glsl: Refactor AST-to-HIR code handling variable redeclarations
[mesa.git] / src / glsl / ast_to_hir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file ast_to_hir.c
26 * Convert abstract syntax to to high-level intermediate reprensentation (HIR).
27 *
28 * During the conversion to HIR, the majority of the symantic checking is
29 * preformed on the program. This includes:
30 *
31 * * Symbol table management
32 * * Type checking
33 * * Function binding
34 *
35 * The majority of this work could be done during parsing, and the parser could
36 * probably generate HIR directly. However, this results in frequent changes
37 * to the parser code. Since we do not assume that every system this complier
38 * is built on will have Flex and Bison installed, we have to store the code
39 * generated by these tools in our version control system. In other parts of
40 * the system we've seen problems where a parser was changed but the generated
41 * code was not committed, merge conflicts where created because two developers
42 * had slightly different versions of Bison installed, etc.
43 *
44 * I have also noticed that running Bison generated parsers in GDB is very
45 * irritating. When you get a segfault on '$$ = $1->foo', you can't very
46 * well 'print $1' in GDB.
47 *
48 * As a result, my preference is to put as little C code as possible in the
49 * parser (and lexer) sources.
50 */
51
52 #include "main/core.h" /* for struct gl_extensions */
53 #include "glsl_symbol_table.h"
54 #include "glsl_parser_extras.h"
55 #include "ast.h"
56 #include "glsl_types.h"
57 #include "ir.h"
58
59 void
60 _mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
61 {
62 _mesa_glsl_initialize_variables(instructions, state);
63 _mesa_glsl_initialize_functions(state);
64
65 state->symbols->language_version = state->language_version;
66
67 state->current_function = NULL;
68
69 /* Section 4.2 of the GLSL 1.20 specification states:
70 * "The built-in functions are scoped in a scope outside the global scope
71 * users declare global variables in. That is, a shader's global scope,
72 * available for user-defined functions and global variables, is nested
73 * inside the scope containing the built-in functions."
74 *
75 * Since built-in functions like ftransform() access built-in variables,
76 * it follows that those must be in the outer scope as well.
77 *
78 * We push scope here to create this nesting effect...but don't pop.
79 * This way, a shader's globals are still in the symbol table for use
80 * by the linker.
81 */
82 state->symbols->push_scope();
83
84 foreach_list_typed (ast_node, ast, link, & state->translation_unit)
85 ast->hir(instructions, state);
86 }
87
88
89 /**
90 * If a conversion is available, convert one operand to a different type
91 *
92 * The \c from \c ir_rvalue is converted "in place".
93 *
94 * \param to Type that the operand it to be converted to
95 * \param from Operand that is being converted
96 * \param state GLSL compiler state
97 *
98 * \return
99 * If a conversion is possible (or unnecessary), \c true is returned.
100 * Otherwise \c false is returned.
101 */
102 bool
103 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
104 struct _mesa_glsl_parse_state *state)
105 {
106 void *ctx = state;
107 if (to->base_type == from->type->base_type)
108 return true;
109
110 /* This conversion was added in GLSL 1.20. If the compilation mode is
111 * GLSL 1.10, the conversion is skipped.
112 */
113 if (state->language_version < 120)
114 return false;
115
116 /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
117 *
118 * "There are no implicit array or structure conversions. For
119 * example, an array of int cannot be implicitly converted to an
120 * array of float. There are no implicit conversions between
121 * signed and unsigned integers."
122 */
123 /* FINISHME: The above comment is partially a lie. There is int/uint
124 * FINISHME: conversion for immediate constants.
125 */
126 if (!to->is_float() || !from->type->is_numeric())
127 return false;
128
129 /* Convert to a floating point type with the same number of components
130 * as the original type - i.e. int to float, not int to vec4.
131 */
132 to = glsl_type::get_instance(GLSL_TYPE_FLOAT, from->type->vector_elements,
133 from->type->matrix_columns);
134
135 switch (from->type->base_type) {
136 case GLSL_TYPE_INT:
137 from = new(ctx) ir_expression(ir_unop_i2f, to, from, NULL);
138 break;
139 case GLSL_TYPE_UINT:
140 from = new(ctx) ir_expression(ir_unop_u2f, to, from, NULL);
141 break;
142 case GLSL_TYPE_BOOL:
143 from = new(ctx) ir_expression(ir_unop_b2f, to, from, NULL);
144 break;
145 default:
146 assert(0);
147 }
148
149 return true;
150 }
151
152
153 static const struct glsl_type *
154 arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
155 bool multiply,
156 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
157 {
158 const glsl_type *type_a = value_a->type;
159 const glsl_type *type_b = value_b->type;
160
161 /* From GLSL 1.50 spec, page 56:
162 *
163 * "The arithmetic binary operators add (+), subtract (-),
164 * multiply (*), and divide (/) operate on integer and
165 * floating-point scalars, vectors, and matrices."
166 */
167 if (!type_a->is_numeric() || !type_b->is_numeric()) {
168 _mesa_glsl_error(loc, state,
169 "Operands to arithmetic operators must be numeric");
170 return glsl_type::error_type;
171 }
172
173
174 /* "If one operand is floating-point based and the other is
175 * not, then the conversions from Section 4.1.10 "Implicit
176 * Conversions" are applied to the non-floating-point-based operand."
177 */
178 if (!apply_implicit_conversion(type_a, value_b, state)
179 && !apply_implicit_conversion(type_b, value_a, state)) {
180 _mesa_glsl_error(loc, state,
181 "Could not implicitly convert operands to "
182 "arithmetic operator");
183 return glsl_type::error_type;
184 }
185 type_a = value_a->type;
186 type_b = value_b->type;
187
188 /* "If the operands are integer types, they must both be signed or
189 * both be unsigned."
190 *
191 * From this rule and the preceeding conversion it can be inferred that
192 * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
193 * The is_numeric check above already filtered out the case where either
194 * type is not one of these, so now the base types need only be tested for
195 * equality.
196 */
197 if (type_a->base_type != type_b->base_type) {
198 _mesa_glsl_error(loc, state,
199 "base type mismatch for arithmetic operator");
200 return glsl_type::error_type;
201 }
202
203 /* "All arithmetic binary operators result in the same fundamental type
204 * (signed integer, unsigned integer, or floating-point) as the
205 * operands they operate on, after operand type conversion. After
206 * conversion, the following cases are valid
207 *
208 * * The two operands are scalars. In this case the operation is
209 * applied, resulting in a scalar."
210 */
211 if (type_a->is_scalar() && type_b->is_scalar())
212 return type_a;
213
214 /* "* One operand is a scalar, and the other is a vector or matrix.
215 * In this case, the scalar operation is applied independently to each
216 * component of the vector or matrix, resulting in the same size
217 * vector or matrix."
218 */
219 if (type_a->is_scalar()) {
220 if (!type_b->is_scalar())
221 return type_b;
222 } else if (type_b->is_scalar()) {
223 return type_a;
224 }
225
226 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
227 * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
228 * handled.
229 */
230 assert(!type_a->is_scalar());
231 assert(!type_b->is_scalar());
232
233 /* "* The two operands are vectors of the same size. In this case, the
234 * operation is done component-wise resulting in the same size
235 * vector."
236 */
237 if (type_a->is_vector() && type_b->is_vector()) {
238 if (type_a == type_b) {
239 return type_a;
240 } else {
241 _mesa_glsl_error(loc, state,
242 "vector size mismatch for arithmetic operator");
243 return glsl_type::error_type;
244 }
245 }
246
247 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
248 * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
249 * <vector, vector> have been handled. At least one of the operands must
250 * be matrix. Further, since there are no integer matrix types, the base
251 * type of both operands must be float.
252 */
253 assert(type_a->is_matrix() || type_b->is_matrix());
254 assert(type_a->base_type == GLSL_TYPE_FLOAT);
255 assert(type_b->base_type == GLSL_TYPE_FLOAT);
256
257 /* "* The operator is add (+), subtract (-), or divide (/), and the
258 * operands are matrices with the same number of rows and the same
259 * number of columns. In this case, the operation is done component-
260 * wise resulting in the same size matrix."
261 * * The operator is multiply (*), where both operands are matrices or
262 * one operand is a vector and the other a matrix. A right vector
263 * operand is treated as a column vector and a left vector operand as a
264 * row vector. In all these cases, it is required that the number of
265 * columns of the left operand is equal to the number of rows of the
266 * right operand. Then, the multiply (*) operation does a linear
267 * algebraic multiply, yielding an object that has the same number of
268 * rows as the left operand and the same number of columns as the right
269 * operand. Section 5.10 "Vector and Matrix Operations" explains in
270 * more detail how vectors and matrices are operated on."
271 */
272 if (! multiply) {
273 if (type_a == type_b)
274 return type_a;
275 } else {
276 if (type_a->is_matrix() && type_b->is_matrix()) {
277 /* Matrix multiply. The columns of A must match the rows of B. Given
278 * the other previously tested constraints, this means the vector type
279 * of a row from A must be the same as the vector type of a column from
280 * B.
281 */
282 if (type_a->row_type() == type_b->column_type()) {
283 /* The resulting matrix has the number of columns of matrix B and
284 * the number of rows of matrix A. We get the row count of A by
285 * looking at the size of a vector that makes up a column. The
286 * transpose (size of a row) is done for B.
287 */
288 const glsl_type *const type =
289 glsl_type::get_instance(type_a->base_type,
290 type_a->column_type()->vector_elements,
291 type_b->row_type()->vector_elements);
292 assert(type != glsl_type::error_type);
293
294 return type;
295 }
296 } else if (type_a->is_matrix()) {
297 /* A is a matrix and B is a column vector. Columns of A must match
298 * rows of B. Given the other previously tested constraints, this
299 * means the vector type of a row from A must be the same as the
300 * vector the type of B.
301 */
302 if (type_a->row_type() == type_b) {
303 /* The resulting vector has a number of elements equal to
304 * the number of rows of matrix A. */
305 const glsl_type *const type =
306 glsl_type::get_instance(type_a->base_type,
307 type_a->column_type()->vector_elements,
308 1);
309 assert(type != glsl_type::error_type);
310
311 return type;
312 }
313 } else {
314 assert(type_b->is_matrix());
315
316 /* A is a row vector and B is a matrix. Columns of A must match rows
317 * of B. Given the other previously tested constraints, this means
318 * the type of A must be the same as the vector type of a column from
319 * B.
320 */
321 if (type_a == type_b->column_type()) {
322 /* The resulting vector has a number of elements equal to
323 * the number of columns of matrix B. */
324 const glsl_type *const type =
325 glsl_type::get_instance(type_a->base_type,
326 type_b->row_type()->vector_elements,
327 1);
328 assert(type != glsl_type::error_type);
329
330 return type;
331 }
332 }
333
334 _mesa_glsl_error(loc, state, "size mismatch for matrix multiplication");
335 return glsl_type::error_type;
336 }
337
338
339 /* "All other cases are illegal."
340 */
341 _mesa_glsl_error(loc, state, "type mismatch");
342 return glsl_type::error_type;
343 }
344
345
346 static const struct glsl_type *
347 unary_arithmetic_result_type(const struct glsl_type *type,
348 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
349 {
350 /* From GLSL 1.50 spec, page 57:
351 *
352 * "The arithmetic unary operators negate (-), post- and pre-increment
353 * and decrement (-- and ++) operate on integer or floating-point
354 * values (including vectors and matrices). All unary operators work
355 * component-wise on their operands. These result with the same type
356 * they operated on."
357 */
358 if (!type->is_numeric()) {
359 _mesa_glsl_error(loc, state,
360 "Operands to arithmetic operators must be numeric");
361 return glsl_type::error_type;
362 }
363
364 return type;
365 }
366
367 /**
368 * \brief Return the result type of a bit-logic operation.
369 *
370 * If the given types to the bit-logic operator are invalid, return
371 * glsl_type::error_type.
372 *
373 * \param type_a Type of LHS of bit-logic op
374 * \param type_b Type of RHS of bit-logic op
375 */
376 static const struct glsl_type *
377 bit_logic_result_type(const struct glsl_type *type_a,
378 const struct glsl_type *type_b,
379 ast_operators op,
380 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
381 {
382 if (state->language_version < 130) {
383 _mesa_glsl_error(loc, state, "bit operations require GLSL 1.30");
384 return glsl_type::error_type;
385 }
386
387 /* From page 50 (page 56 of PDF) of GLSL 1.30 spec:
388 *
389 * "The bitwise operators and (&), exclusive-or (^), and inclusive-or
390 * (|). The operands must be of type signed or unsigned integers or
391 * integer vectors."
392 */
393 if (!type_a->is_integer()) {
394 _mesa_glsl_error(loc, state, "LHS of `%s' must be an integer",
395 ast_expression::operator_string(op));
396 return glsl_type::error_type;
397 }
398 if (!type_b->is_integer()) {
399 _mesa_glsl_error(loc, state, "RHS of `%s' must be an integer",
400 ast_expression::operator_string(op));
401 return glsl_type::error_type;
402 }
403
404 /* "The fundamental types of the operands (signed or unsigned) must
405 * match,"
406 */
407 if (type_a->base_type != type_b->base_type) {
408 _mesa_glsl_error(loc, state, "operands of `%s' must have the same "
409 "base type", ast_expression::operator_string(op));
410 return glsl_type::error_type;
411 }
412
413 /* "The operands cannot be vectors of differing size." */
414 if (type_a->is_vector() &&
415 type_b->is_vector() &&
416 type_a->vector_elements != type_b->vector_elements) {
417 _mesa_glsl_error(loc, state, "operands of `%s' cannot be vectors of "
418 "different sizes", ast_expression::operator_string(op));
419 return glsl_type::error_type;
420 }
421
422 /* "If one operand is a scalar and the other a vector, the scalar is
423 * applied component-wise to the vector, resulting in the same type as
424 * the vector. The fundamental types of the operands [...] will be the
425 * resulting fundamental type."
426 */
427 if (type_a->is_scalar())
428 return type_b;
429 else
430 return type_a;
431 }
432
433 static const struct glsl_type *
434 modulus_result_type(const struct glsl_type *type_a,
435 const struct glsl_type *type_b,
436 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
437 {
438 if (state->language_version < 130) {
439 _mesa_glsl_error(loc, state,
440 "operator '%%' is reserved in %s",
441 state->version_string);
442 return glsl_type::error_type;
443 }
444
445 /* From GLSL 1.50 spec, page 56:
446 * "The operator modulus (%) operates on signed or unsigned integers or
447 * integer vectors. The operand types must both be signed or both be
448 * unsigned."
449 */
450 if (!type_a->is_integer() || !type_b->is_integer()
451 || (type_a->base_type != type_b->base_type)) {
452 _mesa_glsl_error(loc, state, "type mismatch");
453 return glsl_type::error_type;
454 }
455
456 /* "The operands cannot be vectors of differing size. If one operand is
457 * a scalar and the other vector, then the scalar is applied component-
458 * wise to the vector, resulting in the same type as the vector. If both
459 * are vectors of the same size, the result is computed component-wise."
