86bb8741bcc2ccdec10f53c871912c426c08f727
[mesa.git] / src / glsl / ast_to_hir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file ast_to_hir.c
26 * Convert abstract syntax to to high-level intermediate reprensentation (HIR).
27 *
28 * During the conversion to HIR, the majority of the symantic checking is
29 * preformed on the program. This includes:
30 *
31 * * Symbol table management
32 * * Type checking
33 * * Function binding
34 *
35 * The majority of this work could be done during parsing, and the parser could
36 * probably generate HIR directly. However, this results in frequent changes
37 * to the parser code. Since we do not assume that every system this complier
38 * is built on will have Flex and Bison installed, we have to store the code
39 * generated by these tools in our version control system. In other parts of
40 * the system we've seen problems where a parser was changed but the generated
41 * code was not committed, merge conflicts where created because two developers
42 * had slightly different versions of Bison installed, etc.
43 *
44 * I have also noticed that running Bison generated parsers in GDB is very
45 * irritating. When you get a segfault on '$$ = $1->foo', you can't very
46 * well 'print $1' in GDB.
47 *
48 * As a result, my preference is to put as little C code as possible in the
49 * parser (and lexer) sources.
50 */
51
52 #include "main/core.h" /* for struct gl_extensions */
53 #include "glsl_symbol_table.h"
54 #include "glsl_parser_extras.h"
55 #include "ast.h"
56 #include "glsl_types.h"
57 #include "program/hash_table.h"
58 #include "ir.h"
59
60 static void
61 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
62 exec_list *instructions);
63
64 void
65 _mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
66 {
67 _mesa_glsl_initialize_variables(instructions, state);
68
69 state->symbols->language_version = state->language_version;
70
71 state->current_function = NULL;
72
73 state->toplevel_ir = instructions;
74
75 /* Section 4.2 of the GLSL 1.20 specification states:
76 * "The built-in functions are scoped in a scope outside the global scope
77 * users declare global variables in. That is, a shader's global scope,
78 * available for user-defined functions and global variables, is nested
79 * inside the scope containing the built-in functions."
80 *
81 * Since built-in functions like ftransform() access built-in variables,
82 * it follows that those must be in the outer scope as well.
83 *
84 * We push scope here to create this nesting effect...but don't pop.
85 * This way, a shader's globals are still in the symbol table for use
86 * by the linker.
87 */
88 state->symbols->push_scope();
89
90 foreach_list_typed (ast_node, ast, link, & state->translation_unit)
91 ast->hir(instructions, state);
92
93 detect_recursion_unlinked(state, instructions);
94 detect_conflicting_assignments(state, instructions);
95
96 state->toplevel_ir = NULL;
97 }
98
99
100 /**
101 * If a conversion is available, convert one operand to a different type
102 *
103 * The \c from \c ir_rvalue is converted "in place".
104 *
105 * \param to Type that the operand it to be converted to
106 * \param from Operand that is being converted
107 * \param state GLSL compiler state
108 *
109 * \return
110 * If a conversion is possible (or unnecessary), \c true is returned.
111 * Otherwise \c false is returned.
112 */
113 bool
114 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
115 struct _mesa_glsl_parse_state *state)
116 {
117 void *ctx = state;
118 if (to->base_type == from->type->base_type)
119 return true;
120
121 /* This conversion was added in GLSL 1.20. If the compilation mode is
122 * GLSL 1.10, the conversion is skipped.
123 */
124 if (state->language_version < 120)
125 return false;
126
127 /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
128 *
129 * "There are no implicit array or structure conversions. For
130 * example, an array of int cannot be implicitly converted to an
131 * array of float. There are no implicit conversions between
132 * signed and unsigned integers."
133 */
134 /* FINISHME: The above comment is partially a lie. There is int/uint
135 * FINISHME: conversion for immediate constants.
136 */
137 if (!to->is_float() || !from->type->is_numeric())
138 return false;
139
140 /* Convert to a floating point type with the same number of components
141 * as the original type - i.e. int to float, not int to vec4.
142 */
143 to = glsl_type::get_instance(GLSL_TYPE_FLOAT, from->type->vector_elements,
144 from->type->matrix_columns);
145
146 switch (from->type->base_type) {
147 case GLSL_TYPE_INT:
148 from = new(ctx) ir_expression(ir_unop_i2f, to, from, NULL);
149 break;
150 case GLSL_TYPE_UINT:
151 from = new(ctx) ir_expression(ir_unop_u2f, to, from, NULL);
152 break;
153 case GLSL_TYPE_BOOL:
154 from = new(ctx) ir_expression(ir_unop_b2f, to, from, NULL);
155 break;
156 default:
157 assert(0);
158 }
159
160 return true;
161 }
162
163
164 static const struct glsl_type *
165 arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
166 bool multiply,
167 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
168 {
169 const glsl_type *type_a = value_a->type;
170 const glsl_type *type_b = value_b->type;
171
172 /* From GLSL 1.50 spec, page 56:
173 *
174 * "The arithmetic binary operators add (+), subtract (-),
175 * multiply (*), and divide (/) operate on integer and
176 * floating-point scalars, vectors, and matrices."
177 */
178 if (!type_a->is_numeric() || !type_b->is_numeric()) {
179 _mesa_glsl_error(loc, state,
180 "Operands to arithmetic operators must be numeric");
181 return glsl_type::error_type;
182 }
183
184
185 /* "If one operand is floating-point based and the other is
186 * not, then the conversions from Section 4.1.10 "Implicit
187 * Conversions" are applied to the non-floating-point-based operand."
188 */
189 if (!apply_implicit_conversion(type_a, value_b, state)
190 && !apply_implicit_conversion(type_b, value_a, state)) {
191 _mesa_glsl_error(loc, state,
192 "Could not implicitly convert operands to "
193 "arithmetic operator");
194 return glsl_type::error_type;
195 }
196 type_a = value_a->type;
197 type_b = value_b->type;
198
199 /* "If the operands are integer types, they must both be signed or
200 * both be unsigned."
201 *
202 * From this rule and the preceeding conversion it can be inferred that
203 * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
204 * The is_numeric check above already filtered out the case where either
205 * type is not one of these, so now the base types need only be tested for
206 * equality.
207 */
208 if (type_a->base_type != type_b->base_type) {
209 _mesa_glsl_error(loc, state,
210 "base type mismatch for arithmetic operator");
211 return glsl_type::error_type;
212 }
213
214 /* "All arithmetic binary operators result in the same fundamental type
215 * (signed integer, unsigned integer, or floating-point) as the
216 * operands they operate on, after operand type conversion. After
217 * conversion, the following cases are valid
218 *
219 * * The two operands are scalars. In this case the operation is
220 * applied, resulting in a scalar."
221 */
222 if (type_a->is_scalar() && type_b->is_scalar())
223 return type_a;
224
225 /* "* One operand is a scalar, and the other is a vector or matrix.
226 * In this case, the scalar operation is applied independently to each
227 * component of the vector or matrix, resulting in the same size
228 * vector or matrix."
229 */
230 if (type_a->is_scalar()) {
231 if (!type_b->is_scalar())
232 return type_b;
233 } else if (type_b->is_scalar()) {
234 return type_a;
235 }
236
237 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
238 * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
239 * handled.
240 */
241 assert(!type_a->is_scalar());
242 assert(!type_b->is_scalar());
243
244 /* "* The two operands are vectors of the same size. In this case, the
245 * operation is done component-wise resulting in the same size
246 * vector."
247 */
248 if (type_a->is_vector() && type_b->is_vector()) {
249 if (type_a == type_b) {
250 return type_a;
251 } else {
252 _mesa_glsl_error(loc, state,
253 "vector size mismatch for arithmetic operator");
254 return glsl_type::error_type;
255 }
256 }
257
258 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
259 * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
260 * <vector, vector> have been handled. At least one of the operands must
261 * be matrix. Further, since there are no integer matrix types, the base
262 * type of both operands must be float.
263 */
264 assert(type_a->is_matrix() || type_b->is_matrix());
265 assert(type_a->base_type == GLSL_TYPE_FLOAT);
266 assert(type_b->base_type == GLSL_TYPE_FLOAT);
267
268 /* "* The operator is add (+), subtract (-), or divide (/), and the
269 * operands are matrices with the same number of rows and the same
270 * number of columns. In this case, the operation is done component-
271 * wise resulting in the same size matrix."
272 * * The operator is multiply (*), where both operands are matrices or
273 * one operand is a vector and the other a matrix. A right vector
274 * operand is treated as a column vector and a left vector operand as a
275 * row vector. In all these cases, it is required that the number of
276 * columns of the left operand is equal to the number of rows of the
277 * right operand. Then, the multiply (*) operation does a linear
278 * algebraic multiply, yielding an object that has the same number of
279 * rows as the left operand and the same number of columns as the right
280 * operand. Section 5.10 "Vector and Matrix Operations" explains in
281 * more detail how vectors and matrices are operated on."
282 */
283 if (! multiply) {
284 if (type_a == type_b)
285 return type_a;
286 } else {
287 if (type_a->is_matrix() && type_b->is_matrix()) {
288 /* Matrix multiply. The columns of A must match the rows of B. Given
289 * the other previously tested constraints, this means the vector type
290 * of a row from A must be the same as the vector type of a column from
291 * B.
292 */
293 if (type_a->row_type() == type_b->column_type()) {
294 /* The resulting matrix has the number of columns of matrix B and
295 * the number of rows of matrix A. We get the row count of A by
296 * looking at the size of a vector that makes up a column. The
297 * transpose (size of a row) is done for B.
298 */
299 const glsl_type *const type =
300 glsl_type::get_instance(type_a->base_type,
301 type_a->column_type()->vector_elements,
302 type_b->row_type()->vector_elements);
303 assert(type != glsl_type::error_type);
304
305 return type;
306 }
307 } else if (type_a->is_matrix()) {
308 /* A is a matrix and B is a column vector. Columns of A must match
309 * rows of B. Given the other previously tested constraints, this
310 * means the vector type of a row from A must be the same as the
311 * vector the type of B.
312 */
313 if (type_a->row_type() == type_b) {
314 /* The resulting vector has a number of elements equal to
315 * the number of rows of matrix A. */
316 const glsl_type *const type =
317 glsl_type::get_instance(type_a->base_type,
318 type_a->column_type()->vector_elements,
319 1);
320 assert(type != glsl_type::error_type);
321
322 return type;
323 }
324 } else {
325 assert(type_b->is_matrix());
326
327 /* A is a row vector and B is a matrix. Columns of A must match rows
328 * of B. Given the other previously tested constraints, this means
329 * the type of A must be the same as the vector type of a column from
330 * B.
331 */
332 if (type_a == type_b->column_type()) {
333 /* The resulting vector has a number of elements equal to
334 * the number of columns of matrix B. */
335 const glsl_type *const type =
336 glsl_type::get_instance(type_a->base_type,
337 type_b->row_type()->vector_elements,
338 1);
339 assert(type != glsl_type::error_type);
340
341 return type;
342 }
343 }
344
345 _mesa_glsl_error(loc, state, "size mismatch for matrix multiplication");
346 return glsl_type::error_type;
347 }
348
349
350 /* "All other cases are illegal."
351 */
352 _mesa_glsl_error(loc, state, "type mismatch");
353 return glsl_type::error_type;
354 }
355
356
357 static const struct glsl_type *
358 unary_arithmetic_result_type(const struct glsl_type *type,
359 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
360 {
361 /* From GLSL 1.50 spec, page 57:
362 *
363 * "The arithmetic unary operators negate (-), post- and pre-increment
364 * and decrement (-- and ++) operate on integer or floating-point
365 * values (including vectors and matrices). All unary operators work
366 * component-wise on their operands. These result with the same type
367 * they operated on."
368 */
369 if (!type->is_numeric()) {
370 _mesa_glsl_error(loc, state,
371 "Operands to arithmetic operators must be numeric");
372 return glsl_type::error_type;
373 }
374
375 return type;
376 }
377
378 /**
379 * \brief Return the result type of a bit-logic operation.
380 *
381 * If the given types to the bit-logic operator are invalid, return
382 * glsl_type::error_type.
383 *
384 * \param type_a Type of LHS of bit-logic op
385 * \param type_b Type of RHS of bit-logic op
386 */
387 static const struct glsl_type *
388 bit_logic_result_type(const struct glsl_type *type_a,
389 const struct glsl_type *type_b,
390 ast_operators op,
391 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
392 {
393 if (state->language_version < 130) {
394 _mesa_glsl_error(loc, state, "bit operations require GLSL 1.30");
395 return glsl_type::error_type;
396 }
397
398 /* From page 50 (page 56 of PDF) of GLSL 1.30 spec:
399 *
400 * "The bitwise operators and (&), exclusive-or (^), and inclusive-or
401 * (|). The operands must be of type signed or unsigned integers or
402 * integer vectors."
403 */
404 if (!type_a->is_integer()) {
405 _mesa_glsl_error(loc, state, "LHS of `%s' must be an integer",
406 ast_expression::operator_string(op));
407 return glsl_type::error_type;
408 }
409 if (!type_b->is_integer()) {
410 _mesa_glsl_error(loc, state, "RHS of `%s' must be an integer",
411 ast_expression::operator_string(op));
412 return glsl_type::error_type;
413 }
414
415 /* "The fundamental types of the operands (signed or unsigned) must
416 * match,"
417 */
418 if (type_a->base_type != type_b->base_type) {
419 _mesa_glsl_error(loc, state, "operands of `%s' must have the same "
420 "base type", ast_expression::operator_string(op));
421 return glsl_type::error_type;
422 }
423
424 /* "The operands cannot be vectors of differing size." */
425 if (type_a->is_vector() &&
426 type_b->is_vector() &&
427 type_a->vector_elements != type_b->vector_elements) {
428 _mesa_glsl_error(loc, state, "operands of `%s' cannot be vectors of "
429 "different sizes", ast_expression::operator_string(op));
430 return glsl_type::error_type;
431 }
432
433 /* "If one operand is a scalar and the other a vector, the scalar is
434 * applied component-wise to the vector, resulting in the same type as
435 * the vector. The fundamental types of the operands [...] will be the
436 * resulting fundamental type."
437 */
438 if (type_a->is_scalar())
439 return type_b;
440 else
441 return type_a;
442 }
443
444 static const struct glsl_type *
445 modulus_result_type(const struct glsl_type *type_a,
446 const struct glsl_type *type_b,
447 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
448 {
449 if (state->language_version < 130) {
450 _mesa_glsl_error(loc, state,
451 "operator '%%' is reserved in %s",
452 state->version_string);
453 return glsl_type::error_type;
454 }
455
456 /* From GLSL 1.50 spec, page 56:
457 * "The operator modulus (%) operates on signed or unsigned integers or
458 * integer vectors. The operand types must both be signed or both be
459 * unsigned."
460 */
461 if (!type_a->is_integer()) {
462 _mesa_glsl_error(loc, state, "LHS of operator %% must be an integer.");
463 return glsl_type::error_type;
464 }
465 if (!type_b->is_integer()) {
466 _mesa_glsl_error(loc, state, "RHS of operator %% must be an integer.");
467 return glsl_type::error_type;
468 }
469 if (type_a->base_type != type_b->base_type) {
470 _mesa_glsl_error(loc, state,
471 "operands of %% must have the same base type");
472 return glsl_type::error_type;
473 }
474
475 /* "The operands cannot be vectors of differing size. If one operand is
476 * a scalar and the other vector, then the scalar is applied component-
477 * wise to the vector, resulting in the same type as the vector. If both
478 * are vectors of the same size, the result is computed component-wise."
479 */
480 if (type_a->is_vector()) {
481 if (!type_b->is_vector()
482 || (type_a->vector_elements == type_b->vector_elements))
483 return type_a;
484 } else
485 return type_b;
486
487 /* "The operator modulus (%) is not defined for any other data types
488 * (non-integer types)."
489 */
490 _mesa_glsl_error(loc, state, "type mismatch");
491 return glsl_type::error_type;
492 }
493
494
495 static const struct glsl_type *
496 relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
497 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
498 {
499 const glsl_type *type_a = value_a->type;
500 const glsl_type *type_b = value_b->type;
501
502 /* From GLSL 1.50 spec, page 56:
503 * "The relational operators greater than (>), less than (<), greater
504 * than or equal (>=), and less than or equal (<=) operate only on
505 * scalar integer and scalar floating-point expressions."
506 */
507 if (!type_a->is_numeric()
508 || !type_b->is_numeric()
509 || !type_a->is_scalar()
510 || !type_b->is_scalar()) {
511 _mesa_glsl_error(loc, state,
512 "Operands to relational operators must be scalar and "
513 "numeric");
514 return glsl_type::error_type;
515 }
516
517 /* "Either the operands' types must match, or the conversions from
518 * Section 4.1.10 "Implicit Conversions" will be applied to the integer
519 * operand, after which the types must match."
520 */
521 if (!apply_implicit_conversion(type_a, value_b, state)
522 && !apply_implicit_conversion(type_b, value_a, state)) {
523 _mesa_glsl_error(loc, state,
524 "Could not implicitly convert operands to "
525 "relational operator");
526 return glsl_type::error_type;
527 }
528 type_a = value_a->type;
529 type_b = value_b->type;
530
531 if (type_a->base_type != type_b->base_type) {
532 _mesa_glsl_error(loc, state, "base type mismatch");
533 return glsl_type::error_type;
534 }
535
536 /* "The result is scalar Boolean."
537 */
538 return glsl_type::bool_type;
539 }
540
541 /**
542 * \brief Return the result type of a bit-shift operation.
543 *
544 * If the given types to the bit-shift operator are invalid, return
545 * glsl_type::error_type.
