android: generate files by $(call es-gen)
[mesa.git] / src / glsl / ast_to_hir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file ast_to_hir.c
26 * Convert abstract syntax to to high-level intermediate reprensentation (HIR).
27 *
28 * During the conversion to HIR, the majority of the symantic checking is
29 * preformed on the program. This includes:
30 *
31 * * Symbol table management
32 * * Type checking
33 * * Function binding
34 *
35 * The majority of this work could be done during parsing, and the parser could
36 * probably generate HIR directly. However, this results in frequent changes
37 * to the parser code. Since we do not assume that every system this complier
38 * is built on will have Flex and Bison installed, we have to store the code
39 * generated by these tools in our version control system. In other parts of
40 * the system we've seen problems where a parser was changed but the generated
41 * code was not committed, merge conflicts where created because two developers
42 * had slightly different versions of Bison installed, etc.
43 *
44 * I have also noticed that running Bison generated parsers in GDB is very
45 * irritating. When you get a segfault on '$$ = $1->foo', you can't very
46 * well 'print $1' in GDB.
47 *
48 * As a result, my preference is to put as little C code as possible in the
49 * parser (and lexer) sources.
50 */
51
52 #include "glsl_symbol_table.h"
53 #include "glsl_parser_extras.h"
54 #include "ast.h"
55 #include "glsl_types.h"
56 #include "program/hash_table.h"
57 #include "ir.h"
58 #include "ir_builder.h"
59
60 using namespace ir_builder;
61
62 static void
63 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
64 exec_list *instructions);
65 static void
66 remove_per_vertex_blocks(exec_list *instructions,
67 _mesa_glsl_parse_state *state, ir_variable_mode mode);
68
69
70 void
71 _mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
72 {
73 _mesa_glsl_initialize_variables(instructions, state);
74
75 state->symbols->separate_function_namespace = state->language_version == 110;
76
77 state->current_function = NULL;
78
79 state->toplevel_ir = instructions;
80
81 state->gs_input_prim_type_specified = false;
82 state->cs_input_local_size_specified = false;
83
84 /* Section 4.2 of the GLSL 1.20 specification states:
85 * "The built-in functions are scoped in a scope outside the global scope
86 * users declare global variables in. That is, a shader's global scope,
87 * available for user-defined functions and global variables, is nested
88 * inside the scope containing the built-in functions."
89 *
90 * Since built-in functions like ftransform() access built-in variables,
91 * it follows that those must be in the outer scope as well.
92 *
93 * We push scope here to create this nesting effect...but don't pop.
94 * This way, a shader's globals are still in the symbol table for use
95 * by the linker.
96 */
97 state->symbols->push_scope();
98
99 foreach_list_typed (ast_node, ast, link, & state->translation_unit)
100 ast->hir(instructions, state);
101
102 detect_recursion_unlinked(state, instructions);
103 detect_conflicting_assignments(state, instructions);
104
105 state->toplevel_ir = NULL;
106
107 /* Move all of the variable declarations to the front of the IR list, and
108 * reverse the order. This has the (intended!) side effect that vertex
109 * shader inputs and fragment shader outputs will appear in the IR in the
110 * same order that they appeared in the shader code. This results in the
111 * locations being assigned in the declared order. Many (arguably buggy)
112 * applications depend on this behavior, and it matches what nearly all
113 * other drivers do.
114 */
115 foreach_in_list_safe(ir_instruction, node, instructions) {
116 ir_variable *const var = node->as_variable();
117
118 if (var == NULL)
119 continue;
120
121 var->remove();
122 instructions->push_head(var);
123 }
124
125 /* Figure out if gl_FragCoord is actually used in fragment shader */
126 ir_variable *const var = state->symbols->get_variable("gl_FragCoord");
127 if (var != NULL)
128 state->fs_uses_gl_fragcoord = var->data.used;
129
130 /* From section 7.1 (Built-In Language Variables) of the GLSL 4.10 spec:
131 *
132 * If multiple shaders using members of a built-in block belonging to
133 * the same interface are linked together in the same program, they
134 * must all redeclare the built-in block in the same way, as described
135 * in section 4.3.7 "Interface Blocks" for interface block matching, or
136 * a link error will result.
137 *
138 * The phrase "using members of a built-in block" implies that if two
139 * shaders are linked together and one of them *does not use* any members
140 * of the built-in block, then that shader does not need to have a matching
141 * redeclaration of the built-in block.
142 *
143 * This appears to be a clarification to the behaviour established for
144 * gl_PerVertex by GLSL 1.50, therefore implement it regardless of GLSL
145 * version.
146 *
147 * The definition of "interface" in section 4.3.7 that applies here is as
148 * follows:
149 *
150 * The boundary between adjacent programmable pipeline stages: This
151 * spans all the outputs in all compilation units of the first stage
152 * and all the inputs in all compilation units of the second stage.
153 *
154 * Therefore this rule applies to both inter- and intra-stage linking.
155 *
156 * The easiest way to implement this is to check whether the shader uses
157 * gl_PerVertex right after ast-to-ir conversion, and if it doesn't, simply
158 * remove all the relevant variable declaration from the IR, so that the
159 * linker won't see them and complain about mismatches.
160 */
161 remove_per_vertex_blocks(instructions, state, ir_var_shader_in);
162 remove_per_vertex_blocks(instructions, state, ir_var_shader_out);
163 }
164
165
166 static ir_expression_operation
167 get_conversion_operation(const glsl_type *to, const glsl_type *from,
168 struct _mesa_glsl_parse_state *state)
169 {
170 switch (to->base_type) {
171 case GLSL_TYPE_FLOAT:
172 switch (from->base_type) {
173 case GLSL_TYPE_INT: return ir_unop_i2f;
174 case GLSL_TYPE_UINT: return ir_unop_u2f;
175 case GLSL_TYPE_DOUBLE: return ir_unop_d2f;
176 default: return (ir_expression_operation)0;
177 }
178
179 case GLSL_TYPE_UINT:
180 if (!state->is_version(400, 0) && !state->ARB_gpu_shader5_enable)
181 return (ir_expression_operation)0;
182 switch (from->base_type) {
183 case GLSL_TYPE_INT: return ir_unop_i2u;
184 default: return (ir_expression_operation)0;
185 }
186
187 case GLSL_TYPE_DOUBLE:
188 if (!state->has_double())
189 return (ir_expression_operation)0;
190 switch (from->base_type) {
191 case GLSL_TYPE_INT: return ir_unop_i2d;
192 case GLSL_TYPE_UINT: return ir_unop_u2d;
193 case GLSL_TYPE_FLOAT: return ir_unop_f2d;
194 default: return (ir_expression_operation)0;
195 }
196
197 default: return (ir_expression_operation)0;
198 }
199 }
200
201
202 /**
203 * If a conversion is available, convert one operand to a different type
204 *
205 * The \c from \c ir_rvalue is converted "in place".
206 *
207 * \param to Type that the operand it to be converted to
208 * \param from Operand that is being converted
209 * \param state GLSL compiler state
210 *
211 * \return
212 * If a conversion is possible (or unnecessary), \c true is returned.
213 * Otherwise \c false is returned.
214 */
215 bool
216 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
217 struct _mesa_glsl_parse_state *state)
218 {
219 void *ctx = state;
220 if (to->base_type == from->type->base_type)
221 return true;
222
223 /* Prior to GLSL 1.20, there are no implicit conversions */
224 if (!state->is_version(120, 0))
225 return false;
226
227 /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
228 *
229 * "There are no implicit array or structure conversions. For
230 * example, an array of int cannot be implicitly converted to an
231 * array of float.
232 */
233 if (!to->is_numeric() || !from->type->is_numeric())
234 return false;
235
236 /* We don't actually want the specific type `to`, we want a type
237 * with the same base type as `to`, but the same vector width as
238 * `from`.
239 */
240 to = glsl_type::get_instance(to->base_type, from->type->vector_elements,
241 from->type->matrix_columns);
242
243 ir_expression_operation op = get_conversion_operation(to, from->type, state);
244 if (op) {
245 from = new(ctx) ir_expression(op, to, from, NULL);
246 return true;
247 } else {
248 return false;
249 }
250 }
251
252
253 static const struct glsl_type *
254 arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
255 bool multiply,
256 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
257 {
258 const glsl_type *type_a = value_a->type;
259 const glsl_type *type_b = value_b->type;
260
261 /* From GLSL 1.50 spec, page 56:
262 *
263 * "The arithmetic binary operators add (+), subtract (-),
264 * multiply (*), and divide (/) operate on integer and
265 * floating-point scalars, vectors, and matrices."
266 */
267 if (!type_a->is_numeric() || !type_b->is_numeric()) {
268 _mesa_glsl_error(loc, state,
269 "operands to arithmetic operators must be numeric");
270 return glsl_type::error_type;
271 }
272
273
274 /* "If one operand is floating-point based and the other is
275 * not, then the conversions from Section 4.1.10 "Implicit
276 * Conversions" are applied to the non-floating-point-based operand."
277 */
278 if (!apply_implicit_conversion(type_a, value_b, state)
279 && !apply_implicit_conversion(type_b, value_a, state)) {
280 _mesa_glsl_error(loc, state,
281 "could not implicitly convert operands to "
282 "arithmetic operator");
283 return glsl_type::error_type;
284 }
285 type_a = value_a->type;
286 type_b = value_b->type;
287
288 /* "If the operands are integer types, they must both be signed or
289 * both be unsigned."
290 *
291 * From this rule and the preceeding conversion it can be inferred that
292 * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
293 * The is_numeric check above already filtered out the case where either
294 * type is not one of these, so now the base types need only be tested for
295 * equality.
296 */
297 if (type_a->base_type != type_b->base_type) {
298 _mesa_glsl_error(loc, state,
299 "base type mismatch for arithmetic operator");
300 return glsl_type::error_type;
301 }
302
303 /* "All arithmetic binary operators result in the same fundamental type
304 * (signed integer, unsigned integer, or floating-point) as the
305 * operands they operate on, after operand type conversion. After
306 * conversion, the following cases are valid
307 *
308 * * The two operands are scalars. In this case the operation is
309 * applied, resulting in a scalar."
310 */
311 if (type_a->is_scalar() && type_b->is_scalar())
312 return type_a;
313
314 /* "* One operand is a scalar, and the other is a vector or matrix.
315 * In this case, the scalar operation is applied independently to each
316 * component of the vector or matrix, resulting in the same size
317 * vector or matrix."
318 */
319 if (type_a->is_scalar()) {
320 if (!type_b->is_scalar())
321 return type_b;
322 } else if (type_b->is_scalar()) {
323 return type_a;
324 }
325
326 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
327 * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
328 * handled.
329 */
330 assert(!type_a->is_scalar());
331 assert(!type_b->is_scalar());
332
333 /* "* The two operands are vectors of the same size. In this case, the
334 * operation is done component-wise resulting in the same size
335 * vector."
336 */
337 if (type_a->is_vector() && type_b->is_vector()) {
338 if (type_a == type_b) {
339 return type_a;
340 } else {
341 _mesa_glsl_error(loc, state,
342 "vector size mismatch for arithmetic operator");
343 return glsl_type::error_type;
344 }
345 }
346
347 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
348 * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
349 * <vector, vector> have been handled. At least one of the operands must
350 * be matrix. Further, since there are no integer matrix types, the base
351 * type of both operands must be float.
352 */
353 assert(type_a->is_matrix() || type_b->is_matrix());
354 assert(type_a->base_type == GLSL_TYPE_FLOAT ||
355 type_a->base_type == GLSL_TYPE_DOUBLE);
356 assert(type_b->base_type == GLSL_TYPE_FLOAT ||
357 type_b->base_type == GLSL_TYPE_DOUBLE);
358
359 /* "* The operator is add (+), subtract (-), or divide (/), and the
360 * operands are matrices with the same number of rows and the same
361 * number of columns. In this case, the operation is done component-
362 * wise resulting in the same size matrix."
363 * * The operator is multiply (*), where both operands are matrices or
364 * one operand is a vector and the other a matrix. A right vector
365 * operand is treated as a column vector and a left vector operand as a
366 * row vector. In all these cases, it is required that the number of
367 * columns of the left operand is equal to the number of rows of the
368 * right operand. Then, the multiply (*) operation does a linear
369 * algebraic multiply, yielding an object that has the same number of
370 * rows as the left operand and the same number of columns as the right
371 * operand. Section 5.10 "Vector and Matrix Operations" explains in
372 * more detail how vectors and matrices are operated on."
373 */
374 if (! multiply) {
375 if (type_a == type_b)
376 return type_a;
377 } else {
378 const glsl_type *type = glsl_type::get_mul_type(type_a, type_b);
379
380 if (type == glsl_type::error_type) {
381 _mesa_glsl_error(loc, state,
382 "size mismatch for matrix multiplication");
383 }
384
385 return type;
386 }
387
388
389 /* "All other cases are illegal."
390 */
391 _mesa_glsl_error(loc, state, "type mismatch");
392 return glsl_type::error_type;
393 }
394
395
396 static const struct glsl_type *
397 unary_arithmetic_result_type(const struct glsl_type *type,
398 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
399 {
400 /* From GLSL 1.50 spec, page 57:
401 *
402 * "The arithmetic unary operators negate (-), post- and pre-increment
403 * and decrement (-- and ++) operate on integer or floating-point
404 * values (including vectors and matrices). All unary operators work
405 * component-wise on their operands. These result with the same type
406 * they operated on."
407 */
408 if (!type->is_numeric()) {
409 _mesa_glsl_error(loc, state,
410 "operands to arithmetic operators must be numeric");
411 return glsl_type::error_type;
412 }
413
414 return type;
415 }
416
417 /**
418 * \brief Return the result type of a bit-logic operation.
419 *
420 * If the given types to the bit-logic operator are invalid, return
421 * glsl_type::error_type.
422 *
423 * \param type_a Type of LHS of bit-logic op
424 * \param type_b Type of RHS of bit-logic op
425 */
426 static const struct glsl_type *
427 bit_logic_result_type(const struct glsl_type *type_a,
428 const struct glsl_type *type_b,
429 ast_operators op,
430 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
431 {
432 if (!state->check_bitwise_operations_allowed(loc)) {
433 return glsl_type::error_type;
434 }
435
436 /* From page 50 (page 56 of PDF) of GLSL 1.30 spec:
437 *
438 * "The bitwise operators and (&), exclusive-or (^), and inclusive-or
439 * (|). The operands must be of type signed or unsigned integers or
440 * integer vectors."
441 */
442 if (!type_a->is_integer()) {
443 _mesa_glsl_error(loc, state, "LHS of `%s' must be an integer",
444 ast_expression::operator_string(op));
445 return glsl_type::error_type;
446 }
447 if (!type_b->is_integer()) {
448 _mesa_glsl_error(loc, state, "RHS of `%s' must be an integer",
449 ast_expression::operator_string(op));
450 return glsl_type::error_type;
451 }
452
453 /* "The fundamental types of the operands (signed or unsigned) must
454 * match,"
455 */
456 if (type_a->base_type != type_b->base_type) {
457 _mesa_glsl_error(loc, state, "operands of `%s' must have the same "
458 "base type", ast_expression::operator_string(op));
459 return glsl_type::error_type;
460 }
461
462 /* "The operands cannot be vectors of differing size." */
463 if (type_a->is_vector() &&
464 type_b->is_vector() &&
465 type_a->vector_elements != type_b->vector_elements) {
466 _mesa_glsl_error(loc, state, "operands of `%s' cannot be vectors of "
467 "different sizes", ast_expression::operator_string(op));
468 return glsl_type::error_type;
469 }
470
471 /* "If one operand is a scalar and the other a vector, the scalar is
472 * applied component-wise to the vector, resulting in the same type as
473 * the vector. The fundamental types of the operands [...] will be the
474 * resulting fundamental type."
475 */
476 if (type_a->is_scalar())
477 return type_b;
478 else
479 return type_a;
480 }
481
482 static const struct glsl_type *
483 modulus_result_type(const struct glsl_type *type_a,
484 const struct glsl_type *type_b,
485 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
486 {
487 if (!state->check_version(130, 300, loc, "operator '%%' is reserved")) {
488 return glsl_type::error_type;
489 }
490
491 /* From GLSL 1.50 spec, page 56:
492 * "The operator modulus (%) operates on signed or unsigned integers or
493 * integer vectors. The operand types must both be signed or both be
494 * unsigned."
495 */
496 if (!type_a->is_integer()) {
497 _mesa_glsl_error(loc, state, "LHS of operator %% must be an integer");
498 return glsl_type::error_type;
499 }
500 if (!type_b->is_integer()) {
501 _mesa_glsl_error(loc, state, "RHS of operator %% must be an integer");
502 return glsl_type::error_type;
503 }
504 if (type_a->base_type != type_b->base_type) {
505 _mesa_glsl_error(loc, state,
506 "operands of %% must have the same base type");
507 return glsl_type::error_type;
508 }
509
510 /* "The operands cannot be vectors of differing size. If one operand is
511 * a scalar and the other vector, then the scalar is applied component-
512 * wise to the vector, resulting in the same type as the vector. If both
513 * are vectors of the same size, the result is computed component-wise."
514 */
515 if (type_a->is_vector()) {
516 if (!type_b->is_vector()
517 || (type_a->vector_elements == type_b->vector_elements))
518 return type_a;
519 } else
520 return type_b;
521
522 /* "The operator modulus (%) is not defined for any other data types
523 * (non-integer types)."
524 */
525 _mesa_glsl_error(loc, state, "type mismatch");
526 return glsl_type::error_type;
527 }
528
529
530 static const struct glsl_type *
531 relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
532 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
533 {
534 const glsl_type *type_a = value_a->type;
535 const glsl_type *type_b = value_b->type;
536
537 /* From GLSL 1.50 spec, page 56:
538 * "The relational operators greater than (>), less than (<), greater
539 * than or equal (>=), and less than or equal (<=) operate only on
540 * scalar integer and scalar floating-point expressions."
541 */
542 if (!type_a->is_numeric()
543 || !type_b->is_numeric()
544 || !type_a->is_scalar()
545 || !type_b->is_scalar()) {
546 _mesa_glsl_error(loc, state,
547 "operands to relational operators must be scalar and "
548 "numeric");
549 return glsl_type::error_type;
550 }
551
552 /* "Either the operands' types must match, or the conversions from
553 * Section 4.1.10 "Implicit Conversions" will be applied to the integer
554 * operand, after which the types must match."
555 */
556 if (!apply_implicit_conversion(type_a, value_b, state)
557 && !apply_implicit_conversion(type_b, value_a, state)) {
558 _mesa_glsl_error(loc, state,
559 "could not implicitly convert operands to "
560 "relational operator");
561 return glsl_type::error_type;
562 }
563 type_a = value_a->type;
564 type_b = value_b->type;
565
566 if (type_a->base_type != type_b->base_type) {
567 _mesa_glsl_error(loc, state, "base type mismatch");
568 return glsl_type::error_type;
569 }
570
571 /* "The result is scalar Boolean."
572 */
573 return glsl_type::bool_type;
574 }
575
576 /**
577 * \brief Return the result type of a bit-shift operation.
578 *
579 * If the given types to the bit-shift operator are invalid, return
580 * glsl_type::error_type.
581 *
582 * \param type_a Type of LHS of bit-shift op
583 * \param type_b Type of RHS of bit-shift op
584 */
585 static const struct glsl_type *
586 shift_result_type(const struct glsl_type *type_a,
587 const struct glsl_type *type_b,
588 ast_operators op,
589 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
590 {
591 if (!state->check_bitwise_operations_allowed(loc)) {
592 return glsl_type::error_type;
593 }
594
595 /* From page 50 (page 56 of the PDF) of the GLSL 1.30 spec:
596 *
597 * "The shift operators (<<) and (>>). For both operators, the operands
598 * must be signed or unsigned integers or integer vectors. One operand
599 * can be signed while the other is unsigned."
600 */
601 if (!type_a->is_integer()) {
602 _mesa_glsl_error(loc, state, "LHS of operator %s must be an integer or "
603 "integer vector", ast_expression::operator_string(op));
604 return glsl_type::error_type;
605
606 }
607 if (!type_b->is_integer()) {
608 _mesa_glsl_error(loc, state, "RHS of operator %s must be an integer or "
609 "integer vector", ast_expression::operator_string(op));
610 return glsl_type::error_type;
611 }
612
613 /* "If the first operand is a scalar, the second operand has to be
614 * a scalar as well."
615 */
616 if (type_a->is_scalar() && !type_b->is_scalar()) {
617 _mesa_glsl_error(loc, state, "if the first operand of %s is scalar, the "
618 "second must be scalar as well",
619 ast_expression::operator_string(op));
620 return glsl_type::error_type;
621 }
622
623 /* If both operands are vectors, check that they have same number of
624 * elements.
625 */
626 if (type_a->is_vector() &&
627 type_b->is_vector() &&
628 type_a->vector_elements != type_b->vector_elements) {
629 _mesa_glsl_error(loc, state, "vector operands to operator %s must "
630 "have same number of elements",
631 ast_expression::operator_string(op));
632 return glsl_type::error_type;
633 }
634
635 /* "In all cases, the resulting type will be the same type as the left
636 * operand."
637 */
638 return type_a;
639 }
640
641 /**
642 * Validates that a value can be assigned to a location with a specified type
643 *
644 * Validates that \c rhs can be assigned to some location. If the types are
645 * not an exact match but an automatic conversion is possible, \c rhs will be
646 * converted.
647 *
648 * \return
649 * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
650 * Otherwise the actual RHS to be assigned will be returned. This may be
651 * \c rhs, or it may be \c rhs after some type conversion.
652 *
653 * \note
654 * In addition to being used for assignments, this function is used to
655 * type-check return values.
656 */
657 ir_rvalue *
658 validate_assignment(struct _mesa_glsl_parse_state *state,
659 YYLTYPE loc, const glsl_type *lhs_type,
660 ir_rvalue *rhs, bool is_initializer)
661 {
662 /* If there is already some error in the RHS, just return it. Anything
663 * else will lead to an avalanche of error message back to the user.
664 */
665 if (rhs->type->is_error())
666 return rhs;
667
668 /* If the types are identical, the assignment can trivially proceed.
669 */
670 if (rhs->type == lhs_type)
671 return rhs;
672
673 /* If the array element types are the same and the LHS is unsized,
674 * the assignment is okay for initializers embedded in variable
675 * declarations.
676 *
677 * Note: Whole-array assignments are not permitted in GLSL 1.10, but this
678 * is handled by ir_dereference::is_lvalue.
679 */
680 if (lhs_type->is_unsized_array() && rhs->type->is_array()
681 && (lhs_type->fields.array == rhs->type->fields.array)) {
682 if (is_initializer) {
683 return rhs;
684 } else {
685 _mesa_glsl_error(&loc, state,
686 "implicitly sized arrays cannot be assigned");
687 return NULL;
688 }
689 }
690
691 /* Check for implicit conversion in GLSL 1.20 */
692 if (apply_implicit_conversion(lhs_type, rhs, state)) {
693 if (rhs->type == lhs_type)
694 return rhs;
695 }
696
697 _mesa_glsl_error(&loc, state,
698 "%s of type %s cannot be assigned to "
699 "variable of type %s",
700 is_initializer ? "initializer" : "value",
701 rhs->type->name, lhs_type->name);
702
703 return NULL;
704 }
705
706 static void
707 mark_whole_array_access(ir_rvalue *access)
708 {
709 ir_dereference_variable *deref = access->as_dereference_variable();
710
711 if (deref && deref->var) {
712 deref->var->data.max_array_access = deref->type->length - 1;
713 }
714 }
715
716 static bool
717 do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state,
718 const char *non_lvalue_description,
719 ir_rvalue *lhs, ir_rvalue *rhs,
720 ir_rvalue **out_rvalue, bool needs_rvalue,
721 bool is_initializer,
722 YYLTYPE lhs_loc)
723 {
724 void *ctx = state;
725 bool error_emitted = (lhs->type->is_error() || rhs->type->is_error());
726 ir_rvalue *extract_channel = NULL;
727
728 /* If the assignment LHS comes back as an ir_binop_vector_extract
729 * expression, move it to the RHS as an ir_triop_vector_insert.
730 */
731 if (lhs->ir_type == ir_type_expression) {
732 ir_expression *const lhs_expr = lhs->as_expression();
733
734 if (unlikely(lhs_expr->operation == ir_binop_vector_extract)) {
735 ir_rvalue *new_rhs =
736 validate_assignment(state, lhs_loc, lhs->type,
737 rhs, is_initializer);
738
739 if (new_rhs == NULL) {
740 return lhs;
741 } else {
742 /* This converts:
743 * - LHS: (expression float vector_extract <vec> <channel>)
744 * - RHS: <scalar>
745 * into:
746 * - LHS: <vec>
747 * - RHS: (expression vec2 vector_insert <vec> <channel> <scalar>)
748 *
749 * The LHS type is now a vector instead of a scalar. Since GLSL
750 * allows assignments to be used as rvalues, we need to re-extract
751 * the channel from assignment_temp when returning the rvalue.
752 */
753 extract_channel = lhs_expr->operands[1];
754 rhs = new(ctx) ir_expression(ir_triop_vector_insert,
755 lhs_expr->operands[0]->type,
756 lhs_expr->operands[0],
757 new_rhs,
758 extract_channel);
759 lhs = lhs_expr->operands[0]->clone(ctx, NULL);
760 }
761 }
762 }
763
764 ir_variable *lhs_var = lhs->variable_referenced();
765 if (lhs_var)
766 lhs_var->data.assigned = true;
767
768 if (!error_emitted) {
769 if (non_lvalue_description != NULL) {
770 _mesa_glsl_error(&lhs_loc, state,
771 "assignment to %s",
772 non_lvalue_description);
773 error_emitted = true;
774 } else if (lhs_var != NULL && lhs_var->data.read_only) {
775 _mesa_glsl_error(&lhs_loc, state,
776 "assignment to read-only variable '%s'",
777 lhs_var->name);
778 error_emitted = true;
779 } else if (lhs->type->is_array() &&
780 !state->check_version(120, 300, &lhs_loc,
781 "whole array assignment forbidden")) {
782 /* From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
783 *
784 * "Other binary or unary expressions, non-dereferenced
785 * arrays, function names, swizzles with repeated fields,
786 * and constants cannot be l-values."
787 *
788 * The restriction on arrays is lifted in GLSL 1.20 and GLSL ES 3.00.
789 */
790 error_emitted = true;
791 } else if (!lhs->is_lvalue()) {
792 _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment");
793 error_emitted = true;
794 }
795 }
796
797 ir_rvalue *new_rhs =
798 validate_assignment(state, lhs_loc, lhs->type, rhs, is_initializer);
799 if (new_rhs != NULL) {
800 rhs = new_rhs;
801
802 /* If the LHS array was not declared with a size, it takes it size from
803 * the RHS. If the LHS is an l-value and a whole array, it must be a
804 * dereference of a variable. Any other case would require that the LHS
805 * is either not an l-value or not a whole array.