460 */
461 if (type_a->is_vector()) {
462 if (!type_b->is_vector()
463 || (type_a->vector_elements == type_b->vector_elements))
464 return type_a;
465 } else
466 return type_b;
467
468 /* "The operator modulus (%) is not defined for any other data types
469 * (non-integer types)."
470 */
471 _mesa_glsl_error(loc, state, "type mismatch");
472 return glsl_type::error_type;
473 }
474
475
476 static const struct glsl_type *
477 relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
478 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
479 {
480 const glsl_type *type_a = value_a->type;
481 const glsl_type *type_b = value_b->type;
482
483 /* From GLSL 1.50 spec, page 56:
484 * "The relational operators greater than (>), less than (<), greater
485 * than or equal (>=), and less than or equal (<=) operate only on
486 * scalar integer and scalar floating-point expressions."
487 */
488 if (!type_a->is_numeric()
489 || !type_b->is_numeric()
490 || !type_a->is_scalar()
491 || !type_b->is_scalar()) {
492 _mesa_glsl_error(loc, state,
493 "Operands to relational operators must be scalar and "
494 "numeric");
495 return glsl_type::error_type;
496 }
497
498 /* "Either the operands' types must match, or the conversions from
499 * Section 4.1.10 "Implicit Conversions" will be applied to the integer
500 * operand, after which the types must match."
501 */
502 if (!apply_implicit_conversion(type_a, value_b, state)
503 && !apply_implicit_conversion(type_b, value_a, state)) {
504 _mesa_glsl_error(loc, state,
505 "Could not implicitly convert operands to "
506 "relational operator");
507 return glsl_type::error_type;
508 }
509 type_a = value_a->type;
510 type_b = value_b->type;
511
512 if (type_a->base_type != type_b->base_type) {
513 _mesa_glsl_error(loc, state, "base type mismatch");
514 return glsl_type::error_type;
515 }
516
517 /* "The result is scalar Boolean."
518 */
519 return glsl_type::bool_type;
520 }
521
522 /**
523 * \brief Return the result type of a bit-shift operation.
524 *
525 * If the given types to the bit-shift operator are invalid, return
526 * glsl_type::error_type.
527 *
528 * \param type_a Type of LHS of bit-shift op
529 * \param type_b Type of RHS of bit-shift op
530 */
531 static const struct glsl_type *
532 shift_result_type(const struct glsl_type *type_a,
533 const struct glsl_type *type_b,
534 ast_operators op,
535 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
536 {
537 if (state->language_version < 130) {
538 _mesa_glsl_error(loc, state, "bit operations require GLSL 1.30");
539 return glsl_type::error_type;
540 }
541
542 /* From page 50 (page 56 of the PDF) of the GLSL 1.30 spec:
543 *
544 * "The shift operators (<<) and (>>). For both operators, the operands
545 * must be signed or unsigned integers or integer vectors. One operand
546 * can be signed while the other is unsigned."
547 */
548 if (!type_a->is_integer()) {
549 _mesa_glsl_error(loc, state, "LHS of operator %s must be an integer or "
550 "integer vector", ast_expression::operator_string(op));
551 return glsl_type::error_type;
552
553 }
554 if (!type_b->is_integer()) {
555 _mesa_glsl_error(loc, state, "RHS of operator %s must be an integer or "
556 "integer vector", ast_expression::operator_string(op));
557 return glsl_type::error_type;
558 }
559
560 /* "If the first operand is a scalar, the second operand has to be
561 * a scalar as well."
562 */
563 if (type_a->is_scalar() && !type_b->is_scalar()) {
564 _mesa_glsl_error(loc, state, "If the first operand of %s is scalar, the "
565 "second must be scalar as well",
566 ast_expression::operator_string(op));
567 return glsl_type::error_type;
568 }
569
570 /* If both operands are vectors, check that they have same number of
571 * elements.
572 */
573 if (type_a->is_vector() &&
574 type_b->is_vector() &&
575 type_a->vector_elements != type_b->vector_elements) {
576 _mesa_glsl_error(loc, state, "Vector operands to operator %s must "
577 "have same number of elements",
578 ast_expression::operator_string(op));
579 return glsl_type::error_type;
580 }
581
582 /* "In all cases, the resulting type will be the same type as the left
583 * operand."
584 */
585 return type_a;
586 }
587
588 /**
589 * Validates that a value can be assigned to a location with a specified type
590 *
591 * Validates that \c rhs can be assigned to some location. If the types are
592 * not an exact match but an automatic conversion is possible, \c rhs will be
593 * converted.
594 *
595 * \return
596 * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
597 * Otherwise the actual RHS to be assigned will be returned. This may be
598 * \c rhs, or it may be \c rhs after some type conversion.
599 *
600 * \note
601 * In addition to being used for assignments, this function is used to
602 * type-check return values.
603 */
604 ir_rvalue *
605 validate_assignment(struct _mesa_glsl_parse_state *state,
606 const glsl_type *lhs_type, ir_rvalue *rhs)
607 {
608 /* If there is already some error in the RHS, just return it. Anything
609 * else will lead to an avalanche of error message back to the user.
610 */
611 if (rhs->type->is_error())
612 return rhs;
613
614 /* If the types are identical, the assignment can trivially proceed.
615 */
616 if (rhs->type == lhs_type)
617 return rhs;
618
619 /* If the array element types are the same and the size of the LHS is zero,
620 * the assignment is okay.
621 *
622 * Note: Whole-array assignments are not permitted in GLSL 1.10, but this
623 * is handled by ir_dereference::is_lvalue.
624 */
625 if (lhs_type->is_array() && rhs->type->is_array()
626 && (lhs_type->element_type() == rhs->type->element_type())
627 && (lhs_type->array_size() == 0)) {
628 return rhs;
629 }
630
631 /* Check for implicit conversion in GLSL 1.20 */
632 if (apply_implicit_conversion(lhs_type, rhs, state)) {
633 if (rhs->type == lhs_type)
634 return rhs;
635 }
636
637 return NULL;
638 }
639
640 ir_rvalue *
641 do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state,
642 ir_rvalue *lhs, ir_rvalue *rhs,
643 YYLTYPE lhs_loc)
644 {
645 void *ctx = state;
646 bool error_emitted = (lhs->type->is_error() || rhs->type->is_error());
647
648 if (!error_emitted) {
649 if (lhs->variable_referenced() != NULL
650 && lhs->variable_referenced()->read_only) {
651 _mesa_glsl_error(&lhs_loc, state,
652 "assignment to read-only variable '%s'",
653 lhs->variable_referenced()->name);
654 error_emitted = true;
655
656 } else if (!lhs->is_lvalue()) {
657 _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment");
658 error_emitted = true;
659 }
660
661 if (state->es_shader && lhs->type->is_array()) {
662 _mesa_glsl_error(&lhs_loc, state, "whole array assignment is not "
663 "allowed in GLSL ES 1.00.");
664 error_emitted = true;
665 }
666 }
667
668 ir_rvalue *new_rhs = validate_assignment(state, lhs->type, rhs);
669 if (new_rhs == NULL) {
670 _mesa_glsl_error(& lhs_loc, state, "type mismatch");
671 } else {
672 rhs = new_rhs;
673
674 /* If the LHS array was not declared with a size, it takes it size from
675 * the RHS. If the LHS is an l-value and a whole array, it must be a
676 * dereference of a variable. Any other case would require that the LHS
677 * is either not an l-value or not a whole array.
678 */
679 if (lhs->type->array_size() == 0) {
680 ir_dereference *const d = lhs->as_dereference();
681
682 assert(d != NULL);
683
684 ir_variable *const var = d->variable_referenced();
685
686 assert(var != NULL);
687
688 if (var->max_array_access >= unsigned(rhs->type->array_size())) {
689 /* FINISHME: This should actually log the location of the RHS. */
690 _mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to "
691 "previous access",
692 var->max_array_access);
693 }
694
695 var->type = glsl_type::get_array_instance(lhs->type->element_type(),
696 rhs->type->array_size());
697 d->type = var->type;
698 }
699 }
700
701 /* Most callers of do_assignment (assign, add_assign, pre_inc/dec,
702 * but not post_inc) need the converted assigned value as an rvalue
703 * to handle things like:
704 *
705 * i = j += 1;
706 *
707 * So we always just store the computed value being assigned to a
708 * temporary and return a deref of that temporary. If the rvalue
709 * ends up not being used, the temp will get copy-propagated out.
710 */
711 ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp",
712 ir_var_temporary);
713 ir_dereference_variable *deref_var = new(ctx) ir_dereference_variable(var);
714 instructions->push_tail(var);
715 instructions->push_tail(new(ctx) ir_assignment(deref_var,
716 rhs,
717 NULL));
718 deref_var = new(ctx) ir_dereference_variable(var);
719
720 if (!error_emitted)
721 instructions->push_tail(new(ctx) ir_assignment(lhs, deref_var, NULL));
722
723 return new(ctx) ir_dereference_variable(var);
724 }
725
726 static ir_rvalue *
727 get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue)
728 {
729 void *ctx = ralloc_parent(lvalue);
730 ir_variable *var;
731
732 var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp",
733 ir_var_temporary);
734 instructions->push_tail(var);
735 var->mode = ir_var_auto;
736
737 instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
738 lvalue, NULL));
739
740 /* Once we've created this temporary, mark it read only so it's no
741 * longer considered an lvalue.
742 */
743 var->read_only = true;
744
745 return new(ctx) ir_dereference_variable(var);
746 }
747
748
749 ir_rvalue *
750 ast_node::hir(exec_list *instructions,
751 struct _mesa_glsl_parse_state *state)
752 {
753 (void) instructions;
754 (void) state;
755
756 return NULL;
757 }
758
759 static void
760 mark_whole_array_access(ir_rvalue *access)
761 {
762 ir_dereference_variable *deref = access->as_dereference_variable();
763
764 if (deref) {
765 deref->var->max_array_access = deref->type->length - 1;
766 }
767 }
768
769 static ir_rvalue *
770 do_comparison(void *mem_ctx, int operation, ir_rvalue *op0, ir_rvalue *op1)
771 {
772 int join_op;
773 ir_rvalue *cmp = NULL;
774
775 if (operation == ir_binop_all_equal)
776 join_op = ir_binop_logic_and;
777 else
778 join_op = ir_binop_logic_or;
779
780 switch (op0->type->base_type) {
781 case GLSL_TYPE_FLOAT:
782 case GLSL_TYPE_UINT:
783 case GLSL_TYPE_INT:
784 case GLSL_TYPE_BOOL:
785 return new(mem_ctx) ir_expression(operation, op0, op1);
786
787 case GLSL_TYPE_ARRAY: {
788 for (unsigned int i = 0; i < op0->type->length; i++) {
789 ir_rvalue *e0, *e1, *result;
790
791 e0 = new(mem_ctx) ir_dereference_array(op0->clone(mem_ctx, NULL),
792 new(mem_ctx) ir_constant(i));
793 e1 = new(mem_ctx) ir_dereference_array(op1->clone(mem_ctx, NULL),
794 new(mem_ctx) ir_constant(i));
795 result = do_comparison(mem_ctx, operation, e0, e1);
796
797 if (cmp) {
798 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
799 } else {
800 cmp = result;
801 }
802 }
803
804 mark_whole_array_access(op0);
805 mark_whole_array_access(op1);
806 break;
807 }
808
809 case GLSL_TYPE_STRUCT: {
810 for (unsigned int i = 0; i < op0->type->length; i++) {
811 ir_rvalue *e0, *e1, *result;
812 const char *field_name = op0->type->fields.structure[i].name;
813
814 e0 = new(mem_ctx) ir_dereference_record(op0->clone(mem_ctx, NULL),
815 field_name);
816 e1 = new(mem_ctx) ir_dereference_record(op1->clone(mem_ctx, NULL),
817 field_name);
818 result = do_comparison(mem_ctx, operation, e0, e1);
819
820 if (cmp) {
821 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
822 } else {
823 cmp = result;
824 }
825 }
826 break;
827 }
828
829 case GLSL_TYPE_ERROR:
830 case GLSL_TYPE_VOID:
831 case GLSL_TYPE_SAMPLER:
832 /* I assume a comparison of a struct containing a sampler just
833 * ignores the sampler present in the type.
834 */
835 break;
836
837 default:
838 assert(!"Should not get here.");
839 break;
840 }
841
842 if (cmp == NULL)
843 cmp = new(mem_ctx) ir_constant(true);
844
845 return cmp;
846 }
847
848 ir_rvalue *
849 ast_expression::hir(exec_list *instructions,
850 struct _mesa_glsl_parse_state *state)
851 {
852 void *ctx = state;
853 static const int operations[AST_NUM_OPERATORS] = {
854 -1, /* ast_assign doesn't convert to ir_expression. */
855 -1, /* ast_plus doesn't convert to ir_expression. */
856 ir_unop_neg,
857 ir_binop_add,
858 ir_binop_sub,
859 ir_binop_mul,
860 ir_binop_div,
861 ir_binop_mod,
862 ir_binop_lshift,
863 ir_binop_rshift,
864 ir_binop_less,
865 ir_binop_greater,
866 ir_binop_lequal,
867 ir_binop_gequal,
868 ir_binop_all_equal,
869 ir_binop_any_nequal,
870 ir_binop_bit_and,
871 ir_binop_bit_xor,
872 ir_binop_bit_or,
873 ir_unop_bit_not,
874 ir_binop_logic_and,
875 ir_binop_logic_xor,
876 ir_binop_logic_or,
877 ir_unop_logic_not,
878
879 /* Note: The following block of expression types actually convert
880 * to multiple IR instructions.
