484786c5fbddfd3ea2b552f1392f85276961f906
[mesa.git] / src / glsl / ast_to_hir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file ast_to_hir.c
26 * Convert abstract syntax to to high-level intermediate reprensentation (HIR).
27 *
28 * During the conversion to HIR, the majority of the symantic checking is
29 * preformed on the program. This includes:
30 *
31 * * Symbol table management
32 * * Type checking
33 * * Function binding
34 *
35 * The majority of this work could be done during parsing, and the parser could
36 * probably generate HIR directly. However, this results in frequent changes
37 * to the parser code. Since we do not assume that every system this complier
38 * is built on will have Flex and Bison installed, we have to store the code
39 * generated by these tools in our version control system. In other parts of
40 * the system we've seen problems where a parser was changed but the generated
41 * code was not committed, merge conflicts where created because two developers
42 * had slightly different versions of Bison installed, etc.
43 *
44 * I have also noticed that running Bison generated parsers in GDB is very
45 * irritating. When you get a segfault on '$$ = $1->foo', you can't very
46 * well 'print $1' in GDB.
47 *
48 * As a result, my preference is to put as little C code as possible in the
49 * parser (and lexer) sources.
50 */
51
52 #include "main/core.h" /* for struct gl_extensions */
53 #include "glsl_symbol_table.h"
54 #include "glsl_parser_extras.h"
55 #include "ast.h"
56 #include "glsl_types.h"
57 #include "ir.h"
58
59 void
60 _mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
61 {
62 _mesa_glsl_initialize_variables(instructions, state);
63 _mesa_glsl_initialize_functions(state);
64
65 state->symbols->language_version = state->language_version;
66
67 state->current_function = NULL;
68
69 state->toplevel_ir = instructions;
70
71 /* Section 4.2 of the GLSL 1.20 specification states:
72 * "The built-in functions are scoped in a scope outside the global scope
73 * users declare global variables in. That is, a shader's global scope,
74 * available for user-defined functions and global variables, is nested
75 * inside the scope containing the built-in functions."
76 *
77 * Since built-in functions like ftransform() access built-in variables,
78 * it follows that those must be in the outer scope as well.
79 *
80 * We push scope here to create this nesting effect...but don't pop.
81 * This way, a shader's globals are still in the symbol table for use
82 * by the linker.
83 */
84 state->symbols->push_scope();
85
86 foreach_list_typed (ast_node, ast, link, & state->translation_unit)
87 ast->hir(instructions, state);
88
89 detect_recursion_unlinked(state, instructions);
90
91 state->toplevel_ir = NULL;
92 }
93
94
95 /**
96 * If a conversion is available, convert one operand to a different type
97 *
98 * The \c from \c ir_rvalue is converted "in place".
99 *
100 * \param to Type that the operand it to be converted to
101 * \param from Operand that is being converted
102 * \param state GLSL compiler state
103 *
104 * \return
105 * If a conversion is possible (or unnecessary), \c true is returned.
106 * Otherwise \c false is returned.
107 */
108 bool
109 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
110 struct _mesa_glsl_parse_state *state)
111 {
112 void *ctx = state;
113 if (to->base_type == from->type->base_type)
114 return true;
115
116 /* This conversion was added in GLSL 1.20. If the compilation mode is
117 * GLSL 1.10, the conversion is skipped.
118 */
119 if (state->language_version < 120)
120 return false;
121
122 /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
123 *
124 * "There are no implicit array or structure conversions. For
125 * example, an array of int cannot be implicitly converted to an
126 * array of float. There are no implicit conversions between
127 * signed and unsigned integers."
128 */
129 /* FINISHME: The above comment is partially a lie. There is int/uint
130 * FINISHME: conversion for immediate constants.
131 */
132 if (!to->is_float() || !from->type->is_numeric())
133 return false;
134
135 /* Convert to a floating point type with the same number of components
136 * as the original type - i.e. int to float, not int to vec4.
137 */
138 to = glsl_type::get_instance(GLSL_TYPE_FLOAT, from->type->vector_elements,
139 from->type->matrix_columns);
140
141 switch (from->type->base_type) {
142 case GLSL_TYPE_INT:
143 from = new(ctx) ir_expression(ir_unop_i2f, to, from, NULL);
144 break;
145 case GLSL_TYPE_UINT:
146 from = new(ctx) ir_expression(ir_unop_u2f, to, from, NULL);
147 break;
148 case GLSL_TYPE_BOOL:
149 from = new(ctx) ir_expression(ir_unop_b2f, to, from, NULL);
150 break;
151 default:
152 assert(0);
153 }
154
155 return true;
156 }
157
158
159 static const struct glsl_type *
160 arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
161 bool multiply,
162 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
163 {
164 const glsl_type *type_a = value_a->type;
165 const glsl_type *type_b = value_b->type;
166
167 /* From GLSL 1.50 spec, page 56:
168 *
169 * "The arithmetic binary operators add (+), subtract (-),
170 * multiply (*), and divide (/) operate on integer and
171 * floating-point scalars, vectors, and matrices."
172 */
173 if (!type_a->is_numeric() || !type_b->is_numeric()) {
174 _mesa_glsl_error(loc, state,
175 "Operands to arithmetic operators must be numeric");
176 return glsl_type::error_type;
177 }
178
179
180 /* "If one operand is floating-point based and the other is
181 * not, then the conversions from Section 4.1.10 "Implicit
182 * Conversions" are applied to the non-floating-point-based operand."
183 */
184 if (!apply_implicit_conversion(type_a, value_b, state)
185 && !apply_implicit_conversion(type_b, value_a, state)) {
186 _mesa_glsl_error(loc, state,
187 "Could not implicitly convert operands to "
188 "arithmetic operator");
189 return glsl_type::error_type;
190 }
191 type_a = value_a->type;
192 type_b = value_b->type;
193
194 /* "If the operands are integer types, they must both be signed or
195 * both be unsigned."
196 *
197 * From this rule and the preceeding conversion it can be inferred that
198 * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
199 * The is_numeric check above already filtered out the case where either
200 * type is not one of these, so now the base types need only be tested for
201 * equality.
202 */
203 if (type_a->base_type != type_b->base_type) {
204 _mesa_glsl_error(loc, state,
205 "base type mismatch for arithmetic operator");
206 return glsl_type::error_type;
207 }
208
209 /* "All arithmetic binary operators result in the same fundamental type
210 * (signed integer, unsigned integer, or floating-point) as the
211 * operands they operate on, after operand type conversion. After
212 * conversion, the following cases are valid
213 *
214 * * The two operands are scalars. In this case the operation is
215 * applied, resulting in a scalar."
216 */
217 if (type_a->is_scalar() && type_b->is_scalar())
218 return type_a;
219
220 /* "* One operand is a scalar, and the other is a vector or matrix.
221 * In this case, the scalar operation is applied independently to each
222 * component of the vector or matrix, resulting in the same size
223 * vector or matrix."
224 */
225 if (type_a->is_scalar()) {
226 if (!type_b->is_scalar())
227 return type_b;
228 } else if (type_b->is_scalar()) {
229 return type_a;
230 }
231
232 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
233 * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
234 * handled.
235 */
236 assert(!type_a->is_scalar());
237 assert(!type_b->is_scalar());
238
239 /* "* The two operands are vectors of the same size. In this case, the
240 * operation is done component-wise resulting in the same size
241 * vector."
242 */
243 if (type_a->is_vector() && type_b->is_vector()) {
244 if (type_a == type_b) {
245 return type_a;
246 } else {
247 _mesa_glsl_error(loc, state,
248 "vector size mismatch for arithmetic operator");
249 return glsl_type::error_type;
250 }
251 }
252
253 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
254 * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
255 * <vector, vector> have been handled. At least one of the operands must
256 * be matrix. Further, since there are no integer matrix types, the base
257 * type of both operands must be float.
258 */
259 assert(type_a->is_matrix() || type_b->is_matrix());
260 assert(type_a->base_type == GLSL_TYPE_FLOAT);
261 assert(type_b->base_type == GLSL_TYPE_FLOAT);
262
263 /* "* The operator is add (+), subtract (-), or divide (/), and the
264 * operands are matrices with the same number of rows and the same
265 * number of columns. In this case, the operation is done component-
266 * wise resulting in the same size matrix."
267 * * The operator is multiply (*), where both operands are matrices or
268 * one operand is a vector and the other a matrix. A right vector
269 * operand is treated as a column vector and a left vector operand as a
270 * row vector. In all these cases, it is required that the number of
271 * columns of the left operand is equal to the number of rows of the
272 * right operand. Then, the multiply (*) operation does a linear
273 * algebraic multiply, yielding an object that has the same number of
274 * rows as the left operand and the same number of columns as the right
275 * operand. Section 5.10 "Vector and Matrix Operations" explains in
276 * more detail how vectors and matrices are operated on."
277 */
278 if (! multiply) {
279 if (type_a == type_b)
280 return type_a;
281 } else {
282 if (type_a->is_matrix() && type_b->is_matrix()) {
283 /* Matrix multiply. The columns of A must match the rows of B. Given
284 * the other previously tested constraints, this means the vector type
285 * of a row from A must be the same as the vector type of a column from
286 * B.
287 */
288 if (type_a->row_type() == type_b->column_type()) {
289 /* The resulting matrix has the number of columns of matrix B and
290 * the number of rows of matrix A. We get the row count of A by
291 * looking at the size of a vector that makes up a column. The
292 * transpose (size of a row) is done for B.
293 */
294 const glsl_type *const type =
295 glsl_type::get_instance(type_a->base_type,
296 type_a->column_type()->vector_elements,
297 type_b->row_type()->vector_elements);
298 assert(type != glsl_type::error_type);
299
300 return type;
301 }
302 } else if (type_a->is_matrix()) {
303 /* A is a matrix and B is a column vector. Columns of A must match
304 * rows of B. Given the other previously tested constraints, this
305 * means the vector type of a row from A must be the same as the
306 * vector the type of B.
307 */
308 if (type_a->row_type() == type_b) {
309 /* The resulting vector has a number of elements equal to
310 * the number of rows of matrix A. */
311 const glsl_type *const type =
312 glsl_type::get_instance(type_a->base_type,
313 type_a->column_type()->vector_elements,
314 1);
315 assert(type != glsl_type::error_type);
316
317 return type;
318 }
319 } else {
320 assert(type_b->is_matrix());
321
322 /* A is a row vector and B is a matrix. Columns of A must match rows
323 * of B. Given the other previously tested constraints, this means
324 * the type of A must be the same as the vector type of a column from
325 * B.
326 */
327 if (type_a == type_b->column_type()) {
328 /* The resulting vector has a number of elements equal to
329 * the number of columns of matrix B. */
330 const glsl_type *const type =
331 glsl_type::get_instance(type_a->base_type,
332 type_b->row_type()->vector_elements,
333 1);
334 assert(type != glsl_type::error_type);
335
336 return type;
337 }
338 }
339
340 _mesa_glsl_error(loc, state, "size mismatch for matrix multiplication");
341 return glsl_type::error_type;
342 }
343
344
345 /* "All other cases are illegal."
346 */
347 _mesa_glsl_error(loc, state, "type mismatch");
348 return glsl_type::error_type;
349 }
350
351
352 static const struct glsl_type *
353 unary_arithmetic_result_type(const struct glsl_type *type,
354 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
355 {
356 /* From GLSL 1.50 spec, page 57:
357 *
358 * "The arithmetic unary operators negate (-), post- and pre-increment
359 * and decrement (-- and ++) operate on integer or floating-point
360 * values (including vectors and matrices). All unary operators work
361 * component-wise on their operands. These result with the same type
362 * they operated on."
363 */
364 if (!type->is_numeric()) {
365 _mesa_glsl_error(loc, state,
366 "Operands to arithmetic operators must be numeric");
367 return glsl_type::error_type;
368 }
369
370 return type;
371 }
372
373 /**
374 * \brief Return the result type of a bit-logic operation.
375 *
376 * If the given types to the bit-logic operator are invalid, return
377 * glsl_type::error_type.
378 *
379 * \param type_a Type of LHS of bit-logic op
380 * \param type_b Type of RHS of bit-logic op
381 */
382 static const struct glsl_type *
383 bit_logic_result_type(const struct glsl_type *type_a,
384 const struct glsl_type *type_b,
385 ast_operators op,
386 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
387 {
388 if (state->language_version < 130) {
389 _mesa_glsl_error(loc, state, "bit operations require GLSL 1.30");
390 return glsl_type::error_type;
391 }
392
393 /* From page 50 (page 56 of PDF) of GLSL 1.30 spec:
394 *
395 * "The bitwise operators and (&), exclusive-or (^), and inclusive-or
396 * (|). The operands must be of type signed or unsigned integers or
397 * integer vectors."
398 */
399 if (!type_a->is_integer()) {
400 _mesa_glsl_error(loc, state, "LHS of `%s' must be an integer",
401 ast_expression::operator_string(op));
402 return glsl_type::error_type;
403 }
404 if (!type_b->is_integer()) {
405 _mesa_glsl_error(loc, state, "RHS of `%s' must be an integer",
406 ast_expression::operator_string(op));
407 return glsl_type::error_type;
408 }
409
410 /* "The fundamental types of the operands (signed or unsigned) must
411 * match,"
412 */
413 if (type_a->base_type != type_b->base_type) {
414 _mesa_glsl_error(loc, state, "operands of `%s' must have the same "
415 "base type", ast_expression::operator_string(op));
416 return glsl_type::error_type;
417 }
418
419 /* "The operands cannot be vectors of differing size." */
420 if (type_a->is_vector() &&
421 type_b->is_vector() &&
422 type_a->vector_elements != type_b->vector_elements) {
423 _mesa_glsl_error(loc, state, "operands of `%s' cannot be vectors of "
424 "different sizes", ast_expression::operator_string(op));
425 return glsl_type::error_type;
426 }
427
428 /* "If one operand is a scalar and the other a vector, the scalar is
429 * applied component-wise to the vector, resulting in the same type as
430 * the vector. The fundamental types of the operands [...] will be the
431 * resulting fundamental type."
432 */
433 if (type_a->is_scalar())
434 return type_b;
435 else
436 return type_a;
437 }
438
439 static const struct glsl_type *
440 modulus_result_type(const struct glsl_type *type_a,
441 const struct glsl_type *type_b,
442 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
443 {
444 if (state->language_version < 130) {
445 _mesa_glsl_error(loc, state,
446 "operator '%%' is reserved in %s",
447 state->version_string);
448 return glsl_type::error_type;
449 }
450
451 /* From GLSL 1.50 spec, page 56:
452 * "The operator modulus (%) operates on signed or unsigned integers or
453 * integer vectors. The operand types must both be signed or both be
454 * unsigned."
455 */
456 if (!type_a->is_integer()) {
457 _mesa_glsl_error(loc, state, "LHS of operator %% must be an integer.");
458 return glsl_type::error_type;
459 }
460 if (!type_b->is_integer()) {
461 _mesa_glsl_error(loc, state, "RHS of operator %% must be an integer.");
462 return glsl_type::error_type;
463 }
464 if (type_a->base_type != type_b->base_type) {
465 _mesa_glsl_error(loc, state,
466 "operands of %% must have the same base type");
467 return glsl_type::error_type;
468 }
469
470 /* "The operands cannot be vectors of differing size. If one operand is
471 * a scalar and the other vector, then the scalar is applied component-
472 * wise to the vector, resulting in the same type as the vector. If both
473 * are vectors of the same size, the result is computed component-wise."
474 */
475 if (type_a->is_vector()) {
476 if (!type_b->is_vector()
477 || (type_a->vector_elements == type_b->vector_elements))
478 return type_a;
479 } else
480 return type_b;
481
482 /* "The operator modulus (%) is not defined for any other data types
483 * (non-integer types)."
