7da1461195075577eace561f85c34d0292711c0b
[mesa.git] / src / glsl / ast_to_hir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file ast_to_hir.c
26 * Convert abstract syntax to to high-level intermediate reprensentation (HIR).
27 *
28 * During the conversion to HIR, the majority of the symantic checking is
29 * preformed on the program. This includes:
30 *
31 * * Symbol table management
32 * * Type checking
33 * * Function binding
34 *
35 * The majority of this work could be done during parsing, and the parser could
36 * probably generate HIR directly. However, this results in frequent changes
37 * to the parser code. Since we do not assume that every system this complier
38 * is built on will have Flex and Bison installed, we have to store the code
39 * generated by these tools in our version control system. In other parts of
40 * the system we've seen problems where a parser was changed but the generated
41 * code was not committed, merge conflicts where created because two developers
42 * had slightly different versions of Bison installed, etc.
43 *
44 * I have also noticed that running Bison generated parsers in GDB is very
45 * irritating. When you get a segfault on '$$ = $1->foo', you can't very
46 * well 'print $1' in GDB.
47 *
48 * As a result, my preference is to put as little C code as possible in the
49 * parser (and lexer) sources.
50 */
51
52 #include "main/core.h" /* for struct gl_extensions */
53 #include "glsl_symbol_table.h"
54 #include "glsl_parser_extras.h"
55 #include "ast.h"
56 #include "glsl_types.h"
57 #include "ir.h"
58
59 void
60 _mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
61 {
62 _mesa_glsl_initialize_variables(instructions, state);
63 _mesa_glsl_initialize_functions(state);
64
65 state->symbols->language_version = state->language_version;
66
67 state->current_function = NULL;
68
69 /* Section 4.2 of the GLSL 1.20 specification states:
70 * "The built-in functions are scoped in a scope outside the global scope
71 * users declare global variables in. That is, a shader's global scope,
72 * available for user-defined functions and global variables, is nested
73 * inside the scope containing the built-in functions."
74 *
75 * Since built-in functions like ftransform() access built-in variables,
76 * it follows that those must be in the outer scope as well.
77 *
78 * We push scope here to create this nesting effect...but don't pop.
79 * This way, a shader's globals are still in the symbol table for use
80 * by the linker.
81 */
82 state->symbols->push_scope();
83
84 foreach_list_typed (ast_node, ast, link, & state->translation_unit)
85 ast->hir(instructions, state);
86
87 detect_recursion_unlinked(state, instructions);
88 }
89
90
91 /**
92 * If a conversion is available, convert one operand to a different type
93 *
94 * The \c from \c ir_rvalue is converted "in place".
95 *
96 * \param to Type that the operand it to be converted to
97 * \param from Operand that is being converted
98 * \param state GLSL compiler state
99 *
100 * \return
101 * If a conversion is possible (or unnecessary), \c true is returned.
102 * Otherwise \c false is returned.
103 */
104 bool
105 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
106 struct _mesa_glsl_parse_state *state)
107 {
108 void *ctx = state;
109 if (to->base_type == from->type->base_type)
110 return true;
111
112 /* This conversion was added in GLSL 1.20. If the compilation mode is
113 * GLSL 1.10, the conversion is skipped.
114 */
115 if (state->language_version < 120)
116 return false;
117
118 /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
119 *
120 * "There are no implicit array or structure conversions. For
121 * example, an array of int cannot be implicitly converted to an
122 * array of float. There are no implicit conversions between
123 * signed and unsigned integers."
124 */
125 /* FINISHME: The above comment is partially a lie. There is int/uint
126 * FINISHME: conversion for immediate constants.
127 */
128 if (!to->is_float() || !from->type->is_numeric())
129 return false;
130
131 /* Convert to a floating point type with the same number of components
132 * as the original type - i.e. int to float, not int to vec4.
133 */
134 to = glsl_type::get_instance(GLSL_TYPE_FLOAT, from->type->vector_elements,
135 from->type->matrix_columns);
136
137 switch (from->type->base_type) {
138 case GLSL_TYPE_INT:
139 from = new(ctx) ir_expression(ir_unop_i2f, to, from, NULL);
140 break;
141 case GLSL_TYPE_UINT:
142 from = new(ctx) ir_expression(ir_unop_u2f, to, from, NULL);
143 break;
144 case GLSL_TYPE_BOOL:
145 from = new(ctx) ir_expression(ir_unop_b2f, to, from, NULL);
146 break;
147 default:
148 assert(0);
149 }
150
151 return true;
152 }
153
154
155 static const struct glsl_type *
156 arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
157 bool multiply,
158 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
159 {
160 const glsl_type *type_a = value_a->type;
161 const glsl_type *type_b = value_b->type;
162
163 /* From GLSL 1.50 spec, page 56:
164 *
165 * "The arithmetic binary operators add (+), subtract (-),
166 * multiply (*), and divide (/) operate on integer and
167 * floating-point scalars, vectors, and matrices."
168 */
169 if (!type_a->is_numeric() || !type_b->is_numeric()) {
170 _mesa_glsl_error(loc, state,
171 "Operands to arithmetic operators must be numeric");
172 return glsl_type::error_type;
173 }
174
175
176 /* "If one operand is floating-point based and the other is
177 * not, then the conversions from Section 4.1.10 "Implicit
178 * Conversions" are applied to the non-floating-point-based operand."
179 */
180 if (!apply_implicit_conversion(type_a, value_b, state)
181 && !apply_implicit_conversion(type_b, value_a, state)) {
182 _mesa_glsl_error(loc, state,
183 "Could not implicitly convert operands to "
184 "arithmetic operator");
185 return glsl_type::error_type;
186 }
187 type_a = value_a->type;
188 type_b = value_b->type;
189
190 /* "If the operands are integer types, they must both be signed or
191 * both be unsigned."
192 *
193 * From this rule and the preceeding conversion it can be inferred that
194 * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
195 * The is_numeric check above already filtered out the case where either
196 * type is not one of these, so now the base types need only be tested for
197 * equality.
198 */
199 if (type_a->base_type != type_b->base_type) {
200 _mesa_glsl_error(loc, state,
201 "base type mismatch for arithmetic operator");
202 return glsl_type::error_type;
203 }
204
205 /* "All arithmetic binary operators result in the same fundamental type
206 * (signed integer, unsigned integer, or floating-point) as the
207 * operands they operate on, after operand type conversion. After
208 * conversion, the following cases are valid
209 *
210 * * The two operands are scalars. In this case the operation is
211 * applied, resulting in a scalar."
212 */
213 if (type_a->is_scalar() && type_b->is_scalar())
214 return type_a;
215
216 /* "* One operand is a scalar, and the other is a vector or matrix.
217 * In this case, the scalar operation is applied independently to each
218 * component of the vector or matrix, resulting in the same size
219 * vector or matrix."
220 */
221 if (type_a->is_scalar()) {
222 if (!type_b->is_scalar())
223 return type_b;
224 } else if (type_b->is_scalar()) {
225 return type_a;
226 }
227
228 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
229 * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
230 * handled.
231 */
232 assert(!type_a->is_scalar());
233 assert(!type_b->is_scalar());
234
235 /* "* The two operands are vectors of the same size. In this case, the
236 * operation is done component-wise resulting in the same size
237 * vector."
238 */
239 if (type_a->is_vector() && type_b->is_vector()) {
240 if (type_a == type_b) {
241 return type_a;
242 } else {
243 _mesa_glsl_error(loc, state,
244 "vector size mismatch for arithmetic operator");
245 return glsl_type::error_type;
246 }
247 }
248
249 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
250 * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
251 * <vector, vector> have been handled. At least one of the operands must
252 * be matrix. Further, since there are no integer matrix types, the base
253 * type of both operands must be float.
254 */
255 assert(type_a->is_matrix() || type_b->is_matrix());
256 assert(type_a->base_type == GLSL_TYPE_FLOAT);
257 assert(type_b->base_type == GLSL_TYPE_FLOAT);
258
259 /* "* The operator is add (+), subtract (-), or divide (/), and the
260 * operands are matrices with the same number of rows and the same
261 * number of columns. In this case, the operation is done component-
262 * wise resulting in the same size matrix."
263 * * The operator is multiply (*), where both operands are matrices or
264 * one operand is a vector and the other a matrix. A right vector
265 * operand is treated as a column vector and a left vector operand as a
266 * row vector. In all these cases, it is required that the number of
267 * columns of the left operand is equal to the number of rows of the
268 * right operand. Then, the multiply (*) operation does a linear
269 * algebraic multiply, yielding an object that has the same number of
270 * rows as the left operand and the same number of columns as the right
271 * operand. Section 5.10 "Vector and Matrix Operations" explains in
272 * more detail how vectors and matrices are operated on."
273 */
274 if (! multiply) {
275 if (type_a == type_b)
276 return type_a;
277 } else {
278 if (type_a->is_matrix() && type_b->is_matrix()) {
279 /* Matrix multiply. The columns of A must match the rows of B. Given
280 * the other previously tested constraints, this means the vector type
281 * of a row from A must be the same as the vector type of a column from
282 * B.
283 */
284 if (type_a->row_type() == type_b->column_type()) {
285 /* The resulting matrix has the number of columns of matrix B and
286 * the number of rows of matrix A. We get the row count of A by
287 * looking at the size of a vector that makes up a column. The
288 * transpose (size of a row) is done for B.
289 */
290 const glsl_type *const type =
291 glsl_type::get_instance(type_a->base_type,
292 type_a->column_type()->vector_elements,
293 type_b->row_type()->vector_elements);
294 assert(type != glsl_type::error_type);
295
296 return type;
297 }
298 } else if (type_a->is_matrix()) {
299 /* A is a matrix and B is a column vector. Columns of A must match
300 * rows of B. Given the other previously tested constraints, this
301 * means the vector type of a row from A must be the same as the
302 * vector the type of B.
303 */
304 if (type_a->row_type() == type_b) {
305 /* The resulting vector has a number of elements equal to
306 * the number of rows of matrix A. */
307 const glsl_type *const type =
308 glsl_type::get_instance(type_a->base_type,
309 type_a->column_type()->vector_elements,
310 1);
311 assert(type != glsl_type::error_type);
312
313 return type;
314 }
315 } else {
316 assert(type_b->is_matrix());
317
318 /* A is a row vector and B is a matrix. Columns of A must match rows
319 * of B. Given the other previously tested constraints, this means
320 * the type of A must be the same as the vector type of a column from
321 * B.
322 */
323 if (type_a == type_b->column_type()) {
324 /* The resulting vector has a number of elements equal to
325 * the number of columns of matrix B. */
326 const glsl_type *const type =
327 glsl_type::get_instance(type_a->base_type,
328 type_b->row_type()->vector_elements,
329 1);
330 assert(type != glsl_type::error_type);
331
332 return type;
333 }
334 }
335
336 _mesa_glsl_error(loc, state, "size mismatch for matrix multiplication");
337 return glsl_type::error_type;
338 }
339
340
341 /* "All other cases are illegal."
342 */
343 _mesa_glsl_error(loc, state, "type mismatch");
344 return glsl_type::error_type;
345 }
346
347
348 static const struct glsl_type *
349 unary_arithmetic_result_type(const struct glsl_type *type,
350 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
351 {
352 /* From GLSL 1.50 spec, page 57:
353 *
354 * "The arithmetic unary operators negate (-), post- and pre-increment
355 * and decrement (-- and ++) operate on integer or floating-point
356 * values (including vectors and matrices). All unary operators work
357 * component-wise on their operands. These result with the same type
358 * they operated on."
359 */
360 if (!type->is_numeric()) {
361 _mesa_glsl_error(loc, state,
362 "Operands to arithmetic operators must be numeric");
363 return glsl_type::error_type;
364 }
365
366 return type;
367 }
368
369 /**
370 * \brief Return the result type of a bit-logic operation.
371 *
372 * If the given types to the bit-logic operator are invalid, return
373 * glsl_type::error_type.
374 *
375 * \param type_a Type of LHS of bit-logic op
376 * \param type_b Type of RHS of bit-logic op
377 */
378 static const struct glsl_type *
379 bit_logic_result_type(const struct glsl_type *type_a,
380 const struct glsl_type *type_b,
381 ast_operators op,
382 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
383 {
384 if (state->language_version < 130) {
385 _mesa_glsl_error(loc, state, "bit operations require GLSL 1.30");
386 return glsl_type::error_type;
387 }
388
389 /* From page 50 (page 56 of PDF) of GLSL 1.30 spec:
390 *
391 * "The bitwise operators and (&), exclusive-or (^), and inclusive-or
392 * (|). The operands must be of type signed or unsigned integers or
393 * integer vectors."
394 */
395 if (!type_a->is_integer()) {
396 _mesa_glsl_error(loc, state, "LHS of `%s' must be an integer",
397 ast_expression::operator_string(op));
398 return glsl_type::error_type;
399 }
400 if (!type_b->is_integer()) {
401 _mesa_glsl_error(loc, state, "RHS of `%s' must be an integer",
402 ast_expression::operator_string(op));
403 return glsl_type::error_type;
404 }
405
406 /* "The fundamental types of the operands (signed or unsigned) must
407 * match,"
408 */
409 if (type_a->base_type != type_b->base_type) {
410 _mesa_glsl_error(loc, state, "operands of `%s' must have the same "
411 "base type", ast_expression::operator_string(op));
412 return glsl_type::error_type;
413 }
414
415 /* "The operands cannot be vectors of differing size." */
416 if (type_a->is_vector() &&
417 type_b->is_vector() &&
418 type_a->vector_elements != type_b->vector_elements) {
419 _mesa_glsl_error(loc, state, "operands of `%s' cannot be vectors of "
420 "different sizes", ast_expression::operator_string(op));
421 return glsl_type::error_type;
422 }
423
424 /* "If one operand is a scalar and the other a vector, the scalar is
425 * applied component-wise to the vector, resulting in the same type as
426 * the vector. The fundamental types of the operands [...] will be the
427 * resulting fundamental type."
428 */
429 if (type_a->is_scalar())
430 return type_b;
431 else
432 return type_a;
433 }
434
435 static const struct glsl_type *
436 modulus_result_type(const struct glsl_type *type_a,
437 const struct glsl_type *type_b,
438 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
439 {
440 if (state->language_version < 130) {
441 _mesa_glsl_error(loc, state,
442 "operator '%%' is reserved in %s",
443 state->version_string);
444 return glsl_type::error_type;
445 }
446
447 /* From GLSL 1.50 spec, page 56:
448 * "The operator modulus (%) operates on signed or unsigned integers or
449 * integer vectors. The operand types must both be signed or both be
450 * unsigned."
451 */
452 if (!type_a->is_integer()) {
453 _mesa_glsl_error(loc, state, "LHS of operator %% must be an integer.");
454 return glsl_type::error_type;
455 }
456 if (!type_b->is_integer()) {
457 _mesa_glsl_error(loc, state, "RHS of operator %% must be an integer.");
458 return glsl_type::error_type;
459 }
460 if (type_a->base_type != type_b->base_type) {
461 _mesa_glsl_error(loc, state,
462 "operands of %% must have the same base type");
463 return glsl_type::error_type;
464 }
465
466 /* "The operands cannot be vectors of differing size. If one operand is
467 * a scalar and the other vector, then the scalar is applied component-
468 * wise to the vector, resulting in the same type as the vector. If both
469 * are vectors of the same size, the result is computed component-wise."
