1049 new(mem_ctx) ir_constant(i));
1050 e1 = new(mem_ctx) ir_dereference_array(op1->clone(mem_ctx, NULL),
1051 new(mem_ctx) ir_constant(i));
1052 result = do_comparison(mem_ctx, operation, e0, e1);
1053
1054 if (cmp) {
1055 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
1056 } else {
1057 cmp = result;
1058 }
1059 }
1060
1061 mark_whole_array_access(op0);
1062 mark_whole_array_access(op1);
1063 break;
1064 }
1065
1066 case GLSL_TYPE_STRUCT: {
1067 for (unsigned int i = 0; i < op0->type->length; i++) {
1068 ir_rvalue *e0, *e1, *result;
1069 const char *field_name = op0->type->fields.structure[i].name;
1070
1071 e0 = new(mem_ctx) ir_dereference_record(op0->clone(mem_ctx, NULL),
1072 field_name);
1073 e1 = new(mem_ctx) ir_dereference_record(op1->clone(mem_ctx, NULL),
1074 field_name);
1075 result = do_comparison(mem_ctx, operation, e0, e1);
1076
1077 if (cmp) {
1078 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
1079 } else {
1080 cmp = result;
1081 }
1082 }
1083 break;
1084 }
1085
1086 case GLSL_TYPE_ERROR:
1087 case GLSL_TYPE_VOID:
1088 case GLSL_TYPE_SAMPLER:
1089 case GLSL_TYPE_IMAGE:
1090 case GLSL_TYPE_INTERFACE:
1091 case GLSL_TYPE_FUNCTION:
1092 case GLSL_TYPE_ATOMIC_UINT:
1093 case GLSL_TYPE_SUBROUTINE:
1094 /* I assume a comparison of a struct containing a sampler just
1095 * ignores the sampler present in the type.
1096 */
1097 break;
1098 }
1099
1100 if (cmp == NULL)
1101 cmp = new(mem_ctx) ir_constant(true);
1102
1103 return cmp;
1104 }
1105
1106 /* For logical operations, we want to ensure that the operands are
1107 * scalar booleans. If it isn't, emit an error and return a constant
1108 * boolean to avoid triggering cascading error messages.
1109 */
1110 ir_rvalue *
1111 get_scalar_boolean_operand(exec_list *instructions,
1112 struct _mesa_glsl_parse_state *state,
1113 ast_expression *parent_expr,
1114 int operand,
1115 const char *operand_name,
1116 bool *error_emitted)
1117 {
1118 ast_expression *expr = parent_expr->subexpressions[operand];
1119 void *ctx = state;
1120 ir_rvalue *val = expr->hir(instructions, state);
1121
1122 if (val->type->is_boolean() && val->type->is_scalar())
1123 return val;
1124
1125 if (!*error_emitted) {
1126 YYLTYPE loc = expr->get_location();
1127 _mesa_glsl_error(&loc, state, "%s of `%s' must be scalar boolean",
1128 operand_name,
1129 parent_expr->operator_string(parent_expr->oper));
1130 *error_emitted = true;
1131 }
1132
1133 return new(ctx) ir_constant(true);
1134 }
1135
1136 /**
1137 * If name refers to a builtin array whose maximum allowed size is less than
1138 * size, report an error and return true. Otherwise return false.
1139 */
1140 void
1141 check_builtin_array_max_size(const char *name, unsigned size,
1142 YYLTYPE loc, struct _mesa_glsl_parse_state *state)
1143 {
1144 if ((strcmp("gl_TexCoord", name) == 0)
1145 && (size > state->Const.MaxTextureCoords)) {
1146 /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec:
1147 *
1148 * "The size [of gl_TexCoord] can be at most
1149 * gl_MaxTextureCoords."
1150 */
1151 _mesa_glsl_error(&loc, state, "`gl_TexCoord' array size cannot "
1152 "be larger than gl_MaxTextureCoords (%u)",
1153 state->Const.MaxTextureCoords);
1154 } else if (strcmp("gl_ClipDistance", name) == 0
1155 && size > state->Const.MaxClipPlanes) {
1156 /* From section 7.1 (Vertex Shader Special Variables) of the
1157 * GLSL 1.30 spec:
1158 *
1159 * "The gl_ClipDistance array is predeclared as unsized and
1160 * must be sized by the shader either redeclaring it with a
1161 * size or indexing it only with integral constant
1162 * expressions. ... The size can be at most
1163 * gl_MaxClipDistances."
1164 */
1165 _mesa_glsl_error(&loc, state, "`gl_ClipDistance' array size cannot "
1166 "be larger than gl_MaxClipDistances (%u)",
1167 state->Const.MaxClipPlanes);
1168 }
1169 }
1170
1171 /**
1172 * Create the constant 1, of a which is appropriate for incrementing and
1173 * decrementing values of the given GLSL type. For example, if type is vec4,
1174 * this creates a constant value of 1.0 having type float.
1175 *
1176 * If the given type is invalid for increment and decrement operators, return
1177 * a floating point 1--the error will be detected later.
1178 */
1179 static ir_rvalue *
1180 constant_one_for_inc_dec(void *ctx, const glsl_type *type)
1181 {
1182 switch (type->base_type) {
1183 case GLSL_TYPE_UINT:
1184 return new(ctx) ir_constant((unsigned) 1);
1185 case GLSL_TYPE_INT:
1186 return new(ctx) ir_constant(1);
1187 default:
1188 case GLSL_TYPE_FLOAT:
1189 return new(ctx) ir_constant(1.0f);
1190 }
1191 }
1192
1193 ir_rvalue *
1194 ast_expression::hir(exec_list *instructions,
1195 struct _mesa_glsl_parse_state *state)
1196 {
1197 return do_hir(instructions, state, true);
1198 }
1199
1200 void
1201 ast_expression::hir_no_rvalue(exec_list *instructions,
1202 struct _mesa_glsl_parse_state *state)
1203 {
1204 do_hir(instructions, state, false);
1205 }
1206
1207 ir_rvalue *
1208 ast_expression::do_hir(exec_list *instructions,
1209 struct _mesa_glsl_parse_state *state,
1210 bool needs_rvalue)
1211 {
1212 void *ctx = state;
1213 static const int operations[AST_NUM_OPERATORS] = {
1214 -1, /* ast_assign doesn't convert to ir_expression. */
1215 -1, /* ast_plus doesn't convert to ir_expression. */
1216 ir_unop_neg,
1217 ir_binop_add,
1218 ir_binop_sub,
1219 ir_binop_mul,
1220 ir_binop_div,
1221 ir_binop_mod,
1222 ir_binop_lshift,
1223 ir_binop_rshift,
1224 ir_binop_less,
1225 ir_binop_greater,
1226 ir_binop_lequal,
1227 ir_binop_gequal,
1228 ir_binop_all_equal,
1229 ir_binop_any_nequal,
1230 ir_binop_bit_and,
1231 ir_binop_bit_xor,
1232 ir_binop_bit_or,
1233 ir_unop_bit_not,
1234 ir_binop_logic_and,
1235 ir_binop_logic_xor,
1236 ir_binop_logic_or,
1237 ir_unop_logic_not,
1238
1239 /* Note: The following block of expression types actually convert
1240 * to multiple IR instructions.
1241 */
1242 ir_binop_mul, /* ast_mul_assign */
1243 ir_binop_div, /* ast_div_assign */
1244 ir_binop_mod, /* ast_mod_assign */
1245 ir_binop_add, /* ast_add_assign */
1246 ir_binop_sub, /* ast_sub_assign */
1247 ir_binop_lshift, /* ast_ls_assign */
1248 ir_binop_rshift, /* ast_rs_assign */
1249 ir_binop_bit_and, /* ast_and_assign */
1250 ir_binop_bit_xor, /* ast_xor_assign */
1251 ir_binop_bit_or, /* ast_or_assign */
1252
1253 -1, /* ast_conditional doesn't convert to ir_expression. */
1254 ir_binop_add, /* ast_pre_inc. */
1255 ir_binop_sub, /* ast_pre_dec. */
1256 ir_binop_add, /* ast_post_inc. */
1257 ir_binop_sub, /* ast_post_dec. */
1258 -1, /* ast_field_selection doesn't conv to ir_expression. */
1259 -1, /* ast_array_index doesn't convert to ir_expression. */
1260 -1, /* ast_function_call doesn't conv to ir_expression. */
1261 -1, /* ast_identifier doesn't convert to ir_expression. */
1262 -1, /* ast_int_constant doesn't convert to ir_expression. */
1263 -1, /* ast_uint_constant doesn't conv to ir_expression. */
1264 -1, /* ast_float_constant doesn't conv to ir_expression. */
1265 -1, /* ast_bool_constant doesn't conv to ir_expression. */
1266 -1, /* ast_sequence doesn't convert to ir_expression. */
1267 };
1268 ir_rvalue *result = NULL;
1269 ir_rvalue *op[3];
1270 const struct glsl_type *type; /* a temporary variable for switch cases */
1271 bool error_emitted = false;
1272 YYLTYPE loc;
1273
1274 loc = this->get_location();
1275
1276 switch (this->oper) {
1277 case ast_aggregate:
1278 assert(!"ast_aggregate: Should never get here.");
1279 break;
1280
1281 case ast_assign: {
1282 op[0] = this->subexpressions[0]->hir(instructions, state);
1283 op[1] = this->subexpressions[1]->hir(instructions, state);
1284
1285 error_emitted =
1286 do_assignment(instructions, state,
1287 this->subexpressions[0]->non_lvalue_description,
1288 op[0], op[1], &result, needs_rvalue, false,
1289 this->subexpressions[0]->get_location());
1290 break;
1291 }
1292
1293 case ast_plus:
1294 op[0] = this->subexpressions[0]->hir(instructions, state);
1295
1296 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1297
1298 error_emitted = type->is_error();
1299
1300 result = op[0];
1301 break;
1302
1303 case ast_neg:
1304 op[0] = this->subexpressions[0]->hir(instructions, state);
1305
1306 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1307
1308 error_emitted = type->is_error();
1309
1310 result = new(ctx) ir_expression(operations[this->oper], type,
1311 op[0], NULL);
1312 break;
1313
1314 case ast_add:
1315 case ast_sub:
1316 case ast_mul:
1317 case ast_div:
1318 op[0] = this->subexpressions[0]->hir(instructions, state);
1319 op[1] = this->subexpressions[1]->hir(instructions, state);
1320
1321 type = arithmetic_result_type(op[0], op[1],
1322 (this->oper == ast_mul),
1323 state, & loc);
1324 error_emitted = type->is_error();
1325
1326 result = new(ctx) ir_expression(operations[this->oper], type,
1327 op[0], op[1]);
1328 break;
1329
1330 case ast_mod:
1331 op[0] = this->subexpressions[0]->hir(instructions, state);
1332 op[1] = this->subexpressions[1]->hir(instructions, state);
1333
1334 type = modulus_result_type(op[0], op[1], state, &loc);
1335
1336 assert(operations[this->oper] == ir_binop_mod);
1337
1338 result = new(ctx) ir_expression(operations[this->oper], type,
1339 op[0], op[1]);
1340 error_emitted = type->is_error();
1341 break;
1342
1343 case ast_lshift:
1344 case ast_rshift:
1345 if (!state->check_bitwise_operations_allowed(&loc)) {
1346 error_emitted = true;
1347 }
1348
1349 op[0] = this->subexpressions[0]->hir(instructions, state);
1350 op[1] = this->subexpressions[1]->hir(instructions, state);
1351 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1352 &loc);
1353 result = new(ctx) ir_expression(operations[this->oper], type,
1354 op[0], op[1]);
1355 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1356 break;
1357
1358 case ast_less:
1359 case ast_greater:
1360 case ast_lequal:
1361 case ast_gequal:
1362 op[0] = this->subexpressions[0]->hir(instructions, state);
1363 op[1] = this->subexpressions[1]->hir(instructions, state);
1364
1365 type = relational_result_type(op[0], op[1], state, & loc);
1366
1367 /* The relational operators must either generate an error or result
1368 * in a scalar boolean. See page 57 of the GLSL 1.50 spec.
1369 */
1370 assert(type->is_error()
1371 || ((type->base_type == GLSL_TYPE_BOOL)
1372 && type->is_scalar()));
1373
1374 result = new(ctx) ir_expression(operations[this->oper], type,
1375 op[0], op[1]);
1376 error_emitted = type->is_error();
1377 break;
1378
1379 case ast_nequal:
1380 case ast_equal:
1381 op[0] = this->subexpressions[0]->hir(instructions, state);
1382 op[1] = this->subexpressions[1]->hir(instructions, state);
1383
1384 /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
1385 *
1386 * "The equality operators equal (==), and not equal (!=)
1387 * operate on all types. They result in a scalar Boolean. If
1388 * the operand types do not match, then there must be a
1389 * conversion from Section 4.1.10 "Implicit Conversions"
1390 * applied to one operand that can make them match, in which
1391 * case this conversion is done."
1392 */
1393
1394 if (op[0]->type == glsl_type::void_type || op[1]->type == glsl_type::void_type) {
1395 _mesa_glsl_error(& loc, state, "`%s': wrong operand types: "
1396 "no operation `%1$s' exists that takes a left-hand "
1397 "operand of type 'void' or a right operand of type "
1398 "'void'", (this->oper == ast_equal) ? "==" : "!=");
1399 error_emitted = true;
1400 } else if ((!apply_implicit_conversion(op[0]->type, op[1], state)
1401 && !apply_implicit_conversion(op[1]->type, op[0], state))
1402 || (op[0]->type != op[1]->type)) {
1403 _mesa_glsl_error(& loc, state, "operands of `%s' must have the same "
1404 "type", (this->oper == ast_equal) ? "==" : "!=");
1405 error_emitted = true;
1406 } else if ((op[0]->type->is_array() || op[1]->type->is_array()) &&
1407 !state->check_version(120, 300, &loc,
1408 "array comparisons forbidden")) {
1409 error_emitted = true;
1410 } else if ((op[0]->type->contains_opaque() ||
1411 op[1]->type->contains_opaque())) {
1412 _mesa_glsl_error(&loc, state, "opaque type comparisons forbidden");
1413 error_emitted = true;
1414 }
1415
1416 if (error_emitted) {
1417 result = new(ctx) ir_constant(false);
1418 } else {
1419 result = do_comparison(ctx, operations[this->oper], op[0], op[1]);
1420 assert(result->type == glsl_type::bool_type);
1421 }
1422 break;
1423
1424 case ast_bit_and:
1425 case ast_bit_xor:
1426 case ast_bit_or:
1427 op[0] = this->subexpressions[0]->hir(instructions, state);
1428 op[1] = this->subexpressions[1]->hir(instructions, state);
1429 type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
1430 state, &loc);
1431 result = new(ctx) ir_expression(operations[this->oper], type,
1432 op[0], op[1]);
1433 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1434 break;
1435
1436 case ast_bit_not:
1437 op[0] = this->subexpressions[0]->hir(instructions, state);
1438
1439 if (!state->check_bitwise_operations_allowed(&loc)) {
1440 error_emitted = true;
1441 }
1442
1443 if (!op[0]->type->is_integer()) {
1444 _mesa_glsl_error(&loc, state, "operand of `~' must be an integer");
1445 error_emitted = true;
1446 }
1447
1448 type = error_emitted ? glsl_type::error_type : op[0]->type;
1449 result = new(ctx) ir_expression(ir_unop_bit_not, type, op[0], NULL);
1450 break;
1451
1452 case ast_logic_and: {
1453 exec_list rhs_instructions;
1454 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1455 "LHS", &error_emitted);
1456 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1457 "RHS", &error_emitted);
1458
1459 if (rhs_instructions.is_empty()) {
1460 result = new(ctx) ir_expression(ir_binop_logic_and, op[0], op[1]);
1461 type = result->type;
1462 } else {
1463 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1464 "and_tmp",
1465 ir_var_temporary);
1466 instructions->push_tail(tmp);
1467
1468 ir_if *const stmt = new(ctx) ir_if(op[0]);
1469 instructions->push_tail(stmt);
1470
1471 stmt->then_instructions.append_list(&rhs_instructions);
1472 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1473 ir_assignment *const then_assign =
1474 new(ctx) ir_assignment(then_deref, op[1]);
1475 stmt->then_instructions.push_tail(then_assign);
1476
1477 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1478 ir_assignment *const else_assign =
1479 new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false));
1480 stmt->else_instructions.push_tail(else_assign);
1481
1482 result = new(ctx) ir_dereference_variable(tmp);
1483 type = tmp->type;
1484 }
1485 break;
1486 }
1487
1488 case ast_logic_or: {
1489 exec_list rhs_instructions;
1490 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1491 "LHS", &error_emitted);
1492 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1493 "RHS", &error_emitted);
1494
1495 if (rhs_instructions.is_empty()) {
1496 result = new(ctx) ir_expression(ir_binop_logic_or, op[0], op[1]);
1497 type = result->type;
1498 } else {
1499 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1500 "or_tmp",
1501 ir_var_temporary);
1502 instructions->push_tail(tmp);
1503
1504 ir_if *const stmt = new(ctx) ir_if(op[0]);
1505 instructions->push_tail(stmt);
1506
1507 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1508 ir_assignment *const then_assign =
1509 new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true));
1510 stmt->then_instructions.push_tail(then_assign);
1511
1512 stmt->else_instructions.append_list(&rhs_instructions);
1513 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1514 ir_assignment *const else_assign =
1515 new(ctx) ir_assignment(else_deref, op[1]);
1516 stmt->else_instructions.push_tail(else_assign);
1517
1518 result = new(ctx) ir_dereference_variable(tmp);
1519 type = tmp->type;
1520 }
1521 break;
1522 }
1523
1524 case ast_logic_xor:
1525 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1526 *
1527 * "The logical binary operators and (&&), or ( | | ), and
1528 * exclusive or (^^). They operate only on two Boolean
1529 * expressions and result in a Boolean expression."
1530 */
1531 op[0] = get_scalar_boolean_operand(instructions, state, this, 0, "LHS",
1532 &error_emitted);
1533 op[1] = get_scalar_boolean_operand(instructions, state, this, 1, "RHS",
1534 &error_emitted);
1535
1536 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1537 op[0], op[1]);
1538 break;
1539
1540 case ast_logic_not:
1541 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1542 "operand", &error_emitted);
1543
1544 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1545 op[0], NULL);
1546 break;
1547
1548 case ast_mul_assign:
1549 case ast_div_assign:
1550 case ast_add_assign:
1551 case ast_sub_assign: {
1552 op[0] = this->subexpressions[0]->hir(instructions, state);
1553 op[1] = this->subexpressions[1]->hir(instructions, state);
1554
1555 type = arithmetic_result_type(op[0], op[1],
1556 (this->oper == ast_mul_assign),
1557 state, & loc);
1558
1559 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1560 op[0], op[1]);
1561
1562 error_emitted =
1563 do_assignment(instructions, state,
1564 this->subexpressions[0]->non_lvalue_description,
1565 op[0]->clone(ctx, NULL), temp_rhs,
1566 &result, needs_rvalue, false,
1567 this->subexpressions[0]->get_location());
1568
1569 /* GLSL 1.10 does not allow array assignment. However, we don't have to
1570 * explicitly test for this because none of the binary expression
1571 * operators allow array operands either.
1572 */
1573
1574 break;
1575 }
1576
1577 case ast_mod_assign: {
1578 op[0] = this->subexpressions[0]->hir(instructions, state);
1579 op[1] = this->subexpressions[1]->hir(instructions, state);
1580
1581 type = modulus_result_type(op[0], op[1], state, &loc);
1582
1583 assert(operations[this->oper] == ir_binop_mod);
1584
1585 ir_rvalue *temp_rhs;
1586 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1587 op[0], op[1]);
1588
1589 error_emitted =
1590 do_assignment(instructions, state,
1591 this->subexpressions[0]->non_lvalue_description,
1592 op[0]->clone(ctx, NULL), temp_rhs,
1593 &result, needs_rvalue, false,
1594 this->subexpressions[0]->get_location());
1595 break;
1596 }
1597
1598 case ast_ls_assign:
1599 case ast_rs_assign: {
1600 op[0] = this->subexpressions[0]->hir(instructions, state);
1601 op[1] = this->subexpressions[1]->hir(instructions, state);
1602 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1603 &loc);
1604 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1605 type, op[0], op[1]);
1606 error_emitted =
1607 do_assignment(instructions, state,
1608 this->subexpressions[0]->non_lvalue_description,
1609 op[0]->clone(ctx, NULL), temp_rhs,
1610 &result, needs_rvalue, false,
1611 this->subexpressions[0]->get_location());
1612 break;
1613 }
1614
1615 case ast_and_assign:
1616 case ast_xor_assign:
1617 case ast_or_assign: {
1618 op[0] = this->subexpressions[0]->hir(instructions, state);
1619 op[1] = this->subexpressions[1]->hir(instructions, state);
1620 type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
1621 state, &loc);
1622 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1623 type, op[0], op[1]);
1624 error_emitted =
1625 do_assignment(instructions, state,
1626 this->subexpressions[0]->non_lvalue_description,
1627 op[0]->clone(ctx, NULL), temp_rhs,
1628 &result, needs_rvalue, false,
1629 this->subexpressions[0]->get_location());
1630 break;
1631 }
1632
1633 case ast_conditional: {
1634 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1635 *
1636 * "The ternary selection operator (?:). It operates on three
1637 * expressions (exp1 ? exp2 : exp3). This operator evaluates the
1638 * first expression, which must result in a scalar Boolean."
1639 */
1640 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1641 "condition", &error_emitted);
1642
1643 /* The :? operator is implemented by generating an anonymous temporary
1644 * followed by an if-statement. The last instruction in each branch of
1645 * the if-statement assigns a value to the anonymous temporary. This
1646 * temporary is the r-value of the expression.
1647 */
1648 exec_list then_instructions;
1649 exec_list else_instructions;
1650
1651 op[1] = this->subexpressions[1]->hir(&then_instructions, state);
1652 op[2] = this->subexpressions[2]->hir(&else_instructions, state);
1653
1654 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1655 *
1656 * "The second and third expressions can be any type, as
1657 * long their types match, or there is a conversion in
1658 * Section 4.1.10 "Implicit Conversions" that can be applied
1659 * to one of the expressions to make their types match. This
1660 * resulting matching type is the type of the entire
1661 * expression."
1662 */
1663 if ((!apply_implicit_conversion(op[1]->type, op[2], state)
1664 && !apply_implicit_conversion(op[2]->type, op[1], state))
1665 || (op[1]->type != op[2]->type)) {
1666 YYLTYPE loc = this->subexpressions[1]->get_location();
1667
1668 _mesa_glsl_error(& loc, state, "second and third operands of ?: "
1669 "operator must have matching types");
1670 error_emitted = true;
1671 type = glsl_type::error_type;
1672 } else {
1673 type = op[1]->type;
1674 }
1675
1676 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1677 *
1678 * "The second and third expressions must be the same type, but can
1679 * be of any type other than an array."
1680 */
1681 if (type->is_array() &&
1682 !state->check_version(120, 300, &loc,
1683 "second and third operands of ?: operator "
1684 "cannot be arrays")) {
1685 error_emitted = true;
1686 }
1687
1688 /* From section 4.1.7 of the GLSL 4.50 spec (Opaque Types):
1689 *
1690 * "Except for array indexing, structure member selection, and
1691 * parentheses, opaque variables are not allowed to be operands in
1692 * expressions; such use results in a compile-time error."
1693 */
1694 if (type->contains_opaque()) {
1695 _mesa_glsl_error(&loc, state, "opaque variables cannot be operands "
1696 "of the ?: operator");
1697 error_emitted = true;
1698 }
1699
1700 ir_constant *cond_val = op[0]->constant_expression_value();
1701
1702 if (then_instructions.is_empty()
1703 && else_instructions.is_empty()
1704 && cond_val != NULL) {
1705 result = cond_val->value.b[0] ? op[1] : op[2];
1706 } else {
1707 /* The copy to conditional_tmp reads the whole array. */
1708 if (type->is_array()) {
1709 mark_whole_array_access(op[1]);
1710 mark_whole_array_access(op[2]);
1711 }
1712
1713 ir_variable *const tmp =
1714 new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary);
1715 instructions->push_tail(tmp);
1716
1717 ir_if *const stmt = new(ctx) ir_if(op[0]);
1718 instructions->push_tail(stmt);
1719
1720 then_instructions.move_nodes_to(& stmt->then_instructions);
1721 ir_dereference *const then_deref =
1722 new(ctx) ir_dereference_variable(tmp);
1723 ir_assignment *const then_assign =
1724 new(ctx) ir_assignment(then_deref, op[1]);
1725 stmt->then_instructions.push_tail(then_assign);
1726
1727 else_instructions.move_nodes_to(& stmt->else_instructions);
1728 ir_dereference *const else_deref =
1729 new(ctx) ir_dereference_variable(tmp);
1730 ir_assignment *const else_assign =
1731 new(ctx) ir_assignment(else_deref, op[2]);
1732 stmt->else_instructions.push_tail(else_assign);
1733
1734 result = new(ctx) ir_dereference_variable(tmp);
1735 }
1736 break;
1737 }
1738
1739 case ast_pre_inc:
1740 case ast_pre_dec: {
1741 this->non_lvalue_description = (this->oper == ast_pre_inc)
1742 ? "pre-increment operation" : "pre-decrement operation";
1743
1744 op[0] = this->subexpressions[0]->hir(instructions, state);
1745 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1746
1747 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1748
1749 ir_rvalue *temp_rhs;
1750 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1751 op[0], op[1]);
1752
1753 error_emitted =
1754 do_assignment(instructions, state,
1755 this->subexpressions[0]->non_lvalue_description,
1756 op[0]->clone(ctx, NULL), temp_rhs,
1757 &result, needs_rvalue, false,
1758 this->subexpressions[0]->get_location());
1759 break;
1760 }
1761
1762 case ast_post_inc:
1763 case ast_post_dec: {
1764 this->non_lvalue_description = (this->oper == ast_post_inc)
1765 ? "post-increment operation" : "post-decrement operation";
1766 op[0] = this->subexpressions[0]->hir(instructions, state);
1767 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1768
1769 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1770
1771 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1772
1773 ir_rvalue *temp_rhs;
1774 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1775 op[0], op[1]);
1776
1777 /* Get a temporary of a copy of the lvalue before it's modified.
1778 * This may get thrown away later.
1779 */
1780 result = get_lvalue_copy(instructions, op[0]->clone(ctx, NULL));
1781
1782 ir_rvalue *junk_rvalue;
1783 error_emitted =
1784 do_assignment(instructions, state,
1785 this->subexpressions[0]->non_lvalue_description,
1786 op[0]->clone(ctx, NULL), temp_rhs,
1787 &junk_rvalue, false, false,
1788 this->subexpressions[0]->get_location());
1789
1790 break;
1791 }
1792
1793 case ast_field_selection:
1794 result = _mesa_ast_field_selection_to_hir(this, instructions, state);
1795 break;
1796
1797 case ast_array_index: {
1798 YYLTYPE index_loc = subexpressions[1]->get_location();
1799
1800 op[0] = subexpressions[0]->hir(instructions, state);
1801 op[1] = subexpressions[1]->hir(instructions, state);
1802
1803 result = _mesa_ast_array_index_to_hir(ctx, state, op[0], op[1],
1804 loc, index_loc);
1805
1806 if (result->type->is_error())
1807 error_emitted = true;
1808
1809 break;
1810 }
1811
1812 case ast_unsized_array_dim:
1813 assert(!"ast_unsized_array_dim: Should never get here.");
1814 break;
1815
1816 case ast_function_call:
1817 /* Should *NEVER* get here. ast_function_call should always be handled
1818 * by ast_function_expression::hir.
1819 */
1820 assert(0);
1821 break;
1822
1823 case ast_identifier: {
1824 /* ast_identifier can appear several places in a full abstract syntax
1825 * tree. This particular use must be at location specified in the grammar
1826 * as 'variable_identifier'.
1827 */
1828 ir_variable *var =
1829 state->symbols->get_variable(this->primary_expression.identifier);
1830
1831 if (var != NULL) {
1832 var->data.used = true;
1833 result = new(ctx) ir_dereference_variable(var);
1834 } else {
1835 _mesa_glsl_error(& loc, state, "`%s' undeclared",
1836 this->primary_expression.identifier);
1837
1838 result = ir_rvalue::error_value(ctx);
1839 error_emitted = true;
1840 }
1841 break;
1842 }
1843
1844 case ast_int_constant:
1845 result = new(ctx) ir_constant(this->primary_expression.int_constant);
1846 break;
1847
1848 case ast_uint_constant:
1849 result = new(ctx) ir_constant(this->primary_expression.uint_constant);
1850 break;
1851
1852 case ast_float_constant:
1853 result = new(ctx) ir_constant(this->primary_expression.float_constant);
1854 break;
1855
1856 case ast_bool_constant:
1857 result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant));
1858 break;
1859
1860 case ast_double_constant:
1861 result = new(ctx) ir_constant(this->primary_expression.double_constant);
1862 break;
1863
1864 case ast_sequence: {
1865 /* It should not be possible to generate a sequence in the AST without
1866 * any expressions in it.
1867 */
1868 assert(!this->expressions.is_empty());
1869
1870 /* The r-value of a sequence is the last expression in the sequence. If
1871 * the other expressions in the sequence do not have side-effects (and
1872 * therefore add instructions to the instruction list), they get dropped
1873 * on the floor.
1874 */
1875 exec_node *previous_tail_pred = NULL;
1876 YYLTYPE previous_operand_loc = loc;
1877
1878 foreach_list_typed (ast_node, ast, link, &this->expressions) {
1879 /* If one of the operands of comma operator does not generate any
1880 * code, we want to emit a warning. At each pass through the loop
1881 * previous_tail_pred will point to the last instruction in the
1882 * stream *before* processing the previous operand. Naturally,
1883 * instructions->tail_pred will point to the last instruction in the
1884 * stream *after* processing the previous operand. If the two
1885 * pointers match, then the previous operand had no effect.
