5f70a184917291b6237788a562e14f80dfe73cc3
[mesa.git] / src / glsl / ast_to_hir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file ast_to_hir.c
26 * Convert abstract syntax to to high-level intermediate reprensentation (HIR).
27 *
28 * During the conversion to HIR, the majority of the symantic checking is
29 * preformed on the program. This includes:
30 *
31 * * Symbol table management
32 * * Type checking
33 * * Function binding
34 *
35 * The majority of this work could be done during parsing, and the parser could
36 * probably generate HIR directly. However, this results in frequent changes
37 * to the parser code. Since we do not assume that every system this complier
38 * is built on will have Flex and Bison installed, we have to store the code
39 * generated by these tools in our version control system. In other parts of
40 * the system we've seen problems where a parser was changed but the generated
41 * code was not committed, merge conflicts where created because two developers
42 * had slightly different versions of Bison installed, etc.
43 *
44 * I have also noticed that running Bison generated parsers in GDB is very
45 * irritating. When you get a segfault on '$$ = $1->foo', you can't very
46 * well 'print $1' in GDB.
47 *
48 * As a result, my preference is to put as little C code as possible in the
49 * parser (and lexer) sources.
50 */
51
52 #include "glsl_symbol_table.h"
53 #include "glsl_parser_extras.h"
54 #include "ast.h"
55 #include "glsl_types.h"
56 #include "program/hash_table.h"
57 #include "main/shaderobj.h"
58 #include "ir.h"
59 #include "ir_builder.h"
60
61 using namespace ir_builder;
62
63 static void
64 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
65 exec_list *instructions);
66 static void
67 remove_per_vertex_blocks(exec_list *instructions,
68 _mesa_glsl_parse_state *state, ir_variable_mode mode);
69
70 /**
71 * Visitor class that finds the first instance of any write-only variable that
72 * is ever read, if any
73 */
74 class read_from_write_only_variable_visitor : public ir_hierarchical_visitor
75 {
76 public:
77 read_from_write_only_variable_visitor() : found(NULL)
78 {
79 }
80
81 virtual ir_visitor_status visit(ir_dereference_variable *ir)
82 {
83 if (this->in_assignee)
84 return visit_continue;
85
86 ir_variable *var = ir->variable_referenced();
87 /* We can have image_write_only set on both images and buffer variables,
88 * but in the former there is a distinction between reads from
89 * the variable itself (write_only) and from the memory they point to
90 * (image_write_only), while in the case of buffer variables there is
91 * no such distinction, that is why this check here is limited to
92 * buffer variables alone.
93 */
94 if (!var || var->data.mode != ir_var_shader_storage)
95 return visit_continue;
96
97 if (var->data.image_write_only) {
98 found = var;
99 return visit_stop;
100 }
101
102 return visit_continue;
103 }
104
105 ir_variable *get_variable() {
106 return found;
107 }
108
109 private:
110 ir_variable *found;
111 };
112
113 void
114 _mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
115 {
116 _mesa_glsl_initialize_variables(instructions, state);
117
118 state->symbols->separate_function_namespace = state->language_version == 110;
119
120 state->current_function = NULL;
121
122 state->toplevel_ir = instructions;
123
124 state->gs_input_prim_type_specified = false;
125 state->tcs_output_vertices_specified = false;
126 state->cs_input_local_size_specified = false;
127
128 /* Section 4.2 of the GLSL 1.20 specification states:
129 * "The built-in functions are scoped in a scope outside the global scope
130 * users declare global variables in. That is, a shader's global scope,
131 * available for user-defined functions and global variables, is nested
132 * inside the scope containing the built-in functions."
133 *
134 * Since built-in functions like ftransform() access built-in variables,
135 * it follows that those must be in the outer scope as well.
136 *
137 * We push scope here to create this nesting effect...but don't pop.
138 * This way, a shader's globals are still in the symbol table for use
139 * by the linker.
140 */
141 state->symbols->push_scope();
142
143 foreach_list_typed (ast_node, ast, link, & state->translation_unit)
144 ast->hir(instructions, state);
145
146 detect_recursion_unlinked(state, instructions);
147 detect_conflicting_assignments(state, instructions);
148
149 state->toplevel_ir = NULL;
150
151 /* Move all of the variable declarations to the front of the IR list, and
152 * reverse the order. This has the (intended!) side effect that vertex
153 * shader inputs and fragment shader outputs will appear in the IR in the
154 * same order that they appeared in the shader code. This results in the
155 * locations being assigned in the declared order. Many (arguably buggy)
156 * applications depend on this behavior, and it matches what nearly all
157 * other drivers do.
158 */
159 foreach_in_list_safe(ir_instruction, node, instructions) {
160 ir_variable *const var = node->as_variable();
161
162 if (var == NULL)
163 continue;
164
165 var->remove();
166 instructions->push_head(var);
167 }
168
169 /* Figure out if gl_FragCoord is actually used in fragment shader */
170 ir_variable *const var = state->symbols->get_variable("gl_FragCoord");
171 if (var != NULL)
172 state->fs_uses_gl_fragcoord = var->data.used;
173
174 /* From section 7.1 (Built-In Language Variables) of the GLSL 4.10 spec:
175 *
176 * If multiple shaders using members of a built-in block belonging to
177 * the same interface are linked together in the same program, they
178 * must all redeclare the built-in block in the same way, as described
179 * in section 4.3.7 "Interface Blocks" for interface block matching, or
180 * a link error will result.
181 *
182 * The phrase "using members of a built-in block" implies that if two
183 * shaders are linked together and one of them *does not use* any members
184 * of the built-in block, then that shader does not need to have a matching
185 * redeclaration of the built-in block.
186 *
187 * This appears to be a clarification to the behaviour established for
188 * gl_PerVertex by GLSL 1.50, therefore implement it regardless of GLSL
189 * version.
190 *
191 * The definition of "interface" in section 4.3.7 that applies here is as
192 * follows:
193 *
194 * The boundary between adjacent programmable pipeline stages: This
195 * spans all the outputs in all compilation units of the first stage
196 * and all the inputs in all compilation units of the second stage.
197 *
198 * Therefore this rule applies to both inter- and intra-stage linking.
199 *
200 * The easiest way to implement this is to check whether the shader uses
201 * gl_PerVertex right after ast-to-ir conversion, and if it doesn't, simply
202 * remove all the relevant variable declaration from the IR, so that the
203 * linker won't see them and complain about mismatches.
204 */
205 remove_per_vertex_blocks(instructions, state, ir_var_shader_in);
206 remove_per_vertex_blocks(instructions, state, ir_var_shader_out);
207
208 /* Check that we don't have reads from write-only variables */
209 read_from_write_only_variable_visitor v;
210 v.run(instructions);
211 ir_variable *error_var = v.get_variable();
212 if (error_var) {
213 /* It would be nice to have proper location information, but for that
214 * we would need to check this as we process each kind of AST node
215 */
216 YYLTYPE loc;
217 memset(&loc, 0, sizeof(loc));
218 _mesa_glsl_error(&loc, state, "Read from write-only variable `%s'",
219 error_var->name);
220 }
221 }
222
223
224 static ir_expression_operation
225 get_conversion_operation(const glsl_type *to, const glsl_type *from,
226 struct _mesa_glsl_parse_state *state)
227 {
228 switch (to->base_type) {
229 case GLSL_TYPE_FLOAT:
230 switch (from->base_type) {
231 case GLSL_TYPE_INT: return ir_unop_i2f;
232 case GLSL_TYPE_UINT: return ir_unop_u2f;
233 case GLSL_TYPE_DOUBLE: return ir_unop_d2f;
234 default: return (ir_expression_operation)0;
235 }
236
237 case GLSL_TYPE_UINT:
238 if (!state->is_version(400, 0) && !state->ARB_gpu_shader5_enable)
239 return (ir_expression_operation)0;
240 switch (from->base_type) {
241 case GLSL_TYPE_INT: return ir_unop_i2u;
242 default: return (ir_expression_operation)0;
243 }
244
245 case GLSL_TYPE_DOUBLE:
246 if (!state->has_double())
247 return (ir_expression_operation)0;
248 switch (from->base_type) {
249 case GLSL_TYPE_INT: return ir_unop_i2d;
250 case GLSL_TYPE_UINT: return ir_unop_u2d;
251 case GLSL_TYPE_FLOAT: return ir_unop_f2d;
252 default: return (ir_expression_operation)0;
253 }
254
255 default: return (ir_expression_operation)0;
256 }
257 }
258
259
260 /**
261 * If a conversion is available, convert one operand to a different type
262 *
263 * The \c from \c ir_rvalue is converted "in place".
264 *
265 * \param to Type that the operand it to be converted to
266 * \param from Operand that is being converted
267 * \param state GLSL compiler state
268 *
269 * \return
270 * If a conversion is possible (or unnecessary), \c true is returned.
271 * Otherwise \c false is returned.
272 */
273 bool
274 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
275 struct _mesa_glsl_parse_state *state)
276 {
277 void *ctx = state;
278 if (to->base_type == from->type->base_type)
279 return true;
280
281 /* Prior to GLSL 1.20, there are no implicit conversions */
282 if (!state->is_version(120, 0))
283 return false;
284
285 /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
286 *
287 * "There are no implicit array or structure conversions. For
288 * example, an array of int cannot be implicitly converted to an
289 * array of float.
290 */
291 if (!to->is_numeric() || !from->type->is_numeric())
292 return false;
293
294 /* We don't actually want the specific type `to`, we want a type
295 * with the same base type as `to`, but the same vector width as
296 * `from`.
297 */
298 to = glsl_type::get_instance(to->base_type, from->type->vector_elements,
299 from->type->matrix_columns);
300
301 ir_expression_operation op = get_conversion_operation(to, from->type, state);
302 if (op) {
303 from = new(ctx) ir_expression(op, to, from, NULL);
304 return true;
305 } else {
306 return false;
307 }
308 }
309
310
311 static const struct glsl_type *
312 arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
313 bool multiply,
314 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
315 {
316 const glsl_type *type_a = value_a->type;
317 const glsl_type *type_b = value_b->type;
318
319 /* From GLSL 1.50 spec, page 56:
320 *
321 * "The arithmetic binary operators add (+), subtract (-),
322 * multiply (*), and divide (/) operate on integer and
323 * floating-point scalars, vectors, and matrices."
324 */
325 if (!type_a->is_numeric() || !type_b->is_numeric()) {
326 _mesa_glsl_error(loc, state,
327 "operands to arithmetic operators must be numeric");
328 return glsl_type::error_type;
329 }
330
331
332 /* "If one operand is floating-point based and the other is
333 * not, then the conversions from Section 4.1.10 "Implicit
334 * Conversions" are applied to the non-floating-point-based operand."
335 */
336 if (!apply_implicit_conversion(type_a, value_b, state)
337 && !apply_implicit_conversion(type_b, value_a, state)) {
338 _mesa_glsl_error(loc, state,
339 "could not implicitly convert operands to "
340 "arithmetic operator");
341 return glsl_type::error_type;
342 }
343 type_a = value_a->type;
344 type_b = value_b->type;
345
346 /* "If the operands are integer types, they must both be signed or
347 * both be unsigned."
348 *
349 * From this rule and the preceeding conversion it can be inferred that
350 * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
351 * The is_numeric check above already filtered out the case where either
352 * type is not one of these, so now the base types need only be tested for
353 * equality.
354 */
355 if (type_a->base_type != type_b->base_type) {
356 _mesa_glsl_error(loc, state,
357 "base type mismatch for arithmetic operator");
358 return glsl_type::error_type;
359 }
360
361 /* "All arithmetic binary operators result in the same fundamental type
362 * (signed integer, unsigned integer, or floating-point) as the
363 * operands they operate on, after operand type conversion. After
364 * conversion, the following cases are valid
365 *
366 * * The two operands are scalars. In this case the operation is
367 * applied, resulting in a scalar."
368 */
369 if (type_a->is_scalar() && type_b->is_scalar())
370 return type_a;
371
372 /* "* One operand is a scalar, and the other is a vector or matrix.
373 * In this case, the scalar operation is applied independently to each
374 * component of the vector or matrix, resulting in the same size
375 * vector or matrix."
376 */
377 if (type_a->is_scalar()) {
378 if (!type_b->is_scalar())
379 return type_b;
380 } else if (type_b->is_scalar()) {
381 return type_a;
382 }
383
384 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
385 * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
386 * handled.
387 */
388 assert(!type_a->is_scalar());
389 assert(!type_b->is_scalar());
390
391 /* "* The two operands are vectors of the same size. In this case, the
392 * operation is done component-wise resulting in the same size
393 * vector."
394 */
395 if (type_a->is_vector() && type_b->is_vector()) {
396 if (type_a == type_b) {
397 return type_a;
398 } else {
399 _mesa_glsl_error(loc, state,
400 "vector size mismatch for arithmetic operator");
401 return glsl_type::error_type;
402 }
403 }
404
405 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
406 * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
407 * <vector, vector> have been handled. At least one of the operands must
408 * be matrix. Further, since there are no integer matrix types, the base
409 * type of both operands must be float.
410 */
411 assert(type_a->is_matrix() || type_b->is_matrix());
412 assert(type_a->base_type == GLSL_TYPE_FLOAT ||
413 type_a->base_type == GLSL_TYPE_DOUBLE);
414 assert(type_b->base_type == GLSL_TYPE_FLOAT ||
415 type_b->base_type == GLSL_TYPE_DOUBLE);
416
417 /* "* The operator is add (+), subtract (-), or divide (/), and the
418 * operands are matrices with the same number of rows and the same
419 * number of columns. In this case, the operation is done component-
420 * wise resulting in the same size matrix."
421 * * The operator is multiply (*), where both operands are matrices or
422 * one operand is a vector and the other a matrix. A right vector
423 * operand is treated as a column vector and a left vector operand as a
424 * row vector. In all these cases, it is required that the number of
425 * columns of the left operand is equal to the number of rows of the
426 * right operand. Then, the multiply (*) operation does a linear
427 * algebraic multiply, yielding an object that has the same number of
428 * rows as the left operand and the same number of columns as the right
429 * operand. Section 5.10 "Vector and Matrix Operations" explains in
430 * more detail how vectors and matrices are operated on."
431 */
432 if (! multiply) {
433 if (type_a == type_b)
434 return type_a;
435 } else {
436 const glsl_type *type = glsl_type::get_mul_type(type_a, type_b);
437
438 if (type == glsl_type::error_type) {
439 _mesa_glsl_error(loc, state,
440 "size mismatch for matrix multiplication");
441 }
442
443 return type;
444 }
445
446
447 /* "All other cases are illegal."
448 */
449 _mesa_glsl_error(loc, state, "type mismatch");
450 return glsl_type::error_type;
451 }
452
453
454 static const struct glsl_type *
455 unary_arithmetic_result_type(const struct glsl_type *type,
456 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
457 {
458 /* From GLSL 1.50 spec, page 57:
459 *
460 * "The arithmetic unary operators negate (-), post- and pre-increment
461 * and decrement (-- and ++) operate on integer or floating-point
462 * values (including vectors and matrices). All unary operators work
463 * component-wise on their operands. These result with the same type
464 * they operated on."
465 */
466 if (!type->is_numeric()) {
467 _mesa_glsl_error(loc, state,
468 "operands to arithmetic operators must be numeric");
469 return glsl_type::error_type;
470 }
471
472 return type;
473 }
474
475 /**
476 * \brief Return the result type of a bit-logic operation.
477 *
478 * If the given types to the bit-logic operator are invalid, return
479 * glsl_type::error_type.
480 *
481 * \param type_a Type of LHS of bit-logic op
482 * \param type_b Type of RHS of bit-logic op
483 */
484 static const struct glsl_type *
485 bit_logic_result_type(const struct glsl_type *type_a,
486 const struct glsl_type *type_b,
487 ast_operators op,
488 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
489 {
490 if (!state->check_bitwise_operations_allowed(loc)) {
491 return glsl_type::error_type;
492 }
493
494 /* From page 50 (page 56 of PDF) of GLSL 1.30 spec:
495 *
496 * "The bitwise operators and (&), exclusive-or (^), and inclusive-or
497 * (|). The operands must be of type signed or unsigned integers or
498 * integer vectors."
499 */
500 if (!type_a->is_integer()) {
501 _mesa_glsl_error(loc, state, "LHS of `%s' must be an integer",
502 ast_expression::operator_string(op));
503 return glsl_type::error_type;
504 }
505 if (!type_b->is_integer()) {
506 _mesa_glsl_error(loc, state, "RHS of `%s' must be an integer",
507 ast_expression::operator_string(op));
508 return glsl_type::error_type;
509 }
510
511 /* "The fundamental types of the operands (signed or unsigned) must
512 * match,"
513 */
514 if (type_a->base_type != type_b->base_type) {
515 _mesa_glsl_error(loc, state, "operands of `%s' must have the same "
516 "base type", ast_expression::operator_string(op));
517 return glsl_type::error_type;
518 }
519
520 /* "The operands cannot be vectors of differing size." */
521 if (type_a->is_vector() &&
522 type_b->is_vector() &&
523 type_a->vector_elements != type_b->vector_elements) {
524 _mesa_glsl_error(loc, state, "operands of `%s' cannot be vectors of "
525 "different sizes", ast_expression::operator_string(op));
526 return glsl_type::error_type;
527 }
528
529 /* "If one operand is a scalar and the other a vector, the scalar is
530 * applied component-wise to the vector, resulting in the same type as
531 * the vector. The fundamental types of the operands [...] will be the
532 * resulting fundamental type."
533 */
534 if (type_a->is_scalar())
535 return type_b;
536 else
537 return type_a;
538 }
539
540 static const struct glsl_type *
541 modulus_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
542 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
543 {
544 const glsl_type *type_a = value_a->type;
545 const glsl_type *type_b = value_b->type;
546
547 if (!state->check_version(130, 300, loc, "operator '%%' is reserved")) {
548 return glsl_type::error_type;
549 }
550
551 /* Section 5.9 (Expressions) of the GLSL 4.00 specification says:
552 *
553 * "The operator modulus (%) operates on signed or unsigned integers or
554 * integer vectors."
555 */
556 if (!type_a->is_integer()) {
557 _mesa_glsl_error(loc, state, "LHS of operator %% must be an integer");
558 return glsl_type::error_type;
559 }
560 if (!type_b->is_integer()) {
561 _mesa_glsl_error(loc, state, "RHS of operator %% must be an integer");
562 return glsl_type::error_type;
563 }
564
565 /* "If the fundamental types in the operands do not match, then the
566 * conversions from section 4.1.10 "Implicit Conversions" are applied
567 * to create matching types."
568 *
569 * Note that GLSL 4.00 (and GL_ARB_gpu_shader5) introduced implicit
570 * int -> uint conversion rules. Prior to that, there were no implicit
571 * conversions. So it's harmless to apply them universally - no implicit
572 * conversions will exist. If the types don't match, we'll receive false,
573 * and raise an error, satisfying the GLSL 1.50 spec, page 56:
574 *
575 * "The operand types must both be signed or unsigned."
576 */
577 if (!apply_implicit_conversion(type_a, value_b, state) &&
578 !apply_implicit_conversion(type_b, value_a, state)) {
579 _mesa_glsl_error(loc, state,
580 "could not implicitly convert operands to "
581 "modulus (%%) operator");
582 return glsl_type::error_type;
583 }
584 type_a = value_a->type;
585 type_b = value_b->type;
586
587 /* "The operands cannot be vectors of differing size. If one operand is
588 * a scalar and the other vector, then the scalar is applied component-
589 * wise to the vector, resulting in the same type as the vector. If both
590 * are vectors of the same size, the result is computed component-wise."
591 */
592 if (type_a->is_vector()) {
593 if (!type_b->is_vector()
594 || (type_a->vector_elements == type_b->vector_elements))
595 return type_a;
596 } else
597 return type_b;
598
599 /* "The operator modulus (%) is not defined for any other data types
600 * (non-integer types)."
601 */
602 _mesa_glsl_error(loc, state, "type mismatch");
603 return glsl_type::error_type;
604 }
605
606
607 static const struct glsl_type *
608 relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
609 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
610 {
611 const glsl_type *type_a = value_a->type;
612 const glsl_type *type_b = value_b->type;
613
614 /* From GLSL 1.50 spec, page 56:
615 * "The relational operators greater than (>), less than (<), greater
616 * than or equal (>=), and less than or equal (<=) operate only on
617 * scalar integer and scalar floating-point expressions."
618 */
619 if (!type_a->is_numeric()
620 || !type_b->is_numeric()
621 || !type_a->is_scalar()
622 || !type_b->is_scalar()) {
623 _mesa_glsl_error(loc, state,
624 "operands to relational operators must be scalar and "
625 "numeric");
626 return glsl_type::error_type;
627 }
628
629 /* "Either the operands' types must match, or the conversions from
630 * Section 4.1.10 "Implicit Conversions" will be applied to the integer
631 * operand, after which the types must match."
632 */
633 if (!apply_implicit_conversion(type_a, value_b, state)
634 && !apply_implicit_conversion(type_b, value_a, state)) {
635 _mesa_glsl_error(loc, state,
636 "could not implicitly convert operands to "
637 "relational operator");
638 return glsl_type::error_type;
639 }
640 type_a = value_a->type;
641 type_b = value_b->type;
642
643 if (type_a->base_type != type_b->base_type) {
644 _mesa_glsl_error(loc, state, "base type mismatch");
645 return glsl_type::error_type;
646 }
647
648 /* "The result is scalar Boolean."
649 */
650 return glsl_type::bool_type;
651 }
652
653 /**
654 * \brief Return the result type of a bit-shift operation.
655 *
656 * If the given types to the bit-shift operator are invalid, return
657 * glsl_type::error_type.
658 *
659 * \param type_a Type of LHS of bit-shift op
660 * \param type_b Type of RHS of bit-shift op
661 */
662 static const struct glsl_type *
663 shift_result_type(const struct glsl_type *type_a,
664 const struct glsl_type *type_b,
665 ast_operators op,
666 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
667 {
668 if (!state->check_bitwise_operations_allowed(loc)) {
669 return glsl_type::error_type;
670 }
671
672 /* From page 50 (page 56 of the PDF) of the GLSL 1.30 spec:
673 *
674 * "The shift operators (<<) and (>>). For both operators, the operands
675 * must be signed or unsigned integers or integer vectors. One operand
676 * can be signed while the other is unsigned."
677 */
678 if (!type_a->is_integer()) {
679 _mesa_glsl_error(loc, state, "LHS of operator %s must be an integer or "
680 "integer vector", ast_expression::operator_string(op));
681 return glsl_type::error_type;
682
683 }
684 if (!type_b->is_integer()) {
685 _mesa_glsl_error(loc, state, "RHS of operator %s must be an integer or "
686 "integer vector", ast_expression::operator_string(op));
687 return glsl_type::error_type;
688 }
689
690 /* "If the first operand is a scalar, the second operand has to be
691 * a scalar as well."
692 */
693 if (type_a->is_scalar() && !type_b->is_scalar()) {
694 _mesa_glsl_error(loc, state, "if the first operand of %s is scalar, the "
695 "second must be scalar as well",
696 ast_expression::operator_string(op));
697 return glsl_type::error_type;
698 }
699
700 /* If both operands are vectors, check that they have same number of
701 * elements.
702 */
703 if (type_a->is_vector() &&
704 type_b->is_vector() &&
705 type_a->vector_elements != type_b->vector_elements) {
706 _mesa_glsl_error(loc, state, "vector operands to operator %s must "
707 "have same number of elements",
708 ast_expression::operator_string(op));
709 return glsl_type::error_type;
710 }
711
712 /* "In all cases, the resulting type will be the same type as the left
713 * operand."
714 */
715 return type_a;
716 }
717
718 /**
719 * Returns the innermost array index expression in an rvalue tree.
720 * This is the largest indexing level -- if an array of blocks, then
721 * it is the block index rather than an indexing expression for an
722 * array-typed member of an array of blocks.
723 */
724 static ir_rvalue *
725 find_innermost_array_index(ir_rvalue *rv)
726 {
727 ir_dereference_array *last = NULL;
728 while (rv) {
729 if (rv->as_dereference_array()) {
730 last = rv->as_dereference_array();
731 rv = last->array;
732 } else if (rv->as_dereference_record())
733 rv = rv->as_dereference_record()->record;
734 else if (rv->as_swizzle())
735 rv = rv->as_swizzle()->val;
736 else
737 rv = NULL;
738 }
739
740 if (last)
741 return last->array_index;
742
743 return NULL;
744 }
745
746 /**
747 * Validates that a value can be assigned to a location with a specified type
748 *
749 * Validates that \c rhs can be assigned to some location. If the types are
750 * not an exact match but an automatic conversion is possible, \c rhs will be
751 * converted.
752 *
753 * \return
754 * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
755 * Otherwise the actual RHS to be assigned will be returned. This may be
756 * \c rhs, or it may be \c rhs after some type conversion.
757 *
758 * \note
759 * In addition to being used for assignments, this function is used to
760 * type-check return values.
761 */
762 static ir_rvalue *
763 validate_assignment(struct _mesa_glsl_parse_state *state,
764 YYLTYPE loc, ir_rvalue *lhs,
765 ir_rvalue *rhs, bool is_initializer)
766 {
767 /* If there is already some error in the RHS, just return it. Anything
768 * else will lead to an avalanche of error message back to the user.
769 */
770 if (rhs->type->is_error())
771 return rhs;
772
773 /* In the Tessellation Control Shader:
774 * If a per-vertex output variable is used as an l-value, it is an error
775 * if the expression indicating the vertex number is not the identifier
776 * `gl_InvocationID`.
777 */
778 if (state->stage == MESA_SHADER_TESS_CTRL) {
779 ir_variable *var = lhs->variable_referenced();
780 if (var->data.mode == ir_var_shader_out && !var->data.patch) {
781 ir_rvalue *index = find_innermost_array_index(lhs);
782 ir_variable *index_var = index ? index->variable_referenced() : NULL;
783 if (!index_var || strcmp(index_var->name, "gl_InvocationID") != 0) {
784 _mesa_glsl_error(&loc, state,
785 "Tessellation control shader outputs can only "
786 "be indexed by gl_InvocationID");
787 return NULL;
788 }
789 }
790 }
791
792 /* If the types are identical, the assignment can trivially proceed.
793 */
794 if (rhs->type == lhs->type)
795 return rhs;
796
797 /* If the array element types are the same and the LHS is unsized,
798 * the assignment is okay for initializers embedded in variable
799 * declarations.
800 *
801 * Note: Whole-array assignments are not permitted in GLSL 1.10, but this
802 * is handled by ir_dereference::is_lvalue.
803 */
804 const glsl_type *lhs_t = lhs->type;
805 const glsl_type *rhs_t = rhs->type;
806 bool unsized_array = false;
807 while(lhs_t->is_array()) {
808 if (rhs_t == lhs_t)
809 break; /* the rest of the inner arrays match so break out early */
810 if (!rhs_t->is_array()) {
811 unsized_array = false;
812 break; /* number of dimensions mismatch */
813 }
814 if (lhs_t->length == rhs_t->length) {
815 lhs_t = lhs_t->fields.array;
816 rhs_t = rhs_t->fields.array;
817 continue;
818 } else if (lhs_t->is_unsized_array()) {
819 unsized_array = true;
820 } else {
821 unsized_array = false;
822 break; /* sized array mismatch */
823 }
824 lhs_t = lhs_t->fields.array;
825 rhs_t = rhs_t->fields.array;
826 }
827 if (unsized_array) {
828 if (is_initializer) {
829 return rhs;
830 } else {
831 _mesa_glsl_error(&loc, state,
832 "implicitly sized arrays cannot be assigned");
833 return NULL;
834 }
835 }
836
837 /* Check for implicit conversion in GLSL 1.20 */
838 if (apply_implicit_conversion(lhs->type, rhs, state)) {
839 if (rhs->type == lhs->type)
840 return rhs;
841 }
842
843 _mesa_glsl_error(&loc, state,
844 "%s of type %s cannot be assigned to "
845 "variable of type %s",
846 is_initializer ? "initializer" : "value",
847 rhs->type->name, lhs->type->name);
848
849 return NULL;
850 }
851
852 static void
853 mark_whole_array_access(ir_rvalue *access)
854 {
855 ir_dereference_variable *deref = access->as_dereference_variable();
856
857 if (deref && deref->var) {
858 deref->var->data.max_array_access = deref->type->length - 1;
859 }
860 }
861
862 static bool
863 do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state,
864 const char *non_lvalue_description,
865 ir_rvalue *lhs, ir_rvalue *rhs,
866 ir_rvalue **out_rvalue, bool needs_rvalue,
867 bool is_initializer,
868 YYLTYPE lhs_loc)
869 {
870 void *ctx = state;
871 bool error_emitted = (lhs->type->is_error() || rhs->type->is_error());
872
873 ir_variable *lhs_var = lhs->variable_referenced();
874 if (lhs_var)
875 lhs_var->data.assigned = true;
876
877 if (!error_emitted) {
878 if (non_lvalue_description != NULL) {
879 _mesa_glsl_error(&lhs_loc, state,
880 "assignment to %s",
881 non_lvalue_description);
882 error_emitted = true;
883 } else if (lhs_var != NULL && (lhs_var->data.read_only ||
884 (lhs_var->data.mode == ir_var_shader_storage &&
885 lhs_var->data.image_read_only))) {
886 /* We can have image_read_only set on both images and buffer variables,
887 * but in the former there is a distinction between assignments to
888 * the variable itself (read_only) and to the memory they point to
889 * (image_read_only), while in the case of buffer variables there is
890 * no such distinction, that is why this check here is limited to
891 * buffer variables alone.
892 */
893 _mesa_glsl_error(&lhs_loc, state,
894 "assignment to read-only variable '%s'",
895 lhs_var->name);
896 error_emitted = true;
897 } else if (lhs->type->is_array() &&
898 !state->check_version(120, 300, &lhs_loc,
899 "whole array assignment forbidden")) {
900 /* From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
901 *
902 * "Other binary or unary expressions, non-dereferenced
903 * arrays, function names, swizzles with repeated fields,
904 * and constants cannot be l-values."
905 *
906 * The restriction on arrays is lifted in GLSL 1.20 and GLSL ES 3.00.
907 */
908 error_emitted = true;
909 } else if (!lhs->is_lvalue()) {
910 _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment");
911 error_emitted = true;
912 }
913 }
914
915 ir_rvalue *new_rhs =
916 validate_assignment(state, lhs_loc, lhs, rhs, is_initializer);
917 if (new_rhs != NULL) {
918 rhs = new_rhs;
919
920 /* If the LHS array was not declared with a size, it takes it size from
921 * the RHS. If the LHS is an l-value and a whole array, it must be a
922 * dereference of a variable. Any other case would require that the LHS
923 * is either not an l-value or not a whole array.
924 */
925 if (lhs->type->is_unsized_array()) {
926 ir_dereference *const d = lhs->as_dereference();
927
928 assert(d != NULL);
929
930 ir_variable *const var = d->variable_referenced();
931
932 assert(var != NULL);
933
934 if (var->data.max_array_access >= unsigned(rhs->type->array_size())) {
935 /* FINISHME: This should actually log the location of the RHS. */
936 _mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to "
937 "previous access",
938 var->data.max_array_access);
939 }
940
941 var->type = glsl_type::get_array_instance(lhs->type->fields.array,
942 rhs->type->array_size());
943 d->type = var->type;
944 }
945 if (lhs->type->is_array()) {
946 mark_whole_array_access(rhs);
947 mark_whole_array_access(lhs);
948 }
949 }
950
951 /* Most callers of do_assignment (assign, add_assign, pre_inc/dec,
952 * but not post_inc) need the converted assigned value as an rvalue
953 * to handle things like:
954 *
955 * i = j += 1;
956 */
957 if (needs_rvalue) {
958 ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp",
959 ir_var_temporary);
960 instructions->push_tail(var);
961 instructions->push_tail(assign(var, rhs));
962
963 if (!error_emitted) {
964 ir_dereference_variable *deref_var = new(ctx) ir_dereference_variable(var);
965 instructions->push_tail(new(ctx) ir_assignment(lhs, deref_var));
966 }
967 ir_rvalue *rvalue = new(ctx) ir_dereference_variable(var);
968
969 *out_rvalue = rvalue;
970 } else {
971 if (!error_emitted)
972 instructions->push_tail(new(ctx) ir_assignment(lhs, rhs));
973 *out_rvalue = NULL;
974 }
975
976 return error_emitted;
977 }
978
979 static ir_rvalue *
980 get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue)
981 {
982 void *ctx = ralloc_parent(lvalue);
983 ir_variable *var;
984
985 var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp",
986 ir_var_temporary);
987 instructions->push_tail(var);
988
989 instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
990 lvalue));
991
992 return new(ctx) ir_dereference_variable(var);
993 }
994
995
996 ir_rvalue *
997 ast_node::hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
998 {
999 (void) instructions;
1000 (void) state;
1001
1002 return NULL;
1003 }
1004
1005 bool
1006 ast_node::has_sequence_subexpression() const
1007 {
1008 return false;
1009 }
1010
1011 void
1012 ast_function_expression::hir_no_rvalue(exec_list *instructions,
1013 struct _mesa_glsl_parse_state *state)
1014 {
1015 (void)hir(instructions, state);
1016 }
1017
1018 void
1019 ast_aggregate_initializer::hir_no_rvalue(exec_list *instructions,
1020 struct _mesa_glsl_parse_state *state)
1021 {
1022 (void)hir(instructions, state);
1023 }
1024
1025 static ir_rvalue *
1026 do_comparison(void *mem_ctx, int operation, ir_rvalue *op0, ir_rvalue *op1)
1027 {
1028 int join_op;
1029 ir_rvalue *cmp = NULL;
1030
1031 if (operation == ir_binop_all_equal)
1032 join_op = ir_binop_logic_and;
1033 else
1034 join_op = ir_binop_logic_or;
1035
1036 switch (op0->type->base_type) {
1037 case GLSL_TYPE_FLOAT:
1038 case GLSL_TYPE_UINT:
1039 case GLSL_TYPE_INT:
1040 case GLSL_TYPE_BOOL:
1041 case GLSL_TYPE_DOUBLE:
1042 return new(mem_ctx) ir_expression(operation, op0, op1);
1043
1044 case GLSL_TYPE_ARRAY: {
1045 for (unsigned int i = 0; i < op0->type->length; i++) {
1046 ir_rvalue *e0, *e1, *result;
1047
1048 e0 = new(mem_ctx) ir_dereference_array(op0->clone(mem_ctx, NULL),
1049 new(mem_ctx) ir_constant(i));
1050 e1 = new(mem_ctx) ir_dereference_array(op1->clone(mem_ctx, NULL),
1051 new(mem_ctx) ir_constant(i));
1052 result = do_comparison(mem_ctx, operation, e0, e1);
1053
1054 if (cmp) {
1055 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
1056 } else {
1057 cmp = result;
1058 }
1059 }
1060
1061 mark_whole_array_access(op0);
1062 mark_whole_array_access(op1);
1063 break;
1064 }
1065
1066 case GLSL_TYPE_STRUCT: {
1067 for (unsigned int i = 0; i < op0->type->length; i++) {
1068 ir_rvalue *e0, *e1, *result;
1069 const char *field_name = op0->type->fields.structure[i].name;
1070
1071 e0 = new(mem_ctx) ir_dereference_record(op0->clone(mem_ctx, NULL),
1072 field_name);
1073 e1 = new(mem_ctx) ir_dereference_record(op1->clone(mem_ctx, NULL),
1074 field_name);
1075 result = do_comparison(mem_ctx, operation, e0, e1);
1076
1077 if (cmp) {
1078 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
1079 } else {
1080 cmp = result;
1081 }
1082 }
1083 break;
1084 }
1085
1086 case GLSL_TYPE_ERROR:
1087 case GLSL_TYPE_VOID:
1088 case GLSL_TYPE_SAMPLER:
1089 case GLSL_TYPE_IMAGE:
1090 case GLSL_TYPE_INTERFACE:
1091 case GLSL_TYPE_ATOMIC_UINT:
1092 case GLSL_TYPE_SUBROUTINE:
1093 /* I assume a comparison of a struct containing a sampler just
1094 * ignores the sampler present in the type.
