glsl: Turn UBO variable declarations into ir_variables and check qualifiers.
[mesa.git] / src / glsl / ast_to_hir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file ast_to_hir.c
26 * Convert abstract syntax to to high-level intermediate reprensentation (HIR).
27 *
28 * During the conversion to HIR, the majority of the symantic checking is
29 * preformed on the program. This includes:
30 *
31 * * Symbol table management
32 * * Type checking
33 * * Function binding
34 *
35 * The majority of this work could be done during parsing, and the parser could
36 * probably generate HIR directly. However, this results in frequent changes
37 * to the parser code. Since we do not assume that every system this complier
38 * is built on will have Flex and Bison installed, we have to store the code
39 * generated by these tools in our version control system. In other parts of
40 * the system we've seen problems where a parser was changed but the generated
41 * code was not committed, merge conflicts where created because two developers
42 * had slightly different versions of Bison installed, etc.
43 *
44 * I have also noticed that running Bison generated parsers in GDB is very
45 * irritating. When you get a segfault on '$$ = $1->foo', you can't very
46 * well 'print $1' in GDB.
47 *
48 * As a result, my preference is to put as little C code as possible in the
49 * parser (and lexer) sources.
50 */
51
52 #include "main/core.h" /* for struct gl_extensions */
53 #include "glsl_symbol_table.h"
54 #include "glsl_parser_extras.h"
55 #include "ast.h"
56 #include "glsl_types.h"
57 #include "program/hash_table.h"
58 #include "ir.h"
59
60 static void
61 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
62 exec_list *instructions);
63
64 void
65 _mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
66 {
67 _mesa_glsl_initialize_variables(instructions, state);
68
69 state->symbols->language_version = state->language_version;
70
71 state->current_function = NULL;
72
73 state->toplevel_ir = instructions;
74
75 /* Section 4.2 of the GLSL 1.20 specification states:
76 * "The built-in functions are scoped in a scope outside the global scope
77 * users declare global variables in. That is, a shader's global scope,
78 * available for user-defined functions and global variables, is nested
79 * inside the scope containing the built-in functions."
80 *
81 * Since built-in functions like ftransform() access built-in variables,
82 * it follows that those must be in the outer scope as well.
83 *
84 * We push scope here to create this nesting effect...but don't pop.
85 * This way, a shader's globals are still in the symbol table for use
86 * by the linker.
87 */
88 state->symbols->push_scope();
89
90 foreach_list_typed (ast_node, ast, link, & state->translation_unit)
91 ast->hir(instructions, state);
92
93 detect_recursion_unlinked(state, instructions);
94 detect_conflicting_assignments(state, instructions);
95
96 state->toplevel_ir = NULL;
97 }
98
99
100 /**
101 * If a conversion is available, convert one operand to a different type
102 *
103 * The \c from \c ir_rvalue is converted "in place".
104 *
105 * \param to Type that the operand it to be converted to
106 * \param from Operand that is being converted
107 * \param state GLSL compiler state
108 *
109 * \return
110 * If a conversion is possible (or unnecessary), \c true is returned.
111 * Otherwise \c false is returned.
112 */
113 bool
114 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
115 struct _mesa_glsl_parse_state *state)
116 {
117 void *ctx = state;
118 if (to->base_type == from->type->base_type)
119 return true;
120
121 /* This conversion was added in GLSL 1.20. If the compilation mode is
122 * GLSL 1.10, the conversion is skipped.
123 */
124 if (state->language_version < 120)
125 return false;
126
127 /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
128 *
129 * "There are no implicit array or structure conversions. For
130 * example, an array of int cannot be implicitly converted to an
131 * array of float. There are no implicit conversions between
132 * signed and unsigned integers."
133 */
134 /* FINISHME: The above comment is partially a lie. There is int/uint
135 * FINISHME: conversion for immediate constants.
136 */
137 if (!to->is_float() || !from->type->is_numeric())
138 return false;
139
140 /* Convert to a floating point type with the same number of components
141 * as the original type - i.e. int to float, not int to vec4.
142 */
143 to = glsl_type::get_instance(GLSL_TYPE_FLOAT, from->type->vector_elements,
144 from->type->matrix_columns);
145
146 switch (from->type->base_type) {
147 case GLSL_TYPE_INT:
148 from = new(ctx) ir_expression(ir_unop_i2f, to, from, NULL);
149 break;
150 case GLSL_TYPE_UINT:
151 from = new(ctx) ir_expression(ir_unop_u2f, to, from, NULL);
152 break;
153 case GLSL_TYPE_BOOL:
154 from = new(ctx) ir_expression(ir_unop_b2f, to, from, NULL);
155 break;
156 default:
157 assert(0);
158 }
159
160 return true;
161 }
162
163
164 static const struct glsl_type *
165 arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
166 bool multiply,
167 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
168 {
169 const glsl_type *type_a = value_a->type;
170 const glsl_type *type_b = value_b->type;
171
172 /* From GLSL 1.50 spec, page 56:
173 *
174 * "The arithmetic binary operators add (+), subtract (-),
175 * multiply (*), and divide (/) operate on integer and
176 * floating-point scalars, vectors, and matrices."
177 */
178 if (!type_a->is_numeric() || !type_b->is_numeric()) {
179 _mesa_glsl_error(loc, state,
180 "Operands to arithmetic operators must be numeric");
181 return glsl_type::error_type;
182 }
183
184
185 /* "If one operand is floating-point based and the other is
186 * not, then the conversions from Section 4.1.10 "Implicit
187 * Conversions" are applied to the non-floating-point-based operand."
188 */
189 if (!apply_implicit_conversion(type_a, value_b, state)
190 && !apply_implicit_conversion(type_b, value_a, state)) {
191 _mesa_glsl_error(loc, state,
192 "Could not implicitly convert operands to "
193 "arithmetic operator");
194 return glsl_type::error_type;
195 }
196 type_a = value_a->type;
197 type_b = value_b->type;
198
199 /* "If the operands are integer types, they must both be signed or
200 * both be unsigned."
201 *
202 * From this rule and the preceeding conversion it can be inferred that
203 * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
204 * The is_numeric check above already filtered out the case where either
205 * type is not one of these, so now the base types need only be tested for
206 * equality.
207 */
208 if (type_a->base_type != type_b->base_type) {
209 _mesa_glsl_error(loc, state,
210 "base type mismatch for arithmetic operator");
211 return glsl_type::error_type;
212 }
213
214 /* "All arithmetic binary operators result in the same fundamental type
215 * (signed integer, unsigned integer, or floating-point) as the
216 * operands they operate on, after operand type conversion. After
217 * conversion, the following cases are valid
218 *
219 * * The two operands are scalars. In this case the operation is
220 * applied, resulting in a scalar."
221 */
222 if (type_a->is_scalar() && type_b->is_scalar())
223 return type_a;
224
225 /* "* One operand is a scalar, and the other is a vector or matrix.
226 * In this case, the scalar operation is applied independently to each
227 * component of the vector or matrix, resulting in the same size
228 * vector or matrix."
229 */
230 if (type_a->is_scalar()) {
231 if (!type_b->is_scalar())
232 return type_b;
233 } else if (type_b->is_scalar()) {
234 return type_a;
235 }
236
237 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
238 * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
239 * handled.
240 */
241 assert(!type_a->is_scalar());
242 assert(!type_b->is_scalar());
243
244 /* "* The two operands are vectors of the same size. In this case, the
245 * operation is done component-wise resulting in the same size
246 * vector."
247 */
248 if (type_a->is_vector() && type_b->is_vector()) {
249 if (type_a == type_b) {
250 return type_a;
251 } else {
252 _mesa_glsl_error(loc, state,
253 "vector size mismatch for arithmetic operator");
254 return glsl_type::error_type;
255 }
256 }
257
258 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
259 * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
260 * <vector, vector> have been handled. At least one of the operands must
261 * be matrix. Further, since there are no integer matrix types, the base
262 * type of both operands must be float.
263 */
264 assert(type_a->is_matrix() || type_b->is_matrix());
265 assert(type_a->base_type == GLSL_TYPE_FLOAT);
266 assert(type_b->base_type == GLSL_TYPE_FLOAT);
267
268 /* "* The operator is add (+), subtract (-), or divide (/), and the
269 * operands are matrices with the same number of rows and the same
270 * number of columns. In this case, the operation is done component-
271 * wise resulting in the same size matrix."
272 * * The operator is multiply (*), where both operands are matrices or
273 * one operand is a vector and the other a matrix. A right vector
274 * operand is treated as a column vector and a left vector operand as a
275 * row vector. In all these cases, it is required that the number of
276 * columns of the left operand is equal to the number of rows of the
277 * right operand. Then, the multiply (*) operation does a linear
278 * algebraic multiply, yielding an object that has the same number of
279 * rows as the left operand and the same number of columns as the right
280 * operand. Section 5.10 "Vector and Matrix Operations" explains in
281 * more detail how vectors and matrices are operated on."
282 */
283 if (! multiply) {
284 if (type_a == type_b)
285 return type_a;
286 } else {
287 if (type_a->is_matrix() && type_b->is_matrix()) {
288 /* Matrix multiply. The columns of A must match the rows of B. Given
289 * the other previously tested constraints, this means the vector type
290 * of a row from A must be the same as the vector type of a column from
291 * B.
292 */
293 if (type_a->row_type() == type_b->column_type()) {
294 /* The resulting matrix has the number of columns of matrix B and
295 * the number of rows of matrix A. We get the row count of A by
296 * looking at the size of a vector that makes up a column. The
297 * transpose (size of a row) is done for B.
298 */
299 const glsl_type *const type =
300 glsl_type::get_instance(type_a->base_type,
301 type_a->column_type()->vector_elements,
302 type_b->row_type()->vector_elements);
303 assert(type != glsl_type::error_type);
304
305 return type;
306 }
307 } else if (type_a->is_matrix()) {
308 /* A is a matrix and B is a column vector. Columns of A must match
309 * rows of B. Given the other previously tested constraints, this
310 * means the vector type of a row from A must be the same as the
311 * vector the type of B.
312 */
313 if (type_a->row_type() == type_b) {
314 /* The resulting vector has a number of elements equal to
315 * the number of rows of matrix A. */
316 const glsl_type *const type =
317 glsl_type::get_instance(type_a->base_type,
318 type_a->column_type()->vector_elements,
319 1);
320 assert(type != glsl_type::error_type);
321
322 return type;
323 }
324 } else {
325 assert(type_b->is_matrix());
326
327 /* A is a row vector and B is a matrix. Columns of A must match rows
328 * of B. Given the other previously tested constraints, this means
329 * the type of A must be the same as the vector type of a column from
330 * B.
331 */
332 if (type_a == type_b->column_type()) {
333 /* The resulting vector has a number of elements equal to
334 * the number of columns of matrix B. */
335 const glsl_type *const type =
336 glsl_type::get_instance(type_a->base_type,
337 type_b->row_type()->vector_elements,
338 1);
339 assert(type != glsl_type::error_type);
340
341 return type;
342 }
343 }
344
345 _mesa_glsl_error(loc, state, "size mismatch for matrix multiplication");
346 return glsl_type::error_type;
347 }
348
349
350 /* "All other cases are illegal."
351 */
352 _mesa_glsl_error(loc, state, "type mismatch");
353 return glsl_type::error_type;
354 }
355
356
357 static const struct glsl_type *
358 unary_arithmetic_result_type(const struct glsl_type *type,
359 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
360 {
361 /* From GLSL 1.50 spec, page 57:
362 *
363 * "The arithmetic unary operators negate (-), post- and pre-increment
364 * and decrement (-- and ++) operate on integer or floating-point
365 * values (including vectors and matrices). All unary operators work
366 * component-wise on their operands. These result with the same type
367 * they operated on."
368 */
369 if (!type->is_numeric()) {
370 _mesa_glsl_error(loc, state,
371 "Operands to arithmetic operators must be numeric");
372 return glsl_type::error_type;
373 }
374
375 return type;
376 }
377
378 /**
379 * \brief Return the result type of a bit-logic operation.
380 *
381 * If the given types to the bit-logic operator are invalid, return
382 * glsl_type::error_type.
383 *
384 * \param type_a Type of LHS of bit-logic op
385 * \param type_b Type of RHS of bit-logic op
386 */
387 static const struct glsl_type *
388 bit_logic_result_type(const struct glsl_type *type_a,
389 const struct glsl_type *type_b,
390 ast_operators op,
391 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
392 {
393 if (state->language_version < 130) {
394 _mesa_glsl_error(loc, state, "bit operations require GLSL 1.30");
395 return glsl_type::error_type;
396 }
397
398 /* From page 50 (page 56 of PDF) of GLSL 1.30 spec:
399 *
400 * "The bitwise operators and (&), exclusive-or (^), and inclusive-or
401 * (|). The operands must be of type signed or unsigned integers or
402 * integer vectors."
403 */
404 if (!type_a->is_integer()) {
405 _mesa_glsl_error(loc, state, "LHS of `%s' must be an integer",
406 ast_expression::operator_string(op));
407 return glsl_type::error_type;
408 }
409 if (!type_b->is_integer()) {
410 _mesa_glsl_error(loc, state, "RHS of `%s' must be an integer",
411 ast_expression::operator_string(op));
412 return glsl_type::error_type;
413 }
414
415 /* "The fundamental types of the operands (signed or unsigned) must
416 * match,"
417 */
418 if (type_a->base_type != type_b->base_type) {
419 _mesa_glsl_error(loc, state, "operands of `%s' must have the same "
420 "base type", ast_expression::operator_string(op));
421 return glsl_type::error_type;
422 }
423
424 /* "The operands cannot be vectors of differing size." */
425 if (type_a->is_vector() &&
426 type_b->is_vector() &&
427 type_a->vector_elements != type_b->vector_elements) {
428 _mesa_glsl_error(loc, state, "operands of `%s' cannot be vectors of "
429 "different sizes", ast_expression::operator_string(op));
430 return glsl_type::error_type;
431 }
432
433 /* "If one operand is a scalar and the other a vector, the scalar is
434 * applied component-wise to the vector, resulting in the same type as
435 * the vector. The fundamental types of the operands [...] will be the
436 * resulting fundamental type."