484 */
485 _mesa_glsl_error(loc, state, "type mismatch");
486 return glsl_type::error_type;
487 }
488
489
490 static const struct glsl_type *
491 relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
492 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
493 {
494 const glsl_type *type_a = value_a->type;
495 const glsl_type *type_b = value_b->type;
496
497 /* From GLSL 1.50 spec, page 56:
498 * "The relational operators greater than (>), less than (<), greater
499 * than or equal (>=), and less than or equal (<=) operate only on
500 * scalar integer and scalar floating-point expressions."
501 */
502 if (!type_a->is_numeric()
503 || !type_b->is_numeric()
504 || !type_a->is_scalar()
505 || !type_b->is_scalar()) {
506 _mesa_glsl_error(loc, state,
507 "Operands to relational operators must be scalar and "
508 "numeric");
509 return glsl_type::error_type;
510 }
511
512 /* "Either the operands' types must match, or the conversions from
513 * Section 4.1.10 "Implicit Conversions" will be applied to the integer
514 * operand, after which the types must match."
515 */
516 if (!apply_implicit_conversion(type_a, value_b, state)
517 && !apply_implicit_conversion(type_b, value_a, state)) {
518 _mesa_glsl_error(loc, state,
519 "Could not implicitly convert operands to "
520 "relational operator");
521 return glsl_type::error_type;
522 }
523 type_a = value_a->type;
524 type_b = value_b->type;
525
526 if (type_a->base_type != type_b->base_type) {
527 _mesa_glsl_error(loc, state, "base type mismatch");
528 return glsl_type::error_type;
529 }
530
531 /* "The result is scalar Boolean."
532 */
533 return glsl_type::bool_type;
534 }
535
536 /**
537 * \brief Return the result type of a bit-shift operation.
538 *
539 * If the given types to the bit-shift operator are invalid, return
540 * glsl_type::error_type.
541 *
542 * \param type_a Type of LHS of bit-shift op
543 * \param type_b Type of RHS of bit-shift op
544 */
545 static const struct glsl_type *
546 shift_result_type(const struct glsl_type *type_a,
547 const struct glsl_type *type_b,
548 ast_operators op,
549 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
550 {
551 if (state->language_version < 130) {
552 _mesa_glsl_error(loc, state, "bit operations require GLSL 1.30");
553 return glsl_type::error_type;
554 }
555
556 /* From page 50 (page 56 of the PDF) of the GLSL 1.30 spec:
557 *
558 * "The shift operators (<<) and (>>). For both operators, the operands
559 * must be signed or unsigned integers or integer vectors. One operand
560 * can be signed while the other is unsigned."
561 */
562 if (!type_a->is_integer()) {
563 _mesa_glsl_error(loc, state, "LHS of operator %s must be an integer or "
564 "integer vector", ast_expression::operator_string(op));
565 return glsl_type::error_type;
566
567 }
568 if (!type_b->is_integer()) {
569 _mesa_glsl_error(loc, state, "RHS of operator %s must be an integer or "
570 "integer vector", ast_expression::operator_string(op));
571 return glsl_type::error_type;
572 }
573
574 /* "If the first operand is a scalar, the second operand has to be
575 * a scalar as well."
576 */
577 if (type_a->is_scalar() && !type_b->is_scalar()) {
578 _mesa_glsl_error(loc, state, "If the first operand of %s is scalar, the "
579 "second must be scalar as well",
580 ast_expression::operator_string(op));
581 return glsl_type::error_type;
582 }
583
584 /* If both operands are vectors, check that they have same number of
585 * elements.
586 */
587 if (type_a->is_vector() &&
588 type_b->is_vector() &&
589 type_a->vector_elements != type_b->vector_elements) {
590 _mesa_glsl_error(loc, state, "Vector operands to operator %s must "
591 "have same number of elements",
592 ast_expression::operator_string(op));
593 return glsl_type::error_type;
594 }
595
596 /* "In all cases, the resulting type will be the same type as the left
597 * operand."
598 */
599 return type_a;
600 }
601
602 /**
603 * Validates that a value can be assigned to a location with a specified type
604 *
605 * Validates that \c rhs can be assigned to some location. If the types are
606 * not an exact match but an automatic conversion is possible, \c rhs will be
607 * converted.
608 *
609 * \return
610 * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
611 * Otherwise the actual RHS to be assigned will be returned. This may be
612 * \c rhs, or it may be \c rhs after some type conversion.
613 *
614 * \note
615 * In addition to being used for assignments, this function is used to
616 * type-check return values.
617 */
618 ir_rvalue *
619 validate_assignment(struct _mesa_glsl_parse_state *state,
620 const glsl_type *lhs_type, ir_rvalue *rhs,
621 bool is_initializer)
622 {
623 /* If there is already some error in the RHS, just return it. Anything
624 * else will lead to an avalanche of error message back to the user.
625 */
626 if (rhs->type->is_error())
627 return rhs;
628
629 /* If the types are identical, the assignment can trivially proceed.
630 */
631 if (rhs->type == lhs_type)
632 return rhs;
633
634 /* If the array element types are the same and the size of the LHS is zero,
635 * the assignment is okay for initializers embedded in variable
636 * declarations.
637 *
638 * Note: Whole-array assignments are not permitted in GLSL 1.10, but this
639 * is handled by ir_dereference::is_lvalue.
640 */
641 if (is_initializer && lhs_type->is_array() && rhs->type->is_array()
642 && (lhs_type->element_type() == rhs->type->element_type())
643 && (lhs_type->array_size() == 0)) {
644 return rhs;
645 }
646
647 /* Check for implicit conversion in GLSL 1.20 */
648 if (apply_implicit_conversion(lhs_type, rhs, state)) {
649 if (rhs->type == lhs_type)
650 return rhs;
651 }
652
653 return NULL;
654 }
655
656 static void
657 mark_whole_array_access(ir_rvalue *access)
658 {
659 ir_dereference_variable *deref = access->as_dereference_variable();
660
661 if (deref && deref->var) {
662 deref->var->max_array_access = deref->type->length - 1;
663 }
664 }
665
666 ir_rvalue *
667 do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state,
668 ir_rvalue *lhs, ir_rvalue *rhs, bool is_initializer,
669 YYLTYPE lhs_loc)
670 {
671 void *ctx = state;
672 bool error_emitted = (lhs->type->is_error() || rhs->type->is_error());
673
674 if (!error_emitted) {
675 if (lhs->variable_referenced() != NULL
676 && lhs->variable_referenced()->read_only) {
677 _mesa_glsl_error(&lhs_loc, state,
678 "assignment to read-only variable '%s'",
679 lhs->variable_referenced()->name);
680 error_emitted = true;
681
682 } else if (state->language_version <= 110 && lhs->type->is_array()) {
683 /* From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
684 *
685 * "Other binary or unary expressions, non-dereferenced
686 * arrays, function names, swizzles with repeated fields,
687 * and constants cannot be l-values."
688 */
689 _mesa_glsl_error(&lhs_loc, state, "whole array assignment is not "
690 "allowed in GLSL 1.10 or GLSL ES 1.00.");
691 error_emitted = true;
692 } else if (!lhs->is_lvalue()) {
693 _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment");
694 error_emitted = true;
695 }
696 }
697
698 ir_rvalue *new_rhs =
699 validate_assignment(state, lhs->type, rhs, is_initializer);
700 if (new_rhs == NULL) {
701 _mesa_glsl_error(& lhs_loc, state, "type mismatch");
702 } else {
703 rhs = new_rhs;
704
705 /* If the LHS array was not declared with a size, it takes it size from
706 * the RHS. If the LHS is an l-value and a whole array, it must be a
707 * dereference of a variable. Any other case would require that the LHS
708 * is either not an l-value or not a whole array.
709 */
710 if (lhs->type->array_size() == 0) {
711 ir_dereference *const d = lhs->as_dereference();
712
713 assert(d != NULL);
714
715 ir_variable *const var = d->variable_referenced();
716
717 assert(var != NULL);
718
719 if (var->max_array_access >= unsigned(rhs->type->array_size())) {
720 /* FINISHME: This should actually log the location of the RHS. */
721 _mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to "
722 "previous access",
723 var->max_array_access);
724 }
725
726 var->type = glsl_type::get_array_instance(lhs->type->element_type(),
727 rhs->type->array_size());
728 d->type = var->type;
729 }
730 mark_whole_array_access(rhs);
731 mark_whole_array_access(lhs);
732 }
733
734 /* Most callers of do_assignment (assign, add_assign, pre_inc/dec,
735 * but not post_inc) need the converted assigned value as an rvalue
736 * to handle things like:
737 *
738 * i = j += 1;
739 *
740 * So we always just store the computed value being assigned to a
741 * temporary and return a deref of that temporary. If the rvalue
742 * ends up not being used, the temp will get copy-propagated out.
743 */
744 ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp",
745 ir_var_temporary);
746 ir_dereference_variable *deref_var = new(ctx) ir_dereference_variable(var);
747 instructions->push_tail(var);
748 instructions->push_tail(new(ctx) ir_assignment(deref_var,
749 rhs,
750 NULL));
751 deref_var = new(ctx) ir_dereference_variable(var);
752
753 if (!error_emitted)
754 instructions->push_tail(new(ctx) ir_assignment(lhs, deref_var, NULL));
755
756 return new(ctx) ir_dereference_variable(var);
757 }
758
759 static ir_rvalue *
760 get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue)
761 {
762 void *ctx = ralloc_parent(lvalue);
763 ir_variable *var;
764
765 var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp",
766 ir_var_temporary);
767 instructions->push_tail(var);
768 var->mode = ir_var_auto;
769
770 instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
771 lvalue, NULL));
772
773 /* Once we've created this temporary, mark it read only so it's no
774 * longer considered an lvalue.
775 */
776 var->read_only = true;
777
778 return new(ctx) ir_dereference_variable(var);
779 }
780
781
782 ir_rvalue *
783 ast_node::hir(exec_list *instructions,
784 struct _mesa_glsl_parse_state *state)
785 {
786 (void) instructions;
787 (void) state;
788
789 return NULL;
790 }
791
792 static ir_rvalue *
793 do_comparison(void *mem_ctx, int operation, ir_rvalue *op0, ir_rvalue *op1)
794 {
795 int join_op;
796 ir_rvalue *cmp = NULL;
797
798 if (operation == ir_binop_all_equal)
799 join_op = ir_binop_logic_and;
800 else
801 join_op = ir_binop_logic_or;
802
803 switch (op0->type->base_type) {
804 case GLSL_TYPE_FLOAT:
805 case GLSL_TYPE_UINT:
806 case GLSL_TYPE_INT:
807 case GLSL_TYPE_BOOL:
808 return new(mem_ctx) ir_expression(operation, op0, op1);
809
810 case GLSL_TYPE_ARRAY: {
811 for (unsigned int i = 0; i < op0->type->length; i++) {
812 ir_rvalue *e0, *e1, *result;
813
814 e0 = new(mem_ctx) ir_dereference_array(op0->clone(mem_ctx, NULL),
815 new(mem_ctx) ir_constant(i));
816 e1 = new(mem_ctx) ir_dereference_array(op1->clone(mem_ctx, NULL),
817 new(mem_ctx) ir_constant(i));
818 result = do_comparison(mem_ctx, operation, e0, e1);
819
820 if (cmp) {
821 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
822 } else {
823 cmp = result;
824 }
825 }
826
827 mark_whole_array_access(op0);
828 mark_whole_array_access(op1);
829 break;
830 }
831
832 case GLSL_TYPE_STRUCT: {
833 for (unsigned int i = 0; i < op0->type->length; i++) {
834 ir_rvalue *e0, *e1, *result;
835 const char *field_name = op0->type->fields.structure[i].name;
836
837 e0 = new(mem_ctx) ir_dereference_record(op0->clone(mem_ctx, NULL),
838 field_name);
839 e1 = new(mem_ctx) ir_dereference_record(op1->clone(mem_ctx, NULL),
840 field_name);
841 result = do_comparison(mem_ctx, operation, e0, e1);
842
843 if (cmp) {
844 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
845 } else {
846 cmp = result;
847 }
848 }
849 break;
850 }
851
852 case GLSL_TYPE_ERROR:
853 case GLSL_TYPE_VOID:
854 case GLSL_TYPE_SAMPLER:
855 /* I assume a comparison of a struct containing a sampler just
856 * ignores the sampler present in the type.
857 */
858 break;
859
860 default:
861 assert(!"Should not get here.");
862 break;
863 }
864
865 if (cmp == NULL)
866 cmp = new(mem_ctx) ir_constant(true);
867
868 return cmp;
869 }
870
871 /* For logical operations, we want to ensure that the operands are
872 * scalar booleans. If it isn't, emit an error and return a constant
873 * boolean to avoid triggering cascading error messages.
874 */
875 ir_rvalue *
876 get_scalar_boolean_operand(exec_list *instructions,
877 struct _mesa_glsl_parse_state *state,
878 ast_expression *parent_expr,
879 int operand,
880 const char *operand_name,
881 bool *error_emitted)
882 {
883 ast_expression *expr = parent_expr->subexpressions[operand];
884 void *ctx = state;
885 ir_rvalue *val = expr->hir(instructions, state);
886
887 if (val->type->is_boolean() && val->type->is_scalar())
888 return val;
889
890 if (!*error_emitted) {
891 YYLTYPE loc = expr->get_location();
892 _mesa_glsl_error(&loc, state, "%s of `%s' must be scalar boolean",
893 operand_name,
894 parent_expr->operator_string(parent_expr->oper));
895 *error_emitted = true;
896 }
897
898 return new(ctx) ir_constant(true);
899 }
900
901 /**
902 * If name refers to a builtin array whose maximum allowed size is less than
903 * size, report an error and return true. Otherwise return false.
904 */
905 static bool
906 check_builtin_array_max_size(const char *name, unsigned size,
907 YYLTYPE loc, struct _mesa_glsl_parse_state *state)
908 {
909 if ((strcmp("gl_TexCoord", name) == 0)
910 && (size > state->Const.MaxTextureCoords)) {
911 /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec:
912 *
913 * "The size [of gl_TexCoord] can be at most
914 * gl_MaxTextureCoords."
915 */
916 _mesa_glsl_error(&loc, state, "`gl_TexCoord' array size cannot "
917 "be larger than gl_MaxTextureCoords (%u)\n",
918 state->Const.MaxTextureCoords);
919 return true;
920 } else if (strcmp("gl_ClipDistance", name) == 0
921 && size > state->Const.MaxClipPlanes) {
922 /* From section 7.1 (Vertex Shader Special Variables) of the
923 * GLSL 1.30 spec:
924 *
925 * "The gl_ClipDistance array is predeclared as unsized and
926 * must be sized by the shader either redeclaring it with a
927 * size or indexing it only with integral constant
928 * expressions. ... The size can be at most
929 * gl_MaxClipDistances."
930 */
931 _mesa_glsl_error(&loc, state, "`gl_ClipDistance' array size cannot "
932 "be larger than gl_MaxClipDistances (%u)\n",
933 state->Const.MaxClipPlanes);
934 return true;
935 }
936 return false;
937 }
938
939 ir_rvalue *
940 ast_expression::hir(exec_list *instructions,
941 struct _mesa_glsl_parse_state *state)
942 {
943 void *ctx = state;
944 static const int operations[AST_NUM_OPERATORS] = {
945 -1, /* ast_assign doesn't convert to ir_expression. */
946 -1, /* ast_plus doesn't convert to ir_expression. */
947 ir_unop_neg,
948 ir_binop_add,
949 ir_binop_sub,
950 ir_binop_mul,
951 ir_binop_div,
952 ir_binop_mod,
953 ir_binop_lshift,
954 ir_binop_rshift,
955 ir_binop_less,
956 ir_binop_greater,
957 ir_binop_lequal,
958 ir_binop_gequal,
959 ir_binop_all_equal,
960 ir_binop_any_nequal,
961 ir_binop_bit_and,
962 ir_binop_bit_xor,
963 ir_binop_bit_or,
964 ir_unop_bit_not,
965 ir_binop_logic_and,
966 ir_binop_logic_xor,
967 ir_binop_logic_or,
968 ir_unop_logic_not,
969
970 /* Note: The following block of expression types actually convert
971 * to multiple IR instructions.