881 */
882 ir_binop_mul, /* ast_mul_assign */
883 ir_binop_div, /* ast_div_assign */
884 ir_binop_mod, /* ast_mod_assign */
885 ir_binop_add, /* ast_add_assign */
886 ir_binop_sub, /* ast_sub_assign */
887 ir_binop_lshift, /* ast_ls_assign */
888 ir_binop_rshift, /* ast_rs_assign */
889 ir_binop_bit_and, /* ast_and_assign */
890 ir_binop_bit_xor, /* ast_xor_assign */
891 ir_binop_bit_or, /* ast_or_assign */
892
893 -1, /* ast_conditional doesn't convert to ir_expression. */
894 ir_binop_add, /* ast_pre_inc. */
895 ir_binop_sub, /* ast_pre_dec. */
896 ir_binop_add, /* ast_post_inc. */
897 ir_binop_sub, /* ast_post_dec. */
898 -1, /* ast_field_selection doesn't conv to ir_expression. */
899 -1, /* ast_array_index doesn't convert to ir_expression. */
900 -1, /* ast_function_call doesn't conv to ir_expression. */
901 -1, /* ast_identifier doesn't convert to ir_expression. */
902 -1, /* ast_int_constant doesn't convert to ir_expression. */
903 -1, /* ast_uint_constant doesn't conv to ir_expression. */
904 -1, /* ast_float_constant doesn't conv to ir_expression. */
905 -1, /* ast_bool_constant doesn't conv to ir_expression. */
906 -1, /* ast_sequence doesn't convert to ir_expression. */
907 };
908 ir_rvalue *result = NULL;
909 ir_rvalue *op[3];
910 const struct glsl_type *type = glsl_type::error_type;
911 bool error_emitted = false;
912 YYLTYPE loc;
913
914 loc = this->get_location();
915
916 switch (this->oper) {
917 case ast_assign: {
918 op[0] = this->subexpressions[0]->hir(instructions, state);
919 op[1] = this->subexpressions[1]->hir(instructions, state);
920
921 result = do_assignment(instructions, state, op[0], op[1],
922 this->subexpressions[0]->get_location());
923 error_emitted = result->type->is_error();
924 type = result->type;
925 break;
926 }
927
928 case ast_plus:
929 op[0] = this->subexpressions[0]->hir(instructions, state);
930
931 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
932
933 error_emitted = type->is_error();
934
935 result = op[0];
936 break;
937
938 case ast_neg:
939 op[0] = this->subexpressions[0]->hir(instructions, state);
940
941 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
942
943 error_emitted = type->is_error();
944
945 result = new(ctx) ir_expression(operations[this->oper], type,
946 op[0], NULL);
947 break;
948
949 case ast_add:
950 case ast_sub:
951 case ast_mul:
952 case ast_div:
953 op[0] = this->subexpressions[0]->hir(instructions, state);
954 op[1] = this->subexpressions[1]->hir(instructions, state);
955
956 type = arithmetic_result_type(op[0], op[1],
957 (this->oper == ast_mul),
958 state, & loc);
959 error_emitted = type->is_error();
960
961 result = new(ctx) ir_expression(operations[this->oper], type,
962 op[0], op[1]);
963 break;
964
965 case ast_mod:
966 op[0] = this->subexpressions[0]->hir(instructions, state);
967 op[1] = this->subexpressions[1]->hir(instructions, state);
968
969 type = modulus_result_type(op[0]->type, op[1]->type, state, & loc);
970
971 assert(operations[this->oper] == ir_binop_mod);
972
973 result = new(ctx) ir_expression(operations[this->oper], type,
974 op[0], op[1]);
975 error_emitted = type->is_error();
976 break;
977
978 case ast_lshift:
979 case ast_rshift:
980 if (state->language_version < 130) {
981 _mesa_glsl_error(&loc, state, "operator %s requires GLSL 1.30",
982 operator_string(this->oper));
983 error_emitted = true;
984 }
985
986 op[0] = this->subexpressions[0]->hir(instructions, state);
987 op[1] = this->subexpressions[1]->hir(instructions, state);
988 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
989 &loc);
990 result = new(ctx) ir_expression(operations[this->oper], type,
991 op[0], op[1]);
992 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
993 break;
994
995 case ast_less:
996 case ast_greater:
997 case ast_lequal:
998 case ast_gequal:
999 op[0] = this->subexpressions[0]->hir(instructions, state);
1000 op[1] = this->subexpressions[1]->hir(instructions, state);
1001
1002 type = relational_result_type(op[0], op[1], state, & loc);
1003
1004 /* The relational operators must either generate an error or result
1005 * in a scalar boolean. See page 57 of the GLSL 1.50 spec.
1006 */
1007 assert(type->is_error()
1008 || ((type->base_type == GLSL_TYPE_BOOL)
1009 && type->is_scalar()));
1010
1011 result = new(ctx) ir_expression(operations[this->oper], type,
1012 op[0], op[1]);
1013 error_emitted = type->is_error();
1014 break;
1015
1016 case ast_nequal:
1017 case ast_equal:
1018 op[0] = this->subexpressions[0]->hir(instructions, state);
1019 op[1] = this->subexpressions[1]->hir(instructions, state);
1020
1021 /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
1022 *
1023 * "The equality operators equal (==), and not equal (!=)
1024 * operate on all types. They result in a scalar Boolean. If
1025 * the operand types do not match, then there must be a
1026 * conversion from Section 4.1.10 "Implicit Conversions"
1027 * applied to one operand that can make them match, in which
1028 * case this conversion is done."
1029 */
1030 if ((!apply_implicit_conversion(op[0]->type, op[1], state)
1031 && !apply_implicit_conversion(op[1]->type, op[0], state))
1032 || (op[0]->type != op[1]->type)) {
1033 _mesa_glsl_error(& loc, state, "operands of `%s' must have the same "
1034 "type", (this->oper == ast_equal) ? "==" : "!=");
1035 error_emitted = true;
1036 } else if ((state->language_version <= 110)
1037 && (op[0]->type->is_array() || op[1]->type->is_array())) {
1038 _mesa_glsl_error(& loc, state, "array comparisons forbidden in "
1039 "GLSL 1.10");
1040 error_emitted = true;
1041 }
1042
1043 result = do_comparison(ctx, operations[this->oper], op[0], op[1]);
1044 type = glsl_type::bool_type;
1045
1046 assert(error_emitted || (result->type == glsl_type::bool_type));
1047 break;
1048
1049 case ast_bit_and:
1050 case ast_bit_xor:
1051 case ast_bit_or:
1052 op[0] = this->subexpressions[0]->hir(instructions, state);
1053 op[1] = this->subexpressions[1]->hir(instructions, state);
1054 type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
1055 state, &loc);
1056 result = new(ctx) ir_expression(operations[this->oper], type,
1057 op[0], op[1]);
1058 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1059 break;
1060
1061 case ast_bit_not:
1062 op[0] = this->subexpressions[0]->hir(instructions, state);
1063
1064 if (state->language_version < 130) {
1065 _mesa_glsl_error(&loc, state, "bit-wise operations require GLSL 1.30");
1066 error_emitted = true;
1067 }
1068
1069 if (!op[0]->type->is_integer()) {
1070 _mesa_glsl_error(&loc, state, "operand of `~' must be an integer");
1071 error_emitted = true;
1072 }
1073
1074 type = op[0]->type;
1075 result = new(ctx) ir_expression(ir_unop_bit_not, type, op[0], NULL);
1076 break;
1077
1078 case ast_logic_and: {
1079 op[0] = this->subexpressions[0]->hir(instructions, state);
1080
1081 if (!op[0]->type->is_boolean() || !op[0]->type->is_scalar()) {
1082 YYLTYPE loc = this->subexpressions[0]->get_location();
1083
1084 _mesa_glsl_error(& loc, state, "LHS of `%s' must be scalar boolean",
1085 operator_string(this->oper));
1086 error_emitted = true;
1087 }
1088
1089 ir_constant *op0_const = op[0]->constant_expression_value();
1090 if (op0_const) {
1091 if (op0_const->value.b[0]) {
1092 op[1] = this->subexpressions[1]->hir(instructions, state);
1093
1094 if (!op[1]->type->is_boolean() || !op[1]->type->is_scalar()) {
1095 YYLTYPE loc = this->subexpressions[1]->get_location();
1096
1097 _mesa_glsl_error(& loc, state,
1098 "RHS of `%s' must be scalar boolean",
1099 operator_string(this->oper));
1100 error_emitted = true;
1101 }
1102 result = op[1];
1103 } else {
1104 result = op0_const;
1105 }
1106 type = glsl_type::bool_type;
1107 } else {
1108 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1109 "and_tmp",
1110 ir_var_temporary);
1111 instructions->push_tail(tmp);
1112
1113 ir_if *const stmt = new(ctx) ir_if(op[0]);
1114 instructions->push_tail(stmt);
1115
1116 op[1] = this->subexpressions[1]->hir(&stmt->then_instructions, state);
1117
1118 if (!op[1]->type->is_boolean() || !op[1]->type->is_scalar()) {
1119 YYLTYPE loc = this->subexpressions[1]->get_location();
1120
1121 _mesa_glsl_error(& loc, state,
1122 "RHS of `%s' must be scalar boolean",
1123 operator_string(this->oper));
1124 error_emitted = true;
1125 }
1126
1127 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1128 ir_assignment *const then_assign =
1129 new(ctx) ir_assignment(then_deref, op[1], NULL);
1130 stmt->then_instructions.push_tail(then_assign);
1131
1132 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1133 ir_assignment *const else_assign =
1134 new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false), NULL);
1135 stmt->else_instructions.push_tail(else_assign);
1136
1137 result = new(ctx) ir_dereference_variable(tmp);
1138 type = tmp->type;
1139 }
1140 break;
1141 }
1142
1143 case ast_logic_or: {
1144 op[0] = this->subexpressions[0]->hir(instructions, state);
1145
1146 if (!op[0]->type->is_boolean() || !op[0]->type->is_scalar()) {
1147 YYLTYPE loc = this->subexpressions[0]->get_location();
1148
1149 _mesa_glsl_error(& loc, state, "LHS of `%s' must be scalar boolean",
1150 operator_string(this->oper));
1151 error_emitted = true;
1152 }
1153
1154 ir_constant *op0_const = op[0]->constant_expression_value();
1155 if (op0_const) {
1156 if (op0_const->value.b[0]) {
1157 result = op0_const;
1158 } else {
1159 op[1] = this->subexpressions[1]->hir(instructions, state);
1160
1161 if (!op[1]->type->is_boolean() || !op[1]->type->is_scalar()) {
1162 YYLTYPE loc = this->subexpressions[1]->get_location();
1163
1164 _mesa_glsl_error(& loc, state,
1165 "RHS of `%s' must be scalar boolean",
1166 operator_string(this->oper));
1167 error_emitted = true;
1168 }
1169 result = op[1];
1170 }
1171 type = glsl_type::bool_type;
1172 } else {
1173 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1174 "or_tmp",
1175 ir_var_temporary);
1176 instructions->push_tail(tmp);
1177
1178 ir_if *const stmt = new(ctx) ir_if(op[0]);
1179 instructions->push_tail(stmt);
1180
1181 op[1] = this->subexpressions[1]->hir(&stmt->else_instructions, state);
1182
1183 if (!op[1]->type->is_boolean() || !op[1]->type->is_scalar()) {
1184 YYLTYPE loc = this->subexpressions[1]->get_location();
1185
1186 _mesa_glsl_error(& loc, state, "RHS of `%s' must be scalar boolean",
1187 operator_string(this->oper));
1188 error_emitted = true;
1189 }
1190
1191 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1192 ir_assignment *const then_assign =
1193 new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true), NULL);
1194 stmt->then_instructions.push_tail(then_assign);
1195
1196 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1197 ir_assignment *const else_assign =
1198 new(ctx) ir_assignment(else_deref, op[1], NULL);
1199 stmt->else_instructions.push_tail(else_assign);
1200
1201 result = new(ctx) ir_dereference_variable(tmp);
1202 type = tmp->type;
1203 }
1204 break;
1205 }
1206
1207 case ast_logic_xor:
1208 op[0] = this->subexpressions[0]->hir(instructions, state);
1209 op[1] = this->subexpressions[1]->hir(instructions, state);
1210
1211
1212 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1213 op[0], op[1]);
1214 type = glsl_type::bool_type;
1215 break;
1216
1217 case ast_logic_not:
1218 op[0] = this->subexpressions[0]->hir(instructions, state);
1219
1220 if (!op[0]->type->is_boolean() || !op[0]->type->is_scalar()) {
1221 YYLTYPE loc = this->subexpressions[0]->get_location();
1222
1223 _mesa_glsl_error(& loc, state,
1224 "operand of `!' must be scalar boolean");
1225 error_emitted = true;
1226 }
1227
1228 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1229 op[0], NULL);
1230 type = glsl_type::bool_type;
1231 break;
1232
1233 case ast_mul_assign:
1234 case ast_div_assign:
1235 case ast_add_assign:
1236 case ast_sub_assign: {
1237 op[0] = this->subexpressions[0]->hir(instructions, state);
1238 op[1] = this->subexpressions[1]->hir(instructions, state);
1239
1240 type = arithmetic_result_type(op[0], op[1],
1241 (this->oper == ast_mul_assign),
1242 state, & loc);
1243
1244 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1245 op[0], op[1]);
1246
1247 result = do_assignment(instructions, state,
1248 op[0]->clone(ctx, NULL), temp_rhs,
1249 this->subexpressions[0]->get_location());
1250 type = result->type;
1251 error_emitted = (op[0]->type->is_error());
1252
1253 /* GLSL 1.10 does not allow array assignment. However, we don't have to
1254 * explicitly test for this because none of the binary expression
1255 * operators allow array operands either.
1256 */
1257
1258 break;
1259 }
1260
1261 case ast_mod_assign: {
1262 op[0] = this->subexpressions[0]->hir(instructions, state);
1263 op[1] = this->subexpressions[1]->hir(instructions, state);
1264
1265 type = modulus_result_type(op[0]->type, op[1]->type, state, & loc);
1266
1267 assert(operations[this->oper] == ir_binop_mod);
1268
1269 ir_rvalue *temp_rhs;
1270 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1271 op[0], op[1]);
1272
1273 result = do_assignment(instructions, state,
1274 op[0]->clone(ctx, NULL), temp_rhs,
1275 this->subexpressions[0]->get_location());
1276 type = result->type;
1277 error_emitted = type->is_error();
1278 break;
1279 }
1280
1281 case ast_ls_assign:
1282 case ast_rs_assign: {
1283 op[0] = this->subexpressions[0]->hir(instructions, state);
1284 op[1] = this->subexpressions[1]->hir(instructions, state);
1285 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1286 &loc);
1287 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1288 type, op[0], op[1]);
1289 result = do_assignment(instructions, state, op[0]->clone(ctx, NULL),
1290 temp_rhs,
1291 this->subexpressions[0]->get_location());
1292 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1293 break;
1294 }
1295
1296 case ast_and_assign:
1297 case ast_xor_assign:
1298 case ast_or_assign: {
1299 op[0] = this->subexpressions[0]->hir(instructions, state);
1300 op[1] = this->subexpressions[1]->hir(instructions, state);
1301 type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
1302 state, &loc);
1303 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1304 type, op[0], op[1]);
1305 result = do_assignment(instructions, state, op[0]->clone(ctx, NULL),
1306 temp_rhs,
1307 this->subexpressions[0]->get_location());
1308 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1309 break;
1310 }
1311
1312 case ast_conditional: {
1313 op[0] = this->subexpressions[0]->hir(instructions, state);
1314
1315 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1316 *
1317 * "The ternary selection operator (?:). It operates on three
1318 * expressions (exp1 ? exp2 : exp3). This operator evaluates the
1319 * first expression, which must result in a scalar Boolean."
1320 */
1321 if (!op[0]->type->is_boolean() || !op[0]->type->is_scalar()) {
1322 YYLTYPE loc = this->subexpressions[0]->get_location();
1323
1324 _mesa_glsl_error(& loc, state, "?: condition must be scalar boolean");
1325 error_emitted = true;
1326 }
1327
1328 /* The :? operator is implemented by generating an anonymous temporary
1329 * followed by an if-statement. The last instruction in each branch of
1330 * the if-statement assigns a value to the anonymous temporary. This
1331 * temporary is the r-value of the expression.
1332 */
1333 exec_list then_instructions;
1334 exec_list else_instructions;
1335
1336 op[1] = this->subexpressions[1]->hir(&then_instructions, state);
1337 op[2] = this->subexpressions[2]->hir(&else_instructions, state);
1338
1339 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1340 *
1341 * "The second and third expressions can be any type, as
1342 * long their types match, or there is a conversion in
1343 * Section 4.1.10 "Implicit Conversions" that can be applied
1344 * to one of the expressions to make their types match. This
1345 * resulting matching type is the type of the entire
1346 * expression."
