st/va: move post processing function into own file
[mesa.git] / src / glsl / ast_to_hir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file ast_to_hir.c
26 * Convert abstract syntax to to high-level intermediate reprensentation (HIR).
27 *
28 * During the conversion to HIR, the majority of the symantic checking is
29 * preformed on the program. This includes:
30 *
31 * * Symbol table management
32 * * Type checking
33 * * Function binding
34 *
35 * The majority of this work could be done during parsing, and the parser could
36 * probably generate HIR directly. However, this results in frequent changes
37 * to the parser code. Since we do not assume that every system this complier
38 * is built on will have Flex and Bison installed, we have to store the code
39 * generated by these tools in our version control system. In other parts of
40 * the system we've seen problems where a parser was changed but the generated
41 * code was not committed, merge conflicts where created because two developers
42 * had slightly different versions of Bison installed, etc.
43 *
44 * I have also noticed that running Bison generated parsers in GDB is very
45 * irritating. When you get a segfault on '$$ = $1->foo', you can't very
46 * well 'print $1' in GDB.
47 *
48 * As a result, my preference is to put as little C code as possible in the
49 * parser (and lexer) sources.
50 */
51
52 #include "glsl_symbol_table.h"
53 #include "glsl_parser_extras.h"
54 #include "ast.h"
55 #include "glsl_types.h"
56 #include "program/hash_table.h"
57 #include "main/shaderobj.h"
58 #include "ir.h"
59 #include "ir_builder.h"
60
61 using namespace ir_builder;
62
63 static void
64 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
65 exec_list *instructions);
66 static void
67 remove_per_vertex_blocks(exec_list *instructions,
68 _mesa_glsl_parse_state *state, ir_variable_mode mode);
69
70 /**
71 * Visitor class that finds the first instance of any write-only variable that
72 * is ever read, if any
73 */
74 class read_from_write_only_variable_visitor : public ir_hierarchical_visitor
75 {
76 public:
77 read_from_write_only_variable_visitor() : found(NULL)
78 {
79 }
80
81 virtual ir_visitor_status visit(ir_dereference_variable *ir)
82 {
83 if (this->in_assignee)
84 return visit_continue;
85
86 ir_variable *var = ir->variable_referenced();
87 /* We can have image_write_only set on both images and buffer variables,
88 * but in the former there is a distinction between reads from
89 * the variable itself (write_only) and from the memory they point to
90 * (image_write_only), while in the case of buffer variables there is
91 * no such distinction, that is why this check here is limited to
92 * buffer variables alone.
93 */
94 if (!var || var->data.mode != ir_var_shader_storage)
95 return visit_continue;
96
97 if (var->data.image_write_only) {
98 found = var;
99 return visit_stop;
100 }
101
102 return visit_continue;
103 }
104
105 ir_variable *get_variable() {
106 return found;
107 }
108
109 private:
110 ir_variable *found;
111 };
112
113 void
114 _mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
115 {
116 _mesa_glsl_initialize_variables(instructions, state);
117
118 state->symbols->separate_function_namespace = state->language_version == 110;
119
120 state->current_function = NULL;
121
122 state->toplevel_ir = instructions;
123
124 state->gs_input_prim_type_specified = false;
125 state->tcs_output_vertices_specified = false;
126 state->cs_input_local_size_specified = false;
127
128 /* Section 4.2 of the GLSL 1.20 specification states:
129 * "The built-in functions are scoped in a scope outside the global scope
130 * users declare global variables in. That is, a shader's global scope,
131 * available for user-defined functions and global variables, is nested
132 * inside the scope containing the built-in functions."
133 *
134 * Since built-in functions like ftransform() access built-in variables,
135 * it follows that those must be in the outer scope as well.
136 *
137 * We push scope here to create this nesting effect...but don't pop.
138 * This way, a shader's globals are still in the symbol table for use
139 * by the linker.
140 */
141 state->symbols->push_scope();
142
143 foreach_list_typed (ast_node, ast, link, & state->translation_unit)
144 ast->hir(instructions, state);
145
146 detect_recursion_unlinked(state, instructions);
147 detect_conflicting_assignments(state, instructions);
148
149 state->toplevel_ir = NULL;
150
151 /* Move all of the variable declarations to the front of the IR list, and
152 * reverse the order. This has the (intended!) side effect that vertex
153 * shader inputs and fragment shader outputs will appear in the IR in the
154 * same order that they appeared in the shader code. This results in the
155 * locations being assigned in the declared order. Many (arguably buggy)
156 * applications depend on this behavior, and it matches what nearly all
157 * other drivers do.
158 */
159 foreach_in_list_safe(ir_instruction, node, instructions) {
160 ir_variable *const var = node->as_variable();
161
162 if (var == NULL)
163 continue;
164
165 var->remove();
166 instructions->push_head(var);
167 }
168
169 /* Figure out if gl_FragCoord is actually used in fragment shader */
170 ir_variable *const var = state->symbols->get_variable("gl_FragCoord");
171 if (var != NULL)
172 state->fs_uses_gl_fragcoord = var->data.used;
173
174 /* From section 7.1 (Built-In Language Variables) of the GLSL 4.10 spec:
175 *
176 * If multiple shaders using members of a built-in block belonging to
177 * the same interface are linked together in the same program, they
178 * must all redeclare the built-in block in the same way, as described
179 * in section 4.3.7 "Interface Blocks" for interface block matching, or
180 * a link error will result.
181 *
182 * The phrase "using members of a built-in block" implies that if two
183 * shaders are linked together and one of them *does not use* any members
184 * of the built-in block, then that shader does not need to have a matching
185 * redeclaration of the built-in block.
186 *
187 * This appears to be a clarification to the behaviour established for
188 * gl_PerVertex by GLSL 1.50, therefore implement it regardless of GLSL
189 * version.
190 *
191 * The definition of "interface" in section 4.3.7 that applies here is as
192 * follows:
193 *
194 * The boundary between adjacent programmable pipeline stages: This
195 * spans all the outputs in all compilation units of the first stage
196 * and all the inputs in all compilation units of the second stage.
197 *
198 * Therefore this rule applies to both inter- and intra-stage linking.
199 *
200 * The easiest way to implement this is to check whether the shader uses
201 * gl_PerVertex right after ast-to-ir conversion, and if it doesn't, simply
202 * remove all the relevant variable declaration from the IR, so that the
203 * linker won't see them and complain about mismatches.
204 */
205 remove_per_vertex_blocks(instructions, state, ir_var_shader_in);
206 remove_per_vertex_blocks(instructions, state, ir_var_shader_out);
207
208 /* Check that we don't have reads from write-only variables */
209 read_from_write_only_variable_visitor v;
210 v.run(instructions);
211 ir_variable *error_var = v.get_variable();
212 if (error_var) {
213 /* It would be nice to have proper location information, but for that
214 * we would need to check this as we process each kind of AST node
215 */
216 YYLTYPE loc;
217 memset(&loc, 0, sizeof(loc));
218 _mesa_glsl_error(&loc, state, "Read from write-only variable `%s'",
219 error_var->name);
220 }
221 }
222
223
224 static ir_expression_operation
225 get_conversion_operation(const glsl_type *to, const glsl_type *from,
226 struct _mesa_glsl_parse_state *state)
227 {
228 switch (to->base_type) {
229 case GLSL_TYPE_FLOAT:
230 switch (from->base_type) {
231 case GLSL_TYPE_INT: return ir_unop_i2f;
232 case GLSL_TYPE_UINT: return ir_unop_u2f;
233 case GLSL_TYPE_DOUBLE: return ir_unop_d2f;
234 default: return (ir_expression_operation)0;
235 }
236
237 case GLSL_TYPE_UINT:
238 if (!state->is_version(400, 0) && !state->ARB_gpu_shader5_enable)
239 return (ir_expression_operation)0;
240 switch (from->base_type) {
241 case GLSL_TYPE_INT: return ir_unop_i2u;
242 default: return (ir_expression_operation)0;
243 }
244
245 case GLSL_TYPE_DOUBLE:
246 if (!state->has_double())
247 return (ir_expression_operation)0;
248 switch (from->base_type) {
249 case GLSL_TYPE_INT: return ir_unop_i2d;
250 case GLSL_TYPE_UINT: return ir_unop_u2d;
251 case GLSL_TYPE_FLOAT: return ir_unop_f2d;
252 default: return (ir_expression_operation)0;
253 }
254
255 default: return (ir_expression_operation)0;
256 }
257 }
258
259
260 /**
261 * If a conversion is available, convert one operand to a different type
262 *
263 * The \c from \c ir_rvalue is converted "in place".
264 *
265 * \param to Type that the operand it to be converted to
266 * \param from Operand that is being converted
267 * \param state GLSL compiler state
268 *
269 * \return
270 * If a conversion is possible (or unnecessary), \c true is returned.
271 * Otherwise \c false is returned.
272 */
273 bool
274 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
275 struct _mesa_glsl_parse_state *state)
276 {
277 void *ctx = state;
278 if (to->base_type == from->type->base_type)
279 return true;
280
281 /* Prior to GLSL 1.20, there are no implicit conversions */
282 if (!state->is_version(120, 0))
283 return false;
284
285 /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
286 *
287 * "There are no implicit array or structure conversions. For
288 * example, an array of int cannot be implicitly converted to an
289 * array of float.
290 */
291 if (!to->is_numeric() || !from->type->is_numeric())
292 return false;
293
294 /* We don't actually want the specific type `to`, we want a type
295 * with the same base type as `to`, but the same vector width as
296 * `from`.
297 */
298 to = glsl_type::get_instance(to->base_type, from->type->vector_elements,
299 from->type->matrix_columns);
300
301 ir_expression_operation op = get_conversion_operation(to, from->type, state);
302 if (op) {
303 from = new(ctx) ir_expression(op, to, from, NULL);
304 return true;
305 } else {
306 return false;
307 }
308 }
309
310
311 static const struct glsl_type *
312 arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
313 bool multiply,
314 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
315 {
316 const glsl_type *type_a = value_a->type;
317 const glsl_type *type_b = value_b->type;
318
319 /* From GLSL 1.50 spec, page 56:
320 *
321 * "The arithmetic binary operators add (+), subtract (-),
322 * multiply (*), and divide (/) operate on integer and
323 * floating-point scalars, vectors, and matrices."
324 */
325 if (!type_a->is_numeric() || !type_b->is_numeric()) {
326 _mesa_glsl_error(loc, state,
327 "operands to arithmetic operators must be numeric");
328 return glsl_type::error_type;
329 }
330
331
332 /* "If one operand is floating-point based and the other is
333 * not, then the conversions from Section 4.1.10 "Implicit
334 * Conversions" are applied to the non-floating-point-based operand."
335 */
336 if (!apply_implicit_conversion(type_a, value_b, state)
337 && !apply_implicit_conversion(type_b, value_a, state)) {
338 _mesa_glsl_error(loc, state,
339 "could not implicitly convert operands to "
340 "arithmetic operator");
341 return glsl_type::error_type;
342 }
343 type_a = value_a->type;
344 type_b = value_b->type;
345
346 /* "If the operands are integer types, they must both be signed or
347 * both be unsigned."
348 *
349 * From this rule and the preceeding conversion it can be inferred that
350 * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
351 * The is_numeric check above already filtered out the case where either
352 * type is not one of these, so now the base types need only be tested for
353 * equality.
354 */
355 if (type_a->base_type != type_b->base_type) {
356 _mesa_glsl_error(loc, state,
357 "base type mismatch for arithmetic operator");
358 return glsl_type::error_type;
359 }
360
361 /* "All arithmetic binary operators result in the same fundamental type
362 * (signed integer, unsigned integer, or floating-point) as the
363 * operands they operate on, after operand type conversion. After
364 * conversion, the following cases are valid
365 *
366 * * The two operands are scalars. In this case the operation is
367 * applied, resulting in a scalar."
368 */
369 if (type_a->is_scalar() && type_b->is_scalar())
370 return type_a;
371
372 /* "* One operand is a scalar, and the other is a vector or matrix.
373 * In this case, the scalar operation is applied independently to each
374 * component of the vector or matrix, resulting in the same size
375 * vector or matrix."
376 */
377 if (type_a->is_scalar()) {
378 if (!type_b->is_scalar())
379 return type_b;
380 } else if (type_b->is_scalar()) {
381 return type_a;
382 }
383
384 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
385 * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
386 * handled.
387 */
388 assert(!type_a->is_scalar());
389 assert(!type_b->is_scalar());
390
391 /* "* The two operands are vectors of the same size. In this case, the
392 * operation is done component-wise resulting in the same size
393 * vector."
394 */
395 if (type_a->is_vector() && type_b->is_vector()) {
396 if (type_a == type_b) {
397 return type_a;
398 } else {
399 _mesa_glsl_error(loc, state,
400 "vector size mismatch for arithmetic operator");
401 return glsl_type::error_type;
402 }
403 }
404
405 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
406 * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
407 * <vector, vector> have been handled. At least one of the operands must
408 * be matrix. Further, since there are no integer matrix types, the base
409 * type of both operands must be float.
410 */
411 assert(type_a->is_matrix() || type_b->is_matrix());
412 assert(type_a->base_type == GLSL_TYPE_FLOAT ||
413 type_a->base_type == GLSL_TYPE_DOUBLE);
414 assert(type_b->base_type == GLSL_TYPE_FLOAT ||
415 type_b->base_type == GLSL_TYPE_DOUBLE);
416
417 /* "* The operator is add (+), subtract (-), or divide (/), and the
418 * operands are matrices with the same number of rows and the same
419 * number of columns. In this case, the operation is done component-
420 * wise resulting in the same size matrix."
421 * * The operator is multiply (*), where both operands are matrices or
422 * one operand is a vector and the other a matrix. A right vector
423 * operand is treated as a column vector and a left vector operand as a
424 * row vector. In all these cases, it is required that the number of
425 * columns of the left operand is equal to the number of rows of the
426 * right operand. Then, the multiply (*) operation does a linear
427 * algebraic multiply, yielding an object that has the same number of
428 * rows as the left operand and the same number of columns as the right
429 * operand. Section 5.10 "Vector and Matrix Operations" explains in
430 * more detail how vectors and matrices are operated on."
431 */
432 if (! multiply) {
433 if (type_a == type_b)
434 return type_a;
435 } else {
436 const glsl_type *type = glsl_type::get_mul_type(type_a, type_b);
437
438 if (type == glsl_type::error_type) {
439 _mesa_glsl_error(loc, state,
440 "size mismatch for matrix multiplication");
441 }
442
443 return type;
444 }
445
446
447 /* "All other cases are illegal."
448 */
449 _mesa_glsl_error(loc, state, "type mismatch");
450 return glsl_type::error_type;
451 }
452
453
454 static const struct glsl_type *
455 unary_arithmetic_result_type(const struct glsl_type *type,
456 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
457 {
458 /* From GLSL 1.50 spec, page 57:
459 *
460 * "The arithmetic unary operators negate (-), post- and pre-increment
461 * and decrement (-- and ++) operate on integer or floating-point
462 * values (including vectors and matrices). All unary operators work
463 * component-wise on their operands. These result with the same type
464 * they operated on."
465 */
466 if (!type->is_numeric()) {
467 _mesa_glsl_error(loc, state,
468 "operands to arithmetic operators must be numeric");
469 return glsl_type::error_type;
470 }
471
472 return type;
473 }
474
475 /**
476 * \brief Return the result type of a bit-logic operation.
477 *
478 * If the given types to the bit-logic operator are invalid, return
479 * glsl_type::error_type.
480 *
481 * \param type_a Type of LHS of bit-logic op
482 * \param type_b Type of RHS of bit-logic op
483 */
484 static const struct glsl_type *
485 bit_logic_result_type(const struct glsl_type *type_a,
486 const struct glsl_type *type_b,
487 ast_operators op,
488 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
489 {
490 if (!state->check_bitwise_operations_allowed(loc)) {
491 return glsl_type::error_type;
492 }
493
494 /* From page 50 (page 56 of PDF) of GLSL 1.30 spec:
495 *
496 * "The bitwise operators and (&), exclusive-or (^), and inclusive-or
497 * (|). The operands must be of type signed or unsigned integers or
498 * integer vectors."
499 */
500 if (!type_a->is_integer()) {
501 _mesa_glsl_error(loc, state, "LHS of `%s' must be an integer",
502 ast_expression::operator_string(op));
503 return glsl_type::error_type;
504 }
505 if (!type_b->is_integer()) {
506 _mesa_glsl_error(loc, state, "RHS of `%s' must be an integer",
507 ast_expression::operator_string(op));
508 return glsl_type::error_type;
509 }
510
511 /* "The fundamental types of the operands (signed or unsigned) must
512 * match,"
513 */
514 if (type_a->base_type != type_b->base_type) {
515 _mesa_glsl_error(loc, state, "operands of `%s' must have the same "
516 "base type", ast_expression::operator_string(op));
517 return glsl_type::error_type;
518 }
519
520 /* "The operands cannot be vectors of differing size." */
521 if (type_a->is_vector() &&
522 type_b->is_vector() &&
523 type_a->vector_elements != type_b->vector_elements) {
524 _mesa_glsl_error(loc, state, "operands of `%s' cannot be vectors of "
525 "different sizes", ast_expression::operator_string(op));
526 return glsl_type::error_type;
527 }
528
529 /* "If one operand is a scalar and the other a vector, the scalar is
530 * applied component-wise to the vector, resulting in the same type as
531 * the vector. The fundamental types of the operands [...] will be the
532 * resulting fundamental type."
533 */
534 if (type_a->is_scalar())
535 return type_b;
536 else
537 return type_a;
538 }
539
540 static const struct glsl_type *
541 modulus_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
542 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
543 {
544 const glsl_type *type_a = value_a->type;
545 const glsl_type *type_b = value_b->type;
546
547 if (!state->check_version(130, 300, loc, "operator '%%' is reserved")) {
548 return glsl_type::error_type;
549 }
550
551 /* Section 5.9 (Expressions) of the GLSL 4.00 specification says:
552 *
553 * "The operator modulus (%) operates on signed or unsigned integers or
554 * integer vectors."
555 */
556 if (!type_a->is_integer()) {
557 _mesa_glsl_error(loc, state, "LHS of operator %% must be an integer");
558 return glsl_type::error_type;
559 }
560 if (!type_b->is_integer()) {
561 _mesa_glsl_error(loc, state, "RHS of operator %% must be an integer");
562 return glsl_type::error_type;
563 }
564
565 /* "If the fundamental types in the operands do not match, then the
566 * conversions from section 4.1.10 "Implicit Conversions" are applied
567 * to create matching types."
568 *
569 * Note that GLSL 4.00 (and GL_ARB_gpu_shader5) introduced implicit
570 * int -> uint conversion rules. Prior to that, there were no implicit
571 * conversions. So it's harmless to apply them universally - no implicit
572 * conversions will exist. If the types don't match, we'll receive false,
573 * and raise an error, satisfying the GLSL 1.50 spec, page 56:
574 *
575 * "The operand types must both be signed or unsigned."
576 */
577 if (!apply_implicit_conversion(type_a, value_b, state) &&
578 !apply_implicit_conversion(type_b, value_a, state)) {
579 _mesa_glsl_error(loc, state,
580 "could not implicitly convert operands to "
581 "modulus (%%) operator");
582 return glsl_type::error_type;
583 }
584 type_a = value_a->type;
585 type_b = value_b->type;
586
587 /* "The operands cannot be vectors of differing size. If one operand is
588 * a scalar and the other vector, then the scalar is applied component-
589 * wise to the vector, resulting in the same type as the vector. If both
590 * are vectors of the same size, the result is computed component-wise."
591 */
592 if (type_a->is_vector()) {
593 if (!type_b->is_vector()
594 || (type_a->vector_elements == type_b->vector_elements))
595 return type_a;
596 } else
597 return type_b;
598
599 /* "The operator modulus (%) is not defined for any other data types
600 * (non-integer types)."
601 */
602 _mesa_glsl_error(loc, state, "type mismatch");
603 return glsl_type::error_type;
604 }
605
606
607 static const struct glsl_type *
608 relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
609 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
610 {
611 const glsl_type *type_a = value_a->type;
612 const glsl_type *type_b = value_b->type;
613
614 /* From GLSL 1.50 spec, page 56:
615 * "The relational operators greater than (>), less than (<), greater
616 * than or equal (>=), and less than or equal (<=) operate only on
617 * scalar integer and scalar floating-point expressions."
618 */
619 if (!type_a->is_numeric()
620 || !type_b->is_numeric()
621 || !type_a->is_scalar()
622 || !type_b->is_scalar()) {
623 _mesa_glsl_error(loc, state,
624 "operands to relational operators must be scalar and "
625 "numeric");
626 return glsl_type::error_type;
627 }
628
629 /* "Either the operands' types must match, or the conversions from
630 * Section 4.1.10 "Implicit Conversions" will be applied to the integer
631 * operand, after which the types must match."
632 */
633 if (!apply_implicit_conversion(type_a, value_b, state)
634 && !apply_implicit_conversion(type_b, value_a, state)) {
635 _mesa_glsl_error(loc, state,
636 "could not implicitly convert operands to "
637 "relational operator");
638 return glsl_type::error_type;
639 }
640 type_a = value_a->type;
641 type_b = value_b->type;
642
643 if (type_a->base_type != type_b->base_type) {
644 _mesa_glsl_error(loc, state, "base type mismatch");
645 return glsl_type::error_type;
646 }
647
648 /* "The result is scalar Boolean."
649 */
650 return glsl_type::bool_type;
651 }
652
653 /**
654 * \brief Return the result type of a bit-shift operation.
655 *
656 * If the given types to the bit-shift operator are invalid, return
657 * glsl_type::error_type.
658 *
659 * \param type_a Type of LHS of bit-shift op
660 * \param type_b Type of RHS of bit-shift op
661 */
662 static const struct glsl_type *
663 shift_result_type(const struct glsl_type *type_a,
664 const struct glsl_type *type_b,
665 ast_operators op,
666 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
667 {
668 if (!state->check_bitwise_operations_allowed(loc)) {
669 return glsl_type::error_type;
670 }
671
672 /* From page 50 (page 56 of the PDF) of the GLSL 1.30 spec:
673 *
674 * "The shift operators (<<) and (>>). For both operators, the operands
675 * must be signed or unsigned integers or integer vectors. One operand
676 * can be signed while the other is unsigned."
677 */
678 if (!type_a->is_integer()) {
679 _mesa_glsl_error(loc, state, "LHS of operator %s must be an integer or "
680 "integer vector", ast_expression::operator_string(op));
681 return glsl_type::error_type;
682
683 }
684 if (!type_b->is_integer()) {
685 _mesa_glsl_error(loc, state, "RHS of operator %s must be an integer or "
686 "integer vector", ast_expression::operator_string(op));
687 return glsl_type::error_type;
688 }
689
690 /* "If the first operand is a scalar, the second operand has to be
691 * a scalar as well."
692 */
693 if (type_a->is_scalar() && !type_b->is_scalar()) {
694 _mesa_glsl_error(loc, state, "if the first operand of %s is scalar, the "
695 "second must be scalar as well",
696 ast_expression::operator_string(op));
697 return glsl_type::error_type;
698 }
699
700 /* If both operands are vectors, check that they have same number of
701 * elements.
702 */
703 if (type_a->is_vector() &&
704 type_b->is_vector() &&
705 type_a->vector_elements != type_b->vector_elements) {
706 _mesa_glsl_error(loc, state, "vector operands to operator %s must "
707 "have same number of elements",
708 ast_expression::operator_string(op));
709 return glsl_type::error_type;
710 }
711
712 /* "In all cases, the resulting type will be the same type as the left
713 * operand."
714 */
715 return type_a;
716 }
717
718 /**
719 * Returns the innermost array index expression in an rvalue tree.
720 * This is the largest indexing level -- if an array of blocks, then
721 * it is the block index rather than an indexing expression for an
722 * array-typed member of an array of blocks.
723 */
724 static ir_rvalue *
725 find_innermost_array_index(ir_rvalue *rv)
726 {
727 ir_dereference_array *last = NULL;
728 while (rv) {
729 if (rv->as_dereference_array()) {
730 last = rv->as_dereference_array();
731 rv = last->array;
732 } else if (rv->as_dereference_record())
733 rv = rv->as_dereference_record()->record;
734 else if (rv->as_swizzle())
735 rv = rv->as_swizzle()->val;
736 else
737 rv = NULL;
738 }
739
740 if (last)
741 return last->array_index;
742
743 return NULL;
744 }
745
746 /**
747 * Validates that a value can be assigned to a location with a specified type
748 *
749 * Validates that \c rhs can be assigned to some location. If the types are
750 * not an exact match but an automatic conversion is possible, \c rhs will be
751 * converted.
752 *
753 * \return
754 * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
755 * Otherwise the actual RHS to be assigned will be returned. This may be
756 * \c rhs, or it may be \c rhs after some type conversion.
757 *
758 * \note
759 * In addition to being used for assignments, this function is used to
760 * type-check return values.
761 */
762 static ir_rvalue *
763 validate_assignment(struct _mesa_glsl_parse_state *state,
764 YYLTYPE loc, ir_rvalue *lhs,
765 ir_rvalue *rhs, bool is_initializer)
766 {
767 /* If there is already some error in the RHS, just return it. Anything
768 * else will lead to an avalanche of error message back to the user.
769 */
770 if (rhs->type->is_error())
771 return rhs;
772
773 /* In the Tessellation Control Shader:
774 * If a per-vertex output variable is used as an l-value, it is an error
775 * if the expression indicating the vertex number is not the identifier
776 * `gl_InvocationID`.
777 */
778 if (state->stage == MESA_SHADER_TESS_CTRL) {
779 ir_variable *var = lhs->variable_referenced();
780 if (var->data.mode == ir_var_shader_out && !var->data.patch) {
781 ir_rvalue *index = find_innermost_array_index(lhs);
782 ir_variable *index_var = index ? index->variable_referenced() : NULL;
783 if (!index_var || strcmp(index_var->name, "gl_InvocationID") != 0) {
784 _mesa_glsl_error(&loc, state,
785 "Tessellation control shader outputs can only "
786 "be indexed by gl_InvocationID");
787 return NULL;
788 }
789 }
790 }
791
792 /* If the types are identical, the assignment can trivially proceed.
793 */
794 if (rhs->type == lhs->type)
795 return rhs;
796
797 /* If the array element types are the same and the LHS is unsized,
798 * the assignment is okay for initializers embedded in variable
799 * declarations.
800 *
801 * Note: Whole-array assignments are not permitted in GLSL 1.10, but this
802 * is handled by ir_dereference::is_lvalue.
803 */
804 const glsl_type *lhs_t = lhs->type;
805 const glsl_type *rhs_t = rhs->type;
806 bool unsized_array = false;
807 while(lhs_t->is_array()) {
808 if (rhs_t == lhs_t)
809 break; /* the rest of the inner arrays match so break out early */
810 if (!rhs_t->is_array()) {
811 unsized_array = false;
812 break; /* number of dimensions mismatch */
813 }
814 if (lhs_t->length == rhs_t->length) {
815 lhs_t = lhs_t->fields.array;
816 rhs_t = rhs_t->fields.array;
817 continue;
818 } else if (lhs_t->is_unsized_array()) {
819 unsized_array = true;
820 } else {
821 unsized_array = false;
822 break; /* sized array mismatch */
823 }
824 lhs_t = lhs_t->fields.array;
825 rhs_t = rhs_t->fields.array;
826 }
827 if (unsized_array) {
828 if (is_initializer) {
829 return rhs;
830 } else {
831 _mesa_glsl_error(&loc, state,
832 "implicitly sized arrays cannot be assigned");
833 return NULL;
834 }
835 }
836
837 /* Check for implicit conversion in GLSL 1.20 */
838 if (apply_implicit_conversion(lhs->type, rhs, state)) {
839 if (rhs->type == lhs->type)
840 return rhs;
841 }
842
843 _mesa_glsl_error(&loc, state,
844 "%s of type %s cannot be assigned to "
845 "variable of type %s",
846 is_initializer ? "initializer" : "value",
847 rhs->type->name, lhs->type->name);
848
849 return NULL;
850 }
851
852 static void
853 mark_whole_array_access(ir_rvalue *access)
854 {
855 ir_dereference_variable *deref = access->as_dereference_variable();
856
857 if (deref && deref->var) {
858 deref->var->data.max_array_access = deref->type->length - 1;
859 }
860 }
861
862 static bool
863 do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state,
864 const char *non_lvalue_description,
865 ir_rvalue *lhs, ir_rvalue *rhs,
866 ir_rvalue **out_rvalue, bool needs_rvalue,
867 bool is_initializer,
868 YYLTYPE lhs_loc)
869 {
870 void *ctx = state;
871 bool error_emitted = (lhs->type->is_error() || rhs->type->is_error());
872
873 ir_variable *lhs_var = lhs->variable_referenced();
874 if (lhs_var)
875 lhs_var->data.assigned = true;
876
877 if (!error_emitted) {
878 if (non_lvalue_description != NULL) {
879 _mesa_glsl_error(&lhs_loc, state,
880 "assignment to %s",
881 non_lvalue_description);
882 error_emitted = true;
883 } else if (lhs_var != NULL && (lhs_var->data.read_only ||
884 (lhs_var->data.mode == ir_var_shader_storage &&
885 lhs_var->data.image_read_only))) {
886 /* We can have image_read_only set on both images and buffer variables,
887 * but in the former there is a distinction between assignments to
888 * the variable itself (read_only) and to the memory they point to
889 * (image_read_only), while in the case of buffer variables there is
890 * no such distinction, that is why this check here is limited to
891 * buffer variables alone.
892 */
893 _mesa_glsl_error(&lhs_loc, state,
894 "assignment to read-only variable '%s'",
895 lhs_var->name);
896 error_emitted = true;
897 } else if (lhs->type->is_array() &&
898 !state->check_version(120, 300, &lhs_loc,
899 "whole array assignment forbidden")) {
900 /* From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
901 *
902 * "Other binary or unary expressions, non-dereferenced
903 * arrays, function names, swizzles with repeated fields,
904 * and constants cannot be l-values."
905 *
906 * The restriction on arrays is lifted in GLSL 1.20 and GLSL ES 3.00.
907 */
908 error_emitted = true;
909 } else if (!lhs->is_lvalue()) {
910 _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment");
911 error_emitted = true;
912 }
913 }
914
915 ir_rvalue *new_rhs =
916 validate_assignment(state, lhs_loc, lhs, rhs, is_initializer);
917 if (new_rhs != NULL) {
918 rhs = new_rhs;
919
920 /* If the LHS array was not declared with a size, it takes it size from
921 * the RHS. If the LHS is an l-value and a whole array, it must be a
922 * dereference of a variable. Any other case would require that the LHS
923 * is either not an l-value or not a whole array.
924 */
925 if (lhs->type->is_unsized_array()) {
926 ir_dereference *const d = lhs->as_dereference();
927
928 assert(d != NULL);
929
930 ir_variable *const var = d->variable_referenced();
931
932 assert(var != NULL);
933
934 if (var->data.max_array_access >= unsigned(rhs->type->array_size())) {
935 /* FINISHME: This should actually log the location of the RHS. */
936 _mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to "
937 "previous access",
938 var->data.max_array_access);
939 }
940
941 var->type = glsl_type::get_array_instance(lhs->type->fields.array,
942 rhs->type->array_size());
943 d->type = var->type;
944 }
945 if (lhs->type->is_array()) {
946 mark_whole_array_access(rhs);
947 mark_whole_array_access(lhs);
948 }
949 }
950
951 /* Most callers of do_assignment (assign, add_assign, pre_inc/dec,
952 * but not post_inc) need the converted assigned value as an rvalue
953 * to handle things like:
954 *
955 * i = j += 1;
956 */
957 if (needs_rvalue) {
958 ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp",
959 ir_var_temporary);
960 instructions->push_tail(var);
961 instructions->push_tail(assign(var, rhs));
962
963 if (!error_emitted) {
964 ir_dereference_variable *deref_var = new(ctx) ir_dereference_variable(var);
965 instructions->push_tail(new(ctx) ir_assignment(lhs, deref_var));
966 }
967 ir_rvalue *rvalue = new(ctx) ir_dereference_variable(var);
968
969 *out_rvalue = rvalue;
970 } else {
971 if (!error_emitted)
972 instructions->push_tail(new(ctx) ir_assignment(lhs, rhs));
973 *out_rvalue = NULL;
974 }
975
976 return error_emitted;
977 }
978
979 static ir_rvalue *
980 get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue)
981 {
982 void *ctx = ralloc_parent(lvalue);
983 ir_variable *var;
984
985 var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp",
986 ir_var_temporary);
987 instructions->push_tail(var);
988
989 instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
990 lvalue));
991
992 return new(ctx) ir_dereference_variable(var);
993 }
994
995
996 ir_rvalue *
997 ast_node::hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
998 {
999 (void) instructions;
1000 (void) state;
1001
1002 return NULL;
1003 }
1004
1005 bool
1006 ast_node::has_sequence_subexpression() const
1007 {
1008 return false;
1009 }
1010
1011 void
1012 ast_function_expression::hir_no_rvalue(exec_list *instructions,
1013 struct _mesa_glsl_parse_state *state)
1014 {
1015 (void)hir(instructions, state);
1016 }
1017
1018 void
1019 ast_aggregate_initializer::hir_no_rvalue(exec_list *instructions,
1020 struct _mesa_glsl_parse_state *state)
1021 {
1022 (void)hir(instructions, state);
1023 }
1024
1025 static ir_rvalue *
1026 do_comparison(void *mem_ctx, int operation, ir_rvalue *op0, ir_rvalue *op1)
1027 {
1028 int join_op;
1029 ir_rvalue *cmp = NULL;
1030
1031 if (operation == ir_binop_all_equal)
1032 join_op = ir_binop_logic_and;
1033 else
1034 join_op = ir_binop_logic_or;
1035
1036 switch (op0->type->base_type) {
1037 case GLSL_TYPE_FLOAT:
1038 case GLSL_TYPE_UINT:
1039 case GLSL_TYPE_INT:
1040 case GLSL_TYPE_BOOL:
1041 case GLSL_TYPE_DOUBLE:
1042 return new(mem_ctx) ir_expression(operation, op0, op1);
1043
1044 case GLSL_TYPE_ARRAY: {
1045 for (unsigned int i = 0; i < op0->type->length; i++) {
1046 ir_rvalue *e0, *e1, *result;
1047
1048 e0 = new(mem_ctx) ir_dereference_array(op0->clone(mem_ctx, NULL),
1049 new(mem_ctx) ir_constant(i));
1050 e1 = new(mem_ctx) ir_dereference_array(op1->clone(mem_ctx, NULL),
1051 new(mem_ctx) ir_constant(i));
1052 result = do_comparison(mem_ctx, operation, e0, e1);
1053
1054 if (cmp) {
1055 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
1056 } else {
1057 cmp = result;
1058 }
1059 }
1060
1061 mark_whole_array_access(op0);
1062 mark_whole_array_access(op1);
1063 break;
1064 }
1065
1066 case GLSL_TYPE_STRUCT: {
1067 for (unsigned int i = 0; i < op0->type->length; i++) {
1068 ir_rvalue *e0, *e1, *result;
1069 const char *field_name = op0->type->fields.structure[i].name;
1070
1071 e0 = new(mem_ctx) ir_dereference_record(op0->clone(mem_ctx, NULL),
1072 field_name);
1073 e1 = new(mem_ctx) ir_dereference_record(op1->clone(mem_ctx, NULL),
1074 field_name);
1075 result = do_comparison(mem_ctx, operation, e0, e1);
1076
1077 if (cmp) {
1078 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
1079 } else {
1080 cmp = result;
1081 }
1082 }
1083 break;
1084 }
1085
1086 case GLSL_TYPE_ERROR:
1087 case GLSL_TYPE_VOID:
1088 case GLSL_TYPE_SAMPLER:
1089 case GLSL_TYPE_IMAGE:
1090 case GLSL_TYPE_INTERFACE:
1091 case GLSL_TYPE_ATOMIC_UINT:
1092 case GLSL_TYPE_SUBROUTINE:
1093 /* I assume a comparison of a struct containing a sampler just
1094 * ignores the sampler present in the type.