806 */
807 if (lhs->type->is_unsized_array()) {
808 ir_dereference *const d = lhs->as_dereference();
809
810 assert(d != NULL);
811
812 ir_variable *const var = d->variable_referenced();
813
814 assert(var != NULL);
815
816 if (var->data.max_array_access >= unsigned(rhs->type->array_size())) {
817 /* FINISHME: This should actually log the location of the RHS. */
818 _mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to "
819 "previous access",
820 var->data.max_array_access);
821 }
822
823 var->type = glsl_type::get_array_instance(lhs->type->fields.array,
824 rhs->type->array_size());
825 d->type = var->type;
826 }
827 if (lhs->type->is_array()) {
828 mark_whole_array_access(rhs);
829 mark_whole_array_access(lhs);
830 }
831 }
832
833 /* Most callers of do_assignment (assign, add_assign, pre_inc/dec,
834 * but not post_inc) need the converted assigned value as an rvalue
835 * to handle things like:
836 *
837 * i = j += 1;
838 */
839 if (needs_rvalue) {
840 ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp",
841 ir_var_temporary);
842 instructions->push_tail(var);
843 instructions->push_tail(assign(var, rhs));
844
845 if (!error_emitted) {
846 ir_dereference_variable *deref_var = new(ctx) ir_dereference_variable(var);
847 instructions->push_tail(new(ctx) ir_assignment(lhs, deref_var));
848 }
849 ir_rvalue *rvalue = new(ctx) ir_dereference_variable(var);
850
851 if (extract_channel) {
852 rvalue = new(ctx) ir_expression(ir_binop_vector_extract,
853 rvalue,
854 extract_channel->clone(ctx, NULL));
855 }
856
857 *out_rvalue = rvalue;
858 } else {
859 if (!error_emitted)
860 instructions->push_tail(new(ctx) ir_assignment(lhs, rhs));
861 *out_rvalue = NULL;
862 }
863
864 return error_emitted;
865 }
866
867 static ir_rvalue *
868 get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue)
869 {
870 void *ctx = ralloc_parent(lvalue);
871 ir_variable *var;
872
873 var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp",
874 ir_var_temporary);
875 instructions->push_tail(var);
876
877 instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
878 lvalue));
879
880 return new(ctx) ir_dereference_variable(var);
881 }
882
883
884 ir_rvalue *
885 ast_node::hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
886 {
887 (void) instructions;
888 (void) state;
889
890 return NULL;
891 }
892
893 void
894 ast_function_expression::hir_no_rvalue(exec_list *instructions,
895 struct _mesa_glsl_parse_state *state)
896 {
897 (void)hir(instructions, state);
898 }
899
900 void
901 ast_aggregate_initializer::hir_no_rvalue(exec_list *instructions,
902 struct _mesa_glsl_parse_state *state)
903 {
904 (void)hir(instructions, state);
905 }
906
907 static ir_rvalue *
908 do_comparison(void *mem_ctx, int operation, ir_rvalue *op0, ir_rvalue *op1)
909 {
910 int join_op;
911 ir_rvalue *cmp = NULL;
912
913 if (operation == ir_binop_all_equal)
914 join_op = ir_binop_logic_and;
915 else
916 join_op = ir_binop_logic_or;
917
918 switch (op0->type->base_type) {
919 case GLSL_TYPE_FLOAT:
920 case GLSL_TYPE_UINT:
921 case GLSL_TYPE_INT:
922 case GLSL_TYPE_BOOL:
923 case GLSL_TYPE_DOUBLE:
924 return new(mem_ctx) ir_expression(operation, op0, op1);
925
926 case GLSL_TYPE_ARRAY: {
927 for (unsigned int i = 0; i < op0->type->length; i++) {
928 ir_rvalue *e0, *e1, *result;
929
930 e0 = new(mem_ctx) ir_dereference_array(op0->clone(mem_ctx, NULL),
931 new(mem_ctx) ir_constant(i));
932 e1 = new(mem_ctx) ir_dereference_array(op1->clone(mem_ctx, NULL),
933 new(mem_ctx) ir_constant(i));
934 result = do_comparison(mem_ctx, operation, e0, e1);
935
936 if (cmp) {
937 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
938 } else {
939 cmp = result;
940 }
941 }
942
943 mark_whole_array_access(op0);
944 mark_whole_array_access(op1);
945 break;
946 }
947
948 case GLSL_TYPE_STRUCT: {
949 for (unsigned int i = 0; i < op0->type->length; i++) {
950 ir_rvalue *e0, *e1, *result;
951 const char *field_name = op0->type->fields.structure[i].name;
952
953 e0 = new(mem_ctx) ir_dereference_record(op0->clone(mem_ctx, NULL),
954 field_name);
955 e1 = new(mem_ctx) ir_dereference_record(op1->clone(mem_ctx, NULL),
956 field_name);
957 result = do_comparison(mem_ctx, operation, e0, e1);
958
959 if (cmp) {
960 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
961 } else {
962 cmp = result;
963 }
964 }
965 break;
966 }
967
968 case GLSL_TYPE_ERROR:
969 case GLSL_TYPE_VOID:
970 case GLSL_TYPE_SAMPLER:
971 case GLSL_TYPE_IMAGE:
972 case GLSL_TYPE_INTERFACE:
973 case GLSL_TYPE_ATOMIC_UINT:
974 /* I assume a comparison of a struct containing a sampler just
975 * ignores the sampler present in the type.
976 */
977 break;
978 }
979
980 if (cmp == NULL)
981 cmp = new(mem_ctx) ir_constant(true);
982
983 return cmp;
984 }
985
986 /* For logical operations, we want to ensure that the operands are
987 * scalar booleans. If it isn't, emit an error and return a constant
988 * boolean to avoid triggering cascading error messages.
989 */
990 ir_rvalue *
991 get_scalar_boolean_operand(exec_list *instructions,
992 struct _mesa_glsl_parse_state *state,
993 ast_expression *parent_expr,
994 int operand,
995 const char *operand_name,
996 bool *error_emitted)
997 {
998 ast_expression *expr = parent_expr->subexpressions[operand];
999 void *ctx = state;
1000 ir_rvalue *val = expr->hir(instructions, state);
1001
1002 if (val->type->is_boolean() && val->type->is_scalar())
1003 return val;
1004
1005 if (!*error_emitted) {
1006 YYLTYPE loc = expr->get_location();
1007 _mesa_glsl_error(&loc, state, "%s of `%s' must be scalar boolean",
1008 operand_name,
1009 parent_expr->operator_string(parent_expr->oper));
1010 *error_emitted = true;
1011 }
1012
1013 return new(ctx) ir_constant(true);
1014 }
1015
1016 /**
1017 * If name refers to a builtin array whose maximum allowed size is less than
1018 * size, report an error and return true. Otherwise return false.
1019 */
1020 void
1021 check_builtin_array_max_size(const char *name, unsigned size,
1022 YYLTYPE loc, struct _mesa_glsl_parse_state *state)
1023 {
1024 if ((strcmp("gl_TexCoord", name) == 0)
1025 && (size > state->Const.MaxTextureCoords)) {
1026 /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec:
1027 *
1028 * "The size [of gl_TexCoord] can be at most
1029 * gl_MaxTextureCoords."
1030 */
1031 _mesa_glsl_error(&loc, state, "`gl_TexCoord' array size cannot "
1032 "be larger than gl_MaxTextureCoords (%u)",
1033 state->Const.MaxTextureCoords);
1034 } else if (strcmp("gl_ClipDistance", name) == 0
1035 && size > state->Const.MaxClipPlanes) {
1036 /* From section 7.1 (Vertex Shader Special Variables) of the
1037 * GLSL 1.30 spec:
1038 *
1039 * "The gl_ClipDistance array is predeclared as unsized and
1040 * must be sized by the shader either redeclaring it with a
1041 * size or indexing it only with integral constant
1042 * expressions. ... The size can be at most
1043 * gl_MaxClipDistances."
1044 */
1045 _mesa_glsl_error(&loc, state, "`gl_ClipDistance' array size cannot "
1046 "be larger than gl_MaxClipDistances (%u)",
1047 state->Const.MaxClipPlanes);
1048 }
1049 }
1050
1051 /**
1052 * Create the constant 1, of a which is appropriate for incrementing and
1053 * decrementing values of the given GLSL type. For example, if type is vec4,
1054 * this creates a constant value of 1.0 having type float.
1055 *
1056 * If the given type is invalid for increment and decrement operators, return
1057 * a floating point 1--the error will be detected later.
1058 */
1059 static ir_rvalue *
1060 constant_one_for_inc_dec(void *ctx, const glsl_type *type)
1061 {
1062 switch (type->base_type) {
1063 case GLSL_TYPE_UINT:
1064 return new(ctx) ir_constant((unsigned) 1);
1065 case GLSL_TYPE_INT:
1066 return new(ctx) ir_constant(1);
1067 default:
1068 case GLSL_TYPE_FLOAT:
1069 return new(ctx) ir_constant(1.0f);
1070 }
1071 }
1072
1073 ir_rvalue *
1074 ast_expression::hir(exec_list *instructions,
1075 struct _mesa_glsl_parse_state *state)
1076 {
1077 return do_hir(instructions, state, true);
1078 }
1079
1080 void
1081 ast_expression::hir_no_rvalue(exec_list *instructions,
1082 struct _mesa_glsl_parse_state *state)
1083 {
1084 do_hir(instructions, state, false);
1085 }
1086
1087 ir_rvalue *
1088 ast_expression::do_hir(exec_list *instructions,
1089 struct _mesa_glsl_parse_state *state,
1090 bool needs_rvalue)
1091 {
1092 void *ctx = state;
1093 static const int operations[AST_NUM_OPERATORS] = {
1094 -1, /* ast_assign doesn't convert to ir_expression. */
1095 -1, /* ast_plus doesn't convert to ir_expression. */
1096 ir_unop_neg,
1097 ir_binop_add,
1098 ir_binop_sub,
1099 ir_binop_mul,
1100 ir_binop_div,
1101 ir_binop_mod,
1102 ir_binop_lshift,
1103 ir_binop_rshift,
1104 ir_binop_less,
1105 ir_binop_greater,
1106 ir_binop_lequal,
1107 ir_binop_gequal,
1108 ir_binop_all_equal,
1109 ir_binop_any_nequal,
1110 ir_binop_bit_and,
1111 ir_binop_bit_xor,
1112 ir_binop_bit_or,
1113 ir_unop_bit_not,
1114 ir_binop_logic_and,
1115 ir_binop_logic_xor,
1116 ir_binop_logic_or,
1117 ir_unop_logic_not,
1118
1119 /* Note: The following block of expression types actually convert
1120 * to multiple IR instructions.
1121 */
1122 ir_binop_mul, /* ast_mul_assign */
1123 ir_binop_div, /* ast_div_assign */
1124 ir_binop_mod, /* ast_mod_assign */
1125 ir_binop_add, /* ast_add_assign */
1126 ir_binop_sub, /* ast_sub_assign */
1127 ir_binop_lshift, /* ast_ls_assign */
1128 ir_binop_rshift, /* ast_rs_assign */
1129 ir_binop_bit_and, /* ast_and_assign */
1130 ir_binop_bit_xor, /* ast_xor_assign */
1131 ir_binop_bit_or, /* ast_or_assign */
1132
1133 -1, /* ast_conditional doesn't convert to ir_expression. */
1134 ir_binop_add, /* ast_pre_inc. */
1135 ir_binop_sub, /* ast_pre_dec. */
1136 ir_binop_add, /* ast_post_inc. */
1137 ir_binop_sub, /* ast_post_dec. */
1138 -1, /* ast_field_selection doesn't conv to ir_expression. */
1139 -1, /* ast_array_index doesn't convert to ir_expression. */
1140 -1, /* ast_function_call doesn't conv to ir_expression. */
1141 -1, /* ast_identifier doesn't convert to ir_expression. */
1142 -1, /* ast_int_constant doesn't convert to ir_expression. */
1143 -1, /* ast_uint_constant doesn't conv to ir_expression. */
1144 -1, /* ast_float_constant doesn't conv to ir_expression. */
1145 -1, /* ast_bool_constant doesn't conv to ir_expression. */
1146 -1, /* ast_sequence doesn't convert to ir_expression. */
1147 };
1148 ir_rvalue *result = NULL;
1149 ir_rvalue *op[3];
1150 const struct glsl_type *type; /* a temporary variable for switch cases */
1151 bool error_emitted = false;
1152 YYLTYPE loc;
1153
1154 loc = this->get_location();
1155
1156 switch (this->oper) {
1157 case ast_aggregate:
1158 assert(!"ast_aggregate: Should never get here.");
1159 break;
1160
1161 case ast_assign: {
1162 op[0] = this->subexpressions[0]->hir(instructions, state);
1163 op[1] = this->subexpressions[1]->hir(instructions, state);
1164
1165 error_emitted =
1166 do_assignment(instructions, state,
1167 this->subexpressions[0]->non_lvalue_description,
1168 op[0], op[1], &result, needs_rvalue, false,
1169 this->subexpressions[0]->get_location());
1170 break;
1171 }
1172
1173 case ast_plus:
1174 op[0] = this->subexpressions[0]->hir(instructions, state);
1175
1176 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1177
1178 error_emitted = type->is_error();
1179
1180 result = op[0];
1181 break;
1182
1183 case ast_neg:
1184 op[0] = this->subexpressions[0]->hir(instructions, state);
1185
1186 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1187
1188 error_emitted = type->is_error();
1189
1190 result = new(ctx) ir_expression(operations[this->oper], type,
1191 op[0], NULL);
1192 break;
1193
1194 case ast_add:
1195 case ast_sub:
1196 case ast_mul:
1197 case ast_div:
1198 op[0] = this->subexpressions[0]->hir(instructions, state);
1199 op[1] = this->subexpressions[1]->hir(instructions, state);
1200
1201 type = arithmetic_result_type(op[0], op[1],
1202 (this->oper == ast_mul),
1203 state, & loc);
1204 error_emitted = type->is_error();
1205
1206 result = new(ctx) ir_expression(operations[this->oper], type,
1207 op[0], op[1]);
1208 break;
1209
1210 case ast_mod:
1211 op[0] = this->subexpressions[0]->hir(instructions, state);
1212 op[1] = this->subexpressions[1]->hir(instructions, state);
1213
1214 type = modulus_result_type(op[0]->type, op[1]->type, state, & loc);
1215
1216 assert(operations[this->oper] == ir_binop_mod);
1217
1218 result = new(ctx) ir_expression(operations[this->oper], type,
1219 op[0], op[1]);
1220 error_emitted = type->is_error();
1221 break;
1222
1223 case ast_lshift:
1224 case ast_rshift:
1225 if (!state->check_bitwise_operations_allowed(&loc)) {
1226 error_emitted = true;
1227 }
1228
1229 op[0] = this->subexpressions[0]->hir(instructions, state);
1230 op[1] = this->subexpressions[1]->hir(instructions, state);
1231 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1232 &loc);
1233 result = new(ctx) ir_expression(operations[this->oper], type,
1234 op[0], op[1]);
1235 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1236 break;
1237
1238 case ast_less:
1239 case ast_greater:
1240 case ast_lequal:
1241 case ast_gequal:
1242 op[0] = this->subexpressions[0]->hir(instructions, state);
1243 op[1] = this->subexpressions[1]->hir(instructions, state);
1244
1245 type = relational_result_type(op[0], op[1], state, & loc);
1246
1247 /* The relational operators must either generate an error or result
1248 * in a scalar boolean. See page 57 of the GLSL 1.50 spec.
1249 */
1250 assert(type->is_error()
1251 || ((type->base_type == GLSL_TYPE_BOOL)
1252 && type->is_scalar()));
1253
1254 result = new(ctx) ir_expression(operations[this->oper], type,
1255 op[0], op[1]);
1256 error_emitted = type->is_error();
1257 break;
1258
1259 case ast_nequal:
1260 case ast_equal:
1261 op[0] = this->subexpressions[0]->hir(instructions, state);
1262 op[1] = this->subexpressions[1]->hir(instructions, state);
1263
1264 /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
1265 *
1266 * "The equality operators equal (==), and not equal (!=)
1267 * operate on all types. They result in a scalar Boolean. If
1268 * the operand types do not match, then there must be a
1269 * conversion from Section 4.1.10 "Implicit Conversions"
1270 * applied to one operand that can make them match, in which
1271 * case this conversion is done."
1272 */
1273 if ((!apply_implicit_conversion(op[0]->type, op[1], state)
1274 && !apply_implicit_conversion(op[1]->type, op[0], state))
1275 || (op[0]->type != op[1]->type)) {
1276 _mesa_glsl_error(& loc, state, "operands of `%s' must have the same "
1277 "type", (this->oper == ast_equal) ? "==" : "!=");
1278 error_emitted = true;
1279 } else if ((op[0]->type->is_array() || op[1]->type->is_array()) &&
1280 !state->check_version(120, 300, &loc,
1281 "array comparisons forbidden")) {
1282 error_emitted = true;
1283 } else if ((op[0]->type->contains_opaque() ||
1284 op[1]->type->contains_opaque())) {
1285 _mesa_glsl_error(&loc, state, "opaque type comparisons forbidden");
1286 error_emitted = true;
1287 }
1288
1289 if (error_emitted) {
1290 result = new(ctx) ir_constant(false);
1291 } else {
1292 result = do_comparison(ctx, operations[this->oper], op[0], op[1]);
1293 assert(result->type == glsl_type::bool_type);
1294 }
1295 break;
1296
1297 case ast_bit_and:
1298 case ast_bit_xor:
1299 case ast_bit_or:
1300 op[0] = this->subexpressions[0]->hir(instructions, state);
1301 op[1] = this->subexpressions[1]->hir(instructions, state);
1302 type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
1303 state, &loc);
1304 result = new(ctx) ir_expression(operations[this->oper], type,
1305 op[0], op[1]);
1306 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1307 break;
1308
1309 case ast_bit_not:
1310 op[0] = this->subexpressions[0]->hir(instructions, state);
1311
1312 if (!state->check_bitwise_operations_allowed(&loc)) {
1313 error_emitted = true;
1314 }
1315
1316 if (!op[0]->type->is_integer()) {
1317 _mesa_glsl_error(&loc, state, "operand of `~' must be an integer");
1318 error_emitted = true;
1319 }
1320
1321 type = error_emitted ? glsl_type::error_type : op[0]->type;
1322 result = new(ctx) ir_expression(ir_unop_bit_not, type, op[0], NULL);
1323 break;
1324
1325 case ast_logic_and: {
1326 exec_list rhs_instructions;
1327 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1328 "LHS", &error_emitted);
1329 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1330 "RHS", &error_emitted);
1331
1332 if (rhs_instructions.is_empty()) {
1333 result = new(ctx) ir_expression(ir_binop_logic_and, op[0], op[1]);
1334 type = result->type;
1335 } else {
1336 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1337 "and_tmp",
1338 ir_var_temporary);
1339 instructions->push_tail(tmp);
1340
1341 ir_if *const stmt = new(ctx) ir_if(op[0]);
1342 instructions->push_tail(stmt);
1343
1344 stmt->then_instructions.append_list(&rhs_instructions);
1345 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1346 ir_assignment *const then_assign =
1347 new(ctx) ir_assignment(then_deref, op[1]);
1348 stmt->then_instructions.push_tail(then_assign);
1349
1350 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1351 ir_assignment *const else_assign =
1352 new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false));
1353 stmt->else_instructions.push_tail(else_assign);
1354
1355 result = new(ctx) ir_dereference_variable(tmp);
1356 type = tmp->type;
1357 }
1358 break;
1359 }
1360
1361 case ast_logic_or: {
1362 exec_list rhs_instructions;
1363 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1364 "LHS", &error_emitted);
1365 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1366 "RHS", &error_emitted);
1367
1368 if (rhs_instructions.is_empty()) {
1369 result = new(ctx) ir_expression(ir_binop_logic_or, op[0], op[1]);
1370 type = result->type;
1371 } else {
1372 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1373 "or_tmp",
1374 ir_var_temporary);
1375 instructions->push_tail(tmp);
1376
1377 ir_if *const stmt = new(ctx) ir_if(op[0]);
1378 instructions->push_tail(stmt);
1379
1380 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1381 ir_assignment *const then_assign =
1382 new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true));
1383 stmt->then_instructions.push_tail(then_assign);
1384
1385 stmt->else_instructions.append_list(&rhs_instructions);
1386 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1387 ir_assignment *const else_assign =
1388 new(ctx) ir_assignment(else_deref, op[1]);
1389 stmt->else_instructions.push_tail(else_assign);
1390
1391 result = new(ctx) ir_dereference_variable(tmp);
1392 type = tmp->type;
1393 }
1394 break;
1395 }
1396
1397 case ast_logic_xor:
1398 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1399 *
1400 * "The logical binary operators and (&&), or ( | | ), and
1401 * exclusive or (^^). They operate only on two Boolean
1402 * expressions and result in a Boolean expression."
1403 */
1404 op[0] = get_scalar_boolean_operand(instructions, state, this, 0, "LHS",
1405 &error_emitted);
1406 op[1] = get_scalar_boolean_operand(instructions, state, this, 1, "RHS",
1407 &error_emitted);
1408
1409 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1410 op[0], op[1]);
1411 break;
1412
1413 case ast_logic_not:
1414 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1415 "operand", &error_emitted);
1416
1417 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1418 op[0], NULL);
1419 break;
1420
1421 case ast_mul_assign:
1422 case ast_div_assign:
1423 case ast_add_assign:
1424 case ast_sub_assign: {
1425 op[0] = this->subexpressions[0]->hir(instructions, state);
1426 op[1] = this->subexpressions[1]->hir(instructions, state);
1427
1428 type = arithmetic_result_type(op[0], op[1],
1429 (this->oper == ast_mul_assign),
1430 state, & loc);
1431
1432 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1433 op[0], op[1]);
1434
1435 error_emitted =
1436 do_assignment(instructions, state,
1437 this->subexpressions[0]->non_lvalue_description,
1438 op[0]->clone(ctx, NULL), temp_rhs,
1439 &result, needs_rvalue, false,
1440 this->subexpressions[0]->get_location());
1441
1442 /* GLSL 1.10 does not allow array assignment. However, we don't have to
1443 * explicitly test for this because none of the binary expression
1444 * operators allow array operands either.
1445 */
1446
1447 break;
1448 }
1449
1450 case ast_mod_assign: {
1451 op[0] = this->subexpressions[0]->hir(instructions, state);
1452 op[1] = this->subexpressions[1]->hir(instructions, state);
1453
1454 type = modulus_result_type(op[0]->type, op[1]->type, state, & loc);
1455
1456 assert(operations[this->oper] == ir_binop_mod);
1457
1458 ir_rvalue *temp_rhs;
1459 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1460 op[0], op[1]);
1461
1462 error_emitted =
1463 do_assignment(instructions, state,
1464 this->subexpressions[0]->non_lvalue_description,
1465 op[0]->clone(ctx, NULL), temp_rhs,
1466 &result, needs_rvalue, false,
1467 this->subexpressions[0]->get_location());
1468 break;
1469 }
1470
1471 case ast_ls_assign:
1472 case ast_rs_assign: {
1473 op[0] = this->subexpressions[0]->hir(instructions, state);
1474 op[1] = this->subexpressions[1]->hir(instructions, state);
1475 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1476 &loc);
1477 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1478 type, op[0], op[1]);
1479 error_emitted =
1480 do_assignment(instructions, state,
1481 this->subexpressions[0]->non_lvalue_description,
1482 op[0]->clone(ctx, NULL), temp_rhs,
1483 &result, needs_rvalue, false,
1484 this->subexpressions[0]->get_location());
1485 break;
1486 }
1487
1488 case ast_and_assign:
1489 case ast_xor_assign:
1490 case ast_or_assign: {
1491 op[0] = this->subexpressions[0]->hir(instructions, state);
1492 op[1] = this->subexpressions[1]->hir(instructions, state);
1493 type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
1494 state, &loc);
1495 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1496 type, op[0], op[1]);
1497 error_emitted =
1498 do_assignment(instructions, state,
1499 this->subexpressions[0]->non_lvalue_description,
1500 op[0]->clone(ctx, NULL), temp_rhs,
1501 &result, needs_rvalue, false,
1502 this->subexpressions[0]->get_location());
1503 break;
1504 }
1505
1506 case ast_conditional: {
1507 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1508 *
1509 * "The ternary selection operator (?:). It operates on three
1510 * expressions (exp1 ? exp2 : exp3). This operator evaluates the
1511 * first expression, which must result in a scalar Boolean."
1512 */
1513 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1514 "condition", &error_emitted);
1515
1516 /* The :? operator is implemented by generating an anonymous temporary
1517 * followed by an if-statement. The last instruction in each branch of
1518 * the if-statement assigns a value to the anonymous temporary. This
1519 * temporary is the r-value of the expression.
1520 */
1521 exec_list then_instructions;
1522 exec_list else_instructions;
1523
1524 op[1] = this->subexpressions[1]->hir(&then_instructions, state);
1525 op[2] = this->subexpressions[2]->hir(&else_instructions, state);
1526
1527 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1528 *
1529 * "The second and third expressions can be any type, as
1530 * long their types match, or there is a conversion in
1531 * Section 4.1.10 "Implicit Conversions" that can be applied
1532 * to one of the expressions to make their types match. This
1533 * resulting matching type is the type of the entire
1534 * expression."
1535 */
1536 if ((!apply_implicit_conversion(op[1]->type, op[2], state)
1537 && !apply_implicit_conversion(op[2]->type, op[1], state))
1538 || (op[1]->type != op[2]->type)) {
1539 YYLTYPE loc = this->subexpressions[1]->get_location();
1540
1541 _mesa_glsl_error(& loc, state, "second and third operands of ?: "
1542 "operator must have matching types");
1543 error_emitted = true;
1544 type = glsl_type::error_type;
1545 } else {
1546 type = op[1]->type;
1547 }
1548
1549 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1550 *
1551 * "The second and third expressions must be the same type, but can
1552 * be of any type other than an array."
1553 */
1554 if (type->is_array() &&
1555 !state->check_version(120, 300, &loc,
1556 "second and third operands of ?: operator "
1557 "cannot be arrays")) {
1558 error_emitted = true;
1559 }
1560
1561 /* From section 4.1.7 of the GLSL 4.50 spec (Opaque Types):
1562 *
1563 * "Except for array indexing, structure member selection, and
1564 * parentheses, opaque variables are not allowed to be operands in
1565 * expressions; such use results in a compile-time error."
1566 */
1567 if (type->contains_opaque()) {
1568 _mesa_glsl_error(&loc, state, "opaque variables cannot be operands "
1569 "of the ?: operator");
1570 error_emitted = true;
1571 }
1572
1573 ir_constant *cond_val = op[0]->constant_expression_value();
1574
1575 if (then_instructions.is_empty()
1576 && else_instructions.is_empty()
1577 && cond_val != NULL) {
1578 result = cond_val->value.b[0] ? op[1] : op[2];
1579 } else {
1580 /* The copy to conditional_tmp reads the whole array. */
1581 if (type->is_array()) {
1582 mark_whole_array_access(op[1]);
1583 mark_whole_array_access(op[2]);
1584 }
1585
1586 ir_variable *const tmp =
1587 new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary);
1588 instructions->push_tail(tmp);
1589
1590 ir_if *const stmt = new(ctx) ir_if(op[0]);
1591 instructions->push_tail(stmt);
1592
1593 then_instructions.move_nodes_to(& stmt->then_instructions);
1594 ir_dereference *const then_deref =
1595 new(ctx) ir_dereference_variable(tmp);
1596 ir_assignment *const then_assign =
1597 new(ctx) ir_assignment(then_deref, op[1]);
1598 stmt->then_instructions.push_tail(then_assign);
1599
1600 else_instructions.move_nodes_to(& stmt->else_instructions);
1601 ir_dereference *const else_deref =
1602 new(ctx) ir_dereference_variable(tmp);
1603 ir_assignment *const else_assign =
1604 new(ctx) ir_assignment(else_deref, op[2]);
1605 stmt->else_instructions.push_tail(else_assign);
1606
1607 result = new(ctx) ir_dereference_variable(tmp);
1608 }
1609 break;
1610 }
1611
1612 case ast_pre_inc:
1613 case ast_pre_dec: {
1614 this->non_lvalue_description = (this->oper == ast_pre_inc)
1615 ? "pre-increment operation" : "pre-decrement operation";
1616
1617 op[0] = this->subexpressions[0]->hir(instructions, state);
1618 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1619
1620 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1621
1622 ir_rvalue *temp_rhs;
1623 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1624 op[0], op[1]);
1625
1626 error_emitted =
1627 do_assignment(instructions, state,
1628 this->subexpressions[0]->non_lvalue_description,
1629 op[0]->clone(ctx, NULL), temp_rhs,
1630 &result, needs_rvalue, false,
1631 this->subexpressions[0]->get_location());
1632 break;
1633 }
1634
1635 case ast_post_inc:
1636 case ast_post_dec: {
1637 this->non_lvalue_description = (this->oper == ast_post_inc)
1638 ? "post-increment operation" : "post-decrement operation";
1639 op[0] = this->subexpressions[0]->hir(instructions, state);
1640 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1641
1642 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1643
1644 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1645
1646 ir_rvalue *temp_rhs;
1647 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1648 op[0], op[1]);
1649
1650 /* Get a temporary of a copy of the lvalue before it's modified.