1095 */
1096 break;
1097 }
1098
1099 if (cmp == NULL)
1100 cmp = new(mem_ctx) ir_constant(true);
1101
1102 return cmp;
1103 }
1104
1105 /* For logical operations, we want to ensure that the operands are
1106 * scalar booleans. If it isn't, emit an error and return a constant
1107 * boolean to avoid triggering cascading error messages.
1108 */
1109 ir_rvalue *
1110 get_scalar_boolean_operand(exec_list *instructions,
1111 struct _mesa_glsl_parse_state *state,
1112 ast_expression *parent_expr,
1113 int operand,
1114 const char *operand_name,
1115 bool *error_emitted)
1116 {
1117 ast_expression *expr = parent_expr->subexpressions[operand];
1118 void *ctx = state;
1119 ir_rvalue *val = expr->hir(instructions, state);
1120
1121 if (val->type->is_boolean() && val->type->is_scalar())
1122 return val;
1123
1124 if (!*error_emitted) {
1125 YYLTYPE loc = expr->get_location();
1126 _mesa_glsl_error(&loc, state, "%s of `%s' must be scalar boolean",
1127 operand_name,
1128 parent_expr->operator_string(parent_expr->oper));
1129 *error_emitted = true;
1130 }
1131
1132 return new(ctx) ir_constant(true);
1133 }
1134
1135 /**
1136 * If name refers to a builtin array whose maximum allowed size is less than
1137 * size, report an error and return true. Otherwise return false.
1138 */
1139 void
1140 check_builtin_array_max_size(const char *name, unsigned size,
1141 YYLTYPE loc, struct _mesa_glsl_parse_state *state)
1142 {
1143 if ((strcmp("gl_TexCoord", name) == 0)
1144 && (size > state->Const.MaxTextureCoords)) {
1145 /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec:
1146 *
1147 * "The size [of gl_TexCoord] can be at most
1148 * gl_MaxTextureCoords."
1149 */
1150 _mesa_glsl_error(&loc, state, "`gl_TexCoord' array size cannot "
1151 "be larger than gl_MaxTextureCoords (%u)",
1152 state->Const.MaxTextureCoords);
1153 } else if (strcmp("gl_ClipDistance", name) == 0
1154 && size > state->Const.MaxClipPlanes) {
1155 /* From section 7.1 (Vertex Shader Special Variables) of the
1156 * GLSL 1.30 spec:
1157 *
1158 * "The gl_ClipDistance array is predeclared as unsized and
1159 * must be sized by the shader either redeclaring it with a
1160 * size or indexing it only with integral constant
1161 * expressions. ... The size can be at most
1162 * gl_MaxClipDistances."
1163 */
1164 _mesa_glsl_error(&loc, state, "`gl_ClipDistance' array size cannot "
1165 "be larger than gl_MaxClipDistances (%u)",
1166 state->Const.MaxClipPlanes);
1167 }
1168 }
1169
1170 /**
1171 * Create the constant 1, of a which is appropriate for incrementing and
1172 * decrementing values of the given GLSL type. For example, if type is vec4,
1173 * this creates a constant value of 1.0 having type float.
1174 *
1175 * If the given type is invalid for increment and decrement operators, return
1176 * a floating point 1--the error will be detected later.
1177 */
1178 static ir_rvalue *
1179 constant_one_for_inc_dec(void *ctx, const glsl_type *type)
1180 {
1181 switch (type->base_type) {
1182 case GLSL_TYPE_UINT:
1183 return new(ctx) ir_constant((unsigned) 1);
1184 case GLSL_TYPE_INT:
1185 return new(ctx) ir_constant(1);
1186 default:
1187 case GLSL_TYPE_FLOAT:
1188 return new(ctx) ir_constant(1.0f);
1189 }
1190 }
1191
1192 ir_rvalue *
1193 ast_expression::hir(exec_list *instructions,
1194 struct _mesa_glsl_parse_state *state)
1195 {
1196 return do_hir(instructions, state, true);
1197 }
1198
1199 void
1200 ast_expression::hir_no_rvalue(exec_list *instructions,
1201 struct _mesa_glsl_parse_state *state)
1202 {
1203 do_hir(instructions, state, false);
1204 }
1205
1206 ir_rvalue *
1207 ast_expression::do_hir(exec_list *instructions,
1208 struct _mesa_glsl_parse_state *state,
1209 bool needs_rvalue)
1210 {
1211 void *ctx = state;
1212 static const int operations[AST_NUM_OPERATORS] = {
1213 -1, /* ast_assign doesn't convert to ir_expression. */
1214 -1, /* ast_plus doesn't convert to ir_expression. */
1215 ir_unop_neg,
1216 ir_binop_add,
1217 ir_binop_sub,
1218 ir_binop_mul,
1219 ir_binop_div,
1220 ir_binop_mod,
1221 ir_binop_lshift,
1222 ir_binop_rshift,
1223 ir_binop_less,
1224 ir_binop_greater,
1225 ir_binop_lequal,
1226 ir_binop_gequal,
1227 ir_binop_all_equal,
1228 ir_binop_any_nequal,
1229 ir_binop_bit_and,
1230 ir_binop_bit_xor,
1231 ir_binop_bit_or,
1232 ir_unop_bit_not,
1233 ir_binop_logic_and,
1234 ir_binop_logic_xor,
1235 ir_binop_logic_or,
1236 ir_unop_logic_not,
1237
1238 /* Note: The following block of expression types actually convert
1239 * to multiple IR instructions.
1240 */
1241 ir_binop_mul, /* ast_mul_assign */
1242 ir_binop_div, /* ast_div_assign */
1243 ir_binop_mod, /* ast_mod_assign */
1244 ir_binop_add, /* ast_add_assign */
1245 ir_binop_sub, /* ast_sub_assign */
1246 ir_binop_lshift, /* ast_ls_assign */
1247 ir_binop_rshift, /* ast_rs_assign */
1248 ir_binop_bit_and, /* ast_and_assign */
1249 ir_binop_bit_xor, /* ast_xor_assign */
1250 ir_binop_bit_or, /* ast_or_assign */
1251
1252 -1, /* ast_conditional doesn't convert to ir_expression. */
1253 ir_binop_add, /* ast_pre_inc. */
1254 ir_binop_sub, /* ast_pre_dec. */
1255 ir_binop_add, /* ast_post_inc. */
1256 ir_binop_sub, /* ast_post_dec. */
1257 -1, /* ast_field_selection doesn't conv to ir_expression. */
1258 -1, /* ast_array_index doesn't convert to ir_expression. */
1259 -1, /* ast_function_call doesn't conv to ir_expression. */
1260 -1, /* ast_identifier doesn't convert to ir_expression. */
1261 -1, /* ast_int_constant doesn't convert to ir_expression. */
1262 -1, /* ast_uint_constant doesn't conv to ir_expression. */
1263 -1, /* ast_float_constant doesn't conv to ir_expression. */
1264 -1, /* ast_bool_constant doesn't conv to ir_expression. */
1265 -1, /* ast_sequence doesn't convert to ir_expression. */
1266 };
1267 ir_rvalue *result = NULL;
1268 ir_rvalue *op[3];
1269 const struct glsl_type *type; /* a temporary variable for switch cases */
1270 bool error_emitted = false;
1271 YYLTYPE loc;
1272
1273 loc = this->get_location();
1274
1275 switch (this->oper) {
1276 case ast_aggregate:
1277 assert(!"ast_aggregate: Should never get here.");
1278 break;
1279
1280 case ast_assign: {
1281 op[0] = this->subexpressions[0]->hir(instructions, state);
1282 op[1] = this->subexpressions[1]->hir(instructions, state);
1283
1284 error_emitted =
1285 do_assignment(instructions, state,
1286 this->subexpressions[0]->non_lvalue_description,
1287 op[0], op[1], &result, needs_rvalue, false,
1288 this->subexpressions[0]->get_location());
1289 break;
1290 }
1291
1292 case ast_plus:
1293 op[0] = this->subexpressions[0]->hir(instructions, state);
1294
1295 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1296
1297 error_emitted = type->is_error();
1298
1299 result = op[0];
1300 break;
1301
1302 case ast_neg:
1303 op[0] = this->subexpressions[0]->hir(instructions, state);
1304
1305 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1306
1307 error_emitted = type->is_error();
1308
1309 result = new(ctx) ir_expression(operations[this->oper], type,
1310 op[0], NULL);
1311 break;
1312
1313 case ast_add:
1314 case ast_sub:
1315 case ast_mul:
1316 case ast_div:
1317 op[0] = this->subexpressions[0]->hir(instructions, state);
1318 op[1] = this->subexpressions[1]->hir(instructions, state);
1319
1320 type = arithmetic_result_type(op[0], op[1],
1321 (this->oper == ast_mul),
1322 state, & loc);
1323 error_emitted = type->is_error();
1324
1325 result = new(ctx) ir_expression(operations[this->oper], type,
1326 op[0], op[1]);
1327 break;
1328
1329 case ast_mod:
1330 op[0] = this->subexpressions[0]->hir(instructions, state);
1331 op[1] = this->subexpressions[1]->hir(instructions, state);
1332
1333 type = modulus_result_type(op[0], op[1], state, &loc);
1334
1335 assert(operations[this->oper] == ir_binop_mod);
1336
1337 result = new(ctx) ir_expression(operations[this->oper], type,
1338 op[0], op[1]);
1339 error_emitted = type->is_error();
1340 break;
1341
1342 case ast_lshift:
1343 case ast_rshift:
1344 if (!state->check_bitwise_operations_allowed(&loc)) {
1345 error_emitted = true;
1346 }
1347
1348 op[0] = this->subexpressions[0]->hir(instructions, state);
1349 op[1] = this->subexpressions[1]->hir(instructions, state);
1350 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1351 &loc);
1352 result = new(ctx) ir_expression(operations[this->oper], type,
1353 op[0], op[1]);
1354 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1355 break;
1356
1357 case ast_less:
1358 case ast_greater:
1359 case ast_lequal:
1360 case ast_gequal:
1361 op[0] = this->subexpressions[0]->hir(instructions, state);
1362 op[1] = this->subexpressions[1]->hir(instructions, state);
1363
1364 type = relational_result_type(op[0], op[1], state, & loc);
1365
1366 /* The relational operators must either generate an error or result
1367 * in a scalar boolean. See page 57 of the GLSL 1.50 spec.
1368 */
1369 assert(type->is_error()
1370 || ((type->base_type == GLSL_TYPE_BOOL)
1371 && type->is_scalar()));
1372
1373 result = new(ctx) ir_expression(operations[this->oper], type,
1374 op[0], op[1]);
1375 error_emitted = type->is_error();
1376 break;
1377
1378 case ast_nequal:
1379 case ast_equal:
1380 op[0] = this->subexpressions[0]->hir(instructions, state);
1381 op[1] = this->subexpressions[1]->hir(instructions, state);
1382
1383 /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
1384 *
1385 * "The equality operators equal (==), and not equal (!=)
1386 * operate on all types. They result in a scalar Boolean. If
1387 * the operand types do not match, then there must be a
1388 * conversion from Section 4.1.10 "Implicit Conversions"
1389 * applied to one operand that can make them match, in which
1390 * case this conversion is done."
1391 */
1392
1393 if (op[0]->type == glsl_type::void_type || op[1]->type == glsl_type::void_type) {
1394 _mesa_glsl_error(& loc, state, "`%s': wrong operand types: "
1395 "no operation `%1$s' exists that takes a left-hand "
1396 "operand of type 'void' or a right operand of type "
1397 "'void'", (this->oper == ast_equal) ? "==" : "!=");
1398 error_emitted = true;
1399 } else if ((!apply_implicit_conversion(op[0]->type, op[1], state)
1400 && !apply_implicit_conversion(op[1]->type, op[0], state))
1401 || (op[0]->type != op[1]->type)) {
1402 _mesa_glsl_error(& loc, state, "operands of `%s' must have the same "
1403 "type", (this->oper == ast_equal) ? "==" : "!=");
1404 error_emitted = true;
1405 } else if ((op[0]->type->is_array() || op[1]->type->is_array()) &&
1406 !state->check_version(120, 300, &loc,
1407 "array comparisons forbidden")) {
1408 error_emitted = true;
1409 } else if ((op[0]->type->contains_opaque() ||
1410 op[1]->type->contains_opaque())) {
1411 _mesa_glsl_error(&loc, state, "opaque type comparisons forbidden");
1412 error_emitted = true;
1413 }
1414
1415 if (error_emitted) {
1416 result = new(ctx) ir_constant(false);
1417 } else {
1418 result = do_comparison(ctx, operations[this->oper], op[0], op[1]);
1419 assert(result->type == glsl_type::bool_type);
1420 }
1421 break;
1422
1423 case ast_bit_and:
1424 case ast_bit_xor:
1425 case ast_bit_or:
1426 op[0] = this->subexpressions[0]->hir(instructions, state);
1427 op[1] = this->subexpressions[1]->hir(instructions, state);
1428 type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
1429 state, &loc);
1430 result = new(ctx) ir_expression(operations[this->oper], type,
1431 op[0], op[1]);
1432 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1433 break;
1434
1435 case ast_bit_not:
1436 op[0] = this->subexpressions[0]->hir(instructions, state);
1437
1438 if (!state->check_bitwise_operations_allowed(&loc)) {
1439 error_emitted = true;
1440 }
1441
1442 if (!op[0]->type->is_integer()) {
1443 _mesa_glsl_error(&loc, state, "operand of `~' must be an integer");
1444 error_emitted = true;
1445 }
1446
1447 type = error_emitted ? glsl_type::error_type : op[0]->type;
1448 result = new(ctx) ir_expression(ir_unop_bit_not, type, op[0], NULL);
1449 break;
1450
1451 case ast_logic_and: {
1452 exec_list rhs_instructions;
1453 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1454 "LHS", &error_emitted);
1455 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1456 "RHS", &error_emitted);
1457
1458 if (rhs_instructions.is_empty()) {
1459 result = new(ctx) ir_expression(ir_binop_logic_and, op[0], op[1]);
1460 type = result->type;
1461 } else {
1462 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1463 "and_tmp",
1464 ir_var_temporary);
1465 instructions->push_tail(tmp);
1466
1467 ir_if *const stmt = new(ctx) ir_if(op[0]);
1468 instructions->push_tail(stmt);
1469
1470 stmt->then_instructions.append_list(&rhs_instructions);
1471 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1472 ir_assignment *const then_assign =
1473 new(ctx) ir_assignment(then_deref, op[1]);
1474 stmt->then_instructions.push_tail(then_assign);
1475
1476 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1477 ir_assignment *const else_assign =
1478 new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false));
1479 stmt->else_instructions.push_tail(else_assign);
1480
1481 result = new(ctx) ir_dereference_variable(tmp);
1482 type = tmp->type;
1483 }
1484 break;
1485 }
1486
1487 case ast_logic_or: {
1488 exec_list rhs_instructions;
1489 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1490 "LHS", &error_emitted);
1491 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1492 "RHS", &error_emitted);
1493
1494 if (rhs_instructions.is_empty()) {
1495 result = new(ctx) ir_expression(ir_binop_logic_or, op[0], op[1]);
1496 type = result->type;
1497 } else {
1498 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1499 "or_tmp",
1500 ir_var_temporary);
1501 instructions->push_tail(tmp);
1502
1503 ir_if *const stmt = new(ctx) ir_if(op[0]);
1504 instructions->push_tail(stmt);
1505
1506 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1507 ir_assignment *const then_assign =
1508 new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true));
1509 stmt->then_instructions.push_tail(then_assign);
1510
1511 stmt->else_instructions.append_list(&rhs_instructions);
1512 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1513 ir_assignment *const else_assign =
1514 new(ctx) ir_assignment(else_deref, op[1]);
1515 stmt->else_instructions.push_tail(else_assign);
1516
1517 result = new(ctx) ir_dereference_variable(tmp);
1518 type = tmp->type;
1519 }
1520 break;
1521 }
1522
1523 case ast_logic_xor:
1524 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1525 *
1526 * "The logical binary operators and (&&), or ( | | ), and
1527 * exclusive or (^^). They operate only on two Boolean
1528 * expressions and result in a Boolean expression."
1529 */
1530 op[0] = get_scalar_boolean_operand(instructions, state, this, 0, "LHS",
1531 &error_emitted);
1532 op[1] = get_scalar_boolean_operand(instructions, state, this, 1, "RHS",
1533 &error_emitted);
1534
1535 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1536 op[0], op[1]);
1537 break;
1538
1539 case ast_logic_not:
1540 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1541 "operand", &error_emitted);
1542
1543 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1544 op[0], NULL);
1545 break;
1546
1547 case ast_mul_assign:
1548 case ast_div_assign:
1549 case ast_add_assign:
1550 case ast_sub_assign: {
1551 op[0] = this->subexpressions[0]->hir(instructions, state);
1552 op[1] = this->subexpressions[1]->hir(instructions, state);
1553
1554 type = arithmetic_result_type(op[0], op[1],
1555 (this->oper == ast_mul_assign),
1556 state, & loc);
1557
1558 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1559 op[0], op[1]);
1560
1561 error_emitted =
1562 do_assignment(instructions, state,
1563 this->subexpressions[0]->non_lvalue_description,
1564 op[0]->clone(ctx, NULL), temp_rhs,
1565 &result, needs_rvalue, false,
1566 this->subexpressions[0]->get_location());
1567
1568 /* GLSL 1.10 does not allow array assignment. However, we don't have to
1569 * explicitly test for this because none of the binary expression
1570 * operators allow array operands either.
1571 */
1572
1573 break;
1574 }
1575
1576 case ast_mod_assign: {
1577 op[0] = this->subexpressions[0]->hir(instructions, state);
1578 op[1] = this->subexpressions[1]->hir(instructions, state);
1579
1580 type = modulus_result_type(op[0], op[1], state, &loc);
1581
1582 assert(operations[this->oper] == ir_binop_mod);
1583
1584 ir_rvalue *temp_rhs;
1585 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1586 op[0], op[1]);
1587
1588 error_emitted =
1589 do_assignment(instructions, state,
1590 this->subexpressions[0]->non_lvalue_description,
1591 op[0]->clone(ctx, NULL), temp_rhs,
1592 &result, needs_rvalue, false,
1593 this->subexpressions[0]->get_location());
1594 break;
1595 }
1596
1597 case ast_ls_assign:
1598 case ast_rs_assign: {
1599 op[0] = this->subexpressions[0]->hir(instructions, state);
1600 op[1] = this->subexpressions[1]->hir(instructions, state);
1601 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1602 &loc);
1603 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1604 type, op[0], op[1]);
1605 error_emitted =
1606 do_assignment(instructions, state,
1607 this->subexpressions[0]->non_lvalue_description,
1608 op[0]->clone(ctx, NULL), temp_rhs,
1609 &result, needs_rvalue, false,
1610 this->subexpressions[0]->get_location());
1611 break;
1612 }
1613
1614 case ast_and_assign:
1615 case ast_xor_assign:
1616 case ast_or_assign: {
1617 op[0] = this->subexpressions[0]->hir(instructions, state);
1618 op[1] = this->subexpressions[1]->hir(instructions, state);
1619 type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
1620 state, &loc);
1621 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1622 type, op[0], op[1]);
1623 error_emitted =
1624 do_assignment(instructions, state,
1625 this->subexpressions[0]->non_lvalue_description,
1626 op[0]->clone(ctx, NULL), temp_rhs,
1627 &result, needs_rvalue, false,
1628 this->subexpressions[0]->get_location());
1629 break;
1630 }
1631
1632 case ast_conditional: {
1633 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1634 *
1635 * "The ternary selection operator (?:). It operates on three
1636 * expressions (exp1 ? exp2 : exp3). This operator evaluates the
1637 * first expression, which must result in a scalar Boolean."
1638 */
1639 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1640 "condition", &error_emitted);
1641
1642 /* The :? operator is implemented by generating an anonymous temporary
1643 * followed by an if-statement. The last instruction in each branch of
1644 * the if-statement assigns a value to the anonymous temporary. This
1645 * temporary is the r-value of the expression.
1646 */
1647 exec_list then_instructions;
1648 exec_list else_instructions;
1649
1650 op[1] = this->subexpressions[1]->hir(&then_instructions, state);
1651 op[2] = this->subexpressions[2]->hir(&else_instructions, state);
1652
1653 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1654 *
1655 * "The second and third expressions can be any type, as
1656 * long their types match, or there is a conversion in
1657 * Section 4.1.10 "Implicit Conversions" that can be applied
1658 * to one of the expressions to make their types match. This
1659 * resulting matching type is the type of the entire
1660 * expression."
1661 */
1662 if ((!apply_implicit_conversion(op[1]->type, op[2], state)
1663 && !apply_implicit_conversion(op[2]->type, op[1], state))
1664 || (op[1]->type != op[2]->type)) {
1665 YYLTYPE loc = this->subexpressions[1]->get_location();
1666
1667 _mesa_glsl_error(& loc, state, "second and third operands of ?: "
1668 "operator must have matching types");
1669 error_emitted = true;
1670 type = glsl_type::error_type;
1671 } else {
1672 type = op[1]->type;
1673 }
1674
1675 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1676 *
1677 * "The second and third expressions must be the same type, but can
1678 * be of any type other than an array."
1679 */
1680 if (type->is_array() &&
1681 !state->check_version(120, 300, &loc,
1682 "second and third operands of ?: operator "
1683 "cannot be arrays")) {
1684 error_emitted = true;
1685 }
1686
1687 /* From section 4.1.7 of the GLSL 4.50 spec (Opaque Types):
1688 *
1689 * "Except for array indexing, structure member selection, and
1690 * parentheses, opaque variables are not allowed to be operands in
1691 * expressions; such use results in a compile-time error."
1692 */
1693 if (type->contains_opaque()) {
1694 _mesa_glsl_error(&loc, state, "opaque variables cannot be operands "
1695 "of the ?: operator");
1696 error_emitted = true;
1697 }
1698
1699 ir_constant *cond_val = op[0]->constant_expression_value();
1700
1701 if (then_instructions.is_empty()
1702 && else_instructions.is_empty()
1703 && cond_val != NULL) {
1704 result = cond_val->value.b[0] ? op[1] : op[2];
1705 } else {
1706 /* The copy to conditional_tmp reads the whole array. */
1707 if (type->is_array()) {
1708 mark_whole_array_access(op[1]);
1709 mark_whole_array_access(op[2]);
1710 }
1711
1712 ir_variable *const tmp =
1713 new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary);
1714 instructions->push_tail(tmp);
1715
1716 ir_if *const stmt = new(ctx) ir_if(op[0]);
1717 instructions->push_tail(stmt);
1718
1719 then_instructions.move_nodes_to(& stmt->then_instructions);
1720 ir_dereference *const then_deref =
1721 new(ctx) ir_dereference_variable(tmp);
1722 ir_assignment *const then_assign =
1723 new(ctx) ir_assignment(then_deref, op[1]);
1724 stmt->then_instructions.push_tail(then_assign);
1725
1726 else_instructions.move_nodes_to(& stmt->else_instructions);
1727 ir_dereference *const else_deref =
1728 new(ctx) ir_dereference_variable(tmp);
1729 ir_assignment *const else_assign =
1730 new(ctx) ir_assignment(else_deref, op[2]);
1731 stmt->else_instructions.push_tail(else_assign);
1732
1733 result = new(ctx) ir_dereference_variable(tmp);
1734 }
1735 break;
1736 }
1737
1738 case ast_pre_inc:
1739 case ast_pre_dec: {
1740 this->non_lvalue_description = (this->oper == ast_pre_inc)
1741 ? "pre-increment operation" : "pre-decrement operation";
1742
1743 op[0] = this->subexpressions[0]->hir(instructions, state);
1744 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1745
1746 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1747
1748 ir_rvalue *temp_rhs;
1749 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1750 op[0], op[1]);
1751
1752 error_emitted =
1753 do_assignment(instructions, state,
1754 this->subexpressions[0]->non_lvalue_description,
1755 op[0]->clone(ctx, NULL), temp_rhs,
1756 &result, needs_rvalue, false,
1757 this->subexpressions[0]->get_location());
1758 break;
1759 }
1760
1761 case ast_post_inc:
1762 case ast_post_dec: {
1763 this->non_lvalue_description = (this->oper == ast_post_inc)
1764 ? "post-increment operation" : "post-decrement operation";
1765 op[0] = this->subexpressions[0]->hir(instructions, state);
1766 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1767
1768 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1769
1770 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1771
1772 ir_rvalue *temp_rhs;
1773 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1774 op[0], op[1]);
1775
1776 /* Get a temporary of a copy of the lvalue before it's modified.
1777 * This may get thrown away later.
1778 */
1779 result = get_lvalue_copy(instructions, op[0]->clone(ctx, NULL));
1780
1781 ir_rvalue *junk_rvalue;
1782 error_emitted =
1783 do_assignment(instructions, state,
1784 this->subexpressions[0]->non_lvalue_description,
1785 op[0]->clone(ctx, NULL), temp_rhs,
1786 &junk_rvalue, false, false,
1787 this->subexpressions[0]->get_location());
1788
1789 break;
1790 }
1791
1792 case ast_field_selection:
1793 result = _mesa_ast_field_selection_to_hir(this, instructions, state);
1794 break;
1795
1796 case ast_array_index: {
1797 YYLTYPE index_loc = subexpressions[1]->get_location();
1798
1799 op[0] = subexpressions[0]->hir(instructions, state);
1800 op[1] = subexpressions[1]->hir(instructions, state);
1801
1802 result = _mesa_ast_array_index_to_hir(ctx, state, op[0], op[1],
1803 loc, index_loc);
1804
1805 if (result->type->is_error())
1806 error_emitted = true;
1807
1808 break;
1809 }
1810
1811 case ast_unsized_array_dim:
1812 assert(!"ast_unsized_array_dim: Should never get here.");
1813 break;
1814
1815 case ast_function_call:
1816 /* Should *NEVER* get here. ast_function_call should always be handled
1817 * by ast_function_expression::hir.
1818 */
1819 assert(0);
1820 break;
1821
1822 case ast_identifier: {
1823 /* ast_identifier can appear several places in a full abstract syntax
1824 * tree. This particular use must be at location specified in the grammar
1825 * as 'variable_identifier'.
1826 */
1827 ir_variable *var =
1828 state->symbols->get_variable(this->primary_expression.identifier);
1829
1830 if (var != NULL) {
1831 var->data.used = true;
1832 result = new(ctx) ir_dereference_variable(var);
1833 } else {
1834 _mesa_glsl_error(& loc, state, "`%s' undeclared",
1835 this->primary_expression.identifier);
1836
1837 result = ir_rvalue::error_value(ctx);
1838 error_emitted = true;
1839 }
1840 break;
1841 }
1842
1843 case ast_int_constant:
1844 result = new(ctx) ir_constant(this->primary_expression.int_constant);
1845 break;
1846
1847 case ast_uint_constant:
1848 result = new(ctx) ir_constant(this->primary_expression.uint_constant);
1849 break;
1850
1851 case ast_float_constant:
1852 result = new(ctx) ir_constant(this->primary_expression.float_constant);
1853 break;
1854
1855 case ast_bool_constant:
1856 result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant));
1857 break;
1858
1859 case ast_double_constant:
1860 result = new(ctx) ir_constant(this->primary_expression.double_constant);
1861 break;
1862
1863 case ast_sequence: {
1864 /* It should not be possible to generate a sequence in the AST without
1865 * any expressions in it.
1866 */
1867 assert(!this->expressions.is_empty());
1868
1869 /* The r-value of a sequence is the last expression in the sequence. If
1870 * the other expressions in the sequence do not have side-effects (and
1871 * therefore add instructions to the instruction list), they get dropped
1872 * on the floor.
1873 */
1874 exec_node *previous_tail_pred = NULL;
1875 YYLTYPE previous_operand_loc = loc;
1876
1877 foreach_list_typed (ast_node, ast, link, &this->expressions) {
1878 /* If one of the operands of comma operator does not generate any
1879 * code, we want to emit a warning. At each pass through the loop
1880 * previous_tail_pred will point to the last instruction in the
1881 * stream *before* processing the previous operand. Naturally,
1882 * instructions->tail_pred will point to the last instruction in the
1883 * stream *after* processing the previous operand. If the two
1884 * pointers match, then the previous operand had no effect.
1885 *
1886 * The warning behavior here differs slightly from GCC. GCC will
1887 * only emit a warning if none of the left-hand operands have an
1888 * effect. However, it will emit a warning for each. I believe that
1889 * there are some cases in C (especially with GCC extensions) where
1890 * it is useful to have an intermediate step in a sequence have no
1891 * effect, but I don't think these cases exist in GLSL. Either way,
1892 * it would be a giant hassle to replicate that behavior.
1893 */
1894 if (previous_tail_pred == instructions->tail_pred) {
1895 _mesa_glsl_warning(&previous_operand_loc, state,
1896 "left-hand operand of comma expression has "
1897 "no effect");
1898 }
1899
1900 /* tail_pred is directly accessed instead of using the get_tail()
1901 * method for performance reasons. get_tail() has extra code to
1902 * return NULL when the list is empty. We don't care about that
1903 * here, so using tail_pred directly is fine.
1904 */
1905 previous_tail_pred = instructions->tail_pred;
1906 previous_operand_loc = ast->get_location();
1907
1908 result = ast->hir(instructions, state);
1909 }
1910
1911 /* Any errors should have already been emitted in the loop above.
1912 */
1913 error_emitted = true;
1914 break;
1915 }
1916 }
1917 type = NULL; /* use result->type, not type. */
1918 assert(result != NULL || !needs_rvalue);
1919
1920 if (result && result->type->is_error() && !error_emitted)
1921 _mesa_glsl_error(& loc, state, "type mismatch");
1922
1923 return result;
1924 }
1925
1926 bool
1927 ast_expression::has_sequence_subexpression() const
1928 {
1929 switch (this->oper) {
1930 case ast_plus:
1931 case ast_neg:
1932 case ast_bit_not:
1933 case ast_logic_not:
1934 case ast_pre_inc:
1935 case ast_pre_dec:
1936 case ast_post_inc:
1937 case ast_post_dec:
1938 return this->subexpressions[0]->has_sequence_subexpression();
1939
1940 case ast_assign:
1941 case ast_add:
1942 case ast_sub:
1943 case ast_mul:
1944 case ast_div:
1945 case ast_mod:
1946 case ast_lshift:
1947 case ast_rshift:
1948 case ast_less:
1949 case ast_greater:
1950 case ast_lequal:
1951 case ast_gequal:
1952 case ast_nequal:
1953 case ast_equal:
1954 case ast_bit_and:
1955 case ast_bit_xor:
1956 case ast_bit_or:
1957 case ast_logic_and:
1958 case ast_logic_or:
1959 case ast_logic_xor:
1960 case ast_array_index:
1961 case ast_mul_assign:
1962 case ast_div_assign:
1963 case ast_add_assign:
1964 case ast_sub_assign:
1965 case ast_mod_assign:
1966 case ast_ls_assign:
1967 case ast_rs_assign:
1968 case ast_and_assign:
1969 case ast_xor_assign:
1970 case ast_or_assign:
1971 return this->subexpressions[0]->has_sequence_subexpression() ||
1972 this->subexpressions[1]->has_sequence_subexpression();
1973
1974 case ast_conditional:
1975 return this->subexpressions[0]->has_sequence_subexpression() ||
1976 this->subexpressions[1]->has_sequence_subexpression() ||
1977 this->subexpressions[2]->has_sequence_subexpression();
1978
1979 case ast_sequence:
1980 return true;
1981
1982 case ast_field_selection:
1983 case ast_identifier:
1984 case ast_int_constant:
1985 case ast_uint_constant:
1986 case ast_float_constant:
1987 case ast_bool_constant:
1988 case ast_double_constant:
1989 return false;
1990
1991 case ast_aggregate:
1992 unreachable("ast_aggregate: Should never get here.");
1993
1994 case ast_function_call:
1995 unreachable("should be handled by ast_function_expression::hir");
1996
1997 case ast_unsized_array_dim:
1998 unreachable("ast_unsized_array_dim: Should never get here.");
1999 }
2000
2001 return false;
2002 }
2003
2004 ir_rvalue *
2005 ast_expression_statement::hir(exec_list *instructions,
2006 struct _mesa_glsl_parse_state *state)
2007 {
2008 /* It is possible to have expression statements that don't have an
2009 * expression. This is the solitary semicolon:
2010 *
2011 * for (i = 0; i < 5; i++)
2012 * ;
2013 *
2014 * In this case the expression will be NULL. Test for NULL and don't do
2015 * anything in that case.