1347 */
1348 if ((!apply_implicit_conversion(op[1]->type, op[2], state)
1349 && !apply_implicit_conversion(op[2]->type, op[1], state))
1350 || (op[1]->type != op[2]->type)) {
1351 YYLTYPE loc = this->subexpressions[1]->get_location();
1352
1353 _mesa_glsl_error(& loc, state, "Second and third operands of ?: "
1354 "operator must have matching types.");
1355 error_emitted = true;
1356 type = glsl_type::error_type;
1357 } else {
1358 type = op[1]->type;
1359 }
1360
1361 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1362 *
1363 * "The second and third expressions must be the same type, but can
1364 * be of any type other than an array."
1365 */
1366 if ((state->language_version <= 110) && type->is_array()) {
1367 _mesa_glsl_error(& loc, state, "Second and third operands of ?: "
1368 "operator must not be arrays.");
1369 error_emitted = true;
1370 }
1371
1372 ir_constant *cond_val = op[0]->constant_expression_value();
1373 ir_constant *then_val = op[1]->constant_expression_value();
1374 ir_constant *else_val = op[2]->constant_expression_value();
1375
1376 if (then_instructions.is_empty()
1377 && else_instructions.is_empty()
1378 && (cond_val != NULL) && (then_val != NULL) && (else_val != NULL)) {
1379 result = (cond_val->value.b[0]) ? then_val : else_val;
1380 } else {
1381 ir_variable *const tmp =
1382 new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary);
1383 instructions->push_tail(tmp);
1384
1385 ir_if *const stmt = new(ctx) ir_if(op[0]);
1386 instructions->push_tail(stmt);
1387
1388 then_instructions.move_nodes_to(& stmt->then_instructions);
1389 ir_dereference *const then_deref =
1390 new(ctx) ir_dereference_variable(tmp);
1391 ir_assignment *const then_assign =
1392 new(ctx) ir_assignment(then_deref, op[1], NULL);
1393 stmt->then_instructions.push_tail(then_assign);
1394
1395 else_instructions.move_nodes_to(& stmt->else_instructions);
1396 ir_dereference *const else_deref =
1397 new(ctx) ir_dereference_variable(tmp);
1398 ir_assignment *const else_assign =
1399 new(ctx) ir_assignment(else_deref, op[2], NULL);
1400 stmt->else_instructions.push_tail(else_assign);
1401
1402 result = new(ctx) ir_dereference_variable(tmp);
1403 }
1404 break;
1405 }
1406
1407 case ast_pre_inc:
1408 case ast_pre_dec: {
1409 op[0] = this->subexpressions[0]->hir(instructions, state);
1410 if (op[0]->type->base_type == GLSL_TYPE_FLOAT)
1411 op[1] = new(ctx) ir_constant(1.0f);
1412 else
1413 op[1] = new(ctx) ir_constant(1);
1414
1415 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1416
1417 ir_rvalue *temp_rhs;
1418 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1419 op[0], op[1]);
1420
1421 result = do_assignment(instructions, state,
1422 op[0]->clone(ctx, NULL), temp_rhs,
1423 this->subexpressions[0]->get_location());
1424 type = result->type;
1425 error_emitted = op[0]->type->is_error();
1426 break;
1427 }
1428
1429 case ast_post_inc:
1430 case ast_post_dec: {
1431 op[0] = this->subexpressions[0]->hir(instructions, state);
1432 if (op[0]->type->base_type == GLSL_TYPE_FLOAT)
1433 op[1] = new(ctx) ir_constant(1.0f);
1434 else
1435 op[1] = new(ctx) ir_constant(1);
1436
1437 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1438
1439 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1440
1441 ir_rvalue *temp_rhs;
1442 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1443 op[0], op[1]);
1444
1445 /* Get a temporary of a copy of the lvalue before it's modified.
1446 * This may get thrown away later.
1447 */
1448 result = get_lvalue_copy(instructions, op[0]->clone(ctx, NULL));
1449
1450 (void)do_assignment(instructions, state,
1451 op[0]->clone(ctx, NULL), temp_rhs,
1452 this->subexpressions[0]->get_location());
1453
1454 type = result->type;
1455 error_emitted = op[0]->type->is_error();
1456 break;
1457 }
1458
1459 case ast_field_selection:
1460 result = _mesa_ast_field_selection_to_hir(this, instructions, state);
1461 type = result->type;
1462 break;
1463
1464 case ast_array_index: {
1465 YYLTYPE index_loc = subexpressions[1]->get_location();
1466
1467 op[0] = subexpressions[0]->hir(instructions, state);
1468 op[1] = subexpressions[1]->hir(instructions, state);
1469
1470 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1471
1472 ir_rvalue *const array = op[0];
1473
1474 result = new(ctx) ir_dereference_array(op[0], op[1]);
1475
1476 /* Do not use op[0] after this point. Use array.
1477 */
1478 op[0] = NULL;
1479
1480
1481 if (error_emitted)
1482 break;
1483
1484 if (!array->type->is_array()
1485 && !array->type->is_matrix()
1486 && !array->type->is_vector()) {
1487 _mesa_glsl_error(& index_loc, state,
1488 "cannot dereference non-array / non-matrix / "
1489 "non-vector");
1490 error_emitted = true;
1491 }
1492
1493 if (!op[1]->type->is_integer()) {
1494 _mesa_glsl_error(& index_loc, state,
1495 "array index must be integer type");
1496 error_emitted = true;
1497 } else if (!op[1]->type->is_scalar()) {
1498 _mesa_glsl_error(& index_loc, state,
1499 "array index must be scalar");
1500 error_emitted = true;
1501 }
1502
1503 /* If the array index is a constant expression and the array has a
1504 * declared size, ensure that the access is in-bounds. If the array
1505 * index is not a constant expression, ensure that the array has a
1506 * declared size.
1507 */
1508 ir_constant *const const_index = op[1]->constant_expression_value();
1509 if (const_index != NULL) {
1510 const int idx = const_index->value.i[0];
1511 const char *type_name;
1512 unsigned bound = 0;
1513
1514 if (array->type->is_matrix()) {
1515 type_name = "matrix";
1516 } else if (array->type->is_vector()) {
1517 type_name = "vector";
1518 } else {
1519 type_name = "array";
1520 }
1521
1522 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec:
1523 *
1524 * "It is illegal to declare an array with a size, and then
1525 * later (in the same shader) index the same array with an
1526 * integral constant expression greater than or equal to the
1527 * declared size. It is also illegal to index an array with a
1528 * negative constant expression."
1529 */
1530 if (array->type->is_matrix()) {
1531 if (array->type->row_type()->vector_elements <= idx) {
1532 bound = array->type->row_type()->vector_elements;
1533 }
1534 } else if (array->type->is_vector()) {
1535 if (array->type->vector_elements <= idx) {
1536 bound = array->type->vector_elements;
1537 }
1538 } else {
1539 if ((array->type->array_size() > 0)
1540 && (array->type->array_size() <= idx)) {
1541 bound = array->type->array_size();
1542 }
1543 }
1544
1545 if (bound > 0) {
1546 _mesa_glsl_error(& loc, state, "%s index must be < %u",
1547 type_name, bound);
1548 error_emitted = true;
1549 } else if (idx < 0) {
1550 _mesa_glsl_error(& loc, state, "%s index must be >= 0",
1551 type_name);
1552 error_emitted = true;
1553 }
1554
1555 if (array->type->is_array()) {
1556 /* If the array is a variable dereference, it dereferences the
1557 * whole array, by definition. Use this to get the variable.
1558 *
1559 * FINISHME: Should some methods for getting / setting / testing
1560 * FINISHME: array access limits be added to ir_dereference?
1561 */
1562 ir_variable *const v = array->whole_variable_referenced();
1563 if ((v != NULL) && (unsigned(idx) > v->max_array_access))
1564 v->max_array_access = idx;
1565 }
1566 } else if (array->type->array_size() == 0) {
1567 _mesa_glsl_error(&loc, state, "unsized array index must be constant");
1568 } else {
1569 if (array->type->is_array()) {
1570 /* whole_variable_referenced can return NULL if the array is a
1571 * member of a structure. In this case it is safe to not update
1572 * the max_array_access field because it is never used for fields
1573 * of structures.
1574 */
1575 ir_variable *v = array->whole_variable_referenced();
1576 if (v != NULL)
1577 v->max_array_access = array->type->array_size();
1578 }
1579 }
1580
1581 /* From page 23 (29 of the PDF) of the GLSL 1.30 spec:
1582 *
1583 * "Samplers aggregated into arrays within a shader (using square
1584 * brackets [ ]) can only be indexed with integral constant
1585 * expressions [...]."
1586 *
1587 * This restriction was added in GLSL 1.30. Shaders using earlier version
1588 * of the language should not be rejected by the compiler front-end for
1589 * using this construct. This allows useful things such as using a loop
1590 * counter as the index to an array of samplers. If the loop in unrolled,
1591 * the code should compile correctly. Instead, emit a warning.
1592 */
1593 if (array->type->is_array() &&
1594 array->type->element_type()->is_sampler() &&
1595 const_index == NULL) {
1596
1597 if (state->language_version == 100) {
1598 _mesa_glsl_warning(&loc, state,
1599 "sampler arrays indexed with non-constant "
1600 "expressions is optional in GLSL ES 1.00");
1601 } else if (state->language_version < 130) {
1602 _mesa_glsl_warning(&loc, state,
1603 "sampler arrays indexed with non-constant "
1604 "expressions is forbidden in GLSL 1.30 and "
1605 "later");
1606 } else {
1607 _mesa_glsl_error(&loc, state,
1608 "sampler arrays indexed with non-constant "
1609 "expressions is forbidden in GLSL 1.30 and "
1610 "later");
1611 error_emitted = true;
1612 }
1613 }
1614
1615 if (error_emitted)
1616 result->type = glsl_type::error_type;
1617
1618 type = result->type;
1619 break;
1620 }
1621
1622 case ast_function_call:
1623 /* Should *NEVER* get here. ast_function_call should always be handled
1624 * by ast_function_expression::hir.
1625 */
1626 assert(0);
1627 break;
1628
1629 case ast_identifier: {
1630 /* ast_identifier can appear several places in a full abstract syntax
1631 * tree. This particular use must be at location specified in the grammar
1632 * as 'variable_identifier'.
1633 */
1634 ir_variable *var =
1635 state->symbols->get_variable(this->primary_expression.identifier);
1636
1637 result = new(ctx) ir_dereference_variable(var);
1638
1639 if (var != NULL) {
1640 var->used = true;
1641 type = result->type;
1642 } else {
1643 _mesa_glsl_error(& loc, state, "`%s' undeclared",
1644 this->primary_expression.identifier);
1645
1646 error_emitted = true;
1647 }
1648 break;
1649 }
1650
1651 case ast_int_constant:
1652 type = glsl_type::int_type;
1653 result = new(ctx) ir_constant(this->primary_expression.int_constant);
1654 break;
1655
1656 case ast_uint_constant:
1657 type = glsl_type::uint_type;
1658 result = new(ctx) ir_constant(this->primary_expression.uint_constant);
1659 break;
1660
1661 case ast_float_constant:
1662 type = glsl_type::float_type;
1663 result = new(ctx) ir_constant(this->primary_expression.float_constant);
1664 break;
1665
1666 case ast_bool_constant:
1667 type = glsl_type::bool_type;
1668 result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant));
1669 break;
1670
1671 case ast_sequence: {
1672 /* It should not be possible to generate a sequence in the AST without
1673 * any expressions in it.
1674 */
1675 assert(!this->expressions.is_empty());
1676
1677 /* The r-value of a sequence is the last expression in the sequence. If
1678 * the other expressions in the sequence do not have side-effects (and
1679 * therefore add instructions to the instruction list), they get dropped
1680 * on the floor.
1681 */
1682 foreach_list_typed (ast_node, ast, link, &this->expressions)
1683 result = ast->hir(instructions, state);
1684
1685 type = result->type;
1686
1687 /* Any errors should have already been emitted in the loop above.
1688 */
1689 error_emitted = true;
1690 break;
1691 }
1692 }
1693
1694 if (type->is_error() && !error_emitted)
1695 _mesa_glsl_error(& loc, state, "type mismatch");
1696
1697 return result;
1698 }
1699
1700
1701 ir_rvalue *
1702 ast_expression_statement::hir(exec_list *instructions,
1703 struct _mesa_glsl_parse_state *state)
1704 {
1705 /* It is possible to have expression statements that don't have an
1706 * expression. This is the solitary semicolon:
1707 *
1708 * for (i = 0; i < 5; i++)
1709 * ;
1710 *
1711 * In this case the expression will be NULL. Test for NULL and don't do
1712 * anything in that case.
1713 */
1714 if (expression != NULL)
1715 expression->hir(instructions, state);
1716
1717 /* Statements do not have r-values.
1718 */
1719 return NULL;
1720 }
1721
1722
1723 ir_rvalue *
1724 ast_compound_statement::hir(exec_list *instructions,
1725 struct _mesa_glsl_parse_state *state)
1726 {
1727 if (new_scope)
1728 state->symbols->push_scope();
1729
1730 foreach_list_typed (ast_node, ast, link, &this->statements)
1731 ast->hir(instructions, state);
1732
1733 if (new_scope)
1734 state->symbols->pop_scope();
1735
1736 /* Compound statements do not have r-values.
1737 */
1738 return NULL;
1739 }
1740
1741
1742 static const glsl_type *
1743 process_array_type(YYLTYPE *loc, const glsl_type *base, ast_node *array_size,
1744 struct _mesa_glsl_parse_state *state)
1745 {
1746 unsigned length = 0;
1747
1748 /* FINISHME: Reject delcarations of multidimensional arrays. */
1749
1750 if (array_size != NULL) {
1751 exec_list dummy_instructions;
1752 ir_rvalue *const ir = array_size->hir(& dummy_instructions, state);
1753 YYLTYPE loc = array_size->get_location();
1754
1755 /* FINISHME: Verify that the grammar forbids side-effects in array
1756 * FINISHME: sizes. i.e., 'vec4 [x = 12] data'
1757 */
1758 assert(dummy_instructions.is_empty());
1759
1760 if (ir != NULL) {
1761 if (!ir->type->is_integer()) {
1762 _mesa_glsl_error(& loc, state, "array size must be integer type");
1763 } else if (!ir->type->is_scalar()) {
1764 _mesa_glsl_error(& loc, state, "array size must be scalar type");
1765 } else {
1766 ir_constant *const size = ir->constant_expression_value();
1767
1768 if (size == NULL) {
1769 _mesa_glsl_error(& loc, state, "array size must be a "
1770 "constant valued expression");
1771 } else if (size->value.i[0] <= 0) {
1772 _mesa_glsl_error(& loc, state, "array size must be > 0");
1773 } else {
1774 assert(size->type == ir->type);
1775 length = size->value.u[0];
1776 }
1777 }
1778 }
1779 } else if (state->es_shader) {
1780 /* Section 10.17 of the GLSL ES 1.00 specification states that unsized
1781 * array declarations have been removed from the language.