1651 * This may get thrown away later.
1652 */
1653 result = get_lvalue_copy(instructions, op[0]->clone(ctx, NULL));
1654
1655 ir_rvalue *junk_rvalue;
1656 error_emitted =
1657 do_assignment(instructions, state,
1658 this->subexpressions[0]->non_lvalue_description,
1659 op[0]->clone(ctx, NULL), temp_rhs,
1660 &junk_rvalue, false, false,
1661 this->subexpressions[0]->get_location());
1662
1663 break;
1664 }
1665
1666 case ast_field_selection:
1667 result = _mesa_ast_field_selection_to_hir(this, instructions, state);
1668 break;
1669
1670 case ast_array_index: {
1671 YYLTYPE index_loc = subexpressions[1]->get_location();
1672
1673 op[0] = subexpressions[0]->hir(instructions, state);
1674 op[1] = subexpressions[1]->hir(instructions, state);
1675
1676 result = _mesa_ast_array_index_to_hir(ctx, state, op[0], op[1],
1677 loc, index_loc);
1678
1679 if (result->type->is_error())
1680 error_emitted = true;
1681
1682 break;
1683 }
1684
1685 case ast_function_call:
1686 /* Should *NEVER* get here. ast_function_call should always be handled
1687 * by ast_function_expression::hir.
1688 */
1689 assert(0);
1690 break;
1691
1692 case ast_identifier: {
1693 /* ast_identifier can appear several places in a full abstract syntax
1694 * tree. This particular use must be at location specified in the grammar
1695 * as 'variable_identifier'.
1696 */
1697 ir_variable *var =
1698 state->symbols->get_variable(this->primary_expression.identifier);
1699
1700 if (var != NULL) {
1701 var->data.used = true;
1702 result = new(ctx) ir_dereference_variable(var);
1703 } else {
1704 _mesa_glsl_error(& loc, state, "`%s' undeclared",
1705 this->primary_expression.identifier);
1706
1707 result = ir_rvalue::error_value(ctx);
1708 error_emitted = true;
1709 }
1710 break;
1711 }
1712
1713 case ast_int_constant:
1714 result = new(ctx) ir_constant(this->primary_expression.int_constant);
1715 break;
1716
1717 case ast_uint_constant:
1718 result = new(ctx) ir_constant(this->primary_expression.uint_constant);
1719 break;
1720
1721 case ast_float_constant:
1722 result = new(ctx) ir_constant(this->primary_expression.float_constant);
1723 break;
1724
1725 case ast_bool_constant:
1726 result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant));
1727 break;
1728
1729 case ast_double_constant:
1730 result = new(ctx) ir_constant(this->primary_expression.double_constant);
1731 break;
1732
1733 case ast_sequence: {
1734 /* It should not be possible to generate a sequence in the AST without
1735 * any expressions in it.
1736 */
1737 assert(!this->expressions.is_empty());
1738
1739 /* The r-value of a sequence is the last expression in the sequence. If
1740 * the other expressions in the sequence do not have side-effects (and
1741 * therefore add instructions to the instruction list), they get dropped
1742 * on the floor.
1743 */
1744 exec_node *previous_tail_pred = NULL;
1745 YYLTYPE previous_operand_loc = loc;
1746
1747 foreach_list_typed (ast_node, ast, link, &this->expressions) {
1748 /* If one of the operands of comma operator does not generate any
1749 * code, we want to emit a warning. At each pass through the loop
1750 * previous_tail_pred will point to the last instruction in the
1751 * stream *before* processing the previous operand. Naturally,
1752 * instructions->tail_pred will point to the last instruction in the
1753 * stream *after* processing the previous operand. If the two
1754 * pointers match, then the previous operand had no effect.
1755 *
1756 * The warning behavior here differs slightly from GCC. GCC will
1757 * only emit a warning if none of the left-hand operands have an
1758 * effect. However, it will emit a warning for each. I believe that
1759 * there are some cases in C (especially with GCC extensions) where
1760 * it is useful to have an intermediate step in a sequence have no
1761 * effect, but I don't think these cases exist in GLSL. Either way,
1762 * it would be a giant hassle to replicate that behavior.
1763 */
1764 if (previous_tail_pred == instructions->tail_pred) {
1765 _mesa_glsl_warning(&previous_operand_loc, state,
1766 "left-hand operand of comma expression has "
1767 "no effect");
1768 }
1769
1770 /* tail_pred is directly accessed instead of using the get_tail()
1771 * method for performance reasons. get_tail() has extra code to
1772 * return NULL when the list is empty. We don't care about that
1773 * here, so using tail_pred directly is fine.
1774 */
1775 previous_tail_pred = instructions->tail_pred;
1776 previous_operand_loc = ast->get_location();
1777
1778 result = ast->hir(instructions, state);
1779 }
1780
1781 /* Any errors should have already been emitted in the loop above.
1782 */
1783 error_emitted = true;
1784 break;
1785 }
1786 }
1787 type = NULL; /* use result->type, not type. */
1788 assert(result != NULL || !needs_rvalue);
1789
1790 if (result && result->type->is_error() && !error_emitted)
1791 _mesa_glsl_error(& loc, state, "type mismatch");
1792
1793 return result;
1794 }
1795
1796
1797 ir_rvalue *
1798 ast_expression_statement::hir(exec_list *instructions,
1799 struct _mesa_glsl_parse_state *state)
1800 {
1801 /* It is possible to have expression statements that don't have an
1802 * expression. This is the solitary semicolon:
1803 *
1804 * for (i = 0; i < 5; i++)
1805 * ;
1806 *
1807 * In this case the expression will be NULL. Test for NULL and don't do
1808 * anything in that case.
1809 */
1810 if (expression != NULL)
1811 expression->hir_no_rvalue(instructions, state);
1812
1813 /* Statements do not have r-values.
1814 */
1815 return NULL;
1816 }
1817
1818
1819 ir_rvalue *
1820 ast_compound_statement::hir(exec_list *instructions,
1821 struct _mesa_glsl_parse_state *state)
1822 {
1823 if (new_scope)
1824 state->symbols->push_scope();
1825
1826 foreach_list_typed (ast_node, ast, link, &this->statements)
1827 ast->hir(instructions, state);
1828
1829 if (new_scope)
1830 state->symbols->pop_scope();
1831
1832 /* Compound statements do not have r-values.
1833 */
1834 return NULL;
1835 }
1836
1837 /**
1838 * Evaluate the given exec_node (which should be an ast_node representing
1839 * a single array dimension) and return its integer value.
1840 */
1841 static unsigned
1842 process_array_size(exec_node *node,
1843 struct _mesa_glsl_parse_state *state)
1844 {
1845 exec_list dummy_instructions;
1846
1847 ast_node *array_size = exec_node_data(ast_node, node, link);
1848 ir_rvalue *const ir = array_size->hir(& dummy_instructions, state);
1849 YYLTYPE loc = array_size->get_location();
1850
1851 if (ir == NULL) {
1852 _mesa_glsl_error(& loc, state,
1853 "array size could not be resolved");
1854 return 0;
1855 }
1856
1857 if (!ir->type->is_integer()) {
1858 _mesa_glsl_error(& loc, state,
1859 "array size must be integer type");
1860 return 0;
1861 }
1862
1863 if (!ir->type->is_scalar()) {
1864 _mesa_glsl_error(& loc, state,
1865 "array size must be scalar type");
1866 return 0;
1867 }
1868
1869 ir_constant *const size = ir->constant_expression_value();
1870 if (size == NULL) {
1871 _mesa_glsl_error(& loc, state, "array size must be a "
1872 "constant valued expression");
1873 return 0;
1874 }
1875
1876 if (size->value.i[0] <= 0) {
1877 _mesa_glsl_error(& loc, state, "array size must be > 0");
1878 return 0;
1879 }
1880
1881 assert(size->type == ir->type);
1882
1883 /* If the array size is const (and we've verified that
1884 * it is) then no instructions should have been emitted
1885 * when we converted it to HIR. If they were emitted,
1886 * then either the array size isn't const after all, or
1887 * we are emitting unnecessary instructions.
1888 */
1889 assert(dummy_instructions.is_empty());
1890
1891 return size->value.u[0];
1892 }
1893
1894 static const glsl_type *
1895 process_array_type(YYLTYPE *loc, const glsl_type *base,
1896 ast_array_specifier *array_specifier,
1897 struct _mesa_glsl_parse_state *state)
1898 {
1899 const glsl_type *array_type = base;
1900
1901 if (array_specifier != NULL) {
1902 if (base->is_array()) {
1903
1904 /* From page 19 (page 25) of the GLSL 1.20 spec:
1905 *
1906 * "Only one-dimensional arrays may be declared."
1907 */
1908 if (!state->ARB_arrays_of_arrays_enable) {
1909 _mesa_glsl_error(loc, state,
1910 "invalid array of `%s'"
1911 "GL_ARB_arrays_of_arrays "
1912 "required for defining arrays of arrays",
1913 base->name);
1914 return glsl_type::error_type;
1915 }
1916
1917 if (base->length == 0) {
1918 _mesa_glsl_error(loc, state,
1919 "only the outermost array dimension can "
1920 "be unsized",
1921 base->name);
1922 return glsl_type::error_type;
1923 }
1924 }
1925
1926 for (exec_node *node = array_specifier->array_dimensions.tail_pred;
1927 !node->is_head_sentinel(); node = node->prev) {
1928 unsigned array_size = process_array_size(node, state);
1929 array_type = glsl_type::get_array_instance(array_type, array_size);
1930 }
1931
1932 if (array_specifier->is_unsized_array)
1933 array_type = glsl_type::get_array_instance(array_type, 0);
1934 }
1935
1936 return array_type;
1937 }
1938
1939
1940 const glsl_type *
1941 ast_type_specifier::glsl_type(const char **name,
1942 struct _mesa_glsl_parse_state *state) const
1943 {
1944 const struct glsl_type *type;
1945
1946 type = state->symbols->get_type(this->type_name);
1947 *name = this->type_name;
1948
1949 YYLTYPE loc = this->get_location();
1950 type = process_array_type(&loc, type, this->array_specifier, state);
1951
1952 return type;
1953 }
1954
1955 const glsl_type *
1956 ast_fully_specified_type::glsl_type(const char **name,
1957 struct _mesa_glsl_parse_state *state) const
1958 {
1959 const struct glsl_type *type = this->specifier->glsl_type(name, state);
1960
1961 if (type == NULL)
1962 return NULL;
1963
1964 if (type->base_type == GLSL_TYPE_FLOAT
1965 && state->es_shader
1966 && state->stage == MESA_SHADER_FRAGMENT
1967 && this->qualifier.precision == ast_precision_none
1968 && state->symbols->get_variable("#default precision") == NULL) {
1969 YYLTYPE loc = this->get_location();
1970 _mesa_glsl_error(&loc, state,
1971 "no precision specified this scope for type `%s'",
1972 type->name);
1973 }
1974
1975 return type;
1976 }
1977
1978 /**
1979 * Determine whether a toplevel variable declaration declares a varying. This
1980 * function operates by examining the variable's mode and the shader target,
1981 * so it correctly identifies linkage variables regardless of whether they are
1982 * declared using the deprecated "varying" syntax or the new "in/out" syntax.
1983 *
1984 * Passing a non-toplevel variable declaration (e.g. a function parameter) to
1985 * this function will produce undefined results.
1986 */
1987 static bool
1988 is_varying_var(ir_variable *var, gl_shader_stage target)
1989 {
1990 switch (target) {
1991 case MESA_SHADER_VERTEX:
1992 return var->data.mode == ir_var_shader_out;
1993 case MESA_SHADER_FRAGMENT:
1994 return var->data.mode == ir_var_shader_in;
1995 default:
1996 return var->data.mode == ir_var_shader_out || var->data.mode == ir_var_shader_in;
1997 }
1998 }
1999
2000
2001 /**
2002 * Matrix layout qualifiers are only allowed on certain types
2003 */
2004 static void
2005 validate_matrix_layout_for_type(struct _mesa_glsl_parse_state *state,
2006 YYLTYPE *loc,
2007 const glsl_type *type,
2008 ir_variable *var)
2009 {
2010 if (var && !var->is_in_uniform_block()) {
2011 /* Layout qualifiers may only apply to interface blocks and fields in
2012 * them.
2013 */
2014 _mesa_glsl_error(loc, state,
2015 "uniform block layout qualifiers row_major and "
2016 "column_major may not be applied to variables "
2017 "outside of uniform blocks");
2018 } else if (!type->is_matrix()) {
2019 /* The OpenGL ES 3.0 conformance tests did not originally allow
2020 * matrix layout qualifiers on non-matrices. However, the OpenGL
2021 * 4.4 and OpenGL ES 3.0 (revision TBD) specifications were
2022 * amended to specifically allow these layouts on all types. Emit
2023 * a warning so that people know their code may not be portable.
2024 */
2025 _mesa_glsl_warning(loc, state,
2026 "uniform block layout qualifiers row_major and "
2027 "column_major applied to non-matrix types may "
2028 "be rejected by older compilers");
2029 } else if (type->is_record()) {
2030 /* We allow 'layout(row_major)' on structure types because it's the only
2031 * way to get row-major layouts on matrices contained in structures.
2032 */
2033 _mesa_glsl_warning(loc, state,
2034 "uniform block layout qualifiers row_major and "
2035 "column_major applied to structure types is not "
2036 "strictly conformant and may be rejected by other "
2037 "compilers");
2038 }
2039 }
2040
2041 static bool
2042 validate_binding_qualifier(struct _mesa_glsl_parse_state *state,
2043 YYLTYPE *loc,
2044 ir_variable *var,
2045 const ast_type_qualifier *qual)
2046 {
2047 if (var->data.mode != ir_var_uniform) {
2048 _mesa_glsl_error(loc, state,
2049 "the \"binding\" qualifier only applies to uniforms");
2050 return false;
2051 }
2052
2053 if (qual->binding < 0) {
2054 _mesa_glsl_error(loc, state, "binding values must be >= 0");
2055 return false;
2056 }
2057
2058 const struct gl_context *const ctx = state->ctx;
2059 unsigned elements = var->type->is_array() ? var->type->length : 1;
2060 unsigned max_index = qual->binding + elements - 1;
2061
2062 if (var->type->is_interface()) {
2063 /* UBOs. From page 60 of the GLSL 4.20 specification:
2064 * "If the binding point for any uniform block instance is less than zero,
2065 * or greater than or equal to the implementation-dependent maximum
2066 * number of uniform buffer bindings, a compilation error will occur.
2067 * When the binding identifier is used with a uniform block instanced as
2068 * an array of size N, all elements of the array from binding through
2069 * binding + N – 1 must be within this range."
2070 *
2071 * The implementation-dependent maximum is GL_MAX_UNIFORM_BUFFER_BINDINGS.
2072 */
2073 if (max_index >= ctx->Const.MaxUniformBufferBindings) {
2074 _mesa_glsl_error(loc, state, "layout(binding = %d) for %d UBOs exceeds "
2075 "the maximum number of UBO binding points (%d)",
2076 qual->binding, elements,
2077 ctx->Const.MaxUniformBufferBindings);
2078 return false;
2079 }
2080 } else if (var->type->is_sampler() ||
2081 (var->type->is_array() && var->type->fields.array->is_sampler())) {
2082 /* Samplers. From page 63 of the GLSL 4.20 specification:
2083 * "If the binding is less than zero, or greater than or equal to the
2084 * implementation-dependent maximum supported number of units, a
2085 * compilation error will occur. When the binding identifier is used
2086 * with an array of size N, all elements of the array from binding
2087 * through binding + N - 1 must be within this range."
2088 */
2089 unsigned limit = ctx->Const.Program[state->stage].MaxTextureImageUnits;
2090
2091 if (max_index >= limit) {
2092 _mesa_glsl_error(loc, state, "layout(binding = %d) for %d samplers "
2093 "exceeds the maximum number of texture image units "
2094 "(%d)", qual->binding, elements, limit);
2095
2096 return false;
2097 }
2098 } else if (var->type->contains_atomic()) {
2099 assert(ctx->Const.MaxAtomicBufferBindings <= MAX_COMBINED_ATOMIC_BUFFERS);
2100 if (unsigned(qual->binding) >= ctx->Const.MaxAtomicBufferBindings) {
2101 _mesa_glsl_error(loc, state, "layout(binding = %d) exceeds the "
2102 " maximum number of atomic counter buffer bindings"
2103 "(%d)", qual->binding,
2104 ctx->Const.MaxAtomicBufferBindings);
2105
2106 return false;
2107 }
2108 } else {
2109 _mesa_glsl_error(loc, state,
2110 "the \"binding\" qualifier only applies to uniform "
2111 "blocks, samplers, atomic counters, or arrays thereof");
2112 return false;
2113 }
2114
2115 return true;
2116 }
2117
2118
2119 static glsl_interp_qualifier
2120 interpret_interpolation_qualifier(const struct ast_type_qualifier *qual,
2121 ir_variable_mode mode,
2122 struct _mesa_glsl_parse_state *state,
2123 YYLTYPE *loc)
2124 {
2125 glsl_interp_qualifier interpolation;
2126 if (qual->flags.q.flat)
2127 interpolation = INTERP_QUALIFIER_FLAT;
2128 else if (qual->flags.q.noperspective)
2129 interpolation = INTERP_QUALIFIER_NOPERSPECTIVE;
2130 else if (qual->flags.q.smooth)
2131 interpolation = INTERP_QUALIFIER_SMOOTH;
2132 else
2133 interpolation = INTERP_QUALIFIER_NONE;
2134
2135 if (interpolation != INTERP_QUALIFIER_NONE) {
2136 if (mode != ir_var_shader_in && mode != ir_var_shader_out) {
2137 _mesa_glsl_error(loc, state,
2138 "interpolation qualifier `%s' can only be applied to "
2139 "shader inputs or outputs.",
2140 interpolation_string(interpolation));
2141
2142 }
2143
2144 if ((state->stage == MESA_SHADER_VERTEX && mode == ir_var_shader_in) ||
2145 (state->stage == MESA_SHADER_FRAGMENT && mode == ir_var_shader_out)) {
2146 _mesa_glsl_error(loc, state,
2147 "interpolation qualifier `%s' cannot be applied to "
2148 "vertex shader inputs or fragment shader outputs",
2149 interpolation_string(interpolation));
2150 }
2151 }
2152
2153 return interpolation;
2154 }
2155
2156
2157 static void
2158 validate_explicit_location(const struct ast_type_qualifier *qual,
2159 ir_variable *var,
2160 struct _mesa_glsl_parse_state *state,
2161 YYLTYPE *loc)
2162 {
2163 bool fail = false;
2164
2165 /* Checks for GL_ARB_explicit_uniform_location. */
2166 if (qual->flags.q.uniform) {
2167 if (!state->check_explicit_uniform_location_allowed(loc, var))
2168 return;
2169
2170 const struct gl_context *const ctx = state->ctx;
2171 unsigned max_loc = qual->location + var->type->uniform_locations() - 1;
2172
2173 /* ARB_explicit_uniform_location specification states:
2174 *
2175 * "The explicitly defined locations and the generated locations
2176 * must be in the range of 0 to MAX_UNIFORM_LOCATIONS minus one."
2177 *
2178 * "Valid locations for default-block uniform variable locations
2179 * are in the range of 0 to the implementation-defined maximum
2180 * number of uniform locations."
2181 */
2182 if (qual->location < 0) {
2183 _mesa_glsl_error(loc, state,
2184 "explicit location < 0 for uniform %s", var->name);
2185 return;
2186 }
2187
2188 if (max_loc >= ctx->Const.MaxUserAssignableUniformLocations) {
2189 _mesa_glsl_error(loc, state, "location(s) consumed by uniform %s "
2190 ">= MAX_UNIFORM_LOCATIONS (%u)", var->name,
2191 ctx->Const.MaxUserAssignableUniformLocations);
2192 return;
2193 }
2194
2195 var->data.explicit_location = true;
2196 var->data.location = qual->location;
2197 return;
2198 }
2199
2200 /* Between GL_ARB_explicit_attrib_location an
2201 * GL_ARB_separate_shader_objects, the inputs and outputs of any shader
2202 * stage can be assigned explicit locations. The checking here associates
2203 * the correct extension with the correct stage's input / output:
2204 *
2205 * input output
2206 * ----- ------
2207 * vertex explicit_loc sso
2208 * geometry sso sso
2209 * fragment sso explicit_loc
2210 */
2211 switch (state->stage) {
2212 case MESA_SHADER_VERTEX:
2213 if (var->data.mode == ir_var_shader_in) {
2214 if (!state->check_explicit_attrib_location_allowed(loc, var))
2215 return;
2216
2217 break;
2218 }
2219
2220 if (var->data.mode == ir_var_shader_out) {
2221 if (!state->check_separate_shader_objects_allowed(loc, var))
2222 return;
2223
2224 break;
2225 }
2226
2227 fail = true;
2228 break;
2229
2230 case MESA_SHADER_GEOMETRY:
2231 if (var->data.mode == ir_var_shader_in || var->data.mode == ir_var_shader_out) {
2232 if (!state->check_separate_shader_objects_allowed(loc, var))
2233 return;
2234
2235 break;
2236 }
2237
2238 fail = true;
2239 break;
2240
2241 case MESA_SHADER_FRAGMENT:
2242 if (var->data.mode == ir_var_shader_in) {
2243 if (!state->check_separate_shader_objects_allowed(loc, var))
2244 return;
2245
2246 break;
2247 }
2248
2249 if (var->data.mode == ir_var_shader_out) {
2250 if (!state->check_explicit_attrib_location_allowed(loc, var))
2251 return;
2252
2253 break;
2254 }
2255
2256 fail = true;
2257 break;
2258
2259 case MESA_SHADER_COMPUTE:
2260 _mesa_glsl_error(loc, state,
2261 "compute shader variables cannot be given "
2262 "explicit locations");
2263 return;
2264 };
2265
2266 if (fail) {
2267 _mesa_glsl_error(loc, state,
2268 "%s cannot be given an explicit location in %s shader",
2269 mode_string(var),
2270 _mesa_shader_stage_to_string(state->stage));
2271 } else {
2272 var->data.explicit_location = true;
2273
2274 /* This bit of silliness is needed because invalid explicit locations
2275 * are supposed to be flagged during linking. Small negative values
2276 * biased by VERT_ATTRIB_GENERIC0 or FRAG_RESULT_DATA0 could alias
2277 * built-in values (e.g., -16+VERT_ATTRIB_GENERIC0 = VERT_ATTRIB_POS).
2278 * The linker needs to be able to differentiate these cases. This
2279 * ensures that negative values stay negative.
2280 */
2281 if (qual->location >= 0) {
2282 switch (state->stage) {
2283 case MESA_SHADER_VERTEX:
2284 var->data.location = (var->data.mode == ir_var_shader_in)
2285 ? (qual->location + VERT_ATTRIB_GENERIC0)
2286 : (qual->location + VARYING_SLOT_VAR0);
2287 break;
2288
2289 case MESA_SHADER_GEOMETRY:
2290 var->data.location = qual->location + VARYING_SLOT_VAR0;
2291 break;
2292
2293 case MESA_SHADER_FRAGMENT:
2294 var->data.location = (var->data.mode == ir_var_shader_out)
2295 ? (qual->location + FRAG_RESULT_DATA0)
2296 : (qual->location + VARYING_SLOT_VAR0);
2297 break;
2298 case MESA_SHADER_COMPUTE:
2299 assert(!"Unexpected shader type");
2300 break;
2301 }
2302 } else {
2303 var->data.location = qual->location;
2304 }
2305
2306 if (qual->flags.q.explicit_index) {
2307 /* From the GLSL 4.30 specification, section 4.4.2 (Output
2308 * Layout Qualifiers):
2309 *
2310 * "It is also a compile-time error if a fragment shader
2311 * sets a layout index to less than 0 or greater than 1."
2312 *
2313 * Older specifications don't mandate a behavior; we take
2314 * this as a clarification and always generate the error.
2315 */
2316 if (qual->index < 0 || qual->index > 1) {
2317 _mesa_glsl_error(loc, state,
2318 "explicit index may only be 0 or 1");
2319 } else {
2320 var->data.explicit_index = true;
2321 var->data.index = qual->index;
2322 }
2323 }
2324 }
2325 }
2326
2327 static void
2328 apply_image_qualifier_to_variable(const struct ast_type_qualifier *qual,
2329 ir_variable *var,
2330 struct _mesa_glsl_parse_state *state,
2331 YYLTYPE *loc)
2332 {
2333 const glsl_type *base_type = var->type->without_array();
2334
2335 if (base_type->is_image()) {
2336 if (var->data.mode != ir_var_uniform &&
2337 var->data.mode != ir_var_function_in) {
2338 _mesa_glsl_error(loc, state, "image variables may only be declared as "
2339 "function parameters or uniform-qualified "
2340 "global variables");
2341 }
2342
2343 var->data.image_read_only |= qual->flags.q.read_only;
2344 var->data.image_write_only |= qual->flags.q.write_only;
2345 var->data.image_coherent |= qual->flags.q.coherent;
2346 var->data.image_volatile |= qual->flags.q._volatile;
2347 var->data.image_restrict |= qual->flags.q.restrict_flag;
2348 var->data.read_only = true;
2349
2350 if (qual->flags.q.explicit_image_format) {
2351 if (var->data.mode == ir_var_function_in) {
2352 _mesa_glsl_error(loc, state, "format qualifiers cannot be "
2353 "used on image function parameters");
2354 }
2355
2356 if (qual->image_base_type != base_type->sampler_type) {
2357 _mesa_glsl_error(loc, state, "format qualifier doesn't match the "
2358 "base data type of the image");
2359 }
2360
2361 var->data.image_format = qual->image_format;
2362 } else {
2363 if (var->data.mode == ir_var_uniform && !qual->flags.q.write_only) {
2364 _mesa_glsl_error(loc, state, "uniforms not qualified with "
2365 "`writeonly' must have a format layout "
2366 "qualifier");
2367 }
2368
2369 var->data.image_format = GL_NONE;
2370 }
2371 } else if (qual->flags.q.read_only ||
2372 qual->flags.q.write_only ||
2373 qual->flags.q.coherent ||
2374 qual->flags.q._volatile ||
2375 qual->flags.q.restrict_flag ||
2376 qual->flags.q.explicit_image_format) {
2377 _mesa_glsl_error(loc, state, "memory qualifiers may only be applied to "
2378 "images");
2379 }
2380 }
2381
2382 static inline const char*
2383 get_layout_qualifier_string(bool origin_upper_left, bool pixel_center_integer)
2384 {
2385 if (origin_upper_left && pixel_center_integer)
2386 return "origin_upper_left, pixel_center_integer";
2387 else if (origin_upper_left)
2388 return "origin_upper_left";
2389 else if (pixel_center_integer)
2390 return "pixel_center_integer";
2391 else
2392 return " ";
2393 }
2394
2395 static inline bool
2396 is_conflicting_fragcoord_redeclaration(struct _mesa_glsl_parse_state *state,
2397 const struct ast_type_qualifier *qual)
2398 {
2399 /* If gl_FragCoord was previously declared, and the qualifiers were
2400 * different in any way, return true.