2016 */
2017 if (expression != NULL)
2018 expression->hir_no_rvalue(instructions, state);
2019
2020 /* Statements do not have r-values.
2021 */
2022 return NULL;
2023 }
2024
2025
2026 ir_rvalue *
2027 ast_compound_statement::hir(exec_list *instructions,
2028 struct _mesa_glsl_parse_state *state)
2029 {
2030 if (new_scope)
2031 state->symbols->push_scope();
2032
2033 foreach_list_typed (ast_node, ast, link, &this->statements)
2034 ast->hir(instructions, state);
2035
2036 if (new_scope)
2037 state->symbols->pop_scope();
2038
2039 /* Compound statements do not have r-values.
2040 */
2041 return NULL;
2042 }
2043
2044 /**
2045 * Evaluate the given exec_node (which should be an ast_node representing
2046 * a single array dimension) and return its integer value.
2047 */
2048 static unsigned
2049 process_array_size(exec_node *node,
2050 struct _mesa_glsl_parse_state *state)
2051 {
2052 exec_list dummy_instructions;
2053
2054 ast_node *array_size = exec_node_data(ast_node, node, link);
2055
2056 /**
2057 * Dimensions other than the outermost dimension can by unsized if they
2058 * are immediately sized by a constructor or initializer.
2059 */
2060 if (((ast_expression*)array_size)->oper == ast_unsized_array_dim)
2061 return 0;
2062
2063 ir_rvalue *const ir = array_size->hir(& dummy_instructions, state);
2064 YYLTYPE loc = array_size->get_location();
2065
2066 if (ir == NULL) {
2067 _mesa_glsl_error(& loc, state,
2068 "array size could not be resolved");
2069 return 0;
2070 }
2071
2072 if (!ir->type->is_integer()) {
2073 _mesa_glsl_error(& loc, state,
2074 "array size must be integer type");
2075 return 0;
2076 }
2077
2078 if (!ir->type->is_scalar()) {
2079 _mesa_glsl_error(& loc, state,
2080 "array size must be scalar type");
2081 return 0;
2082 }
2083
2084 ir_constant *const size = ir->constant_expression_value();
2085 if (size == NULL || array_size->has_sequence_subexpression()) {
2086 _mesa_glsl_error(& loc, state, "array size must be a "
2087 "constant valued expression");
2088 return 0;
2089 }
2090
2091 if (size->value.i[0] <= 0) {
2092 _mesa_glsl_error(& loc, state, "array size must be > 0");
2093 return 0;
2094 }
2095
2096 assert(size->type == ir->type);
2097
2098 /* If the array size is const (and we've verified that
2099 * it is) then no instructions should have been emitted
2100 * when we converted it to HIR. If they were emitted,
2101 * then either the array size isn't const after all, or
2102 * we are emitting unnecessary instructions.
2103 */
2104 assert(dummy_instructions.is_empty());
2105
2106 return size->value.u[0];
2107 }
2108
2109 static const glsl_type *
2110 process_array_type(YYLTYPE *loc, const glsl_type *base,
2111 ast_array_specifier *array_specifier,
2112 struct _mesa_glsl_parse_state *state)
2113 {
2114 const glsl_type *array_type = base;
2115
2116 if (array_specifier != NULL) {
2117 if (base->is_array()) {
2118
2119 /* From page 19 (page 25) of the GLSL 1.20 spec:
2120 *
2121 * "Only one-dimensional arrays may be declared."
2122 */
2123 if (!state->check_arrays_of_arrays_allowed(loc)) {
2124 return glsl_type::error_type;
2125 }
2126 }
2127
2128 for (exec_node *node = array_specifier->array_dimensions.tail_pred;
2129 !node->is_head_sentinel(); node = node->prev) {
2130 unsigned array_size = process_array_size(node, state);
2131 array_type = glsl_type::get_array_instance(array_type, array_size);
2132 }
2133 }
2134
2135 return array_type;
2136 }
2137
2138 static bool
2139 precision_qualifier_allowed(const glsl_type *type)
2140 {
2141 /* Precision qualifiers apply to floating point, integer and opaque
2142 * types.
2143 *
2144 * Section 4.5.2 (Precision Qualifiers) of the GLSL 1.30 spec says:
2145 * "Any floating point or any integer declaration can have the type
2146 * preceded by one of these precision qualifiers [...] Literal
2147 * constants do not have precision qualifiers. Neither do Boolean
2148 * variables.
2149 *
2150 * Section 4.5 (Precision and Precision Qualifiers) of the GLSL 1.30
2151 * spec also says:
2152 *
2153 * "Precision qualifiers are added for code portability with OpenGL
2154 * ES, not for functionality. They have the same syntax as in OpenGL
2155 * ES."
2156 *
2157 * Section 8 (Built-In Functions) of the GLSL ES 1.00 spec says:
2158 *
2159 * "uniform lowp sampler2D sampler;
2160 * highp vec2 coord;
2161 * ...
2162 * lowp vec4 col = texture2D (sampler, coord);
2163 * // texture2D returns lowp"
2164 *
2165 * From this, we infer that GLSL 1.30 (and later) should allow precision
2166 * qualifiers on sampler types just like float and integer types.
2167 */
2168 return (type->is_float()
2169 || type->is_integer()
2170 || type->contains_opaque())
2171 && !type->without_array()->is_record();
2172 }
2173
2174 const glsl_type *
2175 ast_type_specifier::glsl_type(const char **name,
2176 struct _mesa_glsl_parse_state *state) const
2177 {
2178 const struct glsl_type *type;
2179
2180 type = state->symbols->get_type(this->type_name);
2181 *name = this->type_name;
2182
2183 YYLTYPE loc = this->get_location();
2184 type = process_array_type(&loc, type, this->array_specifier, state);
2185
2186 return type;
2187 }
2188
2189 /**
2190 * From the OpenGL ES 3.0 spec, 4.5.4 Default Precision Qualifiers:
2191 *
2192 * "The precision statement
2193 *
2194 * precision precision-qualifier type;
2195 *
2196 * can be used to establish a default precision qualifier. The type field can
2197 * be either int or float or any of the sampler types, (...) If type is float,
2198 * the directive applies to non-precision-qualified floating point type
2199 * (scalar, vector, and matrix) declarations. If type is int, the directive
2200 * applies to all non-precision-qualified integer type (scalar, vector, signed,
2201 * and unsigned) declarations."
2202 *
2203 * We use the symbol table to keep the values of the default precisions for
2204 * each 'type' in each scope and we use the 'type' string from the precision
2205 * statement as key in the symbol table. When we want to retrieve the default
2206 * precision associated with a given glsl_type we need to know the type string
2207 * associated with it. This is what this function returns.
2208 */
2209 static const char *
2210 get_type_name_for_precision_qualifier(const glsl_type *type)
2211 {
2212 switch (type->base_type) {
2213 case GLSL_TYPE_FLOAT:
2214 return "float";
2215 case GLSL_TYPE_UINT:
2216 case GLSL_TYPE_INT:
2217 return "int";
2218 case GLSL_TYPE_ATOMIC_UINT:
2219 return "atomic_uint";
2220 case GLSL_TYPE_IMAGE:
2221 /* fallthrough */
2222 case GLSL_TYPE_SAMPLER: {
2223 const unsigned type_idx =
2224 type->sampler_array + 2 * type->sampler_shadow;
2225 const unsigned offset = type->base_type == GLSL_TYPE_SAMPLER ? 0 : 4;
2226 assert(type_idx < 4);
2227 switch (type->sampler_type) {
2228 case GLSL_TYPE_FLOAT:
2229 switch (type->sampler_dimensionality) {
2230 case GLSL_SAMPLER_DIM_1D: {
2231 assert(type->base_type == GLSL_TYPE_SAMPLER);
2232 static const char *const names[4] = {
2233 "sampler1D", "sampler1DArray",
2234 "sampler1DShadow", "sampler1DArrayShadow"
2235 };
2236 return names[type_idx];
2237 }
2238 case GLSL_SAMPLER_DIM_2D: {
2239 static const char *const names[8] = {
2240 "sampler2D", "sampler2DArray",
2241 "sampler2DShadow", "sampler2DArrayShadow",
2242 "image2D", "image2DArray", NULL, NULL
2243 };
2244 return names[offset + type_idx];
2245 }
2246 case GLSL_SAMPLER_DIM_3D: {
2247 static const char *const names[8] = {
2248 "sampler3D", NULL, NULL, NULL,
2249 "image3D", NULL, NULL, NULL
2250 };
2251 return names[offset + type_idx];
2252 }
2253 case GLSL_SAMPLER_DIM_CUBE: {
2254 static const char *const names[8] = {
2255 "samplerCube", "samplerCubeArray",
2256 "samplerCubeShadow", "samplerCubeArrayShadow",
2257 "imageCube", NULL, NULL, NULL
2258 };
2259 return names[offset + type_idx];
2260 }
2261 case GLSL_SAMPLER_DIM_MS: {
2262 assert(type->base_type == GLSL_TYPE_SAMPLER);
2263 static const char *const names[4] = {
2264 "sampler2DMS", "sampler2DMSArray", NULL, NULL
2265 };
2266 return names[type_idx];
2267 }
2268 case GLSL_SAMPLER_DIM_RECT: {
2269 assert(type->base_type == GLSL_TYPE_SAMPLER);
2270 static const char *const names[4] = {
2271 "samplerRect", NULL, "samplerRectShadow", NULL
2272 };
2273 return names[type_idx];
2274 }
2275 case GLSL_SAMPLER_DIM_BUF: {
2276 assert(type->base_type == GLSL_TYPE_SAMPLER);
2277 static const char *const names[4] = {
2278 "samplerBuffer", NULL, NULL, NULL
2279 };
2280 return names[type_idx];
2281 }
2282 case GLSL_SAMPLER_DIM_EXTERNAL: {
2283 assert(type->base_type == GLSL_TYPE_SAMPLER);
2284 static const char *const names[4] = {
2285 "samplerExternalOES", NULL, NULL, NULL
2286 };
2287 return names[type_idx];
2288 }
2289 default:
2290 unreachable("Unsupported sampler/image dimensionality");
2291 } /* sampler/image float dimensionality */
2292 break;
2293 case GLSL_TYPE_INT:
2294 switch (type->sampler_dimensionality) {
2295 case GLSL_SAMPLER_DIM_1D: {
2296 assert(type->base_type == GLSL_TYPE_SAMPLER);
2297 static const char *const names[4] = {
2298 "isampler1D", "isampler1DArray", NULL, NULL
2299 };
2300 return names[type_idx];
2301 }
2302 case GLSL_SAMPLER_DIM_2D: {
2303 static const char *const names[8] = {
2304 "isampler2D", "isampler2DArray", NULL, NULL,
2305 "iimage2D", "iimage2DArray", NULL, NULL
2306 };
2307 return names[offset + type_idx];
2308 }
2309 case GLSL_SAMPLER_DIM_3D: {
2310 static const char *const names[8] = {
2311 "isampler3D", NULL, NULL, NULL,
2312 "iimage3D", NULL, NULL, NULL
2313 };
2314 return names[offset + type_idx];
2315 }
2316 case GLSL_SAMPLER_DIM_CUBE: {
2317 static const char *const names[8] = {
2318 "isamplerCube", "isamplerCubeArray", NULL, NULL,
2319 "iimageCube", NULL, NULL, NULL
2320 };
2321 return names[offset + type_idx];
2322 }
2323 case GLSL_SAMPLER_DIM_MS: {
2324 assert(type->base_type == GLSL_TYPE_SAMPLER);
2325 static const char *const names[4] = {
2326 "isampler2DMS", "isampler2DMSArray", NULL, NULL
2327 };
2328 return names[type_idx];
2329 }
2330 case GLSL_SAMPLER_DIM_RECT: {
2331 assert(type->base_type == GLSL_TYPE_SAMPLER);
2332 static const char *const names[4] = {
2333 "isamplerRect", NULL, "isamplerRectShadow", NULL
2334 };
2335 return names[type_idx];
2336 }
2337 case GLSL_SAMPLER_DIM_BUF: {
2338 assert(type->base_type == GLSL_TYPE_SAMPLER);
2339 static const char *const names[4] = {
2340 "isamplerBuffer", NULL, NULL, NULL
2341 };
2342 return names[type_idx];
2343 }
2344 default:
2345 unreachable("Unsupported isampler/iimage dimensionality");
2346 } /* sampler/image int dimensionality */
2347 break;
2348 case GLSL_TYPE_UINT:
2349 switch (type->sampler_dimensionality) {
2350 case GLSL_SAMPLER_DIM_1D: {
2351 assert(type->base_type == GLSL_TYPE_SAMPLER);
2352 static const char *const names[4] = {
2353 "usampler1D", "usampler1DArray", NULL, NULL
2354 };
2355 return names[type_idx];
2356 }
2357 case GLSL_SAMPLER_DIM_2D: {
2358 static const char *const names[8] = {
2359 "usampler2D", "usampler2DArray", NULL, NULL,
2360 "uimage2D", "uimage2DArray", NULL, NULL
2361 };
2362 return names[offset + type_idx];
2363 }
2364 case GLSL_SAMPLER_DIM_3D: {
2365 static const char *const names[8] = {
2366 "usampler3D", NULL, NULL, NULL,
2367 "uimage3D", NULL, NULL, NULL
2368 };
2369 return names[offset + type_idx];
2370 }
2371 case GLSL_SAMPLER_DIM_CUBE: {
2372 static const char *const names[8] = {
2373 "usamplerCube", "usamplerCubeArray", NULL, NULL,
2374 "uimageCube", NULL, NULL, NULL
2375 };
2376 return names[offset + type_idx];
2377 }
2378 case GLSL_SAMPLER_DIM_MS: {
2379 assert(type->base_type == GLSL_TYPE_SAMPLER);
2380 static const char *const names[4] = {
2381 "usampler2DMS", "usampler2DMSArray", NULL, NULL
2382 };
2383 return names[type_idx];
2384 }
2385 case GLSL_SAMPLER_DIM_RECT: {
2386 assert(type->base_type == GLSL_TYPE_SAMPLER);
2387 static const char *const names[4] = {
2388 "usamplerRect", NULL, "usamplerRectShadow", NULL
2389 };
2390 return names[type_idx];
2391 }
2392 case GLSL_SAMPLER_DIM_BUF: {
2393 assert(type->base_type == GLSL_TYPE_SAMPLER);
2394 static const char *const names[4] = {
2395 "usamplerBuffer", NULL, NULL, NULL
2396 };
2397 return names[type_idx];
2398 }
2399 default:
2400 unreachable("Unsupported usampler/uimage dimensionality");
2401 } /* sampler/image uint dimensionality */
2402 break;
2403 default:
2404 unreachable("Unsupported sampler/image type");
2405 } /* sampler/image type */
2406 break;
2407 } /* GLSL_TYPE_SAMPLER/GLSL_TYPE_IMAGE */
2408 break;
2409 default:
2410 unreachable("Unsupported type");
2411 } /* base type */
2412 }
2413
2414 static unsigned
2415 select_gles_precision(unsigned qual_precision,
2416 const glsl_type *type,
2417 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
2418 {
2419 /* Precision qualifiers do not have any meaning in Desktop GLSL.
2420 * In GLES we take the precision from the type qualifier if present,
2421 * otherwise, if the type of the variable allows precision qualifiers at
2422 * all, we look for the default precision qualifier for that type in the
2423 * current scope.
2424 */
2425 assert(state->es_shader);
2426
2427 unsigned precision = GLSL_PRECISION_NONE;
2428 if (qual_precision) {
2429 precision = qual_precision;
2430 } else if (precision_qualifier_allowed(type)) {
2431 const char *type_name =
2432 get_type_name_for_precision_qualifier(type->without_array());
2433 assert(type_name != NULL);
2434
2435 precision =
2436 state->symbols->get_default_precision_qualifier(type_name);
2437 if (precision == ast_precision_none) {
2438 _mesa_glsl_error(loc, state,
2439 "No precision specified in this scope for type `%s'",
2440 type->name);
2441 }
2442 }
2443 return precision;
2444 }
2445
2446 const glsl_type *
2447 ast_fully_specified_type::glsl_type(const char **name,
2448 struct _mesa_glsl_parse_state *state) const
2449 {
2450 return this->specifier->glsl_type(name, state);
2451 }
2452
2453 /**
2454 * Determine whether a toplevel variable declaration declares a varying. This
2455 * function operates by examining the variable's mode and the shader target,
2456 * so it correctly identifies linkage variables regardless of whether they are
2457 * declared using the deprecated "varying" syntax or the new "in/out" syntax.
2458 *
2459 * Passing a non-toplevel variable declaration (e.g. a function parameter) to
2460 * this function will produce undefined results.
2461 */
2462 static bool
2463 is_varying_var(ir_variable *var, gl_shader_stage target)
2464 {
2465 switch (target) {
2466 case MESA_SHADER_VERTEX:
2467 return var->data.mode == ir_var_shader_out;
2468 case MESA_SHADER_FRAGMENT:
2469 return var->data.mode == ir_var_shader_in;
2470 default:
2471 return var->data.mode == ir_var_shader_out || var->data.mode == ir_var_shader_in;
2472 }
2473 }
2474
2475
2476 /**
2477 * Matrix layout qualifiers are only allowed on certain types
2478 */
2479 static void
2480 validate_matrix_layout_for_type(struct _mesa_glsl_parse_state *state,
2481 YYLTYPE *loc,
2482 const glsl_type *type,
2483 ir_variable *var)
2484 {
2485 if (var && !var->is_in_buffer_block()) {
2486 /* Layout qualifiers may only apply to interface blocks and fields in
2487 * them.
2488 */
2489 _mesa_glsl_error(loc, state,
2490 "uniform block layout qualifiers row_major and "
2491 "column_major may not be applied to variables "
2492 "outside of uniform blocks");
2493 } else if (!type->without_array()->is_matrix()) {
2494 /* The OpenGL ES 3.0 conformance tests did not originally allow
2495 * matrix layout qualifiers on non-matrices. However, the OpenGL
2496 * 4.4 and OpenGL ES 3.0 (revision TBD) specifications were
2497 * amended to specifically allow these layouts on all types. Emit
2498 * a warning so that people know their code may not be portable.
2499 */
2500 _mesa_glsl_warning(loc, state,
2501 "uniform block layout qualifiers row_major and "
2502 "column_major applied to non-matrix types may "
2503 "be rejected by older compilers");
2504 }
2505 }
2506
2507 static bool
2508 process_qualifier_constant(struct _mesa_glsl_parse_state *state,
2509 YYLTYPE *loc,
2510 const char *qual_indentifier,
2511 int qual_value,
2512 unsigned *value)
2513 {
2514 if (qual_value < 0) {
2515 _mesa_glsl_error(loc, state, "%s layout qualifier is invalid (%d < 0)",
2516 qual_indentifier, qual_value);
2517 return false;
2518 }
2519
2520 *value = (unsigned) qual_value;
2521 return true;
2522 }
2523
2524 static bool
2525 validate_stream_qualifier(YYLTYPE *loc, struct _mesa_glsl_parse_state *state,
2526 unsigned stream)
2527 {
2528 if (stream >= state->ctx->Const.MaxVertexStreams) {
2529 _mesa_glsl_error(loc, state,
2530 "invalid stream specified %d is larger than "
2531 "MAX_VERTEX_STREAMS - 1 (%d).",
2532 stream, state->ctx->Const.MaxVertexStreams - 1);
2533 return false;
2534 }
2535
2536 return true;
2537 }
2538
2539 static void
2540 apply_explicit_binding(struct _mesa_glsl_parse_state *state,
2541 YYLTYPE *loc,
2542 ir_variable *var,
2543 const glsl_type *type,
2544 const ast_type_qualifier *qual)
2545 {
2546 if (!qual->flags.q.uniform && !qual->flags.q.buffer) {
2547 _mesa_glsl_error(loc, state,
2548 "the \"binding\" qualifier only applies to uniforms and "
2549 "shader storage buffer objects");
2550 return;
2551 }
2552
2553 unsigned qual_binding;
2554 if (!process_qualifier_constant(state, loc, "binding", qual->binding,
2555 &qual_binding)) {
2556 return;
2557 }
2558
2559 const struct gl_context *const ctx = state->ctx;
2560 unsigned elements = type->is_array() ? type->arrays_of_arrays_size() : 1;
2561 unsigned max_index = qual_binding + elements - 1;
2562 const glsl_type *base_type = type->without_array();
2563
2564 if (base_type->is_interface()) {
2565 /* UBOs. From page 60 of the GLSL 4.20 specification:
2566 * "If the binding point for any uniform block instance is less than zero,
2567 * or greater than or equal to the implementation-dependent maximum
2568 * number of uniform buffer bindings, a compilation error will occur.
2569 * When the binding identifier is used with a uniform block instanced as
2570 * an array of size N, all elements of the array from binding through
2571 * binding + N – 1 must be within this range."
2572 *
2573 * The implementation-dependent maximum is GL_MAX_UNIFORM_BUFFER_BINDINGS.
2574 */
2575 if (qual->flags.q.uniform &&
2576 max_index >= ctx->Const.MaxUniformBufferBindings) {
2577 _mesa_glsl_error(loc, state, "layout(binding = %u) for %d UBOs exceeds "
2578 "the maximum number of UBO binding points (%d)",
2579 qual_binding, elements,
2580 ctx->Const.MaxUniformBufferBindings);
2581 return;
2582 }
2583
2584 /* SSBOs. From page 67 of the GLSL 4.30 specification:
2585 * "If the binding point for any uniform or shader storage block instance
2586 * is less than zero, or greater than or equal to the
2587 * implementation-dependent maximum number of uniform buffer bindings, a
2588 * compile-time error will occur. When the binding identifier is used
2589 * with a uniform or shader storage block instanced as an array of size
2590 * N, all elements of the array from binding through binding + N – 1 must
2591 * be within this range."
2592 */
2593 if (qual->flags.q.buffer &&
2594 max_index >= ctx->Const.MaxShaderStorageBufferBindings) {
2595 _mesa_glsl_error(loc, state, "layout(binding = %u) for %d SSBOs exceeds "
2596 "the maximum number of SSBO binding points (%d)",
2597 qual_binding, elements,
2598 ctx->Const.MaxShaderStorageBufferBindings);
2599 return;
2600 }
2601 } else if (base_type->is_sampler()) {
2602 /* Samplers. From page 63 of the GLSL 4.20 specification:
2603 * "If the binding is less than zero, or greater than or equal to the
2604 * implementation-dependent maximum supported number of units, a
2605 * compilation error will occur. When the binding identifier is used
2606 * with an array of size N, all elements of the array from binding
2607 * through binding + N - 1 must be within this range."
2608 */
2609 unsigned limit = ctx->Const.MaxCombinedTextureImageUnits;
2610
2611 if (max_index >= limit) {
2612 _mesa_glsl_error(loc, state, "layout(binding = %d) for %d samplers "
2613 "exceeds the maximum number of texture image units "
2614 "(%u)", qual_binding, elements, limit);
2615
2616 return;
2617 }
2618 } else if (base_type->contains_atomic()) {
2619 assert(ctx->Const.MaxAtomicBufferBindings <= MAX_COMBINED_ATOMIC_BUFFERS);
2620 if (qual_binding >= ctx->Const.MaxAtomicBufferBindings) {
2621 _mesa_glsl_error(loc, state, "layout(binding = %d) exceeds the "
2622 " maximum number of atomic counter buffer bindings"
2623 "(%u)", qual_binding,
2624 ctx->Const.MaxAtomicBufferBindings);
2625
2626 return;
2627 }
2628 } else if (state->is_version(420, 310) && base_type->is_image()) {
2629 assert(ctx->Const.MaxImageUnits <= MAX_IMAGE_UNITS);
2630 if (max_index >= ctx->Const.MaxImageUnits) {
2631 _mesa_glsl_error(loc, state, "Image binding %d exceeds the "
2632 " maximum number of image units (%d)", max_index,
2633 ctx->Const.MaxImageUnits);
2634 return;
2635 }
2636
2637 } else {
2638 _mesa_glsl_error(loc, state,
2639 "the \"binding\" qualifier only applies to uniform "
2640 "blocks, opaque variables, or arrays thereof");
2641 return;
2642 }
2643
2644 var->data.explicit_binding = true;
2645 var->data.binding = qual_binding;
2646
2647 return;
2648 }
2649
2650
2651 static glsl_interp_qualifier
2652 interpret_interpolation_qualifier(const struct ast_type_qualifier *qual,
2653 ir_variable_mode mode,
2654 struct _mesa_glsl_parse_state *state,
2655 YYLTYPE *loc)
2656 {
2657 glsl_interp_qualifier interpolation;
2658 if (qual->flags.q.flat)
2659 interpolation = INTERP_QUALIFIER_FLAT;
2660 else if (qual->flags.q.noperspective)
2661 interpolation = INTERP_QUALIFIER_NOPERSPECTIVE;
2662 else if (qual->flags.q.smooth)
2663 interpolation = INTERP_QUALIFIER_SMOOTH;
2664 else
2665 interpolation = INTERP_QUALIFIER_NONE;
2666
2667 if (interpolation != INTERP_QUALIFIER_NONE) {
2668 if (mode != ir_var_shader_in && mode != ir_var_shader_out) {
2669 _mesa_glsl_error(loc, state,
2670 "interpolation qualifier `%s' can only be applied to "
2671 "shader inputs or outputs.",
2672 interpolation_string(interpolation));
2673
2674 }
2675
2676 if ((state->stage == MESA_SHADER_VERTEX && mode == ir_var_shader_in) ||
2677 (state->stage == MESA_SHADER_FRAGMENT && mode == ir_var_shader_out)) {
2678 _mesa_glsl_error(loc, state,
2679 "interpolation qualifier `%s' cannot be applied to "
2680 "vertex shader inputs or fragment shader outputs",
2681 interpolation_string(interpolation));
2682 }
2683 }
2684
2685 return interpolation;
2686 }
2687
2688
2689 static void
2690 apply_explicit_location(const struct ast_type_qualifier *qual,
2691 ir_variable *var,
2692 struct _mesa_glsl_parse_state *state,
2693 YYLTYPE *loc)
2694 {
2695 bool fail = false;
2696
2697 unsigned qual_location;
2698 if (!process_qualifier_constant(state, loc, "location", qual->location,
2699 &qual_location)) {
2700 return;
2701 }
2702
2703 /* Checks for GL_ARB_explicit_uniform_location. */
2704 if (qual->flags.q.uniform) {
2705 if (!state->check_explicit_uniform_location_allowed(loc, var))
2706 return;
2707
2708 const struct gl_context *const ctx = state->ctx;
2709 unsigned max_loc = qual_location + var->type->uniform_locations() - 1;
2710
2711 if (max_loc >= ctx->Const.MaxUserAssignableUniformLocations) {
2712 _mesa_glsl_error(loc, state, "location(s) consumed by uniform %s "
2713 ">= MAX_UNIFORM_LOCATIONS (%u)", var->name,
2714 ctx->Const.MaxUserAssignableUniformLocations);
2715 return;
2716 }
2717
2718 var->data.explicit_location = true;
2719 var->data.location = qual_location;
2720 return;
2721 }
2722
2723 /* Between GL_ARB_explicit_attrib_location an
2724 * GL_ARB_separate_shader_objects, the inputs and outputs of any shader
2725 * stage can be assigned explicit locations. The checking here associates
2726 * the correct extension with the correct stage's input / output:
2727 *
2728 * input output
2729 * ----- ------
2730 * vertex explicit_loc sso
2731 * tess control sso sso
2732 * tess eval sso sso
2733 * geometry sso sso
2734 * fragment sso explicit_loc
2735 */
2736 switch (state->stage) {
2737 case MESA_SHADER_VERTEX:
2738 if (var->data.mode == ir_var_shader_in) {
2739 if (!state->check_explicit_attrib_location_allowed(loc, var))
2740 return;
2741
2742 break;
2743 }
2744
2745 if (var->data.mode == ir_var_shader_out) {
2746 if (!state->check_separate_shader_objects_allowed(loc, var))
2747 return;
2748
2749 break;
2750 }
2751
2752 fail = true;
2753 break;
2754
2755 case MESA_SHADER_TESS_CTRL:
2756 case MESA_SHADER_TESS_EVAL:
2757 case MESA_SHADER_GEOMETRY:
2758 if (var->data.mode == ir_var_shader_in || var->data.mode == ir_var_shader_out) {
2759 if (!state->check_separate_shader_objects_allowed(loc, var))
2760 return;
2761
2762 break;
2763 }
2764
2765 fail = true;
2766 break;
2767
2768 case MESA_SHADER_FRAGMENT:
2769 if (var->data.mode == ir_var_shader_in) {
2770 if (!state->check_separate_shader_objects_allowed(loc, var))
2771 return;
2772
2773 break;
2774 }
2775
2776 if (var->data.mode == ir_var_shader_out) {
2777 if (!state->check_explicit_attrib_location_allowed(loc, var))
2778 return;
2779
2780 break;
2781 }
2782
2783 fail = true;
2784 break;
2785
2786 case MESA_SHADER_COMPUTE:
2787 _mesa_glsl_error(loc, state,
2788 "compute shader variables cannot be given "
2789 "explicit locations");
2790 return;
2791 };
2792
2793 if (fail) {
2794 _mesa_glsl_error(loc, state,
2795 "%s cannot be given an explicit location in %s shader",
2796 mode_string(var),
2797 _mesa_shader_stage_to_string(state->stage));
2798 } else {
2799 var->data.explicit_location = true;
2800
2801 switch (state->stage) {
2802 case MESA_SHADER_VERTEX:
2803 var->data.location = (var->data.mode == ir_var_shader_in)
2804 ? (qual_location + VERT_ATTRIB_GENERIC0)
2805 : (qual_location + VARYING_SLOT_VAR0);
2806 break;
2807
2808 case MESA_SHADER_TESS_CTRL:
2809 case MESA_SHADER_TESS_EVAL:
2810 case MESA_SHADER_GEOMETRY:
2811 if (var->data.patch)
2812 var->data.location = qual_location + VARYING_SLOT_PATCH0;
2813 else
2814 var->data.location = qual_location + VARYING_SLOT_VAR0;
2815 break;
2816
2817 case MESA_SHADER_FRAGMENT:
2818 var->data.location = (var->data.mode == ir_var_shader_out)
2819 ? (qual_location + FRAG_RESULT_DATA0)
2820 : (qual_location + VARYING_SLOT_VAR0);
2821 break;
2822 case MESA_SHADER_COMPUTE:
2823 assert(!"Unexpected shader type");
2824 break;
2825 }
2826
2827 unsigned qual_index;
2828 if (qual->flags.q.explicit_index &&
2829 process_qualifier_constant(state, loc, "index", qual->index,
2830 &qual_index)) {
2831 /* From the GLSL 4.30 specification, section 4.4.2 (Output
2832 * Layout Qualifiers):
2833 *
2834 * "It is also a compile-time error if a fragment shader
2835 * sets a layout index to less than 0 or greater than 1."
2836 *
2837 * Older specifications don't mandate a behavior; we take
2838 * this as a clarification and always generate the error.
2839 */
2840 if (qual_index > 1) {
2841 _mesa_glsl_error(loc, state,
2842 "explicit index may only be 0 or 1");
2843 } else {
2844 var->data.explicit_index = true;
2845 var->data.index = qual_index;
2846 }
2847 }
2848 }
2849 }
2850
2851 static void
2852 apply_image_qualifier_to_variable(const struct ast_type_qualifier *qual,
2853 ir_variable *var,
2854 struct _mesa_glsl_parse_state *state,
2855 YYLTYPE *loc)
2856 {
2857 const glsl_type *base_type = var->type->without_array();
2858
2859 if (base_type->is_image()) {
2860 if (var->data.mode != ir_var_uniform &&
2861 var->data.mode != ir_var_function_in) {
2862 _mesa_glsl_error(loc, state, "image variables may only be declared as "
2863 "function parameters or uniform-qualified "
2864 "global variables");
2865 }
2866
2867 var->data.image_read_only |= qual->flags.q.read_only;
2868 var->data.image_write_only |= qual->flags.q.write_only;
2869 var->data.image_coherent |= qual->flags.q.coherent;
2870 var->data.image_volatile |= qual->flags.q._volatile;
2871 var->data.image_restrict |= qual->flags.q.restrict_flag;
2872 var->data.read_only = true;
2873
2874 if (qual->flags.q.explicit_image_format) {
2875 if (var->data.mode == ir_var_function_in) {
2876 _mesa_glsl_error(loc, state, "format qualifiers cannot be "
2877 "used on image function parameters");
2878 }
2879
2880 if (qual->image_base_type != base_type->sampler_type) {
2881 _mesa_glsl_error(loc, state, "format qualifier doesn't match the "
2882 "base data type of the image");
2883 }
2884
2885 var->data.image_format = qual->image_format;
2886 } else {
2887 if (var->data.mode == ir_var_uniform) {
2888 if (state->es_shader) {
2889 _mesa_glsl_error(loc, state, "all image uniforms "
2890 "must have a format layout qualifier");
2891
2892 } else if (!qual->flags.q.write_only) {
2893 _mesa_glsl_error(loc, state, "image uniforms not qualified with "
2894 "`writeonly' must have a format layout "
2895 "qualifier");
2896 }
2897 }
2898
2899 var->data.image_format = GL_NONE;
2900 }
2901
2902 /* From page 70 of the GLSL ES 3.1 specification:
2903 *
2904 * "Except for image variables qualified with the format qualifiers
2905 * r32f, r32i, and r32ui, image variables must specify either memory
2906 * qualifier readonly or the memory qualifier writeonly."