1782 */
1783 _mesa_glsl_error(loc, state, "unsized array declarations are not "
1784 "allowed in GLSL ES 1.00.");
1785 }
1786
1787 return glsl_type::get_array_instance(base, length);
1788 }
1789
1790
1791 const glsl_type *
1792 ast_type_specifier::glsl_type(const char **name,
1793 struct _mesa_glsl_parse_state *state) const
1794 {
1795 const struct glsl_type *type;
1796
1797 type = state->symbols->get_type(this->type_name);
1798 *name = this->type_name;
1799
1800 if (this->is_array) {
1801 YYLTYPE loc = this->get_location();
1802 type = process_array_type(&loc, type, this->array_size, state);
1803 }
1804
1805 return type;
1806 }
1807
1808
1809 static void
1810 apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
1811 ir_variable *var,
1812 struct _mesa_glsl_parse_state *state,
1813 YYLTYPE *loc)
1814 {
1815 if (qual->flags.q.invariant) {
1816 if (var->used) {
1817 _mesa_glsl_error(loc, state,
1818 "variable `%s' may not be redeclared "
1819 "`invariant' after being used",
1820 var->name);
1821 } else {
1822 var->invariant = 1;
1823 }
1824 }
1825
1826 if (qual->flags.q.constant || qual->flags.q.attribute
1827 || qual->flags.q.uniform
1828 || (qual->flags.q.varying && (state->target == fragment_shader)))
1829 var->read_only = 1;
1830
1831 if (qual->flags.q.centroid)
1832 var->centroid = 1;
1833
1834 if (qual->flags.q.attribute && state->target != vertex_shader) {
1835 var->type = glsl_type::error_type;
1836 _mesa_glsl_error(loc, state,
1837 "`attribute' variables may not be declared in the "
1838 "%s shader",
1839 _mesa_glsl_shader_target_name(state->target));
1840 }
1841
1842 /* From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
1843 *
1844 * "The varying qualifier can be used only with the data types
1845 * float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
1846 * these."
1847 */
1848 if (qual->flags.q.varying) {
1849 const glsl_type *non_array_type;
1850
1851 if (var->type && var->type->is_array())
1852 non_array_type = var->type->fields.array;
1853 else
1854 non_array_type = var->type;
1855
1856 if (non_array_type && non_array_type->base_type != GLSL_TYPE_FLOAT) {
1857 var->type = glsl_type::error_type;
1858 _mesa_glsl_error(loc, state,
1859 "varying variables must be of base type float");
1860 }
1861 }
1862
1863 /* If there is no qualifier that changes the mode of the variable, leave
1864 * the setting alone.
1865 */
1866 if (qual->flags.q.in && qual->flags.q.out)
1867 var->mode = ir_var_inout;
1868 else if (qual->flags.q.attribute || qual->flags.q.in
1869 || (qual->flags.q.varying && (state->target == fragment_shader)))
1870 var->mode = ir_var_in;
1871 else if (qual->flags.q.out
1872 || (qual->flags.q.varying && (state->target == vertex_shader)))
1873 var->mode = ir_var_out;
1874 else if (qual->flags.q.uniform)
1875 var->mode = ir_var_uniform;
1876
1877 if (state->all_invariant && (state->current_function == NULL)) {
1878 switch (state->target) {
1879 case vertex_shader:
1880 if (var->mode == ir_var_out)
1881 var->invariant = true;
1882 break;
1883 case geometry_shader:
1884 if ((var->mode == ir_var_in) || (var->mode == ir_var_out))
1885 var->invariant = true;
1886 break;
1887 case fragment_shader:
1888 if (var->mode == ir_var_in)
1889 var->invariant = true;
1890 break;
1891 }
1892 }
1893
1894 if (qual->flags.q.flat)
1895 var->interpolation = ir_var_flat;
1896 else if (qual->flags.q.noperspective)
1897 var->interpolation = ir_var_noperspective;
1898 else
1899 var->interpolation = ir_var_smooth;
1900
1901 var->pixel_center_integer = qual->flags.q.pixel_center_integer;
1902 var->origin_upper_left = qual->flags.q.origin_upper_left;
1903 if ((qual->flags.q.origin_upper_left || qual->flags.q.pixel_center_integer)
1904 && (strcmp(var->name, "gl_FragCoord") != 0)) {
1905 const char *const qual_string = (qual->flags.q.origin_upper_left)
1906 ? "origin_upper_left" : "pixel_center_integer";
1907
1908 _mesa_glsl_error(loc, state,
1909 "layout qualifier `%s' can only be applied to "
1910 "fragment shader input `gl_FragCoord'",
1911 qual_string);
1912 }
1913
1914 if (qual->flags.q.explicit_location) {
1915 const bool global_scope = (state->current_function == NULL);
1916 bool fail = false;
1917 const char *string = "";
1918
1919 /* In the vertex shader only shader inputs can be given explicit
1920 * locations.
1921 *
1922 * In the fragment shader only shader outputs can be given explicit
1923 * locations.
1924 */
1925 switch (state->target) {
1926 case vertex_shader:
1927 if (!global_scope || (var->mode != ir_var_in)) {
1928 fail = true;
1929 string = "input";
1930 }
1931 break;
1932
1933 case geometry_shader:
1934 _mesa_glsl_error(loc, state,
1935 "geometry shader variables cannot be given "
1936 "explicit locations\n");
1937 break;
1938
1939 case fragment_shader:
1940 if (!global_scope || (var->mode != ir_var_in)) {
1941 fail = true;
1942 string = "output";
1943 }
1944 break;
1945 };
1946
1947 if (fail) {
1948 _mesa_glsl_error(loc, state,
1949 "only %s shader %s variables can be given an "
1950 "explicit location\n",
1951 _mesa_glsl_shader_target_name(state->target),
1952 string);
1953 } else {
1954 var->explicit_location = true;
1955
1956 /* This bit of silliness is needed because invalid explicit locations
1957 * are supposed to be flagged during linking. Small negative values
1958 * biased by VERT_ATTRIB_GENERIC0 or FRAG_RESULT_DATA0 could alias
1959 * built-in values (e.g., -16+VERT_ATTRIB_GENERIC0 = VERT_ATTRIB_POS).
1960 * The linker needs to be able to differentiate these cases. This
1961 * ensures that negative values stay negative.
1962 */
1963 if (qual->location >= 0) {
1964 var->location = (state->target == vertex_shader)
1965 ? (qual->location + VERT_ATTRIB_GENERIC0)
1966 : (qual->location + FRAG_RESULT_DATA0);
1967 } else {
1968 var->location = qual->location;
1969 }
1970 }
1971 }
1972
1973 /* Does the declaration use the 'layout' keyword?
1974 */
1975 const bool uses_layout = qual->flags.q.pixel_center_integer
1976 || qual->flags.q.origin_upper_left
1977 || qual->flags.q.explicit_location;
1978
1979 /* Does the declaration use the deprecated 'attribute' or 'varying'
1980 * keywords?
1981 */
1982 const bool uses_deprecated_qualifier = qual->flags.q.attribute
1983 || qual->flags.q.varying;
1984
1985 /* Is the 'layout' keyword used with parameters that allow relaxed checking.
1986 * Many implementations of GL_ARB_fragment_coord_conventions_enable and some
1987 * implementations (only Mesa?) GL_ARB_explicit_attrib_location_enable
1988 * allowed the layout qualifier to be used with 'varying' and 'attribute'.
1989 * These extensions and all following extensions that add the 'layout'
1990 * keyword have been modified to require the use of 'in' or 'out'.
1991 *
1992 * The following extension do not allow the deprecated keywords:
1993 *
1994 * GL_AMD_conservative_depth
1995 * GL_ARB_gpu_shader5
1996 * GL_ARB_separate_shader_objects
1997 * GL_ARB_tesselation_shader
1998 * GL_ARB_transform_feedback3
1999 * GL_ARB_uniform_buffer_object
2000 *
2001 * It is unknown whether GL_EXT_shader_image_load_store or GL_NV_gpu_shader5
2002 * allow layout with the deprecated keywords.
2003 */
2004 const bool relaxed_layout_qualifier_checking =
2005 state->ARB_fragment_coord_conventions_enable;
2006
2007 if (uses_layout && uses_deprecated_qualifier) {
2008 if (relaxed_layout_qualifier_checking) {
2009 _mesa_glsl_warning(loc, state,
2010 "`layout' qualifier may not be used with "
2011 "`attribute' or `varying'");
2012 } else {
2013 _mesa_glsl_error(loc, state,
2014 "`layout' qualifier may not be used with "
2015 "`attribute' or `varying'");
2016 }
2017 }
2018
2019 /* Layout qualifiers for gl_FragDepth, which are enabled by extension
2020 * AMD_conservative_depth.
2021 */
2022 int depth_layout_count = qual->flags.q.depth_any
2023 + qual->flags.q.depth_greater
2024 + qual->flags.q.depth_less
2025 + qual->flags.q.depth_unchanged;
2026 if (depth_layout_count > 0
2027 && !state->AMD_conservative_depth_enable) {
2028 _mesa_glsl_error(loc, state,
2029 "extension GL_AMD_conservative_depth must be enabled "
2030 "to use depth layout qualifiers");
2031 } else if (depth_layout_count > 0
2032 && strcmp(var->name, "gl_FragDepth") != 0) {
2033 _mesa_glsl_error(loc, state,
2034 "depth layout qualifiers can be applied only to "
2035 "gl_FragDepth");
2036 } else if (depth_layout_count > 1
2037 && strcmp(var->name, "gl_FragDepth") == 0) {
2038 _mesa_glsl_error(loc, state,
2039 "at most one depth layout qualifier can be applied to "
2040 "gl_FragDepth");
2041 }
2042 if (qual->flags.q.depth_any)
2043 var->depth_layout = ir_depth_layout_any;
2044 else if (qual->flags.q.depth_greater)
2045 var->depth_layout = ir_depth_layout_greater;
2046 else if (qual->flags.q.depth_less)
2047 var->depth_layout = ir_depth_layout_less;
2048 else if (qual->flags.q.depth_unchanged)
2049 var->depth_layout = ir_depth_layout_unchanged;
2050 else
2051 var->depth_layout = ir_depth_layout_none;
2052
2053 if (var->type->is_array() && state->language_version != 110) {
2054 var->array_lvalue = true;
2055 }
2056 }
2057
2058 /**
2059 * Get the variable that is being redeclared by this declaration
2060 *
2061 * Semantic checks to verify the validity of the redeclaration are also
2062 * performed. If semantic checks fail, compilation error will be emitted via
2063 * \c _mesa_glsl_error, but a non-\c NULL pointer will still be returned.
2064 *
2065 * \returns
2066 * A pointer to an existing variable in the current scope if the declaration
2067 * is a redeclaration, \c NULL otherwise.
2068 */
2069 ir_variable *
2070 get_variable_being_redeclared(ir_variable *var, ast_declaration *decl,
2071 struct _mesa_glsl_parse_state *state)
2072 {
2073 /* Check if this declaration is actually a re-declaration, either to
2074 * resize an array or add qualifiers to an existing variable.
2075 *
2076 * This is allowed for variables in the current scope, or when at
2077 * global scope (for built-ins in the implicit outer scope).
2078 */
2079 ir_variable *earlier = state->symbols->get_variable(decl->identifier);
2080 if (earlier == NULL ||
2081 (state->current_function != NULL &&
2082 !state->symbols->name_declared_this_scope(decl->identifier))) {
2083 return NULL;
2084 }
2085
2086
2087 YYLTYPE loc = decl->get_location();
2088
2089 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
2090 *
2091 * "It is legal to declare an array without a size and then
2092 * later re-declare the same name as an array of the same
2093 * type and specify a size."
2094 */
2095 if ((earlier->type->array_size() == 0)
2096 && var->type->is_array()
2097 && (var->type->element_type() == earlier->type->element_type())) {
2098 /* FINISHME: This doesn't match the qualifiers on the two
2099 * FINISHME: declarations. It's not 100% clear whether this is
2100 * FINISHME: required or not.
2101 */
2102
2103 /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec:
2104 *
2105 * "The size [of gl_TexCoord] can be at most
2106 * gl_MaxTextureCoords."
2107 */
2108 const unsigned size = unsigned(var->type->array_size());
2109 if ((strcmp("gl_TexCoord", var->name) == 0)
2110 && (size > state->Const.MaxTextureCoords)) {
2111 _mesa_glsl_error(& loc, state, "`gl_TexCoord' array size cannot "
2112 "be larger than gl_MaxTextureCoords (%u)\n",
2113 state->Const.MaxTextureCoords);
2114 } else if ((size > 0) && (size <= earlier->max_array_access)) {
2115 _mesa_glsl_error(& loc, state, "array size must be > %u due to "
2116 "previous access",
2117 earlier->max_array_access);
2118 }
2119
2120 earlier->type = var->type;
2121 delete var;
2122 var = NULL;
2123 } else if (state->ARB_fragment_coord_conventions_enable
2124 && strcmp(var->name, "gl_FragCoord") == 0
2125 && earlier->type == var->type
2126 && earlier->mode == var->mode) {
2127 /* Allow redeclaration of gl_FragCoord for ARB_fcc layout
2128 * qualifiers.
2129 */
2130 earlier->origin_upper_left = var->origin_upper_left;
2131 earlier->pixel_center_integer = var->pixel_center_integer;
2132
2133 /* According to section 4.3.7 of the GLSL 1.30 spec,
2134 * the following built-in varaibles can be redeclared with an
2135 * interpolation qualifier:
2136 * * gl_FrontColor
2137 * * gl_BackColor
2138 * * gl_FrontSecondaryColor
2139 * * gl_BackSecondaryColor
2140 * * gl_Color
2141 * * gl_SecondaryColor
2142 */
2143 } else if (state->language_version >= 130
2144 && (strcmp(var->name, "gl_FrontColor") == 0
2145 || strcmp(var->name, "gl_BackColor") == 0
2146 || strcmp(var->name, "gl_FrontSecondaryColor") == 0
2147 || strcmp(var->name, "gl_BackSecondaryColor") == 0
2148 || strcmp(var->name, "gl_Color") == 0
2149 || strcmp(var->name, "gl_SecondaryColor") == 0)
2150 && earlier->type == var->type
2151 && earlier->mode == var->mode) {
2152 earlier->interpolation = var->interpolation;
2153
2154 /* Layout qualifiers for gl_FragDepth. */
2155 } else if (state->AMD_conservative_depth_enable
2156 && strcmp(var->name, "gl_FragDepth") == 0
2157 && earlier->type == var->type
2158 && earlier->mode == var->mode) {
2159
2160 /** From the AMD_conservative_depth spec:
2161 * Within any shader, the first redeclarations of gl_FragDepth
2162 * must appear before any use of gl_FragDepth.