546 *
547 * \param type_a Type of LHS of bit-shift op
548 * \param type_b Type of RHS of bit-shift op
549 */
550 static const struct glsl_type *
551 shift_result_type(const struct glsl_type *type_a,
552 const struct glsl_type *type_b,
553 ast_operators op,
554 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
555 {
556 if (state->language_version < 130) {
557 _mesa_glsl_error(loc, state, "bit operations require GLSL 1.30");
558 return glsl_type::error_type;
559 }
560
561 /* From page 50 (page 56 of the PDF) of the GLSL 1.30 spec:
562 *
563 * "The shift operators (<<) and (>>). For both operators, the operands
564 * must be signed or unsigned integers or integer vectors. One operand
565 * can be signed while the other is unsigned."
566 */
567 if (!type_a->is_integer()) {
568 _mesa_glsl_error(loc, state, "LHS of operator %s must be an integer or "
569 "integer vector", ast_expression::operator_string(op));
570 return glsl_type::error_type;
571
572 }
573 if (!type_b->is_integer()) {
574 _mesa_glsl_error(loc, state, "RHS of operator %s must be an integer or "
575 "integer vector", ast_expression::operator_string(op));
576 return glsl_type::error_type;
577 }
578
579 /* "If the first operand is a scalar, the second operand has to be
580 * a scalar as well."
581 */
582 if (type_a->is_scalar() && !type_b->is_scalar()) {
583 _mesa_glsl_error(loc, state, "If the first operand of %s is scalar, the "
584 "second must be scalar as well",
585 ast_expression::operator_string(op));
586 return glsl_type::error_type;
587 }
588
589 /* If both operands are vectors, check that they have same number of
590 * elements.
591 */
592 if (type_a->is_vector() &&
593 type_b->is_vector() &&
594 type_a->vector_elements != type_b->vector_elements) {
595 _mesa_glsl_error(loc, state, "Vector operands to operator %s must "
596 "have same number of elements",
597 ast_expression::operator_string(op));
598 return glsl_type::error_type;
599 }
600
601 /* "In all cases, the resulting type will be the same type as the left
602 * operand."
603 */
604 return type_a;
605 }
606
607 /**
608 * Validates that a value can be assigned to a location with a specified type
609 *
610 * Validates that \c rhs can be assigned to some location. If the types are
611 * not an exact match but an automatic conversion is possible, \c rhs will be
612 * converted.
613 *
614 * \return
615 * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
616 * Otherwise the actual RHS to be assigned will be returned. This may be
617 * \c rhs, or it may be \c rhs after some type conversion.
618 *
619 * \note
620 * In addition to being used for assignments, this function is used to
621 * type-check return values.
622 */
623 ir_rvalue *
624 validate_assignment(struct _mesa_glsl_parse_state *state,
625 const glsl_type *lhs_type, ir_rvalue *rhs,
626 bool is_initializer)
627 {
628 /* If there is already some error in the RHS, just return it. Anything
629 * else will lead to an avalanche of error message back to the user.
630 */
631 if (rhs->type->is_error())
632 return rhs;
633
634 /* If the types are identical, the assignment can trivially proceed.
635 */
636 if (rhs->type == lhs_type)
637 return rhs;
638
639 /* If the array element types are the same and the size of the LHS is zero,
640 * the assignment is okay for initializers embedded in variable
641 * declarations.
642 *
643 * Note: Whole-array assignments are not permitted in GLSL 1.10, but this
644 * is handled by ir_dereference::is_lvalue.
645 */
646 if (is_initializer && lhs_type->is_array() && rhs->type->is_array()
647 && (lhs_type->element_type() == rhs->type->element_type())
648 && (lhs_type->array_size() == 0)) {
649 return rhs;
650 }
651
652 /* Check for implicit conversion in GLSL 1.20 */
653 if (apply_implicit_conversion(lhs_type, rhs, state)) {
654 if (rhs->type == lhs_type)
655 return rhs;
656 }
657
658 return NULL;
659 }
660
661 static void
662 mark_whole_array_access(ir_rvalue *access)
663 {
664 ir_dereference_variable *deref = access->as_dereference_variable();
665
666 if (deref && deref->var) {
667 deref->var->max_array_access = deref->type->length - 1;
668 }
669 }
670
671 ir_rvalue *
672 do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state,
673 const char *non_lvalue_description,
674 ir_rvalue *lhs, ir_rvalue *rhs, bool is_initializer,
675 YYLTYPE lhs_loc)
676 {
677 void *ctx = state;
678 bool error_emitted = (lhs->type->is_error() || rhs->type->is_error());
679
680 ir_variable *lhs_var = lhs->variable_referenced();
681 if (lhs_var)
682 lhs_var->assigned = true;
683
684 if (!error_emitted) {
685 if (non_lvalue_description != NULL) {
686 _mesa_glsl_error(&lhs_loc, state,
687 "assignment to %s",
688 non_lvalue_description);
689 error_emitted = true;
690 } else if (lhs->variable_referenced() != NULL
691 && lhs->variable_referenced()->read_only) {
692 _mesa_glsl_error(&lhs_loc, state,
693 "assignment to read-only variable '%s'",
694 lhs->variable_referenced()->name);
695 error_emitted = true;
696
697 } else if (state->language_version <= 110 && lhs->type->is_array()) {
698 /* From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
699 *
700 * "Other binary or unary expressions, non-dereferenced
701 * arrays, function names, swizzles with repeated fields,
702 * and constants cannot be l-values."
703 */
704 _mesa_glsl_error(&lhs_loc, state, "whole array assignment is not "
705 "allowed in GLSL 1.10 or GLSL ES 1.00.");
706 error_emitted = true;
707 } else if (!lhs->is_lvalue()) {
708 _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment");
709 error_emitted = true;
710 }
711 }
712
713 ir_rvalue *new_rhs =
714 validate_assignment(state, lhs->type, rhs, is_initializer);
715 if (new_rhs == NULL) {
716 _mesa_glsl_error(& lhs_loc, state, "type mismatch");
717 } else {
718 rhs = new_rhs;
719
720 /* If the LHS array was not declared with a size, it takes it size from
721 * the RHS. If the LHS is an l-value and a whole array, it must be a
722 * dereference of a variable. Any other case would require that the LHS
723 * is either not an l-value or not a whole array.
724 */
725 if (lhs->type->array_size() == 0) {
726 ir_dereference *const d = lhs->as_dereference();
727
728 assert(d != NULL);
729
730 ir_variable *const var = d->variable_referenced();
731
732 assert(var != NULL);
733
734 if (var->max_array_access >= unsigned(rhs->type->array_size())) {
735 /* FINISHME: This should actually log the location of the RHS. */
736 _mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to "
737 "previous access",
738 var->max_array_access);
739 }
740
741 var->type = glsl_type::get_array_instance(lhs->type->element_type(),
742 rhs->type->array_size());
743 d->type = var->type;
744 }
745 mark_whole_array_access(rhs);
746 mark_whole_array_access(lhs);
747 }
748
749 /* Most callers of do_assignment (assign, add_assign, pre_inc/dec,
750 * but not post_inc) need the converted assigned value as an rvalue
751 * to handle things like:
752 *
753 * i = j += 1;
754 *
755 * So we always just store the computed value being assigned to a
756 * temporary and return a deref of that temporary. If the rvalue
757 * ends up not being used, the temp will get copy-propagated out.
758 */
759 ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp",
760 ir_var_temporary);
761 ir_dereference_variable *deref_var = new(ctx) ir_dereference_variable(var);
762 instructions->push_tail(var);
763 instructions->push_tail(new(ctx) ir_assignment(deref_var,
764 rhs,
765 NULL));
766 deref_var = new(ctx) ir_dereference_variable(var);
767
768 if (!error_emitted)
769 instructions->push_tail(new(ctx) ir_assignment(lhs, deref_var, NULL));
770
771 return new(ctx) ir_dereference_variable(var);
772 }
773
774 static ir_rvalue *
775 get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue)
776 {
777 void *ctx = ralloc_parent(lvalue);
778 ir_variable *var;
779
780 var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp",
781 ir_var_temporary);
782 instructions->push_tail(var);
783 var->mode = ir_var_auto;
784
785 instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
786 lvalue, NULL));
787
788 return new(ctx) ir_dereference_variable(var);
789 }
790
791
792 ir_rvalue *
793 ast_node::hir(exec_list *instructions,
794 struct _mesa_glsl_parse_state *state)
795 {
796 (void) instructions;
797 (void) state;
798
799 return NULL;
800 }
801
802 static ir_rvalue *
803 do_comparison(void *mem_ctx, int operation, ir_rvalue *op0, ir_rvalue *op1)
804 {
805 int join_op;
806 ir_rvalue *cmp = NULL;
807
808 if (operation == ir_binop_all_equal)
809 join_op = ir_binop_logic_and;
810 else
811 join_op = ir_binop_logic_or;
812
813 switch (op0->type->base_type) {
814 case GLSL_TYPE_FLOAT:
815 case GLSL_TYPE_UINT:
816 case GLSL_TYPE_INT:
817 case GLSL_TYPE_BOOL:
818 return new(mem_ctx) ir_expression(operation, op0, op1);
819
820 case GLSL_TYPE_ARRAY: {
821 for (unsigned int i = 0; i < op0->type->length; i++) {
822 ir_rvalue *e0, *e1, *result;
823
824 e0 = new(mem_ctx) ir_dereference_array(op0->clone(mem_ctx, NULL),
825 new(mem_ctx) ir_constant(i));
826 e1 = new(mem_ctx) ir_dereference_array(op1->clone(mem_ctx, NULL),
827 new(mem_ctx) ir_constant(i));
828 result = do_comparison(mem_ctx, operation, e0, e1);
829
830 if (cmp) {
831 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
832 } else {
833 cmp = result;
834 }
835 }
836
837 mark_whole_array_access(op0);
838 mark_whole_array_access(op1);
839 break;
840 }
841
842 case GLSL_TYPE_STRUCT: {
843 for (unsigned int i = 0; i < op0->type->length; i++) {
844 ir_rvalue *e0, *e1, *result;
845 const char *field_name = op0->type->fields.structure[i].name;
846
847 e0 = new(mem_ctx) ir_dereference_record(op0->clone(mem_ctx, NULL),
848 field_name);
849 e1 = new(mem_ctx) ir_dereference_record(op1->clone(mem_ctx, NULL),
850 field_name);
851 result = do_comparison(mem_ctx, operation, e0, e1);
852
853 if (cmp) {
854 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
855 } else {
856 cmp = result;
857 }
858 }
859 break;
860 }
861
862 case GLSL_TYPE_ERROR:
863 case GLSL_TYPE_VOID:
864 case GLSL_TYPE_SAMPLER:
865 /* I assume a comparison of a struct containing a sampler just
866 * ignores the sampler present in the type.
867 */
868 break;
869
870 default:
871 assert(!"Should not get here.");
872 break;
873 }
874
875 if (cmp == NULL)
876 cmp = new(mem_ctx) ir_constant(true);
877
878 return cmp;
879 }
880
881 /* For logical operations, we want to ensure that the operands are
882 * scalar booleans. If it isn't, emit an error and return a constant
883 * boolean to avoid triggering cascading error messages.
884 */
885 ir_rvalue *
886 get_scalar_boolean_operand(exec_list *instructions,
887 struct _mesa_glsl_parse_state *state,
888 ast_expression *parent_expr,
889 int operand,
890 const char *operand_name,
891 bool *error_emitted)
892 {
893 ast_expression *expr = parent_expr->subexpressions[operand];
894 void *ctx = state;
895 ir_rvalue *val = expr->hir(instructions, state);
896
897 if (val->type->is_boolean() && val->type->is_scalar())
898 return val;
899
900 if (!*error_emitted) {
901 YYLTYPE loc = expr->get_location();
902 _mesa_glsl_error(&loc, state, "%s of `%s' must be scalar boolean",
903 operand_name,
904 parent_expr->operator_string(parent_expr->oper));
905 *error_emitted = true;
906 }
907
908 return new(ctx) ir_constant(true);
909 }
910
911 /**
912 * If name refers to a builtin array whose maximum allowed size is less than
913 * size, report an error and return true. Otherwise return false.
914 */
915 static bool
916 check_builtin_array_max_size(const char *name, unsigned size,
917 YYLTYPE loc, struct _mesa_glsl_parse_state *state)
918 {
919 if ((strcmp("gl_TexCoord", name) == 0)
920 && (size > state->Const.MaxTextureCoords)) {
921 /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec:
922 *
923 * "The size [of gl_TexCoord] can be at most
924 * gl_MaxTextureCoords."
925 */
926 _mesa_glsl_error(&loc, state, "`gl_TexCoord' array size cannot "
927 "be larger than gl_MaxTextureCoords (%u)\n",
928 state->Const.MaxTextureCoords);
929 return true;
930 } else if (strcmp("gl_ClipDistance", name) == 0
931 && size > state->Const.MaxClipPlanes) {
932 /* From section 7.1 (Vertex Shader Special Variables) of the
933 * GLSL 1.30 spec:
934 *
935 * "The gl_ClipDistance array is predeclared as unsized and
936 * must be sized by the shader either redeclaring it with a
937 * size or indexing it only with integral constant
938 * expressions. ... The size can be at most
939 * gl_MaxClipDistances."
940 */
941 _mesa_glsl_error(&loc, state, "`gl_ClipDistance' array size cannot "
942 "be larger than gl_MaxClipDistances (%u)\n",
943 state->Const.MaxClipPlanes);
944 return true;
945 }
946 return false;
947 }
948
949 /**
950 * Create the constant 1, of a which is appropriate for incrementing and
951 * decrementing values of the given GLSL type. For example, if type is vec4,
952 * this creates a constant value of 1.0 having type float.
953 *
954 * If the given type is invalid for increment and decrement operators, return
955 * a floating point 1--the error will be detected later.
956 */
957 static ir_rvalue *
958 constant_one_for_inc_dec(void *ctx, const glsl_type *type)
959 {
960 switch (type->base_type) {
961 case GLSL_TYPE_UINT:
962 return new(ctx) ir_constant((unsigned) 1);
963 case GLSL_TYPE_INT:
964 return new(ctx) ir_constant(1);
965 default:
966 case GLSL_TYPE_FLOAT:
967 return new(ctx) ir_constant(1.0f);
968 }
969 }
970
971 ir_rvalue *
972 ast_expression::hir(exec_list *instructions,
973 struct _mesa_glsl_parse_state *state)
974 {
975 void *ctx = state;
976 static const int operations[AST_NUM_OPERATORS] = {
977 -1, /* ast_assign doesn't convert to ir_expression. */
978 -1, /* ast_plus doesn't convert to ir_expression. */
979 ir_unop_neg,
980 ir_binop_add,
981 ir_binop_sub,
982 ir_binop_mul,
983 ir_binop_div,
984 ir_binop_mod,
985 ir_binop_lshift,
986 ir_binop_rshift,
987 ir_binop_less,
988 ir_binop_greater,
989 ir_binop_lequal,
990 ir_binop_gequal,
991 ir_binop_all_equal,
992 ir_binop_any_nequal,
993 ir_binop_bit_and,
994 ir_binop_bit_xor,
995 ir_binop_bit_or,
996 ir_unop_bit_not,
997 ir_binop_logic_and,
998 ir_binop_logic_xor,
999 ir_binop_logic_or,
1000 ir_unop_logic_not,
1001
1002 /* Note: The following block of expression types actually convert
1003 * to multiple IR instructions.
1004 */
1005 ir_binop_mul, /* ast_mul_assign */
1006 ir_binop_div, /* ast_div_assign */
1007 ir_binop_mod, /* ast_mod_assign */
1008 ir_binop_add, /* ast_add_assign */
1009 ir_binop_sub, /* ast_sub_assign */
1010 ir_binop_lshift, /* ast_ls_assign */
1011 ir_binop_rshift, /* ast_rs_assign */
1012 ir_binop_bit_and, /* ast_and_assign */
1013 ir_binop_bit_xor, /* ast_xor_assign */
1014 ir_binop_bit_or, /* ast_or_assign */
1015
1016 -1, /* ast_conditional doesn't convert to ir_expression. */
1017 ir_binop_add, /* ast_pre_inc. */
1018 ir_binop_sub, /* ast_pre_dec. */
1019 ir_binop_add, /* ast_post_inc. */
1020 ir_binop_sub, /* ast_post_dec. */
1021 -1, /* ast_field_selection doesn't conv to ir_expression. */
1022 -1, /* ast_array_index doesn't convert to ir_expression. */
1023 -1, /* ast_function_call doesn't conv to ir_expression. */
1024 -1, /* ast_identifier doesn't convert to ir_expression. */
1025 -1, /* ast_int_constant doesn't convert to ir_expression. */
1026 -1, /* ast_uint_constant doesn't conv to ir_expression. */
1027 -1, /* ast_float_constant doesn't conv to ir_expression. */
1028 -1, /* ast_bool_constant doesn't conv to ir_expression. */
1029 -1, /* ast_sequence doesn't convert to ir_expression. */
1030 };
1031 ir_rvalue *result = NULL;
1032 ir_rvalue *op[3];
1033 const struct glsl_type *type; /* a temporary variable for switch cases */
1034 bool error_emitted = false;
1035 YYLTYPE loc;
1036
1037 loc = this->get_location();
1038
1039 switch (this->oper) {
1040 case ast_assign: {
1041 op[0] = this->subexpressions[0]->hir(instructions, state);
1042 op[1] = this->subexpressions[1]->hir(instructions, state);
1043
1044 result = do_assignment(instructions, state,
1045 this->subexpressions[0]->non_lvalue_description,
1046 op[0], op[1], false,
1047 this->subexpressions[0]->get_location());
1048 error_emitted = result->type->is_error();
1049 break;
1050 }
1051
1052 case ast_plus:
1053 op[0] = this->subexpressions[0]->hir(instructions, state);
1054
1055 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1056
1057 error_emitted = type->is_error();
1058
1059 result = op[0];
1060 break;
1061
1062 case ast_neg:
1063 op[0] = this->subexpressions[0]->hir(instructions, state);
1064
1065 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1066
1067 error_emitted = type->is_error();
1068
1069 result = new(ctx) ir_expression(operations[this->oper], type,
1070 op[0], NULL);
1071 break;
1072
1073 case ast_add:
1074 case ast_sub:
1075 case ast_mul:
1076 case ast_div:
1077 op[0] = this->subexpressions[0]->hir(instructions, state);
1078 op[1] = this->subexpressions[1]->hir(instructions, state);
1079
1080 type = arithmetic_result_type(op[0], op[1],
1081 (this->oper == ast_mul),
1082 state, & loc);
1083 error_emitted = type->is_error();
1084
1085 result = new(ctx) ir_expression(operations[this->oper], type,
1086 op[0], op[1]);
1087 break;
1088
1089 case ast_mod:
1090 op[0] = this->subexpressions[0]->hir(instructions, state);
1091 op[1] = this->subexpressions[1]->hir(instructions, state);
1092
1093 type = modulus_result_type(op[0]->type, op[1]->type, state, & loc);
1094
1095 assert(operations[this->oper] == ir_binop_mod);
1096
1097 result = new(ctx) ir_expression(operations[this->oper], type,
1098 op[0], op[1]);
1099 error_emitted = type->is_error();
1100 break;
1101
1102 case ast_lshift:
1103 case ast_rshift:
1104 if (state->language_version < 130) {
1105 _mesa_glsl_error(&loc, state, "operator %s requires GLSL 1.30",
1106 operator_string(this->oper));
1107 error_emitted = true;
1108 }
1109
1110 op[0] = this->subexpressions[0]->hir(instructions, state);
1111 op[1] = this->subexpressions[1]->hir(instructions, state);
1112 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1113 &loc);
1114 result = new(ctx) ir_expression(operations[this->oper], type,
1115 op[0], op[1]);
1116 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1117 break;
1118
1119 case ast_less:
1120 case ast_greater:
1121 case ast_lequal:
1122 case ast_gequal:
1123 op[0] = this->subexpressions[0]->hir(instructions, state);
1124 op[1] = this->subexpressions[1]->hir(instructions, state);
1125
1126 type = relational_result_type(op[0], op[1], state, & loc);
1127
1128 /* The relational operators must either generate an error or result
1129 * in a scalar boolean. See page 57 of the GLSL 1.50 spec.