470 */
471 if (type_a->is_vector()) {
472 if (!type_b->is_vector()
473 || (type_a->vector_elements == type_b->vector_elements))
474 return type_a;
475 } else
476 return type_b;
477
478 /* "The operator modulus (%) is not defined for any other data types
479 * (non-integer types)."
480 */
481 _mesa_glsl_error(loc, state, "type mismatch");
482 return glsl_type::error_type;
483 }
484
485
486 static const struct glsl_type *
487 relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
488 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
489 {
490 const glsl_type *type_a = value_a->type;
491 const glsl_type *type_b = value_b->type;
492
493 /* From GLSL 1.50 spec, page 56:
494 * "The relational operators greater than (>), less than (<), greater
495 * than or equal (>=), and less than or equal (<=) operate only on
496 * scalar integer and scalar floating-point expressions."
497 */
498 if (!type_a->is_numeric()
499 || !type_b->is_numeric()
500 || !type_a->is_scalar()
501 || !type_b->is_scalar()) {
502 _mesa_glsl_error(loc, state,
503 "Operands to relational operators must be scalar and "
504 "numeric");
505 return glsl_type::error_type;
506 }
507
508 /* "Either the operands' types must match, or the conversions from
509 * Section 4.1.10 "Implicit Conversions" will be applied to the integer
510 * operand, after which the types must match."
511 */
512 if (!apply_implicit_conversion(type_a, value_b, state)
513 && !apply_implicit_conversion(type_b, value_a, state)) {
514 _mesa_glsl_error(loc, state,
515 "Could not implicitly convert operands to "
516 "relational operator");
517 return glsl_type::error_type;
518 }
519 type_a = value_a->type;
520 type_b = value_b->type;
521
522 if (type_a->base_type != type_b->base_type) {
523 _mesa_glsl_error(loc, state, "base type mismatch");
524 return glsl_type::error_type;
525 }
526
527 /* "The result is scalar Boolean."
528 */
529 return glsl_type::bool_type;
530 }
531
532 /**
533 * \brief Return the result type of a bit-shift operation.
534 *
535 * If the given types to the bit-shift operator are invalid, return
536 * glsl_type::error_type.
537 *
538 * \param type_a Type of LHS of bit-shift op
539 * \param type_b Type of RHS of bit-shift op
540 */
541 static const struct glsl_type *
542 shift_result_type(const struct glsl_type *type_a,
543 const struct glsl_type *type_b,
544 ast_operators op,
545 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
546 {
547 if (state->language_version < 130) {
548 _mesa_glsl_error(loc, state, "bit operations require GLSL 1.30");
549 return glsl_type::error_type;
550 }
551
552 /* From page 50 (page 56 of the PDF) of the GLSL 1.30 spec:
553 *
554 * "The shift operators (<<) and (>>). For both operators, the operands
555 * must be signed or unsigned integers or integer vectors. One operand
556 * can be signed while the other is unsigned."
557 */
558 if (!type_a->is_integer()) {
559 _mesa_glsl_error(loc, state, "LHS of operator %s must be an integer or "
560 "integer vector", ast_expression::operator_string(op));
561 return glsl_type::error_type;
562
563 }
564 if (!type_b->is_integer()) {
565 _mesa_glsl_error(loc, state, "RHS of operator %s must be an integer or "
566 "integer vector", ast_expression::operator_string(op));
567 return glsl_type::error_type;
568 }
569
570 /* "If the first operand is a scalar, the second operand has to be
571 * a scalar as well."
572 */
573 if (type_a->is_scalar() && !type_b->is_scalar()) {
574 _mesa_glsl_error(loc, state, "If the first operand of %s is scalar, the "
575 "second must be scalar as well",
576 ast_expression::operator_string(op));
577 return glsl_type::error_type;
578 }
579
580 /* If both operands are vectors, check that they have same number of
581 * elements.
582 */
583 if (type_a->is_vector() &&
584 type_b->is_vector() &&
585 type_a->vector_elements != type_b->vector_elements) {
586 _mesa_glsl_error(loc, state, "Vector operands to operator %s must "
587 "have same number of elements",
588 ast_expression::operator_string(op));
589 return glsl_type::error_type;
590 }
591
592 /* "In all cases, the resulting type will be the same type as the left
593 * operand."
594 */
595 return type_a;
596 }
597
598 /**
599 * Validates that a value can be assigned to a location with a specified type
600 *
601 * Validates that \c rhs can be assigned to some location. If the types are
602 * not an exact match but an automatic conversion is possible, \c rhs will be
603 * converted.
604 *
605 * \return
606 * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
607 * Otherwise the actual RHS to be assigned will be returned. This may be
608 * \c rhs, or it may be \c rhs after some type conversion.
609 *
610 * \note
611 * In addition to being used for assignments, this function is used to
612 * type-check return values.
613 */
614 ir_rvalue *
615 validate_assignment(struct _mesa_glsl_parse_state *state,
616 const glsl_type *lhs_type, ir_rvalue *rhs,
617 bool is_initializer)
618 {
619 /* If there is already some error in the RHS, just return it. Anything
620 * else will lead to an avalanche of error message back to the user.
621 */
622 if (rhs->type->is_error())
623 return rhs;
624
625 /* If the types are identical, the assignment can trivially proceed.
626 */
627 if (rhs->type == lhs_type)
628 return rhs;
629
630 /* If the array element types are the same and the size of the LHS is zero,
631 * the assignment is okay for initializers embedded in variable
632 * declarations.
633 *
634 * Note: Whole-array assignments are not permitted in GLSL 1.10, but this
635 * is handled by ir_dereference::is_lvalue.
636 */
637 if (is_initializer && lhs_type->is_array() && rhs->type->is_array()
638 && (lhs_type->element_type() == rhs->type->element_type())
639 && (lhs_type->array_size() == 0)) {
640 return rhs;
641 }
642
643 /* Check for implicit conversion in GLSL 1.20 */
644 if (apply_implicit_conversion(lhs_type, rhs, state)) {
645 if (rhs->type == lhs_type)
646 return rhs;
647 }
648
649 return NULL;
650 }
651
652 ir_rvalue *
653 do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state,
654 ir_rvalue *lhs, ir_rvalue *rhs, bool is_initializer,
655 YYLTYPE lhs_loc)
656 {
657 void *ctx = state;
658 bool error_emitted = (lhs->type->is_error() || rhs->type->is_error());
659
660 if (!error_emitted) {
661 if (lhs->variable_referenced() != NULL
662 && lhs->variable_referenced()->read_only) {
663 _mesa_glsl_error(&lhs_loc, state,
664 "assignment to read-only variable '%s'",
665 lhs->variable_referenced()->name);
666 error_emitted = true;
667
668 } else if (!lhs->is_lvalue()) {
669 _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment");
670 error_emitted = true;
671 }
672
673 if (state->es_shader && lhs->type->is_array()) {
674 _mesa_glsl_error(&lhs_loc, state, "whole array assignment is not "
675 "allowed in GLSL ES 1.00.");
676 error_emitted = true;
677 }
678 }
679
680 ir_rvalue *new_rhs =
681 validate_assignment(state, lhs->type, rhs, is_initializer);
682 if (new_rhs == NULL) {
683 _mesa_glsl_error(& lhs_loc, state, "type mismatch");
684 } else {
685 rhs = new_rhs;
686
687 /* If the LHS array was not declared with a size, it takes it size from
688 * the RHS. If the LHS is an l-value and a whole array, it must be a
689 * dereference of a variable. Any other case would require that the LHS
690 * is either not an l-value or not a whole array.
691 */
692 if (lhs->type->array_size() == 0) {
693 ir_dereference *const d = lhs->as_dereference();
694
695 assert(d != NULL);
696
697 ir_variable *const var = d->variable_referenced();
698
699 assert(var != NULL);
700
701 if (var->max_array_access >= unsigned(rhs->type->array_size())) {
702 /* FINISHME: This should actually log the location of the RHS. */
703 _mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to "
704 "previous access",
705 var->max_array_access);
706 }
707
708 var->type = glsl_type::get_array_instance(lhs->type->element_type(),
709 rhs->type->array_size());
710 d->type = var->type;
711 }
712 }
713
714 /* Most callers of do_assignment (assign, add_assign, pre_inc/dec,
715 * but not post_inc) need the converted assigned value as an rvalue
716 * to handle things like:
717 *
718 * i = j += 1;
719 *
720 * So we always just store the computed value being assigned to a
721 * temporary and return a deref of that temporary. If the rvalue
722 * ends up not being used, the temp will get copy-propagated out.
723 */
724 ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp",
725 ir_var_temporary);
726 ir_dereference_variable *deref_var = new(ctx) ir_dereference_variable(var);
727 instructions->push_tail(var);
728 instructions->push_tail(new(ctx) ir_assignment(deref_var,
729 rhs,
730 NULL));
731 deref_var = new(ctx) ir_dereference_variable(var);
732
733 if (!error_emitted)
734 instructions->push_tail(new(ctx) ir_assignment(lhs, deref_var, NULL));
735
736 return new(ctx) ir_dereference_variable(var);
737 }
738
739 static ir_rvalue *
740 get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue)
741 {
742 void *ctx = ralloc_parent(lvalue);
743 ir_variable *var;
744
745 var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp",
746 ir_var_temporary);
747 instructions->push_tail(var);
748 var->mode = ir_var_auto;
749
750 instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
751 lvalue, NULL));
752
753 /* Once we've created this temporary, mark it read only so it's no
754 * longer considered an lvalue.
755 */
756 var->read_only = true;
757
758 return new(ctx) ir_dereference_variable(var);
759 }
760
761
762 ir_rvalue *
763 ast_node::hir(exec_list *instructions,
764 struct _mesa_glsl_parse_state *state)
765 {
766 (void) instructions;
767 (void) state;
768
769 return NULL;
770 }
771
772 static void
773 mark_whole_array_access(ir_rvalue *access)
774 {
775 ir_dereference_variable *deref = access->as_dereference_variable();
776
777 if (deref) {
778 deref->var->max_array_access = deref->type->length - 1;
779 }
780 }
781
782 static ir_rvalue *
783 do_comparison(void *mem_ctx, int operation, ir_rvalue *op0, ir_rvalue *op1)
784 {
785 int join_op;
786 ir_rvalue *cmp = NULL;
787
788 if (operation == ir_binop_all_equal)
789 join_op = ir_binop_logic_and;
790 else
791 join_op = ir_binop_logic_or;
792
793 switch (op0->type->base_type) {
794 case GLSL_TYPE_FLOAT:
795 case GLSL_TYPE_UINT:
796 case GLSL_TYPE_INT:
797 case GLSL_TYPE_BOOL:
798 return new(mem_ctx) ir_expression(operation, op0, op1);
799
800 case GLSL_TYPE_ARRAY: {
801 for (unsigned int i = 0; i < op0->type->length; i++) {
802 ir_rvalue *e0, *e1, *result;
803
804 e0 = new(mem_ctx) ir_dereference_array(op0->clone(mem_ctx, NULL),
805 new(mem_ctx) ir_constant(i));
806 e1 = new(mem_ctx) ir_dereference_array(op1->clone(mem_ctx, NULL),
807 new(mem_ctx) ir_constant(i));
808 result = do_comparison(mem_ctx, operation, e0, e1);
809
810 if (cmp) {
811 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
812 } else {
813 cmp = result;
814 }
815 }
816
817 mark_whole_array_access(op0);
818 mark_whole_array_access(op1);
819 break;
820 }
821
822 case GLSL_TYPE_STRUCT: {
823 for (unsigned int i = 0; i < op0->type->length; i++) {
824 ir_rvalue *e0, *e1, *result;
825 const char *field_name = op0->type->fields.structure[i].name;
826
827 e0 = new(mem_ctx) ir_dereference_record(op0->clone(mem_ctx, NULL),
828 field_name);
829 e1 = new(mem_ctx) ir_dereference_record(op1->clone(mem_ctx, NULL),
830 field_name);
831 result = do_comparison(mem_ctx, operation, e0, e1);
832
833 if (cmp) {
834 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
835 } else {
836 cmp = result;
837 }
838 }
839 break;
840 }
841
842 case GLSL_TYPE_ERROR:
843 case GLSL_TYPE_VOID:
844 case GLSL_TYPE_SAMPLER:
845 /* I assume a comparison of a struct containing a sampler just
846 * ignores the sampler present in the type.
847 */
848 break;
849
850 default:
851 assert(!"Should not get here.");
852 break;
853 }
854
855 if (cmp == NULL)
856 cmp = new(mem_ctx) ir_constant(true);
857
858 return cmp;
859 }
860
861 /* For logical operations, we want to ensure that the operands are
862 * scalar booleans. If it isn't, emit an error and return a constant
863 * boolean to avoid triggering cascading error messages.
864 */
865 ir_rvalue *
866 get_scalar_boolean_operand(exec_list *instructions,
867 struct _mesa_glsl_parse_state *state,
868 ast_expression *parent_expr,
869 int operand,
870 const char *operand_name,
871 bool *error_emitted)
872 {
873 ast_expression *expr = parent_expr->subexpressions[operand];
874 void *ctx = state;
875 ir_rvalue *val = expr->hir(instructions, state);
876
877 if (val->type->is_boolean() && val->type->is_scalar())
878 return val;
879
880 if (!*error_emitted) {
881 YYLTYPE loc = expr->get_location();
882 _mesa_glsl_error(&loc, state, "%s of `%s' must be scalar boolean",
883 operand_name,
884 parent_expr->operator_string(parent_expr->oper));
885 *error_emitted = true;
886 }
887
888 return new(ctx) ir_constant(true);
889 }
890
891 ir_rvalue *
892 ast_expression::hir(exec_list *instructions,
893 struct _mesa_glsl_parse_state *state)
894 {
895 void *ctx = state;
896 static const int operations[AST_NUM_OPERATORS] = {
897 -1, /* ast_assign doesn't convert to ir_expression. */
898 -1, /* ast_plus doesn't convert to ir_expression. */
899 ir_unop_neg,
900 ir_binop_add,
901 ir_binop_sub,
902 ir_binop_mul,
903 ir_binop_div,
904 ir_binop_mod,
905 ir_binop_lshift,
906 ir_binop_rshift,
907 ir_binop_less,
908 ir_binop_greater,
909 ir_binop_lequal,
910 ir_binop_gequal,
911 ir_binop_all_equal,
912 ir_binop_any_nequal,
913 ir_binop_bit_and,
914 ir_binop_bit_xor,
915 ir_binop_bit_or,
916 ir_unop_bit_not,
917 ir_binop_logic_and,
918 ir_binop_logic_xor,
919 ir_binop_logic_or,
920 ir_unop_logic_not,
921
922 /* Note: The following block of expression types actually convert
923 * to multiple IR instructions.