2163 */
2164 if (earlier->used) {
2165 _mesa_glsl_error(&loc, state,
2166 "the first redeclaration of gl_FragDepth "
2167 "must appear before any use of gl_FragDepth");
2168 }
2169
2170 /* Prevent inconsistent redeclaration of depth layout qualifier. */
2171 if (earlier->depth_layout != ir_depth_layout_none
2172 && earlier->depth_layout != var->depth_layout) {
2173 _mesa_glsl_error(&loc, state,
2174 "gl_FragDepth: depth layout is declared here "
2175 "as '%s, but it was previously declared as "
2176 "'%s'",
2177 depth_layout_string(var->depth_layout),
2178 depth_layout_string(earlier->depth_layout));
2179 }
2180
2181 earlier->depth_layout = var->depth_layout;
2182
2183 } else {
2184 _mesa_glsl_error(&loc, state, "`%s' redeclared", decl->identifier);
2185 }
2186
2187 return earlier;
2188 }
2189
2190 ir_rvalue *
2191 ast_declarator_list::hir(exec_list *instructions,
2192 struct _mesa_glsl_parse_state *state)
2193 {
2194 void *ctx = state;
2195 const struct glsl_type *decl_type;
2196 const char *type_name = NULL;
2197 ir_rvalue *result = NULL;
2198 YYLTYPE loc = this->get_location();
2199
2200 /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec:
2201 *
2202 * "To ensure that a particular output variable is invariant, it is
2203 * necessary to use the invariant qualifier. It can either be used to
2204 * qualify a previously declared variable as being invariant
2205 *
2206 * invariant gl_Position; // make existing gl_Position be invariant"
2207 *
2208 * In these cases the parser will set the 'invariant' flag in the declarator
2209 * list, and the type will be NULL.
2210 */
2211 if (this->invariant) {
2212 assert(this->type == NULL);
2213
2214 if (state->current_function != NULL) {
2215 _mesa_glsl_error(& loc, state,
2216 "All uses of `invariant' keyword must be at global "
2217 "scope\n");
2218 }
2219
2220 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
2221 assert(!decl->is_array);
2222 assert(decl->array_size == NULL);
2223 assert(decl->initializer == NULL);
2224
2225 ir_variable *const earlier =
2226 state->symbols->get_variable(decl->identifier);
2227 if (earlier == NULL) {
2228 _mesa_glsl_error(& loc, state,
2229 "Undeclared variable `%s' cannot be marked "
2230 "invariant\n", decl->identifier);
2231 } else if ((state->target == vertex_shader)
2232 && (earlier->mode != ir_var_out)) {
2233 _mesa_glsl_error(& loc, state,
2234 "`%s' cannot be marked invariant, vertex shader "
2235 "outputs only\n", decl->identifier);
2236 } else if ((state->target == fragment_shader)
2237 && (earlier->mode != ir_var_in)) {
2238 _mesa_glsl_error(& loc, state,
2239 "`%s' cannot be marked invariant, fragment shader "
2240 "inputs only\n", decl->identifier);
2241 } else if (earlier->used) {
2242 _mesa_glsl_error(& loc, state,
2243 "variable `%s' may not be redeclared "
2244 "`invariant' after being used",
2245 earlier->name);
2246 } else {
2247 earlier->invariant = true;
2248 }
2249 }
2250
2251 /* Invariant redeclarations do not have r-values.
2252 */
2253 return NULL;
2254 }
2255
2256 assert(this->type != NULL);
2257 assert(!this->invariant);
2258
2259 /* The type specifier may contain a structure definition. Process that
2260 * before any of the variable declarations.
2261 */
2262 (void) this->type->specifier->hir(instructions, state);
2263
2264 decl_type = this->type->specifier->glsl_type(& type_name, state);
2265 if (this->declarations.is_empty()) {
2266 /* The only valid case where the declaration list can be empty is when
2267 * the declaration is setting the default precision of a built-in type
2268 * (e.g., 'precision highp vec4;').
2269 */
2270
2271 if (decl_type != NULL) {
2272 } else {
2273 _mesa_glsl_error(& loc, state, "incomplete declaration");
2274 }
2275 }
2276
2277 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
2278 const struct glsl_type *var_type;
2279 ir_variable *var;
2280
2281 /* FINISHME: Emit a warning if a variable declaration shadows a
2282 * FINISHME: declaration at a higher scope.
2283 */
2284
2285 if ((decl_type == NULL) || decl_type->is_void()) {
2286 if (type_name != NULL) {
2287 _mesa_glsl_error(& loc, state,
2288 "invalid type `%s' in declaration of `%s'",
2289 type_name, decl->identifier);
2290 } else {
2291 _mesa_glsl_error(& loc, state,
2292 "invalid type in declaration of `%s'",
2293 decl->identifier);
2294 }
2295 continue;
2296 }
2297
2298 if (decl->is_array) {
2299 var_type = process_array_type(&loc, decl_type, decl->array_size,
2300 state);
2301 } else {
2302 var_type = decl_type;
2303 }
2304
2305 var = new(ctx) ir_variable(var_type, decl->identifier, ir_var_auto);
2306
2307 /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
2308 *
2309 * "Global variables can only use the qualifiers const,
2310 * attribute, uni form, or varying. Only one may be
2311 * specified.
2312 *
2313 * Local variables can only use the qualifier const."
2314 *
2315 * This is relaxed in GLSL 1.30. It is also relaxed by any extension
2316 * that adds the 'layout' keyword.
2317 */
2318 if ((state->language_version < 130)
2319 && !state->ARB_explicit_attrib_location_enable
2320 && !state->ARB_fragment_coord_conventions_enable) {
2321 if (this->type->qualifier.flags.q.out) {
2322 _mesa_glsl_error(& loc, state,
2323 "`out' qualifier in declaration of `%s' "
2324 "only valid for function parameters in %s.",
2325 decl->identifier, state->version_string);
2326 }
2327 if (this->type->qualifier.flags.q.in) {
2328 _mesa_glsl_error(& loc, state,
2329 "`in' qualifier in declaration of `%s' "
2330 "only valid for function parameters in %s.",
2331 decl->identifier, state->version_string);
2332 }
2333 /* FINISHME: Test for other invalid qualifiers. */
2334 }
2335
2336 apply_type_qualifier_to_variable(& this->type->qualifier, var, state,
2337 & loc);
2338
2339 if (this->type->qualifier.flags.q.invariant) {
2340 if ((state->target == vertex_shader) && !(var->mode == ir_var_out ||
2341 var->mode == ir_var_inout)) {
2342 /* FINISHME: Note that this doesn't work for invariant on
2343 * a function signature outval
2344 */
2345 _mesa_glsl_error(& loc, state,
2346 "`%s' cannot be marked invariant, vertex shader "
2347 "outputs only\n", var->name);
2348 } else if ((state->target == fragment_shader) &&
2349 !(var->mode == ir_var_in || var->mode == ir_var_inout)) {
2350 /* FINISHME: Note that this doesn't work for invariant on
2351 * a function signature inval
2352 */
2353 _mesa_glsl_error(& loc, state,
2354 "`%s' cannot be marked invariant, fragment shader "
2355 "inputs only\n", var->name);
2356 }
2357 }
2358
2359 if (state->current_function != NULL) {
2360 const char *mode = NULL;
2361 const char *extra = "";
2362
2363 /* There is no need to check for 'inout' here because the parser will
2364 * only allow that in function parameter lists.
2365 */
2366 if (this->type->qualifier.flags.q.attribute) {
2367 mode = "attribute";
2368 } else if (this->type->qualifier.flags.q.uniform) {
2369 mode = "uniform";
2370 } else if (this->type->qualifier.flags.q.varying) {
2371 mode = "varying";
2372 } else if (this->type->qualifier.flags.q.in) {
2373 mode = "in";
2374 extra = " or in function parameter list";
2375 } else if (this->type->qualifier.flags.q.out) {
2376 mode = "out";
2377 extra = " or in function parameter list";
2378 }
2379
2380 if (mode) {
2381 _mesa_glsl_error(& loc, state,
2382 "%s variable `%s' must be declared at "
2383 "global scope%s",
2384 mode, var->name, extra);
2385 }
2386 } else if (var->mode == ir_var_in) {
2387 var->read_only = true;
2388
2389 if (state->target == vertex_shader) {
2390 bool error_emitted = false;
2391
2392 /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
2393 *
2394 * "Vertex shader inputs can only be float, floating-point
2395 * vectors, matrices, signed and unsigned integers and integer
2396 * vectors. Vertex shader inputs can also form arrays of these
2397 * types, but not structures."
2398 *
2399 * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
2400 *
2401 * "Vertex shader inputs can only be float, floating-point
2402 * vectors, matrices, signed and unsigned integers and integer
2403 * vectors. They cannot be arrays or structures."
2404 *
2405 * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
2406 *
2407 * "The attribute qualifier can be used only with float,
2408 * floating-point vectors, and matrices. Attribute variables
2409 * cannot be declared as arrays or structures."
2410 */
2411 const glsl_type *check_type = var->type->is_array()
2412 ? var->type->fields.array : var->type;
2413
2414 switch (check_type->base_type) {
2415 case GLSL_TYPE_FLOAT:
2416 break;
2417 case GLSL_TYPE_UINT:
2418 case GLSL_TYPE_INT:
2419 if (state->language_version > 120)
2420 break;
2421 /* FALLTHROUGH */
2422 default:
2423 _mesa_glsl_error(& loc, state,
2424 "vertex shader input / attribute cannot have "
2425 "type %s`%s'",
2426 var->type->is_array() ? "array of " : "",
2427 check_type->name);
2428 error_emitted = true;
2429 }
2430
2431 if (!error_emitted && (state->language_version <= 130)
2432 && var->type->is_array()) {
2433 _mesa_glsl_error(& loc, state,
2434 "vertex shader input / attribute cannot have "
2435 "array type");
2436 error_emitted = true;
2437 }
2438 }
2439 }
2440
2441 /* Integer vertex outputs must be qualified with 'flat'.
2442 *
2443 * From section 4.3.6 of the GLSL 1.30 spec:
2444 * "If a vertex output is a signed or unsigned integer or integer
2445 * vector, then it must be qualified with the interpolation qualifier
2446 * flat."
2447 */
2448 if (state->language_version >= 130
2449 && state->target == vertex_shader
2450 && state->current_function == NULL
2451 && var->type->is_integer()
2452 && var->mode == ir_var_out
2453 && var->interpolation != ir_var_flat) {
2454
2455 _mesa_glsl_error(&loc, state, "If a vertex output is an integer, "
2456 "then it must be qualified with 'flat'");
2457 }
2458
2459
2460 /* Interpolation qualifiers cannot be applied to 'centroid' and
2461 * 'centroid varying'.
2462 *
2463 * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
2464 * "interpolation qualifiers may only precede the qualifiers in,
2465 * centroid in, out, or centroid out in a declaration. They do not apply
2466 * to the deprecated storage qualifiers varying or centroid varying."
2467 */
2468 if (state->language_version >= 130
2469 && this->type->qualifier.has_interpolation()
2470 && this->type->qualifier.flags.q.varying) {
2471
2472 const char *i = this->type->qualifier.interpolation_string();
2473 assert(i != NULL);
2474 const char *s;
2475 if (this->type->qualifier.flags.q.centroid)
2476 s = "centroid varying";
2477 else
2478 s = "varying";
2479
2480 _mesa_glsl_error(&loc, state,
2481 "qualifier '%s' cannot be applied to the "
2482 "deprecated storage qualifier '%s'", i, s);
2483 }
2484
2485
2486 /* Interpolation qualifiers can only apply to vertex shader outputs and
2487 * fragment shader inputs.
2488 *
2489 * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
2490 * "Outputs from a vertex shader (out) and inputs to a fragment
2491 * shader (in) can be further qualified with one or more of these
2492 * interpolation qualifiers"
2493 */
2494 if (state->language_version >= 130
2495 && this->type->qualifier.has_interpolation()) {
2496
2497 const char *i = this->type->qualifier.interpolation_string();
2498 assert(i != NULL);
2499
2500 switch (state->target) {
2501 case vertex_shader:
2502 if (this->type->qualifier.flags.q.in) {
2503 _mesa_glsl_error(&loc, state,
2504 "qualifier '%s' cannot be applied to vertex "
2505 "shader inputs", i);
2506 }
2507 break;
2508 case fragment_shader:
2509 if (this->type->qualifier.flags.q.out) {
2510 _mesa_glsl_error(&loc, state,
2511 "qualifier '%s' cannot be applied to fragment "
2512 "shader outputs", i);
2513 }
2514 break;
2515 default:
2516 assert(0);
2517 }
2518 }
2519
2520
2521 /* From section 4.3.4 of the GLSL 1.30 spec:
2522 * "It is an error to use centroid in in a vertex shader."
2523 */
2524 if (state->language_version >= 130
2525 && this->type->qualifier.flags.q.centroid
2526 && this->type->qualifier.flags.q.in
2527 && state->target == vertex_shader) {
2528
2529 _mesa_glsl_error(&loc, state,
2530 "'centroid in' cannot be used in a vertex shader");
2531 }
2532
2533
2534 /* Precision qualifiers exists only in GLSL versions 1.00 and >= 1.30.
2535 */
2536 if (this->type->specifier->precision != ast_precision_none
2537 && state->language_version != 100
2538 && state->language_version < 130) {
2539
2540 _mesa_glsl_error(&loc, state,
2541 "precision qualifiers are supported only in GLSL ES "
2542 "1.00, and GLSL 1.30 and later");
2543 }
2544
2545
2546 /* Precision qualifiers only apply to floating point and integer types.
2547 *
2548 * From section 4.5.2 of the GLSL 1.30 spec:
2549 * "Any floating point or any integer declaration can have the type
2550 * preceded by one of these precision qualifiers [...] Literal
2551 * constants do not have precision qualifiers. Neither do Boolean
2552 * variables.
2553 */
2554 if (this->type->specifier->precision != ast_precision_none
2555 && !var->type->is_float()
2556 && !var->type->is_integer()
2557 && !(var->type->is_array()
2558 && (var->type->fields.array->is_float()
2559 || var->type->fields.array->is_integer()))) {
2560
2561 _mesa_glsl_error(&loc, state,
2562 "precision qualifiers apply only to floating point "
2563 "and integer types");
2564 }
2565
2566 /* Process the initializer and add its instructions to a temporary
2567 * list. This list will be added to the instruction stream (below) after
2568 * the declaration is added. This is done because in some cases (such as
2569 * redeclarations) the declaration may not actually be added to the
2570 * instruction stream.
2571 */
2572 exec_list initializer_instructions;
2573 if (decl->initializer != NULL) {
2574 YYLTYPE initializer_loc = decl->initializer->get_location();
2575
2576 /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
2577 *
2578 * "All uniform variables are read-only and are initialized either
2579 * directly by an application via API commands, or indirectly by
2580 * OpenGL."