1095 */
1096 break;
1097 }
1098
1099 if (cmp == NULL)
1100 cmp = new(mem_ctx) ir_constant(true);
1101
1102 return cmp;
1103 }
1104
1105 /* For logical operations, we want to ensure that the operands are
1106 * scalar booleans. If it isn't, emit an error and return a constant
1107 * boolean to avoid triggering cascading error messages.
1108 */
1109 ir_rvalue *
1110 get_scalar_boolean_operand(exec_list *instructions,
1111 struct _mesa_glsl_parse_state *state,
1112 ast_expression *parent_expr,
1113 int operand,
1114 const char *operand_name,
1115 bool *error_emitted)
1116 {
1117 ast_expression *expr = parent_expr->subexpressions[operand];
1118 void *ctx = state;
1119 ir_rvalue *val = expr->hir(instructions, state);
1120
1121 if (val->type->is_boolean() && val->type->is_scalar())
1122 return val;
1123
1124 if (!*error_emitted) {
1125 YYLTYPE loc = expr->get_location();
1126 _mesa_glsl_error(&loc, state, "%s of `%s' must be scalar boolean",
1127 operand_name,
1128 parent_expr->operator_string(parent_expr->oper));
1129 *error_emitted = true;
1130 }
1131
1132 return new(ctx) ir_constant(true);
1133 }
1134
1135 /**
1136 * If name refers to a builtin array whose maximum allowed size is less than
1137 * size, report an error and return true. Otherwise return false.
1138 */
1139 void
1140 check_builtin_array_max_size(const char *name, unsigned size,
1141 YYLTYPE loc, struct _mesa_glsl_parse_state *state)
1142 {
1143 if ((strcmp("gl_TexCoord", name) == 0)
1144 && (size > state->Const.MaxTextureCoords)) {
1145 /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec:
1146 *
1147 * "The size [of gl_TexCoord] can be at most
1148 * gl_MaxTextureCoords."
1149 */
1150 _mesa_glsl_error(&loc, state, "`gl_TexCoord' array size cannot "
1151 "be larger than gl_MaxTextureCoords (%u)",
1152 state->Const.MaxTextureCoords);
1153 } else if (strcmp("gl_ClipDistance", name) == 0
1154 && size > state->Const.MaxClipPlanes) {
1155 /* From section 7.1 (Vertex Shader Special Variables) of the
1156 * GLSL 1.30 spec:
1157 *
1158 * "The gl_ClipDistance array is predeclared as unsized and
1159 * must be sized by the shader either redeclaring it with a
1160 * size or indexing it only with integral constant
1161 * expressions. ... The size can be at most
1162 * gl_MaxClipDistances."
1163 */
1164 _mesa_glsl_error(&loc, state, "`gl_ClipDistance' array size cannot "
1165 "be larger than gl_MaxClipDistances (%u)",
1166 state->Const.MaxClipPlanes);
1167 }
1168 }
1169
1170 /**
1171 * Create the constant 1, of a which is appropriate for incrementing and
1172 * decrementing values of the given GLSL type. For example, if type is vec4,
1173 * this creates a constant value of 1.0 having type float.
1174 *
1175 * If the given type is invalid for increment and decrement operators, return
1176 * a floating point 1--the error will be detected later.
1177 */
1178 static ir_rvalue *
1179 constant_one_for_inc_dec(void *ctx, const glsl_type *type)
1180 {
1181 switch (type->base_type) {
1182 case GLSL_TYPE_UINT:
1183 return new(ctx) ir_constant((unsigned) 1);
1184 case GLSL_TYPE_INT:
1185 return new(ctx) ir_constant(1);
1186 default:
1187 case GLSL_TYPE_FLOAT:
1188 return new(ctx) ir_constant(1.0f);
1189 }
1190 }
1191
1192 ir_rvalue *
1193 ast_expression::hir(exec_list *instructions,
1194 struct _mesa_glsl_parse_state *state)
1195 {
1196 return do_hir(instructions, state, true);
1197 }
1198
1199 void
1200 ast_expression::hir_no_rvalue(exec_list *instructions,
1201 struct _mesa_glsl_parse_state *state)
1202 {
1203 do_hir(instructions, state, false);
1204 }
1205
1206 ir_rvalue *
1207 ast_expression::do_hir(exec_list *instructions,
1208 struct _mesa_glsl_parse_state *state,
1209 bool needs_rvalue)
1210 {
1211 void *ctx = state;
1212 static const int operations[AST_NUM_OPERATORS] = {
1213 -1, /* ast_assign doesn't convert to ir_expression. */
1214 -1, /* ast_plus doesn't convert to ir_expression. */
1215 ir_unop_neg,
1216 ir_binop_add,
1217 ir_binop_sub,
1218 ir_binop_mul,
1219 ir_binop_div,
1220 ir_binop_mod,
1221 ir_binop_lshift,
1222 ir_binop_rshift,
1223 ir_binop_less,
1224 ir_binop_greater,
1225 ir_binop_lequal,
1226 ir_binop_gequal,
1227 ir_binop_all_equal,
1228 ir_binop_any_nequal,
1229 ir_binop_bit_and,
1230 ir_binop_bit_xor,
1231 ir_binop_bit_or,
1232 ir_unop_bit_not,
1233 ir_binop_logic_and,
1234 ir_binop_logic_xor,
1235 ir_binop_logic_or,
1236 ir_unop_logic_not,
1237
1238 /* Note: The following block of expression types actually convert
1239 * to multiple IR instructions.
1240 */
1241 ir_binop_mul, /* ast_mul_assign */
1242 ir_binop_div, /* ast_div_assign */
1243 ir_binop_mod, /* ast_mod_assign */
1244 ir_binop_add, /* ast_add_assign */
1245 ir_binop_sub, /* ast_sub_assign */
1246 ir_binop_lshift, /* ast_ls_assign */
1247 ir_binop_rshift, /* ast_rs_assign */
1248 ir_binop_bit_and, /* ast_and_assign */
1249 ir_binop_bit_xor, /* ast_xor_assign */
1250 ir_binop_bit_or, /* ast_or_assign */
1251
1252 -1, /* ast_conditional doesn't convert to ir_expression. */
1253 ir_binop_add, /* ast_pre_inc. */
1254 ir_binop_sub, /* ast_pre_dec. */
1255 ir_binop_add, /* ast_post_inc. */
1256 ir_binop_sub, /* ast_post_dec. */
1257 -1, /* ast_field_selection doesn't conv to ir_expression. */
1258 -1, /* ast_array_index doesn't convert to ir_expression. */
1259 -1, /* ast_function_call doesn't conv to ir_expression. */
1260 -1, /* ast_identifier doesn't convert to ir_expression. */
1261 -1, /* ast_int_constant doesn't convert to ir_expression. */
1262 -1, /* ast_uint_constant doesn't conv to ir_expression. */
1263 -1, /* ast_float_constant doesn't conv to ir_expression. */
1264 -1, /* ast_bool_constant doesn't conv to ir_expression. */
1265 -1, /* ast_sequence doesn't convert to ir_expression. */
1266 };
1267 ir_rvalue *result = NULL;
1268 ir_rvalue *op[3];
1269 const struct glsl_type *type; /* a temporary variable for switch cases */
1270 bool error_emitted = false;
1271 YYLTYPE loc;
1272
1273 loc = this->get_location();
1274
1275 switch (this->oper) {
1276 case ast_aggregate:
1277 assert(!"ast_aggregate: Should never get here.");
1278 break;
1279
1280 case ast_assign: {
1281 op[0] = this->subexpressions[0]->hir(instructions, state);
1282 op[1] = this->subexpressions[1]->hir(instructions, state);
1283
1284 error_emitted =
1285 do_assignment(instructions, state,
1286 this->subexpressions[0]->non_lvalue_description,
1287 op[0], op[1], &result, needs_rvalue, false,
1288 this->subexpressions[0]->get_location());
1289 break;
1290 }
1291
1292 case ast_plus:
1293 op[0] = this->subexpressions[0]->hir(instructions, state);
1294
1295 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1296
1297 error_emitted = type->is_error();
1298
1299 result = op[0];
1300 break;
1301
1302 case ast_neg:
1303 op[0] = this->subexpressions[0]->hir(instructions, state);
1304
1305 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1306
1307 error_emitted = type->is_error();
1308
1309 result = new(ctx) ir_expression(operations[this->oper], type,
1310 op[0], NULL);
1311 break;
1312
1313 case ast_add:
1314 case ast_sub:
1315 case ast_mul:
1316 case ast_div:
1317 op[0] = this->subexpressions[0]->hir(instructions, state);
1318 op[1] = this->subexpressions[1]->hir(instructions, state);
1319
1320 type = arithmetic_result_type(op[0], op[1],
1321 (this->oper == ast_mul),
1322 state, & loc);
1323 error_emitted = type->is_error();
1324
1325 result = new(ctx) ir_expression(operations[this->oper], type,
1326 op[0], op[1]);
1327 break;
1328
1329 case ast_mod:
1330 op[0] = this->subexpressions[0]->hir(instructions, state);
1331 op[1] = this->subexpressions[1]->hir(instructions, state);
1332
1333 type = modulus_result_type(op[0], op[1], state, &loc);
1334
1335 assert(operations[this->oper] == ir_binop_mod);
1336
1337 result = new(ctx) ir_expression(operations[this->oper], type,
1338 op[0], op[1]);
1339 error_emitted = type->is_error();
1340 break;
1341
1342 case ast_lshift:
1343 case ast_rshift:
1344 if (!state->check_bitwise_operations_allowed(&loc)) {
1345 error_emitted = true;
1346 }
1347
1348 op[0] = this->subexpressions[0]->hir(instructions, state);
1349 op[1] = this->subexpressions[1]->hir(instructions, state);
1350 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1351 &loc);
1352 result = new(ctx) ir_expression(operations[this->oper], type,
1353 op[0], op[1]);
1354 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1355 break;
1356
1357 case ast_less:
1358 case ast_greater:
1359 case ast_lequal:
1360 case ast_gequal:
1361 op[0] = this->subexpressions[0]->hir(instructions, state);
1362 op[1] = this->subexpressions[1]->hir(instructions, state);
1363
1364 type = relational_result_type(op[0], op[1], state, & loc);
1365
1366 /* The relational operators must either generate an error or result
1367 * in a scalar boolean. See page 57 of the GLSL 1.50 spec.
1368 */
1369 assert(type->is_error()
1370 || ((type->base_type == GLSL_TYPE_BOOL)
1371 && type->is_scalar()));
1372
1373 result = new(ctx) ir_expression(operations[this->oper], type,
1374 op[0], op[1]);
1375 error_emitted = type->is_error();
1376 break;
1377
1378 case ast_nequal:
1379 case ast_equal:
1380 op[0] = this->subexpressions[0]->hir(instructions, state);
1381 op[1] = this->subexpressions[1]->hir(instructions, state);
1382
1383 /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
1384 *
1385 * "The equality operators equal (==), and not equal (!=)
1386 * operate on all types. They result in a scalar Boolean. If
1387 * the operand types do not match, then there must be a
1388 * conversion from Section 4.1.10 "Implicit Conversions"
1389 * applied to one operand that can make them match, in which
1390 * case this conversion is done."
1391 */
1392
1393 if (op[0]->type == glsl_type::void_type || op[1]->type == glsl_type::void_type) {
1394 _mesa_glsl_error(& loc, state, "`%s': wrong operand types: "
1395 "no operation `%1$s' exists that takes a left-hand "
1396 "operand of type 'void' or a right operand of type "
1397 "'void'", (this->oper == ast_equal) ? "==" : "!=");
1398 error_emitted = true;
1399 } else if ((!apply_implicit_conversion(op[0]->type, op[1], state)
1400 && !apply_implicit_conversion(op[1]->type, op[0], state))
1401 || (op[0]->type != op[1]->type)) {
1402 _mesa_glsl_error(& loc, state, "operands of `%s' must have the same "
1403 "type", (this->oper == ast_equal) ? "==" : "!=");
1404 error_emitted = true;
1405 } else if ((op[0]->type->is_array() || op[1]->type->is_array()) &&
1406 !state->check_version(120, 300, &loc,
1407 "array comparisons forbidden")) {
1408 error_emitted = true;
1409 } else if ((op[0]->type->contains_opaque() ||
1410 op[1]->type->contains_opaque())) {
1411 _mesa_glsl_error(&loc, state, "opaque type comparisons forbidden");
1412 error_emitted = true;
1413 }
1414
1415 if (error_emitted) {
1416 result = new(ctx) ir_constant(false);
1417 } else {
1418 result = do_comparison(ctx, operations[this->oper], op[0], op[1]);
1419 assert(result->type == glsl_type::bool_type);
1420 }
1421 break;
1422
1423 case ast_bit_and:
1424 case ast_bit_xor:
1425 case ast_bit_or:
1426 op[0] = this->subexpressions[0]->hir(instructions, state);
1427 op[1] = this->subexpressions[1]->hir(instructions, state);
1428 type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
1429 state, &loc);
1430 result = new(ctx) ir_expression(operations[this->oper], type,
1431 op[0], op[1]);
1432 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1433 break;
1434
1435 case ast_bit_not:
1436 op[0] = this->subexpressions[0]->hir(instructions, state);
1437
1438 if (!state->check_bitwise_operations_allowed(&loc)) {
1439 error_emitted = true;
1440 }
1441
1442 if (!op[0]->type->is_integer()) {
1443 _mesa_glsl_error(&loc, state, "operand of `~' must be an integer");
1444 error_emitted = true;
1445 }
1446
1447 type = error_emitted ? glsl_type::error_type : op[0]->type;
1448 result = new(ctx) ir_expression(ir_unop_bit_not, type, op[0], NULL);
1449 break;
1450
1451 case ast_logic_and: {
1452 exec_list rhs_instructions;
1453 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1454 "LHS", &error_emitted);
1455 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1456 "RHS", &error_emitted);
1457
1458 if (rhs_instructions.is_empty()) {
1459 result = new(ctx) ir_expression(ir_binop_logic_and, op[0], op[1]);
1460 type = result->type;
1461 } else {
1462 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1463 "and_tmp",
1464 ir_var_temporary);
1465 instructions->push_tail(tmp);
1466
1467 ir_if *const stmt = new(ctx) ir_if(op[0]);
1468 instructions->push_tail(stmt);
1469
1470 stmt->then_instructions.append_list(&rhs_instructions);
1471 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1472 ir_assignment *const then_assign =
1473 new(ctx) ir_assignment(then_deref, op[1]);
1474 stmt->then_instructions.push_tail(then_assign);
1475
1476 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1477 ir_assignment *const else_assign =
1478 new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false));
1479 stmt->else_instructions.push_tail(else_assign);
1480
1481 result = new(ctx) ir_dereference_variable(tmp);
1482 type = tmp->type;
1483 }
1484 break;
1485 }
1486
1487 case ast_logic_or: {
1488 exec_list rhs_instructions;
1489 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1490 "LHS", &error_emitted);
1491 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1492 "RHS", &error_emitted);
1493
1494 if (rhs_instructions.is_empty()) {
1495 result = new(ctx) ir_expression(ir_binop_logic_or, op[0], op[1]);
1496 type = result->type;
1497 } else {
1498 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1499 "or_tmp",
1500 ir_var_temporary);
1501 instructions->push_tail(tmp);
1502
1503 ir_if *const stmt = new(ctx) ir_if(op[0]);
1504 instructions->push_tail(stmt);
1505
1506 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1507 ir_assignment *const then_assign =
1508 new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true));
1509 stmt->then_instructions.push_tail(then_assign);
1510
1511 stmt->else_instructions.append_list(&rhs_instructions);
1512 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1513 ir_assignment *const else_assign =
1514 new(ctx) ir_assignment(else_deref, op[1]);
1515 stmt->else_instructions.push_tail(else_assign);
1516
1517 result = new(ctx) ir_dereference_variable(tmp);
1518 type = tmp->type;
1519 }
1520 break;
1521 }
1522
1523 case ast_logic_xor:
1524 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1525 *
1526 * "The logical binary operators and (&&), or ( | | ), and
1527 * exclusive or (^^). They operate only on two Boolean
1528 * expressions and result in a Boolean expression."
1529 */
1530 op[0] = get_scalar_boolean_operand(instructions, state, this, 0, "LHS",
1531 &error_emitted);
1532 op[1] = get_scalar_boolean_operand(instructions, state, this, 1, "RHS",
1533 &error_emitted);
1534
1535 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1536 op[0], op[1]);
1537 break;
1538
1539 case ast_logic_not:
1540 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1541 "operand", &error_emitted);
1542
1543 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1544 op[0], NULL);
1545 break;
1546
1547 case ast_mul_assign:
1548 case ast_div_assign:
1549 case ast_add_assign:
1550 case ast_sub_assign: {
1551 op[0] = this->subexpressions[0]->hir(instructions, state);
1552 op[1] = this->subexpressions[1]->hir(instructions, state);
1553
1554 type = arithmetic_result_type(op[0], op[1],
1555 (this->oper == ast_mul_assign),
1556 state, & loc);
1557
1558 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1559 op[0], op[1]);
1560
1561 error_emitted =
1562 do_assignment(instructions, state,
1563 this->subexpressions[0]->non_lvalue_description,
1564 op[0]->clone(ctx, NULL), temp_rhs,
1565 &result, needs_rvalue, false,
1566 this->subexpressions[0]->get_location());
1567
1568 /* GLSL 1.10 does not allow array assignment. However, we don't have to
1569 * explicitly test for this because none of the binary expression
1570 * operators allow array operands either.
1571 */
1572
1573 break;
1574 }
1575
1576 case ast_mod_assign: {
1577 op[0] = this->subexpressions[0]->hir(instructions, state);
1578 op[1] = this->subexpressions[1]->hir(instructions, state);
1579
1580 type = modulus_result_type(op[0], op[1], state, &loc);
1581
1582 assert(operations[this->oper] == ir_binop_mod);
1583
1584 ir_rvalue *temp_rhs;
1585 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1586 op[0], op[1]);
1587
1588 error_emitted =
1589 do_assignment(instructions, state,
1590 this->subexpressions[0]->non_lvalue_description,
1591 op[0]->clone(ctx, NULL), temp_rhs,
1592 &result, needs_rvalue, false,
1593 this->subexpressions[0]->get_location());
1594 break;
1595 }
1596
1597 case ast_ls_assign:
1598 case ast_rs_assign: {
1599 op[0] = this->subexpressions[0]->hir(instructions, state);
1600 op[1] = this->subexpressions[1]->hir(instructions, state);
1601 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1602 &loc);
1603 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1604 type, op[0], op[1]);
1605 error_emitted =
1606 do_assignment(instructions, state,
1607 this->subexpressions[0]->non_lvalue_description,
1608 op[0]->clone(ctx, NULL), temp_rhs,
1609 &result, needs_rvalue, false,
1610 this->subexpressions[0]->get_location());
1611 break;
1612 }
1613
1614 case ast_and_assign:
1615 case ast_xor_assign:
1616 case ast_or_assign: {
1617 op[0] = this->subexpressions[0]->hir(instructions, state);
1618 op[1] = this->subexpressions[1]->hir(instructions, state);
1619 type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
1620 state, &loc);
1621 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1622 type, op[0], op[1]);
1623 error_emitted =
1624 do_assignment(instructions, state,
1625 this->subexpressions[0]->non_lvalue_description,
1626 op[0]->clone(ctx, NULL), temp_rhs,
1627 &result, needs_rvalue, false,
1628 this->subexpressions[0]->get_location());
1629 break;
1630 }
1631
1632 case ast_conditional: {
1633 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1634 *
1635 * "The ternary selection operator (?:). It operates on three
1636 * expressions (exp1 ? exp2 : exp3). This operator evaluates the
1637 * first expression, which must result in a scalar Boolean."
1638 */
1639 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1640 "condition", &error_emitted);
1641
1642 /* The :? operator is implemented by generating an anonymous temporary
1643 * followed by an if-statement. The last instruction in each branch of
1644 * the if-statement assigns a value to the anonymous temporary. This
1645 * temporary is the r-value of the expression.
1646 */
1647 exec_list then_instructions;
1648 exec_list else_instructions;
1649
1650 op[1] = this->subexpressions[1]->hir(&then_instructions, state);
1651 op[2] = this->subexpressions[2]->hir(&else_instructions, state);
1652
1653 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1654 *
1655 * "The second and third expressions can be any type, as
1656 * long their types match, or there is a conversion in
1657 * Section 4.1.10 "Implicit Conversions" that can be applied
1658 * to one of the expressions to make their types match. This
1659 * resulting matching type is the type of the entire
1660 * expression."
1661 */
1662 if ((!apply_implicit_conversion(op[1]->type, op[2], state)
1663 && !apply_implicit_conversion(op[2]->type, op[1], state))
1664 || (op[1]->type != op[2]->type)) {
1665 YYLTYPE loc = this->subexpressions[1]->get_location();
1666
1667 _mesa_glsl_error(& loc, state, "second and third operands of ?: "
1668 "operator must have matching types");
1669 error_emitted = true;
1670 type = glsl_type::error_type;
1671 } else {
1672 type = op[1]->type;
1673 }
1674
1675 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1676 *
1677 * "The second and third expressions must be the same type, but can
1678 * be of any type other than an array."
1679 */
1680 if (type->is_array() &&
1681 !state->check_version(120, 300, &loc,
1682 "second and third operands of ?: operator "
1683 "cannot be arrays")) {
1684 error_emitted = true;
1685 }
1686
1687 /* From section 4.1.7 of the GLSL 4.50 spec (Opaque Types):
1688 *
1689 * "Except for array indexing, structure member selection, and
1690 * parentheses, opaque variables are not allowed to be operands in
1691 * expressions; such use results in a compile-time error."
1692 */
1693 if (type->contains_opaque()) {
1694 _mesa_glsl_error(&loc, state, "opaque variables cannot be operands "
1695 "of the ?: operator");
1696 error_emitted = true;
1697 }
1698
1699 ir_constant *cond_val = op[0]->constant_expression_value();
1700
1701 if (then_instructions.is_empty()
1702 && else_instructions.is_empty()
1703 && cond_val != NULL) {
1704 result = cond_val->value.b[0] ? op[1] : op[2];
1705 } else {
1706 /* The copy to conditional_tmp reads the whole array. */
1707 if (type->is_array()) {
1708 mark_whole_array_access(op[1]);
1709 mark_whole_array_access(op[2]);
1710 }
1711
1712 ir_variable *const tmp =
1713 new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary);
1714 instructions->push_tail(tmp);
1715
1716 ir_if *const stmt = new(ctx) ir_if(op[0]);
1717 instructions->push_tail(stmt);
1718
1719 then_instructions.move_nodes_to(& stmt->then_instructions);
1720 ir_dereference *const then_deref =
1721 new(ctx) ir_dereference_variable(tmp);
1722 ir_assignment *const then_assign =
1723 new(ctx) ir_assignment(then_deref, op[1]);
1724 stmt->then_instructions.push_tail(then_assign);
1725
1726 else_instructions.move_nodes_to(& stmt->else_instructions);
1727 ir_dereference *const else_deref =
1728 new(ctx) ir_dereference_variable(tmp);
1729 ir_assignment *const else_assign =
1730 new(ctx) ir_assignment(else_deref, op[2]);
1731 stmt->else_instructions.push_tail(else_assign);
1732
1733 result = new(ctx) ir_dereference_variable(tmp);
1734 }
1735 break;
1736 }
1737
1738 case ast_pre_inc:
1739 case ast_pre_dec: {
1740 this->non_lvalue_description = (this->oper == ast_pre_inc)
1741 ? "pre-increment operation" : "pre-decrement operation";
1742
1743 op[0] = this->subexpressions[0]->hir(instructions, state);
1744 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1745
1746 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1747
1748 ir_rvalue *temp_rhs;
1749 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1750 op[0], op[1]);
1751
1752 error_emitted =
1753 do_assignment(instructions, state,
1754 this->subexpressions[0]->non_lvalue_description,
1755 op[0]->clone(ctx, NULL), temp_rhs,
1756 &result, needs_rvalue, false,
1757 this->subexpressions[0]->get_location());
1758 break;
1759 }
1760
1761 case ast_post_inc:
1762 case ast_post_dec: {
1763 this->non_lvalue_description = (this->oper == ast_post_inc)
1764 ? "post-increment operation" : "post-decrement operation";
1765 op[0] = this->subexpressions[0]->hir(instructions, state);
1766 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1767
1768 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1769
1770 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1771
1772 ir_rvalue *temp_rhs;
1773 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1774 op[0], op[1]);
1775
1776 /* Get a temporary of a copy of the lvalue before it's modified.
1777 * This may get thrown away later.
1778 */
1779 result = get_lvalue_copy(instructions, op[0]->clone(ctx, NULL));
1780
1781 ir_rvalue *junk_rvalue;
1782 error_emitted =
1783 do_assignment(instructions, state,
1784 this->subexpressions[0]->non_lvalue_description,
1785 op[0]->clone(ctx, NULL), temp_rhs,
1786 &junk_rvalue, false, false,
1787 this->subexpressions[0]->get_location());
1788
1789 break;
1790 }
1791
1792 case ast_field_selection:
1793 result = _mesa_ast_field_selection_to_hir(this, instructions, state);
1794 break;
1795
1796 case ast_array_index: {
1797 YYLTYPE index_loc = subexpressions[1]->get_location();
1798
1799 op[0] = subexpressions[0]->hir(instructions, state);
1800 op[1] = subexpressions[1]->hir(instructions, state);
1801
1802 result = _mesa_ast_array_index_to_hir(ctx, state, op[0], op[1],
1803 loc, index_loc);
1804
1805 if (result->type->is_error())
1806 error_emitted = true;
1807
1808 break;
1809 }
1810
1811 case ast_unsized_array_dim:
1812 assert(!"ast_unsized_array_dim: Should never get here.");
1813 break;
1814
1815 case ast_function_call:
1816 /* Should *NEVER* get here. ast_function_call should always be handled
1817 * by ast_function_expression::hir.
1818 */
1819 assert(0);
1820 break;
1821
1822 case ast_identifier: {
1823 /* ast_identifier can appear several places in a full abstract syntax
1824 * tree. This particular use must be at location specified in the grammar
1825 * as 'variable_identifier'.
1826 */
1827 ir_variable *var =
1828 state->symbols->get_variable(this->primary_expression.identifier);
1829
1830 if (var != NULL) {
1831 var->data.used = true;
1832 result = new(ctx) ir_dereference_variable(var);
1833 } else {
1834 _mesa_glsl_error(& loc, state, "`%s' undeclared",
1835 this->primary_expression.identifier);
1836
1837 result = ir_rvalue::error_value(ctx);
1838 error_emitted = true;
1839 }
1840 break;
1841 }
1842
1843 case ast_int_constant:
1844 result = new(ctx) ir_constant(this->primary_expression.int_constant);
1845 break;
1846
1847 case ast_uint_constant:
1848 result = new(ctx) ir_constant(this->primary_expression.uint_constant);
1849 break;
1850
1851 case ast_float_constant:
1852 result = new(ctx) ir_constant(this->primary_expression.float_constant);
1853 break;
1854
1855 case ast_bool_constant:
1856 result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant));
1857 break;
1858
1859 case ast_double_constant:
1860 result = new(ctx) ir_constant(this->primary_expression.double_constant);
1861 break;
1862
1863 case ast_sequence: {
1864 /* It should not be possible to generate a sequence in the AST without
1865 * any expressions in it.
1866 */
1867 assert(!this->expressions.is_empty());
1868
1869 /* The r-value of a sequence is the last expression in the sequence. If
1870 * the other expressions in the sequence do not have side-effects (and
1871 * therefore add instructions to the instruction list), they get dropped
1872 * on the floor.
1873 */
1874 exec_node *previous_tail_pred = NULL;
1875 YYLTYPE previous_operand_loc = loc;
1876
1877 foreach_list_typed (ast_node, ast, link, &this->expressions) {
1878 /* If one of the operands of comma operator does not generate any
1879 * code, we want to emit a warning. At each pass through the loop
1880 * previous_tail_pred will point to the last instruction in the
1881 * stream *before* processing the previous operand. Naturally,
1882 * instructions->tail_pred will point to the last instruction in the
1883 * stream *after* processing the previous operand. If the two
1884 * pointers match, then the previous operand had no effect.
1885 *
1886 * The warning behavior here differs slightly from GCC. GCC will
1887 * only emit a warning if none of the left-hand operands have an
1888 * effect. However, it will emit a warning for each. I believe that
1889 * there are some cases in C (especially with GCC extensions) where
1890 * it is useful to have an intermediate step in a sequence have no
1891 * effect, but I don't think these cases exist in GLSL. Either way,
1892 * it would be a giant hassle to replicate that behavior.
1893 */
1894 if (previous_tail_pred == instructions->tail_pred) {
1895 _mesa_glsl_warning(&previous_operand_loc, state,
1896 "left-hand operand of comma expression has "
1897 "no effect");
1898 }
1899
1900 /* tail_pred is directly accessed instead of using the get_tail()
1901 * method for performance reasons. get_tail() has extra code to
1902 * return NULL when the list is empty. We don't care about that
1903 * here, so using tail_pred directly is fine.
1904 */
1905 previous_tail_pred = instructions->tail_pred;
1906 previous_operand_loc = ast->get_location();
1907
1908 result = ast->hir(instructions, state);
1909 }
1910
1911 /* Any errors should have already been emitted in the loop above.
1912 */
1913 error_emitted = true;
1914 break;
1915 }
1916 }
1917 type = NULL; /* use result->type, not type. */
1918 assert(result != NULL || !needs_rvalue);
1919
1920 if (result && result->type->is_error() && !error_emitted)
1921 _mesa_glsl_error(& loc, state, "type mismatch");
1922
1923 return result;
1924 }
1925
1926 bool
1927 ast_expression::has_sequence_subexpression() const
1928 {
1929 switch (this->oper) {
1930 case ast_plus:
1931 case ast_neg:
1932 case ast_bit_not:
1933 case ast_logic_not:
1934 case ast_pre_inc:
1935 case ast_pre_dec:
1936 case ast_post_inc:
1937 case ast_post_dec:
1938 return this->subexpressions[0]->has_sequence_subexpression();
1939
1940 case ast_assign:
1941 case ast_add:
1942 case ast_sub:
1943 case ast_mul:
1944 case ast_div:
1945 case ast_mod:
1946 case ast_lshift:
1947 case ast_rshift:
1948 case ast_less:
1949 case ast_greater:
1950 case ast_lequal:
1951 case ast_gequal:
1952 case ast_nequal:
1953 case ast_equal:
1954 case ast_bit_and:
1955 case ast_bit_xor:
1956 case ast_bit_or:
1957 case ast_logic_and:
1958 case ast_logic_or:
1959 case ast_logic_xor:
1960 case ast_array_index:
1961 case ast_mul_assign:
1962 case ast_div_assign:
1963 case ast_add_assign:
1964 case ast_sub_assign:
1965 case ast_mod_assign:
1966 case ast_ls_assign:
1967 case ast_rs_assign:
1968 case ast_and_assign:
1969 case ast_xor_assign:
1970 case ast_or_assign:
1971 return this->subexpressions[0]->has_sequence_subexpression() ||
1972 this->subexpressions[1]->has_sequence_subexpression();
1973
1974 case ast_conditional:
1975 return this->subexpressions[0]->has_sequence_subexpression() ||
1976 this->subexpressions[1]->has_sequence_subexpression() ||
1977 this->subexpressions[2]->has_sequence_subexpression();
1978
1979 case ast_sequence:
1980 return true;
1981
1982 case ast_field_selection:
1983 case ast_identifier:
1984 case ast_int_constant:
1985 case ast_uint_constant:
1986 case ast_float_constant:
1987 case ast_bool_constant:
1988 case ast_double_constant:
1989 return false;
1990
1991 case ast_aggregate:
1992 unreachable("ast_aggregate: Should never get here.");
1993
1994 case ast_function_call:
1995 unreachable("should be handled by ast_function_expression::hir");
1996
1997 case ast_unsized_array_dim:
1998 unreachable("ast_unsized_array_dim: Should never get here.");
1999 }
2000
2001 return false;
2002 }
2003
2004 ir_rvalue *
2005 ast_expression_statement::hir(exec_list *instructions,
2006 struct _mesa_glsl_parse_state *state)
2007 {
2008 /* It is possible to have expression statements that don't have an
2009 * expression. This is the solitary semicolon:
2010 *
2011 * for (i = 0; i < 5; i++)
2012 * ;
2013 *
2014 * In this case the expression will be NULL. Test for NULL and don't do
2015 * anything in that case.