924 */
925 ir_binop_mul, /* ast_mul_assign */
926 ir_binop_div, /* ast_div_assign */
927 ir_binop_mod, /* ast_mod_assign */
928 ir_binop_add, /* ast_add_assign */
929 ir_binop_sub, /* ast_sub_assign */
930 ir_binop_lshift, /* ast_ls_assign */
931 ir_binop_rshift, /* ast_rs_assign */
932 ir_binop_bit_and, /* ast_and_assign */
933 ir_binop_bit_xor, /* ast_xor_assign */
934 ir_binop_bit_or, /* ast_or_assign */
935
936 -1, /* ast_conditional doesn't convert to ir_expression. */
937 ir_binop_add, /* ast_pre_inc. */
938 ir_binop_sub, /* ast_pre_dec. */
939 ir_binop_add, /* ast_post_inc. */
940 ir_binop_sub, /* ast_post_dec. */
941 -1, /* ast_field_selection doesn't conv to ir_expression. */
942 -1, /* ast_array_index doesn't convert to ir_expression. */
943 -1, /* ast_function_call doesn't conv to ir_expression. */
944 -1, /* ast_identifier doesn't convert to ir_expression. */
945 -1, /* ast_int_constant doesn't convert to ir_expression. */
946 -1, /* ast_uint_constant doesn't conv to ir_expression. */
947 -1, /* ast_float_constant doesn't conv to ir_expression. */
948 -1, /* ast_bool_constant doesn't conv to ir_expression. */
949 -1, /* ast_sequence doesn't convert to ir_expression. */
950 };
951 ir_rvalue *result = NULL;
952 ir_rvalue *op[3];
953 const struct glsl_type *type; /* a temporary variable for switch cases */
954 bool error_emitted = false;
955 YYLTYPE loc;
956
957 loc = this->get_location();
958
959 switch (this->oper) {
960 case ast_assign: {
961 op[0] = this->subexpressions[0]->hir(instructions, state);
962 op[1] = this->subexpressions[1]->hir(instructions, state);
963
964 result = do_assignment(instructions, state, op[0], op[1], false,
965 this->subexpressions[0]->get_location());
966 error_emitted = result->type->is_error();
967 break;
968 }
969
970 case ast_plus:
971 op[0] = this->subexpressions[0]->hir(instructions, state);
972
973 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
974
975 error_emitted = type->is_error();
976
977 result = op[0];
978 break;
979
980 case ast_neg:
981 op[0] = this->subexpressions[0]->hir(instructions, state);
982
983 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
984
985 error_emitted = type->is_error();
986
987 result = new(ctx) ir_expression(operations[this->oper], type,
988 op[0], NULL);
989 break;
990
991 case ast_add:
992 case ast_sub:
993 case ast_mul:
994 case ast_div:
995 op[0] = this->subexpressions[0]->hir(instructions, state);
996 op[1] = this->subexpressions[1]->hir(instructions, state);
997
998 type = arithmetic_result_type(op[0], op[1],
999 (this->oper == ast_mul),
1000 state, & loc);
1001 error_emitted = type->is_error();
1002
1003 result = new(ctx) ir_expression(operations[this->oper], type,
1004 op[0], op[1]);
1005 break;
1006
1007 case ast_mod:
1008 op[0] = this->subexpressions[0]->hir(instructions, state);
1009 op[1] = this->subexpressions[1]->hir(instructions, state);
1010
1011 type = modulus_result_type(op[0]->type, op[1]->type, state, & loc);
1012
1013 assert(operations[this->oper] == ir_binop_mod);
1014
1015 result = new(ctx) ir_expression(operations[this->oper], type,
1016 op[0], op[1]);
1017 error_emitted = type->is_error();
1018 break;
1019
1020 case ast_lshift:
1021 case ast_rshift:
1022 if (state->language_version < 130) {
1023 _mesa_glsl_error(&loc, state, "operator %s requires GLSL 1.30",
1024 operator_string(this->oper));
1025 error_emitted = true;
1026 }
1027
1028 op[0] = this->subexpressions[0]->hir(instructions, state);
1029 op[1] = this->subexpressions[1]->hir(instructions, state);
1030 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1031 &loc);
1032 result = new(ctx) ir_expression(operations[this->oper], type,
1033 op[0], op[1]);
1034 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1035 break;
1036
1037 case ast_less:
1038 case ast_greater:
1039 case ast_lequal:
1040 case ast_gequal:
1041 op[0] = this->subexpressions[0]->hir(instructions, state);
1042 op[1] = this->subexpressions[1]->hir(instructions, state);
1043
1044 type = relational_result_type(op[0], op[1], state, & loc);
1045
1046 /* The relational operators must either generate an error or result
1047 * in a scalar boolean. See page 57 of the GLSL 1.50 spec.
1048 */
1049 assert(type->is_error()
1050 || ((type->base_type == GLSL_TYPE_BOOL)
1051 && type->is_scalar()));
1052
1053 result = new(ctx) ir_expression(operations[this->oper], type,
1054 op[0], op[1]);
1055 error_emitted = type->is_error();
1056 break;
1057
1058 case ast_nequal:
1059 case ast_equal:
1060 op[0] = this->subexpressions[0]->hir(instructions, state);
1061 op[1] = this->subexpressions[1]->hir(instructions, state);
1062
1063 /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
1064 *
1065 * "The equality operators equal (==), and not equal (!=)
1066 * operate on all types. They result in a scalar Boolean. If
1067 * the operand types do not match, then there must be a
1068 * conversion from Section 4.1.10 "Implicit Conversions"
1069 * applied to one operand that can make them match, in which
1070 * case this conversion is done."
1071 */
1072 if ((!apply_implicit_conversion(op[0]->type, op[1], state)
1073 && !apply_implicit_conversion(op[1]->type, op[0], state))
1074 || (op[0]->type != op[1]->type)) {
1075 _mesa_glsl_error(& loc, state, "operands of `%s' must have the same "
1076 "type", (this->oper == ast_equal) ? "==" : "!=");
1077 error_emitted = true;
1078 } else if ((state->language_version <= 110)
1079 && (op[0]->type->is_array() || op[1]->type->is_array())) {
1080 _mesa_glsl_error(& loc, state, "array comparisons forbidden in "
1081 "GLSL 1.10");
1082 error_emitted = true;
1083 }
1084
1085 if (error_emitted) {
1086 result = new(ctx) ir_constant(false);
1087 } else {
1088 result = do_comparison(ctx, operations[this->oper], op[0], op[1]);
1089 assert(result->type == glsl_type::bool_type);
1090 }
1091 break;
1092
1093 case ast_bit_and:
1094 case ast_bit_xor:
1095 case ast_bit_or:
1096 op[0] = this->subexpressions[0]->hir(instructions, state);
1097 op[1] = this->subexpressions[1]->hir(instructions, state);
1098 type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
1099 state, &loc);
1100 result = new(ctx) ir_expression(operations[this->oper], type,
1101 op[0], op[1]);
1102 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1103 break;
1104
1105 case ast_bit_not:
1106 op[0] = this->subexpressions[0]->hir(instructions, state);
1107
1108 if (state->language_version < 130) {
1109 _mesa_glsl_error(&loc, state, "bit-wise operations require GLSL 1.30");
1110 error_emitted = true;
1111 }
1112
1113 if (!op[0]->type->is_integer()) {
1114 _mesa_glsl_error(&loc, state, "operand of `~' must be an integer");
1115 error_emitted = true;
1116 }
1117
1118 type = op[0]->type;
1119 result = new(ctx) ir_expression(ir_unop_bit_not, type, op[0], NULL);
1120 break;
1121
1122 case ast_logic_and: {
1123 exec_list rhs_instructions;
1124 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1125 "LHS", &error_emitted);
1126 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1127 "RHS", &error_emitted);
1128
1129 ir_constant *op0_const = op[0]->constant_expression_value();
1130 if (op0_const) {
1131 if (op0_const->value.b[0]) {
1132 instructions->append_list(&rhs_instructions);
1133 result = op[1];
1134 } else {
1135 result = op0_const;
1136 }
1137 type = glsl_type::bool_type;
1138 } else {
1139 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1140 "and_tmp",
1141 ir_var_temporary);
1142 instructions->push_tail(tmp);
1143
1144 ir_if *const stmt = new(ctx) ir_if(op[0]);
1145 instructions->push_tail(stmt);
1146
1147 stmt->then_instructions.append_list(&rhs_instructions);
1148 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1149 ir_assignment *const then_assign =
1150 new(ctx) ir_assignment(then_deref, op[1], NULL);
1151 stmt->then_instructions.push_tail(then_assign);
1152
1153 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1154 ir_assignment *const else_assign =
1155 new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false), NULL);
1156 stmt->else_instructions.push_tail(else_assign);
1157
1158 result = new(ctx) ir_dereference_variable(tmp);
1159 type = tmp->type;
1160 }
1161 break;
1162 }
1163
1164 case ast_logic_or: {
1165 exec_list rhs_instructions;
1166 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1167 "LHS", &error_emitted);
1168 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1169 "RHS", &error_emitted);
1170
1171 ir_constant *op0_const = op[0]->constant_expression_value();
1172 if (op0_const) {
1173 if (op0_const->value.b[0]) {
1174 result = op0_const;
1175 } else {
1176 result = op[1];
1177 }
1178 type = glsl_type::bool_type;
1179 } else {
1180 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1181 "or_tmp",
1182 ir_var_temporary);
1183 instructions->push_tail(tmp);
1184
1185 ir_if *const stmt = new(ctx) ir_if(op[0]);
1186 instructions->push_tail(stmt);
1187
1188 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1189 ir_assignment *const then_assign =
1190 new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true), NULL);
1191 stmt->then_instructions.push_tail(then_assign);
1192
1193 stmt->else_instructions.append_list(&rhs_instructions);
1194 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1195 ir_assignment *const else_assign =
1196 new(ctx) ir_assignment(else_deref, op[1], NULL);
1197 stmt->else_instructions.push_tail(else_assign);
1198
1199 result = new(ctx) ir_dereference_variable(tmp);
1200 type = tmp->type;
1201 }
1202 break;
1203 }
1204
1205 case ast_logic_xor:
1206 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1207 *
1208 * "The logical binary operators and (&&), or ( | | ), and
1209 * exclusive or (^^). They operate only on two Boolean
1210 * expressions and result in a Boolean expression."
1211 */
1212 op[0] = get_scalar_boolean_operand(instructions, state, this, 0, "LHS",
1213 &error_emitted);
1214 op[1] = get_scalar_boolean_operand(instructions, state, this, 1, "RHS",
1215 &error_emitted);
1216
1217 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1218 op[0], op[1]);
1219 break;
1220
1221 case ast_logic_not:
1222 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1223 "operand", &error_emitted);
1224
1225 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1226 op[0], NULL);
1227 break;
1228
1229 case ast_mul_assign:
1230 case ast_div_assign:
1231 case ast_add_assign:
1232 case ast_sub_assign: {
1233 op[0] = this->subexpressions[0]->hir(instructions, state);
1234 op[1] = this->subexpressions[1]->hir(instructions, state);
1235
1236 type = arithmetic_result_type(op[0], op[1],
1237 (this->oper == ast_mul_assign),
1238 state, & loc);
1239
1240 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1241 op[0], op[1]);
1242
1243 result = do_assignment(instructions, state,
1244 op[0]->clone(ctx, NULL), temp_rhs, false,
1245 this->subexpressions[0]->get_location());
1246 error_emitted = (op[0]->type->is_error());
1247
1248 /* GLSL 1.10 does not allow array assignment. However, we don't have to
1249 * explicitly test for this because none of the binary expression
1250 * operators allow array operands either.
1251 */
1252
1253 break;
1254 }
1255
1256 case ast_mod_assign: {
1257 op[0] = this->subexpressions[0]->hir(instructions, state);
1258 op[1] = this->subexpressions[1]->hir(instructions, state);
1259
1260 type = modulus_result_type(op[0]->type, op[1]->type, state, & loc);
1261
1262 assert(operations[this->oper] == ir_binop_mod);
1263
1264 ir_rvalue *temp_rhs;
1265 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1266 op[0], op[1]);
1267
1268 result = do_assignment(instructions, state,
1269 op[0]->clone(ctx, NULL), temp_rhs, false,
1270 this->subexpressions[0]->get_location());
1271 error_emitted = type->is_error();
1272 break;
1273 }
1274
1275 case ast_ls_assign:
1276 case ast_rs_assign: {
1277 op[0] = this->subexpressions[0]->hir(instructions, state);
1278 op[1] = this->subexpressions[1]->hir(instructions, state);
1279 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1280 &loc);
1281 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1282 type, op[0], op[1]);
1283 result = do_assignment(instructions, state, op[0]->clone(ctx, NULL),
1284 temp_rhs, false,
1285 this->subexpressions[0]->get_location());
1286 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1287 break;
1288 }
1289
1290 case ast_and_assign:
1291 case ast_xor_assign:
1292 case ast_or_assign: {
1293 op[0] = this->subexpressions[0]->hir(instructions, state);
1294 op[1] = this->subexpressions[1]->hir(instructions, state);
1295 type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
1296 state, &loc);
1297 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1298 type, op[0], op[1]);
1299 result = do_assignment(instructions, state, op[0]->clone(ctx, NULL),
1300 temp_rhs, false,
1301 this->subexpressions[0]->get_location());
1302 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1303 break;
1304 }
1305
1306 case ast_conditional: {
1307 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1308 *
1309 * "The ternary selection operator (?:). It operates on three
1310 * expressions (exp1 ? exp2 : exp3). This operator evaluates the
1311 * first expression, which must result in a scalar Boolean."
1312 */
1313 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1314 "condition", &error_emitted);
1315
1316 /* The :? operator is implemented by generating an anonymous temporary
1317 * followed by an if-statement. The last instruction in each branch of
1318 * the if-statement assigns a value to the anonymous temporary. This
1319 * temporary is the r-value of the expression.
1320 */
1321 exec_list then_instructions;
1322 exec_list else_instructions;
1323
1324 op[1] = this->subexpressions[1]->hir(&then_instructions, state);
1325 op[2] = this->subexpressions[2]->hir(&else_instructions, state);
1326
1327 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1328 *
1329 * "The second and third expressions can be any type, as
1330 * long their types match, or there is a conversion in
1331 * Section 4.1.10 "Implicit Conversions" that can be applied
1332 * to one of the expressions to make their types match. This
1333 * resulting matching type is the type of the entire
1334 * expression."
1335 */
1336 if ((!apply_implicit_conversion(op[1]->type, op[2], state)
1337 && !apply_implicit_conversion(op[2]->type, op[1], state))
1338 || (op[1]->type != op[2]->type)) {
1339 YYLTYPE loc = this->subexpressions[1]->get_location();
1340
1341 _mesa_glsl_error(& loc, state, "Second and third operands of ?: "
1342 "operator must have matching types.");
1343 error_emitted = true;
1344 type = glsl_type::error_type;
1345 } else {
1346 type = op[1]->type;
1347 }
1348
1349 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1350 *
1351 * "The second and third expressions must be the same type, but can
1352 * be of any type other than an array."