1130 */
1131 assert(type->is_error()
1132 || ((type->base_type == GLSL_TYPE_BOOL)
1133 && type->is_scalar()));
1134
1135 result = new(ctx) ir_expression(operations[this->oper], type,
1136 op[0], op[1]);
1137 error_emitted = type->is_error();
1138 break;
1139
1140 case ast_nequal:
1141 case ast_equal:
1142 op[0] = this->subexpressions[0]->hir(instructions, state);
1143 op[1] = this->subexpressions[1]->hir(instructions, state);
1144
1145 /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
1146 *
1147 * "The equality operators equal (==), and not equal (!=)
1148 * operate on all types. They result in a scalar Boolean. If
1149 * the operand types do not match, then there must be a
1150 * conversion from Section 4.1.10 "Implicit Conversions"
1151 * applied to one operand that can make them match, in which
1152 * case this conversion is done."
1153 */
1154 if ((!apply_implicit_conversion(op[0]->type, op[1], state)
1155 && !apply_implicit_conversion(op[1]->type, op[0], state))
1156 || (op[0]->type != op[1]->type)) {
1157 _mesa_glsl_error(& loc, state, "operands of `%s' must have the same "
1158 "type", (this->oper == ast_equal) ? "==" : "!=");
1159 error_emitted = true;
1160 } else if ((state->language_version <= 110)
1161 && (op[0]->type->is_array() || op[1]->type->is_array())) {
1162 _mesa_glsl_error(& loc, state, "array comparisons forbidden in "
1163 "GLSL 1.10");
1164 error_emitted = true;
1165 }
1166
1167 if (error_emitted) {
1168 result = new(ctx) ir_constant(false);
1169 } else {
1170 result = do_comparison(ctx, operations[this->oper], op[0], op[1]);
1171 assert(result->type == glsl_type::bool_type);
1172 }
1173 break;
1174
1175 case ast_bit_and:
1176 case ast_bit_xor:
1177 case ast_bit_or:
1178 op[0] = this->subexpressions[0]->hir(instructions, state);
1179 op[1] = this->subexpressions[1]->hir(instructions, state);
1180 type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
1181 state, &loc);
1182 result = new(ctx) ir_expression(operations[this->oper], type,
1183 op[0], op[1]);
1184 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1185 break;
1186
1187 case ast_bit_not:
1188 op[0] = this->subexpressions[0]->hir(instructions, state);
1189
1190 if (state->language_version < 130) {
1191 _mesa_glsl_error(&loc, state, "bit-wise operations require GLSL 1.30");
1192 error_emitted = true;
1193 }
1194
1195 if (!op[0]->type->is_integer()) {
1196 _mesa_glsl_error(&loc, state, "operand of `~' must be an integer");
1197 error_emitted = true;
1198 }
1199
1200 type = error_emitted ? glsl_type::error_type : op[0]->type;
1201 result = new(ctx) ir_expression(ir_unop_bit_not, type, op[0], NULL);
1202 break;
1203
1204 case ast_logic_and: {
1205 exec_list rhs_instructions;
1206 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1207 "LHS", &error_emitted);
1208 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1209 "RHS", &error_emitted);
1210
1211 if (rhs_instructions.is_empty()) {
1212 result = new(ctx) ir_expression(ir_binop_logic_and, op[0], op[1]);
1213 type = result->type;
1214 } else {
1215 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1216 "and_tmp",
1217 ir_var_temporary);
1218 instructions->push_tail(tmp);
1219
1220 ir_if *const stmt = new(ctx) ir_if(op[0]);
1221 instructions->push_tail(stmt);
1222
1223 stmt->then_instructions.append_list(&rhs_instructions);
1224 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1225 ir_assignment *const then_assign =
1226 new(ctx) ir_assignment(then_deref, op[1], NULL);
1227 stmt->then_instructions.push_tail(then_assign);
1228
1229 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1230 ir_assignment *const else_assign =
1231 new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false), NULL);
1232 stmt->else_instructions.push_tail(else_assign);
1233
1234 result = new(ctx) ir_dereference_variable(tmp);
1235 type = tmp->type;
1236 }
1237 break;
1238 }
1239
1240 case ast_logic_or: {
1241 exec_list rhs_instructions;
1242 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1243 "LHS", &error_emitted);
1244 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1245 "RHS", &error_emitted);
1246
1247 if (rhs_instructions.is_empty()) {
1248 result = new(ctx) ir_expression(ir_binop_logic_or, op[0], op[1]);
1249 type = result->type;
1250 } else {
1251 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1252 "or_tmp",
1253 ir_var_temporary);
1254 instructions->push_tail(tmp);
1255
1256 ir_if *const stmt = new(ctx) ir_if(op[0]);
1257 instructions->push_tail(stmt);
1258
1259 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1260 ir_assignment *const then_assign =
1261 new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true), NULL);
1262 stmt->then_instructions.push_tail(then_assign);
1263
1264 stmt->else_instructions.append_list(&rhs_instructions);
1265 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1266 ir_assignment *const else_assign =
1267 new(ctx) ir_assignment(else_deref, op[1], NULL);
1268 stmt->else_instructions.push_tail(else_assign);
1269
1270 result = new(ctx) ir_dereference_variable(tmp);
1271 type = tmp->type;
1272 }
1273 break;
1274 }
1275
1276 case ast_logic_xor:
1277 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1278 *
1279 * "The logical binary operators and (&&), or ( | | ), and
1280 * exclusive or (^^). They operate only on two Boolean
1281 * expressions and result in a Boolean expression."
1282 */
1283 op[0] = get_scalar_boolean_operand(instructions, state, this, 0, "LHS",
1284 &error_emitted);
1285 op[1] = get_scalar_boolean_operand(instructions, state, this, 1, "RHS",
1286 &error_emitted);
1287
1288 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1289 op[0], op[1]);
1290 break;
1291
1292 case ast_logic_not:
1293 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1294 "operand", &error_emitted);
1295
1296 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1297 op[0], NULL);
1298 break;
1299
1300 case ast_mul_assign:
1301 case ast_div_assign:
1302 case ast_add_assign:
1303 case ast_sub_assign: {
1304 op[0] = this->subexpressions[0]->hir(instructions, state);
1305 op[1] = this->subexpressions[1]->hir(instructions, state);
1306
1307 type = arithmetic_result_type(op[0], op[1],
1308 (this->oper == ast_mul_assign),
1309 state, & loc);
1310
1311 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1312 op[0], op[1]);
1313
1314 result = do_assignment(instructions, state,
1315 this->subexpressions[0]->non_lvalue_description,
1316 op[0]->clone(ctx, NULL), temp_rhs, false,
1317 this->subexpressions[0]->get_location());
1318 error_emitted = (op[0]->type->is_error());
1319
1320 /* GLSL 1.10 does not allow array assignment. However, we don't have to
1321 * explicitly test for this because none of the binary expression
1322 * operators allow array operands either.
1323 */
1324
1325 break;
1326 }
1327
1328 case ast_mod_assign: {
1329 op[0] = this->subexpressions[0]->hir(instructions, state);
1330 op[1] = this->subexpressions[1]->hir(instructions, state);
1331
1332 type = modulus_result_type(op[0]->type, op[1]->type, state, & loc);
1333
1334 assert(operations[this->oper] == ir_binop_mod);
1335
1336 ir_rvalue *temp_rhs;
1337 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1338 op[0], op[1]);
1339
1340 result = do_assignment(instructions, state,
1341 this->subexpressions[0]->non_lvalue_description,
1342 op[0]->clone(ctx, NULL), temp_rhs, false,
1343 this->subexpressions[0]->get_location());
1344 error_emitted = type->is_error();
1345 break;
1346 }
1347
1348 case ast_ls_assign:
1349 case ast_rs_assign: {
1350 op[0] = this->subexpressions[0]->hir(instructions, state);
1351 op[1] = this->subexpressions[1]->hir(instructions, state);
1352 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1353 &loc);
1354 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1355 type, op[0], op[1]);
1356 result = do_assignment(instructions, state,
1357 this->subexpressions[0]->non_lvalue_description,
1358 op[0]->clone(ctx, NULL), temp_rhs, false,
1359 this->subexpressions[0]->get_location());
1360 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1361 break;
1362 }
1363
1364 case ast_and_assign:
1365 case ast_xor_assign:
1366 case ast_or_assign: {
1367 op[0] = this->subexpressions[0]->hir(instructions, state);
1368 op[1] = this->subexpressions[1]->hir(instructions, state);
1369 type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
1370 state, &loc);
1371 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1372 type, op[0], op[1]);
1373 result = do_assignment(instructions, state,
1374 this->subexpressions[0]->non_lvalue_description,
1375 op[0]->clone(ctx, NULL), temp_rhs, false,
1376 this->subexpressions[0]->get_location());
1377 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1378 break;
1379 }
1380
1381 case ast_conditional: {
1382 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1383 *
1384 * "The ternary selection operator (?:). It operates on three
1385 * expressions (exp1 ? exp2 : exp3). This operator evaluates the
1386 * first expression, which must result in a scalar Boolean."
1387 */
1388 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1389 "condition", &error_emitted);
1390
1391 /* The :? operator is implemented by generating an anonymous temporary
1392 * followed by an if-statement. The last instruction in each branch of
1393 * the if-statement assigns a value to the anonymous temporary. This
1394 * temporary is the r-value of the expression.
1395 */
1396 exec_list then_instructions;
1397 exec_list else_instructions;
1398
1399 op[1] = this->subexpressions[1]->hir(&then_instructions, state);
1400 op[2] = this->subexpressions[2]->hir(&else_instructions, state);
1401
1402 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1403 *
1404 * "The second and third expressions can be any type, as
1405 * long their types match, or there is a conversion in
1406 * Section 4.1.10 "Implicit Conversions" that can be applied
1407 * to one of the expressions to make their types match. This
1408 * resulting matching type is the type of the entire
1409 * expression."
1410 */
1411 if ((!apply_implicit_conversion(op[1]->type, op[2], state)
1412 && !apply_implicit_conversion(op[2]->type, op[1], state))
1413 || (op[1]->type != op[2]->type)) {
1414 YYLTYPE loc = this->subexpressions[1]->get_location();
1415
1416 _mesa_glsl_error(& loc, state, "Second and third operands of ?: "
1417 "operator must have matching types.");
1418 error_emitted = true;
1419 type = glsl_type::error_type;
1420 } else {
1421 type = op[1]->type;
1422 }
1423
1424 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1425 *
1426 * "The second and third expressions must be the same type, but can
1427 * be of any type other than an array."
1428 */
1429 if ((state->language_version <= 110) && type->is_array()) {
1430 _mesa_glsl_error(& loc, state, "Second and third operands of ?: "
1431 "operator must not be arrays.");
1432 error_emitted = true;
1433 }
1434
1435 ir_constant *cond_val = op[0]->constant_expression_value();
1436 ir_constant *then_val = op[1]->constant_expression_value();
1437 ir_constant *else_val = op[2]->constant_expression_value();
1438
1439 if (then_instructions.is_empty()
1440 && else_instructions.is_empty()
1441 && (cond_val != NULL) && (then_val != NULL) && (else_val != NULL)) {
1442 result = (cond_val->value.b[0]) ? then_val : else_val;
1443 } else {
1444 ir_variable *const tmp =
1445 new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary);
1446 instructions->push_tail(tmp);
1447
1448 ir_if *const stmt = new(ctx) ir_if(op[0]);
1449 instructions->push_tail(stmt);
1450
1451 then_instructions.move_nodes_to(& stmt->then_instructions);
1452 ir_dereference *const then_deref =
1453 new(ctx) ir_dereference_variable(tmp);
1454 ir_assignment *const then_assign =
1455 new(ctx) ir_assignment(then_deref, op[1], NULL);
1456 stmt->then_instructions.push_tail(then_assign);
1457
1458 else_instructions.move_nodes_to(& stmt->else_instructions);
1459 ir_dereference *const else_deref =
1460 new(ctx) ir_dereference_variable(tmp);
1461 ir_assignment *const else_assign =
1462 new(ctx) ir_assignment(else_deref, op[2], NULL);
1463 stmt->else_instructions.push_tail(else_assign);
1464
1465 result = new(ctx) ir_dereference_variable(tmp);
1466 }
1467 break;
1468 }
1469
1470 case ast_pre_inc:
1471 case ast_pre_dec: {
1472 this->non_lvalue_description = (this->oper == ast_pre_inc)
1473 ? "pre-increment operation" : "pre-decrement operation";
1474
1475 op[0] = this->subexpressions[0]->hir(instructions, state);
1476 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1477
1478 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1479
1480 ir_rvalue *temp_rhs;
1481 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1482 op[0], op[1]);
1483
1484 result = do_assignment(instructions, state,
1485 this->subexpressions[0]->non_lvalue_description,
1486 op[0]->clone(ctx, NULL), temp_rhs, false,
1487 this->subexpressions[0]->get_location());
1488 error_emitted = op[0]->type->is_error();
1489 break;
1490 }
1491
1492 case ast_post_inc:
1493 case ast_post_dec: {
1494 this->non_lvalue_description = (this->oper == ast_post_inc)
1495 ? "post-increment operation" : "post-decrement operation";
1496 op[0] = this->subexpressions[0]->hir(instructions, state);
1497 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1498
1499 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1500
1501 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1502
1503 ir_rvalue *temp_rhs;
1504 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1505 op[0], op[1]);
1506
1507 /* Get a temporary of a copy of the lvalue before it's modified.
1508 * This may get thrown away later.
1509 */
1510 result = get_lvalue_copy(instructions, op[0]->clone(ctx, NULL));
1511
1512 (void)do_assignment(instructions, state,
1513 this->subexpressions[0]->non_lvalue_description,
1514 op[0]->clone(ctx, NULL), temp_rhs, false,
1515 this->subexpressions[0]->get_location());
1516
1517 error_emitted = op[0]->type->is_error();
1518 break;
1519 }
1520
1521 case ast_field_selection:
1522 result = _mesa_ast_field_selection_to_hir(this, instructions, state);
1523 break;
1524
1525 case ast_array_index: {
1526 YYLTYPE index_loc = subexpressions[1]->get_location();
1527
1528 op[0] = subexpressions[0]->hir(instructions, state);
1529 op[1] = subexpressions[1]->hir(instructions, state);
1530
1531 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1532
1533 ir_rvalue *const array = op[0];
1534
1535 result = new(ctx) ir_dereference_array(op[0], op[1]);
1536
1537 /* Do not use op[0] after this point. Use array.
1538 */
1539 op[0] = NULL;
1540
1541
1542 if (error_emitted)
1543 break;
1544
1545 if (!array->type->is_array()
1546 && !array->type->is_matrix()
1547 && !array->type->is_vector()) {
1548 _mesa_glsl_error(& index_loc, state,
1549 "cannot dereference non-array / non-matrix / "
1550 "non-vector");
1551 error_emitted = true;
1552 }
1553
1554 if (!op[1]->type->is_integer()) {
1555 _mesa_glsl_error(& index_loc, state,
1556 "array index must be integer type");
1557 error_emitted = true;
1558 } else if (!op[1]->type->is_scalar()) {
1559 _mesa_glsl_error(& index_loc, state,
1560 "array index must be scalar");
1561 error_emitted = true;
1562 }
1563
1564 /* If the array index is a constant expression and the array has a
1565 * declared size, ensure that the access is in-bounds. If the array
1566 * index is not a constant expression, ensure that the array has a
1567 * declared size.