2016 */
2017 if (expression != NULL)
2018 expression->hir_no_rvalue(instructions, state);
2019
2020 /* Statements do not have r-values.
2021 */
2022 return NULL;
2023 }
2024
2025
2026 ir_rvalue *
2027 ast_compound_statement::hir(exec_list *instructions,
2028 struct _mesa_glsl_parse_state *state)
2029 {
2030 if (new_scope)
2031 state->symbols->push_scope();
2032
2033 foreach_list_typed (ast_node, ast, link, &this->statements)
2034 ast->hir(instructions, state);
2035
2036 if (new_scope)
2037 state->symbols->pop_scope();
2038
2039 /* Compound statements do not have r-values.
2040 */
2041 return NULL;
2042 }
2043
2044 /**
2045 * Evaluate the given exec_node (which should be an ast_node representing
2046 * a single array dimension) and return its integer value.
2047 */
2048 static unsigned
2049 process_array_size(exec_node *node,
2050 struct _mesa_glsl_parse_state *state)
2051 {
2052 exec_list dummy_instructions;
2053
2054 ast_node *array_size = exec_node_data(ast_node, node, link);
2055
2056 /**
2057 * Dimensions other than the outermost dimension can by unsized if they
2058 * are immediately sized by a constructor or initializer.
2059 */
2060 if (((ast_expression*)array_size)->oper == ast_unsized_array_dim)
2061 return 0;
2062
2063 ir_rvalue *const ir = array_size->hir(& dummy_instructions, state);
2064 YYLTYPE loc = array_size->get_location();
2065
2066 if (ir == NULL) {
2067 _mesa_glsl_error(& loc, state,
2068 "array size could not be resolved");
2069 return 0;
2070 }
2071
2072 if (!ir->type->is_integer()) {
2073 _mesa_glsl_error(& loc, state,
2074 "array size must be integer type");
2075 return 0;
2076 }
2077
2078 if (!ir->type->is_scalar()) {
2079 _mesa_glsl_error(& loc, state,
2080 "array size must be scalar type");
2081 return 0;
2082 }
2083
2084 ir_constant *const size = ir->constant_expression_value();
2085 if (size == NULL || array_size->has_sequence_subexpression()) {
2086 _mesa_glsl_error(& loc, state, "array size must be a "
2087 "constant valued expression");
2088 return 0;
2089 }
2090
2091 if (size->value.i[0] <= 0) {
2092 _mesa_glsl_error(& loc, state, "array size must be > 0");
2093 return 0;
2094 }
2095
2096 assert(size->type == ir->type);
2097
2098 /* If the array size is const (and we've verified that
2099 * it is) then no instructions should have been emitted
2100 * when we converted it to HIR. If they were emitted,
2101 * then either the array size isn't const after all, or
2102 * we are emitting unnecessary instructions.
2103 */
2104 assert(dummy_instructions.is_empty());
2105
2106 return size->value.u[0];
2107 }
2108
2109 static const glsl_type *
2110 process_array_type(YYLTYPE *loc, const glsl_type *base,
2111 ast_array_specifier *array_specifier,
2112 struct _mesa_glsl_parse_state *state)
2113 {
2114 const glsl_type *array_type = base;
2115
2116 if (array_specifier != NULL) {
2117 if (base->is_array()) {
2118
2119 /* From page 19 (page 25) of the GLSL 1.20 spec:
2120 *
2121 * "Only one-dimensional arrays may be declared."
2122 */
2123 if (!state->check_arrays_of_arrays_allowed(loc)) {
2124 return glsl_type::error_type;
2125 }
2126 }
2127
2128 for (exec_node *node = array_specifier->array_dimensions.tail_pred;
2129 !node->is_head_sentinel(); node = node->prev) {
2130 unsigned array_size = process_array_size(node, state);
2131 array_type = glsl_type::get_array_instance(array_type, array_size);
2132 }
2133 }
2134
2135 return array_type;
2136 }
2137
2138 static bool
2139 precision_qualifier_allowed(const glsl_type *type)
2140 {
2141 /* Precision qualifiers apply to floating point, integer and opaque
2142 * types.
2143 *
2144 * Section 4.5.2 (Precision Qualifiers) of the GLSL 1.30 spec says:
2145 * "Any floating point or any integer declaration can have the type
2146 * preceded by one of these precision qualifiers [...] Literal
2147 * constants do not have precision qualifiers. Neither do Boolean
2148 * variables.
2149 *
2150 * Section 4.5 (Precision and Precision Qualifiers) of the GLSL 1.30
2151 * spec also says:
2152 *
2153 * "Precision qualifiers are added for code portability with OpenGL
2154 * ES, not for functionality. They have the same syntax as in OpenGL
2155 * ES."
2156 *
2157 * Section 8 (Built-In Functions) of the GLSL ES 1.00 spec says:
2158 *
2159 * "uniform lowp sampler2D sampler;
2160 * highp vec2 coord;
2161 * ...
2162 * lowp vec4 col = texture2D (sampler, coord);
2163 * // texture2D returns lowp"
2164 *
2165 * From this, we infer that GLSL 1.30 (and later) should allow precision
2166 * qualifiers on sampler types just like float and integer types.
2167 */
2168 return (type->is_float()
2169 || type->is_integer()
2170 || type->contains_opaque())
2171 && !type->without_array()->is_record();
2172 }
2173
2174 const glsl_type *
2175 ast_type_specifier::glsl_type(const char **name,
2176 struct _mesa_glsl_parse_state *state) const
2177 {
2178 const struct glsl_type *type;
2179
2180 type = state->symbols->get_type(this->type_name);
2181 *name = this->type_name;
2182
2183 YYLTYPE loc = this->get_location();
2184 type = process_array_type(&loc, type, this->array_specifier, state);
2185
2186 return type;
2187 }
2188
2189 /**
2190 * From the OpenGL ES 3.0 spec, 4.5.4 Default Precision Qualifiers:
2191 *
2192 * "The precision statement
2193 *
2194 * precision precision-qualifier type;
2195 *
2196 * can be used to establish a default precision qualifier. The type field can
2197 * be either int or float or any of the sampler types, (...) If type is float,
2198 * the directive applies to non-precision-qualified floating point type
2199 * (scalar, vector, and matrix) declarations. If type is int, the directive
2200 * applies to all non-precision-qualified integer type (scalar, vector, signed,
2201 * and unsigned) declarations."
2202 *
2203 * We use the symbol table to keep the values of the default precisions for
2204 * each 'type' in each scope and we use the 'type' string from the precision
2205 * statement as key in the symbol table. When we want to retrieve the default
2206 * precision associated with a given glsl_type we need to know the type string
2207 * associated with it. This is what this function returns.
2208 */
2209 static const char *
2210 get_type_name_for_precision_qualifier(const glsl_type *type)
2211 {
2212 switch (type->base_type) {
2213 case GLSL_TYPE_FLOAT:
2214 return "float";
2215 case GLSL_TYPE_UINT:
2216 case GLSL_TYPE_INT:
2217 return "int";
2218 case GLSL_TYPE_ATOMIC_UINT:
2219 return "atomic_uint";
2220 case GLSL_TYPE_IMAGE:
2221 /* fallthrough */
2222 case GLSL_TYPE_SAMPLER: {
2223 const unsigned type_idx =
2224 type->sampler_array + 2 * type->sampler_shadow;
2225 const unsigned offset = type->base_type == GLSL_TYPE_SAMPLER ? 0 : 4;
2226 assert(type_idx < 4);
2227 switch (type->sampler_type) {
2228 case GLSL_TYPE_FLOAT:
2229 switch (type->sampler_dimensionality) {
2230 case GLSL_SAMPLER_DIM_1D: {
2231 assert(type->base_type == GLSL_TYPE_SAMPLER);
2232 static const char *const names[4] = {
2233 "sampler1D", "sampler1DArray",
2234 "sampler1DShadow", "sampler1DArrayShadow"
2235 };
2236 return names[type_idx];
2237 }
2238 case GLSL_SAMPLER_DIM_2D: {
2239 static const char *const names[8] = {
2240 "sampler2D", "sampler2DArray",
2241 "sampler2DShadow", "sampler2DArrayShadow",
2242 "image2D", "image2DArray", NULL, NULL
2243 };
2244 return names[offset + type_idx];
2245 }
2246 case GLSL_SAMPLER_DIM_3D: {
2247 static const char *const names[8] = {
2248 "sampler3D", NULL, NULL, NULL,
2249 "image3D", NULL, NULL, NULL
2250 };
2251 return names[offset + type_idx];
2252 }
2253 case GLSL_SAMPLER_DIM_CUBE: {
2254 static const char *const names[8] = {
2255 "samplerCube", "samplerCubeArray",
2256 "samplerCubeShadow", "samplerCubeArrayShadow",
2257 "imageCube", NULL, NULL, NULL
2258 };
2259 return names[offset + type_idx];
2260 }
2261 case GLSL_SAMPLER_DIM_MS: {
2262 assert(type->base_type == GLSL_TYPE_SAMPLER);
2263 static const char *const names[4] = {
2264 "sampler2DMS", "sampler2DMSArray", NULL, NULL
2265 };
2266 return names[type_idx];
2267 }
2268 case GLSL_SAMPLER_DIM_RECT: {
2269 assert(type->base_type == GLSL_TYPE_SAMPLER);
2270 static const char *const names[4] = {
2271 "samplerRect", NULL, "samplerRectShadow", NULL
2272 };
2273 return names[type_idx];
2274 }
2275 case GLSL_SAMPLER_DIM_BUF: {
2276 assert(type->base_type == GLSL_TYPE_SAMPLER);
2277 static const char *const names[4] = {
2278 "samplerBuffer", NULL, NULL, NULL
2279 };
2280 return names[type_idx];
2281 }
2282 case GLSL_SAMPLER_DIM_EXTERNAL: {
2283 assert(type->base_type == GLSL_TYPE_SAMPLER);
2284 static const char *const names[4] = {
2285 "samplerExternalOES", NULL, NULL, NULL
2286 };
2287 return names[type_idx];
2288 }
2289 default:
2290 unreachable("Unsupported sampler/image dimensionality");
2291 } /* sampler/image float dimensionality */
2292 break;
2293 case GLSL_TYPE_INT:
2294 switch (type->sampler_dimensionality) {
2295 case GLSL_SAMPLER_DIM_1D: {
2296 assert(type->base_type == GLSL_TYPE_SAMPLER);
2297 static const char *const names[4] = {
2298 "isampler1D", "isampler1DArray", NULL, NULL
2299 };
2300 return names[type_idx];
2301 }
2302 case GLSL_SAMPLER_DIM_2D: {
2303 static const char *const names[8] = {
2304 "isampler2D", "isampler2DArray", NULL, NULL,
2305 "iimage2D", "iimage2DArray", NULL, NULL
2306 };
2307 return names[offset + type_idx];
2308 }
2309 case GLSL_SAMPLER_DIM_3D: {
2310 static const char *const names[8] = {
2311 "isampler3D", NULL, NULL, NULL,
2312 "iimage3D", NULL, NULL, NULL
2313 };
2314 return names[offset + type_idx];
2315 }
2316 case GLSL_SAMPLER_DIM_CUBE: {
2317 static const char *const names[8] = {
2318 "isamplerCube", "isamplerCubeArray", NULL, NULL,
2319 "iimageCube", NULL, NULL, NULL
2320 };
2321 return names[offset + type_idx];
2322 }
2323 case GLSL_SAMPLER_DIM_MS: {
2324 assert(type->base_type == GLSL_TYPE_SAMPLER);
2325 static const char *const names[4] = {
2326 "isampler2DMS", "isampler2DMSArray", NULL, NULL
2327 };
2328 return names[type_idx];
2329 }
2330 case GLSL_SAMPLER_DIM_RECT: {
2331 assert(type->base_type == GLSL_TYPE_SAMPLER);
2332 static const char *const names[4] = {
2333 "isamplerRect", NULL, "isamplerRectShadow", NULL
2334 };
2335 return names[type_idx];
2336 }
2337 case GLSL_SAMPLER_DIM_BUF: {
2338 assert(type->base_type == GLSL_TYPE_SAMPLER);
2339 static const char *const names[4] = {
2340 "isamplerBuffer", NULL, NULL, NULL
2341 };
2342 return names[type_idx];
2343 }
2344 default:
2345 unreachable("Unsupported isampler/iimage dimensionality");
2346 } /* sampler/image int dimensionality */
2347 break;
2348 case GLSL_TYPE_UINT:
2349 switch (type->sampler_dimensionality) {
2350 case GLSL_SAMPLER_DIM_1D: {
2351 assert(type->base_type == GLSL_TYPE_SAMPLER);
2352 static const char *const names[4] = {
2353 "usampler1D", "usampler1DArray", NULL, NULL
2354 };
2355 return names[type_idx];
2356 }
2357 case GLSL_SAMPLER_DIM_2D: {
2358 static const char *const names[8] = {
2359 "usampler2D", "usampler2DArray", NULL, NULL,
2360 "uimage2D", "uimage2DArray", NULL, NULL
2361 };
2362 return names[offset + type_idx];
2363 }
2364 case GLSL_SAMPLER_DIM_3D: {
2365 static const char *const names[8] = {
2366 "usampler3D", NULL, NULL, NULL,
2367 "uimage3D", NULL, NULL, NULL
2368 };
2369 return names[offset + type_idx];
2370 }
2371 case GLSL_SAMPLER_DIM_CUBE: {
2372 static const char *const names[8] = {
2373 "usamplerCube", "usamplerCubeArray", NULL, NULL,
2374 "uimageCube", NULL, NULL, NULL
2375 };
2376 return names[offset + type_idx];
2377 }
2378 case GLSL_SAMPLER_DIM_MS: {
2379 assert(type->base_type == GLSL_TYPE_SAMPLER);
2380 static const char *const names[4] = {
2381 "usampler2DMS", "usampler2DMSArray", NULL, NULL
2382 };
2383 return names[type_idx];
2384 }
2385 case GLSL_SAMPLER_DIM_RECT: {
2386 assert(type->base_type == GLSL_TYPE_SAMPLER);
2387 static const char *const names[4] = {
2388 "usamplerRect", NULL, "usamplerRectShadow", NULL
2389 };
2390 return names[type_idx];
2391 }
2392 case GLSL_SAMPLER_DIM_BUF: {
2393 assert(type->base_type == GLSL_TYPE_SAMPLER);
2394 static const char *const names[4] = {
2395 "usamplerBuffer", NULL, NULL, NULL
2396 };
2397 return names[type_idx];
2398 }
2399 default:
2400 unreachable("Unsupported usampler/uimage dimensionality");
2401 } /* sampler/image uint dimensionality */
2402 break;
2403 default:
2404 unreachable("Unsupported sampler/image type");
2405 } /* sampler/image type */
2406 break;
2407 } /* GLSL_TYPE_SAMPLER/GLSL_TYPE_IMAGE */
2408 break;
2409 default:
2410 unreachable("Unsupported type");
2411 } /* base type */
2412 }
2413
2414 static unsigned
2415 select_gles_precision(unsigned qual_precision,
2416 const glsl_type *type,
2417 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
2418 {
2419 /* Precision qualifiers do not have any meaning in Desktop GLSL.
2420 * In GLES we take the precision from the type qualifier if present,
2421 * otherwise, if the type of the variable allows precision qualifiers at
2422 * all, we look for the default precision qualifier for that type in the
2423 * current scope.
2424 */
2425 assert(state->es_shader);
2426
2427 unsigned precision = GLSL_PRECISION_NONE;
2428 if (qual_precision) {
2429 precision = qual_precision;
2430 } else if (precision_qualifier_allowed(type)) {
2431 const char *type_name =
2432 get_type_name_for_precision_qualifier(type->without_array());
2433 assert(type_name != NULL);
2434
2435 precision =
2436 state->symbols->get_default_precision_qualifier(type_name);
2437 if (precision == ast_precision_none) {
2438 _mesa_glsl_error(loc, state,
2439 "No precision specified in this scope for type `%s'",
2440 type->name);
2441 }
2442 }
2443 return precision;
2444 }
2445
2446 const glsl_type *
2447 ast_fully_specified_type::glsl_type(const char **name,
2448 struct _mesa_glsl_parse_state *state) const
2449 {
2450 return this->specifier->glsl_type(name, state);
2451 }
2452
2453 /**
2454 * Determine whether a toplevel variable declaration declares a varying. This
2455 * function operates by examining the variable's mode and the shader target,
2456 * so it correctly identifies linkage variables regardless of whether they are
2457 * declared using the deprecated "varying" syntax or the new "in/out" syntax.
2458 *
2459 * Passing a non-toplevel variable declaration (e.g. a function parameter) to
2460 * this function will produce undefined results.
2461 */
2462 static bool
2463 is_varying_var(ir_variable *var, gl_shader_stage target)
2464 {
2465 switch (target) {
2466 case MESA_SHADER_VERTEX:
2467 return var->data.mode == ir_var_shader_out;
2468 case MESA_SHADER_FRAGMENT:
2469 return var->data.mode == ir_var_shader_in;
2470 default:
2471 return var->data.mode == ir_var_shader_out || var->data.mode == ir_var_shader_in;
2472 }
2473 }
2474
2475
2476 /**
2477 * Matrix layout qualifiers are only allowed on certain types
2478 */
2479 static void
2480 validate_matrix_layout_for_type(struct _mesa_glsl_parse_state *state,
2481 YYLTYPE *loc,
2482 const glsl_type *type,
2483 ir_variable *var)
2484 {
2485 if (var && !var->is_in_buffer_block()) {
2486 /* Layout qualifiers may only apply to interface blocks and fields in
2487 * them.
2488 */
2489 _mesa_glsl_error(loc, state,
2490 "uniform block layout qualifiers row_major and "
2491 "column_major may not be applied to variables "
2492 "outside of uniform blocks");
2493 } else if (!type->without_array()->is_matrix()) {
2494 /* The OpenGL ES 3.0 conformance tests did not originally allow
2495 * matrix layout qualifiers on non-matrices. However, the OpenGL
2496 * 4.4 and OpenGL ES 3.0 (revision TBD) specifications were
2497 * amended to specifically allow these layouts on all types. Emit
2498 * a warning so that people know their code may not be portable.
2499 */
2500 _mesa_glsl_warning(loc, state,
2501 "uniform block layout qualifiers row_major and "
2502 "column_major applied to non-matrix types may "
2503 "be rejected by older compilers");
2504 }
2505 }
2506
2507 static bool
2508 process_qualifier_constant(struct _mesa_glsl_parse_state *state,
2509 YYLTYPE *loc,
2510 const char *qual_indentifier,
2511 ast_expression *const_expression,
2512 unsigned *value)
2513 {
2514 exec_list dummy_instructions;
2515
2516 if (const_expression == NULL) {
2517 *value = 0;
2518 return true;
2519 }
2520
2521 ir_rvalue *const ir = const_expression->hir(&dummy_instructions, state);
2522
2523 ir_constant *const const_int = ir->constant_expression_value();
2524 if (const_int == NULL || !const_int->type->is_integer()) {
2525 _mesa_glsl_error(loc, state, "%s must be an integral constant "
2526 "expression", qual_indentifier);
2527 return false;
2528 }
2529
2530 if (const_int->value.i[0] < 0) {
2531 _mesa_glsl_error(loc, state, "%s layout qualifier is invalid (%d < 0)",
2532 qual_indentifier, const_int->value.u[0]);
2533 return false;
2534 }
2535
2536 /* If the location is const (and we've verified that
2537 * it is) then no instructions should have been emitted
2538 * when we converted it to HIR. If they were emitted,
2539 * then either the location isn't const after all, or
2540 * we are emitting unnecessary instructions.
2541 */
2542 assert(dummy_instructions.is_empty());
2543
2544 *value = const_int->value.u[0];
2545 return true;
2546 }
2547
2548 static bool
2549 validate_stream_qualifier(YYLTYPE *loc, struct _mesa_glsl_parse_state *state,
2550 unsigned stream)
2551 {
2552 if (stream >= state->ctx->Const.MaxVertexStreams) {
2553 _mesa_glsl_error(loc, state,
2554 "invalid stream specified %d is larger than "
2555 "MAX_VERTEX_STREAMS - 1 (%d).",
2556 stream, state->ctx->Const.MaxVertexStreams - 1);
2557 return false;
2558 }
2559
2560 return true;
2561 }
2562
2563 static void
2564 apply_explicit_binding(struct _mesa_glsl_parse_state *state,
2565 YYLTYPE *loc,
2566 ir_variable *var,
2567 const glsl_type *type,
2568 const ast_type_qualifier *qual)
2569 {
2570 if (!qual->flags.q.uniform && !qual->flags.q.buffer) {
2571 _mesa_glsl_error(loc, state,
2572 "the \"binding\" qualifier only applies to uniforms and "
2573 "shader storage buffer objects");
2574 return;
2575 }
2576
2577 unsigned qual_binding;
2578 if (!process_qualifier_constant(state, loc, "binding", qual->binding,
2579 &qual_binding)) {
2580 return;
2581 }
2582
2583 const struct gl_context *const ctx = state->ctx;
2584 unsigned elements = type->is_array() ? type->arrays_of_arrays_size() : 1;
2585 unsigned max_index = qual_binding + elements - 1;
2586 const glsl_type *base_type = type->without_array();
2587
2588 if (base_type->is_interface()) {
2589 /* UBOs. From page 60 of the GLSL 4.20 specification:
2590 * "If the binding point for any uniform block instance is less than zero,
2591 * or greater than or equal to the implementation-dependent maximum
2592 * number of uniform buffer bindings, a compilation error will occur.
2593 * When the binding identifier is used with a uniform block instanced as
2594 * an array of size N, all elements of the array from binding through
2595 * binding + N – 1 must be within this range."
2596 *
2597 * The implementation-dependent maximum is GL_MAX_UNIFORM_BUFFER_BINDINGS.
2598 */
2599 if (qual->flags.q.uniform &&
2600 max_index >= ctx->Const.MaxUniformBufferBindings) {
2601 _mesa_glsl_error(loc, state, "layout(binding = %u) for %d UBOs exceeds "
2602 "the maximum number of UBO binding points (%d)",
2603 qual_binding, elements,
2604 ctx->Const.MaxUniformBufferBindings);
2605 return;
2606 }
2607
2608 /* SSBOs. From page 67 of the GLSL 4.30 specification:
2609 * "If the binding point for any uniform or shader storage block instance
2610 * is less than zero, or greater than or equal to the
2611 * implementation-dependent maximum number of uniform buffer bindings, a
2612 * compile-time error will occur. When the binding identifier is used
2613 * with a uniform or shader storage block instanced as an array of size
2614 * N, all elements of the array from binding through binding + N – 1 must
2615 * be within this range."
2616 */
2617 if (qual->flags.q.buffer &&
2618 max_index >= ctx->Const.MaxShaderStorageBufferBindings) {
2619 _mesa_glsl_error(loc, state, "layout(binding = %u) for %d SSBOs exceeds "
2620 "the maximum number of SSBO binding points (%d)",
2621 qual_binding, elements,
2622 ctx->Const.MaxShaderStorageBufferBindings);
2623 return;
2624 }
2625 } else if (base_type->is_sampler()) {
2626 /* Samplers. From page 63 of the GLSL 4.20 specification:
2627 * "If the binding is less than zero, or greater than or equal to the
2628 * implementation-dependent maximum supported number of units, a
2629 * compilation error will occur. When the binding identifier is used
2630 * with an array of size N, all elements of the array from binding
2631 * through binding + N - 1 must be within this range."
2632 */
2633 unsigned limit = ctx->Const.MaxCombinedTextureImageUnits;
2634
2635 if (max_index >= limit) {
2636 _mesa_glsl_error(loc, state, "layout(binding = %d) for %d samplers "
2637 "exceeds the maximum number of texture image units "
2638 "(%u)", qual_binding, elements, limit);
2639
2640 return;
2641 }
2642 } else if (base_type->contains_atomic()) {
2643 assert(ctx->Const.MaxAtomicBufferBindings <= MAX_COMBINED_ATOMIC_BUFFERS);
2644 if (qual_binding >= ctx->Const.MaxAtomicBufferBindings) {
2645 _mesa_glsl_error(loc, state, "layout(binding = %d) exceeds the "
2646 " maximum number of atomic counter buffer bindings"
2647 "(%u)", qual_binding,
2648 ctx->Const.MaxAtomicBufferBindings);
2649
2650 return;
2651 }
2652 } else if (state->is_version(420, 310) && base_type->is_image()) {
2653 assert(ctx->Const.MaxImageUnits <= MAX_IMAGE_UNITS);
2654 if (max_index >= ctx->Const.MaxImageUnits) {
2655 _mesa_glsl_error(loc, state, "Image binding %d exceeds the "
2656 " maximum number of image units (%d)", max_index,
2657 ctx->Const.MaxImageUnits);
2658 return;
2659 }
2660
2661 } else {
2662 _mesa_glsl_error(loc, state,
2663 "the \"binding\" qualifier only applies to uniform "
2664 "blocks, opaque variables, or arrays thereof");
2665 return;
2666 }
2667
2668 var->data.explicit_binding = true;
2669 var->data.binding = qual_binding;
2670
2671 return;
2672 }
2673
2674
2675 static glsl_interp_qualifier
2676 interpret_interpolation_qualifier(const struct ast_type_qualifier *qual,
2677 ir_variable_mode mode,
2678 struct _mesa_glsl_parse_state *state,
2679 YYLTYPE *loc)
2680 {
2681 glsl_interp_qualifier interpolation;
2682 if (qual->flags.q.flat)
2683 interpolation = INTERP_QUALIFIER_FLAT;
2684 else if (qual->flags.q.noperspective)
2685 interpolation = INTERP_QUALIFIER_NOPERSPECTIVE;
2686 else if (qual->flags.q.smooth)
2687 interpolation = INTERP_QUALIFIER_SMOOTH;
2688 else
2689 interpolation = INTERP_QUALIFIER_NONE;
2690
2691 if (interpolation != INTERP_QUALIFIER_NONE) {
2692 if (mode != ir_var_shader_in && mode != ir_var_shader_out) {
2693 _mesa_glsl_error(loc, state,
2694 "interpolation qualifier `%s' can only be applied to "
2695 "shader inputs or outputs.",
2696 interpolation_string(interpolation));
2697
2698 }
2699
2700 if ((state->stage == MESA_SHADER_VERTEX && mode == ir_var_shader_in) ||
2701 (state->stage == MESA_SHADER_FRAGMENT && mode == ir_var_shader_out)) {
2702 _mesa_glsl_error(loc, state,
2703 "interpolation qualifier `%s' cannot be applied to "
2704 "vertex shader inputs or fragment shader outputs",
2705 interpolation_string(interpolation));
2706 }
2707 }
2708
2709 return interpolation;
2710 }
2711
2712
2713 static void
2714 apply_explicit_location(const struct ast_type_qualifier *qual,
2715 ir_variable *var,
2716 struct _mesa_glsl_parse_state *state,
2717 YYLTYPE *loc)
2718 {
2719 bool fail = false;
2720
2721 unsigned qual_location;
2722 if (!process_qualifier_constant(state, loc, "location", qual->location,
2723 &qual_location)) {
2724 return;
2725 }
2726
2727 /* Checks for GL_ARB_explicit_uniform_location. */
2728 if (qual->flags.q.uniform) {
2729 if (!state->check_explicit_uniform_location_allowed(loc, var))
2730 return;
2731
2732 const struct gl_context *const ctx = state->ctx;
2733 unsigned max_loc = qual_location + var->type->uniform_locations() - 1;
2734
2735 if (max_loc >= ctx->Const.MaxUserAssignableUniformLocations) {
2736 _mesa_glsl_error(loc, state, "location(s) consumed by uniform %s "
2737 ">= MAX_UNIFORM_LOCATIONS (%u)", var->name,
2738 ctx->Const.MaxUserAssignableUniformLocations);
2739 return;
2740 }
2741
2742 var->data.explicit_location = true;
2743 var->data.location = qual_location;
2744 return;
2745 }
2746
2747 /* Between GL_ARB_explicit_attrib_location an
2748 * GL_ARB_separate_shader_objects, the inputs and outputs of any shader
2749 * stage can be assigned explicit locations. The checking here associates
2750 * the correct extension with the correct stage's input / output:
2751 *
2752 * input output
2753 * ----- ------
2754 * vertex explicit_loc sso
2755 * tess control sso sso
2756 * tess eval sso sso
2757 * geometry sso sso
2758 * fragment sso explicit_loc
2759 */
2760 switch (state->stage) {
2761 case MESA_SHADER_VERTEX:
2762 if (var->data.mode == ir_var_shader_in) {
2763 if (!state->check_explicit_attrib_location_allowed(loc, var))
2764 return;
2765
2766 break;
2767 }
2768
2769 if (var->data.mode == ir_var_shader_out) {
2770 if (!state->check_separate_shader_objects_allowed(loc, var))
2771 return;
2772
2773 break;
2774 }
2775
2776 fail = true;
2777 break;
2778
2779 case MESA_SHADER_TESS_CTRL:
2780 case MESA_SHADER_TESS_EVAL:
2781 case MESA_SHADER_GEOMETRY:
2782 if (var->data.mode == ir_var_shader_in || var->data.mode == ir_var_shader_out) {
2783 if (!state->check_separate_shader_objects_allowed(loc, var))
2784 return;
2785
2786 break;
2787 }
2788
2789 fail = true;
2790 break;
2791
2792 case MESA_SHADER_FRAGMENT:
2793 if (var->data.mode == ir_var_shader_in) {
2794 if (!state->check_separate_shader_objects_allowed(loc, var))
2795 return;
2796
2797 break;
2798 }
2799
2800 if (var->data.mode == ir_var_shader_out) {
2801 if (!state->check_explicit_attrib_location_allowed(loc, var))
2802 return;
2803
2804 break;
2805 }
2806
2807 fail = true;
2808 break;
2809
2810 case MESA_SHADER_COMPUTE:
2811 _mesa_glsl_error(loc, state,
2812 "compute shader variables cannot be given "
2813 "explicit locations");
2814 return;
2815 };
2816
2817 if (fail) {
2818 _mesa_glsl_error(loc, state,
2819 "%s cannot be given an explicit location in %s shader",
2820 mode_string(var),
2821 _mesa_shader_stage_to_string(state->stage));
2822 } else {
2823 var->data.explicit_location = true;
2824
2825 switch (state->stage) {
2826 case MESA_SHADER_VERTEX:
2827 var->data.location = (var->data.mode == ir_var_shader_in)
2828 ? (qual_location + VERT_ATTRIB_GENERIC0)
2829 : (qual_location + VARYING_SLOT_VAR0);
2830 break;
2831
2832 case MESA_SHADER_TESS_CTRL:
2833 case MESA_SHADER_TESS_EVAL:
2834 case MESA_SHADER_GEOMETRY:
2835 if (var->data.patch)
2836 var->data.location = qual_location + VARYING_SLOT_PATCH0;
2837 else
2838 var->data.location = qual_location + VARYING_SLOT_VAR0;
2839 break;
2840
2841 case MESA_SHADER_FRAGMENT:
2842 var->data.location = (var->data.mode == ir_var_shader_out)
2843 ? (qual_location + FRAG_RESULT_DATA0)
2844 : (qual_location + VARYING_SLOT_VAR0);
2845 break;
2846 case MESA_SHADER_COMPUTE:
2847 assert(!"Unexpected shader type");
2848 break;
2849 }
2850
2851 /* Check if index was set for the uniform instead of the function */
2852 if (qual->flags.q.explicit_index && qual->flags.q.subroutine) {
2853 _mesa_glsl_error(loc, state, "an index qualifier can only be "
2854 "used with subroutine functions");
2855 return;
2856 }
2857
2858 unsigned qual_index;
2859 if (qual->flags.q.explicit_index &&
2860 process_qualifier_constant(state, loc, "index", qual->index,
2861 &qual_index)) {
2862 /* From the GLSL 4.30 specification, section 4.4.2 (Output
2863 * Layout Qualifiers):
2864 *
2865 * "It is also a compile-time error if a fragment shader
2866 * sets a layout index to less than 0 or greater than 1."
2867 *
2868 * Older specifications don't mandate a behavior; we take
2869 * this as a clarification and always generate the error.
2870 */
2871 if (qual_index > 1) {
2872 _mesa_glsl_error(loc, state,
2873 "explicit index may only be 0 or 1");
2874 } else {
2875 var->data.explicit_index = true;
2876 var->data.index = qual_index;
2877 }
2878 }
2879 }
2880 }
2881
2882 static void
2883 apply_image_qualifier_to_variable(const struct ast_type_qualifier *qual,
2884 ir_variable *var,
2885 struct _mesa_glsl_parse_state *state,
2886 YYLTYPE *loc)
2887 {
2888 const glsl_type *base_type = var->type->without_array();
2889
2890 if (base_type->is_image()) {
2891 if (var->data.mode != ir_var_uniform &&
2892 var->data.mode != ir_var_function_in) {
2893 _mesa_glsl_error(loc, state, "image variables may only be declared as "
2894 "function parameters or uniform-qualified "
2895 "global variables");
2896 }
2897
2898 var->data.image_read_only |= qual->flags.q.read_only;
2899 var->data.image_write_only |= qual->flags.q.write_only;
2900 var->data.image_coherent |= qual->flags.q.coherent;
2901 var->data.image_volatile |= qual->flags.q._volatile;
2902 var->data.image_restrict |= qual->flags.q.restrict_flag;
2903 var->data.read_only = true;
2904
2905 if (qual->flags.q.explicit_image_format) {
2906 if (var->data.mode == ir_var_function_in) {
2907 _mesa_glsl_error(loc, state, "format qualifiers cannot be "
2908 "used on image function parameters");
2909 }
2910
2911 if (qual->image_base_type != base_type->sampler_type) {
2912 _mesa_glsl_error(loc, state, "format qualifier doesn't match the "
2913 "base data type of the image");
2914 }
2915
2916 var->data.image_format = qual->image_format;
2917 } else {
2918 if (var->data.mode == ir_var_uniform) {
2919 if (state->es_shader) {
2920 _mesa_glsl_error(loc, state, "all image uniforms "
2921 "must have a format layout qualifier");
2922
2923 } else if (!qual->flags.q.write_only) {
2924 _mesa_glsl_error(loc, state, "image uniforms not qualified with "
2925 "`writeonly' must have a format layout "
2926 "qualifier");
2927 }
2928 }
2929
2930 var->data.image_format = GL_NONE;
2931 }
2932
2933 /* From page 70 of the GLSL ES 3.1 specification:
2934 *
2935 * "Except for image variables qualified with the format qualifiers
2936 * r32f, r32i, and r32ui, image variables must specify either memory
2937 * qualifier readonly or the memory qualifier writeonly."