1886 *
1887 * The warning behavior here differs slightly from GCC. GCC will
1888 * only emit a warning if none of the left-hand operands have an
1889 * effect. However, it will emit a warning for each. I believe that
1890 * there are some cases in C (especially with GCC extensions) where
1891 * it is useful to have an intermediate step in a sequence have no
1892 * effect, but I don't think these cases exist in GLSL. Either way,
1893 * it would be a giant hassle to replicate that behavior.
1894 */
1895 if (previous_tail_pred == instructions->tail_pred) {
1896 _mesa_glsl_warning(&previous_operand_loc, state,
1897 "left-hand operand of comma expression has "
1898 "no effect");
1899 }
1900
1901 /* tail_pred is directly accessed instead of using the get_tail()
1902 * method for performance reasons. get_tail() has extra code to
1903 * return NULL when the list is empty. We don't care about that
1904 * here, so using tail_pred directly is fine.
1905 */
1906 previous_tail_pred = instructions->tail_pred;
1907 previous_operand_loc = ast->get_location();
1908
1909 result = ast->hir(instructions, state);
1910 }
1911
1912 /* Any errors should have already been emitted in the loop above.
1913 */
1914 error_emitted = true;
1915 break;
1916 }
1917 }
1918 type = NULL; /* use result->type, not type. */
1919 assert(result != NULL || !needs_rvalue);
1920
1921 if (result && result->type->is_error() && !error_emitted)
1922 _mesa_glsl_error(& loc, state, "type mismatch");
1923
1924 return result;
1925 }
1926
1927 bool
1928 ast_expression::has_sequence_subexpression() const
1929 {
1930 switch (this->oper) {
1931 case ast_plus:
1932 case ast_neg:
1933 case ast_bit_not:
1934 case ast_logic_not:
1935 case ast_pre_inc:
1936 case ast_pre_dec:
1937 case ast_post_inc:
1938 case ast_post_dec:
1939 return this->subexpressions[0]->has_sequence_subexpression();
1940
1941 case ast_assign:
1942 case ast_add:
1943 case ast_sub:
1944 case ast_mul:
1945 case ast_div:
1946 case ast_mod:
1947 case ast_lshift:
1948 case ast_rshift:
1949 case ast_less:
1950 case ast_greater:
1951 case ast_lequal:
1952 case ast_gequal:
1953 case ast_nequal:
1954 case ast_equal:
1955 case ast_bit_and:
1956 case ast_bit_xor:
1957 case ast_bit_or:
1958 case ast_logic_and:
1959 case ast_logic_or:
1960 case ast_logic_xor:
1961 case ast_array_index:
1962 case ast_mul_assign:
1963 case ast_div_assign:
1964 case ast_add_assign:
1965 case ast_sub_assign:
1966 case ast_mod_assign:
1967 case ast_ls_assign:
1968 case ast_rs_assign:
1969 case ast_and_assign:
1970 case ast_xor_assign:
1971 case ast_or_assign:
1972 return this->subexpressions[0]->has_sequence_subexpression() ||
1973 this->subexpressions[1]->has_sequence_subexpression();
1974
1975 case ast_conditional:
1976 return this->subexpressions[0]->has_sequence_subexpression() ||
1977 this->subexpressions[1]->has_sequence_subexpression() ||
1978 this->subexpressions[2]->has_sequence_subexpression();
1979
1980 case ast_sequence:
1981 return true;
1982
1983 case ast_field_selection:
1984 case ast_identifier:
1985 case ast_int_constant:
1986 case ast_uint_constant:
1987 case ast_float_constant:
1988 case ast_bool_constant:
1989 case ast_double_constant:
1990 return false;
1991
1992 case ast_aggregate:
1993 unreachable("ast_aggregate: Should never get here.");
1994
1995 case ast_function_call:
1996 unreachable("should be handled by ast_function_expression::hir");
1997
1998 case ast_unsized_array_dim:
1999 unreachable("ast_unsized_array_dim: Should never get here.");
2000 }
2001
2002 return false;
2003 }
2004
2005 ir_rvalue *
2006 ast_expression_statement::hir(exec_list *instructions,
2007 struct _mesa_glsl_parse_state *state)
2008 {
2009 /* It is possible to have expression statements that don't have an
2010 * expression. This is the solitary semicolon:
2011 *
2012 * for (i = 0; i < 5; i++)
2013 * ;
2014 *
2015 * In this case the expression will be NULL. Test for NULL and don't do
2016 * anything in that case.
2017 */
2018 if (expression != NULL)
2019 expression->hir_no_rvalue(instructions, state);
2020
2021 /* Statements do not have r-values.
2022 */
2023 return NULL;
2024 }
2025
2026
2027 ir_rvalue *
2028 ast_compound_statement::hir(exec_list *instructions,
2029 struct _mesa_glsl_parse_state *state)
2030 {
2031 if (new_scope)
2032 state->symbols->push_scope();
2033
2034 foreach_list_typed (ast_node, ast, link, &this->statements)
2035 ast->hir(instructions, state);
2036
2037 if (new_scope)
2038 state->symbols->pop_scope();
2039
2040 /* Compound statements do not have r-values.
2041 */
2042 return NULL;
2043 }
2044
2045 /**
2046 * Evaluate the given exec_node (which should be an ast_node representing
2047 * a single array dimension) and return its integer value.
2048 */
2049 static unsigned
2050 process_array_size(exec_node *node,
2051 struct _mesa_glsl_parse_state *state)
2052 {
2053 exec_list dummy_instructions;
2054
2055 ast_node *array_size = exec_node_data(ast_node, node, link);
2056
2057 /**
2058 * Dimensions other than the outermost dimension can by unsized if they
2059 * are immediately sized by a constructor or initializer.
2060 */
2061 if (((ast_expression*)array_size)->oper == ast_unsized_array_dim)
2062 return 0;
2063
2064 ir_rvalue *const ir = array_size->hir(& dummy_instructions, state);
2065 YYLTYPE loc = array_size->get_location();
2066
2067 if (ir == NULL) {
2068 _mesa_glsl_error(& loc, state,
2069 "array size could not be resolved");
2070 return 0;
2071 }
2072
2073 if (!ir->type->is_integer()) {
2074 _mesa_glsl_error(& loc, state,
2075 "array size must be integer type");
2076 return 0;
2077 }
2078
2079 if (!ir->type->is_scalar()) {
2080 _mesa_glsl_error(& loc, state,
2081 "array size must be scalar type");
2082 return 0;
2083 }
2084
2085 ir_constant *const size = ir->constant_expression_value();
2086 if (size == NULL || array_size->has_sequence_subexpression()) {
2087 _mesa_glsl_error(& loc, state, "array size must be a "
2088 "constant valued expression");
2089 return 0;
2090 }
2091
2092 if (size->value.i[0] <= 0) {
2093 _mesa_glsl_error(& loc, state, "array size must be > 0");
2094 return 0;
2095 }
2096
2097 assert(size->type == ir->type);
2098
2099 /* If the array size is const (and we've verified that
2100 * it is) then no instructions should have been emitted
2101 * when we converted it to HIR. If they were emitted,
2102 * then either the array size isn't const after all, or
2103 * we are emitting unnecessary instructions.
2104 */
2105 assert(dummy_instructions.is_empty());
2106
2107 return size->value.u[0];
2108 }
2109
2110 static const glsl_type *
2111 process_array_type(YYLTYPE *loc, const glsl_type *base,
2112 ast_array_specifier *array_specifier,
2113 struct _mesa_glsl_parse_state *state)
2114 {
2115 const glsl_type *array_type = base;
2116
2117 if (array_specifier != NULL) {
2118 if (base->is_array()) {
2119
2120 /* From page 19 (page 25) of the GLSL 1.20 spec:
2121 *
2122 * "Only one-dimensional arrays may be declared."
2123 */
2124 if (!state->check_arrays_of_arrays_allowed(loc)) {
2125 return glsl_type::error_type;
2126 }
2127 }
2128
2129 for (exec_node *node = array_specifier->array_dimensions.tail_pred;
2130 !node->is_head_sentinel(); node = node->prev) {
2131 unsigned array_size = process_array_size(node, state);
2132 array_type = glsl_type::get_array_instance(array_type, array_size);
2133 }
2134 }
2135
2136 return array_type;
2137 }
2138
2139 static bool
2140 precision_qualifier_allowed(const glsl_type *type)
2141 {
2142 /* Precision qualifiers apply to floating point, integer and opaque
2143 * types.
2144 *
2145 * Section 4.5.2 (Precision Qualifiers) of the GLSL 1.30 spec says:
2146 * "Any floating point or any integer declaration can have the type
2147 * preceded by one of these precision qualifiers [...] Literal
2148 * constants do not have precision qualifiers. Neither do Boolean
2149 * variables.
2150 *
2151 * Section 4.5 (Precision and Precision Qualifiers) of the GLSL 1.30
2152 * spec also says:
2153 *
2154 * "Precision qualifiers are added for code portability with OpenGL
2155 * ES, not for functionality. They have the same syntax as in OpenGL
2156 * ES."
2157 *
2158 * Section 8 (Built-In Functions) of the GLSL ES 1.00 spec says:
2159 *
2160 * "uniform lowp sampler2D sampler;
2161 * highp vec2 coord;
2162 * ...
2163 * lowp vec4 col = texture2D (sampler, coord);
2164 * // texture2D returns lowp"
2165 *
2166 * From this, we infer that GLSL 1.30 (and later) should allow precision
2167 * qualifiers on sampler types just like float and integer types.
2168 */
2169 return (type->is_float()
2170 || type->is_integer()
2171 || type->contains_opaque())
2172 && !type->without_array()->is_record();
2173 }
2174
2175 const glsl_type *
2176 ast_type_specifier::glsl_type(const char **name,
2177 struct _mesa_glsl_parse_state *state) const
2178 {
2179 const struct glsl_type *type;
2180
2181 type = state->symbols->get_type(this->type_name);
2182 *name = this->type_name;
2183
2184 YYLTYPE loc = this->get_location();
2185 type = process_array_type(&loc, type, this->array_specifier, state);
2186
2187 return type;
2188 }
2189
2190 /**
2191 * From the OpenGL ES 3.0 spec, 4.5.4 Default Precision Qualifiers:
2192 *
2193 * "The precision statement
2194 *
2195 * precision precision-qualifier type;
2196 *
2197 * can be used to establish a default precision qualifier. The type field can
2198 * be either int or float or any of the sampler types, (...) If type is float,
2199 * the directive applies to non-precision-qualified floating point type
2200 * (scalar, vector, and matrix) declarations. If type is int, the directive
2201 * applies to all non-precision-qualified integer type (scalar, vector, signed,
2202 * and unsigned) declarations."
2203 *
2204 * We use the symbol table to keep the values of the default precisions for
2205 * each 'type' in each scope and we use the 'type' string from the precision
2206 * statement as key in the symbol table. When we want to retrieve the default
2207 * precision associated with a given glsl_type we need to know the type string
2208 * associated with it. This is what this function returns.
2209 */
2210 static const char *
2211 get_type_name_for_precision_qualifier(const glsl_type *type)
2212 {
2213 switch (type->base_type) {
2214 case GLSL_TYPE_FLOAT:
2215 return "float";
2216 case GLSL_TYPE_UINT:
2217 case GLSL_TYPE_INT:
2218 return "int";
2219 case GLSL_TYPE_ATOMIC_UINT:
2220 return "atomic_uint";
2221 case GLSL_TYPE_IMAGE:
2222 /* fallthrough */
2223 case GLSL_TYPE_SAMPLER: {
2224 const unsigned type_idx =
2225 type->sampler_array + 2 * type->sampler_shadow;
2226 const unsigned offset = type->base_type == GLSL_TYPE_SAMPLER ? 0 : 4;
2227 assert(type_idx < 4);
2228 switch (type->sampler_type) {
2229 case GLSL_TYPE_FLOAT:
2230 switch (type->sampler_dimensionality) {
2231 case GLSL_SAMPLER_DIM_1D: {
2232 assert(type->base_type == GLSL_TYPE_SAMPLER);
2233 static const char *const names[4] = {
2234 "sampler1D", "sampler1DArray",
2235 "sampler1DShadow", "sampler1DArrayShadow"
2236 };
2237 return names[type_idx];
2238 }
2239 case GLSL_SAMPLER_DIM_2D: {
2240 static const char *const names[8] = {
2241 "sampler2D", "sampler2DArray",
2242 "sampler2DShadow", "sampler2DArrayShadow",
2243 "image2D", "image2DArray", NULL, NULL
2244 };
2245 return names[offset + type_idx];
2246 }
2247 case GLSL_SAMPLER_DIM_3D: {
2248 static const char *const names[8] = {
2249 "sampler3D", NULL, NULL, NULL,
2250 "image3D", NULL, NULL, NULL
2251 };
2252 return names[offset + type_idx];
2253 }
2254 case GLSL_SAMPLER_DIM_CUBE: {
2255 static const char *const names[8] = {
2256 "samplerCube", "samplerCubeArray",
2257 "samplerCubeShadow", "samplerCubeArrayShadow",
2258 "imageCube", NULL, NULL, NULL
2259 };
2260 return names[offset + type_idx];
2261 }
2262 case GLSL_SAMPLER_DIM_MS: {
2263 assert(type->base_type == GLSL_TYPE_SAMPLER);
2264 static const char *const names[4] = {
2265 "sampler2DMS", "sampler2DMSArray", NULL, NULL
2266 };
2267 return names[type_idx];
2268 }
2269 case GLSL_SAMPLER_DIM_RECT: {
2270 assert(type->base_type == GLSL_TYPE_SAMPLER);
2271 static const char *const names[4] = {
2272 "samplerRect", NULL, "samplerRectShadow", NULL
2273 };
2274 return names[type_idx];
2275 }
2276 case GLSL_SAMPLER_DIM_BUF: {
2277 assert(type->base_type == GLSL_TYPE_SAMPLER);
2278 static const char *const names[4] = {
2279 "samplerBuffer", NULL, NULL, NULL
2280 };
2281 return names[type_idx];
2282 }
2283 case GLSL_SAMPLER_DIM_EXTERNAL: {
2284 assert(type->base_type == GLSL_TYPE_SAMPLER);
2285 static const char *const names[4] = {
2286 "samplerExternalOES", NULL, NULL, NULL
2287 };
2288 return names[type_idx];
2289 }
2290 default:
2291 unreachable("Unsupported sampler/image dimensionality");
2292 } /* sampler/image float dimensionality */
2293 break;
2294 case GLSL_TYPE_INT:
2295 switch (type->sampler_dimensionality) {
2296 case GLSL_SAMPLER_DIM_1D: {
2297 assert(type->base_type == GLSL_TYPE_SAMPLER);
2298 static const char *const names[4] = {
2299 "isampler1D", "isampler1DArray", NULL, NULL
2300 };
2301 return names[type_idx];
2302 }
2303 case GLSL_SAMPLER_DIM_2D: {
2304 static const char *const names[8] = {
2305 "isampler2D", "isampler2DArray", NULL, NULL,
2306 "iimage2D", "iimage2DArray", NULL, NULL
2307 };
2308 return names[offset + type_idx];
2309 }
2310 case GLSL_SAMPLER_DIM_3D: {
2311 static const char *const names[8] = {
2312 "isampler3D", NULL, NULL, NULL,
2313 "iimage3D", NULL, NULL, NULL
2314 };
2315 return names[offset + type_idx];
2316 }
2317 case GLSL_SAMPLER_DIM_CUBE: {
2318 static const char *const names[8] = {
2319 "isamplerCube", "isamplerCubeArray", NULL, NULL,
2320 "iimageCube", NULL, NULL, NULL
2321 };
2322 return names[offset + type_idx];
2323 }
2324 case GLSL_SAMPLER_DIM_MS: {
2325 assert(type->base_type == GLSL_TYPE_SAMPLER);
2326 static const char *const names[4] = {
2327 "isampler2DMS", "isampler2DMSArray", NULL, NULL
2328 };
2329 return names[type_idx];
2330 }
2331 case GLSL_SAMPLER_DIM_RECT: {
2332 assert(type->base_type == GLSL_TYPE_SAMPLER);
2333 static const char *const names[4] = {
2334 "isamplerRect", NULL, "isamplerRectShadow", NULL
2335 };
2336 return names[type_idx];
2337 }
2338 case GLSL_SAMPLER_DIM_BUF: {
2339 assert(type->base_type == GLSL_TYPE_SAMPLER);
2340 static const char *const names[4] = {
2341 "isamplerBuffer", NULL, NULL, NULL
2342 };
2343 return names[type_idx];
2344 }
2345 default:
2346 unreachable("Unsupported isampler/iimage dimensionality");
2347 } /* sampler/image int dimensionality */
2348 break;
2349 case GLSL_TYPE_UINT:
2350 switch (type->sampler_dimensionality) {
2351 case GLSL_SAMPLER_DIM_1D: {
2352 assert(type->base_type == GLSL_TYPE_SAMPLER);
2353 static const char *const names[4] = {
2354 "usampler1D", "usampler1DArray", NULL, NULL
2355 };
2356 return names[type_idx];
2357 }
2358 case GLSL_SAMPLER_DIM_2D: {
2359 static const char *const names[8] = {
2360 "usampler2D", "usampler2DArray", NULL, NULL,
2361 "uimage2D", "uimage2DArray", NULL, NULL
2362 };
2363 return names[offset + type_idx];
2364 }
2365 case GLSL_SAMPLER_DIM_3D: {
2366 static const char *const names[8] = {
2367 "usampler3D", NULL, NULL, NULL,
2368 "uimage3D", NULL, NULL, NULL
2369 };
2370 return names[offset + type_idx];
2371 }
2372 case GLSL_SAMPLER_DIM_CUBE: {
2373 static const char *const names[8] = {
2374 "usamplerCube", "usamplerCubeArray", NULL, NULL,
2375 "uimageCube", NULL, NULL, NULL
2376 };
2377 return names[offset + type_idx];
2378 }
2379 case GLSL_SAMPLER_DIM_MS: {
2380 assert(type->base_type == GLSL_TYPE_SAMPLER);
2381 static const char *const names[4] = {
2382 "usampler2DMS", "usampler2DMSArray", NULL, NULL
2383 };
2384 return names[type_idx];
2385 }
2386 case GLSL_SAMPLER_DIM_RECT: {
2387 assert(type->base_type == GLSL_TYPE_SAMPLER);
2388 static const char *const names[4] = {
2389 "usamplerRect", NULL, "usamplerRectShadow", NULL
2390 };
2391 return names[type_idx];
2392 }
2393 case GLSL_SAMPLER_DIM_BUF: {
2394 assert(type->base_type == GLSL_TYPE_SAMPLER);
2395 static const char *const names[4] = {
2396 "usamplerBuffer", NULL, NULL, NULL
2397 };
2398 return names[type_idx];
2399 }
2400 default:
2401 unreachable("Unsupported usampler/uimage dimensionality");
2402 } /* sampler/image uint dimensionality */
2403 break;
2404 default:
2405 unreachable("Unsupported sampler/image type");
2406 } /* sampler/image type */
2407 break;
2408 } /* GLSL_TYPE_SAMPLER/GLSL_TYPE_IMAGE */
2409 break;
2410 default:
2411 unreachable("Unsupported type");
2412 } /* base type */
2413 }
2414
2415 static unsigned
2416 select_gles_precision(unsigned qual_precision,
2417 const glsl_type *type,
2418 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
2419 {
2420 /* Precision qualifiers do not have any meaning in Desktop GLSL.
2421 * In GLES we take the precision from the type qualifier if present,
2422 * otherwise, if the type of the variable allows precision qualifiers at
2423 * all, we look for the default precision qualifier for that type in the
2424 * current scope.
2425 */
2426 assert(state->es_shader);
2427
2428 unsigned precision = GLSL_PRECISION_NONE;
2429 if (qual_precision) {
2430 precision = qual_precision;
2431 } else if (precision_qualifier_allowed(type)) {
2432 const char *type_name =
2433 get_type_name_for_precision_qualifier(type->without_array());
2434 assert(type_name != NULL);
2435
2436 precision =
2437 state->symbols->get_default_precision_qualifier(type_name);
2438 if (precision == ast_precision_none) {
2439 _mesa_glsl_error(loc, state,
2440 "No precision specified in this scope for type `%s'",
2441 type->name);
2442 }
2443 }
2444 return precision;
2445 }
2446
2447 const glsl_type *
2448 ast_fully_specified_type::glsl_type(const char **name,
2449 struct _mesa_glsl_parse_state *state) const
2450 {
2451 return this->specifier->glsl_type(name, state);
2452 }
2453
2454 /**
2455 * Determine whether a toplevel variable declaration declares a varying. This
2456 * function operates by examining the variable's mode and the shader target,
2457 * so it correctly identifies linkage variables regardless of whether they are
2458 * declared using the deprecated "varying" syntax or the new "in/out" syntax.
2459 *
2460 * Passing a non-toplevel variable declaration (e.g. a function parameter) to
2461 * this function will produce undefined results.
2462 */
2463 static bool
2464 is_varying_var(ir_variable *var, gl_shader_stage target)
2465 {
2466 switch (target) {
2467 case MESA_SHADER_VERTEX:
2468 return var->data.mode == ir_var_shader_out;
2469 case MESA_SHADER_FRAGMENT:
2470 return var->data.mode == ir_var_shader_in;
2471 default:
2472 return var->data.mode == ir_var_shader_out || var->data.mode == ir_var_shader_in;
2473 }
2474 }
2475
2476
2477 /**
2478 * Matrix layout qualifiers are only allowed on certain types
2479 */
2480 static void
2481 validate_matrix_layout_for_type(struct _mesa_glsl_parse_state *state,
2482 YYLTYPE *loc,
2483 const glsl_type *type,
2484 ir_variable *var)
2485 {
2486 if (var && !var->is_in_buffer_block()) {
2487 /* Layout qualifiers may only apply to interface blocks and fields in
2488 * them.
2489 */
2490 _mesa_glsl_error(loc, state,
2491 "uniform block layout qualifiers row_major and "
2492 "column_major may not be applied to variables "
2493 "outside of uniform blocks");
2494 } else if (!type->without_array()->is_matrix()) {
2495 /* The OpenGL ES 3.0 conformance tests did not originally allow
2496 * matrix layout qualifiers on non-matrices. However, the OpenGL
2497 * 4.4 and OpenGL ES 3.0 (revision TBD) specifications were
2498 * amended to specifically allow these layouts on all types. Emit
2499 * a warning so that people know their code may not be portable.
2500 */
2501 _mesa_glsl_warning(loc, state,
2502 "uniform block layout qualifiers row_major and "
2503 "column_major applied to non-matrix types may "
2504 "be rejected by older compilers");
2505 }
2506 }
2507
2508 static bool
2509 process_qualifier_constant(struct _mesa_glsl_parse_state *state,
2510 YYLTYPE *loc,
2511 const char *qual_indentifier,
2512 ast_expression *const_expression,
2513 unsigned *value)
2514 {
2515 exec_list dummy_instructions;
2516
2517 if (const_expression == NULL) {
2518 *value = 0;
2519 return true;
2520 }
2521
2522 ir_rvalue *const ir = const_expression->hir(&dummy_instructions, state);
2523
2524 ir_constant *const const_int = ir->constant_expression_value();
2525 if (const_int == NULL || !const_int->type->is_integer()) {
2526 _mesa_glsl_error(loc, state, "%s must be an integral constant "
2527 "expression", qual_indentifier);
2528 return false;
2529 }
2530
2531 if (const_int->value.i[0] < 0) {
2532 _mesa_glsl_error(loc, state, "%s layout qualifier is invalid (%d < 0)",
2533 qual_indentifier, const_int->value.u[0]);
2534 return false;
2535 }
2536
2537 /* If the location is const (and we've verified that
2538 * it is) then no instructions should have been emitted
2539 * when we converted it to HIR. If they were emitted,
2540 * then either the location isn't const after all, or
2541 * we are emitting unnecessary instructions.
2542 */
2543 assert(dummy_instructions.is_empty());
2544
2545 *value = const_int->value.u[0];
2546 return true;
2547 }
2548
2549 static bool
2550 validate_stream_qualifier(YYLTYPE *loc, struct _mesa_glsl_parse_state *state,
2551 unsigned stream)
2552 {
2553 if (stream >= state->ctx->Const.MaxVertexStreams) {
2554 _mesa_glsl_error(loc, state,
2555 "invalid stream specified %d is larger than "
2556 "MAX_VERTEX_STREAMS - 1 (%d).",
2557 stream, state->ctx->Const.MaxVertexStreams - 1);
2558 return false;
2559 }
2560
2561 return true;
2562 }
2563
2564 static void
2565 apply_explicit_binding(struct _mesa_glsl_parse_state *state,
2566 YYLTYPE *loc,
2567 ir_variable *var,
2568 const glsl_type *type,
2569 const ast_type_qualifier *qual)
2570 {
2571 if (!qual->flags.q.uniform && !qual->flags.q.buffer) {
2572 _mesa_glsl_error(loc, state,
2573 "the \"binding\" qualifier only applies to uniforms and "
2574 "shader storage buffer objects");
2575 return;
2576 }
2577
2578 unsigned qual_binding;
2579 if (!process_qualifier_constant(state, loc, "binding", qual->binding,
2580 &qual_binding)) {
2581 return;
2582 }
2583
2584 const struct gl_context *const ctx = state->ctx;
2585 unsigned elements = type->is_array() ? type->arrays_of_arrays_size() : 1;
2586 unsigned max_index = qual_binding + elements - 1;
2587 const glsl_type *base_type = type->without_array();
2588
2589 if (base_type->is_interface()) {
2590 /* UBOs. From page 60 of the GLSL 4.20 specification:
2591 * "If the binding point for any uniform block instance is less than zero,
2592 * or greater than or equal to the implementation-dependent maximum
2593 * number of uniform buffer bindings, a compilation error will occur.
2594 * When the binding identifier is used with a uniform block instanced as
2595 * an array of size N, all elements of the array from binding through
2596 * binding + N – 1 must be within this range."
2597 *
2598 * The implementation-dependent maximum is GL_MAX_UNIFORM_BUFFER_BINDINGS.
2599 */
2600 if (qual->flags.q.uniform &&
2601 max_index >= ctx->Const.MaxUniformBufferBindings) {
2602 _mesa_glsl_error(loc, state, "layout(binding = %u) for %d UBOs exceeds "
2603 "the maximum number of UBO binding points (%d)",
2604 qual_binding, elements,
2605 ctx->Const.MaxUniformBufferBindings);
2606 return;
2607 }
2608
2609 /* SSBOs. From page 67 of the GLSL 4.30 specification:
2610 * "If the binding point for any uniform or shader storage block instance
2611 * is less than zero, or greater than or equal to the
2612 * implementation-dependent maximum number of uniform buffer bindings, a
2613 * compile-time error will occur. When the binding identifier is used
2614 * with a uniform or shader storage block instanced as an array of size
2615 * N, all elements of the array from binding through binding + N – 1 must
2616 * be within this range."
2617 */
2618 if (qual->flags.q.buffer &&
2619 max_index >= ctx->Const.MaxShaderStorageBufferBindings) {
2620 _mesa_glsl_error(loc, state, "layout(binding = %u) for %d SSBOs exceeds "
2621 "the maximum number of SSBO binding points (%d)",
2622 qual_binding, elements,
2623 ctx->Const.MaxShaderStorageBufferBindings);
2624 return;
2625 }
2626 } else if (base_type->is_sampler()) {
2627 /* Samplers. From page 63 of the GLSL 4.20 specification:
2628 * "If the binding is less than zero, or greater than or equal to the
2629 * implementation-dependent maximum supported number of units, a
2630 * compilation error will occur. When the binding identifier is used
2631 * with an array of size N, all elements of the array from binding
2632 * through binding + N - 1 must be within this range."
