glsl: Refactor handling of ast_array_index to a separate function
[mesa.git] / src / glsl / ast_to_hir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file ast_to_hir.c
26 * Convert abstract syntax to to high-level intermediate reprensentation (HIR).
27 *
28 * During the conversion to HIR, the majority of the symantic checking is
29 * preformed on the program. This includes:
30 *
31 * * Symbol table management
32 * * Type checking
33 * * Function binding
34 *
35 * The majority of this work could be done during parsing, and the parser could
36 * probably generate HIR directly. However, this results in frequent changes
37 * to the parser code. Since we do not assume that every system this complier
38 * is built on will have Flex and Bison installed, we have to store the code
39 * generated by these tools in our version control system. In other parts of
40 * the system we've seen problems where a parser was changed but the generated
41 * code was not committed, merge conflicts where created because two developers
42 * had slightly different versions of Bison installed, etc.
43 *
44 * I have also noticed that running Bison generated parsers in GDB is very
45 * irritating. When you get a segfault on '$$ = $1->foo', you can't very
46 * well 'print $1' in GDB.
47 *
48 * As a result, my preference is to put as little C code as possible in the
49 * parser (and lexer) sources.
50 */
51
52 #include "main/core.h" /* for struct gl_extensions */
53 #include "glsl_symbol_table.h"
54 #include "glsl_parser_extras.h"
55 #include "ast.h"
56 #include "glsl_types.h"
57 #include "program/hash_table.h"
58 #include "ir.h"
59
60 static void
61 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
62 exec_list *instructions);
63
64 void
65 _mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
66 {
67 _mesa_glsl_initialize_variables(instructions, state);
68
69 state->symbols->separate_function_namespace = state->language_version == 110;
70
71 state->current_function = NULL;
72
73 state->toplevel_ir = instructions;
74
75 /* Section 4.2 of the GLSL 1.20 specification states:
76 * "The built-in functions are scoped in a scope outside the global scope
77 * users declare global variables in. That is, a shader's global scope,
78 * available for user-defined functions and global variables, is nested
79 * inside the scope containing the built-in functions."
80 *
81 * Since built-in functions like ftransform() access built-in variables,
82 * it follows that those must be in the outer scope as well.
83 *
84 * We push scope here to create this nesting effect...but don't pop.
85 * This way, a shader's globals are still in the symbol table for use
86 * by the linker.
87 */
88 state->symbols->push_scope();
89
90 foreach_list_typed (ast_node, ast, link, & state->translation_unit)
91 ast->hir(instructions, state);
92
93 detect_recursion_unlinked(state, instructions);
94 detect_conflicting_assignments(state, instructions);
95
96 state->toplevel_ir = NULL;
97 }
98
99
100 /**
101 * If a conversion is available, convert one operand to a different type
102 *
103 * The \c from \c ir_rvalue is converted "in place".
104 *
105 * \param to Type that the operand it to be converted to
106 * \param from Operand that is being converted
107 * \param state GLSL compiler state
108 *
109 * \return
110 * If a conversion is possible (or unnecessary), \c true is returned.
111 * Otherwise \c false is returned.
112 */
113 bool
114 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
115 struct _mesa_glsl_parse_state *state)
116 {
117 void *ctx = state;
118 if (to->base_type == from->type->base_type)
119 return true;
120
121 /* This conversion was added in GLSL 1.20. If the compilation mode is
122 * GLSL 1.10, the conversion is skipped.
123 */
124 if (!state->is_version(120, 0))
125 return false;
126
127 /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
128 *
129 * "There are no implicit array or structure conversions. For
130 * example, an array of int cannot be implicitly converted to an
131 * array of float. There are no implicit conversions between
132 * signed and unsigned integers."
133 */
134 /* FINISHME: The above comment is partially a lie. There is int/uint
135 * FINISHME: conversion for immediate constants.
136 */
137 if (!to->is_float() || !from->type->is_numeric())
138 return false;
139
140 /* Convert to a floating point type with the same number of components
141 * as the original type - i.e. int to float, not int to vec4.
142 */
143 to = glsl_type::get_instance(GLSL_TYPE_FLOAT, from->type->vector_elements,
144 from->type->matrix_columns);
145
146 switch (from->type->base_type) {
147 case GLSL_TYPE_INT:
148 from = new(ctx) ir_expression(ir_unop_i2f, to, from, NULL);
149 break;
150 case GLSL_TYPE_UINT:
151 from = new(ctx) ir_expression(ir_unop_u2f, to, from, NULL);
152 break;
153 case GLSL_TYPE_BOOL:
154 from = new(ctx) ir_expression(ir_unop_b2f, to, from, NULL);
155 break;
156 default:
157 assert(0);
158 }
159
160 return true;
161 }
162
163
164 static const struct glsl_type *
165 arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
166 bool multiply,
167 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
168 {
169 const glsl_type *type_a = value_a->type;
170 const glsl_type *type_b = value_b->type;
171
172 /* From GLSL 1.50 spec, page 56:
173 *
174 * "The arithmetic binary operators add (+), subtract (-),
175 * multiply (*), and divide (/) operate on integer and
176 * floating-point scalars, vectors, and matrices."
177 */
178 if (!type_a->is_numeric() || !type_b->is_numeric()) {
179 _mesa_glsl_error(loc, state,
180 "Operands to arithmetic operators must be numeric");
181 return glsl_type::error_type;
182 }
183
184
185 /* "If one operand is floating-point based and the other is
186 * not, then the conversions from Section 4.1.10 "Implicit
187 * Conversions" are applied to the non-floating-point-based operand."
188 */
189 if (!apply_implicit_conversion(type_a, value_b, state)
190 && !apply_implicit_conversion(type_b, value_a, state)) {
191 _mesa_glsl_error(loc, state,
192 "Could not implicitly convert operands to "
193 "arithmetic operator");
194 return glsl_type::error_type;
195 }
196 type_a = value_a->type;
197 type_b = value_b->type;
198
199 /* "If the operands are integer types, they must both be signed or
200 * both be unsigned."
201 *
202 * From this rule and the preceeding conversion it can be inferred that
203 * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
204 * The is_numeric check above already filtered out the case where either
205 * type is not one of these, so now the base types need only be tested for
206 * equality.
207 */
208 if (type_a->base_type != type_b->base_type) {
209 _mesa_glsl_error(loc, state,
210 "base type mismatch for arithmetic operator");
211 return glsl_type::error_type;
212 }
213
214 /* "All arithmetic binary operators result in the same fundamental type
215 * (signed integer, unsigned integer, or floating-point) as the
216 * operands they operate on, after operand type conversion. After
217 * conversion, the following cases are valid
218 *
219 * * The two operands are scalars. In this case the operation is
220 * applied, resulting in a scalar."
221 */
222 if (type_a->is_scalar() && type_b->is_scalar())
223 return type_a;
224
225 /* "* One operand is a scalar, and the other is a vector or matrix.
226 * In this case, the scalar operation is applied independently to each
227 * component of the vector or matrix, resulting in the same size
228 * vector or matrix."
229 */
230 if (type_a->is_scalar()) {
231 if (!type_b->is_scalar())
232 return type_b;
233 } else if (type_b->is_scalar()) {
234 return type_a;
235 }
236
237 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
238 * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
239 * handled.
240 */
241 assert(!type_a->is_scalar());
242 assert(!type_b->is_scalar());
243
244 /* "* The two operands are vectors of the same size. In this case, the
245 * operation is done component-wise resulting in the same size
246 * vector."
247 */
248 if (type_a->is_vector() && type_b->is_vector()) {
249 if (type_a == type_b) {
250 return type_a;
251 } else {
252 _mesa_glsl_error(loc, state,
253 "vector size mismatch for arithmetic operator");
254 return glsl_type::error_type;
255 }
256 }
257
258 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
259 * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
260 * <vector, vector> have been handled. At least one of the operands must
261 * be matrix. Further, since there are no integer matrix types, the base
262 * type of both operands must be float.
263 */
264 assert(type_a->is_matrix() || type_b->is_matrix());
265 assert(type_a->base_type == GLSL_TYPE_FLOAT);
266 assert(type_b->base_type == GLSL_TYPE_FLOAT);
267
268 /* "* The operator is add (+), subtract (-), or divide (/), and the
269 * operands are matrices with the same number of rows and the same
270 * number of columns. In this case, the operation is done component-
271 * wise resulting in the same size matrix."
272 * * The operator is multiply (*), where both operands are matrices or
273 * one operand is a vector and the other a matrix. A right vector
274 * operand is treated as a column vector and a left vector operand as a
275 * row vector. In all these cases, it is required that the number of
276 * columns of the left operand is equal to the number of rows of the
277 * right operand. Then, the multiply (*) operation does a linear
278 * algebraic multiply, yielding an object that has the same number of
279 * rows as the left operand and the same number of columns as the right
280 * operand. Section 5.10 "Vector and Matrix Operations" explains in
281 * more detail how vectors and matrices are operated on."
282 */
283 if (! multiply) {
284 if (type_a == type_b)
285 return type_a;
286 } else {
287 if (type_a->is_matrix() && type_b->is_matrix()) {
288 /* Matrix multiply. The columns of A must match the rows of B. Given
289 * the other previously tested constraints, this means the vector type
290 * of a row from A must be the same as the vector type of a column from
291 * B.
292 */
293 if (type_a->row_type() == type_b->column_type()) {
294 /* The resulting matrix has the number of columns of matrix B and
295 * the number of rows of matrix A. We get the row count of A by
296 * looking at the size of a vector that makes up a column. The
297 * transpose (size of a row) is done for B.
298 */
299 const glsl_type *const type =
300 glsl_type::get_instance(type_a->base_type,
301 type_a->column_type()->vector_elements,
302 type_b->row_type()->vector_elements);
303 assert(type != glsl_type::error_type);
304
305 return type;
306 }
307 } else if (type_a->is_matrix()) {
308 /* A is a matrix and B is a column vector. Columns of A must match
309 * rows of B. Given the other previously tested constraints, this
310 * means the vector type of a row from A must be the same as the
311 * vector the type of B.
312 */
313 if (type_a->row_type() == type_b) {
314 /* The resulting vector has a number of elements equal to
315 * the number of rows of matrix A. */
316 const glsl_type *const type =
317 glsl_type::get_instance(type_a->base_type,
318 type_a->column_type()->vector_elements,
319 1);
320 assert(type != glsl_type::error_type);
321
322 return type;
323 }
324 } else {
325 assert(type_b->is_matrix());
326
327 /* A is a row vector and B is a matrix. Columns of A must match rows
328 * of B. Given the other previously tested constraints, this means
329 * the type of A must be the same as the vector type of a column from
330 * B.
331 */
332 if (type_a == type_b->column_type()) {
333 /* The resulting vector has a number of elements equal to
334 * the number of columns of matrix B. */
335 const glsl_type *const type =
336 glsl_type::get_instance(type_a->base_type,
337 type_b->row_type()->vector_elements,
338 1);
339 assert(type != glsl_type::error_type);
340
341 return type;
342 }
343 }
344
345 _mesa_glsl_error(loc, state, "size mismatch for matrix multiplication");
346 return glsl_type::error_type;
347 }
348
349
350 /* "All other cases are illegal."
351 */
352 _mesa_glsl_error(loc, state, "type mismatch");
353 return glsl_type::error_type;
354 }
355
356
357 static const struct glsl_type *
358 unary_arithmetic_result_type(const struct glsl_type *type,
359 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
360 {
361 /* From GLSL 1.50 spec, page 57:
362 *
363 * "The arithmetic unary operators negate (-), post- and pre-increment
364 * and decrement (-- and ++) operate on integer or floating-point
365 * values (including vectors and matrices). All unary operators work
366 * component-wise on their operands. These result with the same type
367 * they operated on."
368 */
369 if (!type->is_numeric()) {
370 _mesa_glsl_error(loc, state,
371 "Operands to arithmetic operators must be numeric");
372 return glsl_type::error_type;
373 }
374
375 return type;
376 }
377
378 /**
379 * \brief Return the result type of a bit-logic operation.
380 *
381 * If the given types to the bit-logic operator are invalid, return
382 * glsl_type::error_type.
383 *
384 * \param type_a Type of LHS of bit-logic op
385 * \param type_b Type of RHS of bit-logic op
386 */
387 static const struct glsl_type *
388 bit_logic_result_type(const struct glsl_type *type_a,
389 const struct glsl_type *type_b,
390 ast_operators op,
391 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
392 {
393 if (!state->check_bitwise_operations_allowed(loc)) {
394 return glsl_type::error_type;
395 }
396
397 /* From page 50 (page 56 of PDF) of GLSL 1.30 spec:
398 *
399 * "The bitwise operators and (&), exclusive-or (^), and inclusive-or
400 * (|). The operands must be of type signed or unsigned integers or
401 * integer vectors."
402 */
403 if (!type_a->is_integer()) {
404 _mesa_glsl_error(loc, state, "LHS of `%s' must be an integer",
405 ast_expression::operator_string(op));
406 return glsl_type::error_type;
407 }
408 if (!type_b->is_integer()) {
409 _mesa_glsl_error(loc, state, "RHS of `%s' must be an integer",
410 ast_expression::operator_string(op));
411 return glsl_type::error_type;
412 }
413
414 /* "The fundamental types of the operands (signed or unsigned) must
415 * match,"
416 */
417 if (type_a->base_type != type_b->base_type) {
418 _mesa_glsl_error(loc, state, "operands of `%s' must have the same "
419 "base type", ast_expression::operator_string(op));
420 return glsl_type::error_type;
421 }
422
423 /* "The operands cannot be vectors of differing size." */
424 if (type_a->is_vector() &&
425 type_b->is_vector() &&
426 type_a->vector_elements != type_b->vector_elements) {
427 _mesa_glsl_error(loc, state, "operands of `%s' cannot be vectors of "
428 "different sizes", ast_expression::operator_string(op));
429 return glsl_type::error_type;
430 }
431
432 /* "If one operand is a scalar and the other a vector, the scalar is
433 * applied component-wise to the vector, resulting in the same type as
434 * the vector. The fundamental types of the operands [...] will be the
435 * resulting fundamental type."
436 */
437 if (type_a->is_scalar())
438 return type_b;
439 else
440 return type_a;
441 }
442
443 static const struct glsl_type *
444 modulus_result_type(const struct glsl_type *type_a,
445 const struct glsl_type *type_b,
446 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
447 {
448 if (!state->check_version(130, 300, loc, "operator '%%' is reserved")) {
449 return glsl_type::error_type;
450 }
451
452 /* From GLSL 1.50 spec, page 56:
453 * "The operator modulus (%) operates on signed or unsigned integers or
454 * integer vectors. The operand types must both be signed or both be
455 * unsigned."
456 */
457 if (!type_a->is_integer()) {
458 _mesa_glsl_error(loc, state, "LHS of operator %% must be an integer.");
459 return glsl_type::error_type;
460 }
461 if (!type_b->is_integer()) {
462 _mesa_glsl_error(loc, state, "RHS of operator %% must be an integer.");
463 return glsl_type::error_type;
464 }
465 if (type_a->base_type != type_b->base_type) {
466 _mesa_glsl_error(loc, state,
467 "operands of %% must have the same base type");
468 return glsl_type::error_type;
469 }
470
471 /* "The operands cannot be vectors of differing size. If one operand is
472 * a scalar and the other vector, then the scalar is applied component-
473 * wise to the vector, resulting in the same type as the vector. If both
474 * are vectors of the same size, the result is computed component-wise."
475 */
476 if (type_a->is_vector()) {
477 if (!type_b->is_vector()
478 || (type_a->vector_elements == type_b->vector_elements))
479 return type_a;
480 } else
481 return type_b;
482
483 /* "The operator modulus (%) is not defined for any other data types
484 * (non-integer types)."
485 */
486 _mesa_glsl_error(loc, state, "type mismatch");
487 return glsl_type::error_type;
488 }
489
490
491 static const struct glsl_type *
492 relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
493 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
494 {
495 const glsl_type *type_a = value_a->type;
496 const glsl_type *type_b = value_b->type;
497
498 /* From GLSL 1.50 spec, page 56:
499 * "The relational operators greater than (>), less than (<), greater
500 * than or equal (>=), and less than or equal (<=) operate only on
501 * scalar integer and scalar floating-point expressions."
502 */
503 if (!type_a->is_numeric()
504 || !type_b->is_numeric()
505 || !type_a->is_scalar()
506 || !type_b->is_scalar()) {
507 _mesa_glsl_error(loc, state,
508 "Operands to relational operators must be scalar and "
509 "numeric");
510 return glsl_type::error_type;
511 }
512
513 /* "Either the operands' types must match, or the conversions from
514 * Section 4.1.10 "Implicit Conversions" will be applied to the integer
515 * operand, after which the types must match."
516 */
517 if (!apply_implicit_conversion(type_a, value_b, state)
518 && !apply_implicit_conversion(type_b, value_a, state)) {
519 _mesa_glsl_error(loc, state,
520 "Could not implicitly convert operands to "
521 "relational operator");
522 return glsl_type::error_type;
523 }
524 type_a = value_a->type;
525 type_b = value_b->type;
526
527 if (type_a->base_type != type_b->base_type) {
528 _mesa_glsl_error(loc, state, "base type mismatch");
529 return glsl_type::error_type;
530 }
531
532 /* "The result is scalar Boolean."
533 */
534 return glsl_type::bool_type;
535 }
536
537 /**
538 * \brief Return the result type of a bit-shift operation.
539 *
540 * If the given types to the bit-shift operator are invalid, return
541 * glsl_type::error_type.
542 *
543 * \param type_a Type of LHS of bit-shift op
544 * \param type_b Type of RHS of bit-shift op
545 */
546 static const struct glsl_type *
547 shift_result_type(const struct glsl_type *type_a,
548 const struct glsl_type *type_b,
549 ast_operators op,
550 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
551 {
552 if (!state->check_bitwise_operations_allowed(loc)) {
553 return glsl_type::error_type;
554 }
555
556 /* From page 50 (page 56 of the PDF) of the GLSL 1.30 spec:
557 *
558 * "The shift operators (<<) and (>>). For both operators, the operands
559 * must be signed or unsigned integers or integer vectors. One operand
560 * can be signed while the other is unsigned."
561 */
562 if (!type_a->is_integer()) {
563 _mesa_glsl_error(loc, state, "LHS of operator %s must be an integer or "
564 "integer vector", ast_expression::operator_string(op));
565 return glsl_type::error_type;
566
567 }
568 if (!type_b->is_integer()) {
569 _mesa_glsl_error(loc, state, "RHS of operator %s must be an integer or "
570 "integer vector", ast_expression::operator_string(op));
571 return glsl_type::error_type;
572 }
573
574 /* "If the first operand is a scalar, the second operand has to be
575 * a scalar as well."