972 */
973 ir_binop_mul, /* ast_mul_assign */
974 ir_binop_div, /* ast_div_assign */
975 ir_binop_mod, /* ast_mod_assign */
976 ir_binop_add, /* ast_add_assign */
977 ir_binop_sub, /* ast_sub_assign */
978 ir_binop_lshift, /* ast_ls_assign */
979 ir_binop_rshift, /* ast_rs_assign */
980 ir_binop_bit_and, /* ast_and_assign */
981 ir_binop_bit_xor, /* ast_xor_assign */
982 ir_binop_bit_or, /* ast_or_assign */
983
984 -1, /* ast_conditional doesn't convert to ir_expression. */
985 ir_binop_add, /* ast_pre_inc. */
986 ir_binop_sub, /* ast_pre_dec. */
987 ir_binop_add, /* ast_post_inc. */
988 ir_binop_sub, /* ast_post_dec. */
989 -1, /* ast_field_selection doesn't conv to ir_expression. */
990 -1, /* ast_array_index doesn't convert to ir_expression. */
991 -1, /* ast_function_call doesn't conv to ir_expression. */
992 -1, /* ast_identifier doesn't convert to ir_expression. */
993 -1, /* ast_int_constant doesn't convert to ir_expression. */
994 -1, /* ast_uint_constant doesn't conv to ir_expression. */
995 -1, /* ast_float_constant doesn't conv to ir_expression. */
996 -1, /* ast_bool_constant doesn't conv to ir_expression. */
997 -1, /* ast_sequence doesn't convert to ir_expression. */
998 };
999 ir_rvalue *result = NULL;
1000 ir_rvalue *op[3];
1001 const struct glsl_type *type; /* a temporary variable for switch cases */
1002 bool error_emitted = false;
1003 YYLTYPE loc;
1004
1005 loc = this->get_location();
1006
1007 switch (this->oper) {
1008 case ast_assign: {
1009 op[0] = this->subexpressions[0]->hir(instructions, state);
1010 op[1] = this->subexpressions[1]->hir(instructions, state);
1011
1012 result = do_assignment(instructions, state, op[0], op[1], false,
1013 this->subexpressions[0]->get_location());
1014 error_emitted = result->type->is_error();
1015 break;
1016 }
1017
1018 case ast_plus:
1019 op[0] = this->subexpressions[0]->hir(instructions, state);
1020
1021 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1022
1023 error_emitted = type->is_error();
1024
1025 result = op[0];
1026 break;
1027
1028 case ast_neg:
1029 op[0] = this->subexpressions[0]->hir(instructions, state);
1030
1031 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1032
1033 error_emitted = type->is_error();
1034
1035 result = new(ctx) ir_expression(operations[this->oper], type,
1036 op[0], NULL);
1037 break;
1038
1039 case ast_add:
1040 case ast_sub:
1041 case ast_mul:
1042 case ast_div:
1043 op[0] = this->subexpressions[0]->hir(instructions, state);
1044 op[1] = this->subexpressions[1]->hir(instructions, state);
1045
1046 type = arithmetic_result_type(op[0], op[1],
1047 (this->oper == ast_mul),
1048 state, & loc);
1049 error_emitted = type->is_error();
1050
1051 result = new(ctx) ir_expression(operations[this->oper], type,
1052 op[0], op[1]);
1053 break;
1054
1055 case ast_mod:
1056 op[0] = this->subexpressions[0]->hir(instructions, state);
1057 op[1] = this->subexpressions[1]->hir(instructions, state);
1058
1059 type = modulus_result_type(op[0]->type, op[1]->type, state, & loc);
1060
1061 assert(operations[this->oper] == ir_binop_mod);
1062
1063 result = new(ctx) ir_expression(operations[this->oper], type,
1064 op[0], op[1]);
1065 error_emitted = type->is_error();
1066 break;
1067
1068 case ast_lshift:
1069 case ast_rshift:
1070 if (state->language_version < 130) {
1071 _mesa_glsl_error(&loc, state, "operator %s requires GLSL 1.30",
1072 operator_string(this->oper));
1073 error_emitted = true;
1074 }
1075
1076 op[0] = this->subexpressions[0]->hir(instructions, state);
1077 op[1] = this->subexpressions[1]->hir(instructions, state);
1078 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1079 &loc);
1080 result = new(ctx) ir_expression(operations[this->oper], type,
1081 op[0], op[1]);
1082 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1083 break;
1084
1085 case ast_less:
1086 case ast_greater:
1087 case ast_lequal:
1088 case ast_gequal:
1089 op[0] = this->subexpressions[0]->hir(instructions, state);
1090 op[1] = this->subexpressions[1]->hir(instructions, state);
1091
1092 type = relational_result_type(op[0], op[1], state, & loc);
1093
1094 /* The relational operators must either generate an error or result
1095 * in a scalar boolean. See page 57 of the GLSL 1.50 spec.
1096 */
1097 assert(type->is_error()
1098 || ((type->base_type == GLSL_TYPE_BOOL)
1099 && type->is_scalar()));
1100
1101 result = new(ctx) ir_expression(operations[this->oper], type,
1102 op[0], op[1]);
1103 error_emitted = type->is_error();
1104 break;
1105
1106 case ast_nequal:
1107 case ast_equal:
1108 op[0] = this->subexpressions[0]->hir(instructions, state);
1109 op[1] = this->subexpressions[1]->hir(instructions, state);
1110
1111 /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
1112 *
1113 * "The equality operators equal (==), and not equal (!=)
1114 * operate on all types. They result in a scalar Boolean. If
1115 * the operand types do not match, then there must be a
1116 * conversion from Section 4.1.10 "Implicit Conversions"
1117 * applied to one operand that can make them match, in which
1118 * case this conversion is done."
1119 */
1120 if ((!apply_implicit_conversion(op[0]->type, op[1], state)
1121 && !apply_implicit_conversion(op[1]->type, op[0], state))
1122 || (op[0]->type != op[1]->type)) {
1123 _mesa_glsl_error(& loc, state, "operands of `%s' must have the same "
1124 "type", (this->oper == ast_equal) ? "==" : "!=");
1125 error_emitted = true;
1126 } else if ((state->language_version <= 110)
1127 && (op[0]->type->is_array() || op[1]->type->is_array())) {
1128 _mesa_glsl_error(& loc, state, "array comparisons forbidden in "
1129 "GLSL 1.10");
1130 error_emitted = true;
1131 }
1132
1133 if (error_emitted) {
1134 result = new(ctx) ir_constant(false);
1135 } else {
1136 result = do_comparison(ctx, operations[this->oper], op[0], op[1]);
1137 assert(result->type == glsl_type::bool_type);
1138 }
1139 break;
1140
1141 case ast_bit_and:
1142 case ast_bit_xor:
1143 case ast_bit_or:
1144 op[0] = this->subexpressions[0]->hir(instructions, state);
1145 op[1] = this->subexpressions[1]->hir(instructions, state);
1146 type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
1147 state, &loc);
1148 result = new(ctx) ir_expression(operations[this->oper], type,
1149 op[0], op[1]);
1150 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1151 break;
1152
1153 case ast_bit_not:
1154 op[0] = this->subexpressions[0]->hir(instructions, state);
1155
1156 if (state->language_version < 130) {
1157 _mesa_glsl_error(&loc, state, "bit-wise operations require GLSL 1.30");
1158 error_emitted = true;
1159 }
1160
1161 if (!op[0]->type->is_integer()) {
1162 _mesa_glsl_error(&loc, state, "operand of `~' must be an integer");
1163 error_emitted = true;
1164 }
1165
1166 type = op[0]->type;
1167 result = new(ctx) ir_expression(ir_unop_bit_not, type, op[0], NULL);
1168 break;
1169
1170 case ast_logic_and: {
1171 exec_list rhs_instructions;
1172 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1173 "LHS", &error_emitted);
1174 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1175 "RHS", &error_emitted);
1176
1177 ir_constant *op0_const = op[0]->constant_expression_value();
1178 if (op0_const) {
1179 if (op0_const->value.b[0]) {
1180 instructions->append_list(&rhs_instructions);
1181 result = op[1];
1182 } else {
1183 result = op0_const;
1184 }
1185 type = glsl_type::bool_type;
1186 } else {
1187 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1188 "and_tmp",
1189 ir_var_temporary);
1190 instructions->push_tail(tmp);
1191
1192 ir_if *const stmt = new(ctx) ir_if(op[0]);
1193 instructions->push_tail(stmt);
1194
1195 stmt->then_instructions.append_list(&rhs_instructions);
1196 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1197 ir_assignment *const then_assign =
1198 new(ctx) ir_assignment(then_deref, op[1], NULL);
1199 stmt->then_instructions.push_tail(then_assign);
1200
1201 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1202 ir_assignment *const else_assign =
1203 new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false), NULL);
1204 stmt->else_instructions.push_tail(else_assign);
1205
1206 result = new(ctx) ir_dereference_variable(tmp);
1207 type = tmp->type;
1208 }
1209 break;
1210 }
1211
1212 case ast_logic_or: {
1213 exec_list rhs_instructions;
1214 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1215 "LHS", &error_emitted);
1216 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1217 "RHS", &error_emitted);
1218
1219 ir_constant *op0_const = op[0]->constant_expression_value();
1220 if (op0_const) {
1221 if (op0_const->value.b[0]) {
1222 result = op0_const;
1223 } else {
1224 result = op[1];
1225 }
1226 type = glsl_type::bool_type;
1227 } else {
1228 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1229 "or_tmp",
1230 ir_var_temporary);
1231 instructions->push_tail(tmp);
1232
1233 ir_if *const stmt = new(ctx) ir_if(op[0]);
1234 instructions->push_tail(stmt);
1235
1236 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1237 ir_assignment *const then_assign =
1238 new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true), NULL);
1239 stmt->then_instructions.push_tail(then_assign);
1240
1241 stmt->else_instructions.append_list(&rhs_instructions);
1242 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1243 ir_assignment *const else_assign =
1244 new(ctx) ir_assignment(else_deref, op[1], NULL);
1245 stmt->else_instructions.push_tail(else_assign);
1246
1247 result = new(ctx) ir_dereference_variable(tmp);
1248 type = tmp->type;
1249 }
1250 break;
1251 }
1252
1253 case ast_logic_xor:
1254 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1255 *
1256 * "The logical binary operators and (&&), or ( | | ), and
1257 * exclusive or (^^). They operate only on two Boolean
1258 * expressions and result in a Boolean expression."
1259 */
1260 op[0] = get_scalar_boolean_operand(instructions, state, this, 0, "LHS",
1261 &error_emitted);
1262 op[1] = get_scalar_boolean_operand(instructions, state, this, 1, "RHS",
1263 &error_emitted);
1264
1265 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1266 op[0], op[1]);
1267 break;
1268
1269 case ast_logic_not:
1270 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1271 "operand", &error_emitted);
1272
1273 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1274 op[0], NULL);
1275 break;
1276
1277 case ast_mul_assign:
1278 case ast_div_assign:
1279 case ast_add_assign:
1280 case ast_sub_assign: {
1281 op[0] = this->subexpressions[0]->hir(instructions, state);
1282 op[1] = this->subexpressions[1]->hir(instructions, state);
1283
1284 type = arithmetic_result_type(op[0], op[1],
1285 (this->oper == ast_mul_assign),
1286 state, & loc);
1287
1288 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1289 op[0], op[1]);
1290
1291 result = do_assignment(instructions, state,
1292 op[0]->clone(ctx, NULL), temp_rhs, false,
1293 this->subexpressions[0]->get_location());
1294 error_emitted = (op[0]->type->is_error());
1295
1296 /* GLSL 1.10 does not allow array assignment. However, we don't have to
1297 * explicitly test for this because none of the binary expression
1298 * operators allow array operands either.
1299 */
1300
1301 break;
1302 }
1303
1304 case ast_mod_assign: {
1305 op[0] = this->subexpressions[0]->hir(instructions, state);
1306 op[1] = this->subexpressions[1]->hir(instructions, state);
1307
1308 type = modulus_result_type(op[0]->type, op[1]->type, state, & loc);
1309
1310 assert(operations[this->oper] == ir_binop_mod);
1311
1312 ir_rvalue *temp_rhs;
1313 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1314 op[0], op[1]);
1315
1316 result = do_assignment(instructions, state,
1317 op[0]->clone(ctx, NULL), temp_rhs, false,
1318 this->subexpressions[0]->get_location());
1319 error_emitted = type->is_error();
1320 break;
1321 }
1322
1323 case ast_ls_assign:
1324 case ast_rs_assign: {
1325 op[0] = this->subexpressions[0]->hir(instructions, state);
1326 op[1] = this->subexpressions[1]->hir(instructions, state);
1327 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1328 &loc);
1329 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1330 type, op[0], op[1]);
1331 result = do_assignment(instructions, state, op[0]->clone(ctx, NULL),
1332 temp_rhs, false,
1333 this->subexpressions[0]->get_location());
1334 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1335 break;
1336 }
1337
1338 case ast_and_assign:
1339 case ast_xor_assign:
1340 case ast_or_assign: {
1341 op[0] = this->subexpressions[0]->hir(instructions, state);
1342 op[1] = this->subexpressions[1]->hir(instructions, state);
1343 type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
1344 state, &loc);
1345 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1346 type, op[0], op[1]);
1347 result = do_assignment(instructions, state, op[0]->clone(ctx, NULL),
1348 temp_rhs, false,
1349 this->subexpressions[0]->get_location());
1350 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1351 break;
1352 }
1353
1354 case ast_conditional: {
1355 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1356 *
1357 * "The ternary selection operator (?:). It operates on three
1358 * expressions (exp1 ? exp2 : exp3). This operator evaluates the
1359 * first expression, which must result in a scalar Boolean."
1360 */
1361 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1362 "condition", &error_emitted);
1363
1364 /* The :? operator is implemented by generating an anonymous temporary
1365 * followed by an if-statement. The last instruction in each branch of
1366 * the if-statement assigns a value to the anonymous temporary. This
1367 * temporary is the r-value of the expression.
1368 */
1369 exec_list then_instructions;
1370 exec_list else_instructions;
1371
1372 op[1] = this->subexpressions[1]->hir(&then_instructions, state);
1373 op[2] = this->subexpressions[2]->hir(&else_instructions, state);
1374
1375 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1376 *
1377 * "The second and third expressions can be any type, as
1378 * long their types match, or there is a conversion in
1379 * Section 4.1.10 "Implicit Conversions" that can be applied
1380 * to one of the expressions to make their types match. This
1381 * resulting matching type is the type of the entire
1382 * expression."
1383 */
1384 if ((!apply_implicit_conversion(op[1]->type, op[2], state)
1385 && !apply_implicit_conversion(op[2]->type, op[1], state))
1386 || (op[1]->type != op[2]->type)) {
1387 YYLTYPE loc = this->subexpressions[1]->get_location();
1388
1389 _mesa_glsl_error(& loc, state, "Second and third operands of ?: "
1390 "operator must have matching types.");
1391 error_emitted = true;
1392 type = glsl_type::error_type;
1393 } else {
1394 type = op[1]->type;
1395 }
1396
1397 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1398 *
1399 * "The second and third expressions must be the same type, but can
1400 * be of any type other than an array."