1568 */
1569 ir_constant *const const_index = op[1]->constant_expression_value();
1570 if (const_index != NULL) {
1571 const int idx = const_index->value.i[0];
1572 const char *type_name;
1573 unsigned bound = 0;
1574
1575 if (array->type->is_matrix()) {
1576 type_name = "matrix";
1577 } else if (array->type->is_vector()) {
1578 type_name = "vector";
1579 } else {
1580 type_name = "array";
1581 }
1582
1583 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec:
1584 *
1585 * "It is illegal to declare an array with a size, and then
1586 * later (in the same shader) index the same array with an
1587 * integral constant expression greater than or equal to the
1588 * declared size. It is also illegal to index an array with a
1589 * negative constant expression."
1590 */
1591 if (array->type->is_matrix()) {
1592 if (array->type->row_type()->vector_elements <= idx) {
1593 bound = array->type->row_type()->vector_elements;
1594 }
1595 } else if (array->type->is_vector()) {
1596 if (array->type->vector_elements <= idx) {
1597 bound = array->type->vector_elements;
1598 }
1599 } else {
1600 if ((array->type->array_size() > 0)
1601 && (array->type->array_size() <= idx)) {
1602 bound = array->type->array_size();
1603 }
1604 }
1605
1606 if (bound > 0) {
1607 _mesa_glsl_error(& loc, state, "%s index must be < %u",
1608 type_name, bound);
1609 error_emitted = true;
1610 } else if (idx < 0) {
1611 _mesa_glsl_error(& loc, state, "%s index must be >= 0",
1612 type_name);
1613 error_emitted = true;
1614 }
1615
1616 if (array->type->is_array()) {
1617 /* If the array is a variable dereference, it dereferences the
1618 * whole array, by definition. Use this to get the variable.
1619 *
1620 * FINISHME: Should some methods for getting / setting / testing
1621 * FINISHME: array access limits be added to ir_dereference?
1622 */
1623 ir_variable *const v = array->whole_variable_referenced();
1624 if ((v != NULL) && (unsigned(idx) > v->max_array_access)) {
1625 v->max_array_access = idx;
1626
1627 /* Check whether this access will, as a side effect, implicitly
1628 * cause the size of a built-in array to be too large.
1629 */
1630 if (check_builtin_array_max_size(v->name, idx+1, loc, state))
1631 error_emitted = true;
1632 }
1633 }
1634 } else if (array->type->array_size() == 0) {
1635 _mesa_glsl_error(&loc, state, "unsized array index must be constant");
1636 } else {
1637 if (array->type->is_array()) {
1638 /* whole_variable_referenced can return NULL if the array is a
1639 * member of a structure. In this case it is safe to not update
1640 * the max_array_access field because it is never used for fields
1641 * of structures.
1642 */
1643 ir_variable *v = array->whole_variable_referenced();
1644 if (v != NULL)
1645 v->max_array_access = array->type->array_size() - 1;
1646 }
1647 }
1648
1649 /* From page 23 (29 of the PDF) of the GLSL 1.30 spec:
1650 *
1651 * "Samplers aggregated into arrays within a shader (using square
1652 * brackets [ ]) can only be indexed with integral constant
1653 * expressions [...]."
1654 *
1655 * This restriction was added in GLSL 1.30. Shaders using earlier version
1656 * of the language should not be rejected by the compiler front-end for
1657 * using this construct. This allows useful things such as using a loop
1658 * counter as the index to an array of samplers. If the loop in unrolled,
1659 * the code should compile correctly. Instead, emit a warning.
1660 */
1661 if (array->type->is_array() &&
1662 array->type->element_type()->is_sampler() &&
1663 const_index == NULL) {
1664
1665 if (state->language_version == 100) {
1666 _mesa_glsl_warning(&loc, state,
1667 "sampler arrays indexed with non-constant "
1668 "expressions is optional in GLSL ES 1.00");
1669 } else if (state->language_version < 130) {
1670 _mesa_glsl_warning(&loc, state,
1671 "sampler arrays indexed with non-constant "
1672 "expressions is forbidden in GLSL 1.30 and "
1673 "later");
1674 } else {
1675 _mesa_glsl_error(&loc, state,
1676 "sampler arrays indexed with non-constant "
1677 "expressions is forbidden in GLSL 1.30 and "
1678 "later");
1679 error_emitted = true;
1680 }
1681 }
1682
1683 if (error_emitted)
1684 result->type = glsl_type::error_type;
1685
1686 break;
1687 }
1688
1689 case ast_function_call:
1690 /* Should *NEVER* get here. ast_function_call should always be handled
1691 * by ast_function_expression::hir.
1692 */
1693 assert(0);
1694 break;
1695
1696 case ast_identifier: {
1697 /* ast_identifier can appear several places in a full abstract syntax
1698 * tree. This particular use must be at location specified in the grammar
1699 * as 'variable_identifier'.
1700 */
1701 ir_variable *var =
1702 state->symbols->get_variable(this->primary_expression.identifier);
1703
1704 if (var != NULL) {
1705 var->used = true;
1706 result = new(ctx) ir_dereference_variable(var);
1707 } else {
1708 _mesa_glsl_error(& loc, state, "`%s' undeclared",
1709 this->primary_expression.identifier);
1710
1711 result = ir_rvalue::error_value(ctx);
1712 error_emitted = true;
1713 }
1714 break;
1715 }
1716
1717 case ast_int_constant:
1718 result = new(ctx) ir_constant(this->primary_expression.int_constant);
1719 break;
1720
1721 case ast_uint_constant:
1722 result = new(ctx) ir_constant(this->primary_expression.uint_constant);
1723 break;
1724
1725 case ast_float_constant:
1726 result = new(ctx) ir_constant(this->primary_expression.float_constant);
1727 break;
1728
1729 case ast_bool_constant:
1730 result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant));
1731 break;
1732
1733 case ast_sequence: {
1734 /* It should not be possible to generate a sequence in the AST without
1735 * any expressions in it.
1736 */
1737 assert(!this->expressions.is_empty());
1738
1739 /* The r-value of a sequence is the last expression in the sequence. If
1740 * the other expressions in the sequence do not have side-effects (and
1741 * therefore add instructions to the instruction list), they get dropped
1742 * on the floor.
1743 */
1744 exec_node *previous_tail_pred = NULL;
1745 YYLTYPE previous_operand_loc = loc;
1746
1747 foreach_list_typed (ast_node, ast, link, &this->expressions) {
1748 /* If one of the operands of comma operator does not generate any
1749 * code, we want to emit a warning. At each pass through the loop
1750 * previous_tail_pred will point to the last instruction in the
1751 * stream *before* processing the previous operand. Naturally,
1752 * instructions->tail_pred will point to the last instruction in the
1753 * stream *after* processing the previous operand. If the two
1754 * pointers match, then the previous operand had no effect.
1755 *
1756 * The warning behavior here differs slightly from GCC. GCC will
1757 * only emit a warning if none of the left-hand operands have an
1758 * effect. However, it will emit a warning for each. I believe that
1759 * there are some cases in C (especially with GCC extensions) where
1760 * it is useful to have an intermediate step in a sequence have no
1761 * effect, but I don't think these cases exist in GLSL. Either way,
1762 * it would be a giant hassle to replicate that behavior.
1763 */
1764 if (previous_tail_pred == instructions->tail_pred) {
1765 _mesa_glsl_warning(&previous_operand_loc, state,
1766 "left-hand operand of comma expression has "
1767 "no effect");
1768 }
1769
1770 /* tail_pred is directly accessed instead of using the get_tail()
1771 * method for performance reasons. get_tail() has extra code to
1772 * return NULL when the list is empty. We don't care about that
1773 * here, so using tail_pred directly is fine.
1774 */
1775 previous_tail_pred = instructions->tail_pred;
1776 previous_operand_loc = ast->get_location();
1777
1778 result = ast->hir(instructions, state);
1779 }
1780
1781 /* Any errors should have already been emitted in the loop above.
1782 */
1783 error_emitted = true;
1784 break;
1785 }
1786 }
1787 type = NULL; /* use result->type, not type. */
1788 assert(result != NULL);
1789
1790 if (result->type->is_error() && !error_emitted)
1791 _mesa_glsl_error(& loc, state, "type mismatch");
1792
1793 return result;
1794 }
1795
1796
1797 ir_rvalue *
1798 ast_expression_statement::hir(exec_list *instructions,
1799 struct _mesa_glsl_parse_state *state)
1800 {
1801 /* It is possible to have expression statements that don't have an
1802 * expression. This is the solitary semicolon:
1803 *
1804 * for (i = 0; i < 5; i++)
1805 * ;
1806 *
1807 * In this case the expression will be NULL. Test for NULL and don't do
1808 * anything in that case.
1809 */
1810 if (expression != NULL)
1811 expression->hir(instructions, state);
1812
1813 /* Statements do not have r-values.
1814 */
1815 return NULL;
1816 }
1817
1818
1819 ir_rvalue *
1820 ast_compound_statement::hir(exec_list *instructions,
1821 struct _mesa_glsl_parse_state *state)
1822 {
1823 if (new_scope)
1824 state->symbols->push_scope();
1825
1826 foreach_list_typed (ast_node, ast, link, &this->statements)
1827 ast->hir(instructions, state);
1828
1829 if (new_scope)
1830 state->symbols->pop_scope();
1831
1832 /* Compound statements do not have r-values.
1833 */
1834 return NULL;
1835 }
1836
1837
1838 static const glsl_type *
1839 process_array_type(YYLTYPE *loc, const glsl_type *base, ast_node *array_size,
1840 struct _mesa_glsl_parse_state *state)
1841 {
1842 unsigned length = 0;
1843
1844 /* From page 19 (page 25) of the GLSL 1.20 spec:
1845 *
1846 * "Only one-dimensional arrays may be declared."
1847 */
1848 if (base->is_array()) {
1849 _mesa_glsl_error(loc, state,
1850 "invalid array of `%s' (only one-dimensional arrays "
1851 "may be declared)",
1852 base->name);
1853 return glsl_type::error_type;
1854 }
1855
1856 if (array_size != NULL) {
1857 exec_list dummy_instructions;
1858 ir_rvalue *const ir = array_size->hir(& dummy_instructions, state);
1859 YYLTYPE loc = array_size->get_location();
1860
1861 if (ir != NULL) {
1862 if (!ir->type->is_integer()) {
1863 _mesa_glsl_error(& loc, state, "array size must be integer type");
1864 } else if (!ir->type->is_scalar()) {
1865 _mesa_glsl_error(& loc, state, "array size must be scalar type");
1866 } else {
1867 ir_constant *const size = ir->constant_expression_value();
1868
1869 if (size == NULL) {
1870 _mesa_glsl_error(& loc, state, "array size must be a "
1871 "constant valued expression");
1872 } else if (size->value.i[0] <= 0) {
1873 _mesa_glsl_error(& loc, state, "array size must be > 0");
1874 } else {
1875 assert(size->type == ir->type);
1876 length = size->value.u[0];
1877
1878 /* If the array size is const (and we've verified that
1879 * it is) then no instructions should have been emitted
1880 * when we converted it to HIR. If they were emitted,
1881 * then either the array size isn't const after all, or
1882 * we are emitting unnecessary instructions.
1883 */
1884 assert(dummy_instructions.is_empty());
1885 }
1886 }
1887 }
1888 } else if (state->es_shader) {
1889 /* Section 10.17 of the GLSL ES 1.00 specification states that unsized
1890 * array declarations have been removed from the language.
1891 */
1892 _mesa_glsl_error(loc, state, "unsized array declarations are not "
1893 "allowed in GLSL ES 1.00.");
1894 }
1895
1896 return glsl_type::get_array_instance(base, length);
1897 }
1898
1899
1900 const glsl_type *
1901 ast_type_specifier::glsl_type(const char **name,
1902 struct _mesa_glsl_parse_state *state) const
1903 {
1904 const struct glsl_type *type;
1905
1906 type = state->symbols->get_type(this->type_name);
1907 *name = this->type_name;
1908
1909 if (this->is_array) {
1910 YYLTYPE loc = this->get_location();
1911 type = process_array_type(&loc, type, this->array_size, state);
1912 }
1913
1914 return type;
1915 }
1916
1917
1918 static void
1919 apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
1920 ir_variable *var,
1921 struct _mesa_glsl_parse_state *state,
1922 YYLTYPE *loc)
1923 {
1924 if (qual->flags.q.invariant) {
1925 if (var->used) {
1926 _mesa_glsl_error(loc, state,
1927 "variable `%s' may not be redeclared "
1928 "`invariant' after being used",
1929 var->name);
1930 } else {
1931 var->invariant = 1;
1932 }
1933 }
1934
1935 if (qual->flags.q.constant || qual->flags.q.attribute
1936 || qual->flags.q.uniform
1937 || (qual->flags.q.varying && (state->target == fragment_shader)))
1938 var->read_only = 1;
1939
1940 if (qual->flags.q.centroid)
1941 var->centroid = 1;
1942
1943 if (qual->flags.q.attribute && state->target != vertex_shader) {
1944 var->type = glsl_type::error_type;
1945 _mesa_glsl_error(loc, state,
1946 "`attribute' variables may not be declared in the "
1947 "%s shader",
1948 _mesa_glsl_shader_target_name(state->target));
1949 }
1950
1951 /* From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
1952 *
1953 * "The varying qualifier can be used only with the data types
1954 * float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
1955 * these."
1956 */
1957 if (qual->flags.q.varying) {
1958 const glsl_type *non_array_type;
1959
1960 if (var->type && var->type->is_array())
1961 non_array_type = var->type->fields.array;
1962 else
1963 non_array_type = var->type;
1964
1965 if (non_array_type && non_array_type->base_type != GLSL_TYPE_FLOAT) {
1966 var->type = glsl_type::error_type;
1967 _mesa_glsl_error(loc, state,
1968 "varying variables must be of base type float");
1969 }
1970 }
1971
1972 /* If there is no qualifier that changes the mode of the variable, leave
1973 * the setting alone.
1974 */
1975 if (qual->flags.q.in && qual->flags.q.out)
1976 var->mode = ir_var_inout;
1977 else if (qual->flags.q.attribute || qual->flags.q.in
1978 || (qual->flags.q.varying && (state->target == fragment_shader)))
1979 var->mode = ir_var_in;
1980 else if (qual->flags.q.out
1981 || (qual->flags.q.varying && (state->target == vertex_shader)))
1982 var->mode = ir_var_out;
1983 else if (qual->flags.q.uniform)
1984 var->mode = ir_var_uniform;
1985
1986 if (state->all_invariant && (state->current_function == NULL)) {
1987 switch (state->target) {
1988 case vertex_shader:
1989 if (var->mode == ir_var_out)
1990 var->invariant = true;
1991 break;
1992 case geometry_shader:
1993 if ((var->mode == ir_var_in) || (var->mode == ir_var_out))
1994 var->invariant = true;
1995 break;
1996 case fragment_shader:
1997 if (var->mode == ir_var_in)
1998 var->invariant = true;
1999 break;
2000 }
2001 }
2002
2003 if (qual->flags.q.flat)
2004 var->interpolation = INTERP_QUALIFIER_FLAT;
2005 else if (qual->flags.q.noperspective)
2006 var->interpolation = INTERP_QUALIFIER_NOPERSPECTIVE;
2007 else if (qual->flags.q.smooth)
2008 var->interpolation = INTERP_QUALIFIER_SMOOTH;
2009 else
2010 var->interpolation = INTERP_QUALIFIER_NONE;
2011
2012 if (var->interpolation != INTERP_QUALIFIER_NONE &&
2013 !(state->target == vertex_shader && var->mode == ir_var_out) &&
2014 !(state->target == fragment_shader && var->mode == ir_var_in)) {
2015 const char *qual_string = NULL;
2016 switch (var->interpolation) {
2017 case INTERP_QUALIFIER_FLAT:
2018 qual_string = "flat";
2019 break;
2020 case INTERP_QUALIFIER_NOPERSPECTIVE:
2021 qual_string = "noperspective";
2022 break;
2023 case INTERP_QUALIFIER_SMOOTH:
2024 qual_string = "smooth";
2025 break;
2026 }
2027
2028 _mesa_glsl_error(loc, state,
2029 "interpolation qualifier `%s' can only be applied to "
2030 "vertex shader outputs and fragment shader inputs.",
2031 qual_string);
2032
2033 }
2034
2035 var->pixel_center_integer = qual->flags.q.pixel_center_integer;
2036 var->origin_upper_left = qual->flags.q.origin_upper_left;
2037 if ((qual->flags.q.origin_upper_left || qual->flags.q.pixel_center_integer)
2038 && (strcmp(var->name, "gl_FragCoord") != 0)) {
2039 const char *const qual_string = (qual->flags.q.origin_upper_left)
2040 ? "origin_upper_left" : "pixel_center_integer";
2041
2042 _mesa_glsl_error(loc, state,
2043 "layout qualifier `%s' can only be applied to "
2044 "fragment shader input `gl_FragCoord'",
2045 qual_string);
2046 }
2047
2048 if (qual->flags.q.explicit_location) {
2049 const bool global_scope = (state->current_function == NULL);
2050 bool fail = false;
2051 const char *string = "";
2052
2053 /* In the vertex shader only shader inputs can be given explicit
2054 * locations.
2055 *
2056 * In the fragment shader only shader outputs can be given explicit
2057 * locations.
2058 */
2059 switch (state->target) {
2060 case vertex_shader:
2061 if (!global_scope || (var->mode != ir_var_in)) {
2062 fail = true;
2063 string = "input";
2064 }
2065 break;
2066
2067 case geometry_shader:
2068 _mesa_glsl_error(loc, state,
2069 "geometry shader variables cannot be given "
2070 "explicit locations\n");
2071 break;
2072
2073 case fragment_shader:
2074 if (!global_scope || (var->mode != ir_var_out)) {
2075 fail = true;
2076 string = "output";
2077 }
2078 break;
2079 };
2080
2081 if (fail) {
2082 _mesa_glsl_error(loc, state,
2083 "only %s shader %s variables can be given an "
2084 "explicit location\n",
2085 _mesa_glsl_shader_target_name(state->target),
2086 string);
2087 } else {
2088 var->explicit_location = true;
2089
2090 /* This bit of silliness is needed because invalid explicit locations
2091 * are supposed to be flagged during linking. Small negative values
2092 * biased by VERT_ATTRIB_GENERIC0 or FRAG_RESULT_DATA0 could alias
2093 * built-in values (e.g., -16+VERT_ATTRIB_GENERIC0 = VERT_ATTRIB_POS).