576 */
577 if (type_a->is_scalar() && !type_b->is_scalar()) {
578 _mesa_glsl_error(loc, state, "If the first operand of %s is scalar, the "
579 "second must be scalar as well",
580 ast_expression::operator_string(op));
581 return glsl_type::error_type;
582 }
583
584 /* If both operands are vectors, check that they have same number of
585 * elements.
586 */
587 if (type_a->is_vector() &&
588 type_b->is_vector() &&
589 type_a->vector_elements != type_b->vector_elements) {
590 _mesa_glsl_error(loc, state, "Vector operands to operator %s must "
591 "have same number of elements",
592 ast_expression::operator_string(op));
593 return glsl_type::error_type;
594 }
595
596 /* "In all cases, the resulting type will be the same type as the left
597 * operand."
598 */
599 return type_a;
600 }
601
602 /**
603 * Validates that a value can be assigned to a location with a specified type
604 *
605 * Validates that \c rhs can be assigned to some location. If the types are
606 * not an exact match but an automatic conversion is possible, \c rhs will be
607 * converted.
608 *
609 * \return
610 * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
611 * Otherwise the actual RHS to be assigned will be returned. This may be
612 * \c rhs, or it may be \c rhs after some type conversion.
613 *
614 * \note
615 * In addition to being used for assignments, this function is used to
616 * type-check return values.
617 */
618 ir_rvalue *
619 validate_assignment(struct _mesa_glsl_parse_state *state,
620 const glsl_type *lhs_type, ir_rvalue *rhs,
621 bool is_initializer)
622 {
623 /* If there is already some error in the RHS, just return it. Anything
624 * else will lead to an avalanche of error message back to the user.
625 */
626 if (rhs->type->is_error())
627 return rhs;
628
629 /* If the types are identical, the assignment can trivially proceed.
630 */
631 if (rhs->type == lhs_type)
632 return rhs;
633
634 /* If the array element types are the same and the size of the LHS is zero,
635 * the assignment is okay for initializers embedded in variable
636 * declarations.
637 *
638 * Note: Whole-array assignments are not permitted in GLSL 1.10, but this
639 * is handled by ir_dereference::is_lvalue.
640 */
641 if (is_initializer && lhs_type->is_array() && rhs->type->is_array()
642 && (lhs_type->element_type() == rhs->type->element_type())
643 && (lhs_type->array_size() == 0)) {
644 return rhs;
645 }
646
647 /* Check for implicit conversion in GLSL 1.20 */
648 if (apply_implicit_conversion(lhs_type, rhs, state)) {
649 if (rhs->type == lhs_type)
650 return rhs;
651 }
652
653 return NULL;
654 }
655
656 static void
657 mark_whole_array_access(ir_rvalue *access)
658 {
659 ir_dereference_variable *deref = access->as_dereference_variable();
660
661 if (deref && deref->var) {
662 deref->var->max_array_access = deref->type->length - 1;
663 }
664 }
665
666 ir_rvalue *
667 do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state,
668 const char *non_lvalue_description,
669 ir_rvalue *lhs, ir_rvalue *rhs, bool is_initializer,
670 YYLTYPE lhs_loc)
671 {
672 void *ctx = state;
673 bool error_emitted = (lhs->type->is_error() || rhs->type->is_error());
674
675 ir_variable *lhs_var = lhs->variable_referenced();
676 if (lhs_var)
677 lhs_var->assigned = true;
678
679 if (!error_emitted) {
680 if (non_lvalue_description != NULL) {
681 _mesa_glsl_error(&lhs_loc, state,
682 "assignment to %s",
683 non_lvalue_description);
684 error_emitted = true;
685 } else if (lhs->variable_referenced() != NULL
686 && lhs->variable_referenced()->read_only) {
687 _mesa_glsl_error(&lhs_loc, state,
688 "assignment to read-only variable '%s'",
689 lhs->variable_referenced()->name);
690 error_emitted = true;
691
692 } else if (lhs->type->is_array() &&
693 !state->check_version(120, 300, &lhs_loc,
694 "whole array assignment forbidden")) {
695 /* From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
696 *
697 * "Other binary or unary expressions, non-dereferenced
698 * arrays, function names, swizzles with repeated fields,
699 * and constants cannot be l-values."
700 *
701 * The restriction on arrays is lifted in GLSL 1.20 and GLSL ES 3.00.
702 */
703 error_emitted = true;
704 } else if (!lhs->is_lvalue()) {
705 _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment");
706 error_emitted = true;
707 }
708 }
709
710 ir_rvalue *new_rhs =
711 validate_assignment(state, lhs->type, rhs, is_initializer);
712 if (new_rhs == NULL) {
713 _mesa_glsl_error(& lhs_loc, state, "type mismatch");
714 } else {
715 rhs = new_rhs;
716
717 /* If the LHS array was not declared with a size, it takes it size from
718 * the RHS. If the LHS is an l-value and a whole array, it must be a
719 * dereference of a variable. Any other case would require that the LHS
720 * is either not an l-value or not a whole array.
721 */
722 if (lhs->type->array_size() == 0) {
723 ir_dereference *const d = lhs->as_dereference();
724
725 assert(d != NULL);
726
727 ir_variable *const var = d->variable_referenced();
728
729 assert(var != NULL);
730
731 if (var->max_array_access >= unsigned(rhs->type->array_size())) {
732 /* FINISHME: This should actually log the location of the RHS. */
733 _mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to "
734 "previous access",
735 var->max_array_access);
736 }
737
738 var->type = glsl_type::get_array_instance(lhs->type->element_type(),
739 rhs->type->array_size());
740 d->type = var->type;
741 }
742 mark_whole_array_access(rhs);
743 mark_whole_array_access(lhs);
744 }
745
746 /* Most callers of do_assignment (assign, add_assign, pre_inc/dec,
747 * but not post_inc) need the converted assigned value as an rvalue
748 * to handle things like:
749 *
750 * i = j += 1;
751 *
752 * So we always just store the computed value being assigned to a
753 * temporary and return a deref of that temporary. If the rvalue
754 * ends up not being used, the temp will get copy-propagated out.
755 */
756 ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp",
757 ir_var_temporary);
758 ir_dereference_variable *deref_var = new(ctx) ir_dereference_variable(var);
759 instructions->push_tail(var);
760 instructions->push_tail(new(ctx) ir_assignment(deref_var, rhs));
761 deref_var = new(ctx) ir_dereference_variable(var);
762
763 if (!error_emitted)
764 instructions->push_tail(new(ctx) ir_assignment(lhs, deref_var));
765
766 return new(ctx) ir_dereference_variable(var);
767 }
768
769 static ir_rvalue *
770 get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue)
771 {
772 void *ctx = ralloc_parent(lvalue);
773 ir_variable *var;
774
775 var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp",
776 ir_var_temporary);
777 instructions->push_tail(var);
778 var->mode = ir_var_auto;
779
780 instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
781 lvalue));
782
783 return new(ctx) ir_dereference_variable(var);
784 }
785
786
787 ir_rvalue *
788 ast_node::hir(exec_list *instructions,
789 struct _mesa_glsl_parse_state *state)
790 {
791 (void) instructions;
792 (void) state;
793
794 return NULL;
795 }
796
797 static ir_rvalue *
798 do_comparison(void *mem_ctx, int operation, ir_rvalue *op0, ir_rvalue *op1)
799 {
800 int join_op;
801 ir_rvalue *cmp = NULL;
802
803 if (operation == ir_binop_all_equal)
804 join_op = ir_binop_logic_and;
805 else
806 join_op = ir_binop_logic_or;
807
808 switch (op0->type->base_type) {
809 case GLSL_TYPE_FLOAT:
810 case GLSL_TYPE_UINT:
811 case GLSL_TYPE_INT:
812 case GLSL_TYPE_BOOL:
813 return new(mem_ctx) ir_expression(operation, op0, op1);
814
815 case GLSL_TYPE_ARRAY: {
816 for (unsigned int i = 0; i < op0->type->length; i++) {
817 ir_rvalue *e0, *e1, *result;
818
819 e0 = new(mem_ctx) ir_dereference_array(op0->clone(mem_ctx, NULL),
820 new(mem_ctx) ir_constant(i));
821 e1 = new(mem_ctx) ir_dereference_array(op1->clone(mem_ctx, NULL),
822 new(mem_ctx) ir_constant(i));
823 result = do_comparison(mem_ctx, operation, e0, e1);
824
825 if (cmp) {
826 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
827 } else {
828 cmp = result;
829 }
830 }
831
832 mark_whole_array_access(op0);
833 mark_whole_array_access(op1);
834 break;
835 }
836
837 case GLSL_TYPE_STRUCT: {
838 for (unsigned int i = 0; i < op0->type->length; i++) {
839 ir_rvalue *e0, *e1, *result;
840 const char *field_name = op0->type->fields.structure[i].name;
841
842 e0 = new(mem_ctx) ir_dereference_record(op0->clone(mem_ctx, NULL),
843 field_name);
844 e1 = new(mem_ctx) ir_dereference_record(op1->clone(mem_ctx, NULL),
845 field_name);
846 result = do_comparison(mem_ctx, operation, e0, e1);
847
848 if (cmp) {
849 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
850 } else {
851 cmp = result;
852 }
853 }
854 break;
855 }
856
857 case GLSL_TYPE_ERROR:
858 case GLSL_TYPE_VOID:
859 case GLSL_TYPE_SAMPLER:
860 case GLSL_TYPE_INTERFACE:
861 /* I assume a comparison of a struct containing a sampler just
862 * ignores the sampler present in the type.
863 */
864 break;
865 }
866
867 if (cmp == NULL)
868 cmp = new(mem_ctx) ir_constant(true);
869
870 return cmp;
871 }
872
873 /* For logical operations, we want to ensure that the operands are
874 * scalar booleans. If it isn't, emit an error and return a constant
875 * boolean to avoid triggering cascading error messages.
876 */
877 ir_rvalue *
878 get_scalar_boolean_operand(exec_list *instructions,
879 struct _mesa_glsl_parse_state *state,
880 ast_expression *parent_expr,
881 int operand,
882 const char *operand_name,
883 bool *error_emitted)
884 {
885 ast_expression *expr = parent_expr->subexpressions[operand];
886 void *ctx = state;
887 ir_rvalue *val = expr->hir(instructions, state);
888
889 if (val->type->is_boolean() && val->type->is_scalar())
890 return val;
891
892 if (!*error_emitted) {
893 YYLTYPE loc = expr->get_location();
894 _mesa_glsl_error(&loc, state, "%s of `%s' must be scalar boolean",
895 operand_name,
896 parent_expr->operator_string(parent_expr->oper));
897 *error_emitted = true;
898 }
899
900 return new(ctx) ir_constant(true);
901 }
902
903 /**
904 * If name refers to a builtin array whose maximum allowed size is less than
905 * size, report an error and return true. Otherwise return false.
906 */
907 bool
908 check_builtin_array_max_size(const char *name, unsigned size,
909 YYLTYPE loc, struct _mesa_glsl_parse_state *state)
910 {
911 if ((strcmp("gl_TexCoord", name) == 0)
912 && (size > state->Const.MaxTextureCoords)) {
913 /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec:
914 *
915 * "The size [of gl_TexCoord] can be at most
916 * gl_MaxTextureCoords."
917 */
918 _mesa_glsl_error(&loc, state, "`gl_TexCoord' array size cannot "
919 "be larger than gl_MaxTextureCoords (%u)\n",
920 state->Const.MaxTextureCoords);
921 return true;
922 } else if (strcmp("gl_ClipDistance", name) == 0
923 && size > state->Const.MaxClipPlanes) {
924 /* From section 7.1 (Vertex Shader Special Variables) of the
925 * GLSL 1.30 spec:
926 *
927 * "The gl_ClipDistance array is predeclared as unsized and
928 * must be sized by the shader either redeclaring it with a
929 * size or indexing it only with integral constant
930 * expressions. ... The size can be at most
931 * gl_MaxClipDistances."
932 */
933 _mesa_glsl_error(&loc, state, "`gl_ClipDistance' array size cannot "
934 "be larger than gl_MaxClipDistances (%u)\n",
935 state->Const.MaxClipPlanes);
936 return true;
937 }
938 return false;
939 }
940
941 /**
942 * Create the constant 1, of a which is appropriate for incrementing and
943 * decrementing values of the given GLSL type. For example, if type is vec4,
944 * this creates a constant value of 1.0 having type float.
945 *
946 * If the given type is invalid for increment and decrement operators, return
947 * a floating point 1--the error will be detected later.
948 */
949 static ir_rvalue *
950 constant_one_for_inc_dec(void *ctx, const glsl_type *type)
951 {
952 switch (type->base_type) {
953 case GLSL_TYPE_UINT:
954 return new(ctx) ir_constant((unsigned) 1);
955 case GLSL_TYPE_INT:
956 return new(ctx) ir_constant(1);
957 default:
958 case GLSL_TYPE_FLOAT:
959 return new(ctx) ir_constant(1.0f);
960 }
961 }
962
963 ir_rvalue *
964 ast_expression::hir(exec_list *instructions,
965 struct _mesa_glsl_parse_state *state)
966 {
967 void *ctx = state;
968 static const int operations[AST_NUM_OPERATORS] = {
969 -1, /* ast_assign doesn't convert to ir_expression. */
970 -1, /* ast_plus doesn't convert to ir_expression. */
971 ir_unop_neg,
972 ir_binop_add,
973 ir_binop_sub,
974 ir_binop_mul,
975 ir_binop_div,
976 ir_binop_mod,
977 ir_binop_lshift,
978 ir_binop_rshift,
979 ir_binop_less,
980 ir_binop_greater,
981 ir_binop_lequal,
982 ir_binop_gequal,
983 ir_binop_all_equal,
984 ir_binop_any_nequal,
985 ir_binop_bit_and,
986 ir_binop_bit_xor,
987 ir_binop_bit_or,
988 ir_unop_bit_not,
989 ir_binop_logic_and,
990 ir_binop_logic_xor,
991 ir_binop_logic_or,
992 ir_unop_logic_not,
993
994 /* Note: The following block of expression types actually convert
995 * to multiple IR instructions.
996 */
997 ir_binop_mul, /* ast_mul_assign */
998 ir_binop_div, /* ast_div_assign */
999 ir_binop_mod, /* ast_mod_assign */
1000 ir_binop_add, /* ast_add_assign */
1001 ir_binop_sub, /* ast_sub_assign */
1002 ir_binop_lshift, /* ast_ls_assign */
1003 ir_binop_rshift, /* ast_rs_assign */
1004 ir_binop_bit_and, /* ast_and_assign */
1005 ir_binop_bit_xor, /* ast_xor_assign */
1006 ir_binop_bit_or, /* ast_or_assign */
1007
1008 -1, /* ast_conditional doesn't convert to ir_expression. */
1009 ir_binop_add, /* ast_pre_inc. */
1010 ir_binop_sub, /* ast_pre_dec. */
1011 ir_binop_add, /* ast_post_inc. */
1012 ir_binop_sub, /* ast_post_dec. */
1013 -1, /* ast_field_selection doesn't conv to ir_expression. */
1014 -1, /* ast_array_index doesn't convert to ir_expression. */
1015 -1, /* ast_function_call doesn't conv to ir_expression. */
1016 -1, /* ast_identifier doesn't convert to ir_expression. */
1017 -1, /* ast_int_constant doesn't convert to ir_expression. */
1018 -1, /* ast_uint_constant doesn't conv to ir_expression. */
1019 -1, /* ast_float_constant doesn't conv to ir_expression. */
1020 -1, /* ast_bool_constant doesn't conv to ir_expression. */
1021 -1, /* ast_sequence doesn't convert to ir_expression. */
1022 };
1023 ir_rvalue *result = NULL;
1024 ir_rvalue *op[3];
1025 const struct glsl_type *type; /* a temporary variable for switch cases */
1026 bool error_emitted = false;
1027 YYLTYPE loc;
1028
1029 loc = this->get_location();
1030
1031 switch (this->oper) {
1032 case ast_assign: {
1033 op[0] = this->subexpressions[0]->hir(instructions, state);
1034 op[1] = this->subexpressions[1]->hir(instructions, state);
1035
1036 result = do_assignment(instructions, state,
1037 this->subexpressions[0]->non_lvalue_description,
1038 op[0], op[1], false,
1039 this->subexpressions[0]->get_location());
1040 error_emitted = result->type->is_error();
1041 break;
1042 }
1043
1044 case ast_plus:
1045 op[0] = this->subexpressions[0]->hir(instructions, state);
1046
1047 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1048
1049 error_emitted = type->is_error();
1050
1051 result = op[0];
1052 break;
1053
1054 case ast_neg:
1055 op[0] = this->subexpressions[0]->hir(instructions, state);
1056
1057 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1058
1059 error_emitted = type->is_error();
1060
1061 result = new(ctx) ir_expression(operations[this->oper], type,
1062 op[0], NULL);
1063 break;
1064
1065 case ast_add:
1066 case ast_sub:
1067 case ast_mul:
1068 case ast_div:
1069 op[0] = this->subexpressions[0]->hir(instructions, state);
1070 op[1] = this->subexpressions[1]->hir(instructions, state);
1071
1072 type = arithmetic_result_type(op[0], op[1],
1073 (this->oper == ast_mul),
1074 state, & loc);
1075 error_emitted = type->is_error();
1076
1077 result = new(ctx) ir_expression(operations[this->oper], type,
1078 op[0], op[1]);
1079 break;
1080
1081 case ast_mod:
1082 op[0] = this->subexpressions[0]->hir(instructions, state);
1083 op[1] = this->subexpressions[1]->hir(instructions, state);
1084
1085 type = modulus_result_type(op[0]->type, op[1]->type, state, & loc);
1086
1087 assert(operations[this->oper] == ir_binop_mod);
1088
1089 result = new(ctx) ir_expression(operations[this->oper], type,
1090 op[0], op[1]);
1091 error_emitted = type->is_error();
1092 break;
1093
1094 case ast_lshift:
1095 case ast_rshift:
1096 if (!state->check_bitwise_operations_allowed(&loc)) {
1097 error_emitted = true;
1098 }
1099
1100 op[0] = this->subexpressions[0]->hir(instructions, state);
1101 op[1] = this->subexpressions[1]->hir(instructions, state);
1102 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1103 &loc);
1104 result = new(ctx) ir_expression(operations[this->oper], type,
1105 op[0], op[1]);
1106 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1107 break;
1108
1109 case ast_less:
1110 case ast_greater:
1111 case ast_lequal:
1112 case ast_gequal:
1113 op[0] = this->subexpressions[0]->hir(instructions, state);
1114 op[1] = this->subexpressions[1]->hir(instructions, state);
1115
1116 type = relational_result_type(op[0], op[1], state, & loc);
1117
1118 /* The relational operators must either generate an error or result
1119 * in a scalar boolean. See page 57 of the GLSL 1.50 spec.