2938 */
2939 if (state->es_shader &&
2940 var->data.image_format != GL_R32F &&
2941 var->data.image_format != GL_R32I &&
2942 var->data.image_format != GL_R32UI &&
2943 !var->data.image_read_only &&
2944 !var->data.image_write_only) {
2945 _mesa_glsl_error(loc, state, "image variables of format other than "
2946 "r32f, r32i or r32ui must be qualified `readonly' or "
2947 "`writeonly'");
2948 }
2949
2950 } else if (qual->flags.q.read_only ||
2951 qual->flags.q.write_only ||
2952 qual->flags.q.coherent ||
2953 qual->flags.q._volatile ||
2954 qual->flags.q.restrict_flag ||
2955 qual->flags.q.explicit_image_format) {
2956 _mesa_glsl_error(loc, state, "memory qualifiers may only be applied to "
2957 "images");
2958 }
2959 }
2960
2961 static inline const char*
2962 get_layout_qualifier_string(bool origin_upper_left, bool pixel_center_integer)
2963 {
2964 if (origin_upper_left && pixel_center_integer)
2965 return "origin_upper_left, pixel_center_integer";
2966 else if (origin_upper_left)
2967 return "origin_upper_left";
2968 else if (pixel_center_integer)
2969 return "pixel_center_integer";
2970 else
2971 return " ";
2972 }
2973
2974 static inline bool
2975 is_conflicting_fragcoord_redeclaration(struct _mesa_glsl_parse_state *state,
2976 const struct ast_type_qualifier *qual)
2977 {
2978 /* If gl_FragCoord was previously declared, and the qualifiers were
2979 * different in any way, return true.
2980 */
2981 if (state->fs_redeclares_gl_fragcoord) {
2982 return (state->fs_pixel_center_integer != qual->flags.q.pixel_center_integer
2983 || state->fs_origin_upper_left != qual->flags.q.origin_upper_left);
2984 }
2985
2986 return false;
2987 }
2988
2989 static inline void
2990 validate_array_dimensions(const glsl_type *t,
2991 struct _mesa_glsl_parse_state *state,
2992 YYLTYPE *loc) {
2993 if (t->is_array()) {
2994 t = t->fields.array;
2995 while (t->is_array()) {
2996 if (t->is_unsized_array()) {
2997 _mesa_glsl_error(loc, state,
2998 "only the outermost array dimension can "
2999 "be unsized",
3000 t->name);
3001 break;
3002 }
3003 t = t->fields.array;
3004 }
3005 }
3006 }
3007
3008 static void
3009 apply_layout_qualifier_to_variable(const struct ast_type_qualifier *qual,
3010 ir_variable *var,
3011 struct _mesa_glsl_parse_state *state,
3012 YYLTYPE *loc)
3013 {
3014 if (var->name != NULL && strcmp(var->name, "gl_FragCoord") == 0) {
3015
3016 /* Section 4.3.8.1, page 39 of GLSL 1.50 spec says:
3017 *
3018 * "Within any shader, the first redeclarations of gl_FragCoord
3019 * must appear before any use of gl_FragCoord."
3020 *
3021 * Generate a compiler error if above condition is not met by the
3022 * fragment shader.
3023 */
3024 ir_variable *earlier = state->symbols->get_variable("gl_FragCoord");
3025 if (earlier != NULL &&
3026 earlier->data.used &&
3027 !state->fs_redeclares_gl_fragcoord) {
3028 _mesa_glsl_error(loc, state,
3029 "gl_FragCoord used before its first redeclaration "
3030 "in fragment shader");
3031 }
3032
3033 /* Make sure all gl_FragCoord redeclarations specify the same layout
3034 * qualifiers.
3035 */
3036 if (is_conflicting_fragcoord_redeclaration(state, qual)) {
3037 const char *const qual_string =
3038 get_layout_qualifier_string(qual->flags.q.origin_upper_left,
3039 qual->flags.q.pixel_center_integer);
3040
3041 const char *const state_string =
3042 get_layout_qualifier_string(state->fs_origin_upper_left,
3043 state->fs_pixel_center_integer);
3044
3045 _mesa_glsl_error(loc, state,
3046 "gl_FragCoord redeclared with different layout "
3047 "qualifiers (%s) and (%s) ",
3048 state_string,
3049 qual_string);
3050 }
3051 state->fs_origin_upper_left = qual->flags.q.origin_upper_left;
3052 state->fs_pixel_center_integer = qual->flags.q.pixel_center_integer;
3053 state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers =
3054 !qual->flags.q.origin_upper_left && !qual->flags.q.pixel_center_integer;
3055 state->fs_redeclares_gl_fragcoord =
3056 state->fs_origin_upper_left ||
3057 state->fs_pixel_center_integer ||
3058 state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers;
3059 }
3060
3061 var->data.pixel_center_integer = qual->flags.q.pixel_center_integer;
3062 var->data.origin_upper_left = qual->flags.q.origin_upper_left;
3063 if ((qual->flags.q.origin_upper_left || qual->flags.q.pixel_center_integer)
3064 && (strcmp(var->name, "gl_FragCoord") != 0)) {
3065 const char *const qual_string = (qual->flags.q.origin_upper_left)
3066 ? "origin_upper_left" : "pixel_center_integer";
3067
3068 _mesa_glsl_error(loc, state,
3069 "layout qualifier `%s' can only be applied to "
3070 "fragment shader input `gl_FragCoord'",
3071 qual_string);
3072 }
3073
3074 if (qual->flags.q.explicit_location) {
3075 apply_explicit_location(qual, var, state, loc);
3076 } else if (qual->flags.q.explicit_index) {
3077 if (!qual->flags.q.subroutine_def)
3078 _mesa_glsl_error(loc, state,
3079 "explicit index requires explicit location");
3080 }
3081
3082 if (qual->flags.q.explicit_binding) {
3083 apply_explicit_binding(state, loc, var, var->type, qual);
3084 }
3085
3086 if (state->stage == MESA_SHADER_GEOMETRY &&
3087 qual->flags.q.out && qual->flags.q.stream) {
3088 unsigned qual_stream;
3089 if (process_qualifier_constant(state, loc, "stream", qual->stream,
3090 &qual_stream) &&
3091 validate_stream_qualifier(loc, state, qual_stream)) {
3092 var->data.stream = qual_stream;
3093 }
3094 }
3095
3096 if (var->type->contains_atomic()) {
3097 if (var->data.mode == ir_var_uniform) {
3098 if (var->data.explicit_binding) {
3099 unsigned *offset =
3100 &state->atomic_counter_offsets[var->data.binding];
3101
3102 if (*offset % ATOMIC_COUNTER_SIZE)
3103 _mesa_glsl_error(loc, state,
3104 "misaligned atomic counter offset");
3105
3106 var->data.atomic.offset = *offset;
3107 *offset += var->type->atomic_size();
3108
3109 } else {
3110 _mesa_glsl_error(loc, state,
3111 "atomic counters require explicit binding point");
3112 }
3113 } else if (var->data.mode != ir_var_function_in) {
3114 _mesa_glsl_error(loc, state, "atomic counters may only be declared as "
3115 "function parameters or uniform-qualified "
3116 "global variables");
3117 }
3118 }
3119
3120 /* Is the 'layout' keyword used with parameters that allow relaxed checking.
3121 * Many implementations of GL_ARB_fragment_coord_conventions_enable and some
3122 * implementations (only Mesa?) GL_ARB_explicit_attrib_location_enable
3123 * allowed the layout qualifier to be used with 'varying' and 'attribute'.
3124 * These extensions and all following extensions that add the 'layout'
3125 * keyword have been modified to require the use of 'in' or 'out'.
3126 *
3127 * The following extension do not allow the deprecated keywords:
3128 *
3129 * GL_AMD_conservative_depth
3130 * GL_ARB_conservative_depth
3131 * GL_ARB_gpu_shader5
3132 * GL_ARB_separate_shader_objects
3133 * GL_ARB_tessellation_shader
3134 * GL_ARB_transform_feedback3
3135 * GL_ARB_uniform_buffer_object
3136 *
3137 * It is unknown whether GL_EXT_shader_image_load_store or GL_NV_gpu_shader5
3138 * allow layout with the deprecated keywords.
3139 */
3140 const bool relaxed_layout_qualifier_checking =
3141 state->ARB_fragment_coord_conventions_enable;
3142
3143 const bool uses_deprecated_qualifier = qual->flags.q.attribute
3144 || qual->flags.q.varying;
3145 if (qual->has_layout() && uses_deprecated_qualifier) {
3146 if (relaxed_layout_qualifier_checking) {
3147 _mesa_glsl_warning(loc, state,
3148 "`layout' qualifier may not be used with "
3149 "`attribute' or `varying'");
3150 } else {
3151 _mesa_glsl_error(loc, state,
3152 "`layout' qualifier may not be used with "
3153 "`attribute' or `varying'");
3154 }
3155 }
3156
3157 /* Layout qualifiers for gl_FragDepth, which are enabled by extension
3158 * AMD_conservative_depth.
3159 */
3160 int depth_layout_count = qual->flags.q.depth_any
3161 + qual->flags.q.depth_greater
3162 + qual->flags.q.depth_less
3163 + qual->flags.q.depth_unchanged;
3164 if (depth_layout_count > 0
3165 && !state->AMD_conservative_depth_enable
3166 && !state->ARB_conservative_depth_enable) {
3167 _mesa_glsl_error(loc, state,
3168 "extension GL_AMD_conservative_depth or "
3169 "GL_ARB_conservative_depth must be enabled "
3170 "to use depth layout qualifiers");
3171 } else if (depth_layout_count > 0
3172 && strcmp(var->name, "gl_FragDepth") != 0) {
3173 _mesa_glsl_error(loc, state,
3174 "depth layout qualifiers can be applied only to "
3175 "gl_FragDepth");
3176 } else if (depth_layout_count > 1
3177 && strcmp(var->name, "gl_FragDepth") == 0) {
3178 _mesa_glsl_error(loc, state,
3179 "at most one depth layout qualifier can be applied to "
3180 "gl_FragDepth");
3181 }
3182 if (qual->flags.q.depth_any)
3183 var->data.depth_layout = ir_depth_layout_any;
3184 else if (qual->flags.q.depth_greater)
3185 var->data.depth_layout = ir_depth_layout_greater;
3186 else if (qual->flags.q.depth_less)
3187 var->data.depth_layout = ir_depth_layout_less;
3188 else if (qual->flags.q.depth_unchanged)
3189 var->data.depth_layout = ir_depth_layout_unchanged;
3190 else
3191 var->data.depth_layout = ir_depth_layout_none;
3192
3193 if (qual->flags.q.std140 ||
3194 qual->flags.q.std430 ||
3195 qual->flags.q.packed ||
3196 qual->flags.q.shared) {
3197 _mesa_glsl_error(loc, state,
3198 "uniform and shader storage block layout qualifiers "
3199 "std140, std430, packed, and shared can only be "
3200 "applied to uniform or shader storage blocks, not "
3201 "members");
3202 }
3203
3204 if (qual->flags.q.row_major || qual->flags.q.column_major) {
3205 validate_matrix_layout_for_type(state, loc, var->type, var);
3206 }
3207
3208 /* From section 4.4.1.3 of the GLSL 4.50 specification (Fragment Shader
3209 * Inputs):
3210 *
3211 * "Fragment shaders also allow the following layout qualifier on in only
3212 * (not with variable declarations)
3213 * layout-qualifier-id
3214 * early_fragment_tests
3215 * [...]"
3216 */
3217 if (qual->flags.q.early_fragment_tests) {
3218 _mesa_glsl_error(loc, state, "early_fragment_tests layout qualifier only "
3219 "valid in fragment shader input layout declaration.");
3220 }
3221 }
3222
3223 static void
3224 apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
3225 ir_variable *var,
3226 struct _mesa_glsl_parse_state *state,
3227 YYLTYPE *loc,
3228 bool is_parameter)
3229 {
3230 STATIC_ASSERT(sizeof(qual->flags.q) <= sizeof(qual->flags.i));
3231
3232 if (qual->flags.q.invariant) {
3233 if (var->data.used) {
3234 _mesa_glsl_error(loc, state,
3235 "variable `%s' may not be redeclared "
3236 "`invariant' after being used",
3237 var->name);
3238 } else {
3239 var->data.invariant = 1;
3240 }
3241 }
3242
3243 if (qual->flags.q.precise) {
3244 if (var->data.used) {
3245 _mesa_glsl_error(loc, state,
3246 "variable `%s' may not be redeclared "
3247 "`precise' after being used",
3248 var->name);
3249 } else {
3250 var->data.precise = 1;
3251 }
3252 }
3253
3254 if (qual->flags.q.subroutine && !qual->flags.q.uniform) {
3255 _mesa_glsl_error(loc, state,
3256 "`subroutine' may only be applied to uniforms, "
3257 "subroutine type declarations, or function definitions");
3258 }
3259
3260 if (qual->flags.q.constant || qual->flags.q.attribute
3261 || qual->flags.q.uniform
3262 || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
3263 var->data.read_only = 1;
3264
3265 if (qual->flags.q.centroid)
3266 var->data.centroid = 1;
3267
3268 if (qual->flags.q.sample)
3269 var->data.sample = 1;
3270
3271 /* Precision qualifiers do not hold any meaning in Desktop GLSL */
3272 if (state->es_shader) {
3273 var->data.precision =
3274 select_gles_precision(qual->precision, var->type, state, loc);
3275 }
3276
3277 if (qual->flags.q.patch)
3278 var->data.patch = 1;
3279
3280 if (qual->flags.q.attribute && state->stage != MESA_SHADER_VERTEX) {
3281 var->type = glsl_type::error_type;
3282 _mesa_glsl_error(loc, state,
3283 "`attribute' variables may not be declared in the "
3284 "%s shader",
3285 _mesa_shader_stage_to_string(state->stage));
3286 }
3287
3288 /* Disallow layout qualifiers which may only appear on layout declarations. */
3289 if (qual->flags.q.prim_type) {
3290 _mesa_glsl_error(loc, state,
3291 "Primitive type may only be specified on GS input or output "
3292 "layout declaration, not on variables.");
3293 }
3294
3295 /* Section 6.1.1 (Function Calling Conventions) of the GLSL 1.10 spec says:
3296 *
3297 * "However, the const qualifier cannot be used with out or inout."
3298 *
3299 * The same section of the GLSL 4.40 spec further clarifies this saying:
3300 *
3301 * "The const qualifier cannot be used with out or inout, or a
3302 * compile-time error results."
3303 */
3304 if (is_parameter && qual->flags.q.constant && qual->flags.q.out) {
3305 _mesa_glsl_error(loc, state,
3306 "`const' may not be applied to `out' or `inout' "
3307 "function parameters");
3308 }
3309
3310 /* If there is no qualifier that changes the mode of the variable, leave
3311 * the setting alone.
3312 */
3313 assert(var->data.mode != ir_var_temporary);
3314 if (qual->flags.q.in && qual->flags.q.out)
3315 var->data.mode = ir_var_function_inout;
3316 else if (qual->flags.q.in)
3317 var->data.mode = is_parameter ? ir_var_function_in : ir_var_shader_in;
3318 else if (qual->flags.q.attribute
3319 || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
3320 var->data.mode = ir_var_shader_in;
3321 else if (qual->flags.q.out)
3322 var->data.mode = is_parameter ? ir_var_function_out : ir_var_shader_out;
3323 else if (qual->flags.q.varying && (state->stage == MESA_SHADER_VERTEX))
3324 var->data.mode = ir_var_shader_out;
3325 else if (qual->flags.q.uniform)
3326 var->data.mode = ir_var_uniform;
3327 else if (qual->flags.q.buffer)
3328 var->data.mode = ir_var_shader_storage;
3329 else if (qual->flags.q.shared_storage)
3330 var->data.mode = ir_var_shader_shared;
3331
3332 if (!is_parameter && is_varying_var(var, state->stage)) {
3333 /* User-defined ins/outs are not permitted in compute shaders. */
3334 if (state->stage == MESA_SHADER_COMPUTE) {
3335 _mesa_glsl_error(loc, state,
3336 "user-defined input and output variables are not "
3337 "permitted in compute shaders");
3338 }
3339
3340 /* This variable is being used to link data between shader stages (in
3341 * pre-glsl-1.30 parlance, it's a "varying"). Check that it has a type
3342 * that is allowed for such purposes.
3343 *
3344 * From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
3345 *
3346 * "The varying qualifier can be used only with the data types
3347 * float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
3348 * these."
3349 *
3350 * This was relaxed in GLSL version 1.30 and GLSL ES version 3.00. From
3351 * page 31 (page 37 of the PDF) of the GLSL 1.30 spec:
3352 *
3353 * "Fragment inputs can only be signed and unsigned integers and
3354 * integer vectors, float, floating-point vectors, matrices, or
3355 * arrays of these. Structures cannot be input.
3356 *
3357 * Similar text exists in the section on vertex shader outputs.
3358 *
3359 * Similar text exists in the GLSL ES 3.00 spec, except that the GLSL ES
3360 * 3.00 spec allows structs as well. Varying structs are also allowed
3361 * in GLSL 1.50.
3362 */
3363 switch (var->type->get_scalar_type()->base_type) {
3364 case GLSL_TYPE_FLOAT:
3365 /* Ok in all GLSL versions */
3366 break;
3367 case GLSL_TYPE_UINT:
3368 case GLSL_TYPE_INT:
3369 if (state->is_version(130, 300))
3370 break;
3371 _mesa_glsl_error(loc, state,
3372 "varying variables must be of base type float in %s",
3373 state->get_version_string());
3374 break;
3375 case GLSL_TYPE_STRUCT:
3376 if (state->is_version(150, 300))
3377 break;
3378 _mesa_glsl_error(loc, state,
3379 "varying variables may not be of type struct");
3380 break;
3381 case GLSL_TYPE_DOUBLE:
3382 break;
3383 default:
3384 _mesa_glsl_error(loc, state, "illegal type for a varying variable");
3385 break;
3386 }
3387 }
3388
3389 if (state->all_invariant && (state->current_function == NULL)) {
3390 switch (state->stage) {
3391 case MESA_SHADER_VERTEX:
3392 if (var->data.mode == ir_var_shader_out)
3393 var->data.invariant = true;
3394 break;
3395 case MESA_SHADER_TESS_CTRL:
3396 case MESA_SHADER_TESS_EVAL:
3397 case MESA_SHADER_GEOMETRY:
3398 if ((var->data.mode == ir_var_shader_in)
3399 || (var->data.mode == ir_var_shader_out))
3400 var->data.invariant = true;
3401 break;
3402 case MESA_SHADER_FRAGMENT:
3403 if (var->data.mode == ir_var_shader_in)
3404 var->data.invariant = true;
3405 break;
3406 case MESA_SHADER_COMPUTE:
3407 /* Invariance isn't meaningful in compute shaders. */
3408 break;
3409 }
3410 }
3411
3412 var->data.interpolation =
3413 interpret_interpolation_qualifier(qual, (ir_variable_mode) var->data.mode,
3414 state, loc);
3415
3416 /* Does the declaration use the deprecated 'attribute' or 'varying'
3417 * keywords?
3418 */
3419 const bool uses_deprecated_qualifier = qual->flags.q.attribute
3420 || qual->flags.q.varying;
3421
3422
3423 /* Validate auxiliary storage qualifiers */
3424
3425 /* From section 4.3.4 of the GLSL 1.30 spec:
3426 * "It is an error to use centroid in in a vertex shader."
3427 *
3428 * From section 4.3.4 of the GLSL ES 3.00 spec:
3429 * "It is an error to use centroid in or interpolation qualifiers in
3430 * a vertex shader input."
3431 */
3432
3433 /* Section 4.3.6 of the GLSL 1.30 specification states:
3434 * "It is an error to use centroid out in a fragment shader."
3435 *
3436 * The GL_ARB_shading_language_420pack extension specification states:
3437 * "It is an error to use auxiliary storage qualifiers or interpolation
3438 * qualifiers on an output in a fragment shader."
3439 */
3440 if (qual->flags.q.sample && (!is_varying_var(var, state->stage) || uses_deprecated_qualifier)) {
3441 _mesa_glsl_error(loc, state,
3442 "sample qualifier may only be used on `in` or `out` "
3443 "variables between shader stages");
3444 }
3445 if (qual->flags.q.centroid && !is_varying_var(var, state->stage)) {
3446 _mesa_glsl_error(loc, state,
3447 "centroid qualifier may only be used with `in', "
3448 "`out' or `varying' variables between shader stages");
3449 }
3450
3451 if (qual->flags.q.shared_storage && state->stage != MESA_SHADER_COMPUTE) {
3452 _mesa_glsl_error(loc, state,
3453 "the shared storage qualifiers can only be used with "
3454 "compute shaders");
3455 }
3456
3457 apply_image_qualifier_to_variable(qual, var, state, loc);
3458 }
3459
3460 /**
3461 * Get the variable that is being redeclared by this declaration
3462 *
3463 * Semantic checks to verify the validity of the redeclaration are also
3464 * performed. If semantic checks fail, compilation error will be emitted via
3465 * \c _mesa_glsl_error, but a non-\c NULL pointer will still be returned.
3466 *
3467 * \returns
3468 * A pointer to an existing variable in the current scope if the declaration
3469 * is a redeclaration, \c NULL otherwise.
3470 */
3471 static ir_variable *
3472 get_variable_being_redeclared(ir_variable *var, YYLTYPE loc,
3473 struct _mesa_glsl_parse_state *state,
3474 bool allow_all_redeclarations)
3475 {
3476 /* Check if this declaration is actually a re-declaration, either to
3477 * resize an array or add qualifiers to an existing variable.
3478 *
3479 * This is allowed for variables in the current scope, or when at
3480 * global scope (for built-ins in the implicit outer scope).
3481 */
3482 ir_variable *earlier = state->symbols->get_variable(var->name);
3483 if (earlier == NULL ||
3484 (state->current_function != NULL &&
3485 !state->symbols->name_declared_this_scope(var->name))) {
3486 return NULL;
3487 }
3488
3489
3490 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
3491 *
3492 * "It is legal to declare an array without a size and then
3493 * later re-declare the same name as an array of the same
3494 * type and specify a size."
3495 */
3496 if (earlier->type->is_unsized_array() && var->type->is_array()
3497 && (var->type->fields.array == earlier->type->fields.array)) {
3498 /* FINISHME: This doesn't match the qualifiers on the two
3499 * FINISHME: declarations. It's not 100% clear whether this is
3500 * FINISHME: required or not.
3501 */
3502
3503 const unsigned size = unsigned(var->type->array_size());
3504 check_builtin_array_max_size(var->name, size, loc, state);
3505 if ((size > 0) && (size <= earlier->data.max_array_access)) {
3506 _mesa_glsl_error(& loc, state, "array size must be > %u due to "
3507 "previous access",
3508 earlier->data.max_array_access);
3509 }
3510
3511 earlier->type = var->type;
3512 delete var;
3513 var = NULL;
3514 } else if ((state->ARB_fragment_coord_conventions_enable ||
3515 state->is_version(150, 0))
3516 && strcmp(var->name, "gl_FragCoord") == 0
3517 && earlier->type == var->type
3518 && earlier->data.mode == var->data.mode) {
3519 /* Allow redeclaration of gl_FragCoord for ARB_fcc layout
3520 * qualifiers.
3521 */
3522 earlier->data.origin_upper_left = var->data.origin_upper_left;
3523 earlier->data.pixel_center_integer = var->data.pixel_center_integer;
3524
3525 /* According to section 4.3.7 of the GLSL 1.30 spec,
3526 * the following built-in varaibles can be redeclared with an
3527 * interpolation qualifier:
3528 * * gl_FrontColor
3529 * * gl_BackColor
3530 * * gl_FrontSecondaryColor
3531 * * gl_BackSecondaryColor
3532 * * gl_Color
3533 * * gl_SecondaryColor
3534 */
3535 } else if (state->is_version(130, 0)
3536 && (strcmp(var->name, "gl_FrontColor") == 0
3537 || strcmp(var->name, "gl_BackColor") == 0
3538 || strcmp(var->name, "gl_FrontSecondaryColor") == 0
3539 || strcmp(var->name, "gl_BackSecondaryColor") == 0
3540 || strcmp(var->name, "gl_Color") == 0
3541 || strcmp(var->name, "gl_SecondaryColor") == 0)
3542 && earlier->type == var->type
3543 && earlier->data.mode == var->data.mode) {
3544 earlier->data.interpolation = var->data.interpolation;
3545
3546 /* Layout qualifiers for gl_FragDepth. */
3547 } else if ((state->AMD_conservative_depth_enable ||
3548 state->ARB_conservative_depth_enable)
3549 && strcmp(var->name, "gl_FragDepth") == 0
3550 && earlier->type == var->type
3551 && earlier->data.mode == var->data.mode) {
3552
3553 /** From the AMD_conservative_depth spec:
3554 * Within any shader, the first redeclarations of gl_FragDepth
3555 * must appear before any use of gl_FragDepth.
3556 */
3557 if (earlier->data.used) {
3558 _mesa_glsl_error(&loc, state,
3559 "the first redeclaration of gl_FragDepth "
3560 "must appear before any use of gl_FragDepth");
3561 }
3562
3563 /* Prevent inconsistent redeclaration of depth layout qualifier. */
3564 if (earlier->data.depth_layout != ir_depth_layout_none
3565 && earlier->data.depth_layout != var->data.depth_layout) {
3566 _mesa_glsl_error(&loc, state,
3567 "gl_FragDepth: depth layout is declared here "
3568 "as '%s, but it was previously declared as "
3569 "'%s'",
3570 depth_layout_string(var->data.depth_layout),
3571 depth_layout_string(earlier->data.depth_layout));
3572 }
3573
3574 earlier->data.depth_layout = var->data.depth_layout;
3575
3576 } else if (allow_all_redeclarations) {
3577 if (earlier->data.mode != var->data.mode) {
3578 _mesa_glsl_error(&loc, state,
3579 "redeclaration of `%s' with incorrect qualifiers",
3580 var->name);
3581 } else if (earlier->type != var->type) {
3582 _mesa_glsl_error(&loc, state,
3583 "redeclaration of `%s' has incorrect type",
3584 var->name);
3585 }
3586 } else {
3587 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
3588 }
3589
3590 return earlier;
3591 }
3592
3593 /**
3594 * Generate the IR for an initializer in a variable declaration
3595 */
3596 ir_rvalue *
3597 process_initializer(ir_variable *var, ast_declaration *decl,
3598 ast_fully_specified_type *type,
3599 exec_list *initializer_instructions,
3600 struct _mesa_glsl_parse_state *state)
3601 {
3602 ir_rvalue *result = NULL;
3603
3604 YYLTYPE initializer_loc = decl->initializer->get_location();
3605
3606 /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
3607 *
3608 * "All uniform variables are read-only and are initialized either
3609 * directly by an application via API commands, or indirectly by
3610 * OpenGL."
3611 */
3612 if (var->data.mode == ir_var_uniform) {
3613 state->check_version(120, 0, &initializer_loc,
3614 "cannot initialize uniform %s",
3615 var->name);
3616 }
3617
3618 /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec:
3619 *
3620 * "Buffer variables cannot have initializers."
3621 */
3622 if (var->data.mode == ir_var_shader_storage) {
3623 _mesa_glsl_error(&initializer_loc, state,
3624 "cannot initialize buffer variable %s",
3625 var->name);
3626 }
3627
3628 /* From section 4.1.7 of the GLSL 4.40 spec:
3629 *
3630 * "Opaque variables [...] are initialized only through the
3631 * OpenGL API; they cannot be declared with an initializer in a
3632 * shader."
3633 */
3634 if (var->type->contains_opaque()) {
3635 _mesa_glsl_error(&initializer_loc, state,
3636 "cannot initialize opaque variable %s",
3637 var->name);
3638 }
3639
3640 if ((var->data.mode == ir_var_shader_in) && (state->current_function == NULL)) {
3641 _mesa_glsl_error(&initializer_loc, state,
3642 "cannot initialize %s shader input / %s %s",
3643 _mesa_shader_stage_to_string(state->stage),
3644 (state->stage == MESA_SHADER_VERTEX)
3645 ? "attribute" : "varying",
3646 var->name);
3647 }
3648
3649 if (var->data.mode == ir_var_shader_out && state->current_function == NULL) {
3650 _mesa_glsl_error(&initializer_loc, state,
3651 "cannot initialize %s shader output %s",
3652 _mesa_shader_stage_to_string(state->stage),
3653 var->name);
3654 }
3655
3656 /* If the initializer is an ast_aggregate_initializer, recursively store
3657 * type information from the LHS into it, so that its hir() function can do
3658 * type checking.
3659 */
3660 if (decl->initializer->oper == ast_aggregate)
3661 _mesa_ast_set_aggregate_type(var->type, decl->initializer);
3662
3663 ir_dereference *const lhs = new(state) ir_dereference_variable(var);
3664 ir_rvalue *rhs = decl->initializer->hir(initializer_instructions, state);
3665
3666 /* Calculate the constant value if this is a const or uniform
3667 * declaration.
3668 *
3669 * Section 4.3 (Storage Qualifiers) of the GLSL ES 1.00.17 spec says:
3670 *
3671 * "Declarations of globals without a storage qualifier, or with
3672 * just the const qualifier, may include initializers, in which case
3673 * they will be initialized before the first line of main() is
3674 * executed. Such initializers must be a constant expression."
3675 *
3676 * The same section of the GLSL ES 3.00.4 spec has similar language.
3677 */
3678 if (type->qualifier.flags.q.constant
3679 || type->qualifier.flags.q.uniform
3680 || (state->es_shader && state->current_function == NULL)) {
3681 ir_rvalue *new_rhs = validate_assignment(state, initializer_loc,
3682 lhs, rhs, true);
3683 if (new_rhs != NULL) {
3684 rhs = new_rhs;
3685
3686 /* Section 4.3.3 (Constant Expressions) of the GLSL ES 3.00.4 spec
3687 * says:
3688 *
3689 * "A constant expression is one of
3690 *
3691 * ...
3692 *
3693 * - an expression formed by an operator on operands that are
3694 * all constant expressions, including getting an element of
3695 * a constant array, or a field of a constant structure, or
3696 * components of a constant vector. However, the sequence
3697 * operator ( , ) and the assignment operators ( =, +=, ...)
3698 * are not included in the operators that can create a
3699 * constant expression."
3700 *
3701 * Section 12.43 (Sequence operator and constant expressions) says:
3702 *
3703 * "Should the following construct be allowed?
3704 *
3705 * float a[2,3];
3706 *
3707 * The expression within the brackets uses the sequence operator
3708 * (',') and returns the integer 3 so the construct is declaring
3709 * a single-dimensional array of size 3. In some languages, the
3710 * construct declares a two-dimensional array. It would be
3711 * preferable to make this construct illegal to avoid confusion.
3712 *
3713 * One possibility is to change the definition of the sequence
3714 * operator so that it does not return a constant-expression and
3715 * hence cannot be used to declare an array size.
3716 *
3717 * RESOLUTION: The result of a sequence operator is not a
3718 * constant-expression."
3719 *
3720 * Section 4.3.3 (Constant Expressions) of the GLSL 4.30.9 spec
3721 * contains language almost identical to the section 4.3.3 in the
3722 * GLSL ES 3.00.4 spec. This is a new limitation for these GLSL
3723 * versions.
3724 */
3725 ir_constant *constant_value = rhs->constant_expression_value();
3726 if (!constant_value ||
3727 (state->is_version(430, 300) &&
3728 decl->initializer->has_sequence_subexpression())) {
3729 const char *const variable_mode =
3730 (type->qualifier.flags.q.constant)
3731 ? "const"
3732 : ((type->qualifier.flags.q.uniform) ? "uniform" : "global");
3733
3734 /* If ARB_shading_language_420pack is enabled, initializers of
3735 * const-qualified local variables do not have to be constant
3736 * expressions. Const-qualified global variables must still be
3737 * initialized with constant expressions.
3738 */
3739 if (!state->ARB_shading_language_420pack_enable
3740 || state->current_function == NULL) {
3741 _mesa_glsl_error(& initializer_loc, state,
3742 "initializer of %s variable `%s' must be a "
3743 "constant expression",
3744 variable_mode,
3745 decl->identifier);
3746 if (var->type->is_numeric()) {
3747 /* Reduce cascading errors. */
3748 var->constant_value = type->qualifier.flags.q.constant
3749 ? ir_constant::zero(state, var->type) : NULL;
3750 }
3751 }
3752 } else {
3753 rhs = constant_value;
3754 var->constant_value = type->qualifier.flags.q.constant
3755 ? constant_value : NULL;
3756 }
3757 } else {
3758 if (var->type->is_numeric()) {
3759 /* Reduce cascading errors. */
3760 var->constant_value = type->qualifier.flags.q.constant
3761 ? ir_constant::zero(state, var->type) : NULL;
3762 }
3763 }
3764 }
3765
3766 if (rhs && !rhs->type->is_error()) {
3767 bool temp = var->data.read_only;
3768 if (type->qualifier.flags.q.constant)
3769 var->data.read_only = false;
3770
3771 /* Never emit code to initialize a uniform.