2907 */
2908 if (state->es_shader &&
2909 var->data.image_format != GL_R32F &&
2910 var->data.image_format != GL_R32I &&
2911 var->data.image_format != GL_R32UI &&
2912 !var->data.image_read_only &&
2913 !var->data.image_write_only) {
2914 _mesa_glsl_error(loc, state, "image variables of format other than "
2915 "r32f, r32i or r32ui must be qualified `readonly' or "
2916 "`writeonly'");
2917 }
2918
2919 } else if (qual->flags.q.read_only ||
2920 qual->flags.q.write_only ||
2921 qual->flags.q.coherent ||
2922 qual->flags.q._volatile ||
2923 qual->flags.q.restrict_flag ||
2924 qual->flags.q.explicit_image_format) {
2925 _mesa_glsl_error(loc, state, "memory qualifiers may only be applied to "
2926 "images");
2927 }
2928 }
2929
2930 static inline const char*
2931 get_layout_qualifier_string(bool origin_upper_left, bool pixel_center_integer)
2932 {
2933 if (origin_upper_left && pixel_center_integer)
2934 return "origin_upper_left, pixel_center_integer";
2935 else if (origin_upper_left)
2936 return "origin_upper_left";
2937 else if (pixel_center_integer)
2938 return "pixel_center_integer";
2939 else
2940 return " ";
2941 }
2942
2943 static inline bool
2944 is_conflicting_fragcoord_redeclaration(struct _mesa_glsl_parse_state *state,
2945 const struct ast_type_qualifier *qual)
2946 {
2947 /* If gl_FragCoord was previously declared, and the qualifiers were
2948 * different in any way, return true.
2949 */
2950 if (state->fs_redeclares_gl_fragcoord) {
2951 return (state->fs_pixel_center_integer != qual->flags.q.pixel_center_integer
2952 || state->fs_origin_upper_left != qual->flags.q.origin_upper_left);
2953 }
2954
2955 return false;
2956 }
2957
2958 static inline void
2959 validate_array_dimensions(const glsl_type *t,
2960 struct _mesa_glsl_parse_state *state,
2961 YYLTYPE *loc) {
2962 if (t->is_array()) {
2963 t = t->fields.array;
2964 while (t->is_array()) {
2965 if (t->is_unsized_array()) {
2966 _mesa_glsl_error(loc, state,
2967 "only the outermost array dimension can "
2968 "be unsized",
2969 t->name);
2970 break;
2971 }
2972 t = t->fields.array;
2973 }
2974 }
2975 }
2976
2977 static void
2978 apply_layout_qualifier_to_variable(const struct ast_type_qualifier *qual,
2979 ir_variable *var,
2980 struct _mesa_glsl_parse_state *state,
2981 YYLTYPE *loc)
2982 {
2983 if (var->name != NULL && strcmp(var->name, "gl_FragCoord") == 0) {
2984
2985 /* Section 4.3.8.1, page 39 of GLSL 1.50 spec says:
2986 *
2987 * "Within any shader, the first redeclarations of gl_FragCoord
2988 * must appear before any use of gl_FragCoord."
2989 *
2990 * Generate a compiler error if above condition is not met by the
2991 * fragment shader.
2992 */
2993 ir_variable *earlier = state->symbols->get_variable("gl_FragCoord");
2994 if (earlier != NULL &&
2995 earlier->data.used &&
2996 !state->fs_redeclares_gl_fragcoord) {
2997 _mesa_glsl_error(loc, state,
2998 "gl_FragCoord used before its first redeclaration "
2999 "in fragment shader");
3000 }
3001
3002 /* Make sure all gl_FragCoord redeclarations specify the same layout
3003 * qualifiers.
3004 */
3005 if (is_conflicting_fragcoord_redeclaration(state, qual)) {
3006 const char *const qual_string =
3007 get_layout_qualifier_string(qual->flags.q.origin_upper_left,
3008 qual->flags.q.pixel_center_integer);
3009
3010 const char *const state_string =
3011 get_layout_qualifier_string(state->fs_origin_upper_left,
3012 state->fs_pixel_center_integer);
3013
3014 _mesa_glsl_error(loc, state,
3015 "gl_FragCoord redeclared with different layout "
3016 "qualifiers (%s) and (%s) ",
3017 state_string,
3018 qual_string);
3019 }
3020 state->fs_origin_upper_left = qual->flags.q.origin_upper_left;
3021 state->fs_pixel_center_integer = qual->flags.q.pixel_center_integer;
3022 state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers =
3023 !qual->flags.q.origin_upper_left && !qual->flags.q.pixel_center_integer;
3024 state->fs_redeclares_gl_fragcoord =
3025 state->fs_origin_upper_left ||
3026 state->fs_pixel_center_integer ||
3027 state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers;
3028 }
3029
3030 var->data.pixel_center_integer = qual->flags.q.pixel_center_integer;
3031 var->data.origin_upper_left = qual->flags.q.origin_upper_left;
3032 if ((qual->flags.q.origin_upper_left || qual->flags.q.pixel_center_integer)
3033 && (strcmp(var->name, "gl_FragCoord") != 0)) {
3034 const char *const qual_string = (qual->flags.q.origin_upper_left)
3035 ? "origin_upper_left" : "pixel_center_integer";
3036
3037 _mesa_glsl_error(loc, state,
3038 "layout qualifier `%s' can only be applied to "
3039 "fragment shader input `gl_FragCoord'",
3040 qual_string);
3041 }
3042
3043 if (qual->flags.q.explicit_location) {
3044 apply_explicit_location(qual, var, state, loc);
3045 } else if (qual->flags.q.explicit_index) {
3046 _mesa_glsl_error(loc, state, "explicit index requires explicit location");
3047 }
3048
3049 if (qual->flags.q.explicit_binding) {
3050 apply_explicit_binding(state, loc, var, var->type, qual);
3051 }
3052
3053 if (state->stage == MESA_SHADER_GEOMETRY &&
3054 qual->flags.q.out && qual->flags.q.stream) {
3055 unsigned qual_stream;
3056 if (process_qualifier_constant(state, loc, "stream", qual->stream,
3057 &qual_stream) &&
3058 validate_stream_qualifier(loc, state, qual_stream)) {
3059 var->data.stream = qual_stream;
3060 }
3061 }
3062
3063 if (var->type->contains_atomic()) {
3064 if (var->data.mode == ir_var_uniform) {
3065 if (var->data.explicit_binding) {
3066 unsigned *offset =
3067 &state->atomic_counter_offsets[var->data.binding];
3068
3069 if (*offset % ATOMIC_COUNTER_SIZE)
3070 _mesa_glsl_error(loc, state,
3071 "misaligned atomic counter offset");
3072
3073 var->data.atomic.offset = *offset;
3074 *offset += var->type->atomic_size();
3075
3076 } else {
3077 _mesa_glsl_error(loc, state,
3078 "atomic counters require explicit binding point");
3079 }
3080 } else if (var->data.mode != ir_var_function_in) {
3081 _mesa_glsl_error(loc, state, "atomic counters may only be declared as "
3082 "function parameters or uniform-qualified "
3083 "global variables");
3084 }
3085 }
3086
3087 /* Is the 'layout' keyword used with parameters that allow relaxed checking.
3088 * Many implementations of GL_ARB_fragment_coord_conventions_enable and some
3089 * implementations (only Mesa?) GL_ARB_explicit_attrib_location_enable
3090 * allowed the layout qualifier to be used with 'varying' and 'attribute'.
3091 * These extensions and all following extensions that add the 'layout'
3092 * keyword have been modified to require the use of 'in' or 'out'.
3093 *
3094 * The following extension do not allow the deprecated keywords:
3095 *
3096 * GL_AMD_conservative_depth
3097 * GL_ARB_conservative_depth
3098 * GL_ARB_gpu_shader5
3099 * GL_ARB_separate_shader_objects
3100 * GL_ARB_tessellation_shader
3101 * GL_ARB_transform_feedback3
3102 * GL_ARB_uniform_buffer_object
3103 *
3104 * It is unknown whether GL_EXT_shader_image_load_store or GL_NV_gpu_shader5
3105 * allow layout with the deprecated keywords.
3106 */
3107 const bool relaxed_layout_qualifier_checking =
3108 state->ARB_fragment_coord_conventions_enable;
3109
3110 const bool uses_deprecated_qualifier = qual->flags.q.attribute
3111 || qual->flags.q.varying;
3112 if (qual->has_layout() && uses_deprecated_qualifier) {
3113 if (relaxed_layout_qualifier_checking) {
3114 _mesa_glsl_warning(loc, state,
3115 "`layout' qualifier may not be used with "
3116 "`attribute' or `varying'");
3117 } else {
3118 _mesa_glsl_error(loc, state,
3119 "`layout' qualifier may not be used with "
3120 "`attribute' or `varying'");
3121 }
3122 }
3123
3124 /* Layout qualifiers for gl_FragDepth, which are enabled by extension
3125 * AMD_conservative_depth.
3126 */
3127 int depth_layout_count = qual->flags.q.depth_any
3128 + qual->flags.q.depth_greater
3129 + qual->flags.q.depth_less
3130 + qual->flags.q.depth_unchanged;
3131 if (depth_layout_count > 0
3132 && !state->AMD_conservative_depth_enable
3133 && !state->ARB_conservative_depth_enable) {
3134 _mesa_glsl_error(loc, state,
3135 "extension GL_AMD_conservative_depth or "
3136 "GL_ARB_conservative_depth must be enabled "
3137 "to use depth layout qualifiers");
3138 } else if (depth_layout_count > 0
3139 && strcmp(var->name, "gl_FragDepth") != 0) {
3140 _mesa_glsl_error(loc, state,
3141 "depth layout qualifiers can be applied only to "
3142 "gl_FragDepth");
3143 } else if (depth_layout_count > 1
3144 && strcmp(var->name, "gl_FragDepth") == 0) {
3145 _mesa_glsl_error(loc, state,
3146 "at most one depth layout qualifier can be applied to "
3147 "gl_FragDepth");
3148 }
3149 if (qual->flags.q.depth_any)
3150 var->data.depth_layout = ir_depth_layout_any;
3151 else if (qual->flags.q.depth_greater)
3152 var->data.depth_layout = ir_depth_layout_greater;
3153 else if (qual->flags.q.depth_less)
3154 var->data.depth_layout = ir_depth_layout_less;
3155 else if (qual->flags.q.depth_unchanged)
3156 var->data.depth_layout = ir_depth_layout_unchanged;
3157 else
3158 var->data.depth_layout = ir_depth_layout_none;
3159
3160 if (qual->flags.q.std140 ||
3161 qual->flags.q.std430 ||
3162 qual->flags.q.packed ||
3163 qual->flags.q.shared) {
3164 _mesa_glsl_error(loc, state,
3165 "uniform and shader storage block layout qualifiers "
3166 "std140, std430, packed, and shared can only be "
3167 "applied to uniform or shader storage blocks, not "
3168 "members");
3169 }
3170
3171 if (qual->flags.q.row_major || qual->flags.q.column_major) {
3172 validate_matrix_layout_for_type(state, loc, var->type, var);
3173 }
3174
3175 /* From section 4.4.1.3 of the GLSL 4.50 specification (Fragment Shader
3176 * Inputs):
3177 *
3178 * "Fragment shaders also allow the following layout qualifier on in only
3179 * (not with variable declarations)
3180 * layout-qualifier-id
3181 * early_fragment_tests
3182 * [...]"
3183 */
3184 if (qual->flags.q.early_fragment_tests) {
3185 _mesa_glsl_error(loc, state, "early_fragment_tests layout qualifier only "
3186 "valid in fragment shader input layout declaration.");
3187 }
3188 }
3189
3190 static void
3191 apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
3192 ir_variable *var,
3193 struct _mesa_glsl_parse_state *state,
3194 YYLTYPE *loc,
3195 bool is_parameter)
3196 {
3197 STATIC_ASSERT(sizeof(qual->flags.q) <= sizeof(qual->flags.i));
3198
3199 if (qual->flags.q.invariant) {
3200 if (var->data.used) {
3201 _mesa_glsl_error(loc, state,
3202 "variable `%s' may not be redeclared "
3203 "`invariant' after being used",
3204 var->name);
3205 } else {
3206 var->data.invariant = 1;
3207 }
3208 }
3209
3210 if (qual->flags.q.precise) {
3211 if (var->data.used) {
3212 _mesa_glsl_error(loc, state,
3213 "variable `%s' may not be redeclared "
3214 "`precise' after being used",
3215 var->name);
3216 } else {
3217 var->data.precise = 1;
3218 }
3219 }
3220
3221 if (qual->flags.q.subroutine && !qual->flags.q.uniform) {
3222 _mesa_glsl_error(loc, state,
3223 "`subroutine' may only be applied to uniforms, "
3224 "subroutine type declarations, or function definitions");
3225 }
3226
3227 if (qual->flags.q.constant || qual->flags.q.attribute
3228 || qual->flags.q.uniform
3229 || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
3230 var->data.read_only = 1;
3231
3232 if (qual->flags.q.centroid)
3233 var->data.centroid = 1;
3234
3235 if (qual->flags.q.sample)
3236 var->data.sample = 1;
3237
3238 /* Precision qualifiers do not hold any meaning in Desktop GLSL */
3239 if (state->es_shader) {
3240 var->data.precision =
3241 select_gles_precision(qual->precision, var->type, state, loc);
3242 }
3243
3244 if (qual->flags.q.patch)
3245 var->data.patch = 1;
3246
3247 if (qual->flags.q.attribute && state->stage != MESA_SHADER_VERTEX) {
3248 var->type = glsl_type::error_type;
3249 _mesa_glsl_error(loc, state,
3250 "`attribute' variables may not be declared in the "
3251 "%s shader",
3252 _mesa_shader_stage_to_string(state->stage));
3253 }
3254
3255 /* Disallow layout qualifiers which may only appear on layout declarations. */
3256 if (qual->flags.q.prim_type) {
3257 _mesa_glsl_error(loc, state,
3258 "Primitive type may only be specified on GS input or output "
3259 "layout declaration, not on variables.");
3260 }
3261
3262 /* Section 6.1.1 (Function Calling Conventions) of the GLSL 1.10 spec says:
3263 *
3264 * "However, the const qualifier cannot be used with out or inout."
3265 *
3266 * The same section of the GLSL 4.40 spec further clarifies this saying:
3267 *
3268 * "The const qualifier cannot be used with out or inout, or a
3269 * compile-time error results."
3270 */
3271 if (is_parameter && qual->flags.q.constant && qual->flags.q.out) {
3272 _mesa_glsl_error(loc, state,
3273 "`const' may not be applied to `out' or `inout' "
3274 "function parameters");
3275 }
3276
3277 /* If there is no qualifier that changes the mode of the variable, leave
3278 * the setting alone.
3279 */
3280 assert(var->data.mode != ir_var_temporary);
3281 if (qual->flags.q.in && qual->flags.q.out)
3282 var->data.mode = ir_var_function_inout;
3283 else if (qual->flags.q.in)
3284 var->data.mode = is_parameter ? ir_var_function_in : ir_var_shader_in;
3285 else if (qual->flags.q.attribute
3286 || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
3287 var->data.mode = ir_var_shader_in;
3288 else if (qual->flags.q.out)
3289 var->data.mode = is_parameter ? ir_var_function_out : ir_var_shader_out;
3290 else if (qual->flags.q.varying && (state->stage == MESA_SHADER_VERTEX))
3291 var->data.mode = ir_var_shader_out;
3292 else if (qual->flags.q.uniform)
3293 var->data.mode = ir_var_uniform;
3294 else if (qual->flags.q.buffer)
3295 var->data.mode = ir_var_shader_storage;
3296 else if (qual->flags.q.shared_storage)
3297 var->data.mode = ir_var_shader_shared;
3298
3299 if (!is_parameter && is_varying_var(var, state->stage)) {
3300 /* User-defined ins/outs are not permitted in compute shaders. */
3301 if (state->stage == MESA_SHADER_COMPUTE) {
3302 _mesa_glsl_error(loc, state,
3303 "user-defined input and output variables are not "
3304 "permitted in compute shaders");
3305 }
3306
3307 /* This variable is being used to link data between shader stages (in
3308 * pre-glsl-1.30 parlance, it's a "varying"). Check that it has a type
3309 * that is allowed for such purposes.
3310 *
3311 * From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
3312 *
3313 * "The varying qualifier can be used only with the data types
3314 * float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
3315 * these."
3316 *
3317 * This was relaxed in GLSL version 1.30 and GLSL ES version 3.00. From
3318 * page 31 (page 37 of the PDF) of the GLSL 1.30 spec:
3319 *
3320 * "Fragment inputs can only be signed and unsigned integers and
3321 * integer vectors, float, floating-point vectors, matrices, or
3322 * arrays of these. Structures cannot be input.
3323 *
3324 * Similar text exists in the section on vertex shader outputs.
3325 *
3326 * Similar text exists in the GLSL ES 3.00 spec, except that the GLSL ES
3327 * 3.00 spec allows structs as well. Varying structs are also allowed
3328 * in GLSL 1.50.
3329 */
3330 switch (var->type->get_scalar_type()->base_type) {
3331 case GLSL_TYPE_FLOAT:
3332 /* Ok in all GLSL versions */
3333 break;
3334 case GLSL_TYPE_UINT:
3335 case GLSL_TYPE_INT:
3336 if (state->is_version(130, 300))
3337 break;
3338 _mesa_glsl_error(loc, state,
3339 "varying variables must be of base type float in %s",
3340 state->get_version_string());
3341 break;
3342 case GLSL_TYPE_STRUCT:
3343 if (state->is_version(150, 300))
3344 break;
3345 _mesa_glsl_error(loc, state,
3346 "varying variables may not be of type struct");
3347 break;
3348 case GLSL_TYPE_DOUBLE:
3349 break;
3350 default:
3351 _mesa_glsl_error(loc, state, "illegal type for a varying variable");
3352 break;
3353 }
3354 }
3355
3356 if (state->all_invariant && (state->current_function == NULL)) {
3357 switch (state->stage) {
3358 case MESA_SHADER_VERTEX:
3359 if (var->data.mode == ir_var_shader_out)
3360 var->data.invariant = true;
3361 break;
3362 case MESA_SHADER_TESS_CTRL:
3363 case MESA_SHADER_TESS_EVAL:
3364 case MESA_SHADER_GEOMETRY:
3365 if ((var->data.mode == ir_var_shader_in)
3366 || (var->data.mode == ir_var_shader_out))
3367 var->data.invariant = true;
3368 break;
3369 case MESA_SHADER_FRAGMENT:
3370 if (var->data.mode == ir_var_shader_in)
3371 var->data.invariant = true;
3372 break;
3373 case MESA_SHADER_COMPUTE:
3374 /* Invariance isn't meaningful in compute shaders. */
3375 break;
3376 }
3377 }
3378
3379 var->data.interpolation =
3380 interpret_interpolation_qualifier(qual, (ir_variable_mode) var->data.mode,
3381 state, loc);
3382
3383 /* Does the declaration use the deprecated 'attribute' or 'varying'
3384 * keywords?
3385 */
3386 const bool uses_deprecated_qualifier = qual->flags.q.attribute
3387 || qual->flags.q.varying;
3388
3389
3390 /* Validate auxiliary storage qualifiers */
3391
3392 /* From section 4.3.4 of the GLSL 1.30 spec:
3393 * "It is an error to use centroid in in a vertex shader."
3394 *
3395 * From section 4.3.4 of the GLSL ES 3.00 spec:
3396 * "It is an error to use centroid in or interpolation qualifiers in
3397 * a vertex shader input."
3398 */
3399
3400 /* Section 4.3.6 of the GLSL 1.30 specification states:
3401 * "It is an error to use centroid out in a fragment shader."
3402 *
3403 * The GL_ARB_shading_language_420pack extension specification states:
3404 * "It is an error to use auxiliary storage qualifiers or interpolation
3405 * qualifiers on an output in a fragment shader."
3406 */
3407 if (qual->flags.q.sample && (!is_varying_var(var, state->stage) || uses_deprecated_qualifier)) {
3408 _mesa_glsl_error(loc, state,
3409 "sample qualifier may only be used on `in` or `out` "
3410 "variables between shader stages");
3411 }
3412 if (qual->flags.q.centroid && !is_varying_var(var, state->stage)) {
3413 _mesa_glsl_error(loc, state,
3414 "centroid qualifier may only be used with `in', "
3415 "`out' or `varying' variables between shader stages");
3416 }
3417
3418 if (qual->flags.q.shared_storage && state->stage != MESA_SHADER_COMPUTE) {
3419 _mesa_glsl_error(loc, state,
3420 "the shared storage qualifiers can only be used with "
3421 "compute shaders");
3422 }
3423
3424 apply_image_qualifier_to_variable(qual, var, state, loc);
3425 }
3426
3427 /**
3428 * Get the variable that is being redeclared by this declaration
3429 *
3430 * Semantic checks to verify the validity of the redeclaration are also
3431 * performed. If semantic checks fail, compilation error will be emitted via
3432 * \c _mesa_glsl_error, but a non-\c NULL pointer will still be returned.
3433 *
3434 * \returns
3435 * A pointer to an existing variable in the current scope if the declaration
3436 * is a redeclaration, \c NULL otherwise.
3437 */
3438 static ir_variable *
3439 get_variable_being_redeclared(ir_variable *var, YYLTYPE loc,
3440 struct _mesa_glsl_parse_state *state,
3441 bool allow_all_redeclarations)
3442 {
3443 /* Check if this declaration is actually a re-declaration, either to
3444 * resize an array or add qualifiers to an existing variable.
3445 *
3446 * This is allowed for variables in the current scope, or when at
3447 * global scope (for built-ins in the implicit outer scope).
3448 */
3449 ir_variable *earlier = state->symbols->get_variable(var->name);
3450 if (earlier == NULL ||
3451 (state->current_function != NULL &&
3452 !state->symbols->name_declared_this_scope(var->name))) {
3453 return NULL;
3454 }
3455
3456
3457 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
3458 *
3459 * "It is legal to declare an array without a size and then
3460 * later re-declare the same name as an array of the same
3461 * type and specify a size."
3462 */
3463 if (earlier->type->is_unsized_array() && var->type->is_array()
3464 && (var->type->fields.array == earlier->type->fields.array)) {
3465 /* FINISHME: This doesn't match the qualifiers on the two
3466 * FINISHME: declarations. It's not 100% clear whether this is
3467 * FINISHME: required or not.
3468 */
3469
3470 const unsigned size = unsigned(var->type->array_size());
3471 check_builtin_array_max_size(var->name, size, loc, state);
3472 if ((size > 0) && (size <= earlier->data.max_array_access)) {
3473 _mesa_glsl_error(& loc, state, "array size must be > %u due to "
3474 "previous access",
3475 earlier->data.max_array_access);
3476 }
3477
3478 earlier->type = var->type;
3479 delete var;
3480 var = NULL;
3481 } else if ((state->ARB_fragment_coord_conventions_enable ||
3482 state->is_version(150, 0))
3483 && strcmp(var->name, "gl_FragCoord") == 0
3484 && earlier->type == var->type
3485 && earlier->data.mode == var->data.mode) {
3486 /* Allow redeclaration of gl_FragCoord for ARB_fcc layout
3487 * qualifiers.
3488 */
3489 earlier->data.origin_upper_left = var->data.origin_upper_left;
3490 earlier->data.pixel_center_integer = var->data.pixel_center_integer;
3491
3492 /* According to section 4.3.7 of the GLSL 1.30 spec,
3493 * the following built-in varaibles can be redeclared with an
3494 * interpolation qualifier:
3495 * * gl_FrontColor
3496 * * gl_BackColor
3497 * * gl_FrontSecondaryColor
3498 * * gl_BackSecondaryColor
3499 * * gl_Color
3500 * * gl_SecondaryColor
3501 */
3502 } else if (state->is_version(130, 0)
3503 && (strcmp(var->name, "gl_FrontColor") == 0
3504 || strcmp(var->name, "gl_BackColor") == 0
3505 || strcmp(var->name, "gl_FrontSecondaryColor") == 0
3506 || strcmp(var->name, "gl_BackSecondaryColor") == 0
3507 || strcmp(var->name, "gl_Color") == 0
3508 || strcmp(var->name, "gl_SecondaryColor") == 0)
3509 && earlier->type == var->type
3510 && earlier->data.mode == var->data.mode) {
3511 earlier->data.interpolation = var->data.interpolation;
3512
3513 /* Layout qualifiers for gl_FragDepth. */
3514 } else if ((state->AMD_conservative_depth_enable ||
3515 state->ARB_conservative_depth_enable)
3516 && strcmp(var->name, "gl_FragDepth") == 0
3517 && earlier->type == var->type
3518 && earlier->data.mode == var->data.mode) {
3519
3520 /** From the AMD_conservative_depth spec:
3521 * Within any shader, the first redeclarations of gl_FragDepth
3522 * must appear before any use of gl_FragDepth.
3523 */
3524 if (earlier->data.used) {
3525 _mesa_glsl_error(&loc, state,
3526 "the first redeclaration of gl_FragDepth "
3527 "must appear before any use of gl_FragDepth");
3528 }
3529
3530 /* Prevent inconsistent redeclaration of depth layout qualifier. */
3531 if (earlier->data.depth_layout != ir_depth_layout_none
3532 && earlier->data.depth_layout != var->data.depth_layout) {
3533 _mesa_glsl_error(&loc, state,
3534 "gl_FragDepth: depth layout is declared here "
3535 "as '%s, but it was previously declared as "
3536 "'%s'",
3537 depth_layout_string(var->data.depth_layout),
3538 depth_layout_string(earlier->data.depth_layout));
3539 }
3540
3541 earlier->data.depth_layout = var->data.depth_layout;
3542
3543 } else if (allow_all_redeclarations) {
3544 if (earlier->data.mode != var->data.mode) {
3545 _mesa_glsl_error(&loc, state,
3546 "redeclaration of `%s' with incorrect qualifiers",
3547 var->name);
3548 } else if (earlier->type != var->type) {
3549 _mesa_glsl_error(&loc, state,
3550 "redeclaration of `%s' has incorrect type",
3551 var->name);
3552 }
3553 } else {
3554 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
3555 }
3556
3557 return earlier;
3558 }
3559
3560 /**
3561 * Generate the IR for an initializer in a variable declaration
3562 */
3563 ir_rvalue *
3564 process_initializer(ir_variable *var, ast_declaration *decl,
3565 ast_fully_specified_type *type,
3566 exec_list *initializer_instructions,
3567 struct _mesa_glsl_parse_state *state)
3568 {
3569 ir_rvalue *result = NULL;
3570
3571 YYLTYPE initializer_loc = decl->initializer->get_location();
3572
3573 /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
3574 *
3575 * "All uniform variables are read-only and are initialized either
3576 * directly by an application via API commands, or indirectly by
3577 * OpenGL."
3578 */
3579 if (var->data.mode == ir_var_uniform) {
3580 state->check_version(120, 0, &initializer_loc,
3581 "cannot initialize uniform %s",
3582 var->name);
3583 }
3584
3585 /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec:
3586 *
3587 * "Buffer variables cannot have initializers."
3588 */
3589 if (var->data.mode == ir_var_shader_storage) {
3590 _mesa_glsl_error(&initializer_loc, state,
3591 "cannot initialize buffer variable %s",
3592 var->name);
3593 }
3594
3595 /* From section 4.1.7 of the GLSL 4.40 spec:
3596 *
3597 * "Opaque variables [...] are initialized only through the
3598 * OpenGL API; they cannot be declared with an initializer in a
3599 * shader."
3600 */
3601 if (var->type->contains_opaque()) {
3602 _mesa_glsl_error(&initializer_loc, state,
3603 "cannot initialize opaque variable %s",
3604 var->name);
3605 }
3606
3607 if ((var->data.mode == ir_var_shader_in) && (state->current_function == NULL)) {
3608 _mesa_glsl_error(&initializer_loc, state,
3609 "cannot initialize %s shader input / %s %s",
3610 _mesa_shader_stage_to_string(state->stage),
3611 (state->stage == MESA_SHADER_VERTEX)
3612 ? "attribute" : "varying",
3613 var->name);
3614 }
3615
3616 if (var->data.mode == ir_var_shader_out && state->current_function == NULL) {
3617 _mesa_glsl_error(&initializer_loc, state,
3618 "cannot initialize %s shader output %s",
3619 _mesa_shader_stage_to_string(state->stage),
3620 var->name);
3621 }
3622
3623 /* If the initializer is an ast_aggregate_initializer, recursively store
3624 * type information from the LHS into it, so that its hir() function can do
3625 * type checking.
3626 */
3627 if (decl->initializer->oper == ast_aggregate)
3628 _mesa_ast_set_aggregate_type(var->type, decl->initializer);
3629
3630 ir_dereference *const lhs = new(state) ir_dereference_variable(var);
3631 ir_rvalue *rhs = decl->initializer->hir(initializer_instructions, state);
3632
3633 /* Calculate the constant value if this is a const or uniform
3634 * declaration.
3635 *
3636 * Section 4.3 (Storage Qualifiers) of the GLSL ES 1.00.17 spec says:
3637 *
3638 * "Declarations of globals without a storage qualifier, or with
3639 * just the const qualifier, may include initializers, in which case
3640 * they will be initialized before the first line of main() is
3641 * executed. Such initializers must be a constant expression."
3642 *
3643 * The same section of the GLSL ES 3.00.4 spec has similar language.
3644 */
3645 if (type->qualifier.flags.q.constant
3646 || type->qualifier.flags.q.uniform
3647 || (state->es_shader && state->current_function == NULL)) {
3648 ir_rvalue *new_rhs = validate_assignment(state, initializer_loc,
3649 lhs, rhs, true);
3650 if (new_rhs != NULL) {
3651 rhs = new_rhs;
3652
3653 /* Section 4.3.3 (Constant Expressions) of the GLSL ES 3.00.4 spec
3654 * says:
3655 *
3656 * "A constant expression is one of
3657 *
3658 * ...
3659 *
3660 * - an expression formed by an operator on operands that are
3661 * all constant expressions, including getting an element of
3662 * a constant array, or a field of a constant structure, or
3663 * components of a constant vector. However, the sequence
3664 * operator ( , ) and the assignment operators ( =, +=, ...)
3665 * are not included in the operators that can create a
3666 * constant expression."
3667 *
3668 * Section 12.43 (Sequence operator and constant expressions) says:
3669 *
3670 * "Should the following construct be allowed?
3671 *
3672 * float a[2,3];
3673 *
3674 * The expression within the brackets uses the sequence operator
3675 * (',') and returns the integer 3 so the construct is declaring
3676 * a single-dimensional array of size 3. In some languages, the
3677 * construct declares a two-dimensional array. It would be
3678 * preferable to make this construct illegal to avoid confusion.
3679 *
3680 * One possibility is to change the definition of the sequence
3681 * operator so that it does not return a constant-expression and
3682 * hence cannot be used to declare an array size.
3683 *
3684 * RESOLUTION: The result of a sequence operator is not a
3685 * constant-expression."
3686 *
3687 * Section 4.3.3 (Constant Expressions) of the GLSL 4.30.9 spec
3688 * contains language almost identical to the section 4.3.3 in the
3689 * GLSL ES 3.00.4 spec. This is a new limitation for these GLSL
3690 * versions.
3691 */
3692 ir_constant *constant_value = rhs->constant_expression_value();
3693 if (!constant_value ||
3694 (state->is_version(430, 300) &&
3695 decl->initializer->has_sequence_subexpression())) {
3696 const char *const variable_mode =
3697 (type->qualifier.flags.q.constant)
3698 ? "const"
3699 : ((type->qualifier.flags.q.uniform) ? "uniform" : "global");
3700
3701 /* If ARB_shading_language_420pack is enabled, initializers of
3702 * const-qualified local variables do not have to be constant
3703 * expressions. Const-qualified global variables must still be
3704 * initialized with constant expressions.
3705 */
3706 if (!state->ARB_shading_language_420pack_enable
3707 || state->current_function == NULL) {
3708 _mesa_glsl_error(& initializer_loc, state,
3709 "initializer of %s variable `%s' must be a "
3710 "constant expression",
3711 variable_mode,
3712 decl->identifier);
3713 if (var->type->is_numeric()) {
3714 /* Reduce cascading errors. */
3715 var->constant_value = type->qualifier.flags.q.constant
3716 ? ir_constant::zero(state, var->type) : NULL;
3717 }
3718 }
3719 } else {
3720 rhs = constant_value;
3721 var->constant_value = type->qualifier.flags.q.constant
3722 ? constant_value : NULL;
3723 }
3724 } else {
3725 if (var->type->is_numeric()) {
3726 /* Reduce cascading errors. */
3727 var->constant_value = type->qualifier.flags.q.constant
3728 ? ir_constant::zero(state, var->type) : NULL;
3729 }
3730 }
3731 }
3732
3733 if (rhs && !rhs->type->is_error()) {
3734 bool temp = var->data.read_only;
3735 if (type->qualifier.flags.q.constant)
3736 var->data.read_only = false;
3737
3738 /* Never emit code to initialize a uniform.