1120 */
1121 assert(type->is_error()
1122 || ((type->base_type == GLSL_TYPE_BOOL)
1123 && type->is_scalar()));
1124
1125 result = new(ctx) ir_expression(operations[this->oper], type,
1126 op[0], op[1]);
1127 error_emitted = type->is_error();
1128 break;
1129
1130 case ast_nequal:
1131 case ast_equal:
1132 op[0] = this->subexpressions[0]->hir(instructions, state);
1133 op[1] = this->subexpressions[1]->hir(instructions, state);
1134
1135 /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
1136 *
1137 * "The equality operators equal (==), and not equal (!=)
1138 * operate on all types. They result in a scalar Boolean. If
1139 * the operand types do not match, then there must be a
1140 * conversion from Section 4.1.10 "Implicit Conversions"
1141 * applied to one operand that can make them match, in which
1142 * case this conversion is done."
1143 */
1144 if ((!apply_implicit_conversion(op[0]->type, op[1], state)
1145 && !apply_implicit_conversion(op[1]->type, op[0], state))
1146 || (op[0]->type != op[1]->type)) {
1147 _mesa_glsl_error(& loc, state, "operands of `%s' must have the same "
1148 "type", (this->oper == ast_equal) ? "==" : "!=");
1149 error_emitted = true;
1150 } else if ((op[0]->type->is_array() || op[1]->type->is_array()) &&
1151 !state->check_version(120, 300, &loc,
1152 "array comparisons forbidden")) {
1153 error_emitted = true;
1154 }
1155
1156 if (error_emitted) {
1157 result = new(ctx) ir_constant(false);
1158 } else {
1159 result = do_comparison(ctx, operations[this->oper], op[0], op[1]);
1160 assert(result->type == glsl_type::bool_type);
1161 }
1162 break;
1163
1164 case ast_bit_and:
1165 case ast_bit_xor:
1166 case ast_bit_or:
1167 op[0] = this->subexpressions[0]->hir(instructions, state);
1168 op[1] = this->subexpressions[1]->hir(instructions, state);
1169 type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
1170 state, &loc);
1171 result = new(ctx) ir_expression(operations[this->oper], type,
1172 op[0], op[1]);
1173 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1174 break;
1175
1176 case ast_bit_not:
1177 op[0] = this->subexpressions[0]->hir(instructions, state);
1178
1179 if (!state->check_bitwise_operations_allowed(&loc)) {
1180 error_emitted = true;
1181 }
1182
1183 if (!op[0]->type->is_integer()) {
1184 _mesa_glsl_error(&loc, state, "operand of `~' must be an integer");
1185 error_emitted = true;
1186 }
1187
1188 type = error_emitted ? glsl_type::error_type : op[0]->type;
1189 result = new(ctx) ir_expression(ir_unop_bit_not, type, op[0], NULL);
1190 break;
1191
1192 case ast_logic_and: {
1193 exec_list rhs_instructions;
1194 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1195 "LHS", &error_emitted);
1196 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1197 "RHS", &error_emitted);
1198
1199 if (rhs_instructions.is_empty()) {
1200 result = new(ctx) ir_expression(ir_binop_logic_and, op[0], op[1]);
1201 type = result->type;
1202 } else {
1203 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1204 "and_tmp",
1205 ir_var_temporary);
1206 instructions->push_tail(tmp);
1207
1208 ir_if *const stmt = new(ctx) ir_if(op[0]);
1209 instructions->push_tail(stmt);
1210
1211 stmt->then_instructions.append_list(&rhs_instructions);
1212 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1213 ir_assignment *const then_assign =
1214 new(ctx) ir_assignment(then_deref, op[1]);
1215 stmt->then_instructions.push_tail(then_assign);
1216
1217 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1218 ir_assignment *const else_assign =
1219 new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false));
1220 stmt->else_instructions.push_tail(else_assign);
1221
1222 result = new(ctx) ir_dereference_variable(tmp);
1223 type = tmp->type;
1224 }
1225 break;
1226 }
1227
1228 case ast_logic_or: {
1229 exec_list rhs_instructions;
1230 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1231 "LHS", &error_emitted);
1232 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1233 "RHS", &error_emitted);
1234
1235 if (rhs_instructions.is_empty()) {
1236 result = new(ctx) ir_expression(ir_binop_logic_or, op[0], op[1]);
1237 type = result->type;
1238 } else {
1239 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1240 "or_tmp",
1241 ir_var_temporary);
1242 instructions->push_tail(tmp);
1243
1244 ir_if *const stmt = new(ctx) ir_if(op[0]);
1245 instructions->push_tail(stmt);
1246
1247 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1248 ir_assignment *const then_assign =
1249 new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true));
1250 stmt->then_instructions.push_tail(then_assign);
1251
1252 stmt->else_instructions.append_list(&rhs_instructions);
1253 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1254 ir_assignment *const else_assign =
1255 new(ctx) ir_assignment(else_deref, op[1]);
1256 stmt->else_instructions.push_tail(else_assign);
1257
1258 result = new(ctx) ir_dereference_variable(tmp);
1259 type = tmp->type;
1260 }
1261 break;
1262 }
1263
1264 case ast_logic_xor:
1265 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1266 *
1267 * "The logical binary operators and (&&), or ( | | ), and
1268 * exclusive or (^^). They operate only on two Boolean
1269 * expressions and result in a Boolean expression."
1270 */
1271 op[0] = get_scalar_boolean_operand(instructions, state, this, 0, "LHS",
1272 &error_emitted);
1273 op[1] = get_scalar_boolean_operand(instructions, state, this, 1, "RHS",
1274 &error_emitted);
1275
1276 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1277 op[0], op[1]);
1278 break;
1279
1280 case ast_logic_not:
1281 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1282 "operand", &error_emitted);
1283
1284 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1285 op[0], NULL);
1286 break;
1287
1288 case ast_mul_assign:
1289 case ast_div_assign:
1290 case ast_add_assign:
1291 case ast_sub_assign: {
1292 op[0] = this->subexpressions[0]->hir(instructions, state);
1293 op[1] = this->subexpressions[1]->hir(instructions, state);
1294
1295 type = arithmetic_result_type(op[0], op[1],
1296 (this->oper == ast_mul_assign),
1297 state, & loc);
1298
1299 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1300 op[0], op[1]);
1301
1302 result = do_assignment(instructions, state,
1303 this->subexpressions[0]->non_lvalue_description,
1304 op[0]->clone(ctx, NULL), temp_rhs, false,
1305 this->subexpressions[0]->get_location());
1306 error_emitted = (op[0]->type->is_error());
1307
1308 /* GLSL 1.10 does not allow array assignment. However, we don't have to
1309 * explicitly test for this because none of the binary expression
1310 * operators allow array operands either.
1311 */
1312
1313 break;
1314 }
1315
1316 case ast_mod_assign: {
1317 op[0] = this->subexpressions[0]->hir(instructions, state);
1318 op[1] = this->subexpressions[1]->hir(instructions, state);
1319
1320 type = modulus_result_type(op[0]->type, op[1]->type, state, & loc);
1321
1322 assert(operations[this->oper] == ir_binop_mod);
1323
1324 ir_rvalue *temp_rhs;
1325 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1326 op[0], op[1]);
1327
1328 result = do_assignment(instructions, state,
1329 this->subexpressions[0]->non_lvalue_description,
1330 op[0]->clone(ctx, NULL), temp_rhs, false,
1331 this->subexpressions[0]->get_location());
1332 error_emitted = type->is_error();
1333 break;
1334 }
1335
1336 case ast_ls_assign:
1337 case ast_rs_assign: {
1338 op[0] = this->subexpressions[0]->hir(instructions, state);
1339 op[1] = this->subexpressions[1]->hir(instructions, state);
1340 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1341 &loc);
1342 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1343 type, op[0], op[1]);
1344 result = do_assignment(instructions, state,
1345 this->subexpressions[0]->non_lvalue_description,
1346 op[0]->clone(ctx, NULL), temp_rhs, false,
1347 this->subexpressions[0]->get_location());
1348 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1349 break;
1350 }
1351
1352 case ast_and_assign:
1353 case ast_xor_assign:
1354 case ast_or_assign: {
1355 op[0] = this->subexpressions[0]->hir(instructions, state);
1356 op[1] = this->subexpressions[1]->hir(instructions, state);
1357 type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
1358 state, &loc);
1359 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1360 type, op[0], op[1]);
1361 result = do_assignment(instructions, state,
1362 this->subexpressions[0]->non_lvalue_description,
1363 op[0]->clone(ctx, NULL), temp_rhs, false,
1364 this->subexpressions[0]->get_location());
1365 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1366 break;
1367 }
1368
1369 case ast_conditional: {
1370 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1371 *
1372 * "The ternary selection operator (?:). It operates on three
1373 * expressions (exp1 ? exp2 : exp3). This operator evaluates the
1374 * first expression, which must result in a scalar Boolean."
1375 */
1376 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1377 "condition", &error_emitted);
1378
1379 /* The :? operator is implemented by generating an anonymous temporary
1380 * followed by an if-statement. The last instruction in each branch of
1381 * the if-statement assigns a value to the anonymous temporary. This
1382 * temporary is the r-value of the expression.
1383 */
1384 exec_list then_instructions;
1385 exec_list else_instructions;
1386
1387 op[1] = this->subexpressions[1]->hir(&then_instructions, state);
1388 op[2] = this->subexpressions[2]->hir(&else_instructions, state);
1389
1390 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1391 *
1392 * "The second and third expressions can be any type, as
1393 * long their types match, or there is a conversion in
1394 * Section 4.1.10 "Implicit Conversions" that can be applied
1395 * to one of the expressions to make their types match. This
1396 * resulting matching type is the type of the entire
1397 * expression."
1398 */
1399 if ((!apply_implicit_conversion(op[1]->type, op[2], state)
1400 && !apply_implicit_conversion(op[2]->type, op[1], state))
1401 || (op[1]->type != op[2]->type)) {
1402 YYLTYPE loc = this->subexpressions[1]->get_location();
1403
1404 _mesa_glsl_error(& loc, state, "Second and third operands of ?: "
1405 "operator must have matching types.");
1406 error_emitted = true;
1407 type = glsl_type::error_type;
1408 } else {
1409 type = op[1]->type;
1410 }
1411
1412 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1413 *
1414 * "The second and third expressions must be the same type, but can
1415 * be of any type other than an array."
1416 */
1417 if (type->is_array() &&
1418 !state->check_version(120, 300, &loc,
1419 "Second and third operands of ?: operator "
1420 "cannot be arrays")) {
1421 error_emitted = true;
1422 }
1423
1424 ir_constant *cond_val = op[0]->constant_expression_value();
1425 ir_constant *then_val = op[1]->constant_expression_value();
1426 ir_constant *else_val = op[2]->constant_expression_value();
1427
1428 if (then_instructions.is_empty()
1429 && else_instructions.is_empty()
1430 && (cond_val != NULL) && (then_val != NULL) && (else_val != NULL)) {
1431 result = (cond_val->value.b[0]) ? then_val : else_val;
1432 } else {
1433 ir_variable *const tmp =
1434 new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary);
1435 instructions->push_tail(tmp);
1436
1437 ir_if *const stmt = new(ctx) ir_if(op[0]);
1438 instructions->push_tail(stmt);
1439
1440 then_instructions.move_nodes_to(& stmt->then_instructions);
1441 ir_dereference *const then_deref =
1442 new(ctx) ir_dereference_variable(tmp);
1443 ir_assignment *const then_assign =
1444 new(ctx) ir_assignment(then_deref, op[1]);
1445 stmt->then_instructions.push_tail(then_assign);
1446
1447 else_instructions.move_nodes_to(& stmt->else_instructions);
1448 ir_dereference *const else_deref =
1449 new(ctx) ir_dereference_variable(tmp);
1450 ir_assignment *const else_assign =
1451 new(ctx) ir_assignment(else_deref, op[2]);
1452 stmt->else_instructions.push_tail(else_assign);
1453
1454 result = new(ctx) ir_dereference_variable(tmp);
1455 }
1456 break;
1457 }
1458
1459 case ast_pre_inc:
1460 case ast_pre_dec: {
1461 this->non_lvalue_description = (this->oper == ast_pre_inc)
1462 ? "pre-increment operation" : "pre-decrement operation";
1463
1464 op[0] = this->subexpressions[0]->hir(instructions, state);
1465 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1466
1467 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1468
1469 ir_rvalue *temp_rhs;
1470 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1471 op[0], op[1]);
1472
1473 result = do_assignment(instructions, state,
1474 this->subexpressions[0]->non_lvalue_description,
1475 op[0]->clone(ctx, NULL), temp_rhs, false,
1476 this->subexpressions[0]->get_location());
1477 error_emitted = op[0]->type->is_error();
1478 break;
1479 }
1480
1481 case ast_post_inc:
1482 case ast_post_dec: {
1483 this->non_lvalue_description = (this->oper == ast_post_inc)
1484 ? "post-increment operation" : "post-decrement operation";
1485 op[0] = this->subexpressions[0]->hir(instructions, state);
1486 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1487
1488 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1489
1490 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1491
1492 ir_rvalue *temp_rhs;
1493 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1494 op[0], op[1]);
1495
1496 /* Get a temporary of a copy of the lvalue before it's modified.
1497 * This may get thrown away later.
1498 */
1499 result = get_lvalue_copy(instructions, op[0]->clone(ctx, NULL));
1500
1501 (void)do_assignment(instructions, state,
1502 this->subexpressions[0]->non_lvalue_description,
1503 op[0]->clone(ctx, NULL), temp_rhs, false,
1504 this->subexpressions[0]->get_location());
1505
1506 error_emitted = op[0]->type->is_error();
1507 break;
1508 }
1509
1510 case ast_field_selection:
1511 result = _mesa_ast_field_selection_to_hir(this, instructions, state);
1512 break;
1513
1514 case ast_array_index: {
1515 YYLTYPE index_loc = subexpressions[1]->get_location();
1516
1517 op[0] = subexpressions[0]->hir(instructions, state);
1518 op[1] = subexpressions[1]->hir(instructions, state);
1519
1520 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1521
1522 result = _mesa_ast_array_index_to_hir(ctx, state, op[0], op[1],
1523 loc, index_loc, error_emitted);
1524
1525 if (result->type->is_error())
1526 error_emitted = true;
1527
1528 break;
1529 }
1530
1531 case ast_function_call:
1532 /* Should *NEVER* get here. ast_function_call should always be handled
1533 * by ast_function_expression::hir.
1534 */
1535 assert(0);
1536 break;
1537
1538 case ast_identifier: {
1539 /* ast_identifier can appear several places in a full abstract syntax
1540 * tree. This particular use must be at location specified in the grammar
1541 * as 'variable_identifier'.
1542 */
1543 ir_variable *var =
1544 state->symbols->get_variable(this->primary_expression.identifier);
1545
1546 if (var != NULL) {
1547 var->used = true;
1548 result = new(ctx) ir_dereference_variable(var);
1549 } else {
1550 _mesa_glsl_error(& loc, state, "`%s' undeclared",
1551 this->primary_expression.identifier);
1552
1553 result = ir_rvalue::error_value(ctx);
1554 error_emitted = true;
1555 }
1556 break;
1557 }
1558
1559 case ast_int_constant:
1560 result = new(ctx) ir_constant(this->primary_expression.int_constant);
1561 break;
1562
1563 case ast_uint_constant:
1564 result = new(ctx) ir_constant(this->primary_expression.uint_constant);
1565 break;
1566
1567 case ast_float_constant:
1568 result = new(ctx) ir_constant(this->primary_expression.float_constant);
1569 break;
1570
1571 case ast_bool_constant:
1572 result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant));
1573 break;
1574
1575 case ast_sequence: {
1576 /* It should not be possible to generate a sequence in the AST without
1577 * any expressions in it.
1578 */
1579 assert(!this->expressions.is_empty());
1580
1581 /* The r-value of a sequence is the last expression in the sequence. If
1582 * the other expressions in the sequence do not have side-effects (and
1583 * therefore add instructions to the instruction list), they get dropped
1584 * on the floor.
1585 */
1586 exec_node *previous_tail_pred = NULL;
1587 YYLTYPE previous_operand_loc = loc;
1588
1589 foreach_list_typed (ast_node, ast, link, &this->expressions) {
1590 /* If one of the operands of comma operator does not generate any
1591 * code, we want to emit a warning. At each pass through the loop
1592 * previous_tail_pred will point to the last instruction in the
1593 * stream *before* processing the previous operand. Naturally,
1594 * instructions->tail_pred will point to the last instruction in the
1595 * stream *after* processing the previous operand. If the two
1596 * pointers match, then the previous operand had no effect.
1597 *
1598 * The warning behavior here differs slightly from GCC. GCC will
1599 * only emit a warning if none of the left-hand operands have an
1600 * effect. However, it will emit a warning for each. I believe that
1601 * there are some cases in C (especially with GCC extensions) where
1602 * it is useful to have an intermediate step in a sequence have no
1603 * effect, but I don't think these cases exist in GLSL. Either way,
1604 * it would be a giant hassle to replicate that behavior.
1605 */
1606 if (previous_tail_pred == instructions->tail_pred) {
1607 _mesa_glsl_warning(&previous_operand_loc, state,
1608 "left-hand operand of comma expression has "
1609 "no effect");
1610 }
1611
1612 /* tail_pred is directly accessed instead of using the get_tail()
1613 * method for performance reasons. get_tail() has extra code to
1614 * return NULL when the list is empty. We don't care about that
1615 * here, so using tail_pred directly is fine.
1616 */
1617 previous_tail_pred = instructions->tail_pred;
1618 previous_operand_loc = ast->get_location();
1619
1620 result = ast->hir(instructions, state);
1621 }
1622
1623 /* Any errors should have already been emitted in the loop above.
1624 */
1625 error_emitted = true;
1626 break;
1627 }
1628 }
1629 type = NULL; /* use result->type, not type. */
1630 assert(result != NULL);
1631
1632 if (result->type->is_error() && !error_emitted)
1633 _mesa_glsl_error(& loc, state, "type mismatch");
1634
1635 return result;
1636 }
1637
1638
1639 ir_rvalue *
1640 ast_expression_statement::hir(exec_list *instructions,
1641 struct _mesa_glsl_parse_state *state)
1642 {
1643 /* It is possible to have expression statements that don't have an
1644 * expression. This is the solitary semicolon:
1645 *
1646 * for (i = 0; i < 5; i++)
1647 * ;
1648 *
1649 * In this case the expression will be NULL. Test for NULL and don't do
1650 * anything in that case.
1651 */
1652 if (expression != NULL)
1653 expression->hir(instructions, state);
1654
1655 /* Statements do not have r-values.