2581 */
2582 if ((state->language_version <= 110)
2583 && (var->mode == ir_var_uniform)) {
2584 _mesa_glsl_error(& initializer_loc, state,
2585 "cannot initialize uniforms in GLSL 1.10");
2586 }
2587
2588 if (var->type->is_sampler()) {
2589 _mesa_glsl_error(& initializer_loc, state,
2590 "cannot initialize samplers");
2591 }
2592
2593 if ((var->mode == ir_var_in) && (state->current_function == NULL)) {
2594 _mesa_glsl_error(& initializer_loc, state,
2595 "cannot initialize %s shader input / %s",
2596 _mesa_glsl_shader_target_name(state->target),
2597 (state->target == vertex_shader)
2598 ? "attribute" : "varying");
2599 }
2600
2601 ir_dereference *const lhs = new(ctx) ir_dereference_variable(var);
2602 ir_rvalue *rhs = decl->initializer->hir(&initializer_instructions,
2603 state);
2604
2605 /* Calculate the constant value if this is a const or uniform
2606 * declaration.
2607 */
2608 if (this->type->qualifier.flags.q.constant
2609 || this->type->qualifier.flags.q.uniform) {
2610 ir_rvalue *new_rhs = validate_assignment(state, var->type, rhs);
2611 if (new_rhs != NULL) {
2612 rhs = new_rhs;
2613
2614 ir_constant *constant_value = rhs->constant_expression_value();
2615 if (!constant_value) {
2616 _mesa_glsl_error(& initializer_loc, state,
2617 "initializer of %s variable `%s' must be a "
2618 "constant expression",
2619 (this->type->qualifier.flags.q.constant)
2620 ? "const" : "uniform",
2621 decl->identifier);
2622 if (var->type->is_numeric()) {
2623 /* Reduce cascading errors. */
2624 var->constant_value = ir_constant::zero(ctx, var->type);
2625 }
2626 } else {
2627 rhs = constant_value;
2628 var->constant_value = constant_value;
2629 }
2630 } else {
2631 _mesa_glsl_error(&initializer_loc, state,
2632 "initializer of type %s cannot be assigned to "
2633 "variable of type %s",
2634 rhs->type->name, var->type->name);
2635 if (var->type->is_numeric()) {
2636 /* Reduce cascading errors. */
2637 var->constant_value = ir_constant::zero(ctx, var->type);
2638 }
2639 }
2640 }
2641
2642 if (rhs && !rhs->type->is_error()) {
2643 bool temp = var->read_only;
2644 if (this->type->qualifier.flags.q.constant)
2645 var->read_only = false;
2646
2647 /* Never emit code to initialize a uniform.
2648 */
2649 const glsl_type *initializer_type;
2650 if (!this->type->qualifier.flags.q.uniform) {
2651 result = do_assignment(&initializer_instructions, state,
2652 lhs, rhs,
2653 this->get_location());
2654 initializer_type = result->type;
2655 } else
2656 initializer_type = rhs->type;
2657
2658 /* If the declared variable is an unsized array, it must inherrit
2659 * its full type from the initializer. A declaration such as
2660 *
2661 * uniform float a[] = float[](1.0, 2.0, 3.0, 3.0);
2662 *
2663 * becomes
2664 *
2665 * uniform float a[4] = float[](1.0, 2.0, 3.0, 3.0);
2666 *
2667 * The assignment generated in the if-statement (below) will also
2668 * automatically handle this case for non-uniforms.
2669 *
2670 * If the declared variable is not an array, the types must
2671 * already match exactly. As a result, the type assignment
2672 * here can be done unconditionally. For non-uniforms the call
2673 * to do_assignment can change the type of the initializer (via
2674 * the implicit conversion rules). For uniforms the initializer
2675 * must be a constant expression, and the type of that expression
2676 * was validated above.
2677 */
2678 var->type = initializer_type;
2679
2680 var->read_only = temp;
2681 }
2682 }
2683
2684 /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
2685 *
2686 * "It is an error to write to a const variable outside of
2687 * its declaration, so they must be initialized when
2688 * declared."
2689 */
2690 if (this->type->qualifier.flags.q.constant && decl->initializer == NULL) {
2691 _mesa_glsl_error(& loc, state,
2692 "const declaration of `%s' must be initialized",
2693 decl->identifier);
2694 }
2695
2696 ir_variable *earlier = get_variable_being_redeclared(var, decl, state);
2697 if (earlier != NULL) {
2698 continue;
2699 }
2700
2701 /* By now, we know it's a new variable declaration (we didn't hit the
2702 * above "continue").
2703 *
2704 * From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
2705 *
2706 * "Identifiers starting with "gl_" are reserved for use by
2707 * OpenGL, and may not be declared in a shader as either a
2708 * variable or a function."
2709 */
2710 if (strncmp(decl->identifier, "gl_", 3) == 0)
2711 _mesa_glsl_error(& loc, state,
2712 "identifier `%s' uses reserved `gl_' prefix",
2713 decl->identifier);
2714
2715 /* Add the variable to the symbol table. Note that the initializer's
2716 * IR was already processed earlier (though it hasn't been emitted yet),
2717 * without the variable in scope.
2718 *
2719 * This differs from most C-like languages, but it follows the GLSL
2720 * specification. From page 28 (page 34 of the PDF) of the GLSL 1.50
2721 * spec:
2722 *
2723 * "Within a declaration, the scope of a name starts immediately
2724 * after the initializer if present or immediately after the name
2725 * being declared if not."
2726 */
2727 if (!state->symbols->add_variable(var)) {
2728 YYLTYPE loc = this->get_location();
2729 _mesa_glsl_error(&loc, state, "name `%s' already taken in the "
2730 "current scope", decl->identifier);
2731 continue;
2732 }
2733
2734 /* Push the variable declaration to the top. It means that all
2735 * the variable declarations will appear in a funny
2736 * last-to-first order, but otherwise we run into trouble if a
2737 * function is prototyped, a global var is decled, then the
2738 * function is defined with usage of the global var. See
2739 * glslparsertest's CorrectModule.frag.
2740 */
2741 instructions->push_head(var);
2742 instructions->append_list(&initializer_instructions);
2743 }
2744
2745
2746 /* Generally, variable declarations do not have r-values. However,
2747 * one is used for the declaration in
2748 *
2749 * while (bool b = some_condition()) {
2750 * ...
2751 * }
2752 *
2753 * so we return the rvalue from the last seen declaration here.
2754 */
2755 return result;
2756 }
2757
2758
2759 ir_rvalue *
2760 ast_parameter_declarator::hir(exec_list *instructions,
2761 struct _mesa_glsl_parse_state *state)
2762 {
2763 void *ctx = state;
2764 const struct glsl_type *type;
2765 const char *name = NULL;
2766 YYLTYPE loc = this->get_location();
2767
2768 type = this->type->specifier->glsl_type(& name, state);
2769
2770 if (type == NULL) {
2771 if (name != NULL) {
2772 _mesa_glsl_error(& loc, state,
2773 "invalid type `%s' in declaration of `%s'",
2774 name, this->identifier);
2775 } else {
2776 _mesa_glsl_error(& loc, state,
2777 "invalid type in declaration of `%s'",
2778 this->identifier);
2779 }
2780
2781 type = glsl_type::error_type;
2782 }
2783
2784 /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
2785 *
2786 * "Functions that accept no input arguments need not use void in the
2787 * argument list because prototypes (or definitions) are required and
2788 * therefore there is no ambiguity when an empty argument list "( )" is
2789 * declared. The idiom "(void)" as a parameter list is provided for
2790 * convenience."
2791 *
2792 * Placing this check here prevents a void parameter being set up
2793 * for a function, which avoids tripping up checks for main taking
2794 * parameters and lookups of an unnamed symbol.
2795 */
2796 if (type->is_void()) {
2797 if (this->identifier != NULL)
2798 _mesa_glsl_error(& loc, state,
2799 "named parameter cannot have type `void'");
2800
2801 is_void = true;
2802 return NULL;
2803 }
2804
2805 if (formal_parameter && (this->identifier == NULL)) {
2806 _mesa_glsl_error(& loc, state, "formal parameter lacks a name");
2807 return NULL;
2808 }
2809
2810 /* This only handles "vec4 foo[..]". The earlier specifier->glsl_type(...)
2811 * call already handled the "vec4[..] foo" case.
2812 */
2813 if (this->is_array) {
2814 type = process_array_type(&loc, type, this->array_size, state);
2815 }
2816
2817 if (type->array_size() == 0) {
2818 _mesa_glsl_error(&loc, state, "arrays passed as parameters must have "
2819 "a declared size.");
2820 type = glsl_type::error_type;
2821 }
2822
2823 is_void = false;
2824 ir_variable *var = new(ctx) ir_variable(type, this->identifier, ir_var_in);
2825
2826 /* Apply any specified qualifiers to the parameter declaration. Note that
2827 * for function parameters the default mode is 'in'.
2828 */
2829 apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc);
2830
2831 instructions->push_tail(var);
2832
2833 /* Parameter declarations do not have r-values.
2834 */
2835 return NULL;
2836 }
2837
2838
2839 void
2840 ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters,
2841 bool formal,
2842 exec_list *ir_parameters,
2843 _mesa_glsl_parse_state *state)
2844 {
2845 ast_parameter_declarator *void_param = NULL;
2846 unsigned count = 0;
2847
2848 foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) {
2849 param->formal_parameter = formal;
2850 param->hir(ir_parameters, state);
2851
2852 if (param->is_void)
2853 void_param = param;
2854
2855 count++;
2856 }
2857
2858 if ((void_param != NULL) && (count > 1)) {
2859 YYLTYPE loc = void_param->get_location();
2860
2861 _mesa_glsl_error(& loc, state,
2862 "`void' parameter must be only parameter");
2863 }
2864 }
2865
2866
2867 void
2868 emit_function(_mesa_glsl_parse_state *state, exec_list *instructions,
2869 ir_function *f)
2870 {
2871 /* Emit the new function header */
2872 if (state->current_function == NULL) {
2873 instructions->push_tail(f);
2874 } else {
2875 /* IR invariants disallow function declarations or definitions nested
2876 * within other function definitions. Insert the new ir_function
2877 * block in the instruction sequence before the ir_function block
2878 * containing the current ir_function_signature.
2879 */
2880 ir_function *const curr =
2881 const_cast<ir_function *>(state->current_function->function());
2882
2883 curr->insert_before(f);
2884 }
2885 }
2886
2887
2888 ir_rvalue *
2889 ast_function::hir(exec_list *instructions,
2890 struct _mesa_glsl_parse_state *state)
2891 {
2892 void *ctx = state;
2893 ir_function *f = NULL;
2894 ir_function_signature *sig = NULL;
2895 exec_list hir_parameters;
2896
2897 const char *const name = identifier;
2898
2899 /* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec,
2900 *
2901 * "Function declarations (prototypes) cannot occur inside of functions;
2902 * they must be at global scope, or for the built-in functions, outside
2903 * the global scope."
2904 *
2905 * From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec,
2906 *
2907 * "User defined functions may only be defined within the global scope."
2908 *
2909 * Note that this language does not appear in GLSL 1.10.
2910 */
2911 if ((state->current_function != NULL) && (state->language_version != 110)) {
2912 YYLTYPE loc = this->get_location();
2913 _mesa_glsl_error(&loc, state,
2914 "declaration of function `%s' not allowed within "
2915 "function body", name);
2916 }
2917
2918 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
2919 *
2920 * "Identifiers starting with "gl_" are reserved for use by
2921 * OpenGL, and may not be declared in a shader as either a
2922 * variable or a function."
2923 */
2924 if (strncmp(name, "gl_", 3) == 0) {
2925 YYLTYPE loc = this->get_location();
2926 _mesa_glsl_error(&loc, state,
2927 "identifier `%s' uses reserved `gl_' prefix", name);
2928 }
2929
2930 /* Convert the list of function parameters to HIR now so that they can be
2931 * used below to compare this function's signature with previously seen
2932 * signatures for functions with the same name.
2933 */
2934 ast_parameter_declarator::parameters_to_hir(& this->parameters,
2935 is_definition,
2936 & hir_parameters, state);
2937
2938 const char *return_type_name;
2939 const glsl_type *return_type =
2940 this->return_type->specifier->glsl_type(& return_type_name, state);
2941
2942 if (!return_type) {
2943 YYLTYPE loc = this->get_location();
2944 _mesa_glsl_error(&loc, state,
2945 "function `%s' has undeclared return type `%s'",
2946 name, return_type_name);
2947 return_type = glsl_type::error_type;
2948 }
2949
2950 /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec:
2951 * "No qualifier is allowed on the return type of a function."
2952 */
2953 if (this->return_type->has_qualifiers()) {
2954 YYLTYPE loc = this->get_location();
2955 _mesa_glsl_error(& loc, state,
2956 "function `%s' return type has qualifiers", name);
2957 }
2958
2959 /* Verify that this function's signature either doesn't match a previously
2960 * seen signature for a function with the same name, or, if a match is found,
2961 * that the previously seen signature does not have an associated definition.
2962 */
2963 f = state->symbols->get_function(name);
2964 if (f != NULL && (state->es_shader || f->has_user_signature())) {
2965 sig = f->exact_matching_signature(&hir_parameters);
2966 if (sig != NULL) {
2967 const char *badvar = sig->qualifiers_match(&hir_parameters);
2968 if (badvar != NULL) {
2969 YYLTYPE loc = this->get_location();
2970
2971 _mesa_glsl_error(&loc, state, "function `%s' parameter `%s' "
2972 "qualifiers don't match prototype", name, badvar);
2973 }
2974
2975 if (sig->return_type != return_type) {
2976 YYLTYPE loc = this->get_location();
2977
2978 _mesa_glsl_error(&loc, state, "function `%s' return type doesn't "
2979 "match prototype", name);
2980 }
2981
2982 if (is_definition && sig->is_defined) {
2983 YYLTYPE loc = this->get_location();
2984
2985 _mesa_glsl_error(& loc, state, "function `%s' redefined", name);
2986 }
2987 }
2988 } else {
2989 f = new(ctx) ir_function(name);
2990 if (!state->symbols->add_function(f)) {
2991 /* This function name shadows a non-function use of the same name. */
2992 YYLTYPE loc = this->get_location();
2993
2994 _mesa_glsl_error(&loc, state, "function name `%s' conflicts with "
2995 "non-function", name);
2996 return NULL;
2997 }
2998
2999 emit_function(state, instructions, f);
3000 }
3001
3002 /* Verify the return type of main() */
3003 if (strcmp(name, "main") == 0) {
3004 if (! return_type->is_void()) {
3005 YYLTYPE loc = this->get_location();
3006
3007 _mesa_glsl_error(& loc, state, "main() must return void");
3008 }
3009
3010 if (!hir_parameters.is_empty()) {
3011 YYLTYPE loc = this->get_location();
3012
3013 _mesa_glsl_error(& loc, state, "main() must not take any parameters");
3014 }
3015 }
3016
3017 /* Finish storing the information about this new function in its signature.
3018 */
3019 if (sig == NULL) {
3020 sig = new(ctx) ir_function_signature(return_type);
3021 f->add_signature(sig);
3022 }
3023
3024 sig->replace_parameters(&hir_parameters);
3025 signature = sig;
3026
3027 /* Function declarations (prototypes) do not have r-values.