1353 */
1354 if ((state->language_version <= 110) && type->is_array()) {
1355 _mesa_glsl_error(& loc, state, "Second and third operands of ?: "
1356 "operator must not be arrays.");
1357 error_emitted = true;
1358 }
1359
1360 ir_constant *cond_val = op[0]->constant_expression_value();
1361 ir_constant *then_val = op[1]->constant_expression_value();
1362 ir_constant *else_val = op[2]->constant_expression_value();
1363
1364 if (then_instructions.is_empty()
1365 && else_instructions.is_empty()
1366 && (cond_val != NULL) && (then_val != NULL) && (else_val != NULL)) {
1367 result = (cond_val->value.b[0]) ? then_val : else_val;
1368 } else {
1369 ir_variable *const tmp =
1370 new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary);
1371 instructions->push_tail(tmp);
1372
1373 ir_if *const stmt = new(ctx) ir_if(op[0]);
1374 instructions->push_tail(stmt);
1375
1376 then_instructions.move_nodes_to(& stmt->then_instructions);
1377 ir_dereference *const then_deref =
1378 new(ctx) ir_dereference_variable(tmp);
1379 ir_assignment *const then_assign =
1380 new(ctx) ir_assignment(then_deref, op[1], NULL);
1381 stmt->then_instructions.push_tail(then_assign);
1382
1383 else_instructions.move_nodes_to(& stmt->else_instructions);
1384 ir_dereference *const else_deref =
1385 new(ctx) ir_dereference_variable(tmp);
1386 ir_assignment *const else_assign =
1387 new(ctx) ir_assignment(else_deref, op[2], NULL);
1388 stmt->else_instructions.push_tail(else_assign);
1389
1390 result = new(ctx) ir_dereference_variable(tmp);
1391 }
1392 break;
1393 }
1394
1395 case ast_pre_inc:
1396 case ast_pre_dec: {
1397 op[0] = this->subexpressions[0]->hir(instructions, state);
1398 if (op[0]->type->base_type == GLSL_TYPE_FLOAT)
1399 op[1] = new(ctx) ir_constant(1.0f);
1400 else
1401 op[1] = new(ctx) ir_constant(1);
1402
1403 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1404
1405 ir_rvalue *temp_rhs;
1406 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1407 op[0], op[1]);
1408
1409 result = do_assignment(instructions, state,
1410 op[0]->clone(ctx, NULL), temp_rhs, false,
1411 this->subexpressions[0]->get_location());
1412 error_emitted = op[0]->type->is_error();
1413 break;
1414 }
1415
1416 case ast_post_inc:
1417 case ast_post_dec: {
1418 op[0] = this->subexpressions[0]->hir(instructions, state);
1419 if (op[0]->type->base_type == GLSL_TYPE_FLOAT)
1420 op[1] = new(ctx) ir_constant(1.0f);
1421 else
1422 op[1] = new(ctx) ir_constant(1);
1423
1424 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1425
1426 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1427
1428 ir_rvalue *temp_rhs;
1429 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1430 op[0], op[1]);
1431
1432 /* Get a temporary of a copy of the lvalue before it's modified.
1433 * This may get thrown away later.
1434 */
1435 result = get_lvalue_copy(instructions, op[0]->clone(ctx, NULL));
1436
1437 (void)do_assignment(instructions, state,
1438 op[0]->clone(ctx, NULL), temp_rhs, false,
1439 this->subexpressions[0]->get_location());
1440
1441 error_emitted = op[0]->type->is_error();
1442 break;
1443 }
1444
1445 case ast_field_selection:
1446 result = _mesa_ast_field_selection_to_hir(this, instructions, state);
1447 break;
1448
1449 case ast_array_index: {
1450 YYLTYPE index_loc = subexpressions[1]->get_location();
1451
1452 op[0] = subexpressions[0]->hir(instructions, state);
1453 op[1] = subexpressions[1]->hir(instructions, state);
1454
1455 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1456
1457 ir_rvalue *const array = op[0];
1458
1459 result = new(ctx) ir_dereference_array(op[0], op[1]);
1460
1461 /* Do not use op[0] after this point. Use array.
1462 */
1463 op[0] = NULL;
1464
1465
1466 if (error_emitted)
1467 break;
1468
1469 if (!array->type->is_array()
1470 && !array->type->is_matrix()
1471 && !array->type->is_vector()) {
1472 _mesa_glsl_error(& index_loc, state,
1473 "cannot dereference non-array / non-matrix / "
1474 "non-vector");
1475 error_emitted = true;
1476 }
1477
1478 if (!op[1]->type->is_integer()) {
1479 _mesa_glsl_error(& index_loc, state,
1480 "array index must be integer type");
1481 error_emitted = true;
1482 } else if (!op[1]->type->is_scalar()) {
1483 _mesa_glsl_error(& index_loc, state,
1484 "array index must be scalar");
1485 error_emitted = true;
1486 }
1487
1488 /* If the array index is a constant expression and the array has a
1489 * declared size, ensure that the access is in-bounds. If the array
1490 * index is not a constant expression, ensure that the array has a
1491 * declared size.
1492 */
1493 ir_constant *const const_index = op[1]->constant_expression_value();
1494 if (const_index != NULL) {
1495 const int idx = const_index->value.i[0];
1496 const char *type_name;
1497 unsigned bound = 0;
1498
1499 if (array->type->is_matrix()) {
1500 type_name = "matrix";
1501 } else if (array->type->is_vector()) {
1502 type_name = "vector";
1503 } else {
1504 type_name = "array";
1505 }
1506
1507 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec:
1508 *
1509 * "It is illegal to declare an array with a size, and then
1510 * later (in the same shader) index the same array with an
1511 * integral constant expression greater than or equal to the
1512 * declared size. It is also illegal to index an array with a
1513 * negative constant expression."
1514 */
1515 if (array->type->is_matrix()) {
1516 if (array->type->row_type()->vector_elements <= idx) {
1517 bound = array->type->row_type()->vector_elements;
1518 }
1519 } else if (array->type->is_vector()) {
1520 if (array->type->vector_elements <= idx) {
1521 bound = array->type->vector_elements;
1522 }
1523 } else {
1524 if ((array->type->array_size() > 0)
1525 && (array->type->array_size() <= idx)) {
1526 bound = array->type->array_size();
1527 }
1528 }
1529
1530 if (bound > 0) {
1531 _mesa_glsl_error(& loc, state, "%s index must be < %u",
1532 type_name, bound);
1533 error_emitted = true;
1534 } else if (idx < 0) {
1535 _mesa_glsl_error(& loc, state, "%s index must be >= 0",
1536 type_name);
1537 error_emitted = true;
1538 }
1539
1540 if (array->type->is_array()) {
1541 /* If the array is a variable dereference, it dereferences the
1542 * whole array, by definition. Use this to get the variable.
1543 *
1544 * FINISHME: Should some methods for getting / setting / testing
1545 * FINISHME: array access limits be added to ir_dereference?
1546 */
1547 ir_variable *const v = array->whole_variable_referenced();
1548 if ((v != NULL) && (unsigned(idx) > v->max_array_access))
1549 v->max_array_access = idx;
1550 }
1551 } else if (array->type->array_size() == 0) {
1552 _mesa_glsl_error(&loc, state, "unsized array index must be constant");
1553 } else {
1554 if (array->type->is_array()) {
1555 /* whole_variable_referenced can return NULL if the array is a
1556 * member of a structure. In this case it is safe to not update
1557 * the max_array_access field because it is never used for fields
1558 * of structures.
1559 */
1560 ir_variable *v = array->whole_variable_referenced();
1561 if (v != NULL)
1562 v->max_array_access = array->type->array_size() - 1;
1563 }
1564 }
1565
1566 /* From page 23 (29 of the PDF) of the GLSL 1.30 spec:
1567 *
1568 * "Samplers aggregated into arrays within a shader (using square
1569 * brackets [ ]) can only be indexed with integral constant
1570 * expressions [...]."
1571 *
1572 * This restriction was added in GLSL 1.30. Shaders using earlier version
1573 * of the language should not be rejected by the compiler front-end for
1574 * using this construct. This allows useful things such as using a loop
1575 * counter as the index to an array of samplers. If the loop in unrolled,
1576 * the code should compile correctly. Instead, emit a warning.
1577 */
1578 if (array->type->is_array() &&
1579 array->type->element_type()->is_sampler() &&
1580 const_index == NULL) {
1581
1582 if (state->language_version == 100) {
1583 _mesa_glsl_warning(&loc, state,
1584 "sampler arrays indexed with non-constant "
1585 "expressions is optional in GLSL ES 1.00");
1586 } else if (state->language_version < 130) {
1587 _mesa_glsl_warning(&loc, state,
1588 "sampler arrays indexed with non-constant "
1589 "expressions is forbidden in GLSL 1.30 and "
1590 "later");
1591 } else {
1592 _mesa_glsl_error(&loc, state,
1593 "sampler arrays indexed with non-constant "
1594 "expressions is forbidden in GLSL 1.30 and "
1595 "later");
1596 error_emitted = true;
1597 }
1598 }
1599
1600 if (error_emitted)
1601 result->type = glsl_type::error_type;
1602
1603 break;
1604 }
1605
1606 case ast_function_call:
1607 /* Should *NEVER* get here. ast_function_call should always be handled
1608 * by ast_function_expression::hir.
1609 */
1610 assert(0);
1611 break;
1612
1613 case ast_identifier: {
1614 /* ast_identifier can appear several places in a full abstract syntax
1615 * tree. This particular use must be at location specified in the grammar
1616 * as 'variable_identifier'.
1617 */
1618 ir_variable *var =
1619 state->symbols->get_variable(this->primary_expression.identifier);
1620
1621 result = new(ctx) ir_dereference_variable(var);
1622
1623 if (var != NULL) {
1624 var->used = true;
1625 } else {
1626 _mesa_glsl_error(& loc, state, "`%s' undeclared",
1627 this->primary_expression.identifier);
1628
1629 error_emitted = true;
1630 }
1631 break;
1632 }
1633
1634 case ast_int_constant:
1635 result = new(ctx) ir_constant(this->primary_expression.int_constant);
1636 break;
1637
1638 case ast_uint_constant:
1639 result = new(ctx) ir_constant(this->primary_expression.uint_constant);
1640 break;
1641
1642 case ast_float_constant:
1643 result = new(ctx) ir_constant(this->primary_expression.float_constant);
1644 break;
1645
1646 case ast_bool_constant:
1647 result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant));
1648 break;
1649
1650 case ast_sequence: {
1651 /* It should not be possible to generate a sequence in the AST without
1652 * any expressions in it.
1653 */
1654 assert(!this->expressions.is_empty());
1655
1656 /* The r-value of a sequence is the last expression in the sequence. If
1657 * the other expressions in the sequence do not have side-effects (and
1658 * therefore add instructions to the instruction list), they get dropped
1659 * on the floor.
1660 */
1661 exec_node *previous_tail_pred = NULL;
1662 YYLTYPE previous_operand_loc = loc;
1663
1664 foreach_list_typed (ast_node, ast, link, &this->expressions) {
1665 /* If one of the operands of comma operator does not generate any
1666 * code, we want to emit a warning. At each pass through the loop
1667 * previous_tail_pred will point to the last instruction in the
1668 * stream *before* processing the previous operand. Naturally,
1669 * instructions->tail_pred will point to the last instruction in the
1670 * stream *after* processing the previous operand. If the two
1671 * pointers match, then the previous operand had no effect.
1672 *
1673 * The warning behavior here differs slightly from GCC. GCC will
1674 * only emit a warning if none of the left-hand operands have an
1675 * effect. However, it will emit a warning for each. I believe that
1676 * there are some cases in C (especially with GCC extensions) where
1677 * it is useful to have an intermediate step in a sequence have no
1678 * effect, but I don't think these cases exist in GLSL. Either way,
1679 * it would be a giant hassle to replicate that behavior.
1680 */
1681 if (previous_tail_pred == instructions->tail_pred) {
1682 _mesa_glsl_warning(&previous_operand_loc, state,
1683 "left-hand operand of comma expression has "
1684 "no effect");
1685 }
1686
1687 /* tail_pred is directly accessed instead of using the get_tail()
1688 * method for performance reasons. get_tail() has extra code to
1689 * return NULL when the list is empty. We don't care about that
1690 * here, so using tail_pred directly is fine.
1691 */
1692 previous_tail_pred = instructions->tail_pred;
1693 previous_operand_loc = ast->get_location();
1694
1695 result = ast->hir(instructions, state);
1696 }
1697
1698 /* Any errors should have already been emitted in the loop above.
1699 */
1700 error_emitted = true;
1701 break;
1702 }
1703 }
1704 type = NULL; /* use result->type, not type. */
1705 assert(result != NULL);
1706
1707 if (result->type->is_error() && !error_emitted)
1708 _mesa_glsl_error(& loc, state, "type mismatch");
1709
1710 return result;
1711 }
1712
1713
1714 ir_rvalue *
1715 ast_expression_statement::hir(exec_list *instructions,
1716 struct _mesa_glsl_parse_state *state)
1717 {
1718 /* It is possible to have expression statements that don't have an
1719 * expression. This is the solitary semicolon:
1720 *
1721 * for (i = 0; i < 5; i++)
1722 * ;
1723 *
1724 * In this case the expression will be NULL. Test for NULL and don't do
1725 * anything in that case.
1726 */
1727 if (expression != NULL)
1728 expression->hir(instructions, state);
1729
1730 /* Statements do not have r-values.
1731 */
1732 return NULL;
1733 }
1734
1735
1736 ir_rvalue *
1737 ast_compound_statement::hir(exec_list *instructions,
1738 struct _mesa_glsl_parse_state *state)
1739 {
1740 if (new_scope)
1741 state->symbols->push_scope();
1742
1743 foreach_list_typed (ast_node, ast, link, &this->statements)
1744 ast->hir(instructions, state);
1745
1746 if (new_scope)
1747 state->symbols->pop_scope();
1748
1749 /* Compound statements do not have r-values.
1750 */
1751 return NULL;
1752 }
1753
1754
1755 static const glsl_type *
1756 process_array_type(YYLTYPE *loc, const glsl_type *base, ast_node *array_size,
1757 struct _mesa_glsl_parse_state *state)
1758 {
1759 unsigned length = 0;
1760
1761 /* FINISHME: Reject delcarations of multidimensional arrays. */
1762
1763 if (array_size != NULL) {
1764 exec_list dummy_instructions;
1765 ir_rvalue *const ir = array_size->hir(& dummy_instructions, state);
1766 YYLTYPE loc = array_size->get_location();
1767
1768 /* FINISHME: Verify that the grammar forbids side-effects in array
1769 * FINISHME: sizes. i.e., 'vec4 [x = 12] data'
1770 */
1771 assert(dummy_instructions.is_empty());
1772
1773 if (ir != NULL) {
1774 if (!ir->type->is_integer()) {
1775 _mesa_glsl_error(& loc, state, "array size must be integer type");
1776 } else if (!ir->type->is_scalar()) {
1777 _mesa_glsl_error(& loc, state, "array size must be scalar type");
1778 } else {
1779 ir_constant *const size = ir->constant_expression_value();
1780
1781 if (size == NULL) {
1782 _mesa_glsl_error(& loc, state, "array size must be a "
1783 "constant valued expression");
1784 } else if (size->value.i[0] <= 0) {
1785 _mesa_glsl_error(& loc, state, "array size must be > 0");
1786 } else {
1787 assert(size->type == ir->type);
1788 length = size->value.u[0];
1789 }
1790 }
1791 }
1792 } else if (state->es_shader) {
1793 /* Section 10.17 of the GLSL ES 1.00 specification states that unsized
1794 * array declarations have been removed from the language.