2094 * The linker needs to be able to differentiate these cases. This
2095 * ensures that negative values stay negative.
2096 */
2097 if (qual->location >= 0) {
2098 var->location = (state->target == vertex_shader)
2099 ? (qual->location + VERT_ATTRIB_GENERIC0)
2100 : (qual->location + FRAG_RESULT_DATA0);
2101 } else {
2102 var->location = qual->location;
2103 }
2104 if (qual->flags.q.explicit_index) {
2105 var->explicit_index = true;
2106 var->index = qual->index;
2107 }
2108 }
2109 } else if (qual->flags.q.explicit_index) {
2110 _mesa_glsl_error(loc, state,
2111 "explicit index requires explicit location\n");
2112 }
2113
2114 /* Does the declaration use the 'layout' keyword?
2115 */
2116 const bool uses_layout = qual->flags.q.pixel_center_integer
2117 || qual->flags.q.origin_upper_left
2118 || qual->flags.q.explicit_location; /* no need for index since it relies on location */
2119
2120 /* Does the declaration use the deprecated 'attribute' or 'varying'
2121 * keywords?
2122 */
2123 const bool uses_deprecated_qualifier = qual->flags.q.attribute
2124 || qual->flags.q.varying;
2125
2126 /* Is the 'layout' keyword used with parameters that allow relaxed checking.
2127 * Many implementations of GL_ARB_fragment_coord_conventions_enable and some
2128 * implementations (only Mesa?) GL_ARB_explicit_attrib_location_enable
2129 * allowed the layout qualifier to be used with 'varying' and 'attribute'.
2130 * These extensions and all following extensions that add the 'layout'
2131 * keyword have been modified to require the use of 'in' or 'out'.
2132 *
2133 * The following extension do not allow the deprecated keywords:
2134 *
2135 * GL_AMD_conservative_depth
2136 * GL_ARB_conservative_depth
2137 * GL_ARB_gpu_shader5
2138 * GL_ARB_separate_shader_objects
2139 * GL_ARB_tesselation_shader
2140 * GL_ARB_transform_feedback3
2141 * GL_ARB_uniform_buffer_object
2142 *
2143 * It is unknown whether GL_EXT_shader_image_load_store or GL_NV_gpu_shader5
2144 * allow layout with the deprecated keywords.
2145 */
2146 const bool relaxed_layout_qualifier_checking =
2147 state->ARB_fragment_coord_conventions_enable;
2148
2149 if (uses_layout && uses_deprecated_qualifier) {
2150 if (relaxed_layout_qualifier_checking) {
2151 _mesa_glsl_warning(loc, state,
2152 "`layout' qualifier may not be used with "
2153 "`attribute' or `varying'");
2154 } else {
2155 _mesa_glsl_error(loc, state,
2156 "`layout' qualifier may not be used with "
2157 "`attribute' or `varying'");
2158 }
2159 }
2160
2161 /* Layout qualifiers for gl_FragDepth, which are enabled by extension
2162 * AMD_conservative_depth.
2163 */
2164 int depth_layout_count = qual->flags.q.depth_any
2165 + qual->flags.q.depth_greater
2166 + qual->flags.q.depth_less
2167 + qual->flags.q.depth_unchanged;
2168 if (depth_layout_count > 0
2169 && !state->AMD_conservative_depth_enable
2170 && !state->ARB_conservative_depth_enable) {
2171 _mesa_glsl_error(loc, state,
2172 "extension GL_AMD_conservative_depth or "
2173 "GL_ARB_conservative_depth must be enabled "
2174 "to use depth layout qualifiers");
2175 } else if (depth_layout_count > 0
2176 && strcmp(var->name, "gl_FragDepth") != 0) {
2177 _mesa_glsl_error(loc, state,
2178 "depth layout qualifiers can be applied only to "
2179 "gl_FragDepth");
2180 } else if (depth_layout_count > 1
2181 && strcmp(var->name, "gl_FragDepth") == 0) {
2182 _mesa_glsl_error(loc, state,
2183 "at most one depth layout qualifier can be applied to "
2184 "gl_FragDepth");
2185 }
2186 if (qual->flags.q.depth_any)
2187 var->depth_layout = ir_depth_layout_any;
2188 else if (qual->flags.q.depth_greater)
2189 var->depth_layout = ir_depth_layout_greater;
2190 else if (qual->flags.q.depth_less)
2191 var->depth_layout = ir_depth_layout_less;
2192 else if (qual->flags.q.depth_unchanged)
2193 var->depth_layout = ir_depth_layout_unchanged;
2194 else
2195 var->depth_layout = ir_depth_layout_none;
2196 }
2197
2198 /**
2199 * Get the variable that is being redeclared by this declaration
2200 *
2201 * Semantic checks to verify the validity of the redeclaration are also
2202 * performed. If semantic checks fail, compilation error will be emitted via
2203 * \c _mesa_glsl_error, but a non-\c NULL pointer will still be returned.
2204 *
2205 * \returns
2206 * A pointer to an existing variable in the current scope if the declaration
2207 * is a redeclaration, \c NULL otherwise.
2208 */
2209 ir_variable *
2210 get_variable_being_redeclared(ir_variable *var, ast_declaration *decl,
2211 struct _mesa_glsl_parse_state *state)
2212 {
2213 /* Check if this declaration is actually a re-declaration, either to
2214 * resize an array or add qualifiers to an existing variable.
2215 *
2216 * This is allowed for variables in the current scope, or when at
2217 * global scope (for built-ins in the implicit outer scope).
2218 */
2219 ir_variable *earlier = state->symbols->get_variable(decl->identifier);
2220 if (earlier == NULL ||
2221 (state->current_function != NULL &&
2222 !state->symbols->name_declared_this_scope(decl->identifier))) {
2223 return NULL;
2224 }
2225
2226
2227 YYLTYPE loc = decl->get_location();
2228
2229 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
2230 *
2231 * "It is legal to declare an array without a size and then
2232 * later re-declare the same name as an array of the same
2233 * type and specify a size."
2234 */
2235 if ((earlier->type->array_size() == 0)
2236 && var->type->is_array()
2237 && (var->type->element_type() == earlier->type->element_type())) {
2238 /* FINISHME: This doesn't match the qualifiers on the two
2239 * FINISHME: declarations. It's not 100% clear whether this is
2240 * FINISHME: required or not.
2241 */
2242
2243 const unsigned size = unsigned(var->type->array_size());
2244 check_builtin_array_max_size(var->name, size, loc, state);
2245 if ((size > 0) && (size <= earlier->max_array_access)) {
2246 _mesa_glsl_error(& loc, state, "array size must be > %u due to "
2247 "previous access",
2248 earlier->max_array_access);
2249 }
2250
2251 earlier->type = var->type;
2252 delete var;
2253 var = NULL;
2254 } else if (state->ARB_fragment_coord_conventions_enable
2255 && strcmp(var->name, "gl_FragCoord") == 0
2256 && earlier->type == var->type
2257 && earlier->mode == var->mode) {
2258 /* Allow redeclaration of gl_FragCoord for ARB_fcc layout
2259 * qualifiers.
2260 */
2261 earlier->origin_upper_left = var->origin_upper_left;
2262 earlier->pixel_center_integer = var->pixel_center_integer;
2263
2264 /* According to section 4.3.7 of the GLSL 1.30 spec,
2265 * the following built-in varaibles can be redeclared with an
2266 * interpolation qualifier:
2267 * * gl_FrontColor
2268 * * gl_BackColor
2269 * * gl_FrontSecondaryColor
2270 * * gl_BackSecondaryColor
2271 * * gl_Color
2272 * * gl_SecondaryColor
2273 */
2274 } else if (state->language_version >= 130
2275 && (strcmp(var->name, "gl_FrontColor") == 0
2276 || strcmp(var->name, "gl_BackColor") == 0
2277 || strcmp(var->name, "gl_FrontSecondaryColor") == 0
2278 || strcmp(var->name, "gl_BackSecondaryColor") == 0
2279 || strcmp(var->name, "gl_Color") == 0
2280 || strcmp(var->name, "gl_SecondaryColor") == 0)
2281 && earlier->type == var->type
2282 && earlier->mode == var->mode) {
2283 earlier->interpolation = var->interpolation;
2284
2285 /* Layout qualifiers for gl_FragDepth. */
2286 } else if ((state->AMD_conservative_depth_enable ||
2287 state->ARB_conservative_depth_enable)
2288 && strcmp(var->name, "gl_FragDepth") == 0
2289 && earlier->type == var->type
2290 && earlier->mode == var->mode) {
2291
2292 /** From the AMD_conservative_depth spec:
2293 * Within any shader, the first redeclarations of gl_FragDepth
2294 * must appear before any use of gl_FragDepth.
2295 */
2296 if (earlier->used) {
2297 _mesa_glsl_error(&loc, state,
2298 "the first redeclaration of gl_FragDepth "
2299 "must appear before any use of gl_FragDepth");
2300 }
2301
2302 /* Prevent inconsistent redeclaration of depth layout qualifier. */
2303 if (earlier->depth_layout != ir_depth_layout_none
2304 && earlier->depth_layout != var->depth_layout) {
2305 _mesa_glsl_error(&loc, state,
2306 "gl_FragDepth: depth layout is declared here "
2307 "as '%s, but it was previously declared as "
2308 "'%s'",
2309 depth_layout_string(var->depth_layout),
2310 depth_layout_string(earlier->depth_layout));
2311 }
2312
2313 earlier->depth_layout = var->depth_layout;
2314
2315 } else {
2316 _mesa_glsl_error(&loc, state, "`%s' redeclared", decl->identifier);
2317 }
2318
2319 return earlier;
2320 }
2321
2322 /**
2323 * Generate the IR for an initializer in a variable declaration
2324 */
2325 ir_rvalue *
2326 process_initializer(ir_variable *var, ast_declaration *decl,
2327 ast_fully_specified_type *type,
2328 exec_list *initializer_instructions,
2329 struct _mesa_glsl_parse_state *state)
2330 {
2331 ir_rvalue *result = NULL;
2332
2333 YYLTYPE initializer_loc = decl->initializer->get_location();
2334
2335 /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
2336 *
2337 * "All uniform variables are read-only and are initialized either
2338 * directly by an application via API commands, or indirectly by
2339 * OpenGL."
2340 */
2341 if ((state->language_version <= 110)
2342 && (var->mode == ir_var_uniform)) {
2343 _mesa_glsl_error(& initializer_loc, state,
2344 "cannot initialize uniforms in GLSL 1.10");
2345 }
2346
2347 if (var->type->is_sampler()) {
2348 _mesa_glsl_error(& initializer_loc, state,
2349 "cannot initialize samplers");
2350 }
2351
2352 if ((var->mode == ir_var_in) && (state->current_function == NULL)) {
2353 _mesa_glsl_error(& initializer_loc, state,
2354 "cannot initialize %s shader input / %s",
2355 _mesa_glsl_shader_target_name(state->target),
2356 (state->target == vertex_shader)
2357 ? "attribute" : "varying");
2358 }
2359
2360 ir_dereference *const lhs = new(state) ir_dereference_variable(var);
2361 ir_rvalue *rhs = decl->initializer->hir(initializer_instructions,
2362 state);
2363
2364 /* Calculate the constant value if this is a const or uniform
2365 * declaration.
2366 */
2367 if (type->qualifier.flags.q.constant
2368 || type->qualifier.flags.q.uniform) {
2369 ir_rvalue *new_rhs = validate_assignment(state, var->type, rhs, true);
2370 if (new_rhs != NULL) {
2371 rhs = new_rhs;
2372
2373 ir_constant *constant_value = rhs->constant_expression_value();
2374 if (!constant_value) {
2375 _mesa_glsl_error(& initializer_loc, state,
2376 "initializer of %s variable `%s' must be a "
2377 "constant expression",
2378 (type->qualifier.flags.q.constant)
2379 ? "const" : "uniform",
2380 decl->identifier);
2381 if (var->type->is_numeric()) {
2382 /* Reduce cascading errors. */
2383 var->constant_value = ir_constant::zero(state, var->type);
2384 }
2385 } else {
2386 rhs = constant_value;
2387 var->constant_value = constant_value;
2388 }
2389 } else {
2390 _mesa_glsl_error(&initializer_loc, state,
2391 "initializer of type %s cannot be assigned to "
2392 "variable of type %s",
2393 rhs->type->name, var->type->name);
2394 if (var->type->is_numeric()) {
2395 /* Reduce cascading errors. */
2396 var->constant_value = ir_constant::zero(state, var->type);
2397 }
2398 }
2399 }
2400
2401 if (rhs && !rhs->type->is_error()) {
2402 bool temp = var->read_only;
2403 if (type->qualifier.flags.q.constant)
2404 var->read_only = false;
2405
2406 /* Never emit code to initialize a uniform.
2407 */
2408 const glsl_type *initializer_type;
2409 if (!type->qualifier.flags.q.uniform) {
2410 result = do_assignment(initializer_instructions, state,
2411 NULL,
2412 lhs, rhs, true,
2413 type->get_location());
2414 initializer_type = result->type;
2415 } else
2416 initializer_type = rhs->type;
2417
2418 var->constant_initializer = rhs->constant_expression_value();
2419 var->has_initializer = true;
2420
2421 /* If the declared variable is an unsized array, it must inherrit
2422 * its full type from the initializer. A declaration such as
2423 *
2424 * uniform float a[] = float[](1.0, 2.0, 3.0, 3.0);
2425 *
2426 * becomes
2427 *
2428 * uniform float a[4] = float[](1.0, 2.0, 3.0, 3.0);
2429 *
2430 * The assignment generated in the if-statement (below) will also
2431 * automatically handle this case for non-uniforms.
2432 *
2433 * If the declared variable is not an array, the types must
2434 * already match exactly. As a result, the type assignment
2435 * here can be done unconditionally. For non-uniforms the call
2436 * to do_assignment can change the type of the initializer (via
2437 * the implicit conversion rules). For uniforms the initializer
2438 * must be a constant expression, and the type of that expression
2439 * was validated above.
2440 */
2441 var->type = initializer_type;
2442
2443 var->read_only = temp;
2444 }
2445
2446 return result;
2447 }
2448
2449 ir_rvalue *
2450 ast_declarator_list::hir(exec_list *instructions,
2451 struct _mesa_glsl_parse_state *state)
2452 {
2453 void *ctx = state;
2454 const struct glsl_type *decl_type;
2455 const char *type_name = NULL;
2456 ir_rvalue *result = NULL;
2457 YYLTYPE loc = this->get_location();
2458
2459 /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec:
2460 *
2461 * "To ensure that a particular output variable is invariant, it is
2462 * necessary to use the invariant qualifier. It can either be used to
2463 * qualify a previously declared variable as being invariant
2464 *
2465 * invariant gl_Position; // make existing gl_Position be invariant"
2466 *
2467 * In these cases the parser will set the 'invariant' flag in the declarator
2468 * list, and the type will be NULL.
2469 */
2470 if (this->invariant) {
2471 assert(this->type == NULL);
2472
2473 if (state->current_function != NULL) {
2474 _mesa_glsl_error(& loc, state,
2475 "All uses of `invariant' keyword must be at global "
2476 "scope\n");
2477 }
2478
2479 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
2480 assert(!decl->is_array);
2481 assert(decl->array_size == NULL);
2482 assert(decl->initializer == NULL);
2483
2484 ir_variable *const earlier =
2485 state->symbols->get_variable(decl->identifier);
2486 if (earlier == NULL) {
2487 _mesa_glsl_error(& loc, state,
2488 "Undeclared variable `%s' cannot be marked "
2489 "invariant\n", decl->identifier);
2490 } else if ((state->target == vertex_shader)
2491 && (earlier->mode != ir_var_out)) {
2492 _mesa_glsl_error(& loc, state,
2493 "`%s' cannot be marked invariant, vertex shader "
2494 "outputs only\n", decl->identifier);
2495 } else if ((state->target == fragment_shader)
2496 && (earlier->mode != ir_var_in)) {
2497 _mesa_glsl_error(& loc, state,
2498 "`%s' cannot be marked invariant, fragment shader "
2499 "inputs only\n", decl->identifier);
2500 } else if (earlier->used) {
2501 _mesa_glsl_error(& loc, state,
2502 "variable `%s' may not be redeclared "
2503 "`invariant' after being used",
2504 earlier->name);
2505 } else {
2506 earlier->invariant = true;
2507 }
2508 }
2509
2510 /* Invariant redeclarations do not have r-values.
2511 */
2512 return NULL;
2513 }
2514
2515 assert(this->type != NULL);
2516 assert(!this->invariant);
2517
2518 /* The type specifier may contain a structure definition. Process that
2519 * before any of the variable declarations.
2520 */
2521 (void) this->type->specifier->hir(instructions, state);
2522
2523 decl_type = this->type->specifier->glsl_type(& type_name, state);
2524 if (this->declarations.is_empty()) {
2525 /* If there is no structure involved in the program text, there are two
2526 * possible scenarios:
2527 *
2528 * - The program text contained something like 'vec4;'. This is an
2529 * empty declaration. It is valid but weird. Emit a warning.
2530 *
2531 * - The program text contained something like 'S;' and 'S' is not the
2532 * name of a known structure type. This is both invalid and weird.
2533 * Emit an error.
2534 *
2535 * Note that if decl_type is NULL and there is a structure involved,
2536 * there must have been some sort of error with the structure. In this
2537 * case we assume that an error was already generated on this line of
2538 * code for the structure. There is no need to generate an additional,
2539 * confusing error.