1401 */
1402 if ((state->language_version <= 110) && type->is_array()) {
1403 _mesa_glsl_error(& loc, state, "Second and third operands of ?: "
1404 "operator must not be arrays.");
1405 error_emitted = true;
1406 }
1407
1408 ir_constant *cond_val = op[0]->constant_expression_value();
1409 ir_constant *then_val = op[1]->constant_expression_value();
1410 ir_constant *else_val = op[2]->constant_expression_value();
1411
1412 if (then_instructions.is_empty()
1413 && else_instructions.is_empty()
1414 && (cond_val != NULL) && (then_val != NULL) && (else_val != NULL)) {
1415 result = (cond_val->value.b[0]) ? then_val : else_val;
1416 } else {
1417 ir_variable *const tmp =
1418 new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary);
1419 instructions->push_tail(tmp);
1420
1421 ir_if *const stmt = new(ctx) ir_if(op[0]);
1422 instructions->push_tail(stmt);
1423
1424 then_instructions.move_nodes_to(& stmt->then_instructions);
1425 ir_dereference *const then_deref =
1426 new(ctx) ir_dereference_variable(tmp);
1427 ir_assignment *const then_assign =
1428 new(ctx) ir_assignment(then_deref, op[1], NULL);
1429 stmt->then_instructions.push_tail(then_assign);
1430
1431 else_instructions.move_nodes_to(& stmt->else_instructions);
1432 ir_dereference *const else_deref =
1433 new(ctx) ir_dereference_variable(tmp);
1434 ir_assignment *const else_assign =
1435 new(ctx) ir_assignment(else_deref, op[2], NULL);
1436 stmt->else_instructions.push_tail(else_assign);
1437
1438 result = new(ctx) ir_dereference_variable(tmp);
1439 }
1440 break;
1441 }
1442
1443 case ast_pre_inc:
1444 case ast_pre_dec: {
1445 op[0] = this->subexpressions[0]->hir(instructions, state);
1446 if (op[0]->type->base_type == GLSL_TYPE_FLOAT)
1447 op[1] = new(ctx) ir_constant(1.0f);
1448 else
1449 op[1] = new(ctx) ir_constant(1);
1450
1451 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1452
1453 ir_rvalue *temp_rhs;
1454 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1455 op[0], op[1]);
1456
1457 result = do_assignment(instructions, state,
1458 op[0]->clone(ctx, NULL), temp_rhs, false,
1459 this->subexpressions[0]->get_location());
1460 error_emitted = op[0]->type->is_error();
1461 break;
1462 }
1463
1464 case ast_post_inc:
1465 case ast_post_dec: {
1466 op[0] = this->subexpressions[0]->hir(instructions, state);
1467 if (op[0]->type->base_type == GLSL_TYPE_FLOAT)
1468 op[1] = new(ctx) ir_constant(1.0f);
1469 else
1470 op[1] = new(ctx) ir_constant(1);
1471
1472 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1473
1474 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1475
1476 ir_rvalue *temp_rhs;
1477 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1478 op[0], op[1]);
1479
1480 /* Get a temporary of a copy of the lvalue before it's modified.
1481 * This may get thrown away later.
1482 */
1483 result = get_lvalue_copy(instructions, op[0]->clone(ctx, NULL));
1484
1485 (void)do_assignment(instructions, state,
1486 op[0]->clone(ctx, NULL), temp_rhs, false,
1487 this->subexpressions[0]->get_location());
1488
1489 error_emitted = op[0]->type->is_error();
1490 break;
1491 }
1492
1493 case ast_field_selection:
1494 result = _mesa_ast_field_selection_to_hir(this, instructions, state);
1495 break;
1496
1497 case ast_array_index: {
1498 YYLTYPE index_loc = subexpressions[1]->get_location();
1499
1500 op[0] = subexpressions[0]->hir(instructions, state);
1501 op[1] = subexpressions[1]->hir(instructions, state);
1502
1503 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1504
1505 ir_rvalue *const array = op[0];
1506
1507 result = new(ctx) ir_dereference_array(op[0], op[1]);
1508
1509 /* Do not use op[0] after this point. Use array.
1510 */
1511 op[0] = NULL;
1512
1513
1514 if (error_emitted)
1515 break;
1516
1517 if (!array->type->is_array()
1518 && !array->type->is_matrix()
1519 && !array->type->is_vector()) {
1520 _mesa_glsl_error(& index_loc, state,
1521 "cannot dereference non-array / non-matrix / "
1522 "non-vector");
1523 error_emitted = true;
1524 }
1525
1526 if (!op[1]->type->is_integer()) {
1527 _mesa_glsl_error(& index_loc, state,
1528 "array index must be integer type");
1529 error_emitted = true;
1530 } else if (!op[1]->type->is_scalar()) {
1531 _mesa_glsl_error(& index_loc, state,
1532 "array index must be scalar");
1533 error_emitted = true;
1534 }
1535
1536 /* If the array index is a constant expression and the array has a
1537 * declared size, ensure that the access is in-bounds. If the array
1538 * index is not a constant expression, ensure that the array has a
1539 * declared size.
1540 */
1541 ir_constant *const const_index = op[1]->constant_expression_value();
1542 if (const_index != NULL) {
1543 const int idx = const_index->value.i[0];
1544 const char *type_name;
1545 unsigned bound = 0;
1546
1547 if (array->type->is_matrix()) {
1548 type_name = "matrix";
1549 } else if (array->type->is_vector()) {
1550 type_name = "vector";
1551 } else {
1552 type_name = "array";
1553 }
1554
1555 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec:
1556 *
1557 * "It is illegal to declare an array with a size, and then
1558 * later (in the same shader) index the same array with an
1559 * integral constant expression greater than or equal to the
1560 * declared size. It is also illegal to index an array with a
1561 * negative constant expression."
1562 */
1563 if (array->type->is_matrix()) {
1564 if (array->type->row_type()->vector_elements <= idx) {
1565 bound = array->type->row_type()->vector_elements;
1566 }
1567 } else if (array->type->is_vector()) {
1568 if (array->type->vector_elements <= idx) {
1569 bound = array->type->vector_elements;
1570 }
1571 } else {
1572 if ((array->type->array_size() > 0)
1573 && (array->type->array_size() <= idx)) {
1574 bound = array->type->array_size();
1575 }
1576 }
1577
1578 if (bound > 0) {
1579 _mesa_glsl_error(& loc, state, "%s index must be < %u",
1580 type_name, bound);
1581 error_emitted = true;
1582 } else if (idx < 0) {
1583 _mesa_glsl_error(& loc, state, "%s index must be >= 0",
1584 type_name);
1585 error_emitted = true;
1586 }
1587
1588 if (array->type->is_array()) {
1589 /* If the array is a variable dereference, it dereferences the
1590 * whole array, by definition. Use this to get the variable.
1591 *
1592 * FINISHME: Should some methods for getting / setting / testing
1593 * FINISHME: array access limits be added to ir_dereference?
1594 */
1595 ir_variable *const v = array->whole_variable_referenced();
1596 if ((v != NULL) && (unsigned(idx) > v->max_array_access)) {
1597 v->max_array_access = idx;
1598
1599 /* Check whether this access will, as a side effect, implicitly
1600 * cause the size of a built-in array to be too large.
1601 */
1602 if (check_builtin_array_max_size(v->name, idx+1, loc, state))
1603 error_emitted = true;
1604 }
1605 }
1606 } else if (array->type->array_size() == 0) {
1607 _mesa_glsl_error(&loc, state, "unsized array index must be constant");
1608 } else {
1609 if (array->type->is_array()) {
1610 /* whole_variable_referenced can return NULL if the array is a
1611 * member of a structure. In this case it is safe to not update
1612 * the max_array_access field because it is never used for fields
1613 * of structures.
1614 */
1615 ir_variable *v = array->whole_variable_referenced();
1616 if (v != NULL)
1617 v->max_array_access = array->type->array_size() - 1;
1618 }
1619 }
1620
1621 /* From page 23 (29 of the PDF) of the GLSL 1.30 spec:
1622 *
1623 * "Samplers aggregated into arrays within a shader (using square
1624 * brackets [ ]) can only be indexed with integral constant
1625 * expressions [...]."
1626 *
1627 * This restriction was added in GLSL 1.30. Shaders using earlier version
1628 * of the language should not be rejected by the compiler front-end for
1629 * using this construct. This allows useful things such as using a loop
1630 * counter as the index to an array of samplers. If the loop in unrolled,
1631 * the code should compile correctly. Instead, emit a warning.
1632 */
1633 if (array->type->is_array() &&
1634 array->type->element_type()->is_sampler() &&
1635 const_index == NULL) {
1636
1637 if (state->language_version == 100) {
1638 _mesa_glsl_warning(&loc, state,
1639 "sampler arrays indexed with non-constant "
1640 "expressions is optional in GLSL ES 1.00");
1641 } else if (state->language_version < 130) {
1642 _mesa_glsl_warning(&loc, state,
1643 "sampler arrays indexed with non-constant "
1644 "expressions is forbidden in GLSL 1.30 and "
1645 "later");
1646 } else {
1647 _mesa_glsl_error(&loc, state,
1648 "sampler arrays indexed with non-constant "
1649 "expressions is forbidden in GLSL 1.30 and "
1650 "later");
1651 error_emitted = true;
1652 }
1653 }
1654
1655 if (error_emitted)
1656 result->type = glsl_type::error_type;
1657
1658 break;
1659 }
1660
1661 case ast_function_call:
1662 /* Should *NEVER* get here. ast_function_call should always be handled
1663 * by ast_function_expression::hir.
1664 */
1665 assert(0);
1666 break;
1667
1668 case ast_identifier: {
1669 /* ast_identifier can appear several places in a full abstract syntax
1670 * tree. This particular use must be at location specified in the grammar
1671 * as 'variable_identifier'.
1672 */
1673 ir_variable *var =
1674 state->symbols->get_variable(this->primary_expression.identifier);
1675
1676 result = new(ctx) ir_dereference_variable(var);
1677
1678 if (var != NULL) {
1679 var->used = true;
1680 } else {
1681 _mesa_glsl_error(& loc, state, "`%s' undeclared",
1682 this->primary_expression.identifier);
1683
1684 error_emitted = true;
1685 }
1686 break;
1687 }
1688
1689 case ast_int_constant:
1690 result = new(ctx) ir_constant(this->primary_expression.int_constant);
1691 break;
1692
1693 case ast_uint_constant:
1694 result = new(ctx) ir_constant(this->primary_expression.uint_constant);
1695 break;
1696
1697 case ast_float_constant:
1698 result = new(ctx) ir_constant(this->primary_expression.float_constant);
1699 break;
1700
1701 case ast_bool_constant:
1702 result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant));
1703 break;
1704
1705 case ast_sequence: {
1706 /* It should not be possible to generate a sequence in the AST without
1707 * any expressions in it.
1708 */
1709 assert(!this->expressions.is_empty());
1710
1711 /* The r-value of a sequence is the last expression in the sequence. If
1712 * the other expressions in the sequence do not have side-effects (and
1713 * therefore add instructions to the instruction list), they get dropped
1714 * on the floor.
1715 */
1716 exec_node *previous_tail_pred = NULL;
1717 YYLTYPE previous_operand_loc = loc;
1718
1719 foreach_list_typed (ast_node, ast, link, &this->expressions) {
1720 /* If one of the operands of comma operator does not generate any
1721 * code, we want to emit a warning. At each pass through the loop
1722 * previous_tail_pred will point to the last instruction in the
1723 * stream *before* processing the previous operand. Naturally,
1724 * instructions->tail_pred will point to the last instruction in the
1725 * stream *after* processing the previous operand. If the two
1726 * pointers match, then the previous operand had no effect.
1727 *
1728 * The warning behavior here differs slightly from GCC. GCC will
1729 * only emit a warning if none of the left-hand operands have an
1730 * effect. However, it will emit a warning for each. I believe that
1731 * there are some cases in C (especially with GCC extensions) where
1732 * it is useful to have an intermediate step in a sequence have no
1733 * effect, but I don't think these cases exist in GLSL. Either way,
1734 * it would be a giant hassle to replicate that behavior.
1735 */
1736 if (previous_tail_pred == instructions->tail_pred) {
1737 _mesa_glsl_warning(&previous_operand_loc, state,
1738 "left-hand operand of comma expression has "
1739 "no effect");
1740 }
1741
1742 /* tail_pred is directly accessed instead of using the get_tail()
1743 * method for performance reasons. get_tail() has extra code to
1744 * return NULL when the list is empty. We don't care about that
1745 * here, so using tail_pred directly is fine.
1746 */
1747 previous_tail_pred = instructions->tail_pred;
1748 previous_operand_loc = ast->get_location();
1749
1750 result = ast->hir(instructions, state);
1751 }
1752
1753 /* Any errors should have already been emitted in the loop above.
1754 */
1755 error_emitted = true;
1756 break;
1757 }
1758 }
1759 type = NULL; /* use result->type, not type. */
1760 assert(result != NULL);
1761
1762 if (result->type->is_error() && !error_emitted)
1763 _mesa_glsl_error(& loc, state, "type mismatch");
1764
1765 return result;
1766 }
1767
1768
1769 ir_rvalue *
1770 ast_expression_statement::hir(exec_list *instructions,
1771 struct _mesa_glsl_parse_state *state)
1772 {
1773 /* It is possible to have expression statements that don't have an
1774 * expression. This is the solitary semicolon:
1775 *
1776 * for (i = 0; i < 5; i++)
1777 * ;
1778 *
1779 * In this case the expression will be NULL. Test for NULL and don't do
1780 * anything in that case.
1781 */
1782 if (expression != NULL)
1783 expression->hir(instructions, state);
1784
1785 /* Statements do not have r-values.
1786 */
1787 return NULL;
1788 }
1789
1790
1791 ir_rvalue *
1792 ast_compound_statement::hir(exec_list *instructions,
1793 struct _mesa_glsl_parse_state *state)
1794 {
1795 if (new_scope)
1796 state->symbols->push_scope();
1797
1798 foreach_list_typed (ast_node, ast, link, &this->statements)
1799 ast->hir(instructions, state);
1800
1801 if (new_scope)
1802 state->symbols->pop_scope();
1803
1804 /* Compound statements do not have r-values.
1805 */
1806 return NULL;
1807 }
1808
1809
1810 static const glsl_type *
1811 process_array_type(YYLTYPE *loc, const glsl_type *base, ast_node *array_size,
1812 struct _mesa_glsl_parse_state *state)
1813 {
1814 unsigned length = 0;
1815
1816 /* FINISHME: Reject delcarations of multidimensional arrays. */
1817
1818 if (array_size != NULL) {
1819 exec_list dummy_instructions;
1820 ir_rvalue *const ir = array_size->hir(& dummy_instructions, state);
1821 YYLTYPE loc = array_size->get_location();
1822
1823 if (ir != NULL) {
1824 if (!ir->type->is_integer()) {
1825 _mesa_glsl_error(& loc, state, "array size must be integer type");
1826 } else if (!ir->type->is_scalar()) {
1827 _mesa_glsl_error(& loc, state, "array size must be scalar type");
1828 } else {
1829 ir_constant *const size = ir->constant_expression_value();
1830
1831 if (size == NULL) {
1832 _mesa_glsl_error(& loc, state, "array size must be a "
1833 "constant valued expression");
1834 } else if (size->value.i[0] <= 0) {
1835 _mesa_glsl_error(& loc, state, "array size must be > 0");
1836 } else {
1837 assert(size->type == ir->type);
1838 length = size->value.u[0];
1839
1840 /* If the array size is const (and we've verified that
1841 * it is) then no instructions should have been emitted
1842 * when we converted it to HIR. If they were emitted,
1843 * then either the array size isn't const after all, or
1844 * we are emitting unnecessary instructions.