3028 */
3029 return NULL;
3030 }
3031
3032
3033 ir_rvalue *
3034 ast_function_definition::hir(exec_list *instructions,
3035 struct _mesa_glsl_parse_state *state)
3036 {
3037 prototype->is_definition = true;
3038 prototype->hir(instructions, state);
3039
3040 ir_function_signature *signature = prototype->signature;
3041 if (signature == NULL)
3042 return NULL;
3043
3044 assert(state->current_function == NULL);
3045 state->current_function = signature;
3046 state->found_return = false;
3047
3048 /* Duplicate parameters declared in the prototype as concrete variables.
3049 * Add these to the symbol table.
3050 */
3051 state->symbols->push_scope();
3052 foreach_iter(exec_list_iterator, iter, signature->parameters) {
3053 ir_variable *const var = ((ir_instruction *) iter.get())->as_variable();
3054
3055 assert(var != NULL);
3056
3057 /* The only way a parameter would "exist" is if two parameters have
3058 * the same name.
3059 */
3060 if (state->symbols->name_declared_this_scope(var->name)) {
3061 YYLTYPE loc = this->get_location();
3062
3063 _mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name);
3064 } else {
3065 state->symbols->add_variable(var);
3066 }
3067 }
3068
3069 /* Convert the body of the function to HIR. */
3070 this->body->hir(&signature->body, state);
3071 signature->is_defined = true;
3072
3073 state->symbols->pop_scope();
3074
3075 assert(state->current_function == signature);
3076 state->current_function = NULL;
3077
3078 if (!signature->return_type->is_void() && !state->found_return) {
3079 YYLTYPE loc = this->get_location();
3080 _mesa_glsl_error(& loc, state, "function `%s' has non-void return type "
3081 "%s, but no return statement",
3082 signature->function_name(),
3083 signature->return_type->name);
3084 }
3085
3086 /* Function definitions do not have r-values.
3087 */
3088 return NULL;
3089 }
3090
3091
3092 ir_rvalue *
3093 ast_jump_statement::hir(exec_list *instructions,
3094 struct _mesa_glsl_parse_state *state)
3095 {
3096 void *ctx = state;
3097
3098 switch (mode) {
3099 case ast_return: {
3100 ir_return *inst;
3101 assert(state->current_function);
3102
3103 if (opt_return_value) {
3104 ir_rvalue *const ret = opt_return_value->hir(instructions, state);
3105
3106 /* The value of the return type can be NULL if the shader says
3107 * 'return foo();' and foo() is a function that returns void.
3108 *
3109 * NOTE: The GLSL spec doesn't say that this is an error. The type
3110 * of the return value is void. If the return type of the function is
3111 * also void, then this should compile without error. Seriously.
3112 */
3113 const glsl_type *const ret_type =
3114 (ret == NULL) ? glsl_type::void_type : ret->type;
3115
3116 /* Implicit conversions are not allowed for return values. */
3117 if (state->current_function->return_type != ret_type) {
3118 YYLTYPE loc = this->get_location();
3119
3120 _mesa_glsl_error(& loc, state,
3121 "`return' with wrong type %s, in function `%s' "
3122 "returning %s",
3123 ret_type->name,
3124 state->current_function->function_name(),
3125 state->current_function->return_type->name);
3126 }
3127
3128 inst = new(ctx) ir_return(ret);
3129 } else {
3130 if (state->current_function->return_type->base_type !=
3131 GLSL_TYPE_VOID) {
3132 YYLTYPE loc = this->get_location();
3133
3134 _mesa_glsl_error(& loc, state,
3135 "`return' with no value, in function %s returning "
3136 "non-void",
3137 state->current_function->function_name());
3138 }
3139 inst = new(ctx) ir_return;
3140 }
3141
3142 state->found_return = true;
3143 instructions->push_tail(inst);
3144 break;
3145 }
3146
3147 case ast_discard:
3148 if (state->target != fragment_shader) {
3149 YYLTYPE loc = this->get_location();
3150
3151 _mesa_glsl_error(& loc, state,
3152 "`discard' may only appear in a fragment shader");
3153 }
3154 instructions->push_tail(new(ctx) ir_discard);
3155 break;
3156
3157 case ast_break:
3158 case ast_continue:
3159 /* FINISHME: Handle switch-statements. They cannot contain 'continue',
3160 * FINISHME: and they use a different IR instruction for 'break'.
3161 */
3162 /* FINISHME: Correctly handle the nesting. If a switch-statement is
3163 * FINISHME: inside a loop, a 'continue' is valid and will bind to the
3164 * FINISHME: loop.
3165 */
3166 if (state->loop_or_switch_nesting == NULL) {
3167 YYLTYPE loc = this->get_location();
3168
3169 _mesa_glsl_error(& loc, state,
3170 "`%s' may only appear in a loop",
3171 (mode == ast_break) ? "break" : "continue");
3172 } else {
3173 ir_loop *const loop = state->loop_or_switch_nesting->as_loop();
3174
3175 /* Inline the for loop expression again, since we don't know
3176 * where near the end of the loop body the normal copy of it
3177 * is going to be placed.
3178 */
3179 if (mode == ast_continue &&
3180 state->loop_or_switch_nesting_ast->rest_expression) {
3181 state->loop_or_switch_nesting_ast->rest_expression->hir(instructions,
3182 state);
3183 }
3184
3185 if (loop != NULL) {
3186 ir_loop_jump *const jump =
3187 new(ctx) ir_loop_jump((mode == ast_break)
3188 ? ir_loop_jump::jump_break
3189 : ir_loop_jump::jump_continue);
3190 instructions->push_tail(jump);
3191 }
3192 }
3193
3194 break;
3195 }
3196
3197 /* Jump instructions do not have r-values.
3198 */
3199 return NULL;
3200 }
3201
3202
3203 ir_rvalue *
3204 ast_selection_statement::hir(exec_list *instructions,
3205 struct _mesa_glsl_parse_state *state)
3206 {
3207 void *ctx = state;
3208
3209 ir_rvalue *const condition = this->condition->hir(instructions, state);
3210
3211 /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
3212 *
3213 * "Any expression whose type evaluates to a Boolean can be used as the
3214 * conditional expression bool-expression. Vector types are not accepted
3215 * as the expression to if."
3216 *
3217 * The checks are separated so that higher quality diagnostics can be
3218 * generated for cases where both rules are violated.
3219 */
3220 if (!condition->type->is_boolean() || !condition->type->is_scalar()) {
3221 YYLTYPE loc = this->condition->get_location();
3222
3223 _mesa_glsl_error(& loc, state, "if-statement condition must be scalar "
3224 "boolean");
3225 }
3226
3227 ir_if *const stmt = new(ctx) ir_if(condition);
3228
3229 if (then_statement != NULL) {
3230 state->symbols->push_scope();
3231 then_statement->hir(& stmt->then_instructions, state);
3232 state->symbols->pop_scope();
3233 }
3234
3235 if (else_statement != NULL) {
3236 state->symbols->push_scope();
3237 else_statement->hir(& stmt->else_instructions, state);
3238 state->symbols->pop_scope();
3239 }
3240
3241 instructions->push_tail(stmt);
3242
3243 /* if-statements do not have r-values.
3244 */
3245 return NULL;
3246 }
3247
3248
3249 void
3250 ast_iteration_statement::condition_to_hir(ir_loop *stmt,
3251 struct _mesa_glsl_parse_state *state)
3252 {
3253 void *ctx = state;
3254
3255 if (condition != NULL) {
3256 ir_rvalue *const cond =
3257 condition->hir(& stmt->body_instructions, state);
3258
3259 if ((cond == NULL)
3260 || !cond->type->is_boolean() || !cond->type->is_scalar()) {
3261 YYLTYPE loc = condition->get_location();
3262
3263 _mesa_glsl_error(& loc, state,
3264 "loop condition must be scalar boolean");
3265 } else {
3266 /* As the first code in the loop body, generate a block that looks
3267 * like 'if (!condition) break;' as the loop termination condition.
3268 */
3269 ir_rvalue *const not_cond =
3270 new(ctx) ir_expression(ir_unop_logic_not, glsl_type::bool_type, cond,
3271 NULL);
3272
3273 ir_if *const if_stmt = new(ctx) ir_if(not_cond);
3274
3275 ir_jump *const break_stmt =
3276 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
3277
3278 if_stmt->then_instructions.push_tail(break_stmt);
3279 stmt->body_instructions.push_tail(if_stmt);
3280 }
3281 }
3282 }
3283
3284
3285 ir_rvalue *
3286 ast_iteration_statement::hir(exec_list *instructions,
3287 struct _mesa_glsl_parse_state *state)
3288 {
3289 void *ctx = state;
3290
3291 /* For-loops and while-loops start a new scope, but do-while loops do not.
3292 */
3293 if (mode != ast_do_while)
3294 state->symbols->push_scope();
3295
3296 if (init_statement != NULL)
3297 init_statement->hir(instructions, state);
3298
3299 ir_loop *const stmt = new(ctx) ir_loop();
3300 instructions->push_tail(stmt);
3301
3302 /* Track the current loop and / or switch-statement nesting.
3303 */
3304 ir_instruction *const nesting = state->loop_or_switch_nesting;
3305 ast_iteration_statement *nesting_ast = state->loop_or_switch_nesting_ast;
3306
3307 state->loop_or_switch_nesting = stmt;
3308 state->loop_or_switch_nesting_ast = this;
3309
3310 if (mode != ast_do_while)
3311 condition_to_hir(stmt, state);
3312
3313 if (body != NULL)
3314 body->hir(& stmt->body_instructions, state);
3315
3316 if (rest_expression != NULL)
3317 rest_expression->hir(& stmt->body_instructions, state);
3318
3319 if (mode == ast_do_while)
3320 condition_to_hir(stmt, state);
3321
3322 if (mode != ast_do_while)
3323 state->symbols->pop_scope();
3324
3325 /* Restore previous nesting before returning.
3326 */
3327 state->loop_or_switch_nesting = nesting;
3328 state->loop_or_switch_nesting_ast = nesting_ast;
3329
3330 /* Loops do not have r-values.
3331 */
3332 return NULL;
3333 }
3334
3335
3336 ir_rvalue *
3337 ast_type_specifier::hir(exec_list *instructions,
3338 struct _mesa_glsl_parse_state *state)
3339 {
3340 if (!this->is_precision_statement && this->structure == NULL)
3341 return NULL;
3342
3343 YYLTYPE loc = this->get_location();
3344
3345 if (this->precision != ast_precision_none
3346 && state->language_version != 100
3347 && state->language_version < 130) {
3348 _mesa_glsl_error(&loc, state,
3349 "precision qualifiers exist only in "
3350 "GLSL ES 1.00, and GLSL 1.30 and later");
3351 return NULL;
3352 }
3353 if (this->precision != ast_precision_none
3354 && this->structure != NULL) {
3355 _mesa_glsl_error(&loc, state,
3356 "precision qualifiers do not apply to structures");
3357 return NULL;
3358 }
3359
3360 /* If this is a precision statement, check that the type to which it is
3361 * applied is either float or int.
3362 *
3363 * From section 4.5.3 of the GLSL 1.30 spec:
3364 * "The precision statement
3365 * precision precision-qualifier type;
3366 * can be used to establish a default precision qualifier. The type
3367 * field can be either int or float [...]. Any other types or
3368 * qualifiers will result in an error.
3369 */
3370 if (this->is_precision_statement) {
3371 assert(this->precision != ast_precision_none);
3372 assert(this->structure == NULL); /* The check for structures was
3373 * performed above. */
3374 if (this->is_array) {
3375 _mesa_glsl_error(&loc, state,
3376 "default precision statements do not apply to "
3377 "arrays");
3378 return NULL;
3379 }
3380 if (this->type_specifier != ast_float
3381 && this->type_specifier != ast_int) {
3382 _mesa_glsl_error(&loc, state,
3383 "default precision statements apply only to types "
3384 "float and int");
3385 return NULL;
3386 }
3387
3388 /* FINISHME: Translate precision statements into IR. */
3389 return NULL;
3390 }
3391
3392 if (this->structure != NULL)
3393 return this->structure->hir(instructions, state);
3394
3395 return NULL;
3396 }
3397
3398
3399 ir_rvalue *
3400 ast_struct_specifier::hir(exec_list *instructions,
3401 struct _mesa_glsl_parse_state *state)
3402 {
3403 unsigned decl_count = 0;
3404
3405 /* Make an initial pass over the list of structure fields to determine how
3406 * many there are. Each element in this list is an ast_declarator_list.
3407 * This means that we actually need to count the number of elements in the
3408 * 'declarations' list in each of the elements.
3409 */
3410 foreach_list_typed (ast_declarator_list, decl_list, link,
3411 &this->declarations) {
3412 foreach_list_const (decl_ptr, & decl_list->declarations) {
3413 decl_count++;
3414 }
3415 }
3416
3417 /* Allocate storage for the structure fields and process the field
3418 * declarations. As the declarations are processed, try to also convert
3419 * the types to HIR. This ensures that structure definitions embedded in
3420 * other structure definitions are processed.
3421 */
3422 glsl_struct_field *const fields = ralloc_array(state, glsl_struct_field,
3423 decl_count);
3424
3425 unsigned i = 0;
3426 foreach_list_typed (ast_declarator_list, decl_list, link,
3427 &this->declarations) {
3428 const char *type_name;
3429
3430 decl_list->type->specifier->hir(instructions, state);
3431
3432 /* Section 10.9 of the GLSL ES 1.00 specification states that
3433 * embedded structure definitions have been removed from the language.
3434 */
3435 if (state->es_shader && decl_list->type->specifier->structure != NULL) {
3436 YYLTYPE loc = this->get_location();
3437 _mesa_glsl_error(&loc, state, "Embedded structure definitions are "
3438 "not allowed in GLSL ES 1.00.");
3439 }
3440
3441 const glsl_type *decl_type =
3442 decl_list->type->specifier->glsl_type(& type_name, state);
3443
3444 foreach_list_typed (ast_declaration, decl, link,
3445 &decl_list->declarations) {
3446 const struct glsl_type *field_type = decl_type;
3447 if (decl->is_array) {
3448 YYLTYPE loc = decl->get_location();
3449 field_type = process_array_type(&loc, decl_type, decl->array_size,
3450 state);
3451 }
3452 fields[i].type = (field_type != NULL)
3453 ? field_type : glsl_type::error_type;
3454 fields[i].name = decl->identifier;
3455 i++;
3456 }
3457 }
3458
3459 assert(i == decl_count);
3460
3461 const glsl_type *t =
3462 glsl_type::get_record_instance(fields, decl_count, this->name);
3463
3464 YYLTYPE loc = this->get_location();
3465 if (!state->symbols->add_type(name, t)) {
3466 _mesa_glsl_error(& loc, state, "struct `%s' previously defined", name);
3467 } else {
3468 const glsl_type **s = reralloc(state, state->user_structures,
3469 const glsl_type *,
3470 state->num_user_structures + 1);
3471 if (s != NULL) {
3472 s[state->num_user_structures] = t;
3473 state->user_structures = s;
3474 state->num_user_structures++;
3475 }
3476 }
3477
3478 /* Structure type definitions do not have r-values.
3479 */
3480 return NULL;
3481 }