3739 */
3740 const glsl_type *initializer_type;
3741 if (!type->qualifier.flags.q.uniform) {
3742 do_assignment(initializer_instructions, state,
3743 NULL,
3744 lhs, rhs,
3745 &result, true,
3746 true,
3747 type->get_location());
3748 initializer_type = result->type;
3749 } else
3750 initializer_type = rhs->type;
3751
3752 var->constant_initializer = rhs->constant_expression_value();
3753 var->data.has_initializer = true;
3754
3755 /* If the declared variable is an unsized array, it must inherrit
3756 * its full type from the initializer. A declaration such as
3757 *
3758 * uniform float a[] = float[](1.0, 2.0, 3.0, 3.0);
3759 *
3760 * becomes
3761 *
3762 * uniform float a[4] = float[](1.0, 2.0, 3.0, 3.0);
3763 *
3764 * The assignment generated in the if-statement (below) will also
3765 * automatically handle this case for non-uniforms.
3766 *
3767 * If the declared variable is not an array, the types must
3768 * already match exactly. As a result, the type assignment
3769 * here can be done unconditionally. For non-uniforms the call
3770 * to do_assignment can change the type of the initializer (via
3771 * the implicit conversion rules). For uniforms the initializer
3772 * must be a constant expression, and the type of that expression
3773 * was validated above.
3774 */
3775 var->type = initializer_type;
3776
3777 var->data.read_only = temp;
3778 }
3779
3780 return result;
3781 }
3782
3783 static void
3784 validate_layout_qualifier_vertex_count(struct _mesa_glsl_parse_state *state,
3785 YYLTYPE loc, ir_variable *var,
3786 unsigned num_vertices,
3787 unsigned *size,
3788 const char *var_category)
3789 {
3790 if (var->type->is_unsized_array()) {
3791 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec says:
3792 *
3793 * All geometry shader input unsized array declarations will be
3794 * sized by an earlier input layout qualifier, when present, as per
3795 * the following table.
3796 *
3797 * Followed by a table mapping each allowed input layout qualifier to
3798 * the corresponding input length.
3799 *
3800 * Similarly for tessellation control shader outputs.
3801 */
3802 if (num_vertices != 0)
3803 var->type = glsl_type::get_array_instance(var->type->fields.array,
3804 num_vertices);
3805 } else {
3806 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec
3807 * includes the following examples of compile-time errors:
3808 *
3809 * // code sequence within one shader...
3810 * in vec4 Color1[]; // size unknown
3811 * ...Color1.length()...// illegal, length() unknown
3812 * in vec4 Color2[2]; // size is 2
3813 * ...Color1.length()...// illegal, Color1 still has no size
3814 * in vec4 Color3[3]; // illegal, input sizes are inconsistent
3815 * layout(lines) in; // legal, input size is 2, matching
3816 * in vec4 Color4[3]; // illegal, contradicts layout
3817 * ...
3818 *
3819 * To detect the case illustrated by Color3, we verify that the size of
3820 * an explicitly-sized array matches the size of any previously declared
3821 * explicitly-sized array. To detect the case illustrated by Color4, we
3822 * verify that the size of an explicitly-sized array is consistent with
3823 * any previously declared input layout.
3824 */
3825 if (num_vertices != 0 && var->type->length != num_vertices) {
3826 _mesa_glsl_error(&loc, state,
3827 "%s size contradicts previously declared layout "
3828 "(size is %u, but layout requires a size of %u)",
3829 var_category, var->type->length, num_vertices);
3830 } else if (*size != 0 && var->type->length != *size) {
3831 _mesa_glsl_error(&loc, state,
3832 "%s sizes are inconsistent (size is %u, but a "
3833 "previous declaration has size %u)",
3834 var_category, var->type->length, *size);
3835 } else {
3836 *size = var->type->length;
3837 }
3838 }
3839 }
3840
3841 static void
3842 handle_tess_ctrl_shader_output_decl(struct _mesa_glsl_parse_state *state,
3843 YYLTYPE loc, ir_variable *var)
3844 {
3845 unsigned num_vertices = 0;
3846
3847 if (state->tcs_output_vertices_specified) {
3848 num_vertices = state->out_qualifier->vertices;
3849 }
3850
3851 if (!var->type->is_array() && !var->data.patch) {
3852 _mesa_glsl_error(&loc, state,
3853 "tessellation control shader outputs must be arrays");
3854
3855 /* To avoid cascading failures, short circuit the checks below. */
3856 return;
3857 }
3858
3859 if (var->data.patch)
3860 return;
3861
3862 validate_layout_qualifier_vertex_count(state, loc, var, num_vertices,
3863 &state->tcs_output_size,
3864 "tessellation control shader output");
3865 }
3866
3867 /**
3868 * Do additional processing necessary for tessellation control/evaluation shader
3869 * input declarations. This covers both interface block arrays and bare input
3870 * variables.
3871 */
3872 static void
3873 handle_tess_shader_input_decl(struct _mesa_glsl_parse_state *state,
3874 YYLTYPE loc, ir_variable *var)
3875 {
3876 if (!var->type->is_array() && !var->data.patch) {
3877 _mesa_glsl_error(&loc, state,
3878 "per-vertex tessellation shader inputs must be arrays");
3879 /* Avoid cascading failures. */
3880 return;
3881 }
3882
3883 if (var->data.patch)
3884 return;
3885
3886 /* Unsized arrays are implicitly sized to gl_MaxPatchVertices. */
3887 if (var->type->is_unsized_array()) {
3888 var->type = glsl_type::get_array_instance(var->type->fields.array,
3889 state->Const.MaxPatchVertices);
3890 }
3891 }
3892
3893
3894 /**
3895 * Do additional processing necessary for geometry shader input declarations
3896 * (this covers both interface blocks arrays and bare input variables).
3897 */
3898 static void
3899 handle_geometry_shader_input_decl(struct _mesa_glsl_parse_state *state,
3900 YYLTYPE loc, ir_variable *var)
3901 {
3902 unsigned num_vertices = 0;
3903
3904 if (state->gs_input_prim_type_specified) {
3905 num_vertices = vertices_per_prim(state->in_qualifier->prim_type);
3906 }
3907
3908 /* Geometry shader input variables must be arrays. Caller should have
3909 * reported an error for this.
3910 */
3911 if (!var->type->is_array()) {
3912 assert(state->error);
3913
3914 /* To avoid cascading failures, short circuit the checks below. */
3915 return;
3916 }
3917
3918 validate_layout_qualifier_vertex_count(state, loc, var, num_vertices,
3919 &state->gs_input_size,
3920 "geometry shader input");
3921 }
3922
3923 void
3924 validate_identifier(const char *identifier, YYLTYPE loc,
3925 struct _mesa_glsl_parse_state *state)
3926 {
3927 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
3928 *
3929 * "Identifiers starting with "gl_" are reserved for use by
3930 * OpenGL, and may not be declared in a shader as either a
3931 * variable or a function."
3932 */
3933 if (is_gl_identifier(identifier)) {
3934 _mesa_glsl_error(&loc, state,
3935 "identifier `%s' uses reserved `gl_' prefix",
3936 identifier);
3937 } else if (strstr(identifier, "__")) {
3938 /* From page 14 (page 20 of the PDF) of the GLSL 1.10
3939 * spec:
3940 *
3941 * "In addition, all identifiers containing two
3942 * consecutive underscores (__) are reserved as
3943 * possible future keywords."
3944 *
3945 * The intention is that names containing __ are reserved for internal
3946 * use by the implementation, and names prefixed with GL_ are reserved
3947 * for use by Khronos. Names simply containing __ are dangerous to use,
3948 * but should be allowed.
3949 *
3950 * A future version of the GLSL specification will clarify this.
3951 */
3952 _mesa_glsl_warning(&loc, state,
3953 "identifier `%s' uses reserved `__' string",
3954 identifier);
3955 }
3956 }
3957
3958 ir_rvalue *
3959 ast_declarator_list::hir(exec_list *instructions,
3960 struct _mesa_glsl_parse_state *state)
3961 {
3962 void *ctx = state;
3963 const struct glsl_type *decl_type;
3964 const char *type_name = NULL;
3965 ir_rvalue *result = NULL;
3966 YYLTYPE loc = this->get_location();
3967
3968 /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec:
3969 *
3970 * "To ensure that a particular output variable is invariant, it is
3971 * necessary to use the invariant qualifier. It can either be used to
3972 * qualify a previously declared variable as being invariant
3973 *
3974 * invariant gl_Position; // make existing gl_Position be invariant"
3975 *
3976 * In these cases the parser will set the 'invariant' flag in the declarator
3977 * list, and the type will be NULL.
3978 */
3979 if (this->invariant) {
3980 assert(this->type == NULL);
3981
3982 if (state->current_function != NULL) {
3983 _mesa_glsl_error(& loc, state,
3984 "all uses of `invariant' keyword must be at global "
3985 "scope");
3986 }
3987
3988 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
3989 assert(decl->array_specifier == NULL);
3990 assert(decl->initializer == NULL);
3991
3992 ir_variable *const earlier =
3993 state->symbols->get_variable(decl->identifier);
3994 if (earlier == NULL) {
3995 _mesa_glsl_error(& loc, state,
3996 "undeclared variable `%s' cannot be marked "
3997 "invariant", decl->identifier);
3998 } else if (!is_varying_var(earlier, state->stage)) {
3999 _mesa_glsl_error(&loc, state,
4000 "`%s' cannot be marked invariant; interfaces between "
4001 "shader stages only.", decl->identifier);
4002 } else if (earlier->data.used) {
4003 _mesa_glsl_error(& loc, state,
4004 "variable `%s' may not be redeclared "
4005 "`invariant' after being used",
4006 earlier->name);
4007 } else {
4008 earlier->data.invariant = true;
4009 }
4010 }
4011
4012 /* Invariant redeclarations do not have r-values.
4013 */
4014 return NULL;
4015 }
4016
4017 if (this->precise) {
4018 assert(this->type == NULL);
4019
4020 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4021 assert(decl->array_specifier == NULL);
4022 assert(decl->initializer == NULL);
4023
4024 ir_variable *const earlier =
4025 state->symbols->get_variable(decl->identifier);
4026 if (earlier == NULL) {
4027 _mesa_glsl_error(& loc, state,
4028 "undeclared variable `%s' cannot be marked "
4029 "precise", decl->identifier);
4030 } else if (state->current_function != NULL &&
4031 !state->symbols->name_declared_this_scope(decl->identifier)) {
4032 /* Note: we have to check if we're in a function, since
4033 * builtins are treated as having come from another scope.
4034 */
4035 _mesa_glsl_error(& loc, state,
4036 "variable `%s' from an outer scope may not be "
4037 "redeclared `precise' in this scope",
4038 earlier->name);
4039 } else if (earlier->data.used) {
4040 _mesa_glsl_error(& loc, state,
4041 "variable `%s' may not be redeclared "
4042 "`precise' after being used",
4043 earlier->name);
4044 } else {
4045 earlier->data.precise = true;
4046 }
4047 }
4048
4049 /* Precise redeclarations do not have r-values either. */
4050 return NULL;
4051 }
4052
4053 assert(this->type != NULL);
4054 assert(!this->invariant);
4055 assert(!this->precise);
4056
4057 /* The type specifier may contain a structure definition. Process that
4058 * before any of the variable declarations.
4059 */
4060 (void) this->type->specifier->hir(instructions, state);
4061
4062 decl_type = this->type->glsl_type(& type_name, state);
4063
4064 /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec:
4065 * "Buffer variables may only be declared inside interface blocks
4066 * (section 4.3.9 “Interface Blocks”), which are then referred to as
4067 * shader storage blocks. It is a compile-time error to declare buffer
4068 * variables at global scope (outside a block)."
4069 */
4070 if (type->qualifier.flags.q.buffer && !decl_type->is_interface()) {
4071 _mesa_glsl_error(&loc, state,
4072 "buffer variables cannot be declared outside "
4073 "interface blocks");
4074 }
4075
4076 /* An offset-qualified atomic counter declaration sets the default
4077 * offset for the next declaration within the same atomic counter
4078 * buffer.
4079 */
4080 if (decl_type && decl_type->contains_atomic()) {
4081 if (type->qualifier.flags.q.explicit_binding &&
4082 type->qualifier.flags.q.explicit_offset)
4083 state->atomic_counter_offsets[type->qualifier.binding] =
4084 type->qualifier.offset;
4085 }
4086
4087 if (this->declarations.is_empty()) {
4088 /* If there is no structure involved in the program text, there are two
4089 * possible scenarios:
4090 *
4091 * - The program text contained something like 'vec4;'. This is an
4092 * empty declaration. It is valid but weird. Emit a warning.
4093 *
4094 * - The program text contained something like 'S;' and 'S' is not the
4095 * name of a known structure type. This is both invalid and weird.
4096 * Emit an error.
4097 *
4098 * - The program text contained something like 'mediump float;'
4099 * when the programmer probably meant 'precision mediump
4100 * float;' Emit a warning with a description of what they
4101 * probably meant to do.
4102 *
4103 * Note that if decl_type is NULL and there is a structure involved,
4104 * there must have been some sort of error with the structure. In this
4105 * case we assume that an error was already generated on this line of
4106 * code for the structure. There is no need to generate an additional,
4107 * confusing error.
4108 */
4109 assert(this->type->specifier->structure == NULL || decl_type != NULL
4110 || state->error);
4111
4112 if (decl_type == NULL) {
4113 _mesa_glsl_error(&loc, state,
4114 "invalid type `%s' in empty declaration",
4115 type_name);
4116 } else if (decl_type->base_type == GLSL_TYPE_ATOMIC_UINT) {
4117 /* Empty atomic counter declarations are allowed and useful
4118 * to set the default offset qualifier.
4119 */
4120 return NULL;
4121 } else if (this->type->qualifier.precision != ast_precision_none) {
4122 if (this->type->specifier->structure != NULL) {
4123 _mesa_glsl_error(&loc, state,
4124 "precision qualifiers can't be applied "
4125 "to structures");
4126 } else {
4127 static const char *const precision_names[] = {
4128 "highp",
4129 "highp",
4130 "mediump",
4131 "lowp"
4132 };
4133
4134 _mesa_glsl_warning(&loc, state,
4135 "empty declaration with precision qualifier, "
4136 "to set the default precision, use "
4137 "`precision %s %s;'",
4138 precision_names[this->type->qualifier.precision],
4139 type_name);
4140 }
4141 } else if (this->type->specifier->structure == NULL) {
4142 _mesa_glsl_warning(&loc, state, "empty declaration");
4143 }
4144 }
4145
4146 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4147 const struct glsl_type *var_type;
4148 ir_variable *var;
4149 const char *identifier = decl->identifier;
4150 /* FINISHME: Emit a warning if a variable declaration shadows a
4151 * FINISHME: declaration at a higher scope.
4152 */
4153
4154 if ((decl_type == NULL) || decl_type->is_void()) {
4155 if (type_name != NULL) {
4156 _mesa_glsl_error(& loc, state,
4157 "invalid type `%s' in declaration of `%s'",
4158 type_name, decl->identifier);
4159 } else {
4160 _mesa_glsl_error(& loc, state,
4161 "invalid type in declaration of `%s'",
4162 decl->identifier);
4163 }
4164 continue;
4165 }
4166
4167 if (this->type->qualifier.flags.q.subroutine) {
4168 const glsl_type *t;
4169 const char *name;
4170
4171 t = state->symbols->get_type(this->type->specifier->type_name);
4172 if (!t)
4173 _mesa_glsl_error(& loc, state,
4174 "invalid type in declaration of `%s'",
4175 decl->identifier);
4176 name = ralloc_asprintf(ctx, "%s_%s", _mesa_shader_stage_to_subroutine_prefix(state->stage), decl->identifier);
4177
4178 identifier = name;
4179
4180 }
4181 var_type = process_array_type(&loc, decl_type, decl->array_specifier,
4182 state);
4183
4184 var = new(ctx) ir_variable(var_type, identifier, ir_var_auto);
4185
4186 /* The 'varying in' and 'varying out' qualifiers can only be used with
4187 * ARB_geometry_shader4 and EXT_geometry_shader4, which we don't support
4188 * yet.
4189 */
4190 if (this->type->qualifier.flags.q.varying) {
4191 if (this->type->qualifier.flags.q.in) {
4192 _mesa_glsl_error(& loc, state,
4193 "`varying in' qualifier in declaration of "
4194 "`%s' only valid for geometry shaders using "
4195 "ARB_geometry_shader4 or EXT_geometry_shader4",
4196 decl->identifier);
4197 } else if (this->type->qualifier.flags.q.out) {
4198 _mesa_glsl_error(& loc, state,
4199 "`varying out' qualifier in declaration of "
4200 "`%s' only valid for geometry shaders using "
4201 "ARB_geometry_shader4 or EXT_geometry_shader4",
4202 decl->identifier);
4203 }
4204 }
4205
4206 /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
4207 *
4208 * "Global variables can only use the qualifiers const,
4209 * attribute, uniform, or varying. Only one may be
4210 * specified.
4211 *
4212 * Local variables can only use the qualifier const."
4213 *
4214 * This is relaxed in GLSL 1.30 and GLSL ES 3.00. It is also relaxed by
4215 * any extension that adds the 'layout' keyword.
4216 */
4217 if (!state->is_version(130, 300)
4218 && !state->has_explicit_attrib_location()
4219 && !state->has_separate_shader_objects()
4220 && !state->ARB_fragment_coord_conventions_enable) {
4221 if (this->type->qualifier.flags.q.out) {
4222 _mesa_glsl_error(& loc, state,
4223 "`out' qualifier in declaration of `%s' "
4224 "only valid for function parameters in %s",
4225 decl->identifier, state->get_version_string());
4226 }
4227 if (this->type->qualifier.flags.q.in) {
4228 _mesa_glsl_error(& loc, state,
4229 "`in' qualifier in declaration of `%s' "
4230 "only valid for function parameters in %s",
4231 decl->identifier, state->get_version_string());
4232 }
4233 /* FINISHME: Test for other invalid qualifiers. */
4234 }
4235
4236 apply_type_qualifier_to_variable(& this->type->qualifier, var, state,
4237 & loc, false);
4238 apply_layout_qualifier_to_variable(&this->type->qualifier, var, state,
4239 &loc);
4240
4241 if (this->type->qualifier.flags.q.invariant) {
4242 if (!is_varying_var(var, state->stage)) {
4243 _mesa_glsl_error(&loc, state,
4244 "`%s' cannot be marked invariant; interfaces between "
4245 "shader stages only", var->name);
4246 }
4247 }
4248
4249 if (state->current_function != NULL) {
4250 const char *mode = NULL;
4251 const char *extra = "";
4252
4253 /* There is no need to check for 'inout' here because the parser will
4254 * only allow that in function parameter lists.
4255 */
4256 if (this->type->qualifier.flags.q.attribute) {
4257 mode = "attribute";
4258 } else if (this->type->qualifier.flags.q.subroutine) {
4259 mode = "subroutine uniform";
4260 } else if (this->type->qualifier.flags.q.uniform) {
4261 mode = "uniform";
4262 } else if (this->type->qualifier.flags.q.varying) {
4263 mode = "varying";
4264 } else if (this->type->qualifier.flags.q.in) {
4265 mode = "in";
4266 extra = " or in function parameter list";
4267 } else if (this->type->qualifier.flags.q.out) {
4268 mode = "out";
4269 extra = " or in function parameter list";
4270 }
4271
4272 if (mode) {
4273 _mesa_glsl_error(& loc, state,
4274 "%s variable `%s' must be declared at "
4275 "global scope%s",
4276 mode, var->name, extra);
4277 }
4278 } else if (var->data.mode == ir_var_shader_in) {
4279 var->data.read_only = true;
4280
4281 if (state->stage == MESA_SHADER_VERTEX) {
4282 bool error_emitted = false;
4283
4284 /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
4285 *
4286 * "Vertex shader inputs can only be float, floating-point
4287 * vectors, matrices, signed and unsigned integers and integer
4288 * vectors. Vertex shader inputs can also form arrays of these
4289 * types, but not structures."
4290 *
4291 * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
4292 *
4293 * "Vertex shader inputs can only be float, floating-point
4294 * vectors, matrices, signed and unsigned integers and integer
4295 * vectors. They cannot be arrays or structures."
4296 *
4297 * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
4298 *
4299 * "The attribute qualifier can be used only with float,
4300 * floating-point vectors, and matrices. Attribute variables
4301 * cannot be declared as arrays or structures."
4302 *
4303 * From page 33 (page 39 of the PDF) of the GLSL ES 3.00 spec:
4304 *
4305 * "Vertex shader inputs can only be float, floating-point
4306 * vectors, matrices, signed and unsigned integers and integer
4307 * vectors. Vertex shader inputs cannot be arrays or
4308 * structures."
4309 */
4310 const glsl_type *check_type = var->type->without_array();
4311
4312 switch (check_type->base_type) {
4313 case GLSL_TYPE_FLOAT:
4314 break;
4315 case GLSL_TYPE_UINT:
4316 case GLSL_TYPE_INT:
4317 if (state->is_version(120, 300))
4318 break;
4319 case GLSL_TYPE_DOUBLE:
4320 if (check_type->base_type == GLSL_TYPE_DOUBLE && (state->is_version(410, 0) || state->ARB_vertex_attrib_64bit_enable))
4321 break;
4322 /* FALLTHROUGH */
4323 default:
4324 _mesa_glsl_error(& loc, state,
4325 "vertex shader input / attribute cannot have "
4326 "type %s`%s'",
4327 var->type->is_array() ? "array of " : "",
4328 check_type->name);
4329 error_emitted = true;
4330 }
4331
4332 if (!error_emitted && var->type->is_array() &&
4333 !state->check_version(150, 0, &loc,
4334 "vertex shader input / attribute "
4335 "cannot have array type")) {
4336 error_emitted = true;
4337 }
4338 } else if (state->stage == MESA_SHADER_GEOMETRY) {
4339 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
4340 *
4341 * Geometry shader input variables get the per-vertex values
4342 * written out by vertex shader output variables of the same
4343 * names. Since a geometry shader operates on a set of
4344 * vertices, each input varying variable (or input block, see
4345 * interface blocks below) needs to be declared as an array.
4346 */
4347 if (!var->type->is_array()) {
4348 _mesa_glsl_error(&loc, state,
4349 "geometry shader inputs must be arrays");
4350 }
4351
4352 handle_geometry_shader_input_decl(state, loc, var);
4353 } else if (state->stage == MESA_SHADER_FRAGMENT) {
4354 /* From section 4.3.4 (Input Variables) of the GLSL ES 3.10 spec:
4355 *
4356 * It is a compile-time error to declare a fragment shader
4357 * input with, or that contains, any of the following types:
4358 *
4359 * * A boolean type
4360 * * An opaque type
4361 * * An array of arrays
4362 * * An array of structures
4363 * * A structure containing an array
4364 * * A structure containing a structure
4365 */
4366 if (state->es_shader) {
4367 const glsl_type *check_type = var->type->without_array();
4368 if (check_type->is_boolean() ||
4369 check_type->contains_opaque()) {
4370 _mesa_glsl_error(&loc, state,
4371 "fragment shader input cannot have type %s",
4372 check_type->name);
4373 }
4374 if (var->type->is_array() &&
4375 var->type->fields.array->is_array()) {
4376 _mesa_glsl_error(&loc, state,
4377 "%s shader output "
4378 "cannot have an array of arrays",
4379 _mesa_shader_stage_to_string(state->stage));
4380 }
4381 if (var->type->is_array() &&
4382 var->type->fields.array->is_record()) {
4383 _mesa_glsl_error(&loc, state,
4384 "fragment shader input "
4385 "cannot have an array of structs");
4386 }
4387 if (var->type->is_record()) {
4388 for (unsigned i = 0; i < var->type->length; i++) {
4389 if (var->type->fields.structure[i].type->is_array() ||
4390 var->type->fields.structure[i].type->is_record())
4391 _mesa_glsl_error(&loc, state,
4392 "fragement shader input cannot have "
4393 "a struct that contains an "
4394 "array or struct");
4395 }
4396 }
4397 }
4398 } else if (state->stage == MESA_SHADER_TESS_CTRL ||
4399 state->stage == MESA_SHADER_TESS_EVAL) {
4400 handle_tess_shader_input_decl(state, loc, var);
4401 }
4402 } else if (var->data.mode == ir_var_shader_out) {
4403 const glsl_type *check_type = var->type->without_array();
4404
4405 /* From section 4.3.6 (Output variables) of the GLSL 4.40 spec:
4406 *
4407 * It is a compile-time error to declare a vertex, tessellation
4408 * evaluation, tessellation control, or geometry shader output
4409 * that contains any of the following:
4410 *
4411 * * A Boolean type (bool, bvec2 ...)
4412 * * An opaque type
4413 */
4414 if (check_type->is_boolean() || check_type->contains_opaque())
4415 _mesa_glsl_error(&loc, state,
4416 "%s shader output cannot have type %s",
4417 _mesa_shader_stage_to_string(state->stage),
4418 check_type->name);
4419
4420 /* From section 4.3.6 (Output variables) of the GLSL 4.40 spec:
4421 *
4422 * It is a compile-time error to declare a fragment shader output
4423 * that contains any of the following:
4424 *
4425 * * A Boolean type (bool, bvec2 ...)
4426 * * A double-precision scalar or vector (double, dvec2 ...)
4427 * * An opaque type
4428 * * Any matrix type
4429 * * A structure
4430 */
4431 if (state->stage == MESA_SHADER_FRAGMENT) {
4432 if (check_type->is_record() || check_type->is_matrix())
4433 _mesa_glsl_error(&loc, state,
4434 "fragment shader output "
4435 "cannot have struct or matrix type");
4436 switch (check_type->base_type) {
4437 case GLSL_TYPE_UINT:
4438 case GLSL_TYPE_INT:
4439 case GLSL_TYPE_FLOAT:
4440 break;
4441 default:
4442 _mesa_glsl_error(&loc, state,
4443 "fragment shader output cannot have "
4444 "type %s", check_type->name);
4445 }
4446 }
4447
4448 /* From section 4.3.6 (Output Variables) of the GLSL ES 3.10 spec:
4449 *
4450 * It is a compile-time error to declare a vertex shader output
4451 * with, or that contains, any of the following types:
4452 *
4453 * * A boolean type
4454 * * An opaque type
4455 * * An array of arrays
4456 * * An array of structures
4457 * * A structure containing an array
4458 * * A structure containing a structure
4459 *
4460 * It is a compile-time error to declare a fragment shader output
4461 * with, or that contains, any of the following types:
4462 *
4463 * * A boolean type
4464 * * An opaque type
4465 * * A matrix
4466 * * A structure
4467 * * An array of array
4468 */
4469 if (state->es_shader) {
4470 if (var->type->is_array() &&
4471 var->type->fields.array->is_array()) {
4472 _mesa_glsl_error(&loc, state,
4473 "%s shader output "
4474 "cannot have an array of arrays",
4475 _mesa_shader_stage_to_string(state->stage));
4476 }
4477 if (state->stage == MESA_SHADER_VERTEX) {
4478 if (var->type->is_array() &&
4479 var->type->fields.array->is_record()) {
4480 _mesa_glsl_error(&loc, state,
4481 "vertex shader output "
4482 "cannot have an array of structs");
4483 }
4484 if (var->type->is_record()) {
4485 for (unsigned i = 0; i < var->type->length; i++) {
4486 if (var->type->fields.structure[i].type->is_array() ||
4487 var->type->fields.structure[i].type->is_record())
4488 _mesa_glsl_error(&loc, state,
4489 "vertex shader output cannot have a "
4490 "struct that contains an "
4491 "array or struct");
4492 }
4493 }
4494 }
4495 }
4496
4497 if (state->stage == MESA_SHADER_TESS_CTRL) {
4498 handle_tess_ctrl_shader_output_decl(state, loc, var);
4499 }
4500 } else if (var->type->contains_subroutine()) {
4501 /* declare subroutine uniforms as hidden */
4502 var->data.how_declared = ir_var_hidden;
4503 }
4504
4505 /* Integer fragment inputs must be qualified with 'flat'. In GLSL ES,
4506 * so must integer vertex outputs.
4507 *
4508 * From section 4.3.4 ("Inputs") of the GLSL 1.50 spec:
4509 * "Fragment shader inputs that are signed or unsigned integers or
4510 * integer vectors must be qualified with the interpolation qualifier
4511 * flat."
4512 *
4513 * From section 4.3.4 ("Input Variables") of the GLSL 3.00 ES spec:
4514 * "Fragment shader inputs that are, or contain, signed or unsigned
4515 * integers or integer vectors must be qualified with the
4516 * interpolation qualifier flat."
4517 *
4518 * From section 4.3.6 ("Output Variables") of the GLSL 3.00 ES spec:
4519 * "Vertex shader outputs that are, or contain, signed or unsigned
4520 * integers or integer vectors must be qualified with the
4521 * interpolation qualifier flat."
4522 *
4523 * Note that prior to GLSL 1.50, this requirement applied to vertex
4524 * outputs rather than fragment inputs. That creates problems in the
4525 * presence of geometry shaders, so we adopt the GLSL 1.50 rule for all
4526 * desktop GL shaders. For GLSL ES shaders, we follow the spec and
4527 * apply the restriction to both vertex outputs and fragment inputs.
4528 *
4529 * Note also that the desktop GLSL specs are missing the text "or
4530 * contain"; this is presumably an oversight, since there is no
4531 * reasonable way to interpolate a fragment shader input that contains
4532 * an integer.
4533 */
4534 if (state->is_version(130, 300) &&
4535 var->type->contains_integer() &&
4536 var->data.interpolation != INTERP_QUALIFIER_FLAT &&
4537 ((state->stage == MESA_SHADER_FRAGMENT && var->data.mode == ir_var_shader_in)
4538 || (state->stage == MESA_SHADER_VERTEX && var->data.mode == ir_var_shader_out
4539 && state->es_shader))) {
4540 const char *var_type = (state->stage == MESA_SHADER_VERTEX) ?
4541 "vertex output" : "fragment input";
4542 _mesa_glsl_error(&loc, state, "if a %s is (or contains) "
4543 "an integer, then it must be qualified with 'flat'",
4544 var_type);
4545 }
4546
4547 /* Double fragment inputs must be qualified with 'flat'. */
4548 if (var->type->contains_double() &&
4549 var->data.interpolation != INTERP_QUALIFIER_FLAT &&
4550 state->stage == MESA_SHADER_FRAGMENT &&
4551 var->data.mode == ir_var_shader_in) {
4552 _mesa_glsl_error(&loc, state, "if a fragment input is (or contains) "
4553 "a double, then it must be qualified with 'flat'",
4554 var_type);
4555 }
4556
4557 /* Interpolation qualifiers cannot be applied to 'centroid' and
4558 * 'centroid varying'.
4559 *
4560 * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
4561 * "interpolation qualifiers may only precede the qualifiers in,
4562 * centroid in, out, or centroid out in a declaration. They do not apply
4563 * to the deprecated storage qualifiers varying or centroid varying."
4564 *
4565 * These deprecated storage qualifiers do not exist in GLSL ES 3.00.
4566 */
4567 if (state->is_version(130, 0)
4568 && this->type->qualifier.has_interpolation()
4569 && this->type->qualifier.flags.q.varying) {
4570
4571 const char *i = this->type->qualifier.interpolation_string();
4572 assert(i != NULL);
4573 const char *s;
4574 if (this->type->qualifier.flags.q.centroid)
4575 s = "centroid varying";
4576 else
4577 s = "varying";
4578
4579 _mesa_glsl_error(&loc, state,
4580 "qualifier '%s' cannot be applied to the "
4581 "deprecated storage qualifier '%s'", i, s);
4582 }
4583
4584
4585 /* Interpolation qualifiers can only apply to vertex shader outputs and
4586 * fragment shader inputs.
4587 *
4588 * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
4589 * "Outputs from a vertex shader (out) and inputs to a fragment
4590 * shader (in) can be further qualified with one or more of these
4591 * interpolation qualifiers"
4592 *
4593 * From page 31 (page 37 of the PDF) of the GLSL ES 3.00 spec:
4594 * "These interpolation qualifiers may only precede the qualifiers
4595 * in, centroid in, out, or centroid out in a declaration. They do
4596 * not apply to inputs into a vertex shader or outputs from a
4597 * fragment shader."
4598 */
4599 if (state->is_version(130, 300)
4600 && this->type->qualifier.has_interpolation()) {
4601
4602 const char *i = this->type->qualifier.interpolation_string();
4603 assert(i != NULL);
4604
4605 switch (state->stage) {
4606 case MESA_SHADER_VERTEX:
4607 if (this->type->qualifier.flags.q.in) {
4608 _mesa_glsl_error(&loc, state,
4609 "qualifier '%s' cannot be applied to vertex "
4610 "shader inputs", i);
4611 }
4612 break;
4613 case MESA_SHADER_FRAGMENT:
4614 if (this->type->qualifier.flags.q.out) {
4615 _mesa_glsl_error(&loc, state,
4616 "qualifier '%s' cannot be applied to fragment "
4617 "shader outputs", i);
4618 }
4619 break;
4620 default:
4621 break;
4622 }
4623 }
4624
4625
4626 /* From section 4.3.4 of the GLSL 4.00 spec:
4627 * "Input variables may not be declared using the patch in qualifier
4628 * in tessellation control or geometry shaders."