2401 */
2402 if (state->fs_redeclares_gl_fragcoord) {
2403 return (state->fs_pixel_center_integer != qual->flags.q.pixel_center_integer
2404 || state->fs_origin_upper_left != qual->flags.q.origin_upper_left);
2405 }
2406
2407 return false;
2408 }
2409
2410 static void
2411 apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
2412 ir_variable *var,
2413 struct _mesa_glsl_parse_state *state,
2414 YYLTYPE *loc,
2415 bool is_parameter)
2416 {
2417 STATIC_ASSERT(sizeof(qual->flags.q) <= sizeof(qual->flags.i));
2418
2419 if (qual->flags.q.invariant) {
2420 if (var->data.used) {
2421 _mesa_glsl_error(loc, state,
2422 "variable `%s' may not be redeclared "
2423 "`invariant' after being used",
2424 var->name);
2425 } else {
2426 var->data.invariant = 1;
2427 }
2428 }
2429
2430 if (qual->flags.q.precise) {
2431 if (var->data.used) {
2432 _mesa_glsl_error(loc, state,
2433 "variable `%s' may not be redeclared "
2434 "`precise' after being used",
2435 var->name);
2436 } else {
2437 var->data.precise = 1;
2438 }
2439 }
2440
2441 if (qual->flags.q.constant || qual->flags.q.attribute
2442 || qual->flags.q.uniform
2443 || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
2444 var->data.read_only = 1;
2445
2446 if (qual->flags.q.centroid)
2447 var->data.centroid = 1;
2448
2449 if (qual->flags.q.sample)
2450 var->data.sample = 1;
2451
2452 if (state->stage == MESA_SHADER_GEOMETRY &&
2453 qual->flags.q.out && qual->flags.q.stream) {
2454 var->data.stream = qual->stream;
2455 }
2456
2457 if (qual->flags.q.attribute && state->stage != MESA_SHADER_VERTEX) {
2458 var->type = glsl_type::error_type;
2459 _mesa_glsl_error(loc, state,
2460 "`attribute' variables may not be declared in the "
2461 "%s shader",
2462 _mesa_shader_stage_to_string(state->stage));
2463 }
2464
2465 /* Disallow layout qualifiers which may only appear on layout declarations. */
2466 if (qual->flags.q.prim_type) {
2467 _mesa_glsl_error(loc, state,
2468 "Primitive type may only be specified on GS input or output "
2469 "layout declaration, not on variables.");
2470 }
2471
2472 /* Section 6.1.1 (Function Calling Conventions) of the GLSL 1.10 spec says:
2473 *
2474 * "However, the const qualifier cannot be used with out or inout."
2475 *
2476 * The same section of the GLSL 4.40 spec further clarifies this saying:
2477 *
2478 * "The const qualifier cannot be used with out or inout, or a
2479 * compile-time error results."
2480 */
2481 if (is_parameter && qual->flags.q.constant && qual->flags.q.out) {
2482 _mesa_glsl_error(loc, state,
2483 "`const' may not be applied to `out' or `inout' "
2484 "function parameters");
2485 }
2486
2487 /* If there is no qualifier that changes the mode of the variable, leave
2488 * the setting alone.
2489 */
2490 assert(var->data.mode != ir_var_temporary);
2491 if (qual->flags.q.in && qual->flags.q.out)
2492 var->data.mode = ir_var_function_inout;
2493 else if (qual->flags.q.in)
2494 var->data.mode = is_parameter ? ir_var_function_in : ir_var_shader_in;
2495 else if (qual->flags.q.attribute
2496 || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
2497 var->data.mode = ir_var_shader_in;
2498 else if (qual->flags.q.out)
2499 var->data.mode = is_parameter ? ir_var_function_out : ir_var_shader_out;
2500 else if (qual->flags.q.varying && (state->stage == MESA_SHADER_VERTEX))
2501 var->data.mode = ir_var_shader_out;
2502 else if (qual->flags.q.uniform)
2503 var->data.mode = ir_var_uniform;
2504
2505 if (!is_parameter && is_varying_var(var, state->stage)) {
2506 /* User-defined ins/outs are not permitted in compute shaders. */
2507 if (state->stage == MESA_SHADER_COMPUTE) {
2508 _mesa_glsl_error(loc, state,
2509 "user-defined input and output variables are not "
2510 "permitted in compute shaders");
2511 }
2512
2513 /* This variable is being used to link data between shader stages (in
2514 * pre-glsl-1.30 parlance, it's a "varying"). Check that it has a type
2515 * that is allowed for such purposes.
2516 *
2517 * From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
2518 *
2519 * "The varying qualifier can be used only with the data types
2520 * float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
2521 * these."
2522 *
2523 * This was relaxed in GLSL version 1.30 and GLSL ES version 3.00. From
2524 * page 31 (page 37 of the PDF) of the GLSL 1.30 spec:
2525 *
2526 * "Fragment inputs can only be signed and unsigned integers and
2527 * integer vectors, float, floating-point vectors, matrices, or
2528 * arrays of these. Structures cannot be input.
2529 *
2530 * Similar text exists in the section on vertex shader outputs.
2531 *
2532 * Similar text exists in the GLSL ES 3.00 spec, except that the GLSL ES
2533 * 3.00 spec allows structs as well. Varying structs are also allowed
2534 * in GLSL 1.50.
2535 */
2536 switch (var->type->get_scalar_type()->base_type) {
2537 case GLSL_TYPE_FLOAT:
2538 /* Ok in all GLSL versions */
2539 break;
2540 case GLSL_TYPE_UINT:
2541 case GLSL_TYPE_INT:
2542 if (state->is_version(130, 300))
2543 break;
2544 _mesa_glsl_error(loc, state,
2545 "varying variables must be of base type float in %s",
2546 state->get_version_string());
2547 break;
2548 case GLSL_TYPE_STRUCT:
2549 if (state->is_version(150, 300))
2550 break;
2551 _mesa_glsl_error(loc, state,
2552 "varying variables may not be of type struct");
2553 break;
2554 case GLSL_TYPE_DOUBLE:
2555 break;
2556 default:
2557 _mesa_glsl_error(loc, state, "illegal type for a varying variable");
2558 break;
2559 }
2560 }
2561
2562 if (state->all_invariant && (state->current_function == NULL)) {
2563 switch (state->stage) {
2564 case MESA_SHADER_VERTEX:
2565 if (var->data.mode == ir_var_shader_out)
2566 var->data.invariant = true;
2567 break;
2568 case MESA_SHADER_GEOMETRY:
2569 if ((var->data.mode == ir_var_shader_in)
2570 || (var->data.mode == ir_var_shader_out))
2571 var->data.invariant = true;
2572 break;
2573 case MESA_SHADER_FRAGMENT:
2574 if (var->data.mode == ir_var_shader_in)
2575 var->data.invariant = true;
2576 break;
2577 case MESA_SHADER_COMPUTE:
2578 /* Invariance isn't meaningful in compute shaders. */
2579 break;
2580 }
2581 }
2582
2583 var->data.interpolation =
2584 interpret_interpolation_qualifier(qual, (ir_variable_mode) var->data.mode,
2585 state, loc);
2586
2587 var->data.pixel_center_integer = qual->flags.q.pixel_center_integer;
2588 var->data.origin_upper_left = qual->flags.q.origin_upper_left;
2589 if ((qual->flags.q.origin_upper_left || qual->flags.q.pixel_center_integer)
2590 && (strcmp(var->name, "gl_FragCoord") != 0)) {
2591 const char *const qual_string = (qual->flags.q.origin_upper_left)
2592 ? "origin_upper_left" : "pixel_center_integer";
2593
2594 _mesa_glsl_error(loc, state,
2595 "layout qualifier `%s' can only be applied to "
2596 "fragment shader input `gl_FragCoord'",
2597 qual_string);
2598 }
2599
2600 if (var->name != NULL && strcmp(var->name, "gl_FragCoord") == 0) {
2601
2602 /* Section 4.3.8.1, page 39 of GLSL 1.50 spec says:
2603 *
2604 * "Within any shader, the first redeclarations of gl_FragCoord
2605 * must appear before any use of gl_FragCoord."
2606 *
2607 * Generate a compiler error if above condition is not met by the
2608 * fragment shader.
2609 */
2610 ir_variable *earlier = state->symbols->get_variable("gl_FragCoord");
2611 if (earlier != NULL &&
2612 earlier->data.used &&
2613 !state->fs_redeclares_gl_fragcoord) {
2614 _mesa_glsl_error(loc, state,
2615 "gl_FragCoord used before its first redeclaration "
2616 "in fragment shader");
2617 }
2618
2619 /* Make sure all gl_FragCoord redeclarations specify the same layout
2620 * qualifiers.
2621 */
2622 if (is_conflicting_fragcoord_redeclaration(state, qual)) {
2623 const char *const qual_string =
2624 get_layout_qualifier_string(qual->flags.q.origin_upper_left,
2625 qual->flags.q.pixel_center_integer);
2626
2627 const char *const state_string =
2628 get_layout_qualifier_string(state->fs_origin_upper_left,
2629 state->fs_pixel_center_integer);
2630
2631 _mesa_glsl_error(loc, state,
2632 "gl_FragCoord redeclared with different layout "
2633 "qualifiers (%s) and (%s) ",
2634 state_string,
2635 qual_string);
2636 }
2637 state->fs_origin_upper_left = qual->flags.q.origin_upper_left;
2638 state->fs_pixel_center_integer = qual->flags.q.pixel_center_integer;
2639 state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers =
2640 !qual->flags.q.origin_upper_left && !qual->flags.q.pixel_center_integer;
2641 state->fs_redeclares_gl_fragcoord =
2642 state->fs_origin_upper_left ||
2643 state->fs_pixel_center_integer ||
2644 state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers;
2645 }
2646
2647 if (qual->flags.q.explicit_location) {
2648 validate_explicit_location(qual, var, state, loc);
2649 } else if (qual->flags.q.explicit_index) {
2650 _mesa_glsl_error(loc, state, "explicit index requires explicit location");
2651 }
2652
2653 if (qual->flags.q.explicit_binding &&
2654 validate_binding_qualifier(state, loc, var, qual)) {
2655 var->data.explicit_binding = true;
2656 var->data.binding = qual->binding;
2657 }
2658
2659 if (var->type->contains_atomic()) {
2660 if (var->data.mode == ir_var_uniform) {
2661 if (var->data.explicit_binding) {
2662 unsigned *offset =
2663 &state->atomic_counter_offsets[var->data.binding];
2664
2665 if (*offset % ATOMIC_COUNTER_SIZE)
2666 _mesa_glsl_error(loc, state,
2667 "misaligned atomic counter offset");
2668
2669 var->data.atomic.offset = *offset;
2670 *offset += var->type->atomic_size();
2671
2672 } else {
2673 _mesa_glsl_error(loc, state,
2674 "atomic counters require explicit binding point");
2675 }
2676 } else if (var->data.mode != ir_var_function_in) {
2677 _mesa_glsl_error(loc, state, "atomic counters may only be declared as "
2678 "function parameters or uniform-qualified "
2679 "global variables");
2680 }
2681 }
2682
2683 /* Does the declaration use the deprecated 'attribute' or 'varying'
2684 * keywords?
2685 */
2686 const bool uses_deprecated_qualifier = qual->flags.q.attribute
2687 || qual->flags.q.varying;
2688
2689
2690 /* Validate auxiliary storage qualifiers */
2691
2692 /* From section 4.3.4 of the GLSL 1.30 spec:
2693 * "It is an error to use centroid in in a vertex shader."
2694 *
2695 * From section 4.3.4 of the GLSL ES 3.00 spec:
2696 * "It is an error to use centroid in or interpolation qualifiers in
2697 * a vertex shader input."
2698 */
2699
2700 /* Section 4.3.6 of the GLSL 1.30 specification states:
2701 * "It is an error to use centroid out in a fragment shader."
2702 *
2703 * The GL_ARB_shading_language_420pack extension specification states:
2704 * "It is an error to use auxiliary storage qualifiers or interpolation
2705 * qualifiers on an output in a fragment shader."
2706 */
2707 if (qual->flags.q.sample && (!is_varying_var(var, state->stage) || uses_deprecated_qualifier)) {
2708 _mesa_glsl_error(loc, state,
2709 "sample qualifier may only be used on `in` or `out` "
2710 "variables between shader stages");
2711 }
2712 if (qual->flags.q.centroid && !is_varying_var(var, state->stage)) {
2713 _mesa_glsl_error(loc, state,
2714 "centroid qualifier may only be used with `in', "
2715 "`out' or `varying' variables between shader stages");
2716 }
2717
2718
2719 /* Is the 'layout' keyword used with parameters that allow relaxed checking.
2720 * Many implementations of GL_ARB_fragment_coord_conventions_enable and some
2721 * implementations (only Mesa?) GL_ARB_explicit_attrib_location_enable
2722 * allowed the layout qualifier to be used with 'varying' and 'attribute'.
2723 * These extensions and all following extensions that add the 'layout'
2724 * keyword have been modified to require the use of 'in' or 'out'.
2725 *
2726 * The following extension do not allow the deprecated keywords:
2727 *
2728 * GL_AMD_conservative_depth
2729 * GL_ARB_conservative_depth
2730 * GL_ARB_gpu_shader5
2731 * GL_ARB_separate_shader_objects
2732 * GL_ARB_tesselation_shader
2733 * GL_ARB_transform_feedback3
2734 * GL_ARB_uniform_buffer_object
2735 *
2736 * It is unknown whether GL_EXT_shader_image_load_store or GL_NV_gpu_shader5
2737 * allow layout with the deprecated keywords.
2738 */
2739 const bool relaxed_layout_qualifier_checking =
2740 state->ARB_fragment_coord_conventions_enable;
2741
2742 if (qual->has_layout() && uses_deprecated_qualifier) {
2743 if (relaxed_layout_qualifier_checking) {
2744 _mesa_glsl_warning(loc, state,
2745 "`layout' qualifier may not be used with "
2746 "`attribute' or `varying'");
2747 } else {
2748 _mesa_glsl_error(loc, state,
2749 "`layout' qualifier may not be used with "
2750 "`attribute' or `varying'");
2751 }
2752 }
2753
2754 /* Layout qualifiers for gl_FragDepth, which are enabled by extension
2755 * AMD_conservative_depth.
2756 */
2757 int depth_layout_count = qual->flags.q.depth_any
2758 + qual->flags.q.depth_greater
2759 + qual->flags.q.depth_less
2760 + qual->flags.q.depth_unchanged;
2761 if (depth_layout_count > 0
2762 && !state->AMD_conservative_depth_enable
2763 && !state->ARB_conservative_depth_enable) {
2764 _mesa_glsl_error(loc, state,
2765 "extension GL_AMD_conservative_depth or "
2766 "GL_ARB_conservative_depth must be enabled "
2767 "to use depth layout qualifiers");
2768 } else if (depth_layout_count > 0
2769 && strcmp(var->name, "gl_FragDepth") != 0) {
2770 _mesa_glsl_error(loc, state,
2771 "depth layout qualifiers can be applied only to "
2772 "gl_FragDepth");
2773 } else if (depth_layout_count > 1
2774 && strcmp(var->name, "gl_FragDepth") == 0) {
2775 _mesa_glsl_error(loc, state,
2776 "at most one depth layout qualifier can be applied to "
2777 "gl_FragDepth");
2778 }
2779 if (qual->flags.q.depth_any)
2780 var->data.depth_layout = ir_depth_layout_any;
2781 else if (qual->flags.q.depth_greater)
2782 var->data.depth_layout = ir_depth_layout_greater;
2783 else if (qual->flags.q.depth_less)
2784 var->data.depth_layout = ir_depth_layout_less;
2785 else if (qual->flags.q.depth_unchanged)
2786 var->data.depth_layout = ir_depth_layout_unchanged;
2787 else
2788 var->data.depth_layout = ir_depth_layout_none;
2789
2790 if (qual->flags.q.std140 ||
2791 qual->flags.q.packed ||
2792 qual->flags.q.shared) {
2793 _mesa_glsl_error(loc, state,
2794 "uniform block layout qualifiers std140, packed, and "
2795 "shared can only be applied to uniform blocks, not "
2796 "members");
2797 }
2798
2799 if (qual->flags.q.row_major || qual->flags.q.column_major) {
2800 validate_matrix_layout_for_type(state, loc, var->type, var);
2801 }
2802
2803 apply_image_qualifier_to_variable(qual, var, state, loc);
2804
2805 /* From section 4.4.1.3 of the GLSL 4.50 specification (Fragment Shader
2806 * Inputs):
2807 *
2808 * "Fragment shaders also allow the following layout qualifier on in only
2809 * (not with variable declarations)
2810 * layout-qualifier-id
2811 * early_fragment_tests
2812 * [...]"
2813 */
2814 if (qual->flags.q.early_fragment_tests) {
2815 _mesa_glsl_error(loc, state, "early_fragment_tests layout qualifier only "
2816 "valid in fragment shader input layout declaration.");
2817 }
2818 }
2819
2820 /**
2821 * Get the variable that is being redeclared by this declaration
2822 *
2823 * Semantic checks to verify the validity of the redeclaration are also
2824 * performed. If semantic checks fail, compilation error will be emitted via
2825 * \c _mesa_glsl_error, but a non-\c NULL pointer will still be returned.
2826 *
2827 * \returns
2828 * A pointer to an existing variable in the current scope if the declaration
2829 * is a redeclaration, \c NULL otherwise.
2830 */
2831 static ir_variable *
2832 get_variable_being_redeclared(ir_variable *var, YYLTYPE loc,
2833 struct _mesa_glsl_parse_state *state,
2834 bool allow_all_redeclarations)
2835 {
2836 /* Check if this declaration is actually a re-declaration, either to
2837 * resize an array or add qualifiers to an existing variable.
2838 *
2839 * This is allowed for variables in the current scope, or when at
2840 * global scope (for built-ins in the implicit outer scope).
2841 */
2842 ir_variable *earlier = state->symbols->get_variable(var->name);
2843 if (earlier == NULL ||
2844 (state->current_function != NULL &&
2845 !state->symbols->name_declared_this_scope(var->name))) {
2846 return NULL;
2847 }
2848
2849
2850 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
2851 *
2852 * "It is legal to declare an array without a size and then
2853 * later re-declare the same name as an array of the same
2854 * type and specify a size."
2855 */
2856 if (earlier->type->is_unsized_array() && var->type->is_array()
2857 && (var->type->fields.array == earlier->type->fields.array)) {
2858 /* FINISHME: This doesn't match the qualifiers on the two
2859 * FINISHME: declarations. It's not 100% clear whether this is
2860 * FINISHME: required or not.
2861 */
2862
2863 const unsigned size = unsigned(var->type->array_size());
2864 check_builtin_array_max_size(var->name, size, loc, state);
2865 if ((size > 0) && (size <= earlier->data.max_array_access)) {
2866 _mesa_glsl_error(& loc, state, "array size must be > %u due to "
2867 "previous access",
2868 earlier->data.max_array_access);
2869 }
2870
2871 earlier->type = var->type;
2872 delete var;
2873 var = NULL;
2874 } else if ((state->ARB_fragment_coord_conventions_enable ||
2875 state->is_version(150, 0))
2876 && strcmp(var->name, "gl_FragCoord") == 0
2877 && earlier->type == var->type
2878 && earlier->data.mode == var->data.mode) {
2879 /* Allow redeclaration of gl_FragCoord for ARB_fcc layout
2880 * qualifiers.
2881 */
2882 earlier->data.origin_upper_left = var->data.origin_upper_left;
2883 earlier->data.pixel_center_integer = var->data.pixel_center_integer;
2884
2885 /* According to section 4.3.7 of the GLSL 1.30 spec,
2886 * the following built-in varaibles can be redeclared with an
2887 * interpolation qualifier:
2888 * * gl_FrontColor
2889 * * gl_BackColor
2890 * * gl_FrontSecondaryColor
2891 * * gl_BackSecondaryColor
2892 * * gl_Color
2893 * * gl_SecondaryColor
2894 */
2895 } else if (state->is_version(130, 0)
2896 && (strcmp(var->name, "gl_FrontColor") == 0
2897 || strcmp(var->name, "gl_BackColor") == 0
2898 || strcmp(var->name, "gl_FrontSecondaryColor") == 0
2899 || strcmp(var->name, "gl_BackSecondaryColor") == 0
2900 || strcmp(var->name, "gl_Color") == 0
2901 || strcmp(var->name, "gl_SecondaryColor") == 0)
2902 && earlier->type == var->type
2903 && earlier->data.mode == var->data.mode) {
2904 earlier->data.interpolation = var->data.interpolation;
2905
2906 /* Layout qualifiers for gl_FragDepth. */
2907 } else if ((state->AMD_conservative_depth_enable ||
2908 state->ARB_conservative_depth_enable)
2909 && strcmp(var->name, "gl_FragDepth") == 0
2910 && earlier->type == var->type
2911 && earlier->data.mode == var->data.mode) {
2912
2913 /** From the AMD_conservative_depth spec:
2914 * Within any shader, the first redeclarations of gl_FragDepth
2915 * must appear before any use of gl_FragDepth.
2916 */
2917 if (earlier->data.used) {
2918 _mesa_glsl_error(&loc, state,
2919 "the first redeclaration of gl_FragDepth "
2920 "must appear before any use of gl_FragDepth");
2921 }
2922
2923 /* Prevent inconsistent redeclaration of depth layout qualifier. */
2924 if (earlier->data.depth_layout != ir_depth_layout_none
2925 && earlier->data.depth_layout != var->data.depth_layout) {
2926 _mesa_glsl_error(&loc, state,
2927 "gl_FragDepth: depth layout is declared here "
2928 "as '%s, but it was previously declared as "
2929 "'%s'",
2930 depth_layout_string(var->data.depth_layout),
2931 depth_layout_string(earlier->data.depth_layout));
2932 }
2933
2934 earlier->data.depth_layout = var->data.depth_layout;
2935
2936 } else if (allow_all_redeclarations) {
2937 if (earlier->data.mode != var->data.mode) {
2938 _mesa_glsl_error(&loc, state,
2939 "redeclaration of `%s' with incorrect qualifiers",
2940 var->name);
2941 } else if (earlier->type != var->type) {
2942 _mesa_glsl_error(&loc, state,
2943 "redeclaration of `%s' has incorrect type",
2944 var->name);
2945 }
2946 } else {
2947 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
2948 }
2949
2950 return earlier;
2951 }
2952
2953 /**
2954 * Generate the IR for an initializer in a variable declaration
2955 */
2956 ir_rvalue *
2957 process_initializer(ir_variable *var, ast_declaration *decl,
2958 ast_fully_specified_type *type,
2959 exec_list *initializer_instructions,
2960 struct _mesa_glsl_parse_state *state)
2961 {
2962 ir_rvalue *result = NULL;
2963
2964 YYLTYPE initializer_loc = decl->initializer->get_location();
2965
2966 /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
2967 *
2968 * "All uniform variables are read-only and are initialized either
2969 * directly by an application via API commands, or indirectly by
2970 * OpenGL."
2971 */
2972 if (var->data.mode == ir_var_uniform) {
2973 state->check_version(120, 0, &initializer_loc,
2974 "cannot initialize uniforms");
2975 }
2976
2977 /* From section 4.1.7 of the GLSL 4.40 spec:
2978 *
2979 * "Opaque variables [...] are initialized only through the
2980 * OpenGL API; they cannot be declared with an initializer in a
2981 * shader."
2982 */
2983 if (var->type->contains_opaque()) {
2984 _mesa_glsl_error(& initializer_loc, state,
2985 "cannot initialize opaque variable");
2986 }
2987
2988 if ((var->data.mode == ir_var_shader_in) && (state->current_function == NULL)) {
2989 _mesa_glsl_error(& initializer_loc, state,
2990 "cannot initialize %s shader input / %s",
2991 _mesa_shader_stage_to_string(state->stage),
2992 (state->stage == MESA_SHADER_VERTEX)
2993 ? "attribute" : "varying");
2994 }
2995
2996 /* If the initializer is an ast_aggregate_initializer, recursively store
2997 * type information from the LHS into it, so that its hir() function can do
2998 * type checking.
2999 */
3000 if (decl->initializer->oper == ast_aggregate)
3001 _mesa_ast_set_aggregate_type(var->type, decl->initializer);
3002
3003 ir_dereference *const lhs = new(state) ir_dereference_variable(var);
3004 ir_rvalue *rhs = decl->initializer->hir(initializer_instructions, state);
3005
3006 /* Calculate the constant value if this is a const or uniform
3007 * declaration.
3008 */
3009 if (type->qualifier.flags.q.constant
3010 || type->qualifier.flags.q.uniform) {
3011 ir_rvalue *new_rhs = validate_assignment(state, initializer_loc,
3012 var->type, rhs, true);
3013 if (new_rhs != NULL) {
3014 rhs = new_rhs;
3015
3016 ir_constant *constant_value = rhs->constant_expression_value();
3017 if (!constant_value) {
3018 /* If ARB_shading_language_420pack is enabled, initializers of
3019 * const-qualified local variables do not have to be constant
3020 * expressions. Const-qualified global variables must still be
3021 * initialized with constant expressions.
3022 */
3023 if (!state->ARB_shading_language_420pack_enable
3024 || state->current_function == NULL) {
3025 _mesa_glsl_error(& initializer_loc, state,
3026 "initializer of %s variable `%s' must be a "
3027 "constant expression",
3028 (type->qualifier.flags.q.constant)
3029 ? "const" : "uniform",
3030 decl->identifier);
3031 if (var->type->is_numeric()) {
3032 /* Reduce cascading errors. */
3033 var->constant_value = ir_constant::zero(state, var->type);
3034 }
3035 }
3036 } else {
3037 rhs = constant_value;
3038 var->constant_value = constant_value;
3039 }
3040 } else {
3041 if (var->type->is_numeric()) {
3042 /* Reduce cascading errors. */
3043 var->constant_value = ir_constant::zero(state, var->type);
3044 }
3045 }
3046 }
3047
3048 if (rhs && !rhs->type->is_error()) {
3049 bool temp = var->data.read_only;
3050 if (type->qualifier.flags.q.constant)
3051 var->data.read_only = false;
3052
3053 /* Never emit code to initialize a uniform.
3054 */
3055 const glsl_type *initializer_type;
3056 if (!type->qualifier.flags.q.uniform) {
3057 do_assignment(initializer_instructions, state,
3058 NULL,
3059 lhs, rhs,
3060 &result, true,
3061 true,
3062 type->get_location());
3063 initializer_type = result->type;
3064 } else
3065 initializer_type = rhs->type;
3066
3067 var->constant_initializer = rhs->constant_expression_value();
3068 var->data.has_initializer = true;
3069
3070 /* If the declared variable is an unsized array, it must inherrit
3071 * its full type from the initializer. A declaration such as
3072 *
3073 * uniform float a[] = float[](1.0, 2.0, 3.0, 3.0);
3074 *
3075 * becomes
3076 *
3077 * uniform float a[4] = float[](1.0, 2.0, 3.0, 3.0);
3078 *
3079 * The assignment generated in the if-statement (below) will also
3080 * automatically handle this case for non-uniforms.
3081 *
3082 * If the declared variable is not an array, the types must
3083 * already match exactly. As a result, the type assignment
3084 * here can be done unconditionally. For non-uniforms the call
3085 * to do_assignment can change the type of the initializer (via
3086 * the implicit conversion rules). For uniforms the initializer
3087 * must be a constant expression, and the type of that expression
3088 * was validated above.