437 */
438 if (type_a->is_scalar())
439 return type_b;
440 else
441 return type_a;
442 }
443
444 static const struct glsl_type *
445 modulus_result_type(const struct glsl_type *type_a,
446 const struct glsl_type *type_b,
447 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
448 {
449 if (state->language_version < 130) {
450 _mesa_glsl_error(loc, state,
451 "operator '%%' is reserved in %s",
452 state->version_string);
453 return glsl_type::error_type;
454 }
455
456 /* From GLSL 1.50 spec, page 56:
457 * "The operator modulus (%) operates on signed or unsigned integers or
458 * integer vectors. The operand types must both be signed or both be
459 * unsigned."
460 */
461 if (!type_a->is_integer()) {
462 _mesa_glsl_error(loc, state, "LHS of operator %% must be an integer.");
463 return glsl_type::error_type;
464 }
465 if (!type_b->is_integer()) {
466 _mesa_glsl_error(loc, state, "RHS of operator %% must be an integer.");
467 return glsl_type::error_type;
468 }
469 if (type_a->base_type != type_b->base_type) {
470 _mesa_glsl_error(loc, state,
471 "operands of %% must have the same base type");
472 return glsl_type::error_type;
473 }
474
475 /* "The operands cannot be vectors of differing size. If one operand is
476 * a scalar and the other vector, then the scalar is applied component-
477 * wise to the vector, resulting in the same type as the vector. If both
478 * are vectors of the same size, the result is computed component-wise."
479 */
480 if (type_a->is_vector()) {
481 if (!type_b->is_vector()
482 || (type_a->vector_elements == type_b->vector_elements))
483 return type_a;
484 } else
485 return type_b;
486
487 /* "The operator modulus (%) is not defined for any other data types
488 * (non-integer types)."
489 */
490 _mesa_glsl_error(loc, state, "type mismatch");
491 return glsl_type::error_type;
492 }
493
494
495 static const struct glsl_type *
496 relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
497 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
498 {
499 const glsl_type *type_a = value_a->type;
500 const glsl_type *type_b = value_b->type;
501
502 /* From GLSL 1.50 spec, page 56:
503 * "The relational operators greater than (>), less than (<), greater
504 * than or equal (>=), and less than or equal (<=) operate only on
505 * scalar integer and scalar floating-point expressions."
506 */
507 if (!type_a->is_numeric()
508 || !type_b->is_numeric()
509 || !type_a->is_scalar()
510 || !type_b->is_scalar()) {
511 _mesa_glsl_error(loc, state,
512 "Operands to relational operators must be scalar and "
513 "numeric");
514 return glsl_type::error_type;
515 }
516
517 /* "Either the operands' types must match, or the conversions from
518 * Section 4.1.10 "Implicit Conversions" will be applied to the integer
519 * operand, after which the types must match."
520 */
521 if (!apply_implicit_conversion(type_a, value_b, state)
522 && !apply_implicit_conversion(type_b, value_a, state)) {
523 _mesa_glsl_error(loc, state,
524 "Could not implicitly convert operands to "
525 "relational operator");
526 return glsl_type::error_type;
527 }
528 type_a = value_a->type;
529 type_b = value_b->type;
530
531 if (type_a->base_type != type_b->base_type) {
532 _mesa_glsl_error(loc, state, "base type mismatch");
533 return glsl_type::error_type;
534 }
535
536 /* "The result is scalar Boolean."
537 */
538 return glsl_type::bool_type;
539 }
540
541 /**
542 * \brief Return the result type of a bit-shift operation.
543 *
544 * If the given types to the bit-shift operator are invalid, return
545 * glsl_type::error_type.
546 *
547 * \param type_a Type of LHS of bit-shift op
548 * \param type_b Type of RHS of bit-shift op
549 */
550 static const struct glsl_type *
551 shift_result_type(const struct glsl_type *type_a,
552 const struct glsl_type *type_b,
553 ast_operators op,
554 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
555 {
556 if (state->language_version < 130) {
557 _mesa_glsl_error(loc, state, "bit operations require GLSL 1.30");
558 return glsl_type::error_type;
559 }
560
561 /* From page 50 (page 56 of the PDF) of the GLSL 1.30 spec:
562 *
563 * "The shift operators (<<) and (>>). For both operators, the operands
564 * must be signed or unsigned integers or integer vectors. One operand
565 * can be signed while the other is unsigned."
566 */
567 if (!type_a->is_integer()) {
568 _mesa_glsl_error(loc, state, "LHS of operator %s must be an integer or "
569 "integer vector", ast_expression::operator_string(op));
570 return glsl_type::error_type;
571
572 }
573 if (!type_b->is_integer()) {
574 _mesa_glsl_error(loc, state, "RHS of operator %s must be an integer or "
575 "integer vector", ast_expression::operator_string(op));
576 return glsl_type::error_type;
577 }
578
579 /* "If the first operand is a scalar, the second operand has to be
580 * a scalar as well."
581 */
582 if (type_a->is_scalar() && !type_b->is_scalar()) {
583 _mesa_glsl_error(loc, state, "If the first operand of %s is scalar, the "
584 "second must be scalar as well",
585 ast_expression::operator_string(op));
586 return glsl_type::error_type;
587 }
588
589 /* If both operands are vectors, check that they have same number of
590 * elements.
591 */
592 if (type_a->is_vector() &&
593 type_b->is_vector() &&
594 type_a->vector_elements != type_b->vector_elements) {
595 _mesa_glsl_error(loc, state, "Vector operands to operator %s must "
596 "have same number of elements",
597 ast_expression::operator_string(op));
598 return glsl_type::error_type;
599 }
600
601 /* "In all cases, the resulting type will be the same type as the left
602 * operand."
603 */
604 return type_a;
605 }
606
607 /**
608 * Validates that a value can be assigned to a location with a specified type
609 *
610 * Validates that \c rhs can be assigned to some location. If the types are
611 * not an exact match but an automatic conversion is possible, \c rhs will be
612 * converted.
613 *
614 * \return
615 * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
616 * Otherwise the actual RHS to be assigned will be returned. This may be
617 * \c rhs, or it may be \c rhs after some type conversion.
618 *
619 * \note
620 * In addition to being used for assignments, this function is used to
621 * type-check return values.
622 */
623 ir_rvalue *
624 validate_assignment(struct _mesa_glsl_parse_state *state,
625 const glsl_type *lhs_type, ir_rvalue *rhs,
626 bool is_initializer)
627 {
628 /* If there is already some error in the RHS, just return it. Anything
629 * else will lead to an avalanche of error message back to the user.
630 */
631 if (rhs->type->is_error())
632 return rhs;
633
634 /* If the types are identical, the assignment can trivially proceed.
635 */
636 if (rhs->type == lhs_type)
637 return rhs;
638
639 /* If the array element types are the same and the size of the LHS is zero,
640 * the assignment is okay for initializers embedded in variable
641 * declarations.
642 *
643 * Note: Whole-array assignments are not permitted in GLSL 1.10, but this
644 * is handled by ir_dereference::is_lvalue.
645 */
646 if (is_initializer && lhs_type->is_array() && rhs->type->is_array()
647 && (lhs_type->element_type() == rhs->type->element_type())
648 && (lhs_type->array_size() == 0)) {
649 return rhs;
650 }
651
652 /* Check for implicit conversion in GLSL 1.20 */
653 if (apply_implicit_conversion(lhs_type, rhs, state)) {
654 if (rhs->type == lhs_type)
655 return rhs;
656 }
657
658 return NULL;
659 }
660
661 static void
662 mark_whole_array_access(ir_rvalue *access)
663 {
664 ir_dereference_variable *deref = access->as_dereference_variable();
665
666 if (deref && deref->var) {
667 deref->var->max_array_access = deref->type->length - 1;
668 }
669 }
670
671 ir_rvalue *
672 do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state,
673 const char *non_lvalue_description,
674 ir_rvalue *lhs, ir_rvalue *rhs, bool is_initializer,
675 YYLTYPE lhs_loc)
676 {
677 void *ctx = state;
678 bool error_emitted = (lhs->type->is_error() || rhs->type->is_error());
679
680 ir_variable *lhs_var = lhs->variable_referenced();
681 if (lhs_var)
682 lhs_var->assigned = true;
683
684 if (!error_emitted) {
685 if (non_lvalue_description != NULL) {
686 _mesa_glsl_error(&lhs_loc, state,
687 "assignment to %s",
688 non_lvalue_description);
689 error_emitted = true;
690 } else if (lhs->variable_referenced() != NULL
691 && lhs->variable_referenced()->read_only) {
692 _mesa_glsl_error(&lhs_loc, state,
693 "assignment to read-only variable '%s'",
694 lhs->variable_referenced()->name);
695 error_emitted = true;
696
697 } else if (state->language_version <= 110 && lhs->type->is_array()) {
698 /* From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
699 *
700 * "Other binary or unary expressions, non-dereferenced
701 * arrays, function names, swizzles with repeated fields,
702 * and constants cannot be l-values."
703 */
704 _mesa_glsl_error(&lhs_loc, state, "whole array assignment is not "
705 "allowed in GLSL 1.10 or GLSL ES 1.00.");
706 error_emitted = true;
707 } else if (!lhs->is_lvalue()) {
708 _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment");
709 error_emitted = true;
710 }
711 }
712
713 ir_rvalue *new_rhs =
714 validate_assignment(state, lhs->type, rhs, is_initializer);
715 if (new_rhs == NULL) {
716 _mesa_glsl_error(& lhs_loc, state, "type mismatch");
717 } else {
718 rhs = new_rhs;
719
720 /* If the LHS array was not declared with a size, it takes it size from
721 * the RHS. If the LHS is an l-value and a whole array, it must be a
722 * dereference of a variable. Any other case would require that the LHS
723 * is either not an l-value or not a whole array.
724 */
725 if (lhs->type->array_size() == 0) {
726 ir_dereference *const d = lhs->as_dereference();
727
728 assert(d != NULL);
729
730 ir_variable *const var = d->variable_referenced();
731
732 assert(var != NULL);
733
734 if (var->max_array_access >= unsigned(rhs->type->array_size())) {
735 /* FINISHME: This should actually log the location of the RHS. */
736 _mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to "
737 "previous access",
738 var->max_array_access);
739 }
740
741 var->type = glsl_type::get_array_instance(lhs->type->element_type(),
742 rhs->type->array_size());
743 d->type = var->type;
744 }
745 mark_whole_array_access(rhs);
746 mark_whole_array_access(lhs);
747 }
748
749 /* Most callers of do_assignment (assign, add_assign, pre_inc/dec,
750 * but not post_inc) need the converted assigned value as an rvalue
751 * to handle things like:
752 *
753 * i = j += 1;
754 *
755 * So we always just store the computed value being assigned to a
756 * temporary and return a deref of that temporary. If the rvalue
757 * ends up not being used, the temp will get copy-propagated out.
758 */
759 ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp",
760 ir_var_temporary);
761 ir_dereference_variable *deref_var = new(ctx) ir_dereference_variable(var);
762 instructions->push_tail(var);
763 instructions->push_tail(new(ctx) ir_assignment(deref_var, rhs));
764 deref_var = new(ctx) ir_dereference_variable(var);
765
766 if (!error_emitted)
767 instructions->push_tail(new(ctx) ir_assignment(lhs, deref_var));
768
769 return new(ctx) ir_dereference_variable(var);
770 }
771
772 static ir_rvalue *
773 get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue)
774 {
775 void *ctx = ralloc_parent(lvalue);
776 ir_variable *var;
777
778 var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp",
779 ir_var_temporary);
780 instructions->push_tail(var);
781 var->mode = ir_var_auto;
782
783 instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
784 lvalue));
785
786 return new(ctx) ir_dereference_variable(var);
787 }
788
789
790 ir_rvalue *
791 ast_node::hir(exec_list *instructions,
792 struct _mesa_glsl_parse_state *state)
793 {
794 (void) instructions;
795 (void) state;
796
797 return NULL;
798 }
799
800 static ir_rvalue *
801 do_comparison(void *mem_ctx, int operation, ir_rvalue *op0, ir_rvalue *op1)
802 {
803 int join_op;
804 ir_rvalue *cmp = NULL;
805
806 if (operation == ir_binop_all_equal)
807 join_op = ir_binop_logic_and;
808 else
809 join_op = ir_binop_logic_or;
810
811 switch (op0->type->base_type) {
812 case GLSL_TYPE_FLOAT:
813 case GLSL_TYPE_UINT:
814 case GLSL_TYPE_INT:
815 case GLSL_TYPE_BOOL:
816 return new(mem_ctx) ir_expression(operation, op0, op1);
817
818 case GLSL_TYPE_ARRAY: {
819 for (unsigned int i = 0; i < op0->type->length; i++) {
820 ir_rvalue *e0, *e1, *result;
821
822 e0 = new(mem_ctx) ir_dereference_array(op0->clone(mem_ctx, NULL),
823 new(mem_ctx) ir_constant(i));
824 e1 = new(mem_ctx) ir_dereference_array(op1->clone(mem_ctx, NULL),
825 new(mem_ctx) ir_constant(i));
826 result = do_comparison(mem_ctx, operation, e0, e1);
827
828 if (cmp) {
829 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
830 } else {
831 cmp = result;
832 }
833 }
834
835 mark_whole_array_access(op0);
836 mark_whole_array_access(op1);
837 break;
838 }
839
840 case GLSL_TYPE_STRUCT: {
841 for (unsigned int i = 0; i < op0->type->length; i++) {
842 ir_rvalue *e0, *e1, *result;
843 const char *field_name = op0->type->fields.structure[i].name;
844
845 e0 = new(mem_ctx) ir_dereference_record(op0->clone(mem_ctx, NULL),
846 field_name);
847 e1 = new(mem_ctx) ir_dereference_record(op1->clone(mem_ctx, NULL),
848 field_name);
849 result = do_comparison(mem_ctx, operation, e0, e1);
850
851 if (cmp) {
852 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
853 } else {
854 cmp = result;
855 }
856 }
857 break;
858 }
859
860 case GLSL_TYPE_ERROR:
861 case GLSL_TYPE_VOID:
862 case GLSL_TYPE_SAMPLER:
863 /* I assume a comparison of a struct containing a sampler just
864 * ignores the sampler present in the type.