2633 */
2634 unsigned limit = ctx->Const.MaxCombinedTextureImageUnits;
2635
2636 if (max_index >= limit) {
2637 _mesa_glsl_error(loc, state, "layout(binding = %d) for %d samplers "
2638 "exceeds the maximum number of texture image units "
2639 "(%u)", qual_binding, elements, limit);
2640
2641 return;
2642 }
2643 } else if (base_type->contains_atomic()) {
2644 assert(ctx->Const.MaxAtomicBufferBindings <= MAX_COMBINED_ATOMIC_BUFFERS);
2645 if (qual_binding >= ctx->Const.MaxAtomicBufferBindings) {
2646 _mesa_glsl_error(loc, state, "layout(binding = %d) exceeds the "
2647 " maximum number of atomic counter buffer bindings"
2648 "(%u)", qual_binding,
2649 ctx->Const.MaxAtomicBufferBindings);
2650
2651 return;
2652 }
2653 } else if ((state->is_version(420, 310) ||
2654 state->ARB_shading_language_420pack_enable) &&
2655 base_type->is_image()) {
2656 assert(ctx->Const.MaxImageUnits <= MAX_IMAGE_UNITS);
2657 if (max_index >= ctx->Const.MaxImageUnits) {
2658 _mesa_glsl_error(loc, state, "Image binding %d exceeds the "
2659 " maximum number of image units (%d)", max_index,
2660 ctx->Const.MaxImageUnits);
2661 return;
2662 }
2663
2664 } else {
2665 _mesa_glsl_error(loc, state,
2666 "the \"binding\" qualifier only applies to uniform "
2667 "blocks, opaque variables, or arrays thereof");
2668 return;
2669 }
2670
2671 var->data.explicit_binding = true;
2672 var->data.binding = qual_binding;
2673
2674 return;
2675 }
2676
2677
2678 static glsl_interp_qualifier
2679 interpret_interpolation_qualifier(const struct ast_type_qualifier *qual,
2680 ir_variable_mode mode,
2681 struct _mesa_glsl_parse_state *state,
2682 YYLTYPE *loc)
2683 {
2684 glsl_interp_qualifier interpolation;
2685 if (qual->flags.q.flat)
2686 interpolation = INTERP_QUALIFIER_FLAT;
2687 else if (qual->flags.q.noperspective)
2688 interpolation = INTERP_QUALIFIER_NOPERSPECTIVE;
2689 else if (qual->flags.q.smooth)
2690 interpolation = INTERP_QUALIFIER_SMOOTH;
2691 else
2692 interpolation = INTERP_QUALIFIER_NONE;
2693
2694 if (interpolation != INTERP_QUALIFIER_NONE) {
2695 if (mode != ir_var_shader_in && mode != ir_var_shader_out) {
2696 _mesa_glsl_error(loc, state,
2697 "interpolation qualifier `%s' can only be applied to "
2698 "shader inputs or outputs.",
2699 interpolation_string(interpolation));
2700
2701 }
2702
2703 if ((state->stage == MESA_SHADER_VERTEX && mode == ir_var_shader_in) ||
2704 (state->stage == MESA_SHADER_FRAGMENT && mode == ir_var_shader_out)) {
2705 _mesa_glsl_error(loc, state,
2706 "interpolation qualifier `%s' cannot be applied to "
2707 "vertex shader inputs or fragment shader outputs",
2708 interpolation_string(interpolation));
2709 }
2710 }
2711
2712 return interpolation;
2713 }
2714
2715
2716 static void
2717 apply_explicit_location(const struct ast_type_qualifier *qual,
2718 ir_variable *var,
2719 struct _mesa_glsl_parse_state *state,
2720 YYLTYPE *loc)
2721 {
2722 bool fail = false;
2723
2724 unsigned qual_location;
2725 if (!process_qualifier_constant(state, loc, "location", qual->location,
2726 &qual_location)) {
2727 return;
2728 }
2729
2730 /* Checks for GL_ARB_explicit_uniform_location. */
2731 if (qual->flags.q.uniform) {
2732 if (!state->check_explicit_uniform_location_allowed(loc, var))
2733 return;
2734
2735 const struct gl_context *const ctx = state->ctx;
2736 unsigned max_loc = qual_location + var->type->uniform_locations() - 1;
2737
2738 if (max_loc >= ctx->Const.MaxUserAssignableUniformLocations) {
2739 _mesa_glsl_error(loc, state, "location(s) consumed by uniform %s "
2740 ">= MAX_UNIFORM_LOCATIONS (%u)", var->name,
2741 ctx->Const.MaxUserAssignableUniformLocations);
2742 return;
2743 }
2744
2745 var->data.explicit_location = true;
2746 var->data.location = qual_location;
2747 return;
2748 }
2749
2750 /* Between GL_ARB_explicit_attrib_location an
2751 * GL_ARB_separate_shader_objects, the inputs and outputs of any shader
2752 * stage can be assigned explicit locations. The checking here associates
2753 * the correct extension with the correct stage's input / output:
2754 *
2755 * input output
2756 * ----- ------
2757 * vertex explicit_loc sso
2758 * tess control sso sso
2759 * tess eval sso sso
2760 * geometry sso sso
2761 * fragment sso explicit_loc
2762 */
2763 switch (state->stage) {
2764 case MESA_SHADER_VERTEX:
2765 if (var->data.mode == ir_var_shader_in) {
2766 if (!state->check_explicit_attrib_location_allowed(loc, var))
2767 return;
2768
2769 break;
2770 }
2771
2772 if (var->data.mode == ir_var_shader_out) {
2773 if (!state->check_separate_shader_objects_allowed(loc, var))
2774 return;
2775
2776 break;
2777 }
2778
2779 fail = true;
2780 break;
2781
2782 case MESA_SHADER_TESS_CTRL:
2783 case MESA_SHADER_TESS_EVAL:
2784 case MESA_SHADER_GEOMETRY:
2785 if (var->data.mode == ir_var_shader_in || var->data.mode == ir_var_shader_out) {
2786 if (!state->check_separate_shader_objects_allowed(loc, var))
2787 return;
2788
2789 break;
2790 }
2791
2792 fail = true;
2793 break;
2794
2795 case MESA_SHADER_FRAGMENT:
2796 if (var->data.mode == ir_var_shader_in) {
2797 if (!state->check_separate_shader_objects_allowed(loc, var))
2798 return;
2799
2800 break;
2801 }
2802
2803 if (var->data.mode == ir_var_shader_out) {
2804 if (!state->check_explicit_attrib_location_allowed(loc, var))
2805 return;
2806
2807 break;
2808 }
2809
2810 fail = true;
2811 break;
2812
2813 case MESA_SHADER_COMPUTE:
2814 _mesa_glsl_error(loc, state,
2815 "compute shader variables cannot be given "
2816 "explicit locations");
2817 return;
2818 };
2819
2820 if (fail) {
2821 _mesa_glsl_error(loc, state,
2822 "%s cannot be given an explicit location in %s shader",
2823 mode_string(var),
2824 _mesa_shader_stage_to_string(state->stage));
2825 } else {
2826 var->data.explicit_location = true;
2827
2828 switch (state->stage) {
2829 case MESA_SHADER_VERTEX:
2830 var->data.location = (var->data.mode == ir_var_shader_in)
2831 ? (qual_location + VERT_ATTRIB_GENERIC0)
2832 : (qual_location + VARYING_SLOT_VAR0);
2833 break;
2834
2835 case MESA_SHADER_TESS_CTRL:
2836 case MESA_SHADER_TESS_EVAL:
2837 case MESA_SHADER_GEOMETRY:
2838 if (var->data.patch)
2839 var->data.location = qual_location + VARYING_SLOT_PATCH0;
2840 else
2841 var->data.location = qual_location + VARYING_SLOT_VAR0;
2842 break;
2843
2844 case MESA_SHADER_FRAGMENT:
2845 var->data.location = (var->data.mode == ir_var_shader_out)
2846 ? (qual_location + FRAG_RESULT_DATA0)
2847 : (qual_location + VARYING_SLOT_VAR0);
2848 break;
2849 case MESA_SHADER_COMPUTE:
2850 assert(!"Unexpected shader type");
2851 break;
2852 }
2853
2854 /* Check if index was set for the uniform instead of the function */
2855 if (qual->flags.q.explicit_index && qual->flags.q.subroutine) {
2856 _mesa_glsl_error(loc, state, "an index qualifier can only be "
2857 "used with subroutine functions");
2858 return;
2859 }
2860
2861 unsigned qual_index;
2862 if (qual->flags.q.explicit_index &&
2863 process_qualifier_constant(state, loc, "index", qual->index,
2864 &qual_index)) {
2865 /* From the GLSL 4.30 specification, section 4.4.2 (Output
2866 * Layout Qualifiers):
2867 *
2868 * "It is also a compile-time error if a fragment shader
2869 * sets a layout index to less than 0 or greater than 1."
2870 *
2871 * Older specifications don't mandate a behavior; we take
2872 * this as a clarification and always generate the error.
2873 */
2874 if (qual_index > 1) {
2875 _mesa_glsl_error(loc, state,
2876 "explicit index may only be 0 or 1");
2877 } else {
2878 var->data.explicit_index = true;
2879 var->data.index = qual_index;
2880 }
2881 }
2882 }
2883 }
2884
2885 static void
2886 apply_image_qualifier_to_variable(const struct ast_type_qualifier *qual,
2887 ir_variable *var,
2888 struct _mesa_glsl_parse_state *state,
2889 YYLTYPE *loc)
2890 {
2891 const glsl_type *base_type = var->type->without_array();
2892
2893 if (base_type->is_image()) {
2894 if (var->data.mode != ir_var_uniform &&
2895 var->data.mode != ir_var_function_in) {
2896 _mesa_glsl_error(loc, state, "image variables may only be declared as "
2897 "function parameters or uniform-qualified "
2898 "global variables");
2899 }
2900
2901 var->data.image_read_only |= qual->flags.q.read_only;
2902 var->data.image_write_only |= qual->flags.q.write_only;
2903 var->data.image_coherent |= qual->flags.q.coherent;
2904 var->data.image_volatile |= qual->flags.q._volatile;
2905 var->data.image_restrict |= qual->flags.q.restrict_flag;
2906 var->data.read_only = true;
2907
2908 if (qual->flags.q.explicit_image_format) {
2909 if (var->data.mode == ir_var_function_in) {
2910 _mesa_glsl_error(loc, state, "format qualifiers cannot be "
2911 "used on image function parameters");
2912 }
2913
2914 if (qual->image_base_type != base_type->sampler_type) {
2915 _mesa_glsl_error(loc, state, "format qualifier doesn't match the "
2916 "base data type of the image");
2917 }
2918
2919 var->data.image_format = qual->image_format;
2920 } else {
2921 if (var->data.mode == ir_var_uniform) {
2922 if (state->es_shader) {
2923 _mesa_glsl_error(loc, state, "all image uniforms "
2924 "must have a format layout qualifier");
2925
2926 } else if (!qual->flags.q.write_only) {
2927 _mesa_glsl_error(loc, state, "image uniforms not qualified with "
2928 "`writeonly' must have a format layout "
2929 "qualifier");
2930 }
2931 }
2932
2933 var->data.image_format = GL_NONE;
2934 }
2935
2936 /* From page 70 of the GLSL ES 3.1 specification:
2937 *
2938 * "Except for image variables qualified with the format qualifiers
2939 * r32f, r32i, and r32ui, image variables must specify either memory
2940 * qualifier readonly or the memory qualifier writeonly."
2941 */
2942 if (state->es_shader &&
2943 var->data.image_format != GL_R32F &&
2944 var->data.image_format != GL_R32I &&
2945 var->data.image_format != GL_R32UI &&
2946 !var->data.image_read_only &&
2947 !var->data.image_write_only) {
2948 _mesa_glsl_error(loc, state, "image variables of format other than "
2949 "r32f, r32i or r32ui must be qualified `readonly' or "
2950 "`writeonly'");
2951 }
2952
2953 } else if (qual->flags.q.read_only ||
2954 qual->flags.q.write_only ||
2955 qual->flags.q.coherent ||
2956 qual->flags.q._volatile ||
2957 qual->flags.q.restrict_flag ||
2958 qual->flags.q.explicit_image_format) {
2959 _mesa_glsl_error(loc, state, "memory qualifiers may only be applied to "
2960 "images");
2961 }
2962 }
2963
2964 static inline const char*
2965 get_layout_qualifier_string(bool origin_upper_left, bool pixel_center_integer)
2966 {
2967 if (origin_upper_left && pixel_center_integer)
2968 return "origin_upper_left, pixel_center_integer";
2969 else if (origin_upper_left)
2970 return "origin_upper_left";
2971 else if (pixel_center_integer)
2972 return "pixel_center_integer";
2973 else
2974 return " ";
2975 }
2976
2977 static inline bool
2978 is_conflicting_fragcoord_redeclaration(struct _mesa_glsl_parse_state *state,
2979 const struct ast_type_qualifier *qual)
2980 {
2981 /* If gl_FragCoord was previously declared, and the qualifiers were
2982 * different in any way, return true.
2983 */
2984 if (state->fs_redeclares_gl_fragcoord) {
2985 return (state->fs_pixel_center_integer != qual->flags.q.pixel_center_integer
2986 || state->fs_origin_upper_left != qual->flags.q.origin_upper_left);
2987 }
2988
2989 return false;
2990 }
2991
2992 static inline void
2993 validate_array_dimensions(const glsl_type *t,
2994 struct _mesa_glsl_parse_state *state,
2995 YYLTYPE *loc) {
2996 if (t->is_array()) {
2997 t = t->fields.array;
2998 while (t->is_array()) {
2999 if (t->is_unsized_array()) {
3000 _mesa_glsl_error(loc, state,
3001 "only the outermost array dimension can "
3002 "be unsized",
3003 t->name);
3004 break;
3005 }
3006 t = t->fields.array;
3007 }
3008 }
3009 }
3010
3011 static void
3012 apply_layout_qualifier_to_variable(const struct ast_type_qualifier *qual,
3013 ir_variable *var,
3014 struct _mesa_glsl_parse_state *state,
3015 YYLTYPE *loc)
3016 {
3017 if (var->name != NULL && strcmp(var->name, "gl_FragCoord") == 0) {
3018
3019 /* Section 4.3.8.1, page 39 of GLSL 1.50 spec says:
3020 *
3021 * "Within any shader, the first redeclarations of gl_FragCoord
3022 * must appear before any use of gl_FragCoord."
3023 *
3024 * Generate a compiler error if above condition is not met by the
3025 * fragment shader.
3026 */
3027 ir_variable *earlier = state->symbols->get_variable("gl_FragCoord");
3028 if (earlier != NULL &&
3029 earlier->data.used &&
3030 !state->fs_redeclares_gl_fragcoord) {
3031 _mesa_glsl_error(loc, state,
3032 "gl_FragCoord used before its first redeclaration "
3033 "in fragment shader");
3034 }
3035
3036 /* Make sure all gl_FragCoord redeclarations specify the same layout
3037 * qualifiers.
3038 */
3039 if (is_conflicting_fragcoord_redeclaration(state, qual)) {
3040 const char *const qual_string =
3041 get_layout_qualifier_string(qual->flags.q.origin_upper_left,
3042 qual->flags.q.pixel_center_integer);
3043
3044 const char *const state_string =
3045 get_layout_qualifier_string(state->fs_origin_upper_left,
3046 state->fs_pixel_center_integer);
3047
3048 _mesa_glsl_error(loc, state,
3049 "gl_FragCoord redeclared with different layout "
3050 "qualifiers (%s) and (%s) ",
3051 state_string,
3052 qual_string);
3053 }
3054 state->fs_origin_upper_left = qual->flags.q.origin_upper_left;
3055 state->fs_pixel_center_integer = qual->flags.q.pixel_center_integer;
3056 state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers =
3057 !qual->flags.q.origin_upper_left && !qual->flags.q.pixel_center_integer;
3058 state->fs_redeclares_gl_fragcoord =
3059 state->fs_origin_upper_left ||
3060 state->fs_pixel_center_integer ||
3061 state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers;
3062 }
3063
3064 var->data.pixel_center_integer = qual->flags.q.pixel_center_integer;
3065 var->data.origin_upper_left = qual->flags.q.origin_upper_left;
3066 if ((qual->flags.q.origin_upper_left || qual->flags.q.pixel_center_integer)
3067 && (strcmp(var->name, "gl_FragCoord") != 0)) {
3068 const char *const qual_string = (qual->flags.q.origin_upper_left)
3069 ? "origin_upper_left" : "pixel_center_integer";
3070
3071 _mesa_glsl_error(loc, state,
3072 "layout qualifier `%s' can only be applied to "
3073 "fragment shader input `gl_FragCoord'",
3074 qual_string);
3075 }
3076
3077 if (qual->flags.q.explicit_location) {
3078 apply_explicit_location(qual, var, state, loc);
3079 } else if (qual->flags.q.explicit_index) {
3080 if (!qual->flags.q.subroutine_def)
3081 _mesa_glsl_error(loc, state,
3082 "explicit index requires explicit location");
3083 }
3084
3085 if (qual->flags.q.explicit_binding) {
3086 apply_explicit_binding(state, loc, var, var->type, qual);
3087 }
3088
3089 if (state->stage == MESA_SHADER_GEOMETRY &&
3090 qual->flags.q.out && qual->flags.q.stream) {
3091 unsigned qual_stream;
3092 if (process_qualifier_constant(state, loc, "stream", qual->stream,
3093 &qual_stream) &&
3094 validate_stream_qualifier(loc, state, qual_stream)) {
3095 var->data.stream = qual_stream;
3096 }
3097 }
3098
3099 if (var->type->contains_atomic()) {
3100 if (var->data.mode == ir_var_uniform) {
3101 if (var->data.explicit_binding) {
3102 unsigned *offset =
3103 &state->atomic_counter_offsets[var->data.binding];
3104
3105 if (*offset % ATOMIC_COUNTER_SIZE)
3106 _mesa_glsl_error(loc, state,
3107 "misaligned atomic counter offset");
3108
3109 var->data.atomic.offset = *offset;
3110 *offset += var->type->atomic_size();
3111
3112 } else {
3113 _mesa_glsl_error(loc, state,
3114 "atomic counters require explicit binding point");
3115 }
3116 } else if (var->data.mode != ir_var_function_in) {
3117 _mesa_glsl_error(loc, state, "atomic counters may only be declared as "
3118 "function parameters or uniform-qualified "
3119 "global variables");
3120 }
3121 }
3122
3123 /* Is the 'layout' keyword used with parameters that allow relaxed checking.
3124 * Many implementations of GL_ARB_fragment_coord_conventions_enable and some
3125 * implementations (only Mesa?) GL_ARB_explicit_attrib_location_enable
3126 * allowed the layout qualifier to be used with 'varying' and 'attribute'.
3127 * These extensions and all following extensions that add the 'layout'
3128 * keyword have been modified to require the use of 'in' or 'out'.
3129 *
3130 * The following extension do not allow the deprecated keywords:
3131 *
3132 * GL_AMD_conservative_depth
3133 * GL_ARB_conservative_depth
3134 * GL_ARB_gpu_shader5
3135 * GL_ARB_separate_shader_objects
3136 * GL_ARB_tessellation_shader
3137 * GL_ARB_transform_feedback3
3138 * GL_ARB_uniform_buffer_object
3139 *
3140 * It is unknown whether GL_EXT_shader_image_load_store or GL_NV_gpu_shader5
3141 * allow layout with the deprecated keywords.
3142 */
3143 const bool relaxed_layout_qualifier_checking =
3144 state->ARB_fragment_coord_conventions_enable;
3145
3146 const bool uses_deprecated_qualifier = qual->flags.q.attribute
3147 || qual->flags.q.varying;
3148 if (qual->has_layout() && uses_deprecated_qualifier) {
3149 if (relaxed_layout_qualifier_checking) {
3150 _mesa_glsl_warning(loc, state,
3151 "`layout' qualifier may not be used with "
3152 "`attribute' or `varying'");
3153 } else {
3154 _mesa_glsl_error(loc, state,
3155 "`layout' qualifier may not be used with "
3156 "`attribute' or `varying'");
3157 }
3158 }
3159
3160 /* Layout qualifiers for gl_FragDepth, which are enabled by extension
3161 * AMD_conservative_depth.
3162 */
3163 int depth_layout_count = qual->flags.q.depth_any
3164 + qual->flags.q.depth_greater
3165 + qual->flags.q.depth_less
3166 + qual->flags.q.depth_unchanged;
3167 if (depth_layout_count > 0
3168 && !state->AMD_conservative_depth_enable
3169 && !state->ARB_conservative_depth_enable) {
3170 _mesa_glsl_error(loc, state,
3171 "extension GL_AMD_conservative_depth or "
3172 "GL_ARB_conservative_depth must be enabled "
3173 "to use depth layout qualifiers");
3174 } else if (depth_layout_count > 0
3175 && strcmp(var->name, "gl_FragDepth") != 0) {
3176 _mesa_glsl_error(loc, state,
3177 "depth layout qualifiers can be applied only to "
3178 "gl_FragDepth");
3179 } else if (depth_layout_count > 1
3180 && strcmp(var->name, "gl_FragDepth") == 0) {
3181 _mesa_glsl_error(loc, state,
3182 "at most one depth layout qualifier can be applied to "
3183 "gl_FragDepth");
3184 }
3185 if (qual->flags.q.depth_any)
3186 var->data.depth_layout = ir_depth_layout_any;
3187 else if (qual->flags.q.depth_greater)
3188 var->data.depth_layout = ir_depth_layout_greater;
3189 else if (qual->flags.q.depth_less)
3190 var->data.depth_layout = ir_depth_layout_less;
3191 else if (qual->flags.q.depth_unchanged)
3192 var->data.depth_layout = ir_depth_layout_unchanged;
3193 else
3194 var->data.depth_layout = ir_depth_layout_none;
3195
3196 if (qual->flags.q.std140 ||
3197 qual->flags.q.std430 ||
3198 qual->flags.q.packed ||
3199 qual->flags.q.shared) {
3200 _mesa_glsl_error(loc, state,
3201 "uniform and shader storage block layout qualifiers "
3202 "std140, std430, packed, and shared can only be "
3203 "applied to uniform or shader storage blocks, not "
3204 "members");
3205 }
3206
3207 if (qual->flags.q.row_major || qual->flags.q.column_major) {
3208 validate_matrix_layout_for_type(state, loc, var->type, var);
3209 }
3210
3211 /* From section 4.4.1.3 of the GLSL 4.50 specification (Fragment Shader
3212 * Inputs):
3213 *
3214 * "Fragment shaders also allow the following layout qualifier on in only
3215 * (not with variable declarations)
3216 * layout-qualifier-id
3217 * early_fragment_tests
3218 * [...]"
3219 */
3220 if (qual->flags.q.early_fragment_tests) {
3221 _mesa_glsl_error(loc, state, "early_fragment_tests layout qualifier only "
3222 "valid in fragment shader input layout declaration.");
3223 }
3224 }
3225
3226 static void
3227 apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
3228 ir_variable *var,
3229 struct _mesa_glsl_parse_state *state,
3230 YYLTYPE *loc,
3231 bool is_parameter)
3232 {
3233 STATIC_ASSERT(sizeof(qual->flags.q) <= sizeof(qual->flags.i));
3234
3235 if (qual->flags.q.invariant) {
3236 if (var->data.used) {
3237 _mesa_glsl_error(loc, state,
3238 "variable `%s' may not be redeclared "
3239 "`invariant' after being used",
3240 var->name);
3241 } else {
3242 var->data.invariant = 1;
3243 }
3244 }
3245
3246 if (qual->flags.q.precise) {
3247 if (var->data.used) {
3248 _mesa_glsl_error(loc, state,
3249 "variable `%s' may not be redeclared "
3250 "`precise' after being used",
3251 var->name);
3252 } else {
3253 var->data.precise = 1;
3254 }
3255 }
3256
3257 if (qual->flags.q.subroutine && !qual->flags.q.uniform) {
3258 _mesa_glsl_error(loc, state,
3259 "`subroutine' may only be applied to uniforms, "
3260 "subroutine type declarations, or function definitions");
3261 }
3262
3263 if (qual->flags.q.constant || qual->flags.q.attribute
3264 || qual->flags.q.uniform
3265 || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
3266 var->data.read_only = 1;
3267
3268 if (qual->flags.q.centroid)
3269 var->data.centroid = 1;
3270
3271 if (qual->flags.q.sample)
3272 var->data.sample = 1;
3273
3274 /* Precision qualifiers do not hold any meaning in Desktop GLSL */
3275 if (state->es_shader) {
3276 var->data.precision =
3277 select_gles_precision(qual->precision, var->type, state, loc);
3278 }
3279
3280 if (qual->flags.q.patch)
3281 var->data.patch = 1;
3282
3283 if (qual->flags.q.attribute && state->stage != MESA_SHADER_VERTEX) {
3284 var->type = glsl_type::error_type;
3285 _mesa_glsl_error(loc, state,
3286 "`attribute' variables may not be declared in the "
3287 "%s shader",
3288 _mesa_shader_stage_to_string(state->stage));
3289 }
3290
3291 /* Disallow layout qualifiers which may only appear on layout declarations. */
3292 if (qual->flags.q.prim_type) {
3293 _mesa_glsl_error(loc, state,
3294 "Primitive type may only be specified on GS input or output "
3295 "layout declaration, not on variables.");
3296 }
3297
3298 /* Section 6.1.1 (Function Calling Conventions) of the GLSL 1.10 spec says:
3299 *
3300 * "However, the const qualifier cannot be used with out or inout."
3301 *
3302 * The same section of the GLSL 4.40 spec further clarifies this saying:
3303 *
3304 * "The const qualifier cannot be used with out or inout, or a
3305 * compile-time error results."
3306 */
3307 if (is_parameter && qual->flags.q.constant && qual->flags.q.out) {
3308 _mesa_glsl_error(loc, state,
3309 "`const' may not be applied to `out' or `inout' "
3310 "function parameters");
3311 }
3312
3313 /* If there is no qualifier that changes the mode of the variable, leave
3314 * the setting alone.
3315 */
3316 assert(var->data.mode != ir_var_temporary);
3317 if (qual->flags.q.in && qual->flags.q.out)
3318 var->data.mode = ir_var_function_inout;
3319 else if (qual->flags.q.in)
3320 var->data.mode = is_parameter ? ir_var_function_in : ir_var_shader_in;
3321 else if (qual->flags.q.attribute
3322 || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
3323 var->data.mode = ir_var_shader_in;
3324 else if (qual->flags.q.out)
3325 var->data.mode = is_parameter ? ir_var_function_out : ir_var_shader_out;
3326 else if (qual->flags.q.varying && (state->stage == MESA_SHADER_VERTEX))
3327 var->data.mode = ir_var_shader_out;
3328 else if (qual->flags.q.uniform)
3329 var->data.mode = ir_var_uniform;
3330 else if (qual->flags.q.buffer)
3331 var->data.mode = ir_var_shader_storage;
3332 else if (qual->flags.q.shared_storage)
3333 var->data.mode = ir_var_shader_shared;
3334
3335 if (!is_parameter && is_varying_var(var, state->stage)) {
3336 /* User-defined ins/outs are not permitted in compute shaders. */
3337 if (state->stage == MESA_SHADER_COMPUTE) {
3338 _mesa_glsl_error(loc, state,
3339 "user-defined input and output variables are not "
3340 "permitted in compute shaders");
3341 }
3342
3343 /* This variable is being used to link data between shader stages (in
3344 * pre-glsl-1.30 parlance, it's a "varying"). Check that it has a type
3345 * that is allowed for such purposes.
3346 *
3347 * From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
3348 *
3349 * "The varying qualifier can be used only with the data types
3350 * float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
3351 * these."
3352 *
3353 * This was relaxed in GLSL version 1.30 and GLSL ES version 3.00. From
3354 * page 31 (page 37 of the PDF) of the GLSL 1.30 spec:
3355 *
3356 * "Fragment inputs can only be signed and unsigned integers and
3357 * integer vectors, float, floating-point vectors, matrices, or
3358 * arrays of these. Structures cannot be input.
3359 *
3360 * Similar text exists in the section on vertex shader outputs.
3361 *
3362 * Similar text exists in the GLSL ES 3.00 spec, except that the GLSL ES
3363 * 3.00 spec allows structs as well. Varying structs are also allowed
3364 * in GLSL 1.50.
3365 */
3366 switch (var->type->get_scalar_type()->base_type) {
3367 case GLSL_TYPE_FLOAT:
3368 /* Ok in all GLSL versions */
3369 break;
3370 case GLSL_TYPE_UINT:
3371 case GLSL_TYPE_INT:
3372 if (state->is_version(130, 300))
3373 break;
3374 _mesa_glsl_error(loc, state,
3375 "varying variables must be of base type float in %s",
3376 state->get_version_string());
3377 break;
3378 case GLSL_TYPE_STRUCT:
3379 if (state->is_version(150, 300))
3380 break;
3381 _mesa_glsl_error(loc, state,
3382 "varying variables may not be of type struct");
3383 break;
3384 case GLSL_TYPE_DOUBLE:
3385 break;
3386 default:
3387 _mesa_glsl_error(loc, state, "illegal type for a varying variable");
3388 break;
3389 }
3390 }
3391
3392 if (state->all_invariant && (state->current_function == NULL)) {
3393 switch (state->stage) {
3394 case MESA_SHADER_VERTEX:
3395 if (var->data.mode == ir_var_shader_out)
3396 var->data.invariant = true;
3397 break;
3398 case MESA_SHADER_TESS_CTRL:
3399 case MESA_SHADER_TESS_EVAL:
3400 case MESA_SHADER_GEOMETRY:
3401 if ((var->data.mode == ir_var_shader_in)
3402 || (var->data.mode == ir_var_shader_out))
3403 var->data.invariant = true;
3404 break;
3405 case MESA_SHADER_FRAGMENT:
3406 if (var->data.mode == ir_var_shader_in)
3407 var->data.invariant = true;
3408 break;
3409 case MESA_SHADER_COMPUTE:
3410 /* Invariance isn't meaningful in compute shaders. */
3411 break;
3412 }
3413 }
3414
3415 var->data.interpolation =
3416 interpret_interpolation_qualifier(qual, (ir_variable_mode) var->data.mode,
3417 state, loc);
3418
3419 /* Does the declaration use the deprecated 'attribute' or 'varying'
3420 * keywords?
3421 */
3422 const bool uses_deprecated_qualifier = qual->flags.q.attribute
3423 || qual->flags.q.varying;
3424
3425
3426 /* Validate auxiliary storage qualifiers */
3427
3428 /* From section 4.3.4 of the GLSL 1.30 spec:
3429 * "It is an error to use centroid in in a vertex shader."
3430 *
3431 * From section 4.3.4 of the GLSL ES 3.00 spec:
3432 * "It is an error to use centroid in or interpolation qualifiers in
3433 * a vertex shader input."
3434 */
3435
3436 /* Section 4.3.6 of the GLSL 1.30 specification states:
3437 * "It is an error to use centroid out in a fragment shader."
3438 *
3439 * The GL_ARB_shading_language_420pack extension specification states:
3440 * "It is an error to use auxiliary storage qualifiers or interpolation
3441 * qualifiers on an output in a fragment shader."
3442 */
3443 if (qual->flags.q.sample && (!is_varying_var(var, state->stage) || uses_deprecated_qualifier)) {
3444 _mesa_glsl_error(loc, state,
3445 "sample qualifier may only be used on `in` or `out` "
3446 "variables between shader stages");
3447 }
3448 if (qual->flags.q.centroid && !is_varying_var(var, state->stage)) {
3449 _mesa_glsl_error(loc, state,
3450 "centroid qualifier may only be used with `in', "
3451 "`out' or `varying' variables between shader stages");
3452 }
3453
3454 if (qual->flags.q.shared_storage && state->stage != MESA_SHADER_COMPUTE) {
3455 _mesa_glsl_error(loc, state,
3456 "the shared storage qualifiers can only be used with "
3457 "compute shaders");
3458 }
3459
3460 apply_image_qualifier_to_variable(qual, var, state, loc);
3461 }
3462
3463 /**
3464 * Get the variable that is being redeclared by this declaration
3465 *
3466 * Semantic checks to verify the validity of the redeclaration are also
3467 * performed. If semantic checks fail, compilation error will be emitted via
3468 * \c _mesa_glsl_error, but a non-\c NULL pointer will still be returned.
3469 *
3470 * \returns
3471 * A pointer to an existing variable in the current scope if the declaration
3472 * is a redeclaration, \c NULL otherwise.