1845 */
1846 assert(dummy_instructions.is_empty());
1847 }
1848 }
1849 }
1850 } else if (state->es_shader) {
1851 /* Section 10.17 of the GLSL ES 1.00 specification states that unsized
1852 * array declarations have been removed from the language.
1853 */
1854 _mesa_glsl_error(loc, state, "unsized array declarations are not "
1855 "allowed in GLSL ES 1.00.");
1856 }
1857
1858 return glsl_type::get_array_instance(base, length);
1859 }
1860
1861
1862 const glsl_type *
1863 ast_type_specifier::glsl_type(const char **name,
1864 struct _mesa_glsl_parse_state *state) const
1865 {
1866 const struct glsl_type *type;
1867
1868 type = state->symbols->get_type(this->type_name);
1869 *name = this->type_name;
1870
1871 if (this->is_array) {
1872 YYLTYPE loc = this->get_location();
1873 type = process_array_type(&loc, type, this->array_size, state);
1874 }
1875
1876 return type;
1877 }
1878
1879
1880 static void
1881 apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
1882 ir_variable *var,
1883 struct _mesa_glsl_parse_state *state,
1884 YYLTYPE *loc)
1885 {
1886 if (qual->flags.q.invariant) {
1887 if (var->used) {
1888 _mesa_glsl_error(loc, state,
1889 "variable `%s' may not be redeclared "
1890 "`invariant' after being used",
1891 var->name);
1892 } else {
1893 var->invariant = 1;
1894 }
1895 }
1896
1897 if (qual->flags.q.constant || qual->flags.q.attribute
1898 || qual->flags.q.uniform
1899 || (qual->flags.q.varying && (state->target == fragment_shader)))
1900 var->read_only = 1;
1901
1902 if (qual->flags.q.centroid)
1903 var->centroid = 1;
1904
1905 if (qual->flags.q.attribute && state->target != vertex_shader) {
1906 var->type = glsl_type::error_type;
1907 _mesa_glsl_error(loc, state,
1908 "`attribute' variables may not be declared in the "
1909 "%s shader",
1910 _mesa_glsl_shader_target_name(state->target));
1911 }
1912
1913 /* From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
1914 *
1915 * "The varying qualifier can be used only with the data types
1916 * float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
1917 * these."
1918 */
1919 if (qual->flags.q.varying) {
1920 const glsl_type *non_array_type;
1921
1922 if (var->type && var->type->is_array())
1923 non_array_type = var->type->fields.array;
1924 else
1925 non_array_type = var->type;
1926
1927 if (non_array_type && non_array_type->base_type != GLSL_TYPE_FLOAT) {
1928 var->type = glsl_type::error_type;
1929 _mesa_glsl_error(loc, state,
1930 "varying variables must be of base type float");
1931 }
1932 }
1933
1934 /* If there is no qualifier that changes the mode of the variable, leave
1935 * the setting alone.
1936 */
1937 if (qual->flags.q.in && qual->flags.q.out)
1938 var->mode = ir_var_inout;
1939 else if (qual->flags.q.attribute || qual->flags.q.in
1940 || (qual->flags.q.varying && (state->target == fragment_shader)))
1941 var->mode = ir_var_in;
1942 else if (qual->flags.q.out
1943 || (qual->flags.q.varying && (state->target == vertex_shader)))
1944 var->mode = ir_var_out;
1945 else if (qual->flags.q.uniform)
1946 var->mode = ir_var_uniform;
1947
1948 if (state->all_invariant && (state->current_function == NULL)) {
1949 switch (state->target) {
1950 case vertex_shader:
1951 if (var->mode == ir_var_out)
1952 var->invariant = true;
1953 break;
1954 case geometry_shader:
1955 if ((var->mode == ir_var_in) || (var->mode == ir_var_out))
1956 var->invariant = true;
1957 break;
1958 case fragment_shader:
1959 if (var->mode == ir_var_in)
1960 var->invariant = true;
1961 break;
1962 }
1963 }
1964
1965 if (qual->flags.q.flat)
1966 var->interpolation = ir_var_flat;
1967 else if (qual->flags.q.noperspective)
1968 var->interpolation = ir_var_noperspective;
1969 else
1970 var->interpolation = ir_var_smooth;
1971
1972 var->pixel_center_integer = qual->flags.q.pixel_center_integer;
1973 var->origin_upper_left = qual->flags.q.origin_upper_left;
1974 if ((qual->flags.q.origin_upper_left || qual->flags.q.pixel_center_integer)
1975 && (strcmp(var->name, "gl_FragCoord") != 0)) {
1976 const char *const qual_string = (qual->flags.q.origin_upper_left)
1977 ? "origin_upper_left" : "pixel_center_integer";
1978
1979 _mesa_glsl_error(loc, state,
1980 "layout qualifier `%s' can only be applied to "
1981 "fragment shader input `gl_FragCoord'",
1982 qual_string);
1983 }
1984
1985 if (qual->flags.q.explicit_location) {
1986 const bool global_scope = (state->current_function == NULL);
1987 bool fail = false;
1988 const char *string = "";
1989
1990 /* In the vertex shader only shader inputs can be given explicit
1991 * locations.
1992 *
1993 * In the fragment shader only shader outputs can be given explicit
1994 * locations.
1995 */
1996 switch (state->target) {
1997 case vertex_shader:
1998 if (!global_scope || (var->mode != ir_var_in)) {
1999 fail = true;
2000 string = "input";
2001 }
2002 break;
2003
2004 case geometry_shader:
2005 _mesa_glsl_error(loc, state,
2006 "geometry shader variables cannot be given "
2007 "explicit locations\n");
2008 break;
2009
2010 case fragment_shader:
2011 if (!global_scope || (var->mode != ir_var_out)) {
2012 fail = true;
2013 string = "output";
2014 }
2015 break;
2016 };
2017
2018 if (fail) {
2019 _mesa_glsl_error(loc, state,
2020 "only %s shader %s variables can be given an "
2021 "explicit location\n",
2022 _mesa_glsl_shader_target_name(state->target),
2023 string);
2024 } else {
2025 var->explicit_location = true;
2026
2027 /* This bit of silliness is needed because invalid explicit locations
2028 * are supposed to be flagged during linking. Small negative values
2029 * biased by VERT_ATTRIB_GENERIC0 or FRAG_RESULT_DATA0 could alias
2030 * built-in values (e.g., -16+VERT_ATTRIB_GENERIC0 = VERT_ATTRIB_POS).
2031 * The linker needs to be able to differentiate these cases. This
2032 * ensures that negative values stay negative.
2033 */
2034 if (qual->location >= 0) {
2035 var->location = (state->target == vertex_shader)
2036 ? (qual->location + VERT_ATTRIB_GENERIC0)
2037 : (qual->location + FRAG_RESULT_DATA0);
2038 } else {
2039 var->location = qual->location;
2040 }
2041 }
2042 }
2043
2044 /* Does the declaration use the 'layout' keyword?
2045 */
2046 const bool uses_layout = qual->flags.q.pixel_center_integer
2047 || qual->flags.q.origin_upper_left
2048 || qual->flags.q.explicit_location;
2049
2050 /* Does the declaration use the deprecated 'attribute' or 'varying'
2051 * keywords?
2052 */
2053 const bool uses_deprecated_qualifier = qual->flags.q.attribute
2054 || qual->flags.q.varying;
2055
2056 /* Is the 'layout' keyword used with parameters that allow relaxed checking.
2057 * Many implementations of GL_ARB_fragment_coord_conventions_enable and some
2058 * implementations (only Mesa?) GL_ARB_explicit_attrib_location_enable
2059 * allowed the layout qualifier to be used with 'varying' and 'attribute'.
2060 * These extensions and all following extensions that add the 'layout'
2061 * keyword have been modified to require the use of 'in' or 'out'.
2062 *
2063 * The following extension do not allow the deprecated keywords:
2064 *
2065 * GL_AMD_conservative_depth
2066 * GL_ARB_gpu_shader5
2067 * GL_ARB_separate_shader_objects
2068 * GL_ARB_tesselation_shader
2069 * GL_ARB_transform_feedback3
2070 * GL_ARB_uniform_buffer_object
2071 *
2072 * It is unknown whether GL_EXT_shader_image_load_store or GL_NV_gpu_shader5
2073 * allow layout with the deprecated keywords.
2074 */
2075 const bool relaxed_layout_qualifier_checking =
2076 state->ARB_fragment_coord_conventions_enable;
2077
2078 if (uses_layout && uses_deprecated_qualifier) {
2079 if (relaxed_layout_qualifier_checking) {
2080 _mesa_glsl_warning(loc, state,
2081 "`layout' qualifier may not be used with "
2082 "`attribute' or `varying'");
2083 } else {
2084 _mesa_glsl_error(loc, state,
2085 "`layout' qualifier may not be used with "
2086 "`attribute' or `varying'");
2087 }
2088 }
2089
2090 /* Layout qualifiers for gl_FragDepth, which are enabled by extension
2091 * AMD_conservative_depth.
2092 */
2093 int depth_layout_count = qual->flags.q.depth_any
2094 + qual->flags.q.depth_greater
2095 + qual->flags.q.depth_less
2096 + qual->flags.q.depth_unchanged;
2097 if (depth_layout_count > 0
2098 && !state->AMD_conservative_depth_enable) {
2099 _mesa_glsl_error(loc, state,
2100 "extension GL_AMD_conservative_depth must be enabled "
2101 "to use depth layout qualifiers");
2102 } else if (depth_layout_count > 0
2103 && strcmp(var->name, "gl_FragDepth") != 0) {
2104 _mesa_glsl_error(loc, state,
2105 "depth layout qualifiers can be applied only to "
2106 "gl_FragDepth");
2107 } else if (depth_layout_count > 1
2108 && strcmp(var->name, "gl_FragDepth") == 0) {
2109 _mesa_glsl_error(loc, state,
2110 "at most one depth layout qualifier can be applied to "
2111 "gl_FragDepth");
2112 }
2113 if (qual->flags.q.depth_any)
2114 var->depth_layout = ir_depth_layout_any;
2115 else if (qual->flags.q.depth_greater)
2116 var->depth_layout = ir_depth_layout_greater;
2117 else if (qual->flags.q.depth_less)
2118 var->depth_layout = ir_depth_layout_less;
2119 else if (qual->flags.q.depth_unchanged)
2120 var->depth_layout = ir_depth_layout_unchanged;
2121 else
2122 var->depth_layout = ir_depth_layout_none;
2123
2124 /* From page 46 (page 52 of the PDF) of the GLSL ES specification:
2125 *
2126 * "Array variables are l-values and may be passed to parameters
2127 * declared as out or inout. However, they may not be used as
2128 * the target of an assignment."
2129 *
2130 * From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
2131 *
2132 * "Other binary or unary expressions, non-dereferenced arrays,
2133 * function names, swizzles with repeated fields, and constants
2134 * cannot be l-values."
2135 *
2136 * So we only mark 1.10 as non-lvalues, and check for array
2137 * assignment in 100 specifically in do_assignment.
2138 */
2139 if (var->type->is_array() && state->language_version != 110) {
2140 var->array_lvalue = true;
2141 }
2142 }
2143
2144 /**
2145 * Get the variable that is being redeclared by this declaration
2146 *
2147 * Semantic checks to verify the validity of the redeclaration are also
2148 * performed. If semantic checks fail, compilation error will be emitted via
2149 * \c _mesa_glsl_error, but a non-\c NULL pointer will still be returned.
2150 *
2151 * \returns
2152 * A pointer to an existing variable in the current scope if the declaration
2153 * is a redeclaration, \c NULL otherwise.
2154 */
2155 ir_variable *
2156 get_variable_being_redeclared(ir_variable *var, ast_declaration *decl,
2157 struct _mesa_glsl_parse_state *state)
2158 {
2159 /* Check if this declaration is actually a re-declaration, either to
2160 * resize an array or add qualifiers to an existing variable.
2161 *
2162 * This is allowed for variables in the current scope, or when at
2163 * global scope (for built-ins in the implicit outer scope).
2164 */
2165 ir_variable *earlier = state->symbols->get_variable(decl->identifier);
2166 if (earlier == NULL ||
2167 (state->current_function != NULL &&
2168 !state->symbols->name_declared_this_scope(decl->identifier))) {
2169 return NULL;
2170 }
2171
2172
2173 YYLTYPE loc = decl->get_location();
2174
2175 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
2176 *
2177 * "It is legal to declare an array without a size and then
2178 * later re-declare the same name as an array of the same
2179 * type and specify a size."
2180 */
2181 if ((earlier->type->array_size() == 0)
2182 && var->type->is_array()
2183 && (var->type->element_type() == earlier->type->element_type())) {
2184 /* FINISHME: This doesn't match the qualifiers on the two
2185 * FINISHME: declarations. It's not 100% clear whether this is
2186 * FINISHME: required or not.
2187 */
2188
2189 const unsigned size = unsigned(var->type->array_size());
2190 check_builtin_array_max_size(var->name, size, loc, state);
2191 if ((size > 0) && (size <= earlier->max_array_access)) {
2192 _mesa_glsl_error(& loc, state, "array size must be > %u due to "
2193 "previous access",
2194 earlier->max_array_access);
2195 }
2196
2197 earlier->type = var->type;
2198 delete var;
2199 var = NULL;
2200 } else if (state->ARB_fragment_coord_conventions_enable
2201 && strcmp(var->name, "gl_FragCoord") == 0
2202 && earlier->type == var->type
2203 && earlier->mode == var->mode) {
2204 /* Allow redeclaration of gl_FragCoord for ARB_fcc layout
2205 * qualifiers.
2206 */
2207 earlier->origin_upper_left = var->origin_upper_left;
2208 earlier->pixel_center_integer = var->pixel_center_integer;
2209
2210 /* According to section 4.3.7 of the GLSL 1.30 spec,
2211 * the following built-in varaibles can be redeclared with an
2212 * interpolation qualifier:
2213 * * gl_FrontColor
2214 * * gl_BackColor
2215 * * gl_FrontSecondaryColor
2216 * * gl_BackSecondaryColor
2217 * * gl_Color
2218 * * gl_SecondaryColor
2219 */
2220 } else if (state->language_version >= 130
2221 && (strcmp(var->name, "gl_FrontColor") == 0
2222 || strcmp(var->name, "gl_BackColor") == 0
2223 || strcmp(var->name, "gl_FrontSecondaryColor") == 0
2224 || strcmp(var->name, "gl_BackSecondaryColor") == 0
2225 || strcmp(var->name, "gl_Color") == 0
2226 || strcmp(var->name, "gl_SecondaryColor") == 0)
2227 && earlier->type == var->type
2228 && earlier->mode == var->mode) {
2229 earlier->interpolation = var->interpolation;
2230
2231 /* Layout qualifiers for gl_FragDepth. */
2232 } else if (state->AMD_conservative_depth_enable
2233 && strcmp(var->name, "gl_FragDepth") == 0
2234 && earlier->type == var->type
2235 && earlier->mode == var->mode) {
2236
2237 /** From the AMD_conservative_depth spec:
2238 * Within any shader, the first redeclarations of gl_FragDepth
2239 * must appear before any use of gl_FragDepth.