865 */
866 break;
867
868 default:
869 assert(!"Should not get here.");
870 break;
871 }
872
873 if (cmp == NULL)
874 cmp = new(mem_ctx) ir_constant(true);
875
876 return cmp;
877 }
878
879 /* For logical operations, we want to ensure that the operands are
880 * scalar booleans. If it isn't, emit an error and return a constant
881 * boolean to avoid triggering cascading error messages.
882 */
883 ir_rvalue *
884 get_scalar_boolean_operand(exec_list *instructions,
885 struct _mesa_glsl_parse_state *state,
886 ast_expression *parent_expr,
887 int operand,
888 const char *operand_name,
889 bool *error_emitted)
890 {
891 ast_expression *expr = parent_expr->subexpressions[operand];
892 void *ctx = state;
893 ir_rvalue *val = expr->hir(instructions, state);
894
895 if (val->type->is_boolean() && val->type->is_scalar())
896 return val;
897
898 if (!*error_emitted) {
899 YYLTYPE loc = expr->get_location();
900 _mesa_glsl_error(&loc, state, "%s of `%s' must be scalar boolean",
901 operand_name,
902 parent_expr->operator_string(parent_expr->oper));
903 *error_emitted = true;
904 }
905
906 return new(ctx) ir_constant(true);
907 }
908
909 /**
910 * If name refers to a builtin array whose maximum allowed size is less than
911 * size, report an error and return true. Otherwise return false.
912 */
913 static bool
914 check_builtin_array_max_size(const char *name, unsigned size,
915 YYLTYPE loc, struct _mesa_glsl_parse_state *state)
916 {
917 if ((strcmp("gl_TexCoord", name) == 0)
918 && (size > state->Const.MaxTextureCoords)) {
919 /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec:
920 *
921 * "The size [of gl_TexCoord] can be at most
922 * gl_MaxTextureCoords."
923 */
924 _mesa_glsl_error(&loc, state, "`gl_TexCoord' array size cannot "
925 "be larger than gl_MaxTextureCoords (%u)\n",
926 state->Const.MaxTextureCoords);
927 return true;
928 } else if (strcmp("gl_ClipDistance", name) == 0
929 && size > state->Const.MaxClipPlanes) {
930 /* From section 7.1 (Vertex Shader Special Variables) of the
931 * GLSL 1.30 spec:
932 *
933 * "The gl_ClipDistance array is predeclared as unsized and
934 * must be sized by the shader either redeclaring it with a
935 * size or indexing it only with integral constant
936 * expressions. ... The size can be at most
937 * gl_MaxClipDistances."
938 */
939 _mesa_glsl_error(&loc, state, "`gl_ClipDistance' array size cannot "
940 "be larger than gl_MaxClipDistances (%u)\n",
941 state->Const.MaxClipPlanes);
942 return true;
943 }
944 return false;
945 }
946
947 /**
948 * Create the constant 1, of a which is appropriate for incrementing and
949 * decrementing values of the given GLSL type. For example, if type is vec4,
950 * this creates a constant value of 1.0 having type float.
951 *
952 * If the given type is invalid for increment and decrement operators, return
953 * a floating point 1--the error will be detected later.
954 */
955 static ir_rvalue *
956 constant_one_for_inc_dec(void *ctx, const glsl_type *type)
957 {
958 switch (type->base_type) {
959 case GLSL_TYPE_UINT:
960 return new(ctx) ir_constant((unsigned) 1);
961 case GLSL_TYPE_INT:
962 return new(ctx) ir_constant(1);
963 default:
964 case GLSL_TYPE_FLOAT:
965 return new(ctx) ir_constant(1.0f);
966 }
967 }
968
969 ir_rvalue *
970 ast_expression::hir(exec_list *instructions,
971 struct _mesa_glsl_parse_state *state)
972 {
973 void *ctx = state;
974 static const int operations[AST_NUM_OPERATORS] = {
975 -1, /* ast_assign doesn't convert to ir_expression. */
976 -1, /* ast_plus doesn't convert to ir_expression. */
977 ir_unop_neg,
978 ir_binop_add,
979 ir_binop_sub,
980 ir_binop_mul,
981 ir_binop_div,
982 ir_binop_mod,
983 ir_binop_lshift,
984 ir_binop_rshift,
985 ir_binop_less,
986 ir_binop_greater,
987 ir_binop_lequal,
988 ir_binop_gequal,
989 ir_binop_all_equal,
990 ir_binop_any_nequal,
991 ir_binop_bit_and,
992 ir_binop_bit_xor,
993 ir_binop_bit_or,
994 ir_unop_bit_not,
995 ir_binop_logic_and,
996 ir_binop_logic_xor,
997 ir_binop_logic_or,
998 ir_unop_logic_not,
999
1000 /* Note: The following block of expression types actually convert
1001 * to multiple IR instructions.
1002 */
1003 ir_binop_mul, /* ast_mul_assign */
1004 ir_binop_div, /* ast_div_assign */
1005 ir_binop_mod, /* ast_mod_assign */
1006 ir_binop_add, /* ast_add_assign */
1007 ir_binop_sub, /* ast_sub_assign */
1008 ir_binop_lshift, /* ast_ls_assign */
1009 ir_binop_rshift, /* ast_rs_assign */
1010 ir_binop_bit_and, /* ast_and_assign */
1011 ir_binop_bit_xor, /* ast_xor_assign */
1012 ir_binop_bit_or, /* ast_or_assign */
1013
1014 -1, /* ast_conditional doesn't convert to ir_expression. */
1015 ir_binop_add, /* ast_pre_inc. */
1016 ir_binop_sub, /* ast_pre_dec. */
1017 ir_binop_add, /* ast_post_inc. */
1018 ir_binop_sub, /* ast_post_dec. */
1019 -1, /* ast_field_selection doesn't conv to ir_expression. */
1020 -1, /* ast_array_index doesn't convert to ir_expression. */
1021 -1, /* ast_function_call doesn't conv to ir_expression. */
1022 -1, /* ast_identifier doesn't convert to ir_expression. */
1023 -1, /* ast_int_constant doesn't convert to ir_expression. */
1024 -1, /* ast_uint_constant doesn't conv to ir_expression. */
1025 -1, /* ast_float_constant doesn't conv to ir_expression. */
1026 -1, /* ast_bool_constant doesn't conv to ir_expression. */
1027 -1, /* ast_sequence doesn't convert to ir_expression. */
1028 };
1029 ir_rvalue *result = NULL;
1030 ir_rvalue *op[3];
1031 const struct glsl_type *type; /* a temporary variable for switch cases */
1032 bool error_emitted = false;
1033 YYLTYPE loc;
1034
1035 loc = this->get_location();
1036
1037 switch (this->oper) {
1038 case ast_assign: {
1039 op[0] = this->subexpressions[0]->hir(instructions, state);
1040 op[1] = this->subexpressions[1]->hir(instructions, state);
1041
1042 result = do_assignment(instructions, state,
1043 this->subexpressions[0]->non_lvalue_description,
1044 op[0], op[1], false,
1045 this->subexpressions[0]->get_location());
1046 error_emitted = result->type->is_error();
1047 break;
1048 }
1049
1050 case ast_plus:
1051 op[0] = this->subexpressions[0]->hir(instructions, state);
1052
1053 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1054
1055 error_emitted = type->is_error();
1056
1057 result = op[0];
1058 break;
1059
1060 case ast_neg:
1061 op[0] = this->subexpressions[0]->hir(instructions, state);
1062
1063 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1064
1065 error_emitted = type->is_error();
1066
1067 result = new(ctx) ir_expression(operations[this->oper], type,
1068 op[0], NULL);
1069 break;
1070
1071 case ast_add:
1072 case ast_sub:
1073 case ast_mul:
1074 case ast_div:
1075 op[0] = this->subexpressions[0]->hir(instructions, state);
1076 op[1] = this->subexpressions[1]->hir(instructions, state);
1077
1078 type = arithmetic_result_type(op[0], op[1],
1079 (this->oper == ast_mul),
1080 state, & loc);
1081 error_emitted = type->is_error();
1082
1083 result = new(ctx) ir_expression(operations[this->oper], type,
1084 op[0], op[1]);
1085 break;
1086
1087 case ast_mod:
1088 op[0] = this->subexpressions[0]->hir(instructions, state);
1089 op[1] = this->subexpressions[1]->hir(instructions, state);
1090
1091 type = modulus_result_type(op[0]->type, op[1]->type, state, & loc);
1092
1093 assert(operations[this->oper] == ir_binop_mod);
1094
1095 result = new(ctx) ir_expression(operations[this->oper], type,
1096 op[0], op[1]);
1097 error_emitted = type->is_error();
1098 break;
1099
1100 case ast_lshift:
1101 case ast_rshift:
1102 if (state->language_version < 130) {
1103 _mesa_glsl_error(&loc, state, "operator %s requires GLSL 1.30",
1104 operator_string(this->oper));
1105 error_emitted = true;
1106 }
1107
1108 op[0] = this->subexpressions[0]->hir(instructions, state);
1109 op[1] = this->subexpressions[1]->hir(instructions, state);
1110 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1111 &loc);
1112 result = new(ctx) ir_expression(operations[this->oper], type,
1113 op[0], op[1]);
1114 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1115 break;
1116
1117 case ast_less:
1118 case ast_greater:
1119 case ast_lequal:
1120 case ast_gequal:
1121 op[0] = this->subexpressions[0]->hir(instructions, state);
1122 op[1] = this->subexpressions[1]->hir(instructions, state);
1123
1124 type = relational_result_type(op[0], op[1], state, & loc);
1125
1126 /* The relational operators must either generate an error or result
1127 * in a scalar boolean. See page 57 of the GLSL 1.50 spec.
1128 */
1129 assert(type->is_error()
1130 || ((type->base_type == GLSL_TYPE_BOOL)
1131 && type->is_scalar()));
1132
1133 result = new(ctx) ir_expression(operations[this->oper], type,
1134 op[0], op[1]);
1135 error_emitted = type->is_error();
1136 break;
1137
1138 case ast_nequal:
1139 case ast_equal:
1140 op[0] = this->subexpressions[0]->hir(instructions, state);
1141 op[1] = this->subexpressions[1]->hir(instructions, state);
1142
1143 /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
1144 *
1145 * "The equality operators equal (==), and not equal (!=)
1146 * operate on all types. They result in a scalar Boolean. If
1147 * the operand types do not match, then there must be a
1148 * conversion from Section 4.1.10 "Implicit Conversions"
1149 * applied to one operand that can make them match, in which
1150 * case this conversion is done."