1795 */
1796 _mesa_glsl_error(loc, state, "unsized array declarations are not "
1797 "allowed in GLSL ES 1.00.");
1798 }
1799
1800 return glsl_type::get_array_instance(base, length);
1801 }
1802
1803
1804 const glsl_type *
1805 ast_type_specifier::glsl_type(const char **name,
1806 struct _mesa_glsl_parse_state *state) const
1807 {
1808 const struct glsl_type *type;
1809
1810 type = state->symbols->get_type(this->type_name);
1811 *name = this->type_name;
1812
1813 if (this->is_array) {
1814 YYLTYPE loc = this->get_location();
1815 type = process_array_type(&loc, type, this->array_size, state);
1816 }
1817
1818 return type;
1819 }
1820
1821
1822 static void
1823 apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
1824 ir_variable *var,
1825 struct _mesa_glsl_parse_state *state,
1826 YYLTYPE *loc)
1827 {
1828 if (qual->flags.q.invariant) {
1829 if (var->used) {
1830 _mesa_glsl_error(loc, state,
1831 "variable `%s' may not be redeclared "
1832 "`invariant' after being used",
1833 var->name);
1834 } else {
1835 var->invariant = 1;
1836 }
1837 }
1838
1839 if (qual->flags.q.constant || qual->flags.q.attribute
1840 || qual->flags.q.uniform
1841 || (qual->flags.q.varying && (state->target == fragment_shader)))
1842 var->read_only = 1;
1843
1844 if (qual->flags.q.centroid)
1845 var->centroid = 1;
1846
1847 if (qual->flags.q.attribute && state->target != vertex_shader) {
1848 var->type = glsl_type::error_type;
1849 _mesa_glsl_error(loc, state,
1850 "`attribute' variables may not be declared in the "
1851 "%s shader",
1852 _mesa_glsl_shader_target_name(state->target));
1853 }
1854
1855 /* From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
1856 *
1857 * "The varying qualifier can be used only with the data types
1858 * float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
1859 * these."
1860 */
1861 if (qual->flags.q.varying) {
1862 const glsl_type *non_array_type;
1863
1864 if (var->type && var->type->is_array())
1865 non_array_type = var->type->fields.array;
1866 else
1867 non_array_type = var->type;
1868
1869 if (non_array_type && non_array_type->base_type != GLSL_TYPE_FLOAT) {
1870 var->type = glsl_type::error_type;
1871 _mesa_glsl_error(loc, state,
1872 "varying variables must be of base type float");
1873 }
1874 }
1875
1876 /* If there is no qualifier that changes the mode of the variable, leave
1877 * the setting alone.
1878 */
1879 if (qual->flags.q.in && qual->flags.q.out)
1880 var->mode = ir_var_inout;
1881 else if (qual->flags.q.attribute || qual->flags.q.in
1882 || (qual->flags.q.varying && (state->target == fragment_shader)))
1883 var->mode = ir_var_in;
1884 else if (qual->flags.q.out
1885 || (qual->flags.q.varying && (state->target == vertex_shader)))
1886 var->mode = ir_var_out;
1887 else if (qual->flags.q.uniform)
1888 var->mode = ir_var_uniform;
1889
1890 if (state->all_invariant && (state->current_function == NULL)) {
1891 switch (state->target) {
1892 case vertex_shader:
1893 if (var->mode == ir_var_out)
1894 var->invariant = true;
1895 break;
1896 case geometry_shader:
1897 if ((var->mode == ir_var_in) || (var->mode == ir_var_out))
1898 var->invariant = true;
1899 break;
1900 case fragment_shader:
1901 if (var->mode == ir_var_in)
1902 var->invariant = true;
1903 break;
1904 }
1905 }
1906
1907 if (qual->flags.q.flat)
1908 var->interpolation = ir_var_flat;
1909 else if (qual->flags.q.noperspective)
1910 var->interpolation = ir_var_noperspective;
1911 else
1912 var->interpolation = ir_var_smooth;
1913
1914 var->pixel_center_integer = qual->flags.q.pixel_center_integer;
1915 var->origin_upper_left = qual->flags.q.origin_upper_left;
1916 if ((qual->flags.q.origin_upper_left || qual->flags.q.pixel_center_integer)
1917 && (strcmp(var->name, "gl_FragCoord") != 0)) {
1918 const char *const qual_string = (qual->flags.q.origin_upper_left)
1919 ? "origin_upper_left" : "pixel_center_integer";
1920
1921 _mesa_glsl_error(loc, state,
1922 "layout qualifier `%s' can only be applied to "
1923 "fragment shader input `gl_FragCoord'",
1924 qual_string);
1925 }
1926
1927 if (qual->flags.q.explicit_location) {
1928 const bool global_scope = (state->current_function == NULL);
1929 bool fail = false;
1930 const char *string = "";
1931
1932 /* In the vertex shader only shader inputs can be given explicit
1933 * locations.
1934 *
1935 * In the fragment shader only shader outputs can be given explicit
1936 * locations.
1937 */
1938 switch (state->target) {
1939 case vertex_shader:
1940 if (!global_scope || (var->mode != ir_var_in)) {
1941 fail = true;
1942 string = "input";
1943 }
1944 break;
1945
1946 case geometry_shader:
1947 _mesa_glsl_error(loc, state,
1948 "geometry shader variables cannot be given "
1949 "explicit locations\n");
1950 break;
1951
1952 case fragment_shader:
1953 if (!global_scope || (var->mode != ir_var_out)) {
1954 fail = true;
1955 string = "output";
1956 }
1957 break;
1958 };
1959
1960 if (fail) {
1961 _mesa_glsl_error(loc, state,
1962 "only %s shader %s variables can be given an "
1963 "explicit location\n",
1964 _mesa_glsl_shader_target_name(state->target),
1965 string);
1966 } else {
1967 var->explicit_location = true;
1968
1969 /* This bit of silliness is needed because invalid explicit locations
1970 * are supposed to be flagged during linking. Small negative values
1971 * biased by VERT_ATTRIB_GENERIC0 or FRAG_RESULT_DATA0 could alias
1972 * built-in values (e.g., -16+VERT_ATTRIB_GENERIC0 = VERT_ATTRIB_POS).
1973 * The linker needs to be able to differentiate these cases. This
1974 * ensures that negative values stay negative.
1975 */
1976 if (qual->location >= 0) {
1977 var->location = (state->target == vertex_shader)
1978 ? (qual->location + VERT_ATTRIB_GENERIC0)
1979 : (qual->location + FRAG_RESULT_DATA0);
1980 } else {
1981 var->location = qual->location;
1982 }
1983 }
1984 }
1985
1986 /* Does the declaration use the 'layout' keyword?
1987 */
1988 const bool uses_layout = qual->flags.q.pixel_center_integer
1989 || qual->flags.q.origin_upper_left
1990 || qual->flags.q.explicit_location;
1991
1992 /* Does the declaration use the deprecated 'attribute' or 'varying'
1993 * keywords?
1994 */
1995 const bool uses_deprecated_qualifier = qual->flags.q.attribute
1996 || qual->flags.q.varying;
1997
1998 /* Is the 'layout' keyword used with parameters that allow relaxed checking.
1999 * Many implementations of GL_ARB_fragment_coord_conventions_enable and some
2000 * implementations (only Mesa?) GL_ARB_explicit_attrib_location_enable
2001 * allowed the layout qualifier to be used with 'varying' and 'attribute'.
2002 * These extensions and all following extensions that add the 'layout'
2003 * keyword have been modified to require the use of 'in' or 'out'.
2004 *
2005 * The following extension do not allow the deprecated keywords:
2006 *
2007 * GL_AMD_conservative_depth
2008 * GL_ARB_gpu_shader5
2009 * GL_ARB_separate_shader_objects
2010 * GL_ARB_tesselation_shader
2011 * GL_ARB_transform_feedback3
2012 * GL_ARB_uniform_buffer_object
2013 *
2014 * It is unknown whether GL_EXT_shader_image_load_store or GL_NV_gpu_shader5
2015 * allow layout with the deprecated keywords.
2016 */
2017 const bool relaxed_layout_qualifier_checking =
2018 state->ARB_fragment_coord_conventions_enable;
2019
2020 if (uses_layout && uses_deprecated_qualifier) {
2021 if (relaxed_layout_qualifier_checking) {
2022 _mesa_glsl_warning(loc, state,
2023 "`layout' qualifier may not be used with "
2024 "`attribute' or `varying'");
2025 } else {
2026 _mesa_glsl_error(loc, state,
2027 "`layout' qualifier may not be used with "
2028 "`attribute' or `varying'");
2029 }
2030 }
2031
2032 /* Layout qualifiers for gl_FragDepth, which are enabled by extension
2033 * AMD_conservative_depth.
2034 */
2035 int depth_layout_count = qual->flags.q.depth_any
2036 + qual->flags.q.depth_greater
2037 + qual->flags.q.depth_less
2038 + qual->flags.q.depth_unchanged;
2039 if (depth_layout_count > 0
2040 && !state->AMD_conservative_depth_enable) {
2041 _mesa_glsl_error(loc, state,
2042 "extension GL_AMD_conservative_depth must be enabled "
2043 "to use depth layout qualifiers");
2044 } else if (depth_layout_count > 0
2045 && strcmp(var->name, "gl_FragDepth") != 0) {
2046 _mesa_glsl_error(loc, state,
2047 "depth layout qualifiers can be applied only to "
2048 "gl_FragDepth");
2049 } else if (depth_layout_count > 1
2050 && strcmp(var->name, "gl_FragDepth") == 0) {
2051 _mesa_glsl_error(loc, state,
2052 "at most one depth layout qualifier can be applied to "
2053 "gl_FragDepth");
2054 }
2055 if (qual->flags.q.depth_any)
2056 var->depth_layout = ir_depth_layout_any;
2057 else if (qual->flags.q.depth_greater)
2058 var->depth_layout = ir_depth_layout_greater;
2059 else if (qual->flags.q.depth_less)
2060 var->depth_layout = ir_depth_layout_less;
2061 else if (qual->flags.q.depth_unchanged)
2062 var->depth_layout = ir_depth_layout_unchanged;
2063 else
2064 var->depth_layout = ir_depth_layout_none;
2065
2066 if (var->type->is_array() && state->language_version != 110) {
2067 var->array_lvalue = true;
2068 }
2069 }
2070
2071 /**
2072 * Get the variable that is being redeclared by this declaration
2073 *
2074 * Semantic checks to verify the validity of the redeclaration are also
2075 * performed. If semantic checks fail, compilation error will be emitted via
2076 * \c _mesa_glsl_error, but a non-\c NULL pointer will still be returned.
2077 *
2078 * \returns
2079 * A pointer to an existing variable in the current scope if the declaration
2080 * is a redeclaration, \c NULL otherwise.
2081 */
2082 ir_variable *
2083 get_variable_being_redeclared(ir_variable *var, ast_declaration *decl,
2084 struct _mesa_glsl_parse_state *state)
2085 {
2086 /* Check if this declaration is actually a re-declaration, either to
2087 * resize an array or add qualifiers to an existing variable.
2088 *
2089 * This is allowed for variables in the current scope, or when at
2090 * global scope (for built-ins in the implicit outer scope).
2091 */
2092 ir_variable *earlier = state->symbols->get_variable(decl->identifier);
2093 if (earlier == NULL ||
2094 (state->current_function != NULL &&
2095 !state->symbols->name_declared_this_scope(decl->identifier))) {
2096 return NULL;
2097 }
2098
2099
2100 YYLTYPE loc = decl->get_location();
2101
2102 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
2103 *
2104 * "It is legal to declare an array without a size and then
2105 * later re-declare the same name as an array of the same
2106 * type and specify a size."
2107 */
2108 if ((earlier->type->array_size() == 0)
2109 && var->type->is_array()
2110 && (var->type->element_type() == earlier->type->element_type())) {
2111 /* FINISHME: This doesn't match the qualifiers on the two
2112 * FINISHME: declarations. It's not 100% clear whether this is
2113 * FINISHME: required or not.
2114 */
2115
2116 /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec:
2117 *
2118 * "The size [of gl_TexCoord] can be at most
2119 * gl_MaxTextureCoords."
2120 */
2121 const unsigned size = unsigned(var->type->array_size());
2122 if ((strcmp("gl_TexCoord", var->name) == 0)
2123 && (size > state->Const.MaxTextureCoords)) {
2124 _mesa_glsl_error(& loc, state, "`gl_TexCoord' array size cannot "
2125 "be larger than gl_MaxTextureCoords (%u)\n",
2126 state->Const.MaxTextureCoords);
2127 } else if ((size > 0) && (size <= earlier->max_array_access)) {
2128 _mesa_glsl_error(& loc, state, "array size must be > %u due to "
2129 "previous access",
2130 earlier->max_array_access);
2131 }
2132
2133 earlier->type = var->type;
2134 delete var;
2135 var = NULL;
2136 } else if (state->ARB_fragment_coord_conventions_enable
2137 && strcmp(var->name, "gl_FragCoord") == 0
2138 && earlier->type == var->type
2139 && earlier->mode == var->mode) {
2140 /* Allow redeclaration of gl_FragCoord for ARB_fcc layout
2141 * qualifiers.
2142 */
2143 earlier->origin_upper_left = var->origin_upper_left;
2144 earlier->pixel_center_integer = var->pixel_center_integer;
2145
2146 /* According to section 4.3.7 of the GLSL 1.30 spec,
2147 * the following built-in varaibles can be redeclared with an
2148 * interpolation qualifier:
2149 * * gl_FrontColor
2150 * * gl_BackColor
2151 * * gl_FrontSecondaryColor
2152 * * gl_BackSecondaryColor
2153 * * gl_Color
2154 * * gl_SecondaryColor
2155 */
2156 } else if (state->language_version >= 130
2157 && (strcmp(var->name, "gl_FrontColor") == 0
2158 || strcmp(var->name, "gl_BackColor") == 0
2159 || strcmp(var->name, "gl_FrontSecondaryColor") == 0
2160 || strcmp(var->name, "gl_BackSecondaryColor") == 0
2161 || strcmp(var->name, "gl_Color") == 0
2162 || strcmp(var->name, "gl_SecondaryColor") == 0)
2163 && earlier->type == var->type
2164 && earlier->mode == var->mode) {
2165 earlier->interpolation = var->interpolation;
2166
2167 /* Layout qualifiers for gl_FragDepth. */
2168 } else if (state->AMD_conservative_depth_enable
2169 && strcmp(var->name, "gl_FragDepth") == 0
2170 && earlier->type == var->type
2171 && earlier->mode == var->mode) {
2172
2173 /** From the AMD_conservative_depth spec:
2174 * Within any shader, the first redeclarations of gl_FragDepth
2175 * must appear before any use of gl_FragDepth.
2176 */
2177 if (earlier->used) {
2178 _mesa_glsl_error(&loc, state,
2179 "the first redeclaration of gl_FragDepth "
2180 "must appear before any use of gl_FragDepth");
2181 }
2182
2183 /* Prevent inconsistent redeclaration of depth layout qualifier. */
2184 if (earlier->depth_layout != ir_depth_layout_none
2185 && earlier->depth_layout != var->depth_layout) {
2186 _mesa_glsl_error(&loc, state,
2187 "gl_FragDepth: depth layout is declared here "
2188 "as '%s, but it was previously declared as "
2189 "'%s'",
2190 depth_layout_string(var->depth_layout),
2191 depth_layout_string(earlier->depth_layout));
2192 }
2193
2194 earlier->depth_layout = var->depth_layout;
2195
2196 } else {
2197 _mesa_glsl_error(&loc, state, "`%s' redeclared", decl->identifier);
2198 }
2199
2200 return earlier;
2201 }
2202
2203 /**
2204 * Generate the IR for an initializer in a variable declaration
2205 */
2206 ir_rvalue *
2207 process_initializer(ir_variable *var, ast_declaration *decl,
2208 ast_fully_specified_type *type,
2209 exec_list *initializer_instructions,
2210 struct _mesa_glsl_parse_state *state)
2211 {
2212 ir_rvalue *result = NULL;
2213
2214 YYLTYPE initializer_loc = decl->initializer->get_location();
2215
2216 /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
2217 *
2218 * "All uniform variables are read-only and are initialized either
2219 * directly by an application via API commands, or indirectly by
2220 * OpenGL."