1656 */
1657 return NULL;
1658 }
1659
1660
1661 ir_rvalue *
1662 ast_compound_statement::hir(exec_list *instructions,
1663 struct _mesa_glsl_parse_state *state)
1664 {
1665 if (new_scope)
1666 state->symbols->push_scope();
1667
1668 foreach_list_typed (ast_node, ast, link, &this->statements)
1669 ast->hir(instructions, state);
1670
1671 if (new_scope)
1672 state->symbols->pop_scope();
1673
1674 /* Compound statements do not have r-values.
1675 */
1676 return NULL;
1677 }
1678
1679
1680 static const glsl_type *
1681 process_array_type(YYLTYPE *loc, const glsl_type *base, ast_node *array_size,
1682 struct _mesa_glsl_parse_state *state)
1683 {
1684 unsigned length = 0;
1685
1686 /* From page 19 (page 25) of the GLSL 1.20 spec:
1687 *
1688 * "Only one-dimensional arrays may be declared."
1689 */
1690 if (base->is_array()) {
1691 _mesa_glsl_error(loc, state,
1692 "invalid array of `%s' (only one-dimensional arrays "
1693 "may be declared)",
1694 base->name);
1695 return glsl_type::error_type;
1696 }
1697
1698 if (array_size != NULL) {
1699 exec_list dummy_instructions;
1700 ir_rvalue *const ir = array_size->hir(& dummy_instructions, state);
1701 YYLTYPE loc = array_size->get_location();
1702
1703 if (ir != NULL) {
1704 if (!ir->type->is_integer()) {
1705 _mesa_glsl_error(& loc, state, "array size must be integer type");
1706 } else if (!ir->type->is_scalar()) {
1707 _mesa_glsl_error(& loc, state, "array size must be scalar type");
1708 } else {
1709 ir_constant *const size = ir->constant_expression_value();
1710
1711 if (size == NULL) {
1712 _mesa_glsl_error(& loc, state, "array size must be a "
1713 "constant valued expression");
1714 } else if (size->value.i[0] <= 0) {
1715 _mesa_glsl_error(& loc, state, "array size must be > 0");
1716 } else {
1717 assert(size->type == ir->type);
1718 length = size->value.u[0];
1719
1720 /* If the array size is const (and we've verified that
1721 * it is) then no instructions should have been emitted
1722 * when we converted it to HIR. If they were emitted,
1723 * then either the array size isn't const after all, or
1724 * we are emitting unnecessary instructions.
1725 */
1726 assert(dummy_instructions.is_empty());
1727 }
1728 }
1729 }
1730 } else if (state->es_shader) {
1731 /* Section 10.17 of the GLSL ES 1.00 specification states that unsized
1732 * array declarations have been removed from the language.
1733 */
1734 _mesa_glsl_error(loc, state, "unsized array declarations are not "
1735 "allowed in GLSL ES 1.00.");
1736 }
1737
1738 return glsl_type::get_array_instance(base, length);
1739 }
1740
1741
1742 const glsl_type *
1743 ast_type_specifier::glsl_type(const char **name,
1744 struct _mesa_glsl_parse_state *state) const
1745 {
1746 const struct glsl_type *type;
1747
1748 type = state->symbols->get_type(this->type_name);
1749 *name = this->type_name;
1750
1751 if (this->is_array) {
1752 YYLTYPE loc = this->get_location();
1753 type = process_array_type(&loc, type, this->array_size, state);
1754 }
1755
1756 return type;
1757 }
1758
1759
1760 /**
1761 * Determine whether a toplevel variable declaration declares a varying. This
1762 * function operates by examining the variable's mode and the shader target,
1763 * so it correctly identifies linkage variables regardless of whether they are
1764 * declared using the deprecated "varying" syntax or the new "in/out" syntax.
1765 *
1766 * Passing a non-toplevel variable declaration (e.g. a function parameter) to
1767 * this function will produce undefined results.
1768 */
1769 static bool
1770 is_varying_var(ir_variable *var, _mesa_glsl_parser_targets target)
1771 {
1772 switch (target) {
1773 case vertex_shader:
1774 return var->mode == ir_var_shader_out;
1775 case fragment_shader:
1776 return var->mode == ir_var_shader_in;
1777 default:
1778 return var->mode == ir_var_shader_out || var->mode == ir_var_shader_in;
1779 }
1780 }
1781
1782
1783 /**
1784 * Matrix layout qualifiers are only allowed on certain types
1785 */
1786 static void
1787 validate_matrix_layout_for_type(struct _mesa_glsl_parse_state *state,
1788 YYLTYPE *loc,
1789 const glsl_type *type)
1790 {
1791 if (!type->is_matrix() && !type->is_record()) {
1792 _mesa_glsl_error(loc, state,
1793 "uniform block layout qualifiers row_major and "
1794 "column_major can only be applied to matrix and "
1795 "structure types");
1796 } else if (type->is_record()) {
1797 /* We allow 'layout(row_major)' on structure types because it's the only
1798 * way to get row-major layouts on matrices contained in structures.
1799 */
1800 _mesa_glsl_warning(loc, state,
1801 "uniform block layout qualifiers row_major and "
1802 "column_major applied to structure types is not "
1803 "strictly conformant and my be rejected by other "
1804 "compilers");
1805 }
1806 }
1807
1808 static void
1809 apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
1810 ir_variable *var,
1811 struct _mesa_glsl_parse_state *state,
1812 YYLTYPE *loc,
1813 bool ubo_qualifiers_valid,
1814 bool is_parameter)
1815 {
1816 if (qual->flags.q.invariant) {
1817 if (var->used) {
1818 _mesa_glsl_error(loc, state,
1819 "variable `%s' may not be redeclared "
1820 "`invariant' after being used",
1821 var->name);
1822 } else {
1823 var->invariant = 1;
1824 }
1825 }
1826
1827 if (qual->flags.q.constant || qual->flags.q.attribute
1828 || qual->flags.q.uniform
1829 || (qual->flags.q.varying && (state->target == fragment_shader)))
1830 var->read_only = 1;
1831
1832 if (qual->flags.q.centroid)
1833 var->centroid = 1;
1834
1835 if (qual->flags.q.attribute && state->target != vertex_shader) {
1836 var->type = glsl_type::error_type;
1837 _mesa_glsl_error(loc, state,
1838 "`attribute' variables may not be declared in the "
1839 "%s shader",
1840 _mesa_glsl_shader_target_name(state->target));
1841 }
1842
1843 /* If there is no qualifier that changes the mode of the variable, leave
1844 * the setting alone.
1845 */
1846 if (qual->flags.q.in && qual->flags.q.out)
1847 var->mode = ir_var_function_inout;
1848 else if (qual->flags.q.in)
1849 var->mode = is_parameter ? ir_var_function_in : ir_var_shader_in;
1850 else if (qual->flags.q.attribute
1851 || (qual->flags.q.varying && (state->target == fragment_shader)))
1852 var->mode = ir_var_shader_in;
1853 else if (qual->flags.q.out)
1854 var->mode = is_parameter ? ir_var_function_out : ir_var_shader_out;
1855 else if (qual->flags.q.varying && (state->target == vertex_shader))
1856 var->mode = ir_var_shader_out;
1857 else if (qual->flags.q.uniform)
1858 var->mode = ir_var_uniform;
1859
1860 if (!is_parameter && is_varying_var(var, state->target)) {
1861 /* This variable is being used to link data between shader stages (in
1862 * pre-glsl-1.30 parlance, it's a "varying"). Check that it has a type
1863 * that is allowed for such purposes.
1864 *
1865 * From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
1866 *
1867 * "The varying qualifier can be used only with the data types
1868 * float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
1869 * these."
1870 *
1871 * This was relaxed in GLSL version 1.30 and GLSL ES version 3.00. From
1872 * page 31 (page 37 of the PDF) of the GLSL 1.30 spec:
1873 *
1874 * "Fragment inputs can only be signed and unsigned integers and
1875 * integer vectors, float, floating-point vectors, matrices, or
1876 * arrays of these. Structures cannot be input.
1877 *
1878 * Similar text exists in the section on vertex shader outputs.
1879 *
1880 * Similar text exists in the GLSL ES 3.00 spec, except that the GLSL ES
1881 * 3.00 spec allows structs as well. Varying structs are also allowed
1882 * in GLSL 1.50.
1883 */
1884 switch (var->type->get_scalar_type()->base_type) {
1885 case GLSL_TYPE_FLOAT:
1886 /* Ok in all GLSL versions */
1887 break;
1888 case GLSL_TYPE_UINT:
1889 case GLSL_TYPE_INT:
1890 if (state->is_version(130, 300))
1891 break;
1892 _mesa_glsl_error(loc, state,
1893 "varying variables must be of base type float in %s",
1894 state->get_version_string());
1895 break;
1896 case GLSL_TYPE_STRUCT:
1897 if (state->is_version(150, 300))
1898 break;
1899 _mesa_glsl_error(loc, state,
1900 "varying variables may not be of type struct");
1901 break;
1902 default:
1903 _mesa_glsl_error(loc, state, "illegal type for a varying variable");
1904 break;
1905 }
1906 }
1907
1908 if (state->all_invariant && (state->current_function == NULL)) {
1909 switch (state->target) {
1910 case vertex_shader:
1911 if (var->mode == ir_var_shader_out)
1912 var->invariant = true;
1913 break;
1914 case geometry_shader:
1915 if ((var->mode == ir_var_shader_in)
1916 || (var->mode == ir_var_shader_out))
1917 var->invariant = true;
1918 break;
1919 case fragment_shader:
1920 if (var->mode == ir_var_shader_in)
1921 var->invariant = true;
1922 break;
1923 }
1924 }
1925
1926 if (qual->flags.q.flat)
1927 var->interpolation = INTERP_QUALIFIER_FLAT;
1928 else if (qual->flags.q.noperspective)
1929 var->interpolation = INTERP_QUALIFIER_NOPERSPECTIVE;
1930 else if (qual->flags.q.smooth)
1931 var->interpolation = INTERP_QUALIFIER_SMOOTH;
1932 else
1933 var->interpolation = INTERP_QUALIFIER_NONE;
1934
1935 if (var->interpolation != INTERP_QUALIFIER_NONE &&
1936 !(state->target == vertex_shader && var->mode == ir_var_shader_out) &&
1937 !(state->target == fragment_shader && var->mode == ir_var_shader_in)) {
1938 _mesa_glsl_error(loc, state,
1939 "interpolation qualifier `%s' can only be applied to "
1940 "vertex shader outputs and fragment shader inputs.",
1941 var->interpolation_string());
1942 }
1943
1944 var->pixel_center_integer = qual->flags.q.pixel_center_integer;
1945 var->origin_upper_left = qual->flags.q.origin_upper_left;
1946 if ((qual->flags.q.origin_upper_left || qual->flags.q.pixel_center_integer)
1947 && (strcmp(var->name, "gl_FragCoord") != 0)) {
1948 const char *const qual_string = (qual->flags.q.origin_upper_left)
1949 ? "origin_upper_left" : "pixel_center_integer";
1950
1951 _mesa_glsl_error(loc, state,
1952 "layout qualifier `%s' can only be applied to "
1953 "fragment shader input `gl_FragCoord'",
1954 qual_string);
1955 }
1956
1957 if (qual->flags.q.explicit_location) {
1958 const bool global_scope = (state->current_function == NULL);
1959 bool fail = false;
1960 const char *string = "";
1961
1962 /* In the vertex shader only shader inputs can be given explicit
1963 * locations.
1964 *
1965 * In the fragment shader only shader outputs can be given explicit
1966 * locations.
1967 */
1968 switch (state->target) {
1969 case vertex_shader:
1970 if (!global_scope || (var->mode != ir_var_shader_in)) {
1971 fail = true;
1972 string = "input";
1973 }
1974 break;
1975
1976 case geometry_shader:
1977 _mesa_glsl_error(loc, state,
1978 "geometry shader variables cannot be given "
1979 "explicit locations\n");
1980 break;
1981
1982 case fragment_shader:
1983 if (!global_scope || (var->mode != ir_var_shader_out)) {
1984 fail = true;
1985 string = "output";
1986 }
1987 break;
1988 };
1989
1990 if (fail) {
1991 _mesa_glsl_error(loc, state,
1992 "only %s shader %s variables can be given an "
1993 "explicit location\n",
1994 _mesa_glsl_shader_target_name(state->target),
1995 string);
1996 } else {
1997 var->explicit_location = true;
1998
1999 /* This bit of silliness is needed because invalid explicit locations
2000 * are supposed to be flagged during linking. Small negative values
2001 * biased by VERT_ATTRIB_GENERIC0 or FRAG_RESULT_DATA0 could alias
2002 * built-in values (e.g., -16+VERT_ATTRIB_GENERIC0 = VERT_ATTRIB_POS).
2003 * The linker needs to be able to differentiate these cases. This
2004 * ensures that negative values stay negative.
2005 */
2006 if (qual->location >= 0) {
2007 var->location = (state->target == vertex_shader)
2008 ? (qual->location + VERT_ATTRIB_GENERIC0)
2009 : (qual->location + FRAG_RESULT_DATA0);
2010 } else {
2011 var->location = qual->location;
2012 }
2013
2014 if (qual->flags.q.explicit_index) {
2015 /* From the GLSL 4.30 specification, section 4.4.2 (Output
2016 * Layout Qualifiers):
2017 *
2018 * "It is also a compile-time error if a fragment shader
2019 * sets a layout index to less than 0 or greater than 1."
2020 *
2021 * Older specifications don't mandate a behavior; we take
2022 * this as a clarification and always generate the error.
2023 */
2024 if (qual->index < 0 || qual->index > 1) {
2025 _mesa_glsl_error(loc, state,
2026 "explicit index may only be 0 or 1\n");
2027 } else {
2028 var->explicit_index = true;
2029 var->index = qual->index;
2030 }
2031 }
2032 }
2033 } else if (qual->flags.q.explicit_index) {
2034 _mesa_glsl_error(loc, state,
2035 "explicit index requires explicit location\n");
2036 }
2037
2038 /* Does the declaration use the 'layout' keyword?
2039 */
2040 const bool uses_layout = qual->flags.q.pixel_center_integer
2041 || qual->flags.q.origin_upper_left
2042 || qual->flags.q.explicit_location; /* no need for index since it relies on location */
2043
2044 /* Does the declaration use the deprecated 'attribute' or 'varying'
2045 * keywords?
2046 */
2047 const bool uses_deprecated_qualifier = qual->flags.q.attribute
2048 || qual->flags.q.varying;
2049
2050 /* Is the 'layout' keyword used with parameters that allow relaxed checking.
2051 * Many implementations of GL_ARB_fragment_coord_conventions_enable and some
2052 * implementations (only Mesa?) GL_ARB_explicit_attrib_location_enable
2053 * allowed the layout qualifier to be used with 'varying' and 'attribute'.
2054 * These extensions and all following extensions that add the 'layout'
2055 * keyword have been modified to require the use of 'in' or 'out'.
2056 *
2057 * The following extension do not allow the deprecated keywords:
2058 *
2059 * GL_AMD_conservative_depth
2060 * GL_ARB_conservative_depth
2061 * GL_ARB_gpu_shader5
2062 * GL_ARB_separate_shader_objects
2063 * GL_ARB_tesselation_shader
2064 * GL_ARB_transform_feedback3
2065 * GL_ARB_uniform_buffer_object
2066 *
2067 * It is unknown whether GL_EXT_shader_image_load_store or GL_NV_gpu_shader5
2068 * allow layout with the deprecated keywords.
2069 */
2070 const bool relaxed_layout_qualifier_checking =
2071 state->ARB_fragment_coord_conventions_enable;
2072
2073 if (uses_layout && uses_deprecated_qualifier) {
2074 if (relaxed_layout_qualifier_checking) {
2075 _mesa_glsl_warning(loc, state,
2076 "`layout' qualifier may not be used with "
2077 "`attribute' or `varying'");
2078 } else {
2079 _mesa_glsl_error(loc, state,
2080 "`layout' qualifier may not be used with "
2081 "`attribute' or `varying'");
2082 }
2083 }
2084
2085 /* Layout qualifiers for gl_FragDepth, which are enabled by extension
2086 * AMD_conservative_depth.
2087 */
2088 int depth_layout_count = qual->flags.q.depth_any
2089 + qual->flags.q.depth_greater
2090 + qual->flags.q.depth_less
2091 + qual->flags.q.depth_unchanged;
2092 if (depth_layout_count > 0
2093 && !state->AMD_conservative_depth_enable
2094 && !state->ARB_conservative_depth_enable) {
2095 _mesa_glsl_error(loc, state,
2096 "extension GL_AMD_conservative_depth or "
2097 "GL_ARB_conservative_depth must be enabled "
2098 "to use depth layout qualifiers");
2099 } else if (depth_layout_count > 0
2100 && strcmp(var->name, "gl_FragDepth") != 0) {
2101 _mesa_glsl_error(loc, state,
2102 "depth layout qualifiers can be applied only to "
2103 "gl_FragDepth");
2104 } else if (depth_layout_count > 1
2105 && strcmp(var->name, "gl_FragDepth") == 0) {
2106 _mesa_glsl_error(loc, state,
2107 "at most one depth layout qualifier can be applied to "
2108 "gl_FragDepth");
2109 }
2110 if (qual->flags.q.depth_any)
2111 var->depth_layout = ir_depth_layout_any;
2112 else if (qual->flags.q.depth_greater)
2113 var->depth_layout = ir_depth_layout_greater;
2114 else if (qual->flags.q.depth_less)
2115 var->depth_layout = ir_depth_layout_less;
2116 else if (qual->flags.q.depth_unchanged)
2117 var->depth_layout = ir_depth_layout_unchanged;
2118 else
2119 var->depth_layout = ir_depth_layout_none;
2120
2121 if (qual->flags.q.std140 ||
2122 qual->flags.q.packed ||
2123 qual->flags.q.shared) {
2124 _mesa_glsl_error(loc, state,
2125 "uniform block layout qualifiers std140, packed, and "
2126 "shared can only be applied to uniform blocks, not "
2127 "members");
2128 }
2129
2130 if (qual->flags.q.row_major || qual->flags.q.column_major) {
2131 if (!ubo_qualifiers_valid) {
2132 _mesa_glsl_error(loc, state,
2133 "uniform block layout qualifiers row_major and "
2134 "column_major can only be applied to uniform block "
2135 "members");
2136 } else
2137 validate_matrix_layout_for_type(state, loc, var->type);
2138 }
2139 }
2140
2141 /**
2142 * Get the variable that is being redeclared by this declaration
2143 *
2144 * Semantic checks to verify the validity of the redeclaration are also
2145 * performed. If semantic checks fail, compilation error will be emitted via
2146 * \c _mesa_glsl_error, but a non-\c NULL pointer will still be returned.