1151 */
1152 if ((!apply_implicit_conversion(op[0]->type, op[1], state)
1153 && !apply_implicit_conversion(op[1]->type, op[0], state))
1154 || (op[0]->type != op[1]->type)) {
1155 _mesa_glsl_error(& loc, state, "operands of `%s' must have the same "
1156 "type", (this->oper == ast_equal) ? "==" : "!=");
1157 error_emitted = true;
1158 } else if ((state->language_version <= 110)
1159 && (op[0]->type->is_array() || op[1]->type->is_array())) {
1160 _mesa_glsl_error(& loc, state, "array comparisons forbidden in "
1161 "GLSL 1.10");
1162 error_emitted = true;
1163 }
1164
1165 if (error_emitted) {
1166 result = new(ctx) ir_constant(false);
1167 } else {
1168 result = do_comparison(ctx, operations[this->oper], op[0], op[1]);
1169 assert(result->type == glsl_type::bool_type);
1170 }
1171 break;
1172
1173 case ast_bit_and:
1174 case ast_bit_xor:
1175 case ast_bit_or:
1176 op[0] = this->subexpressions[0]->hir(instructions, state);
1177 op[1] = this->subexpressions[1]->hir(instructions, state);
1178 type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
1179 state, &loc);
1180 result = new(ctx) ir_expression(operations[this->oper], type,
1181 op[0], op[1]);
1182 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1183 break;
1184
1185 case ast_bit_not:
1186 op[0] = this->subexpressions[0]->hir(instructions, state);
1187
1188 if (state->language_version < 130) {
1189 _mesa_glsl_error(&loc, state, "bit-wise operations require GLSL 1.30");
1190 error_emitted = true;
1191 }
1192
1193 if (!op[0]->type->is_integer()) {
1194 _mesa_glsl_error(&loc, state, "operand of `~' must be an integer");
1195 error_emitted = true;
1196 }
1197
1198 type = error_emitted ? glsl_type::error_type : op[0]->type;
1199 result = new(ctx) ir_expression(ir_unop_bit_not, type, op[0], NULL);
1200 break;
1201
1202 case ast_logic_and: {
1203 exec_list rhs_instructions;
1204 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1205 "LHS", &error_emitted);
1206 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1207 "RHS", &error_emitted);
1208
1209 if (rhs_instructions.is_empty()) {
1210 result = new(ctx) ir_expression(ir_binop_logic_and, op[0], op[1]);
1211 type = result->type;
1212 } else {
1213 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1214 "and_tmp",
1215 ir_var_temporary);
1216 instructions->push_tail(tmp);
1217
1218 ir_if *const stmt = new(ctx) ir_if(op[0]);
1219 instructions->push_tail(stmt);
1220
1221 stmt->then_instructions.append_list(&rhs_instructions);
1222 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1223 ir_assignment *const then_assign =
1224 new(ctx) ir_assignment(then_deref, op[1]);
1225 stmt->then_instructions.push_tail(then_assign);
1226
1227 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1228 ir_assignment *const else_assign =
1229 new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false));
1230 stmt->else_instructions.push_tail(else_assign);
1231
1232 result = new(ctx) ir_dereference_variable(tmp);
1233 type = tmp->type;
1234 }
1235 break;
1236 }
1237
1238 case ast_logic_or: {
1239 exec_list rhs_instructions;
1240 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1241 "LHS", &error_emitted);
1242 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1243 "RHS", &error_emitted);
1244
1245 if (rhs_instructions.is_empty()) {
1246 result = new(ctx) ir_expression(ir_binop_logic_or, op[0], op[1]);
1247 type = result->type;
1248 } else {
1249 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1250 "or_tmp",
1251 ir_var_temporary);
1252 instructions->push_tail(tmp);
1253
1254 ir_if *const stmt = new(ctx) ir_if(op[0]);
1255 instructions->push_tail(stmt);
1256
1257 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1258 ir_assignment *const then_assign =
1259 new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true));
1260 stmt->then_instructions.push_tail(then_assign);
1261
1262 stmt->else_instructions.append_list(&rhs_instructions);
1263 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1264 ir_assignment *const else_assign =
1265 new(ctx) ir_assignment(else_deref, op[1]);
1266 stmt->else_instructions.push_tail(else_assign);
1267
1268 result = new(ctx) ir_dereference_variable(tmp);
1269 type = tmp->type;
1270 }
1271 break;
1272 }
1273
1274 case ast_logic_xor:
1275 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1276 *
1277 * "The logical binary operators and (&&), or ( | | ), and
1278 * exclusive or (^^). They operate only on two Boolean
1279 * expressions and result in a Boolean expression."
1280 */
1281 op[0] = get_scalar_boolean_operand(instructions, state, this, 0, "LHS",
1282 &error_emitted);
1283 op[1] = get_scalar_boolean_operand(instructions, state, this, 1, "RHS",
1284 &error_emitted);
1285
1286 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1287 op[0], op[1]);
1288 break;
1289
1290 case ast_logic_not:
1291 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1292 "operand", &error_emitted);
1293
1294 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1295 op[0], NULL);
1296 break;
1297
1298 case ast_mul_assign:
1299 case ast_div_assign:
1300 case ast_add_assign:
1301 case ast_sub_assign: {
1302 op[0] = this->subexpressions[0]->hir(instructions, state);
1303 op[1] = this->subexpressions[1]->hir(instructions, state);
1304
1305 type = arithmetic_result_type(op[0], op[1],
1306 (this->oper == ast_mul_assign),
1307 state, & loc);
1308
1309 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1310 op[0], op[1]);
1311
1312 result = do_assignment(instructions, state,
1313 this->subexpressions[0]->non_lvalue_description,
1314 op[0]->clone(ctx, NULL), temp_rhs, false,
1315 this->subexpressions[0]->get_location());
1316 error_emitted = (op[0]->type->is_error());
1317
1318 /* GLSL 1.10 does not allow array assignment. However, we don't have to
1319 * explicitly test for this because none of the binary expression
1320 * operators allow array operands either.
1321 */
1322
1323 break;
1324 }
1325
1326 case ast_mod_assign: {
1327 op[0] = this->subexpressions[0]->hir(instructions, state);
1328 op[1] = this->subexpressions[1]->hir(instructions, state);
1329
1330 type = modulus_result_type(op[0]->type, op[1]->type, state, & loc);
1331
1332 assert(operations[this->oper] == ir_binop_mod);
1333
1334 ir_rvalue *temp_rhs;
1335 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1336 op[0], op[1]);
1337
1338 result = do_assignment(instructions, state,
1339 this->subexpressions[0]->non_lvalue_description,
1340 op[0]->clone(ctx, NULL), temp_rhs, false,
1341 this->subexpressions[0]->get_location());
1342 error_emitted = type->is_error();
1343 break;
1344 }
1345
1346 case ast_ls_assign:
1347 case ast_rs_assign: {
1348 op[0] = this->subexpressions[0]->hir(instructions, state);
1349 op[1] = this->subexpressions[1]->hir(instructions, state);
1350 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1351 &loc);
1352 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1353 type, op[0], op[1]);
1354 result = do_assignment(instructions, state,
1355 this->subexpressions[0]->non_lvalue_description,
1356 op[0]->clone(ctx, NULL), temp_rhs, false,
1357 this->subexpressions[0]->get_location());
1358 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1359 break;
1360 }
1361
1362 case ast_and_assign:
1363 case ast_xor_assign:
1364 case ast_or_assign: {
1365 op[0] = this->subexpressions[0]->hir(instructions, state);
1366 op[1] = this->subexpressions[1]->hir(instructions, state);
1367 type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
1368 state, &loc);
1369 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1370 type, op[0], op[1]);
1371 result = do_assignment(instructions, state,
1372 this->subexpressions[0]->non_lvalue_description,
1373 op[0]->clone(ctx, NULL), temp_rhs, false,
1374 this->subexpressions[0]->get_location());
1375 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1376 break;
1377 }
1378
1379 case ast_conditional: {
1380 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1381 *
1382 * "The ternary selection operator (?:). It operates on three
1383 * expressions (exp1 ? exp2 : exp3). This operator evaluates the
1384 * first expression, which must result in a scalar Boolean."
1385 */
1386 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1387 "condition", &error_emitted);
1388
1389 /* The :? operator is implemented by generating an anonymous temporary
1390 * followed by an if-statement. The last instruction in each branch of
1391 * the if-statement assigns a value to the anonymous temporary. This
1392 * temporary is the r-value of the expression.
1393 */
1394 exec_list then_instructions;
1395 exec_list else_instructions;
1396
1397 op[1] = this->subexpressions[1]->hir(&then_instructions, state);
1398 op[2] = this->subexpressions[2]->hir(&else_instructions, state);
1399
1400 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1401 *
1402 * "The second and third expressions can be any type, as
1403 * long their types match, or there is a conversion in
1404 * Section 4.1.10 "Implicit Conversions" that can be applied
1405 * to one of the expressions to make their types match. This
1406 * resulting matching type is the type of the entire
1407 * expression."
1408 */
1409 if ((!apply_implicit_conversion(op[1]->type, op[2], state)
1410 && !apply_implicit_conversion(op[2]->type, op[1], state))
1411 || (op[1]->type != op[2]->type)) {
1412 YYLTYPE loc = this->subexpressions[1]->get_location();
1413
1414 _mesa_glsl_error(& loc, state, "Second and third operands of ?: "
1415 "operator must have matching types.");
1416 error_emitted = true;
1417 type = glsl_type::error_type;
1418 } else {
1419 type = op[1]->type;
1420 }
1421
1422 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1423 *
1424 * "The second and third expressions must be the same type, but can
1425 * be of any type other than an array."
1426 */
1427 if ((state->language_version <= 110) && type->is_array()) {
1428 _mesa_glsl_error(& loc, state, "Second and third operands of ?: "
1429 "operator must not be arrays.");
1430 error_emitted = true;
1431 }
1432
1433 ir_constant *cond_val = op[0]->constant_expression_value();
1434 ir_constant *then_val = op[1]->constant_expression_value();
1435 ir_constant *else_val = op[2]->constant_expression_value();
1436
1437 if (then_instructions.is_empty()
1438 && else_instructions.is_empty()
1439 && (cond_val != NULL) && (then_val != NULL) && (else_val != NULL)) {
1440 result = (cond_val->value.b[0]) ? then_val : else_val;
1441 } else {
1442 ir_variable *const tmp =
1443 new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary);
1444 instructions->push_tail(tmp);
1445
1446 ir_if *const stmt = new(ctx) ir_if(op[0]);
1447 instructions->push_tail(stmt);
1448
1449 then_instructions.move_nodes_to(& stmt->then_instructions);
1450 ir_dereference *const then_deref =
1451 new(ctx) ir_dereference_variable(tmp);
1452 ir_assignment *const then_assign =
1453 new(ctx) ir_assignment(then_deref, op[1]);
1454 stmt->then_instructions.push_tail(then_assign);
1455
1456 else_instructions.move_nodes_to(& stmt->else_instructions);
1457 ir_dereference *const else_deref =
1458 new(ctx) ir_dereference_variable(tmp);
1459 ir_assignment *const else_assign =
1460 new(ctx) ir_assignment(else_deref, op[2]);
1461 stmt->else_instructions.push_tail(else_assign);
1462
1463 result = new(ctx) ir_dereference_variable(tmp);
1464 }
1465 break;
1466 }
1467
1468 case ast_pre_inc:
1469 case ast_pre_dec: {
1470 this->non_lvalue_description = (this->oper == ast_pre_inc)
1471 ? "pre-increment operation" : "pre-decrement operation";
1472
1473 op[0] = this->subexpressions[0]->hir(instructions, state);
1474 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1475
1476 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1477
1478 ir_rvalue *temp_rhs;
1479 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1480 op[0], op[1]);
1481
1482 result = do_assignment(instructions, state,
1483 this->subexpressions[0]->non_lvalue_description,
1484 op[0]->clone(ctx, NULL), temp_rhs, false,
1485 this->subexpressions[0]->get_location());
1486 error_emitted = op[0]->type->is_error();
1487 break;
1488 }
1489
1490 case ast_post_inc:
1491 case ast_post_dec: {
1492 this->non_lvalue_description = (this->oper == ast_post_inc)
1493 ? "post-increment operation" : "post-decrement operation";
1494 op[0] = this->subexpressions[0]->hir(instructions, state);
1495 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1496
1497 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1498
1499 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1500
1501 ir_rvalue *temp_rhs;
1502 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1503 op[0], op[1]);
1504
1505 /* Get a temporary of a copy of the lvalue before it's modified.
1506 * This may get thrown away later.
1507 */
1508 result = get_lvalue_copy(instructions, op[0]->clone(ctx, NULL));
1509
1510 (void)do_assignment(instructions, state,
1511 this->subexpressions[0]->non_lvalue_description,
1512 op[0]->clone(ctx, NULL), temp_rhs, false,
1513 this->subexpressions[0]->get_location());
1514
1515 error_emitted = op[0]->type->is_error();
1516 break;
1517 }
1518
1519 case ast_field_selection:
1520 result = _mesa_ast_field_selection_to_hir(this, instructions, state);
1521 break;
1522
1523 case ast_array_index: {
1524 YYLTYPE index_loc = subexpressions[1]->get_location();
1525
1526 op[0] = subexpressions[0]->hir(instructions, state);
1527 op[1] = subexpressions[1]->hir(instructions, state);
1528
1529 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1530
1531 ir_rvalue *const array = op[0];
1532
1533 result = new(ctx) ir_dereference_array(op[0], op[1]);
1534
1535 /* Do not use op[0] after this point. Use array.
1536 */
1537 op[0] = NULL;
1538
1539
1540 if (error_emitted)
1541 break;
1542
1543 if (!array->type->is_array()
1544 && !array->type->is_matrix()
1545 && !array->type->is_vector()) {
1546 _mesa_glsl_error(& index_loc, state,
1547 "cannot dereference non-array / non-matrix / "
1548 "non-vector");
1549 error_emitted = true;
1550 }
1551
1552 if (!op[1]->type->is_integer()) {
1553 _mesa_glsl_error(& index_loc, state,
1554 "array index must be integer type");
1555 error_emitted = true;
1556 } else if (!op[1]->type->is_scalar()) {
1557 _mesa_glsl_error(& index_loc, state,
1558 "array index must be scalar");
1559 error_emitted = true;
1560 }
1561
1562 /* If the array index is a constant expression and the array has a
1563 * declared size, ensure that the access is in-bounds. If the array
1564 * index is not a constant expression, ensure that the array has a
1565 * declared size.
1566 */
1567 ir_constant *const const_index = op[1]->constant_expression_value();
1568 if (const_index != NULL) {
1569 const int idx = const_index->value.i[0];
1570 const char *type_name;
1571 unsigned bound = 0;
1572
1573 if (array->type->is_matrix()) {
1574 type_name = "matrix";
1575 } else if (array->type->is_vector()) {
1576 type_name = "vector";
1577 } else {
1578 type_name = "array";
1579 }
1580
1581 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec:
1582 *
1583 * "It is illegal to declare an array with a size, and then
1584 * later (in the same shader) index the same array with an
1585 * integral constant expression greater than or equal to the
1586 * declared size. It is also illegal to index an array with a
1587 * negative constant expression."