2221 */
2222 if ((state->language_version <= 110)
2223 && (var->mode == ir_var_uniform)) {
2224 _mesa_glsl_error(& initializer_loc, state,
2225 "cannot initialize uniforms in GLSL 1.10");
2226 }
2227
2228 if (var->type->is_sampler()) {
2229 _mesa_glsl_error(& initializer_loc, state,
2230 "cannot initialize samplers");
2231 }
2232
2233 if ((var->mode == ir_var_in) && (state->current_function == NULL)) {
2234 _mesa_glsl_error(& initializer_loc, state,
2235 "cannot initialize %s shader input / %s",
2236 _mesa_glsl_shader_target_name(state->target),
2237 (state->target == vertex_shader)
2238 ? "attribute" : "varying");
2239 }
2240
2241 ir_dereference *const lhs = new(state) ir_dereference_variable(var);
2242 ir_rvalue *rhs = decl->initializer->hir(initializer_instructions,
2243 state);
2244
2245 /* Calculate the constant value if this is a const or uniform
2246 * declaration.
2247 */
2248 if (type->qualifier.flags.q.constant
2249 || type->qualifier.flags.q.uniform) {
2250 ir_rvalue *new_rhs = validate_assignment(state, var->type, rhs, true);
2251 if (new_rhs != NULL) {
2252 rhs = new_rhs;
2253
2254 ir_constant *constant_value = rhs->constant_expression_value();
2255 if (!constant_value) {
2256 _mesa_glsl_error(& initializer_loc, state,
2257 "initializer of %s variable `%s' must be a "
2258 "constant expression",
2259 (type->qualifier.flags.q.constant)
2260 ? "const" : "uniform",
2261 decl->identifier);
2262 if (var->type->is_numeric()) {
2263 /* Reduce cascading errors. */
2264 var->constant_value = ir_constant::zero(state, var->type);
2265 }
2266 } else {
2267 rhs = constant_value;
2268 var->constant_value = constant_value;
2269 }
2270 } else {
2271 _mesa_glsl_error(&initializer_loc, state,
2272 "initializer of type %s cannot be assigned to "
2273 "variable of type %s",
2274 rhs->type->name, var->type->name);
2275 if (var->type->is_numeric()) {
2276 /* Reduce cascading errors. */
2277 var->constant_value = ir_constant::zero(state, var->type);
2278 }
2279 }
2280 }
2281
2282 if (rhs && !rhs->type->is_error()) {
2283 bool temp = var->read_only;
2284 if (type->qualifier.flags.q.constant)
2285 var->read_only = false;
2286
2287 /* Never emit code to initialize a uniform.
2288 */
2289 const glsl_type *initializer_type;
2290 if (!type->qualifier.flags.q.uniform) {
2291 result = do_assignment(initializer_instructions, state,
2292 lhs, rhs, true,
2293 type->get_location());
2294 initializer_type = result->type;
2295 } else
2296 initializer_type = rhs->type;
2297
2298 /* If the declared variable is an unsized array, it must inherrit
2299 * its full type from the initializer. A declaration such as
2300 *
2301 * uniform float a[] = float[](1.0, 2.0, 3.0, 3.0);
2302 *
2303 * becomes
2304 *
2305 * uniform float a[4] = float[](1.0, 2.0, 3.0, 3.0);
2306 *
2307 * The assignment generated in the if-statement (below) will also
2308 * automatically handle this case for non-uniforms.
2309 *
2310 * If the declared variable is not an array, the types must
2311 * already match exactly. As a result, the type assignment
2312 * here can be done unconditionally. For non-uniforms the call
2313 * to do_assignment can change the type of the initializer (via
2314 * the implicit conversion rules). For uniforms the initializer
2315 * must be a constant expression, and the type of that expression
2316 * was validated above.
2317 */
2318 var->type = initializer_type;
2319
2320 var->read_only = temp;
2321 }
2322
2323 return result;
2324 }
2325
2326 ir_rvalue *
2327 ast_declarator_list::hir(exec_list *instructions,
2328 struct _mesa_glsl_parse_state *state)
2329 {
2330 void *ctx = state;
2331 const struct glsl_type *decl_type;
2332 const char *type_name = NULL;
2333 ir_rvalue *result = NULL;
2334 YYLTYPE loc = this->get_location();
2335
2336 /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec:
2337 *
2338 * "To ensure that a particular output variable is invariant, it is
2339 * necessary to use the invariant qualifier. It can either be used to
2340 * qualify a previously declared variable as being invariant
2341 *
2342 * invariant gl_Position; // make existing gl_Position be invariant"
2343 *
2344 * In these cases the parser will set the 'invariant' flag in the declarator
2345 * list, and the type will be NULL.
2346 */
2347 if (this->invariant) {
2348 assert(this->type == NULL);
2349
2350 if (state->current_function != NULL) {
2351 _mesa_glsl_error(& loc, state,
2352 "All uses of `invariant' keyword must be at global "
2353 "scope\n");
2354 }
2355
2356 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
2357 assert(!decl->is_array);
2358 assert(decl->array_size == NULL);
2359 assert(decl->initializer == NULL);
2360
2361 ir_variable *const earlier =
2362 state->symbols->get_variable(decl->identifier);
2363 if (earlier == NULL) {
2364 _mesa_glsl_error(& loc, state,
2365 "Undeclared variable `%s' cannot be marked "
2366 "invariant\n", decl->identifier);
2367 } else if ((state->target == vertex_shader)
2368 && (earlier->mode != ir_var_out)) {
2369 _mesa_glsl_error(& loc, state,
2370 "`%s' cannot be marked invariant, vertex shader "
2371 "outputs only\n", decl->identifier);
2372 } else if ((state->target == fragment_shader)
2373 && (earlier->mode != ir_var_in)) {
2374 _mesa_glsl_error(& loc, state,
2375 "`%s' cannot be marked invariant, fragment shader "
2376 "inputs only\n", decl->identifier);
2377 } else if (earlier->used) {
2378 _mesa_glsl_error(& loc, state,
2379 "variable `%s' may not be redeclared "
2380 "`invariant' after being used",
2381 earlier->name);
2382 } else {
2383 earlier->invariant = true;
2384 }
2385 }
2386
2387 /* Invariant redeclarations do not have r-values.
2388 */
2389 return NULL;
2390 }
2391
2392 assert(this->type != NULL);
2393 assert(!this->invariant);
2394
2395 /* The type specifier may contain a structure definition. Process that
2396 * before any of the variable declarations.
2397 */
2398 (void) this->type->specifier->hir(instructions, state);
2399
2400 decl_type = this->type->specifier->glsl_type(& type_name, state);
2401 if (this->declarations.is_empty()) {
2402 if (decl_type != NULL) {
2403 /* Warn if this empty declaration is not for declaring a structure.
2404 */
2405 if (this->type->specifier->structure == NULL) {
2406 _mesa_glsl_warning(&loc, state, "empty declaration");
2407 }
2408 } else {
2409 _mesa_glsl_error(& loc, state, "incomplete declaration");
2410 }
2411 }
2412
2413 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
2414 const struct glsl_type *var_type;
2415 ir_variable *var;
2416
2417 /* FINISHME: Emit a warning if a variable declaration shadows a
2418 * FINISHME: declaration at a higher scope.
2419 */
2420
2421 if ((decl_type == NULL) || decl_type->is_void()) {
2422 if (type_name != NULL) {
2423 _mesa_glsl_error(& loc, state,
2424 "invalid type `%s' in declaration of `%s'",
2425 type_name, decl->identifier);
2426 } else {
2427 _mesa_glsl_error(& loc, state,
2428 "invalid type in declaration of `%s'",
2429 decl->identifier);
2430 }
2431 continue;
2432 }
2433
2434 if (decl->is_array) {
2435 var_type = process_array_type(&loc, decl_type, decl->array_size,
2436 state);
2437 } else {
2438 var_type = decl_type;
2439 }
2440
2441 var = new(ctx) ir_variable(var_type, decl->identifier, ir_var_auto);
2442
2443 /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
2444 *
2445 * "Global variables can only use the qualifiers const,
2446 * attribute, uni form, or varying. Only one may be
2447 * specified.
2448 *
2449 * Local variables can only use the qualifier const."
2450 *
2451 * This is relaxed in GLSL 1.30. It is also relaxed by any extension
2452 * that adds the 'layout' keyword.
2453 */
2454 if ((state->language_version < 130)
2455 && !state->ARB_explicit_attrib_location_enable
2456 && !state->ARB_fragment_coord_conventions_enable) {
2457 if (this->type->qualifier.flags.q.out) {
2458 _mesa_glsl_error(& loc, state,
2459 "`out' qualifier in declaration of `%s' "
2460 "only valid for function parameters in %s.",
2461 decl->identifier, state->version_string);
2462 }
2463 if (this->type->qualifier.flags.q.in) {
2464 _mesa_glsl_error(& loc, state,
2465 "`in' qualifier in declaration of `%s' "
2466 "only valid for function parameters in %s.",
2467 decl->identifier, state->version_string);
2468 }
2469 /* FINISHME: Test for other invalid qualifiers. */
2470 }
2471
2472 apply_type_qualifier_to_variable(& this->type->qualifier, var, state,
2473 & loc);
2474
2475 if (this->type->qualifier.flags.q.invariant) {
2476 if ((state->target == vertex_shader) && !(var->mode == ir_var_out ||
2477 var->mode == ir_var_inout)) {
2478 /* FINISHME: Note that this doesn't work for invariant on
2479 * a function signature outval
2480 */
2481 _mesa_glsl_error(& loc, state,
2482 "`%s' cannot be marked invariant, vertex shader "
2483 "outputs only\n", var->name);
2484 } else if ((state->target == fragment_shader) &&
2485 !(var->mode == ir_var_in || var->mode == ir_var_inout)) {
2486 /* FINISHME: Note that this doesn't work for invariant on
2487 * a function signature inval
2488 */
2489 _mesa_glsl_error(& loc, state,
2490 "`%s' cannot be marked invariant, fragment shader "
2491 "inputs only\n", var->name);
2492 }
2493 }
2494
2495 if (state->current_function != NULL) {
2496 const char *mode = NULL;
2497 const char *extra = "";
2498
2499 /* There is no need to check for 'inout' here because the parser will
2500 * only allow that in function parameter lists.
2501 */
2502 if (this->type->qualifier.flags.q.attribute) {
2503 mode = "attribute";
2504 } else if (this->type->qualifier.flags.q.uniform) {
2505 mode = "uniform";
2506 } else if (this->type->qualifier.flags.q.varying) {
2507 mode = "varying";
2508 } else if (this->type->qualifier.flags.q.in) {
2509 mode = "in";
2510 extra = " or in function parameter list";
2511 } else if (this->type->qualifier.flags.q.out) {
2512 mode = "out";
2513 extra = " or in function parameter list";
2514 }
2515
2516 if (mode) {
2517 _mesa_glsl_error(& loc, state,
2518 "%s variable `%s' must be declared at "
2519 "global scope%s",
2520 mode, var->name, extra);
2521 }
2522 } else if (var->mode == ir_var_in) {
2523 var->read_only = true;
2524
2525 if (state->target == vertex_shader) {
2526 bool error_emitted = false;
2527
2528 /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
2529 *
2530 * "Vertex shader inputs can only be float, floating-point
2531 * vectors, matrices, signed and unsigned integers and integer
2532 * vectors. Vertex shader inputs can also form arrays of these
2533 * types, but not structures."
2534 *
2535 * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
2536 *
2537 * "Vertex shader inputs can only be float, floating-point
2538 * vectors, matrices, signed and unsigned integers and integer
2539 * vectors. They cannot be arrays or structures."
2540 *
2541 * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
2542 *
2543 * "The attribute qualifier can be used only with float,
2544 * floating-point vectors, and matrices. Attribute variables
2545 * cannot be declared as arrays or structures."
2546 */
2547 const glsl_type *check_type = var->type->is_array()
2548 ? var->type->fields.array : var->type;
2549
2550 switch (check_type->base_type) {
2551 case GLSL_TYPE_FLOAT:
2552 break;
2553 case GLSL_TYPE_UINT:
2554 case GLSL_TYPE_INT:
2555 if (state->language_version > 120)
2556 break;
2557 /* FALLTHROUGH */
2558 default:
2559 _mesa_glsl_error(& loc, state,
2560 "vertex shader input / attribute cannot have "
2561 "type %s`%s'",
2562 var->type->is_array() ? "array of " : "",
2563 check_type->name);
2564 error_emitted = true;
2565 }
2566
2567 if (!error_emitted && (state->language_version <= 130)
2568 && var->type->is_array()) {
2569 _mesa_glsl_error(& loc, state,
2570 "vertex shader input / attribute cannot have "
2571 "array type");
2572 error_emitted = true;
2573 }
2574 }
2575 }
2576
2577 /* Integer vertex outputs must be qualified with 'flat'.
2578 *
2579 * From section 4.3.6 of the GLSL 1.30 spec:
2580 * "If a vertex output is a signed or unsigned integer or integer
2581 * vector, then it must be qualified with the interpolation qualifier
2582 * flat."
2583 */
2584 if (state->language_version >= 130
2585 && state->target == vertex_shader
2586 && state->current_function == NULL
2587 && var->type->is_integer()
2588 && var->mode == ir_var_out
2589 && var->interpolation != ir_var_flat) {
2590
2591 _mesa_glsl_error(&loc, state, "If a vertex output is an integer, "
2592 "then it must be qualified with 'flat'");
2593 }
2594
2595
2596 /* Interpolation qualifiers cannot be applied to 'centroid' and
2597 * 'centroid varying'.
2598 *
2599 * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
2600 * "interpolation qualifiers may only precede the qualifiers in,
2601 * centroid in, out, or centroid out in a declaration. They do not apply
2602 * to the deprecated storage qualifiers varying or centroid varying."
2603 */
2604 if (state->language_version >= 130
2605 && this->type->qualifier.has_interpolation()
2606 && this->type->qualifier.flags.q.varying) {
2607
2608 const char *i = this->type->qualifier.interpolation_string();
2609 assert(i != NULL);
2610 const char *s;
2611 if (this->type->qualifier.flags.q.centroid)
2612 s = "centroid varying";
2613 else
2614 s = "varying";
2615
2616 _mesa_glsl_error(&loc, state,
2617 "qualifier '%s' cannot be applied to the "
2618 "deprecated storage qualifier '%s'", i, s);
2619 }
2620
2621
2622 /* Interpolation qualifiers can only apply to vertex shader outputs and
2623 * fragment shader inputs.
2624 *
2625 * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
2626 * "Outputs from a vertex shader (out) and inputs to a fragment
2627 * shader (in) can be further qualified with one or more of these
2628 * interpolation qualifiers"
2629 */
2630 if (state->language_version >= 130
2631 && this->type->qualifier.has_interpolation()) {
2632
2633 const char *i = this->type->qualifier.interpolation_string();
2634 assert(i != NULL);
2635
2636 switch (state->target) {
2637 case vertex_shader:
2638 if (this->type->qualifier.flags.q.in) {
2639 _mesa_glsl_error(&loc, state,
2640 "qualifier '%s' cannot be applied to vertex "
2641 "shader inputs", i);
2642 }
2643 break;
2644 case fragment_shader:
2645 if (this->type->qualifier.flags.q.out) {
2646 _mesa_glsl_error(&loc, state,
2647 "qualifier '%s' cannot be applied to fragment "
2648 "shader outputs", i);
2649 }
2650 break;
2651 default:
2652 assert(0);
2653 }
2654 }
2655
2656
2657 /* From section 4.3.4 of the GLSL 1.30 spec:
2658 * "It is an error to use centroid in in a vertex shader."