3772 */
3773 const glsl_type *initializer_type;
3774 if (!type->qualifier.flags.q.uniform) {
3775 do_assignment(initializer_instructions, state,
3776 NULL,
3777 lhs, rhs,
3778 &result, true,
3779 true,
3780 type->get_location());
3781 initializer_type = result->type;
3782 } else
3783 initializer_type = rhs->type;
3784
3785 var->constant_initializer = rhs->constant_expression_value();
3786 var->data.has_initializer = true;
3787
3788 /* If the declared variable is an unsized array, it must inherrit
3789 * its full type from the initializer. A declaration such as
3790 *
3791 * uniform float a[] = float[](1.0, 2.0, 3.0, 3.0);
3792 *
3793 * becomes
3794 *
3795 * uniform float a[4] = float[](1.0, 2.0, 3.0, 3.0);
3796 *
3797 * The assignment generated in the if-statement (below) will also
3798 * automatically handle this case for non-uniforms.
3799 *
3800 * If the declared variable is not an array, the types must
3801 * already match exactly. As a result, the type assignment
3802 * here can be done unconditionally. For non-uniforms the call
3803 * to do_assignment can change the type of the initializer (via
3804 * the implicit conversion rules). For uniforms the initializer
3805 * must be a constant expression, and the type of that expression
3806 * was validated above.
3807 */
3808 var->type = initializer_type;
3809
3810 var->data.read_only = temp;
3811 }
3812
3813 return result;
3814 }
3815
3816 static void
3817 validate_layout_qualifier_vertex_count(struct _mesa_glsl_parse_state *state,
3818 YYLTYPE loc, ir_variable *var,
3819 unsigned num_vertices,
3820 unsigned *size,
3821 const char *var_category)
3822 {
3823 if (var->type->is_unsized_array()) {
3824 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec says:
3825 *
3826 * All geometry shader input unsized array declarations will be
3827 * sized by an earlier input layout qualifier, when present, as per
3828 * the following table.
3829 *
3830 * Followed by a table mapping each allowed input layout qualifier to
3831 * the corresponding input length.
3832 *
3833 * Similarly for tessellation control shader outputs.
3834 */
3835 if (num_vertices != 0)
3836 var->type = glsl_type::get_array_instance(var->type->fields.array,
3837 num_vertices);
3838 } else {
3839 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec
3840 * includes the following examples of compile-time errors:
3841 *
3842 * // code sequence within one shader...
3843 * in vec4 Color1[]; // size unknown
3844 * ...Color1.length()...// illegal, length() unknown
3845 * in vec4 Color2[2]; // size is 2
3846 * ...Color1.length()...// illegal, Color1 still has no size
3847 * in vec4 Color3[3]; // illegal, input sizes are inconsistent
3848 * layout(lines) in; // legal, input size is 2, matching
3849 * in vec4 Color4[3]; // illegal, contradicts layout
3850 * ...
3851 *
3852 * To detect the case illustrated by Color3, we verify that the size of
3853 * an explicitly-sized array matches the size of any previously declared
3854 * explicitly-sized array. To detect the case illustrated by Color4, we
3855 * verify that the size of an explicitly-sized array is consistent with
3856 * any previously declared input layout.
3857 */
3858 if (num_vertices != 0 && var->type->length != num_vertices) {
3859 _mesa_glsl_error(&loc, state,
3860 "%s size contradicts previously declared layout "
3861 "(size is %u, but layout requires a size of %u)",
3862 var_category, var->type->length, num_vertices);
3863 } else if (*size != 0 && var->type->length != *size) {
3864 _mesa_glsl_error(&loc, state,
3865 "%s sizes are inconsistent (size is %u, but a "
3866 "previous declaration has size %u)",
3867 var_category, var->type->length, *size);
3868 } else {
3869 *size = var->type->length;
3870 }
3871 }
3872 }
3873
3874 static void
3875 handle_tess_ctrl_shader_output_decl(struct _mesa_glsl_parse_state *state,
3876 YYLTYPE loc, ir_variable *var)
3877 {
3878 unsigned num_vertices = 0;
3879
3880 if (state->tcs_output_vertices_specified) {
3881 if (!state->out_qualifier->vertices->
3882 process_qualifier_constant(state, "vertices",
3883 &num_vertices, false)) {
3884 return;
3885 }
3886
3887 if (num_vertices > state->Const.MaxPatchVertices) {
3888 _mesa_glsl_error(&loc, state, "vertices (%d) exceeds "
3889 "GL_MAX_PATCH_VERTICES", num_vertices);
3890 return;
3891 }
3892 }
3893
3894 if (!var->type->is_array() && !var->data.patch) {
3895 _mesa_glsl_error(&loc, state,
3896 "tessellation control shader outputs must be arrays");
3897
3898 /* To avoid cascading failures, short circuit the checks below. */
3899 return;
3900 }
3901
3902 if (var->data.patch)
3903 return;
3904
3905 validate_layout_qualifier_vertex_count(state, loc, var, num_vertices,
3906 &state->tcs_output_size,
3907 "tessellation control shader output");
3908 }
3909
3910 /**
3911 * Do additional processing necessary for tessellation control/evaluation shader
3912 * input declarations. This covers both interface block arrays and bare input
3913 * variables.
3914 */
3915 static void
3916 handle_tess_shader_input_decl(struct _mesa_glsl_parse_state *state,
3917 YYLTYPE loc, ir_variable *var)
3918 {
3919 if (!var->type->is_array() && !var->data.patch) {
3920 _mesa_glsl_error(&loc, state,
3921 "per-vertex tessellation shader inputs must be arrays");
3922 /* Avoid cascading failures. */
3923 return;
3924 }
3925
3926 if (var->data.patch)
3927 return;
3928
3929 /* Unsized arrays are implicitly sized to gl_MaxPatchVertices. */
3930 if (var->type->is_unsized_array()) {
3931 var->type = glsl_type::get_array_instance(var->type->fields.array,
3932 state->Const.MaxPatchVertices);
3933 }
3934 }
3935
3936
3937 /**
3938 * Do additional processing necessary for geometry shader input declarations
3939 * (this covers both interface blocks arrays and bare input variables).
3940 */
3941 static void
3942 handle_geometry_shader_input_decl(struct _mesa_glsl_parse_state *state,
3943 YYLTYPE loc, ir_variable *var)
3944 {
3945 unsigned num_vertices = 0;
3946
3947 if (state->gs_input_prim_type_specified) {
3948 num_vertices = vertices_per_prim(state->in_qualifier->prim_type);
3949 }
3950
3951 /* Geometry shader input variables must be arrays. Caller should have
3952 * reported an error for this.
3953 */
3954 if (!var->type->is_array()) {
3955 assert(state->error);
3956
3957 /* To avoid cascading failures, short circuit the checks below. */
3958 return;
3959 }
3960
3961 validate_layout_qualifier_vertex_count(state, loc, var, num_vertices,
3962 &state->gs_input_size,
3963 "geometry shader input");
3964 }
3965
3966 void
3967 validate_identifier(const char *identifier, YYLTYPE loc,
3968 struct _mesa_glsl_parse_state *state)
3969 {
3970 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
3971 *
3972 * "Identifiers starting with "gl_" are reserved for use by
3973 * OpenGL, and may not be declared in a shader as either a
3974 * variable or a function."
3975 */
3976 if (is_gl_identifier(identifier)) {
3977 _mesa_glsl_error(&loc, state,
3978 "identifier `%s' uses reserved `gl_' prefix",
3979 identifier);
3980 } else if (strstr(identifier, "__")) {
3981 /* From page 14 (page 20 of the PDF) of the GLSL 1.10
3982 * spec:
3983 *
3984 * "In addition, all identifiers containing two
3985 * consecutive underscores (__) are reserved as
3986 * possible future keywords."
3987 *
3988 * The intention is that names containing __ are reserved for internal
3989 * use by the implementation, and names prefixed with GL_ are reserved
3990 * for use by Khronos. Names simply containing __ are dangerous to use,
3991 * but should be allowed.
3992 *
3993 * A future version of the GLSL specification will clarify this.
3994 */
3995 _mesa_glsl_warning(&loc, state,
3996 "identifier `%s' uses reserved `__' string",
3997 identifier);
3998 }
3999 }
4000
4001 ir_rvalue *
4002 ast_declarator_list::hir(exec_list *instructions,
4003 struct _mesa_glsl_parse_state *state)
4004 {
4005 void *ctx = state;
4006 const struct glsl_type *decl_type;
4007 const char *type_name = NULL;
4008 ir_rvalue *result = NULL;
4009 YYLTYPE loc = this->get_location();
4010
4011 /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec:
4012 *
4013 * "To ensure that a particular output variable is invariant, it is
4014 * necessary to use the invariant qualifier. It can either be used to
4015 * qualify a previously declared variable as being invariant
4016 *
4017 * invariant gl_Position; // make existing gl_Position be invariant"
4018 *
4019 * In these cases the parser will set the 'invariant' flag in the declarator
4020 * list, and the type will be NULL.
4021 */
4022 if (this->invariant) {
4023 assert(this->type == NULL);
4024
4025 if (state->current_function != NULL) {
4026 _mesa_glsl_error(& loc, state,
4027 "all uses of `invariant' keyword must be at global "
4028 "scope");
4029 }
4030
4031 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4032 assert(decl->array_specifier == NULL);
4033 assert(decl->initializer == NULL);
4034
4035 ir_variable *const earlier =
4036 state->symbols->get_variable(decl->identifier);
4037 if (earlier == NULL) {
4038 _mesa_glsl_error(& loc, state,
4039 "undeclared variable `%s' cannot be marked "
4040 "invariant", decl->identifier);
4041 } else if (!is_varying_var(earlier, state->stage)) {
4042 _mesa_glsl_error(&loc, state,
4043 "`%s' cannot be marked invariant; interfaces between "
4044 "shader stages only.", decl->identifier);
4045 } else if (earlier->data.used) {
4046 _mesa_glsl_error(& loc, state,
4047 "variable `%s' may not be redeclared "
4048 "`invariant' after being used",
4049 earlier->name);
4050 } else {
4051 earlier->data.invariant = true;
4052 }
4053 }
4054
4055 /* Invariant redeclarations do not have r-values.
4056 */
4057 return NULL;
4058 }
4059
4060 if (this->precise) {
4061 assert(this->type == NULL);
4062
4063 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4064 assert(decl->array_specifier == NULL);
4065 assert(decl->initializer == NULL);
4066
4067 ir_variable *const earlier =
4068 state->symbols->get_variable(decl->identifier);
4069 if (earlier == NULL) {
4070 _mesa_glsl_error(& loc, state,
4071 "undeclared variable `%s' cannot be marked "
4072 "precise", decl->identifier);
4073 } else if (state->current_function != NULL &&
4074 !state->symbols->name_declared_this_scope(decl->identifier)) {
4075 /* Note: we have to check if we're in a function, since
4076 * builtins are treated as having come from another scope.
4077 */
4078 _mesa_glsl_error(& loc, state,
4079 "variable `%s' from an outer scope may not be "
4080 "redeclared `precise' in this scope",
4081 earlier->name);
4082 } else if (earlier->data.used) {
4083 _mesa_glsl_error(& loc, state,
4084 "variable `%s' may not be redeclared "
4085 "`precise' after being used",
4086 earlier->name);
4087 } else {
4088 earlier->data.precise = true;
4089 }
4090 }
4091
4092 /* Precise redeclarations do not have r-values either. */
4093 return NULL;
4094 }
4095
4096 assert(this->type != NULL);
4097 assert(!this->invariant);
4098 assert(!this->precise);
4099
4100 /* The type specifier may contain a structure definition. Process that
4101 * before any of the variable declarations.
4102 */
4103 (void) this->type->specifier->hir(instructions, state);
4104
4105 decl_type = this->type->glsl_type(& type_name, state);
4106
4107 /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec:
4108 * "Buffer variables may only be declared inside interface blocks
4109 * (section 4.3.9 “Interface Blocks”), which are then referred to as
4110 * shader storage blocks. It is a compile-time error to declare buffer
4111 * variables at global scope (outside a block)."
4112 */
4113 if (type->qualifier.flags.q.buffer && !decl_type->is_interface()) {
4114 _mesa_glsl_error(&loc, state,
4115 "buffer variables cannot be declared outside "
4116 "interface blocks");
4117 }
4118
4119 /* An offset-qualified atomic counter declaration sets the default
4120 * offset for the next declaration within the same atomic counter
4121 * buffer.
4122 */
4123 if (decl_type && decl_type->contains_atomic()) {
4124 if (type->qualifier.flags.q.explicit_binding &&
4125 type->qualifier.flags.q.explicit_offset) {
4126 unsigned qual_binding;
4127 unsigned qual_offset;
4128 if (process_qualifier_constant(state, &loc, "binding",
4129 type->qualifier.binding,
4130 &qual_binding)
4131 && process_qualifier_constant(state, &loc, "offset",
4132 type->qualifier.offset,
4133 &qual_offset)) {
4134 state->atomic_counter_offsets[qual_binding] = qual_offset;
4135 }
4136 }
4137 }
4138
4139 if (this->declarations.is_empty()) {
4140 /* If there is no structure involved in the program text, there are two
4141 * possible scenarios:
4142 *
4143 * - The program text contained something like 'vec4;'. This is an
4144 * empty declaration. It is valid but weird. Emit a warning.
4145 *
4146 * - The program text contained something like 'S;' and 'S' is not the
4147 * name of a known structure type. This is both invalid and weird.
4148 * Emit an error.
4149 *
4150 * - The program text contained something like 'mediump float;'
4151 * when the programmer probably meant 'precision mediump
4152 * float;' Emit a warning with a description of what they
4153 * probably meant to do.
4154 *
4155 * Note that if decl_type is NULL and there is a structure involved,
4156 * there must have been some sort of error with the structure. In this
4157 * case we assume that an error was already generated on this line of
4158 * code for the structure. There is no need to generate an additional,
4159 * confusing error.
4160 */
4161 assert(this->type->specifier->structure == NULL || decl_type != NULL
4162 || state->error);
4163
4164 if (decl_type == NULL) {
4165 _mesa_glsl_error(&loc, state,
4166 "invalid type `%s' in empty declaration",
4167 type_name);
4168 } else if (decl_type->base_type == GLSL_TYPE_ATOMIC_UINT) {
4169 /* Empty atomic counter declarations are allowed and useful
4170 * to set the default offset qualifier.
4171 */
4172 return NULL;
4173 } else if (this->type->qualifier.precision != ast_precision_none) {
4174 if (this->type->specifier->structure != NULL) {
4175 _mesa_glsl_error(&loc, state,
4176 "precision qualifiers can't be applied "
4177 "to structures");
4178 } else {
4179 static const char *const precision_names[] = {
4180 "highp",
4181 "highp",
4182 "mediump",
4183 "lowp"
4184 };
4185
4186 _mesa_glsl_warning(&loc, state,
4187 "empty declaration with precision qualifier, "
4188 "to set the default precision, use "
4189 "`precision %s %s;'",
4190 precision_names[this->type->qualifier.precision],
4191 type_name);
4192 }
4193 } else if (this->type->specifier->structure == NULL) {
4194 _mesa_glsl_warning(&loc, state, "empty declaration");
4195 }
4196 }
4197
4198 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4199 const struct glsl_type *var_type;
4200 ir_variable *var;
4201 const char *identifier = decl->identifier;
4202 /* FINISHME: Emit a warning if a variable declaration shadows a
4203 * FINISHME: declaration at a higher scope.
4204 */
4205
4206 if ((decl_type == NULL) || decl_type->is_void()) {
4207 if (type_name != NULL) {
4208 _mesa_glsl_error(& loc, state,
4209 "invalid type `%s' in declaration of `%s'",
4210 type_name, decl->identifier);
4211 } else {
4212 _mesa_glsl_error(& loc, state,
4213 "invalid type in declaration of `%s'",
4214 decl->identifier);
4215 }
4216 continue;
4217 }
4218
4219 if (this->type->qualifier.flags.q.subroutine) {
4220 const glsl_type *t;
4221 const char *name;
4222
4223 t = state->symbols->get_type(this->type->specifier->type_name);
4224 if (!t)
4225 _mesa_glsl_error(& loc, state,
4226 "invalid type in declaration of `%s'",
4227 decl->identifier);
4228 name = ralloc_asprintf(ctx, "%s_%s", _mesa_shader_stage_to_subroutine_prefix(state->stage), decl->identifier);
4229
4230 identifier = name;
4231
4232 }
4233 var_type = process_array_type(&loc, decl_type, decl->array_specifier,
4234 state);
4235
4236 var = new(ctx) ir_variable(var_type, identifier, ir_var_auto);
4237
4238 /* The 'varying in' and 'varying out' qualifiers can only be used with
4239 * ARB_geometry_shader4 and EXT_geometry_shader4, which we don't support
4240 * yet.
4241 */
4242 if (this->type->qualifier.flags.q.varying) {
4243 if (this->type->qualifier.flags.q.in) {
4244 _mesa_glsl_error(& loc, state,
4245 "`varying in' qualifier in declaration of "
4246 "`%s' only valid for geometry shaders using "
4247 "ARB_geometry_shader4 or EXT_geometry_shader4",
4248 decl->identifier);
4249 } else if (this->type->qualifier.flags.q.out) {
4250 _mesa_glsl_error(& loc, state,
4251 "`varying out' qualifier in declaration of "
4252 "`%s' only valid for geometry shaders using "
4253 "ARB_geometry_shader4 or EXT_geometry_shader4",
4254 decl->identifier);
4255 }
4256 }
4257
4258 /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
4259 *
4260 * "Global variables can only use the qualifiers const,
4261 * attribute, uniform, or varying. Only one may be
4262 * specified.
4263 *
4264 * Local variables can only use the qualifier const."
4265 *
4266 * This is relaxed in GLSL 1.30 and GLSL ES 3.00. It is also relaxed by
4267 * any extension that adds the 'layout' keyword.
4268 */
4269 if (!state->is_version(130, 300)
4270 && !state->has_explicit_attrib_location()
4271 && !state->has_separate_shader_objects()
4272 && !state->ARB_fragment_coord_conventions_enable) {
4273 if (this->type->qualifier.flags.q.out) {
4274 _mesa_glsl_error(& loc, state,
4275 "`out' qualifier in declaration of `%s' "
4276 "only valid for function parameters in %s",
4277 decl->identifier, state->get_version_string());
4278 }
4279 if (this->type->qualifier.flags.q.in) {
4280 _mesa_glsl_error(& loc, state,
4281 "`in' qualifier in declaration of `%s' "
4282 "only valid for function parameters in %s",
4283 decl->identifier, state->get_version_string());
4284 }
4285 /* FINISHME: Test for other invalid qualifiers. */
4286 }
4287
4288 apply_type_qualifier_to_variable(& this->type->qualifier, var, state,
4289 & loc, false);
4290 apply_layout_qualifier_to_variable(&this->type->qualifier, var, state,
4291 &loc);
4292
4293 if (this->type->qualifier.flags.q.invariant) {
4294 if (!is_varying_var(var, state->stage)) {
4295 _mesa_glsl_error(&loc, state,
4296 "`%s' cannot be marked invariant; interfaces between "
4297 "shader stages only", var->name);
4298 }
4299 }
4300
4301 if (state->current_function != NULL) {
4302 const char *mode = NULL;
4303 const char *extra = "";
4304
4305 /* There is no need to check for 'inout' here because the parser will
4306 * only allow that in function parameter lists.
4307 */
4308 if (this->type->qualifier.flags.q.attribute) {
4309 mode = "attribute";
4310 } else if (this->type->qualifier.flags.q.subroutine) {
4311 mode = "subroutine uniform";
4312 } else if (this->type->qualifier.flags.q.uniform) {
4313 mode = "uniform";
4314 } else if (this->type->qualifier.flags.q.varying) {
4315 mode = "varying";
4316 } else if (this->type->qualifier.flags.q.in) {
4317 mode = "in";
4318 extra = " or in function parameter list";
4319 } else if (this->type->qualifier.flags.q.out) {
4320 mode = "out";
4321 extra = " or in function parameter list";
4322 }
4323
4324 if (mode) {
4325 _mesa_glsl_error(& loc, state,
4326 "%s variable `%s' must be declared at "
4327 "global scope%s",
4328 mode, var->name, extra);
4329 }
4330 } else if (var->data.mode == ir_var_shader_in) {
4331 var->data.read_only = true;
4332
4333 if (state->stage == MESA_SHADER_VERTEX) {
4334 bool error_emitted = false;
4335
4336 /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
4337 *
4338 * "Vertex shader inputs can only be float, floating-point
4339 * vectors, matrices, signed and unsigned integers and integer
4340 * vectors. Vertex shader inputs can also form arrays of these
4341 * types, but not structures."
4342 *
4343 * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
4344 *
4345 * "Vertex shader inputs can only be float, floating-point
4346 * vectors, matrices, signed and unsigned integers and integer
4347 * vectors. They cannot be arrays or structures."
4348 *
4349 * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
4350 *
4351 * "The attribute qualifier can be used only with float,
4352 * floating-point vectors, and matrices. Attribute variables
4353 * cannot be declared as arrays or structures."
4354 *
4355 * From page 33 (page 39 of the PDF) of the GLSL ES 3.00 spec:
4356 *
4357 * "Vertex shader inputs can only be float, floating-point
4358 * vectors, matrices, signed and unsigned integers and integer
4359 * vectors. Vertex shader inputs cannot be arrays or
4360 * structures."
4361 */
4362 const glsl_type *check_type = var->type->without_array();
4363
4364 switch (check_type->base_type) {
4365 case GLSL_TYPE_FLOAT:
4366 break;
4367 case GLSL_TYPE_UINT:
4368 case GLSL_TYPE_INT:
4369 if (state->is_version(120, 300))
4370 break;
4371 case GLSL_TYPE_DOUBLE:
4372 if (check_type->base_type == GLSL_TYPE_DOUBLE && (state->is_version(410, 0) || state->ARB_vertex_attrib_64bit_enable))
4373 break;
4374 /* FALLTHROUGH */
4375 default:
4376 _mesa_glsl_error(& loc, state,
4377 "vertex shader input / attribute cannot have "
4378 "type %s`%s'",
4379 var->type->is_array() ? "array of " : "",
4380 check_type->name);
4381 error_emitted = true;
4382 }
4383
4384 if (!error_emitted && var->type->is_array() &&
4385 !state->check_version(150, 0, &loc,
4386 "vertex shader input / attribute "
4387 "cannot have array type")) {
4388 error_emitted = true;
4389 }
4390 } else if (state->stage == MESA_SHADER_GEOMETRY) {
4391 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
4392 *
4393 * Geometry shader input variables get the per-vertex values
4394 * written out by vertex shader output variables of the same
4395 * names. Since a geometry shader operates on a set of
4396 * vertices, each input varying variable (or input block, see
4397 * interface blocks below) needs to be declared as an array.
4398 */
4399 if (!var->type->is_array()) {
4400 _mesa_glsl_error(&loc, state,
4401 "geometry shader inputs must be arrays");
4402 }
4403
4404 handle_geometry_shader_input_decl(state, loc, var);
4405 } else if (state->stage == MESA_SHADER_FRAGMENT) {
4406 /* From section 4.3.4 (Input Variables) of the GLSL ES 3.10 spec:
4407 *
4408 * It is a compile-time error to declare a fragment shader
4409 * input with, or that contains, any of the following types:
4410 *
4411 * * A boolean type
4412 * * An opaque type
4413 * * An array of arrays
4414 * * An array of structures
4415 * * A structure containing an array
4416 * * A structure containing a structure
4417 */
4418 if (state->es_shader) {
4419 const glsl_type *check_type = var->type->without_array();
4420 if (check_type->is_boolean() ||
4421 check_type->contains_opaque()) {
4422 _mesa_glsl_error(&loc, state,
4423 "fragment shader input cannot have type %s",
4424 check_type->name);
4425 }
4426 if (var->type->is_array() &&
4427 var->type->fields.array->is_array()) {
4428 _mesa_glsl_error(&loc, state,
4429 "%s shader output "
4430 "cannot have an array of arrays",
4431 _mesa_shader_stage_to_string(state->stage));
4432 }
4433 if (var->type->is_array() &&
4434 var->type->fields.array->is_record()) {
4435 _mesa_glsl_error(&loc, state,
4436 "fragment shader input "
4437 "cannot have an array of structs");
4438 }
4439 if (var->type->is_record()) {
4440 for (unsigned i = 0; i < var->type->length; i++) {
4441 if (var->type->fields.structure[i].type->is_array() ||
4442 var->type->fields.structure[i].type->is_record())
4443 _mesa_glsl_error(&loc, state,
4444 "fragement shader input cannot have "
4445 "a struct that contains an "
4446 "array or struct");
4447 }
4448 }
4449 }
4450 } else if (state->stage == MESA_SHADER_TESS_CTRL ||
4451 state->stage == MESA_SHADER_TESS_EVAL) {
4452 handle_tess_shader_input_decl(state, loc, var);
4453 }
4454 } else if (var->data.mode == ir_var_shader_out) {
4455 const glsl_type *check_type = var->type->without_array();
4456
4457 /* From section 4.3.6 (Output variables) of the GLSL 4.40 spec:
4458 *
4459 * It is a compile-time error to declare a vertex, tessellation
4460 * evaluation, tessellation control, or geometry shader output
4461 * that contains any of the following:
4462 *
4463 * * A Boolean type (bool, bvec2 ...)
4464 * * An opaque type
4465 */
4466 if (check_type->is_boolean() || check_type->contains_opaque())
4467 _mesa_glsl_error(&loc, state,
4468 "%s shader output cannot have type %s",
4469 _mesa_shader_stage_to_string(state->stage),
4470 check_type->name);
4471
4472 /* From section 4.3.6 (Output variables) of the GLSL 4.40 spec:
4473 *
4474 * It is a compile-time error to declare a fragment shader output
4475 * that contains any of the following:
4476 *
4477 * * A Boolean type (bool, bvec2 ...)
4478 * * A double-precision scalar or vector (double, dvec2 ...)
4479 * * An opaque type
4480 * * Any matrix type
4481 * * A structure
4482 */
4483 if (state->stage == MESA_SHADER_FRAGMENT) {
4484 if (check_type->is_record() || check_type->is_matrix())
4485 _mesa_glsl_error(&loc, state,
4486 "fragment shader output "
4487 "cannot have struct or matrix type");
4488 switch (check_type->base_type) {
4489 case GLSL_TYPE_UINT:
4490 case GLSL_TYPE_INT:
4491 case GLSL_TYPE_FLOAT:
4492 break;
4493 default:
4494 _mesa_glsl_error(&loc, state,
4495 "fragment shader output cannot have "
4496 "type %s", check_type->name);
4497 }
4498 }
4499
4500 /* From section 4.3.6 (Output Variables) of the GLSL ES 3.10 spec:
4501 *
4502 * It is a compile-time error to declare a vertex shader output
4503 * with, or that contains, any of the following types:
4504 *
4505 * * A boolean type
4506 * * An opaque type
4507 * * An array of arrays
4508 * * An array of structures
4509 * * A structure containing an array
4510 * * A structure containing a structure
4511 *
4512 * It is a compile-time error to declare a fragment shader output
4513 * with, or that contains, any of the following types:
4514 *
4515 * * A boolean type
4516 * * An opaque type
4517 * * A matrix
4518 * * A structure
4519 * * An array of array
4520 */
4521 if (state->es_shader) {
4522 if (var->type->is_array() &&
4523 var->type->fields.array->is_array()) {
4524 _mesa_glsl_error(&loc, state,
4525 "%s shader output "
4526 "cannot have an array of arrays",
4527 _mesa_shader_stage_to_string(state->stage));
4528 }
4529 if (state->stage == MESA_SHADER_VERTEX) {
4530 if (var->type->is_array() &&
4531 var->type->fields.array->is_record()) {
4532 _mesa_glsl_error(&loc, state,
4533 "vertex shader output "
4534 "cannot have an array of structs");
4535 }
4536 if (var->type->is_record()) {
4537 for (unsigned i = 0; i < var->type->length; i++) {
4538 if (var->type->fields.structure[i].type->is_array() ||
4539 var->type->fields.structure[i].type->is_record())
4540 _mesa_glsl_error(&loc, state,
4541 "vertex shader output cannot have a "
4542 "struct that contains an "
4543 "array or struct");
4544 }
4545 }
4546 }
4547 }
4548
4549 if (state->stage == MESA_SHADER_TESS_CTRL) {
4550 handle_tess_ctrl_shader_output_decl(state, loc, var);
4551 }
4552 } else if (var->type->contains_subroutine()) {
4553 /* declare subroutine uniforms as hidden */
4554 var->data.how_declared = ir_var_hidden;
4555 }
4556
4557 /* Integer fragment inputs must be qualified with 'flat'. In GLSL ES,
4558 * so must integer vertex outputs.
4559 *
4560 * From section 4.3.4 ("Inputs") of the GLSL 1.50 spec:
4561 * "Fragment shader inputs that are signed or unsigned integers or
4562 * integer vectors must be qualified with the interpolation qualifier
4563 * flat."
4564 *
4565 * From section 4.3.4 ("Input Variables") of the GLSL 3.00 ES spec:
4566 * "Fragment shader inputs that are, or contain, signed or unsigned
4567 * integers or integer vectors must be qualified with the
4568 * interpolation qualifier flat."
4569 *
4570 * From section 4.3.6 ("Output Variables") of the GLSL 3.00 ES spec:
4571 * "Vertex shader outputs that are, or contain, signed or unsigned
4572 * integers or integer vectors must be qualified with the
4573 * interpolation qualifier flat."
4574 *
4575 * Note that prior to GLSL 1.50, this requirement applied to vertex
4576 * outputs rather than fragment inputs. That creates problems in the
4577 * presence of geometry shaders, so we adopt the GLSL 1.50 rule for all
4578 * desktop GL shaders. For GLSL ES shaders, we follow the spec and
4579 * apply the restriction to both vertex outputs and fragment inputs.
4580 *
4581 * Note also that the desktop GLSL specs are missing the text "or
4582 * contain"; this is presumably an oversight, since there is no
4583 * reasonable way to interpolate a fragment shader input that contains
4584 * an integer.
4585 */
4586 if (state->is_version(130, 300) &&
4587 var->type->contains_integer() &&
4588 var->data.interpolation != INTERP_QUALIFIER_FLAT &&
4589 ((state->stage == MESA_SHADER_FRAGMENT && var->data.mode == ir_var_shader_in)
4590 || (state->stage == MESA_SHADER_VERTEX && var->data.mode == ir_var_shader_out
4591 && state->es_shader))) {
4592 const char *var_type = (state->stage == MESA_SHADER_VERTEX) ?
4593 "vertex output" : "fragment input";
4594 _mesa_glsl_error(&loc, state, "if a %s is (or contains) "
4595 "an integer, then it must be qualified with 'flat'",
4596 var_type);
4597 }
4598
4599 /* Double fragment inputs must be qualified with 'flat'. */
4600 if (var->type->contains_double() &&
4601 var->data.interpolation != INTERP_QUALIFIER_FLAT &&
4602 state->stage == MESA_SHADER_FRAGMENT &&
4603 var->data.mode == ir_var_shader_in) {
4604 _mesa_glsl_error(&loc, state, "if a fragment input is (or contains) "
4605 "a double, then it must be qualified with 'flat'",
4606 var_type);
4607 }
4608
4609 /* Interpolation qualifiers cannot be applied to 'centroid' and
4610 * 'centroid varying'.
4611 *
4612 * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
4613 * "interpolation qualifiers may only precede the qualifiers in,
4614 * centroid in, out, or centroid out in a declaration. They do not apply
4615 * to the deprecated storage qualifiers varying or centroid varying."
4616 *
4617 * These deprecated storage qualifiers do not exist in GLSL ES 3.00.
4618 */
4619 if (state->is_version(130, 0)
4620 && this->type->qualifier.has_interpolation()
4621 && this->type->qualifier.flags.q.varying) {
4622
4623 const char *i = this->type->qualifier.interpolation_string();
4624 assert(i != NULL);
4625 const char *s;
4626 if (this->type->qualifier.flags.q.centroid)
4627 s = "centroid varying";
4628 else
4629 s = "varying";
4630
4631 _mesa_glsl_error(&loc, state,
4632 "qualifier '%s' cannot be applied to the "
4633 "deprecated storage qualifier '%s'", i, s);
4634 }
4635
4636
4637 /* Interpolation qualifiers can only apply to vertex shader outputs and
4638 * fragment shader inputs.
4639 *
4640 * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
4641 * "Outputs from a vertex shader (out) and inputs to a fragment
4642 * shader (in) can be further qualified with one or more of these
4643 * interpolation qualifiers"
4644 *
4645 * From page 31 (page 37 of the PDF) of the GLSL ES 3.00 spec:
4646 * "These interpolation qualifiers may only precede the qualifiers
4647 * in, centroid in, out, or centroid out in a declaration. They do
4648 * not apply to inputs into a vertex shader or outputs from a
4649 * fragment shader."
4650 */
4651 if (state->is_version(130, 300)
4652 && this->type->qualifier.has_interpolation()) {
4653
4654 const char *i = this->type->qualifier.interpolation_string();
4655 assert(i != NULL);
4656
4657 switch (state->stage) {
4658 case MESA_SHADER_VERTEX:
4659 if (this->type->qualifier.flags.q.in) {
4660 _mesa_glsl_error(&loc, state,
4661 "qualifier '%s' cannot be applied to vertex "
4662 "shader inputs", i);
4663 }
4664 break;
4665 case MESA_SHADER_FRAGMENT:
4666 if (this->type->qualifier.flags.q.out) {
4667 _mesa_glsl_error(&loc, state,
4668 "qualifier '%s' cannot be applied to fragment "
4669 "shader outputs", i);
4670 }
4671 break;
4672 default:
4673 break;
4674 }
4675 }
4676
4677
4678 /* From section 4.3.4 of the GLSL 4.00 spec:
4679 * "Input variables may not be declared using the patch in qualifier
4680 * in tessellation control or geometry shaders."