1588 */
1589 if (array->type->is_matrix()) {
1590 if (array->type->row_type()->vector_elements <= idx) {
1591 bound = array->type->row_type()->vector_elements;
1592 }
1593 } else if (array->type->is_vector()) {
1594 if (array->type->vector_elements <= idx) {
1595 bound = array->type->vector_elements;
1596 }
1597 } else {
1598 if ((array->type->array_size() > 0)
1599 && (array->type->array_size() <= idx)) {
1600 bound = array->type->array_size();
1601 }
1602 }
1603
1604 if (bound > 0) {
1605 _mesa_glsl_error(& loc, state, "%s index must be < %u",
1606 type_name, bound);
1607 error_emitted = true;
1608 } else if (idx < 0) {
1609 _mesa_glsl_error(& loc, state, "%s index must be >= 0",
1610 type_name);
1611 error_emitted = true;
1612 }
1613
1614 if (array->type->is_array()) {
1615 /* If the array is a variable dereference, it dereferences the
1616 * whole array, by definition. Use this to get the variable.
1617 *
1618 * FINISHME: Should some methods for getting / setting / testing
1619 * FINISHME: array access limits be added to ir_dereference?
1620 */
1621 ir_variable *const v = array->whole_variable_referenced();
1622 if ((v != NULL) && (unsigned(idx) > v->max_array_access)) {
1623 v->max_array_access = idx;
1624
1625 /* Check whether this access will, as a side effect, implicitly
1626 * cause the size of a built-in array to be too large.
1627 */
1628 if (check_builtin_array_max_size(v->name, idx+1, loc, state))
1629 error_emitted = true;
1630 }
1631 }
1632 } else if (array->type->array_size() == 0) {
1633 _mesa_glsl_error(&loc, state, "unsized array index must be constant");
1634 } else {
1635 if (array->type->is_array()) {
1636 /* whole_variable_referenced can return NULL if the array is a
1637 * member of a structure. In this case it is safe to not update
1638 * the max_array_access field because it is never used for fields
1639 * of structures.
1640 */
1641 ir_variable *v = array->whole_variable_referenced();
1642 if (v != NULL)
1643 v->max_array_access = array->type->array_size() - 1;
1644 }
1645 }
1646
1647 /* From page 23 (29 of the PDF) of the GLSL 1.30 spec:
1648 *
1649 * "Samplers aggregated into arrays within a shader (using square
1650 * brackets [ ]) can only be indexed with integral constant
1651 * expressions [...]."
1652 *
1653 * This restriction was added in GLSL 1.30. Shaders using earlier version
1654 * of the language should not be rejected by the compiler front-end for
1655 * using this construct. This allows useful things such as using a loop
1656 * counter as the index to an array of samplers. If the loop in unrolled,
1657 * the code should compile correctly. Instead, emit a warning.
1658 */
1659 if (array->type->is_array() &&
1660 array->type->element_type()->is_sampler() &&
1661 const_index == NULL) {
1662
1663 if (state->language_version == 100) {
1664 _mesa_glsl_warning(&loc, state,
1665 "sampler arrays indexed with non-constant "
1666 "expressions is optional in GLSL ES 1.00");
1667 } else if (state->language_version < 130) {
1668 _mesa_glsl_warning(&loc, state,
1669 "sampler arrays indexed with non-constant "
1670 "expressions is forbidden in GLSL 1.30 and "
1671 "later");
1672 } else {
1673 _mesa_glsl_error(&loc, state,
1674 "sampler arrays indexed with non-constant "
1675 "expressions is forbidden in GLSL 1.30 and "
1676 "later");
1677 error_emitted = true;
1678 }
1679 }
1680
1681 if (error_emitted)
1682 result->type = glsl_type::error_type;
1683
1684 break;
1685 }
1686
1687 case ast_function_call:
1688 /* Should *NEVER* get here. ast_function_call should always be handled
1689 * by ast_function_expression::hir.
1690 */
1691 assert(0);
1692 break;
1693
1694 case ast_identifier: {
1695 /* ast_identifier can appear several places in a full abstract syntax
1696 * tree. This particular use must be at location specified in the grammar
1697 * as 'variable_identifier'.
1698 */
1699 ir_variable *var =
1700 state->symbols->get_variable(this->primary_expression.identifier);
1701
1702 if (var != NULL) {
1703 var->used = true;
1704 result = new(ctx) ir_dereference_variable(var);
1705 } else {
1706 _mesa_glsl_error(& loc, state, "`%s' undeclared",
1707 this->primary_expression.identifier);
1708
1709 result = ir_rvalue::error_value(ctx);
1710 error_emitted = true;
1711 }
1712 break;
1713 }
1714
1715 case ast_int_constant:
1716 result = new(ctx) ir_constant(this->primary_expression.int_constant);
1717 break;
1718
1719 case ast_uint_constant:
1720 result = new(ctx) ir_constant(this->primary_expression.uint_constant);
1721 break;
1722
1723 case ast_float_constant:
1724 result = new(ctx) ir_constant(this->primary_expression.float_constant);
1725 break;
1726
1727 case ast_bool_constant:
1728 result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant));
1729 break;
1730
1731 case ast_sequence: {
1732 /* It should not be possible to generate a sequence in the AST without
1733 * any expressions in it.
1734 */
1735 assert(!this->expressions.is_empty());
1736
1737 /* The r-value of a sequence is the last expression in the sequence. If
1738 * the other expressions in the sequence do not have side-effects (and
1739 * therefore add instructions to the instruction list), they get dropped
1740 * on the floor.
1741 */
1742 exec_node *previous_tail_pred = NULL;
1743 YYLTYPE previous_operand_loc = loc;
1744
1745 foreach_list_typed (ast_node, ast, link, &this->expressions) {
1746 /* If one of the operands of comma operator does not generate any
1747 * code, we want to emit a warning. At each pass through the loop
1748 * previous_tail_pred will point to the last instruction in the
1749 * stream *before* processing the previous operand. Naturally,
1750 * instructions->tail_pred will point to the last instruction in the
1751 * stream *after* processing the previous operand. If the two
1752 * pointers match, then the previous operand had no effect.
1753 *
1754 * The warning behavior here differs slightly from GCC. GCC will
1755 * only emit a warning if none of the left-hand operands have an
1756 * effect. However, it will emit a warning for each. I believe that
1757 * there are some cases in C (especially with GCC extensions) where
1758 * it is useful to have an intermediate step in a sequence have no
1759 * effect, but I don't think these cases exist in GLSL. Either way,
1760 * it would be a giant hassle to replicate that behavior.
1761 */
1762 if (previous_tail_pred == instructions->tail_pred) {
1763 _mesa_glsl_warning(&previous_operand_loc, state,
1764 "left-hand operand of comma expression has "
1765 "no effect");
1766 }
1767
1768 /* tail_pred is directly accessed instead of using the get_tail()
1769 * method for performance reasons. get_tail() has extra code to
1770 * return NULL when the list is empty. We don't care about that
1771 * here, so using tail_pred directly is fine.
1772 */
1773 previous_tail_pred = instructions->tail_pred;
1774 previous_operand_loc = ast->get_location();
1775
1776 result = ast->hir(instructions, state);
1777 }
1778
1779 /* Any errors should have already been emitted in the loop above.
1780 */
1781 error_emitted = true;
1782 break;
1783 }
1784 }
1785 type = NULL; /* use result->type, not type. */
1786 assert(result != NULL);
1787
1788 if (result->type->is_error() && !error_emitted)
1789 _mesa_glsl_error(& loc, state, "type mismatch");
1790
1791 return result;
1792 }
1793
1794
1795 ir_rvalue *
1796 ast_expression_statement::hir(exec_list *instructions,
1797 struct _mesa_glsl_parse_state *state)
1798 {
1799 /* It is possible to have expression statements that don't have an
1800 * expression. This is the solitary semicolon:
1801 *
1802 * for (i = 0; i < 5; i++)
1803 * ;
1804 *
1805 * In this case the expression will be NULL. Test for NULL and don't do
1806 * anything in that case.
1807 */
1808 if (expression != NULL)
1809 expression->hir(instructions, state);
1810
1811 /* Statements do not have r-values.
1812 */
1813 return NULL;
1814 }
1815
1816
1817 ir_rvalue *
1818 ast_compound_statement::hir(exec_list *instructions,
1819 struct _mesa_glsl_parse_state *state)
1820 {
1821 if (new_scope)
1822 state->symbols->push_scope();
1823
1824 foreach_list_typed (ast_node, ast, link, &this->statements)
1825 ast->hir(instructions, state);
1826
1827 if (new_scope)
1828 state->symbols->pop_scope();
1829
1830 /* Compound statements do not have r-values.
1831 */
1832 return NULL;
1833 }
1834
1835
1836 static const glsl_type *
1837 process_array_type(YYLTYPE *loc, const glsl_type *base, ast_node *array_size,
1838 struct _mesa_glsl_parse_state *state)
1839 {
1840 unsigned length = 0;
1841
1842 /* From page 19 (page 25) of the GLSL 1.20 spec:
1843 *
1844 * "Only one-dimensional arrays may be declared."
1845 */
1846 if (base->is_array()) {
1847 _mesa_glsl_error(loc, state,
1848 "invalid array of `%s' (only one-dimensional arrays "
1849 "may be declared)",
1850 base->name);
1851 return glsl_type::error_type;
1852 }
1853
1854 if (array_size != NULL) {
1855 exec_list dummy_instructions;
1856 ir_rvalue *const ir = array_size->hir(& dummy_instructions, state);
1857 YYLTYPE loc = array_size->get_location();
1858
1859 if (ir != NULL) {
1860 if (!ir->type->is_integer()) {
1861 _mesa_glsl_error(& loc, state, "array size must be integer type");
1862 } else if (!ir->type->is_scalar()) {
1863 _mesa_glsl_error(& loc, state, "array size must be scalar type");
1864 } else {
1865 ir_constant *const size = ir->constant_expression_value();
1866
1867 if (size == NULL) {
1868 _mesa_glsl_error(& loc, state, "array size must be a "
1869 "constant valued expression");
1870 } else if (size->value.i[0] <= 0) {
1871 _mesa_glsl_error(& loc, state, "array size must be > 0");
1872 } else {
1873 assert(size->type == ir->type);
1874 length = size->value.u[0];
1875
1876 /* If the array size is const (and we've verified that
1877 * it is) then no instructions should have been emitted
1878 * when we converted it to HIR. If they were emitted,
1879 * then either the array size isn't const after all, or
1880 * we are emitting unnecessary instructions.
1881 */
1882 assert(dummy_instructions.is_empty());
1883 }
1884 }
1885 }
1886 } else if (state->es_shader) {
1887 /* Section 10.17 of the GLSL ES 1.00 specification states that unsized
1888 * array declarations have been removed from the language.
1889 */
1890 _mesa_glsl_error(loc, state, "unsized array declarations are not "
1891 "allowed in GLSL ES 1.00.");
1892 }
1893
1894 return glsl_type::get_array_instance(base, length);
1895 }
1896
1897
1898 const glsl_type *
1899 ast_type_specifier::glsl_type(const char **name,
1900 struct _mesa_glsl_parse_state *state) const
1901 {
1902 const struct glsl_type *type;
1903
1904 type = state->symbols->get_type(this->type_name);
1905 *name = this->type_name;
1906
1907 if (this->is_array) {
1908 YYLTYPE loc = this->get_location();
1909 type = process_array_type(&loc, type, this->array_size, state);
1910 }
1911
1912 return type;
1913 }
1914
1915
1916 static void
1917 apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
1918 ir_variable *var,
1919 struct _mesa_glsl_parse_state *state,
1920 YYLTYPE *loc,
1921 bool ubo_qualifiers_valid)
1922 {
1923 if (qual->flags.q.invariant) {
1924 if (var->used) {
1925 _mesa_glsl_error(loc, state,
1926 "variable `%s' may not be redeclared "
1927 "`invariant' after being used",
1928 var->name);
1929 } else {
1930 var->invariant = 1;
1931 }
1932 }
1933
1934 if (qual->flags.q.constant || qual->flags.q.attribute
1935 || qual->flags.q.uniform
1936 || (qual->flags.q.varying && (state->target == fragment_shader)))
1937 var->read_only = 1;
1938
1939 if (qual->flags.q.centroid)
1940 var->centroid = 1;
1941
1942 if (qual->flags.q.attribute && state->target != vertex_shader) {
1943 var->type = glsl_type::error_type;
1944 _mesa_glsl_error(loc, state,
1945 "`attribute' variables may not be declared in the "
1946 "%s shader",
1947 _mesa_glsl_shader_target_name(state->target));
1948 }
1949
1950 /* From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
1951 *
1952 * "The varying qualifier can be used only with the data types
1953 * float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
1954 * these."
1955 */
1956 if (qual->flags.q.varying) {
1957 const glsl_type *non_array_type;
1958
1959 if (var->type && var->type->is_array())
1960 non_array_type = var->type->fields.array;
1961 else
1962 non_array_type = var->type;
1963
1964 if (non_array_type && non_array_type->base_type != GLSL_TYPE_FLOAT) {
1965 var->type = glsl_type::error_type;
1966 _mesa_glsl_error(loc, state,
1967 "varying variables must be of base type float");
1968 }
1969 }
1970
1971 /* If there is no qualifier that changes the mode of the variable, leave
1972 * the setting alone.