2147 *
2148 * \returns
2149 * A pointer to an existing variable in the current scope if the declaration
2150 * is a redeclaration, \c NULL otherwise.
2151 */
2152 ir_variable *
2153 get_variable_being_redeclared(ir_variable *var, ast_declaration *decl,
2154 struct _mesa_glsl_parse_state *state)
2155 {
2156 /* Check if this declaration is actually a re-declaration, either to
2157 * resize an array or add qualifiers to an existing variable.
2158 *
2159 * This is allowed for variables in the current scope, or when at
2160 * global scope (for built-ins in the implicit outer scope).
2161 */
2162 ir_variable *earlier = state->symbols->get_variable(decl->identifier);
2163 if (earlier == NULL ||
2164 (state->current_function != NULL &&
2165 !state->symbols->name_declared_this_scope(decl->identifier))) {
2166 return NULL;
2167 }
2168
2169
2170 YYLTYPE loc = decl->get_location();
2171
2172 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
2173 *
2174 * "It is legal to declare an array without a size and then
2175 * later re-declare the same name as an array of the same
2176 * type and specify a size."
2177 */
2178 if ((earlier->type->array_size() == 0)
2179 && var->type->is_array()
2180 && (var->type->element_type() == earlier->type->element_type())) {
2181 /* FINISHME: This doesn't match the qualifiers on the two
2182 * FINISHME: declarations. It's not 100% clear whether this is
2183 * FINISHME: required or not.
2184 */
2185
2186 const unsigned size = unsigned(var->type->array_size());
2187 check_builtin_array_max_size(var->name, size, loc, state);
2188 if ((size > 0) && (size <= earlier->max_array_access)) {
2189 _mesa_glsl_error(& loc, state, "array size must be > %u due to "
2190 "previous access",
2191 earlier->max_array_access);
2192 }
2193
2194 earlier->type = var->type;
2195 delete var;
2196 var = NULL;
2197 } else if (state->ARB_fragment_coord_conventions_enable
2198 && strcmp(var->name, "gl_FragCoord") == 0
2199 && earlier->type == var->type
2200 && earlier->mode == var->mode) {
2201 /* Allow redeclaration of gl_FragCoord for ARB_fcc layout
2202 * qualifiers.
2203 */
2204 earlier->origin_upper_left = var->origin_upper_left;
2205 earlier->pixel_center_integer = var->pixel_center_integer;
2206
2207 /* According to section 4.3.7 of the GLSL 1.30 spec,
2208 * the following built-in varaibles can be redeclared with an
2209 * interpolation qualifier:
2210 * * gl_FrontColor
2211 * * gl_BackColor
2212 * * gl_FrontSecondaryColor
2213 * * gl_BackSecondaryColor
2214 * * gl_Color
2215 * * gl_SecondaryColor
2216 */
2217 } else if (state->is_version(130, 0)
2218 && (strcmp(var->name, "gl_FrontColor") == 0
2219 || strcmp(var->name, "gl_BackColor") == 0
2220 || strcmp(var->name, "gl_FrontSecondaryColor") == 0
2221 || strcmp(var->name, "gl_BackSecondaryColor") == 0
2222 || strcmp(var->name, "gl_Color") == 0
2223 || strcmp(var->name, "gl_SecondaryColor") == 0)
2224 && earlier->type == var->type
2225 && earlier->mode == var->mode) {
2226 earlier->interpolation = var->interpolation;
2227
2228 /* Layout qualifiers for gl_FragDepth. */
2229 } else if ((state->AMD_conservative_depth_enable ||
2230 state->ARB_conservative_depth_enable)
2231 && strcmp(var->name, "gl_FragDepth") == 0
2232 && earlier->type == var->type
2233 && earlier->mode == var->mode) {
2234
2235 /** From the AMD_conservative_depth spec:
2236 * Within any shader, the first redeclarations of gl_FragDepth
2237 * must appear before any use of gl_FragDepth.
2238 */
2239 if (earlier->used) {
2240 _mesa_glsl_error(&loc, state,
2241 "the first redeclaration of gl_FragDepth "
2242 "must appear before any use of gl_FragDepth");
2243 }
2244
2245 /* Prevent inconsistent redeclaration of depth layout qualifier. */
2246 if (earlier->depth_layout != ir_depth_layout_none
2247 && earlier->depth_layout != var->depth_layout) {
2248 _mesa_glsl_error(&loc, state,
2249 "gl_FragDepth: depth layout is declared here "
2250 "as '%s, but it was previously declared as "
2251 "'%s'",
2252 depth_layout_string(var->depth_layout),
2253 depth_layout_string(earlier->depth_layout));
2254 }
2255
2256 earlier->depth_layout = var->depth_layout;
2257
2258 } else {
2259 _mesa_glsl_error(&loc, state, "`%s' redeclared", decl->identifier);
2260 }
2261
2262 return earlier;
2263 }
2264
2265 /**
2266 * Generate the IR for an initializer in a variable declaration
2267 */
2268 ir_rvalue *
2269 process_initializer(ir_variable *var, ast_declaration *decl,
2270 ast_fully_specified_type *type,
2271 exec_list *initializer_instructions,
2272 struct _mesa_glsl_parse_state *state)
2273 {
2274 ir_rvalue *result = NULL;
2275
2276 YYLTYPE initializer_loc = decl->initializer->get_location();
2277
2278 /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
2279 *
2280 * "All uniform variables are read-only and are initialized either
2281 * directly by an application via API commands, or indirectly by
2282 * OpenGL."
2283 */
2284 if (var->mode == ir_var_uniform) {
2285 state->check_version(120, 0, &initializer_loc,
2286 "cannot initialize uniforms");
2287 }
2288
2289 if (var->type->is_sampler()) {
2290 _mesa_glsl_error(& initializer_loc, state,
2291 "cannot initialize samplers");
2292 }
2293
2294 if ((var->mode == ir_var_shader_in) && (state->current_function == NULL)) {
2295 _mesa_glsl_error(& initializer_loc, state,
2296 "cannot initialize %s shader input / %s",
2297 _mesa_glsl_shader_target_name(state->target),
2298 (state->target == vertex_shader)
2299 ? "attribute" : "varying");
2300 }
2301
2302 ir_dereference *const lhs = new(state) ir_dereference_variable(var);
2303 ir_rvalue *rhs = decl->initializer->hir(initializer_instructions,
2304 state);
2305
2306 /* Calculate the constant value if this is a const or uniform
2307 * declaration.
2308 */
2309 if (type->qualifier.flags.q.constant
2310 || type->qualifier.flags.q.uniform) {
2311 ir_rvalue *new_rhs = validate_assignment(state, var->type, rhs, true);
2312 if (new_rhs != NULL) {
2313 rhs = new_rhs;
2314
2315 ir_constant *constant_value = rhs->constant_expression_value();
2316 if (!constant_value) {
2317 _mesa_glsl_error(& initializer_loc, state,
2318 "initializer of %s variable `%s' must be a "
2319 "constant expression",
2320 (type->qualifier.flags.q.constant)
2321 ? "const" : "uniform",
2322 decl->identifier);
2323 if (var->type->is_numeric()) {
2324 /* Reduce cascading errors. */
2325 var->constant_value = ir_constant::zero(state, var->type);
2326 }
2327 } else {
2328 rhs = constant_value;
2329 var->constant_value = constant_value;
2330 }
2331 } else {
2332 _mesa_glsl_error(&initializer_loc, state,
2333 "initializer of type %s cannot be assigned to "
2334 "variable of type %s",
2335 rhs->type->name, var->type->name);
2336 if (var->type->is_numeric()) {
2337 /* Reduce cascading errors. */
2338 var->constant_value = ir_constant::zero(state, var->type);
2339 }
2340 }
2341 }
2342
2343 if (rhs && !rhs->type->is_error()) {
2344 bool temp = var->read_only;
2345 if (type->qualifier.flags.q.constant)
2346 var->read_only = false;
2347
2348 /* Never emit code to initialize a uniform.
2349 */
2350 const glsl_type *initializer_type;
2351 if (!type->qualifier.flags.q.uniform) {
2352 result = do_assignment(initializer_instructions, state,
2353 NULL,
2354 lhs, rhs, true,
2355 type->get_location());
2356 initializer_type = result->type;
2357 } else
2358 initializer_type = rhs->type;
2359
2360 var->constant_initializer = rhs->constant_expression_value();
2361 var->has_initializer = true;
2362
2363 /* If the declared variable is an unsized array, it must inherrit
2364 * its full type from the initializer. A declaration such as
2365 *
2366 * uniform float a[] = float[](1.0, 2.0, 3.0, 3.0);
2367 *
2368 * becomes
2369 *
2370 * uniform float a[4] = float[](1.0, 2.0, 3.0, 3.0);
2371 *
2372 * The assignment generated in the if-statement (below) will also
2373 * automatically handle this case for non-uniforms.
2374 *
2375 * If the declared variable is not an array, the types must
2376 * already match exactly. As a result, the type assignment
2377 * here can be done unconditionally. For non-uniforms the call
2378 * to do_assignment can change the type of the initializer (via
2379 * the implicit conversion rules). For uniforms the initializer
2380 * must be a constant expression, and the type of that expression
2381 * was validated above.
2382 */
2383 var->type = initializer_type;
2384
2385 var->read_only = temp;
2386 }
2387
2388 return result;
2389 }
2390
2391 ir_rvalue *
2392 ast_declarator_list::hir(exec_list *instructions,
2393 struct _mesa_glsl_parse_state *state)
2394 {
2395 void *ctx = state;
2396 const struct glsl_type *decl_type;
2397 const char *type_name = NULL;
2398 ir_rvalue *result = NULL;
2399 YYLTYPE loc = this->get_location();
2400
2401 /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec:
2402 *
2403 * "To ensure that a particular output variable is invariant, it is
2404 * necessary to use the invariant qualifier. It can either be used to
2405 * qualify a previously declared variable as being invariant
2406 *
2407 * invariant gl_Position; // make existing gl_Position be invariant"
2408 *
2409 * In these cases the parser will set the 'invariant' flag in the declarator
2410 * list, and the type will be NULL.
2411 */
2412 if (this->invariant) {
2413 assert(this->type == NULL);
2414
2415 if (state->current_function != NULL) {
2416 _mesa_glsl_error(& loc, state,
2417 "All uses of `invariant' keyword must be at global "
2418 "scope\n");
2419 }
2420
2421 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
2422 assert(!decl->is_array);
2423 assert(decl->array_size == NULL);
2424 assert(decl->initializer == NULL);
2425
2426 ir_variable *const earlier =
2427 state->symbols->get_variable(decl->identifier);
2428 if (earlier == NULL) {
2429 _mesa_glsl_error(& loc, state,
2430 "Undeclared variable `%s' cannot be marked "
2431 "invariant\n", decl->identifier);
2432 } else if ((state->target == vertex_shader)
2433 && (earlier->mode != ir_var_shader_out)) {
2434 _mesa_glsl_error(& loc, state,
2435 "`%s' cannot be marked invariant, vertex shader "
2436 "outputs only\n", decl->identifier);
2437 } else if ((state->target == fragment_shader)
2438 && (earlier->mode != ir_var_shader_in)) {
2439 _mesa_glsl_error(& loc, state,
2440 "`%s' cannot be marked invariant, fragment shader "
2441 "inputs only\n", decl->identifier);
2442 } else if (earlier->used) {
2443 _mesa_glsl_error(& loc, state,
2444 "variable `%s' may not be redeclared "
2445 "`invariant' after being used",
2446 earlier->name);
2447 } else {
2448 earlier->invariant = true;
2449 }
2450 }
2451
2452 /* Invariant redeclarations do not have r-values.
2453 */
2454 return NULL;
2455 }
2456
2457 assert(this->type != NULL);
2458 assert(!this->invariant);
2459
2460 /* The type specifier may contain a structure definition. Process that
2461 * before any of the variable declarations.
2462 */
2463 (void) this->type->specifier->hir(instructions, state);
2464
2465 decl_type = this->type->specifier->glsl_type(& type_name, state);
2466 if (this->declarations.is_empty()) {
2467 /* If there is no structure involved in the program text, there are two
2468 * possible scenarios:
2469 *
2470 * - The program text contained something like 'vec4;'. This is an
2471 * empty declaration. It is valid but weird. Emit a warning.
2472 *
2473 * - The program text contained something like 'S;' and 'S' is not the
2474 * name of a known structure type. This is both invalid and weird.
2475 * Emit an error.
2476 *
2477 * Note that if decl_type is NULL and there is a structure involved,
2478 * there must have been some sort of error with the structure. In this
2479 * case we assume that an error was already generated on this line of
2480 * code for the structure. There is no need to generate an additional,
2481 * confusing error.
2482 */
2483 assert(this->type->specifier->structure == NULL || decl_type != NULL
2484 || state->error);
2485 if (this->type->specifier->structure == NULL) {
2486 if (decl_type != NULL) {
2487 _mesa_glsl_warning(&loc, state, "empty declaration");
2488 } else {
2489 _mesa_glsl_error(&loc, state,
2490 "invalid type `%s' in empty declaration",
2491 type_name);
2492 }
2493 }
2494 }
2495
2496 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
2497 const struct glsl_type *var_type;
2498 ir_variable *var;
2499
2500 /* FINISHME: Emit a warning if a variable declaration shadows a
2501 * FINISHME: declaration at a higher scope.
2502 */
2503
2504 if ((decl_type == NULL) || decl_type->is_void()) {
2505 if (type_name != NULL) {
2506 _mesa_glsl_error(& loc, state,
2507 "invalid type `%s' in declaration of `%s'",
2508 type_name, decl->identifier);
2509 } else {
2510 _mesa_glsl_error(& loc, state,
2511 "invalid type in declaration of `%s'",
2512 decl->identifier);
2513 }
2514 continue;
2515 }
2516
2517 if (decl->is_array) {
2518 var_type = process_array_type(&loc, decl_type, decl->array_size,
2519 state);
2520 if (var_type->is_error())
2521 continue;
2522 } else {
2523 var_type = decl_type;
2524 }
2525
2526 var = new(ctx) ir_variable(var_type, decl->identifier, ir_var_auto);
2527
2528 /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
2529 *
2530 * "Global variables can only use the qualifiers const,
2531 * attribute, uni form, or varying. Only one may be
2532 * specified.
2533 *
2534 * Local variables can only use the qualifier const."
2535 *
2536 * This is relaxed in GLSL 1.30 and GLSL ES 3.00. It is also relaxed by
2537 * any extension that adds the 'layout' keyword.
2538 */
2539 if (!state->is_version(130, 300)
2540 && !state->ARB_explicit_attrib_location_enable
2541 && !state->ARB_fragment_coord_conventions_enable) {
2542 if (this->type->qualifier.flags.q.out) {
2543 _mesa_glsl_error(& loc, state,
2544 "`out' qualifier in declaration of `%s' "
2545 "only valid for function parameters in %s.",
2546 decl->identifier, state->get_version_string());
2547 }
2548 if (this->type->qualifier.flags.q.in) {
2549 _mesa_glsl_error(& loc, state,
2550 "`in' qualifier in declaration of `%s' "
2551 "only valid for function parameters in %s.",
2552 decl->identifier, state->get_version_string());
2553 }
2554 /* FINISHME: Test for other invalid qualifiers. */
2555 }
2556
2557 apply_type_qualifier_to_variable(& this->type->qualifier, var, state,
2558 & loc, this->ubo_qualifiers_valid, false);
2559
2560 if (this->type->qualifier.flags.q.invariant) {
2561 if ((state->target == vertex_shader) &&
2562 var->mode != ir_var_shader_out) {
2563 _mesa_glsl_error(& loc, state,
2564 "`%s' cannot be marked invariant, vertex shader "
2565 "outputs only\n", var->name);
2566 } else if ((state->target == fragment_shader) &&
2567 var->mode != ir_var_shader_in) {
2568 /* FINISHME: Note that this doesn't work for invariant on
2569 * a function signature inval
2570 */
2571 _mesa_glsl_error(& loc, state,
2572 "`%s' cannot be marked invariant, fragment shader "
2573 "inputs only\n", var->name);
2574 }
2575 }
2576
2577 if (state->current_function != NULL) {
2578 const char *mode = NULL;
2579 const char *extra = "";
2580
2581 /* There is no need to check for 'inout' here because the parser will
2582 * only allow that in function parameter lists.
2583 */
2584 if (this->type->qualifier.flags.q.attribute) {
2585 mode = "attribute";
2586 } else if (this->type->qualifier.flags.q.uniform) {
2587 mode = "uniform";
2588 } else if (this->type->qualifier.flags.q.varying) {
2589 mode = "varying";
2590 } else if (this->type->qualifier.flags.q.in) {
2591 mode = "in";
2592 extra = " or in function parameter list";
2593 } else if (this->type->qualifier.flags.q.out) {
2594 mode = "out";
2595 extra = " or in function parameter list";
2596 }
2597
2598 if (mode) {
2599 _mesa_glsl_error(& loc, state,
2600 "%s variable `%s' must be declared at "
2601 "global scope%s",
2602 mode, var->name, extra);
2603 }
2604 } else if (var->mode == ir_var_shader_in) {
2605 var->read_only = true;
2606
2607 if (state->target == vertex_shader) {
2608 bool error_emitted = false;
2609
2610 /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
2611 *
2612 * "Vertex shader inputs can only be float, floating-point
2613 * vectors, matrices, signed and unsigned integers and integer
2614 * vectors. Vertex shader inputs can also form arrays of these
2615 * types, but not structures."
2616 *
2617 * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
2618 *
2619 * "Vertex shader inputs can only be float, floating-point
2620 * vectors, matrices, signed and unsigned integers and integer
2621 * vectors. They cannot be arrays or structures."
2622 *
2623 * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
2624 *
2625 * "The attribute qualifier can be used only with float,
2626 * floating-point vectors, and matrices. Attribute variables
2627 * cannot be declared as arrays or structures."
2628 *
2629 * From page 33 (page 39 of the PDF) of the GLSL ES 3.00 spec:
2630 *
2631 * "Vertex shader inputs can only be float, floating-point
2632 * vectors, matrices, signed and unsigned integers and integer
2633 * vectors. Vertex shader inputs cannot be arrays or
2634 * structures."