3089 */
3090 var->type = initializer_type;
3091
3092 var->data.read_only = temp;
3093 }
3094
3095 return result;
3096 }
3097
3098
3099 /**
3100 * Do additional processing necessary for geometry shader input declarations
3101 * (this covers both interface blocks arrays and bare input variables).
3102 */
3103 static void
3104 handle_geometry_shader_input_decl(struct _mesa_glsl_parse_state *state,
3105 YYLTYPE loc, ir_variable *var)
3106 {
3107 unsigned num_vertices = 0;
3108 if (state->gs_input_prim_type_specified) {
3109 num_vertices = vertices_per_prim(state->in_qualifier->prim_type);
3110 }
3111
3112 /* Geometry shader input variables must be arrays. Caller should have
3113 * reported an error for this.
3114 */
3115 if (!var->type->is_array()) {
3116 assert(state->error);
3117
3118 /* To avoid cascading failures, short circuit the checks below. */
3119 return;
3120 }
3121
3122 if (var->type->is_unsized_array()) {
3123 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec says:
3124 *
3125 * All geometry shader input unsized array declarations will be
3126 * sized by an earlier input layout qualifier, when present, as per
3127 * the following table.
3128 *
3129 * Followed by a table mapping each allowed input layout qualifier to
3130 * the corresponding input length.
3131 */
3132 if (num_vertices != 0)
3133 var->type = glsl_type::get_array_instance(var->type->fields.array,
3134 num_vertices);
3135 } else {
3136 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec
3137 * includes the following examples of compile-time errors:
3138 *
3139 * // code sequence within one shader...
3140 * in vec4 Color1[]; // size unknown
3141 * ...Color1.length()...// illegal, length() unknown
3142 * in vec4 Color2[2]; // size is 2
3143 * ...Color1.length()...// illegal, Color1 still has no size
3144 * in vec4 Color3[3]; // illegal, input sizes are inconsistent
3145 * layout(lines) in; // legal, input size is 2, matching
3146 * in vec4 Color4[3]; // illegal, contradicts layout
3147 * ...
3148 *
3149 * To detect the case illustrated by Color3, we verify that the size of
3150 * an explicitly-sized array matches the size of any previously declared
3151 * explicitly-sized array. To detect the case illustrated by Color4, we
3152 * verify that the size of an explicitly-sized array is consistent with
3153 * any previously declared input layout.
3154 */
3155 if (num_vertices != 0 && var->type->length != num_vertices) {
3156 _mesa_glsl_error(&loc, state,
3157 "geometry shader input size contradicts previously"
3158 " declared layout (size is %u, but layout requires a"
3159 " size of %u)", var->type->length, num_vertices);
3160 } else if (state->gs_input_size != 0 &&
3161 var->type->length != state->gs_input_size) {
3162 _mesa_glsl_error(&loc, state,
3163 "geometry shader input sizes are "
3164 "inconsistent (size is %u, but a previous "
3165 "declaration has size %u)",
3166 var->type->length, state->gs_input_size);
3167 } else {
3168 state->gs_input_size = var->type->length;
3169 }
3170 }
3171 }
3172
3173
3174 void
3175 validate_identifier(const char *identifier, YYLTYPE loc,
3176 struct _mesa_glsl_parse_state *state)
3177 {
3178 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
3179 *
3180 * "Identifiers starting with "gl_" are reserved for use by
3181 * OpenGL, and may not be declared in a shader as either a
3182 * variable or a function."
3183 */
3184 if (is_gl_identifier(identifier)) {
3185 _mesa_glsl_error(&loc, state,
3186 "identifier `%s' uses reserved `gl_' prefix",
3187 identifier);
3188 } else if (strstr(identifier, "__")) {
3189 /* From page 14 (page 20 of the PDF) of the GLSL 1.10
3190 * spec:
3191 *
3192 * "In addition, all identifiers containing two
3193 * consecutive underscores (__) are reserved as
3194 * possible future keywords."
3195 *
3196 * The intention is that names containing __ are reserved for internal
3197 * use by the implementation, and names prefixed with GL_ are reserved
3198 * for use by Khronos. Names simply containing __ are dangerous to use,
3199 * but should be allowed.
3200 *
3201 * A future version of the GLSL specification will clarify this.
3202 */
3203 _mesa_glsl_warning(&loc, state,
3204 "identifier `%s' uses reserved `__' string",
3205 identifier);
3206 }
3207 }
3208
3209 static bool
3210 precision_qualifier_allowed(const glsl_type *type)
3211 {
3212 /* Precision qualifiers apply to floating point, integer and sampler
3213 * types.
3214 *
3215 * Section 4.5.2 (Precision Qualifiers) of the GLSL 1.30 spec says:
3216 * "Any floating point or any integer declaration can have the type
3217 * preceded by one of these precision qualifiers [...] Literal
3218 * constants do not have precision qualifiers. Neither do Boolean
3219 * variables.
3220 *
3221 * Section 4.5 (Precision and Precision Qualifiers) of the GLSL 1.30
3222 * spec also says:
3223 *
3224 * "Precision qualifiers are added for code portability with OpenGL
3225 * ES, not for functionality. They have the same syntax as in OpenGL
3226 * ES."
3227 *
3228 * Section 8 (Built-In Functions) of the GLSL ES 1.00 spec says:
3229 *
3230 * "uniform lowp sampler2D sampler;
3231 * highp vec2 coord;
3232 * ...
3233 * lowp vec4 col = texture2D (sampler, coord);
3234 * // texture2D returns lowp"
3235 *
3236 * From this, we infer that GLSL 1.30 (and later) should allow precision
3237 * qualifiers on sampler types just like float and integer types.
3238 */
3239 return type->is_float()
3240 || type->is_integer()
3241 || type->is_record()
3242 || type->is_sampler();
3243 }
3244
3245 ir_rvalue *
3246 ast_declarator_list::hir(exec_list *instructions,
3247 struct _mesa_glsl_parse_state *state)
3248 {
3249 void *ctx = state;
3250 const struct glsl_type *decl_type;
3251 const char *type_name = NULL;
3252 ir_rvalue *result = NULL;
3253 YYLTYPE loc = this->get_location();
3254
3255 /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec:
3256 *
3257 * "To ensure that a particular output variable is invariant, it is
3258 * necessary to use the invariant qualifier. It can either be used to
3259 * qualify a previously declared variable as being invariant
3260 *
3261 * invariant gl_Position; // make existing gl_Position be invariant"
3262 *
3263 * In these cases the parser will set the 'invariant' flag in the declarator
3264 * list, and the type will be NULL.
3265 */
3266 if (this->invariant) {
3267 assert(this->type == NULL);
3268
3269 if (state->current_function != NULL) {
3270 _mesa_glsl_error(& loc, state,
3271 "all uses of `invariant' keyword must be at global "
3272 "scope");
3273 }
3274
3275 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
3276 assert(decl->array_specifier == NULL);
3277 assert(decl->initializer == NULL);
3278
3279 ir_variable *const earlier =
3280 state->symbols->get_variable(decl->identifier);
3281 if (earlier == NULL) {
3282 _mesa_glsl_error(& loc, state,
3283 "undeclared variable `%s' cannot be marked "
3284 "invariant", decl->identifier);
3285 } else if (!is_varying_var(earlier, state->stage)) {
3286 _mesa_glsl_error(&loc, state,
3287 "`%s' cannot be marked invariant; interfaces between "
3288 "shader stages only.", decl->identifier);
3289 } else if (earlier->data.used) {
3290 _mesa_glsl_error(& loc, state,
3291 "variable `%s' may not be redeclared "
3292 "`invariant' after being used",
3293 earlier->name);
3294 } else {
3295 earlier->data.invariant = true;
3296 }
3297 }
3298
3299 /* Invariant redeclarations do not have r-values.
3300 */
3301 return NULL;
3302 }
3303
3304 if (this->precise) {
3305 assert(this->type == NULL);
3306
3307 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
3308 assert(decl->array_specifier == NULL);
3309 assert(decl->initializer == NULL);
3310
3311 ir_variable *const earlier =
3312 state->symbols->get_variable(decl->identifier);
3313 if (earlier == NULL) {
3314 _mesa_glsl_error(& loc, state,
3315 "undeclared variable `%s' cannot be marked "
3316 "precise", decl->identifier);
3317 } else if (state->current_function != NULL &&
3318 !state->symbols->name_declared_this_scope(decl->identifier)) {
3319 /* Note: we have to check if we're in a function, since
3320 * builtins are treated as having come from another scope.
3321 */
3322 _mesa_glsl_error(& loc, state,
3323 "variable `%s' from an outer scope may not be "
3324 "redeclared `precise' in this scope",
3325 earlier->name);
3326 } else if (earlier->data.used) {
3327 _mesa_glsl_error(& loc, state,
3328 "variable `%s' may not be redeclared "
3329 "`precise' after being used",
3330 earlier->name);
3331 } else {
3332 earlier->data.precise = true;
3333 }
3334 }
3335
3336 /* Precise redeclarations do not have r-values either. */
3337 return NULL;
3338 }
3339
3340 assert(this->type != NULL);
3341 assert(!this->invariant);
3342 assert(!this->precise);
3343
3344 /* The type specifier may contain a structure definition. Process that
3345 * before any of the variable declarations.
3346 */
3347 (void) this->type->specifier->hir(instructions, state);
3348
3349 decl_type = this->type->glsl_type(& type_name, state);
3350
3351 /* An offset-qualified atomic counter declaration sets the default
3352 * offset for the next declaration within the same atomic counter
3353 * buffer.
3354 */
3355 if (decl_type && decl_type->contains_atomic()) {
3356 if (type->qualifier.flags.q.explicit_binding &&
3357 type->qualifier.flags.q.explicit_offset)
3358 state->atomic_counter_offsets[type->qualifier.binding] =
3359 type->qualifier.offset;
3360 }
3361
3362 if (this->declarations.is_empty()) {
3363 /* If there is no structure involved in the program text, there are two
3364 * possible scenarios:
3365 *
3366 * - The program text contained something like 'vec4;'. This is an
3367 * empty declaration. It is valid but weird. Emit a warning.
3368 *
3369 * - The program text contained something like 'S;' and 'S' is not the
3370 * name of a known structure type. This is both invalid and weird.
3371 * Emit an error.
3372 *
3373 * - The program text contained something like 'mediump float;'
3374 * when the programmer probably meant 'precision mediump
3375 * float;' Emit a warning with a description of what they
3376 * probably meant to do.
3377 *
3378 * Note that if decl_type is NULL and there is a structure involved,
3379 * there must have been some sort of error with the structure. In this
3380 * case we assume that an error was already generated on this line of
3381 * code for the structure. There is no need to generate an additional,
3382 * confusing error.
3383 */
3384 assert(this->type->specifier->structure == NULL || decl_type != NULL
3385 || state->error);
3386
3387 if (decl_type == NULL) {
3388 _mesa_glsl_error(&loc, state,
3389 "invalid type `%s' in empty declaration",
3390 type_name);
3391 } else if (decl_type->base_type == GLSL_TYPE_ATOMIC_UINT) {
3392 /* Empty atomic counter declarations are allowed and useful
3393 * to set the default offset qualifier.
3394 */
3395 return NULL;
3396 } else if (this->type->qualifier.precision != ast_precision_none) {
3397 if (this->type->specifier->structure != NULL) {
3398 _mesa_glsl_error(&loc, state,
3399 "precision qualifiers can't be applied "
3400 "to structures");
3401 } else {
3402 static const char *const precision_names[] = {
3403 "highp",
3404 "highp",
3405 "mediump",
3406 "lowp"
3407 };
3408
3409 _mesa_glsl_warning(&loc, state,
3410 "empty declaration with precision qualifier, "
3411 "to set the default precision, use "
3412 "`precision %s %s;'",
3413 precision_names[this->type->qualifier.precision],
3414 type_name);
3415 }
3416 } else if (this->type->specifier->structure == NULL) {
3417 _mesa_glsl_warning(&loc, state, "empty declaration");
3418 }
3419 }
3420
3421 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
3422 const struct glsl_type *var_type;
3423 ir_variable *var;
3424
3425 /* FINISHME: Emit a warning if a variable declaration shadows a
3426 * FINISHME: declaration at a higher scope.
3427 */
3428
3429 if ((decl_type == NULL) || decl_type->is_void()) {
3430 if (type_name != NULL) {
3431 _mesa_glsl_error(& loc, state,
3432 "invalid type `%s' in declaration of `%s'",
3433 type_name, decl->identifier);
3434 } else {
3435 _mesa_glsl_error(& loc, state,
3436 "invalid type in declaration of `%s'",
3437 decl->identifier);
3438 }
3439 continue;
3440 }
3441
3442 var_type = process_array_type(&loc, decl_type, decl->array_specifier,
3443 state);
3444
3445 var = new(ctx) ir_variable(var_type, decl->identifier, ir_var_auto);
3446
3447 /* The 'varying in' and 'varying out' qualifiers can only be used with
3448 * ARB_geometry_shader4 and EXT_geometry_shader4, which we don't support
3449 * yet.
3450 */
3451 if (this->type->qualifier.flags.q.varying) {
3452 if (this->type->qualifier.flags.q.in) {
3453 _mesa_glsl_error(& loc, state,
3454 "`varying in' qualifier in declaration of "
3455 "`%s' only valid for geometry shaders using "
3456 "ARB_geometry_shader4 or EXT_geometry_shader4",
3457 decl->identifier);
3458 } else if (this->type->qualifier.flags.q.out) {
3459 _mesa_glsl_error(& loc, state,
3460 "`varying out' qualifier in declaration of "
3461 "`%s' only valid for geometry shaders using "
3462 "ARB_geometry_shader4 or EXT_geometry_shader4",
3463 decl->identifier);
3464 }
3465 }
3466
3467 /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
3468 *
3469 * "Global variables can only use the qualifiers const,
3470 * attribute, uniform, or varying. Only one may be
3471 * specified.
3472 *
3473 * Local variables can only use the qualifier const."
3474 *
3475 * This is relaxed in GLSL 1.30 and GLSL ES 3.00. It is also relaxed by
3476 * any extension that adds the 'layout' keyword.
3477 */
3478 if (!state->is_version(130, 300)
3479 && !state->has_explicit_attrib_location()
3480 && !state->has_separate_shader_objects()
3481 && !state->ARB_fragment_coord_conventions_enable) {
3482 if (this->type->qualifier.flags.q.out) {
3483 _mesa_glsl_error(& loc, state,
3484 "`out' qualifier in declaration of `%s' "
3485 "only valid for function parameters in %s",
3486 decl->identifier, state->get_version_string());
3487 }
3488 if (this->type->qualifier.flags.q.in) {
3489 _mesa_glsl_error(& loc, state,
3490 "`in' qualifier in declaration of `%s' "
3491 "only valid for function parameters in %s",
3492 decl->identifier, state->get_version_string());
3493 }
3494 /* FINISHME: Test for other invalid qualifiers. */
3495 }
3496
3497 apply_type_qualifier_to_variable(& this->type->qualifier, var, state,
3498 & loc, false);
3499
3500 if (this->type->qualifier.flags.q.invariant) {
3501 if (!is_varying_var(var, state->stage)) {
3502 _mesa_glsl_error(&loc, state,
3503 "`%s' cannot be marked invariant; interfaces between "
3504 "shader stages only", var->name);
3505 }
3506 }
3507
3508 if (state->current_function != NULL) {
3509 const char *mode = NULL;
3510 const char *extra = "";
3511
3512 /* There is no need to check for 'inout' here because the parser will
3513 * only allow that in function parameter lists.
3514 */
3515 if (this->type->qualifier.flags.q.attribute) {
3516 mode = "attribute";
3517 } else if (this->type->qualifier.flags.q.uniform) {
3518 mode = "uniform";
3519 } else if (this->type->qualifier.flags.q.varying) {
3520 mode = "varying";
3521 } else if (this->type->qualifier.flags.q.in) {
3522 mode = "in";
3523 extra = " or in function parameter list";
3524 } else if (this->type->qualifier.flags.q.out) {
3525 mode = "out";
3526 extra = " or in function parameter list";
3527 }
3528
3529 if (mode) {
3530 _mesa_glsl_error(& loc, state,
3531 "%s variable `%s' must be declared at "
3532 "global scope%s",
3533 mode, var->name, extra);
3534 }
3535 } else if (var->data.mode == ir_var_shader_in) {
3536 var->data.read_only = true;
3537
3538 if (state->stage == MESA_SHADER_VERTEX) {
3539 bool error_emitted = false;
3540
3541 /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
3542 *
3543 * "Vertex shader inputs can only be float, floating-point
3544 * vectors, matrices, signed and unsigned integers and integer
3545 * vectors. Vertex shader inputs can also form arrays of these
3546 * types, but not structures."
3547 *
3548 * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
3549 *
3550 * "Vertex shader inputs can only be float, floating-point
3551 * vectors, matrices, signed and unsigned integers and integer
3552 * vectors. They cannot be arrays or structures."
3553 *
3554 * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
3555 *
3556 * "The attribute qualifier can be used only with float,
3557 * floating-point vectors, and matrices. Attribute variables
3558 * cannot be declared as arrays or structures."
3559 *
3560 * From page 33 (page 39 of the PDF) of the GLSL ES 3.00 spec:
3561 *
3562 * "Vertex shader inputs can only be float, floating-point
3563 * vectors, matrices, signed and unsigned integers and integer
3564 * vectors. Vertex shader inputs cannot be arrays or
3565 * structures."
3566 */
3567 const glsl_type *check_type = var->type->without_array();
3568
3569 switch (check_type->base_type) {
3570 case GLSL_TYPE_FLOAT:
3571 break;
3572 case GLSL_TYPE_UINT:
3573 case GLSL_TYPE_INT:
3574 if (state->is_version(120, 300))
3575 break;
3576 case GLSL_TYPE_DOUBLE:
3577 if (check_type->base_type == GLSL_TYPE_DOUBLE && (state->is_version(410, 0) || state->ARB_vertex_attrib_64bit_enable))
3578 break;
3579 /* FALLTHROUGH */
3580 default:
3581 _mesa_glsl_error(& loc, state,
3582 "vertex shader input / attribute cannot have "
3583 "type %s`%s'",
3584 var->type->is_array() ? "array of " : "",
3585 check_type->name);
3586 error_emitted = true;
3587 }
3588
3589 if (!error_emitted && var->type->is_array() &&
3590 !state->check_version(150, 0, &loc,
3591 "vertex shader input / attribute "
3592 "cannot have array type")) {
3593 error_emitted = true;
3594 }
3595 } else if (state->stage == MESA_SHADER_GEOMETRY) {
3596 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
3597 *
3598 * Geometry shader input variables get the per-vertex values
3599 * written out by vertex shader output variables of the same
3600 * names. Since a geometry shader operates on a set of
3601 * vertices, each input varying variable (or input block, see
3602 * interface blocks below) needs to be declared as an array.
3603 */
3604 if (!var->type->is_array()) {
3605 _mesa_glsl_error(&loc, state,
3606 "geometry shader inputs must be arrays");
3607 }
3608
3609 handle_geometry_shader_input_decl(state, loc, var);
3610 }
3611 } else if (var->data.mode == ir_var_shader_out) {
3612 const glsl_type *check_type = var->type->without_array();
3613
3614 /* From section 4.3.6 (Output variables) of the GLSL 4.40 spec:
3615 *
3616 * It is a compile-time error to declare a vertex, tessellation
3617 * evaluation, tessellation control, or geometry shader output
3618 * that contains any of the following:
3619 *
3620 * * A Boolean type (bool, bvec2 ...)
3621 * * An opaque type
3622 */
3623 if (check_type->is_boolean() || check_type->contains_opaque())
3624 _mesa_glsl_error(&loc, state,
3625 "%s shader output cannot have type %s",
3626 _mesa_shader_stage_to_string(state->stage),
3627 check_type->name);
3628
3629 /* From section 4.3.6 (Output variables) of the GLSL 4.40 spec:
3630 *
3631 * It is a compile-time error to declare a fragment shader output
3632 * that contains any of the following:
3633 *
3634 * * A Boolean type (bool, bvec2 ...)
3635 * * A double-precision scalar or vector (double, dvec2 ...)
3636 * * An opaque type
3637 * * Any matrix type
3638 * * A structure
3639 */
3640 if (state->stage == MESA_SHADER_FRAGMENT) {
3641 if (check_type->is_record() || check_type->is_matrix())
3642 _mesa_glsl_error(&loc, state,
3643 "fragment shader output "
3644 "cannot have struct or array type");
3645 switch (check_type->base_type) {
3646 case GLSL_TYPE_UINT:
3647 case GLSL_TYPE_INT:
3648 case GLSL_TYPE_FLOAT:
3649 break;
3650 default:
3651 _mesa_glsl_error(&loc, state,
3652 "fragment shader output cannot have "
3653 "type %s", check_type->name);
3654 }
3655 }
3656 }
3657
3658 /* Integer fragment inputs must be qualified with 'flat'. In GLSL ES,
3659 * so must integer vertex outputs.
3660 *
3661 * From section 4.3.4 ("Inputs") of the GLSL 1.50 spec:
3662 * "Fragment shader inputs that are signed or unsigned integers or
3663 * integer vectors must be qualified with the interpolation qualifier
3664 * flat."
3665 *
3666 * From section 4.3.4 ("Input Variables") of the GLSL 3.00 ES spec:
3667 * "Fragment shader inputs that are, or contain, signed or unsigned
3668 * integers or integer vectors must be qualified with the
3669 * interpolation qualifier flat."
3670 *
3671 * From section 4.3.6 ("Output Variables") of the GLSL 3.00 ES spec:
3672 * "Vertex shader outputs that are, or contain, signed or unsigned
3673 * integers or integer vectors must be qualified with the
3674 * interpolation qualifier flat."
3675 *
3676 * Note that prior to GLSL 1.50, this requirement applied to vertex
3677 * outputs rather than fragment inputs. That creates problems in the
3678 * presence of geometry shaders, so we adopt the GLSL 1.50 rule for all
3679 * desktop GL shaders. For GLSL ES shaders, we follow the spec and
3680 * apply the restriction to both vertex outputs and fragment inputs.
3681 *
3682 * Note also that the desktop GLSL specs are missing the text "or
3683 * contain"; this is presumably an oversight, since there is no
3684 * reasonable way to interpolate a fragment shader input that contains
3685 * an integer.
3686 */
3687 if (state->is_version(130, 300) &&
3688 var->type->contains_integer() &&
3689 var->data.interpolation != INTERP_QUALIFIER_FLAT &&
3690 ((state->stage == MESA_SHADER_FRAGMENT && var->data.mode == ir_var_shader_in)
3691 || (state->stage == MESA_SHADER_VERTEX && var->data.mode == ir_var_shader_out
3692 && state->es_shader))) {
3693 const char *var_type = (state->stage == MESA_SHADER_VERTEX) ?
3694 "vertex output" : "fragment input";
3695 _mesa_glsl_error(&loc, state, "if a %s is (or contains) "
3696 "an integer, then it must be qualified with 'flat'",
3697 var_type);
3698 }
3699
3700 /* Double fragment inputs must be qualified with 'flat'. */
3701 if (var->type->contains_double() &&
3702 var->data.interpolation != INTERP_QUALIFIER_FLAT &&
3703 state->stage == MESA_SHADER_FRAGMENT &&
3704 var->data.mode == ir_var_shader_in) {
3705 _mesa_glsl_error(&loc, state, "if a fragment input is (or contains) "
3706 "a double, then it must be qualified with 'flat'",
3707 var_type);
3708 }
3709
3710 /* Interpolation qualifiers cannot be applied to 'centroid' and
3711 * 'centroid varying'.
3712 *
3713 * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
3714 * "interpolation qualifiers may only precede the qualifiers in,
3715 * centroid in, out, or centroid out in a declaration. They do not apply
3716 * to the deprecated storage qualifiers varying or centroid varying."
3717 *
3718 * These deprecated storage qualifiers do not exist in GLSL ES 3.00.
3719 */
3720 if (state->is_version(130, 0)
3721 && this->type->qualifier.has_interpolation()
3722 && this->type->qualifier.flags.q.varying) {
3723
3724 const char *i = this->type->qualifier.interpolation_string();
3725 assert(i != NULL);
3726 const char *s;
3727 if (this->type->qualifier.flags.q.centroid)
3728 s = "centroid varying";
3729 else
3730 s = "varying";
3731
3732 _mesa_glsl_error(&loc, state,
3733 "qualifier '%s' cannot be applied to the "
3734 "deprecated storage qualifier '%s'", i, s);
3735 }
3736
3737
3738 /* Interpolation qualifiers can only apply to vertex shader outputs and
3739 * fragment shader inputs.
3740 *
3741 * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
3742 * "Outputs from a vertex shader (out) and inputs to a fragment
3743 * shader (in) can be further qualified with one or more of these
3744 * interpolation qualifiers"
3745 *
3746 * From page 31 (page 37 of the PDF) of the GLSL ES 3.00 spec:
3747 * "These interpolation qualifiers may only precede the qualifiers
3748 * in, centroid in, out, or centroid out in a declaration. They do
3749 * not apply to inputs into a vertex shader or outputs from a
3750 * fragment shader."
3751 */
3752 if (state->is_version(130, 300)
3753 && this->type->qualifier.has_interpolation()) {
3754
3755 const char *i = this->type->qualifier.interpolation_string();
3756 assert(i != NULL);
3757
3758 switch (state->stage) {
3759 case MESA_SHADER_VERTEX:
3760 if (this->type->qualifier.flags.q.in) {
3761 _mesa_glsl_error(&loc, state,
3762 "qualifier '%s' cannot be applied to vertex "
3763 "shader inputs", i);
3764 }
3765 break;
3766 case MESA_SHADER_FRAGMENT:
3767 if (this->type->qualifier.flags.q.out) {
3768 _mesa_glsl_error(&loc, state,
3769 "qualifier '%s' cannot be applied to fragment "
3770 "shader outputs", i);
3771 }
3772 break;
3773 default:
3774 break;
3775 }
3776 }
3777
3778
3779 /* Precision qualifiers exists only in GLSL versions 1.00 and >= 1.30.
3780 */
3781 if (this->type->qualifier.precision != ast_precision_none) {
3782 state->check_precision_qualifiers_allowed(&loc);
3783 }
3784
3785
3786 /* If a precision qualifier is allowed on a type, it is allowed on
3787 * an array of that type.
3788 */
3789 if (!(this->type->qualifier.precision == ast_precision_none
3790 || precision_qualifier_allowed(var->type)
3791 || (var->type->is_array()
3792 && precision_qualifier_allowed(var->type->fields.array)))) {
3793
3794 _mesa_glsl_error(&loc, state,
3795 "precision qualifiers apply only to floating point"
3796 ", integer and sampler types");
3797 }
3798
3799 /* From section 4.1.7 of the GLSL 4.40 spec:
3800 *
3801 * "[Opaque types] can only be declared as function
3802 * parameters or uniform-qualified variables."
3803 */
3804 if (var_type->contains_opaque() &&
3805 !this->type->qualifier.flags.q.uniform) {
3806 _mesa_glsl_error(&loc, state,
3807 "opaque variables must be declared uniform");
3808 }
3809
3810 /* Process the initializer and add its instructions to a temporary
3811 * list. This list will be added to the instruction stream (below) after
3812 * the declaration is added. This is done because in some cases (such as
3813 * redeclarations) the declaration may not actually be added to the
3814 * instruction stream.