2540 */
2541 assert(this->type->specifier->structure == NULL || decl_type != NULL
2542 || state->error);
2543 if (this->type->specifier->structure == NULL) {
2544 if (decl_type != NULL) {
2545 _mesa_glsl_warning(&loc, state, "empty declaration");
2546 } else {
2547 _mesa_glsl_error(&loc, state,
2548 "invalid type `%s' in empty declaration",
2549 type_name);
2550 }
2551 }
2552 }
2553
2554 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
2555 const struct glsl_type *var_type;
2556 ir_variable *var;
2557
2558 /* FINISHME: Emit a warning if a variable declaration shadows a
2559 * FINISHME: declaration at a higher scope.
2560 */
2561
2562 if ((decl_type == NULL) || decl_type->is_void()) {
2563 if (type_name != NULL) {
2564 _mesa_glsl_error(& loc, state,
2565 "invalid type `%s' in declaration of `%s'",
2566 type_name, decl->identifier);
2567 } else {
2568 _mesa_glsl_error(& loc, state,
2569 "invalid type in declaration of `%s'",
2570 decl->identifier);
2571 }
2572 continue;
2573 }
2574
2575 if (decl->is_array) {
2576 var_type = process_array_type(&loc, decl_type, decl->array_size,
2577 state);
2578 if (var_type->is_error())
2579 continue;
2580 } else {
2581 var_type = decl_type;
2582 }
2583
2584 var = new(ctx) ir_variable(var_type, decl->identifier, ir_var_auto);
2585
2586 /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
2587 *
2588 * "Global variables can only use the qualifiers const,
2589 * attribute, uni form, or varying. Only one may be
2590 * specified.
2591 *
2592 * Local variables can only use the qualifier const."
2593 *
2594 * This is relaxed in GLSL 1.30. It is also relaxed by any extension
2595 * that adds the 'layout' keyword.
2596 */
2597 if ((state->language_version < 130)
2598 && !state->ARB_explicit_attrib_location_enable
2599 && !state->ARB_fragment_coord_conventions_enable) {
2600 if (this->type->qualifier.flags.q.out) {
2601 _mesa_glsl_error(& loc, state,
2602 "`out' qualifier in declaration of `%s' "
2603 "only valid for function parameters in %s.",
2604 decl->identifier, state->version_string);
2605 }
2606 if (this->type->qualifier.flags.q.in) {
2607 _mesa_glsl_error(& loc, state,
2608 "`in' qualifier in declaration of `%s' "
2609 "only valid for function parameters in %s.",
2610 decl->identifier, state->version_string);
2611 }
2612 /* FINISHME: Test for other invalid qualifiers. */
2613 }
2614
2615 apply_type_qualifier_to_variable(& this->type->qualifier, var, state,
2616 & loc);
2617
2618 if (this->type->qualifier.flags.q.invariant) {
2619 if ((state->target == vertex_shader) && !(var->mode == ir_var_out ||
2620 var->mode == ir_var_inout)) {
2621 /* FINISHME: Note that this doesn't work for invariant on
2622 * a function signature outval
2623 */
2624 _mesa_glsl_error(& loc, state,
2625 "`%s' cannot be marked invariant, vertex shader "
2626 "outputs only\n", var->name);
2627 } else if ((state->target == fragment_shader) &&
2628 !(var->mode == ir_var_in || var->mode == ir_var_inout)) {
2629 /* FINISHME: Note that this doesn't work for invariant on
2630 * a function signature inval
2631 */
2632 _mesa_glsl_error(& loc, state,
2633 "`%s' cannot be marked invariant, fragment shader "
2634 "inputs only\n", var->name);
2635 }
2636 }
2637
2638 if (state->current_function != NULL) {
2639 const char *mode = NULL;
2640 const char *extra = "";
2641
2642 /* There is no need to check for 'inout' here because the parser will
2643 * only allow that in function parameter lists.
2644 */
2645 if (this->type->qualifier.flags.q.attribute) {
2646 mode = "attribute";
2647 } else if (this->type->qualifier.flags.q.uniform) {
2648 mode = "uniform";
2649 } else if (this->type->qualifier.flags.q.varying) {
2650 mode = "varying";
2651 } else if (this->type->qualifier.flags.q.in) {
2652 mode = "in";
2653 extra = " or in function parameter list";
2654 } else if (this->type->qualifier.flags.q.out) {
2655 mode = "out";
2656 extra = " or in function parameter list";
2657 }
2658
2659 if (mode) {
2660 _mesa_glsl_error(& loc, state,
2661 "%s variable `%s' must be declared at "
2662 "global scope%s",
2663 mode, var->name, extra);
2664 }
2665 } else if (var->mode == ir_var_in) {
2666 var->read_only = true;
2667
2668 if (state->target == vertex_shader) {
2669 bool error_emitted = false;
2670
2671 /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
2672 *
2673 * "Vertex shader inputs can only be float, floating-point
2674 * vectors, matrices, signed and unsigned integers and integer
2675 * vectors. Vertex shader inputs can also form arrays of these
2676 * types, but not structures."
2677 *
2678 * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
2679 *
2680 * "Vertex shader inputs can only be float, floating-point
2681 * vectors, matrices, signed and unsigned integers and integer
2682 * vectors. They cannot be arrays or structures."
2683 *
2684 * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
2685 *
2686 * "The attribute qualifier can be used only with float,
2687 * floating-point vectors, and matrices. Attribute variables
2688 * cannot be declared as arrays or structures."
2689 */
2690 const glsl_type *check_type = var->type->is_array()
2691 ? var->type->fields.array : var->type;
2692
2693 switch (check_type->base_type) {
2694 case GLSL_TYPE_FLOAT:
2695 break;
2696 case GLSL_TYPE_UINT:
2697 case GLSL_TYPE_INT:
2698 if (state->language_version > 120)
2699 break;
2700 /* FALLTHROUGH */
2701 default:
2702 _mesa_glsl_error(& loc, state,
2703 "vertex shader input / attribute cannot have "
2704 "type %s`%s'",
2705 var->type->is_array() ? "array of " : "",
2706 check_type->name);
2707 error_emitted = true;
2708 }
2709
2710 if (!error_emitted && (state->language_version <= 130)
2711 && var->type->is_array()) {
2712 _mesa_glsl_error(& loc, state,
2713 "vertex shader input / attribute cannot have "
2714 "array type");
2715 error_emitted = true;
2716 }
2717 }
2718 }
2719
2720 /* Integer vertex outputs must be qualified with 'flat'.
2721 *
2722 * From section 4.3.6 of the GLSL 1.30 spec:
2723 * "If a vertex output is a signed or unsigned integer or integer
2724 * vector, then it must be qualified with the interpolation qualifier
2725 * flat."
2726 */
2727 if (state->language_version >= 130
2728 && state->target == vertex_shader
2729 && state->current_function == NULL
2730 && var->type->is_integer()
2731 && var->mode == ir_var_out
2732 && var->interpolation != INTERP_QUALIFIER_FLAT) {
2733
2734 _mesa_glsl_error(&loc, state, "If a vertex output is an integer, "
2735 "then it must be qualified with 'flat'");
2736 }
2737
2738
2739 /* Interpolation qualifiers cannot be applied to 'centroid' and
2740 * 'centroid varying'.
2741 *
2742 * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
2743 * "interpolation qualifiers may only precede the qualifiers in,
2744 * centroid in, out, or centroid out in a declaration. They do not apply
2745 * to the deprecated storage qualifiers varying or centroid varying."
2746 */
2747 if (state->language_version >= 130
2748 && this->type->qualifier.has_interpolation()
2749 && this->type->qualifier.flags.q.varying) {
2750
2751 const char *i = this->type->qualifier.interpolation_string();
2752 assert(i != NULL);
2753 const char *s;
2754 if (this->type->qualifier.flags.q.centroid)
2755 s = "centroid varying";
2756 else
2757 s = "varying";
2758
2759 _mesa_glsl_error(&loc, state,
2760 "qualifier '%s' cannot be applied to the "
2761 "deprecated storage qualifier '%s'", i, s);
2762 }
2763
2764
2765 /* Interpolation qualifiers can only apply to vertex shader outputs and
2766 * fragment shader inputs.
2767 *
2768 * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
2769 * "Outputs from a vertex shader (out) and inputs to a fragment
2770 * shader (in) can be further qualified with one or more of these
2771 * interpolation qualifiers"
2772 */
2773 if (state->language_version >= 130
2774 && this->type->qualifier.has_interpolation()) {
2775
2776 const char *i = this->type->qualifier.interpolation_string();
2777 assert(i != NULL);
2778
2779 switch (state->target) {
2780 case vertex_shader:
2781 if (this->type->qualifier.flags.q.in) {
2782 _mesa_glsl_error(&loc, state,
2783 "qualifier '%s' cannot be applied to vertex "
2784 "shader inputs", i);
2785 }
2786 break;
2787 case fragment_shader:
2788 if (this->type->qualifier.flags.q.out) {
2789 _mesa_glsl_error(&loc, state,
2790 "qualifier '%s' cannot be applied to fragment "
2791 "shader outputs", i);
2792 }
2793 break;
2794 default:
2795 assert(0);
2796 }
2797 }
2798
2799
2800 /* From section 4.3.4 of the GLSL 1.30 spec:
2801 * "It is an error to use centroid in in a vertex shader."
2802 */
2803 if (state->language_version >= 130
2804 && this->type->qualifier.flags.q.centroid
2805 && this->type->qualifier.flags.q.in
2806 && state->target == vertex_shader) {
2807
2808 _mesa_glsl_error(&loc, state,
2809 "'centroid in' cannot be used in a vertex shader");
2810 }
2811
2812
2813 /* Precision qualifiers exists only in GLSL versions 1.00 and >= 1.30.
2814 */
2815 if (this->type->specifier->precision != ast_precision_none
2816 && state->language_version != 100
2817 && state->language_version < 130) {
2818
2819 _mesa_glsl_error(&loc, state,
2820 "precision qualifiers are supported only in GLSL ES "
2821 "1.00, and GLSL 1.30 and later");
2822 }
2823
2824
2825 /* Precision qualifiers only apply to floating point and integer types.
2826 *
2827 * From section 4.5.2 of the GLSL 1.30 spec:
2828 * "Any floating point or any integer declaration can have the type
2829 * preceded by one of these precision qualifiers [...] Literal
2830 * constants do not have precision qualifiers. Neither do Boolean
2831 * variables.
2832 *
2833 * In GLSL ES, sampler types are also allowed.
2834 *
2835 * From page 87 of the GLSL ES spec:
2836 * "RESOLUTION: Allow sampler types to take a precision qualifier."
2837 */
2838 if (this->type->specifier->precision != ast_precision_none
2839 && !var->type->is_float()
2840 && !var->type->is_integer()
2841 && !(var->type->is_sampler() && state->es_shader)
2842 && !(var->type->is_array()
2843 && (var->type->fields.array->is_float()
2844 || var->type->fields.array->is_integer()))) {
2845
2846 _mesa_glsl_error(&loc, state,
2847 "precision qualifiers apply only to floating point"
2848 "%s types", state->es_shader ? ", integer, and sampler"
2849 : "and integer");
2850 }
2851
2852 /* From page 17 (page 23 of the PDF) of the GLSL 1.20 spec:
2853 *
2854 * "[Sampler types] can only be declared as function
2855 * parameters or uniform variables (see Section 4.3.5
2856 * "Uniform")".
2857 */
2858 if (var_type->contains_sampler() &&
2859 !this->type->qualifier.flags.q.uniform) {
2860 _mesa_glsl_error(&loc, state, "samplers must be declared uniform");
2861 }
2862
2863 /* Process the initializer and add its instructions to a temporary
2864 * list. This list will be added to the instruction stream (below) after
2865 * the declaration is added. This is done because in some cases (such as
2866 * redeclarations) the declaration may not actually be added to the
2867 * instruction stream.
2868 */
2869 exec_list initializer_instructions;
2870 ir_variable *earlier = get_variable_being_redeclared(var, decl, state);
2871
2872 if (decl->initializer != NULL) {
2873 result = process_initializer((earlier == NULL) ? var : earlier,
2874 decl, this->type,
2875 &initializer_instructions, state);
2876 }
2877
2878 /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
2879 *
2880 * "It is an error to write to a const variable outside of
2881 * its declaration, so they must be initialized when
2882 * declared."
2883 */
2884 if (this->type->qualifier.flags.q.constant && decl->initializer == NULL) {
2885 _mesa_glsl_error(& loc, state,
2886 "const declaration of `%s' must be initialized",
2887 decl->identifier);
2888 }
2889
2890 /* If the declaration is not a redeclaration, there are a few additional
2891 * semantic checks that must be applied. In addition, variable that was
2892 * created for the declaration should be added to the IR stream.
2893 */
2894 if (earlier == NULL) {
2895 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
2896 *
2897 * "Identifiers starting with "gl_" are reserved for use by
2898 * OpenGL, and may not be declared in a shader as either a
2899 * variable or a function."
2900 */
2901 if (strncmp(decl->identifier, "gl_", 3) == 0)
2902 _mesa_glsl_error(& loc, state,
2903 "identifier `%s' uses reserved `gl_' prefix",
2904 decl->identifier);
2905 else if (strstr(decl->identifier, "__")) {
2906 /* From page 14 (page 20 of the PDF) of the GLSL 1.10
2907 * spec:
2908 *
2909 * "In addition, all identifiers containing two
2910 * consecutive underscores (__) are reserved as
2911 * possible future keywords."
2912 */
2913 _mesa_glsl_error(& loc, state,
2914 "identifier `%s' uses reserved `__' string",
2915 decl->identifier);
2916 }
2917
2918 /* Add the variable to the symbol table. Note that the initializer's
2919 * IR was already processed earlier (though it hasn't been emitted
2920 * yet), without the variable in scope.
2921 *
2922 * This differs from most C-like languages, but it follows the GLSL
2923 * specification. From page 28 (page 34 of the PDF) of the GLSL 1.50
2924 * spec:
2925 *
2926 * "Within a declaration, the scope of a name starts immediately
2927 * after the initializer if present or immediately after the name
2928 * being declared if not."
2929 */
2930 if (!state->symbols->add_variable(var)) {
2931 YYLTYPE loc = this->get_location();
2932 _mesa_glsl_error(&loc, state, "name `%s' already taken in the "
2933 "current scope", decl->identifier);
2934 continue;
2935 }
2936
2937 /* Push the variable declaration to the top. It means that all the
2938 * variable declarations will appear in a funny last-to-first order,
2939 * but otherwise we run into trouble if a function is prototyped, a
2940 * global var is decled, then the function is defined with usage of
2941 * the global var. See glslparsertest's CorrectModule.frag.
2942 */
2943 instructions->push_head(var);
2944 }
2945
2946 instructions->append_list(&initializer_instructions);
2947 }
2948
2949
2950 /* Generally, variable declarations do not have r-values. However,
2951 * one is used for the declaration in
2952 *
2953 * while (bool b = some_condition()) {
2954 * ...
2955 * }
2956 *
2957 * so we return the rvalue from the last seen declaration here.
2958 */
2959 return result;
2960 }
2961
2962
2963 ir_rvalue *
2964 ast_parameter_declarator::hir(exec_list *instructions,
2965 struct _mesa_glsl_parse_state *state)
2966 {
2967 void *ctx = state;
2968 const struct glsl_type *type;
2969 const char *name = NULL;
2970 YYLTYPE loc = this->get_location();
2971
2972 type = this->type->specifier->glsl_type(& name, state);
2973
2974 if (type == NULL) {
2975 if (name != NULL) {
2976 _mesa_glsl_error(& loc, state,
2977 "invalid type `%s' in declaration of `%s'",
2978 name, this->identifier);
2979 } else {
2980 _mesa_glsl_error(& loc, state,
2981 "invalid type in declaration of `%s'",
2982 this->identifier);
2983 }
2984
2985 type = glsl_type::error_type;
2986 }
2987
2988 /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
2989 *
2990 * "Functions that accept no input arguments need not use void in the
2991 * argument list because prototypes (or definitions) are required and
2992 * therefore there is no ambiguity when an empty argument list "( )" is
2993 * declared. The idiom "(void)" as a parameter list is provided for
2994 * convenience."
2995 *
2996 * Placing this check here prevents a void parameter being set up
2997 * for a function, which avoids tripping up checks for main taking
2998 * parameters and lookups of an unnamed symbol.
2999 */
3000 if (type->is_void()) {
3001 if (this->identifier != NULL)
3002 _mesa_glsl_error(& loc, state,
3003 "named parameter cannot have type `void'");
3004
3005 is_void = true;
3006 return NULL;
3007 }
3008
3009 if (formal_parameter && (this->identifier == NULL)) {
3010 _mesa_glsl_error(& loc, state, "formal parameter lacks a name");
3011 return NULL;
3012 }
3013
3014 /* This only handles "vec4 foo[..]". The earlier specifier->glsl_type(...)
3015 * call already handled the "vec4[..] foo" case.
3016 */
3017 if (this->is_array) {
3018 type = process_array_type(&loc, type, this->array_size, state);
3019 }
3020
3021 if (!type->is_error() && type->array_size() == 0) {
3022 _mesa_glsl_error(&loc, state, "arrays passed as parameters must have "
3023 "a declared size.");
3024 type = glsl_type::error_type;
3025 }
3026
3027 is_void = false;
3028 ir_variable *var = new(ctx) ir_variable(type, this->identifier, ir_var_in);
3029
3030 /* Apply any specified qualifiers to the parameter declaration. Note that
3031 * for function parameters the default mode is 'in'.
3032 */
3033 apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc);
3034
3035 /* From page 17 (page 23 of the PDF) of the GLSL 1.20 spec:
3036 *
3037 * "Samplers cannot be treated as l-values; hence cannot be used
3038 * as out or inout function parameters, nor can they be assigned
3039 * into."