4681 *
4682 * From section 4.3.6 of the GLSL 4.00 spec:
4683 * "It is an error to use patch out in a vertex, tessellation
4684 * evaluation, or geometry shader."
4685 *
4686 * This doesn't explicitly forbid using them in a fragment shader, but
4687 * that's probably just an oversight.
4688 */
4689 if (state->stage != MESA_SHADER_TESS_EVAL
4690 && this->type->qualifier.flags.q.patch
4691 && this->type->qualifier.flags.q.in) {
4692
4693 _mesa_glsl_error(&loc, state, "'patch in' can only be used in a "
4694 "tessellation evaluation shader");
4695 }
4696
4697 if (state->stage != MESA_SHADER_TESS_CTRL
4698 && this->type->qualifier.flags.q.patch
4699 && this->type->qualifier.flags.q.out) {
4700
4701 _mesa_glsl_error(&loc, state, "'patch out' can only be used in a "
4702 "tessellation control shader");
4703 }
4704
4705 /* Precision qualifiers exists only in GLSL versions 1.00 and >= 1.30.
4706 */
4707 if (this->type->qualifier.precision != ast_precision_none) {
4708 state->check_precision_qualifiers_allowed(&loc);
4709 }
4710
4711
4712 /* If a precision qualifier is allowed on a type, it is allowed on
4713 * an array of that type.
4714 */
4715 if (!(this->type->qualifier.precision == ast_precision_none
4716 || precision_qualifier_allowed(var->type->without_array()))) {
4717
4718 _mesa_glsl_error(&loc, state,
4719 "precision qualifiers apply only to floating point"
4720 ", integer and opaque types");
4721 }
4722
4723 /* From section 4.1.7 of the GLSL 4.40 spec:
4724 *
4725 * "[Opaque types] can only be declared as function
4726 * parameters or uniform-qualified variables."
4727 */
4728 if (var_type->contains_opaque() &&
4729 !this->type->qualifier.flags.q.uniform) {
4730 _mesa_glsl_error(&loc, state,
4731 "opaque variables must be declared uniform");
4732 }
4733
4734 /* Process the initializer and add its instructions to a temporary
4735 * list. This list will be added to the instruction stream (below) after
4736 * the declaration is added. This is done because in some cases (such as
4737 * redeclarations) the declaration may not actually be added to the
4738 * instruction stream.
4739 */
4740 exec_list initializer_instructions;
4741
4742 /* Examine var name here since var may get deleted in the next call */
4743 bool var_is_gl_id = is_gl_identifier(var->name);
4744
4745 ir_variable *earlier =
4746 get_variable_being_redeclared(var, decl->get_location(), state,
4747 false /* allow_all_redeclarations */);
4748 if (earlier != NULL) {
4749 if (var_is_gl_id &&
4750 earlier->data.how_declared == ir_var_declared_in_block) {
4751 _mesa_glsl_error(&loc, state,
4752 "`%s' has already been redeclared using "
4753 "gl_PerVertex", earlier->name);
4754 }
4755 earlier->data.how_declared = ir_var_declared_normally;
4756 }
4757
4758 if (decl->initializer != NULL) {
4759 result = process_initializer((earlier == NULL) ? var : earlier,
4760 decl, this->type,
4761 &initializer_instructions, state);
4762 } else {
4763 validate_array_dimensions(var_type, state, &loc);
4764 }
4765
4766 /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
4767 *
4768 * "It is an error to write to a const variable outside of
4769 * its declaration, so they must be initialized when
4770 * declared."
4771 */
4772 if (this->type->qualifier.flags.q.constant && decl->initializer == NULL) {
4773 _mesa_glsl_error(& loc, state,
4774 "const declaration of `%s' must be initialized",
4775 decl->identifier);
4776 }
4777
4778 if (state->es_shader) {
4779 const glsl_type *const t = (earlier == NULL)
4780 ? var->type : earlier->type;
4781
4782 if (t->is_unsized_array())
4783 /* Section 10.17 of the GLSL ES 1.00 specification states that
4784 * unsized array declarations have been removed from the language.
4785 * Arrays that are sized using an initializer are still explicitly
4786 * sized. However, GLSL ES 1.00 does not allow array
4787 * initializers. That is only allowed in GLSL ES 3.00.
4788 *
4789 * Section 4.1.9 (Arrays) of the GLSL ES 3.00 spec says:
4790 *
4791 * "An array type can also be formed without specifying a size
4792 * if the definition includes an initializer:
4793 *
4794 * float x[] = float[2] (1.0, 2.0); // declares an array of size 2
4795 * float y[] = float[] (1.0, 2.0, 3.0); // declares an array of size 3
4796 *
4797 * float a[5];
4798 * float b[] = a;"
4799 */
4800 _mesa_glsl_error(& loc, state,
4801 "unsized array declarations are not allowed in "
4802 "GLSL ES");
4803 }
4804
4805 /* If the declaration is not a redeclaration, there are a few additional
4806 * semantic checks that must be applied. In addition, variable that was
4807 * created for the declaration should be added to the IR stream.
4808 */
4809 if (earlier == NULL) {
4810 validate_identifier(decl->identifier, loc, state);
4811
4812 /* Add the variable to the symbol table. Note that the initializer's
4813 * IR was already processed earlier (though it hasn't been emitted
4814 * yet), without the variable in scope.
4815 *
4816 * This differs from most C-like languages, but it follows the GLSL
4817 * specification. From page 28 (page 34 of the PDF) of the GLSL 1.50
4818 * spec:
4819 *
4820 * "Within a declaration, the scope of a name starts immediately
4821 * after the initializer if present or immediately after the name
4822 * being declared if not."
4823 */
4824 if (!state->symbols->add_variable(var)) {
4825 YYLTYPE loc = this->get_location();
4826 _mesa_glsl_error(&loc, state, "name `%s' already taken in the "
4827 "current scope", decl->identifier);
4828 continue;
4829 }
4830
4831 /* Push the variable declaration to the top. It means that all the
4832 * variable declarations will appear in a funny last-to-first order,
4833 * but otherwise we run into trouble if a function is prototyped, a
4834 * global var is decled, then the function is defined with usage of
4835 * the global var. See glslparsertest's CorrectModule.frag.
4836 */
4837 instructions->push_head(var);
4838 }
4839
4840 instructions->append_list(&initializer_instructions);
4841 }
4842
4843
4844 /* Generally, variable declarations do not have r-values. However,
4845 * one is used for the declaration in
4846 *
4847 * while (bool b = some_condition()) {
4848 * ...
4849 * }
4850 *
4851 * so we return the rvalue from the last seen declaration here.
4852 */
4853 return result;
4854 }
4855
4856
4857 ir_rvalue *
4858 ast_parameter_declarator::hir(exec_list *instructions,
4859 struct _mesa_glsl_parse_state *state)
4860 {
4861 void *ctx = state;
4862 const struct glsl_type *type;
4863 const char *name = NULL;
4864 YYLTYPE loc = this->get_location();
4865
4866 type = this->type->glsl_type(& name, state);
4867
4868 if (type == NULL) {
4869 if (name != NULL) {
4870 _mesa_glsl_error(& loc, state,
4871 "invalid type `%s' in declaration of `%s'",
4872 name, this->identifier);
4873 } else {
4874 _mesa_glsl_error(& loc, state,
4875 "invalid type in declaration of `%s'",
4876 this->identifier);
4877 }
4878
4879 type = glsl_type::error_type;
4880 }
4881
4882 /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
4883 *
4884 * "Functions that accept no input arguments need not use void in the
4885 * argument list because prototypes (or definitions) are required and
4886 * therefore there is no ambiguity when an empty argument list "( )" is
4887 * declared. The idiom "(void)" as a parameter list is provided for
4888 * convenience."
4889 *
4890 * Placing this check here prevents a void parameter being set up
4891 * for a function, which avoids tripping up checks for main taking
4892 * parameters and lookups of an unnamed symbol.
4893 */
4894 if (type->is_void()) {
4895 if (this->identifier != NULL)
4896 _mesa_glsl_error(& loc, state,
4897 "named parameter cannot have type `void'");
4898
4899 is_void = true;
4900 return NULL;
4901 }
4902
4903 if (formal_parameter && (this->identifier == NULL)) {
4904 _mesa_glsl_error(& loc, state, "formal parameter lacks a name");
4905 return NULL;
4906 }
4907
4908 /* This only handles "vec4 foo[..]". The earlier specifier->glsl_type(...)
4909 * call already handled the "vec4[..] foo" case.
4910 */
4911 type = process_array_type(&loc, type, this->array_specifier, state);
4912
4913 if (!type->is_error() && type->is_unsized_array()) {
4914 _mesa_glsl_error(&loc, state, "arrays passed as parameters must have "
4915 "a declared size");
4916 type = glsl_type::error_type;
4917 }
4918
4919 is_void = false;
4920 ir_variable *var = new(ctx)
4921 ir_variable(type, this->identifier, ir_var_function_in);
4922
4923 /* Apply any specified qualifiers to the parameter declaration. Note that
4924 * for function parameters the default mode is 'in'.
4925 */
4926 apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc,
4927 true);
4928
4929 /* From section 4.1.7 of the GLSL 4.40 spec:
4930 *
4931 * "Opaque variables cannot be treated as l-values; hence cannot
4932 * be used as out or inout function parameters, nor can they be
4933 * assigned into."
4934 */
4935 if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
4936 && type->contains_opaque()) {
4937 _mesa_glsl_error(&loc, state, "out and inout parameters cannot "
4938 "contain opaque variables");
4939 type = glsl_type::error_type;
4940 }
4941
4942 /* From page 39 (page 45 of the PDF) of the GLSL 1.10 spec:
4943 *
4944 * "When calling a function, expressions that do not evaluate to
4945 * l-values cannot be passed to parameters declared as out or inout."
4946 *
4947 * From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
4948 *
4949 * "Other binary or unary expressions, non-dereferenced arrays,
4950 * function names, swizzles with repeated fields, and constants
4951 * cannot be l-values."
4952 *
4953 * So for GLSL 1.10, passing an array as an out or inout parameter is not
4954 * allowed. This restriction is removed in GLSL 1.20, and in GLSL ES.
4955 */
4956 if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
4957 && type->is_array()
4958 && !state->check_version(120, 100, &loc,
4959 "arrays cannot be out or inout parameters")) {
4960 type = glsl_type::error_type;
4961 }
4962
4963 instructions->push_tail(var);
4964
4965 /* Parameter declarations do not have r-values.
4966 */
4967 return NULL;
4968 }
4969
4970
4971 void
4972 ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters,
4973 bool formal,
4974 exec_list *ir_parameters,
4975 _mesa_glsl_parse_state *state)
4976 {
4977 ast_parameter_declarator *void_param = NULL;
4978 unsigned count = 0;
4979
4980 foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) {
4981 param->formal_parameter = formal;
4982 param->hir(ir_parameters, state);
4983
4984 if (param->is_void)
4985 void_param = param;
4986
4987 count++;
4988 }
4989
4990 if ((void_param != NULL) && (count > 1)) {
4991 YYLTYPE loc = void_param->get_location();
4992
4993 _mesa_glsl_error(& loc, state,
4994 "`void' parameter must be only parameter");
4995 }
4996 }
4997
4998
4999 void
5000 emit_function(_mesa_glsl_parse_state *state, ir_function *f)
5001 {
5002 /* IR invariants disallow function declarations or definitions
5003 * nested within other function definitions. But there is no
5004 * requirement about the relative order of function declarations
5005 * and definitions with respect to one another. So simply insert
5006 * the new ir_function block at the end of the toplevel instruction
5007 * list.
5008 */
5009 state->toplevel_ir->push_tail(f);
5010 }
5011
5012
5013 ir_rvalue *
5014 ast_function::hir(exec_list *instructions,
5015 struct _mesa_glsl_parse_state *state)
5016 {
5017 void *ctx = state;
5018 ir_function *f = NULL;
5019 ir_function_signature *sig = NULL;
5020 exec_list hir_parameters;
5021 YYLTYPE loc = this->get_location();
5022
5023 const char *const name = identifier;
5024
5025 /* New functions are always added to the top-level IR instruction stream,
5026 * so this instruction list pointer is ignored. See also emit_function
5027 * (called below).
5028 */
5029 (void) instructions;
5030
5031 /* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec,
5032 *
5033 * "Function declarations (prototypes) cannot occur inside of functions;
5034 * they must be at global scope, or for the built-in functions, outside
5035 * the global scope."
5036 *
5037 * From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec,
5038 *
5039 * "User defined functions may only be defined within the global scope."
5040 *
5041 * Note that this language does not appear in GLSL 1.10.
5042 */
5043 if ((state->current_function != NULL) &&
5044 state->is_version(120, 100)) {
5045 YYLTYPE loc = this->get_location();
5046 _mesa_glsl_error(&loc, state,
5047 "declaration of function `%s' not allowed within "
5048 "function body", name);
5049 }
5050
5051 validate_identifier(name, this->get_location(), state);
5052
5053 /* Convert the list of function parameters to HIR now so that they can be
5054 * used below to compare this function's signature with previously seen
5055 * signatures for functions with the same name.
5056 */
5057 ast_parameter_declarator::parameters_to_hir(& this->parameters,
5058 is_definition,
5059 & hir_parameters, state);
5060
5061 const char *return_type_name;
5062 const glsl_type *return_type =
5063 this->return_type->glsl_type(& return_type_name, state);
5064
5065 if (!return_type) {
5066 YYLTYPE loc = this->get_location();
5067 _mesa_glsl_error(&loc, state,
5068 "function `%s' has undeclared return type `%s'",
5069 name, return_type_name);
5070 return_type = glsl_type::error_type;
5071 }
5072
5073 /* ARB_shader_subroutine states:
5074 * "Subroutine declarations cannot be prototyped. It is an error to prepend
5075 * subroutine(...) to a function declaration."
5076 */
5077 if (this->return_type->qualifier.flags.q.subroutine_def && !is_definition) {
5078 YYLTYPE loc = this->get_location();
5079 _mesa_glsl_error(&loc, state,
5080 "function declaration `%s' cannot have subroutine prepended",
5081 name);
5082 }
5083
5084 /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec:
5085 * "No qualifier is allowed on the return type of a function."
5086 */
5087 if (this->return_type->has_qualifiers(state)) {
5088 YYLTYPE loc = this->get_location();
5089 _mesa_glsl_error(& loc, state,
5090 "function `%s' return type has qualifiers", name);
5091 }
5092
5093 /* Section 6.1 (Function Definitions) of the GLSL 1.20 spec says:
5094 *
5095 * "Arrays are allowed as arguments and as the return type. In both
5096 * cases, the array must be explicitly sized."
5097 */
5098 if (return_type->is_unsized_array()) {
5099 YYLTYPE loc = this->get_location();
5100 _mesa_glsl_error(& loc, state,
5101 "function `%s' return type array must be explicitly "
5102 "sized", name);
5103 }
5104
5105 /* From section 4.1.7 of the GLSL 4.40 spec:
5106 *
5107 * "[Opaque types] can only be declared as function parameters
5108 * or uniform-qualified variables."
5109 */
5110 if (return_type->contains_opaque()) {
5111 YYLTYPE loc = this->get_location();
5112 _mesa_glsl_error(&loc, state,
5113 "function `%s' return type can't contain an opaque type",
5114 name);
5115 }
5116
5117 /* Create an ir_function if one doesn't already exist. */
5118 f = state->symbols->get_function(name);
5119 if (f == NULL) {
5120 f = new(ctx) ir_function(name);
5121 if (!this->return_type->qualifier.flags.q.subroutine) {
5122 if (!state->symbols->add_function(f)) {
5123 /* This function name shadows a non-function use of the same name. */
5124 YYLTYPE loc = this->get_location();
5125 _mesa_glsl_error(&loc, state, "function name `%s' conflicts with "
5126 "non-function", name);
5127 return NULL;
5128 }
5129 }
5130 emit_function(state, f);
5131 }
5132
5133 /* From GLSL ES 3.0 spec, chapter 6.1 "Function Definitions", page 71:
5134 *
5135 * "A shader cannot redefine or overload built-in functions."
5136 *
5137 * While in GLSL ES 1.0 specification, chapter 8 "Built-in Functions":
5138 *
5139 * "User code can overload the built-in functions but cannot redefine
5140 * them."
5141 */
5142 if (state->es_shader && state->language_version >= 300) {
5143 /* Local shader has no exact candidates; check the built-ins. */
5144 _mesa_glsl_initialize_builtin_functions();
5145 if (_mesa_glsl_find_builtin_function_by_name(name)) {
5146 YYLTYPE loc = this->get_location();
5147 _mesa_glsl_error(& loc, state,
5148 "A shader cannot redefine or overload built-in "
5149 "function `%s' in GLSL ES 3.00", name);
5150 return NULL;
5151 }
5152 }
5153
5154 /* Verify that this function's signature either doesn't match a previously
5155 * seen signature for a function with the same name, or, if a match is found,
5156 * that the previously seen signature does not have an associated definition.
5157 */
5158 if (state->es_shader || f->has_user_signature()) {
5159 sig = f->exact_matching_signature(state, &hir_parameters);
5160 if (sig != NULL) {
5161 const char *badvar = sig->qualifiers_match(&hir_parameters);
5162 if (badvar != NULL) {
5163 YYLTYPE loc = this->get_location();
5164
5165 _mesa_glsl_error(&loc, state, "function `%s' parameter `%s' "
5166 "qualifiers don't match prototype", name, badvar);
5167 }
5168
5169 if (sig->return_type != return_type) {
5170 YYLTYPE loc = this->get_location();
5171
5172 _mesa_glsl_error(&loc, state, "function `%s' return type doesn't "
5173 "match prototype", name);
5174 }
5175
5176 if (sig->is_defined) {
5177 if (is_definition) {
5178 YYLTYPE loc = this->get_location();
5179 _mesa_glsl_error(& loc, state, "function `%s' redefined", name);
5180 } else {
5181 /* We just encountered a prototype that exactly matches a
5182 * function that's already been defined. This is redundant,
5183 * and we should ignore it.
5184 */
5185 return NULL;
5186 }
5187 }
5188 }
5189 }
5190
5191 /* Verify the return type of main() */
5192 if (strcmp(name, "main") == 0) {
5193 if (! return_type->is_void()) {
5194 YYLTYPE loc = this->get_location();
5195
5196 _mesa_glsl_error(& loc, state, "main() must return void");
5197 }
5198
5199 if (!hir_parameters.is_empty()) {
5200 YYLTYPE loc = this->get_location();
5201
5202 _mesa_glsl_error(& loc, state, "main() must not take any parameters");
5203 }
5204 }
5205
5206 /* Finish storing the information about this new function in its signature.
5207 */
5208 if (sig == NULL) {
5209 sig = new(ctx) ir_function_signature(return_type);
5210 f->add_signature(sig);
5211 }
5212
5213 sig->replace_parameters(&hir_parameters);
5214 signature = sig;
5215
5216 if (this->return_type->qualifier.flags.q.subroutine_def) {
5217 int idx;
5218
5219 if (this->return_type->qualifier.flags.q.explicit_index) {
5220 unsigned qual_index;
5221 if (process_qualifier_constant(state, &loc, "index",
5222 this->return_type->qualifier.index,
5223 &qual_index)) {
5224 if (!state->has_explicit_uniform_location()) {
5225 _mesa_glsl_error(&loc, state, "subroutine index requires "
5226 "GL_ARB_explicit_uniform_location or "
5227 "GLSL 4.30");
5228 } else if (qual_index >= MAX_SUBROUTINES) {
5229 _mesa_glsl_error(&loc, state,
5230 "invalid subroutine index (%d) index must "
5231 "be a number between 0 and "
5232 "GL_MAX_SUBROUTINES - 1 (%d)", qual_index,
5233 MAX_SUBROUTINES - 1);
5234 } else {
5235 f->subroutine_index = qual_index;
5236 }
5237 }
5238 }
5239
5240 f->num_subroutine_types = this->return_type->qualifier.subroutine_list->declarations.length();
5241 f->subroutine_types = ralloc_array(state, const struct glsl_type *,
5242 f->num_subroutine_types);
5243 idx = 0;
5244 foreach_list_typed(ast_declaration, decl, link, &this->return_type->qualifier.subroutine_list->declarations) {
5245 const struct glsl_type *type;
5246 /* the subroutine type must be already declared */
5247 type = state->symbols->get_type(decl->identifier);
5248 if (!type) {
5249 _mesa_glsl_error(& loc, state, "unknown type '%s' in subroutine function definition", decl->identifier);
5250 }
5251 f->subroutine_types[idx++] = type;
5252 }
5253 state->subroutines = (ir_function **)reralloc(state, state->subroutines,
5254 ir_function *,
5255 state->num_subroutines + 1);
5256 state->subroutines[state->num_subroutines] = f;
5257 state->num_subroutines++;
5258
5259 }
5260
5261 if (this->return_type->qualifier.flags.q.subroutine) {
5262 if (!state->symbols->add_type(this->identifier, glsl_type::get_subroutine_instance(this->identifier))) {
5263 _mesa_glsl_error(& loc, state, "type '%s' previously defined", this->identifier);
5264 return NULL;
5265 }
5266 state->subroutine_types = (ir_function **)reralloc(state, state->subroutine_types,
5267 ir_function *,
5268 state->num_subroutine_types + 1);
5269 state->subroutine_types[state->num_subroutine_types] = f;
5270 state->num_subroutine_types++;
5271
5272 f->is_subroutine = true;
5273 }
5274
5275 /* Function declarations (prototypes) do not have r-values.
5276 */
5277 return NULL;
5278 }
5279
5280
5281 ir_rvalue *
5282 ast_function_definition::hir(exec_list *instructions,
5283 struct _mesa_glsl_parse_state *state)
5284 {
5285 prototype->is_definition = true;
5286 prototype->hir(instructions, state);
5287
5288 ir_function_signature *signature = prototype->signature;
5289 if (signature == NULL)
5290 return NULL;
5291
5292 assert(state->current_function == NULL);
5293 state->current_function = signature;
5294 state->found_return = false;
5295
5296 /* Duplicate parameters declared in the prototype as concrete variables.
5297 * Add these to the symbol table.
5298 */
5299 state->symbols->push_scope();
5300 foreach_in_list(ir_variable, var, &signature->parameters) {
5301 assert(var->as_variable() != NULL);
5302
5303 /* The only way a parameter would "exist" is if two parameters have
5304 * the same name.
5305 */
5306 if (state->symbols->name_declared_this_scope(var->name)) {
5307 YYLTYPE loc = this->get_location();
5308
5309 _mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name);
5310 } else {
5311 state->symbols->add_variable(var);
5312 }
5313 }
5314
5315 /* Convert the body of the function to HIR. */
5316 this->body->hir(&signature->body, state);
5317 signature->is_defined = true;
5318
5319 state->symbols->pop_scope();
5320
5321 assert(state->current_function == signature);
5322 state->current_function = NULL;
5323
5324 if (!signature->return_type->is_void() && !state->found_return) {
5325 YYLTYPE loc = this->get_location();
5326 _mesa_glsl_error(& loc, state, "function `%s' has non-void return type "
5327 "%s, but no return statement",
5328 signature->function_name(),
5329 signature->return_type->name);
5330 }
5331
5332 /* Function definitions do not have r-values.
5333 */
5334 return NULL;
5335 }
5336
5337
5338 ir_rvalue *
5339 ast_jump_statement::hir(exec_list *instructions,
5340 struct _mesa_glsl_parse_state *state)
5341 {
5342 void *ctx = state;
5343
5344 switch (mode) {
5345 case ast_return: {
5346 ir_return *inst;
5347 assert(state->current_function);
5348
5349 if (opt_return_value) {
5350 ir_rvalue *ret = opt_return_value->hir(instructions, state);
5351
5352 /* The value of the return type can be NULL if the shader says
5353 * 'return foo();' and foo() is a function that returns void.
5354 *
5355 * NOTE: The GLSL spec doesn't say that this is an error. The type
5356 * of the return value is void. If the return type of the function is
5357 * also void, then this should compile without error. Seriously.
5358 */
5359 const glsl_type *const ret_type =
5360 (ret == NULL) ? glsl_type::void_type : ret->type;
5361
5362 /* Implicit conversions are not allowed for return values prior to
5363 * ARB_shading_language_420pack.
5364 */
5365 if (state->current_function->return_type != ret_type) {
5366 YYLTYPE loc = this->get_location();
5367
5368 if (state->ARB_shading_language_420pack_enable) {
5369 if (!apply_implicit_conversion(state->current_function->return_type,
5370 ret, state)) {
5371 _mesa_glsl_error(& loc, state,
5372 "could not implicitly convert return value "
5373 "to %s, in function `%s'",
5374 state->current_function->return_type->name,
5375 state->current_function->function_name());
5376 }
5377 } else {
5378 _mesa_glsl_error(& loc, state,
5379 "`return' with wrong type %s, in function `%s' "
5380 "returning %s",
5381 ret_type->name,
5382 state->current_function->function_name(),
5383 state->current_function->return_type->name);
5384 }
5385 } else if (state->current_function->return_type->base_type ==
5386 GLSL_TYPE_VOID) {
5387 YYLTYPE loc = this->get_location();
5388
5389 /* The ARB_shading_language_420pack, GLSL ES 3.0, and GLSL 4.20
5390 * specs add a clarification:
5391 *
5392 * "A void function can only use return without a return argument, even if
5393 * the return argument has void type. Return statements only accept values:
5394 *
5395 * void func1() { }
5396 * void func2() { return func1(); } // illegal return statement"
5397 */
5398 _mesa_glsl_error(& loc, state,
5399 "void functions can only use `return' without a "
5400 "return argument");
5401 }
5402
5403 inst = new(ctx) ir_return(ret);
5404 } else {
5405 if (state->current_function->return_type->base_type !=
5406 GLSL_TYPE_VOID) {
5407 YYLTYPE loc = this->get_location();
5408
5409 _mesa_glsl_error(& loc, state,
5410 "`return' with no value, in function %s returning "
5411 "non-void",
5412 state->current_function->function_name());
5413 }
5414 inst = new(ctx) ir_return;
5415 }
5416
5417 state->found_return = true;
5418 instructions->push_tail(inst);
5419 break;
5420 }
5421
5422 case ast_discard:
5423 if (state->stage != MESA_SHADER_FRAGMENT) {
5424 YYLTYPE loc = this->get_location();
5425
5426 _mesa_glsl_error(& loc, state,
5427 "`discard' may only appear in a fragment shader");
5428 }
5429 instructions->push_tail(new(ctx) ir_discard);
5430 break;
5431
5432 case ast_break:
5433 case ast_continue:
5434 if (mode == ast_continue &&
5435 state->loop_nesting_ast == NULL) {
5436 YYLTYPE loc = this->get_location();
5437
5438 _mesa_glsl_error(& loc, state, "continue may only appear in a loop");
5439 } else if (mode == ast_break &&
5440 state->loop_nesting_ast == NULL &&
5441 state->switch_state.switch_nesting_ast == NULL) {
5442 YYLTYPE loc = this->get_location();
5443
5444 _mesa_glsl_error(& loc, state,
5445 "break may only appear in a loop or a switch");
5446 } else {
5447 /* For a loop, inline the for loop expression again, since we don't
5448 * know where near the end of the loop body the normal copy of it is
5449 * going to be placed. Same goes for the condition for a do-while
5450 * loop.
5451 */
5452 if (state->loop_nesting_ast != NULL &&
5453 mode == ast_continue && !state->switch_state.is_switch_innermost) {
5454 if (state->loop_nesting_ast->rest_expression) {
5455 state->loop_nesting_ast->rest_expression->hir(instructions,
5456 state);
5457 }
5458 if (state->loop_nesting_ast->mode ==
5459 ast_iteration_statement::ast_do_while) {
5460 state->loop_nesting_ast->condition_to_hir(instructions, state);
5461 }
5462 }
5463
5464 if (state->switch_state.is_switch_innermost &&
5465 mode == ast_continue) {
5466 /* Set 'continue_inside' to true. */
5467 ir_rvalue *const true_val = new (ctx) ir_constant(true);
5468 ir_dereference_variable *deref_continue_inside_var =
5469 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
5470 instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
5471 true_val));
5472
5473 /* Break out from the switch, continue for the loop will
5474 * be called right after switch. */
5475 ir_loop_jump *const jump =
5476 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
5477 instructions->push_tail(jump);
5478
5479 } else if (state->switch_state.is_switch_innermost &&
5480 mode == ast_break) {
5481 /* Force break out of switch by inserting a break. */
5482 ir_loop_jump *const jump =
5483 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
5484 instructions->push_tail(jump);
5485 } else {
5486 ir_loop_jump *const jump =
5487 new(ctx) ir_loop_jump((mode == ast_break)
5488 ? ir_loop_jump::jump_break
5489 : ir_loop_jump::jump_continue);
5490 instructions->push_tail(jump);
5491 }
5492 }
5493
5494 break;
5495 }
5496
5497 /* Jump instructions do not have r-values.
5498 */
5499 return NULL;
5500 }
5501
5502
5503 ir_rvalue *
5504 ast_selection_statement::hir(exec_list *instructions,
5505 struct _mesa_glsl_parse_state *state)
5506 {
5507 void *ctx = state;
5508
5509 ir_rvalue *const condition = this->condition->hir(instructions, state);
5510
5511 /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
5512 *
5513 * "Any expression whose type evaluates to a Boolean can be used as the
5514 * conditional expression bool-expression. Vector types are not accepted
5515 * as the expression to if."
5516 *
5517 * The checks are separated so that higher quality diagnostics can be
5518 * generated for cases where both rules are violated.
5519 */
5520 if (!condition->type->is_boolean() || !condition->type->is_scalar()) {
5521 YYLTYPE loc = this->condition->get_location();
5522
5523 _mesa_glsl_error(& loc, state, "if-statement condition must be scalar "
5524 "boolean");
5525 }
5526
5527 ir_if *const stmt = new(ctx) ir_if(condition);
5528
5529 if (then_statement != NULL) {
5530 state->symbols->push_scope();
5531 then_statement->hir(& stmt->then_instructions, state);
5532 state->symbols->pop_scope();
5533 }
5534
5535 if (else_statement != NULL) {
5536 state->symbols->push_scope();
5537 else_statement->hir(& stmt->else_instructions, state);
5538 state->symbols->pop_scope();
5539 }
5540
5541 instructions->push_tail(stmt);
5542
5543 /* if-statements do not have r-values.
5544 */
5545 return NULL;
5546 }
5547
5548
5549 ir_rvalue *
5550 ast_switch_statement::hir(exec_list *instructions,
5551 struct _mesa_glsl_parse_state *state)
5552 {
5553 void *ctx = state;
5554
5555 ir_rvalue *const test_expression =
5556 this->test_expression->hir(instructions, state);
5557
5558 /* From page 66 (page 55 of the PDF) of the GLSL 1.50 spec:
5559 *
5560 * "The type of init-expression in a switch statement must be a
5561 * scalar integer."
5562 */
5563 if (!test_expression->type->is_scalar() ||
5564 !test_expression->type->is_integer()) {
5565 YYLTYPE loc = this->test_expression->get_location();
5566
5567 _mesa_glsl_error(& loc,
5568 state,
5569 "switch-statement expression must be scalar "
5570 "integer");
5571 }
5572
5573 /* Track the switch-statement nesting in a stack-like manner.
5574 */
5575 struct glsl_switch_state saved = state->switch_state;
5576
5577 state->switch_state.is_switch_innermost = true;
5578 state->switch_state.switch_nesting_ast = this;
5579 state->switch_state.labels_ht = hash_table_ctor(0, hash_table_pointer_hash,
5580 hash_table_pointer_compare);
5581 state->switch_state.previous_default = NULL;
5582
5583 /* Initalize is_fallthru state to false.
5584 */
5585 ir_rvalue *const is_fallthru_val = new (ctx) ir_constant(false);
5586 state->switch_state.is_fallthru_var =
5587 new(ctx) ir_variable(glsl_type::bool_type,
5588 "switch_is_fallthru_tmp",
5589 ir_var_temporary);
5590 instructions->push_tail(state->switch_state.is_fallthru_var);
5591
5592 ir_dereference_variable *deref_is_fallthru_var =
5593 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
5594 instructions->push_tail(new(ctx) ir_assignment(deref_is_fallthru_var,
5595 is_fallthru_val));
5596
5597 /* Initialize continue_inside state to false.
5598 */
5599 state->switch_state.continue_inside =
5600 new(ctx) ir_variable(glsl_type::bool_type,
5601 "continue_inside_tmp",
5602 ir_var_temporary);
5603 instructions->push_tail(state->switch_state.continue_inside);
5604
5605 ir_rvalue *const false_val = new (ctx) ir_constant(false);
5606 ir_dereference_variable *deref_continue_inside_var =
5607 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
5608 instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
5609 false_val));
5610
5611 state->switch_state.run_default =
5612 new(ctx) ir_variable(glsl_type::bool_type,
5613 "run_default_tmp",
5614 ir_var_temporary);
5615 instructions->push_tail(state->switch_state.run_default);
5616
5617 /* Loop around the switch is used for flow control. */
5618 ir_loop * loop = new(ctx) ir_loop();
5619 instructions->push_tail(loop);
5620
5621 /* Cache test expression.
5622 */
5623 test_to_hir(&loop->body_instructions, state);
5624
5625 /* Emit code for body of switch stmt.