2240 */
2241 if (earlier->used) {
2242 _mesa_glsl_error(&loc, state,
2243 "the first redeclaration of gl_FragDepth "
2244 "must appear before any use of gl_FragDepth");
2245 }
2246
2247 /* Prevent inconsistent redeclaration of depth layout qualifier. */
2248 if (earlier->depth_layout != ir_depth_layout_none
2249 && earlier->depth_layout != var->depth_layout) {
2250 _mesa_glsl_error(&loc, state,
2251 "gl_FragDepth: depth layout is declared here "
2252 "as '%s, but it was previously declared as "
2253 "'%s'",
2254 depth_layout_string(var->depth_layout),
2255 depth_layout_string(earlier->depth_layout));
2256 }
2257
2258 earlier->depth_layout = var->depth_layout;
2259
2260 } else {
2261 _mesa_glsl_error(&loc, state, "`%s' redeclared", decl->identifier);
2262 }
2263
2264 return earlier;
2265 }
2266
2267 /**
2268 * Generate the IR for an initializer in a variable declaration
2269 */
2270 ir_rvalue *
2271 process_initializer(ir_variable *var, ast_declaration *decl,
2272 ast_fully_specified_type *type,
2273 exec_list *initializer_instructions,
2274 struct _mesa_glsl_parse_state *state)
2275 {
2276 ir_rvalue *result = NULL;
2277
2278 YYLTYPE initializer_loc = decl->initializer->get_location();
2279
2280 /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
2281 *
2282 * "All uniform variables are read-only and are initialized either
2283 * directly by an application via API commands, or indirectly by
2284 * OpenGL."
2285 */
2286 if ((state->language_version <= 110)
2287 && (var->mode == ir_var_uniform)) {
2288 _mesa_glsl_error(& initializer_loc, state,
2289 "cannot initialize uniforms in GLSL 1.10");
2290 }
2291
2292 if (var->type->is_sampler()) {
2293 _mesa_glsl_error(& initializer_loc, state,
2294 "cannot initialize samplers");
2295 }
2296
2297 if ((var->mode == ir_var_in) && (state->current_function == NULL)) {
2298 _mesa_glsl_error(& initializer_loc, state,
2299 "cannot initialize %s shader input / %s",
2300 _mesa_glsl_shader_target_name(state->target),
2301 (state->target == vertex_shader)
2302 ? "attribute" : "varying");
2303 }
2304
2305 ir_dereference *const lhs = new(state) ir_dereference_variable(var);
2306 ir_rvalue *rhs = decl->initializer->hir(initializer_instructions,
2307 state);
2308
2309 /* Calculate the constant value if this is a const or uniform
2310 * declaration.
2311 */
2312 if (type->qualifier.flags.q.constant
2313 || type->qualifier.flags.q.uniform) {
2314 ir_rvalue *new_rhs = validate_assignment(state, var->type, rhs, true);
2315 if (new_rhs != NULL) {
2316 rhs = new_rhs;
2317
2318 ir_constant *constant_value = rhs->constant_expression_value();
2319 if (!constant_value) {
2320 _mesa_glsl_error(& initializer_loc, state,
2321 "initializer of %s variable `%s' must be a "
2322 "constant expression",
2323 (type->qualifier.flags.q.constant)
2324 ? "const" : "uniform",
2325 decl->identifier);
2326 if (var->type->is_numeric()) {
2327 /* Reduce cascading errors. */
2328 var->constant_value = ir_constant::zero(state, var->type);
2329 }
2330 } else {
2331 rhs = constant_value;
2332 var->constant_value = constant_value;
2333 }
2334 } else {
2335 _mesa_glsl_error(&initializer_loc, state,
2336 "initializer of type %s cannot be assigned to "
2337 "variable of type %s",
2338 rhs->type->name, var->type->name);
2339 if (var->type->is_numeric()) {
2340 /* Reduce cascading errors. */
2341 var->constant_value = ir_constant::zero(state, var->type);
2342 }
2343 }
2344 }
2345
2346 if (rhs && !rhs->type->is_error()) {
2347 bool temp = var->read_only;
2348 if (type->qualifier.flags.q.constant)
2349 var->read_only = false;
2350
2351 /* Never emit code to initialize a uniform.
2352 */
2353 const glsl_type *initializer_type;
2354 if (!type->qualifier.flags.q.uniform) {
2355 result = do_assignment(initializer_instructions, state,
2356 lhs, rhs, true,
2357 type->get_location());
2358 initializer_type = result->type;
2359 } else
2360 initializer_type = rhs->type;
2361
2362 /* If the declared variable is an unsized array, it must inherrit
2363 * its full type from the initializer. A declaration such as
2364 *
2365 * uniform float a[] = float[](1.0, 2.0, 3.0, 3.0);
2366 *
2367 * becomes
2368 *
2369 * uniform float a[4] = float[](1.0, 2.0, 3.0, 3.0);
2370 *
2371 * The assignment generated in the if-statement (below) will also
2372 * automatically handle this case for non-uniforms.
2373 *
2374 * If the declared variable is not an array, the types must
2375 * already match exactly. As a result, the type assignment
2376 * here can be done unconditionally. For non-uniforms the call
2377 * to do_assignment can change the type of the initializer (via
2378 * the implicit conversion rules). For uniforms the initializer
2379 * must be a constant expression, and the type of that expression
2380 * was validated above.
2381 */
2382 var->type = initializer_type;
2383
2384 var->read_only = temp;
2385 }
2386
2387 return result;
2388 }
2389
2390 ir_rvalue *
2391 ast_declarator_list::hir(exec_list *instructions,
2392 struct _mesa_glsl_parse_state *state)
2393 {
2394 void *ctx = state;
2395 const struct glsl_type *decl_type;
2396 const char *type_name = NULL;
2397 ir_rvalue *result = NULL;
2398 YYLTYPE loc = this->get_location();
2399
2400 /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec:
2401 *
2402 * "To ensure that a particular output variable is invariant, it is
2403 * necessary to use the invariant qualifier. It can either be used to
2404 * qualify a previously declared variable as being invariant
2405 *
2406 * invariant gl_Position; // make existing gl_Position be invariant"
2407 *
2408 * In these cases the parser will set the 'invariant' flag in the declarator
2409 * list, and the type will be NULL.
2410 */
2411 if (this->invariant) {
2412 assert(this->type == NULL);
2413
2414 if (state->current_function != NULL) {
2415 _mesa_glsl_error(& loc, state,
2416 "All uses of `invariant' keyword must be at global "
2417 "scope\n");
2418 }
2419
2420 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
2421 assert(!decl->is_array);
2422 assert(decl->array_size == NULL);
2423 assert(decl->initializer == NULL);
2424
2425 ir_variable *const earlier =
2426 state->symbols->get_variable(decl->identifier);
2427 if (earlier == NULL) {
2428 _mesa_glsl_error(& loc, state,
2429 "Undeclared variable `%s' cannot be marked "
2430 "invariant\n", decl->identifier);
2431 } else if ((state->target == vertex_shader)
2432 && (earlier->mode != ir_var_out)) {
2433 _mesa_glsl_error(& loc, state,
2434 "`%s' cannot be marked invariant, vertex shader "
2435 "outputs only\n", decl->identifier);
2436 } else if ((state->target == fragment_shader)
2437 && (earlier->mode != ir_var_in)) {
2438 _mesa_glsl_error(& loc, state,
2439 "`%s' cannot be marked invariant, fragment shader "
2440 "inputs only\n", decl->identifier);
2441 } else if (earlier->used) {
2442 _mesa_glsl_error(& loc, state,
2443 "variable `%s' may not be redeclared "
2444 "`invariant' after being used",
2445 earlier->name);
2446 } else {
2447 earlier->invariant = true;
2448 }
2449 }
2450
2451 /* Invariant redeclarations do not have r-values.
2452 */
2453 return NULL;
2454 }
2455
2456 assert(this->type != NULL);
2457 assert(!this->invariant);
2458
2459 /* The type specifier may contain a structure definition. Process that
2460 * before any of the variable declarations.
2461 */
2462 (void) this->type->specifier->hir(instructions, state);
2463
2464 decl_type = this->type->specifier->glsl_type(& type_name, state);
2465 if (this->declarations.is_empty()) {
2466 if (decl_type != NULL) {
2467 /* Warn if this empty declaration is not for declaring a structure.
2468 */
2469 if (this->type->specifier->structure == NULL) {
2470 _mesa_glsl_warning(&loc, state, "empty declaration");
2471 }
2472 } else {
2473 _mesa_glsl_error(& loc, state, "incomplete declaration");
2474 }
2475 }
2476
2477 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
2478 const struct glsl_type *var_type;
2479 ir_variable *var;
2480
2481 /* FINISHME: Emit a warning if a variable declaration shadows a
2482 * FINISHME: declaration at a higher scope.
2483 */
2484
2485 if ((decl_type == NULL) || decl_type->is_void()) {
2486 if (type_name != NULL) {
2487 _mesa_glsl_error(& loc, state,
2488 "invalid type `%s' in declaration of `%s'",
2489 type_name, decl->identifier);
2490 } else {
2491 _mesa_glsl_error(& loc, state,
2492 "invalid type in declaration of `%s'",
2493 decl->identifier);
2494 }
2495 continue;
2496 }
2497
2498 if (decl->is_array) {
2499 var_type = process_array_type(&loc, decl_type, decl->array_size,
2500 state);
2501 } else {
2502 var_type = decl_type;
2503 }
2504
2505 var = new(ctx) ir_variable(var_type, decl->identifier, ir_var_auto);
2506
2507 /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
2508 *
2509 * "Global variables can only use the qualifiers const,
2510 * attribute, uni form, or varying. Only one may be
2511 * specified.
2512 *
2513 * Local variables can only use the qualifier const."
2514 *
2515 * This is relaxed in GLSL 1.30. It is also relaxed by any extension
2516 * that adds the 'layout' keyword.
2517 */
2518 if ((state->language_version < 130)
2519 && !state->ARB_explicit_attrib_location_enable
2520 && !state->ARB_fragment_coord_conventions_enable) {
2521 if (this->type->qualifier.flags.q.out) {
2522 _mesa_glsl_error(& loc, state,
2523 "`out' qualifier in declaration of `%s' "
2524 "only valid for function parameters in %s.",
2525 decl->identifier, state->version_string);
2526 }
2527 if (this->type->qualifier.flags.q.in) {
2528 _mesa_glsl_error(& loc, state,
2529 "`in' qualifier in declaration of `%s' "
2530 "only valid for function parameters in %s.",
2531 decl->identifier, state->version_string);
2532 }
2533 /* FINISHME: Test for other invalid qualifiers. */
2534 }
2535
2536 apply_type_qualifier_to_variable(& this->type->qualifier, var, state,
2537 & loc);
2538
2539 if (this->type->qualifier.flags.q.invariant) {
2540 if ((state->target == vertex_shader) && !(var->mode == ir_var_out ||
2541 var->mode == ir_var_inout)) {
2542 /* FINISHME: Note that this doesn't work for invariant on
2543 * a function signature outval
2544 */
2545 _mesa_glsl_error(& loc, state,
2546 "`%s' cannot be marked invariant, vertex shader "
2547 "outputs only\n", var->name);
2548 } else if ((state->target == fragment_shader) &&
2549 !(var->mode == ir_var_in || var->mode == ir_var_inout)) {
2550 /* FINISHME: Note that this doesn't work for invariant on
2551 * a function signature inval
2552 */
2553 _mesa_glsl_error(& loc, state,
2554 "`%s' cannot be marked invariant, fragment shader "
2555 "inputs only\n", var->name);
2556 }
2557 }
2558
2559 if (state->current_function != NULL) {
2560 const char *mode = NULL;
2561 const char *extra = "";
2562
2563 /* There is no need to check for 'inout' here because the parser will
2564 * only allow that in function parameter lists.
2565 */
2566 if (this->type->qualifier.flags.q.attribute) {
2567 mode = "attribute";
2568 } else if (this->type->qualifier.flags.q.uniform) {
2569 mode = "uniform";
2570 } else if (this->type->qualifier.flags.q.varying) {
2571 mode = "varying";
2572 } else if (this->type->qualifier.flags.q.in) {
2573 mode = "in";
2574 extra = " or in function parameter list";
2575 } else if (this->type->qualifier.flags.q.out) {
2576 mode = "out";
2577 extra = " or in function parameter list";
2578 }
2579
2580 if (mode) {
2581 _mesa_glsl_error(& loc, state,
2582 "%s variable `%s' must be declared at "
2583 "global scope%s",
2584 mode, var->name, extra);
2585 }
2586 } else if (var->mode == ir_var_in) {
2587 var->read_only = true;
2588
2589 if (state->target == vertex_shader) {
2590 bool error_emitted = false;
2591
2592 /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
2593 *
2594 * "Vertex shader inputs can only be float, floating-point
2595 * vectors, matrices, signed and unsigned integers and integer
2596 * vectors. Vertex shader inputs can also form arrays of these
2597 * types, but not structures."
2598 *
2599 * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
2600 *
2601 * "Vertex shader inputs can only be float, floating-point
2602 * vectors, matrices, signed and unsigned integers and integer
2603 * vectors. They cannot be arrays or structures."
2604 *
2605 * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
2606 *
2607 * "The attribute qualifier can be used only with float,
2608 * floating-point vectors, and matrices. Attribute variables
2609 * cannot be declared as arrays or structures."
2610 */
2611 const glsl_type *check_type = var->type->is_array()
2612 ? var->type->fields.array : var->type;
2613
2614 switch (check_type->base_type) {
2615 case GLSL_TYPE_FLOAT:
2616 break;
2617 case GLSL_TYPE_UINT:
2618 case GLSL_TYPE_INT:
2619 if (state->language_version > 120)
2620 break;
2621 /* FALLTHROUGH */
2622 default:
2623 _mesa_glsl_error(& loc, state,
2624 "vertex shader input / attribute cannot have "
2625 "type %s`%s'",
2626 var->type->is_array() ? "array of " : "",
2627 check_type->name);
2628 error_emitted = true;
2629 }
2630
2631 if (!error_emitted && (state->language_version <= 130)
2632 && var->type->is_array()) {
2633 _mesa_glsl_error(& loc, state,
2634 "vertex shader input / attribute cannot have "
2635 "array type");
2636 error_emitted = true;
2637 }
2638 }
2639 }
2640
2641 /* Integer vertex outputs must be qualified with 'flat'.
2642 *
2643 * From section 4.3.6 of the GLSL 1.30 spec:
2644 * "If a vertex output is a signed or unsigned integer or integer
2645 * vector, then it must be qualified with the interpolation qualifier
2646 * flat."
2647 */
2648 if (state->language_version >= 130
2649 && state->target == vertex_shader
2650 && state->current_function == NULL
2651 && var->type->is_integer()
2652 && var->mode == ir_var_out
2653 && var->interpolation != ir_var_flat) {
2654
2655 _mesa_glsl_error(&loc, state, "If a vertex output is an integer, "
2656 "then it must be qualified with 'flat'");
2657 }
2658
2659
2660 /* Interpolation qualifiers cannot be applied to 'centroid' and
2661 * 'centroid varying'.
2662 *
2663 * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
2664 * "interpolation qualifiers may only precede the qualifiers in,
2665 * centroid in, out, or centroid out in a declaration. They do not apply
2666 * to the deprecated storage qualifiers varying or centroid varying."
2667 */
2668 if (state->language_version >= 130
2669 && this->type->qualifier.has_interpolation()
2670 && this->type->qualifier.flags.q.varying) {
2671
2672 const char *i = this->type->qualifier.interpolation_string();
2673 assert(i != NULL);
2674 const char *s;
2675 if (this->type->qualifier.flags.q.centroid)
2676 s = "centroid varying";
2677 else
2678 s = "varying";
2679
2680 _mesa_glsl_error(&loc, state,
2681 "qualifier '%s' cannot be applied to the "
2682 "deprecated storage qualifier '%s'", i, s);
2683 }
2684
2685
2686 /* Interpolation qualifiers can only apply to vertex shader outputs and
2687 * fragment shader inputs.