1973 */
1974 if (qual->flags.q.in && qual->flags.q.out)
1975 var->mode = ir_var_inout;
1976 else if (qual->flags.q.attribute || qual->flags.q.in
1977 || (qual->flags.q.varying && (state->target == fragment_shader)))
1978 var->mode = ir_var_in;
1979 else if (qual->flags.q.out
1980 || (qual->flags.q.varying && (state->target == vertex_shader)))
1981 var->mode = ir_var_out;
1982 else if (qual->flags.q.uniform)
1983 var->mode = ir_var_uniform;
1984
1985 if (state->all_invariant && (state->current_function == NULL)) {
1986 switch (state->target) {
1987 case vertex_shader:
1988 if (var->mode == ir_var_out)
1989 var->invariant = true;
1990 break;
1991 case geometry_shader:
1992 if ((var->mode == ir_var_in) || (var->mode == ir_var_out))
1993 var->invariant = true;
1994 break;
1995 case fragment_shader:
1996 if (var->mode == ir_var_in)
1997 var->invariant = true;
1998 break;
1999 }
2000 }
2001
2002 if (qual->flags.q.flat)
2003 var->interpolation = INTERP_QUALIFIER_FLAT;
2004 else if (qual->flags.q.noperspective)
2005 var->interpolation = INTERP_QUALIFIER_NOPERSPECTIVE;
2006 else if (qual->flags.q.smooth)
2007 var->interpolation = INTERP_QUALIFIER_SMOOTH;
2008 else
2009 var->interpolation = INTERP_QUALIFIER_NONE;
2010
2011 if (var->interpolation != INTERP_QUALIFIER_NONE &&
2012 !(state->target == vertex_shader && var->mode == ir_var_out) &&
2013 !(state->target == fragment_shader && var->mode == ir_var_in)) {
2014 _mesa_glsl_error(loc, state,
2015 "interpolation qualifier `%s' can only be applied to "
2016 "vertex shader outputs and fragment shader inputs.",
2017 var->interpolation_string());
2018 }
2019
2020 var->pixel_center_integer = qual->flags.q.pixel_center_integer;
2021 var->origin_upper_left = qual->flags.q.origin_upper_left;
2022 if ((qual->flags.q.origin_upper_left || qual->flags.q.pixel_center_integer)
2023 && (strcmp(var->name, "gl_FragCoord") != 0)) {
2024 const char *const qual_string = (qual->flags.q.origin_upper_left)
2025 ? "origin_upper_left" : "pixel_center_integer";
2026
2027 _mesa_glsl_error(loc, state,
2028 "layout qualifier `%s' can only be applied to "
2029 "fragment shader input `gl_FragCoord'",
2030 qual_string);
2031 }
2032
2033 if (qual->flags.q.explicit_location) {
2034 const bool global_scope = (state->current_function == NULL);
2035 bool fail = false;
2036 const char *string = "";
2037
2038 /* In the vertex shader only shader inputs can be given explicit
2039 * locations.
2040 *
2041 * In the fragment shader only shader outputs can be given explicit
2042 * locations.
2043 */
2044 switch (state->target) {
2045 case vertex_shader:
2046 if (!global_scope || (var->mode != ir_var_in)) {
2047 fail = true;
2048 string = "input";
2049 }
2050 break;
2051
2052 case geometry_shader:
2053 _mesa_glsl_error(loc, state,
2054 "geometry shader variables cannot be given "
2055 "explicit locations\n");
2056 break;
2057
2058 case fragment_shader:
2059 if (!global_scope || (var->mode != ir_var_out)) {
2060 fail = true;
2061 string = "output";
2062 }
2063 break;
2064 };
2065
2066 if (fail) {
2067 _mesa_glsl_error(loc, state,
2068 "only %s shader %s variables can be given an "
2069 "explicit location\n",
2070 _mesa_glsl_shader_target_name(state->target),
2071 string);
2072 } else {
2073 var->explicit_location = true;
2074
2075 /* This bit of silliness is needed because invalid explicit locations
2076 * are supposed to be flagged during linking. Small negative values
2077 * biased by VERT_ATTRIB_GENERIC0 or FRAG_RESULT_DATA0 could alias
2078 * built-in values (e.g., -16+VERT_ATTRIB_GENERIC0 = VERT_ATTRIB_POS).
2079 * The linker needs to be able to differentiate these cases. This
2080 * ensures that negative values stay negative.
2081 */
2082 if (qual->location >= 0) {
2083 var->location = (state->target == vertex_shader)
2084 ? (qual->location + VERT_ATTRIB_GENERIC0)
2085 : (qual->location + FRAG_RESULT_DATA0);
2086 } else {
2087 var->location = qual->location;
2088 }
2089 if (qual->flags.q.explicit_index) {
2090 var->explicit_index = true;
2091 var->index = qual->index;
2092 }
2093 }
2094 } else if (qual->flags.q.explicit_index) {
2095 _mesa_glsl_error(loc, state,
2096 "explicit index requires explicit location\n");
2097 }
2098
2099 /* Does the declaration use the 'layout' keyword?
2100 */
2101 const bool uses_layout = qual->flags.q.pixel_center_integer
2102 || qual->flags.q.origin_upper_left
2103 || qual->flags.q.explicit_location; /* no need for index since it relies on location */
2104
2105 /* Does the declaration use the deprecated 'attribute' or 'varying'
2106 * keywords?
2107 */
2108 const bool uses_deprecated_qualifier = qual->flags.q.attribute
2109 || qual->flags.q.varying;
2110
2111 /* Is the 'layout' keyword used with parameters that allow relaxed checking.
2112 * Many implementations of GL_ARB_fragment_coord_conventions_enable and some
2113 * implementations (only Mesa?) GL_ARB_explicit_attrib_location_enable
2114 * allowed the layout qualifier to be used with 'varying' and 'attribute'.
2115 * These extensions and all following extensions that add the 'layout'
2116 * keyword have been modified to require the use of 'in' or 'out'.
2117 *
2118 * The following extension do not allow the deprecated keywords:
2119 *
2120 * GL_AMD_conservative_depth
2121 * GL_ARB_conservative_depth
2122 * GL_ARB_gpu_shader5
2123 * GL_ARB_separate_shader_objects
2124 * GL_ARB_tesselation_shader
2125 * GL_ARB_transform_feedback3
2126 * GL_ARB_uniform_buffer_object
2127 *
2128 * It is unknown whether GL_EXT_shader_image_load_store or GL_NV_gpu_shader5
2129 * allow layout with the deprecated keywords.
2130 */
2131 const bool relaxed_layout_qualifier_checking =
2132 state->ARB_fragment_coord_conventions_enable;
2133
2134 if (uses_layout && uses_deprecated_qualifier) {
2135 if (relaxed_layout_qualifier_checking) {
2136 _mesa_glsl_warning(loc, state,
2137 "`layout' qualifier may not be used with "
2138 "`attribute' or `varying'");
2139 } else {
2140 _mesa_glsl_error(loc, state,
2141 "`layout' qualifier may not be used with "
2142 "`attribute' or `varying'");
2143 }
2144 }
2145
2146 /* Layout qualifiers for gl_FragDepth, which are enabled by extension
2147 * AMD_conservative_depth.
2148 */
2149 int depth_layout_count = qual->flags.q.depth_any
2150 + qual->flags.q.depth_greater
2151 + qual->flags.q.depth_less
2152 + qual->flags.q.depth_unchanged;
2153 if (depth_layout_count > 0
2154 && !state->AMD_conservative_depth_enable
2155 && !state->ARB_conservative_depth_enable) {
2156 _mesa_glsl_error(loc, state,
2157 "extension GL_AMD_conservative_depth or "
2158 "GL_ARB_conservative_depth must be enabled "
2159 "to use depth layout qualifiers");
2160 } else if (depth_layout_count > 0
2161 && strcmp(var->name, "gl_FragDepth") != 0) {
2162 _mesa_glsl_error(loc, state,
2163 "depth layout qualifiers can be applied only to "
2164 "gl_FragDepth");
2165 } else if (depth_layout_count > 1
2166 && strcmp(var->name, "gl_FragDepth") == 0) {
2167 _mesa_glsl_error(loc, state,
2168 "at most one depth layout qualifier can be applied to "
2169 "gl_FragDepth");
2170 }
2171 if (qual->flags.q.depth_any)
2172 var->depth_layout = ir_depth_layout_any;
2173 else if (qual->flags.q.depth_greater)
2174 var->depth_layout = ir_depth_layout_greater;
2175 else if (qual->flags.q.depth_less)
2176 var->depth_layout = ir_depth_layout_less;
2177 else if (qual->flags.q.depth_unchanged)
2178 var->depth_layout = ir_depth_layout_unchanged;
2179 else
2180 var->depth_layout = ir_depth_layout_none;
2181
2182 if (qual->flags.q.std140 ||
2183 qual->flags.q.packed ||
2184 qual->flags.q.shared) {
2185 _mesa_glsl_error(loc, state,
2186 "uniform block layout qualifiers std140, packed, and "
2187 "shared can only be applied to uniform blocks, not "
2188 "members");
2189 }
2190
2191 if (!ubo_qualifiers_valid &&
2192 (qual->flags.q.row_major || qual->flags.q.column_major)) {
2193 _mesa_glsl_error(loc, state,
2194 "uniform block layout qualifiers row_major and "
2195 "column_major can only be applied to uniform block "
2196 "members");
2197 }
2198 }
2199
2200 /**
2201 * Get the variable that is being redeclared by this declaration
2202 *
2203 * Semantic checks to verify the validity of the redeclaration are also
2204 * performed. If semantic checks fail, compilation error will be emitted via
2205 * \c _mesa_glsl_error, but a non-\c NULL pointer will still be returned.
2206 *
2207 * \returns
2208 * A pointer to an existing variable in the current scope if the declaration
2209 * is a redeclaration, \c NULL otherwise.
2210 */
2211 ir_variable *
2212 get_variable_being_redeclared(ir_variable *var, ast_declaration *decl,
2213 struct _mesa_glsl_parse_state *state)
2214 {
2215 /* Check if this declaration is actually a re-declaration, either to
2216 * resize an array or add qualifiers to an existing variable.
2217 *
2218 * This is allowed for variables in the current scope, or when at
2219 * global scope (for built-ins in the implicit outer scope).
2220 */
2221 ir_variable *earlier = state->symbols->get_variable(decl->identifier);
2222 if (earlier == NULL ||
2223 (state->current_function != NULL &&
2224 !state->symbols->name_declared_this_scope(decl->identifier))) {
2225 return NULL;
2226 }
2227
2228
2229 YYLTYPE loc = decl->get_location();
2230
2231 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
2232 *
2233 * "It is legal to declare an array without a size and then
2234 * later re-declare the same name as an array of the same
2235 * type and specify a size."
2236 */
2237 if ((earlier->type->array_size() == 0)
2238 && var->type->is_array()
2239 && (var->type->element_type() == earlier->type->element_type())) {
2240 /* FINISHME: This doesn't match the qualifiers on the two
2241 * FINISHME: declarations. It's not 100% clear whether this is
2242 * FINISHME: required or not.
2243 */
2244
2245 const unsigned size = unsigned(var->type->array_size());
2246 check_builtin_array_max_size(var->name, size, loc, state);
2247 if ((size > 0) && (size <= earlier->max_array_access)) {
2248 _mesa_glsl_error(& loc, state, "array size must be > %u due to "
2249 "previous access",
2250 earlier->max_array_access);
2251 }
2252
2253 earlier->type = var->type;
2254 delete var;
2255 var = NULL;
2256 } else if (state->ARB_fragment_coord_conventions_enable
2257 && strcmp(var->name, "gl_FragCoord") == 0
2258 && earlier->type == var->type
2259 && earlier->mode == var->mode) {
2260 /* Allow redeclaration of gl_FragCoord for ARB_fcc layout
2261 * qualifiers.
2262 */
2263 earlier->origin_upper_left = var->origin_upper_left;
2264 earlier->pixel_center_integer = var->pixel_center_integer;
2265
2266 /* According to section 4.3.7 of the GLSL 1.30 spec,
2267 * the following built-in varaibles can be redeclared with an
2268 * interpolation qualifier:
2269 * * gl_FrontColor
2270 * * gl_BackColor
2271 * * gl_FrontSecondaryColor
2272 * * gl_BackSecondaryColor
2273 * * gl_Color
2274 * * gl_SecondaryColor
2275 */
2276 } else if (state->language_version >= 130
2277 && (strcmp(var->name, "gl_FrontColor") == 0
2278 || strcmp(var->name, "gl_BackColor") == 0
2279 || strcmp(var->name, "gl_FrontSecondaryColor") == 0
2280 || strcmp(var->name, "gl_BackSecondaryColor") == 0
2281 || strcmp(var->name, "gl_Color") == 0
2282 || strcmp(var->name, "gl_SecondaryColor") == 0)
2283 && earlier->type == var->type
2284 && earlier->mode == var->mode) {
2285 earlier->interpolation = var->interpolation;
2286
2287 /* Layout qualifiers for gl_FragDepth. */
2288 } else if ((state->AMD_conservative_depth_enable ||
2289 state->ARB_conservative_depth_enable)
2290 && strcmp(var->name, "gl_FragDepth") == 0
2291 && earlier->type == var->type
2292 && earlier->mode == var->mode) {
2293
2294 /** From the AMD_conservative_depth spec:
2295 * Within any shader, the first redeclarations of gl_FragDepth
2296 * must appear before any use of gl_FragDepth.