5626 */
5627 body->hir(&loop->body_instructions, state);
5628
5629 /* Insert a break at the end to exit loop. */
5630 ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
5631 loop->body_instructions.push_tail(jump);
5632
5633 /* If we are inside loop, check if continue got called inside switch. */
5634 if (state->loop_nesting_ast != NULL) {
5635 ir_dereference_variable *deref_continue_inside =
5636 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
5637 ir_if *irif = new(ctx) ir_if(deref_continue_inside);
5638 ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_continue);
5639
5640 if (state->loop_nesting_ast != NULL) {
5641 if (state->loop_nesting_ast->rest_expression) {
5642 state->loop_nesting_ast->rest_expression->hir(&irif->then_instructions,
5643 state);
5644 }
5645 if (state->loop_nesting_ast->mode ==
5646 ast_iteration_statement::ast_do_while) {
5647 state->loop_nesting_ast->condition_to_hir(&irif->then_instructions, state);
5648 }
5649 }
5650 irif->then_instructions.push_tail(jump);
5651 instructions->push_tail(irif);
5652 }
5653
5654 hash_table_dtor(state->switch_state.labels_ht);
5655
5656 state->switch_state = saved;
5657
5658 /* Switch statements do not have r-values. */
5659 return NULL;
5660 }
5661
5662
5663 void
5664 ast_switch_statement::test_to_hir(exec_list *instructions,
5665 struct _mesa_glsl_parse_state *state)
5666 {
5667 void *ctx = state;
5668
5669 /* Cache value of test expression. */
5670 ir_rvalue *const test_val =
5671 test_expression->hir(instructions,
5672 state);
5673
5674 state->switch_state.test_var = new(ctx) ir_variable(test_val->type,
5675 "switch_test_tmp",
5676 ir_var_temporary);
5677 ir_dereference_variable *deref_test_var =
5678 new(ctx) ir_dereference_variable(state->switch_state.test_var);
5679
5680 instructions->push_tail(state->switch_state.test_var);
5681 instructions->push_tail(new(ctx) ir_assignment(deref_test_var, test_val));
5682 }
5683
5684
5685 ir_rvalue *
5686 ast_switch_body::hir(exec_list *instructions,
5687 struct _mesa_glsl_parse_state *state)
5688 {
5689 if (stmts != NULL)
5690 stmts->hir(instructions, state);
5691
5692 /* Switch bodies do not have r-values. */
5693 return NULL;
5694 }
5695
5696 ir_rvalue *
5697 ast_case_statement_list::hir(exec_list *instructions,
5698 struct _mesa_glsl_parse_state *state)
5699 {
5700 exec_list default_case, after_default, tmp;
5701
5702 foreach_list_typed (ast_case_statement, case_stmt, link, & this->cases) {
5703 case_stmt->hir(&tmp, state);
5704
5705 /* Default case. */
5706 if (state->switch_state.previous_default && default_case.is_empty()) {
5707 default_case.append_list(&tmp);
5708 continue;
5709 }
5710
5711 /* If default case found, append 'after_default' list. */
5712 if (!default_case.is_empty())
5713 after_default.append_list(&tmp);
5714 else
5715 instructions->append_list(&tmp);
5716 }
5717
5718 /* Handle the default case. This is done here because default might not be
5719 * the last case. We need to add checks against following cases first to see
5720 * if default should be chosen or not.
5721 */
5722 if (!default_case.is_empty()) {
5723
5724 ir_rvalue *const true_val = new (state) ir_constant(true);
5725 ir_dereference_variable *deref_run_default_var =
5726 new(state) ir_dereference_variable(state->switch_state.run_default);
5727
5728 /* Choose to run default case initially, following conditional
5729 * assignments might change this.
5730 */
5731 ir_assignment *const init_var =
5732 new(state) ir_assignment(deref_run_default_var, true_val);
5733 instructions->push_tail(init_var);
5734
5735 /* Default case was the last one, no checks required. */
5736 if (after_default.is_empty()) {
5737 instructions->append_list(&default_case);
5738 return NULL;
5739 }
5740
5741 foreach_in_list(ir_instruction, ir, &after_default) {
5742 ir_assignment *assign = ir->as_assignment();
5743
5744 if (!assign)
5745 continue;
5746
5747 /* Clone the check between case label and init expression. */
5748 ir_expression *exp = (ir_expression*) assign->condition;
5749 ir_expression *clone = exp->clone(state, NULL);
5750
5751 ir_dereference_variable *deref_var =
5752 new(state) ir_dereference_variable(state->switch_state.run_default);
5753 ir_rvalue *const false_val = new (state) ir_constant(false);
5754
5755 ir_assignment *const set_false =
5756 new(state) ir_assignment(deref_var, false_val, clone);
5757
5758 instructions->push_tail(set_false);
5759 }
5760
5761 /* Append default case and all cases after it. */
5762 instructions->append_list(&default_case);
5763 instructions->append_list(&after_default);
5764 }
5765
5766 /* Case statements do not have r-values. */
5767 return NULL;
5768 }
5769
5770 ir_rvalue *
5771 ast_case_statement::hir(exec_list *instructions,
5772 struct _mesa_glsl_parse_state *state)
5773 {
5774 labels->hir(instructions, state);
5775
5776 /* Guard case statements depending on fallthru state. */
5777 ir_dereference_variable *const deref_fallthru_guard =
5778 new(state) ir_dereference_variable(state->switch_state.is_fallthru_var);
5779 ir_if *const test_fallthru = new(state) ir_if(deref_fallthru_guard);
5780
5781 foreach_list_typed (ast_node, stmt, link, & this->stmts)
5782 stmt->hir(& test_fallthru->then_instructions, state);
5783
5784 instructions->push_tail(test_fallthru);
5785
5786 /* Case statements do not have r-values. */
5787 return NULL;
5788 }
5789
5790
5791 ir_rvalue *
5792 ast_case_label_list::hir(exec_list *instructions,
5793 struct _mesa_glsl_parse_state *state)
5794 {
5795 foreach_list_typed (ast_case_label, label, link, & this->labels)
5796 label->hir(instructions, state);
5797
5798 /* Case labels do not have r-values. */
5799 return NULL;
5800 }
5801
5802 ir_rvalue *
5803 ast_case_label::hir(exec_list *instructions,
5804 struct _mesa_glsl_parse_state *state)
5805 {
5806 void *ctx = state;
5807
5808 ir_dereference_variable *deref_fallthru_var =
5809 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
5810
5811 ir_rvalue *const true_val = new(ctx) ir_constant(true);
5812
5813 /* If not default case, ... */
5814 if (this->test_value != NULL) {
5815 /* Conditionally set fallthru state based on
5816 * comparison of cached test expression value to case label.
5817 */
5818 ir_rvalue *const label_rval = this->test_value->hir(instructions, state);
5819 ir_constant *label_const = label_rval->constant_expression_value();
5820
5821 if (!label_const) {
5822 YYLTYPE loc = this->test_value->get_location();
5823
5824 _mesa_glsl_error(& loc, state,
5825 "switch statement case label must be a "
5826 "constant expression");
5827
5828 /* Stuff a dummy value in to allow processing to continue. */
5829 label_const = new(ctx) ir_constant(0);
5830 } else {
5831 ast_expression *previous_label = (ast_expression *)
5832 hash_table_find(state->switch_state.labels_ht,
5833 (void *)(uintptr_t)label_const->value.u[0]);
5834
5835 if (previous_label) {
5836 YYLTYPE loc = this->test_value->get_location();
5837 _mesa_glsl_error(& loc, state, "duplicate case value");
5838
5839 loc = previous_label->get_location();
5840 _mesa_glsl_error(& loc, state, "this is the previous case label");
5841 } else {
5842 hash_table_insert(state->switch_state.labels_ht,
5843 this->test_value,
5844 (void *)(uintptr_t)label_const->value.u[0]);
5845 }
5846 }
5847
5848 ir_dereference_variable *deref_test_var =
5849 new(ctx) ir_dereference_variable(state->switch_state.test_var);
5850
5851 ir_expression *test_cond = new(ctx) ir_expression(ir_binop_all_equal,
5852 label_const,
5853 deref_test_var);
5854
5855 /*
5856 * From GLSL 4.40 specification section 6.2 ("Selection"):
5857 *
5858 * "The type of the init-expression value in a switch statement must
5859 * be a scalar int or uint. The type of the constant-expression value
5860 * in a case label also must be a scalar int or uint. When any pair
5861 * of these values is tested for "equal value" and the types do not
5862 * match, an implicit conversion will be done to convert the int to a
5863 * uint (see section 4.1.10 “Implicit Conversions”) before the compare
5864 * is done."
5865 */
5866 if (label_const->type != state->switch_state.test_var->type) {
5867 YYLTYPE loc = this->test_value->get_location();
5868
5869 const glsl_type *type_a = label_const->type;
5870 const glsl_type *type_b = state->switch_state.test_var->type;
5871
5872 /* Check if int->uint implicit conversion is supported. */
5873 bool integer_conversion_supported =
5874 glsl_type::int_type->can_implicitly_convert_to(glsl_type::uint_type,
5875 state);
5876
5877 if ((!type_a->is_integer() || !type_b->is_integer()) ||
5878 !integer_conversion_supported) {
5879 _mesa_glsl_error(&loc, state, "type mismatch with switch "
5880 "init-expression and case label (%s != %s)",
5881 type_a->name, type_b->name);
5882 } else {
5883 /* Conversion of the case label. */
5884 if (type_a->base_type == GLSL_TYPE_INT) {
5885 if (!apply_implicit_conversion(glsl_type::uint_type,
5886 test_cond->operands[0], state))
5887 _mesa_glsl_error(&loc, state, "implicit type conversion error");
5888 } else {
5889 /* Conversion of the init-expression value. */
5890 if (!apply_implicit_conversion(glsl_type::uint_type,
5891 test_cond->operands[1], state))
5892 _mesa_glsl_error(&loc, state, "implicit type conversion error");
5893 }
5894 }
5895 }
5896
5897 ir_assignment *set_fallthru_on_test =
5898 new(ctx) ir_assignment(deref_fallthru_var, true_val, test_cond);
5899
5900 instructions->push_tail(set_fallthru_on_test);
5901 } else { /* default case */
5902 if (state->switch_state.previous_default) {
5903 YYLTYPE loc = this->get_location();
5904 _mesa_glsl_error(& loc, state,
5905 "multiple default labels in one switch");
5906
5907 loc = state->switch_state.previous_default->get_location();
5908 _mesa_glsl_error(& loc, state, "this is the first default label");
5909 }
5910 state->switch_state.previous_default = this;
5911
5912 /* Set fallthru condition on 'run_default' bool. */
5913 ir_dereference_variable *deref_run_default =
5914 new(ctx) ir_dereference_variable(state->switch_state.run_default);
5915 ir_rvalue *const cond_true = new(ctx) ir_constant(true);
5916 ir_expression *test_cond = new(ctx) ir_expression(ir_binop_all_equal,
5917 cond_true,
5918 deref_run_default);
5919
5920 /* Set falltrhu state. */
5921 ir_assignment *set_fallthru =
5922 new(ctx) ir_assignment(deref_fallthru_var, true_val, test_cond);
5923
5924 instructions->push_tail(set_fallthru);
5925 }
5926
5927 /* Case statements do not have r-values. */
5928 return NULL;
5929 }
5930
5931 void
5932 ast_iteration_statement::condition_to_hir(exec_list *instructions,
5933 struct _mesa_glsl_parse_state *state)
5934 {
5935 void *ctx = state;
5936
5937 if (condition != NULL) {
5938 ir_rvalue *const cond =
5939 condition->hir(instructions, state);
5940
5941 if ((cond == NULL)
5942 || !cond->type->is_boolean() || !cond->type->is_scalar()) {
5943 YYLTYPE loc = condition->get_location();
5944
5945 _mesa_glsl_error(& loc, state,
5946 "loop condition must be scalar boolean");
5947 } else {
5948 /* As the first code in the loop body, generate a block that looks
5949 * like 'if (!condition) break;' as the loop termination condition.
5950 */
5951 ir_rvalue *const not_cond =
5952 new(ctx) ir_expression(ir_unop_logic_not, cond);
5953
5954 ir_if *const if_stmt = new(ctx) ir_if(not_cond);
5955
5956 ir_jump *const break_stmt =
5957 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
5958
5959 if_stmt->then_instructions.push_tail(break_stmt);
5960 instructions->push_tail(if_stmt);
5961 }
5962 }
5963 }
5964
5965
5966 ir_rvalue *
5967 ast_iteration_statement::hir(exec_list *instructions,
5968 struct _mesa_glsl_parse_state *state)
5969 {
5970 void *ctx = state;
5971
5972 /* For-loops and while-loops start a new scope, but do-while loops do not.
5973 */
5974 if (mode != ast_do_while)
5975 state->symbols->push_scope();
5976
5977 if (init_statement != NULL)
5978 init_statement->hir(instructions, state);
5979
5980 ir_loop *const stmt = new(ctx) ir_loop();
5981 instructions->push_tail(stmt);
5982
5983 /* Track the current loop nesting. */
5984 ast_iteration_statement *nesting_ast = state->loop_nesting_ast;
5985
5986 state->loop_nesting_ast = this;
5987
5988 /* Likewise, indicate that following code is closest to a loop,
5989 * NOT closest to a switch.
5990 */
5991 bool saved_is_switch_innermost = state->switch_state.is_switch_innermost;
5992 state->switch_state.is_switch_innermost = false;
5993
5994 if (mode != ast_do_while)
5995 condition_to_hir(&stmt->body_instructions, state);
5996
5997 if (body != NULL)
5998 body->hir(& stmt->body_instructions, state);
5999
6000 if (rest_expression != NULL)
6001 rest_expression->hir(& stmt->body_instructions, state);
6002
6003 if (mode == ast_do_while)
6004 condition_to_hir(&stmt->body_instructions, state);
6005
6006 if (mode != ast_do_while)
6007 state->symbols->pop_scope();
6008
6009 /* Restore previous nesting before returning. */
6010 state->loop_nesting_ast = nesting_ast;
6011 state->switch_state.is_switch_innermost = saved_is_switch_innermost;
6012
6013 /* Loops do not have r-values.
6014 */
6015 return NULL;
6016 }
6017
6018
6019 /**
6020 * Determine if the given type is valid for establishing a default precision
6021 * qualifier.
6022 *
6023 * From GLSL ES 3.00 section 4.5.4 ("Default Precision Qualifiers"):
6024 *
6025 * "The precision statement
6026 *
6027 * precision precision-qualifier type;
6028 *
6029 * can be used to establish a default precision qualifier. The type field
6030 * can be either int or float or any of the sampler types, and the
6031 * precision-qualifier can be lowp, mediump, or highp."
6032 *
6033 * GLSL ES 1.00 has similar language. GLSL 1.30 doesn't allow precision
6034 * qualifiers on sampler types, but this seems like an oversight (since the
6035 * intention of including these in GLSL 1.30 is to allow compatibility with ES
6036 * shaders). So we allow int, float, and all sampler types regardless of GLSL
6037 * version.
6038 */
6039 static bool
6040 is_valid_default_precision_type(const struct glsl_type *const type)
6041 {
6042 if (type == NULL)
6043 return false;
6044
6045 switch (type->base_type) {
6046 case GLSL_TYPE_INT:
6047 case GLSL_TYPE_FLOAT:
6048 /* "int" and "float" are valid, but vectors and matrices are not. */
6049 return type->vector_elements == 1 && type->matrix_columns == 1;
6050 case GLSL_TYPE_SAMPLER:
6051 case GLSL_TYPE_IMAGE:
6052 case GLSL_TYPE_ATOMIC_UINT:
6053 return true;
6054 default:
6055 return false;
6056 }
6057 }
6058
6059
6060 ir_rvalue *
6061 ast_type_specifier::hir(exec_list *instructions,
6062 struct _mesa_glsl_parse_state *state)
6063 {
6064 if (this->default_precision == ast_precision_none && this->structure == NULL)
6065 return NULL;
6066
6067 YYLTYPE loc = this->get_location();
6068
6069 /* If this is a precision statement, check that the type to which it is
6070 * applied is either float or int.
6071 *
6072 * From section 4.5.3 of the GLSL 1.30 spec:
6073 * "The precision statement
6074 * precision precision-qualifier type;
6075 * can be used to establish a default precision qualifier. The type
6076 * field can be either int or float [...]. Any other types or
6077 * qualifiers will result in an error.
6078 */
6079 if (this->default_precision != ast_precision_none) {
6080 if (!state->check_precision_qualifiers_allowed(&loc))
6081 return NULL;
6082
6083 if (this->structure != NULL) {
6084 _mesa_glsl_error(&loc, state,
6085 "precision qualifiers do not apply to structures");
6086 return NULL;
6087 }
6088
6089 if (this->array_specifier != NULL) {
6090 _mesa_glsl_error(&loc, state,
6091 "default precision statements do not apply to "
6092 "arrays");
6093 return NULL;
6094 }
6095
6096 const struct glsl_type *const type =
6097 state->symbols->get_type(this->type_name);
6098 if (!is_valid_default_precision_type(type)) {
6099 _mesa_glsl_error(&loc, state,
6100 "default precision statements apply only to "
6101 "float, int, and opaque types");
6102 return NULL;
6103 }
6104
6105 if (state->es_shader) {
6106 /* Section 4.5.3 (Default Precision Qualifiers) of the GLSL ES 1.00
6107 * spec says:
6108 *
6109 * "Non-precision qualified declarations will use the precision
6110 * qualifier specified in the most recent precision statement
6111 * that is still in scope. The precision statement has the same
6112 * scoping rules as variable declarations. If it is declared
6113 * inside a compound statement, its effect stops at the end of
6114 * the innermost statement it was declared in. Precision
6115 * statements in nested scopes override precision statements in
6116 * outer scopes. Multiple precision statements for the same basic
6117 * type can appear inside the same scope, with later statements
6118 * overriding earlier statements within that scope."
6119 *
6120 * Default precision specifications follow the same scope rules as
6121 * variables. So, we can track the state of the default precision
6122 * qualifiers in the symbol table, and the rules will just work. This
6123 * is a slight abuse of the symbol table, but it has the semantics
6124 * that we want.
6125 */
6126 state->symbols->add_default_precision_qualifier(this->type_name,
6127 this->default_precision);
6128 }
6129
6130 /* FINISHME: Translate precision statements into IR. */
6131 return NULL;
6132 }
6133
6134 /* _mesa_ast_set_aggregate_type() sets the <structure> field so that
6135 * process_record_constructor() can do type-checking on C-style initializer
6136 * expressions of structs, but ast_struct_specifier should only be translated
6137 * to HIR if it is declaring the type of a structure.
6138 *
6139 * The ->is_declaration field is false for initializers of variables
6140 * declared separately from the struct's type definition.
6141 *
6142 * struct S { ... }; (is_declaration = true)
6143 * struct T { ... } t = { ... }; (is_declaration = true)
6144 * S s = { ... }; (is_declaration = false)
6145 */
6146 if (this->structure != NULL && this->structure->is_declaration)
6147 return this->structure->hir(instructions, state);
6148
6149 return NULL;
6150 }
6151
6152
6153 /**
6154 * Process a structure or interface block tree into an array of structure fields
6155 *
6156 * After parsing, where there are some syntax differnces, structures and
6157 * interface blocks are almost identical. They are similar enough that the
6158 * AST for each can be processed the same way into a set of
6159 * \c glsl_struct_field to describe the members.
6160 *
6161 * If we're processing an interface block, var_mode should be the type of the
6162 * interface block (ir_var_shader_in, ir_var_shader_out, ir_var_uniform or
6163 * ir_var_shader_storage). If we're processing a structure, var_mode should be
6164 * ir_var_auto.
6165 *
6166 * \return
6167 * The number of fields processed. A pointer to the array structure fields is
6168 * stored in \c *fields_ret.
6169 */
6170 unsigned
6171 ast_process_struct_or_iface_block_members(exec_list *instructions,
6172 struct _mesa_glsl_parse_state *state,
6173 exec_list *declarations,
6174 glsl_struct_field **fields_ret,
6175 bool is_interface,
6176 enum glsl_matrix_layout matrix_layout,
6177 bool allow_reserved_names,
6178 ir_variable_mode var_mode,
6179 ast_type_qualifier *layout,
6180 unsigned block_stream)
6181 {
6182 unsigned decl_count = 0;
6183
6184 /* Make an initial pass over the list of fields to determine how
6185 * many there are. Each element in this list is an ast_declarator_list.
6186 * This means that we actually need to count the number of elements in the
6187 * 'declarations' list in each of the elements.
6188 */
6189 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
6190 decl_count += decl_list->declarations.length();
6191 }
6192
6193 /* Allocate storage for the fields and process the field
6194 * declarations. As the declarations are processed, try to also convert
6195 * the types to HIR. This ensures that structure definitions embedded in
6196 * other structure definitions or in interface blocks are processed.
6197 */
6198 glsl_struct_field *const fields = ralloc_array(state, glsl_struct_field,
6199 decl_count);
6200
6201 unsigned i = 0;
6202 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
6203 const char *type_name;
6204 YYLTYPE loc = decl_list->get_location();
6205
6206 decl_list->type->specifier->hir(instructions, state);
6207
6208 /* Section 10.9 of the GLSL ES 1.00 specification states that
6209 * embedded structure definitions have been removed from the language.
6210 */
6211 if (state->es_shader && decl_list->type->specifier->structure != NULL) {
6212 _mesa_glsl_error(&loc, state, "embedded structure definitions are "
6213 "not allowed in GLSL ES 1.00");
6214 }
6215
6216 const glsl_type *decl_type =
6217 decl_list->type->glsl_type(& type_name, state);
6218
6219 const struct ast_type_qualifier *const qual =
6220 &decl_list->type->qualifier;
6221
6222 /* From section 4.3.9 of the GLSL 4.40 spec:
6223 *
6224 * "[In interface blocks] opaque types are not allowed."
6225 *
6226 * It should be impossible for decl_type to be NULL here. Cases that
6227 * might naturally lead to decl_type being NULL, especially for the
6228 * is_interface case, will have resulted in compilation having
6229 * already halted due to a syntax error.
6230 */
6231 assert(decl_type);
6232
6233 if (is_interface && decl_type->contains_opaque()) {
6234 _mesa_glsl_error(&loc, state,
6235 "uniform/buffer in non-default interface block contains "
6236 "opaque variable");
6237 }
6238
6239 if (decl_type->contains_atomic()) {
6240 /* From section 4.1.7.3 of the GLSL 4.40 spec:
6241 *
6242 * "Members of structures cannot be declared as atomic counter
6243 * types."
6244 */
6245 _mesa_glsl_error(&loc, state, "atomic counter in structure, "
6246 "shader storage block or uniform block");
6247 }
6248
6249 if (decl_type->contains_image()) {
6250 /* FINISHME: Same problem as with atomic counters.
6251 * FINISHME: Request clarification from Khronos and add
6252 * FINISHME: spec quotation here.
6253 */
6254 _mesa_glsl_error(&loc, state,
6255 "image in structure, shader storage block or "
6256 "uniform block");
6257 }
6258
6259 if (qual->flags.q.explicit_binding) {
6260 _mesa_glsl_error(&loc, state,
6261 "binding layout qualifier cannot be applied "
6262 "to struct or interface block members");
6263 }
6264
6265 if (qual->flags.q.std140 ||
6266 qual->flags.q.std430 ||
6267 qual->flags.q.packed ||
6268 qual->flags.q.shared) {
6269 _mesa_glsl_error(&loc, state,
6270 "uniform/shader storage block layout qualifiers "
6271 "std140, std430, packed, and shared can only be "
6272 "applied to uniform/shader storage blocks, not "
6273 "members");
6274 }
6275
6276 if (qual->flags.q.constant) {
6277 _mesa_glsl_error(&loc, state,
6278 "const storage qualifier cannot be applied "
6279 "to struct or interface block members");
6280 }
6281
6282 /* From Section 4.4.2.3 (Geometry Outputs) of the GLSL 4.50 spec:
6283 *
6284 * "A block member may be declared with a stream identifier, but
6285 * the specified stream must match the stream associated with the
6286 * containing block."
6287 */
6288 if (qual->flags.q.explicit_stream) {
6289 unsigned qual_stream;
6290 if (process_qualifier_constant(state, &loc, "stream",
6291 qual->stream, &qual_stream) &&
6292 qual_stream != block_stream) {
6293 _mesa_glsl_error(&loc, state, "stream layout qualifier on "
6294 "interface block member does not match "
6295 "the interface block (%d vs %d)", qual->stream,
6296 block_stream);
6297 }
6298 }
6299
6300 if (qual->flags.q.uniform && qual->has_interpolation()) {
6301 _mesa_glsl_error(&loc, state,
6302 "interpolation qualifiers cannot be used "
6303 "with uniform interface blocks");
6304 }
6305
6306 if ((qual->flags.q.uniform || !is_interface) &&
6307 qual->has_auxiliary_storage()) {
6308 _mesa_glsl_error(&loc, state,
6309 "auxiliary storage qualifiers cannot be used "
6310 "in uniform blocks or structures.");
6311 }
6312
6313 if (qual->flags.q.row_major || qual->flags.q.column_major) {
6314 if (!qual->flags.q.uniform && !qual->flags.q.buffer) {
6315 _mesa_glsl_error(&loc, state,
6316 "row_major and column_major can only be "
6317 "applied to interface blocks");
6318 } else
6319 validate_matrix_layout_for_type(state, &loc, decl_type, NULL);
6320 }
6321
6322 if (qual->flags.q.read_only && qual->flags.q.write_only) {
6323 _mesa_glsl_error(&loc, state, "buffer variable can't be both "
6324 "readonly and writeonly.");
6325 }
6326
6327 foreach_list_typed (ast_declaration, decl, link,
6328 &decl_list->declarations) {
6329 YYLTYPE loc = decl->get_location();
6330
6331 if (!allow_reserved_names)
6332 validate_identifier(decl->identifier, loc, state);
6333
6334 const struct glsl_type *field_type =
6335 process_array_type(&loc, decl_type, decl->array_specifier, state);
6336 validate_array_dimensions(field_type, state, &loc);
6337 fields[i].type = field_type;
6338 fields[i].name = decl->identifier;
6339 fields[i].location = -1;
6340 fields[i].interpolation =
6341 interpret_interpolation_qualifier(qual, var_mode, state, &loc);
6342 fields[i].centroid = qual->flags.q.centroid ? 1 : 0;
6343 fields[i].sample = qual->flags.q.sample ? 1 : 0;
6344 fields[i].patch = qual->flags.q.patch ? 1 : 0;
6345 fields[i].precision = qual->precision;
6346
6347 /* Propogate row- / column-major information down the fields of the
6348 * structure or interface block. Structures need this data because
6349 * the structure may contain a structure that contains ... a matrix
6350 * that need the proper layout.
6351 */
6352 if (field_type->without_array()->is_matrix()
6353 || field_type->without_array()->is_record()) {
6354 /* If no layout is specified for the field, inherit the layout
6355 * from the block.
6356 */
6357 fields[i].matrix_layout = matrix_layout;
6358
6359 if (qual->flags.q.row_major)
6360 fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
6361 else if (qual->flags.q.column_major)
6362 fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
6363
6364 /* If we're processing an interface block, the matrix layout must
6365 * be decided by this point.
6366 */
6367 assert(!is_interface
6368 || fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR
6369 || fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_COLUMN_MAJOR);
6370 }
6371
6372 /* Image qualifiers are allowed on buffer variables, which can only
6373 * be defined inside shader storage buffer objects
6374 */
6375 if (layout && var_mode == ir_var_shader_storage) {
6376 /* For readonly and writeonly qualifiers the field definition,
6377 * if set, overwrites the layout qualifier.
6378 */
6379 if (qual->flags.q.read_only) {
6380 fields[i].image_read_only = true;
6381 fields[i].image_write_only = false;
6382 } else if (qual->flags.q.write_only) {
6383 fields[i].image_read_only = false;
6384 fields[i].image_write_only = true;
6385 } else {
6386 fields[i].image_read_only = layout->flags.q.read_only;
6387 fields[i].image_write_only = layout->flags.q.write_only;
6388 }
6389
6390 /* For other qualifiers, we set the flag if either the layout
6391 * qualifier or the field qualifier are set
6392 */
6393 fields[i].image_coherent = qual->flags.q.coherent ||
6394 layout->flags.q.coherent;
6395 fields[i].image_volatile = qual->flags.q._volatile ||
6396 layout->flags.q._volatile;
6397 fields[i].image_restrict = qual->flags.q.restrict_flag ||
6398 layout->flags.q.restrict_flag;
6399 }
6400
6401 i++;
6402 }
6403 }
6404
6405 assert(i == decl_count);
6406
6407 *fields_ret = fields;
6408 return decl_count;
6409 }
6410
6411
6412 ir_rvalue *
6413 ast_struct_specifier::hir(exec_list *instructions,
6414 struct _mesa_glsl_parse_state *state)
6415 {
6416 YYLTYPE loc = this->get_location();
6417
6418 /* Section 4.1.8 (Structures) of the GLSL 1.10 spec says:
6419 *
6420 * "Anonymous structures are not supported; so embedded structures must
6421 * have a declarator. A name given to an embedded struct is scoped at
6422 * the same level as the struct it is embedded in."
6423 *
6424 * The same section of the GLSL 1.20 spec says:
6425 *
6426 * "Anonymous structures are not supported. Embedded structures are not
6427 * supported.
6428 *
6429 * struct S { float f; };
6430 * struct T {
6431 * S; // Error: anonymous structures disallowed
6432 * struct { ... }; // Error: embedded structures disallowed
6433 * S s; // Okay: nested structures with name are allowed
6434 * };"
6435 *
6436 * The GLSL ES 1.00 and 3.00 specs have similar langauge and examples. So,
6437 * we allow embedded structures in 1.10 only.
6438 */
6439 if (state->language_version != 110 && state->struct_specifier_depth != 0)
6440 _mesa_glsl_error(&loc, state,
6441 "embedded structure declarations are not allowed");
6442
6443 state->struct_specifier_depth++;
6444
6445 glsl_struct_field *fields;
6446 unsigned decl_count =
6447 ast_process_struct_or_iface_block_members(instructions,
6448 state,
6449 &this->declarations,
6450 &fields,
6451 false,
6452 GLSL_MATRIX_LAYOUT_INHERITED,
6453 false /* allow_reserved_names */,
6454 ir_var_auto,
6455 NULL,
6456 0 /* for interface only */);
6457
6458 validate_identifier(this->name, loc, state);
6459
6460 const glsl_type *t =
6461 glsl_type::get_record_instance(fields, decl_count, this->name);
6462
6463 if (!state->symbols->add_type(name, t)) {
6464 _mesa_glsl_error(& loc, state, "struct `%s' previously defined", name);
6465 } else {
6466 const glsl_type **s = reralloc(state, state->user_structures,
6467 const glsl_type *,
6468 state->num_user_structures + 1);
6469 if (s != NULL) {
6470 s[state->num_user_structures] = t;
6471 state->user_structures = s;
6472 state->num_user_structures++;
6473 }
6474 }
6475
6476 state->struct_specifier_depth--;
6477
6478 /* Structure type definitions do not have r-values.
6479 */
6480 return NULL;
6481 }
6482
6483
6484 /**
6485 * Visitor class which detects whether a given interface block has been used.
6486 */
6487 class interface_block_usage_visitor : public ir_hierarchical_visitor
6488 {
6489 public:
6490 interface_block_usage_visitor(ir_variable_mode mode, const glsl_type *block)
6491 : mode(mode), block(block), found(false)
6492 {
6493 }
6494
6495 virtual ir_visitor_status visit(ir_dereference_variable *ir)
6496 {
6497 if (ir->var->data.mode == mode && ir->var->get_interface_type() == block) {
6498 found = true;
6499 return visit_stop;
6500 }
6501 return visit_continue;
6502 }
6503
6504 bool usage_found() const
6505 {
6506 return this->found;
6507 }
6508
6509 private:
6510 ir_variable_mode mode;
6511 const glsl_type *block;
6512 bool found;
6513 };
6514
6515 static bool
6516 is_unsized_array_last_element(ir_variable *v)
6517 {
6518 const glsl_type *interface_type = v->get_interface_type();
6519 int length = interface_type->length;
6520
6521 assert(v->type->is_unsized_array());
6522
6523 /* Check if it is the last element of the interface */
6524 if (strcmp(interface_type->fields.structure[length-1].name, v->name) == 0)
6525 return true;
6526 return false;
6527 }
6528
6529 ir_rvalue *
6530 ast_interface_block::hir(exec_list *instructions,
6531 struct _mesa_glsl_parse_state *state)
6532 {
6533 YYLTYPE loc = this->get_location();
6534
6535 /* Interface blocks must be declared at global scope */
6536 if (state->current_function != NULL) {
6537 _mesa_glsl_error(&loc, state,
6538 "Interface block `%s' must be declared "
6539 "at global scope",
6540 this->block_name);
6541 }
6542
6543 if (!this->layout.flags.q.buffer &&
6544 this->layout.flags.q.std430) {
6545 _mesa_glsl_error(&loc, state,
6546 "std430 storage block layout qualifier is supported "
6547 "only for shader storage blocks");
6548 }
6549
6550 /* The ast_interface_block has a list of ast_declarator_lists. We
6551 * need to turn those into ir_variables with an association
6552 * with this uniform block.
6553 */
6554 enum glsl_interface_packing packing;
6555 if (this->layout.flags.q.shared) {
6556 packing = GLSL_INTERFACE_PACKING_SHARED;
6557 } else if (this->layout.flags.q.packed) {
6558 packing = GLSL_INTERFACE_PACKING_PACKED;
6559 } else if (this->layout.flags.q.std430) {
6560 packing = GLSL_INTERFACE_PACKING_STD430;
6561 } else {
6562 /* The default layout is std140.
6563 */
6564 packing = GLSL_INTERFACE_PACKING_STD140;
6565 }
6566
6567 ir_variable_mode var_mode;
6568 const char *iface_type_name;
6569 if (this->layout.flags.q.in) {
6570 var_mode = ir_var_shader_in;
6571 iface_type_name = "in";
6572 } else if (this->layout.flags.q.out) {
6573 var_mode = ir_var_shader_out;
6574 iface_type_name = "out";
6575 } else if (this->layout.flags.q.uniform) {
6576 var_mode = ir_var_uniform;
6577 iface_type_name = "uniform";
6578 } else if (this->layout.flags.q.buffer) {
6579 var_mode = ir_var_shader_storage;
6580 iface_type_name = "buffer";
6581 } else {
6582 var_mode = ir_var_auto;
6583 iface_type_name = "UNKNOWN";
6584 assert(!"interface block layout qualifier not found!");
6585 }
6586
6587 enum glsl_matrix_layout matrix_layout = GLSL_MATRIX_LAYOUT_INHERITED;
6588 if (this->layout.flags.q.row_major)
6589 matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
6590 else if (this->layout.flags.q.column_major)
6591 matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
6592
6593 bool redeclaring_per_vertex = strcmp(this->block_name, "gl_PerVertex") == 0;
6594 exec_list declared_variables;
6595 glsl_struct_field *fields;
6596
6597 /* Treat an interface block as one level of nesting, so that embedded struct
6598 * specifiers will be disallowed.