2688 *
2689 * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
2690 * "Outputs from a vertex shader (out) and inputs to a fragment
2691 * shader (in) can be further qualified with one or more of these
2692 * interpolation qualifiers"
2693 */
2694 if (state->language_version >= 130
2695 && this->type->qualifier.has_interpolation()) {
2696
2697 const char *i = this->type->qualifier.interpolation_string();
2698 assert(i != NULL);
2699
2700 switch (state->target) {
2701 case vertex_shader:
2702 if (this->type->qualifier.flags.q.in) {
2703 _mesa_glsl_error(&loc, state,
2704 "qualifier '%s' cannot be applied to vertex "
2705 "shader inputs", i);
2706 }
2707 break;
2708 case fragment_shader:
2709 if (this->type->qualifier.flags.q.out) {
2710 _mesa_glsl_error(&loc, state,
2711 "qualifier '%s' cannot be applied to fragment "
2712 "shader outputs", i);
2713 }
2714 break;
2715 default:
2716 assert(0);
2717 }
2718 }
2719
2720
2721 /* From section 4.3.4 of the GLSL 1.30 spec:
2722 * "It is an error to use centroid in in a vertex shader."
2723 */
2724 if (state->language_version >= 130
2725 && this->type->qualifier.flags.q.centroid
2726 && this->type->qualifier.flags.q.in
2727 && state->target == vertex_shader) {
2728
2729 _mesa_glsl_error(&loc, state,
2730 "'centroid in' cannot be used in a vertex shader");
2731 }
2732
2733
2734 /* Precision qualifiers exists only in GLSL versions 1.00 and >= 1.30.
2735 */
2736 if (this->type->specifier->precision != ast_precision_none
2737 && state->language_version != 100
2738 && state->language_version < 130) {
2739
2740 _mesa_glsl_error(&loc, state,
2741 "precision qualifiers are supported only in GLSL ES "
2742 "1.00, and GLSL 1.30 and later");
2743 }
2744
2745
2746 /* Precision qualifiers only apply to floating point and integer types.
2747 *
2748 * From section 4.5.2 of the GLSL 1.30 spec:
2749 * "Any floating point or any integer declaration can have the type
2750 * preceded by one of these precision qualifiers [...] Literal
2751 * constants do not have precision qualifiers. Neither do Boolean
2752 * variables.
2753 *
2754 * In GLSL ES, sampler types are also allowed.
2755 *
2756 * From page 87 of the GLSL ES spec:
2757 * "RESOLUTION: Allow sampler types to take a precision qualifier."
2758 */
2759 if (this->type->specifier->precision != ast_precision_none
2760 && !var->type->is_float()
2761 && !var->type->is_integer()
2762 && !(var->type->is_sampler() && state->es_shader)
2763 && !(var->type->is_array()
2764 && (var->type->fields.array->is_float()
2765 || var->type->fields.array->is_integer()))) {
2766
2767 _mesa_glsl_error(&loc, state,
2768 "precision qualifiers apply only to floating point"
2769 "%s types", state->es_shader ? ", integer, and sampler"
2770 : "and integer");
2771 }
2772
2773 /* From page 17 (page 23 of the PDF) of the GLSL 1.20 spec:
2774 *
2775 * "[Sampler types] can only be declared as function
2776 * parameters or uniform variables (see Section 4.3.5
2777 * "Uniform")".
2778 */
2779 if (var_type->contains_sampler() &&
2780 !this->type->qualifier.flags.q.uniform) {
2781 _mesa_glsl_error(&loc, state, "samplers must be declared uniform");
2782 }
2783
2784 /* Process the initializer and add its instructions to a temporary
2785 * list. This list will be added to the instruction stream (below) after
2786 * the declaration is added. This is done because in some cases (such as
2787 * redeclarations) the declaration may not actually be added to the
2788 * instruction stream.
2789 */
2790 exec_list initializer_instructions;
2791 ir_variable *earlier = get_variable_being_redeclared(var, decl, state);
2792
2793 if (decl->initializer != NULL) {
2794 result = process_initializer((earlier == NULL) ? var : earlier,
2795 decl, this->type,
2796 &initializer_instructions, state);
2797 }
2798
2799 /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
2800 *
2801 * "It is an error to write to a const variable outside of
2802 * its declaration, so they must be initialized when
2803 * declared."
2804 */
2805 if (this->type->qualifier.flags.q.constant && decl->initializer == NULL) {
2806 _mesa_glsl_error(& loc, state,
2807 "const declaration of `%s' must be initialized",
2808 decl->identifier);
2809 }
2810
2811 /* If the declaration is not a redeclaration, there are a few additional
2812 * semantic checks that must be applied. In addition, variable that was
2813 * created for the declaration should be added to the IR stream.
2814 */
2815 if (earlier == NULL) {
2816 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
2817 *
2818 * "Identifiers starting with "gl_" are reserved for use by
2819 * OpenGL, and may not be declared in a shader as either a
2820 * variable or a function."
2821 */
2822 if (strncmp(decl->identifier, "gl_", 3) == 0)
2823 _mesa_glsl_error(& loc, state,
2824 "identifier `%s' uses reserved `gl_' prefix",
2825 decl->identifier);
2826
2827 /* Add the variable to the symbol table. Note that the initializer's
2828 * IR was already processed earlier (though it hasn't been emitted
2829 * yet), without the variable in scope.
2830 *
2831 * This differs from most C-like languages, but it follows the GLSL
2832 * specification. From page 28 (page 34 of the PDF) of the GLSL 1.50
2833 * spec:
2834 *
2835 * "Within a declaration, the scope of a name starts immediately
2836 * after the initializer if present or immediately after the name
2837 * being declared if not."
2838 */
2839 if (!state->symbols->add_variable(var)) {
2840 YYLTYPE loc = this->get_location();
2841 _mesa_glsl_error(&loc, state, "name `%s' already taken in the "
2842 "current scope", decl->identifier);
2843 continue;
2844 }
2845
2846 /* Push the variable declaration to the top. It means that all the
2847 * variable declarations will appear in a funny last-to-first order,
2848 * but otherwise we run into trouble if a function is prototyped, a
2849 * global var is decled, then the function is defined with usage of
2850 * the global var. See glslparsertest's CorrectModule.frag.
2851 */
2852 instructions->push_head(var);
2853 }
2854
2855 instructions->append_list(&initializer_instructions);
2856 }
2857
2858
2859 /* Generally, variable declarations do not have r-values. However,
2860 * one is used for the declaration in
2861 *
2862 * while (bool b = some_condition()) {
2863 * ...
2864 * }
2865 *
2866 * so we return the rvalue from the last seen declaration here.
2867 */
2868 return result;
2869 }
2870
2871
2872 ir_rvalue *
2873 ast_parameter_declarator::hir(exec_list *instructions,
2874 struct _mesa_glsl_parse_state *state)
2875 {
2876 void *ctx = state;
2877 const struct glsl_type *type;
2878 const char *name = NULL;
2879 YYLTYPE loc = this->get_location();
2880
2881 type = this->type->specifier->glsl_type(& name, state);
2882
2883 if (type == NULL) {
2884 if (name != NULL) {
2885 _mesa_glsl_error(& loc, state,
2886 "invalid type `%s' in declaration of `%s'",
2887 name, this->identifier);
2888 } else {
2889 _mesa_glsl_error(& loc, state,
2890 "invalid type in declaration of `%s'",
2891 this->identifier);
2892 }
2893
2894 type = glsl_type::error_type;
2895 }
2896
2897 /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
2898 *
2899 * "Functions that accept no input arguments need not use void in the
2900 * argument list because prototypes (or definitions) are required and
2901 * therefore there is no ambiguity when an empty argument list "( )" is
2902 * declared. The idiom "(void)" as a parameter list is provided for
2903 * convenience."
2904 *
2905 * Placing this check here prevents a void parameter being set up
2906 * for a function, which avoids tripping up checks for main taking
2907 * parameters and lookups of an unnamed symbol.
2908 */
2909 if (type->is_void()) {
2910 if (this->identifier != NULL)
2911 _mesa_glsl_error(& loc, state,
2912 "named parameter cannot have type `void'");
2913
2914 is_void = true;
2915 return NULL;
2916 }
2917
2918 if (formal_parameter && (this->identifier == NULL)) {
2919 _mesa_glsl_error(& loc, state, "formal parameter lacks a name");
2920 return NULL;
2921 }
2922
2923 /* This only handles "vec4 foo[..]". The earlier specifier->glsl_type(...)
2924 * call already handled the "vec4[..] foo" case.
2925 */
2926 if (this->is_array) {
2927 type = process_array_type(&loc, type, this->array_size, state);
2928 }
2929
2930 if (type->array_size() == 0) {
2931 _mesa_glsl_error(&loc, state, "arrays passed as parameters must have "
2932 "a declared size.");
2933 type = glsl_type::error_type;
2934 }
2935
2936 is_void = false;
2937 ir_variable *var = new(ctx) ir_variable(type, this->identifier, ir_var_in);
2938
2939 /* Apply any specified qualifiers to the parameter declaration. Note that
2940 * for function parameters the default mode is 'in'.
2941 */
2942 apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc);
2943
2944 /* From page 17 (page 23 of the PDF) of the GLSL 1.20 spec:
2945 *
2946 * "Samplers cannot be treated as l-values; hence cannot be used
2947 * as out or inout function parameters, nor can they be assigned
2948 * into."
2949 */
2950 if ((var->mode == ir_var_inout || var->mode == ir_var_out)
2951 && type->contains_sampler()) {
2952 _mesa_glsl_error(&loc, state, "out and inout parameters cannot contain samplers");
2953 type = glsl_type::error_type;
2954 }
2955
2956 instructions->push_tail(var);
2957
2958 /* Parameter declarations do not have r-values.
2959 */
2960 return NULL;
2961 }
2962
2963
2964 void
2965 ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters,
2966 bool formal,
2967 exec_list *ir_parameters,
2968 _mesa_glsl_parse_state *state)
2969 {
2970 ast_parameter_declarator *void_param = NULL;
2971 unsigned count = 0;
2972
2973 foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) {
2974 param->formal_parameter = formal;
2975 param->hir(ir_parameters, state);
2976
2977 if (param->is_void)
2978 void_param = param;
2979
2980 count++;
2981 }
2982
2983 if ((void_param != NULL) && (count > 1)) {
2984 YYLTYPE loc = void_param->get_location();
2985
2986 _mesa_glsl_error(& loc, state,
2987 "`void' parameter must be only parameter");
2988 }
2989 }
2990
2991
2992 void
2993 emit_function(_mesa_glsl_parse_state *state, ir_function *f)
2994 {
2995 /* IR invariants disallow function declarations or definitions
2996 * nested within other function definitions. But there is no
2997 * requirement about the relative order of function declarations
2998 * and definitions with respect to one another. So simply insert
2999 * the new ir_function block at the end of the toplevel instruction
3000 * list.
3001 */
3002 state->toplevel_ir->push_tail(f);
3003 }
3004
3005
3006 ir_rvalue *
3007 ast_function::hir(exec_list *instructions,
3008 struct _mesa_glsl_parse_state *state)
3009 {
3010 void *ctx = state;
3011 ir_function *f = NULL;
3012 ir_function_signature *sig = NULL;
3013 exec_list hir_parameters;
3014
3015 const char *const name = identifier;
3016
3017 /* New functions are always added to the top-level IR instruction stream,
3018 * so this instruction list pointer is ignored. See also emit_function
3019 * (called below).
3020 */
3021 (void) instructions;
3022
3023 /* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec,
3024 *
3025 * "Function declarations (prototypes) cannot occur inside of functions;
3026 * they must be at global scope, or for the built-in functions, outside
3027 * the global scope."
3028 *
3029 * From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec,
3030 *
3031 * "User defined functions may only be defined within the global scope."
3032 *
3033 * Note that this language does not appear in GLSL 1.10.
3034 */
3035 if ((state->current_function != NULL) && (state->language_version != 110)) {
3036 YYLTYPE loc = this->get_location();
3037 _mesa_glsl_error(&loc, state,
3038 "declaration of function `%s' not allowed within "
3039 "function body", name);
3040 }
3041
3042 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
3043 *
3044 * "Identifiers starting with "gl_" are reserved for use by
3045 * OpenGL, and may not be declared in a shader as either a
3046 * variable or a function."
3047 */
3048 if (strncmp(name, "gl_", 3) == 0) {
3049 YYLTYPE loc = this->get_location();
3050 _mesa_glsl_error(&loc, state,
3051 "identifier `%s' uses reserved `gl_' prefix", name);
3052 }
3053
3054 /* Convert the list of function parameters to HIR now so that they can be
3055 * used below to compare this function's signature with previously seen
3056 * signatures for functions with the same name.
3057 */
3058 ast_parameter_declarator::parameters_to_hir(& this->parameters,
3059 is_definition,
3060 & hir_parameters, state);
3061
3062 const char *return_type_name;
3063 const glsl_type *return_type =
3064 this->return_type->specifier->glsl_type(& return_type_name, state);
3065
3066 if (!return_type) {
3067 YYLTYPE loc = this->get_location();
3068 _mesa_glsl_error(&loc, state,
3069 "function `%s' has undeclared return type `%s'",
3070 name, return_type_name);
3071 return_type = glsl_type::error_type;
3072 }
3073
3074 /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec:
3075 * "No qualifier is allowed on the return type of a function."
3076 */
3077 if (this->return_type->has_qualifiers()) {
3078 YYLTYPE loc = this->get_location();
3079 _mesa_glsl_error(& loc, state,
3080 "function `%s' return type has qualifiers", name);
3081 }
3082
3083 /* From page 17 (page 23 of the PDF) of the GLSL 1.20 spec:
3084 *
3085 * "[Sampler types] can only be declared as function parameters
3086 * or uniform variables (see Section 4.3.5 "Uniform")".
3087 */
3088 if (return_type->contains_sampler()) {
3089 YYLTYPE loc = this->get_location();
3090 _mesa_glsl_error(&loc, state,
3091 "function `%s' return type can't contain a sampler",
3092 name);
3093 }
3094
3095 /* Verify that this function's signature either doesn't match a previously
3096 * seen signature for a function with the same name, or, if a match is found,
3097 * that the previously seen signature does not have an associated definition.
3098 */
3099 f = state->symbols->get_function(name);
3100 if (f != NULL && (state->es_shader || f->has_user_signature())) {
3101 sig = f->exact_matching_signature(&hir_parameters);
3102 if (sig != NULL) {
3103 const char *badvar = sig->qualifiers_match(&hir_parameters);
3104 if (badvar != NULL) {
3105 YYLTYPE loc = this->get_location();
3106
3107 _mesa_glsl_error(&loc, state, "function `%s' parameter `%s' "
3108 "qualifiers don't match prototype", name, badvar);
3109 }
3110
3111 if (sig->return_type != return_type) {
3112 YYLTYPE loc = this->get_location();
3113
3114 _mesa_glsl_error(&loc, state, "function `%s' return type doesn't "
3115 "match prototype", name);
3116 }
3117
3118 if (is_definition && sig->is_defined) {
3119 YYLTYPE loc = this->get_location();
3120
3121 _mesa_glsl_error(& loc, state, "function `%s' redefined", name);
3122 }
3123 }
3124 } else {
3125 f = new(ctx) ir_function(name);
3126 if (!state->symbols->add_function(f)) {
3127 /* This function name shadows a non-function use of the same name. */
3128 YYLTYPE loc = this->get_location();
3129
3130 _mesa_glsl_error(&loc, state, "function name `%s' conflicts with "
3131 "non-function", name);
3132 return NULL;
3133 }
3134
3135 emit_function(state, f);
3136 }
3137
3138 /* Verify the return type of main() */
3139 if (strcmp(name, "main") == 0) {
3140 if (! return_type->is_void()) {
3141 YYLTYPE loc = this->get_location();
3142
3143 _mesa_glsl_error(& loc, state, "main() must return void");
3144 }
3145
3146 if (!hir_parameters.is_empty()) {
3147 YYLTYPE loc = this->get_location();
3148
3149 _mesa_glsl_error(& loc, state, "main() must not take any parameters");
3150 }
3151 }
3152
3153 /* Finish storing the information about this new function in its signature.