3473 */
3474 static ir_variable *
3475 get_variable_being_redeclared(ir_variable *var, YYLTYPE loc,
3476 struct _mesa_glsl_parse_state *state,
3477 bool allow_all_redeclarations)
3478 {
3479 /* Check if this declaration is actually a re-declaration, either to
3480 * resize an array or add qualifiers to an existing variable.
3481 *
3482 * This is allowed for variables in the current scope, or when at
3483 * global scope (for built-ins in the implicit outer scope).
3484 */
3485 ir_variable *earlier = state->symbols->get_variable(var->name);
3486 if (earlier == NULL ||
3487 (state->current_function != NULL &&
3488 !state->symbols->name_declared_this_scope(var->name))) {
3489 return NULL;
3490 }
3491
3492
3493 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
3494 *
3495 * "It is legal to declare an array without a size and then
3496 * later re-declare the same name as an array of the same
3497 * type and specify a size."
3498 */
3499 if (earlier->type->is_unsized_array() && var->type->is_array()
3500 && (var->type->fields.array == earlier->type->fields.array)) {
3501 /* FINISHME: This doesn't match the qualifiers on the two
3502 * FINISHME: declarations. It's not 100% clear whether this is
3503 * FINISHME: required or not.
3504 */
3505
3506 const unsigned size = unsigned(var->type->array_size());
3507 check_builtin_array_max_size(var->name, size, loc, state);
3508 if ((size > 0) && (size <= earlier->data.max_array_access)) {
3509 _mesa_glsl_error(& loc, state, "array size must be > %u due to "
3510 "previous access",
3511 earlier->data.max_array_access);
3512 }
3513
3514 earlier->type = var->type;
3515 delete var;
3516 var = NULL;
3517 } else if ((state->ARB_fragment_coord_conventions_enable ||
3518 state->is_version(150, 0))
3519 && strcmp(var->name, "gl_FragCoord") == 0
3520 && earlier->type == var->type
3521 && earlier->data.mode == var->data.mode) {
3522 /* Allow redeclaration of gl_FragCoord for ARB_fcc layout
3523 * qualifiers.
3524 */
3525 earlier->data.origin_upper_left = var->data.origin_upper_left;
3526 earlier->data.pixel_center_integer = var->data.pixel_center_integer;
3527
3528 /* According to section 4.3.7 of the GLSL 1.30 spec,
3529 * the following built-in varaibles can be redeclared with an
3530 * interpolation qualifier:
3531 * * gl_FrontColor
3532 * * gl_BackColor
3533 * * gl_FrontSecondaryColor
3534 * * gl_BackSecondaryColor
3535 * * gl_Color
3536 * * gl_SecondaryColor
3537 */
3538 } else if (state->is_version(130, 0)
3539 && (strcmp(var->name, "gl_FrontColor") == 0
3540 || strcmp(var->name, "gl_BackColor") == 0
3541 || strcmp(var->name, "gl_FrontSecondaryColor") == 0
3542 || strcmp(var->name, "gl_BackSecondaryColor") == 0
3543 || strcmp(var->name, "gl_Color") == 0
3544 || strcmp(var->name, "gl_SecondaryColor") == 0)
3545 && earlier->type == var->type
3546 && earlier->data.mode == var->data.mode) {
3547 earlier->data.interpolation = var->data.interpolation;
3548
3549 /* Layout qualifiers for gl_FragDepth. */
3550 } else if ((state->AMD_conservative_depth_enable ||
3551 state->ARB_conservative_depth_enable)
3552 && strcmp(var->name, "gl_FragDepth") == 0
3553 && earlier->type == var->type
3554 && earlier->data.mode == var->data.mode) {
3555
3556 /** From the AMD_conservative_depth spec:
3557 * Within any shader, the first redeclarations of gl_FragDepth
3558 * must appear before any use of gl_FragDepth.
3559 */
3560 if (earlier->data.used) {
3561 _mesa_glsl_error(&loc, state,
3562 "the first redeclaration of gl_FragDepth "
3563 "must appear before any use of gl_FragDepth");
3564 }
3565
3566 /* Prevent inconsistent redeclaration of depth layout qualifier. */
3567 if (earlier->data.depth_layout != ir_depth_layout_none
3568 && earlier->data.depth_layout != var->data.depth_layout) {
3569 _mesa_glsl_error(&loc, state,
3570 "gl_FragDepth: depth layout is declared here "
3571 "as '%s, but it was previously declared as "
3572 "'%s'",
3573 depth_layout_string(var->data.depth_layout),
3574 depth_layout_string(earlier->data.depth_layout));
3575 }
3576
3577 earlier->data.depth_layout = var->data.depth_layout;
3578
3579 } else if (allow_all_redeclarations) {
3580 if (earlier->data.mode != var->data.mode) {
3581 _mesa_glsl_error(&loc, state,
3582 "redeclaration of `%s' with incorrect qualifiers",
3583 var->name);
3584 } else if (earlier->type != var->type) {
3585 _mesa_glsl_error(&loc, state,
3586 "redeclaration of `%s' has incorrect type",
3587 var->name);
3588 }
3589 } else {
3590 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
3591 }
3592
3593 return earlier;
3594 }
3595
3596 /**
3597 * Generate the IR for an initializer in a variable declaration
3598 */
3599 ir_rvalue *
3600 process_initializer(ir_variable *var, ast_declaration *decl,
3601 ast_fully_specified_type *type,
3602 exec_list *initializer_instructions,
3603 struct _mesa_glsl_parse_state *state)
3604 {
3605 ir_rvalue *result = NULL;
3606
3607 YYLTYPE initializer_loc = decl->initializer->get_location();
3608
3609 /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
3610 *
3611 * "All uniform variables are read-only and are initialized either
3612 * directly by an application via API commands, or indirectly by
3613 * OpenGL."
3614 */
3615 if (var->data.mode == ir_var_uniform) {
3616 state->check_version(120, 0, &initializer_loc,
3617 "cannot initialize uniform %s",
3618 var->name);
3619 }
3620
3621 /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec:
3622 *
3623 * "Buffer variables cannot have initializers."
3624 */
3625 if (var->data.mode == ir_var_shader_storage) {
3626 _mesa_glsl_error(&initializer_loc, state,
3627 "cannot initialize buffer variable %s",
3628 var->name);
3629 }
3630
3631 /* From section 4.1.7 of the GLSL 4.40 spec:
3632 *
3633 * "Opaque variables [...] are initialized only through the
3634 * OpenGL API; they cannot be declared with an initializer in a
3635 * shader."
3636 */
3637 if (var->type->contains_opaque()) {
3638 _mesa_glsl_error(&initializer_loc, state,
3639 "cannot initialize opaque variable %s",
3640 var->name);
3641 }
3642
3643 if ((var->data.mode == ir_var_shader_in) && (state->current_function == NULL)) {
3644 _mesa_glsl_error(&initializer_loc, state,
3645 "cannot initialize %s shader input / %s %s",
3646 _mesa_shader_stage_to_string(state->stage),
3647 (state->stage == MESA_SHADER_VERTEX)
3648 ? "attribute" : "varying",
3649 var->name);
3650 }
3651
3652 if (var->data.mode == ir_var_shader_out && state->current_function == NULL) {
3653 _mesa_glsl_error(&initializer_loc, state,
3654 "cannot initialize %s shader output %s",
3655 _mesa_shader_stage_to_string(state->stage),
3656 var->name);
3657 }
3658
3659 /* If the initializer is an ast_aggregate_initializer, recursively store
3660 * type information from the LHS into it, so that its hir() function can do
3661 * type checking.
3662 */
3663 if (decl->initializer->oper == ast_aggregate)
3664 _mesa_ast_set_aggregate_type(var->type, decl->initializer);
3665
3666 ir_dereference *const lhs = new(state) ir_dereference_variable(var);
3667 ir_rvalue *rhs = decl->initializer->hir(initializer_instructions, state);
3668
3669 /* Calculate the constant value if this is a const or uniform
3670 * declaration.
3671 *
3672 * Section 4.3 (Storage Qualifiers) of the GLSL ES 1.00.17 spec says:
3673 *
3674 * "Declarations of globals without a storage qualifier, or with
3675 * just the const qualifier, may include initializers, in which case
3676 * they will be initialized before the first line of main() is
3677 * executed. Such initializers must be a constant expression."
3678 *
3679 * The same section of the GLSL ES 3.00.4 spec has similar language.
3680 */
3681 if (type->qualifier.flags.q.constant
3682 || type->qualifier.flags.q.uniform
3683 || (state->es_shader && state->current_function == NULL)) {
3684 ir_rvalue *new_rhs = validate_assignment(state, initializer_loc,
3685 lhs, rhs, true);
3686 if (new_rhs != NULL) {
3687 rhs = new_rhs;
3688
3689 /* Section 4.3.3 (Constant Expressions) of the GLSL ES 3.00.4 spec
3690 * says:
3691 *
3692 * "A constant expression is one of
3693 *
3694 * ...
3695 *
3696 * - an expression formed by an operator on operands that are
3697 * all constant expressions, including getting an element of
3698 * a constant array, or a field of a constant structure, or
3699 * components of a constant vector. However, the sequence
3700 * operator ( , ) and the assignment operators ( =, +=, ...)
3701 * are not included in the operators that can create a
3702 * constant expression."
3703 *
3704 * Section 12.43 (Sequence operator and constant expressions) says:
3705 *
3706 * "Should the following construct be allowed?
3707 *
3708 * float a[2,3];
3709 *
3710 * The expression within the brackets uses the sequence operator
3711 * (',') and returns the integer 3 so the construct is declaring
3712 * a single-dimensional array of size 3. In some languages, the
3713 * construct declares a two-dimensional array. It would be
3714 * preferable to make this construct illegal to avoid confusion.
3715 *
3716 * One possibility is to change the definition of the sequence
3717 * operator so that it does not return a constant-expression and
3718 * hence cannot be used to declare an array size.
3719 *
3720 * RESOLUTION: The result of a sequence operator is not a
3721 * constant-expression."
3722 *
3723 * Section 4.3.3 (Constant Expressions) of the GLSL 4.30.9 spec
3724 * contains language almost identical to the section 4.3.3 in the
3725 * GLSL ES 3.00.4 spec. This is a new limitation for these GLSL
3726 * versions.
3727 */
3728 ir_constant *constant_value = rhs->constant_expression_value();
3729 if (!constant_value ||
3730 (state->is_version(430, 300) &&
3731 decl->initializer->has_sequence_subexpression())) {
3732 const char *const variable_mode =
3733 (type->qualifier.flags.q.constant)
3734 ? "const"
3735 : ((type->qualifier.flags.q.uniform) ? "uniform" : "global");
3736
3737 /* If ARB_shading_language_420pack is enabled, initializers of
3738 * const-qualified local variables do not have to be constant
3739 * expressions. Const-qualified global variables must still be
3740 * initialized with constant expressions.
3741 */
3742 if (!state->has_420pack()
3743 || state->current_function == NULL) {
3744 _mesa_glsl_error(& initializer_loc, state,
3745 "initializer of %s variable `%s' must be a "
3746 "constant expression",
3747 variable_mode,
3748 decl->identifier);
3749 if (var->type->is_numeric()) {
3750 /* Reduce cascading errors. */
3751 var->constant_value = type->qualifier.flags.q.constant
3752 ? ir_constant::zero(state, var->type) : NULL;
3753 }
3754 }
3755 } else {
3756 rhs = constant_value;
3757 var->constant_value = type->qualifier.flags.q.constant
3758 ? constant_value : NULL;
3759 }
3760 } else {
3761 if (var->type->is_numeric()) {
3762 /* Reduce cascading errors. */
3763 var->constant_value = type->qualifier.flags.q.constant
3764 ? ir_constant::zero(state, var->type) : NULL;
3765 }
3766 }
3767 }
3768
3769 if (rhs && !rhs->type->is_error()) {
3770 bool temp = var->data.read_only;
3771 if (type->qualifier.flags.q.constant)
3772 var->data.read_only = false;
3773
3774 /* Never emit code to initialize a uniform.
3775 */
3776 const glsl_type *initializer_type;
3777 if (!type->qualifier.flags.q.uniform) {
3778 do_assignment(initializer_instructions, state,
3779 NULL,
3780 lhs, rhs,
3781 &result, true,
3782 true,
3783 type->get_location());
3784 initializer_type = result->type;
3785 } else
3786 initializer_type = rhs->type;
3787
3788 var->constant_initializer = rhs->constant_expression_value();
3789 var->data.has_initializer = true;
3790
3791 /* If the declared variable is an unsized array, it must inherrit
3792 * its full type from the initializer. A declaration such as
3793 *
3794 * uniform float a[] = float[](1.0, 2.0, 3.0, 3.0);
3795 *
3796 * becomes
3797 *
3798 * uniform float a[4] = float[](1.0, 2.0, 3.0, 3.0);
3799 *
3800 * The assignment generated in the if-statement (below) will also
3801 * automatically handle this case for non-uniforms.
3802 *
3803 * If the declared variable is not an array, the types must
3804 * already match exactly. As a result, the type assignment
3805 * here can be done unconditionally. For non-uniforms the call
3806 * to do_assignment can change the type of the initializer (via
3807 * the implicit conversion rules). For uniforms the initializer
3808 * must be a constant expression, and the type of that expression
3809 * was validated above.
3810 */
3811 var->type = initializer_type;
3812
3813 var->data.read_only = temp;
3814 }
3815
3816 return result;
3817 }
3818
3819 static void
3820 validate_layout_qualifier_vertex_count(struct _mesa_glsl_parse_state *state,
3821 YYLTYPE loc, ir_variable *var,
3822 unsigned num_vertices,
3823 unsigned *size,
3824 const char *var_category)
3825 {
3826 if (var->type->is_unsized_array()) {
3827 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec says:
3828 *
3829 * All geometry shader input unsized array declarations will be
3830 * sized by an earlier input layout qualifier, when present, as per
3831 * the following table.
3832 *
3833 * Followed by a table mapping each allowed input layout qualifier to
3834 * the corresponding input length.
3835 *
3836 * Similarly for tessellation control shader outputs.
3837 */
3838 if (num_vertices != 0)
3839 var->type = glsl_type::get_array_instance(var->type->fields.array,
3840 num_vertices);
3841 } else {
3842 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec
3843 * includes the following examples of compile-time errors:
3844 *
3845 * // code sequence within one shader...
3846 * in vec4 Color1[]; // size unknown
3847 * ...Color1.length()...// illegal, length() unknown
3848 * in vec4 Color2[2]; // size is 2
3849 * ...Color1.length()...// illegal, Color1 still has no size
3850 * in vec4 Color3[3]; // illegal, input sizes are inconsistent
3851 * layout(lines) in; // legal, input size is 2, matching
3852 * in vec4 Color4[3]; // illegal, contradicts layout
3853 * ...
3854 *
3855 * To detect the case illustrated by Color3, we verify that the size of
3856 * an explicitly-sized array matches the size of any previously declared
3857 * explicitly-sized array. To detect the case illustrated by Color4, we
3858 * verify that the size of an explicitly-sized array is consistent with
3859 * any previously declared input layout.
3860 */
3861 if (num_vertices != 0 && var->type->length != num_vertices) {
3862 _mesa_glsl_error(&loc, state,
3863 "%s size contradicts previously declared layout "
3864 "(size is %u, but layout requires a size of %u)",
3865 var_category, var->type->length, num_vertices);
3866 } else if (*size != 0 && var->type->length != *size) {
3867 _mesa_glsl_error(&loc, state,
3868 "%s sizes are inconsistent (size is %u, but a "
3869 "previous declaration has size %u)",
3870 var_category, var->type->length, *size);
3871 } else {
3872 *size = var->type->length;
3873 }
3874 }
3875 }
3876
3877 static void
3878 handle_tess_ctrl_shader_output_decl(struct _mesa_glsl_parse_state *state,
3879 YYLTYPE loc, ir_variable *var)
3880 {
3881 unsigned num_vertices = 0;
3882
3883 if (state->tcs_output_vertices_specified) {
3884 if (!state->out_qualifier->vertices->
3885 process_qualifier_constant(state, "vertices",
3886 &num_vertices, false)) {
3887 return;
3888 }
3889
3890 if (num_vertices > state->Const.MaxPatchVertices) {
3891 _mesa_glsl_error(&loc, state, "vertices (%d) exceeds "
3892 "GL_MAX_PATCH_VERTICES", num_vertices);
3893 return;
3894 }
3895 }
3896
3897 if (!var->type->is_array() && !var->data.patch) {
3898 _mesa_glsl_error(&loc, state,
3899 "tessellation control shader outputs must be arrays");
3900
3901 /* To avoid cascading failures, short circuit the checks below. */
3902 return;
3903 }
3904
3905 if (var->data.patch)
3906 return;
3907
3908 validate_layout_qualifier_vertex_count(state, loc, var, num_vertices,
3909 &state->tcs_output_size,
3910 "tessellation control shader output");
3911 }
3912
3913 /**
3914 * Do additional processing necessary for tessellation control/evaluation shader
3915 * input declarations. This covers both interface block arrays and bare input
3916 * variables.
3917 */
3918 static void
3919 handle_tess_shader_input_decl(struct _mesa_glsl_parse_state *state,
3920 YYLTYPE loc, ir_variable *var)
3921 {
3922 if (!var->type->is_array() && !var->data.patch) {
3923 _mesa_glsl_error(&loc, state,
3924 "per-vertex tessellation shader inputs must be arrays");
3925 /* Avoid cascading failures. */
3926 return;
3927 }
3928
3929 if (var->data.patch)
3930 return;
3931
3932 /* Unsized arrays are implicitly sized to gl_MaxPatchVertices. */
3933 if (var->type->is_unsized_array()) {
3934 var->type = glsl_type::get_array_instance(var->type->fields.array,
3935 state->Const.MaxPatchVertices);
3936 }
3937 }
3938
3939
3940 /**
3941 * Do additional processing necessary for geometry shader input declarations
3942 * (this covers both interface blocks arrays and bare input variables).
3943 */
3944 static void
3945 handle_geometry_shader_input_decl(struct _mesa_glsl_parse_state *state,
3946 YYLTYPE loc, ir_variable *var)
3947 {
3948 unsigned num_vertices = 0;
3949
3950 if (state->gs_input_prim_type_specified) {
3951 num_vertices = vertices_per_prim(state->in_qualifier->prim_type);
3952 }
3953
3954 /* Geometry shader input variables must be arrays. Caller should have
3955 * reported an error for this.
3956 */
3957 if (!var->type->is_array()) {
3958 assert(state->error);
3959
3960 /* To avoid cascading failures, short circuit the checks below. */
3961 return;
3962 }
3963
3964 validate_layout_qualifier_vertex_count(state, loc, var, num_vertices,
3965 &state->gs_input_size,
3966 "geometry shader input");
3967 }
3968
3969 void
3970 validate_identifier(const char *identifier, YYLTYPE loc,
3971 struct _mesa_glsl_parse_state *state)
3972 {
3973 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
3974 *
3975 * "Identifiers starting with "gl_" are reserved for use by
3976 * OpenGL, and may not be declared in a shader as either a
3977 * variable or a function."
3978 */
3979 if (is_gl_identifier(identifier)) {
3980 _mesa_glsl_error(&loc, state,
3981 "identifier `%s' uses reserved `gl_' prefix",
3982 identifier);
3983 } else if (strstr(identifier, "__")) {
3984 /* From page 14 (page 20 of the PDF) of the GLSL 1.10
3985 * spec:
3986 *
3987 * "In addition, all identifiers containing two
3988 * consecutive underscores (__) are reserved as
3989 * possible future keywords."
3990 *
3991 * The intention is that names containing __ are reserved for internal
3992 * use by the implementation, and names prefixed with GL_ are reserved
3993 * for use by Khronos. Names simply containing __ are dangerous to use,
3994 * but should be allowed.
3995 *
3996 * A future version of the GLSL specification will clarify this.
3997 */
3998 _mesa_glsl_warning(&loc, state,
3999 "identifier `%s' uses reserved `__' string",
4000 identifier);
4001 }
4002 }
4003
4004 ir_rvalue *
4005 ast_declarator_list::hir(exec_list *instructions,
4006 struct _mesa_glsl_parse_state *state)
4007 {
4008 void *ctx = state;
4009 const struct glsl_type *decl_type;
4010 const char *type_name = NULL;
4011 ir_rvalue *result = NULL;
4012 YYLTYPE loc = this->get_location();
4013
4014 /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec:
4015 *
4016 * "To ensure that a particular output variable is invariant, it is
4017 * necessary to use the invariant qualifier. It can either be used to
4018 * qualify a previously declared variable as being invariant
4019 *
4020 * invariant gl_Position; // make existing gl_Position be invariant"
4021 *
4022 * In these cases the parser will set the 'invariant' flag in the declarator
4023 * list, and the type will be NULL.
4024 */
4025 if (this->invariant) {
4026 assert(this->type == NULL);
4027
4028 if (state->current_function != NULL) {
4029 _mesa_glsl_error(& loc, state,
4030 "all uses of `invariant' keyword must be at global "
4031 "scope");
4032 }
4033
4034 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4035 assert(decl->array_specifier == NULL);
4036 assert(decl->initializer == NULL);
4037
4038 ir_variable *const earlier =
4039 state->symbols->get_variable(decl->identifier);
4040 if (earlier == NULL) {
4041 _mesa_glsl_error(& loc, state,
4042 "undeclared variable `%s' cannot be marked "
4043 "invariant", decl->identifier);
4044 } else if (!is_varying_var(earlier, state->stage)) {
4045 _mesa_glsl_error(&loc, state,
4046 "`%s' cannot be marked invariant; interfaces between "
4047 "shader stages only.", decl->identifier);
4048 } else if (earlier->data.used) {
4049 _mesa_glsl_error(& loc, state,
4050 "variable `%s' may not be redeclared "
4051 "`invariant' after being used",
4052 earlier->name);
4053 } else {
4054 earlier->data.invariant = true;
4055 }
4056 }
4057
4058 /* Invariant redeclarations do not have r-values.
4059 */
4060 return NULL;
4061 }
4062
4063 if (this->precise) {
4064 assert(this->type == NULL);
4065
4066 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4067 assert(decl->array_specifier == NULL);
4068 assert(decl->initializer == NULL);
4069
4070 ir_variable *const earlier =
4071 state->symbols->get_variable(decl->identifier);
4072 if (earlier == NULL) {
4073 _mesa_glsl_error(& loc, state,
4074 "undeclared variable `%s' cannot be marked "
4075 "precise", decl->identifier);
4076 } else if (state->current_function != NULL &&
4077 !state->symbols->name_declared_this_scope(decl->identifier)) {
4078 /* Note: we have to check if we're in a function, since
4079 * builtins are treated as having come from another scope.
4080 */
4081 _mesa_glsl_error(& loc, state,
4082 "variable `%s' from an outer scope may not be "
4083 "redeclared `precise' in this scope",
4084 earlier->name);
4085 } else if (earlier->data.used) {
4086 _mesa_glsl_error(& loc, state,
4087 "variable `%s' may not be redeclared "
4088 "`precise' after being used",
4089 earlier->name);
4090 } else {
4091 earlier->data.precise = true;
4092 }
4093 }
4094
4095 /* Precise redeclarations do not have r-values either. */
4096 return NULL;
4097 }
4098
4099 assert(this->type != NULL);
4100 assert(!this->invariant);
4101 assert(!this->precise);
4102
4103 /* The type specifier may contain a structure definition. Process that
4104 * before any of the variable declarations.
4105 */
4106 (void) this->type->specifier->hir(instructions, state);
4107
4108 decl_type = this->type->glsl_type(& type_name, state);
4109
4110 /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec:
4111 * "Buffer variables may only be declared inside interface blocks
4112 * (section 4.3.9 “Interface Blocks”), which are then referred to as
4113 * shader storage blocks. It is a compile-time error to declare buffer
4114 * variables at global scope (outside a block)."
4115 */
4116 if (type->qualifier.flags.q.buffer && !decl_type->is_interface()) {
4117 _mesa_glsl_error(&loc, state,
4118 "buffer variables cannot be declared outside "
4119 "interface blocks");
4120 }
4121
4122 /* An offset-qualified atomic counter declaration sets the default
4123 * offset for the next declaration within the same atomic counter
4124 * buffer.
4125 */
4126 if (decl_type && decl_type->contains_atomic()) {
4127 if (type->qualifier.flags.q.explicit_binding &&
4128 type->qualifier.flags.q.explicit_offset) {
4129 unsigned qual_binding;
4130 unsigned qual_offset;
4131 if (process_qualifier_constant(state, &loc, "binding",
4132 type->qualifier.binding,
4133 &qual_binding)
4134 && process_qualifier_constant(state, &loc, "offset",
4135 type->qualifier.offset,
4136 &qual_offset)) {
4137 state->atomic_counter_offsets[qual_binding] = qual_offset;
4138 }
4139 }
4140 }
4141
4142 if (this->declarations.is_empty()) {
4143 /* If there is no structure involved in the program text, there are two
4144 * possible scenarios:
4145 *
4146 * - The program text contained something like 'vec4;'. This is an
4147 * empty declaration. It is valid but weird. Emit a warning.
4148 *
4149 * - The program text contained something like 'S;' and 'S' is not the
4150 * name of a known structure type. This is both invalid and weird.
4151 * Emit an error.
4152 *
4153 * - The program text contained something like 'mediump float;'
4154 * when the programmer probably meant 'precision mediump
4155 * float;' Emit a warning with a description of what they
4156 * probably meant to do.
4157 *
4158 * Note that if decl_type is NULL and there is a structure involved,
4159 * there must have been some sort of error with the structure. In this
4160 * case we assume that an error was already generated on this line of
4161 * code for the structure. There is no need to generate an additional,
4162 * confusing error.
4163 */
4164 assert(this->type->specifier->structure == NULL || decl_type != NULL
4165 || state->error);
4166
4167 if (decl_type == NULL) {
4168 _mesa_glsl_error(&loc, state,
4169 "invalid type `%s' in empty declaration",
4170 type_name);
4171 } else if (decl_type->base_type == GLSL_TYPE_ATOMIC_UINT) {
4172 /* Empty atomic counter declarations are allowed and useful
4173 * to set the default offset qualifier.
4174 */
4175 return NULL;
4176 } else if (this->type->qualifier.precision != ast_precision_none) {
4177 if (this->type->specifier->structure != NULL) {
4178 _mesa_glsl_error(&loc, state,
4179 "precision qualifiers can't be applied "
4180 "to structures");
4181 } else {
4182 static const char *const precision_names[] = {
4183 "highp",
4184 "highp",
4185 "mediump",
4186 "lowp"
4187 };
4188
4189 _mesa_glsl_warning(&loc, state,
4190 "empty declaration with precision qualifier, "
4191 "to set the default precision, use "
4192 "`precision %s %s;'",
4193 precision_names[this->type->qualifier.precision],
4194 type_name);
4195 }
4196 } else if (this->type->specifier->structure == NULL) {
4197 _mesa_glsl_warning(&loc, state, "empty declaration");
4198 }
4199 }
4200
4201 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4202 const struct glsl_type *var_type;
4203 ir_variable *var;
4204 const char *identifier = decl->identifier;
4205 /* FINISHME: Emit a warning if a variable declaration shadows a
4206 * FINISHME: declaration at a higher scope.
4207 */
4208
4209 if ((decl_type == NULL) || decl_type->is_void()) {
4210 if (type_name != NULL) {
4211 _mesa_glsl_error(& loc, state,
4212 "invalid type `%s' in declaration of `%s'",
4213 type_name, decl->identifier);
4214 } else {
4215 _mesa_glsl_error(& loc, state,
4216 "invalid type in declaration of `%s'",
4217 decl->identifier);
4218 }
4219 continue;
4220 }
4221
4222 if (this->type->qualifier.flags.q.subroutine) {
4223 const glsl_type *t;
4224 const char *name;
4225
4226 t = state->symbols->get_type(this->type->specifier->type_name);
4227 if (!t)
4228 _mesa_glsl_error(& loc, state,
4229 "invalid type in declaration of `%s'",
4230 decl->identifier);
4231 name = ralloc_asprintf(ctx, "%s_%s", _mesa_shader_stage_to_subroutine_prefix(state->stage), decl->identifier);
4232
4233 identifier = name;
4234
4235 }
4236 var_type = process_array_type(&loc, decl_type, decl->array_specifier,
4237 state);
4238
4239 var = new(ctx) ir_variable(var_type, identifier, ir_var_auto);
4240
4241 /* The 'varying in' and 'varying out' qualifiers can only be used with
4242 * ARB_geometry_shader4 and EXT_geometry_shader4, which we don't support
4243 * yet.
4244 */
4245 if (this->type->qualifier.flags.q.varying) {
4246 if (this->type->qualifier.flags.q.in) {
4247 _mesa_glsl_error(& loc, state,
4248 "`varying in' qualifier in declaration of "
4249 "`%s' only valid for geometry shaders using "
4250 "ARB_geometry_shader4 or EXT_geometry_shader4",
4251 decl->identifier);
4252 } else if (this->type->qualifier.flags.q.out) {
4253 _mesa_glsl_error(& loc, state,
4254 "`varying out' qualifier in declaration of "
4255 "`%s' only valid for geometry shaders using "
4256 "ARB_geometry_shader4 or EXT_geometry_shader4",
4257 decl->identifier);
4258 }
4259 }
4260
4261 /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
4262 *
4263 * "Global variables can only use the qualifiers const,
4264 * attribute, uniform, or varying. Only one may be
4265 * specified.
4266 *
4267 * Local variables can only use the qualifier const."
4268 *
4269 * This is relaxed in GLSL 1.30 and GLSL ES 3.00. It is also relaxed by
4270 * any extension that adds the 'layout' keyword.