6599 */
6600 state->struct_specifier_depth++;
6601
6602 /* For blocks that accept memory qualifiers (i.e. shader storage), verify
6603 * that we don't have incompatible qualifiers
6604 */
6605 if (this->layout.flags.q.read_only && this->layout.flags.q.write_only) {
6606 _mesa_glsl_error(&loc, state,
6607 "Interface block sets both readonly and writeonly");
6608 }
6609
6610 unsigned qual_stream;
6611 if (!process_qualifier_constant(state, &loc, "stream", this->layout.stream,
6612 &qual_stream) ||
6613 !validate_stream_qualifier(&loc, state, qual_stream)) {
6614 /* If the stream qualifier is invalid it doesn't make sense to continue
6615 * on and try to compare stream layouts on member variables against it
6616 * so just return early.
6617 */
6618 return NULL;
6619 }
6620
6621 unsigned int num_variables =
6622 ast_process_struct_or_iface_block_members(&declared_variables,
6623 state,
6624 &this->declarations,
6625 &fields,
6626 true,
6627 matrix_layout,
6628 redeclaring_per_vertex,
6629 var_mode,
6630 &this->layout,
6631 qual_stream);
6632
6633 state->struct_specifier_depth--;
6634
6635 if (!redeclaring_per_vertex) {
6636 validate_identifier(this->block_name, loc, state);
6637
6638 /* From section 4.3.9 ("Interface Blocks") of the GLSL 4.50 spec:
6639 *
6640 * "Block names have no other use within a shader beyond interface
6641 * matching; it is a compile-time error to use a block name at global
6642 * scope for anything other than as a block name."
6643 */
6644 ir_variable *var = state->symbols->get_variable(this->block_name);
6645 if (var && !var->type->is_interface()) {
6646 _mesa_glsl_error(&loc, state, "Block name `%s' is "
6647 "already used in the scope.",
6648 this->block_name);
6649 }
6650 }
6651
6652 const glsl_type *earlier_per_vertex = NULL;
6653 if (redeclaring_per_vertex) {
6654 /* Find the previous declaration of gl_PerVertex. If we're redeclaring
6655 * the named interface block gl_in, we can find it by looking at the
6656 * previous declaration of gl_in. Otherwise we can find it by looking
6657 * at the previous decalartion of any of the built-in outputs,
6658 * e.g. gl_Position.
6659 *
6660 * Also check that the instance name and array-ness of the redeclaration
6661 * are correct.
6662 */
6663 switch (var_mode) {
6664 case ir_var_shader_in:
6665 if (ir_variable *earlier_gl_in =
6666 state->symbols->get_variable("gl_in")) {
6667 earlier_per_vertex = earlier_gl_in->get_interface_type();
6668 } else {
6669 _mesa_glsl_error(&loc, state,
6670 "redeclaration of gl_PerVertex input not allowed "
6671 "in the %s shader",
6672 _mesa_shader_stage_to_string(state->stage));
6673 }
6674 if (this->instance_name == NULL ||
6675 strcmp(this->instance_name, "gl_in") != 0 || this->array_specifier == NULL ||
6676 !this->array_specifier->is_single_dimension()) {
6677 _mesa_glsl_error(&loc, state,
6678 "gl_PerVertex input must be redeclared as "
6679 "gl_in[]");
6680 }
6681 break;
6682 case ir_var_shader_out:
6683 if (ir_variable *earlier_gl_Position =
6684 state->symbols->get_variable("gl_Position")) {
6685 earlier_per_vertex = earlier_gl_Position->get_interface_type();
6686 } else if (ir_variable *earlier_gl_out =
6687 state->symbols->get_variable("gl_out")) {
6688 earlier_per_vertex = earlier_gl_out->get_interface_type();
6689 } else {
6690 _mesa_glsl_error(&loc, state,
6691 "redeclaration of gl_PerVertex output not "
6692 "allowed in the %s shader",
6693 _mesa_shader_stage_to_string(state->stage));
6694 }
6695 if (state->stage == MESA_SHADER_TESS_CTRL) {
6696 if (this->instance_name == NULL ||
6697 strcmp(this->instance_name, "gl_out") != 0 || this->array_specifier == NULL) {
6698 _mesa_glsl_error(&loc, state,
6699 "gl_PerVertex output must be redeclared as "
6700 "gl_out[]");
6701 }
6702 } else {
6703 if (this->instance_name != NULL) {
6704 _mesa_glsl_error(&loc, state,
6705 "gl_PerVertex output may not be redeclared with "
6706 "an instance name");
6707 }
6708 }
6709 break;
6710 default:
6711 _mesa_glsl_error(&loc, state,
6712 "gl_PerVertex must be declared as an input or an "
6713 "output");
6714 break;
6715 }
6716
6717 if (earlier_per_vertex == NULL) {
6718 /* An error has already been reported. Bail out to avoid null
6719 * dereferences later in this function.
6720 */
6721 return NULL;
6722 }
6723
6724 /* Copy locations from the old gl_PerVertex interface block. */
6725 for (unsigned i = 0; i < num_variables; i++) {
6726 int j = earlier_per_vertex->field_index(fields[i].name);
6727 if (j == -1) {
6728 _mesa_glsl_error(&loc, state,
6729 "redeclaration of gl_PerVertex must be a subset "
6730 "of the built-in members of gl_PerVertex");
6731 } else {
6732 fields[i].location =
6733 earlier_per_vertex->fields.structure[j].location;
6734 fields[i].interpolation =
6735 earlier_per_vertex->fields.structure[j].interpolation;
6736 fields[i].centroid =
6737 earlier_per_vertex->fields.structure[j].centroid;
6738 fields[i].sample =
6739 earlier_per_vertex->fields.structure[j].sample;
6740 fields[i].patch =
6741 earlier_per_vertex->fields.structure[j].patch;
6742 fields[i].precision =
6743 earlier_per_vertex->fields.structure[j].precision;
6744 }
6745 }
6746
6747 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10
6748 * spec:
6749 *
6750 * If a built-in interface block is redeclared, it must appear in
6751 * the shader before any use of any member included in the built-in
6752 * declaration, or a compilation error will result.
6753 *
6754 * This appears to be a clarification to the behaviour established for
6755 * gl_PerVertex by GLSL 1.50, therefore we implement this behaviour
6756 * regardless of GLSL version.
6757 */
6758 interface_block_usage_visitor v(var_mode, earlier_per_vertex);
6759 v.run(instructions);
6760 if (v.usage_found()) {
6761 _mesa_glsl_error(&loc, state,
6762 "redeclaration of a built-in interface block must "
6763 "appear before any use of any member of the "
6764 "interface block");
6765 }
6766 }
6767
6768 const glsl_type *block_type =
6769 glsl_type::get_interface_instance(fields,
6770 num_variables,
6771 packing,
6772 this->block_name);
6773
6774 if (!state->symbols->add_interface(block_type->name, block_type, var_mode)) {
6775 YYLTYPE loc = this->get_location();
6776 _mesa_glsl_error(&loc, state, "interface block `%s' with type `%s' "
6777 "already taken in the current scope",
6778 this->block_name, iface_type_name);
6779 }
6780
6781 /* Since interface blocks cannot contain statements, it should be
6782 * impossible for the block to generate any instructions.
6783 */
6784 assert(declared_variables.is_empty());
6785
6786 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
6787 *
6788 * Geometry shader input variables get the per-vertex values written
6789 * out by vertex shader output variables of the same names. Since a
6790 * geometry shader operates on a set of vertices, each input varying
6791 * variable (or input block, see interface blocks below) needs to be
6792 * declared as an array.
6793 */
6794 if (state->stage == MESA_SHADER_GEOMETRY && this->array_specifier == NULL &&
6795 var_mode == ir_var_shader_in) {
6796 _mesa_glsl_error(&loc, state, "geometry shader inputs must be arrays");
6797 } else if ((state->stage == MESA_SHADER_TESS_CTRL ||
6798 state->stage == MESA_SHADER_TESS_EVAL) &&
6799 this->array_specifier == NULL &&
6800 var_mode == ir_var_shader_in) {
6801 _mesa_glsl_error(&loc, state, "per-vertex tessellation shader inputs must be arrays");
6802 } else if (state->stage == MESA_SHADER_TESS_CTRL &&
6803 this->array_specifier == NULL &&
6804 var_mode == ir_var_shader_out) {
6805 _mesa_glsl_error(&loc, state, "tessellation control shader outputs must be arrays");
6806 }
6807
6808
6809 /* Page 39 (page 45 of the PDF) of section 4.3.7 in the GLSL ES 3.00 spec
6810 * says:
6811 *
6812 * "If an instance name (instance-name) is used, then it puts all the
6813 * members inside a scope within its own name space, accessed with the
6814 * field selector ( . ) operator (analogously to structures)."
6815 */
6816 if (this->instance_name) {
6817 if (redeclaring_per_vertex) {
6818 /* When a built-in in an unnamed interface block is redeclared,
6819 * get_variable_being_redeclared() calls
6820 * check_builtin_array_max_size() to make sure that built-in array
6821 * variables aren't redeclared to illegal sizes. But we're looking
6822 * at a redeclaration of a named built-in interface block. So we
6823 * have to manually call check_builtin_array_max_size() for all parts
6824 * of the interface that are arrays.
6825 */
6826 for (unsigned i = 0; i < num_variables; i++) {
6827 if (fields[i].type->is_array()) {
6828 const unsigned size = fields[i].type->array_size();
6829 check_builtin_array_max_size(fields[i].name, size, loc, state);
6830 }
6831 }
6832 } else {
6833 validate_identifier(this->instance_name, loc, state);
6834 }
6835
6836 ir_variable *var;
6837
6838 if (this->array_specifier != NULL) {
6839 const glsl_type *block_array_type =
6840 process_array_type(&loc, block_type, this->array_specifier, state);
6841
6842 /* Section 4.3.7 (Interface Blocks) of the GLSL 1.50 spec says:
6843 *
6844 * For uniform blocks declared an array, each individual array
6845 * element corresponds to a separate buffer object backing one
6846 * instance of the block. As the array size indicates the number
6847 * of buffer objects needed, uniform block array declarations
6848 * must specify an array size.
6849 *
6850 * And a few paragraphs later:
6851 *
6852 * Geometry shader input blocks must be declared as arrays and
6853 * follow the array declaration and linking rules for all
6854 * geometry shader inputs. All other input and output block
6855 * arrays must specify an array size.
6856 *
6857 * The same applies to tessellation shaders.
6858 *
6859 * The upshot of this is that the only circumstance where an
6860 * interface array size *doesn't* need to be specified is on a
6861 * geometry shader input, tessellation control shader input,
6862 * tessellation control shader output, and tessellation evaluation
6863 * shader input.
6864 */
6865 if (block_array_type->is_unsized_array()) {
6866 bool allow_inputs = state->stage == MESA_SHADER_GEOMETRY ||
6867 state->stage == MESA_SHADER_TESS_CTRL ||
6868 state->stage == MESA_SHADER_TESS_EVAL;
6869 bool allow_outputs = state->stage == MESA_SHADER_TESS_CTRL;
6870
6871 if (this->layout.flags.q.in) {
6872 if (!allow_inputs)
6873 _mesa_glsl_error(&loc, state,
6874 "unsized input block arrays not allowed in "
6875 "%s shader",
6876 _mesa_shader_stage_to_string(state->stage));
6877 } else if (this->layout.flags.q.out) {
6878 if (!allow_outputs)
6879 _mesa_glsl_error(&loc, state,
6880 "unsized output block arrays not allowed in "
6881 "%s shader",
6882 _mesa_shader_stage_to_string(state->stage));
6883 } else {
6884 /* by elimination, this is a uniform block array */
6885 _mesa_glsl_error(&loc, state,
6886 "unsized uniform block arrays not allowed in "
6887 "%s shader",
6888 _mesa_shader_stage_to_string(state->stage));
6889 }
6890 }
6891
6892 /* From section 4.3.9 (Interface Blocks) of the GLSL ES 3.10 spec:
6893 *
6894 * * Arrays of arrays of blocks are not allowed
6895 */
6896 if (state->es_shader && block_array_type->is_array() &&
6897 block_array_type->fields.array->is_array()) {
6898 _mesa_glsl_error(&loc, state,
6899 "arrays of arrays interface blocks are "
6900 "not allowed");
6901 }
6902
6903 var = new(state) ir_variable(block_array_type,
6904 this->instance_name,
6905 var_mode);
6906 } else {
6907 var = new(state) ir_variable(block_type,
6908 this->instance_name,
6909 var_mode);
6910 }
6911
6912 var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
6913 ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
6914
6915 if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
6916 var->data.read_only = true;
6917
6918 if (state->stage == MESA_SHADER_GEOMETRY && var_mode == ir_var_shader_in)
6919 handle_geometry_shader_input_decl(state, loc, var);
6920 else if ((state->stage == MESA_SHADER_TESS_CTRL ||
6921 state->stage == MESA_SHADER_TESS_EVAL) && var_mode == ir_var_shader_in)
6922 handle_tess_shader_input_decl(state, loc, var);
6923 else if (state->stage == MESA_SHADER_TESS_CTRL && var_mode == ir_var_shader_out)
6924 handle_tess_ctrl_shader_output_decl(state, loc, var);
6925
6926 for (unsigned i = 0; i < num_variables; i++) {
6927 if (fields[i].type->is_unsized_array()) {
6928 if (var_mode == ir_var_shader_storage) {
6929 if (i != (num_variables - 1)) {
6930 _mesa_glsl_error(&loc, state, "unsized array `%s' definition: "
6931 "only last member of a shader storage block "
6932 "can be defined as unsized array",
6933 fields[i].name);
6934 }
6935 } else {
6936 /* From GLSL ES 3.10 spec, section 4.1.9 "Arrays":
6937 *
6938 * "If an array is declared as the last member of a shader storage
6939 * block and the size is not specified at compile-time, it is
6940 * sized at run-time. In all other cases, arrays are sized only
6941 * at compile-time."
6942 */
6943 if (state->es_shader) {
6944 _mesa_glsl_error(&loc, state, "unsized array `%s' definition: "
6945 "only last member of a shader storage block "
6946 "can be defined as unsized array",
6947 fields[i].name);
6948 }
6949 }
6950 }
6951 }
6952
6953 if (ir_variable *earlier =
6954 state->symbols->get_variable(this->instance_name)) {
6955 if (!redeclaring_per_vertex) {
6956 _mesa_glsl_error(&loc, state, "`%s' redeclared",
6957 this->instance_name);
6958 }
6959 earlier->data.how_declared = ir_var_declared_normally;
6960 earlier->type = var->type;
6961 earlier->reinit_interface_type(block_type);
6962 delete var;
6963 } else {
6964 if (this->layout.flags.q.explicit_binding) {
6965 apply_explicit_binding(state, &loc, var, var->type,
6966 &this->layout);
6967 }
6968
6969 var->data.stream = qual_stream;
6970
6971 state->symbols->add_variable(var);
6972 instructions->push_tail(var);
6973 }
6974 } else {
6975 /* In order to have an array size, the block must also be declared with
6976 * an instance name.
6977 */
6978 assert(this->array_specifier == NULL);
6979
6980 for (unsigned i = 0; i < num_variables; i++) {
6981 ir_variable *var =
6982 new(state) ir_variable(fields[i].type,
6983 ralloc_strdup(state, fields[i].name),
6984 var_mode);
6985 var->data.interpolation = fields[i].interpolation;
6986 var->data.centroid = fields[i].centroid;
6987 var->data.sample = fields[i].sample;
6988 var->data.patch = fields[i].patch;
6989 var->data.stream = qual_stream;
6990 var->init_interface_type(block_type);
6991
6992 if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
6993 var->data.read_only = true;
6994
6995 /* Precision qualifiers do not have any meaning in Desktop GLSL */
6996 if (state->es_shader) {
6997 var->data.precision =
6998 select_gles_precision(fields[i].precision, fields[i].type,
6999 state, &loc);
7000 }
7001
7002 if (fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED) {
7003 var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
7004 ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
7005 } else {
7006 var->data.matrix_layout = fields[i].matrix_layout;
7007 }
7008
7009 if (var->data.mode == ir_var_shader_storage) {
7010 var->data.image_read_only = fields[i].image_read_only;
7011 var->data.image_write_only = fields[i].image_write_only;
7012 var->data.image_coherent = fields[i].image_coherent;
7013 var->data.image_volatile = fields[i].image_volatile;
7014 var->data.image_restrict = fields[i].image_restrict;
7015 }
7016
7017 /* Examine var name here since var may get deleted in the next call */
7018 bool var_is_gl_id = is_gl_identifier(var->name);
7019
7020 if (redeclaring_per_vertex) {
7021 ir_variable *earlier =
7022 get_variable_being_redeclared(var, loc, state,
7023 true /* allow_all_redeclarations */);
7024 if (!var_is_gl_id || earlier == NULL) {
7025 _mesa_glsl_error(&loc, state,
7026 "redeclaration of gl_PerVertex can only "
7027 "include built-in variables");
7028 } else if (earlier->data.how_declared == ir_var_declared_normally) {
7029 _mesa_glsl_error(&loc, state,
7030 "`%s' has already been redeclared",
7031 earlier->name);
7032 } else {
7033 earlier->data.how_declared = ir_var_declared_in_block;
7034 earlier->reinit_interface_type(block_type);
7035 }
7036 continue;
7037 }
7038
7039 if (state->symbols->get_variable(var->name) != NULL)
7040 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
7041
7042 /* Propagate the "binding" keyword into this UBO/SSBO's fields.
7043 * The UBO declaration itself doesn't get an ir_variable unless it
7044 * has an instance name. This is ugly.
7045 */
7046 if (this->layout.flags.q.explicit_binding) {
7047 apply_explicit_binding(state, &loc, var,
7048 var->get_interface_type(), &this->layout);
7049 }
7050
7051 if (var->type->is_unsized_array()) {
7052 if (var->is_in_shader_storage_block()) {
7053 if (!is_unsized_array_last_element(var)) {
7054 _mesa_glsl_error(&loc, state, "unsized array `%s' definition: "
7055 "only last member of a shader storage block "
7056 "can be defined as unsized array",
7057 var->name);
7058 }
7059 var->data.from_ssbo_unsized_array = true;
7060 } else {
7061 /* From GLSL ES 3.10 spec, section 4.1.9 "Arrays":
7062 *
7063 * "If an array is declared as the last member of a shader storage
7064 * block and the size is not specified at compile-time, it is
7065 * sized at run-time. In all other cases, arrays are sized only
7066 * at compile-time."
7067 */
7068 if (state->es_shader) {
7069 _mesa_glsl_error(&loc, state, "unsized array `%s' definition: "
7070 "only last member of a shader storage block "
7071 "can be defined as unsized array",
7072 var->name);
7073 }
7074 }
7075 }
7076
7077 state->symbols->add_variable(var);
7078 instructions->push_tail(var);
7079 }
7080
7081 if (redeclaring_per_vertex && block_type != earlier_per_vertex) {
7082 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10 spec:
7083 *
7084 * It is also a compilation error ... to redeclare a built-in
7085 * block and then use a member from that built-in block that was
7086 * not included in the redeclaration.
7087 *
7088 * This appears to be a clarification to the behaviour established
7089 * for gl_PerVertex by GLSL 1.50, therefore we implement this
7090 * behaviour regardless of GLSL version.
7091 *
7092 * To prevent the shader from using a member that was not included in
7093 * the redeclaration, we disable any ir_variables that are still
7094 * associated with the old declaration of gl_PerVertex (since we've
7095 * already updated all of the variables contained in the new
7096 * gl_PerVertex to point to it).
7097 *
7098 * As a side effect this will prevent
7099 * validate_intrastage_interface_blocks() from getting confused and
7100 * thinking there are conflicting definitions of gl_PerVertex in the
7101 * shader.
7102 */
7103 foreach_in_list_safe(ir_instruction, node, instructions) {
7104 ir_variable *const var = node->as_variable();
7105 if (var != NULL &&
7106 var->get_interface_type() == earlier_per_vertex &&
7107 var->data.mode == var_mode) {
7108 if (var->data.how_declared == ir_var_declared_normally) {
7109 _mesa_glsl_error(&loc, state,
7110 "redeclaration of gl_PerVertex cannot "
7111 "follow a redeclaration of `%s'",
7112 var->name);
7113 }
7114 state->symbols->disable_variable(var->name);
7115 var->remove();
7116 }
7117 }
7118 }
7119 }
7120
7121 return NULL;
7122 }
7123
7124
7125 ir_rvalue *
7126 ast_tcs_output_layout::hir(exec_list *instructions,
7127 struct _mesa_glsl_parse_state *state)
7128 {
7129 YYLTYPE loc = this->get_location();
7130
7131 unsigned num_vertices;
7132 if (!state->out_qualifier->vertices->
7133 process_qualifier_constant(state, "vertices", &num_vertices,
7134 false)) {
7135 /* return here to stop cascading incorrect error messages */
7136 return NULL;
7137 }
7138
7139 /* If any shader outputs occurred before this declaration and specified an
7140 * array size, make sure the size they specified is consistent with the
7141 * primitive type.
7142 */
7143 if (state->tcs_output_size != 0 && state->tcs_output_size != num_vertices) {
7144 _mesa_glsl_error(&loc, state,
7145 "this tessellation control shader output layout "
7146 "specifies %u vertices, but a previous output "
7147 "is declared with size %u",
7148 num_vertices, state->tcs_output_size);
7149 return NULL;
7150 }
7151
7152 state->tcs_output_vertices_specified = true;
7153
7154 /* If any shader outputs occurred before this declaration and did not
7155 * specify an array size, their size is determined now.
7156 */
7157 foreach_in_list (ir_instruction, node, instructions) {
7158 ir_variable *var = node->as_variable();
7159 if (var == NULL || var->data.mode != ir_var_shader_out)
7160 continue;
7161
7162 /* Note: Not all tessellation control shader output are arrays. */
7163 if (!var->type->is_unsized_array() || var->data.patch)
7164 continue;
7165
7166 if (var->data.max_array_access >= num_vertices) {
7167 _mesa_glsl_error(&loc, state,
7168 "this tessellation control shader output layout "
7169 "specifies %u vertices, but an access to element "
7170 "%u of output `%s' already exists", num_vertices,
7171 var->data.max_array_access, var->name);
7172 } else {
7173 var->type = glsl_type::get_array_instance(var->type->fields.array,
7174 num_vertices);
7175 }
7176 }
7177
7178 return NULL;
7179 }
7180
7181
7182 ir_rvalue *
7183 ast_gs_input_layout::hir(exec_list *instructions,
7184 struct _mesa_glsl_parse_state *state)
7185 {
7186 YYLTYPE loc = this->get_location();
7187
7188 /* If any geometry input layout declaration preceded this one, make sure it
7189 * was consistent with this one.
7190 */
7191 if (state->gs_input_prim_type_specified &&
7192 state->in_qualifier->prim_type != this->prim_type) {
7193 _mesa_glsl_error(&loc, state,
7194 "geometry shader input layout does not match"
7195 " previous declaration");
7196 return NULL;
7197 }
7198
7199 /* If any shader inputs occurred before this declaration and specified an
7200 * array size, make sure the size they specified is consistent with the
7201 * primitive type.
7202 */
7203 unsigned num_vertices = vertices_per_prim(this->prim_type);
7204 if (state->gs_input_size != 0 && state->gs_input_size != num_vertices) {
7205 _mesa_glsl_error(&loc, state,
7206 "this geometry shader input layout implies %u vertices"
7207 " per primitive, but a previous input is declared"
7208 " with size %u", num_vertices, state->gs_input_size);
7209 return NULL;
7210 }
7211
7212 state->gs_input_prim_type_specified = true;
7213
7214 /* If any shader inputs occurred before this declaration and did not
7215 * specify an array size, their size is determined now.
7216 */
7217 foreach_in_list(ir_instruction, node, instructions) {
7218 ir_variable *var = node->as_variable();
7219 if (var == NULL || var->data.mode != ir_var_shader_in)
7220 continue;
7221
7222 /* Note: gl_PrimitiveIDIn has mode ir_var_shader_in, but it's not an
7223 * array; skip it.
7224 */
7225
7226 if (var->type->is_unsized_array()) {
7227 if (var->data.max_array_access >= num_vertices) {
7228 _mesa_glsl_error(&loc, state,
7229 "this geometry shader input layout implies %u"
7230 " vertices, but an access to element %u of input"
7231 " `%s' already exists", num_vertices,
7232 var->data.max_array_access, var->name);
7233 } else {
7234 var->type = glsl_type::get_array_instance(var->type->fields.array,
7235 num_vertices);
7236 }
7237 }
7238 }
7239
7240 return NULL;
7241 }
7242
7243
7244 ir_rvalue *
7245 ast_cs_input_layout::hir(exec_list *instructions,
7246 struct _mesa_glsl_parse_state *state)
7247 {
7248 YYLTYPE loc = this->get_location();
7249
7250 /* From the ARB_compute_shader specification:
7251 *
7252 * If the local size of the shader in any dimension is greater
7253 * than the maximum size supported by the implementation for that
7254 * dimension, a compile-time error results.
7255 *
7256 * It is not clear from the spec how the error should be reported if
7257 * the total size of the work group exceeds
7258 * MAX_COMPUTE_WORK_GROUP_INVOCATIONS, but it seems reasonable to
7259 * report it at compile time as well.
7260 */
7261 GLuint64 total_invocations = 1;
7262 unsigned qual_local_size[3];
7263 for (int i = 0; i < 3; i++) {
7264
7265 char *local_size_str = ralloc_asprintf(NULL, "invalid local_size_%c",
7266 'x' + i);
7267 /* Infer a local_size of 1 for unspecified dimensions */
7268 if (this->local_size[i] == NULL) {
7269 qual_local_size[i] = 1;
7270 } else if (!this->local_size[i]->
7271 process_qualifier_constant(state, local_size_str,
7272 &qual_local_size[i], false)) {
7273 ralloc_free(local_size_str);
7274 return NULL;
7275 }
7276 ralloc_free(local_size_str);
7277
7278 if (qual_local_size[i] > state->ctx->Const.MaxComputeWorkGroupSize[i]) {
7279 _mesa_glsl_error(&loc, state,
7280 "local_size_%c exceeds MAX_COMPUTE_WORK_GROUP_SIZE"
7281 " (%d)", 'x' + i,
7282 state->ctx->Const.MaxComputeWorkGroupSize[i]);
7283 break;
7284 }
7285 total_invocations *= qual_local_size[i];
7286 if (total_invocations >
7287 state->ctx->Const.MaxComputeWorkGroupInvocations) {
7288 _mesa_glsl_error(&loc, state,
7289 "product of local_sizes exceeds "
7290 "MAX_COMPUTE_WORK_GROUP_INVOCATIONS (%d)",
7291 state->ctx->Const.MaxComputeWorkGroupInvocations);
7292 break;
7293 }
7294 }
7295
7296 /* If any compute input layout declaration preceded this one, make sure it
7297 * was consistent with this one.
7298 */
7299 if (state->cs_input_local_size_specified) {
7300 for (int i = 0; i < 3; i++) {
7301 if (state->cs_input_local_size[i] != qual_local_size[i]) {
7302 _mesa_glsl_error(&loc, state,
7303 "compute shader input layout does not match"
7304 " previous declaration");
7305 return NULL;
7306 }
7307 }
7308 }
7309
7310 state->cs_input_local_size_specified = true;
7311 for (int i = 0; i < 3; i++)
7312 state->cs_input_local_size[i] = qual_local_size[i];
7313
7314 /* We may now declare the built-in constant gl_WorkGroupSize (see
7315 * builtin_variable_generator::generate_constants() for why we didn't
7316 * declare it earlier).
7317 */
7318 ir_variable *var = new(state->symbols)
7319 ir_variable(glsl_type::uvec3_type, "gl_WorkGroupSize", ir_var_auto);
7320 var->data.how_declared = ir_var_declared_implicitly;
7321 var->data.read_only = true;
7322 instructions->push_tail(var);
7323 state->symbols->add_variable(var);
7324 ir_constant_data data;
7325 memset(&data, 0, sizeof(data));
7326 for (int i = 0; i < 3; i++)
7327 data.u[i] = qual_local_size[i];
7328 var->constant_value = new(var) ir_constant(glsl_type::uvec3_type, &data);
7329 var->constant_initializer =
7330 new(var) ir_constant(glsl_type::uvec3_type, &data);
7331 var->data.has_initializer = true;
7332
7333 return NULL;
7334 }
7335
7336
7337 static void
7338 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
7339 exec_list *instructions)
7340 {
7341 bool gl_FragColor_assigned = false;
7342 bool gl_FragData_assigned = false;
7343 bool gl_FragSecondaryColor_assigned = false;
7344 bool gl_FragSecondaryData_assigned = false;
7345 bool user_defined_fs_output_assigned = false;
7346 ir_variable *user_defined_fs_output = NULL;
7347
7348 /* It would be nice to have proper location information. */
7349 YYLTYPE loc;
7350 memset(&loc, 0, sizeof(loc));
7351
7352 foreach_in_list(ir_instruction, node, instructions) {
7353 ir_variable *var = node->as_variable();
7354
7355 if (!var || !var->data.assigned)
7356 continue;
7357
7358 if (strcmp(var->name, "gl_FragColor") == 0)
7359 gl_FragColor_assigned = true;
7360 else if (strcmp(var->name, "gl_FragData") == 0)
7361 gl_FragData_assigned = true;
7362 else if (strcmp(var->name, "gl_SecondaryFragColorEXT") == 0)
7363 gl_FragSecondaryColor_assigned = true;
7364 else if (strcmp(var->name, "gl_SecondaryFragDataEXT") == 0)
7365 gl_FragSecondaryData_assigned = true;
7366 else if (!is_gl_identifier(var->name)) {
7367 if (state->stage == MESA_SHADER_FRAGMENT &&
7368 var->data.mode == ir_var_shader_out) {
7369 user_defined_fs_output_assigned = true;
7370 user_defined_fs_output = var;
7371 }
7372 }
7373 }
7374
7375 /* From the GLSL 1.30 spec:
7376 *
7377 * "If a shader statically assigns a value to gl_FragColor, it
7378 * may not assign a value to any element of gl_FragData. If a
7379 * shader statically writes a value to any element of
7380 * gl_FragData, it may not assign a value to
7381 * gl_FragColor. That is, a shader may assign values to either
7382 * gl_FragColor or gl_FragData, but not both. Multiple shaders
7383 * linked together must also consistently write just one of
7384 * these variables. Similarly, if user declared output
7385 * variables are in use (statically assigned to), then the
7386 * built-in variables gl_FragColor and gl_FragData may not be
7387 * assigned to. These incorrect usages all generate compile
7388 * time errors."
7389 */
7390 if (gl_FragColor_assigned && gl_FragData_assigned) {
7391 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7392 "`gl_FragColor' and `gl_FragData'");
7393 } else if (gl_FragColor_assigned && user_defined_fs_output_assigned) {
7394 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7395 "`gl_FragColor' and `%s'",
7396 user_defined_fs_output->name);
7397 } else if (gl_FragSecondaryColor_assigned && gl_FragSecondaryData_assigned) {
7398 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7399 "`gl_FragSecondaryColorEXT' and"
7400 " `gl_FragSecondaryDataEXT'");
7401 } else if (gl_FragColor_assigned && gl_FragSecondaryData_assigned) {
7402 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7403 "`gl_FragColor' and"
7404 " `gl_FragSecondaryDataEXT'");
7405 } else if (gl_FragData_assigned && gl_FragSecondaryColor_assigned) {
7406 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7407 "`gl_FragData' and"
7408 " `gl_FragSecondaryColorEXT'");
7409 } else if (gl_FragData_assigned && user_defined_fs_output_assigned) {
7410 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7411 "`gl_FragData' and `%s'",
7412 user_defined_fs_output->name);
7413 }
7414
7415 if ((gl_FragSecondaryColor_assigned || gl_FragSecondaryData_assigned) &&
7416 !state->EXT_blend_func_extended_enable) {
7417 _mesa_glsl_error(&loc, state,
7418 "Dual source blending requires EXT_blend_func_extended");
7419 }
7420 }
7421
7422
7423 static void
7424 remove_per_vertex_blocks(exec_list *instructions,
7425 _mesa_glsl_parse_state *state, ir_variable_mode mode)
7426 {
7427 /* Find the gl_PerVertex interface block of the appropriate (in/out) mode,
7428 * if it exists in this shader type.
7429 */
7430 const glsl_type *per_vertex = NULL;
7431 switch (mode) {
7432 case ir_var_shader_in:
7433 if (ir_variable *gl_in = state->symbols->get_variable("gl_in"))
7434 per_vertex = gl_in->get_interface_type();
7435 break;
7436 case ir_var_shader_out:
7437 if (ir_variable *gl_Position =
7438 state->symbols->get_variable("gl_Position")) {
7439 per_vertex = gl_Position->get_interface_type();
7440 }
7441 break;
7442 default:
7443 assert(!"Unexpected mode");
7444 break;
7445 }
7446
7447 /* If we didn't find a built-in gl_PerVertex interface block, then we don't
7448 * need to do anything.
7449 */
7450 if (per_vertex == NULL)
7451 return;
7452
7453 /* If the interface block is used by the shader, then we don't need to do
7454 * anything.
7455 */
7456 interface_block_usage_visitor v(mode, per_vertex);
7457 v.run(instructions);
7458 if (v.usage_found())
7459 return;
7460
7461 /* Remove any ir_variable declarations that refer to the interface block
7462 * we're removing.
7463 */
7464 foreach_in_list_safe(ir_instruction, node, instructions) {
7465 ir_variable *const var = node->as_variable();
7466 if (var != NULL && var->get_interface_type() == per_vertex &&
7467 var->data.mode == mode) {
7468 state->symbols->disable_variable(var->name);
7469 var->remove();
7470 }
7471 }
7472 }