2635 */
2636 const glsl_type *check_type = var->type->is_array()
2637 ? var->type->fields.array : var->type;
2638
2639 switch (check_type->base_type) {
2640 case GLSL_TYPE_FLOAT:
2641 break;
2642 case GLSL_TYPE_UINT:
2643 case GLSL_TYPE_INT:
2644 if (state->is_version(120, 300))
2645 break;
2646 /* FALLTHROUGH */
2647 default:
2648 _mesa_glsl_error(& loc, state,
2649 "vertex shader input / attribute cannot have "
2650 "type %s`%s'",
2651 var->type->is_array() ? "array of " : "",
2652 check_type->name);
2653 error_emitted = true;
2654 }
2655
2656 if (!error_emitted && var->type->is_array() &&
2657 !state->check_version(140, 0, &loc,
2658 "vertex shader input / attribute "
2659 "cannot have array type")) {
2660 error_emitted = true;
2661 }
2662 }
2663 }
2664
2665 /* Integer fragment inputs must be qualified with 'flat'. In GLSL ES,
2666 * so must integer vertex outputs.
2667 *
2668 * From section 4.3.4 ("Inputs") of the GLSL 1.50 spec:
2669 * "Fragment shader inputs that are signed or unsigned integers or
2670 * integer vectors must be qualified with the interpolation qualifier
2671 * flat."
2672 *
2673 * From section 4.3.4 ("Input Variables") of the GLSL 3.00 ES spec:
2674 * "Fragment shader inputs that are, or contain, signed or unsigned
2675 * integers or integer vectors must be qualified with the
2676 * interpolation qualifier flat."
2677 *
2678 * From section 4.3.6 ("Output Variables") of the GLSL 3.00 ES spec:
2679 * "Vertex shader outputs that are, or contain, signed or unsigned
2680 * integers or integer vectors must be qualified with the
2681 * interpolation qualifier flat."
2682 *
2683 * Note that prior to GLSL 1.50, this requirement applied to vertex
2684 * outputs rather than fragment inputs. That creates problems in the
2685 * presence of geometry shaders, so we adopt the GLSL 1.50 rule for all
2686 * desktop GL shaders. For GLSL ES shaders, we follow the spec and
2687 * apply the restriction to both vertex outputs and fragment inputs.
2688 *
2689 * Note also that the desktop GLSL specs are missing the text "or
2690 * contain"; this is presumably an oversight, since there is no
2691 * reasonable way to interpolate a fragment shader input that contains
2692 * an integer.
2693 */
2694 if (state->is_version(130, 300) &&
2695 var->type->contains_integer() &&
2696 var->interpolation != INTERP_QUALIFIER_FLAT &&
2697 ((state->target == fragment_shader && var->mode == ir_var_shader_in)
2698 || (state->target == vertex_shader && var->mode == ir_var_shader_out
2699 && state->es_shader))) {
2700 const char *var_type = (state->target == vertex_shader) ?
2701 "vertex output" : "fragment input";
2702 _mesa_glsl_error(&loc, state, "If a %s is (or contains) "
2703 "an integer, then it must be qualified with 'flat'",
2704 var_type);
2705 }
2706
2707
2708 /* Interpolation qualifiers cannot be applied to 'centroid' and
2709 * 'centroid varying'.
2710 *
2711 * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
2712 * "interpolation qualifiers may only precede the qualifiers in,
2713 * centroid in, out, or centroid out in a declaration. They do not apply
2714 * to the deprecated storage qualifiers varying or centroid varying."
2715 *
2716 * These deprecated storage qualifiers do not exist in GLSL ES 3.00.
2717 */
2718 if (state->is_version(130, 0)
2719 && this->type->qualifier.has_interpolation()
2720 && this->type->qualifier.flags.q.varying) {
2721
2722 const char *i = this->type->qualifier.interpolation_string();
2723 assert(i != NULL);
2724 const char *s;
2725 if (this->type->qualifier.flags.q.centroid)
2726 s = "centroid varying";
2727 else
2728 s = "varying";
2729
2730 _mesa_glsl_error(&loc, state,
2731 "qualifier '%s' cannot be applied to the "
2732 "deprecated storage qualifier '%s'", i, s);
2733 }
2734
2735
2736 /* Interpolation qualifiers can only apply to vertex shader outputs and
2737 * fragment shader inputs.
2738 *
2739 * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
2740 * "Outputs from a vertex shader (out) and inputs to a fragment
2741 * shader (in) can be further qualified with one or more of these
2742 * interpolation qualifiers"
2743 *
2744 * From page 31 (page 37 of the PDF) of the GLSL ES 3.00 spec:
2745 * "These interpolation qualifiers may only precede the qualifiers
2746 * in, centroid in, out, or centroid out in a declaration. They do
2747 * not apply to inputs into a vertex shader or outputs from a
2748 * fragment shader."
2749 */
2750 if (state->is_version(130, 300)
2751 && this->type->qualifier.has_interpolation()) {
2752
2753 const char *i = this->type->qualifier.interpolation_string();
2754 assert(i != NULL);
2755
2756 switch (state->target) {
2757 case vertex_shader:
2758 if (this->type->qualifier.flags.q.in) {
2759 _mesa_glsl_error(&loc, state,
2760 "qualifier '%s' cannot be applied to vertex "
2761 "shader inputs", i);
2762 }
2763 break;
2764 case fragment_shader:
2765 if (this->type->qualifier.flags.q.out) {
2766 _mesa_glsl_error(&loc, state,
2767 "qualifier '%s' cannot be applied to fragment "
2768 "shader outputs", i);
2769 }
2770 break;
2771 default:
2772 assert(0);
2773 }
2774 }
2775
2776
2777 /* From section 4.3.4 of the GLSL 1.30 spec:
2778 * "It is an error to use centroid in in a vertex shader."
2779 *
2780 * From section 4.3.4 of the GLSL ES 3.00 spec:
2781 * "It is an error to use centroid in or interpolation qualifiers in
2782 * a vertex shader input."
2783 */
2784 if (state->is_version(130, 300)
2785 && this->type->qualifier.flags.q.centroid
2786 && this->type->qualifier.flags.q.in
2787 && state->target == vertex_shader) {
2788
2789 _mesa_glsl_error(&loc, state,
2790 "'centroid in' cannot be used in a vertex shader");
2791 }
2792
2793
2794 /* Precision qualifiers exists only in GLSL versions 1.00 and >= 1.30.
2795 */
2796 if (this->type->specifier->precision != ast_precision_none) {
2797 state->check_precision_qualifiers_allowed(&loc);
2798 }
2799
2800
2801 /* Precision qualifiers only apply to floating point and integer types.
2802 *
2803 * From section 4.5.2 of the GLSL 1.30 spec:
2804 * "Any floating point or any integer declaration can have the type
2805 * preceded by one of these precision qualifiers [...] Literal
2806 * constants do not have precision qualifiers. Neither do Boolean
2807 * variables.
2808 *
2809 * In GLSL ES, sampler types are also allowed.
2810 *
2811 * From page 87 of the GLSL ES spec:
2812 * "RESOLUTION: Allow sampler types to take a precision qualifier."
2813 */
2814 if (this->type->specifier->precision != ast_precision_none
2815 && !var->type->is_float()
2816 && !var->type->is_integer()
2817 && !(var->type->is_sampler() && state->es_shader)
2818 && !(var->type->is_array()
2819 && (var->type->fields.array->is_float()
2820 || var->type->fields.array->is_integer()))) {
2821
2822 _mesa_glsl_error(&loc, state,
2823 "precision qualifiers apply only to floating point"
2824 "%s types", state->es_shader ? ", integer, and sampler"
2825 : "and integer");
2826 }
2827
2828 /* From page 17 (page 23 of the PDF) of the GLSL 1.20 spec:
2829 *
2830 * "[Sampler types] can only be declared as function
2831 * parameters or uniform variables (see Section 4.3.5
2832 * "Uniform")".
2833 */
2834 if (var_type->contains_sampler() &&
2835 !this->type->qualifier.flags.q.uniform) {
2836 _mesa_glsl_error(&loc, state, "samplers must be declared uniform");
2837 }
2838
2839 /* Process the initializer and add its instructions to a temporary
2840 * list. This list will be added to the instruction stream (below) after
2841 * the declaration is added. This is done because in some cases (such as
2842 * redeclarations) the declaration may not actually be added to the
2843 * instruction stream.
2844 */
2845 exec_list initializer_instructions;
2846 ir_variable *earlier = get_variable_being_redeclared(var, decl, state);
2847
2848 if (decl->initializer != NULL) {
2849 result = process_initializer((earlier == NULL) ? var : earlier,
2850 decl, this->type,
2851 &initializer_instructions, state);
2852 }
2853
2854 /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
2855 *
2856 * "It is an error to write to a const variable outside of
2857 * its declaration, so they must be initialized when
2858 * declared."
2859 */
2860 if (this->type->qualifier.flags.q.constant && decl->initializer == NULL) {
2861 _mesa_glsl_error(& loc, state,
2862 "const declaration of `%s' must be initialized",
2863 decl->identifier);
2864 }
2865
2866 /* If the declaration is not a redeclaration, there are a few additional
2867 * semantic checks that must be applied. In addition, variable that was
2868 * created for the declaration should be added to the IR stream.
2869 */
2870 if (earlier == NULL) {
2871 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
2872 *
2873 * "Identifiers starting with "gl_" are reserved for use by
2874 * OpenGL, and may not be declared in a shader as either a
2875 * variable or a function."
2876 */
2877 if (strncmp(decl->identifier, "gl_", 3) == 0)
2878 _mesa_glsl_error(& loc, state,
2879 "identifier `%s' uses reserved `gl_' prefix",
2880 decl->identifier);
2881 else if (strstr(decl->identifier, "__")) {
2882 /* From page 14 (page 20 of the PDF) of the GLSL 1.10
2883 * spec:
2884 *
2885 * "In addition, all identifiers containing two
2886 * consecutive underscores (__) are reserved as
2887 * possible future keywords."
2888 */
2889 _mesa_glsl_error(& loc, state,
2890 "identifier `%s' uses reserved `__' string",
2891 decl->identifier);
2892 }
2893
2894 /* Add the variable to the symbol table. Note that the initializer's
2895 * IR was already processed earlier (though it hasn't been emitted
2896 * yet), without the variable in scope.
2897 *
2898 * This differs from most C-like languages, but it follows the GLSL
2899 * specification. From page 28 (page 34 of the PDF) of the GLSL 1.50
2900 * spec:
2901 *
2902 * "Within a declaration, the scope of a name starts immediately
2903 * after the initializer if present or immediately after the name
2904 * being declared if not."
2905 */
2906 if (!state->symbols->add_variable(var)) {
2907 YYLTYPE loc = this->get_location();
2908 _mesa_glsl_error(&loc, state, "name `%s' already taken in the "
2909 "current scope", decl->identifier);
2910 continue;
2911 }
2912
2913 /* Push the variable declaration to the top. It means that all the
2914 * variable declarations will appear in a funny last-to-first order,
2915 * but otherwise we run into trouble if a function is prototyped, a
2916 * global var is decled, then the function is defined with usage of
2917 * the global var. See glslparsertest's CorrectModule.frag.
2918 */
2919 instructions->push_head(var);
2920 }
2921
2922 instructions->append_list(&initializer_instructions);
2923 }
2924
2925
2926 /* Generally, variable declarations do not have r-values. However,
2927 * one is used for the declaration in
2928 *
2929 * while (bool b = some_condition()) {
2930 * ...
2931 * }
2932 *
2933 * so we return the rvalue from the last seen declaration here.
2934 */
2935 return result;
2936 }
2937
2938
2939 ir_rvalue *
2940 ast_parameter_declarator::hir(exec_list *instructions,
2941 struct _mesa_glsl_parse_state *state)
2942 {
2943 void *ctx = state;
2944 const struct glsl_type *type;
2945 const char *name = NULL;
2946 YYLTYPE loc = this->get_location();
2947
2948 type = this->type->specifier->glsl_type(& name, state);
2949
2950 if (type == NULL) {
2951 if (name != NULL) {
2952 _mesa_glsl_error(& loc, state,
2953 "invalid type `%s' in declaration of `%s'",
2954 name, this->identifier);
2955 } else {
2956 _mesa_glsl_error(& loc, state,
2957 "invalid type in declaration of `%s'",
2958 this->identifier);
2959 }
2960
2961 type = glsl_type::error_type;
2962 }
2963
2964 /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
2965 *
2966 * "Functions that accept no input arguments need not use void in the
2967 * argument list because prototypes (or definitions) are required and
2968 * therefore there is no ambiguity when an empty argument list "( )" is
2969 * declared. The idiom "(void)" as a parameter list is provided for
2970 * convenience."
2971 *
2972 * Placing this check here prevents a void parameter being set up
2973 * for a function, which avoids tripping up checks for main taking
2974 * parameters and lookups of an unnamed symbol.
2975 */
2976 if (type->is_void()) {
2977 if (this->identifier != NULL)
2978 _mesa_glsl_error(& loc, state,
2979 "named parameter cannot have type `void'");
2980
2981 is_void = true;
2982 return NULL;
2983 }
2984
2985 if (formal_parameter && (this->identifier == NULL)) {
2986 _mesa_glsl_error(& loc, state, "formal parameter lacks a name");
2987 return NULL;
2988 }
2989
2990 /* This only handles "vec4 foo[..]". The earlier specifier->glsl_type(...)
2991 * call already handled the "vec4[..] foo" case.
2992 */
2993 if (this->is_array) {
2994 type = process_array_type(&loc, type, this->array_size, state);
2995 }
2996
2997 if (!type->is_error() && type->array_size() == 0) {
2998 _mesa_glsl_error(&loc, state, "arrays passed as parameters must have "
2999 "a declared size.");
3000 type = glsl_type::error_type;
3001 }
3002
3003 is_void = false;
3004 ir_variable *var = new(ctx)
3005 ir_variable(type, this->identifier, ir_var_function_in);
3006
3007 /* Apply any specified qualifiers to the parameter declaration. Note that
3008 * for function parameters the default mode is 'in'.
3009 */
3010 apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc,
3011 false, true);
3012
3013 /* From page 17 (page 23 of the PDF) of the GLSL 1.20 spec:
3014 *
3015 * "Samplers cannot be treated as l-values; hence cannot be used
3016 * as out or inout function parameters, nor can they be assigned
3017 * into."
3018 */
3019 if ((var->mode == ir_var_function_inout || var->mode == ir_var_function_out)
3020 && type->contains_sampler()) {
3021 _mesa_glsl_error(&loc, state, "out and inout parameters cannot contain samplers");
3022 type = glsl_type::error_type;
3023 }
3024
3025 /* From page 39 (page 45 of the PDF) of the GLSL 1.10 spec:
3026 *
3027 * "When calling a function, expressions that do not evaluate to
3028 * l-values cannot be passed to parameters declared as out or inout."
3029 *
3030 * From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
3031 *
3032 * "Other binary or unary expressions, non-dereferenced arrays,
3033 * function names, swizzles with repeated fields, and constants
3034 * cannot be l-values."
3035 *
3036 * So for GLSL 1.10, passing an array as an out or inout parameter is not
3037 * allowed. This restriction is removed in GLSL 1.20, and in GLSL ES.
3038 */
3039 if ((var->mode == ir_var_function_inout || var->mode == ir_var_function_out)
3040 && type->is_array()
3041 && !state->check_version(120, 100, &loc,
3042 "Arrays cannot be out or inout parameters")) {
3043 type = glsl_type::error_type;
3044 }
3045
3046 instructions->push_tail(var);
3047
3048 /* Parameter declarations do not have r-values.
3049 */
3050 return NULL;
3051 }
3052
3053
3054 void
3055 ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters,
3056 bool formal,
3057 exec_list *ir_parameters,
3058 _mesa_glsl_parse_state *state)
3059 {
3060 ast_parameter_declarator *void_param = NULL;
3061 unsigned count = 0;
3062
3063 foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) {
3064 param->formal_parameter = formal;
3065 param->hir(ir_parameters, state);
3066
3067 if (param->is_void)
3068 void_param = param;
3069
3070 count++;
3071 }
3072
3073 if ((void_param != NULL) && (count > 1)) {
3074 YYLTYPE loc = void_param->get_location();
3075
3076 _mesa_glsl_error(& loc, state,
3077 "`void' parameter must be only parameter");
3078 }
3079 }
3080
3081
3082 void
3083 emit_function(_mesa_glsl_parse_state *state, ir_function *f)
3084 {
3085 /* IR invariants disallow function declarations or definitions
3086 * nested within other function definitions. But there is no
3087 * requirement about the relative order of function declarations
3088 * and definitions with respect to one another. So simply insert
3089 * the new ir_function block at the end of the toplevel instruction
3090 * list.
3091 */
3092 state->toplevel_ir->push_tail(f);
3093 }
3094
3095
3096 ir_rvalue *
3097 ast_function::hir(exec_list *instructions,
3098 struct _mesa_glsl_parse_state *state)
3099 {
3100 void *ctx = state;
3101 ir_function *f = NULL;
3102 ir_function_signature *sig = NULL;
3103 exec_list hir_parameters;
3104
3105 const char *const name = identifier;
3106
3107 /* New functions are always added to the top-level IR instruction stream,
3108 * so this instruction list pointer is ignored. See also emit_function
3109 * (called below).
3110 */
3111 (void) instructions;
3112
3113 /* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec,
3114 *
3115 * "Function declarations (prototypes) cannot occur inside of functions;
3116 * they must be at global scope, or for the built-in functions, outside
3117 * the global scope."
3118 *
3119 * From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec,
3120 *
3121 * "User defined functions may only be defined within the global scope."
3122 *
3123 * Note that this language does not appear in GLSL 1.10.
3124 */
3125 if ((state->current_function != NULL) &&
3126 state->is_version(120, 100)) {
3127 YYLTYPE loc = this->get_location();
3128 _mesa_glsl_error(&loc, state,
3129 "declaration of function `%s' not allowed within "
3130 "function body", name);
3131 }
3132
3133 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
3134 *
3135 * "Identifiers starting with "gl_" are reserved for use by
3136 * OpenGL, and may not be declared in a shader as either a
3137 * variable or a function."
3138 */
3139 if (strncmp(name, "gl_", 3) == 0) {
3140 YYLTYPE loc = this->get_location();
3141 _mesa_glsl_error(&loc, state,
3142 "identifier `%s' uses reserved `gl_' prefix", name);
3143 }
3144
3145 /* Convert the list of function parameters to HIR now so that they can be
3146 * used below to compare this function's signature with previously seen
3147 * signatures for functions with the same name.
3148 */
3149 ast_parameter_declarator::parameters_to_hir(& this->parameters,
3150 is_definition,
3151 & hir_parameters, state);
3152
3153 const char *return_type_name;
3154 const glsl_type *return_type =
3155 this->return_type->specifier->glsl_type(& return_type_name, state);
3156
3157 if (!return_type) {
3158 YYLTYPE loc = this->get_location();
3159 _mesa_glsl_error(&loc, state,
3160 "function `%s' has undeclared return type `%s'",
3161 name, return_type_name);
3162 return_type = glsl_type::error_type;
3163 }
3164
3165 /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec:
3166 * "No qualifier is allowed on the return type of a function."