2659 */
2660 if (state->language_version >= 130
2661 && this->type->qualifier.flags.q.centroid
2662 && this->type->qualifier.flags.q.in
2663 && state->target == vertex_shader) {
2664
2665 _mesa_glsl_error(&loc, state,
2666 "'centroid in' cannot be used in a vertex shader");
2667 }
2668
2669
2670 /* Precision qualifiers exists only in GLSL versions 1.00 and >= 1.30.
2671 */
2672 if (this->type->specifier->precision != ast_precision_none
2673 && state->language_version != 100
2674 && state->language_version < 130) {
2675
2676 _mesa_glsl_error(&loc, state,
2677 "precision qualifiers are supported only in GLSL ES "
2678 "1.00, and GLSL 1.30 and later");
2679 }
2680
2681
2682 /* Precision qualifiers only apply to floating point and integer types.
2683 *
2684 * From section 4.5.2 of the GLSL 1.30 spec:
2685 * "Any floating point or any integer declaration can have the type
2686 * preceded by one of these precision qualifiers [...] Literal
2687 * constants do not have precision qualifiers. Neither do Boolean
2688 * variables.
2689 *
2690 * In GLSL ES, sampler types are also allowed.
2691 *
2692 * From page 87 of the GLSL ES spec:
2693 * "RESOLUTION: Allow sampler types to take a precision qualifier."
2694 */
2695 if (this->type->specifier->precision != ast_precision_none
2696 && !var->type->is_float()
2697 && !var->type->is_integer()
2698 && !(var->type->is_sampler() && state->es_shader)
2699 && !(var->type->is_array()
2700 && (var->type->fields.array->is_float()
2701 || var->type->fields.array->is_integer()))) {
2702
2703 _mesa_glsl_error(&loc, state,
2704 "precision qualifiers apply only to floating point"
2705 "%s types", state->es_shader ? ", integer, and sampler"
2706 : "and integer");
2707 }
2708
2709 /* From page 17 (page 23 of the PDF) of the GLSL 1.20 spec:
2710 *
2711 * "[Sampler types] can only be declared as function
2712 * parameters or uniform variables (see Section 4.3.5
2713 * "Uniform")".
2714 */
2715 if (var_type->contains_sampler() &&
2716 !this->type->qualifier.flags.q.uniform) {
2717 _mesa_glsl_error(&loc, state, "samplers must be declared uniform");
2718 }
2719
2720 /* Process the initializer and add its instructions to a temporary
2721 * list. This list will be added to the instruction stream (below) after
2722 * the declaration is added. This is done because in some cases (such as
2723 * redeclarations) the declaration may not actually be added to the
2724 * instruction stream.
2725 */
2726 exec_list initializer_instructions;
2727 ir_variable *earlier = get_variable_being_redeclared(var, decl, state);
2728
2729 if (decl->initializer != NULL) {
2730 result = process_initializer((earlier == NULL) ? var : earlier,
2731 decl, this->type,
2732 &initializer_instructions, state);
2733 }
2734
2735 /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
2736 *
2737 * "It is an error to write to a const variable outside of
2738 * its declaration, so they must be initialized when
2739 * declared."
2740 */
2741 if (this->type->qualifier.flags.q.constant && decl->initializer == NULL) {
2742 _mesa_glsl_error(& loc, state,
2743 "const declaration of `%s' must be initialized",
2744 decl->identifier);
2745 }
2746
2747 /* If the declaration is not a redeclaration, there are a few additional
2748 * semantic checks that must be applied. In addition, variable that was
2749 * created for the declaration should be added to the IR stream.
2750 */
2751 if (earlier == NULL) {
2752 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
2753 *
2754 * "Identifiers starting with "gl_" are reserved for use by
2755 * OpenGL, and may not be declared in a shader as either a
2756 * variable or a function."
2757 */
2758 if (strncmp(decl->identifier, "gl_", 3) == 0)
2759 _mesa_glsl_error(& loc, state,
2760 "identifier `%s' uses reserved `gl_' prefix",
2761 decl->identifier);
2762
2763 /* Add the variable to the symbol table. Note that the initializer's
2764 * IR was already processed earlier (though it hasn't been emitted
2765 * yet), without the variable in scope.
2766 *
2767 * This differs from most C-like languages, but it follows the GLSL
2768 * specification. From page 28 (page 34 of the PDF) of the GLSL 1.50
2769 * spec:
2770 *
2771 * "Within a declaration, the scope of a name starts immediately
2772 * after the initializer if present or immediately after the name
2773 * being declared if not."
2774 */
2775 if (!state->symbols->add_variable(var)) {
2776 YYLTYPE loc = this->get_location();
2777 _mesa_glsl_error(&loc, state, "name `%s' already taken in the "
2778 "current scope", decl->identifier);
2779 continue;
2780 }
2781
2782 /* Push the variable declaration to the top. It means that all the
2783 * variable declarations will appear in a funny last-to-first order,
2784 * but otherwise we run into trouble if a function is prototyped, a
2785 * global var is decled, then the function is defined with usage of
2786 * the global var. See glslparsertest's CorrectModule.frag.
2787 */
2788 instructions->push_head(var);
2789 }
2790
2791 instructions->append_list(&initializer_instructions);
2792 }
2793
2794
2795 /* Generally, variable declarations do not have r-values. However,
2796 * one is used for the declaration in
2797 *
2798 * while (bool b = some_condition()) {
2799 * ...
2800 * }
2801 *
2802 * so we return the rvalue from the last seen declaration here.
2803 */
2804 return result;
2805 }
2806
2807
2808 ir_rvalue *
2809 ast_parameter_declarator::hir(exec_list *instructions,
2810 struct _mesa_glsl_parse_state *state)
2811 {
2812 void *ctx = state;
2813 const struct glsl_type *type;
2814 const char *name = NULL;
2815 YYLTYPE loc = this->get_location();
2816
2817 type = this->type->specifier->glsl_type(& name, state);
2818
2819 if (type == NULL) {
2820 if (name != NULL) {
2821 _mesa_glsl_error(& loc, state,
2822 "invalid type `%s' in declaration of `%s'",
2823 name, this->identifier);
2824 } else {
2825 _mesa_glsl_error(& loc, state,
2826 "invalid type in declaration of `%s'",
2827 this->identifier);
2828 }
2829
2830 type = glsl_type::error_type;
2831 }
2832
2833 /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
2834 *
2835 * "Functions that accept no input arguments need not use void in the
2836 * argument list because prototypes (or definitions) are required and
2837 * therefore there is no ambiguity when an empty argument list "( )" is
2838 * declared. The idiom "(void)" as a parameter list is provided for
2839 * convenience."
2840 *
2841 * Placing this check here prevents a void parameter being set up
2842 * for a function, which avoids tripping up checks for main taking
2843 * parameters and lookups of an unnamed symbol.
2844 */
2845 if (type->is_void()) {
2846 if (this->identifier != NULL)
2847 _mesa_glsl_error(& loc, state,
2848 "named parameter cannot have type `void'");
2849
2850 is_void = true;
2851 return NULL;
2852 }
2853
2854 if (formal_parameter && (this->identifier == NULL)) {
2855 _mesa_glsl_error(& loc, state, "formal parameter lacks a name");
2856 return NULL;
2857 }
2858
2859 /* This only handles "vec4 foo[..]". The earlier specifier->glsl_type(...)
2860 * call already handled the "vec4[..] foo" case.
2861 */
2862 if (this->is_array) {
2863 type = process_array_type(&loc, type, this->array_size, state);
2864 }
2865
2866 if (type->array_size() == 0) {
2867 _mesa_glsl_error(&loc, state, "arrays passed as parameters must have "
2868 "a declared size.");
2869 type = glsl_type::error_type;
2870 }
2871
2872 is_void = false;
2873 ir_variable *var = new(ctx) ir_variable(type, this->identifier, ir_var_in);
2874
2875 /* Apply any specified qualifiers to the parameter declaration. Note that
2876 * for function parameters the default mode is 'in'.
2877 */
2878 apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc);
2879
2880 /* From page 17 (page 23 of the PDF) of the GLSL 1.20 spec:
2881 *
2882 * "Samplers cannot be treated as l-values; hence cannot be used
2883 * as out or inout function parameters, nor can they be assigned
2884 * into."
2885 */
2886 if ((var->mode == ir_var_inout || var->mode == ir_var_out)
2887 && type->contains_sampler()) {
2888 _mesa_glsl_error(&loc, state, "out and inout parameters cannot contain samplers");
2889 type = glsl_type::error_type;
2890 }
2891
2892 instructions->push_tail(var);
2893
2894 /* Parameter declarations do not have r-values.
2895 */
2896 return NULL;
2897 }
2898
2899
2900 void
2901 ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters,
2902 bool formal,
2903 exec_list *ir_parameters,
2904 _mesa_glsl_parse_state *state)
2905 {
2906 ast_parameter_declarator *void_param = NULL;
2907 unsigned count = 0;
2908
2909 foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) {
2910 param->formal_parameter = formal;
2911 param->hir(ir_parameters, state);
2912
2913 if (param->is_void)
2914 void_param = param;
2915
2916 count++;
2917 }
2918
2919 if ((void_param != NULL) && (count > 1)) {
2920 YYLTYPE loc = void_param->get_location();
2921
2922 _mesa_glsl_error(& loc, state,
2923 "`void' parameter must be only parameter");
2924 }
2925 }
2926
2927
2928 void
2929 emit_function(_mesa_glsl_parse_state *state, exec_list *instructions,
2930 ir_function *f)
2931 {
2932 /* Emit the new function header */
2933 if (state->current_function == NULL) {
2934 instructions->push_tail(f);
2935 } else {
2936 /* IR invariants disallow function declarations or definitions nested
2937 * within other function definitions. Insert the new ir_function
2938 * block in the instruction sequence before the ir_function block
2939 * containing the current ir_function_signature.
2940 */
2941 ir_function *const curr =
2942 const_cast<ir_function *>(state->current_function->function());
2943
2944 curr->insert_before(f);
2945 }
2946 }
2947
2948
2949 ir_rvalue *
2950 ast_function::hir(exec_list *instructions,
2951 struct _mesa_glsl_parse_state *state)
2952 {
2953 void *ctx = state;
2954 ir_function *f = NULL;
2955 ir_function_signature *sig = NULL;
2956 exec_list hir_parameters;
2957
2958 const char *const name = identifier;
2959
2960 /* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec,
2961 *
2962 * "Function declarations (prototypes) cannot occur inside of functions;
2963 * they must be at global scope, or for the built-in functions, outside
2964 * the global scope."
2965 *
2966 * From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec,
2967 *
2968 * "User defined functions may only be defined within the global scope."
2969 *
2970 * Note that this language does not appear in GLSL 1.10.
2971 */
2972 if ((state->current_function != NULL) && (state->language_version != 110)) {
2973 YYLTYPE loc = this->get_location();
2974 _mesa_glsl_error(&loc, state,
2975 "declaration of function `%s' not allowed within "
2976 "function body", name);
2977 }
2978
2979 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
2980 *
2981 * "Identifiers starting with "gl_" are reserved for use by
2982 * OpenGL, and may not be declared in a shader as either a
2983 * variable or a function."
2984 */
2985 if (strncmp(name, "gl_", 3) == 0) {
2986 YYLTYPE loc = this->get_location();
2987 _mesa_glsl_error(&loc, state,
2988 "identifier `%s' uses reserved `gl_' prefix", name);
2989 }
2990
2991 /* Convert the list of function parameters to HIR now so that they can be
2992 * used below to compare this function's signature with previously seen
2993 * signatures for functions with the same name.
2994 */
2995 ast_parameter_declarator::parameters_to_hir(& this->parameters,
2996 is_definition,
2997 & hir_parameters, state);
2998
2999 const char *return_type_name;
3000 const glsl_type *return_type =
3001 this->return_type->specifier->glsl_type(& return_type_name, state);
3002
3003 if (!return_type) {
3004 YYLTYPE loc = this->get_location();
3005 _mesa_glsl_error(&loc, state,
3006 "function `%s' has undeclared return type `%s'",
3007 name, return_type_name);
3008 return_type = glsl_type::error_type;
3009 }
3010
3011 /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec:
3012 * "No qualifier is allowed on the return type of a function."
3013 */
3014 if (this->return_type->has_qualifiers()) {
3015 YYLTYPE loc = this->get_location();
3016 _mesa_glsl_error(& loc, state,
3017 "function `%s' return type has qualifiers", name);
3018 }
3019
3020 /* From page 17 (page 23 of the PDF) of the GLSL 1.20 spec:
3021 *
3022 * "[Sampler types] can only be declared as function parameters
3023 * or uniform variables (see Section 4.3.5 "Uniform")".
3024 */
3025 if (return_type->contains_sampler()) {
3026 YYLTYPE loc = this->get_location();
3027 _mesa_glsl_error(&loc, state,
3028 "function `%s' return type can't contain a sampler",
3029 name);
3030 }
3031
3032 /* Verify that this function's signature either doesn't match a previously
3033 * seen signature for a function with the same name, or, if a match is found,
3034 * that the previously seen signature does not have an associated definition.
3035 */
3036 f = state->symbols->get_function(name);
3037 if (f != NULL && (state->es_shader || f->has_user_signature())) {
3038 sig = f->exact_matching_signature(&hir_parameters);
3039 if (sig != NULL) {
3040 const char *badvar = sig->qualifiers_match(&hir_parameters);
3041 if (badvar != NULL) {
3042 YYLTYPE loc = this->get_location();
3043
3044 _mesa_glsl_error(&loc, state, "function `%s' parameter `%s' "
3045 "qualifiers don't match prototype", name, badvar);
3046 }
3047
3048 if (sig->return_type != return_type) {
3049 YYLTYPE loc = this->get_location();
3050
3051 _mesa_glsl_error(&loc, state, "function `%s' return type doesn't "
3052 "match prototype", name);
3053 }
3054
3055 if (is_definition && sig->is_defined) {
3056 YYLTYPE loc = this->get_location();
3057
3058 _mesa_glsl_error(& loc, state, "function `%s' redefined", name);
3059 }
3060 }
3061 } else {
3062 f = new(ctx) ir_function(name);
3063 if (!state->symbols->add_function(f)) {
3064 /* This function name shadows a non-function use of the same name. */
3065 YYLTYPE loc = this->get_location();
3066
3067 _mesa_glsl_error(&loc, state, "function name `%s' conflicts with "
3068 "non-function", name);
3069 return NULL;
3070 }
3071
3072 emit_function(state, instructions, f);
3073 }
3074
3075 /* Verify the return type of main() */
3076 if (strcmp(name, "main") == 0) {
3077 if (! return_type->is_void()) {
3078 YYLTYPE loc = this->get_location();
3079
3080 _mesa_glsl_error(& loc, state, "main() must return void");
3081 }
3082
3083 if (!hir_parameters.is_empty()) {
3084 YYLTYPE loc = this->get_location();
3085
3086 _mesa_glsl_error(& loc, state, "main() must not take any parameters");
3087 }
3088 }
3089
3090 /* Finish storing the information about this new function in its signature.