3815 */
3816 exec_list initializer_instructions;
3817
3818 /* Examine var name here since var may get deleted in the next call */
3819 bool var_is_gl_id = is_gl_identifier(var->name);
3820
3821 ir_variable *earlier =
3822 get_variable_being_redeclared(var, decl->get_location(), state,
3823 false /* allow_all_redeclarations */);
3824 if (earlier != NULL) {
3825 if (var_is_gl_id &&
3826 earlier->data.how_declared == ir_var_declared_in_block) {
3827 _mesa_glsl_error(&loc, state,
3828 "`%s' has already been redeclared using "
3829 "gl_PerVertex", earlier->name);
3830 }
3831 earlier->data.how_declared = ir_var_declared_normally;
3832 }
3833
3834 if (decl->initializer != NULL) {
3835 result = process_initializer((earlier == NULL) ? var : earlier,
3836 decl, this->type,
3837 &initializer_instructions, state);
3838 }
3839
3840 /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
3841 *
3842 * "It is an error to write to a const variable outside of
3843 * its declaration, so they must be initialized when
3844 * declared."
3845 */
3846 if (this->type->qualifier.flags.q.constant && decl->initializer == NULL) {
3847 _mesa_glsl_error(& loc, state,
3848 "const declaration of `%s' must be initialized",
3849 decl->identifier);
3850 }
3851
3852 if (state->es_shader) {
3853 const glsl_type *const t = (earlier == NULL)
3854 ? var->type : earlier->type;
3855
3856 if (t->is_unsized_array())
3857 /* Section 10.17 of the GLSL ES 1.00 specification states that
3858 * unsized array declarations have been removed from the language.
3859 * Arrays that are sized using an initializer are still explicitly
3860 * sized. However, GLSL ES 1.00 does not allow array
3861 * initializers. That is only allowed in GLSL ES 3.00.
3862 *
3863 * Section 4.1.9 (Arrays) of the GLSL ES 3.00 spec says:
3864 *
3865 * "An array type can also be formed without specifying a size
3866 * if the definition includes an initializer:
3867 *
3868 * float x[] = float[2] (1.0, 2.0); // declares an array of size 2
3869 * float y[] = float[] (1.0, 2.0, 3.0); // declares an array of size 3
3870 *
3871 * float a[5];
3872 * float b[] = a;"
3873 */
3874 _mesa_glsl_error(& loc, state,
3875 "unsized array declarations are not allowed in "
3876 "GLSL ES");
3877 }
3878
3879 /* If the declaration is not a redeclaration, there are a few additional
3880 * semantic checks that must be applied. In addition, variable that was
3881 * created for the declaration should be added to the IR stream.
3882 */
3883 if (earlier == NULL) {
3884 validate_identifier(decl->identifier, loc, state);
3885
3886 /* Add the variable to the symbol table. Note that the initializer's
3887 * IR was already processed earlier (though it hasn't been emitted
3888 * yet), without the variable in scope.
3889 *
3890 * This differs from most C-like languages, but it follows the GLSL
3891 * specification. From page 28 (page 34 of the PDF) of the GLSL 1.50
3892 * spec:
3893 *
3894 * "Within a declaration, the scope of a name starts immediately
3895 * after the initializer if present or immediately after the name
3896 * being declared if not."
3897 */
3898 if (!state->symbols->add_variable(var)) {
3899 YYLTYPE loc = this->get_location();
3900 _mesa_glsl_error(&loc, state, "name `%s' already taken in the "
3901 "current scope", decl->identifier);
3902 continue;
3903 }
3904
3905 /* Push the variable declaration to the top. It means that all the
3906 * variable declarations will appear in a funny last-to-first order,
3907 * but otherwise we run into trouble if a function is prototyped, a
3908 * global var is decled, then the function is defined with usage of
3909 * the global var. See glslparsertest's CorrectModule.frag.
3910 */
3911 instructions->push_head(var);
3912 }
3913
3914 instructions->append_list(&initializer_instructions);
3915 }
3916
3917
3918 /* Generally, variable declarations do not have r-values. However,
3919 * one is used for the declaration in
3920 *
3921 * while (bool b = some_condition()) {
3922 * ...
3923 * }
3924 *
3925 * so we return the rvalue from the last seen declaration here.
3926 */
3927 return result;
3928 }
3929
3930
3931 ir_rvalue *
3932 ast_parameter_declarator::hir(exec_list *instructions,
3933 struct _mesa_glsl_parse_state *state)
3934 {
3935 void *ctx = state;
3936 const struct glsl_type *type;
3937 const char *name = NULL;
3938 YYLTYPE loc = this->get_location();
3939
3940 type = this->type->glsl_type(& name, state);
3941
3942 if (type == NULL) {
3943 if (name != NULL) {
3944 _mesa_glsl_error(& loc, state,
3945 "invalid type `%s' in declaration of `%s'",
3946 name, this->identifier);
3947 } else {
3948 _mesa_glsl_error(& loc, state,
3949 "invalid type in declaration of `%s'",
3950 this->identifier);
3951 }
3952
3953 type = glsl_type::error_type;
3954 }
3955
3956 /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
3957 *
3958 * "Functions that accept no input arguments need not use void in the
3959 * argument list because prototypes (or definitions) are required and
3960 * therefore there is no ambiguity when an empty argument list "( )" is
3961 * declared. The idiom "(void)" as a parameter list is provided for
3962 * convenience."
3963 *
3964 * Placing this check here prevents a void parameter being set up
3965 * for a function, which avoids tripping up checks for main taking
3966 * parameters and lookups of an unnamed symbol.
3967 */
3968 if (type->is_void()) {
3969 if (this->identifier != NULL)
3970 _mesa_glsl_error(& loc, state,
3971 "named parameter cannot have type `void'");
3972
3973 is_void = true;
3974 return NULL;
3975 }
3976
3977 if (formal_parameter && (this->identifier == NULL)) {
3978 _mesa_glsl_error(& loc, state, "formal parameter lacks a name");
3979 return NULL;
3980 }
3981
3982 /* This only handles "vec4 foo[..]". The earlier specifier->glsl_type(...)
3983 * call already handled the "vec4[..] foo" case.
3984 */
3985 type = process_array_type(&loc, type, this->array_specifier, state);
3986
3987 if (!type->is_error() && type->is_unsized_array()) {
3988 _mesa_glsl_error(&loc, state, "arrays passed as parameters must have "
3989 "a declared size");
3990 type = glsl_type::error_type;
3991 }
3992
3993 is_void = false;
3994 ir_variable *var = new(ctx)
3995 ir_variable(type, this->identifier, ir_var_function_in);
3996
3997 /* Apply any specified qualifiers to the parameter declaration. Note that
3998 * for function parameters the default mode is 'in'.
3999 */
4000 apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc,
4001 true);
4002
4003 /* From section 4.1.7 of the GLSL 4.40 spec:
4004 *
4005 * "Opaque variables cannot be treated as l-values; hence cannot
4006 * be used as out or inout function parameters, nor can they be
4007 * assigned into."
4008 */
4009 if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
4010 && type->contains_opaque()) {
4011 _mesa_glsl_error(&loc, state, "out and inout parameters cannot "
4012 "contain opaque variables");
4013 type = glsl_type::error_type;
4014 }
4015
4016 /* From page 39 (page 45 of the PDF) of the GLSL 1.10 spec:
4017 *
4018 * "When calling a function, expressions that do not evaluate to
4019 * l-values cannot be passed to parameters declared as out or inout."
4020 *
4021 * From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
4022 *
4023 * "Other binary or unary expressions, non-dereferenced arrays,
4024 * function names, swizzles with repeated fields, and constants
4025 * cannot be l-values."
4026 *
4027 * So for GLSL 1.10, passing an array as an out or inout parameter is not
4028 * allowed. This restriction is removed in GLSL 1.20, and in GLSL ES.
4029 */
4030 if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
4031 && type->is_array()
4032 && !state->check_version(120, 100, &loc,
4033 "arrays cannot be out or inout parameters")) {
4034 type = glsl_type::error_type;
4035 }
4036
4037 instructions->push_tail(var);
4038
4039 /* Parameter declarations do not have r-values.
4040 */
4041 return NULL;
4042 }
4043
4044
4045 void
4046 ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters,
4047 bool formal,
4048 exec_list *ir_parameters,
4049 _mesa_glsl_parse_state *state)
4050 {
4051 ast_parameter_declarator *void_param = NULL;
4052 unsigned count = 0;
4053
4054 foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) {
4055 param->formal_parameter = formal;
4056 param->hir(ir_parameters, state);
4057
4058 if (param->is_void)
4059 void_param = param;
4060
4061 count++;
4062 }
4063
4064 if ((void_param != NULL) && (count > 1)) {
4065 YYLTYPE loc = void_param->get_location();
4066
4067 _mesa_glsl_error(& loc, state,
4068 "`void' parameter must be only parameter");
4069 }
4070 }
4071
4072
4073 void
4074 emit_function(_mesa_glsl_parse_state *state, ir_function *f)
4075 {
4076 /* IR invariants disallow function declarations or definitions
4077 * nested within other function definitions. But there is no
4078 * requirement about the relative order of function declarations
4079 * and definitions with respect to one another. So simply insert
4080 * the new ir_function block at the end of the toplevel instruction
4081 * list.
4082 */
4083 state->toplevel_ir->push_tail(f);
4084 }
4085
4086
4087 ir_rvalue *
4088 ast_function::hir(exec_list *instructions,
4089 struct _mesa_glsl_parse_state *state)
4090 {
4091 void *ctx = state;
4092 ir_function *f = NULL;
4093 ir_function_signature *sig = NULL;
4094 exec_list hir_parameters;
4095
4096 const char *const name = identifier;
4097
4098 /* New functions are always added to the top-level IR instruction stream,
4099 * so this instruction list pointer is ignored. See also emit_function
4100 * (called below).
4101 */
4102 (void) instructions;
4103
4104 /* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec,
4105 *
4106 * "Function declarations (prototypes) cannot occur inside of functions;
4107 * they must be at global scope, or for the built-in functions, outside
4108 * the global scope."
4109 *
4110 * From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec,
4111 *
4112 * "User defined functions may only be defined within the global scope."
4113 *
4114 * Note that this language does not appear in GLSL 1.10.
4115 */
4116 if ((state->current_function != NULL) &&
4117 state->is_version(120, 100)) {
4118 YYLTYPE loc = this->get_location();
4119 _mesa_glsl_error(&loc, state,
4120 "declaration of function `%s' not allowed within "
4121 "function body", name);
4122 }
4123
4124 validate_identifier(name, this->get_location(), state);
4125
4126 /* Convert the list of function parameters to HIR now so that they can be
4127 * used below to compare this function's signature with previously seen
4128 * signatures for functions with the same name.
4129 */
4130 ast_parameter_declarator::parameters_to_hir(& this->parameters,
4131 is_definition,
4132 & hir_parameters, state);
4133
4134 const char *return_type_name;
4135 const glsl_type *return_type =
4136 this->return_type->glsl_type(& return_type_name, state);
4137
4138 if (!return_type) {
4139 YYLTYPE loc = this->get_location();
4140 _mesa_glsl_error(&loc, state,
4141 "function `%s' has undeclared return type `%s'",
4142 name, return_type_name);
4143 return_type = glsl_type::error_type;
4144 }
4145
4146 /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec:
4147 * "No qualifier is allowed on the return type of a function."
4148 */
4149 if (this->return_type->has_qualifiers()) {
4150 YYLTYPE loc = this->get_location();
4151 _mesa_glsl_error(& loc, state,
4152 "function `%s' return type has qualifiers", name);
4153 }
4154
4155 /* Section 6.1 (Function Definitions) of the GLSL 1.20 spec says:
4156 *
4157 * "Arrays are allowed as arguments and as the return type. In both
4158 * cases, the array must be explicitly sized."
4159 */
4160 if (return_type->is_unsized_array()) {
4161 YYLTYPE loc = this->get_location();
4162 _mesa_glsl_error(& loc, state,
4163 "function `%s' return type array must be explicitly "
4164 "sized", name);
4165 }
4166
4167 /* From section 4.1.7 of the GLSL 4.40 spec:
4168 *
4169 * "[Opaque types] can only be declared as function parameters
4170 * or uniform-qualified variables."
4171 */
4172 if (return_type->contains_opaque()) {
4173 YYLTYPE loc = this->get_location();
4174 _mesa_glsl_error(&loc, state,
4175 "function `%s' return type can't contain an opaque type",
4176 name);
4177 }
4178
4179 /* Create an ir_function if one doesn't already exist. */
4180 f = state->symbols->get_function(name);
4181 if (f == NULL) {
4182 f = new(ctx) ir_function(name);
4183 if (!state->symbols->add_function(f)) {
4184 /* This function name shadows a non-function use of the same name. */
4185 YYLTYPE loc = this->get_location();
4186
4187 _mesa_glsl_error(&loc, state, "function name `%s' conflicts with "
4188 "non-function", name);
4189 return NULL;
4190 }
4191
4192 emit_function(state, f);
4193 }
4194
4195 /* From GLSL ES 3.0 spec, chapter 6.1 "Function Definitions", page 71:
4196 *
4197 * "A shader cannot redefine or overload built-in functions."
4198 *
4199 * While in GLSL ES 1.0 specification, chapter 8 "Built-in Functions":
4200 *
4201 * "User code can overload the built-in functions but cannot redefine
4202 * them."
4203 */
4204 if (state->es_shader && state->language_version >= 300) {
4205 /* Local shader has no exact candidates; check the built-ins. */
4206 _mesa_glsl_initialize_builtin_functions();
4207 if (_mesa_glsl_find_builtin_function_by_name(state, name)) {
4208 YYLTYPE loc = this->get_location();
4209 _mesa_glsl_error(& loc, state,
4210 "A shader cannot redefine or overload built-in "
4211 "function `%s' in GLSL ES 3.00", name);
4212 return NULL;
4213 }
4214 }
4215
4216 /* Verify that this function's signature either doesn't match a previously
4217 * seen signature for a function with the same name, or, if a match is found,
4218 * that the previously seen signature does not have an associated definition.
4219 */
4220 if (state->es_shader || f->has_user_signature()) {
4221 sig = f->exact_matching_signature(state, &hir_parameters);
4222 if (sig != NULL) {
4223 const char *badvar = sig->qualifiers_match(&hir_parameters);
4224 if (badvar != NULL) {
4225 YYLTYPE loc = this->get_location();
4226
4227 _mesa_glsl_error(&loc, state, "function `%s' parameter `%s' "
4228 "qualifiers don't match prototype", name, badvar);
4229 }
4230
4231 if (sig->return_type != return_type) {
4232 YYLTYPE loc = this->get_location();
4233
4234 _mesa_glsl_error(&loc, state, "function `%s' return type doesn't "
4235 "match prototype", name);
4236 }
4237
4238 if (sig->is_defined) {
4239 if (is_definition) {
4240 YYLTYPE loc = this->get_location();
4241 _mesa_glsl_error(& loc, state, "function `%s' redefined", name);
4242 } else {
4243 /* We just encountered a prototype that exactly matches a
4244 * function that's already been defined. This is redundant,
4245 * and we should ignore it.
4246 */
4247 return NULL;
4248 }
4249 }
4250 }
4251 }
4252
4253 /* Verify the return type of main() */
4254 if (strcmp(name, "main") == 0) {
4255 if (! return_type->is_void()) {
4256 YYLTYPE loc = this->get_location();
4257
4258 _mesa_glsl_error(& loc, state, "main() must return void");
4259 }
4260
4261 if (!hir_parameters.is_empty()) {
4262 YYLTYPE loc = this->get_location();
4263
4264 _mesa_glsl_error(& loc, state, "main() must not take any parameters");
4265 }
4266 }
4267
4268 /* Finish storing the information about this new function in its signature.
4269 */
4270 if (sig == NULL) {
4271 sig = new(ctx) ir_function_signature(return_type);
4272 f->add_signature(sig);
4273 }
4274
4275 sig->replace_parameters(&hir_parameters);
4276 signature = sig;
4277
4278 /* Function declarations (prototypes) do not have r-values.
4279 */
4280 return NULL;
4281 }
4282
4283
4284 ir_rvalue *
4285 ast_function_definition::hir(exec_list *instructions,
4286 struct _mesa_glsl_parse_state *state)
4287 {
4288 prototype->is_definition = true;
4289 prototype->hir(instructions, state);
4290
4291 ir_function_signature *signature = prototype->signature;
4292 if (signature == NULL)
4293 return NULL;
4294
4295 assert(state->current_function == NULL);
4296 state->current_function = signature;
4297 state->found_return = false;
4298
4299 /* Duplicate parameters declared in the prototype as concrete variables.
4300 * Add these to the symbol table.
4301 */
4302 state->symbols->push_scope();
4303 foreach_in_list(ir_variable, var, &signature->parameters) {
4304 assert(var->as_variable() != NULL);
4305
4306 /* The only way a parameter would "exist" is if two parameters have
4307 * the same name.
4308 */
4309 if (state->symbols->name_declared_this_scope(var->name)) {
4310 YYLTYPE loc = this->get_location();
4311
4312 _mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name);
4313 } else {
4314 state->symbols->add_variable(var);
4315 }
4316 }
4317
4318 /* Convert the body of the function to HIR. */
4319 this->body->hir(&signature->body, state);
4320 signature->is_defined = true;
4321
4322 state->symbols->pop_scope();
4323
4324 assert(state->current_function == signature);
4325 state->current_function = NULL;
4326
4327 if (!signature->return_type->is_void() && !state->found_return) {
4328 YYLTYPE loc = this->get_location();
4329 _mesa_glsl_error(& loc, state, "function `%s' has non-void return type "
4330 "%s, but no return statement",
4331 signature->function_name(),
4332 signature->return_type->name);
4333 }
4334
4335 /* Function definitions do not have r-values.
4336 */
4337 return NULL;
4338 }
4339
4340
4341 ir_rvalue *
4342 ast_jump_statement::hir(exec_list *instructions,
4343 struct _mesa_glsl_parse_state *state)
4344 {
4345 void *ctx = state;
4346
4347 switch (mode) {
4348 case ast_return: {
4349 ir_return *inst;
4350 assert(state->current_function);
4351
4352 if (opt_return_value) {
4353 ir_rvalue *ret = opt_return_value->hir(instructions, state);
4354
4355 /* The value of the return type can be NULL if the shader says
4356 * 'return foo();' and foo() is a function that returns void.
4357 *
4358 * NOTE: The GLSL spec doesn't say that this is an error. The type
4359 * of the return value is void. If the return type of the function is
4360 * also void, then this should compile without error. Seriously.
4361 */
4362 const glsl_type *const ret_type =
4363 (ret == NULL) ? glsl_type::void_type : ret->type;
4364
4365 /* Implicit conversions are not allowed for return values prior to
4366 * ARB_shading_language_420pack.
4367 */
4368 if (state->current_function->return_type != ret_type) {
4369 YYLTYPE loc = this->get_location();
4370
4371 if (state->ARB_shading_language_420pack_enable) {
4372 if (!apply_implicit_conversion(state->current_function->return_type,
4373 ret, state)) {
4374 _mesa_glsl_error(& loc, state,
4375 "could not implicitly convert return value "
4376 "to %s, in function `%s'",
4377 state->current_function->return_type->name,
4378 state->current_function->function_name());
4379 }
4380 } else {
4381 _mesa_glsl_error(& loc, state,
4382 "`return' with wrong type %s, in function `%s' "
4383 "returning %s",
4384 ret_type->name,
4385 state->current_function->function_name(),
4386 state->current_function->return_type->name);
4387 }
4388 } else if (state->current_function->return_type->base_type ==
4389 GLSL_TYPE_VOID) {
4390 YYLTYPE loc = this->get_location();
4391
4392 /* The ARB_shading_language_420pack, GLSL ES 3.0, and GLSL 4.20
4393 * specs add a clarification:
4394 *
4395 * "A void function can only use return without a return argument, even if
4396 * the return argument has void type. Return statements only accept values:
4397 *
4398 * void func1() { }
4399 * void func2() { return func1(); } // illegal return statement"
4400 */
4401 _mesa_glsl_error(& loc, state,
4402 "void functions can only use `return' without a "
4403 "return argument");
4404 }
4405
4406 inst = new(ctx) ir_return(ret);
4407 } else {
4408 if (state->current_function->return_type->base_type !=
4409 GLSL_TYPE_VOID) {
4410 YYLTYPE loc = this->get_location();
4411
4412 _mesa_glsl_error(& loc, state,
4413 "`return' with no value, in function %s returning "
4414 "non-void",
4415 state->current_function->function_name());
4416 }
4417 inst = new(ctx) ir_return;
4418 }
4419
4420 state->found_return = true;
4421 instructions->push_tail(inst);
4422 break;
4423 }
4424
4425 case ast_discard:
4426 if (state->stage != MESA_SHADER_FRAGMENT) {
4427 YYLTYPE loc = this->get_location();
4428
4429 _mesa_glsl_error(& loc, state,
4430 "`discard' may only appear in a fragment shader");
4431 }
4432 instructions->push_tail(new(ctx) ir_discard);
4433 break;
4434
4435 case ast_break:
4436 case ast_continue:
4437 if (mode == ast_continue &&
4438 state->loop_nesting_ast == NULL) {
4439 YYLTYPE loc = this->get_location();
4440
4441 _mesa_glsl_error(& loc, state, "continue may only appear in a loop");
4442 } else if (mode == ast_break &&
4443 state->loop_nesting_ast == NULL &&
4444 state->switch_state.switch_nesting_ast == NULL) {
4445 YYLTYPE loc = this->get_location();
4446
4447 _mesa_glsl_error(& loc, state,
4448 "break may only appear in a loop or a switch");
4449 } else {
4450 /* For a loop, inline the for loop expression again, since we don't
4451 * know where near the end of the loop body the normal copy of it is
4452 * going to be placed. Same goes for the condition for a do-while
4453 * loop.
4454 */
4455 if (state->loop_nesting_ast != NULL &&
4456 mode == ast_continue && !state->switch_state.is_switch_innermost) {
4457 if (state->loop_nesting_ast->rest_expression) {
4458 state->loop_nesting_ast->rest_expression->hir(instructions,
4459 state);
4460 }
4461 if (state->loop_nesting_ast->mode ==
4462 ast_iteration_statement::ast_do_while) {
4463 state->loop_nesting_ast->condition_to_hir(instructions, state);
4464 }
4465 }
4466
4467 if (state->switch_state.is_switch_innermost &&
4468 mode == ast_continue) {
4469 /* Set 'continue_inside' to true. */
4470 ir_rvalue *const true_val = new (ctx) ir_constant(true);
4471 ir_dereference_variable *deref_continue_inside_var =
4472 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
4473 instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
4474 true_val));
4475
4476 /* Break out from the switch, continue for the loop will
4477 * be called right after switch. */
4478 ir_loop_jump *const jump =
4479 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
4480 instructions->push_tail(jump);
4481
4482 } else if (state->switch_state.is_switch_innermost &&
4483 mode == ast_break) {
4484 /* Force break out of switch by inserting a break. */
4485 ir_loop_jump *const jump =
4486 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
4487 instructions->push_tail(jump);
4488 } else {
4489 ir_loop_jump *const jump =
4490 new(ctx) ir_loop_jump((mode == ast_break)
4491 ? ir_loop_jump::jump_break
4492 : ir_loop_jump::jump_continue);
4493 instructions->push_tail(jump);
4494 }
4495 }
4496
4497 break;
4498 }
4499
4500 /* Jump instructions do not have r-values.
4501 */
4502 return NULL;
4503 }
4504
4505
4506 ir_rvalue *
4507 ast_selection_statement::hir(exec_list *instructions,
4508 struct _mesa_glsl_parse_state *state)
4509 {
4510 void *ctx = state;
4511
4512 ir_rvalue *const condition = this->condition->hir(instructions, state);
4513
4514 /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
4515 *
4516 * "Any expression whose type evaluates to a Boolean can be used as the
4517 * conditional expression bool-expression. Vector types are not accepted
4518 * as the expression to if."
4519 *
4520 * The checks are separated so that higher quality diagnostics can be
4521 * generated for cases where both rules are violated.
4522 */
4523 if (!condition->type->is_boolean() || !condition->type->is_scalar()) {
4524 YYLTYPE loc = this->condition->get_location();
4525
4526 _mesa_glsl_error(& loc, state, "if-statement condition must be scalar "
4527 "boolean");
4528 }
4529
4530 ir_if *const stmt = new(ctx) ir_if(condition);
4531
4532 if (then_statement != NULL) {
4533 state->symbols->push_scope();
4534 then_statement->hir(& stmt->then_instructions, state);
4535 state->symbols->pop_scope();
4536 }
4537
4538 if (else_statement != NULL) {
4539 state->symbols->push_scope();
4540 else_statement->hir(& stmt->else_instructions, state);
4541 state->symbols->pop_scope();
4542 }
4543
4544 instructions->push_tail(stmt);
4545
4546 /* if-statements do not have r-values.
4547 */
4548 return NULL;
4549 }
4550
4551
4552 ir_rvalue *
4553 ast_switch_statement::hir(exec_list *instructions,
4554 struct _mesa_glsl_parse_state *state)
4555 {
4556 void *ctx = state;
4557
4558 ir_rvalue *const test_expression =
4559 this->test_expression->hir(instructions, state);
4560
4561 /* From page 66 (page 55 of the PDF) of the GLSL 1.50 spec:
4562 *
4563 * "The type of init-expression in a switch statement must be a
4564 * scalar integer."
4565 */
4566 if (!test_expression->type->is_scalar() ||
4567 !test_expression->type->is_integer()) {
4568 YYLTYPE loc = this->test_expression->get_location();
4569
4570 _mesa_glsl_error(& loc,
4571 state,
4572 "switch-statement expression must be scalar "
4573 "integer");
4574 }
4575
4576 /* Track the switch-statement nesting in a stack-like manner.
4577 */
4578 struct glsl_switch_state saved = state->switch_state;
4579
4580 state->switch_state.is_switch_innermost = true;
4581 state->switch_state.switch_nesting_ast = this;
4582 state->switch_state.labels_ht = hash_table_ctor(0, hash_table_pointer_hash,
4583 hash_table_pointer_compare);
4584 state->switch_state.previous_default = NULL;
4585
4586 /* Initalize is_fallthru state to false.
4587 */
4588 ir_rvalue *const is_fallthru_val = new (ctx) ir_constant(false);
4589 state->switch_state.is_fallthru_var =
4590 new(ctx) ir_variable(glsl_type::bool_type,
4591 "switch_is_fallthru_tmp",
4592 ir_var_temporary);
4593 instructions->push_tail(state->switch_state.is_fallthru_var);
4594
4595 ir_dereference_variable *deref_is_fallthru_var =
4596 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
4597 instructions->push_tail(new(ctx) ir_assignment(deref_is_fallthru_var,
4598 is_fallthru_val));
4599
4600 /* Initialize continue_inside state to false.
4601 */
4602 state->switch_state.continue_inside =
4603 new(ctx) ir_variable(glsl_type::bool_type,
4604 "continue_inside_tmp",
4605 ir_var_temporary);
4606 instructions->push_tail(state->switch_state.continue_inside);
4607
4608 ir_rvalue *const false_val = new (ctx) ir_constant(false);
4609 ir_dereference_variable *deref_continue_inside_var =
4610 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
4611 instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
4612 false_val));
4613
4614 state->switch_state.run_default =
4615 new(ctx) ir_variable(glsl_type::bool_type,
4616 "run_default_tmp",
4617 ir_var_temporary);
4618 instructions->push_tail(state->switch_state.run_default);
4619
4620 /* Loop around the switch is used for flow control. */
4621 ir_loop * loop = new(ctx) ir_loop();
4622 instructions->push_tail(loop);
4623
4624 /* Cache test expression.
4625 */
4626 test_to_hir(&loop->body_instructions, state);
4627
4628 /* Emit code for body of switch stmt.