2297 */
2298 if (earlier->used) {
2299 _mesa_glsl_error(&loc, state,
2300 "the first redeclaration of gl_FragDepth "
2301 "must appear before any use of gl_FragDepth");
2302 }
2303
2304 /* Prevent inconsistent redeclaration of depth layout qualifier. */
2305 if (earlier->depth_layout != ir_depth_layout_none
2306 && earlier->depth_layout != var->depth_layout) {
2307 _mesa_glsl_error(&loc, state,
2308 "gl_FragDepth: depth layout is declared here "
2309 "as '%s, but it was previously declared as "
2310 "'%s'",
2311 depth_layout_string(var->depth_layout),
2312 depth_layout_string(earlier->depth_layout));
2313 }
2314
2315 earlier->depth_layout = var->depth_layout;
2316
2317 } else {
2318 _mesa_glsl_error(&loc, state, "`%s' redeclared", decl->identifier);
2319 }
2320
2321 return earlier;
2322 }
2323
2324 /**
2325 * Generate the IR for an initializer in a variable declaration
2326 */
2327 ir_rvalue *
2328 process_initializer(ir_variable *var, ast_declaration *decl,
2329 ast_fully_specified_type *type,
2330 exec_list *initializer_instructions,
2331 struct _mesa_glsl_parse_state *state)
2332 {
2333 ir_rvalue *result = NULL;
2334
2335 YYLTYPE initializer_loc = decl->initializer->get_location();
2336
2337 /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
2338 *
2339 * "All uniform variables are read-only and are initialized either
2340 * directly by an application via API commands, or indirectly by
2341 * OpenGL."
2342 */
2343 if ((state->language_version <= 110)
2344 && (var->mode == ir_var_uniform)) {
2345 _mesa_glsl_error(& initializer_loc, state,
2346 "cannot initialize uniforms in GLSL 1.10");
2347 }
2348
2349 if (var->type->is_sampler()) {
2350 _mesa_glsl_error(& initializer_loc, state,
2351 "cannot initialize samplers");
2352 }
2353
2354 if ((var->mode == ir_var_in) && (state->current_function == NULL)) {
2355 _mesa_glsl_error(& initializer_loc, state,
2356 "cannot initialize %s shader input / %s",
2357 _mesa_glsl_shader_target_name(state->target),
2358 (state->target == vertex_shader)
2359 ? "attribute" : "varying");
2360 }
2361
2362 ir_dereference *const lhs = new(state) ir_dereference_variable(var);
2363 ir_rvalue *rhs = decl->initializer->hir(initializer_instructions,
2364 state);
2365
2366 /* Calculate the constant value if this is a const or uniform
2367 * declaration.
2368 */
2369 if (type->qualifier.flags.q.constant
2370 || type->qualifier.flags.q.uniform) {
2371 ir_rvalue *new_rhs = validate_assignment(state, var->type, rhs, true);
2372 if (new_rhs != NULL) {
2373 rhs = new_rhs;
2374
2375 ir_constant *constant_value = rhs->constant_expression_value();
2376 if (!constant_value) {
2377 _mesa_glsl_error(& initializer_loc, state,
2378 "initializer of %s variable `%s' must be a "
2379 "constant expression",
2380 (type->qualifier.flags.q.constant)
2381 ? "const" : "uniform",
2382 decl->identifier);
2383 if (var->type->is_numeric()) {
2384 /* Reduce cascading errors. */
2385 var->constant_value = ir_constant::zero(state, var->type);
2386 }
2387 } else {
2388 rhs = constant_value;
2389 var->constant_value = constant_value;
2390 }
2391 } else {
2392 _mesa_glsl_error(&initializer_loc, state,
2393 "initializer of type %s cannot be assigned to "
2394 "variable of type %s",
2395 rhs->type->name, var->type->name);
2396 if (var->type->is_numeric()) {
2397 /* Reduce cascading errors. */
2398 var->constant_value = ir_constant::zero(state, var->type);
2399 }
2400 }
2401 }
2402
2403 if (rhs && !rhs->type->is_error()) {
2404 bool temp = var->read_only;
2405 if (type->qualifier.flags.q.constant)
2406 var->read_only = false;
2407
2408 /* Never emit code to initialize a uniform.
2409 */
2410 const glsl_type *initializer_type;
2411 if (!type->qualifier.flags.q.uniform) {
2412 result = do_assignment(initializer_instructions, state,
2413 NULL,
2414 lhs, rhs, true,
2415 type->get_location());
2416 initializer_type = result->type;
2417 } else
2418 initializer_type = rhs->type;
2419
2420 var->constant_initializer = rhs->constant_expression_value();
2421 var->has_initializer = true;
2422
2423 /* If the declared variable is an unsized array, it must inherrit
2424 * its full type from the initializer. A declaration such as
2425 *
2426 * uniform float a[] = float[](1.0, 2.0, 3.0, 3.0);
2427 *
2428 * becomes
2429 *
2430 * uniform float a[4] = float[](1.0, 2.0, 3.0, 3.0);
2431 *
2432 * The assignment generated in the if-statement (below) will also
2433 * automatically handle this case for non-uniforms.
2434 *
2435 * If the declared variable is not an array, the types must
2436 * already match exactly. As a result, the type assignment
2437 * here can be done unconditionally. For non-uniforms the call
2438 * to do_assignment can change the type of the initializer (via
2439 * the implicit conversion rules). For uniforms the initializer
2440 * must be a constant expression, and the type of that expression
2441 * was validated above.
2442 */
2443 var->type = initializer_type;
2444
2445 var->read_only = temp;
2446 }
2447
2448 return result;
2449 }
2450
2451 ir_rvalue *
2452 ast_declarator_list::hir(exec_list *instructions,
2453 struct _mesa_glsl_parse_state *state)
2454 {
2455 void *ctx = state;
2456 const struct glsl_type *decl_type;
2457 const char *type_name = NULL;
2458 ir_rvalue *result = NULL;
2459 YYLTYPE loc = this->get_location();
2460
2461 /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec:
2462 *
2463 * "To ensure that a particular output variable is invariant, it is
2464 * necessary to use the invariant qualifier. It can either be used to
2465 * qualify a previously declared variable as being invariant
2466 *
2467 * invariant gl_Position; // make existing gl_Position be invariant"
2468 *
2469 * In these cases the parser will set the 'invariant' flag in the declarator
2470 * list, and the type will be NULL.
2471 */
2472 if (this->invariant) {
2473 assert(this->type == NULL);
2474
2475 if (state->current_function != NULL) {
2476 _mesa_glsl_error(& loc, state,
2477 "All uses of `invariant' keyword must be at global "
2478 "scope\n");
2479 }
2480
2481 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
2482 assert(!decl->is_array);
2483 assert(decl->array_size == NULL);
2484 assert(decl->initializer == NULL);
2485
2486 ir_variable *const earlier =
2487 state->symbols->get_variable(decl->identifier);
2488 if (earlier == NULL) {
2489 _mesa_glsl_error(& loc, state,
2490 "Undeclared variable `%s' cannot be marked "
2491 "invariant\n", decl->identifier);
2492 } else if ((state->target == vertex_shader)
2493 && (earlier->mode != ir_var_out)) {
2494 _mesa_glsl_error(& loc, state,
2495 "`%s' cannot be marked invariant, vertex shader "
2496 "outputs only\n", decl->identifier);
2497 } else if ((state->target == fragment_shader)
2498 && (earlier->mode != ir_var_in)) {
2499 _mesa_glsl_error(& loc, state,
2500 "`%s' cannot be marked invariant, fragment shader "
2501 "inputs only\n", decl->identifier);
2502 } else if (earlier->used) {
2503 _mesa_glsl_error(& loc, state,
2504 "variable `%s' may not be redeclared "
2505 "`invariant' after being used",
2506 earlier->name);
2507 } else {
2508 earlier->invariant = true;
2509 }
2510 }
2511
2512 /* Invariant redeclarations do not have r-values.
2513 */
2514 return NULL;
2515 }
2516
2517 assert(this->type != NULL);
2518 assert(!this->invariant);
2519
2520 /* The type specifier may contain a structure definition. Process that
2521 * before any of the variable declarations.
2522 */
2523 (void) this->type->specifier->hir(instructions, state);
2524
2525 decl_type = this->type->specifier->glsl_type(& type_name, state);
2526 if (this->declarations.is_empty()) {
2527 /* If there is no structure involved in the program text, there are two
2528 * possible scenarios:
2529 *
2530 * - The program text contained something like 'vec4;'. This is an
2531 * empty declaration. It is valid but weird. Emit a warning.
2532 *
2533 * - The program text contained something like 'S;' and 'S' is not the
2534 * name of a known structure type. This is both invalid and weird.
2535 * Emit an error.
2536 *
2537 * Note that if decl_type is NULL and there is a structure involved,
2538 * there must have been some sort of error with the structure. In this
2539 * case we assume that an error was already generated on this line of
2540 * code for the structure. There is no need to generate an additional,
2541 * confusing error.
2542 */
2543 assert(this->type->specifier->structure == NULL || decl_type != NULL
2544 || state->error);
2545 if (this->type->specifier->structure == NULL) {
2546 if (decl_type != NULL) {
2547 _mesa_glsl_warning(&loc, state, "empty declaration");
2548 } else {
2549 _mesa_glsl_error(&loc, state,
2550 "invalid type `%s' in empty declaration",
2551 type_name);
2552 }
2553 }
2554 }
2555
2556 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
2557 const struct glsl_type *var_type;
2558 ir_variable *var;
2559
2560 /* FINISHME: Emit a warning if a variable declaration shadows a
2561 * FINISHME: declaration at a higher scope.
2562 */
2563
2564 if ((decl_type == NULL) || decl_type->is_void()) {
2565 if (type_name != NULL) {
2566 _mesa_glsl_error(& loc, state,
2567 "invalid type `%s' in declaration of `%s'",
2568 type_name, decl->identifier);
2569 } else {
2570 _mesa_glsl_error(& loc, state,
2571 "invalid type in declaration of `%s'",
2572 decl->identifier);
2573 }
2574 continue;
2575 }
2576
2577 if (decl->is_array) {
2578 var_type = process_array_type(&loc, decl_type, decl->array_size,
2579 state);
2580 if (var_type->is_error())
2581 continue;
2582 } else {
2583 var_type = decl_type;
2584 }
2585
2586 var = new(ctx) ir_variable(var_type, decl->identifier, ir_var_auto);
2587
2588 /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
2589 *
2590 * "Global variables can only use the qualifiers const,
2591 * attribute, uni form, or varying. Only one may be
2592 * specified.
2593 *
2594 * Local variables can only use the qualifier const."
2595 *
2596 * This is relaxed in GLSL 1.30. It is also relaxed by any extension
2597 * that adds the 'layout' keyword.
2598 */
2599 if ((state->language_version < 130)
2600 && !state->ARB_explicit_attrib_location_enable
2601 && !state->ARB_fragment_coord_conventions_enable) {
2602 if (this->type->qualifier.flags.q.out) {
2603 _mesa_glsl_error(& loc, state,
2604 "`out' qualifier in declaration of `%s' "
2605 "only valid for function parameters in %s.",
2606 decl->identifier, state->version_string);
2607 }
2608 if (this->type->qualifier.flags.q.in) {
2609 _mesa_glsl_error(& loc, state,
2610 "`in' qualifier in declaration of `%s' "
2611 "only valid for function parameters in %s.",
2612 decl->identifier, state->version_string);
2613 }
2614 /* FINISHME: Test for other invalid qualifiers. */
2615 }
2616
2617 apply_type_qualifier_to_variable(& this->type->qualifier, var, state,
2618 & loc, this->ubo_qualifiers_valid);
2619
2620 if (this->type->qualifier.flags.q.invariant) {
2621 if ((state->target == vertex_shader) && !(var->mode == ir_var_out ||
2622 var->mode == ir_var_inout)) {
2623 /* FINISHME: Note that this doesn't work for invariant on
2624 * a function signature outval
2625 */
2626 _mesa_glsl_error(& loc, state,
2627 "`%s' cannot be marked invariant, vertex shader "
2628 "outputs only\n", var->name);
2629 } else if ((state->target == fragment_shader) &&
2630 !(var->mode == ir_var_in || var->mode == ir_var_inout)) {
2631 /* FINISHME: Note that this doesn't work for invariant on
2632 * a function signature inval
2633 */
2634 _mesa_glsl_error(& loc, state,
2635 "`%s' cannot be marked invariant, fragment shader "
2636 "inputs only\n", var->name);
2637 }
2638 }
2639
2640 if (state->current_function != NULL) {
2641 const char *mode = NULL;
2642 const char *extra = "";
2643
2644 /* There is no need to check for 'inout' here because the parser will
2645 * only allow that in function parameter lists.
2646 */
2647 if (this->type->qualifier.flags.q.attribute) {
2648 mode = "attribute";
2649 } else if (this->type->qualifier.flags.q.uniform) {
2650 mode = "uniform";
2651 } else if (this->type->qualifier.flags.q.varying) {
2652 mode = "varying";
2653 } else if (this->type->qualifier.flags.q.in) {
2654 mode = "in";
2655 extra = " or in function parameter list";
2656 } else if (this->type->qualifier.flags.q.out) {
2657 mode = "out";
2658 extra = " or in function parameter list";
2659 }
2660
2661 if (mode) {
2662 _mesa_glsl_error(& loc, state,
2663 "%s variable `%s' must be declared at "
2664 "global scope%s",
2665 mode, var->name, extra);
2666 }
2667 } else if (var->mode == ir_var_in) {
2668 var->read_only = true;
2669
2670 if (state->target == vertex_shader) {
2671 bool error_emitted = false;
2672
2673 /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
2674 *
2675 * "Vertex shader inputs can only be float, floating-point
2676 * vectors, matrices, signed and unsigned integers and integer
2677 * vectors. Vertex shader inputs can also form arrays of these
2678 * types, but not structures."