3091 */
3092 if (sig == NULL) {
3093 sig = new(ctx) ir_function_signature(return_type);
3094 f->add_signature(sig);
3095 }
3096
3097 sig->replace_parameters(&hir_parameters);
3098 signature = sig;
3099
3100 /* Function declarations (prototypes) do not have r-values.
3101 */
3102 return NULL;
3103 }
3104
3105
3106 ir_rvalue *
3107 ast_function_definition::hir(exec_list *instructions,
3108 struct _mesa_glsl_parse_state *state)
3109 {
3110 prototype->is_definition = true;
3111 prototype->hir(instructions, state);
3112
3113 ir_function_signature *signature = prototype->signature;
3114 if (signature == NULL)
3115 return NULL;
3116
3117 assert(state->current_function == NULL);
3118 state->current_function = signature;
3119 state->found_return = false;
3120
3121 /* Duplicate parameters declared in the prototype as concrete variables.
3122 * Add these to the symbol table.
3123 */
3124 state->symbols->push_scope();
3125 foreach_iter(exec_list_iterator, iter, signature->parameters) {
3126 ir_variable *const var = ((ir_instruction *) iter.get())->as_variable();
3127
3128 assert(var != NULL);
3129
3130 /* The only way a parameter would "exist" is if two parameters have
3131 * the same name.
3132 */
3133 if (state->symbols->name_declared_this_scope(var->name)) {
3134 YYLTYPE loc = this->get_location();
3135
3136 _mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name);
3137 } else {
3138 state->symbols->add_variable(var);
3139 }
3140 }
3141
3142 /* Convert the body of the function to HIR. */
3143 this->body->hir(&signature->body, state);
3144 signature->is_defined = true;
3145
3146 state->symbols->pop_scope();
3147
3148 assert(state->current_function == signature);
3149 state->current_function = NULL;
3150
3151 if (!signature->return_type->is_void() && !state->found_return) {
3152 YYLTYPE loc = this->get_location();
3153 _mesa_glsl_error(& loc, state, "function `%s' has non-void return type "
3154 "%s, but no return statement",
3155 signature->function_name(),
3156 signature->return_type->name);
3157 }
3158
3159 /* Function definitions do not have r-values.
3160 */
3161 return NULL;
3162 }
3163
3164
3165 ir_rvalue *
3166 ast_jump_statement::hir(exec_list *instructions,
3167 struct _mesa_glsl_parse_state *state)
3168 {
3169 void *ctx = state;
3170
3171 switch (mode) {
3172 case ast_return: {
3173 ir_return *inst;
3174 assert(state->current_function);
3175
3176 if (opt_return_value) {
3177 ir_rvalue *const ret = opt_return_value->hir(instructions, state);
3178
3179 /* The value of the return type can be NULL if the shader says
3180 * 'return foo();' and foo() is a function that returns void.
3181 *
3182 * NOTE: The GLSL spec doesn't say that this is an error. The type
3183 * of the return value is void. If the return type of the function is
3184 * also void, then this should compile without error. Seriously.
3185 */
3186 const glsl_type *const ret_type =
3187 (ret == NULL) ? glsl_type::void_type : ret->type;
3188
3189 /* Implicit conversions are not allowed for return values. */
3190 if (state->current_function->return_type != ret_type) {
3191 YYLTYPE loc = this->get_location();
3192
3193 _mesa_glsl_error(& loc, state,
3194 "`return' with wrong type %s, in function `%s' "
3195 "returning %s",
3196 ret_type->name,
3197 state->current_function->function_name(),
3198 state->current_function->return_type->name);
3199 }
3200
3201 inst = new(ctx) ir_return(ret);
3202 } else {
3203 if (state->current_function->return_type->base_type !=
3204 GLSL_TYPE_VOID) {
3205 YYLTYPE loc = this->get_location();
3206
3207 _mesa_glsl_error(& loc, state,
3208 "`return' with no value, in function %s returning "
3209 "non-void",
3210 state->current_function->function_name());
3211 }
3212 inst = new(ctx) ir_return;
3213 }
3214
3215 state->found_return = true;
3216 instructions->push_tail(inst);
3217 break;
3218 }
3219
3220 case ast_discard:
3221 if (state->target != fragment_shader) {
3222 YYLTYPE loc = this->get_location();
3223
3224 _mesa_glsl_error(& loc, state,
3225 "`discard' may only appear in a fragment shader");
3226 }
3227 instructions->push_tail(new(ctx) ir_discard);
3228 break;
3229
3230 case ast_break:
3231 case ast_continue:
3232 /* FINISHME: Handle switch-statements. They cannot contain 'continue',
3233 * FINISHME: and they use a different IR instruction for 'break'.
3234 */
3235 /* FINISHME: Correctly handle the nesting. If a switch-statement is
3236 * FINISHME: inside a loop, a 'continue' is valid and will bind to the
3237 * FINISHME: loop.
3238 */
3239 if (state->loop_or_switch_nesting == NULL) {
3240 YYLTYPE loc = this->get_location();
3241
3242 _mesa_glsl_error(& loc, state,
3243 "`%s' may only appear in a loop",
3244 (mode == ast_break) ? "break" : "continue");
3245 } else {
3246 ir_loop *const loop = state->loop_or_switch_nesting->as_loop();
3247
3248 /* Inline the for loop expression again, since we don't know
3249 * where near the end of the loop body the normal copy of it
3250 * is going to be placed.
3251 */
3252 if (mode == ast_continue &&
3253 state->loop_or_switch_nesting_ast->rest_expression) {
3254 state->loop_or_switch_nesting_ast->rest_expression->hir(instructions,
3255 state);
3256 }
3257
3258 if (loop != NULL) {
3259 ir_loop_jump *const jump =
3260 new(ctx) ir_loop_jump((mode == ast_break)
3261 ? ir_loop_jump::jump_break
3262 : ir_loop_jump::jump_continue);
3263 instructions->push_tail(jump);
3264 }
3265 }
3266
3267 break;
3268 }
3269
3270 /* Jump instructions do not have r-values.
3271 */
3272 return NULL;
3273 }
3274
3275
3276 ir_rvalue *
3277 ast_selection_statement::hir(exec_list *instructions,
3278 struct _mesa_glsl_parse_state *state)
3279 {
3280 void *ctx = state;
3281
3282 ir_rvalue *const condition = this->condition->hir(instructions, state);
3283
3284 /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
3285 *
3286 * "Any expression whose type evaluates to a Boolean can be used as the
3287 * conditional expression bool-expression. Vector types are not accepted
3288 * as the expression to if."
3289 *
3290 * The checks are separated so that higher quality diagnostics can be
3291 * generated for cases where both rules are violated.
3292 */
3293 if (!condition->type->is_boolean() || !condition->type->is_scalar()) {
3294 YYLTYPE loc = this->condition->get_location();
3295
3296 _mesa_glsl_error(& loc, state, "if-statement condition must be scalar "
3297 "boolean");
3298 }
3299
3300 ir_if *const stmt = new(ctx) ir_if(condition);
3301
3302 if (then_statement != NULL) {
3303 state->symbols->push_scope();
3304 then_statement->hir(& stmt->then_instructions, state);
3305 state->symbols->pop_scope();
3306 }
3307
3308 if (else_statement != NULL) {
3309 state->symbols->push_scope();
3310 else_statement->hir(& stmt->else_instructions, state);
3311 state->symbols->pop_scope();
3312 }
3313
3314 instructions->push_tail(stmt);
3315
3316 /* if-statements do not have r-values.
3317 */
3318 return NULL;
3319 }
3320
3321
3322 void
3323 ast_iteration_statement::condition_to_hir(ir_loop *stmt,
3324 struct _mesa_glsl_parse_state *state)
3325 {
3326 void *ctx = state;
3327
3328 if (condition != NULL) {
3329 ir_rvalue *const cond =
3330 condition->hir(& stmt->body_instructions, state);
3331
3332 if ((cond == NULL)
3333 || !cond->type->is_boolean() || !cond->type->is_scalar()) {
3334 YYLTYPE loc = condition->get_location();
3335
3336 _mesa_glsl_error(& loc, state,
3337 "loop condition must be scalar boolean");
3338 } else {
3339 /* As the first code in the loop body, generate a block that looks
3340 * like 'if (!condition) break;' as the loop termination condition.
3341 */
3342 ir_rvalue *const not_cond =
3343 new(ctx) ir_expression(ir_unop_logic_not, glsl_type::bool_type, cond,
3344 NULL);
3345
3346 ir_if *const if_stmt = new(ctx) ir_if(not_cond);
3347
3348 ir_jump *const break_stmt =
3349 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
3350
3351 if_stmt->then_instructions.push_tail(break_stmt);
3352 stmt->body_instructions.push_tail(if_stmt);
3353 }
3354 }
3355 }
3356
3357
3358 ir_rvalue *
3359 ast_iteration_statement::hir(exec_list *instructions,
3360 struct _mesa_glsl_parse_state *state)
3361 {
3362 void *ctx = state;
3363
3364 /* For-loops and while-loops start a new scope, but do-while loops do not.
3365 */
3366 if (mode != ast_do_while)
3367 state->symbols->push_scope();
3368
3369 if (init_statement != NULL)
3370 init_statement->hir(instructions, state);
3371
3372 ir_loop *const stmt = new(ctx) ir_loop();
3373 instructions->push_tail(stmt);
3374
3375 /* Track the current loop and / or switch-statement nesting.
3376 */
3377 ir_instruction *const nesting = state->loop_or_switch_nesting;
3378 ast_iteration_statement *nesting_ast = state->loop_or_switch_nesting_ast;
3379
3380 state->loop_or_switch_nesting = stmt;
3381 state->loop_or_switch_nesting_ast = this;
3382
3383 if (mode != ast_do_while)
3384 condition_to_hir(stmt, state);
3385
3386 if (body != NULL)
3387 body->hir(& stmt->body_instructions, state);
3388
3389 if (rest_expression != NULL)
3390 rest_expression->hir(& stmt->body_instructions, state);
3391
3392 if (mode == ast_do_while)
3393 condition_to_hir(stmt, state);
3394
3395 if (mode != ast_do_while)
3396 state->symbols->pop_scope();
3397
3398 /* Restore previous nesting before returning.
3399 */
3400 state->loop_or_switch_nesting = nesting;
3401 state->loop_or_switch_nesting_ast = nesting_ast;
3402
3403 /* Loops do not have r-values.
3404 */
3405 return NULL;
3406 }
3407
3408
3409 ir_rvalue *
3410 ast_type_specifier::hir(exec_list *instructions,
3411 struct _mesa_glsl_parse_state *state)
3412 {
3413 if (!this->is_precision_statement && this->structure == NULL)
3414 return NULL;
3415
3416 YYLTYPE loc = this->get_location();
3417
3418 if (this->precision != ast_precision_none
3419 && state->language_version != 100
3420 && state->language_version < 130) {
3421 _mesa_glsl_error(&loc, state,
3422 "precision qualifiers exist only in "
3423 "GLSL ES 1.00, and GLSL 1.30 and later");
3424 return NULL;
3425 }
3426 if (this->precision != ast_precision_none
3427 && this->structure != NULL) {
3428 _mesa_glsl_error(&loc, state,
3429 "precision qualifiers do not apply to structures");
3430 return NULL;
3431 }
3432
3433 /* If this is a precision statement, check that the type to which it is
3434 * applied is either float or int.
3435 *
3436 * From section 4.5.3 of the GLSL 1.30 spec:
3437 * "The precision statement
3438 * precision precision-qualifier type;
3439 * can be used to establish a default precision qualifier. The type
3440 * field can be either int or float [...]. Any other types or
3441 * qualifiers will result in an error.
3442 */
3443 if (this->is_precision_statement) {
3444 assert(this->precision != ast_precision_none);
3445 assert(this->structure == NULL); /* The check for structures was
3446 * performed above. */
3447 if (this->is_array) {
3448 _mesa_glsl_error(&loc, state,
3449 "default precision statements do not apply to "
3450 "arrays");
3451 return NULL;
3452 }
3453 if (this->type_specifier != ast_float
3454 && this->type_specifier != ast_int) {
3455 _mesa_glsl_error(&loc, state,
3456 "default precision statements apply only to types "
3457 "float and int");
3458 return NULL;
3459 }
3460
3461 /* FINISHME: Translate precision statements into IR. */
3462 return NULL;
3463 }
3464
3465 if (this->structure != NULL)
3466 return this->structure->hir(instructions, state);
3467
3468 return NULL;
3469 }
3470
3471
3472 ir_rvalue *
3473 ast_struct_specifier::hir(exec_list *instructions,
3474 struct _mesa_glsl_parse_state *state)
3475 {
3476 unsigned decl_count = 0;
3477
3478 /* Make an initial pass over the list of structure fields to determine how
3479 * many there are. Each element in this list is an ast_declarator_list.
3480 * This means that we actually need to count the number of elements in the
3481 * 'declarations' list in each of the elements.
3482 */
3483 foreach_list_typed (ast_declarator_list, decl_list, link,
3484 &this->declarations) {
3485 foreach_list_const (decl_ptr, & decl_list->declarations) {
3486 decl_count++;
3487 }
3488 }
3489
3490 /* Allocate storage for the structure fields and process the field
3491 * declarations. As the declarations are processed, try to also convert
3492 * the types to HIR. This ensures that structure definitions embedded in
3493 * other structure definitions are processed.
3494 */
3495 glsl_struct_field *const fields = ralloc_array(state, glsl_struct_field,
3496 decl_count);
3497
3498 unsigned i = 0;
3499 foreach_list_typed (ast_declarator_list, decl_list, link,
3500 &this->declarations) {
3501 const char *type_name;
3502
3503 decl_list->type->specifier->hir(instructions, state);
3504
3505 /* Section 10.9 of the GLSL ES 1.00 specification states that
3506 * embedded structure definitions have been removed from the language.
3507 */
3508 if (state->es_shader && decl_list->type->specifier->structure != NULL) {
3509 YYLTYPE loc = this->get_location();
3510 _mesa_glsl_error(&loc, state, "Embedded structure definitions are "
3511 "not allowed in GLSL ES 1.00.");
3512 }
3513
3514 const glsl_type *decl_type =
3515 decl_list->type->specifier->glsl_type(& type_name, state);
3516
3517 foreach_list_typed (ast_declaration, decl, link,
3518 &decl_list->declarations) {
3519 const struct glsl_type *field_type = decl_type;
3520 if (decl->is_array) {
3521 YYLTYPE loc = decl->get_location();
3522 field_type = process_array_type(&loc, decl_type, decl->array_size,
3523 state);
3524 }
3525 fields[i].type = (field_type != NULL)
3526 ? field_type : glsl_type::error_type;
3527 fields[i].name = decl->identifier;
3528 i++;
3529 }
3530 }
3531
3532 assert(i == decl_count);
3533
3534 const glsl_type *t =
3535 glsl_type::get_record_instance(fields, decl_count, this->name);
3536
3537 YYLTYPE loc = this->get_location();
3538 if (!state->symbols->add_type(name, t)) {
3539 _mesa_glsl_error(& loc, state, "struct `%s' previously defined", name);
3540 } else {
3541 const glsl_type **s = reralloc(state, state->user_structures,
3542 const glsl_type *,
3543 state->num_user_structures + 1);
3544 if (s != NULL) {
3545 s[state->num_user_structures] = t;
3546 state->user_structures = s;
3547 state->num_user_structures++;
3548 }
3549 }
3550
3551 /* Structure type definitions do not have r-values.
3552 */
3553 return NULL;
3554 }