4629 *
4630 * From section 4.3.6 of the GLSL 4.00 spec:
4631 * "It is an error to use patch out in a vertex, tessellation
4632 * evaluation, or geometry shader."
4633 *
4634 * This doesn't explicitly forbid using them in a fragment shader, but
4635 * that's probably just an oversight.
4636 */
4637 if (state->stage != MESA_SHADER_TESS_EVAL
4638 && this->type->qualifier.flags.q.patch
4639 && this->type->qualifier.flags.q.in) {
4640
4641 _mesa_glsl_error(&loc, state, "'patch in' can only be used in a "
4642 "tessellation evaluation shader");
4643 }
4644
4645 if (state->stage != MESA_SHADER_TESS_CTRL
4646 && this->type->qualifier.flags.q.patch
4647 && this->type->qualifier.flags.q.out) {
4648
4649 _mesa_glsl_error(&loc, state, "'patch out' can only be used in a "
4650 "tessellation control shader");
4651 }
4652
4653 /* Precision qualifiers exists only in GLSL versions 1.00 and >= 1.30.
4654 */
4655 if (this->type->qualifier.precision != ast_precision_none) {
4656 state->check_precision_qualifiers_allowed(&loc);
4657 }
4658
4659
4660 /* If a precision qualifier is allowed on a type, it is allowed on
4661 * an array of that type.
4662 */
4663 if (!(this->type->qualifier.precision == ast_precision_none
4664 || precision_qualifier_allowed(var->type->without_array()))) {
4665
4666 _mesa_glsl_error(&loc, state,
4667 "precision qualifiers apply only to floating point"
4668 ", integer and opaque types");
4669 }
4670
4671 /* From section 4.1.7 of the GLSL 4.40 spec:
4672 *
4673 * "[Opaque types] can only be declared as function
4674 * parameters or uniform-qualified variables."
4675 */
4676 if (var_type->contains_opaque() &&
4677 !this->type->qualifier.flags.q.uniform) {
4678 _mesa_glsl_error(&loc, state,
4679 "opaque variables must be declared uniform");
4680 }
4681
4682 /* Process the initializer and add its instructions to a temporary
4683 * list. This list will be added to the instruction stream (below) after
4684 * the declaration is added. This is done because in some cases (such as
4685 * redeclarations) the declaration may not actually be added to the
4686 * instruction stream.
4687 */
4688 exec_list initializer_instructions;
4689
4690 /* Examine var name here since var may get deleted in the next call */
4691 bool var_is_gl_id = is_gl_identifier(var->name);
4692
4693 ir_variable *earlier =
4694 get_variable_being_redeclared(var, decl->get_location(), state,
4695 false /* allow_all_redeclarations */);
4696 if (earlier != NULL) {
4697 if (var_is_gl_id &&
4698 earlier->data.how_declared == ir_var_declared_in_block) {
4699 _mesa_glsl_error(&loc, state,
4700 "`%s' has already been redeclared using "
4701 "gl_PerVertex", earlier->name);
4702 }
4703 earlier->data.how_declared = ir_var_declared_normally;
4704 }
4705
4706 if (decl->initializer != NULL) {
4707 result = process_initializer((earlier == NULL) ? var : earlier,
4708 decl, this->type,
4709 &initializer_instructions, state);
4710 } else {
4711 validate_array_dimensions(var_type, state, &loc);
4712 }
4713
4714 /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
4715 *
4716 * "It is an error to write to a const variable outside of
4717 * its declaration, so they must be initialized when
4718 * declared."
4719 */
4720 if (this->type->qualifier.flags.q.constant && decl->initializer == NULL) {
4721 _mesa_glsl_error(& loc, state,
4722 "const declaration of `%s' must be initialized",
4723 decl->identifier);
4724 }
4725
4726 if (state->es_shader) {
4727 const glsl_type *const t = (earlier == NULL)
4728 ? var->type : earlier->type;
4729
4730 if (t->is_unsized_array())
4731 /* Section 10.17 of the GLSL ES 1.00 specification states that
4732 * unsized array declarations have been removed from the language.
4733 * Arrays that are sized using an initializer are still explicitly
4734 * sized. However, GLSL ES 1.00 does not allow array
4735 * initializers. That is only allowed in GLSL ES 3.00.
4736 *
4737 * Section 4.1.9 (Arrays) of the GLSL ES 3.00 spec says:
4738 *
4739 * "An array type can also be formed without specifying a size
4740 * if the definition includes an initializer:
4741 *
4742 * float x[] = float[2] (1.0, 2.0); // declares an array of size 2
4743 * float y[] = float[] (1.0, 2.0, 3.0); // declares an array of size 3
4744 *
4745 * float a[5];
4746 * float b[] = a;"
4747 */
4748 _mesa_glsl_error(& loc, state,
4749 "unsized array declarations are not allowed in "
4750 "GLSL ES");
4751 }
4752
4753 /* If the declaration is not a redeclaration, there are a few additional
4754 * semantic checks that must be applied. In addition, variable that was
4755 * created for the declaration should be added to the IR stream.
4756 */
4757 if (earlier == NULL) {
4758 validate_identifier(decl->identifier, loc, state);
4759
4760 /* Add the variable to the symbol table. Note that the initializer's
4761 * IR was already processed earlier (though it hasn't been emitted
4762 * yet), without the variable in scope.
4763 *
4764 * This differs from most C-like languages, but it follows the GLSL
4765 * specification. From page 28 (page 34 of the PDF) of the GLSL 1.50
4766 * spec:
4767 *
4768 * "Within a declaration, the scope of a name starts immediately
4769 * after the initializer if present or immediately after the name
4770 * being declared if not."
4771 */
4772 if (!state->symbols->add_variable(var)) {
4773 YYLTYPE loc = this->get_location();
4774 _mesa_glsl_error(&loc, state, "name `%s' already taken in the "
4775 "current scope", decl->identifier);
4776 continue;
4777 }
4778
4779 /* Push the variable declaration to the top. It means that all the
4780 * variable declarations will appear in a funny last-to-first order,
4781 * but otherwise we run into trouble if a function is prototyped, a
4782 * global var is decled, then the function is defined with usage of
4783 * the global var. See glslparsertest's CorrectModule.frag.
4784 */
4785 instructions->push_head(var);
4786 }
4787
4788 instructions->append_list(&initializer_instructions);
4789 }
4790
4791
4792 /* Generally, variable declarations do not have r-values. However,
4793 * one is used for the declaration in
4794 *
4795 * while (bool b = some_condition()) {
4796 * ...
4797 * }
4798 *
4799 * so we return the rvalue from the last seen declaration here.
4800 */
4801 return result;
4802 }
4803
4804
4805 ir_rvalue *
4806 ast_parameter_declarator::hir(exec_list *instructions,
4807 struct _mesa_glsl_parse_state *state)
4808 {
4809 void *ctx = state;
4810 const struct glsl_type *type;
4811 const char *name = NULL;
4812 YYLTYPE loc = this->get_location();
4813
4814 type = this->type->glsl_type(& name, state);
4815
4816 if (type == NULL) {
4817 if (name != NULL) {
4818 _mesa_glsl_error(& loc, state,
4819 "invalid type `%s' in declaration of `%s'",
4820 name, this->identifier);
4821 } else {
4822 _mesa_glsl_error(& loc, state,
4823 "invalid type in declaration of `%s'",
4824 this->identifier);
4825 }
4826
4827 type = glsl_type::error_type;
4828 }
4829
4830 /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
4831 *
4832 * "Functions that accept no input arguments need not use void in the
4833 * argument list because prototypes (or definitions) are required and
4834 * therefore there is no ambiguity when an empty argument list "( )" is
4835 * declared. The idiom "(void)" as a parameter list is provided for
4836 * convenience."
4837 *
4838 * Placing this check here prevents a void parameter being set up
4839 * for a function, which avoids tripping up checks for main taking
4840 * parameters and lookups of an unnamed symbol.
4841 */
4842 if (type->is_void()) {
4843 if (this->identifier != NULL)
4844 _mesa_glsl_error(& loc, state,
4845 "named parameter cannot have type `void'");
4846
4847 is_void = true;
4848 return NULL;
4849 }
4850
4851 if (formal_parameter && (this->identifier == NULL)) {
4852 _mesa_glsl_error(& loc, state, "formal parameter lacks a name");
4853 return NULL;
4854 }
4855
4856 /* This only handles "vec4 foo[..]". The earlier specifier->glsl_type(...)
4857 * call already handled the "vec4[..] foo" case.
4858 */
4859 type = process_array_type(&loc, type, this->array_specifier, state);
4860
4861 if (!type->is_error() && type->is_unsized_array()) {
4862 _mesa_glsl_error(&loc, state, "arrays passed as parameters must have "
4863 "a declared size");
4864 type = glsl_type::error_type;
4865 }
4866
4867 is_void = false;
4868 ir_variable *var = new(ctx)
4869 ir_variable(type, this->identifier, ir_var_function_in);
4870
4871 /* Apply any specified qualifiers to the parameter declaration. Note that
4872 * for function parameters the default mode is 'in'.
4873 */
4874 apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc,
4875 true);
4876
4877 /* From section 4.1.7 of the GLSL 4.40 spec:
4878 *
4879 * "Opaque variables cannot be treated as l-values; hence cannot
4880 * be used as out or inout function parameters, nor can they be
4881 * assigned into."
4882 */
4883 if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
4884 && type->contains_opaque()) {
4885 _mesa_glsl_error(&loc, state, "out and inout parameters cannot "
4886 "contain opaque variables");
4887 type = glsl_type::error_type;
4888 }
4889
4890 /* From page 39 (page 45 of the PDF) of the GLSL 1.10 spec:
4891 *
4892 * "When calling a function, expressions that do not evaluate to
4893 * l-values cannot be passed to parameters declared as out or inout."
4894 *
4895 * From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
4896 *
4897 * "Other binary or unary expressions, non-dereferenced arrays,
4898 * function names, swizzles with repeated fields, and constants
4899 * cannot be l-values."
4900 *
4901 * So for GLSL 1.10, passing an array as an out or inout parameter is not
4902 * allowed. This restriction is removed in GLSL 1.20, and in GLSL ES.
4903 */
4904 if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
4905 && type->is_array()
4906 && !state->check_version(120, 100, &loc,
4907 "arrays cannot be out or inout parameters")) {
4908 type = glsl_type::error_type;
4909 }
4910
4911 instructions->push_tail(var);
4912
4913 /* Parameter declarations do not have r-values.
4914 */
4915 return NULL;
4916 }
4917
4918
4919 void
4920 ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters,
4921 bool formal,
4922 exec_list *ir_parameters,
4923 _mesa_glsl_parse_state *state)
4924 {
4925 ast_parameter_declarator *void_param = NULL;
4926 unsigned count = 0;
4927
4928 foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) {
4929 param->formal_parameter = formal;
4930 param->hir(ir_parameters, state);
4931
4932 if (param->is_void)
4933 void_param = param;
4934
4935 count++;
4936 }
4937
4938 if ((void_param != NULL) && (count > 1)) {
4939 YYLTYPE loc = void_param->get_location();
4940
4941 _mesa_glsl_error(& loc, state,
4942 "`void' parameter must be only parameter");
4943 }
4944 }
4945
4946
4947 void
4948 emit_function(_mesa_glsl_parse_state *state, ir_function *f)
4949 {
4950 /* IR invariants disallow function declarations or definitions
4951 * nested within other function definitions. But there is no
4952 * requirement about the relative order of function declarations
4953 * and definitions with respect to one another. So simply insert
4954 * the new ir_function block at the end of the toplevel instruction
4955 * list.
4956 */
4957 state->toplevel_ir->push_tail(f);
4958 }
4959
4960
4961 ir_rvalue *
4962 ast_function::hir(exec_list *instructions,
4963 struct _mesa_glsl_parse_state *state)
4964 {
4965 void *ctx = state;
4966 ir_function *f = NULL;
4967 ir_function_signature *sig = NULL;
4968 exec_list hir_parameters;
4969 YYLTYPE loc = this->get_location();
4970
4971 const char *const name = identifier;
4972
4973 /* New functions are always added to the top-level IR instruction stream,
4974 * so this instruction list pointer is ignored. See also emit_function
4975 * (called below).
4976 */
4977 (void) instructions;
4978
4979 /* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec,
4980 *
4981 * "Function declarations (prototypes) cannot occur inside of functions;
4982 * they must be at global scope, or for the built-in functions, outside
4983 * the global scope."
4984 *
4985 * From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec,
4986 *
4987 * "User defined functions may only be defined within the global scope."
4988 *
4989 * Note that this language does not appear in GLSL 1.10.
4990 */
4991 if ((state->current_function != NULL) &&
4992 state->is_version(120, 100)) {
4993 YYLTYPE loc = this->get_location();
4994 _mesa_glsl_error(&loc, state,
4995 "declaration of function `%s' not allowed within "
4996 "function body", name);
4997 }
4998
4999 validate_identifier(name, this->get_location(), state);
5000
5001 /* Convert the list of function parameters to HIR now so that they can be
5002 * used below to compare this function's signature with previously seen
5003 * signatures for functions with the same name.
5004 */
5005 ast_parameter_declarator::parameters_to_hir(& this->parameters,
5006 is_definition,
5007 & hir_parameters, state);
5008
5009 const char *return_type_name;
5010 const glsl_type *return_type =
5011 this->return_type->glsl_type(& return_type_name, state);
5012
5013 if (!return_type) {
5014 YYLTYPE loc = this->get_location();
5015 _mesa_glsl_error(&loc, state,
5016 "function `%s' has undeclared return type `%s'",
5017 name, return_type_name);
5018 return_type = glsl_type::error_type;
5019 }
5020
5021 /* ARB_shader_subroutine states:
5022 * "Subroutine declarations cannot be prototyped. It is an error to prepend
5023 * subroutine(...) to a function declaration."
5024 */
5025 if (this->return_type->qualifier.flags.q.subroutine_def && !is_definition) {
5026 YYLTYPE loc = this->get_location();
5027 _mesa_glsl_error(&loc, state,
5028 "function declaration `%s' cannot have subroutine prepended",
5029 name);
5030 }
5031
5032 /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec:
5033 * "No qualifier is allowed on the return type of a function."
5034 */
5035 if (this->return_type->has_qualifiers()) {
5036 YYLTYPE loc = this->get_location();
5037 _mesa_glsl_error(& loc, state,
5038 "function `%s' return type has qualifiers", name);
5039 }
5040
5041 /* Section 6.1 (Function Definitions) of the GLSL 1.20 spec says:
5042 *
5043 * "Arrays are allowed as arguments and as the return type. In both
5044 * cases, the array must be explicitly sized."
5045 */
5046 if (return_type->is_unsized_array()) {
5047 YYLTYPE loc = this->get_location();
5048 _mesa_glsl_error(& loc, state,
5049 "function `%s' return type array must be explicitly "
5050 "sized", name);
5051 }
5052
5053 /* From section 4.1.7 of the GLSL 4.40 spec:
5054 *
5055 * "[Opaque types] can only be declared as function parameters
5056 * or uniform-qualified variables."
5057 */
5058 if (return_type->contains_opaque()) {
5059 YYLTYPE loc = this->get_location();
5060 _mesa_glsl_error(&loc, state,
5061 "function `%s' return type can't contain an opaque type",
5062 name);
5063 }
5064
5065 /* Create an ir_function if one doesn't already exist. */
5066 f = state->symbols->get_function(name);
5067 if (f == NULL) {
5068 f = new(ctx) ir_function(name);
5069 if (!this->return_type->qualifier.flags.q.subroutine) {
5070 if (!state->symbols->add_function(f)) {
5071 /* This function name shadows a non-function use of the same name. */
5072 YYLTYPE loc = this->get_location();
5073 _mesa_glsl_error(&loc, state, "function name `%s' conflicts with "
5074 "non-function", name);
5075 return NULL;
5076 }
5077 }
5078 emit_function(state, f);
5079 }
5080
5081 /* From GLSL ES 3.0 spec, chapter 6.1 "Function Definitions", page 71:
5082 *
5083 * "A shader cannot redefine or overload built-in functions."
5084 *
5085 * While in GLSL ES 1.0 specification, chapter 8 "Built-in Functions":
5086 *
5087 * "User code can overload the built-in functions but cannot redefine
5088 * them."
5089 */
5090 if (state->es_shader && state->language_version >= 300) {
5091 /* Local shader has no exact candidates; check the built-ins. */
5092 _mesa_glsl_initialize_builtin_functions();
5093 if (_mesa_glsl_find_builtin_function_by_name(name)) {
5094 YYLTYPE loc = this->get_location();
5095 _mesa_glsl_error(& loc, state,
5096 "A shader cannot redefine or overload built-in "
5097 "function `%s' in GLSL ES 3.00", name);
5098 return NULL;
5099 }
5100 }
5101
5102 /* Verify that this function's signature either doesn't match a previously
5103 * seen signature for a function with the same name, or, if a match is found,
5104 * that the previously seen signature does not have an associated definition.
5105 */
5106 if (state->es_shader || f->has_user_signature()) {
5107 sig = f->exact_matching_signature(state, &hir_parameters);
5108 if (sig != NULL) {
5109 const char *badvar = sig->qualifiers_match(&hir_parameters);
5110 if (badvar != NULL) {
5111 YYLTYPE loc = this->get_location();
5112
5113 _mesa_glsl_error(&loc, state, "function `%s' parameter `%s' "
5114 "qualifiers don't match prototype", name, badvar);
5115 }
5116
5117 if (sig->return_type != return_type) {
5118 YYLTYPE loc = this->get_location();
5119
5120 _mesa_glsl_error(&loc, state, "function `%s' return type doesn't "
5121 "match prototype", name);
5122 }
5123
5124 if (sig->is_defined) {
5125 if (is_definition) {
5126 YYLTYPE loc = this->get_location();
5127 _mesa_glsl_error(& loc, state, "function `%s' redefined", name);
5128 } else {
5129 /* We just encountered a prototype that exactly matches a
5130 * function that's already been defined. This is redundant,
5131 * and we should ignore it.
5132 */
5133 return NULL;
5134 }
5135 }
5136 }
5137 }
5138
5139 /* Verify the return type of main() */
5140 if (strcmp(name, "main") == 0) {
5141 if (! return_type->is_void()) {
5142 YYLTYPE loc = this->get_location();
5143
5144 _mesa_glsl_error(& loc, state, "main() must return void");
5145 }
5146
5147 if (!hir_parameters.is_empty()) {
5148 YYLTYPE loc = this->get_location();
5149
5150 _mesa_glsl_error(& loc, state, "main() must not take any parameters");
5151 }
5152 }
5153
5154 /* Finish storing the information about this new function in its signature.
5155 */
5156 if (sig == NULL) {
5157 sig = new(ctx) ir_function_signature(return_type);
5158 f->add_signature(sig);
5159 }
5160
5161 sig->replace_parameters(&hir_parameters);
5162 signature = sig;
5163
5164 if (this->return_type->qualifier.flags.q.subroutine_def) {
5165 int idx;
5166
5167 f->num_subroutine_types = this->return_type->qualifier.subroutine_list->declarations.length();
5168 f->subroutine_types = ralloc_array(state, const struct glsl_type *,
5169 f->num_subroutine_types);
5170 idx = 0;
5171 foreach_list_typed(ast_declaration, decl, link, &this->return_type->qualifier.subroutine_list->declarations) {
5172 const struct glsl_type *type;
5173 /* the subroutine type must be already declared */
5174 type = state->symbols->get_type(decl->identifier);
5175 if (!type) {
5176 _mesa_glsl_error(& loc, state, "unknown type '%s' in subroutine function definition", decl->identifier);
5177 }
5178 f->subroutine_types[idx++] = type;
5179 }
5180 state->subroutines = (ir_function **)reralloc(state, state->subroutines,
5181 ir_function *,
5182 state->num_subroutines + 1);
5183 state->subroutines[state->num_subroutines] = f;
5184 state->num_subroutines++;
5185
5186 }
5187
5188 if (this->return_type->qualifier.flags.q.subroutine) {
5189 if (!state->symbols->add_type(this->identifier, glsl_type::get_subroutine_instance(this->identifier))) {
5190 _mesa_glsl_error(& loc, state, "type '%s' previously defined", this->identifier);
5191 return NULL;
5192 }
5193 state->subroutine_types = (ir_function **)reralloc(state, state->subroutine_types,
5194 ir_function *,
5195 state->num_subroutine_types + 1);
5196 state->subroutine_types[state->num_subroutine_types] = f;
5197 state->num_subroutine_types++;
5198
5199 f->is_subroutine = true;
5200 }
5201
5202 /* Function declarations (prototypes) do not have r-values.
5203 */
5204 return NULL;
5205 }
5206
5207
5208 ir_rvalue *
5209 ast_function_definition::hir(exec_list *instructions,
5210 struct _mesa_glsl_parse_state *state)
5211 {
5212 prototype->is_definition = true;
5213 prototype->hir(instructions, state);
5214
5215 ir_function_signature *signature = prototype->signature;
5216 if (signature == NULL)
5217 return NULL;
5218
5219 assert(state->current_function == NULL);
5220 state->current_function = signature;
5221 state->found_return = false;
5222
5223 /* Duplicate parameters declared in the prototype as concrete variables.
5224 * Add these to the symbol table.
5225 */
5226 state->symbols->push_scope();
5227 foreach_in_list(ir_variable, var, &signature->parameters) {
5228 assert(var->as_variable() != NULL);
5229
5230 /* The only way a parameter would "exist" is if two parameters have
5231 * the same name.
5232 */
5233 if (state->symbols->name_declared_this_scope(var->name)) {
5234 YYLTYPE loc = this->get_location();
5235
5236 _mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name);
5237 } else {
5238 state->symbols->add_variable(var);
5239 }
5240 }
5241
5242 /* Convert the body of the function to HIR. */
5243 this->body->hir(&signature->body, state);
5244 signature->is_defined = true;
5245
5246 state->symbols->pop_scope();
5247
5248 assert(state->current_function == signature);
5249 state->current_function = NULL;
5250
5251 if (!signature->return_type->is_void() && !state->found_return) {
5252 YYLTYPE loc = this->get_location();
5253 _mesa_glsl_error(& loc, state, "function `%s' has non-void return type "
5254 "%s, but no return statement",
5255 signature->function_name(),
5256 signature->return_type->name);
5257 }
5258
5259 /* Function definitions do not have r-values.
5260 */
5261 return NULL;
5262 }
5263
5264
5265 ir_rvalue *
5266 ast_jump_statement::hir(exec_list *instructions,
5267 struct _mesa_glsl_parse_state *state)
5268 {
5269 void *ctx = state;
5270
5271 switch (mode) {
5272 case ast_return: {
5273 ir_return *inst;
5274 assert(state->current_function);
5275
5276 if (opt_return_value) {
5277 ir_rvalue *ret = opt_return_value->hir(instructions, state);
5278
5279 /* The value of the return type can be NULL if the shader says
5280 * 'return foo();' and foo() is a function that returns void.
5281 *
5282 * NOTE: The GLSL spec doesn't say that this is an error. The type
5283 * of the return value is void. If the return type of the function is
5284 * also void, then this should compile without error. Seriously.
5285 */
5286 const glsl_type *const ret_type =
5287 (ret == NULL) ? glsl_type::void_type : ret->type;
5288
5289 /* Implicit conversions are not allowed for return values prior to
5290 * ARB_shading_language_420pack.
5291 */
5292 if (state->current_function->return_type != ret_type) {
5293 YYLTYPE loc = this->get_location();
5294
5295 if (state->ARB_shading_language_420pack_enable) {
5296 if (!apply_implicit_conversion(state->current_function->return_type,
5297 ret, state)) {
5298 _mesa_glsl_error(& loc, state,
5299 "could not implicitly convert return value "
5300 "to %s, in function `%s'",
5301 state->current_function->return_type->name,
5302 state->current_function->function_name());
5303 }
5304 } else {
5305 _mesa_glsl_error(& loc, state,
5306 "`return' with wrong type %s, in function `%s' "
5307 "returning %s",
5308 ret_type->name,
5309 state->current_function->function_name(),
5310 state->current_function->return_type->name);
5311 }
5312 } else if (state->current_function->return_type->base_type ==
5313 GLSL_TYPE_VOID) {
5314 YYLTYPE loc = this->get_location();
5315
5316 /* The ARB_shading_language_420pack, GLSL ES 3.0, and GLSL 4.20
5317 * specs add a clarification:
5318 *
5319 * "A void function can only use return without a return argument, even if
5320 * the return argument has void type. Return statements only accept values:
5321 *
5322 * void func1() { }
5323 * void func2() { return func1(); } // illegal return statement"
5324 */
5325 _mesa_glsl_error(& loc, state,
5326 "void functions can only use `return' without a "
5327 "return argument");
5328 }
5329
5330 inst = new(ctx) ir_return(ret);
5331 } else {
5332 if (state->current_function->return_type->base_type !=
5333 GLSL_TYPE_VOID) {
5334 YYLTYPE loc = this->get_location();
5335
5336 _mesa_glsl_error(& loc, state,
5337 "`return' with no value, in function %s returning "
5338 "non-void",
5339 state->current_function->function_name());
5340 }
5341 inst = new(ctx) ir_return;
5342 }
5343
5344 state->found_return = true;
5345 instructions->push_tail(inst);
5346 break;
5347 }
5348
5349 case ast_discard:
5350 if (state->stage != MESA_SHADER_FRAGMENT) {
5351 YYLTYPE loc = this->get_location();
5352
5353 _mesa_glsl_error(& loc, state,
5354 "`discard' may only appear in a fragment shader");
5355 }
5356 instructions->push_tail(new(ctx) ir_discard);
5357 break;
5358
5359 case ast_break:
5360 case ast_continue:
5361 if (mode == ast_continue &&
5362 state->loop_nesting_ast == NULL) {
5363 YYLTYPE loc = this->get_location();
5364
5365 _mesa_glsl_error(& loc, state, "continue may only appear in a loop");
5366 } else if (mode == ast_break &&
5367 state->loop_nesting_ast == NULL &&
5368 state->switch_state.switch_nesting_ast == NULL) {
5369 YYLTYPE loc = this->get_location();
5370
5371 _mesa_glsl_error(& loc, state,
5372 "break may only appear in a loop or a switch");
5373 } else {
5374 /* For a loop, inline the for loop expression again, since we don't
5375 * know where near the end of the loop body the normal copy of it is
5376 * going to be placed. Same goes for the condition for a do-while
5377 * loop.
5378 */
5379 if (state->loop_nesting_ast != NULL &&
5380 mode == ast_continue && !state->switch_state.is_switch_innermost) {
5381 if (state->loop_nesting_ast->rest_expression) {
5382 state->loop_nesting_ast->rest_expression->hir(instructions,
5383 state);
5384 }
5385 if (state->loop_nesting_ast->mode ==
5386 ast_iteration_statement::ast_do_while) {
5387 state->loop_nesting_ast->condition_to_hir(instructions, state);
5388 }
5389 }
5390
5391 if (state->switch_state.is_switch_innermost &&
5392 mode == ast_continue) {
5393 /* Set 'continue_inside' to true. */
5394 ir_rvalue *const true_val = new (ctx) ir_constant(true);
5395 ir_dereference_variable *deref_continue_inside_var =
5396 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
5397 instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
5398 true_val));
5399
5400 /* Break out from the switch, continue for the loop will
5401 * be called right after switch. */
5402 ir_loop_jump *const jump =
5403 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
5404 instructions->push_tail(jump);
5405
5406 } else if (state->switch_state.is_switch_innermost &&
5407 mode == ast_break) {
5408 /* Force break out of switch by inserting a break. */
5409 ir_loop_jump *const jump =
5410 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
5411 instructions->push_tail(jump);
5412 } else {
5413 ir_loop_jump *const jump =
5414 new(ctx) ir_loop_jump((mode == ast_break)
5415 ? ir_loop_jump::jump_break
5416 : ir_loop_jump::jump_continue);
5417 instructions->push_tail(jump);
5418 }
5419 }
5420
5421 break;
5422 }
5423
5424 /* Jump instructions do not have r-values.
5425 */
5426 return NULL;
5427 }
5428
5429
5430 ir_rvalue *
5431 ast_selection_statement::hir(exec_list *instructions,
5432 struct _mesa_glsl_parse_state *state)
5433 {
5434 void *ctx = state;
5435
5436 ir_rvalue *const condition = this->condition->hir(instructions, state);
5437
5438 /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
5439 *
5440 * "Any expression whose type evaluates to a Boolean can be used as the
5441 * conditional expression bool-expression. Vector types are not accepted
5442 * as the expression to if."
5443 *
5444 * The checks are separated so that higher quality diagnostics can be
5445 * generated for cases where both rules are violated.
5446 */
5447 if (!condition->type->is_boolean() || !condition->type->is_scalar()) {
5448 YYLTYPE loc = this->condition->get_location();
5449
5450 _mesa_glsl_error(& loc, state, "if-statement condition must be scalar "
5451 "boolean");
5452 }
5453
5454 ir_if *const stmt = new(ctx) ir_if(condition);
5455
5456 if (then_statement != NULL) {
5457 state->symbols->push_scope();
5458 then_statement->hir(& stmt->then_instructions, state);
5459 state->symbols->pop_scope();
5460 }
5461
5462 if (else_statement != NULL) {
5463 state->symbols->push_scope();
5464 else_statement->hir(& stmt->else_instructions, state);
5465 state->symbols->pop_scope();
5466 }
5467
5468 instructions->push_tail(stmt);
5469
5470 /* if-statements do not have r-values.
5471 */
5472 return NULL;
5473 }
5474
5475
5476 ir_rvalue *
5477 ast_switch_statement::hir(exec_list *instructions,
5478 struct _mesa_glsl_parse_state *state)
5479 {
5480 void *ctx = state;
5481
5482 ir_rvalue *const test_expression =
5483 this->test_expression->hir(instructions, state);
5484
5485 /* From page 66 (page 55 of the PDF) of the GLSL 1.50 spec:
5486 *
5487 * "The type of init-expression in a switch statement must be a
5488 * scalar integer."
5489 */
5490 if (!test_expression->type->is_scalar() ||
5491 !test_expression->type->is_integer()) {
5492 YYLTYPE loc = this->test_expression->get_location();
5493
5494 _mesa_glsl_error(& loc,
5495 state,
5496 "switch-statement expression must be scalar "
5497 "integer");
5498 }
5499
5500 /* Track the switch-statement nesting in a stack-like manner.
5501 */
5502 struct glsl_switch_state saved = state->switch_state;
5503
5504 state->switch_state.is_switch_innermost = true;
5505 state->switch_state.switch_nesting_ast = this;
5506 state->switch_state.labels_ht = hash_table_ctor(0, hash_table_pointer_hash,
5507 hash_table_pointer_compare);
5508 state->switch_state.previous_default = NULL;
5509
5510 /* Initalize is_fallthru state to false.
5511 */
5512 ir_rvalue *const is_fallthru_val = new (ctx) ir_constant(false);
5513 state->switch_state.is_fallthru_var =
5514 new(ctx) ir_variable(glsl_type::bool_type,
5515 "switch_is_fallthru_tmp",
5516 ir_var_temporary);
5517 instructions->push_tail(state->switch_state.is_fallthru_var);
5518
5519 ir_dereference_variable *deref_is_fallthru_var =
5520 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
5521 instructions->push_tail(new(ctx) ir_assignment(deref_is_fallthru_var,
5522 is_fallthru_val));
5523
5524 /* Initialize continue_inside state to false.
5525 */
5526 state->switch_state.continue_inside =
5527 new(ctx) ir_variable(glsl_type::bool_type,
5528 "continue_inside_tmp",
5529 ir_var_temporary);
5530 instructions->push_tail(state->switch_state.continue_inside);
5531
5532 ir_rvalue *const false_val = new (ctx) ir_constant(false);
5533 ir_dereference_variable *deref_continue_inside_var =
5534 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
5535 instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
5536 false_val));
5537
5538 state->switch_state.run_default =
5539 new(ctx) ir_variable(glsl_type::bool_type,
5540 "run_default_tmp",
5541 ir_var_temporary);
5542 instructions->push_tail(state->switch_state.run_default);
5543
5544 /* Loop around the switch is used for flow control. */
5545 ir_loop * loop = new(ctx) ir_loop();
5546 instructions->push_tail(loop);
5547
5548 /* Cache test expression.
5549 */
5550 test_to_hir(&loop->body_instructions, state);
5551
5552 /* Emit code for body of switch stmt.