4271 */
4272 if (!state->is_version(130, 300)
4273 && !state->has_explicit_attrib_location()
4274 && !state->has_separate_shader_objects()
4275 && !state->ARB_fragment_coord_conventions_enable) {
4276 if (this->type->qualifier.flags.q.out) {
4277 _mesa_glsl_error(& loc, state,
4278 "`out' qualifier in declaration of `%s' "
4279 "only valid for function parameters in %s",
4280 decl->identifier, state->get_version_string());
4281 }
4282 if (this->type->qualifier.flags.q.in) {
4283 _mesa_glsl_error(& loc, state,
4284 "`in' qualifier in declaration of `%s' "
4285 "only valid for function parameters in %s",
4286 decl->identifier, state->get_version_string());
4287 }
4288 /* FINISHME: Test for other invalid qualifiers. */
4289 }
4290
4291 apply_type_qualifier_to_variable(& this->type->qualifier, var, state,
4292 & loc, false);
4293 apply_layout_qualifier_to_variable(&this->type->qualifier, var, state,
4294 &loc);
4295
4296 if (this->type->qualifier.flags.q.invariant) {
4297 if (!is_varying_var(var, state->stage)) {
4298 _mesa_glsl_error(&loc, state,
4299 "`%s' cannot be marked invariant; interfaces between "
4300 "shader stages only", var->name);
4301 }
4302 }
4303
4304 if (state->current_function != NULL) {
4305 const char *mode = NULL;
4306 const char *extra = "";
4307
4308 /* There is no need to check for 'inout' here because the parser will
4309 * only allow that in function parameter lists.
4310 */
4311 if (this->type->qualifier.flags.q.attribute) {
4312 mode = "attribute";
4313 } else if (this->type->qualifier.flags.q.subroutine) {
4314 mode = "subroutine uniform";
4315 } else if (this->type->qualifier.flags.q.uniform) {
4316 mode = "uniform";
4317 } else if (this->type->qualifier.flags.q.varying) {
4318 mode = "varying";
4319 } else if (this->type->qualifier.flags.q.in) {
4320 mode = "in";
4321 extra = " or in function parameter list";
4322 } else if (this->type->qualifier.flags.q.out) {
4323 mode = "out";
4324 extra = " or in function parameter list";
4325 }
4326
4327 if (mode) {
4328 _mesa_glsl_error(& loc, state,
4329 "%s variable `%s' must be declared at "
4330 "global scope%s",
4331 mode, var->name, extra);
4332 }
4333 } else if (var->data.mode == ir_var_shader_in) {
4334 var->data.read_only = true;
4335
4336 if (state->stage == MESA_SHADER_VERTEX) {
4337 bool error_emitted = false;
4338
4339 /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
4340 *
4341 * "Vertex shader inputs can only be float, floating-point
4342 * vectors, matrices, signed and unsigned integers and integer
4343 * vectors. Vertex shader inputs can also form arrays of these
4344 * types, but not structures."
4345 *
4346 * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
4347 *
4348 * "Vertex shader inputs can only be float, floating-point
4349 * vectors, matrices, signed and unsigned integers and integer
4350 * vectors. They cannot be arrays or structures."
4351 *
4352 * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
4353 *
4354 * "The attribute qualifier can be used only with float,
4355 * floating-point vectors, and matrices. Attribute variables
4356 * cannot be declared as arrays or structures."
4357 *
4358 * From page 33 (page 39 of the PDF) of the GLSL ES 3.00 spec:
4359 *
4360 * "Vertex shader inputs can only be float, floating-point
4361 * vectors, matrices, signed and unsigned integers and integer
4362 * vectors. Vertex shader inputs cannot be arrays or
4363 * structures."
4364 */
4365 const glsl_type *check_type = var->type->without_array();
4366
4367 switch (check_type->base_type) {
4368 case GLSL_TYPE_FLOAT:
4369 break;
4370 case GLSL_TYPE_UINT:
4371 case GLSL_TYPE_INT:
4372 if (state->is_version(120, 300))
4373 break;
4374 case GLSL_TYPE_DOUBLE:
4375 if (check_type->base_type == GLSL_TYPE_DOUBLE && (state->is_version(410, 0) || state->ARB_vertex_attrib_64bit_enable))
4376 break;
4377 /* FALLTHROUGH */
4378 default:
4379 _mesa_glsl_error(& loc, state,
4380 "vertex shader input / attribute cannot have "
4381 "type %s`%s'",
4382 var->type->is_array() ? "array of " : "",
4383 check_type->name);
4384 error_emitted = true;
4385 }
4386
4387 if (!error_emitted && var->type->is_array() &&
4388 !state->check_version(150, 0, &loc,
4389 "vertex shader input / attribute "
4390 "cannot have array type")) {
4391 error_emitted = true;
4392 }
4393 } else if (state->stage == MESA_SHADER_GEOMETRY) {
4394 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
4395 *
4396 * Geometry shader input variables get the per-vertex values
4397 * written out by vertex shader output variables of the same
4398 * names. Since a geometry shader operates on a set of
4399 * vertices, each input varying variable (or input block, see
4400 * interface blocks below) needs to be declared as an array.
4401 */
4402 if (!var->type->is_array()) {
4403 _mesa_glsl_error(&loc, state,
4404 "geometry shader inputs must be arrays");
4405 }
4406
4407 handle_geometry_shader_input_decl(state, loc, var);
4408 } else if (state->stage == MESA_SHADER_FRAGMENT) {
4409 /* From section 4.3.4 (Input Variables) of the GLSL ES 3.10 spec:
4410 *
4411 * It is a compile-time error to declare a fragment shader
4412 * input with, or that contains, any of the following types:
4413 *
4414 * * A boolean type
4415 * * An opaque type
4416 * * An array of arrays
4417 * * An array of structures
4418 * * A structure containing an array
4419 * * A structure containing a structure
4420 */
4421 if (state->es_shader) {
4422 const glsl_type *check_type = var->type->without_array();
4423 if (check_type->is_boolean() ||
4424 check_type->contains_opaque()) {
4425 _mesa_glsl_error(&loc, state,
4426 "fragment shader input cannot have type %s",
4427 check_type->name);
4428 }
4429 if (var->type->is_array() &&
4430 var->type->fields.array->is_array()) {
4431 _mesa_glsl_error(&loc, state,
4432 "%s shader output "
4433 "cannot have an array of arrays",
4434 _mesa_shader_stage_to_string(state->stage));
4435 }
4436 if (var->type->is_array() &&
4437 var->type->fields.array->is_record()) {
4438 _mesa_glsl_error(&loc, state,
4439 "fragment shader input "
4440 "cannot have an array of structs");
4441 }
4442 if (var->type->is_record()) {
4443 for (unsigned i = 0; i < var->type->length; i++) {
4444 if (var->type->fields.structure[i].type->is_array() ||
4445 var->type->fields.structure[i].type->is_record())
4446 _mesa_glsl_error(&loc, state,
4447 "fragement shader input cannot have "
4448 "a struct that contains an "
4449 "array or struct");
4450 }
4451 }
4452 }
4453 } else if (state->stage == MESA_SHADER_TESS_CTRL ||
4454 state->stage == MESA_SHADER_TESS_EVAL) {
4455 handle_tess_shader_input_decl(state, loc, var);
4456 }
4457 } else if (var->data.mode == ir_var_shader_out) {
4458 const glsl_type *check_type = var->type->without_array();
4459
4460 /* From section 4.3.6 (Output variables) of the GLSL 4.40 spec:
4461 *
4462 * It is a compile-time error to declare a vertex, tessellation
4463 * evaluation, tessellation control, or geometry shader output
4464 * that contains any of the following:
4465 *
4466 * * A Boolean type (bool, bvec2 ...)
4467 * * An opaque type
4468 */
4469 if (check_type->is_boolean() || check_type->contains_opaque())
4470 _mesa_glsl_error(&loc, state,
4471 "%s shader output cannot have type %s",
4472 _mesa_shader_stage_to_string(state->stage),
4473 check_type->name);
4474
4475 /* From section 4.3.6 (Output variables) of the GLSL 4.40 spec:
4476 *
4477 * It is a compile-time error to declare a fragment shader output
4478 * that contains any of the following:
4479 *
4480 * * A Boolean type (bool, bvec2 ...)
4481 * * A double-precision scalar or vector (double, dvec2 ...)
4482 * * An opaque type
4483 * * Any matrix type
4484 * * A structure
4485 */
4486 if (state->stage == MESA_SHADER_FRAGMENT) {
4487 if (check_type->is_record() || check_type->is_matrix())
4488 _mesa_glsl_error(&loc, state,
4489 "fragment shader output "
4490 "cannot have struct or matrix type");
4491 switch (check_type->base_type) {
4492 case GLSL_TYPE_UINT:
4493 case GLSL_TYPE_INT:
4494 case GLSL_TYPE_FLOAT:
4495 break;
4496 default:
4497 _mesa_glsl_error(&loc, state,
4498 "fragment shader output cannot have "
4499 "type %s", check_type->name);
4500 }
4501 }
4502
4503 /* From section 4.3.6 (Output Variables) of the GLSL ES 3.10 spec:
4504 *
4505 * It is a compile-time error to declare a vertex shader output
4506 * with, or that contains, any of the following types:
4507 *
4508 * * A boolean type
4509 * * An opaque type
4510 * * An array of arrays
4511 * * An array of structures
4512 * * A structure containing an array
4513 * * A structure containing a structure
4514 *
4515 * It is a compile-time error to declare a fragment shader output
4516 * with, or that contains, any of the following types:
4517 *
4518 * * A boolean type
4519 * * An opaque type
4520 * * A matrix
4521 * * A structure
4522 * * An array of array
4523 */
4524 if (state->es_shader) {
4525 if (var->type->is_array() &&
4526 var->type->fields.array->is_array()) {
4527 _mesa_glsl_error(&loc, state,
4528 "%s shader output "
4529 "cannot have an array of arrays",
4530 _mesa_shader_stage_to_string(state->stage));
4531 }
4532 if (state->stage == MESA_SHADER_VERTEX) {
4533 if (var->type->is_array() &&
4534 var->type->fields.array->is_record()) {
4535 _mesa_glsl_error(&loc, state,
4536 "vertex shader output "
4537 "cannot have an array of structs");
4538 }
4539 if (var->type->is_record()) {
4540 for (unsigned i = 0; i < var->type->length; i++) {
4541 if (var->type->fields.structure[i].type->is_array() ||
4542 var->type->fields.structure[i].type->is_record())
4543 _mesa_glsl_error(&loc, state,
4544 "vertex shader output cannot have a "
4545 "struct that contains an "
4546 "array or struct");
4547 }
4548 }
4549 }
4550 }
4551
4552 if (state->stage == MESA_SHADER_TESS_CTRL) {
4553 handle_tess_ctrl_shader_output_decl(state, loc, var);
4554 }
4555 } else if (var->type->contains_subroutine()) {
4556 /* declare subroutine uniforms as hidden */
4557 var->data.how_declared = ir_var_hidden;
4558 }
4559
4560 /* Integer fragment inputs must be qualified with 'flat'. In GLSL ES,
4561 * so must integer vertex outputs.
4562 *
4563 * From section 4.3.4 ("Inputs") of the GLSL 1.50 spec:
4564 * "Fragment shader inputs that are signed or unsigned integers or
4565 * integer vectors must be qualified with the interpolation qualifier
4566 * flat."
4567 *
4568 * From section 4.3.4 ("Input Variables") of the GLSL 3.00 ES spec:
4569 * "Fragment shader inputs that are, or contain, signed or unsigned
4570 * integers or integer vectors must be qualified with the
4571 * interpolation qualifier flat."
4572 *
4573 * From section 4.3.6 ("Output Variables") of the GLSL 3.00 ES spec:
4574 * "Vertex shader outputs that are, or contain, signed or unsigned
4575 * integers or integer vectors must be qualified with the
4576 * interpolation qualifier flat."
4577 *
4578 * Note that prior to GLSL 1.50, this requirement applied to vertex
4579 * outputs rather than fragment inputs. That creates problems in the
4580 * presence of geometry shaders, so we adopt the GLSL 1.50 rule for all
4581 * desktop GL shaders. For GLSL ES shaders, we follow the spec and
4582 * apply the restriction to both vertex outputs and fragment inputs.
4583 *
4584 * Note also that the desktop GLSL specs are missing the text "or
4585 * contain"; this is presumably an oversight, since there is no
4586 * reasonable way to interpolate a fragment shader input that contains
4587 * an integer.
4588 */
4589 if (state->is_version(130, 300) &&
4590 var->type->contains_integer() &&
4591 var->data.interpolation != INTERP_QUALIFIER_FLAT &&
4592 ((state->stage == MESA_SHADER_FRAGMENT && var->data.mode == ir_var_shader_in)
4593 || (state->stage == MESA_SHADER_VERTEX && var->data.mode == ir_var_shader_out
4594 && state->es_shader))) {
4595 const char *var_type = (state->stage == MESA_SHADER_VERTEX) ?
4596 "vertex output" : "fragment input";
4597 _mesa_glsl_error(&loc, state, "if a %s is (or contains) "
4598 "an integer, then it must be qualified with 'flat'",
4599 var_type);
4600 }
4601
4602 /* Double fragment inputs must be qualified with 'flat'. */
4603 if (var->type->contains_double() &&
4604 var->data.interpolation != INTERP_QUALIFIER_FLAT &&
4605 state->stage == MESA_SHADER_FRAGMENT &&
4606 var->data.mode == ir_var_shader_in) {
4607 _mesa_glsl_error(&loc, state, "if a fragment input is (or contains) "
4608 "a double, then it must be qualified with 'flat'",
4609 var_type);
4610 }
4611
4612 /* Interpolation qualifiers cannot be applied to 'centroid' and
4613 * 'centroid varying'.
4614 *
4615 * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
4616 * "interpolation qualifiers may only precede the qualifiers in,
4617 * centroid in, out, or centroid out in a declaration. They do not apply
4618 * to the deprecated storage qualifiers varying or centroid varying."
4619 *
4620 * These deprecated storage qualifiers do not exist in GLSL ES 3.00.
4621 */
4622 if (state->is_version(130, 0)
4623 && this->type->qualifier.has_interpolation()
4624 && this->type->qualifier.flags.q.varying) {
4625
4626 const char *i = this->type->qualifier.interpolation_string();
4627 assert(i != NULL);
4628 const char *s;
4629 if (this->type->qualifier.flags.q.centroid)
4630 s = "centroid varying";
4631 else
4632 s = "varying";
4633
4634 _mesa_glsl_error(&loc, state,
4635 "qualifier '%s' cannot be applied to the "
4636 "deprecated storage qualifier '%s'", i, s);
4637 }
4638
4639
4640 /* Interpolation qualifiers can only apply to vertex shader outputs and
4641 * fragment shader inputs.
4642 *
4643 * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
4644 * "Outputs from a vertex shader (out) and inputs to a fragment
4645 * shader (in) can be further qualified with one or more of these
4646 * interpolation qualifiers"
4647 *
4648 * From page 31 (page 37 of the PDF) of the GLSL ES 3.00 spec:
4649 * "These interpolation qualifiers may only precede the qualifiers
4650 * in, centroid in, out, or centroid out in a declaration. They do
4651 * not apply to inputs into a vertex shader or outputs from a
4652 * fragment shader."
4653 */
4654 if (state->is_version(130, 300)
4655 && this->type->qualifier.has_interpolation()) {
4656
4657 const char *i = this->type->qualifier.interpolation_string();
4658 assert(i != NULL);
4659
4660 switch (state->stage) {
4661 case MESA_SHADER_VERTEX:
4662 if (this->type->qualifier.flags.q.in) {
4663 _mesa_glsl_error(&loc, state,
4664 "qualifier '%s' cannot be applied to vertex "
4665 "shader inputs", i);
4666 }
4667 break;
4668 case MESA_SHADER_FRAGMENT:
4669 if (this->type->qualifier.flags.q.out) {
4670 _mesa_glsl_error(&loc, state,
4671 "qualifier '%s' cannot be applied to fragment "
4672 "shader outputs", i);
4673 }
4674 break;
4675 default:
4676 break;
4677 }
4678 }
4679
4680
4681 /* From section 4.3.4 of the GLSL 4.00 spec:
4682 * "Input variables may not be declared using the patch in qualifier
4683 * in tessellation control or geometry shaders."
4684 *
4685 * From section 4.3.6 of the GLSL 4.00 spec:
4686 * "It is an error to use patch out in a vertex, tessellation
4687 * evaluation, or geometry shader."
4688 *
4689 * This doesn't explicitly forbid using them in a fragment shader, but
4690 * that's probably just an oversight.
4691 */
4692 if (state->stage != MESA_SHADER_TESS_EVAL
4693 && this->type->qualifier.flags.q.patch
4694 && this->type->qualifier.flags.q.in) {
4695
4696 _mesa_glsl_error(&loc, state, "'patch in' can only be used in a "
4697 "tessellation evaluation shader");
4698 }
4699
4700 if (state->stage != MESA_SHADER_TESS_CTRL
4701 && this->type->qualifier.flags.q.patch
4702 && this->type->qualifier.flags.q.out) {
4703
4704 _mesa_glsl_error(&loc, state, "'patch out' can only be used in a "
4705 "tessellation control shader");
4706 }
4707
4708 /* Precision qualifiers exists only in GLSL versions 1.00 and >= 1.30.
4709 */
4710 if (this->type->qualifier.precision != ast_precision_none) {
4711 state->check_precision_qualifiers_allowed(&loc);
4712 }
4713
4714
4715 /* If a precision qualifier is allowed on a type, it is allowed on
4716 * an array of that type.
4717 */
4718 if (!(this->type->qualifier.precision == ast_precision_none
4719 || precision_qualifier_allowed(var->type->without_array()))) {
4720
4721 _mesa_glsl_error(&loc, state,
4722 "precision qualifiers apply only to floating point"
4723 ", integer and opaque types");
4724 }
4725
4726 /* From section 4.1.7 of the GLSL 4.40 spec:
4727 *
4728 * "[Opaque types] can only be declared as function
4729 * parameters or uniform-qualified variables."
4730 */
4731 if (var_type->contains_opaque() &&
4732 !this->type->qualifier.flags.q.uniform) {
4733 _mesa_glsl_error(&loc, state,
4734 "opaque variables must be declared uniform");
4735 }
4736
4737 /* Process the initializer and add its instructions to a temporary
4738 * list. This list will be added to the instruction stream (below) after
4739 * the declaration is added. This is done because in some cases (such as
4740 * redeclarations) the declaration may not actually be added to the
4741 * instruction stream.
4742 */
4743 exec_list initializer_instructions;
4744
4745 /* Examine var name here since var may get deleted in the next call */
4746 bool var_is_gl_id = is_gl_identifier(var->name);
4747
4748 ir_variable *earlier =
4749 get_variable_being_redeclared(var, decl->get_location(), state,
4750 false /* allow_all_redeclarations */);
4751 if (earlier != NULL) {
4752 if (var_is_gl_id &&
4753 earlier->data.how_declared == ir_var_declared_in_block) {
4754 _mesa_glsl_error(&loc, state,
4755 "`%s' has already been redeclared using "
4756 "gl_PerVertex", earlier->name);
4757 }
4758 earlier->data.how_declared = ir_var_declared_normally;
4759 }
4760
4761 if (decl->initializer != NULL) {
4762 result = process_initializer((earlier == NULL) ? var : earlier,
4763 decl, this->type,
4764 &initializer_instructions, state);
4765 } else {
4766 validate_array_dimensions(var_type, state, &loc);
4767 }
4768
4769 /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
4770 *
4771 * "It is an error to write to a const variable outside of
4772 * its declaration, so they must be initialized when
4773 * declared."
4774 */
4775 if (this->type->qualifier.flags.q.constant && decl->initializer == NULL) {
4776 _mesa_glsl_error(& loc, state,
4777 "const declaration of `%s' must be initialized",
4778 decl->identifier);
4779 }
4780
4781 if (state->es_shader) {
4782 const glsl_type *const t = (earlier == NULL)
4783 ? var->type : earlier->type;
4784
4785 if (t->is_unsized_array())
4786 /* Section 10.17 of the GLSL ES 1.00 specification states that
4787 * unsized array declarations have been removed from the language.
4788 * Arrays that are sized using an initializer are still explicitly
4789 * sized. However, GLSL ES 1.00 does not allow array
4790 * initializers. That is only allowed in GLSL ES 3.00.
4791 *
4792 * Section 4.1.9 (Arrays) of the GLSL ES 3.00 spec says:
4793 *
4794 * "An array type can also be formed without specifying a size
4795 * if the definition includes an initializer:
4796 *
4797 * float x[] = float[2] (1.0, 2.0); // declares an array of size 2
4798 * float y[] = float[] (1.0, 2.0, 3.0); // declares an array of size 3
4799 *
4800 * float a[5];
4801 * float b[] = a;"
4802 */
4803 _mesa_glsl_error(& loc, state,
4804 "unsized array declarations are not allowed in "
4805 "GLSL ES");
4806 }
4807
4808 /* If the declaration is not a redeclaration, there are a few additional
4809 * semantic checks that must be applied. In addition, variable that was
4810 * created for the declaration should be added to the IR stream.
4811 */
4812 if (earlier == NULL) {
4813 validate_identifier(decl->identifier, loc, state);
4814
4815 /* Add the variable to the symbol table. Note that the initializer's
4816 * IR was already processed earlier (though it hasn't been emitted
4817 * yet), without the variable in scope.
4818 *
4819 * This differs from most C-like languages, but it follows the GLSL
4820 * specification. From page 28 (page 34 of the PDF) of the GLSL 1.50
4821 * spec:
4822 *
4823 * "Within a declaration, the scope of a name starts immediately
4824 * after the initializer if present or immediately after the name
4825 * being declared if not."
4826 */
4827 if (!state->symbols->add_variable(var)) {
4828 YYLTYPE loc = this->get_location();
4829 _mesa_glsl_error(&loc, state, "name `%s' already taken in the "
4830 "current scope", decl->identifier);
4831 continue;
4832 }
4833
4834 /* Push the variable declaration to the top. It means that all the
4835 * variable declarations will appear in a funny last-to-first order,
4836 * but otherwise we run into trouble if a function is prototyped, a
4837 * global var is decled, then the function is defined with usage of
4838 * the global var. See glslparsertest's CorrectModule.frag.
4839 */
4840 instructions->push_head(var);
4841 }
4842
4843 instructions->append_list(&initializer_instructions);
4844 }
4845
4846
4847 /* Generally, variable declarations do not have r-values. However,
4848 * one is used for the declaration in
4849 *
4850 * while (bool b = some_condition()) {
4851 * ...
4852 * }
4853 *
4854 * so we return the rvalue from the last seen declaration here.
4855 */
4856 return result;
4857 }
4858
4859
4860 ir_rvalue *
4861 ast_parameter_declarator::hir(exec_list *instructions,
4862 struct _mesa_glsl_parse_state *state)
4863 {
4864 void *ctx = state;
4865 const struct glsl_type *type;
4866 const char *name = NULL;
4867 YYLTYPE loc = this->get_location();
4868
4869 type = this->type->glsl_type(& name, state);
4870
4871 if (type == NULL) {
4872 if (name != NULL) {
4873 _mesa_glsl_error(& loc, state,
4874 "invalid type `%s' in declaration of `%s'",
4875 name, this->identifier);
4876 } else {
4877 _mesa_glsl_error(& loc, state,
4878 "invalid type in declaration of `%s'",
4879 this->identifier);
4880 }
4881
4882 type = glsl_type::error_type;
4883 }
4884
4885 /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
4886 *
4887 * "Functions that accept no input arguments need not use void in the
4888 * argument list because prototypes (or definitions) are required and
4889 * therefore there is no ambiguity when an empty argument list "( )" is
4890 * declared. The idiom "(void)" as a parameter list is provided for
4891 * convenience."
4892 *
4893 * Placing this check here prevents a void parameter being set up
4894 * for a function, which avoids tripping up checks for main taking
4895 * parameters and lookups of an unnamed symbol.
4896 */
4897 if (type->is_void()) {
4898 if (this->identifier != NULL)
4899 _mesa_glsl_error(& loc, state,
4900 "named parameter cannot have type `void'");
4901
4902 is_void = true;
4903 return NULL;
4904 }
4905
4906 if (formal_parameter && (this->identifier == NULL)) {
4907 _mesa_glsl_error(& loc, state, "formal parameter lacks a name");
4908 return NULL;
4909 }
4910
4911 /* This only handles "vec4 foo[..]". The earlier specifier->glsl_type(...)
4912 * call already handled the "vec4[..] foo" case.
4913 */
4914 type = process_array_type(&loc, type, this->array_specifier, state);
4915
4916 if (!type->is_error() && type->is_unsized_array()) {
4917 _mesa_glsl_error(&loc, state, "arrays passed as parameters must have "
4918 "a declared size");
4919 type = glsl_type::error_type;
4920 }
4921
4922 is_void = false;
4923 ir_variable *var = new(ctx)
4924 ir_variable(type, this->identifier, ir_var_function_in);
4925
4926 /* Apply any specified qualifiers to the parameter declaration. Note that
4927 * for function parameters the default mode is 'in'.
4928 */
4929 apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc,
4930 true);
4931
4932 /* From section 4.1.7 of the GLSL 4.40 spec:
4933 *
4934 * "Opaque variables cannot be treated as l-values; hence cannot
4935 * be used as out or inout function parameters, nor can they be
4936 * assigned into."
4937 */
4938 if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
4939 && type->contains_opaque()) {
4940 _mesa_glsl_error(&loc, state, "out and inout parameters cannot "
4941 "contain opaque variables");
4942 type = glsl_type::error_type;
4943 }
4944
4945 /* From page 39 (page 45 of the PDF) of the GLSL 1.10 spec:
4946 *
4947 * "When calling a function, expressions that do not evaluate to
4948 * l-values cannot be passed to parameters declared as out or inout."
4949 *
4950 * From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
4951 *
4952 * "Other binary or unary expressions, non-dereferenced arrays,
4953 * function names, swizzles with repeated fields, and constants
4954 * cannot be l-values."
4955 *
4956 * So for GLSL 1.10, passing an array as an out or inout parameter is not
4957 * allowed. This restriction is removed in GLSL 1.20, and in GLSL ES.
4958 */
4959 if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
4960 && type->is_array()
4961 && !state->check_version(120, 100, &loc,
4962 "arrays cannot be out or inout parameters")) {
4963 type = glsl_type::error_type;
4964 }
4965
4966 instructions->push_tail(var);
4967
4968 /* Parameter declarations do not have r-values.
4969 */
4970 return NULL;
4971 }
4972
4973
4974 void
4975 ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters,
4976 bool formal,
4977 exec_list *ir_parameters,
4978 _mesa_glsl_parse_state *state)
4979 {
4980 ast_parameter_declarator *void_param = NULL;
4981 unsigned count = 0;
4982
4983 foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) {
4984 param->formal_parameter = formal;
4985 param->hir(ir_parameters, state);
4986
4987 if (param->is_void)
4988 void_param = param;
4989
4990 count++;
4991 }
4992
4993 if ((void_param != NULL) && (count > 1)) {
4994 YYLTYPE loc = void_param->get_location();
4995
4996 _mesa_glsl_error(& loc, state,
4997 "`void' parameter must be only parameter");
4998 }
4999 }
5000
5001
5002 void
5003 emit_function(_mesa_glsl_parse_state *state, ir_function *f)
5004 {
5005 /* IR invariants disallow function declarations or definitions
5006 * nested within other function definitions. But there is no
5007 * requirement about the relative order of function declarations
5008 * and definitions with respect to one another. So simply insert
5009 * the new ir_function block at the end of the toplevel instruction
5010 * list.
5011 */
5012 state->toplevel_ir->push_tail(f);
5013 }
5014
5015
5016 ir_rvalue *
5017 ast_function::hir(exec_list *instructions,
5018 struct _mesa_glsl_parse_state *state)
5019 {
5020 void *ctx = state;
5021 ir_function *f = NULL;
5022 ir_function_signature *sig = NULL;
5023 exec_list hir_parameters;
5024 YYLTYPE loc = this->get_location();
5025
5026 const char *const name = identifier;
5027
5028 /* New functions are always added to the top-level IR instruction stream,
5029 * so this instruction list pointer is ignored. See also emit_function
5030 * (called below).
5031 */
5032 (void) instructions;
5033
5034 /* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec,
5035 *
5036 * "Function declarations (prototypes) cannot occur inside of functions;
5037 * they must be at global scope, or for the built-in functions, outside
5038 * the global scope."
5039 *
5040 * From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec,
5041 *
5042 * "User defined functions may only be defined within the global scope."
5043 *
5044 * Note that this language does not appear in GLSL 1.10.
5045 */
5046 if ((state->current_function != NULL) &&
5047 state->is_version(120, 100)) {
5048 YYLTYPE loc = this->get_location();
5049 _mesa_glsl_error(&loc, state,
5050 "declaration of function `%s' not allowed within "
5051 "function body", name);
5052 }
5053
5054 validate_identifier(name, this->get_location(), state);
5055
5056 /* Convert the list of function parameters to HIR now so that they can be
5057 * used below to compare this function's signature with previously seen
5058 * signatures for functions with the same name.
5059 */
5060 ast_parameter_declarator::parameters_to_hir(& this->parameters,
5061 is_definition,
5062 & hir_parameters, state);
5063
5064 const char *return_type_name;
5065 const glsl_type *return_type =
5066 this->return_type->glsl_type(& return_type_name, state);
5067
5068 if (!return_type) {
5069 YYLTYPE loc = this->get_location();
5070 _mesa_glsl_error(&loc, state,
5071 "function `%s' has undeclared return type `%s'",
5072 name, return_type_name);
5073 return_type = glsl_type::error_type;
5074 }
5075
5076 /* ARB_shader_subroutine states:
5077 * "Subroutine declarations cannot be prototyped. It is an error to prepend
5078 * subroutine(...) to a function declaration."
5079 */
5080 if (this->return_type->qualifier.flags.q.subroutine_def && !is_definition) {
5081 YYLTYPE loc = this->get_location();
5082 _mesa_glsl_error(&loc, state,
5083 "function declaration `%s' cannot have subroutine prepended",
5084 name);
5085 }
5086
5087 /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec:
5088 * "No qualifier is allowed on the return type of a function."
5089 */
5090 if (this->return_type->has_qualifiers(state)) {
5091 YYLTYPE loc = this->get_location();
5092 _mesa_glsl_error(& loc, state,
5093 "function `%s' return type has qualifiers", name);
5094 }
5095
5096 /* Section 6.1 (Function Definitions) of the GLSL 1.20 spec says:
5097 *
5098 * "Arrays are allowed as arguments and as the return type. In both
5099 * cases, the array must be explicitly sized."