3040 */
3041 if ((var->mode == ir_var_inout || var->mode == ir_var_out)
3042 && type->contains_sampler()) {
3043 _mesa_glsl_error(&loc, state, "out and inout parameters cannot contain samplers");
3044 type = glsl_type::error_type;
3045 }
3046
3047 /* From page 39 (page 45 of the PDF) of the GLSL 1.10 spec:
3048 *
3049 * "When calling a function, expressions that do not evaluate to
3050 * l-values cannot be passed to parameters declared as out or inout."
3051 *
3052 * From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
3053 *
3054 * "Other binary or unary expressions, non-dereferenced arrays,
3055 * function names, swizzles with repeated fields, and constants
3056 * cannot be l-values."
3057 *
3058 * So for GLSL 1.10, passing an array as an out or inout parameter is not
3059 * allowed. This restriction is removed in GLSL 1.20, and in GLSL ES.
3060 */
3061 if ((var->mode == ir_var_inout || var->mode == ir_var_out)
3062 && type->is_array() && state->language_version == 110) {
3063 _mesa_glsl_error(&loc, state, "Arrays cannot be out or inout parameters in GLSL 1.10");
3064 type = glsl_type::error_type;
3065 }
3066
3067 instructions->push_tail(var);
3068
3069 /* Parameter declarations do not have r-values.
3070 */
3071 return NULL;
3072 }
3073
3074
3075 void
3076 ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters,
3077 bool formal,
3078 exec_list *ir_parameters,
3079 _mesa_glsl_parse_state *state)
3080 {
3081 ast_parameter_declarator *void_param = NULL;
3082 unsigned count = 0;
3083
3084 foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) {
3085 param->formal_parameter = formal;
3086 param->hir(ir_parameters, state);
3087
3088 if (param->is_void)
3089 void_param = param;
3090
3091 count++;
3092 }
3093
3094 if ((void_param != NULL) && (count > 1)) {
3095 YYLTYPE loc = void_param->get_location();
3096
3097 _mesa_glsl_error(& loc, state,
3098 "`void' parameter must be only parameter");
3099 }
3100 }
3101
3102
3103 void
3104 emit_function(_mesa_glsl_parse_state *state, ir_function *f)
3105 {
3106 /* IR invariants disallow function declarations or definitions
3107 * nested within other function definitions. But there is no
3108 * requirement about the relative order of function declarations
3109 * and definitions with respect to one another. So simply insert
3110 * the new ir_function block at the end of the toplevel instruction
3111 * list.
3112 */
3113 state->toplevel_ir->push_tail(f);
3114 }
3115
3116
3117 ir_rvalue *
3118 ast_function::hir(exec_list *instructions,
3119 struct _mesa_glsl_parse_state *state)
3120 {
3121 void *ctx = state;
3122 ir_function *f = NULL;
3123 ir_function_signature *sig = NULL;
3124 exec_list hir_parameters;
3125
3126 const char *const name = identifier;
3127
3128 /* New functions are always added to the top-level IR instruction stream,
3129 * so this instruction list pointer is ignored. See also emit_function
3130 * (called below).
3131 */
3132 (void) instructions;
3133
3134 /* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec,
3135 *
3136 * "Function declarations (prototypes) cannot occur inside of functions;
3137 * they must be at global scope, or for the built-in functions, outside
3138 * the global scope."
3139 *
3140 * From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec,
3141 *
3142 * "User defined functions may only be defined within the global scope."
3143 *
3144 * Note that this language does not appear in GLSL 1.10.
3145 */
3146 if ((state->current_function != NULL) && (state->language_version != 110)) {
3147 YYLTYPE loc = this->get_location();
3148 _mesa_glsl_error(&loc, state,
3149 "declaration of function `%s' not allowed within "
3150 "function body", name);
3151 }
3152
3153 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
3154 *
3155 * "Identifiers starting with "gl_" are reserved for use by
3156 * OpenGL, and may not be declared in a shader as either a
3157 * variable or a function."
3158 */
3159 if (strncmp(name, "gl_", 3) == 0) {
3160 YYLTYPE loc = this->get_location();
3161 _mesa_glsl_error(&loc, state,
3162 "identifier `%s' uses reserved `gl_' prefix", name);
3163 }
3164
3165 /* Convert the list of function parameters to HIR now so that they can be
3166 * used below to compare this function's signature with previously seen
3167 * signatures for functions with the same name.
3168 */
3169 ast_parameter_declarator::parameters_to_hir(& this->parameters,
3170 is_definition,
3171 & hir_parameters, state);
3172
3173 const char *return_type_name;
3174 const glsl_type *return_type =
3175 this->return_type->specifier->glsl_type(& return_type_name, state);
3176
3177 if (!return_type) {
3178 YYLTYPE loc = this->get_location();
3179 _mesa_glsl_error(&loc, state,
3180 "function `%s' has undeclared return type `%s'",
3181 name, return_type_name);
3182 return_type = glsl_type::error_type;
3183 }
3184
3185 /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec:
3186 * "No qualifier is allowed on the return type of a function."
3187 */
3188 if (this->return_type->has_qualifiers()) {
3189 YYLTYPE loc = this->get_location();
3190 _mesa_glsl_error(& loc, state,
3191 "function `%s' return type has qualifiers", name);
3192 }
3193
3194 /* From page 17 (page 23 of the PDF) of the GLSL 1.20 spec:
3195 *
3196 * "[Sampler types] can only be declared as function parameters
3197 * or uniform variables (see Section 4.3.5 "Uniform")".
3198 */
3199 if (return_type->contains_sampler()) {
3200 YYLTYPE loc = this->get_location();
3201 _mesa_glsl_error(&loc, state,
3202 "function `%s' return type can't contain a sampler",
3203 name);
3204 }
3205
3206 /* Verify that this function's signature either doesn't match a previously
3207 * seen signature for a function with the same name, or, if a match is found,
3208 * that the previously seen signature does not have an associated definition.
3209 */
3210 f = state->symbols->get_function(name);
3211 if (f != NULL && (state->es_shader || f->has_user_signature())) {
3212 sig = f->exact_matching_signature(&hir_parameters);
3213 if (sig != NULL) {
3214 const char *badvar = sig->qualifiers_match(&hir_parameters);
3215 if (badvar != NULL) {
3216 YYLTYPE loc = this->get_location();
3217
3218 _mesa_glsl_error(&loc, state, "function `%s' parameter `%s' "
3219 "qualifiers don't match prototype", name, badvar);
3220 }
3221
3222 if (sig->return_type != return_type) {
3223 YYLTYPE loc = this->get_location();
3224
3225 _mesa_glsl_error(&loc, state, "function `%s' return type doesn't "
3226 "match prototype", name);
3227 }
3228
3229 if (is_definition && sig->is_defined) {
3230 YYLTYPE loc = this->get_location();
3231
3232 _mesa_glsl_error(& loc, state, "function `%s' redefined", name);
3233 }
3234 }
3235 } else {
3236 f = new(ctx) ir_function(name);
3237 if (!state->symbols->add_function(f)) {
3238 /* This function name shadows a non-function use of the same name. */
3239 YYLTYPE loc = this->get_location();
3240
3241 _mesa_glsl_error(&loc, state, "function name `%s' conflicts with "
3242 "non-function", name);
3243 return NULL;
3244 }
3245
3246 emit_function(state, f);
3247 }
3248
3249 /* Verify the return type of main() */
3250 if (strcmp(name, "main") == 0) {
3251 if (! return_type->is_void()) {
3252 YYLTYPE loc = this->get_location();
3253
3254 _mesa_glsl_error(& loc, state, "main() must return void");
3255 }
3256
3257 if (!hir_parameters.is_empty()) {
3258 YYLTYPE loc = this->get_location();
3259
3260 _mesa_glsl_error(& loc, state, "main() must not take any parameters");
3261 }
3262 }
3263
3264 /* Finish storing the information about this new function in its signature.
3265 */
3266 if (sig == NULL) {
3267 sig = new(ctx) ir_function_signature(return_type);
3268 f->add_signature(sig);
3269 }
3270
3271 sig->replace_parameters(&hir_parameters);
3272 signature = sig;
3273
3274 /* Function declarations (prototypes) do not have r-values.
3275 */
3276 return NULL;
3277 }
3278
3279
3280 ir_rvalue *
3281 ast_function_definition::hir(exec_list *instructions,
3282 struct _mesa_glsl_parse_state *state)
3283 {
3284 prototype->is_definition = true;
3285 prototype->hir(instructions, state);
3286
3287 ir_function_signature *signature = prototype->signature;
3288 if (signature == NULL)
3289 return NULL;
3290
3291 assert(state->current_function == NULL);
3292 state->current_function = signature;
3293 state->found_return = false;
3294
3295 /* Duplicate parameters declared in the prototype as concrete variables.
3296 * Add these to the symbol table.
3297 */
3298 state->symbols->push_scope();
3299 foreach_iter(exec_list_iterator, iter, signature->parameters) {
3300 ir_variable *const var = ((ir_instruction *) iter.get())->as_variable();
3301
3302 assert(var != NULL);
3303
3304 /* The only way a parameter would "exist" is if two parameters have
3305 * the same name.
3306 */
3307 if (state->symbols->name_declared_this_scope(var->name)) {
3308 YYLTYPE loc = this->get_location();
3309
3310 _mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name);
3311 } else {
3312 state->symbols->add_variable(var);
3313 }
3314 }
3315
3316 /* Convert the body of the function to HIR. */
3317 this->body->hir(&signature->body, state);
3318 signature->is_defined = true;
3319
3320 state->symbols->pop_scope();
3321
3322 assert(state->current_function == signature);
3323 state->current_function = NULL;
3324
3325 if (!signature->return_type->is_void() && !state->found_return) {
3326 YYLTYPE loc = this->get_location();
3327 _mesa_glsl_error(& loc, state, "function `%s' has non-void return type "
3328 "%s, but no return statement",
3329 signature->function_name(),
3330 signature->return_type->name);
3331 }
3332
3333 /* Function definitions do not have r-values.
3334 */
3335 return NULL;
3336 }
3337
3338
3339 ir_rvalue *
3340 ast_jump_statement::hir(exec_list *instructions,
3341 struct _mesa_glsl_parse_state *state)
3342 {
3343 void *ctx = state;
3344
3345 switch (mode) {
3346 case ast_return: {
3347 ir_return *inst;
3348 assert(state->current_function);
3349
3350 if (opt_return_value) {
3351 ir_rvalue *const ret = opt_return_value->hir(instructions, state);
3352
3353 /* The value of the return type can be NULL if the shader says
3354 * 'return foo();' and foo() is a function that returns void.
3355 *
3356 * NOTE: The GLSL spec doesn't say that this is an error. The type
3357 * of the return value is void. If the return type of the function is
3358 * also void, then this should compile without error. Seriously.
3359 */
3360 const glsl_type *const ret_type =
3361 (ret == NULL) ? glsl_type::void_type : ret->type;
3362
3363 /* Implicit conversions are not allowed for return values. */
3364 if (state->current_function->return_type != ret_type) {
3365 YYLTYPE loc = this->get_location();
3366
3367 _mesa_glsl_error(& loc, state,
3368 "`return' with wrong type %s, in function `%s' "
3369 "returning %s",
3370 ret_type->name,
3371 state->current_function->function_name(),
3372 state->current_function->return_type->name);
3373 }
3374
3375 inst = new(ctx) ir_return(ret);
3376 } else {
3377 if (state->current_function->return_type->base_type !=
3378 GLSL_TYPE_VOID) {
3379 YYLTYPE loc = this->get_location();
3380
3381 _mesa_glsl_error(& loc, state,
3382 "`return' with no value, in function %s returning "
3383 "non-void",
3384 state->current_function->function_name());
3385 }
3386 inst = new(ctx) ir_return;
3387 }
3388
3389 state->found_return = true;
3390 instructions->push_tail(inst);
3391 break;
3392 }
3393
3394 case ast_discard:
3395 if (state->target != fragment_shader) {
3396 YYLTYPE loc = this->get_location();
3397
3398 _mesa_glsl_error(& loc, state,
3399 "`discard' may only appear in a fragment shader");
3400 }
3401 instructions->push_tail(new(ctx) ir_discard);
3402 break;
3403
3404 case ast_break:
3405 case ast_continue:
3406 if (mode == ast_continue &&
3407 state->loop_nesting_ast == NULL) {
3408 YYLTYPE loc = this->get_location();
3409
3410 _mesa_glsl_error(& loc, state,
3411 "continue may only appear in a loop");
3412 } else if (mode == ast_break &&
3413 state->loop_nesting_ast == NULL &&
3414 state->switch_state.switch_nesting_ast == NULL) {
3415 YYLTYPE loc = this->get_location();
3416
3417 _mesa_glsl_error(& loc, state,
3418 "break may only appear in a loop or a switch");
3419 } else {
3420 /* For a loop, inline the for loop expression again,
3421 * since we don't know where near the end of
3422 * the loop body the normal copy of it
3423 * is going to be placed.
3424 */
3425 if (state->loop_nesting_ast != NULL &&
3426 mode == ast_continue &&
3427 state->loop_nesting_ast->rest_expression) {
3428 state->loop_nesting_ast->rest_expression->hir(instructions,
3429 state);
3430 }
3431
3432 if (state->switch_state.is_switch_innermost &&
3433 mode == ast_break) {
3434 /* Force break out of switch by setting is_break switch state.
3435 */
3436 ir_variable *const is_break_var = state->switch_state.is_break_var;
3437 ir_dereference_variable *const deref_is_break_var =
3438 new(ctx) ir_dereference_variable(is_break_var);
3439 ir_constant *const true_val = new(ctx) ir_constant(true);
3440 ir_assignment *const set_break_var =
3441 new(ctx) ir_assignment(deref_is_break_var,
3442 true_val,
3443 NULL);
3444
3445 instructions->push_tail(set_break_var);
3446 }
3447 else {
3448 ir_loop_jump *const jump =
3449 new(ctx) ir_loop_jump((mode == ast_break)
3450 ? ir_loop_jump::jump_break
3451 : ir_loop_jump::jump_continue);
3452 instructions->push_tail(jump);
3453 }
3454 }
3455
3456 break;
3457 }
3458
3459 /* Jump instructions do not have r-values.
3460 */
3461 return NULL;
3462 }
3463
3464
3465 ir_rvalue *
3466 ast_selection_statement::hir(exec_list *instructions,
3467 struct _mesa_glsl_parse_state *state)
3468 {
3469 void *ctx = state;
3470
3471 ir_rvalue *const condition = this->condition->hir(instructions, state);
3472
3473 /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
3474 *
3475 * "Any expression whose type evaluates to a Boolean can be used as the
3476 * conditional expression bool-expression. Vector types are not accepted
3477 * as the expression to if."
3478 *
3479 * The checks are separated so that higher quality diagnostics can be
3480 * generated for cases where both rules are violated.
3481 */
3482 if (!condition->type->is_boolean() || !condition->type->is_scalar()) {
3483 YYLTYPE loc = this->condition->get_location();
3484
3485 _mesa_glsl_error(& loc, state, "if-statement condition must be scalar "
3486 "boolean");
3487 }
3488
3489 ir_if *const stmt = new(ctx) ir_if(condition);
3490
3491 if (then_statement != NULL) {
3492 state->symbols->push_scope();
3493 then_statement->hir(& stmt->then_instructions, state);
3494 state->symbols->pop_scope();
3495 }
3496
3497 if (else_statement != NULL) {
3498 state->symbols->push_scope();
3499 else_statement->hir(& stmt->else_instructions, state);
3500 state->symbols->pop_scope();
3501 }
3502
3503 instructions->push_tail(stmt);
3504
3505 /* if-statements do not have r-values.
3506 */
3507 return NULL;
3508 }
3509
3510
3511 ir_rvalue *
3512 ast_switch_statement::hir(exec_list *instructions,
3513 struct _mesa_glsl_parse_state *state)
3514 {
3515 void *ctx = state;
3516
3517 ir_rvalue *const test_expression =
3518 this->test_expression->hir(instructions, state);
3519
3520 /* From page 66 (page 55 of the PDF) of the GLSL 1.50 spec:
3521 *
3522 * "The type of init-expression in a switch statement must be a
3523 * scalar integer."
3524 *
3525 * The checks are separated so that higher quality diagnostics can be
3526 * generated for cases where the rule is violated.
3527 */
3528 if (!test_expression->type->is_integer()) {
3529 YYLTYPE loc = this->test_expression->get_location();
3530
3531 _mesa_glsl_error(& loc,
3532 state,
3533 "switch-statement expression must be scalar "
3534 "integer");
3535 }
3536
3537 /* Track the switch-statement nesting in a stack-like manner.
3538 */
3539 struct glsl_switch_state saved = state->switch_state;
3540
3541 state->switch_state.is_switch_innermost = true;
3542 state->switch_state.switch_nesting_ast = this;
3543 state->switch_state.labels_ht = hash_table_ctor(0, hash_table_pointer_hash,
3544 hash_table_pointer_compare);
3545 state->switch_state.previous_default = NULL;
3546
3547 /* Initalize is_fallthru state to false.
3548 */
3549 ir_rvalue *const is_fallthru_val = new (ctx) ir_constant(false);
3550 state->switch_state.is_fallthru_var =
3551 new(ctx) ir_variable(glsl_type::bool_type,
3552 "switch_is_fallthru_tmp",
3553 ir_var_temporary);
3554 instructions->push_tail(state->switch_state.is_fallthru_var);
3555
3556 ir_dereference_variable *deref_is_fallthru_var =
3557 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
3558 instructions->push_tail(new(ctx) ir_assignment(deref_is_fallthru_var,
3559 is_fallthru_val,
3560 NULL));
3561
3562 /* Initalize is_break state to false.