5553 */
5554 body->hir(&loop->body_instructions, state);
5555
5556 /* Insert a break at the end to exit loop. */
5557 ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
5558 loop->body_instructions.push_tail(jump);
5559
5560 /* If we are inside loop, check if continue got called inside switch. */
5561 if (state->loop_nesting_ast != NULL) {
5562 ir_dereference_variable *deref_continue_inside =
5563 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
5564 ir_if *irif = new(ctx) ir_if(deref_continue_inside);
5565 ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_continue);
5566
5567 if (state->loop_nesting_ast != NULL) {
5568 if (state->loop_nesting_ast->rest_expression) {
5569 state->loop_nesting_ast->rest_expression->hir(&irif->then_instructions,
5570 state);
5571 }
5572 if (state->loop_nesting_ast->mode ==
5573 ast_iteration_statement::ast_do_while) {
5574 state->loop_nesting_ast->condition_to_hir(&irif->then_instructions, state);
5575 }
5576 }
5577 irif->then_instructions.push_tail(jump);
5578 instructions->push_tail(irif);
5579 }
5580
5581 hash_table_dtor(state->switch_state.labels_ht);
5582
5583 state->switch_state = saved;
5584
5585 /* Switch statements do not have r-values. */
5586 return NULL;
5587 }
5588
5589
5590 void
5591 ast_switch_statement::test_to_hir(exec_list *instructions,
5592 struct _mesa_glsl_parse_state *state)
5593 {
5594 void *ctx = state;
5595
5596 /* Cache value of test expression. */
5597 ir_rvalue *const test_val =
5598 test_expression->hir(instructions,
5599 state);
5600
5601 state->switch_state.test_var = new(ctx) ir_variable(test_val->type,
5602 "switch_test_tmp",
5603 ir_var_temporary);
5604 ir_dereference_variable *deref_test_var =
5605 new(ctx) ir_dereference_variable(state->switch_state.test_var);
5606
5607 instructions->push_tail(state->switch_state.test_var);
5608 instructions->push_tail(new(ctx) ir_assignment(deref_test_var, test_val));
5609 }
5610
5611
5612 ir_rvalue *
5613 ast_switch_body::hir(exec_list *instructions,
5614 struct _mesa_glsl_parse_state *state)
5615 {
5616 if (stmts != NULL)
5617 stmts->hir(instructions, state);
5618
5619 /* Switch bodies do not have r-values. */
5620 return NULL;
5621 }
5622
5623 ir_rvalue *
5624 ast_case_statement_list::hir(exec_list *instructions,
5625 struct _mesa_glsl_parse_state *state)
5626 {
5627 exec_list default_case, after_default, tmp;
5628
5629 foreach_list_typed (ast_case_statement, case_stmt, link, & this->cases) {
5630 case_stmt->hir(&tmp, state);
5631
5632 /* Default case. */
5633 if (state->switch_state.previous_default && default_case.is_empty()) {
5634 default_case.append_list(&tmp);
5635 continue;
5636 }
5637
5638 /* If default case found, append 'after_default' list. */
5639 if (!default_case.is_empty())
5640 after_default.append_list(&tmp);
5641 else
5642 instructions->append_list(&tmp);
5643 }
5644
5645 /* Handle the default case. This is done here because default might not be
5646 * the last case. We need to add checks against following cases first to see
5647 * if default should be chosen or not.
5648 */
5649 if (!default_case.is_empty()) {
5650
5651 ir_rvalue *const true_val = new (state) ir_constant(true);
5652 ir_dereference_variable *deref_run_default_var =
5653 new(state) ir_dereference_variable(state->switch_state.run_default);
5654
5655 /* Choose to run default case initially, following conditional
5656 * assignments might change this.
5657 */
5658 ir_assignment *const init_var =
5659 new(state) ir_assignment(deref_run_default_var, true_val);
5660 instructions->push_tail(init_var);
5661
5662 /* Default case was the last one, no checks required. */
5663 if (after_default.is_empty()) {
5664 instructions->append_list(&default_case);
5665 return NULL;
5666 }
5667
5668 foreach_in_list(ir_instruction, ir, &after_default) {
5669 ir_assignment *assign = ir->as_assignment();
5670
5671 if (!assign)
5672 continue;
5673
5674 /* Clone the check between case label and init expression. */
5675 ir_expression *exp = (ir_expression*) assign->condition;
5676 ir_expression *clone = exp->clone(state, NULL);
5677
5678 ir_dereference_variable *deref_var =
5679 new(state) ir_dereference_variable(state->switch_state.run_default);
5680 ir_rvalue *const false_val = new (state) ir_constant(false);
5681
5682 ir_assignment *const set_false =
5683 new(state) ir_assignment(deref_var, false_val, clone);
5684
5685 instructions->push_tail(set_false);
5686 }
5687
5688 /* Append default case and all cases after it. */
5689 instructions->append_list(&default_case);
5690 instructions->append_list(&after_default);
5691 }
5692
5693 /* Case statements do not have r-values. */
5694 return NULL;
5695 }
5696
5697 ir_rvalue *
5698 ast_case_statement::hir(exec_list *instructions,
5699 struct _mesa_glsl_parse_state *state)
5700 {
5701 labels->hir(instructions, state);
5702
5703 /* Guard case statements depending on fallthru state. */
5704 ir_dereference_variable *const deref_fallthru_guard =
5705 new(state) ir_dereference_variable(state->switch_state.is_fallthru_var);
5706 ir_if *const test_fallthru = new(state) ir_if(deref_fallthru_guard);
5707
5708 foreach_list_typed (ast_node, stmt, link, & this->stmts)
5709 stmt->hir(& test_fallthru->then_instructions, state);
5710
5711 instructions->push_tail(test_fallthru);
5712
5713 /* Case statements do not have r-values. */
5714 return NULL;
5715 }
5716
5717
5718 ir_rvalue *
5719 ast_case_label_list::hir(exec_list *instructions,
5720 struct _mesa_glsl_parse_state *state)
5721 {
5722 foreach_list_typed (ast_case_label, label, link, & this->labels)
5723 label->hir(instructions, state);
5724
5725 /* Case labels do not have r-values. */
5726 return NULL;
5727 }
5728
5729 ir_rvalue *
5730 ast_case_label::hir(exec_list *instructions,
5731 struct _mesa_glsl_parse_state *state)
5732 {
5733 void *ctx = state;
5734
5735 ir_dereference_variable *deref_fallthru_var =
5736 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
5737
5738 ir_rvalue *const true_val = new(ctx) ir_constant(true);
5739
5740 /* If not default case, ... */
5741 if (this->test_value != NULL) {
5742 /* Conditionally set fallthru state based on
5743 * comparison of cached test expression value to case label.
5744 */
5745 ir_rvalue *const label_rval = this->test_value->hir(instructions, state);
5746 ir_constant *label_const = label_rval->constant_expression_value();
5747
5748 if (!label_const) {
5749 YYLTYPE loc = this->test_value->get_location();
5750
5751 _mesa_glsl_error(& loc, state,
5752 "switch statement case label must be a "
5753 "constant expression");
5754
5755 /* Stuff a dummy value in to allow processing to continue. */
5756 label_const = new(ctx) ir_constant(0);
5757 } else {
5758 ast_expression *previous_label = (ast_expression *)
5759 hash_table_find(state->switch_state.labels_ht,
5760 (void *)(uintptr_t)label_const->value.u[0]);
5761
5762 if (previous_label) {
5763 YYLTYPE loc = this->test_value->get_location();
5764 _mesa_glsl_error(& loc, state, "duplicate case value");
5765
5766 loc = previous_label->get_location();
5767 _mesa_glsl_error(& loc, state, "this is the previous case label");
5768 } else {
5769 hash_table_insert(state->switch_state.labels_ht,
5770 this->test_value,
5771 (void *)(uintptr_t)label_const->value.u[0]);
5772 }
5773 }
5774
5775 ir_dereference_variable *deref_test_var =
5776 new(ctx) ir_dereference_variable(state->switch_state.test_var);
5777
5778 ir_expression *test_cond = new(ctx) ir_expression(ir_binop_all_equal,
5779 label_const,
5780 deref_test_var);
5781
5782 /*
5783 * From GLSL 4.40 specification section 6.2 ("Selection"):
5784 *
5785 * "The type of the init-expression value in a switch statement must
5786 * be a scalar int or uint. The type of the constant-expression value
5787 * in a case label also must be a scalar int or uint. When any pair
5788 * of these values is tested for "equal value" and the types do not
5789 * match, an implicit conversion will be done to convert the int to a
5790 * uint (see section 4.1.10 “Implicit Conversions”) before the compare
5791 * is done."
5792 */
5793 if (label_const->type != state->switch_state.test_var->type) {
5794 YYLTYPE loc = this->test_value->get_location();
5795
5796 const glsl_type *type_a = label_const->type;
5797 const glsl_type *type_b = state->switch_state.test_var->type;
5798
5799 /* Check if int->uint implicit conversion is supported. */
5800 bool integer_conversion_supported =
5801 glsl_type::int_type->can_implicitly_convert_to(glsl_type::uint_type,
5802 state);
5803
5804 if ((!type_a->is_integer() || !type_b->is_integer()) ||
5805 !integer_conversion_supported) {
5806 _mesa_glsl_error(&loc, state, "type mismatch with switch "
5807 "init-expression and case label (%s != %s)",
5808 type_a->name, type_b->name);
5809 } else {
5810 /* Conversion of the case label. */
5811 if (type_a->base_type == GLSL_TYPE_INT) {
5812 if (!apply_implicit_conversion(glsl_type::uint_type,
5813 test_cond->operands[0], state))
5814 _mesa_glsl_error(&loc, state, "implicit type conversion error");
5815 } else {
5816 /* Conversion of the init-expression value. */
5817 if (!apply_implicit_conversion(glsl_type::uint_type,
5818 test_cond->operands[1], state))
5819 _mesa_glsl_error(&loc, state, "implicit type conversion error");
5820 }
5821 }
5822 }
5823
5824 ir_assignment *set_fallthru_on_test =
5825 new(ctx) ir_assignment(deref_fallthru_var, true_val, test_cond);
5826
5827 instructions->push_tail(set_fallthru_on_test);
5828 } else { /* default case */
5829 if (state->switch_state.previous_default) {
5830 YYLTYPE loc = this->get_location();
5831 _mesa_glsl_error(& loc, state,
5832 "multiple default labels in one switch");
5833
5834 loc = state->switch_state.previous_default->get_location();
5835 _mesa_glsl_error(& loc, state, "this is the first default label");
5836 }
5837 state->switch_state.previous_default = this;
5838
5839 /* Set fallthru condition on 'run_default' bool. */
5840 ir_dereference_variable *deref_run_default =
5841 new(ctx) ir_dereference_variable(state->switch_state.run_default);
5842 ir_rvalue *const cond_true = new(ctx) ir_constant(true);
5843 ir_expression *test_cond = new(ctx) ir_expression(ir_binop_all_equal,
5844 cond_true,
5845 deref_run_default);
5846
5847 /* Set falltrhu state. */
5848 ir_assignment *set_fallthru =
5849 new(ctx) ir_assignment(deref_fallthru_var, true_val, test_cond);
5850
5851 instructions->push_tail(set_fallthru);
5852 }
5853
5854 /* Case statements do not have r-values. */
5855 return NULL;
5856 }
5857
5858 void
5859 ast_iteration_statement::condition_to_hir(exec_list *instructions,
5860 struct _mesa_glsl_parse_state *state)
5861 {
5862 void *ctx = state;
5863
5864 if (condition != NULL) {
5865 ir_rvalue *const cond =
5866 condition->hir(instructions, state);
5867
5868 if ((cond == NULL)
5869 || !cond->type->is_boolean() || !cond->type->is_scalar()) {
5870 YYLTYPE loc = condition->get_location();
5871
5872 _mesa_glsl_error(& loc, state,
5873 "loop condition must be scalar boolean");
5874 } else {
5875 /* As the first code in the loop body, generate a block that looks
5876 * like 'if (!condition) break;' as the loop termination condition.
5877 */
5878 ir_rvalue *const not_cond =
5879 new(ctx) ir_expression(ir_unop_logic_not, cond);
5880
5881 ir_if *const if_stmt = new(ctx) ir_if(not_cond);
5882
5883 ir_jump *const break_stmt =
5884 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
5885
5886 if_stmt->then_instructions.push_tail(break_stmt);
5887 instructions->push_tail(if_stmt);
5888 }
5889 }
5890 }
5891
5892
5893 ir_rvalue *
5894 ast_iteration_statement::hir(exec_list *instructions,
5895 struct _mesa_glsl_parse_state *state)
5896 {
5897 void *ctx = state;
5898
5899 /* For-loops and while-loops start a new scope, but do-while loops do not.
5900 */
5901 if (mode != ast_do_while)
5902 state->symbols->push_scope();
5903
5904 if (init_statement != NULL)
5905 init_statement->hir(instructions, state);
5906
5907 ir_loop *const stmt = new(ctx) ir_loop();
5908 instructions->push_tail(stmt);
5909
5910 /* Track the current loop nesting. */
5911 ast_iteration_statement *nesting_ast = state->loop_nesting_ast;
5912
5913 state->loop_nesting_ast = this;
5914
5915 /* Likewise, indicate that following code is closest to a loop,
5916 * NOT closest to a switch.
5917 */
5918 bool saved_is_switch_innermost = state->switch_state.is_switch_innermost;
5919 state->switch_state.is_switch_innermost = false;
5920
5921 if (mode != ast_do_while)
5922 condition_to_hir(&stmt->body_instructions, state);
5923
5924 if (body != NULL)
5925 body->hir(& stmt->body_instructions, state);
5926
5927 if (rest_expression != NULL)
5928 rest_expression->hir(& stmt->body_instructions, state);
5929
5930 if (mode == ast_do_while)
5931 condition_to_hir(&stmt->body_instructions, state);
5932
5933 if (mode != ast_do_while)
5934 state->symbols->pop_scope();
5935
5936 /* Restore previous nesting before returning. */
5937 state->loop_nesting_ast = nesting_ast;
5938 state->switch_state.is_switch_innermost = saved_is_switch_innermost;
5939
5940 /* Loops do not have r-values.
5941 */
5942 return NULL;
5943 }
5944
5945
5946 /**
5947 * Determine if the given type is valid for establishing a default precision
5948 * qualifier.
5949 *
5950 * From GLSL ES 3.00 section 4.5.4 ("Default Precision Qualifiers"):
5951 *
5952 * "The precision statement
5953 *
5954 * precision precision-qualifier type;
5955 *
5956 * can be used to establish a default precision qualifier. The type field
5957 * can be either int or float or any of the sampler types, and the
5958 * precision-qualifier can be lowp, mediump, or highp."
5959 *
5960 * GLSL ES 1.00 has similar language. GLSL 1.30 doesn't allow precision
5961 * qualifiers on sampler types, but this seems like an oversight (since the
5962 * intention of including these in GLSL 1.30 is to allow compatibility with ES
5963 * shaders). So we allow int, float, and all sampler types regardless of GLSL
5964 * version.
5965 */
5966 static bool
5967 is_valid_default_precision_type(const struct glsl_type *const type)
5968 {
5969 if (type == NULL)
5970 return false;
5971
5972 switch (type->base_type) {
5973 case GLSL_TYPE_INT:
5974 case GLSL_TYPE_FLOAT:
5975 /* "int" and "float" are valid, but vectors and matrices are not. */
5976 return type->vector_elements == 1 && type->matrix_columns == 1;
5977 case GLSL_TYPE_SAMPLER:
5978 case GLSL_TYPE_IMAGE:
5979 case GLSL_TYPE_ATOMIC_UINT:
5980 return true;
5981 default:
5982 return false;
5983 }
5984 }
5985
5986
5987 ir_rvalue *
5988 ast_type_specifier::hir(exec_list *instructions,
5989 struct _mesa_glsl_parse_state *state)
5990 {
5991 if (this->default_precision == ast_precision_none && this->structure == NULL)
5992 return NULL;
5993
5994 YYLTYPE loc = this->get_location();
5995
5996 /* If this is a precision statement, check that the type to which it is
5997 * applied is either float or int.
5998 *
5999 * From section 4.5.3 of the GLSL 1.30 spec:
6000 * "The precision statement
6001 * precision precision-qualifier type;
6002 * can be used to establish a default precision qualifier. The type
6003 * field can be either int or float [...]. Any other types or
6004 * qualifiers will result in an error.
6005 */
6006 if (this->default_precision != ast_precision_none) {
6007 if (!state->check_precision_qualifiers_allowed(&loc))
6008 return NULL;
6009
6010 if (this->structure != NULL) {
6011 _mesa_glsl_error(&loc, state,
6012 "precision qualifiers do not apply to structures");
6013 return NULL;
6014 }
6015
6016 if (this->array_specifier != NULL) {
6017 _mesa_glsl_error(&loc, state,
6018 "default precision statements do not apply to "
6019 "arrays");
6020 return NULL;
6021 }
6022
6023 const struct glsl_type *const type =
6024 state->symbols->get_type(this->type_name);
6025 if (!is_valid_default_precision_type(type)) {
6026 _mesa_glsl_error(&loc, state,
6027 "default precision statements apply only to "
6028 "float, int, and opaque types");
6029 return NULL;
6030 }
6031
6032 if (state->es_shader) {
6033 /* Section 4.5.3 (Default Precision Qualifiers) of the GLSL ES 1.00
6034 * spec says:
6035 *
6036 * "Non-precision qualified declarations will use the precision
6037 * qualifier specified in the most recent precision statement
6038 * that is still in scope. The precision statement has the same
6039 * scoping rules as variable declarations. If it is declared
6040 * inside a compound statement, its effect stops at the end of
6041 * the innermost statement it was declared in. Precision
6042 * statements in nested scopes override precision statements in
6043 * outer scopes. Multiple precision statements for the same basic
6044 * type can appear inside the same scope, with later statements
6045 * overriding earlier statements within that scope."
6046 *
6047 * Default precision specifications follow the same scope rules as
6048 * variables. So, we can track the state of the default precision
6049 * qualifiers in the symbol table, and the rules will just work. This
6050 * is a slight abuse of the symbol table, but it has the semantics
6051 * that we want.
6052 */
6053 state->symbols->add_default_precision_qualifier(this->type_name,
6054 this->default_precision);
6055 }
6056
6057 /* FINISHME: Translate precision statements into IR. */
6058 return NULL;
6059 }
6060
6061 /* _mesa_ast_set_aggregate_type() sets the <structure> field so that
6062 * process_record_constructor() can do type-checking on C-style initializer
6063 * expressions of structs, but ast_struct_specifier should only be translated
6064 * to HIR if it is declaring the type of a structure.
6065 *
6066 * The ->is_declaration field is false for initializers of variables
6067 * declared separately from the struct's type definition.
6068 *
6069 * struct S { ... }; (is_declaration = true)
6070 * struct T { ... } t = { ... }; (is_declaration = true)
6071 * S s = { ... }; (is_declaration = false)
6072 */
6073 if (this->structure != NULL && this->structure->is_declaration)
6074 return this->structure->hir(instructions, state);
6075
6076 return NULL;
6077 }
6078
6079
6080 /**
6081 * Process a structure or interface block tree into an array of structure fields
6082 *
6083 * After parsing, where there are some syntax differnces, structures and
6084 * interface blocks are almost identical. They are similar enough that the
6085 * AST for each can be processed the same way into a set of
6086 * \c glsl_struct_field to describe the members.
6087 *
6088 * If we're processing an interface block, var_mode should be the type of the
6089 * interface block (ir_var_shader_in, ir_var_shader_out, ir_var_uniform or
6090 * ir_var_shader_storage). If we're processing a structure, var_mode should be
6091 * ir_var_auto.
6092 *
6093 * \return
6094 * The number of fields processed. A pointer to the array structure fields is
6095 * stored in \c *fields_ret.
6096 */
6097 unsigned
6098 ast_process_struct_or_iface_block_members(exec_list *instructions,
6099 struct _mesa_glsl_parse_state *state,
6100 exec_list *declarations,
6101 glsl_struct_field **fields_ret,
6102 bool is_interface,
6103 enum glsl_matrix_layout matrix_layout,
6104 bool allow_reserved_names,
6105 ir_variable_mode var_mode,
6106 ast_type_qualifier *layout,
6107 unsigned block_stream)
6108 {
6109 unsigned decl_count = 0;
6110
6111 /* Make an initial pass over the list of fields to determine how
6112 * many there are. Each element in this list is an ast_declarator_list.
6113 * This means that we actually need to count the number of elements in the
6114 * 'declarations' list in each of the elements.
6115 */
6116 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
6117 decl_count += decl_list->declarations.length();
6118 }
6119
6120 /* Allocate storage for the fields and process the field
6121 * declarations. As the declarations are processed, try to also convert
6122 * the types to HIR. This ensures that structure definitions embedded in
6123 * other structure definitions or in interface blocks are processed.
6124 */
6125 glsl_struct_field *const fields = ralloc_array(state, glsl_struct_field,
6126 decl_count);
6127
6128 unsigned i = 0;
6129 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
6130 const char *type_name;
6131 YYLTYPE loc = decl_list->get_location();
6132
6133 decl_list->type->specifier->hir(instructions, state);
6134
6135 /* Section 10.9 of the GLSL ES 1.00 specification states that
6136 * embedded structure definitions have been removed from the language.
6137 */
6138 if (state->es_shader && decl_list->type->specifier->structure != NULL) {
6139 _mesa_glsl_error(&loc, state, "embedded structure definitions are "
6140 "not allowed in GLSL ES 1.00");
6141 }
6142
6143 const glsl_type *decl_type =
6144 decl_list->type->glsl_type(& type_name, state);
6145
6146 const struct ast_type_qualifier *const qual =
6147 &decl_list->type->qualifier;
6148
6149 /* From section 4.3.9 of the GLSL 4.40 spec:
6150 *
6151 * "[In interface blocks] opaque types are not allowed."
6152 *
6153 * It should be impossible for decl_type to be NULL here. Cases that
6154 * might naturally lead to decl_type being NULL, especially for the
6155 * is_interface case, will have resulted in compilation having
6156 * already halted due to a syntax error.
6157 */
6158 assert(decl_type);
6159
6160 if (is_interface && decl_type->contains_opaque()) {
6161 _mesa_glsl_error(&loc, state,
6162 "uniform/buffer in non-default interface block contains "
6163 "opaque variable");
6164 }
6165
6166 if (decl_type->contains_atomic()) {
6167 /* From section 4.1.7.3 of the GLSL 4.40 spec:
6168 *
6169 * "Members of structures cannot be declared as atomic counter
6170 * types."
6171 */
6172 _mesa_glsl_error(&loc, state, "atomic counter in structure, "
6173 "shader storage block or uniform block");
6174 }
6175
6176 if (decl_type->contains_image()) {
6177 /* FINISHME: Same problem as with atomic counters.
6178 * FINISHME: Request clarification from Khronos and add
6179 * FINISHME: spec quotation here.
6180 */
6181 _mesa_glsl_error(&loc, state,
6182 "image in structure, shader storage block or "
6183 "uniform block");
6184 }
6185
6186 if (qual->flags.q.explicit_binding) {
6187 _mesa_glsl_error(&loc, state,
6188 "binding layout qualifier cannot be applied "
6189 "to struct or interface block members");
6190 }
6191
6192 if (qual->flags.q.std140 ||
6193 qual->flags.q.std430 ||
6194 qual->flags.q.packed ||
6195 qual->flags.q.shared) {
6196 _mesa_glsl_error(&loc, state,
6197 "uniform/shader storage block layout qualifiers "
6198 "std140, std430, packed, and shared can only be "
6199 "applied to uniform/shader storage blocks, not "
6200 "members");
6201 }
6202
6203 if (qual->flags.q.constant) {
6204 _mesa_glsl_error(&loc, state,
6205 "const storage qualifier cannot be applied "
6206 "to struct or interface block members");
6207 }
6208
6209 /* From Section 4.4.2.3 (Geometry Outputs) of the GLSL 4.50 spec:
6210 *
6211 * "A block member may be declared with a stream identifier, but
6212 * the specified stream must match the stream associated with the
6213 * containing block."
6214 */
6215 if (qual->flags.q.explicit_stream) {
6216 unsigned qual_stream;
6217 if (process_qualifier_constant(state, &loc, "stream",
6218 qual->stream, &qual_stream) &&
6219 qual_stream != block_stream) {
6220 _mesa_glsl_error(&loc, state, "stream layout qualifier on "
6221 "interface block member does not match "
6222 "the interface block (%d vs %d)", qual->stream,
6223 block_stream);
6224 }
6225 }
6226
6227 if (qual->flags.q.uniform && qual->has_interpolation()) {
6228 _mesa_glsl_error(&loc, state,
6229 "interpolation qualifiers cannot be used "
6230 "with uniform interface blocks");
6231 }
6232
6233 if ((qual->flags.q.uniform || !is_interface) &&
6234 qual->has_auxiliary_storage()) {
6235 _mesa_glsl_error(&loc, state,
6236 "auxiliary storage qualifiers cannot be used "
6237 "in uniform blocks or structures.");
6238 }
6239
6240 if (qual->flags.q.row_major || qual->flags.q.column_major) {
6241 if (!qual->flags.q.uniform && !qual->flags.q.buffer) {
6242 _mesa_glsl_error(&loc, state,
6243 "row_major and column_major can only be "
6244 "applied to interface blocks");
6245 } else
6246 validate_matrix_layout_for_type(state, &loc, decl_type, NULL);
6247 }
6248
6249 if (qual->flags.q.read_only && qual->flags.q.write_only) {
6250 _mesa_glsl_error(&loc, state, "buffer variable can't be both "
6251 "readonly and writeonly.");
6252 }
6253
6254 foreach_list_typed (ast_declaration, decl, link,
6255 &decl_list->declarations) {
6256 YYLTYPE loc = decl->get_location();
6257
6258 if (!allow_reserved_names)
6259 validate_identifier(decl->identifier, loc, state);
6260
6261 const struct glsl_type *field_type =
6262 process_array_type(&loc, decl_type, decl->array_specifier, state);
6263 validate_array_dimensions(field_type, state, &loc);
6264 fields[i].type = field_type;
6265 fields[i].name = decl->identifier;
6266 fields[i].location = -1;
6267 fields[i].interpolation =
6268 interpret_interpolation_qualifier(qual, var_mode, state, &loc);
6269 fields[i].centroid = qual->flags.q.centroid ? 1 : 0;
6270 fields[i].sample = qual->flags.q.sample ? 1 : 0;
6271 fields[i].patch = qual->flags.q.patch ? 1 : 0;
6272 fields[i].precision = qual->precision;
6273
6274 /* Propogate row- / column-major information down the fields of the
6275 * structure or interface block. Structures need this data because
6276 * the structure may contain a structure that contains ... a matrix
6277 * that need the proper layout.
6278 */
6279 if (field_type->without_array()->is_matrix()
6280 || field_type->without_array()->is_record()) {
6281 /* If no layout is specified for the field, inherit the layout
6282 * from the block.
6283 */
6284 fields[i].matrix_layout = matrix_layout;
6285
6286 if (qual->flags.q.row_major)
6287 fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
6288 else if (qual->flags.q.column_major)
6289 fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
6290
6291 /* If we're processing an interface block, the matrix layout must
6292 * be decided by this point.
6293 */
6294 assert(!is_interface
6295 || fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR
6296 || fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_COLUMN_MAJOR);
6297 }
6298
6299 /* Image qualifiers are allowed on buffer variables, which can only
6300 * be defined inside shader storage buffer objects
6301 */
6302 if (layout && var_mode == ir_var_shader_storage) {
6303 /* For readonly and writeonly qualifiers the field definition,
6304 * if set, overwrites the layout qualifier.
6305 */
6306 if (qual->flags.q.read_only) {
6307 fields[i].image_read_only = true;
6308 fields[i].image_write_only = false;
6309 } else if (qual->flags.q.write_only) {
6310 fields[i].image_read_only = false;
6311 fields[i].image_write_only = true;
6312 } else {
6313 fields[i].image_read_only = layout->flags.q.read_only;
6314 fields[i].image_write_only = layout->flags.q.write_only;
6315 }
6316
6317 /* For other qualifiers, we set the flag if either the layout
6318 * qualifier or the field qualifier are set
6319 */
6320 fields[i].image_coherent = qual->flags.q.coherent ||
6321 layout->flags.q.coherent;
6322 fields[i].image_volatile = qual->flags.q._volatile ||
6323 layout->flags.q._volatile;
6324 fields[i].image_restrict = qual->flags.q.restrict_flag ||
6325 layout->flags.q.restrict_flag;
6326 }
6327
6328 i++;
6329 }
6330 }
6331
6332 assert(i == decl_count);
6333
6334 *fields_ret = fields;
6335 return decl_count;
6336 }
6337
6338
6339 ir_rvalue *
6340 ast_struct_specifier::hir(exec_list *instructions,
6341 struct _mesa_glsl_parse_state *state)
6342 {
6343 YYLTYPE loc = this->get_location();
6344
6345 /* Section 4.1.8 (Structures) of the GLSL 1.10 spec says:
6346 *
6347 * "Anonymous structures are not supported; so embedded structures must
6348 * have a declarator. A name given to an embedded struct is scoped at
6349 * the same level as the struct it is embedded in."
6350 *
6351 * The same section of the GLSL 1.20 spec says:
6352 *
6353 * "Anonymous structures are not supported. Embedded structures are not
6354 * supported.
6355 *
6356 * struct S { float f; };
6357 * struct T {
6358 * S; // Error: anonymous structures disallowed
6359 * struct { ... }; // Error: embedded structures disallowed
6360 * S s; // Okay: nested structures with name are allowed
6361 * };"
6362 *
6363 * The GLSL ES 1.00 and 3.00 specs have similar langauge and examples. So,
6364 * we allow embedded structures in 1.10 only.
6365 */
6366 if (state->language_version != 110 && state->struct_specifier_depth != 0)
6367 _mesa_glsl_error(&loc, state,
6368 "embedded structure declarations are not allowed");
6369
6370 state->struct_specifier_depth++;
6371
6372 glsl_struct_field *fields;
6373 unsigned decl_count =
6374 ast_process_struct_or_iface_block_members(instructions,
6375 state,
6376 &this->declarations,
6377 &fields,
6378 false,
6379 GLSL_MATRIX_LAYOUT_INHERITED,
6380 false /* allow_reserved_names */,
6381 ir_var_auto,
6382 NULL,
6383 0 /* for interface only */);
6384
6385 validate_identifier(this->name, loc, state);
6386
6387 const glsl_type *t =
6388 glsl_type::get_record_instance(fields, decl_count, this->name);
6389
6390 if (!state->symbols->add_type(name, t)) {
6391 _mesa_glsl_error(& loc, state, "struct `%s' previously defined", name);
6392 } else {
6393 const glsl_type **s = reralloc(state, state->user_structures,
6394 const glsl_type *,
6395 state->num_user_structures + 1);
6396 if (s != NULL) {
6397 s[state->num_user_structures] = t;
6398 state->user_structures = s;
6399 state->num_user_structures++;
6400 }
6401 }
6402
6403 state->struct_specifier_depth--;
6404
6405 /* Structure type definitions do not have r-values.
6406 */
6407 return NULL;
6408 }
6409
6410
6411 /**
6412 * Visitor class which detects whether a given interface block has been used.
6413 */
6414 class interface_block_usage_visitor : public ir_hierarchical_visitor
6415 {
6416 public:
6417 interface_block_usage_visitor(ir_variable_mode mode, const glsl_type *block)
6418 : mode(mode), block(block), found(false)
6419 {
6420 }
6421
6422 virtual ir_visitor_status visit(ir_dereference_variable *ir)
6423 {
6424 if (ir->var->data.mode == mode && ir->var->get_interface_type() == block) {
6425 found = true;
6426 return visit_stop;
6427 }
6428 return visit_continue;
6429 }
6430
6431 bool usage_found() const
6432 {
6433 return this->found;
6434 }
6435
6436 private:
6437 ir_variable_mode mode;
6438 const glsl_type *block;
6439 bool found;
6440 };
6441
6442 static bool
6443 is_unsized_array_last_element(ir_variable *v)
6444 {
6445 const glsl_type *interface_type = v->get_interface_type();
6446 int length = interface_type->length;
6447
6448 assert(v->type->is_unsized_array());
6449
6450 /* Check if it is the last element of the interface */
6451 if (strcmp(interface_type->fields.structure[length-1].name, v->name) == 0)
6452 return true;
6453 return false;
6454 }
6455
6456 ir_rvalue *
6457 ast_interface_block::hir(exec_list *instructions,
6458 struct _mesa_glsl_parse_state *state)
6459 {
6460 YYLTYPE loc = this->get_location();
6461
6462 /* Interface blocks must be declared at global scope */
6463 if (state->current_function != NULL) {
6464 _mesa_glsl_error(&loc, state,
6465 "Interface block `%s' must be declared "
6466 "at global scope",
6467 this->block_name);
6468 }
6469
6470 if (!this->layout.flags.q.buffer &&
6471 this->layout.flags.q.std430) {
6472 _mesa_glsl_error(&loc, state,
6473 "std430 storage block layout qualifier is supported "
6474 "only for shader storage blocks");
6475 }
6476
6477 /* The ast_interface_block has a list of ast_declarator_lists. We
6478 * need to turn those into ir_variables with an association
6479 * with this uniform block.
6480 */
6481 enum glsl_interface_packing packing;
6482 if (this->layout.flags.q.shared) {
6483 packing = GLSL_INTERFACE_PACKING_SHARED;
6484 } else if (this->layout.flags.q.packed) {
6485 packing = GLSL_INTERFACE_PACKING_PACKED;
6486 } else if (this->layout.flags.q.std430) {
6487 packing = GLSL_INTERFACE_PACKING_STD430;
6488 } else {
6489 /* The default layout is std140.
6490 */
6491 packing = GLSL_INTERFACE_PACKING_STD140;
6492 }
6493
6494 ir_variable_mode var_mode;
6495 const char *iface_type_name;
6496 if (this->layout.flags.q.in) {
6497 var_mode = ir_var_shader_in;
6498 iface_type_name = "in";
6499 } else if (this->layout.flags.q.out) {
6500 var_mode = ir_var_shader_out;
6501 iface_type_name = "out";
6502 } else if (this->layout.flags.q.uniform) {
6503 var_mode = ir_var_uniform;
6504 iface_type_name = "uniform";
6505 } else if (this->layout.flags.q.buffer) {
6506 var_mode = ir_var_shader_storage;
6507 iface_type_name = "buffer";
6508 } else {
6509 var_mode = ir_var_auto;
6510 iface_type_name = "UNKNOWN";
6511 assert(!"interface block layout qualifier not found!");
6512 }
6513
6514 enum glsl_matrix_layout matrix_layout = GLSL_MATRIX_LAYOUT_INHERITED;
6515 if (this->layout.flags.q.row_major)
6516 matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
6517 else if (this->layout.flags.q.column_major)
6518 matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
6519
6520 bool redeclaring_per_vertex = strcmp(this->block_name, "gl_PerVertex") == 0;
6521 exec_list declared_variables;
6522 glsl_struct_field *fields;
6523
6524 /* Treat an interface block as one level of nesting, so that embedded struct
6525 * specifiers will be disallowed.