5100 */
5101 if (return_type->is_unsized_array()) {
5102 YYLTYPE loc = this->get_location();
5103 _mesa_glsl_error(& loc, state,
5104 "function `%s' return type array must be explicitly "
5105 "sized", name);
5106 }
5107
5108 /* From section 4.1.7 of the GLSL 4.40 spec:
5109 *
5110 * "[Opaque types] can only be declared as function parameters
5111 * or uniform-qualified variables."
5112 */
5113 if (return_type->contains_opaque()) {
5114 YYLTYPE loc = this->get_location();
5115 _mesa_glsl_error(&loc, state,
5116 "function `%s' return type can't contain an opaque type",
5117 name);
5118 }
5119
5120 /* Create an ir_function if one doesn't already exist. */
5121 f = state->symbols->get_function(name);
5122 if (f == NULL) {
5123 f = new(ctx) ir_function(name);
5124 if (!this->return_type->qualifier.flags.q.subroutine) {
5125 if (!state->symbols->add_function(f)) {
5126 /* This function name shadows a non-function use of the same name. */
5127 YYLTYPE loc = this->get_location();
5128 _mesa_glsl_error(&loc, state, "function name `%s' conflicts with "
5129 "non-function", name);
5130 return NULL;
5131 }
5132 }
5133 emit_function(state, f);
5134 }
5135
5136 /* From GLSL ES 3.0 spec, chapter 6.1 "Function Definitions", page 71:
5137 *
5138 * "A shader cannot redefine or overload built-in functions."
5139 *
5140 * While in GLSL ES 1.0 specification, chapter 8 "Built-in Functions":
5141 *
5142 * "User code can overload the built-in functions but cannot redefine
5143 * them."
5144 */
5145 if (state->es_shader && state->language_version >= 300) {
5146 /* Local shader has no exact candidates; check the built-ins. */
5147 _mesa_glsl_initialize_builtin_functions();
5148 if (_mesa_glsl_find_builtin_function_by_name(name)) {
5149 YYLTYPE loc = this->get_location();
5150 _mesa_glsl_error(& loc, state,
5151 "A shader cannot redefine or overload built-in "
5152 "function `%s' in GLSL ES 3.00", name);
5153 return NULL;
5154 }
5155 }
5156
5157 /* Verify that this function's signature either doesn't match a previously
5158 * seen signature for a function with the same name, or, if a match is found,
5159 * that the previously seen signature does not have an associated definition.
5160 */
5161 if (state->es_shader || f->has_user_signature()) {
5162 sig = f->exact_matching_signature(state, &hir_parameters);
5163 if (sig != NULL) {
5164 const char *badvar = sig->qualifiers_match(&hir_parameters);
5165 if (badvar != NULL) {
5166 YYLTYPE loc = this->get_location();
5167
5168 _mesa_glsl_error(&loc, state, "function `%s' parameter `%s' "
5169 "qualifiers don't match prototype", name, badvar);
5170 }
5171
5172 if (sig->return_type != return_type) {
5173 YYLTYPE loc = this->get_location();
5174
5175 _mesa_glsl_error(&loc, state, "function `%s' return type doesn't "
5176 "match prototype", name);
5177 }
5178
5179 if (sig->is_defined) {
5180 if (is_definition) {
5181 YYLTYPE loc = this->get_location();
5182 _mesa_glsl_error(& loc, state, "function `%s' redefined", name);
5183 } else {
5184 /* We just encountered a prototype that exactly matches a
5185 * function that's already been defined. This is redundant,
5186 * and we should ignore it.
5187 */
5188 return NULL;
5189 }
5190 }
5191 }
5192 }
5193
5194 /* Verify the return type of main() */
5195 if (strcmp(name, "main") == 0) {
5196 if (! return_type->is_void()) {
5197 YYLTYPE loc = this->get_location();
5198
5199 _mesa_glsl_error(& loc, state, "main() must return void");
5200 }
5201
5202 if (!hir_parameters.is_empty()) {
5203 YYLTYPE loc = this->get_location();
5204
5205 _mesa_glsl_error(& loc, state, "main() must not take any parameters");
5206 }
5207 }
5208
5209 /* Finish storing the information about this new function in its signature.
5210 */
5211 if (sig == NULL) {
5212 sig = new(ctx) ir_function_signature(return_type);
5213 f->add_signature(sig);
5214 }
5215
5216 sig->replace_parameters(&hir_parameters);
5217 signature = sig;
5218
5219 if (this->return_type->qualifier.flags.q.subroutine_def) {
5220 int idx;
5221
5222 if (this->return_type->qualifier.flags.q.explicit_index) {
5223 unsigned qual_index;
5224 if (process_qualifier_constant(state, &loc, "index",
5225 this->return_type->qualifier.index,
5226 &qual_index)) {
5227 if (!state->has_explicit_uniform_location()) {
5228 _mesa_glsl_error(&loc, state, "subroutine index requires "
5229 "GL_ARB_explicit_uniform_location or "
5230 "GLSL 4.30");
5231 } else if (qual_index >= MAX_SUBROUTINES) {
5232 _mesa_glsl_error(&loc, state,
5233 "invalid subroutine index (%d) index must "
5234 "be a number between 0 and "
5235 "GL_MAX_SUBROUTINES - 1 (%d)", qual_index,
5236 MAX_SUBROUTINES - 1);
5237 } else {
5238 f->subroutine_index = qual_index;
5239 }
5240 }
5241 }
5242
5243 f->num_subroutine_types = this->return_type->qualifier.subroutine_list->declarations.length();
5244 f->subroutine_types = ralloc_array(state, const struct glsl_type *,
5245 f->num_subroutine_types);
5246 idx = 0;
5247 foreach_list_typed(ast_declaration, decl, link, &this->return_type->qualifier.subroutine_list->declarations) {
5248 const struct glsl_type *type;
5249 /* the subroutine type must be already declared */
5250 type = state->symbols->get_type(decl->identifier);
5251 if (!type) {
5252 _mesa_glsl_error(& loc, state, "unknown type '%s' in subroutine function definition", decl->identifier);
5253 }
5254 f->subroutine_types[idx++] = type;
5255 }
5256 state->subroutines = (ir_function **)reralloc(state, state->subroutines,
5257 ir_function *,
5258 state->num_subroutines + 1);
5259 state->subroutines[state->num_subroutines] = f;
5260 state->num_subroutines++;
5261
5262 }
5263
5264 if (this->return_type->qualifier.flags.q.subroutine) {
5265 if (!state->symbols->add_type(this->identifier, glsl_type::get_subroutine_instance(this->identifier))) {
5266 _mesa_glsl_error(& loc, state, "type '%s' previously defined", this->identifier);
5267 return NULL;
5268 }
5269 state->subroutine_types = (ir_function **)reralloc(state, state->subroutine_types,
5270 ir_function *,
5271 state->num_subroutine_types + 1);
5272 state->subroutine_types[state->num_subroutine_types] = f;
5273 state->num_subroutine_types++;
5274
5275 f->is_subroutine = true;
5276 }
5277
5278 /* Function declarations (prototypes) do not have r-values.
5279 */
5280 return NULL;
5281 }
5282
5283
5284 ir_rvalue *
5285 ast_function_definition::hir(exec_list *instructions,
5286 struct _mesa_glsl_parse_state *state)
5287 {
5288 prototype->is_definition = true;
5289 prototype->hir(instructions, state);
5290
5291 ir_function_signature *signature = prototype->signature;
5292 if (signature == NULL)
5293 return NULL;
5294
5295 assert(state->current_function == NULL);
5296 state->current_function = signature;
5297 state->found_return = false;
5298
5299 /* Duplicate parameters declared in the prototype as concrete variables.
5300 * Add these to the symbol table.
5301 */
5302 state->symbols->push_scope();
5303 foreach_in_list(ir_variable, var, &signature->parameters) {
5304 assert(var->as_variable() != NULL);
5305
5306 /* The only way a parameter would "exist" is if two parameters have
5307 * the same name.
5308 */
5309 if (state->symbols->name_declared_this_scope(var->name)) {
5310 YYLTYPE loc = this->get_location();
5311
5312 _mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name);
5313 } else {
5314 state->symbols->add_variable(var);
5315 }
5316 }
5317
5318 /* Convert the body of the function to HIR. */
5319 this->body->hir(&signature->body, state);
5320 signature->is_defined = true;
5321
5322 state->symbols->pop_scope();
5323
5324 assert(state->current_function == signature);
5325 state->current_function = NULL;
5326
5327 if (!signature->return_type->is_void() && !state->found_return) {
5328 YYLTYPE loc = this->get_location();
5329 _mesa_glsl_error(& loc, state, "function `%s' has non-void return type "
5330 "%s, but no return statement",
5331 signature->function_name(),
5332 signature->return_type->name);
5333 }
5334
5335 /* Function definitions do not have r-values.
5336 */
5337 return NULL;
5338 }
5339
5340
5341 ir_rvalue *
5342 ast_jump_statement::hir(exec_list *instructions,
5343 struct _mesa_glsl_parse_state *state)
5344 {
5345 void *ctx = state;
5346
5347 switch (mode) {
5348 case ast_return: {
5349 ir_return *inst;
5350 assert(state->current_function);
5351
5352 if (opt_return_value) {
5353 ir_rvalue *ret = opt_return_value->hir(instructions, state);
5354
5355 /* The value of the return type can be NULL if the shader says
5356 * 'return foo();' and foo() is a function that returns void.
5357 *
5358 * NOTE: The GLSL spec doesn't say that this is an error. The type
5359 * of the return value is void. If the return type of the function is
5360 * also void, then this should compile without error. Seriously.
5361 */
5362 const glsl_type *const ret_type =
5363 (ret == NULL) ? glsl_type::void_type : ret->type;
5364
5365 /* Implicit conversions are not allowed for return values prior to
5366 * ARB_shading_language_420pack.
5367 */
5368 if (state->current_function->return_type != ret_type) {
5369 YYLTYPE loc = this->get_location();
5370
5371 if (state->has_420pack()) {
5372 if (!apply_implicit_conversion(state->current_function->return_type,
5373 ret, state)) {
5374 _mesa_glsl_error(& loc, state,
5375 "could not implicitly convert return value "
5376 "to %s, in function `%s'",
5377 state->current_function->return_type->name,
5378 state->current_function->function_name());
5379 }
5380 } else {
5381 _mesa_glsl_error(& loc, state,
5382 "`return' with wrong type %s, in function `%s' "
5383 "returning %s",
5384 ret_type->name,
5385 state->current_function->function_name(),
5386 state->current_function->return_type->name);
5387 }
5388 } else if (state->current_function->return_type->base_type ==
5389 GLSL_TYPE_VOID) {
5390 YYLTYPE loc = this->get_location();
5391
5392 /* The ARB_shading_language_420pack, GLSL ES 3.0, and GLSL 4.20
5393 * specs add a clarification:
5394 *
5395 * "A void function can only use return without a return argument, even if
5396 * the return argument has void type. Return statements only accept values:
5397 *
5398 * void func1() { }
5399 * void func2() { return func1(); } // illegal return statement"
5400 */
5401 _mesa_glsl_error(& loc, state,
5402 "void functions can only use `return' without a "
5403 "return argument");
5404 }
5405
5406 inst = new(ctx) ir_return(ret);
5407 } else {
5408 if (state->current_function->return_type->base_type !=
5409 GLSL_TYPE_VOID) {
5410 YYLTYPE loc = this->get_location();
5411
5412 _mesa_glsl_error(& loc, state,
5413 "`return' with no value, in function %s returning "
5414 "non-void",
5415 state->current_function->function_name());
5416 }
5417 inst = new(ctx) ir_return;
5418 }
5419
5420 state->found_return = true;
5421 instructions->push_tail(inst);
5422 break;
5423 }
5424
5425 case ast_discard:
5426 if (state->stage != MESA_SHADER_FRAGMENT) {
5427 YYLTYPE loc = this->get_location();
5428
5429 _mesa_glsl_error(& loc, state,
5430 "`discard' may only appear in a fragment shader");
5431 }
5432 instructions->push_tail(new(ctx) ir_discard);
5433 break;
5434
5435 case ast_break:
5436 case ast_continue:
5437 if (mode == ast_continue &&
5438 state->loop_nesting_ast == NULL) {
5439 YYLTYPE loc = this->get_location();
5440
5441 _mesa_glsl_error(& loc, state, "continue may only appear in a loop");
5442 } else if (mode == ast_break &&
5443 state->loop_nesting_ast == NULL &&
5444 state->switch_state.switch_nesting_ast == NULL) {
5445 YYLTYPE loc = this->get_location();
5446
5447 _mesa_glsl_error(& loc, state,
5448 "break may only appear in a loop or a switch");
5449 } else {
5450 /* For a loop, inline the for loop expression again, since we don't
5451 * know where near the end of the loop body the normal copy of it is
5452 * going to be placed. Same goes for the condition for a do-while
5453 * loop.
5454 */
5455 if (state->loop_nesting_ast != NULL &&
5456 mode == ast_continue && !state->switch_state.is_switch_innermost) {
5457 if (state->loop_nesting_ast->rest_expression) {
5458 state->loop_nesting_ast->rest_expression->hir(instructions,
5459 state);
5460 }
5461 if (state->loop_nesting_ast->mode ==
5462 ast_iteration_statement::ast_do_while) {
5463 state->loop_nesting_ast->condition_to_hir(instructions, state);
5464 }
5465 }
5466
5467 if (state->switch_state.is_switch_innermost &&
5468 mode == ast_continue) {
5469 /* Set 'continue_inside' to true. */
5470 ir_rvalue *const true_val = new (ctx) ir_constant(true);
5471 ir_dereference_variable *deref_continue_inside_var =
5472 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
5473 instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
5474 true_val));
5475
5476 /* Break out from the switch, continue for the loop will
5477 * be called right after switch. */
5478 ir_loop_jump *const jump =
5479 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
5480 instructions->push_tail(jump);
5481
5482 } else if (state->switch_state.is_switch_innermost &&
5483 mode == ast_break) {
5484 /* Force break out of switch by inserting a break. */
5485 ir_loop_jump *const jump =
5486 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
5487 instructions->push_tail(jump);
5488 } else {
5489 ir_loop_jump *const jump =
5490 new(ctx) ir_loop_jump((mode == ast_break)
5491 ? ir_loop_jump::jump_break
5492 : ir_loop_jump::jump_continue);
5493 instructions->push_tail(jump);
5494 }
5495 }
5496
5497 break;
5498 }
5499
5500 /* Jump instructions do not have r-values.
5501 */
5502 return NULL;
5503 }
5504
5505
5506 ir_rvalue *
5507 ast_selection_statement::hir(exec_list *instructions,
5508 struct _mesa_glsl_parse_state *state)
5509 {
5510 void *ctx = state;
5511
5512 ir_rvalue *const condition = this->condition->hir(instructions, state);
5513
5514 /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
5515 *
5516 * "Any expression whose type evaluates to a Boolean can be used as the
5517 * conditional expression bool-expression. Vector types are not accepted
5518 * as the expression to if."
5519 *
5520 * The checks are separated so that higher quality diagnostics can be
5521 * generated for cases where both rules are violated.
5522 */
5523 if (!condition->type->is_boolean() || !condition->type->is_scalar()) {
5524 YYLTYPE loc = this->condition->get_location();
5525
5526 _mesa_glsl_error(& loc, state, "if-statement condition must be scalar "
5527 "boolean");
5528 }
5529
5530 ir_if *const stmt = new(ctx) ir_if(condition);
5531
5532 if (then_statement != NULL) {
5533 state->symbols->push_scope();
5534 then_statement->hir(& stmt->then_instructions, state);
5535 state->symbols->pop_scope();
5536 }
5537
5538 if (else_statement != NULL) {
5539 state->symbols->push_scope();
5540 else_statement->hir(& stmt->else_instructions, state);
5541 state->symbols->pop_scope();
5542 }
5543
5544 instructions->push_tail(stmt);
5545
5546 /* if-statements do not have r-values.
5547 */
5548 return NULL;
5549 }
5550
5551
5552 ir_rvalue *
5553 ast_switch_statement::hir(exec_list *instructions,
5554 struct _mesa_glsl_parse_state *state)
5555 {
5556 void *ctx = state;
5557
5558 ir_rvalue *const test_expression =
5559 this->test_expression->hir(instructions, state);
5560
5561 /* From page 66 (page 55 of the PDF) of the GLSL 1.50 spec:
5562 *
5563 * "The type of init-expression in a switch statement must be a
5564 * scalar integer."
5565 */
5566 if (!test_expression->type->is_scalar() ||
5567 !test_expression->type->is_integer()) {
5568 YYLTYPE loc = this->test_expression->get_location();
5569
5570 _mesa_glsl_error(& loc,
5571 state,
5572 "switch-statement expression must be scalar "
5573 "integer");
5574 }
5575
5576 /* Track the switch-statement nesting in a stack-like manner.
5577 */
5578 struct glsl_switch_state saved = state->switch_state;
5579
5580 state->switch_state.is_switch_innermost = true;
5581 state->switch_state.switch_nesting_ast = this;
5582 state->switch_state.labels_ht = hash_table_ctor(0, hash_table_pointer_hash,
5583 hash_table_pointer_compare);
5584 state->switch_state.previous_default = NULL;
5585
5586 /* Initalize is_fallthru state to false.
5587 */
5588 ir_rvalue *const is_fallthru_val = new (ctx) ir_constant(false);
5589 state->switch_state.is_fallthru_var =
5590 new(ctx) ir_variable(glsl_type::bool_type,
5591 "switch_is_fallthru_tmp",
5592 ir_var_temporary);
5593 instructions->push_tail(state->switch_state.is_fallthru_var);
5594
5595 ir_dereference_variable *deref_is_fallthru_var =
5596 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
5597 instructions->push_tail(new(ctx) ir_assignment(deref_is_fallthru_var,
5598 is_fallthru_val));
5599
5600 /* Initialize continue_inside state to false.
5601 */
5602 state->switch_state.continue_inside =
5603 new(ctx) ir_variable(glsl_type::bool_type,
5604 "continue_inside_tmp",
5605 ir_var_temporary);
5606 instructions->push_tail(state->switch_state.continue_inside);
5607
5608 ir_rvalue *const false_val = new (ctx) ir_constant(false);
5609 ir_dereference_variable *deref_continue_inside_var =
5610 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
5611 instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
5612 false_val));
5613
5614 state->switch_state.run_default =
5615 new(ctx) ir_variable(glsl_type::bool_type,
5616 "run_default_tmp",
5617 ir_var_temporary);
5618 instructions->push_tail(state->switch_state.run_default);
5619
5620 /* Loop around the switch is used for flow control. */
5621 ir_loop * loop = new(ctx) ir_loop();
5622 instructions->push_tail(loop);
5623
5624 /* Cache test expression.
5625 */
5626 test_to_hir(&loop->body_instructions, state);
5627
5628 /* Emit code for body of switch stmt.
5629 */
5630 body->hir(&loop->body_instructions, state);
5631
5632 /* Insert a break at the end to exit loop. */
5633 ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
5634 loop->body_instructions.push_tail(jump);
5635
5636 /* If we are inside loop, check if continue got called inside switch. */
5637 if (state->loop_nesting_ast != NULL) {
5638 ir_dereference_variable *deref_continue_inside =
5639 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
5640 ir_if *irif = new(ctx) ir_if(deref_continue_inside);
5641 ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_continue);
5642
5643 if (state->loop_nesting_ast != NULL) {
5644 if (state->loop_nesting_ast->rest_expression) {
5645 state->loop_nesting_ast->rest_expression->hir(&irif->then_instructions,
5646 state);
5647 }
5648 if (state->loop_nesting_ast->mode ==
5649 ast_iteration_statement::ast_do_while) {
5650 state->loop_nesting_ast->condition_to_hir(&irif->then_instructions, state);
5651 }
5652 }
5653 irif->then_instructions.push_tail(jump);
5654 instructions->push_tail(irif);
5655 }
5656
5657 hash_table_dtor(state->switch_state.labels_ht);
5658
5659 state->switch_state = saved;
5660
5661 /* Switch statements do not have r-values. */
5662 return NULL;
5663 }
5664
5665
5666 void
5667 ast_switch_statement::test_to_hir(exec_list *instructions,
5668 struct _mesa_glsl_parse_state *state)
5669 {
5670 void *ctx = state;
5671
5672 /* Cache value of test expression. */
5673 ir_rvalue *const test_val =
5674 test_expression->hir(instructions,
5675 state);
5676
5677 state->switch_state.test_var = new(ctx) ir_variable(test_val->type,
5678 "switch_test_tmp",
5679 ir_var_temporary);
5680 ir_dereference_variable *deref_test_var =
5681 new(ctx) ir_dereference_variable(state->switch_state.test_var);
5682
5683 instructions->push_tail(state->switch_state.test_var);
5684 instructions->push_tail(new(ctx) ir_assignment(deref_test_var, test_val));
5685 }
5686
5687
5688 ir_rvalue *
5689 ast_switch_body::hir(exec_list *instructions,
5690 struct _mesa_glsl_parse_state *state)
5691 {
5692 if (stmts != NULL)
5693 stmts->hir(instructions, state);
5694
5695 /* Switch bodies do not have r-values. */
5696 return NULL;
5697 }
5698
5699 ir_rvalue *
5700 ast_case_statement_list::hir(exec_list *instructions,
5701 struct _mesa_glsl_parse_state *state)
5702 {
5703 exec_list default_case, after_default, tmp;
5704
5705 foreach_list_typed (ast_case_statement, case_stmt, link, & this->cases) {
5706 case_stmt->hir(&tmp, state);
5707
5708 /* Default case. */
5709 if (state->switch_state.previous_default && default_case.is_empty()) {
5710 default_case.append_list(&tmp);
5711 continue;
5712 }
5713
5714 /* If default case found, append 'after_default' list. */
5715 if (!default_case.is_empty())
5716 after_default.append_list(&tmp);
5717 else
5718 instructions->append_list(&tmp);
5719 }
5720
5721 /* Handle the default case. This is done here because default might not be
5722 * the last case. We need to add checks against following cases first to see
5723 * if default should be chosen or not.
5724 */
5725 if (!default_case.is_empty()) {
5726
5727 ir_rvalue *const true_val = new (state) ir_constant(true);
5728 ir_dereference_variable *deref_run_default_var =
5729 new(state) ir_dereference_variable(state->switch_state.run_default);
5730
5731 /* Choose to run default case initially, following conditional
5732 * assignments might change this.
5733 */
5734 ir_assignment *const init_var =
5735 new(state) ir_assignment(deref_run_default_var, true_val);
5736 instructions->push_tail(init_var);
5737
5738 /* Default case was the last one, no checks required. */
5739 if (after_default.is_empty()) {
5740 instructions->append_list(&default_case);
5741 return NULL;
5742 }
5743
5744 foreach_in_list(ir_instruction, ir, &after_default) {
5745 ir_assignment *assign = ir->as_assignment();
5746
5747 if (!assign)
5748 continue;
5749
5750 /* Clone the check between case label and init expression. */
5751 ir_expression *exp = (ir_expression*) assign->condition;
5752 ir_expression *clone = exp->clone(state, NULL);
5753
5754 ir_dereference_variable *deref_var =
5755 new(state) ir_dereference_variable(state->switch_state.run_default);
5756 ir_rvalue *const false_val = new (state) ir_constant(false);
5757
5758 ir_assignment *const set_false =
5759 new(state) ir_assignment(deref_var, false_val, clone);
5760
5761 instructions->push_tail(set_false);
5762 }
5763
5764 /* Append default case and all cases after it. */
5765 instructions->append_list(&default_case);
5766 instructions->append_list(&after_default);
5767 }
5768
5769 /* Case statements do not have r-values. */
5770 return NULL;
5771 }
5772
5773 ir_rvalue *
5774 ast_case_statement::hir(exec_list *instructions,
5775 struct _mesa_glsl_parse_state *state)
5776 {
5777 labels->hir(instructions, state);
5778
5779 /* Guard case statements depending on fallthru state. */
5780 ir_dereference_variable *const deref_fallthru_guard =
5781 new(state) ir_dereference_variable(state->switch_state.is_fallthru_var);
5782 ir_if *const test_fallthru = new(state) ir_if(deref_fallthru_guard);
5783
5784 foreach_list_typed (ast_node, stmt, link, & this->stmts)
5785 stmt->hir(& test_fallthru->then_instructions, state);
5786
5787 instructions->push_tail(test_fallthru);
5788
5789 /* Case statements do not have r-values. */
5790 return NULL;
5791 }
5792
5793
5794 ir_rvalue *
5795 ast_case_label_list::hir(exec_list *instructions,
5796 struct _mesa_glsl_parse_state *state)
5797 {
5798 foreach_list_typed (ast_case_label, label, link, & this->labels)
5799 label->hir(instructions, state);
5800
5801 /* Case labels do not have r-values. */
5802 return NULL;
5803 }
5804
5805 ir_rvalue *
5806 ast_case_label::hir(exec_list *instructions,
5807 struct _mesa_glsl_parse_state *state)
5808 {
5809 void *ctx = state;
5810
5811 ir_dereference_variable *deref_fallthru_var =
5812 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
5813
5814 ir_rvalue *const true_val = new(ctx) ir_constant(true);
5815
5816 /* If not default case, ... */
5817 if (this->test_value != NULL) {
5818 /* Conditionally set fallthru state based on
5819 * comparison of cached test expression value to case label.
5820 */
5821 ir_rvalue *const label_rval = this->test_value->hir(instructions, state);
5822 ir_constant *label_const = label_rval->constant_expression_value();
5823
5824 if (!label_const) {
5825 YYLTYPE loc = this->test_value->get_location();
5826
5827 _mesa_glsl_error(& loc, state,
5828 "switch statement case label must be a "
5829 "constant expression");
5830
5831 /* Stuff a dummy value in to allow processing to continue. */
5832 label_const = new(ctx) ir_constant(0);
5833 } else {
5834 ast_expression *previous_label = (ast_expression *)
5835 hash_table_find(state->switch_state.labels_ht,
5836 (void *)(uintptr_t)label_const->value.u[0]);
5837
5838 if (previous_label) {
5839 YYLTYPE loc = this->test_value->get_location();
5840 _mesa_glsl_error(& loc, state, "duplicate case value");
5841
5842 loc = previous_label->get_location();
5843 _mesa_glsl_error(& loc, state, "this is the previous case label");
5844 } else {
5845 hash_table_insert(state->switch_state.labels_ht,
5846 this->test_value,
5847 (void *)(uintptr_t)label_const->value.u[0]);
5848 }
5849 }
5850
5851 ir_dereference_variable *deref_test_var =
5852 new(ctx) ir_dereference_variable(state->switch_state.test_var);
5853
5854 ir_expression *test_cond = new(ctx) ir_expression(ir_binop_all_equal,
5855 label_const,
5856 deref_test_var);
5857
5858 /*
5859 * From GLSL 4.40 specification section 6.2 ("Selection"):
5860 *
5861 * "The type of the init-expression value in a switch statement must
5862 * be a scalar int or uint. The type of the constant-expression value
5863 * in a case label also must be a scalar int or uint. When any pair
5864 * of these values is tested for "equal value" and the types do not
5865 * match, an implicit conversion will be done to convert the int to a
5866 * uint (see section 4.1.10 “Implicit Conversions”) before the compare
5867 * is done."
5868 */
5869 if (label_const->type != state->switch_state.test_var->type) {
5870 YYLTYPE loc = this->test_value->get_location();
5871
5872 const glsl_type *type_a = label_const->type;
5873 const glsl_type *type_b = state->switch_state.test_var->type;
5874
5875 /* Check if int->uint implicit conversion is supported. */
5876 bool integer_conversion_supported =
5877 glsl_type::int_type->can_implicitly_convert_to(glsl_type::uint_type,
5878 state);
5879
5880 if ((!type_a->is_integer() || !type_b->is_integer()) ||
5881 !integer_conversion_supported) {
5882 _mesa_glsl_error(&loc, state, "type mismatch with switch "
5883 "init-expression and case label (%s != %s)",
5884 type_a->name, type_b->name);
5885 } else {
5886 /* Conversion of the case label. */
5887 if (type_a->base_type == GLSL_TYPE_INT) {
5888 if (!apply_implicit_conversion(glsl_type::uint_type,
5889 test_cond->operands[0], state))
5890 _mesa_glsl_error(&loc, state, "implicit type conversion error");
5891 } else {
5892 /* Conversion of the init-expression value. */
5893 if (!apply_implicit_conversion(glsl_type::uint_type,
5894 test_cond->operands[1], state))
5895 _mesa_glsl_error(&loc, state, "implicit type conversion error");
5896 }
5897 }
5898 }
5899
5900 ir_assignment *set_fallthru_on_test =
5901 new(ctx) ir_assignment(deref_fallthru_var, true_val, test_cond);
5902
5903 instructions->push_tail(set_fallthru_on_test);
5904 } else { /* default case */
5905 if (state->switch_state.previous_default) {
5906 YYLTYPE loc = this->get_location();
5907 _mesa_glsl_error(& loc, state,
5908 "multiple default labels in one switch");
5909
5910 loc = state->switch_state.previous_default->get_location();
5911 _mesa_glsl_error(& loc, state, "this is the first default label");
5912 }
5913 state->switch_state.previous_default = this;
5914
5915 /* Set fallthru condition on 'run_default' bool. */
5916 ir_dereference_variable *deref_run_default =
5917 new(ctx) ir_dereference_variable(state->switch_state.run_default);
5918 ir_rvalue *const cond_true = new(ctx) ir_constant(true);
5919 ir_expression *test_cond = new(ctx) ir_expression(ir_binop_all_equal,
5920 cond_true,
5921 deref_run_default);
5922
5923 /* Set falltrhu state. */
5924 ir_assignment *set_fallthru =
5925 new(ctx) ir_assignment(deref_fallthru_var, true_val, test_cond);
5926
5927 instructions->push_tail(set_fallthru);
5928 }
5929
5930 /* Case statements do not have r-values. */
5931 return NULL;
5932 }
5933
5934 void
5935 ast_iteration_statement::condition_to_hir(exec_list *instructions,
5936 struct _mesa_glsl_parse_state *state)
5937 {
5938 void *ctx = state;
5939
5940 if (condition != NULL) {
5941 ir_rvalue *const cond =
5942 condition->hir(instructions, state);
5943
5944 if ((cond == NULL)
5945 || !cond->type->is_boolean() || !cond->type->is_scalar()) {
5946 YYLTYPE loc = condition->get_location();
5947
5948 _mesa_glsl_error(& loc, state,
5949 "loop condition must be scalar boolean");
5950 } else {
5951 /* As the first code in the loop body, generate a block that looks
5952 * like 'if (!condition) break;' as the loop termination condition.