3167 */
3168 if (this->return_type->has_qualifiers()) {
3169 YYLTYPE loc = this->get_location();
3170 _mesa_glsl_error(& loc, state,
3171 "function `%s' return type has qualifiers", name);
3172 }
3173
3174 /* From page 17 (page 23 of the PDF) of the GLSL 1.20 spec:
3175 *
3176 * "[Sampler types] can only be declared as function parameters
3177 * or uniform variables (see Section 4.3.5 "Uniform")".
3178 */
3179 if (return_type->contains_sampler()) {
3180 YYLTYPE loc = this->get_location();
3181 _mesa_glsl_error(&loc, state,
3182 "function `%s' return type can't contain a sampler",
3183 name);
3184 }
3185
3186 /* Verify that this function's signature either doesn't match a previously
3187 * seen signature for a function with the same name, or, if a match is found,
3188 * that the previously seen signature does not have an associated definition.
3189 */
3190 f = state->symbols->get_function(name);
3191 if (f != NULL && (state->es_shader || f->has_user_signature())) {
3192 sig = f->exact_matching_signature(&hir_parameters);
3193 if (sig != NULL) {
3194 const char *badvar = sig->qualifiers_match(&hir_parameters);
3195 if (badvar != NULL) {
3196 YYLTYPE loc = this->get_location();
3197
3198 _mesa_glsl_error(&loc, state, "function `%s' parameter `%s' "
3199 "qualifiers don't match prototype", name, badvar);
3200 }
3201
3202 if (sig->return_type != return_type) {
3203 YYLTYPE loc = this->get_location();
3204
3205 _mesa_glsl_error(&loc, state, "function `%s' return type doesn't "
3206 "match prototype", name);
3207 }
3208
3209 if (is_definition && sig->is_defined) {
3210 YYLTYPE loc = this->get_location();
3211
3212 _mesa_glsl_error(& loc, state, "function `%s' redefined", name);
3213 }
3214 }
3215 } else {
3216 f = new(ctx) ir_function(name);
3217 if (!state->symbols->add_function(f)) {
3218 /* This function name shadows a non-function use of the same name. */
3219 YYLTYPE loc = this->get_location();
3220
3221 _mesa_glsl_error(&loc, state, "function name `%s' conflicts with "
3222 "non-function", name);
3223 return NULL;
3224 }
3225
3226 emit_function(state, f);
3227 }
3228
3229 /* Verify the return type of main() */
3230 if (strcmp(name, "main") == 0) {
3231 if (! return_type->is_void()) {
3232 YYLTYPE loc = this->get_location();
3233
3234 _mesa_glsl_error(& loc, state, "main() must return void");
3235 }
3236
3237 if (!hir_parameters.is_empty()) {
3238 YYLTYPE loc = this->get_location();
3239
3240 _mesa_glsl_error(& loc, state, "main() must not take any parameters");
3241 }
3242 }
3243
3244 /* Finish storing the information about this new function in its signature.
3245 */
3246 if (sig == NULL) {
3247 sig = new(ctx) ir_function_signature(return_type);
3248 f->add_signature(sig);
3249 }
3250
3251 sig->replace_parameters(&hir_parameters);
3252 signature = sig;
3253
3254 /* Function declarations (prototypes) do not have r-values.
3255 */
3256 return NULL;
3257 }
3258
3259
3260 ir_rvalue *
3261 ast_function_definition::hir(exec_list *instructions,
3262 struct _mesa_glsl_parse_state *state)
3263 {
3264 prototype->is_definition = true;
3265 prototype->hir(instructions, state);
3266
3267 ir_function_signature *signature = prototype->signature;
3268 if (signature == NULL)
3269 return NULL;
3270
3271 assert(state->current_function == NULL);
3272 state->current_function = signature;
3273 state->found_return = false;
3274
3275 /* Duplicate parameters declared in the prototype as concrete variables.
3276 * Add these to the symbol table.
3277 */
3278 state->symbols->push_scope();
3279 foreach_iter(exec_list_iterator, iter, signature->parameters) {
3280 ir_variable *const var = ((ir_instruction *) iter.get())->as_variable();
3281
3282 assert(var != NULL);
3283
3284 /* The only way a parameter would "exist" is if two parameters have
3285 * the same name.
3286 */
3287 if (state->symbols->name_declared_this_scope(var->name)) {
3288 YYLTYPE loc = this->get_location();
3289
3290 _mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name);
3291 } else {
3292 state->symbols->add_variable(var);
3293 }
3294 }
3295
3296 /* Convert the body of the function to HIR. */
3297 this->body->hir(&signature->body, state);
3298 signature->is_defined = true;
3299
3300 state->symbols->pop_scope();
3301
3302 assert(state->current_function == signature);
3303 state->current_function = NULL;
3304
3305 if (!signature->return_type->is_void() && !state->found_return) {
3306 YYLTYPE loc = this->get_location();
3307 _mesa_glsl_error(& loc, state, "function `%s' has non-void return type "
3308 "%s, but no return statement",
3309 signature->function_name(),
3310 signature->return_type->name);
3311 }
3312
3313 /* Function definitions do not have r-values.
3314 */
3315 return NULL;
3316 }
3317
3318
3319 ir_rvalue *
3320 ast_jump_statement::hir(exec_list *instructions,
3321 struct _mesa_glsl_parse_state *state)
3322 {
3323 void *ctx = state;
3324
3325 switch (mode) {
3326 case ast_return: {
3327 ir_return *inst;
3328 assert(state->current_function);
3329
3330 if (opt_return_value) {
3331 ir_rvalue *const ret = opt_return_value->hir(instructions, state);
3332
3333 /* The value of the return type can be NULL if the shader says
3334 * 'return foo();' and foo() is a function that returns void.
3335 *
3336 * NOTE: The GLSL spec doesn't say that this is an error. The type
3337 * of the return value is void. If the return type of the function is
3338 * also void, then this should compile without error. Seriously.
3339 */
3340 const glsl_type *const ret_type =
3341 (ret == NULL) ? glsl_type::void_type : ret->type;
3342
3343 /* Implicit conversions are not allowed for return values. */
3344 if (state->current_function->return_type != ret_type) {
3345 YYLTYPE loc = this->get_location();
3346
3347 _mesa_glsl_error(& loc, state,
3348 "`return' with wrong type %s, in function `%s' "
3349 "returning %s",
3350 ret_type->name,
3351 state->current_function->function_name(),
3352 state->current_function->return_type->name);
3353 }
3354
3355 inst = new(ctx) ir_return(ret);
3356 } else {
3357 if (state->current_function->return_type->base_type !=
3358 GLSL_TYPE_VOID) {
3359 YYLTYPE loc = this->get_location();
3360
3361 _mesa_glsl_error(& loc, state,
3362 "`return' with no value, in function %s returning "
3363 "non-void",
3364 state->current_function->function_name());
3365 }
3366 inst = new(ctx) ir_return;
3367 }
3368
3369 state->found_return = true;
3370 instructions->push_tail(inst);
3371 break;
3372 }
3373
3374 case ast_discard:
3375 if (state->target != fragment_shader) {
3376 YYLTYPE loc = this->get_location();
3377
3378 _mesa_glsl_error(& loc, state,
3379 "`discard' may only appear in a fragment shader");
3380 }
3381 instructions->push_tail(new(ctx) ir_discard);
3382 break;
3383
3384 case ast_break:
3385 case ast_continue:
3386 if (mode == ast_continue &&
3387 state->loop_nesting_ast == NULL) {
3388 YYLTYPE loc = this->get_location();
3389
3390 _mesa_glsl_error(& loc, state,
3391 "continue may only appear in a loop");
3392 } else if (mode == ast_break &&
3393 state->loop_nesting_ast == NULL &&
3394 state->switch_state.switch_nesting_ast == NULL) {
3395 YYLTYPE loc = this->get_location();
3396
3397 _mesa_glsl_error(& loc, state,
3398 "break may only appear in a loop or a switch");
3399 } else {
3400 /* For a loop, inline the for loop expression again,
3401 * since we don't know where near the end of
3402 * the loop body the normal copy of it
3403 * is going to be placed.
3404 */
3405 if (state->loop_nesting_ast != NULL &&
3406 mode == ast_continue &&
3407 state->loop_nesting_ast->rest_expression) {
3408 state->loop_nesting_ast->rest_expression->hir(instructions,
3409 state);
3410 }
3411
3412 if (state->switch_state.is_switch_innermost &&
3413 mode == ast_break) {
3414 /* Force break out of switch by setting is_break switch state.
3415 */
3416 ir_variable *const is_break_var = state->switch_state.is_break_var;
3417 ir_dereference_variable *const deref_is_break_var =
3418 new(ctx) ir_dereference_variable(is_break_var);
3419 ir_constant *const true_val = new(ctx) ir_constant(true);
3420 ir_assignment *const set_break_var =
3421 new(ctx) ir_assignment(deref_is_break_var, true_val);
3422
3423 instructions->push_tail(set_break_var);
3424 }
3425 else {
3426 ir_loop_jump *const jump =
3427 new(ctx) ir_loop_jump((mode == ast_break)
3428 ? ir_loop_jump::jump_break
3429 : ir_loop_jump::jump_continue);
3430 instructions->push_tail(jump);
3431 }
3432 }
3433
3434 break;
3435 }
3436
3437 /* Jump instructions do not have r-values.
3438 */
3439 return NULL;
3440 }
3441
3442
3443 ir_rvalue *
3444 ast_selection_statement::hir(exec_list *instructions,
3445 struct _mesa_glsl_parse_state *state)
3446 {
3447 void *ctx = state;
3448
3449 ir_rvalue *const condition = this->condition->hir(instructions, state);
3450
3451 /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
3452 *
3453 * "Any expression whose type evaluates to a Boolean can be used as the
3454 * conditional expression bool-expression. Vector types are not accepted
3455 * as the expression to if."
3456 *
3457 * The checks are separated so that higher quality diagnostics can be
3458 * generated for cases where both rules are violated.
3459 */
3460 if (!condition->type->is_boolean() || !condition->type->is_scalar()) {
3461 YYLTYPE loc = this->condition->get_location();
3462
3463 _mesa_glsl_error(& loc, state, "if-statement condition must be scalar "
3464 "boolean");
3465 }
3466
3467 ir_if *const stmt = new(ctx) ir_if(condition);
3468
3469 if (then_statement != NULL) {
3470 state->symbols->push_scope();
3471 then_statement->hir(& stmt->then_instructions, state);
3472 state->symbols->pop_scope();
3473 }
3474
3475 if (else_statement != NULL) {
3476 state->symbols->push_scope();
3477 else_statement->hir(& stmt->else_instructions, state);
3478 state->symbols->pop_scope();
3479 }
3480
3481 instructions->push_tail(stmt);
3482
3483 /* if-statements do not have r-values.
3484 */
3485 return NULL;
3486 }
3487
3488
3489 ir_rvalue *
3490 ast_switch_statement::hir(exec_list *instructions,
3491 struct _mesa_glsl_parse_state *state)
3492 {
3493 void *ctx = state;
3494
3495 ir_rvalue *const test_expression =
3496 this->test_expression->hir(instructions, state);
3497
3498 /* From page 66 (page 55 of the PDF) of the GLSL 1.50 spec:
3499 *
3500 * "The type of init-expression in a switch statement must be a
3501 * scalar integer."
3502 */
3503 if (!test_expression->type->is_scalar() ||
3504 !test_expression->type->is_integer()) {
3505 YYLTYPE loc = this->test_expression->get_location();
3506
3507 _mesa_glsl_error(& loc,
3508 state,
3509 "switch-statement expression must be scalar "
3510 "integer");
3511 }
3512
3513 /* Track the switch-statement nesting in a stack-like manner.
3514 */
3515 struct glsl_switch_state saved = state->switch_state;
3516
3517 state->switch_state.is_switch_innermost = true;
3518 state->switch_state.switch_nesting_ast = this;
3519 state->switch_state.labels_ht = hash_table_ctor(0, hash_table_pointer_hash,
3520 hash_table_pointer_compare);
3521 state->switch_state.previous_default = NULL;
3522
3523 /* Initalize is_fallthru state to false.
3524 */
3525 ir_rvalue *const is_fallthru_val = new (ctx) ir_constant(false);
3526 state->switch_state.is_fallthru_var =
3527 new(ctx) ir_variable(glsl_type::bool_type,
3528 "switch_is_fallthru_tmp",
3529 ir_var_temporary);
3530 instructions->push_tail(state->switch_state.is_fallthru_var);
3531
3532 ir_dereference_variable *deref_is_fallthru_var =
3533 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
3534 instructions->push_tail(new(ctx) ir_assignment(deref_is_fallthru_var,
3535 is_fallthru_val));
3536
3537 /* Initalize is_break state to false.
3538 */
3539 ir_rvalue *const is_break_val = new (ctx) ir_constant(false);
3540 state->switch_state.is_break_var = new(ctx) ir_variable(glsl_type::bool_type,
3541 "switch_is_break_tmp",
3542 ir_var_temporary);
3543 instructions->push_tail(state->switch_state.is_break_var);
3544
3545 ir_dereference_variable *deref_is_break_var =
3546 new(ctx) ir_dereference_variable(state->switch_state.is_break_var);
3547 instructions->push_tail(new(ctx) ir_assignment(deref_is_break_var,
3548 is_break_val));
3549
3550 /* Cache test expression.
3551 */
3552 test_to_hir(instructions, state);
3553
3554 /* Emit code for body of switch stmt.
3555 */
3556 body->hir(instructions, state);
3557
3558 hash_table_dtor(state->switch_state.labels_ht);
3559
3560 state->switch_state = saved;
3561
3562 /* Switch statements do not have r-values. */
3563 return NULL;
3564 }
3565
3566
3567 void
3568 ast_switch_statement::test_to_hir(exec_list *instructions,
3569 struct _mesa_glsl_parse_state *state)
3570 {
3571 void *ctx = state;
3572
3573 /* Cache value of test expression. */
3574 ir_rvalue *const test_val =
3575 test_expression->hir(instructions,
3576 state);
3577
3578 state->switch_state.test_var = new(ctx) ir_variable(test_val->type,
3579 "switch_test_tmp",
3580 ir_var_temporary);
3581 ir_dereference_variable *deref_test_var =
3582 new(ctx) ir_dereference_variable(state->switch_state.test_var);
3583
3584 instructions->push_tail(state->switch_state.test_var);
3585 instructions->push_tail(new(ctx) ir_assignment(deref_test_var, test_val));
3586 }
3587
3588
3589 ir_rvalue *
3590 ast_switch_body::hir(exec_list *instructions,
3591 struct _mesa_glsl_parse_state *state)
3592 {
3593 if (stmts != NULL)
3594 stmts->hir(instructions, state);
3595
3596 /* Switch bodies do not have r-values. */
3597 return NULL;
3598 }
3599
3600 ir_rvalue *
3601 ast_case_statement_list::hir(exec_list *instructions,
3602 struct _mesa_glsl_parse_state *state)
3603 {
3604 foreach_list_typed (ast_case_statement, case_stmt, link, & this->cases)
3605 case_stmt->hir(instructions, state);
3606
3607 /* Case statements do not have r-values. */
3608 return NULL;
3609 }
3610
3611 ir_rvalue *
3612 ast_case_statement::hir(exec_list *instructions,
3613 struct _mesa_glsl_parse_state *state)
3614 {
3615 labels->hir(instructions, state);
3616
3617 /* Conditionally set fallthru state based on break state. */
3618 ir_constant *const false_val = new(state) ir_constant(false);
3619 ir_dereference_variable *const deref_is_fallthru_var =
3620 new(state) ir_dereference_variable(state->switch_state.is_fallthru_var);
3621 ir_dereference_variable *const deref_is_break_var =
3622 new(state) ir_dereference_variable(state->switch_state.is_break_var);
3623 ir_assignment *const reset_fallthru_on_break =
3624 new(state) ir_assignment(deref_is_fallthru_var,
3625 false_val,
3626 deref_is_break_var);
3627 instructions->push_tail(reset_fallthru_on_break);
3628
3629 /* Guard case statements depending on fallthru state. */
3630 ir_dereference_variable *const deref_fallthru_guard =
3631 new(state) ir_dereference_variable(state->switch_state.is_fallthru_var);
3632 ir_if *const test_fallthru = new(state) ir_if(deref_fallthru_guard);
3633
3634 foreach_list_typed (ast_node, stmt, link, & this->stmts)
3635 stmt->hir(& test_fallthru->then_instructions, state);
3636
3637 instructions->push_tail(test_fallthru);
3638
3639 /* Case statements do not have r-values. */
3640 return NULL;
3641 }
3642
3643
3644 ir_rvalue *
3645 ast_case_label_list::hir(exec_list *instructions,
3646 struct _mesa_glsl_parse_state *state)
3647 {
3648 foreach_list_typed (ast_case_label, label, link, & this->labels)
3649 label->hir(instructions, state);
3650
3651 /* Case labels do not have r-values. */
3652 return NULL;
3653 }
3654
3655 ir_rvalue *
3656 ast_case_label::hir(exec_list *instructions,
3657 struct _mesa_glsl_parse_state *state)
3658 {
3659 void *ctx = state;
3660
3661 ir_dereference_variable *deref_fallthru_var =
3662 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
3663
3664 ir_rvalue *const true_val = new(ctx) ir_constant(true);
3665
3666 /* If not default case, ... */
3667 if (this->test_value != NULL) {
3668 /* Conditionally set fallthru state based on
3669 * comparison of cached test expression value to case label.