3563 */
3564 ir_rvalue *const is_break_val = new (ctx) ir_constant(false);
3565 state->switch_state.is_break_var = new(ctx) ir_variable(glsl_type::bool_type,
3566 "switch_is_break_tmp",
3567 ir_var_temporary);
3568 instructions->push_tail(state->switch_state.is_break_var);
3569
3570 ir_dereference_variable *deref_is_break_var =
3571 new(ctx) ir_dereference_variable(state->switch_state.is_break_var);
3572 instructions->push_tail(new(ctx) ir_assignment(deref_is_break_var,
3573 is_break_val,
3574 NULL));
3575
3576 /* Cache test expression.
3577 */
3578 test_to_hir(instructions, state);
3579
3580 /* Emit code for body of switch stmt.
3581 */
3582 body->hir(instructions, state);
3583
3584 hash_table_dtor(state->switch_state.labels_ht);
3585
3586 state->switch_state = saved;
3587
3588 /* Switch statements do not have r-values.
3589 */
3590 return NULL;
3591 }
3592
3593
3594 void
3595 ast_switch_statement::test_to_hir(exec_list *instructions,
3596 struct _mesa_glsl_parse_state *state)
3597 {
3598 void *ctx = state;
3599
3600 /* Cache value of test expression.
3601 */
3602 ir_rvalue *const test_val =
3603 test_expression->hir(instructions,
3604 state);
3605
3606 state->switch_state.test_var = new(ctx) ir_variable(glsl_type::int_type,
3607 "switch_test_tmp",
3608 ir_var_temporary);
3609 ir_dereference_variable *deref_test_var =
3610 new(ctx) ir_dereference_variable(state->switch_state.test_var);
3611
3612 instructions->push_tail(state->switch_state.test_var);
3613 instructions->push_tail(new(ctx) ir_assignment(deref_test_var,
3614 test_val,
3615 NULL));
3616 }
3617
3618
3619 ir_rvalue *
3620 ast_switch_body::hir(exec_list *instructions,
3621 struct _mesa_glsl_parse_state *state)
3622 {
3623 if (stmts != NULL)
3624 stmts->hir(instructions, state);
3625
3626 /* Switch bodies do not have r-values.
3627 */
3628 return NULL;
3629 }
3630
3631
3632 ir_rvalue *
3633 ast_case_statement_list::hir(exec_list *instructions,
3634 struct _mesa_glsl_parse_state *state)
3635 {
3636 foreach_list_typed (ast_case_statement, case_stmt, link, & this->cases)
3637 case_stmt->hir(instructions, state);
3638
3639 /* Case statements do not have r-values.
3640 */
3641 return NULL;
3642 }
3643
3644
3645 ir_rvalue *
3646 ast_case_statement::hir(exec_list *instructions,
3647 struct _mesa_glsl_parse_state *state)
3648 {
3649 labels->hir(instructions, state);
3650
3651 /* Conditionally set fallthru state based on break state.
3652 */
3653 ir_constant *const false_val = new(state) ir_constant(false);
3654 ir_dereference_variable *const deref_is_fallthru_var =
3655 new(state) ir_dereference_variable(state->switch_state.is_fallthru_var);
3656 ir_dereference_variable *const deref_is_break_var =
3657 new(state) ir_dereference_variable(state->switch_state.is_break_var);
3658 ir_assignment *const reset_fallthru_on_break =
3659 new(state) ir_assignment(deref_is_fallthru_var,
3660 false_val,
3661 deref_is_break_var);
3662 instructions->push_tail(reset_fallthru_on_break);
3663
3664 /* Guard case statements depending on fallthru state.
3665 */
3666 ir_dereference_variable *const deref_fallthru_guard =
3667 new(state) ir_dereference_variable(state->switch_state.is_fallthru_var);
3668 ir_if *const test_fallthru = new(state) ir_if(deref_fallthru_guard);
3669
3670 foreach_list_typed (ast_node, stmt, link, & this->stmts)
3671 stmt->hir(& test_fallthru->then_instructions, state);
3672
3673 instructions->push_tail(test_fallthru);
3674
3675 /* Case statements do not have r-values.
3676 */
3677 return NULL;
3678 }
3679
3680
3681 ir_rvalue *
3682 ast_case_label_list::hir(exec_list *instructions,
3683 struct _mesa_glsl_parse_state *state)
3684 {
3685 foreach_list_typed (ast_case_label, label, link, & this->labels)
3686 label->hir(instructions, state);
3687
3688 /* Case labels do not have r-values.
3689 */
3690 return NULL;
3691 }
3692
3693
3694 ir_rvalue *
3695 ast_case_label::hir(exec_list *instructions,
3696 struct _mesa_glsl_parse_state *state)
3697 {
3698 void *ctx = state;
3699
3700 ir_dereference_variable *deref_fallthru_var =
3701 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
3702
3703 ir_rvalue *const true_val = new(ctx) ir_constant(true);
3704
3705 /* If not default case, ...
3706 */
3707 if (this->test_value != NULL) {
3708 /* Conditionally set fallthru state based on
3709 * comparison of cached test expression value to case label.
3710 */
3711 ir_rvalue *const label_rval = this->test_value->hir(instructions, state);
3712 ir_constant *label_const = label_rval->constant_expression_value();
3713
3714 if (!label_const) {
3715 YYLTYPE loc = this->test_value->get_location();
3716
3717 _mesa_glsl_error(& loc, state,
3718 "switch statement case label must be a "
3719 "constant expression");
3720
3721 /* Stuff a dummy value in to allow processing to continue. */
3722 label_const = new(ctx) ir_constant(0);
3723 } else {
3724 ast_expression *previous_label = (ast_expression *)
3725 hash_table_find(state->switch_state.labels_ht,
3726 (void *)(uintptr_t)label_const->value.u[0]);
3727
3728 if (previous_label) {
3729 YYLTYPE loc = this->test_value->get_location();
3730 _mesa_glsl_error(& loc, state,
3731 "duplicate case value");
3732
3733 loc = previous_label->get_location();
3734 _mesa_glsl_error(& loc, state,
3735 "this is the previous case label");
3736 } else {
3737 hash_table_insert(state->switch_state.labels_ht,
3738 this->test_value,
3739 (void *)(uintptr_t)label_const->value.u[0]);
3740 }
3741 }
3742
3743 ir_dereference_variable *deref_test_var =
3744 new(ctx) ir_dereference_variable(state->switch_state.test_var);
3745
3746 ir_rvalue *const test_cond = new(ctx) ir_expression(ir_binop_all_equal,
3747 glsl_type::bool_type,
3748 label_const,
3749 deref_test_var);
3750
3751 ir_assignment *set_fallthru_on_test =
3752 new(ctx) ir_assignment(deref_fallthru_var,
3753 true_val,
3754 test_cond);
3755
3756 instructions->push_tail(set_fallthru_on_test);
3757 } else { /* default case */
3758 if (state->switch_state.previous_default) {
3759 printf("a\n");
3760 YYLTYPE loc = this->get_location();
3761 _mesa_glsl_error(& loc, state,
3762 "multiple default labels in one switch");
3763
3764 printf("b\n");
3765
3766 loc = state->switch_state.previous_default->get_location();
3767 _mesa_glsl_error(& loc, state,
3768 "this is the first default label");
3769 }
3770 state->switch_state.previous_default = this;
3771
3772 /* Set falltrhu state.
3773 */
3774 ir_assignment *set_fallthru =
3775 new(ctx) ir_assignment(deref_fallthru_var,
3776 true_val,
3777 NULL);
3778
3779 instructions->push_tail(set_fallthru);
3780 }
3781
3782 /* Case statements do not have r-values.
3783 */
3784 return NULL;
3785 }
3786
3787
3788 void
3789 ast_iteration_statement::condition_to_hir(ir_loop *stmt,
3790 struct _mesa_glsl_parse_state *state)
3791 {
3792 void *ctx = state;
3793
3794 if (condition != NULL) {
3795 ir_rvalue *const cond =
3796 condition->hir(& stmt->body_instructions, state);
3797
3798 if ((cond == NULL)
3799 || !cond->type->is_boolean() || !cond->type->is_scalar()) {
3800 YYLTYPE loc = condition->get_location();
3801
3802 _mesa_glsl_error(& loc, state,
3803 "loop condition must be scalar boolean");
3804 } else {
3805 /* As the first code in the loop body, generate a block that looks
3806 * like 'if (!condition) break;' as the loop termination condition.
3807 */
3808 ir_rvalue *const not_cond =
3809 new(ctx) ir_expression(ir_unop_logic_not, glsl_type::bool_type, cond,
3810 NULL);
3811
3812 ir_if *const if_stmt = new(ctx) ir_if(not_cond);
3813
3814 ir_jump *const break_stmt =
3815 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
3816
3817 if_stmt->then_instructions.push_tail(break_stmt);
3818 stmt->body_instructions.push_tail(if_stmt);
3819 }
3820 }
3821 }
3822
3823
3824 ir_rvalue *
3825 ast_iteration_statement::hir(exec_list *instructions,
3826 struct _mesa_glsl_parse_state *state)
3827 {
3828 void *ctx = state;
3829
3830 /* For-loops and while-loops start a new scope, but do-while loops do not.
3831 */
3832 if (mode != ast_do_while)
3833 state->symbols->push_scope();
3834
3835 if (init_statement != NULL)
3836 init_statement->hir(instructions, state);
3837
3838 ir_loop *const stmt = new(ctx) ir_loop();
3839 instructions->push_tail(stmt);
3840
3841 /* Track the current loop nesting.
3842 */
3843 ast_iteration_statement *nesting_ast = state->loop_nesting_ast;
3844
3845 state->loop_nesting_ast = this;
3846
3847 /* Likewise, indicate that following code is closest to a loop,
3848 * NOT closest to a switch.
3849 */
3850 bool saved_is_switch_innermost = state->switch_state.is_switch_innermost;
3851 state->switch_state.is_switch_innermost = false;
3852
3853 if (mode != ast_do_while)
3854 condition_to_hir(stmt, state);
3855
3856 if (body != NULL)
3857 body->hir(& stmt->body_instructions, state);
3858
3859 if (rest_expression != NULL)
3860 rest_expression->hir(& stmt->body_instructions, state);
3861
3862 if (mode == ast_do_while)
3863 condition_to_hir(stmt, state);
3864
3865 if (mode != ast_do_while)
3866 state->symbols->pop_scope();
3867
3868 /* Restore previous nesting before returning.
3869 */
3870 state->loop_nesting_ast = nesting_ast;
3871 state->switch_state.is_switch_innermost = saved_is_switch_innermost;
3872
3873 /* Loops do not have r-values.
3874 */
3875 return NULL;
3876 }
3877
3878
3879 ir_rvalue *
3880 ast_type_specifier::hir(exec_list *instructions,
3881 struct _mesa_glsl_parse_state *state)
3882 {
3883 if (!this->is_precision_statement && this->structure == NULL)
3884 return NULL;
3885
3886 YYLTYPE loc = this->get_location();
3887
3888 if (this->precision != ast_precision_none
3889 && state->language_version != 100
3890 && state->language_version < 130) {
3891 _mesa_glsl_error(&loc, state,
3892 "precision qualifiers exist only in "
3893 "GLSL ES 1.00, and GLSL 1.30 and later");
3894 return NULL;
3895 }
3896 if (this->precision != ast_precision_none
3897 && this->structure != NULL) {
3898 _mesa_glsl_error(&loc, state,
3899 "precision qualifiers do not apply to structures");
3900 return NULL;
3901 }
3902
3903 /* If this is a precision statement, check that the type to which it is
3904 * applied is either float or int.
3905 *
3906 * From section 4.5.3 of the GLSL 1.30 spec:
3907 * "The precision statement
3908 * precision precision-qualifier type;
3909 * can be used to establish a default precision qualifier. The type
3910 * field can be either int or float [...]. Any other types or
3911 * qualifiers will result in an error.
3912 */
3913 if (this->is_precision_statement) {
3914 assert(this->precision != ast_precision_none);
3915 assert(this->structure == NULL); /* The check for structures was
3916 * performed above. */
3917 if (this->is_array) {
3918 _mesa_glsl_error(&loc, state,
3919 "default precision statements do not apply to "
3920 "arrays");
3921 return NULL;
3922 }
3923 if (strcmp(this->type_name, "float") != 0 &&
3924 strcmp(this->type_name, "int") != 0) {
3925 _mesa_glsl_error(&loc, state,
3926 "default precision statements apply only to types "
3927 "float and int");
3928 return NULL;
3929 }
3930
3931 /* FINISHME: Translate precision statements into IR. */
3932 return NULL;
3933 }
3934
3935 if (this->structure != NULL)
3936 return this->structure->hir(instructions, state);
3937
3938 return NULL;
3939 }
3940
3941
3942 ir_rvalue *
3943 ast_struct_specifier::hir(exec_list *instructions,
3944 struct _mesa_glsl_parse_state *state)
3945 {
3946 unsigned decl_count = 0;
3947
3948 /* Make an initial pass over the list of structure fields to determine how
3949 * many there are. Each element in this list is an ast_declarator_list.
3950 * This means that we actually need to count the number of elements in the
3951 * 'declarations' list in each of the elements.
3952 */
3953 foreach_list_typed (ast_declarator_list, decl_list, link,
3954 &this->declarations) {
3955 foreach_list_const (decl_ptr, & decl_list->declarations) {
3956 decl_count++;
3957 }
3958 }
3959
3960 /* Allocate storage for the structure fields and process the field
3961 * declarations. As the declarations are processed, try to also convert
3962 * the types to HIR. This ensures that structure definitions embedded in
3963 * other structure definitions are processed.
3964 */
3965 glsl_struct_field *const fields = ralloc_array(state, glsl_struct_field,
3966 decl_count);
3967
3968 unsigned i = 0;
3969 foreach_list_typed (ast_declarator_list, decl_list, link,
3970 &this->declarations) {
3971 const char *type_name;
3972
3973 decl_list->type->specifier->hir(instructions, state);
3974
3975 /* Section 10.9 of the GLSL ES 1.00 specification states that
3976 * embedded structure definitions have been removed from the language.
3977 */
3978 if (state->es_shader && decl_list->type->specifier->structure != NULL) {
3979 YYLTYPE loc = this->get_location();
3980 _mesa_glsl_error(&loc, state, "Embedded structure definitions are "
3981 "not allowed in GLSL ES 1.00.");
3982 }
3983
3984 const glsl_type *decl_type =
3985 decl_list->type->specifier->glsl_type(& type_name, state);
3986
3987 foreach_list_typed (ast_declaration, decl, link,
3988 &decl_list->declarations) {
3989 const struct glsl_type *field_type = decl_type;
3990 if (decl->is_array) {
3991 YYLTYPE loc = decl->get_location();
3992 field_type = process_array_type(&loc, decl_type, decl->array_size,
3993 state);
3994 }
3995 fields[i].type = (field_type != NULL)
3996 ? field_type : glsl_type::error_type;
3997 fields[i].name = decl->identifier;
3998 i++;
3999 }
4000 }
4001
4002 assert(i == decl_count);
4003
4004 const glsl_type *t =
4005 glsl_type::get_record_instance(fields, decl_count, this->name);
4006
4007 YYLTYPE loc = this->get_location();
4008 if (!state->symbols->add_type(name, t)) {
4009 _mesa_glsl_error(& loc, state, "struct `%s' previously defined", name);
4010 } else {
4011 const glsl_type **s = reralloc(state, state->user_structures,
4012 const glsl_type *,
4013 state->num_user_structures + 1);
4014 if (s != NULL) {
4015 s[state->num_user_structures] = t;
4016 state->user_structures = s;
4017 state->num_user_structures++;
4018 }
4019 }
4020
4021 /* Structure type definitions do not have r-values.
4022 */
4023 return NULL;
4024 }
4025
4026 static void
4027 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
4028 exec_list *instructions)
4029 {
4030 bool gl_FragColor_assigned = false;
4031 bool gl_FragData_assigned = false;
4032 bool user_defined_fs_output_assigned = false;
4033 ir_variable *user_defined_fs_output = NULL;
4034
4035 /* It would be nice to have proper location information. */
4036 YYLTYPE loc;
4037 memset(&loc, 0, sizeof(loc));
4038
4039 foreach_list(node, instructions) {
4040 ir_variable *var = ((ir_instruction *)node)->as_variable();
4041
4042 if (!var || !var->assigned)
4043 continue;
4044
4045 if (strcmp(var->name, "gl_FragColor") == 0)
4046 gl_FragColor_assigned = true;
4047 else if (strcmp(var->name, "gl_FragData") == 0)
4048 gl_FragData_assigned = true;
4049 else if (strncmp(var->name, "gl_", 3) != 0) {
4050 if (state->target == fragment_shader &&
4051 (var->mode == ir_var_out || var->mode == ir_var_inout)) {
4052 user_defined_fs_output_assigned = true;
4053 user_defined_fs_output = var;
4054 }
4055 }
4056 }
4057
4058 /* From the GLSL 1.30 spec:
4059 *
4060 * "If a shader statically assigns a value to gl_FragColor, it
4061 * may not assign a value to any element of gl_FragData. If a
4062 * shader statically writes a value to any element of
4063 * gl_FragData, it may not assign a value to
4064 * gl_FragColor. That is, a shader may assign values to either
4065 * gl_FragColor or gl_FragData, but not both. Multiple shaders
4066 * linked together must also consistently write just one of
4067 * these variables. Similarly, if user declared output
4068 * variables are in use (statically assigned to), then the
4069 * built-in variables gl_FragColor and gl_FragData may not be
4070 * assigned to. These incorrect usages all generate compile
4071 * time errors."
4072 */
4073 if (gl_FragColor_assigned && gl_FragData_assigned) {
4074 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
4075 "`gl_FragColor' and `gl_FragData'\n");
4076 } else if (gl_FragColor_assigned && user_defined_fs_output_assigned) {
4077 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
4078 "`gl_FragColor' and `%s'\n",
4079 user_defined_fs_output->name);
4080 } else if (gl_FragData_assigned && user_defined_fs_output_assigned) {
4081 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
4082 "`gl_FragData' and `%s'\n",
4083 user_defined_fs_output->name);
4084 }
4085 }