3154 */
3155 if (sig == NULL) {
3156 sig = new(ctx) ir_function_signature(return_type);
3157 f->add_signature(sig);
3158 }
3159
3160 sig->replace_parameters(&hir_parameters);
3161 signature = sig;
3162
3163 /* Function declarations (prototypes) do not have r-values.
3164 */
3165 return NULL;
3166 }
3167
3168
3169 ir_rvalue *
3170 ast_function_definition::hir(exec_list *instructions,
3171 struct _mesa_glsl_parse_state *state)
3172 {
3173 prototype->is_definition = true;
3174 prototype->hir(instructions, state);
3175
3176 ir_function_signature *signature = prototype->signature;
3177 if (signature == NULL)
3178 return NULL;
3179
3180 assert(state->current_function == NULL);
3181 state->current_function = signature;
3182 state->found_return = false;
3183
3184 /* Duplicate parameters declared in the prototype as concrete variables.
3185 * Add these to the symbol table.
3186 */
3187 state->symbols->push_scope();
3188 foreach_iter(exec_list_iterator, iter, signature->parameters) {
3189 ir_variable *const var = ((ir_instruction *) iter.get())->as_variable();
3190
3191 assert(var != NULL);
3192
3193 /* The only way a parameter would "exist" is if two parameters have
3194 * the same name.
3195 */
3196 if (state->symbols->name_declared_this_scope(var->name)) {
3197 YYLTYPE loc = this->get_location();
3198
3199 _mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name);
3200 } else {
3201 state->symbols->add_variable(var);
3202 }
3203 }
3204
3205 /* Convert the body of the function to HIR. */
3206 this->body->hir(&signature->body, state);
3207 signature->is_defined = true;
3208
3209 state->symbols->pop_scope();
3210
3211 assert(state->current_function == signature);
3212 state->current_function = NULL;
3213
3214 if (!signature->return_type->is_void() && !state->found_return) {
3215 YYLTYPE loc = this->get_location();
3216 _mesa_glsl_error(& loc, state, "function `%s' has non-void return type "
3217 "%s, but no return statement",
3218 signature->function_name(),
3219 signature->return_type->name);
3220 }
3221
3222 /* Function definitions do not have r-values.
3223 */
3224 return NULL;
3225 }
3226
3227
3228 ir_rvalue *
3229 ast_jump_statement::hir(exec_list *instructions,
3230 struct _mesa_glsl_parse_state *state)
3231 {
3232 void *ctx = state;
3233
3234 switch (mode) {
3235 case ast_return: {
3236 ir_return *inst;
3237 assert(state->current_function);
3238
3239 if (opt_return_value) {
3240 ir_rvalue *const ret = opt_return_value->hir(instructions, state);
3241
3242 /* The value of the return type can be NULL if the shader says
3243 * 'return foo();' and foo() is a function that returns void.
3244 *
3245 * NOTE: The GLSL spec doesn't say that this is an error. The type
3246 * of the return value is void. If the return type of the function is
3247 * also void, then this should compile without error. Seriously.
3248 */
3249 const glsl_type *const ret_type =
3250 (ret == NULL) ? glsl_type::void_type : ret->type;
3251
3252 /* Implicit conversions are not allowed for return values. */
3253 if (state->current_function->return_type != ret_type) {
3254 YYLTYPE loc = this->get_location();
3255
3256 _mesa_glsl_error(& loc, state,
3257 "`return' with wrong type %s, in function `%s' "
3258 "returning %s",
3259 ret_type->name,
3260 state->current_function->function_name(),
3261 state->current_function->return_type->name);
3262 }
3263
3264 inst = new(ctx) ir_return(ret);
3265 } else {
3266 if (state->current_function->return_type->base_type !=
3267 GLSL_TYPE_VOID) {
3268 YYLTYPE loc = this->get_location();
3269
3270 _mesa_glsl_error(& loc, state,
3271 "`return' with no value, in function %s returning "
3272 "non-void",
3273 state->current_function->function_name());
3274 }
3275 inst = new(ctx) ir_return;
3276 }
3277
3278 state->found_return = true;
3279 instructions->push_tail(inst);
3280 break;
3281 }
3282
3283 case ast_discard:
3284 if (state->target != fragment_shader) {
3285 YYLTYPE loc = this->get_location();
3286
3287 _mesa_glsl_error(& loc, state,
3288 "`discard' may only appear in a fragment shader");
3289 }
3290 instructions->push_tail(new(ctx) ir_discard);
3291 break;
3292
3293 case ast_break:
3294 case ast_continue:
3295 /* FINISHME: Handle switch-statements. They cannot contain 'continue',
3296 * FINISHME: and they use a different IR instruction for 'break'.
3297 */
3298 /* FINISHME: Correctly handle the nesting. If a switch-statement is
3299 * FINISHME: inside a loop, a 'continue' is valid and will bind to the
3300 * FINISHME: loop.
3301 */
3302 if (state->loop_or_switch_nesting == NULL) {
3303 YYLTYPE loc = this->get_location();
3304
3305 _mesa_glsl_error(& loc, state,
3306 "`%s' may only appear in a loop",
3307 (mode == ast_break) ? "break" : "continue");
3308 } else {
3309 ir_loop *const loop = state->loop_or_switch_nesting->as_loop();
3310
3311 /* Inline the for loop expression again, since we don't know
3312 * where near the end of the loop body the normal copy of it
3313 * is going to be placed.
3314 */
3315 if (mode == ast_continue &&
3316 state->loop_or_switch_nesting_ast->rest_expression) {
3317 state->loop_or_switch_nesting_ast->rest_expression->hir(instructions,
3318 state);
3319 }
3320
3321 if (loop != NULL) {
3322 ir_loop_jump *const jump =
3323 new(ctx) ir_loop_jump((mode == ast_break)
3324 ? ir_loop_jump::jump_break
3325 : ir_loop_jump::jump_continue);
3326 instructions->push_tail(jump);
3327 }
3328 }
3329
3330 break;
3331 }
3332
3333 /* Jump instructions do not have r-values.
3334 */
3335 return NULL;
3336 }
3337
3338
3339 ir_rvalue *
3340 ast_selection_statement::hir(exec_list *instructions,
3341 struct _mesa_glsl_parse_state *state)
3342 {
3343 void *ctx = state;
3344
3345 ir_rvalue *const condition = this->condition->hir(instructions, state);
3346
3347 /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
3348 *
3349 * "Any expression whose type evaluates to a Boolean can be used as the
3350 * conditional expression bool-expression. Vector types are not accepted
3351 * as the expression to if."
3352 *
3353 * The checks are separated so that higher quality diagnostics can be
3354 * generated for cases where both rules are violated.
3355 */
3356 if (!condition->type->is_boolean() || !condition->type->is_scalar()) {
3357 YYLTYPE loc = this->condition->get_location();
3358
3359 _mesa_glsl_error(& loc, state, "if-statement condition must be scalar "
3360 "boolean");
3361 }
3362
3363 ir_if *const stmt = new(ctx) ir_if(condition);
3364
3365 if (then_statement != NULL) {
3366 state->symbols->push_scope();
3367 then_statement->hir(& stmt->then_instructions, state);
3368 state->symbols->pop_scope();
3369 }
3370
3371 if (else_statement != NULL) {
3372 state->symbols->push_scope();
3373 else_statement->hir(& stmt->else_instructions, state);
3374 state->symbols->pop_scope();
3375 }
3376
3377 instructions->push_tail(stmt);
3378
3379 /* if-statements do not have r-values.
3380 */
3381 return NULL;
3382 }
3383
3384
3385 void
3386 ast_iteration_statement::condition_to_hir(ir_loop *stmt,
3387 struct _mesa_glsl_parse_state *state)
3388 {
3389 void *ctx = state;
3390
3391 if (condition != NULL) {
3392 ir_rvalue *const cond =
3393 condition->hir(& stmt->body_instructions, state);
3394
3395 if ((cond == NULL)
3396 || !cond->type->is_boolean() || !cond->type->is_scalar()) {
3397 YYLTYPE loc = condition->get_location();
3398
3399 _mesa_glsl_error(& loc, state,
3400 "loop condition must be scalar boolean");
3401 } else {
3402 /* As the first code in the loop body, generate a block that looks
3403 * like 'if (!condition) break;' as the loop termination condition.
3404 */
3405 ir_rvalue *const not_cond =
3406 new(ctx) ir_expression(ir_unop_logic_not, glsl_type::bool_type, cond,
3407 NULL);
3408
3409 ir_if *const if_stmt = new(ctx) ir_if(not_cond);
3410
3411 ir_jump *const break_stmt =
3412 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
3413
3414 if_stmt->then_instructions.push_tail(break_stmt);
3415 stmt->body_instructions.push_tail(if_stmt);
3416 }
3417 }
3418 }
3419
3420
3421 ir_rvalue *
3422 ast_iteration_statement::hir(exec_list *instructions,
3423 struct _mesa_glsl_parse_state *state)
3424 {
3425 void *ctx = state;
3426
3427 /* For-loops and while-loops start a new scope, but do-while loops do not.
3428 */
3429 if (mode != ast_do_while)
3430 state->symbols->push_scope();
3431
3432 if (init_statement != NULL)
3433 init_statement->hir(instructions, state);
3434
3435 ir_loop *const stmt = new(ctx) ir_loop();
3436 instructions->push_tail(stmt);
3437
3438 /* Track the current loop and / or switch-statement nesting.
3439 */
3440 ir_instruction *const nesting = state->loop_or_switch_nesting;
3441 ast_iteration_statement *nesting_ast = state->loop_or_switch_nesting_ast;
3442
3443 state->loop_or_switch_nesting = stmt;
3444 state->loop_or_switch_nesting_ast = this;
3445
3446 if (mode != ast_do_while)
3447 condition_to_hir(stmt, state);
3448
3449 if (body != NULL)
3450 body->hir(& stmt->body_instructions, state);
3451
3452 if (rest_expression != NULL)
3453 rest_expression->hir(& stmt->body_instructions, state);
3454
3455 if (mode == ast_do_while)
3456 condition_to_hir(stmt, state);
3457
3458 if (mode != ast_do_while)
3459 state->symbols->pop_scope();
3460
3461 /* Restore previous nesting before returning.
3462 */
3463 state->loop_or_switch_nesting = nesting;
3464 state->loop_or_switch_nesting_ast = nesting_ast;
3465
3466 /* Loops do not have r-values.
3467 */
3468 return NULL;
3469 }
3470
3471
3472 ir_rvalue *
3473 ast_type_specifier::hir(exec_list *instructions,
3474 struct _mesa_glsl_parse_state *state)
3475 {
3476 if (!this->is_precision_statement && this->structure == NULL)
3477 return NULL;
3478
3479 YYLTYPE loc = this->get_location();
3480
3481 if (this->precision != ast_precision_none
3482 && state->language_version != 100
3483 && state->language_version < 130) {
3484 _mesa_glsl_error(&loc, state,
3485 "precision qualifiers exist only in "
3486 "GLSL ES 1.00, and GLSL 1.30 and later");
3487 return NULL;
3488 }
3489 if (this->precision != ast_precision_none
3490 && this->structure != NULL) {
3491 _mesa_glsl_error(&loc, state,
3492 "precision qualifiers do not apply to structures");
3493 return NULL;
3494 }
3495
3496 /* If this is a precision statement, check that the type to which it is
3497 * applied is either float or int.
3498 *
3499 * From section 4.5.3 of the GLSL 1.30 spec:
3500 * "The precision statement
3501 * precision precision-qualifier type;
3502 * can be used to establish a default precision qualifier. The type
3503 * field can be either int or float [...]. Any other types or
3504 * qualifiers will result in an error.
3505 */
3506 if (this->is_precision_statement) {
3507 assert(this->precision != ast_precision_none);
3508 assert(this->structure == NULL); /* The check for structures was
3509 * performed above. */
3510 if (this->is_array) {
3511 _mesa_glsl_error(&loc, state,
3512 "default precision statements do not apply to "
3513 "arrays");
3514 return NULL;
3515 }
3516 if (this->type_specifier != ast_float
3517 && this->type_specifier != ast_int) {
3518 _mesa_glsl_error(&loc, state,
3519 "default precision statements apply only to types "
3520 "float and int");
3521 return NULL;
3522 }
3523
3524 /* FINISHME: Translate precision statements into IR. */
3525 return NULL;
3526 }
3527
3528 if (this->structure != NULL)
3529 return this->structure->hir(instructions, state);
3530
3531 return NULL;
3532 }
3533
3534
3535 ir_rvalue *
3536 ast_struct_specifier::hir(exec_list *instructions,
3537 struct _mesa_glsl_parse_state *state)
3538 {
3539 unsigned decl_count = 0;
3540
3541 /* Make an initial pass over the list of structure fields to determine how
3542 * many there are. Each element in this list is an ast_declarator_list.
3543 * This means that we actually need to count the number of elements in the
3544 * 'declarations' list in each of the elements.
3545 */
3546 foreach_list_typed (ast_declarator_list, decl_list, link,
3547 &this->declarations) {
3548 foreach_list_const (decl_ptr, & decl_list->declarations) {
3549 decl_count++;
3550 }
3551 }
3552
3553 /* Allocate storage for the structure fields and process the field
3554 * declarations. As the declarations are processed, try to also convert
3555 * the types to HIR. This ensures that structure definitions embedded in
3556 * other structure definitions are processed.
3557 */
3558 glsl_struct_field *const fields = ralloc_array(state, glsl_struct_field,
3559 decl_count);
3560
3561 unsigned i = 0;
3562 foreach_list_typed (ast_declarator_list, decl_list, link,
3563 &this->declarations) {
3564 const char *type_name;
3565
3566 decl_list->type->specifier->hir(instructions, state);
3567
3568 /* Section 10.9 of the GLSL ES 1.00 specification states that
3569 * embedded structure definitions have been removed from the language.
3570 */
3571 if (state->es_shader && decl_list->type->specifier->structure != NULL) {
3572 YYLTYPE loc = this->get_location();
3573 _mesa_glsl_error(&loc, state, "Embedded structure definitions are "
3574 "not allowed in GLSL ES 1.00.");
3575 }
3576
3577 const glsl_type *decl_type =
3578 decl_list->type->specifier->glsl_type(& type_name, state);
3579
3580 foreach_list_typed (ast_declaration, decl, link,
3581 &decl_list->declarations) {
3582 const struct glsl_type *field_type = decl_type;
3583 if (decl->is_array) {
3584 YYLTYPE loc = decl->get_location();
3585 field_type = process_array_type(&loc, decl_type, decl->array_size,
3586 state);
3587 }
3588 fields[i].type = (field_type != NULL)
3589 ? field_type : glsl_type::error_type;
3590 fields[i].name = decl->identifier;
3591 i++;
3592 }
3593 }
3594
3595 assert(i == decl_count);
3596
3597 const glsl_type *t =
3598 glsl_type::get_record_instance(fields, decl_count, this->name);
3599
3600 YYLTYPE loc = this->get_location();
3601 if (!state->symbols->add_type(name, t)) {
3602 _mesa_glsl_error(& loc, state, "struct `%s' previously defined", name);
3603 } else {
3604 const glsl_type **s = reralloc(state, state->user_structures,
3605 const glsl_type *,
3606 state->num_user_structures + 1);
3607 if (s != NULL) {
3608 s[state->num_user_structures] = t;
3609 state->user_structures = s;
3610 state->num_user_structures++;
3611 }
3612 }
3613
3614 /* Structure type definitions do not have r-values.
3615 */
3616 return NULL;
3617 }