3670 */
3671 ir_rvalue *const label_rval = this->test_value->hir(instructions, state);
3672 ir_constant *label_const = label_rval->constant_expression_value();
3673
3674 if (!label_const) {
3675 YYLTYPE loc = this->test_value->get_location();
3676
3677 _mesa_glsl_error(& loc, state,
3678 "switch statement case label must be a "
3679 "constant expression");
3680
3681 /* Stuff a dummy value in to allow processing to continue. */
3682 label_const = new(ctx) ir_constant(0);
3683 } else {
3684 ast_expression *previous_label = (ast_expression *)
3685 hash_table_find(state->switch_state.labels_ht,
3686 (void *)(uintptr_t)label_const->value.u[0]);
3687
3688 if (previous_label) {
3689 YYLTYPE loc = this->test_value->get_location();
3690 _mesa_glsl_error(& loc, state,
3691 "duplicate case value");
3692
3693 loc = previous_label->get_location();
3694 _mesa_glsl_error(& loc, state,
3695 "this is the previous case label");
3696 } else {
3697 hash_table_insert(state->switch_state.labels_ht,
3698 this->test_value,
3699 (void *)(uintptr_t)label_const->value.u[0]);
3700 }
3701 }
3702
3703 ir_dereference_variable *deref_test_var =
3704 new(ctx) ir_dereference_variable(state->switch_state.test_var);
3705
3706 ir_rvalue *const test_cond = new(ctx) ir_expression(ir_binop_all_equal,
3707 label_const,
3708 deref_test_var);
3709
3710 ir_assignment *set_fallthru_on_test =
3711 new(ctx) ir_assignment(deref_fallthru_var,
3712 true_val,
3713 test_cond);
3714
3715 instructions->push_tail(set_fallthru_on_test);
3716 } else { /* default case */
3717 if (state->switch_state.previous_default) {
3718 YYLTYPE loc = this->get_location();
3719 _mesa_glsl_error(& loc, state,
3720 "multiple default labels in one switch");
3721
3722 loc = state->switch_state.previous_default->get_location();
3723 _mesa_glsl_error(& loc, state,
3724 "this is the first default label");
3725 }
3726 state->switch_state.previous_default = this;
3727
3728 /* Set falltrhu state. */
3729 ir_assignment *set_fallthru =
3730 new(ctx) ir_assignment(deref_fallthru_var, true_val);
3731
3732 instructions->push_tail(set_fallthru);
3733 }
3734
3735 /* Case statements do not have r-values. */
3736 return NULL;
3737 }
3738
3739 void
3740 ast_iteration_statement::condition_to_hir(ir_loop *stmt,
3741 struct _mesa_glsl_parse_state *state)
3742 {
3743 void *ctx = state;
3744
3745 if (condition != NULL) {
3746 ir_rvalue *const cond =
3747 condition->hir(& stmt->body_instructions, state);
3748
3749 if ((cond == NULL)
3750 || !cond->type->is_boolean() || !cond->type->is_scalar()) {
3751 YYLTYPE loc = condition->get_location();
3752
3753 _mesa_glsl_error(& loc, state,
3754 "loop condition must be scalar boolean");
3755 } else {
3756 /* As the first code in the loop body, generate a block that looks
3757 * like 'if (!condition) break;' as the loop termination condition.
3758 */
3759 ir_rvalue *const not_cond =
3760 new(ctx) ir_expression(ir_unop_logic_not, cond);
3761
3762 ir_if *const if_stmt = new(ctx) ir_if(not_cond);
3763
3764 ir_jump *const break_stmt =
3765 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
3766
3767 if_stmt->then_instructions.push_tail(break_stmt);
3768 stmt->body_instructions.push_tail(if_stmt);
3769 }
3770 }
3771 }
3772
3773
3774 ir_rvalue *
3775 ast_iteration_statement::hir(exec_list *instructions,
3776 struct _mesa_glsl_parse_state *state)
3777 {
3778 void *ctx = state;
3779
3780 /* For-loops and while-loops start a new scope, but do-while loops do not.
3781 */
3782 if (mode != ast_do_while)
3783 state->symbols->push_scope();
3784
3785 if (init_statement != NULL)
3786 init_statement->hir(instructions, state);
3787
3788 ir_loop *const stmt = new(ctx) ir_loop();
3789 instructions->push_tail(stmt);
3790
3791 /* Track the current loop nesting. */
3792 ast_iteration_statement *nesting_ast = state->loop_nesting_ast;
3793
3794 state->loop_nesting_ast = this;
3795
3796 /* Likewise, indicate that following code is closest to a loop,
3797 * NOT closest to a switch.
3798 */
3799 bool saved_is_switch_innermost = state->switch_state.is_switch_innermost;
3800 state->switch_state.is_switch_innermost = false;
3801
3802 if (mode != ast_do_while)
3803 condition_to_hir(stmt, state);
3804
3805 if (body != NULL)
3806 body->hir(& stmt->body_instructions, state);
3807
3808 if (rest_expression != NULL)
3809 rest_expression->hir(& stmt->body_instructions, state);
3810
3811 if (mode == ast_do_while)
3812 condition_to_hir(stmt, state);
3813
3814 if (mode != ast_do_while)
3815 state->symbols->pop_scope();
3816
3817 /* Restore previous nesting before returning. */
3818 state->loop_nesting_ast = nesting_ast;
3819 state->switch_state.is_switch_innermost = saved_is_switch_innermost;
3820
3821 /* Loops do not have r-values.
3822 */
3823 return NULL;
3824 }
3825
3826
3827 /**
3828 * Determine if the given type is valid for establishing a default precision
3829 * qualifier.
3830 *
3831 * From GLSL ES 3.00 section 4.5.4 ("Default Precision Qualifiers"):
3832 *
3833 * "The precision statement
3834 *
3835 * precision precision-qualifier type;
3836 *
3837 * can be used to establish a default precision qualifier. The type field
3838 * can be either int or float or any of the sampler types, and the
3839 * precision-qualifier can be lowp, mediump, or highp."
3840 *
3841 * GLSL ES 1.00 has similar language. GLSL 1.30 doesn't allow precision
3842 * qualifiers on sampler types, but this seems like an oversight (since the
3843 * intention of including these in GLSL 1.30 is to allow compatibility with ES
3844 * shaders). So we allow int, float, and all sampler types regardless of GLSL
3845 * version.
3846 */
3847 static bool
3848 is_valid_default_precision_type(const struct _mesa_glsl_parse_state *state,
3849 const char *type_name)
3850 {
3851 const struct glsl_type *type = state->symbols->get_type(type_name);
3852 if (type == NULL)
3853 return false;
3854
3855 switch (type->base_type) {
3856 case GLSL_TYPE_INT:
3857 case GLSL_TYPE_FLOAT:
3858 /* "int" and "float" are valid, but vectors and matrices are not. */
3859 return type->vector_elements == 1 && type->matrix_columns == 1;
3860 case GLSL_TYPE_SAMPLER:
3861 return true;
3862 default:
3863 return false;
3864 }
3865 }
3866
3867
3868 ir_rvalue *
3869 ast_type_specifier::hir(exec_list *instructions,
3870 struct _mesa_glsl_parse_state *state)
3871 {
3872 if (!this->is_precision_statement && this->structure == NULL)
3873 return NULL;
3874
3875 YYLTYPE loc = this->get_location();
3876
3877 if (this->precision != ast_precision_none
3878 && !state->check_precision_qualifiers_allowed(&loc)) {
3879 return NULL;
3880 }
3881 if (this->precision != ast_precision_none
3882 && this->structure != NULL) {
3883 _mesa_glsl_error(&loc, state,
3884 "precision qualifiers do not apply to structures");
3885 return NULL;
3886 }
3887
3888 /* If this is a precision statement, check that the type to which it is
3889 * applied is either float or int.
3890 *
3891 * From section 4.5.3 of the GLSL 1.30 spec:
3892 * "The precision statement
3893 * precision precision-qualifier type;
3894 * can be used to establish a default precision qualifier. The type
3895 * field can be either int or float [...]. Any other types or
3896 * qualifiers will result in an error.
3897 */
3898 if (this->is_precision_statement) {
3899 assert(this->precision != ast_precision_none);
3900 assert(this->structure == NULL); /* The check for structures was
3901 * performed above. */
3902 if (this->is_array) {
3903 _mesa_glsl_error(&loc, state,
3904 "default precision statements do not apply to "
3905 "arrays");
3906 return NULL;
3907 }
3908 if (!is_valid_default_precision_type(state, this->type_name)) {
3909 _mesa_glsl_error(&loc, state,
3910 "default precision statements apply only to types "
3911 "float, int, and sampler types");
3912 return NULL;
3913 }
3914
3915 /* FINISHME: Translate precision statements into IR. */
3916 return NULL;
3917 }
3918
3919 if (this->structure != NULL)
3920 return this->structure->hir(instructions, state);
3921
3922 return NULL;
3923 }
3924
3925
3926 /**
3927 * Process a structure or interface block tree into an array of structure fields
3928 *
3929 * After parsing, where there are some syntax differnces, structures and
3930 * interface blocks are almost identical. They are similar enough that the
3931 * AST for each can be processed the same way into a set of
3932 * \c glsl_struct_field to describe the members.
3933 *
3934 * \return
3935 * The number of fields processed. A pointer to the array structure fields is
3936 * stored in \c *fields_ret.
3937 */
3938 unsigned
3939 ast_process_structure_or_interface_block(exec_list *instructions,
3940 struct _mesa_glsl_parse_state *state,
3941 exec_list *declarations,
3942 YYLTYPE &loc,
3943 glsl_struct_field **fields_ret,
3944 bool is_interface,
3945 bool block_row_major)
3946 {
3947 unsigned decl_count = 0;
3948
3949 /* Make an initial pass over the list of fields to determine how
3950 * many there are. Each element in this list is an ast_declarator_list.
3951 * This means that we actually need to count the number of elements in the
3952 * 'declarations' list in each of the elements.
3953 */
3954 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
3955 foreach_list_const (decl_ptr, & decl_list->declarations) {
3956 decl_count++;
3957 }
3958 }
3959
3960 /* Allocate storage for the fields and process the field
3961 * declarations. As the declarations are processed, try to also convert
3962 * the types to HIR. This ensures that structure definitions embedded in
3963 * other structure definitions or in interface blocks are processed.
3964 */
3965 glsl_struct_field *const fields = ralloc_array(state, glsl_struct_field,
3966 decl_count);
3967
3968 unsigned i = 0;
3969 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
3970 const char *type_name;
3971
3972 decl_list->type->specifier->hir(instructions, state);
3973
3974 /* Section 10.9 of the GLSL ES 1.00 specification states that
3975 * embedded structure definitions have been removed from the language.
3976 */
3977 if (state->es_shader && decl_list->type->specifier->structure != NULL) {
3978 _mesa_glsl_error(&loc, state, "Embedded structure definitions are "
3979 "not allowed in GLSL ES 1.00.");
3980 }
3981
3982 const glsl_type *decl_type =
3983 decl_list->type->specifier->glsl_type(& type_name, state);
3984
3985 foreach_list_typed (ast_declaration, decl, link,
3986 &decl_list->declarations) {
3987 /* From the GL_ARB_uniform_buffer_object spec:
3988 *
3989 * "Sampler types are not allowed inside of uniform
3990 * blocks. All other types, arrays, and structures
3991 * allowed for uniforms are allowed within a uniform
3992 * block."
3993 */
3994 const struct glsl_type *field_type = decl_type;
3995
3996 if (is_interface && field_type->contains_sampler()) {
3997 YYLTYPE loc = decl_list->get_location();
3998 _mesa_glsl_error(&loc, state,
3999 "Uniform in non-default uniform block contains sampler\n");
4000 }
4001
4002 const struct ast_type_qualifier *const qual =
4003 & decl_list->type->qualifier;
4004 if (qual->flags.q.std140 ||
4005 qual->flags.q.packed ||
4006 qual->flags.q.shared) {
4007 _mesa_glsl_error(&loc, state,
4008 "uniform block layout qualifiers std140, packed, and "
4009 "shared can only be applied to uniform blocks, not "
4010 "members");
4011 }
4012
4013 if (decl->is_array) {
4014 field_type = process_array_type(&loc, decl_type, decl->array_size,
4015 state);
4016 }
4017 fields[i].type = (field_type != NULL)
4018 ? field_type : glsl_type::error_type;
4019 fields[i].name = decl->identifier;
4020
4021 if (qual->flags.q.row_major || qual->flags.q.column_major) {
4022 if (!field_type->is_matrix() && !field_type->is_record()) {
4023 _mesa_glsl_error(&loc, state,
4024 "uniform block layout qualifiers row_major and "
4025 "column_major can only be applied to matrix and "
4026 "structure types");
4027 } else
4028 validate_matrix_layout_for_type(state, &loc, field_type);
4029 }
4030
4031 if (field_type->is_matrix() ||
4032 (field_type->is_array() && field_type->fields.array->is_matrix())) {
4033 fields[i].row_major = block_row_major;
4034 if (qual->flags.q.row_major)
4035 fields[i].row_major = true;
4036 else if (qual->flags.q.column_major)
4037 fields[i].row_major = false;
4038 }
4039
4040 i++;
4041 }
4042 }
4043
4044 assert(i == decl_count);
4045
4046 *fields_ret = fields;
4047 return decl_count;
4048 }
4049
4050
4051 ir_rvalue *
4052 ast_struct_specifier::hir(exec_list *instructions,
4053 struct _mesa_glsl_parse_state *state)
4054 {
4055 YYLTYPE loc = this->get_location();
4056 glsl_struct_field *fields;
4057 unsigned decl_count =
4058 ast_process_structure_or_interface_block(instructions,
4059 state,
4060 &this->declarations,
4061 loc,
4062 &fields,
4063 false,
4064 false);
4065
4066 const glsl_type *t =
4067 glsl_type::get_record_instance(fields, decl_count, this->name);
4068
4069 if (!state->symbols->add_type(name, t)) {
4070 _mesa_glsl_error(& loc, state, "struct `%s' previously defined", name);
4071 } else {
4072 const glsl_type **s = reralloc(state, state->user_structures,
4073 const glsl_type *,
4074 state->num_user_structures + 1);
4075 if (s != NULL) {
4076 s[state->num_user_structures] = t;
4077 state->user_structures = s;
4078 state->num_user_structures++;
4079 }
4080 }
4081
4082 /* Structure type definitions do not have r-values.
4083 */
4084 return NULL;
4085 }
4086
4087 ir_rvalue *
4088 ast_uniform_block::hir(exec_list *instructions,
4089 struct _mesa_glsl_parse_state *state)
4090 {
4091 YYLTYPE loc = this->get_location();
4092
4093 /* The ast_uniform_block has a list of ast_declarator_lists. We
4094 * need to turn those into ir_variables with an association
4095 * with this uniform block.
4096 */
4097 enum glsl_interface_packing packing;
4098 if (this->layout.flags.q.shared) {
4099 packing = GLSL_INTERFACE_PACKING_SHARED;
4100 } else if (this->layout.flags.q.packed) {
4101 packing = GLSL_INTERFACE_PACKING_PACKED;
4102 } else {
4103 /* The default layout is std140.
4104 */
4105 packing = GLSL_INTERFACE_PACKING_STD140;
4106 }
4107
4108 bool block_row_major = this->layout.flags.q.row_major;
4109 exec_list declared_variables;
4110 glsl_struct_field *fields;
4111 unsigned int num_variables =
4112 ast_process_structure_or_interface_block(&declared_variables,
4113 state,
4114 &this->declarations,
4115 loc,
4116 &fields,
4117 true,
4118 block_row_major);
4119
4120 const glsl_type *block_type =
4121 glsl_type::get_interface_instance(fields,
4122 num_variables,
4123 packing,
4124 this->block_name);
4125
4126 if (!state->symbols->add_type(block_type->name, block_type)) {
4127 YYLTYPE loc = this->get_location();
4128 _mesa_glsl_error(&loc, state, "Uniform block name `%s' already taken in "
4129 "the current scope.\n", this->block_name);
4130 }
4131
4132 /* Since interface blocks cannot contain statements, it should be
4133 * impossible for the block to generate any instructions.
4134 */
4135 assert(declared_variables.is_empty());
4136
4137 /* Page 39 (page 45 of the PDF) of section 4.3.7 in the GLSL ES 3.00 spec
4138 * says:
4139 *
4140 * "If an instance name (instance-name) is used, then it puts all the
4141 * members inside a scope within its own name space, accessed with the
4142 * field selector ( . ) operator (analogously to structures)."
4143 */
4144 if (this->instance_name) {
4145 ir_variable *var;
4146
4147 if (this->array_size != NULL) {
4148 const glsl_type *block_array_type =
4149 process_array_type(&loc, block_type, this->array_size, state);
4150
4151 var = new(state) ir_variable(block_array_type,
4152 this->instance_name,
4153 ir_var_uniform);
4154 } else {
4155 var = new(state) ir_variable(block_type,
4156 this->instance_name,
4157 ir_var_uniform);
4158 }
4159
4160 var->interface_type = block_type;
4161 state->symbols->add_variable(var);
4162 instructions->push_tail(var);
4163 } else {
4164 /* In order to have an array size, the block must also be declared with
4165 * an instane name.
4166 */
4167 assert(this->array_size == NULL);
4168
4169 for (unsigned i = 0; i < num_variables; i++) {
4170 ir_variable *var =
4171 new(state) ir_variable(fields[i].type,
4172 ralloc_strdup(state, fields[i].name),
4173 ir_var_uniform);
4174 var->interface_type = block_type;
4175
4176 state->symbols->add_variable(var);
4177 instructions->push_tail(var);
4178 }
4179 }
4180
4181 return NULL;
4182 }
4183
4184 static void
4185 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
4186 exec_list *instructions)
4187 {
4188 bool gl_FragColor_assigned = false;
4189 bool gl_FragData_assigned = false;
4190 bool user_defined_fs_output_assigned = false;
4191 ir_variable *user_defined_fs_output = NULL;
4192
4193 /* It would be nice to have proper location information. */
4194 YYLTYPE loc;
4195 memset(&loc, 0, sizeof(loc));
4196
4197 foreach_list(node, instructions) {
4198 ir_variable *var = ((ir_instruction *)node)->as_variable();
4199
4200 if (!var || !var->assigned)
4201 continue;
4202
4203 if (strcmp(var->name, "gl_FragColor") == 0)
4204 gl_FragColor_assigned = true;
4205 else if (strcmp(var->name, "gl_FragData") == 0)
4206 gl_FragData_assigned = true;
4207 else if (strncmp(var->name, "gl_", 3) != 0) {
4208 if (state->target == fragment_shader &&
4209 var->mode == ir_var_shader_out) {
4210 user_defined_fs_output_assigned = true;
4211 user_defined_fs_output = var;
4212 }
4213 }
4214 }
4215
4216 /* From the GLSL 1.30 spec:
4217 *
4218 * "If a shader statically assigns a value to gl_FragColor, it
4219 * may not assign a value to any element of gl_FragData. If a
4220 * shader statically writes a value to any element of
4221 * gl_FragData, it may not assign a value to
4222 * gl_FragColor. That is, a shader may assign values to either
4223 * gl_FragColor or gl_FragData, but not both. Multiple shaders
4224 * linked together must also consistently write just one of
4225 * these variables. Similarly, if user declared output
4226 * variables are in use (statically assigned to), then the
4227 * built-in variables gl_FragColor and gl_FragData may not be
4228 * assigned to. These incorrect usages all generate compile
4229 * time errors."
4230 */
4231 if (gl_FragColor_assigned && gl_FragData_assigned) {
4232 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
4233 "`gl_FragColor' and `gl_FragData'\n");
4234 } else if (gl_FragColor_assigned && user_defined_fs_output_assigned) {
4235 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
4236 "`gl_FragColor' and `%s'\n",
4237 user_defined_fs_output->name);
4238 } else if (gl_FragData_assigned && user_defined_fs_output_assigned) {
4239 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
4240 "`gl_FragData' and `%s'\n",
4241 user_defined_fs_output->name);
4242 }
4243 }