5953 */
5954 ir_rvalue *const not_cond =
5955 new(ctx) ir_expression(ir_unop_logic_not, cond);
5956
5957 ir_if *const if_stmt = new(ctx) ir_if(not_cond);
5958
5959 ir_jump *const break_stmt =
5960 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
5961
5962 if_stmt->then_instructions.push_tail(break_stmt);
5963 instructions->push_tail(if_stmt);
5964 }
5965 }
5966 }
5967
5968
5969 ir_rvalue *
5970 ast_iteration_statement::hir(exec_list *instructions,
5971 struct _mesa_glsl_parse_state *state)
5972 {
5973 void *ctx = state;
5974
5975 /* For-loops and while-loops start a new scope, but do-while loops do not.
5976 */
5977 if (mode != ast_do_while)
5978 state->symbols->push_scope();
5979
5980 if (init_statement != NULL)
5981 init_statement->hir(instructions, state);
5982
5983 ir_loop *const stmt = new(ctx) ir_loop();
5984 instructions->push_tail(stmt);
5985
5986 /* Track the current loop nesting. */
5987 ast_iteration_statement *nesting_ast = state->loop_nesting_ast;
5988
5989 state->loop_nesting_ast = this;
5990
5991 /* Likewise, indicate that following code is closest to a loop,
5992 * NOT closest to a switch.
5993 */
5994 bool saved_is_switch_innermost = state->switch_state.is_switch_innermost;
5995 state->switch_state.is_switch_innermost = false;
5996
5997 if (mode != ast_do_while)
5998 condition_to_hir(&stmt->body_instructions, state);
5999
6000 if (body != NULL)
6001 body->hir(& stmt->body_instructions, state);
6002
6003 if (rest_expression != NULL)
6004 rest_expression->hir(& stmt->body_instructions, state);
6005
6006 if (mode == ast_do_while)
6007 condition_to_hir(&stmt->body_instructions, state);
6008
6009 if (mode != ast_do_while)
6010 state->symbols->pop_scope();
6011
6012 /* Restore previous nesting before returning. */
6013 state->loop_nesting_ast = nesting_ast;
6014 state->switch_state.is_switch_innermost = saved_is_switch_innermost;
6015
6016 /* Loops do not have r-values.
6017 */
6018 return NULL;
6019 }
6020
6021
6022 /**
6023 * Determine if the given type is valid for establishing a default precision
6024 * qualifier.
6025 *
6026 * From GLSL ES 3.00 section 4.5.4 ("Default Precision Qualifiers"):
6027 *
6028 * "The precision statement
6029 *
6030 * precision precision-qualifier type;
6031 *
6032 * can be used to establish a default precision qualifier. The type field
6033 * can be either int or float or any of the sampler types, and the
6034 * precision-qualifier can be lowp, mediump, or highp."
6035 *
6036 * GLSL ES 1.00 has similar language. GLSL 1.30 doesn't allow precision
6037 * qualifiers on sampler types, but this seems like an oversight (since the
6038 * intention of including these in GLSL 1.30 is to allow compatibility with ES
6039 * shaders). So we allow int, float, and all sampler types regardless of GLSL
6040 * version.
6041 */
6042 static bool
6043 is_valid_default_precision_type(const struct glsl_type *const type)
6044 {
6045 if (type == NULL)
6046 return false;
6047
6048 switch (type->base_type) {
6049 case GLSL_TYPE_INT:
6050 case GLSL_TYPE_FLOAT:
6051 /* "int" and "float" are valid, but vectors and matrices are not. */
6052 return type->vector_elements == 1 && type->matrix_columns == 1;
6053 case GLSL_TYPE_SAMPLER:
6054 case GLSL_TYPE_IMAGE:
6055 case GLSL_TYPE_ATOMIC_UINT:
6056 return true;
6057 default:
6058 return false;
6059 }
6060 }
6061
6062
6063 ir_rvalue *
6064 ast_type_specifier::hir(exec_list *instructions,
6065 struct _mesa_glsl_parse_state *state)
6066 {
6067 if (this->default_precision == ast_precision_none && this->structure == NULL)
6068 return NULL;
6069
6070 YYLTYPE loc = this->get_location();
6071
6072 /* If this is a precision statement, check that the type to which it is
6073 * applied is either float or int.
6074 *
6075 * From section 4.5.3 of the GLSL 1.30 spec:
6076 * "The precision statement
6077 * precision precision-qualifier type;
6078 * can be used to establish a default precision qualifier. The type
6079 * field can be either int or float [...]. Any other types or
6080 * qualifiers will result in an error.
6081 */
6082 if (this->default_precision != ast_precision_none) {
6083 if (!state->check_precision_qualifiers_allowed(&loc))
6084 return NULL;
6085
6086 if (this->structure != NULL) {
6087 _mesa_glsl_error(&loc, state,
6088 "precision qualifiers do not apply to structures");
6089 return NULL;
6090 }
6091
6092 if (this->array_specifier != NULL) {
6093 _mesa_glsl_error(&loc, state,
6094 "default precision statements do not apply to "
6095 "arrays");
6096 return NULL;
6097 }
6098
6099 const struct glsl_type *const type =
6100 state->symbols->get_type(this->type_name);
6101 if (!is_valid_default_precision_type(type)) {
6102 _mesa_glsl_error(&loc, state,
6103 "default precision statements apply only to "
6104 "float, int, and opaque types");
6105 return NULL;
6106 }
6107
6108 if (state->es_shader) {
6109 /* Section 4.5.3 (Default Precision Qualifiers) of the GLSL ES 1.00
6110 * spec says:
6111 *
6112 * "Non-precision qualified declarations will use the precision
6113 * qualifier specified in the most recent precision statement
6114 * that is still in scope. The precision statement has the same
6115 * scoping rules as variable declarations. If it is declared
6116 * inside a compound statement, its effect stops at the end of
6117 * the innermost statement it was declared in. Precision
6118 * statements in nested scopes override precision statements in
6119 * outer scopes. Multiple precision statements for the same basic
6120 * type can appear inside the same scope, with later statements
6121 * overriding earlier statements within that scope."
6122 *
6123 * Default precision specifications follow the same scope rules as
6124 * variables. So, we can track the state of the default precision
6125 * qualifiers in the symbol table, and the rules will just work. This
6126 * is a slight abuse of the symbol table, but it has the semantics
6127 * that we want.
6128 */
6129 state->symbols->add_default_precision_qualifier(this->type_name,
6130 this->default_precision);
6131 }
6132
6133 /* FINISHME: Translate precision statements into IR. */
6134 return NULL;
6135 }
6136
6137 /* _mesa_ast_set_aggregate_type() sets the <structure> field so that
6138 * process_record_constructor() can do type-checking on C-style initializer
6139 * expressions of structs, but ast_struct_specifier should only be translated
6140 * to HIR if it is declaring the type of a structure.
6141 *
6142 * The ->is_declaration field is false for initializers of variables
6143 * declared separately from the struct's type definition.
6144 *
6145 * struct S { ... }; (is_declaration = true)
6146 * struct T { ... } t = { ... }; (is_declaration = true)
6147 * S s = { ... }; (is_declaration = false)
6148 */
6149 if (this->structure != NULL && this->structure->is_declaration)
6150 return this->structure->hir(instructions, state);
6151
6152 return NULL;
6153 }
6154
6155
6156 /**
6157 * Process a structure or interface block tree into an array of structure fields
6158 *
6159 * After parsing, where there are some syntax differnces, structures and
6160 * interface blocks are almost identical. They are similar enough that the
6161 * AST for each can be processed the same way into a set of
6162 * \c glsl_struct_field to describe the members.
6163 *
6164 * If we're processing an interface block, var_mode should be the type of the
6165 * interface block (ir_var_shader_in, ir_var_shader_out, ir_var_uniform or
6166 * ir_var_shader_storage). If we're processing a structure, var_mode should be
6167 * ir_var_auto.
6168 *
6169 * \return
6170 * The number of fields processed. A pointer to the array structure fields is
6171 * stored in \c *fields_ret.
6172 */
6173 unsigned
6174 ast_process_struct_or_iface_block_members(exec_list *instructions,
6175 struct _mesa_glsl_parse_state *state,
6176 exec_list *declarations,
6177 glsl_struct_field **fields_ret,
6178 bool is_interface,
6179 enum glsl_matrix_layout matrix_layout,
6180 bool allow_reserved_names,
6181 ir_variable_mode var_mode,
6182 ast_type_qualifier *layout,
6183 unsigned block_stream,
6184 unsigned expl_location)
6185 {
6186 unsigned decl_count = 0;
6187
6188 /* Make an initial pass over the list of fields to determine how
6189 * many there are. Each element in this list is an ast_declarator_list.
6190 * This means that we actually need to count the number of elements in the
6191 * 'declarations' list in each of the elements.
6192 */
6193 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
6194 decl_count += decl_list->declarations.length();
6195 }
6196
6197 /* Allocate storage for the fields and process the field
6198 * declarations. As the declarations are processed, try to also convert
6199 * the types to HIR. This ensures that structure definitions embedded in
6200 * other structure definitions or in interface blocks are processed.
6201 */
6202 glsl_struct_field *const fields = ralloc_array(state, glsl_struct_field,
6203 decl_count);
6204
6205 bool first_member = true;
6206 bool first_member_has_explicit_location;
6207
6208 unsigned i = 0;
6209 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
6210 const char *type_name;
6211 YYLTYPE loc = decl_list->get_location();
6212
6213 decl_list->type->specifier->hir(instructions, state);
6214
6215 /* Section 10.9 of the GLSL ES 1.00 specification states that
6216 * embedded structure definitions have been removed from the language.
6217 */
6218 if (state->es_shader && decl_list->type->specifier->structure != NULL) {
6219 _mesa_glsl_error(&loc, state, "embedded structure definitions are "
6220 "not allowed in GLSL ES 1.00");
6221 }
6222
6223 const glsl_type *decl_type =
6224 decl_list->type->glsl_type(& type_name, state);
6225
6226 const struct ast_type_qualifier *const qual =
6227 &decl_list->type->qualifier;
6228
6229 /* From section 4.3.9 of the GLSL 4.40 spec:
6230 *
6231 * "[In interface blocks] opaque types are not allowed."
6232 *
6233 * It should be impossible for decl_type to be NULL here. Cases that
6234 * might naturally lead to decl_type being NULL, especially for the
6235 * is_interface case, will have resulted in compilation having
6236 * already halted due to a syntax error.
6237 */
6238 assert(decl_type);
6239
6240 if (is_interface && decl_type->contains_opaque()) {
6241 _mesa_glsl_error(&loc, state,
6242 "uniform/buffer in non-default interface block contains "
6243 "opaque variable");
6244 }
6245
6246 if (decl_type->contains_atomic()) {
6247 /* From section 4.1.7.3 of the GLSL 4.40 spec:
6248 *
6249 * "Members of structures cannot be declared as atomic counter
6250 * types."
6251 */
6252 _mesa_glsl_error(&loc, state, "atomic counter in structure, "
6253 "shader storage block or uniform block");
6254 }
6255
6256 if (decl_type->contains_image()) {
6257 /* FINISHME: Same problem as with atomic counters.
6258 * FINISHME: Request clarification from Khronos and add
6259 * FINISHME: spec quotation here.
6260 */
6261 _mesa_glsl_error(&loc, state,
6262 "image in structure, shader storage block or "
6263 "uniform block");
6264 }
6265
6266 if (qual->flags.q.explicit_binding) {
6267 _mesa_glsl_error(&loc, state,
6268 "binding layout qualifier cannot be applied "
6269 "to struct or interface block members");
6270 }
6271
6272 if (is_interface) {
6273 if (!first_member) {
6274 if (!layout->flags.q.explicit_location &&
6275 ((first_member_has_explicit_location &&
6276 !qual->flags.q.explicit_location) ||
6277 (!first_member_has_explicit_location &&
6278 qual->flags.q.explicit_location))) {
6279 _mesa_glsl_error(&loc, state,
6280 "when block-level location layout qualifier "
6281 "is not supplied either all members must "
6282 "have a location layout qualifier or all "
6283 "members must not have a location layout "
6284 "qualifier");
6285 }
6286 } else {
6287 first_member = false;
6288 first_member_has_explicit_location =
6289 qual->flags.q.explicit_location;
6290 }
6291 }
6292
6293 if (qual->flags.q.std140 ||
6294 qual->flags.q.std430 ||
6295 qual->flags.q.packed ||
6296 qual->flags.q.shared) {
6297 _mesa_glsl_error(&loc, state,
6298 "uniform/shader storage block layout qualifiers "
6299 "std140, std430, packed, and shared can only be "
6300 "applied to uniform/shader storage blocks, not "
6301 "members");
6302 }
6303
6304 if (qual->flags.q.constant) {
6305 _mesa_glsl_error(&loc, state,
6306 "const storage qualifier cannot be applied "
6307 "to struct or interface block members");
6308 }
6309
6310 /* From Section 4.4.2.3 (Geometry Outputs) of the GLSL 4.50 spec:
6311 *
6312 * "A block member may be declared with a stream identifier, but
6313 * the specified stream must match the stream associated with the
6314 * containing block."
6315 */
6316 if (qual->flags.q.explicit_stream) {
6317 unsigned qual_stream;
6318 if (process_qualifier_constant(state, &loc, "stream",
6319 qual->stream, &qual_stream) &&
6320 qual_stream != block_stream) {
6321 _mesa_glsl_error(&loc, state, "stream layout qualifier on "
6322 "interface block member does not match "
6323 "the interface block (%d vs %d)", qual->stream,
6324 block_stream);
6325 }
6326 }
6327
6328 if (qual->flags.q.uniform && qual->has_interpolation()) {
6329 _mesa_glsl_error(&loc, state,
6330 "interpolation qualifiers cannot be used "
6331 "with uniform interface blocks");
6332 }
6333
6334 if ((qual->flags.q.uniform || !is_interface) &&
6335 qual->has_auxiliary_storage()) {
6336 _mesa_glsl_error(&loc, state,
6337 "auxiliary storage qualifiers cannot be used "
6338 "in uniform blocks or structures.");
6339 }
6340
6341 if (qual->flags.q.row_major || qual->flags.q.column_major) {
6342 if (!qual->flags.q.uniform && !qual->flags.q.buffer) {
6343 _mesa_glsl_error(&loc, state,
6344 "row_major and column_major can only be "
6345 "applied to interface blocks");
6346 } else
6347 validate_matrix_layout_for_type(state, &loc, decl_type, NULL);
6348 }
6349
6350 if (qual->flags.q.read_only && qual->flags.q.write_only) {
6351 _mesa_glsl_error(&loc, state, "buffer variable can't be both "
6352 "readonly and writeonly.");
6353 }
6354
6355 foreach_list_typed (ast_declaration, decl, link,
6356 &decl_list->declarations) {
6357 YYLTYPE loc = decl->get_location();
6358
6359 if (!allow_reserved_names)
6360 validate_identifier(decl->identifier, loc, state);
6361
6362 const struct glsl_type *field_type =
6363 process_array_type(&loc, decl_type, decl->array_specifier, state);
6364 validate_array_dimensions(field_type, state, &loc);
6365 fields[i].type = field_type;
6366 fields[i].name = decl->identifier;
6367 fields[i].interpolation =
6368 interpret_interpolation_qualifier(qual, var_mode, state, &loc);
6369 fields[i].centroid = qual->flags.q.centroid ? 1 : 0;
6370 fields[i].sample = qual->flags.q.sample ? 1 : 0;
6371 fields[i].patch = qual->flags.q.patch ? 1 : 0;
6372 fields[i].precision = qual->precision;
6373
6374 if (qual->flags.q.explicit_location) {
6375 unsigned qual_location;
6376 if (process_qualifier_constant(state, &loc, "location",
6377 qual->location, &qual_location)) {
6378 fields[i].location = VARYING_SLOT_VAR0 + qual_location;
6379 expl_location = fields[i].location + 1;
6380 }
6381 } else {
6382 if (layout && layout->flags.q.explicit_location) {
6383 fields[i].location = expl_location;
6384 expl_location = expl_location + 1;
6385 } else {
6386 fields[i].location = -1;
6387 }
6388 }
6389
6390 /* Propogate row- / column-major information down the fields of the
6391 * structure or interface block. Structures need this data because
6392 * the structure may contain a structure that contains ... a matrix
6393 * that need the proper layout.
6394 */
6395 if (field_type->without_array()->is_matrix()
6396 || field_type->without_array()->is_record()) {
6397 /* If no layout is specified for the field, inherit the layout
6398 * from the block.
6399 */
6400 fields[i].matrix_layout = matrix_layout;
6401
6402 if (qual->flags.q.row_major)
6403 fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
6404 else if (qual->flags.q.column_major)
6405 fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
6406
6407 /* If we're processing an interface block, the matrix layout must
6408 * be decided by this point.
6409 */
6410 assert(!is_interface
6411 || fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR
6412 || fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_COLUMN_MAJOR);
6413 }
6414
6415 /* Image qualifiers are allowed on buffer variables, which can only
6416 * be defined inside shader storage buffer objects
6417 */
6418 if (layout && var_mode == ir_var_shader_storage) {
6419 /* For readonly and writeonly qualifiers the field definition,
6420 * if set, overwrites the layout qualifier.
6421 */
6422 if (qual->flags.q.read_only) {
6423 fields[i].image_read_only = true;
6424 fields[i].image_write_only = false;
6425 } else if (qual->flags.q.write_only) {
6426 fields[i].image_read_only = false;
6427 fields[i].image_write_only = true;
6428 } else {
6429 fields[i].image_read_only = layout->flags.q.read_only;
6430 fields[i].image_write_only = layout->flags.q.write_only;
6431 }
6432
6433 /* For other qualifiers, we set the flag if either the layout
6434 * qualifier or the field qualifier are set
6435 */
6436 fields[i].image_coherent = qual->flags.q.coherent ||
6437 layout->flags.q.coherent;
6438 fields[i].image_volatile = qual->flags.q._volatile ||
6439 layout->flags.q._volatile;
6440 fields[i].image_restrict = qual->flags.q.restrict_flag ||
6441 layout->flags.q.restrict_flag;
6442 }
6443
6444 i++;
6445 }
6446 }
6447
6448 assert(i == decl_count);
6449
6450 *fields_ret = fields;
6451 return decl_count;
6452 }
6453
6454
6455 ir_rvalue *
6456 ast_struct_specifier::hir(exec_list *instructions,
6457 struct _mesa_glsl_parse_state *state)
6458 {
6459 YYLTYPE loc = this->get_location();
6460
6461 /* Section 4.1.8 (Structures) of the GLSL 1.10 spec says:
6462 *
6463 * "Anonymous structures are not supported; so embedded structures must
6464 * have a declarator. A name given to an embedded struct is scoped at
6465 * the same level as the struct it is embedded in."
6466 *
6467 * The same section of the GLSL 1.20 spec says:
6468 *
6469 * "Anonymous structures are not supported. Embedded structures are not
6470 * supported.
6471 *
6472 * struct S { float f; };
6473 * struct T {
6474 * S; // Error: anonymous structures disallowed
6475 * struct { ... }; // Error: embedded structures disallowed
6476 * S s; // Okay: nested structures with name are allowed
6477 * };"
6478 *
6479 * The GLSL ES 1.00 and 3.00 specs have similar langauge and examples. So,
6480 * we allow embedded structures in 1.10 only.
6481 */
6482 if (state->language_version != 110 && state->struct_specifier_depth != 0)
6483 _mesa_glsl_error(&loc, state,
6484 "embedded structure declarations are not allowed");
6485
6486 state->struct_specifier_depth++;
6487
6488 unsigned expl_location = -1;
6489 if (layout && layout->flags.q.explicit_location) {
6490 if (!process_qualifier_constant(state, &loc, "location",
6491 layout->location, &expl_location)) {
6492 return NULL;
6493 } else {
6494 expl_location = VARYING_SLOT_VAR0 + expl_location;
6495 }
6496 }
6497
6498 glsl_struct_field *fields;
6499 unsigned decl_count =
6500 ast_process_struct_or_iface_block_members(instructions,
6501 state,
6502 &this->declarations,
6503 &fields,
6504 false,
6505 GLSL_MATRIX_LAYOUT_INHERITED,
6506 false /* allow_reserved_names */,
6507 ir_var_auto,
6508 layout,
6509 0, /* for interface only */
6510 expl_location);
6511
6512 validate_identifier(this->name, loc, state);
6513
6514 const glsl_type *t =
6515 glsl_type::get_record_instance(fields, decl_count, this->name);
6516
6517 if (!state->symbols->add_type(name, t)) {
6518 _mesa_glsl_error(& loc, state, "struct `%s' previously defined", name);
6519 } else {
6520 const glsl_type **s = reralloc(state, state->user_structures,
6521 const glsl_type *,
6522 state->num_user_structures + 1);
6523 if (s != NULL) {
6524 s[state->num_user_structures] = t;
6525 state->user_structures = s;
6526 state->num_user_structures++;
6527 }
6528 }
6529
6530 state->struct_specifier_depth--;
6531
6532 /* Structure type definitions do not have r-values.
6533 */
6534 return NULL;
6535 }
6536
6537
6538 /**
6539 * Visitor class which detects whether a given interface block has been used.
6540 */
6541 class interface_block_usage_visitor : public ir_hierarchical_visitor
6542 {
6543 public:
6544 interface_block_usage_visitor(ir_variable_mode mode, const glsl_type *block)
6545 : mode(mode), block(block), found(false)
6546 {
6547 }
6548
6549 virtual ir_visitor_status visit(ir_dereference_variable *ir)
6550 {
6551 if (ir->var->data.mode == mode && ir->var->get_interface_type() == block) {
6552 found = true;
6553 return visit_stop;
6554 }
6555 return visit_continue;
6556 }
6557
6558 bool usage_found() const
6559 {
6560 return this->found;
6561 }
6562
6563 private:
6564 ir_variable_mode mode;
6565 const glsl_type *block;
6566 bool found;
6567 };
6568
6569 static bool
6570 is_unsized_array_last_element(ir_variable *v)
6571 {
6572 const glsl_type *interface_type = v->get_interface_type();
6573 int length = interface_type->length;
6574
6575 assert(v->type->is_unsized_array());
6576
6577 /* Check if it is the last element of the interface */
6578 if (strcmp(interface_type->fields.structure[length-1].name, v->name) == 0)
6579 return true;
6580 return false;
6581 }
6582
6583 ir_rvalue *
6584 ast_interface_block::hir(exec_list *instructions,
6585 struct _mesa_glsl_parse_state *state)
6586 {
6587 YYLTYPE loc = this->get_location();
6588
6589 /* Interface blocks must be declared at global scope */
6590 if (state->current_function != NULL) {
6591 _mesa_glsl_error(&loc, state,
6592 "Interface block `%s' must be declared "
6593 "at global scope",
6594 this->block_name);
6595 }
6596
6597 if (!this->layout.flags.q.buffer &&
6598 this->layout.flags.q.std430) {
6599 _mesa_glsl_error(&loc, state,
6600 "std430 storage block layout qualifier is supported "
6601 "only for shader storage blocks");
6602 }
6603
6604 /* The ast_interface_block has a list of ast_declarator_lists. We
6605 * need to turn those into ir_variables with an association
6606 * with this uniform block.
6607 */
6608 enum glsl_interface_packing packing;
6609 if (this->layout.flags.q.shared) {
6610 packing = GLSL_INTERFACE_PACKING_SHARED;
6611 } else if (this->layout.flags.q.packed) {
6612 packing = GLSL_INTERFACE_PACKING_PACKED;
6613 } else if (this->layout.flags.q.std430) {
6614 packing = GLSL_INTERFACE_PACKING_STD430;
6615 } else {
6616 /* The default layout is std140.
6617 */
6618 packing = GLSL_INTERFACE_PACKING_STD140;
6619 }
6620
6621 ir_variable_mode var_mode;
6622 const char *iface_type_name;
6623 if (this->layout.flags.q.in) {
6624 var_mode = ir_var_shader_in;
6625 iface_type_name = "in";
6626 } else if (this->layout.flags.q.out) {
6627 var_mode = ir_var_shader_out;
6628 iface_type_name = "out";
6629 } else if (this->layout.flags.q.uniform) {
6630 var_mode = ir_var_uniform;
6631 iface_type_name = "uniform";
6632 } else if (this->layout.flags.q.buffer) {
6633 var_mode = ir_var_shader_storage;
6634 iface_type_name = "buffer";
6635 } else {
6636 var_mode = ir_var_auto;
6637 iface_type_name = "UNKNOWN";
6638 assert(!"interface block layout qualifier not found!");
6639 }
6640
6641 enum glsl_matrix_layout matrix_layout = GLSL_MATRIX_LAYOUT_INHERITED;
6642 if (this->layout.flags.q.row_major)
6643 matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
6644 else if (this->layout.flags.q.column_major)
6645 matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
6646
6647 bool redeclaring_per_vertex = strcmp(this->block_name, "gl_PerVertex") == 0;
6648 exec_list declared_variables;
6649 glsl_struct_field *fields;
6650
6651 /* Treat an interface block as one level of nesting, so that embedded struct
6652 * specifiers will be disallowed.
6653 */
6654 state->struct_specifier_depth++;
6655
6656 /* For blocks that accept memory qualifiers (i.e. shader storage), verify
6657 * that we don't have incompatible qualifiers
6658 */
6659 if (this->layout.flags.q.read_only && this->layout.flags.q.write_only) {
6660 _mesa_glsl_error(&loc, state,
6661 "Interface block sets both readonly and writeonly");
6662 }
6663
6664 unsigned qual_stream;
6665 if (!process_qualifier_constant(state, &loc, "stream", this->layout.stream,
6666 &qual_stream) ||
6667 !validate_stream_qualifier(&loc, state, qual_stream)) {
6668 /* If the stream qualifier is invalid it doesn't make sense to continue
6669 * on and try to compare stream layouts on member variables against it
6670 * so just return early.
6671 */
6672 return NULL;
6673 }
6674
6675 unsigned expl_location = -1;
6676 if (layout.flags.q.explicit_location) {
6677 if (!process_qualifier_constant(state, &loc, "location",
6678 layout.location, &expl_location)) {
6679 return NULL;
6680 } else {
6681 expl_location = VARYING_SLOT_VAR0 + expl_location;
6682 }
6683 }
6684
6685 unsigned int num_variables =
6686 ast_process_struct_or_iface_block_members(&declared_variables,
6687 state,
6688 &this->declarations,
6689 &fields,
6690 true,
6691 matrix_layout,
6692 redeclaring_per_vertex,
6693 var_mode,
6694 &this->layout,
6695 qual_stream,
6696 expl_location);
6697
6698 state->struct_specifier_depth--;
6699
6700 if (!redeclaring_per_vertex) {
6701 validate_identifier(this->block_name, loc, state);
6702
6703 /* From section 4.3.9 ("Interface Blocks") of the GLSL 4.50 spec:
6704 *
6705 * "Block names have no other use within a shader beyond interface
6706 * matching; it is a compile-time error to use a block name at global
6707 * scope for anything other than as a block name."
6708 */
6709 ir_variable *var = state->symbols->get_variable(this->block_name);
6710 if (var && !var->type->is_interface()) {
6711 _mesa_glsl_error(&loc, state, "Block name `%s' is "
6712 "already used in the scope.",
6713 this->block_name);
6714 }
6715 }
6716
6717 const glsl_type *earlier_per_vertex = NULL;
6718 if (redeclaring_per_vertex) {
6719 /* Find the previous declaration of gl_PerVertex. If we're redeclaring
6720 * the named interface block gl_in, we can find it by looking at the
6721 * previous declaration of gl_in. Otherwise we can find it by looking
6722 * at the previous decalartion of any of the built-in outputs,
6723 * e.g. gl_Position.
6724 *
6725 * Also check that the instance name and array-ness of the redeclaration
6726 * are correct.
6727 */
6728 switch (var_mode) {
6729 case ir_var_shader_in:
6730 if (ir_variable *earlier_gl_in =
6731 state->symbols->get_variable("gl_in")) {
6732 earlier_per_vertex = earlier_gl_in->get_interface_type();
6733 } else {
6734 _mesa_glsl_error(&loc, state,
6735 "redeclaration of gl_PerVertex input not allowed "
6736 "in the %s shader",
6737 _mesa_shader_stage_to_string(state->stage));
6738 }
6739 if (this->instance_name == NULL ||
6740 strcmp(this->instance_name, "gl_in") != 0 || this->array_specifier == NULL ||
6741 !this->array_specifier->is_single_dimension()) {
6742 _mesa_glsl_error(&loc, state,
6743 "gl_PerVertex input must be redeclared as "
6744 "gl_in[]");
6745 }
6746 break;
6747 case ir_var_shader_out:
6748 if (ir_variable *earlier_gl_Position =
6749 state->symbols->get_variable("gl_Position")) {
6750 earlier_per_vertex = earlier_gl_Position->get_interface_type();
6751 } else if (ir_variable *earlier_gl_out =
6752 state->symbols->get_variable("gl_out")) {
6753 earlier_per_vertex = earlier_gl_out->get_interface_type();
6754 } else {
6755 _mesa_glsl_error(&loc, state,
6756 "redeclaration of gl_PerVertex output not "
6757 "allowed in the %s shader",
6758 _mesa_shader_stage_to_string(state->stage));
6759 }
6760 if (state->stage == MESA_SHADER_TESS_CTRL) {
6761 if (this->instance_name == NULL ||
6762 strcmp(this->instance_name, "gl_out") != 0 || this->array_specifier == NULL) {
6763 _mesa_glsl_error(&loc, state,
6764 "gl_PerVertex output must be redeclared as "
6765 "gl_out[]");
6766 }
6767 } else {
6768 if (this->instance_name != NULL) {
6769 _mesa_glsl_error(&loc, state,
6770 "gl_PerVertex output may not be redeclared with "
6771 "an instance name");
6772 }
6773 }
6774 break;
6775 default:
6776 _mesa_glsl_error(&loc, state,
6777 "gl_PerVertex must be declared as an input or an "
6778 "output");
6779 break;
6780 }
6781
6782 if (earlier_per_vertex == NULL) {
6783 /* An error has already been reported. Bail out to avoid null
6784 * dereferences later in this function.