4629 */
4630 body->hir(&loop->body_instructions, state);
4631
4632 /* Insert a break at the end to exit loop. */
4633 ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
4634 loop->body_instructions.push_tail(jump);
4635
4636 /* If we are inside loop, check if continue got called inside switch. */
4637 if (state->loop_nesting_ast != NULL) {
4638 ir_dereference_variable *deref_continue_inside =
4639 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
4640 ir_if *irif = new(ctx) ir_if(deref_continue_inside);
4641 ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_continue);
4642
4643 if (state->loop_nesting_ast != NULL) {
4644 if (state->loop_nesting_ast->rest_expression) {
4645 state->loop_nesting_ast->rest_expression->hir(&irif->then_instructions,
4646 state);
4647 }
4648 if (state->loop_nesting_ast->mode ==
4649 ast_iteration_statement::ast_do_while) {
4650 state->loop_nesting_ast->condition_to_hir(&irif->then_instructions, state);
4651 }
4652 }
4653 irif->then_instructions.push_tail(jump);
4654 instructions->push_tail(irif);
4655 }
4656
4657 hash_table_dtor(state->switch_state.labels_ht);
4658
4659 state->switch_state = saved;
4660
4661 /* Switch statements do not have r-values. */
4662 return NULL;
4663 }
4664
4665
4666 void
4667 ast_switch_statement::test_to_hir(exec_list *instructions,
4668 struct _mesa_glsl_parse_state *state)
4669 {
4670 void *ctx = state;
4671
4672 /* Cache value of test expression. */
4673 ir_rvalue *const test_val =
4674 test_expression->hir(instructions,
4675 state);
4676
4677 state->switch_state.test_var = new(ctx) ir_variable(test_val->type,
4678 "switch_test_tmp",
4679 ir_var_temporary);
4680 ir_dereference_variable *deref_test_var =
4681 new(ctx) ir_dereference_variable(state->switch_state.test_var);
4682
4683 instructions->push_tail(state->switch_state.test_var);
4684 instructions->push_tail(new(ctx) ir_assignment(deref_test_var, test_val));
4685 }
4686
4687
4688 ir_rvalue *
4689 ast_switch_body::hir(exec_list *instructions,
4690 struct _mesa_glsl_parse_state *state)
4691 {
4692 if (stmts != NULL)
4693 stmts->hir(instructions, state);
4694
4695 /* Switch bodies do not have r-values. */
4696 return NULL;
4697 }
4698
4699 ir_rvalue *
4700 ast_case_statement_list::hir(exec_list *instructions,
4701 struct _mesa_glsl_parse_state *state)
4702 {
4703 exec_list default_case, after_default, tmp;
4704
4705 foreach_list_typed (ast_case_statement, case_stmt, link, & this->cases) {
4706 case_stmt->hir(&tmp, state);
4707
4708 /* Default case. */
4709 if (state->switch_state.previous_default && default_case.is_empty()) {
4710 default_case.append_list(&tmp);
4711 continue;
4712 }
4713
4714 /* If default case found, append 'after_default' list. */
4715 if (!default_case.is_empty())
4716 after_default.append_list(&tmp);
4717 else
4718 instructions->append_list(&tmp);
4719 }
4720
4721 /* Handle the default case. This is done here because default might not be
4722 * the last case. We need to add checks against following cases first to see
4723 * if default should be chosen or not.
4724 */
4725 if (!default_case.is_empty()) {
4726
4727 ir_rvalue *const true_val = new (state) ir_constant(true);
4728 ir_dereference_variable *deref_run_default_var =
4729 new(state) ir_dereference_variable(state->switch_state.run_default);
4730
4731 /* Choose to run default case initially, following conditional
4732 * assignments might change this.
4733 */
4734 ir_assignment *const init_var =
4735 new(state) ir_assignment(deref_run_default_var, true_val);
4736 instructions->push_tail(init_var);
4737
4738 /* Default case was the last one, no checks required. */
4739 if (after_default.is_empty()) {
4740 instructions->append_list(&default_case);
4741 return NULL;
4742 }
4743
4744 foreach_in_list(ir_instruction, ir, &after_default) {
4745 ir_assignment *assign = ir->as_assignment();
4746
4747 if (!assign)
4748 continue;
4749
4750 /* Clone the check between case label and init expression. */
4751 ir_expression *exp = (ir_expression*) assign->condition;
4752 ir_expression *clone = exp->clone(state, NULL);
4753
4754 ir_dereference_variable *deref_var =
4755 new(state) ir_dereference_variable(state->switch_state.run_default);
4756 ir_rvalue *const false_val = new (state) ir_constant(false);
4757
4758 ir_assignment *const set_false =
4759 new(state) ir_assignment(deref_var, false_val, clone);
4760
4761 instructions->push_tail(set_false);
4762 }
4763
4764 /* Append default case and all cases after it. */
4765 instructions->append_list(&default_case);
4766 instructions->append_list(&after_default);
4767 }
4768
4769 /* Case statements do not have r-values. */
4770 return NULL;
4771 }
4772
4773 ir_rvalue *
4774 ast_case_statement::hir(exec_list *instructions,
4775 struct _mesa_glsl_parse_state *state)
4776 {
4777 labels->hir(instructions, state);
4778
4779 /* Guard case statements depending on fallthru state. */
4780 ir_dereference_variable *const deref_fallthru_guard =
4781 new(state) ir_dereference_variable(state->switch_state.is_fallthru_var);
4782 ir_if *const test_fallthru = new(state) ir_if(deref_fallthru_guard);
4783
4784 foreach_list_typed (ast_node, stmt, link, & this->stmts)
4785 stmt->hir(& test_fallthru->then_instructions, state);
4786
4787 instructions->push_tail(test_fallthru);
4788
4789 /* Case statements do not have r-values. */
4790 return NULL;
4791 }
4792
4793
4794 ir_rvalue *
4795 ast_case_label_list::hir(exec_list *instructions,
4796 struct _mesa_glsl_parse_state *state)
4797 {
4798 foreach_list_typed (ast_case_label, label, link, & this->labels)
4799 label->hir(instructions, state);
4800
4801 /* Case labels do not have r-values. */
4802 return NULL;
4803 }
4804
4805 ir_rvalue *
4806 ast_case_label::hir(exec_list *instructions,
4807 struct _mesa_glsl_parse_state *state)
4808 {
4809 void *ctx = state;
4810
4811 ir_dereference_variable *deref_fallthru_var =
4812 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
4813
4814 ir_rvalue *const true_val = new(ctx) ir_constant(true);
4815
4816 /* If not default case, ... */
4817 if (this->test_value != NULL) {
4818 /* Conditionally set fallthru state based on
4819 * comparison of cached test expression value to case label.
4820 */
4821 ir_rvalue *const label_rval = this->test_value->hir(instructions, state);
4822 ir_constant *label_const = label_rval->constant_expression_value();
4823
4824 if (!label_const) {
4825 YYLTYPE loc = this->test_value->get_location();
4826
4827 _mesa_glsl_error(& loc, state,
4828 "switch statement case label must be a "
4829 "constant expression");
4830
4831 /* Stuff a dummy value in to allow processing to continue. */
4832 label_const = new(ctx) ir_constant(0);
4833 } else {
4834 ast_expression *previous_label = (ast_expression *)
4835 hash_table_find(state->switch_state.labels_ht,
4836 (void *)(uintptr_t)label_const->value.u[0]);
4837
4838 if (previous_label) {
4839 YYLTYPE loc = this->test_value->get_location();
4840 _mesa_glsl_error(& loc, state, "duplicate case value");
4841
4842 loc = previous_label->get_location();
4843 _mesa_glsl_error(& loc, state, "this is the previous case label");
4844 } else {
4845 hash_table_insert(state->switch_state.labels_ht,
4846 this->test_value,
4847 (void *)(uintptr_t)label_const->value.u[0]);
4848 }
4849 }
4850
4851 ir_dereference_variable *deref_test_var =
4852 new(ctx) ir_dereference_variable(state->switch_state.test_var);
4853
4854 ir_expression *test_cond = new(ctx) ir_expression(ir_binop_all_equal,
4855 label_const,
4856 deref_test_var);
4857
4858 /*
4859 * From GLSL 4.40 specification section 6.2 ("Selection"):
4860 *
4861 * "The type of the init-expression value in a switch statement must
4862 * be a scalar int or uint. The type of the constant-expression value
4863 * in a case label also must be a scalar int or uint. When any pair
4864 * of these values is tested for "equal value" and the types do not
4865 * match, an implicit conversion will be done to convert the int to a
4866 * uint (see section 4.1.10 “Implicit Conversions”) before the compare
4867 * is done."
4868 */
4869 if (label_const->type != state->switch_state.test_var->type) {
4870 YYLTYPE loc = this->test_value->get_location();
4871
4872 const glsl_type *type_a = label_const->type;
4873 const glsl_type *type_b = state->switch_state.test_var->type;
4874
4875 /* Check if int->uint implicit conversion is supported. */
4876 bool integer_conversion_supported =
4877 glsl_type::int_type->can_implicitly_convert_to(glsl_type::uint_type,
4878 state);
4879
4880 if ((!type_a->is_integer() || !type_b->is_integer()) ||
4881 !integer_conversion_supported) {
4882 _mesa_glsl_error(&loc, state, "type mismatch with switch "
4883 "init-expression and case label (%s != %s)",
4884 type_a->name, type_b->name);
4885 } else {
4886 /* Conversion of the case label. */
4887 if (type_a->base_type == GLSL_TYPE_INT) {
4888 if (!apply_implicit_conversion(glsl_type::uint_type,
4889 test_cond->operands[0], state))
4890 _mesa_glsl_error(&loc, state, "implicit type conversion error");
4891 } else {
4892 /* Conversion of the init-expression value. */
4893 if (!apply_implicit_conversion(glsl_type::uint_type,
4894 test_cond->operands[1], state))
4895 _mesa_glsl_error(&loc, state, "implicit type conversion error");
4896 }
4897 }
4898 }
4899
4900 ir_assignment *set_fallthru_on_test =
4901 new(ctx) ir_assignment(deref_fallthru_var, true_val, test_cond);
4902
4903 instructions->push_tail(set_fallthru_on_test);
4904 } else { /* default case */
4905 if (state->switch_state.previous_default) {
4906 YYLTYPE loc = this->get_location();
4907 _mesa_glsl_error(& loc, state,
4908 "multiple default labels in one switch");
4909
4910 loc = state->switch_state.previous_default->get_location();
4911 _mesa_glsl_error(& loc, state, "this is the first default label");
4912 }
4913 state->switch_state.previous_default = this;
4914
4915 /* Set fallthru condition on 'run_default' bool. */
4916 ir_dereference_variable *deref_run_default =
4917 new(ctx) ir_dereference_variable(state->switch_state.run_default);
4918 ir_rvalue *const cond_true = new(ctx) ir_constant(true);
4919 ir_expression *test_cond = new(ctx) ir_expression(ir_binop_all_equal,
4920 cond_true,
4921 deref_run_default);
4922
4923 /* Set falltrhu state. */
4924 ir_assignment *set_fallthru =
4925 new(ctx) ir_assignment(deref_fallthru_var, true_val, test_cond);
4926
4927 instructions->push_tail(set_fallthru);
4928 }
4929
4930 /* Case statements do not have r-values. */
4931 return NULL;
4932 }
4933
4934 void
4935 ast_iteration_statement::condition_to_hir(exec_list *instructions,
4936 struct _mesa_glsl_parse_state *state)
4937 {
4938 void *ctx = state;
4939
4940 if (condition != NULL) {
4941 ir_rvalue *const cond =
4942 condition->hir(instructions, state);
4943
4944 if ((cond == NULL)
4945 || !cond->type->is_boolean() || !cond->type->is_scalar()) {
4946 YYLTYPE loc = condition->get_location();
4947
4948 _mesa_glsl_error(& loc, state,
4949 "loop condition must be scalar boolean");
4950 } else {
4951 /* As the first code in the loop body, generate a block that looks
4952 * like 'if (!condition) break;' as the loop termination condition.
4953 */
4954 ir_rvalue *const not_cond =
4955 new(ctx) ir_expression(ir_unop_logic_not, cond);
4956
4957 ir_if *const if_stmt = new(ctx) ir_if(not_cond);
4958
4959 ir_jump *const break_stmt =
4960 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
4961
4962 if_stmt->then_instructions.push_tail(break_stmt);
4963 instructions->push_tail(if_stmt);
4964 }
4965 }
4966 }
4967
4968
4969 ir_rvalue *
4970 ast_iteration_statement::hir(exec_list *instructions,
4971 struct _mesa_glsl_parse_state *state)
4972 {
4973 void *ctx = state;
4974
4975 /* For-loops and while-loops start a new scope, but do-while loops do not.
4976 */
4977 if (mode != ast_do_while)
4978 state->symbols->push_scope();
4979
4980 if (init_statement != NULL)
4981 init_statement->hir(instructions, state);
4982
4983 ir_loop *const stmt = new(ctx) ir_loop();
4984 instructions->push_tail(stmt);
4985
4986 /* Track the current loop nesting. */
4987 ast_iteration_statement *nesting_ast = state->loop_nesting_ast;
4988
4989 state->loop_nesting_ast = this;
4990
4991 /* Likewise, indicate that following code is closest to a loop,
4992 * NOT closest to a switch.
4993 */
4994 bool saved_is_switch_innermost = state->switch_state.is_switch_innermost;
4995 state->switch_state.is_switch_innermost = false;
4996
4997 if (mode != ast_do_while)
4998 condition_to_hir(&stmt->body_instructions, state);
4999
5000 if (body != NULL)
5001 body->hir(& stmt->body_instructions, state);
5002
5003 if (rest_expression != NULL)
5004 rest_expression->hir(& stmt->body_instructions, state);
5005
5006 if (mode == ast_do_while)
5007 condition_to_hir(&stmt->body_instructions, state);
5008
5009 if (mode != ast_do_while)
5010 state->symbols->pop_scope();
5011
5012 /* Restore previous nesting before returning. */
5013 state->loop_nesting_ast = nesting_ast;
5014 state->switch_state.is_switch_innermost = saved_is_switch_innermost;
5015
5016 /* Loops do not have r-values.
5017 */
5018 return NULL;
5019 }
5020
5021
5022 /**
5023 * Determine if the given type is valid for establishing a default precision
5024 * qualifier.
5025 *
5026 * From GLSL ES 3.00 section 4.5.4 ("Default Precision Qualifiers"):
5027 *
5028 * "The precision statement
5029 *
5030 * precision precision-qualifier type;
5031 *
5032 * can be used to establish a default precision qualifier. The type field
5033 * can be either int or float or any of the sampler types, and the
5034 * precision-qualifier can be lowp, mediump, or highp."
5035 *
5036 * GLSL ES 1.00 has similar language. GLSL 1.30 doesn't allow precision
5037 * qualifiers on sampler types, but this seems like an oversight (since the
5038 * intention of including these in GLSL 1.30 is to allow compatibility with ES
5039 * shaders). So we allow int, float, and all sampler types regardless of GLSL
5040 * version.
5041 */
5042 static bool
5043 is_valid_default_precision_type(const struct glsl_type *const type)
5044 {
5045 if (type == NULL)
5046 return false;
5047
5048 switch (type->base_type) {
5049 case GLSL_TYPE_INT:
5050 case GLSL_TYPE_FLOAT:
5051 /* "int" and "float" are valid, but vectors and matrices are not. */
5052 return type->vector_elements == 1 && type->matrix_columns == 1;
5053 case GLSL_TYPE_SAMPLER:
5054 return true;
5055 default:
5056 return false;
5057 }
5058 }
5059
5060
5061 ir_rvalue *
5062 ast_type_specifier::hir(exec_list *instructions,
5063 struct _mesa_glsl_parse_state *state)
5064 {
5065 if (this->default_precision == ast_precision_none && this->structure == NULL)
5066 return NULL;
5067
5068 YYLTYPE loc = this->get_location();
5069
5070 /* If this is a precision statement, check that the type to which it is
5071 * applied is either float or int.
5072 *
5073 * From section 4.5.3 of the GLSL 1.30 spec:
5074 * "The precision statement
5075 * precision precision-qualifier type;
5076 * can be used to establish a default precision qualifier. The type
5077 * field can be either int or float [...]. Any other types or
5078 * qualifiers will result in an error.
5079 */
5080 if (this->default_precision != ast_precision_none) {
5081 if (!state->check_precision_qualifiers_allowed(&loc))
5082 return NULL;
5083
5084 if (this->structure != NULL) {
5085 _mesa_glsl_error(&loc, state,
5086 "precision qualifiers do not apply to structures");
5087 return NULL;
5088 }
5089
5090 if (this->array_specifier != NULL) {
5091 _mesa_glsl_error(&loc, state,
5092 "default precision statements do not apply to "
5093 "arrays");
5094 return NULL;
5095 }
5096
5097 const struct glsl_type *const type =
5098 state->symbols->get_type(this->type_name);
5099 if (!is_valid_default_precision_type(type)) {
5100 _mesa_glsl_error(&loc, state,
5101 "default precision statements apply only to "
5102 "float, int, and sampler types");
5103 return NULL;
5104 }
5105
5106 if (type->base_type == GLSL_TYPE_FLOAT
5107 && state->es_shader
5108 && state->stage == MESA_SHADER_FRAGMENT) {
5109 /* Section 4.5.3 (Default Precision Qualifiers) of the GLSL ES 1.00
5110 * spec says:
5111 *
5112 * "The fragment language has no default precision qualifier for
5113 * floating point types."
5114 *
5115 * As a result, we have to track whether or not default precision has
5116 * been specified for float in GLSL ES fragment shaders.
5117 *
5118 * Earlier in that same section, the spec says:
5119 *
5120 * "Non-precision qualified declarations will use the precision
5121 * qualifier specified in the most recent precision statement
5122 * that is still in scope. The precision statement has the same
5123 * scoping rules as variable declarations. If it is declared
5124 * inside a compound statement, its effect stops at the end of
5125 * the innermost statement it was declared in. Precision
5126 * statements in nested scopes override precision statements in
5127 * outer scopes. Multiple precision statements for the same basic
5128 * type can appear inside the same scope, with later statements
5129 * overriding earlier statements within that scope."
5130 *
5131 * Default precision specifications follow the same scope rules as
5132 * variables. So, we can track the state of the default float
5133 * precision in the symbol table, and the rules will just work. This
5134 * is a slight abuse of the symbol table, but it has the semantics
5135 * that we want.
5136 */
5137 ir_variable *const junk =
5138 new(state) ir_variable(type, "#default precision",
5139 ir_var_auto);
5140
5141 state->symbols->add_variable(junk);
5142 }
5143
5144 /* FINISHME: Translate precision statements into IR. */
5145 return NULL;
5146 }
5147
5148 /* _mesa_ast_set_aggregate_type() sets the <structure> field so that
5149 * process_record_constructor() can do type-checking on C-style initializer
5150 * expressions of structs, but ast_struct_specifier should only be translated
5151 * to HIR if it is declaring the type of a structure.
5152 *
5153 * The ->is_declaration field is false for initializers of variables
5154 * declared separately from the struct's type definition.
5155 *
5156 * struct S { ... }; (is_declaration = true)
5157 * struct T { ... } t = { ... }; (is_declaration = true)
5158 * S s = { ... }; (is_declaration = false)
5159 */
5160 if (this->structure != NULL && this->structure->is_declaration)
5161 return this->structure->hir(instructions, state);
5162
5163 return NULL;
5164 }
5165
5166
5167 /**
5168 * Process a structure or interface block tree into an array of structure fields
5169 *
5170 * After parsing, where there are some syntax differnces, structures and
5171 * interface blocks are almost identical. They are similar enough that the
5172 * AST for each can be processed the same way into a set of
5173 * \c glsl_struct_field to describe the members.
5174 *
5175 * If we're processing an interface block, var_mode should be the type of the
5176 * interface block (ir_var_shader_in, ir_var_shader_out, or ir_var_uniform).
5177 * If we're processing a structure, var_mode should be ir_var_auto.
5178 *
5179 * \return
5180 * The number of fields processed. A pointer to the array structure fields is
5181 * stored in \c *fields_ret.
5182 */
5183 unsigned
5184 ast_process_structure_or_interface_block(exec_list *instructions,
5185 struct _mesa_glsl_parse_state *state,
5186 exec_list *declarations,
5187 YYLTYPE &loc,
5188 glsl_struct_field **fields_ret,
5189 bool is_interface,
5190 enum glsl_matrix_layout matrix_layout,
5191 bool allow_reserved_names,
5192 ir_variable_mode var_mode)
5193 {
5194 unsigned decl_count = 0;
5195
5196 /* Make an initial pass over the list of fields to determine how
5197 * many there are. Each element in this list is an ast_declarator_list.
5198 * This means that we actually need to count the number of elements in the
5199 * 'declarations' list in each of the elements.
5200 */
5201 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
5202 decl_count += decl_list->declarations.length();
5203 }
5204
5205 /* Allocate storage for the fields and process the field
5206 * declarations. As the declarations are processed, try to also convert
5207 * the types to HIR. This ensures that structure definitions embedded in
5208 * other structure definitions or in interface blocks are processed.
5209 */
5210 glsl_struct_field *const fields = ralloc_array(state, glsl_struct_field,
5211 decl_count);
5212
5213 unsigned i = 0;
5214 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
5215 const char *type_name;
5216
5217 decl_list->type->specifier->hir(instructions, state);
5218
5219 /* Section 10.9 of the GLSL ES 1.00 specification states that
5220 * embedded structure definitions have been removed from the language.
5221 */
5222 if (state->es_shader && decl_list->type->specifier->structure != NULL) {
5223 _mesa_glsl_error(&loc, state, "embedded structure definitions are "
5224 "not allowed in GLSL ES 1.00");
5225 }
5226
5227 const glsl_type *decl_type =
5228 decl_list->type->glsl_type(& type_name, state);
5229
5230 foreach_list_typed (ast_declaration, decl, link,
5231 &decl_list->declarations) {
5232 if (!allow_reserved_names)
5233 validate_identifier(decl->identifier, loc, state);
5234
5235 /* From section 4.3.9 of the GLSL 4.40 spec:
5236 *
5237 * "[In interface blocks] opaque types are not allowed."
5238 *
5239 * It should be impossible for decl_type to be NULL here. Cases that
5240 * might naturally lead to decl_type being NULL, especially for the
5241 * is_interface case, will have resulted in compilation having
5242 * already halted due to a syntax error.
5243 */
5244 const struct glsl_type *field_type =
5245 decl_type != NULL ? decl_type : glsl_type::error_type;
5246
5247 if (is_interface && field_type->contains_opaque()) {
5248 YYLTYPE loc = decl_list->get_location();
5249 _mesa_glsl_error(&loc, state,
5250 "uniform in non-default uniform block contains "
5251 "opaque variable");
5252 }
5253
5254 if (field_type->contains_atomic()) {
5255 /* FINISHME: Add a spec quotation here once updated spec
5256 * FINISHME: language is available. See Khronos bug #10903
5257 * FINISHME: on whether atomic counters are allowed in
5258 * FINISHME: structures.
5259 */
5260 YYLTYPE loc = decl_list->get_location();
5261 _mesa_glsl_error(&loc, state, "atomic counter in structure or "
5262 "uniform block");
5263 }
5264
5265 if (field_type->contains_image()) {
5266 /* FINISHME: Same problem as with atomic counters.
5267 * FINISHME: Request clarification from Khronos and add
5268 * FINISHME: spec quotation here.
5269 */
5270 YYLTYPE loc = decl_list->get_location();
5271 _mesa_glsl_error(&loc, state,
5272 "image in structure or uniform block");
5273 }
5274
5275 const struct ast_type_qualifier *const qual =
5276 & decl_list->type->qualifier;
5277 if (qual->flags.q.std140 ||
5278 qual->flags.q.packed ||
5279 qual->flags.q.shared) {
5280 _mesa_glsl_error(&loc, state,
5281 "uniform block layout qualifiers std140, packed, and "
5282 "shared can only be applied to uniform blocks, not "
5283 "members");
5284 }
5285
5286 if (qual->flags.q.constant) {
5287 YYLTYPE loc = decl_list->get_location();
5288 _mesa_glsl_error(&loc, state,
5289 "const storage qualifier cannot be applied "
5290 "to struct or interface block members");
5291 }
5292
5293 field_type = process_array_type(&loc, decl_type,
5294 decl->array_specifier, state);
5295 fields[i].type = field_type;
5296 fields[i].name = decl->identifier;
5297 fields[i].location = -1;
5298 fields[i].interpolation =
5299 interpret_interpolation_qualifier(qual, var_mode, state, &loc);
5300 fields[i].centroid = qual->flags.q.centroid ? 1 : 0;
5301 fields[i].sample = qual->flags.q.sample ? 1 : 0;
5302
5303 /* Only save explicitly defined streams in block's field */
5304 fields[i].stream = qual->flags.q.explicit_stream ? qual->stream : -1;
5305
5306 if (qual->flags.q.row_major || qual->flags.q.column_major) {
5307 if (!qual->flags.q.uniform) {
5308 _mesa_glsl_error(&loc, state,
5309 "row_major and column_major can only be "
5310 "applied to uniform interface blocks");
5311 } else
5312 validate_matrix_layout_for_type(state, &loc, field_type, NULL);
5313 }
5314
5315 if (qual->flags.q.uniform && qual->has_interpolation()) {
5316 _mesa_glsl_error(&loc, state,
5317 "interpolation qualifiers cannot be used "
5318 "with uniform interface blocks");
5319 }
5320
5321 if ((qual->flags.q.uniform || !is_interface) &&
5322 qual->has_auxiliary_storage()) {
5323 _mesa_glsl_error(&loc, state,
5324 "auxiliary storage qualifiers cannot be used "
5325 "in uniform blocks or structures.");
5326 }
5327
5328 /* Propogate row- / column-major information down the fields of the
5329 * structure or interface block. Structures need this data because
5330 * the structure may contain a structure that contains ... a matrix
5331 * that need the proper layout.
5332 */
5333 if (field_type->without_array()->is_matrix()
5334 || field_type->without_array()->is_record()) {
5335 /* If no layout is specified for the field, inherit the layout
5336 * from the block.
5337 */
5338 fields[i].matrix_layout = matrix_layout;
5339
5340 if (qual->flags.q.row_major)
5341 fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
5342 else if (qual->flags.q.column_major)
5343 fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
5344
5345 /* If we're processing an interface block, the matrix layout must
5346 * be decided by this point.
5347 */
5348 assert(!is_interface
5349 || fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR
5350 || fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_COLUMN_MAJOR);
5351 }
5352
5353 i++;
5354 }
5355 }
5356
5357 assert(i == decl_count);
5358
5359 *fields_ret = fields;
5360 return decl_count;
5361 }
5362
5363
5364 ir_rvalue *
5365 ast_struct_specifier::hir(exec_list *instructions,
5366 struct _mesa_glsl_parse_state *state)
5367 {
5368 YYLTYPE loc = this->get_location();
5369
5370 /* Section 4.1.8 (Structures) of the GLSL 1.10 spec says:
5371 *
5372 * "Anonymous structures are not supported; so embedded structures must
5373 * have a declarator. A name given to an embedded struct is scoped at
5374 * the same level as the struct it is embedded in."
5375 *
5376 * The same section of the GLSL 1.20 spec says:
5377 *
5378 * "Anonymous structures are not supported. Embedded structures are not
5379 * supported.
5380 *
5381 * struct S { float f; };
5382 * struct T {
5383 * S; // Error: anonymous structures disallowed
5384 * struct { ... }; // Error: embedded structures disallowed
5385 * S s; // Okay: nested structures with name are allowed
5386 * };"
5387 *
5388 * The GLSL ES 1.00 and 3.00 specs have similar langauge and examples. So,
5389 * we allow embedded structures in 1.10 only.