6526 */
6527 state->struct_specifier_depth++;
6528
6529 /* For blocks that accept memory qualifiers (i.e. shader storage), verify
6530 * that we don't have incompatible qualifiers
6531 */
6532 if (this->layout.flags.q.read_only && this->layout.flags.q.write_only) {
6533 _mesa_glsl_error(&loc, state,
6534 "Interface block sets both readonly and writeonly");
6535 }
6536
6537 unsigned qual_stream;
6538 if (!process_qualifier_constant(state, &loc, "stream", this->layout.stream,
6539 &qual_stream) ||
6540 !validate_stream_qualifier(&loc, state, qual_stream)) {
6541 /* If the stream qualifier is invalid it doesn't make sense to continue
6542 * on and try to compare stream layouts on member variables against it
6543 * so just return early.
6544 */
6545 return NULL;
6546 }
6547
6548 unsigned int num_variables =
6549 ast_process_struct_or_iface_block_members(&declared_variables,
6550 state,
6551 &this->declarations,
6552 &fields,
6553 true,
6554 matrix_layout,
6555 redeclaring_per_vertex,
6556 var_mode,
6557 &this->layout,
6558 qual_stream);
6559
6560 state->struct_specifier_depth--;
6561
6562 if (!redeclaring_per_vertex) {
6563 validate_identifier(this->block_name, loc, state);
6564
6565 /* From section 4.3.9 ("Interface Blocks") of the GLSL 4.50 spec:
6566 *
6567 * "Block names have no other use within a shader beyond interface
6568 * matching; it is a compile-time error to use a block name at global
6569 * scope for anything other than as a block name."
6570 */
6571 ir_variable *var = state->symbols->get_variable(this->block_name);
6572 if (var && !var->type->is_interface()) {
6573 _mesa_glsl_error(&loc, state, "Block name `%s' is "
6574 "already used in the scope.",
6575 this->block_name);
6576 }
6577 }
6578
6579 const glsl_type *earlier_per_vertex = NULL;
6580 if (redeclaring_per_vertex) {
6581 /* Find the previous declaration of gl_PerVertex. If we're redeclaring
6582 * the named interface block gl_in, we can find it by looking at the
6583 * previous declaration of gl_in. Otherwise we can find it by looking
6584 * at the previous decalartion of any of the built-in outputs,
6585 * e.g. gl_Position.
6586 *
6587 * Also check that the instance name and array-ness of the redeclaration
6588 * are correct.
6589 */
6590 switch (var_mode) {
6591 case ir_var_shader_in:
6592 if (ir_variable *earlier_gl_in =
6593 state->symbols->get_variable("gl_in")) {
6594 earlier_per_vertex = earlier_gl_in->get_interface_type();
6595 } else {
6596 _mesa_glsl_error(&loc, state,
6597 "redeclaration of gl_PerVertex input not allowed "
6598 "in the %s shader",
6599 _mesa_shader_stage_to_string(state->stage));
6600 }
6601 if (this->instance_name == NULL ||
6602 strcmp(this->instance_name, "gl_in") != 0 || this->array_specifier == NULL ||
6603 !this->array_specifier->is_single_dimension()) {
6604 _mesa_glsl_error(&loc, state,
6605 "gl_PerVertex input must be redeclared as "
6606 "gl_in[]");
6607 }
6608 break;
6609 case ir_var_shader_out:
6610 if (ir_variable *earlier_gl_Position =
6611 state->symbols->get_variable("gl_Position")) {
6612 earlier_per_vertex = earlier_gl_Position->get_interface_type();
6613 } else if (ir_variable *earlier_gl_out =
6614 state->symbols->get_variable("gl_out")) {
6615 earlier_per_vertex = earlier_gl_out->get_interface_type();
6616 } else {
6617 _mesa_glsl_error(&loc, state,
6618 "redeclaration of gl_PerVertex output not "
6619 "allowed in the %s shader",
6620 _mesa_shader_stage_to_string(state->stage));
6621 }
6622 if (state->stage == MESA_SHADER_TESS_CTRL) {
6623 if (this->instance_name == NULL ||
6624 strcmp(this->instance_name, "gl_out") != 0 || this->array_specifier == NULL) {
6625 _mesa_glsl_error(&loc, state,
6626 "gl_PerVertex output must be redeclared as "
6627 "gl_out[]");
6628 }
6629 } else {
6630 if (this->instance_name != NULL) {
6631 _mesa_glsl_error(&loc, state,
6632 "gl_PerVertex output may not be redeclared with "
6633 "an instance name");
6634 }
6635 }
6636 break;
6637 default:
6638 _mesa_glsl_error(&loc, state,
6639 "gl_PerVertex must be declared as an input or an "
6640 "output");
6641 break;
6642 }
6643
6644 if (earlier_per_vertex == NULL) {
6645 /* An error has already been reported. Bail out to avoid null
6646 * dereferences later in this function.
6647 */
6648 return NULL;
6649 }
6650
6651 /* Copy locations from the old gl_PerVertex interface block. */
6652 for (unsigned i = 0; i < num_variables; i++) {
6653 int j = earlier_per_vertex->field_index(fields[i].name);
6654 if (j == -1) {
6655 _mesa_glsl_error(&loc, state,
6656 "redeclaration of gl_PerVertex must be a subset "
6657 "of the built-in members of gl_PerVertex");
6658 } else {
6659 fields[i].location =
6660 earlier_per_vertex->fields.structure[j].location;
6661 fields[i].interpolation =
6662 earlier_per_vertex->fields.structure[j].interpolation;
6663 fields[i].centroid =
6664 earlier_per_vertex->fields.structure[j].centroid;
6665 fields[i].sample =
6666 earlier_per_vertex->fields.structure[j].sample;
6667 fields[i].patch =
6668 earlier_per_vertex->fields.structure[j].patch;
6669 fields[i].precision =
6670 earlier_per_vertex->fields.structure[j].precision;
6671 }
6672 }
6673
6674 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10
6675 * spec:
6676 *
6677 * If a built-in interface block is redeclared, it must appear in
6678 * the shader before any use of any member included in the built-in
6679 * declaration, or a compilation error will result.
6680 *
6681 * This appears to be a clarification to the behaviour established for
6682 * gl_PerVertex by GLSL 1.50, therefore we implement this behaviour
6683 * regardless of GLSL version.
6684 */
6685 interface_block_usage_visitor v(var_mode, earlier_per_vertex);
6686 v.run(instructions);
6687 if (v.usage_found()) {
6688 _mesa_glsl_error(&loc, state,
6689 "redeclaration of a built-in interface block must "
6690 "appear before any use of any member of the "
6691 "interface block");
6692 }
6693 }
6694
6695 const glsl_type *block_type =
6696 glsl_type::get_interface_instance(fields,
6697 num_variables,
6698 packing,
6699 this->block_name);
6700
6701 if (!state->symbols->add_interface(block_type->name, block_type, var_mode)) {
6702 YYLTYPE loc = this->get_location();
6703 _mesa_glsl_error(&loc, state, "interface block `%s' with type `%s' "
6704 "already taken in the current scope",
6705 this->block_name, iface_type_name);
6706 }
6707
6708 /* Since interface blocks cannot contain statements, it should be
6709 * impossible for the block to generate any instructions.
6710 */
6711 assert(declared_variables.is_empty());
6712
6713 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
6714 *
6715 * Geometry shader input variables get the per-vertex values written
6716 * out by vertex shader output variables of the same names. Since a
6717 * geometry shader operates on a set of vertices, each input varying
6718 * variable (or input block, see interface blocks below) needs to be
6719 * declared as an array.
6720 */
6721 if (state->stage == MESA_SHADER_GEOMETRY && this->array_specifier == NULL &&
6722 var_mode == ir_var_shader_in) {
6723 _mesa_glsl_error(&loc, state, "geometry shader inputs must be arrays");
6724 } else if ((state->stage == MESA_SHADER_TESS_CTRL ||
6725 state->stage == MESA_SHADER_TESS_EVAL) &&
6726 this->array_specifier == NULL &&
6727 var_mode == ir_var_shader_in) {
6728 _mesa_glsl_error(&loc, state, "per-vertex tessellation shader inputs must be arrays");
6729 } else if (state->stage == MESA_SHADER_TESS_CTRL &&
6730 this->array_specifier == NULL &&
6731 var_mode == ir_var_shader_out) {
6732 _mesa_glsl_error(&loc, state, "tessellation control shader outputs must be arrays");
6733 }
6734
6735
6736 /* Page 39 (page 45 of the PDF) of section 4.3.7 in the GLSL ES 3.00 spec
6737 * says:
6738 *
6739 * "If an instance name (instance-name) is used, then it puts all the
6740 * members inside a scope within its own name space, accessed with the
6741 * field selector ( . ) operator (analogously to structures)."
6742 */
6743 if (this->instance_name) {
6744 if (redeclaring_per_vertex) {
6745 /* When a built-in in an unnamed interface block is redeclared,
6746 * get_variable_being_redeclared() calls
6747 * check_builtin_array_max_size() to make sure that built-in array
6748 * variables aren't redeclared to illegal sizes. But we're looking
6749 * at a redeclaration of a named built-in interface block. So we
6750 * have to manually call check_builtin_array_max_size() for all parts
6751 * of the interface that are arrays.
6752 */
6753 for (unsigned i = 0; i < num_variables; i++) {
6754 if (fields[i].type->is_array()) {
6755 const unsigned size = fields[i].type->array_size();
6756 check_builtin_array_max_size(fields[i].name, size, loc, state);
6757 }
6758 }
6759 } else {
6760 validate_identifier(this->instance_name, loc, state);
6761 }
6762
6763 ir_variable *var;
6764
6765 if (this->array_specifier != NULL) {
6766 const glsl_type *block_array_type =
6767 process_array_type(&loc, block_type, this->array_specifier, state);
6768
6769 /* Section 4.3.7 (Interface Blocks) of the GLSL 1.50 spec says:
6770 *
6771 * For uniform blocks declared an array, each individual array
6772 * element corresponds to a separate buffer object backing one
6773 * instance of the block. As the array size indicates the number
6774 * of buffer objects needed, uniform block array declarations
6775 * must specify an array size.
6776 *
6777 * And a few paragraphs later:
6778 *
6779 * Geometry shader input blocks must be declared as arrays and
6780 * follow the array declaration and linking rules for all
6781 * geometry shader inputs. All other input and output block
6782 * arrays must specify an array size.
6783 *
6784 * The same applies to tessellation shaders.
6785 *
6786 * The upshot of this is that the only circumstance where an
6787 * interface array size *doesn't* need to be specified is on a
6788 * geometry shader input, tessellation control shader input,
6789 * tessellation control shader output, and tessellation evaluation
6790 * shader input.
6791 */
6792 if (block_array_type->is_unsized_array()) {
6793 bool allow_inputs = state->stage == MESA_SHADER_GEOMETRY ||
6794 state->stage == MESA_SHADER_TESS_CTRL ||
6795 state->stage == MESA_SHADER_TESS_EVAL;
6796 bool allow_outputs = state->stage == MESA_SHADER_TESS_CTRL;
6797
6798 if (this->layout.flags.q.in) {
6799 if (!allow_inputs)
6800 _mesa_glsl_error(&loc, state,
6801 "unsized input block arrays not allowed in "
6802 "%s shader",
6803 _mesa_shader_stage_to_string(state->stage));
6804 } else if (this->layout.flags.q.out) {
6805 if (!allow_outputs)
6806 _mesa_glsl_error(&loc, state,
6807 "unsized output block arrays not allowed in "
6808 "%s shader",
6809 _mesa_shader_stage_to_string(state->stage));
6810 } else {
6811 /* by elimination, this is a uniform block array */
6812 _mesa_glsl_error(&loc, state,
6813 "unsized uniform block arrays not allowed in "
6814 "%s shader",
6815 _mesa_shader_stage_to_string(state->stage));
6816 }
6817 }
6818
6819 /* From section 4.3.9 (Interface Blocks) of the GLSL ES 3.10 spec:
6820 *
6821 * * Arrays of arrays of blocks are not allowed
6822 */
6823 if (state->es_shader && block_array_type->is_array() &&
6824 block_array_type->fields.array->is_array()) {
6825 _mesa_glsl_error(&loc, state,
6826 "arrays of arrays interface blocks are "
6827 "not allowed");
6828 }
6829
6830 var = new(state) ir_variable(block_array_type,
6831 this->instance_name,
6832 var_mode);
6833 } else {
6834 var = new(state) ir_variable(block_type,
6835 this->instance_name,
6836 var_mode);
6837 }
6838
6839 var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
6840 ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
6841
6842 if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
6843 var->data.read_only = true;
6844
6845 if (state->stage == MESA_SHADER_GEOMETRY && var_mode == ir_var_shader_in)
6846 handle_geometry_shader_input_decl(state, loc, var);
6847 else if ((state->stage == MESA_SHADER_TESS_CTRL ||
6848 state->stage == MESA_SHADER_TESS_EVAL) && var_mode == ir_var_shader_in)
6849 handle_tess_shader_input_decl(state, loc, var);
6850 else if (state->stage == MESA_SHADER_TESS_CTRL && var_mode == ir_var_shader_out)
6851 handle_tess_ctrl_shader_output_decl(state, loc, var);
6852
6853 for (unsigned i = 0; i < num_variables; i++) {
6854 if (fields[i].type->is_unsized_array()) {
6855 if (var_mode == ir_var_shader_storage) {
6856 if (i != (num_variables - 1)) {
6857 _mesa_glsl_error(&loc, state, "unsized array `%s' definition: "
6858 "only last member of a shader storage block "
6859 "can be defined as unsized array",
6860 fields[i].name);
6861 }
6862 } else {
6863 /* From GLSL ES 3.10 spec, section 4.1.9 "Arrays":
6864 *
6865 * "If an array is declared as the last member of a shader storage
6866 * block and the size is not specified at compile-time, it is
6867 * sized at run-time. In all other cases, arrays are sized only
6868 * at compile-time."
6869 */
6870 if (state->es_shader) {
6871 _mesa_glsl_error(&loc, state, "unsized array `%s' definition: "
6872 "only last member of a shader storage block "
6873 "can be defined as unsized array",
6874 fields[i].name);
6875 }
6876 }
6877 }
6878 }
6879
6880 if (ir_variable *earlier =
6881 state->symbols->get_variable(this->instance_name)) {
6882 if (!redeclaring_per_vertex) {
6883 _mesa_glsl_error(&loc, state, "`%s' redeclared",
6884 this->instance_name);
6885 }
6886 earlier->data.how_declared = ir_var_declared_normally;
6887 earlier->type = var->type;
6888 earlier->reinit_interface_type(block_type);
6889 delete var;
6890 } else {
6891 if (this->layout.flags.q.explicit_binding) {
6892 apply_explicit_binding(state, &loc, var,
6893 var->get_interface_type(), &this->layout);
6894 }
6895
6896 var->data.stream = qual_stream;
6897
6898 state->symbols->add_variable(var);
6899 instructions->push_tail(var);
6900 }
6901 } else {
6902 /* In order to have an array size, the block must also be declared with
6903 * an instance name.
6904 */
6905 assert(this->array_specifier == NULL);
6906
6907 for (unsigned i = 0; i < num_variables; i++) {
6908 ir_variable *var =
6909 new(state) ir_variable(fields[i].type,
6910 ralloc_strdup(state, fields[i].name),
6911 var_mode);
6912 var->data.interpolation = fields[i].interpolation;
6913 var->data.centroid = fields[i].centroid;
6914 var->data.sample = fields[i].sample;
6915 var->data.patch = fields[i].patch;
6916 var->data.stream = qual_stream;
6917 var->init_interface_type(block_type);
6918
6919 if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
6920 var->data.read_only = true;
6921
6922 /* Precision qualifiers do not have any meaning in Desktop GLSL */
6923 if (state->es_shader) {
6924 var->data.precision =
6925 select_gles_precision(fields[i].precision, fields[i].type,
6926 state, &loc);
6927 }
6928
6929 if (fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED) {
6930 var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
6931 ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
6932 } else {
6933 var->data.matrix_layout = fields[i].matrix_layout;
6934 }
6935
6936 if (var->data.mode == ir_var_shader_storage) {
6937 var->data.image_read_only = fields[i].image_read_only;
6938 var->data.image_write_only = fields[i].image_write_only;
6939 var->data.image_coherent = fields[i].image_coherent;
6940 var->data.image_volatile = fields[i].image_volatile;
6941 var->data.image_restrict = fields[i].image_restrict;
6942 }
6943
6944 /* Examine var name here since var may get deleted in the next call */
6945 bool var_is_gl_id = is_gl_identifier(var->name);
6946
6947 if (redeclaring_per_vertex) {
6948 ir_variable *earlier =
6949 get_variable_being_redeclared(var, loc, state,
6950 true /* allow_all_redeclarations */);
6951 if (!var_is_gl_id || earlier == NULL) {
6952 _mesa_glsl_error(&loc, state,
6953 "redeclaration of gl_PerVertex can only "
6954 "include built-in variables");
6955 } else if (earlier->data.how_declared == ir_var_declared_normally) {
6956 _mesa_glsl_error(&loc, state,
6957 "`%s' has already been redeclared",
6958 earlier->name);
6959 } else {
6960 earlier->data.how_declared = ir_var_declared_in_block;
6961 earlier->reinit_interface_type(block_type);
6962 }
6963 continue;
6964 }
6965
6966 if (state->symbols->get_variable(var->name) != NULL)
6967 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
6968
6969 /* Propagate the "binding" keyword into this UBO/SSBO's fields.
6970 * The UBO declaration itself doesn't get an ir_variable unless it
6971 * has an instance name. This is ugly.
6972 */
6973 if (this->layout.flags.q.explicit_binding) {
6974 apply_explicit_binding(state, &loc, var,
6975 var->get_interface_type(), &this->layout);
6976 }
6977
6978 if (var->type->is_unsized_array()) {
6979 if (var->is_in_shader_storage_block()) {
6980 if (!is_unsized_array_last_element(var)) {
6981 _mesa_glsl_error(&loc, state, "unsized array `%s' definition: "
6982 "only last member of a shader storage block "
6983 "can be defined as unsized array",
6984 var->name);
6985 }
6986 var->data.from_ssbo_unsized_array = true;
6987 } else {
6988 /* From GLSL ES 3.10 spec, section 4.1.9 "Arrays":
6989 *
6990 * "If an array is declared as the last member of a shader storage
6991 * block and the size is not specified at compile-time, it is
6992 * sized at run-time. In all other cases, arrays are sized only
6993 * at compile-time."
6994 */
6995 if (state->es_shader) {
6996 _mesa_glsl_error(&loc, state, "unsized array `%s' definition: "
6997 "only last member of a shader storage block "
6998 "can be defined as unsized array",
6999 var->name);
7000 }
7001 }
7002 }
7003
7004 state->symbols->add_variable(var);
7005 instructions->push_tail(var);
7006 }
7007
7008 if (redeclaring_per_vertex && block_type != earlier_per_vertex) {
7009 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10 spec:
7010 *
7011 * It is also a compilation error ... to redeclare a built-in
7012 * block and then use a member from that built-in block that was
7013 * not included in the redeclaration.
7014 *
7015 * This appears to be a clarification to the behaviour established
7016 * for gl_PerVertex by GLSL 1.50, therefore we implement this
7017 * behaviour regardless of GLSL version.
7018 *
7019 * To prevent the shader from using a member that was not included in
7020 * the redeclaration, we disable any ir_variables that are still
7021 * associated with the old declaration of gl_PerVertex (since we've
7022 * already updated all of the variables contained in the new
7023 * gl_PerVertex to point to it).
7024 *
7025 * As a side effect this will prevent
7026 * validate_intrastage_interface_blocks() from getting confused and
7027 * thinking there are conflicting definitions of gl_PerVertex in the
7028 * shader.
7029 */
7030 foreach_in_list_safe(ir_instruction, node, instructions) {
7031 ir_variable *const var = node->as_variable();
7032 if (var != NULL &&
7033 var->get_interface_type() == earlier_per_vertex &&
7034 var->data.mode == var_mode) {
7035 if (var->data.how_declared == ir_var_declared_normally) {
7036 _mesa_glsl_error(&loc, state,
7037 "redeclaration of gl_PerVertex cannot "
7038 "follow a redeclaration of `%s'",
7039 var->name);
7040 }
7041 state->symbols->disable_variable(var->name);
7042 var->remove();
7043 }
7044 }
7045 }
7046 }
7047
7048 return NULL;
7049 }
7050
7051
7052 ir_rvalue *
7053 ast_tcs_output_layout::hir(exec_list *instructions,
7054 struct _mesa_glsl_parse_state *state)
7055 {
7056 YYLTYPE loc = this->get_location();
7057
7058 /* If any tessellation control output layout declaration preceded this
7059 * one, make sure it was consistent with this one.
7060 */
7061 if (state->tcs_output_vertices_specified &&
7062 state->out_qualifier->vertices != this->vertices) {
7063 _mesa_glsl_error(&loc, state,
7064 "tessellation control shader output layout does not "
7065 "match previous declaration");
7066 return NULL;
7067 }
7068
7069 /* If any shader outputs occurred before this declaration and specified an
7070 * array size, make sure the size they specified is consistent with the
7071 * primitive type.
7072 */
7073 unsigned num_vertices = this->vertices;
7074 if (state->tcs_output_size != 0 && state->tcs_output_size != num_vertices) {
7075 _mesa_glsl_error(&loc, state,
7076 "this tessellation control shader output layout "
7077 "specifies %u vertices, but a previous output "
7078 "is declared with size %u",
7079 num_vertices, state->tcs_output_size);
7080 return NULL;
7081 }
7082
7083 state->tcs_output_vertices_specified = true;
7084
7085 /* If any shader outputs occurred before this declaration and did not
7086 * specify an array size, their size is determined now.
7087 */
7088 foreach_in_list (ir_instruction, node, instructions) {
7089 ir_variable *var = node->as_variable();
7090 if (var == NULL || var->data.mode != ir_var_shader_out)
7091 continue;
7092
7093 /* Note: Not all tessellation control shader output are arrays. */
7094 if (!var->type->is_unsized_array() || var->data.patch)
7095 continue;
7096
7097 if (var->data.max_array_access >= num_vertices) {
7098 _mesa_glsl_error(&loc, state,
7099 "this tessellation control shader output layout "
7100 "specifies %u vertices, but an access to element "
7101 "%u of output `%s' already exists", num_vertices,
7102 var->data.max_array_access, var->name);
7103 } else {
7104 var->type = glsl_type::get_array_instance(var->type->fields.array,
7105 num_vertices);
7106 }
7107 }
7108
7109 return NULL;
7110 }
7111
7112
7113 ir_rvalue *
7114 ast_gs_input_layout::hir(exec_list *instructions,
7115 struct _mesa_glsl_parse_state *state)
7116 {
7117 YYLTYPE loc = this->get_location();
7118
7119 /* If any geometry input layout declaration preceded this one, make sure it
7120 * was consistent with this one.
7121 */
7122 if (state->gs_input_prim_type_specified &&
7123 state->in_qualifier->prim_type != this->prim_type) {
7124 _mesa_glsl_error(&loc, state,
7125 "geometry shader input layout does not match"
7126 " previous declaration");
7127 return NULL;
7128 }
7129
7130 /* If any shader inputs occurred before this declaration and specified an
7131 * array size, make sure the size they specified is consistent with the
7132 * primitive type.
7133 */
7134 unsigned num_vertices = vertices_per_prim(this->prim_type);
7135 if (state->gs_input_size != 0 && state->gs_input_size != num_vertices) {
7136 _mesa_glsl_error(&loc, state,
7137 "this geometry shader input layout implies %u vertices"
7138 " per primitive, but a previous input is declared"
7139 " with size %u", num_vertices, state->gs_input_size);
7140 return NULL;
7141 }
7142
7143 state->gs_input_prim_type_specified = true;
7144
7145 /* If any shader inputs occurred before this declaration and did not
7146 * specify an array size, their size is determined now.
7147 */
7148 foreach_in_list(ir_instruction, node, instructions) {
7149 ir_variable *var = node->as_variable();
7150 if (var == NULL || var->data.mode != ir_var_shader_in)
7151 continue;
7152
7153 /* Note: gl_PrimitiveIDIn has mode ir_var_shader_in, but it's not an
7154 * array; skip it.
7155 */
7156
7157 if (var->type->is_unsized_array()) {
7158 if (var->data.max_array_access >= num_vertices) {
7159 _mesa_glsl_error(&loc, state,
7160 "this geometry shader input layout implies %u"
7161 " vertices, but an access to element %u of input"
7162 " `%s' already exists", num_vertices,
7163 var->data.max_array_access, var->name);
7164 } else {
7165 var->type = glsl_type::get_array_instance(var->type->fields.array,
7166 num_vertices);
7167 }
7168 }
7169 }
7170
7171 return NULL;
7172 }
7173
7174
7175 ir_rvalue *
7176 ast_cs_input_layout::hir(exec_list *instructions,
7177 struct _mesa_glsl_parse_state *state)
7178 {
7179 YYLTYPE loc = this->get_location();
7180
7181 /* If any compute input layout declaration preceded this one, make sure it
7182 * was consistent with this one.
7183 */
7184 if (state->cs_input_local_size_specified) {
7185 for (int i = 0; i < 3; i++) {
7186 if (state->cs_input_local_size[i] != this->local_size[i]) {
7187 _mesa_glsl_error(&loc, state,
7188 "compute shader input layout does not match"
7189 " previous declaration");
7190 return NULL;
7191 }
7192 }
7193 }
7194
7195 /* From the ARB_compute_shader specification:
7196 *
7197 * If the local size of the shader in any dimension is greater
7198 * than the maximum size supported by the implementation for that
7199 * dimension, a compile-time error results.
7200 *
7201 * It is not clear from the spec how the error should be reported if
7202 * the total size of the work group exceeds
7203 * MAX_COMPUTE_WORK_GROUP_INVOCATIONS, but it seems reasonable to
7204 * report it at compile time as well.
7205 */
7206 GLuint64 total_invocations = 1;
7207 for (int i = 0; i < 3; i++) {
7208 if (this->local_size[i] > state->ctx->Const.MaxComputeWorkGroupSize[i]) {
7209 _mesa_glsl_error(&loc, state,
7210 "local_size_%c exceeds MAX_COMPUTE_WORK_GROUP_SIZE"
7211 " (%d)", 'x' + i,
7212 state->ctx->Const.MaxComputeWorkGroupSize[i]);
7213 break;
7214 }
7215 total_invocations *= this->local_size[i];
7216 if (total_invocations >
7217 state->ctx->Const.MaxComputeWorkGroupInvocations) {
7218 _mesa_glsl_error(&loc, state,
7219 "product of local_sizes exceeds "
7220 "MAX_COMPUTE_WORK_GROUP_INVOCATIONS (%d)",
7221 state->ctx->Const.MaxComputeWorkGroupInvocations);
7222 break;
7223 }
7224 }
7225
7226 state->cs_input_local_size_specified = true;
7227 for (int i = 0; i < 3; i++)
7228 state->cs_input_local_size[i] = this->local_size[i];
7229
7230 /* We may now declare the built-in constant gl_WorkGroupSize (see
7231 * builtin_variable_generator::generate_constants() for why we didn't
7232 * declare it earlier).
7233 */
7234 ir_variable *var = new(state->symbols)
7235 ir_variable(glsl_type::uvec3_type, "gl_WorkGroupSize", ir_var_auto);
7236 var->data.how_declared = ir_var_declared_implicitly;
7237 var->data.read_only = true;
7238 instructions->push_tail(var);
7239 state->symbols->add_variable(var);
7240 ir_constant_data data;
7241 memset(&data, 0, sizeof(data));
7242 for (int i = 0; i < 3; i++)
7243 data.u[i] = this->local_size[i];
7244 var->constant_value = new(var) ir_constant(glsl_type::uvec3_type, &data);
7245 var->constant_initializer =
7246 new(var) ir_constant(glsl_type::uvec3_type, &data);
7247 var->data.has_initializer = true;
7248
7249 return NULL;
7250 }
7251
7252
7253 static void
7254 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
7255 exec_list *instructions)
7256 {
7257 bool gl_FragColor_assigned = false;
7258 bool gl_FragData_assigned = false;
7259 bool gl_FragSecondaryColor_assigned = false;
7260 bool gl_FragSecondaryData_assigned = false;
7261 bool user_defined_fs_output_assigned = false;
7262 ir_variable *user_defined_fs_output = NULL;
7263
7264 /* It would be nice to have proper location information. */
7265 YYLTYPE loc;
7266 memset(&loc, 0, sizeof(loc));
7267
7268 foreach_in_list(ir_instruction, node, instructions) {
7269 ir_variable *var = node->as_variable();
7270
7271 if (!var || !var->data.assigned)
7272 continue;
7273
7274 if (strcmp(var->name, "gl_FragColor") == 0)
7275 gl_FragColor_assigned = true;
7276 else if (strcmp(var->name, "gl_FragData") == 0)
7277 gl_FragData_assigned = true;
7278 else if (strcmp(var->name, "gl_SecondaryFragColorEXT") == 0)
7279 gl_FragSecondaryColor_assigned = true;
7280 else if (strcmp(var->name, "gl_SecondaryFragDataEXT") == 0)
7281 gl_FragSecondaryData_assigned = true;
7282 else if (!is_gl_identifier(var->name)) {
7283 if (state->stage == MESA_SHADER_FRAGMENT &&
7284 var->data.mode == ir_var_shader_out) {
7285 user_defined_fs_output_assigned = true;
7286 user_defined_fs_output = var;
7287 }
7288 }
7289 }
7290
7291 /* From the GLSL 1.30 spec:
7292 *
7293 * "If a shader statically assigns a value to gl_FragColor, it
7294 * may not assign a value to any element of gl_FragData. If a
7295 * shader statically writes a value to any element of
7296 * gl_FragData, it may not assign a value to
7297 * gl_FragColor. That is, a shader may assign values to either
7298 * gl_FragColor or gl_FragData, but not both. Multiple shaders
7299 * linked together must also consistently write just one of
7300 * these variables. Similarly, if user declared output
7301 * variables are in use (statically assigned to), then the
7302 * built-in variables gl_FragColor and gl_FragData may not be
7303 * assigned to. These incorrect usages all generate compile
7304 * time errors."
7305 */
7306 if (gl_FragColor_assigned && gl_FragData_assigned) {
7307 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7308 "`gl_FragColor' and `gl_FragData'");
7309 } else if (gl_FragColor_assigned && user_defined_fs_output_assigned) {
7310 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7311 "`gl_FragColor' and `%s'",
7312 user_defined_fs_output->name);
7313 } else if (gl_FragSecondaryColor_assigned && gl_FragSecondaryData_assigned) {
7314 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7315 "`gl_FragSecondaryColorEXT' and"
7316 " `gl_FragSecondaryDataEXT'");
7317 } else if (gl_FragColor_assigned && gl_FragSecondaryData_assigned) {
7318 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7319 "`gl_FragColor' and"
7320 " `gl_FragSecondaryDataEXT'");
7321 } else if (gl_FragData_assigned && gl_FragSecondaryColor_assigned) {
7322 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7323 "`gl_FragData' and"
7324 " `gl_FragSecondaryColorEXT'");
7325 } else if (gl_FragData_assigned && user_defined_fs_output_assigned) {
7326 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7327 "`gl_FragData' and `%s'",
7328 user_defined_fs_output->name);
7329 }
7330
7331 if ((gl_FragSecondaryColor_assigned || gl_FragSecondaryData_assigned) &&
7332 !state->EXT_blend_func_extended_enable) {
7333 _mesa_glsl_error(&loc, state,
7334 "Dual source blending requires EXT_blend_func_extended");
7335 }
7336 }
7337
7338
7339 static void
7340 remove_per_vertex_blocks(exec_list *instructions,
7341 _mesa_glsl_parse_state *state, ir_variable_mode mode)
7342 {
7343 /* Find the gl_PerVertex interface block of the appropriate (in/out) mode,
7344 * if it exists in this shader type.
7345 */
7346 const glsl_type *per_vertex = NULL;
7347 switch (mode) {
7348 case ir_var_shader_in:
7349 if (ir_variable *gl_in = state->symbols->get_variable("gl_in"))
7350 per_vertex = gl_in->get_interface_type();
7351 break;
7352 case ir_var_shader_out:
7353 if (ir_variable *gl_Position =
7354 state->symbols->get_variable("gl_Position")) {
7355 per_vertex = gl_Position->get_interface_type();
7356 }
7357 break;
7358 default:
7359 assert(!"Unexpected mode");
7360 break;
7361 }
7362
7363 /* If we didn't find a built-in gl_PerVertex interface block, then we don't
7364 * need to do anything.
7365 */
7366 if (per_vertex == NULL)
7367 return;
7368
7369 /* If the interface block is used by the shader, then we don't need to do
7370 * anything.
7371 */
7372 interface_block_usage_visitor v(mode, per_vertex);
7373 v.run(instructions);
7374 if (v.usage_found())
7375 return;
7376
7377 /* Remove any ir_variable declarations that refer to the interface block
7378 * we're removing.
7379 */
7380 foreach_in_list_safe(ir_instruction, node, instructions) {
7381 ir_variable *const var = node->as_variable();
7382 if (var != NULL && var->get_interface_type() == per_vertex &&
7383 var->data.mode == mode) {
7384 state->symbols->disable_variable(var->name);
7385 var->remove();
7386 }
7387 }
7388 }