6785 */
6786 return NULL;
6787 }
6788
6789 /* Copy locations from the old gl_PerVertex interface block. */
6790 for (unsigned i = 0; i < num_variables; i++) {
6791 int j = earlier_per_vertex->field_index(fields[i].name);
6792 if (j == -1) {
6793 _mesa_glsl_error(&loc, state,
6794 "redeclaration of gl_PerVertex must be a subset "
6795 "of the built-in members of gl_PerVertex");
6796 } else {
6797 fields[i].location =
6798 earlier_per_vertex->fields.structure[j].location;
6799 fields[i].interpolation =
6800 earlier_per_vertex->fields.structure[j].interpolation;
6801 fields[i].centroid =
6802 earlier_per_vertex->fields.structure[j].centroid;
6803 fields[i].sample =
6804 earlier_per_vertex->fields.structure[j].sample;
6805 fields[i].patch =
6806 earlier_per_vertex->fields.structure[j].patch;
6807 fields[i].precision =
6808 earlier_per_vertex->fields.structure[j].precision;
6809 }
6810 }
6811
6812 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10
6813 * spec:
6814 *
6815 * If a built-in interface block is redeclared, it must appear in
6816 * the shader before any use of any member included in the built-in
6817 * declaration, or a compilation error will result.
6818 *
6819 * This appears to be a clarification to the behaviour established for
6820 * gl_PerVertex by GLSL 1.50, therefore we implement this behaviour
6821 * regardless of GLSL version.
6822 */
6823 interface_block_usage_visitor v(var_mode, earlier_per_vertex);
6824 v.run(instructions);
6825 if (v.usage_found()) {
6826 _mesa_glsl_error(&loc, state,
6827 "redeclaration of a built-in interface block must "
6828 "appear before any use of any member of the "
6829 "interface block");
6830 }
6831 }
6832
6833 const glsl_type *block_type =
6834 glsl_type::get_interface_instance(fields,
6835 num_variables,
6836 packing,
6837 this->block_name);
6838
6839 if (!state->symbols->add_interface(block_type->name, block_type, var_mode)) {
6840 YYLTYPE loc = this->get_location();
6841 _mesa_glsl_error(&loc, state, "interface block `%s' with type `%s' "
6842 "already taken in the current scope",
6843 this->block_name, iface_type_name);
6844 }
6845
6846 /* Since interface blocks cannot contain statements, it should be
6847 * impossible for the block to generate any instructions.
6848 */
6849 assert(declared_variables.is_empty());
6850
6851 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
6852 *
6853 * Geometry shader input variables get the per-vertex values written
6854 * out by vertex shader output variables of the same names. Since a
6855 * geometry shader operates on a set of vertices, each input varying
6856 * variable (or input block, see interface blocks below) needs to be
6857 * declared as an array.
6858 */
6859 if (state->stage == MESA_SHADER_GEOMETRY && this->array_specifier == NULL &&
6860 var_mode == ir_var_shader_in) {
6861 _mesa_glsl_error(&loc, state, "geometry shader inputs must be arrays");
6862 } else if ((state->stage == MESA_SHADER_TESS_CTRL ||
6863 state->stage == MESA_SHADER_TESS_EVAL) &&
6864 this->array_specifier == NULL &&
6865 var_mode == ir_var_shader_in) {
6866 _mesa_glsl_error(&loc, state, "per-vertex tessellation shader inputs must be arrays");
6867 } else if (state->stage == MESA_SHADER_TESS_CTRL &&
6868 this->array_specifier == NULL &&
6869 var_mode == ir_var_shader_out) {
6870 _mesa_glsl_error(&loc, state, "tessellation control shader outputs must be arrays");
6871 }
6872
6873
6874 /* Page 39 (page 45 of the PDF) of section 4.3.7 in the GLSL ES 3.00 spec
6875 * says:
6876 *
6877 * "If an instance name (instance-name) is used, then it puts all the
6878 * members inside a scope within its own name space, accessed with the
6879 * field selector ( . ) operator (analogously to structures)."
6880 */
6881 if (this->instance_name) {
6882 if (redeclaring_per_vertex) {
6883 /* When a built-in in an unnamed interface block is redeclared,
6884 * get_variable_being_redeclared() calls
6885 * check_builtin_array_max_size() to make sure that built-in array
6886 * variables aren't redeclared to illegal sizes. But we're looking
6887 * at a redeclaration of a named built-in interface block. So we
6888 * have to manually call check_builtin_array_max_size() for all parts
6889 * of the interface that are arrays.
6890 */
6891 for (unsigned i = 0; i < num_variables; i++) {
6892 if (fields[i].type->is_array()) {
6893 const unsigned size = fields[i].type->array_size();
6894 check_builtin_array_max_size(fields[i].name, size, loc, state);
6895 }
6896 }
6897 } else {
6898 validate_identifier(this->instance_name, loc, state);
6899 }
6900
6901 ir_variable *var;
6902
6903 if (this->array_specifier != NULL) {
6904 const glsl_type *block_array_type =
6905 process_array_type(&loc, block_type, this->array_specifier, state);
6906
6907 /* Section 4.3.7 (Interface Blocks) of the GLSL 1.50 spec says:
6908 *
6909 * For uniform blocks declared an array, each individual array
6910 * element corresponds to a separate buffer object backing one
6911 * instance of the block. As the array size indicates the number
6912 * of buffer objects needed, uniform block array declarations
6913 * must specify an array size.
6914 *
6915 * And a few paragraphs later:
6916 *
6917 * Geometry shader input blocks must be declared as arrays and
6918 * follow the array declaration and linking rules for all
6919 * geometry shader inputs. All other input and output block
6920 * arrays must specify an array size.
6921 *
6922 * The same applies to tessellation shaders.
6923 *
6924 * The upshot of this is that the only circumstance where an
6925 * interface array size *doesn't* need to be specified is on a
6926 * geometry shader input, tessellation control shader input,
6927 * tessellation control shader output, and tessellation evaluation
6928 * shader input.
6929 */
6930 if (block_array_type->is_unsized_array()) {
6931 bool allow_inputs = state->stage == MESA_SHADER_GEOMETRY ||
6932 state->stage == MESA_SHADER_TESS_CTRL ||
6933 state->stage == MESA_SHADER_TESS_EVAL;
6934 bool allow_outputs = state->stage == MESA_SHADER_TESS_CTRL;
6935
6936 if (this->layout.flags.q.in) {
6937 if (!allow_inputs)
6938 _mesa_glsl_error(&loc, state,
6939 "unsized input block arrays not allowed in "
6940 "%s shader",
6941 _mesa_shader_stage_to_string(state->stage));
6942 } else if (this->layout.flags.q.out) {
6943 if (!allow_outputs)
6944 _mesa_glsl_error(&loc, state,
6945 "unsized output block arrays not allowed in "
6946 "%s shader",
6947 _mesa_shader_stage_to_string(state->stage));
6948 } else {
6949 /* by elimination, this is a uniform block array */
6950 _mesa_glsl_error(&loc, state,
6951 "unsized uniform block arrays not allowed in "
6952 "%s shader",
6953 _mesa_shader_stage_to_string(state->stage));
6954 }
6955 }
6956
6957 /* From section 4.3.9 (Interface Blocks) of the GLSL ES 3.10 spec:
6958 *
6959 * * Arrays of arrays of blocks are not allowed
6960 */
6961 if (state->es_shader && block_array_type->is_array() &&
6962 block_array_type->fields.array->is_array()) {
6963 _mesa_glsl_error(&loc, state,
6964 "arrays of arrays interface blocks are "
6965 "not allowed");
6966 }
6967
6968 var = new(state) ir_variable(block_array_type,
6969 this->instance_name,
6970 var_mode);
6971 } else {
6972 var = new(state) ir_variable(block_type,
6973 this->instance_name,
6974 var_mode);
6975 }
6976
6977 var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
6978 ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
6979
6980 if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
6981 var->data.read_only = true;
6982
6983 if (state->stage == MESA_SHADER_GEOMETRY && var_mode == ir_var_shader_in)
6984 handle_geometry_shader_input_decl(state, loc, var);
6985 else if ((state->stage == MESA_SHADER_TESS_CTRL ||
6986 state->stage == MESA_SHADER_TESS_EVAL) && var_mode == ir_var_shader_in)
6987 handle_tess_shader_input_decl(state, loc, var);
6988 else if (state->stage == MESA_SHADER_TESS_CTRL && var_mode == ir_var_shader_out)
6989 handle_tess_ctrl_shader_output_decl(state, loc, var);
6990
6991 for (unsigned i = 0; i < num_variables; i++) {
6992 if (fields[i].type->is_unsized_array()) {
6993 if (var_mode == ir_var_shader_storage) {
6994 if (i != (num_variables - 1)) {
6995 _mesa_glsl_error(&loc, state, "unsized array `%s' definition: "
6996 "only last member of a shader storage block "
6997 "can be defined as unsized array",
6998 fields[i].name);
6999 }
7000 } else {
7001 /* From GLSL ES 3.10 spec, section 4.1.9 "Arrays":
7002 *
7003 * "If an array is declared as the last member of a shader storage
7004 * block and the size is not specified at compile-time, it is
7005 * sized at run-time. In all other cases, arrays are sized only
7006 * at compile-time."
7007 */
7008 if (state->es_shader) {
7009 _mesa_glsl_error(&loc, state, "unsized array `%s' definition: "
7010 "only last member of a shader storage block "
7011 "can be defined as unsized array",
7012 fields[i].name);
7013 }
7014 }
7015 }
7016 }
7017
7018 if (ir_variable *earlier =
7019 state->symbols->get_variable(this->instance_name)) {
7020 if (!redeclaring_per_vertex) {
7021 _mesa_glsl_error(&loc, state, "`%s' redeclared",
7022 this->instance_name);
7023 }
7024 earlier->data.how_declared = ir_var_declared_normally;
7025 earlier->type = var->type;
7026 earlier->reinit_interface_type(block_type);
7027 delete var;
7028 } else {
7029 if (this->layout.flags.q.explicit_binding) {
7030 apply_explicit_binding(state, &loc, var, var->type,
7031 &this->layout);
7032 }
7033
7034 var->data.stream = qual_stream;
7035 if (layout.flags.q.explicit_location) {
7036 var->data.location = expl_location;
7037 var->data.explicit_location = true;
7038 }
7039
7040 state->symbols->add_variable(var);
7041 instructions->push_tail(var);
7042 }
7043 } else {
7044 /* In order to have an array size, the block must also be declared with
7045 * an instance name.
7046 */
7047 assert(this->array_specifier == NULL);
7048
7049 for (unsigned i = 0; i < num_variables; i++) {
7050 ir_variable *var =
7051 new(state) ir_variable(fields[i].type,
7052 ralloc_strdup(state, fields[i].name),
7053 var_mode);
7054 var->data.interpolation = fields[i].interpolation;
7055 var->data.centroid = fields[i].centroid;
7056 var->data.sample = fields[i].sample;
7057 var->data.patch = fields[i].patch;
7058 var->data.stream = qual_stream;
7059 var->data.location = fields[i].location;
7060 if (fields[i].location != -1)
7061 var->data.explicit_location = true;
7062 var->init_interface_type(block_type);
7063
7064 if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
7065 var->data.read_only = true;
7066
7067 /* Precision qualifiers do not have any meaning in Desktop GLSL */
7068 if (state->es_shader) {
7069 var->data.precision =
7070 select_gles_precision(fields[i].precision, fields[i].type,
7071 state, &loc);
7072 }
7073
7074 if (fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED) {
7075 var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
7076 ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
7077 } else {
7078 var->data.matrix_layout = fields[i].matrix_layout;
7079 }
7080
7081 if (var->data.mode == ir_var_shader_storage) {
7082 var->data.image_read_only = fields[i].image_read_only;
7083 var->data.image_write_only = fields[i].image_write_only;
7084 var->data.image_coherent = fields[i].image_coherent;
7085 var->data.image_volatile = fields[i].image_volatile;
7086 var->data.image_restrict = fields[i].image_restrict;
7087 }
7088
7089 /* Examine var name here since var may get deleted in the next call */
7090 bool var_is_gl_id = is_gl_identifier(var->name);
7091
7092 if (redeclaring_per_vertex) {
7093 ir_variable *earlier =
7094 get_variable_being_redeclared(var, loc, state,
7095 true /* allow_all_redeclarations */);
7096 if (!var_is_gl_id || earlier == NULL) {
7097 _mesa_glsl_error(&loc, state,
7098 "redeclaration of gl_PerVertex can only "
7099 "include built-in variables");
7100 } else if (earlier->data.how_declared == ir_var_declared_normally) {
7101 _mesa_glsl_error(&loc, state,
7102 "`%s' has already been redeclared",
7103 earlier->name);
7104 } else {
7105 earlier->data.how_declared = ir_var_declared_in_block;
7106 earlier->reinit_interface_type(block_type);
7107 }
7108 continue;
7109 }
7110
7111 if (state->symbols->get_variable(var->name) != NULL)
7112 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
7113
7114 /* Propagate the "binding" keyword into this UBO/SSBO's fields.
7115 * The UBO declaration itself doesn't get an ir_variable unless it
7116 * has an instance name. This is ugly.
7117 */
7118 if (this->layout.flags.q.explicit_binding) {
7119 apply_explicit_binding(state, &loc, var,
7120 var->get_interface_type(), &this->layout);
7121 }
7122
7123 if (var->type->is_unsized_array()) {
7124 if (var->is_in_shader_storage_block()) {
7125 if (!is_unsized_array_last_element(var)) {
7126 _mesa_glsl_error(&loc, state, "unsized array `%s' definition: "
7127 "only last member of a shader storage block "
7128 "can be defined as unsized array",
7129 var->name);
7130 }
7131 var->data.from_ssbo_unsized_array = true;
7132 } else {
7133 /* From GLSL ES 3.10 spec, section 4.1.9 "Arrays":
7134 *
7135 * "If an array is declared as the last member of a shader storage
7136 * block and the size is not specified at compile-time, it is
7137 * sized at run-time. In all other cases, arrays are sized only
7138 * at compile-time."
7139 */
7140 if (state->es_shader) {
7141 _mesa_glsl_error(&loc, state, "unsized array `%s' definition: "
7142 "only last member of a shader storage block "
7143 "can be defined as unsized array",
7144 var->name);
7145 }
7146 }
7147 }
7148
7149 state->symbols->add_variable(var);
7150 instructions->push_tail(var);
7151 }
7152
7153 if (redeclaring_per_vertex && block_type != earlier_per_vertex) {
7154 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10 spec:
7155 *
7156 * It is also a compilation error ... to redeclare a built-in
7157 * block and then use a member from that built-in block that was
7158 * not included in the redeclaration.
7159 *
7160 * This appears to be a clarification to the behaviour established
7161 * for gl_PerVertex by GLSL 1.50, therefore we implement this
7162 * behaviour regardless of GLSL version.
7163 *
7164 * To prevent the shader from using a member that was not included in
7165 * the redeclaration, we disable any ir_variables that are still
7166 * associated with the old declaration of gl_PerVertex (since we've
7167 * already updated all of the variables contained in the new
7168 * gl_PerVertex to point to it).
7169 *
7170 * As a side effect this will prevent
7171 * validate_intrastage_interface_blocks() from getting confused and
7172 * thinking there are conflicting definitions of gl_PerVertex in the
7173 * shader.
7174 */
7175 foreach_in_list_safe(ir_instruction, node, instructions) {
7176 ir_variable *const var = node->as_variable();
7177 if (var != NULL &&
7178 var->get_interface_type() == earlier_per_vertex &&
7179 var->data.mode == var_mode) {
7180 if (var->data.how_declared == ir_var_declared_normally) {
7181 _mesa_glsl_error(&loc, state,
7182 "redeclaration of gl_PerVertex cannot "
7183 "follow a redeclaration of `%s'",
7184 var->name);
7185 }
7186 state->symbols->disable_variable(var->name);
7187 var->remove();
7188 }
7189 }
7190 }
7191 }
7192
7193 return NULL;
7194 }
7195
7196
7197 ir_rvalue *
7198 ast_tcs_output_layout::hir(exec_list *instructions,
7199 struct _mesa_glsl_parse_state *state)
7200 {
7201 YYLTYPE loc = this->get_location();
7202
7203 unsigned num_vertices;
7204 if (!state->out_qualifier->vertices->
7205 process_qualifier_constant(state, "vertices", &num_vertices,
7206 false)) {
7207 /* return here to stop cascading incorrect error messages */
7208 return NULL;
7209 }
7210
7211 /* If any shader outputs occurred before this declaration and specified an
7212 * array size, make sure the size they specified is consistent with the
7213 * primitive type.
7214 */
7215 if (state->tcs_output_size != 0 && state->tcs_output_size != num_vertices) {
7216 _mesa_glsl_error(&loc, state,
7217 "this tessellation control shader output layout "
7218 "specifies %u vertices, but a previous output "
7219 "is declared with size %u",
7220 num_vertices, state->tcs_output_size);
7221 return NULL;
7222 }
7223
7224 state->tcs_output_vertices_specified = true;
7225
7226 /* If any shader outputs occurred before this declaration and did not
7227 * specify an array size, their size is determined now.
7228 */
7229 foreach_in_list (ir_instruction, node, instructions) {
7230 ir_variable *var = node->as_variable();
7231 if (var == NULL || var->data.mode != ir_var_shader_out)
7232 continue;
7233
7234 /* Note: Not all tessellation control shader output are arrays. */
7235 if (!var->type->is_unsized_array() || var->data.patch)
7236 continue;
7237
7238 if (var->data.max_array_access >= num_vertices) {
7239 _mesa_glsl_error(&loc, state,
7240 "this tessellation control shader output layout "
7241 "specifies %u vertices, but an access to element "
7242 "%u of output `%s' already exists", num_vertices,
7243 var->data.max_array_access, var->name);
7244 } else {
7245 var->type = glsl_type::get_array_instance(var->type->fields.array,
7246 num_vertices);
7247 }
7248 }
7249
7250 return NULL;
7251 }
7252
7253
7254 ir_rvalue *
7255 ast_gs_input_layout::hir(exec_list *instructions,
7256 struct _mesa_glsl_parse_state *state)
7257 {
7258 YYLTYPE loc = this->get_location();
7259
7260 /* If any geometry input layout declaration preceded this one, make sure it
7261 * was consistent with this one.
7262 */
7263 if (state->gs_input_prim_type_specified &&
7264 state->in_qualifier->prim_type != this->prim_type) {
7265 _mesa_glsl_error(&loc, state,
7266 "geometry shader input layout does not match"
7267 " previous declaration");
7268 return NULL;
7269 }
7270
7271 /* If any shader inputs occurred before this declaration and specified an
7272 * array size, make sure the size they specified is consistent with the
7273 * primitive type.
7274 */
7275 unsigned num_vertices = vertices_per_prim(this->prim_type);
7276 if (state->gs_input_size != 0 && state->gs_input_size != num_vertices) {
7277 _mesa_glsl_error(&loc, state,
7278 "this geometry shader input layout implies %u vertices"
7279 " per primitive, but a previous input is declared"
7280 " with size %u", num_vertices, state->gs_input_size);
7281 return NULL;
7282 }
7283
7284 state->gs_input_prim_type_specified = true;
7285
7286 /* If any shader inputs occurred before this declaration and did not
7287 * specify an array size, their size is determined now.
7288 */
7289 foreach_in_list(ir_instruction, node, instructions) {
7290 ir_variable *var = node->as_variable();
7291 if (var == NULL || var->data.mode != ir_var_shader_in)
7292 continue;
7293
7294 /* Note: gl_PrimitiveIDIn has mode ir_var_shader_in, but it's not an
7295 * array; skip it.
7296 */
7297
7298 if (var->type->is_unsized_array()) {
7299 if (var->data.max_array_access >= num_vertices) {
7300 _mesa_glsl_error(&loc, state,
7301 "this geometry shader input layout implies %u"
7302 " vertices, but an access to element %u of input"
7303 " `%s' already exists", num_vertices,
7304 var->data.max_array_access, var->name);
7305 } else {
7306 var->type = glsl_type::get_array_instance(var->type->fields.array,
7307 num_vertices);
7308 }
7309 }
7310 }
7311
7312 return NULL;
7313 }
7314
7315
7316 ir_rvalue *
7317 ast_cs_input_layout::hir(exec_list *instructions,
7318 struct _mesa_glsl_parse_state *state)
7319 {
7320 YYLTYPE loc = this->get_location();
7321
7322 /* From the ARB_compute_shader specification:
7323 *
7324 * If the local size of the shader in any dimension is greater
7325 * than the maximum size supported by the implementation for that
7326 * dimension, a compile-time error results.
7327 *
7328 * It is not clear from the spec how the error should be reported if
7329 * the total size of the work group exceeds
7330 * MAX_COMPUTE_WORK_GROUP_INVOCATIONS, but it seems reasonable to
7331 * report it at compile time as well.
7332 */
7333 GLuint64 total_invocations = 1;
7334 unsigned qual_local_size[3];
7335 for (int i = 0; i < 3; i++) {
7336
7337 char *local_size_str = ralloc_asprintf(NULL, "invalid local_size_%c",
7338 'x' + i);
7339 /* Infer a local_size of 1 for unspecified dimensions */
7340 if (this->local_size[i] == NULL) {
7341 qual_local_size[i] = 1;
7342 } else if (!this->local_size[i]->
7343 process_qualifier_constant(state, local_size_str,
7344 &qual_local_size[i], false)) {
7345 ralloc_free(local_size_str);
7346 return NULL;
7347 }
7348 ralloc_free(local_size_str);
7349
7350 if (qual_local_size[i] > state->ctx->Const.MaxComputeWorkGroupSize[i]) {
7351 _mesa_glsl_error(&loc, state,
7352 "local_size_%c exceeds MAX_COMPUTE_WORK_GROUP_SIZE"
7353 " (%d)", 'x' + i,
7354 state->ctx->Const.MaxComputeWorkGroupSize[i]);
7355 break;
7356 }
7357 total_invocations *= qual_local_size[i];
7358 if (total_invocations >
7359 state->ctx->Const.MaxComputeWorkGroupInvocations) {
7360 _mesa_glsl_error(&loc, state,
7361 "product of local_sizes exceeds "
7362 "MAX_COMPUTE_WORK_GROUP_INVOCATIONS (%d)",
7363 state->ctx->Const.MaxComputeWorkGroupInvocations);
7364 break;
7365 }
7366 }
7367
7368 /* If any compute input layout declaration preceded this one, make sure it
7369 * was consistent with this one.
7370 */
7371 if (state->cs_input_local_size_specified) {
7372 for (int i = 0; i < 3; i++) {
7373 if (state->cs_input_local_size[i] != qual_local_size[i]) {
7374 _mesa_glsl_error(&loc, state,
7375 "compute shader input layout does not match"
7376 " previous declaration");
7377 return NULL;
7378 }
7379 }
7380 }
7381
7382 state->cs_input_local_size_specified = true;
7383 for (int i = 0; i < 3; i++)
7384 state->cs_input_local_size[i] = qual_local_size[i];
7385
7386 /* We may now declare the built-in constant gl_WorkGroupSize (see
7387 * builtin_variable_generator::generate_constants() for why we didn't
7388 * declare it earlier).
7389 */
7390 ir_variable *var = new(state->symbols)
7391 ir_variable(glsl_type::uvec3_type, "gl_WorkGroupSize", ir_var_auto);
7392 var->data.how_declared = ir_var_declared_implicitly;
7393 var->data.read_only = true;
7394 instructions->push_tail(var);
7395 state->symbols->add_variable(var);
7396 ir_constant_data data;
7397 memset(&data, 0, sizeof(data));
7398 for (int i = 0; i < 3; i++)
7399 data.u[i] = qual_local_size[i];
7400 var->constant_value = new(var) ir_constant(glsl_type::uvec3_type, &data);
7401 var->constant_initializer =
7402 new(var) ir_constant(glsl_type::uvec3_type, &data);
7403 var->data.has_initializer = true;
7404
7405 return NULL;
7406 }
7407
7408
7409 static void
7410 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
7411 exec_list *instructions)
7412 {
7413 bool gl_FragColor_assigned = false;
7414 bool gl_FragData_assigned = false;
7415 bool gl_FragSecondaryColor_assigned = false;
7416 bool gl_FragSecondaryData_assigned = false;
7417 bool user_defined_fs_output_assigned = false;
7418 ir_variable *user_defined_fs_output = NULL;
7419
7420 /* It would be nice to have proper location information. */
7421 YYLTYPE loc;
7422 memset(&loc, 0, sizeof(loc));
7423
7424 foreach_in_list(ir_instruction, node, instructions) {
7425 ir_variable *var = node->as_variable();
7426
7427 if (!var || !var->data.assigned)
7428 continue;
7429
7430 if (strcmp(var->name, "gl_FragColor") == 0)
7431 gl_FragColor_assigned = true;
7432 else if (strcmp(var->name, "gl_FragData") == 0)
7433 gl_FragData_assigned = true;
7434 else if (strcmp(var->name, "gl_SecondaryFragColorEXT") == 0)
7435 gl_FragSecondaryColor_assigned = true;
7436 else if (strcmp(var->name, "gl_SecondaryFragDataEXT") == 0)
7437 gl_FragSecondaryData_assigned = true;
7438 else if (!is_gl_identifier(var->name)) {
7439 if (state->stage == MESA_SHADER_FRAGMENT &&
7440 var->data.mode == ir_var_shader_out) {
7441 user_defined_fs_output_assigned = true;
7442 user_defined_fs_output = var;
7443 }
7444 }
7445 }
7446
7447 /* From the GLSL 1.30 spec:
7448 *
7449 * "If a shader statically assigns a value to gl_FragColor, it
7450 * may not assign a value to any element of gl_FragData. If a
7451 * shader statically writes a value to any element of
7452 * gl_FragData, it may not assign a value to
7453 * gl_FragColor. That is, a shader may assign values to either
7454 * gl_FragColor or gl_FragData, but not both. Multiple shaders
7455 * linked together must also consistently write just one of
7456 * these variables. Similarly, if user declared output
7457 * variables are in use (statically assigned to), then the
7458 * built-in variables gl_FragColor and gl_FragData may not be
7459 * assigned to. These incorrect usages all generate compile
7460 * time errors."
7461 */
7462 if (gl_FragColor_assigned && gl_FragData_assigned) {
7463 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7464 "`gl_FragColor' and `gl_FragData'");
7465 } else if (gl_FragColor_assigned && user_defined_fs_output_assigned) {
7466 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7467 "`gl_FragColor' and `%s'",
7468 user_defined_fs_output->name);
7469 } else if (gl_FragSecondaryColor_assigned && gl_FragSecondaryData_assigned) {
7470 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7471 "`gl_FragSecondaryColorEXT' and"
7472 " `gl_FragSecondaryDataEXT'");
7473 } else if (gl_FragColor_assigned && gl_FragSecondaryData_assigned) {
7474 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7475 "`gl_FragColor' and"
7476 " `gl_FragSecondaryDataEXT'");
7477 } else if (gl_FragData_assigned && gl_FragSecondaryColor_assigned) {
7478 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7479 "`gl_FragData' and"
7480 " `gl_FragSecondaryColorEXT'");
7481 } else if (gl_FragData_assigned && user_defined_fs_output_assigned) {
7482 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7483 "`gl_FragData' and `%s'",
7484 user_defined_fs_output->name);
7485 }
7486
7487 if ((gl_FragSecondaryColor_assigned || gl_FragSecondaryData_assigned) &&
7488 !state->EXT_blend_func_extended_enable) {
7489 _mesa_glsl_error(&loc, state,
7490 "Dual source blending requires EXT_blend_func_extended");
7491 }
7492 }
7493
7494
7495 static void
7496 remove_per_vertex_blocks(exec_list *instructions,
7497 _mesa_glsl_parse_state *state, ir_variable_mode mode)
7498 {
7499 /* Find the gl_PerVertex interface block of the appropriate (in/out) mode,
7500 * if it exists in this shader type.
7501 */
7502 const glsl_type *per_vertex = NULL;
7503 switch (mode) {
7504 case ir_var_shader_in:
7505 if (ir_variable *gl_in = state->symbols->get_variable("gl_in"))
7506 per_vertex = gl_in->get_interface_type();
7507 break;
7508 case ir_var_shader_out:
7509 if (ir_variable *gl_Position =
7510 state->symbols->get_variable("gl_Position")) {
7511 per_vertex = gl_Position->get_interface_type();
7512 }
7513 break;
7514 default:
7515 assert(!"Unexpected mode");
7516 break;
7517 }
7518
7519 /* If we didn't find a built-in gl_PerVertex interface block, then we don't
7520 * need to do anything.
7521 */
7522 if (per_vertex == NULL)
7523 return;
7524
7525 /* If the interface block is used by the shader, then we don't need to do
7526 * anything.
7527 */
7528 interface_block_usage_visitor v(mode, per_vertex);
7529 v.run(instructions);
7530 if (v.usage_found())
7531 return;
7532
7533 /* Remove any ir_variable declarations that refer to the interface block
7534 * we're removing.
7535 */
7536 foreach_in_list_safe(ir_instruction, node, instructions) {
7537 ir_variable *const var = node->as_variable();
7538 if (var != NULL && var->get_interface_type() == per_vertex &&
7539 var->data.mode == mode) {
7540 state->symbols->disable_variable(var->name);
7541 var->remove();
7542 }
7543 }
7544 }