5390 */
5391 if (state->language_version != 110 && state->struct_specifier_depth != 0)
5392 _mesa_glsl_error(&loc, state,
5393 "embedded structure declarations are not allowed");
5394
5395 state->struct_specifier_depth++;
5396
5397 glsl_struct_field *fields;
5398 unsigned decl_count =
5399 ast_process_structure_or_interface_block(instructions,
5400 state,
5401 &this->declarations,
5402 loc,
5403 &fields,
5404 false,
5405 GLSL_MATRIX_LAYOUT_INHERITED,
5406 false /* allow_reserved_names */,
5407 ir_var_auto);
5408
5409 validate_identifier(this->name, loc, state);
5410
5411 const glsl_type *t =
5412 glsl_type::get_record_instance(fields, decl_count, this->name);
5413
5414 if (!state->symbols->add_type(name, t)) {
5415 _mesa_glsl_error(& loc, state, "struct `%s' previously defined", name);
5416 } else {
5417 const glsl_type **s = reralloc(state, state->user_structures,
5418 const glsl_type *,
5419 state->num_user_structures + 1);
5420 if (s != NULL) {
5421 s[state->num_user_structures] = t;
5422 state->user_structures = s;
5423 state->num_user_structures++;
5424 }
5425 }
5426
5427 state->struct_specifier_depth--;
5428
5429 /* Structure type definitions do not have r-values.
5430 */
5431 return NULL;
5432 }
5433
5434
5435 /**
5436 * Visitor class which detects whether a given interface block has been used.
5437 */
5438 class interface_block_usage_visitor : public ir_hierarchical_visitor
5439 {
5440 public:
5441 interface_block_usage_visitor(ir_variable_mode mode, const glsl_type *block)
5442 : mode(mode), block(block), found(false)
5443 {
5444 }
5445
5446 virtual ir_visitor_status visit(ir_dereference_variable *ir)
5447 {
5448 if (ir->var->data.mode == mode && ir->var->get_interface_type() == block) {
5449 found = true;
5450 return visit_stop;
5451 }
5452 return visit_continue;
5453 }
5454
5455 bool usage_found() const
5456 {
5457 return this->found;
5458 }
5459
5460 private:
5461 ir_variable_mode mode;
5462 const glsl_type *block;
5463 bool found;
5464 };
5465
5466
5467 ir_rvalue *
5468 ast_interface_block::hir(exec_list *instructions,
5469 struct _mesa_glsl_parse_state *state)
5470 {
5471 YYLTYPE loc = this->get_location();
5472
5473 /* Interface blocks must be declared at global scope */
5474 if (state->current_function != NULL) {
5475 _mesa_glsl_error(&loc, state,
5476 "Interface block `%s' must be declared "
5477 "at global scope",
5478 this->block_name);
5479 }
5480
5481 /* The ast_interface_block has a list of ast_declarator_lists. We
5482 * need to turn those into ir_variables with an association
5483 * with this uniform block.
5484 */
5485 enum glsl_interface_packing packing;
5486 if (this->layout.flags.q.shared) {
5487 packing = GLSL_INTERFACE_PACKING_SHARED;
5488 } else if (this->layout.flags.q.packed) {
5489 packing = GLSL_INTERFACE_PACKING_PACKED;
5490 } else {
5491 /* The default layout is std140.
5492 */
5493 packing = GLSL_INTERFACE_PACKING_STD140;
5494 }
5495
5496 ir_variable_mode var_mode;
5497 const char *iface_type_name;
5498 if (this->layout.flags.q.in) {
5499 var_mode = ir_var_shader_in;
5500 iface_type_name = "in";
5501 } else if (this->layout.flags.q.out) {
5502 var_mode = ir_var_shader_out;
5503 iface_type_name = "out";
5504 } else if (this->layout.flags.q.uniform) {
5505 var_mode = ir_var_uniform;
5506 iface_type_name = "uniform";
5507 } else {
5508 var_mode = ir_var_auto;
5509 iface_type_name = "UNKNOWN";
5510 assert(!"interface block layout qualifier not found!");
5511 }
5512
5513 enum glsl_matrix_layout matrix_layout = GLSL_MATRIX_LAYOUT_INHERITED;
5514 if (this->layout.flags.q.row_major)
5515 matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
5516 else if (this->layout.flags.q.column_major)
5517 matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
5518
5519 bool redeclaring_per_vertex = strcmp(this->block_name, "gl_PerVertex") == 0;
5520 exec_list declared_variables;
5521 glsl_struct_field *fields;
5522
5523 /* Treat an interface block as one level of nesting, so that embedded struct
5524 * specifiers will be disallowed.
5525 */
5526 state->struct_specifier_depth++;
5527
5528 unsigned int num_variables =
5529 ast_process_structure_or_interface_block(&declared_variables,
5530 state,
5531 &this->declarations,
5532 loc,
5533 &fields,
5534 true,
5535 matrix_layout,
5536 redeclaring_per_vertex,
5537 var_mode);
5538
5539 state->struct_specifier_depth--;
5540
5541 if (!redeclaring_per_vertex) {
5542 validate_identifier(this->block_name, loc, state);
5543
5544 /* From section 4.3.9 ("Interface Blocks") of the GLSL 4.50 spec:
5545 *
5546 * "Block names have no other use within a shader beyond interface
5547 * matching; it is a compile-time error to use a block name at global
5548 * scope for anything other than as a block name."
5549 */
5550 ir_variable *var = state->symbols->get_variable(this->block_name);
5551 if (var && !var->type->is_interface()) {
5552 _mesa_glsl_error(&loc, state, "Block name `%s' is "
5553 "already used in the scope.",
5554 this->block_name);
5555 }
5556 }
5557
5558 const glsl_type *earlier_per_vertex = NULL;
5559 if (redeclaring_per_vertex) {
5560 /* Find the previous declaration of gl_PerVertex. If we're redeclaring
5561 * the named interface block gl_in, we can find it by looking at the
5562 * previous declaration of gl_in. Otherwise we can find it by looking
5563 * at the previous decalartion of any of the built-in outputs,
5564 * e.g. gl_Position.
5565 *
5566 * Also check that the instance name and array-ness of the redeclaration
5567 * are correct.
5568 */
5569 switch (var_mode) {
5570 case ir_var_shader_in:
5571 if (ir_variable *earlier_gl_in =
5572 state->symbols->get_variable("gl_in")) {
5573 earlier_per_vertex = earlier_gl_in->get_interface_type();
5574 } else {
5575 _mesa_glsl_error(&loc, state,
5576 "redeclaration of gl_PerVertex input not allowed "
5577 "in the %s shader",
5578 _mesa_shader_stage_to_string(state->stage));
5579 }
5580 if (this->instance_name == NULL ||
5581 strcmp(this->instance_name, "gl_in") != 0 || this->array_specifier == NULL) {
5582 _mesa_glsl_error(&loc, state,
5583 "gl_PerVertex input must be redeclared as "
5584 "gl_in[]");
5585 }
5586 break;
5587 case ir_var_shader_out:
5588 if (ir_variable *earlier_gl_Position =
5589 state->symbols->get_variable("gl_Position")) {
5590 earlier_per_vertex = earlier_gl_Position->get_interface_type();
5591 } else {
5592 _mesa_glsl_error(&loc, state,
5593 "redeclaration of gl_PerVertex output not "
5594 "allowed in the %s shader",
5595 _mesa_shader_stage_to_string(state->stage));
5596 }
5597 if (this->instance_name != NULL) {
5598 _mesa_glsl_error(&loc, state,
5599 "gl_PerVertex output may not be redeclared with "
5600 "an instance name");
5601 }
5602 break;
5603 default:
5604 _mesa_glsl_error(&loc, state,
5605 "gl_PerVertex must be declared as an input or an "
5606 "output");
5607 break;
5608 }
5609
5610 if (earlier_per_vertex == NULL) {
5611 /* An error has already been reported. Bail out to avoid null
5612 * dereferences later in this function.
5613 */
5614 return NULL;
5615 }
5616
5617 /* Copy locations from the old gl_PerVertex interface block. */
5618 for (unsigned i = 0; i < num_variables; i++) {
5619 int j = earlier_per_vertex->field_index(fields[i].name);
5620 if (j == -1) {
5621 _mesa_glsl_error(&loc, state,
5622 "redeclaration of gl_PerVertex must be a subset "
5623 "of the built-in members of gl_PerVertex");
5624 } else {
5625 fields[i].location =
5626 earlier_per_vertex->fields.structure[j].location;
5627 fields[i].interpolation =
5628 earlier_per_vertex->fields.structure[j].interpolation;
5629 fields[i].centroid =
5630 earlier_per_vertex->fields.structure[j].centroid;
5631 fields[i].sample =
5632 earlier_per_vertex->fields.structure[j].sample;
5633 }
5634 }
5635
5636 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10
5637 * spec:
5638 *
5639 * If a built-in interface block is redeclared, it must appear in
5640 * the shader before any use of any member included in the built-in
5641 * declaration, or a compilation error will result.
5642 *
5643 * This appears to be a clarification to the behaviour established for
5644 * gl_PerVertex by GLSL 1.50, therefore we implement this behaviour
5645 * regardless of GLSL version.
5646 */
5647 interface_block_usage_visitor v(var_mode, earlier_per_vertex);
5648 v.run(instructions);
5649 if (v.usage_found()) {
5650 _mesa_glsl_error(&loc, state,
5651 "redeclaration of a built-in interface block must "
5652 "appear before any use of any member of the "
5653 "interface block");
5654 }
5655 }
5656
5657 const glsl_type *block_type =
5658 glsl_type::get_interface_instance(fields,
5659 num_variables,
5660 packing,
5661 this->block_name);
5662
5663 if (!state->symbols->add_interface(block_type->name, block_type, var_mode)) {
5664 YYLTYPE loc = this->get_location();
5665 _mesa_glsl_error(&loc, state, "interface block `%s' with type `%s' "
5666 "already taken in the current scope",
5667 this->block_name, iface_type_name);
5668 }
5669
5670 /* Since interface blocks cannot contain statements, it should be
5671 * impossible for the block to generate any instructions.
5672 */
5673 assert(declared_variables.is_empty());
5674
5675 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
5676 *
5677 * Geometry shader input variables get the per-vertex values written
5678 * out by vertex shader output variables of the same names. Since a
5679 * geometry shader operates on a set of vertices, each input varying
5680 * variable (or input block, see interface blocks below) needs to be
5681 * declared as an array.
5682 */
5683 if (state->stage == MESA_SHADER_GEOMETRY && this->array_specifier == NULL &&
5684 var_mode == ir_var_shader_in) {
5685 _mesa_glsl_error(&loc, state, "geometry shader inputs must be arrays");
5686 }
5687
5688 /* Page 39 (page 45 of the PDF) of section 4.3.7 in the GLSL ES 3.00 spec
5689 * says:
5690 *
5691 * "If an instance name (instance-name) is used, then it puts all the
5692 * members inside a scope within its own name space, accessed with the
5693 * field selector ( . ) operator (analogously to structures)."
5694 */
5695 if (this->instance_name) {
5696 if (redeclaring_per_vertex) {
5697 /* When a built-in in an unnamed interface block is redeclared,
5698 * get_variable_being_redeclared() calls
5699 * check_builtin_array_max_size() to make sure that built-in array
5700 * variables aren't redeclared to illegal sizes. But we're looking
5701 * at a redeclaration of a named built-in interface block. So we
5702 * have to manually call check_builtin_array_max_size() for all parts
5703 * of the interface that are arrays.
5704 */
5705 for (unsigned i = 0; i < num_variables; i++) {
5706 if (fields[i].type->is_array()) {
5707 const unsigned size = fields[i].type->array_size();
5708 check_builtin_array_max_size(fields[i].name, size, loc, state);
5709 }
5710 }
5711 } else {
5712 validate_identifier(this->instance_name, loc, state);
5713 }
5714
5715 ir_variable *var;
5716
5717 if (this->array_specifier != NULL) {
5718 /* Section 4.3.7 (Interface Blocks) of the GLSL 1.50 spec says:
5719 *
5720 * For uniform blocks declared an array, each individual array
5721 * element corresponds to a separate buffer object backing one
5722 * instance of the block. As the array size indicates the number
5723 * of buffer objects needed, uniform block array declarations
5724 * must specify an array size.
5725 *
5726 * And a few paragraphs later:
5727 *
5728 * Geometry shader input blocks must be declared as arrays and
5729 * follow the array declaration and linking rules for all
5730 * geometry shader inputs. All other input and output block
5731 * arrays must specify an array size.
5732 *
5733 * The upshot of this is that the only circumstance where an
5734 * interface array size *doesn't* need to be specified is on a
5735 * geometry shader input.
5736 */
5737 if (this->array_specifier->is_unsized_array &&
5738 (state->stage != MESA_SHADER_GEOMETRY || !this->layout.flags.q.in)) {
5739 _mesa_glsl_error(&loc, state,
5740 "only geometry shader inputs may be unsized "
5741 "instance block arrays");
5742
5743 }
5744
5745 const glsl_type *block_array_type =
5746 process_array_type(&loc, block_type, this->array_specifier, state);
5747
5748 var = new(state) ir_variable(block_array_type,
5749 this->instance_name,
5750 var_mode);
5751 } else {
5752 var = new(state) ir_variable(block_type,
5753 this->instance_name,
5754 var_mode);
5755 }
5756
5757 var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
5758 ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
5759
5760 if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
5761 var->data.read_only = true;
5762
5763 if (state->stage == MESA_SHADER_GEOMETRY && var_mode == ir_var_shader_in)
5764 handle_geometry_shader_input_decl(state, loc, var);
5765
5766 if (ir_variable *earlier =
5767 state->symbols->get_variable(this->instance_name)) {
5768 if (!redeclaring_per_vertex) {
5769 _mesa_glsl_error(&loc, state, "`%s' redeclared",
5770 this->instance_name);
5771 }
5772 earlier->data.how_declared = ir_var_declared_normally;
5773 earlier->type = var->type;
5774 earlier->reinit_interface_type(block_type);
5775 delete var;
5776 } else {
5777 /* Propagate the "binding" keyword into this UBO's fields;
5778 * the UBO declaration itself doesn't get an ir_variable unless it
5779 * has an instance name. This is ugly.
5780 */
5781 var->data.explicit_binding = this->layout.flags.q.explicit_binding;
5782 var->data.binding = this->layout.binding;
5783
5784 state->symbols->add_variable(var);
5785 instructions->push_tail(var);
5786 }
5787 } else {
5788 /* In order to have an array size, the block must also be declared with
5789 * an instance name.
5790 */
5791 assert(this->array_specifier == NULL);
5792
5793 for (unsigned i = 0; i < num_variables; i++) {
5794 ir_variable *var =
5795 new(state) ir_variable(fields[i].type,
5796 ralloc_strdup(state, fields[i].name),
5797 var_mode);
5798 var->data.interpolation = fields[i].interpolation;
5799 var->data.centroid = fields[i].centroid;
5800 var->data.sample = fields[i].sample;
5801 var->init_interface_type(block_type);
5802
5803 if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
5804 var->data.read_only = true;
5805
5806 if (fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED) {
5807 var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
5808 ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
5809 } else {
5810 var->data.matrix_layout = fields[i].matrix_layout;
5811 }
5812
5813 if (fields[i].stream != -1 &&
5814 ((unsigned)fields[i].stream) != this->layout.stream) {
5815 _mesa_glsl_error(&loc, state,
5816 "stream layout qualifier on "
5817 "interface block member `%s' does not match "
5818 "the interface block (%d vs %d)",
5819 var->name, fields[i].stream, this->layout.stream);
5820 }
5821
5822 var->data.stream = this->layout.stream;
5823
5824 /* Examine var name here since var may get deleted in the next call */
5825 bool var_is_gl_id = is_gl_identifier(var->name);
5826
5827 if (redeclaring_per_vertex) {
5828 ir_variable *earlier =
5829 get_variable_being_redeclared(var, loc, state,
5830 true /* allow_all_redeclarations */);
5831 if (!var_is_gl_id || earlier == NULL) {
5832 _mesa_glsl_error(&loc, state,
5833 "redeclaration of gl_PerVertex can only "
5834 "include built-in variables");
5835 } else if (earlier->data.how_declared == ir_var_declared_normally) {
5836 _mesa_glsl_error(&loc, state,
5837 "`%s' has already been redeclared",
5838 earlier->name);
5839 } else {
5840 earlier->data.how_declared = ir_var_declared_in_block;
5841 earlier->reinit_interface_type(block_type);
5842 }
5843 continue;
5844 }
5845
5846 if (state->symbols->get_variable(var->name) != NULL)
5847 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
5848
5849 /* Propagate the "binding" keyword into this UBO's fields;
5850 * the UBO declaration itself doesn't get an ir_variable unless it
5851 * has an instance name. This is ugly.
5852 */
5853 var->data.explicit_binding = this->layout.flags.q.explicit_binding;
5854 var->data.binding = this->layout.binding;
5855
5856 state->symbols->add_variable(var);
5857 instructions->push_tail(var);
5858 }
5859
5860 if (redeclaring_per_vertex && block_type != earlier_per_vertex) {
5861 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10 spec:
5862 *
5863 * It is also a compilation error ... to redeclare a built-in
5864 * block and then use a member from that built-in block that was
5865 * not included in the redeclaration.
5866 *
5867 * This appears to be a clarification to the behaviour established
5868 * for gl_PerVertex by GLSL 1.50, therefore we implement this
5869 * behaviour regardless of GLSL version.
5870 *
5871 * To prevent the shader from using a member that was not included in
5872 * the redeclaration, we disable any ir_variables that are still
5873 * associated with the old declaration of gl_PerVertex (since we've
5874 * already updated all of the variables contained in the new
5875 * gl_PerVertex to point to it).
5876 *
5877 * As a side effect this will prevent
5878 * validate_intrastage_interface_blocks() from getting confused and
5879 * thinking there are conflicting definitions of gl_PerVertex in the
5880 * shader.
5881 */
5882 foreach_in_list_safe(ir_instruction, node, instructions) {
5883 ir_variable *const var = node->as_variable();
5884 if (var != NULL &&
5885 var->get_interface_type() == earlier_per_vertex &&
5886 var->data.mode == var_mode) {
5887 if (var->data.how_declared == ir_var_declared_normally) {
5888 _mesa_glsl_error(&loc, state,
5889 "redeclaration of gl_PerVertex cannot "
5890 "follow a redeclaration of `%s'",
5891 var->name);
5892 }
5893 state->symbols->disable_variable(var->name);
5894 var->remove();
5895 }
5896 }
5897 }
5898 }
5899
5900 return NULL;
5901 }
5902
5903
5904 ir_rvalue *
5905 ast_gs_input_layout::hir(exec_list *instructions,
5906 struct _mesa_glsl_parse_state *state)
5907 {
5908 YYLTYPE loc = this->get_location();
5909
5910 /* If any geometry input layout declaration preceded this one, make sure it
5911 * was consistent with this one.
5912 */
5913 if (state->gs_input_prim_type_specified &&
5914 state->in_qualifier->prim_type != this->prim_type) {
5915 _mesa_glsl_error(&loc, state,
5916 "geometry shader input layout does not match"
5917 " previous declaration");
5918 return NULL;
5919 }
5920
5921 /* If any shader inputs occurred before this declaration and specified an
5922 * array size, make sure the size they specified is consistent with the
5923 * primitive type.
5924 */
5925 unsigned num_vertices = vertices_per_prim(this->prim_type);
5926 if (state->gs_input_size != 0 && state->gs_input_size != num_vertices) {
5927 _mesa_glsl_error(&loc, state,
5928 "this geometry shader input layout implies %u vertices"
5929 " per primitive, but a previous input is declared"
5930 " with size %u", num_vertices, state->gs_input_size);
5931 return NULL;
5932 }
5933
5934 state->gs_input_prim_type_specified = true;
5935
5936 /* If any shader inputs occurred before this declaration and did not
5937 * specify an array size, their size is determined now.
5938 */
5939 foreach_in_list(ir_instruction, node, instructions) {
5940 ir_variable *var = node->as_variable();
5941 if (var == NULL || var->data.mode != ir_var_shader_in)
5942 continue;
5943
5944 /* Note: gl_PrimitiveIDIn has mode ir_var_shader_in, but it's not an
5945 * array; skip it.
5946 */
5947
5948 if (var->type->is_unsized_array()) {
5949 if (var->data.max_array_access >= num_vertices) {
5950 _mesa_glsl_error(&loc, state,
5951 "this geometry shader input layout implies %u"
5952 " vertices, but an access to element %u of input"
5953 " `%s' already exists", num_vertices,
5954 var->data.max_array_access, var->name);
5955 } else {
5956 var->type = glsl_type::get_array_instance(var->type->fields.array,
5957 num_vertices);
5958 }
5959 }
5960 }
5961
5962 return NULL;
5963 }
5964
5965
5966 ir_rvalue *
5967 ast_cs_input_layout::hir(exec_list *instructions,
5968 struct _mesa_glsl_parse_state *state)
5969 {
5970 YYLTYPE loc = this->get_location();
5971
5972 /* If any compute input layout declaration preceded this one, make sure it
5973 * was consistent with this one.
5974 */
5975 if (state->cs_input_local_size_specified) {
5976 for (int i = 0; i < 3; i++) {
5977 if (state->cs_input_local_size[i] != this->local_size[i]) {
5978 _mesa_glsl_error(&loc, state,
5979 "compute shader input layout does not match"
5980 " previous declaration");
5981 return NULL;
5982 }
5983 }
5984 }
5985
5986 /* From the ARB_compute_shader specification:
5987 *
5988 * If the local size of the shader in any dimension is greater
5989 * than the maximum size supported by the implementation for that
5990 * dimension, a compile-time error results.
5991 *
5992 * It is not clear from the spec how the error should be reported if
5993 * the total size of the work group exceeds
5994 * MAX_COMPUTE_WORK_GROUP_INVOCATIONS, but it seems reasonable to
5995 * report it at compile time as well.
5996 */
5997 GLuint64 total_invocations = 1;
5998 for (int i = 0; i < 3; i++) {
5999 if (this->local_size[i] > state->ctx->Const.MaxComputeWorkGroupSize[i]) {
6000 _mesa_glsl_error(&loc, state,
6001 "local_size_%c exceeds MAX_COMPUTE_WORK_GROUP_SIZE"
6002 " (%d)", 'x' + i,
6003 state->ctx->Const.MaxComputeWorkGroupSize[i]);
6004 break;
6005 }
6006 total_invocations *= this->local_size[i];
6007 if (total_invocations >
6008 state->ctx->Const.MaxComputeWorkGroupInvocations) {
6009 _mesa_glsl_error(&loc, state,
6010 "product of local_sizes exceeds "
6011 "MAX_COMPUTE_WORK_GROUP_INVOCATIONS (%d)",
6012 state->ctx->Const.MaxComputeWorkGroupInvocations);
6013 break;
6014 }
6015 }
6016
6017 state->cs_input_local_size_specified = true;
6018 for (int i = 0; i < 3; i++)
6019 state->cs_input_local_size[i] = this->local_size[i];
6020
6021 /* We may now declare the built-in constant gl_WorkGroupSize (see
6022 * builtin_variable_generator::generate_constants() for why we didn't
6023 * declare it earlier).
6024 */
6025 ir_variable *var = new(state->symbols)
6026 ir_variable(glsl_type::uvec3_type, "gl_WorkGroupSize", ir_var_auto);
6027 var->data.how_declared = ir_var_declared_implicitly;
6028 var->data.read_only = true;
6029 instructions->push_tail(var);
6030 state->symbols->add_variable(var);
6031 ir_constant_data data;
6032 memset(&data, 0, sizeof(data));
6033 for (int i = 0; i < 3; i++)
6034 data.u[i] = this->local_size[i];
6035 var->constant_value = new(var) ir_constant(glsl_type::uvec3_type, &data);
6036 var->constant_initializer =
6037 new(var) ir_constant(glsl_type::uvec3_type, &data);
6038 var->data.has_initializer = true;
6039
6040 return NULL;
6041 }
6042
6043
6044 static void
6045 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
6046 exec_list *instructions)
6047 {
6048 bool gl_FragColor_assigned = false;
6049 bool gl_FragData_assigned = false;
6050 bool user_defined_fs_output_assigned = false;
6051 ir_variable *user_defined_fs_output = NULL;
6052
6053 /* It would be nice to have proper location information. */
6054 YYLTYPE loc;
6055 memset(&loc, 0, sizeof(loc));
6056
6057 foreach_in_list(ir_instruction, node, instructions) {
6058 ir_variable *var = node->as_variable();
6059
6060 if (!var || !var->data.assigned)
6061 continue;
6062
6063 if (strcmp(var->name, "gl_FragColor") == 0)
6064 gl_FragColor_assigned = true;
6065 else if (strcmp(var->name, "gl_FragData") == 0)
6066 gl_FragData_assigned = true;
6067 else if (!is_gl_identifier(var->name)) {
6068 if (state->stage == MESA_SHADER_FRAGMENT &&
6069 var->data.mode == ir_var_shader_out) {
6070 user_defined_fs_output_assigned = true;
6071 user_defined_fs_output = var;
6072 }
6073 }
6074 }
6075
6076 /* From the GLSL 1.30 spec:
6077 *
6078 * "If a shader statically assigns a value to gl_FragColor, it
6079 * may not assign a value to any element of gl_FragData. If a
6080 * shader statically writes a value to any element of
6081 * gl_FragData, it may not assign a value to
6082 * gl_FragColor. That is, a shader may assign values to either
6083 * gl_FragColor or gl_FragData, but not both. Multiple shaders
6084 * linked together must also consistently write just one of
6085 * these variables. Similarly, if user declared output
6086 * variables are in use (statically assigned to), then the
6087 * built-in variables gl_FragColor and gl_FragData may not be
6088 * assigned to. These incorrect usages all generate compile
6089 * time errors."
6090 */
6091 if (gl_FragColor_assigned && gl_FragData_assigned) {
6092 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
6093 "`gl_FragColor' and `gl_FragData'");
6094 } else if (gl_FragColor_assigned && user_defined_fs_output_assigned) {
6095 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
6096 "`gl_FragColor' and `%s'",
6097 user_defined_fs_output->name);
6098 } else if (gl_FragData_assigned && user_defined_fs_output_assigned) {
6099 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
6100 "`gl_FragData' and `%s'",
6101 user_defined_fs_output->name);
6102 }
6103 }
6104
6105
6106 static void
6107 remove_per_vertex_blocks(exec_list *instructions,
6108 _mesa_glsl_parse_state *state, ir_variable_mode mode)
6109 {
6110 /* Find the gl_PerVertex interface block of the appropriate (in/out) mode,
6111 * if it exists in this shader type.
6112 */
6113 const glsl_type *per_vertex = NULL;
6114 switch (mode) {
6115 case ir_var_shader_in:
6116 if (ir_variable *gl_in = state->symbols->get_variable("gl_in"))
6117 per_vertex = gl_in->get_interface_type();
6118 break;
6119 case ir_var_shader_out:
6120 if (ir_variable *gl_Position =
6121 state->symbols->get_variable("gl_Position")) {
6122 per_vertex = gl_Position->get_interface_type();
6123 }
6124 break;
6125 default:
6126 assert(!"Unexpected mode");
6127 break;
6128 }
6129
6130 /* If we didn't find a built-in gl_PerVertex interface block, then we don't
6131 * need to do anything.
6132 */
6133 if (per_vertex == NULL)
6134 return;
6135
6136 /* If the interface block is used by the shader, then we don't need to do
6137 * anything.
6138 */
6139 interface_block_usage_visitor v(mode, per_vertex);
6140 v.run(instructions);
6141 if (v.usage_found())
6142 return;
6143
6144 /* Remove any ir_variable declarations that refer to the interface block
6145 * we're removing.
6146 */
6147 foreach_in_list_safe(ir_instruction, node, instructions) {
6148 ir_variable *const var = node->as_variable();
6149 if (var != NULL && var->get_interface_type() == per_vertex &&
6150 var->data.mode == mode) {
6151 state->symbols->disable_variable(var->name);
6152 var->remove();
6153 }
6154 }
6155 }