2679 *
2680 * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
2681 *
2682 * "Vertex shader inputs can only be float, floating-point
2683 * vectors, matrices, signed and unsigned integers and integer
2684 * vectors. They cannot be arrays or structures."
2685 *
2686 * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
2687 *
2688 * "The attribute qualifier can be used only with float,
2689 * floating-point vectors, and matrices. Attribute variables
2690 * cannot be declared as arrays or structures."
2691 */
2692 const glsl_type *check_type = var->type->is_array()
2693 ? var->type->fields.array : var->type;
2694
2695 switch (check_type->base_type) {
2696 case GLSL_TYPE_FLOAT:
2697 break;
2698 case GLSL_TYPE_UINT:
2699 case GLSL_TYPE_INT:
2700 if (state->language_version > 120)
2701 break;
2702 /* FALLTHROUGH */
2703 default:
2704 _mesa_glsl_error(& loc, state,
2705 "vertex shader input / attribute cannot have "
2706 "type %s`%s'",
2707 var->type->is_array() ? "array of " : "",
2708 check_type->name);
2709 error_emitted = true;
2710 }
2711
2712 if (!error_emitted && (state->language_version <= 130)
2713 && var->type->is_array()) {
2714 _mesa_glsl_error(& loc, state,
2715 "vertex shader input / attribute cannot have "
2716 "array type");
2717 error_emitted = true;
2718 }
2719 }
2720 }
2721
2722 /* Integer vertex outputs must be qualified with 'flat'.
2723 *
2724 * From section 4.3.6 of the GLSL 1.30 spec:
2725 * "If a vertex output is a signed or unsigned integer or integer
2726 * vector, then it must be qualified with the interpolation qualifier
2727 * flat."
2728 */
2729 if (state->language_version >= 130
2730 && state->target == vertex_shader
2731 && state->current_function == NULL
2732 && var->type->is_integer()
2733 && var->mode == ir_var_out
2734 && var->interpolation != INTERP_QUALIFIER_FLAT) {
2735
2736 _mesa_glsl_error(&loc, state, "If a vertex output is an integer, "
2737 "then it must be qualified with 'flat'");
2738 }
2739
2740
2741 /* Interpolation qualifiers cannot be applied to 'centroid' and
2742 * 'centroid varying'.
2743 *
2744 * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
2745 * "interpolation qualifiers may only precede the qualifiers in,
2746 * centroid in, out, or centroid out in a declaration. They do not apply
2747 * to the deprecated storage qualifiers varying or centroid varying."
2748 */
2749 if (state->language_version >= 130
2750 && this->type->qualifier.has_interpolation()
2751 && this->type->qualifier.flags.q.varying) {
2752
2753 const char *i = this->type->qualifier.interpolation_string();
2754 assert(i != NULL);
2755 const char *s;
2756 if (this->type->qualifier.flags.q.centroid)
2757 s = "centroid varying";
2758 else
2759 s = "varying";
2760
2761 _mesa_glsl_error(&loc, state,
2762 "qualifier '%s' cannot be applied to the "
2763 "deprecated storage qualifier '%s'", i, s);
2764 }
2765
2766
2767 /* Interpolation qualifiers can only apply to vertex shader outputs and
2768 * fragment shader inputs.
2769 *
2770 * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
2771 * "Outputs from a vertex shader (out) and inputs to a fragment
2772 * shader (in) can be further qualified with one or more of these
2773 * interpolation qualifiers"
2774 */
2775 if (state->language_version >= 130
2776 && this->type->qualifier.has_interpolation()) {
2777
2778 const char *i = this->type->qualifier.interpolation_string();
2779 assert(i != NULL);
2780
2781 switch (state->target) {
2782 case vertex_shader:
2783 if (this->type->qualifier.flags.q.in) {
2784 _mesa_glsl_error(&loc, state,
2785 "qualifier '%s' cannot be applied to vertex "
2786 "shader inputs", i);
2787 }
2788 break;
2789 case fragment_shader:
2790 if (this->type->qualifier.flags.q.out) {
2791 _mesa_glsl_error(&loc, state,
2792 "qualifier '%s' cannot be applied to fragment "
2793 "shader outputs", i);
2794 }
2795 break;
2796 default:
2797 assert(0);
2798 }
2799 }
2800
2801
2802 /* From section 4.3.4 of the GLSL 1.30 spec:
2803 * "It is an error to use centroid in in a vertex shader."
2804 */
2805 if (state->language_version >= 130
2806 && this->type->qualifier.flags.q.centroid
2807 && this->type->qualifier.flags.q.in
2808 && state->target == vertex_shader) {
2809
2810 _mesa_glsl_error(&loc, state,
2811 "'centroid in' cannot be used in a vertex shader");
2812 }
2813
2814
2815 /* Precision qualifiers exists only in GLSL versions 1.00 and >= 1.30.
2816 */
2817 if (this->type->specifier->precision != ast_precision_none
2818 && state->language_version != 100
2819 && state->language_version < 130) {
2820
2821 _mesa_glsl_error(&loc, state,
2822 "precision qualifiers are supported only in GLSL ES "
2823 "1.00, and GLSL 1.30 and later");
2824 }
2825
2826
2827 /* Precision qualifiers only apply to floating point and integer types.
2828 *
2829 * From section 4.5.2 of the GLSL 1.30 spec:
2830 * "Any floating point or any integer declaration can have the type
2831 * preceded by one of these precision qualifiers [...] Literal
2832 * constants do not have precision qualifiers. Neither do Boolean
2833 * variables.
2834 *
2835 * In GLSL ES, sampler types are also allowed.
2836 *
2837 * From page 87 of the GLSL ES spec:
2838 * "RESOLUTION: Allow sampler types to take a precision qualifier."
2839 */
2840 if (this->type->specifier->precision != ast_precision_none
2841 && !var->type->is_float()
2842 && !var->type->is_integer()
2843 && !(var->type->is_sampler() && state->es_shader)
2844 && !(var->type->is_array()
2845 && (var->type->fields.array->is_float()
2846 || var->type->fields.array->is_integer()))) {
2847
2848 _mesa_glsl_error(&loc, state,
2849 "precision qualifiers apply only to floating point"
2850 "%s types", state->es_shader ? ", integer, and sampler"
2851 : "and integer");
2852 }
2853
2854 /* From page 17 (page 23 of the PDF) of the GLSL 1.20 spec:
2855 *
2856 * "[Sampler types] can only be declared as function
2857 * parameters or uniform variables (see Section 4.3.5
2858 * "Uniform")".
2859 */
2860 if (var_type->contains_sampler() &&
2861 !this->type->qualifier.flags.q.uniform) {
2862 _mesa_glsl_error(&loc, state, "samplers must be declared uniform");
2863 }
2864
2865 /* Process the initializer and add its instructions to a temporary
2866 * list. This list will be added to the instruction stream (below) after
2867 * the declaration is added. This is done because in some cases (such as
2868 * redeclarations) the declaration may not actually be added to the
2869 * instruction stream.
2870 */
2871 exec_list initializer_instructions;
2872 ir_variable *earlier = get_variable_being_redeclared(var, decl, state);
2873
2874 if (decl->initializer != NULL) {
2875 result = process_initializer((earlier == NULL) ? var : earlier,
2876 decl, this->type,
2877 &initializer_instructions, state);
2878 }
2879
2880 /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
2881 *
2882 * "It is an error to write to a const variable outside of
2883 * its declaration, so they must be initialized when
2884 * declared."
2885 */
2886 if (this->type->qualifier.flags.q.constant && decl->initializer == NULL) {
2887 _mesa_glsl_error(& loc, state,
2888 "const declaration of `%s' must be initialized",
2889 decl->identifier);
2890 }
2891
2892 /* If the declaration is not a redeclaration, there are a few additional
2893 * semantic checks that must be applied. In addition, variable that was
2894 * created for the declaration should be added to the IR stream.
2895 */
2896 if (earlier == NULL) {
2897 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
2898 *
2899 * "Identifiers starting with "gl_" are reserved for use by
2900 * OpenGL, and may not be declared in a shader as either a
2901 * variable or a function."
2902 */
2903 if (strncmp(decl->identifier, "gl_", 3) == 0)
2904 _mesa_glsl_error(& loc, state,
2905 "identifier `%s' uses reserved `gl_' prefix",
2906 decl->identifier);
2907 else if (strstr(decl->identifier, "__")) {
2908 /* From page 14 (page 20 of the PDF) of the GLSL 1.10
2909 * spec:
2910 *
2911 * "In addition, all identifiers containing two
2912 * consecutive underscores (__) are reserved as
2913 * possible future keywords."
2914 */
2915 _mesa_glsl_error(& loc, state,
2916 "identifier `%s' uses reserved `__' string",
2917 decl->identifier);
2918 }
2919
2920 /* Add the variable to the symbol table. Note that the initializer's
2921 * IR was already processed earlier (though it hasn't been emitted
2922 * yet), without the variable in scope.
2923 *
2924 * This differs from most C-like languages, but it follows the GLSL
2925 * specification. From page 28 (page 34 of the PDF) of the GLSL 1.50
2926 * spec:
2927 *
2928 * "Within a declaration, the scope of a name starts immediately
2929 * after the initializer if present or immediately after the name
2930 * being declared if not."
2931 */
2932 if (!state->symbols->add_variable(var)) {
2933 YYLTYPE loc = this->get_location();
2934 _mesa_glsl_error(&loc, state, "name `%s' already taken in the "
2935 "current scope", decl->identifier);
2936 continue;
2937 }
2938
2939 /* Push the variable declaration to the top. It means that all the
2940 * variable declarations will appear in a funny last-to-first order,
2941 * but otherwise we run into trouble if a function is prototyped, a
2942 * global var is decled, then the function is defined with usage of
2943 * the global var. See glslparsertest's CorrectModule.frag.
2944 */
2945 instructions->push_head(var);
2946 }
2947
2948 instructions->append_list(&initializer_instructions);
2949 }
2950
2951
2952 /* Generally, variable declarations do not have r-values. However,
2953 * one is used for the declaration in
2954 *
2955 * while (bool b = some_condition()) {
2956 * ...
2957 * }
2958 *
2959 * so we return the rvalue from the last seen declaration here.
2960 */
2961 return result;
2962 }
2963
2964
2965 ir_rvalue *
2966 ast_parameter_declarator::hir(exec_list *instructions,
2967 struct _mesa_glsl_parse_state *state)
2968 {
2969 void *ctx = state;
2970 const struct glsl_type *type;
2971 const char *name = NULL;
2972 YYLTYPE loc = this->get_location();
2973
2974 type = this->type->specifier->glsl_type(& name, state);
2975
2976 if (type == NULL) {
2977 if (name != NULL) {
2978 _mesa_glsl_error(& loc, state,
2979 "invalid type `%s' in declaration of `%s'",
2980 name, this->identifier);
2981 } else {
2982 _mesa_glsl_error(& loc, state,
2983 "invalid type in declaration of `%s'",
2984 this->identifier);
2985 }
2986
2987 type = glsl_type::error_type;
2988 }
2989
2990 /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
2991 *
2992 * "Functions that accept no input arguments need not use void in the
2993 * argument list because prototypes (or definitions) are required and
2994 * therefore there is no ambiguity when an empty argument list "( )" is
2995 * declared. The idiom "(void)" as a parameter list is provided for
2996 * convenience."
2997 *
2998 * Placing this check here prevents a void parameter being set up
2999 * for a function, which avoids tripping up checks for main taking
3000 * parameters and lookups of an unnamed symbol.
3001 */
3002 if (type->is_void()) {
3003 if (this->identifier != NULL)
3004 _mesa_glsl_error(& loc, state,
3005 "named parameter cannot have type `void'");
3006
3007 is_void = true;
3008 return NULL;
3009 }
3010
3011 if (formal_parameter && (this->identifier == NULL)) {
3012 _mesa_glsl_error(& loc, state, "formal parameter lacks a name");
3013 return NULL;
3014 }
3015
3016 /* This only handles "vec4 foo[..]". The earlier specifier->glsl_type(...)
3017 * call already handled the "vec4[..] foo" case.
3018 */
3019 if (this->is_array) {
3020 type = process_array_type(&loc, type, this->array_size, state);
3021 }
3022
3023 if (!type->is_error() && type->array_size() == 0) {
3024 _mesa_glsl_error(&loc, state, "arrays passed as parameters must have "
3025 "a declared size.");
3026 type = glsl_type::error_type;
3027 }
3028
3029 is_void = false;
3030 ir_variable *var = new(ctx) ir_variable(type, this->identifier, ir_var_in);
3031
3032 /* Apply any specified qualifiers to the parameter declaration. Note that
3033 * for function parameters the default mode is 'in'.
3034 */
3035 apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc,
3036 false);
3037
3038 /* From page 17 (page 23 of the PDF) of the GLSL 1.20 spec:
3039 *
3040 * "Samplers cannot be treated as l-values; hence cannot be used
3041 * as out or inout function parameters, nor can they be assigned
3042 * into."
3043 */
3044 if ((var->mode == ir_var_inout || var->mode == ir_var_out)
3045 && type->contains_sampler()) {
3046 _mesa_glsl_error(&loc, state, "out and inout parameters cannot contain samplers");
3047 type = glsl_type::error_type;
3048 }
3049
3050 /* From page 39 (page 45 of the PDF) of the GLSL 1.10 spec:
3051 *
3052 * "When calling a function, expressions that do not evaluate to
3053 * l-values cannot be passed to parameters declared as out or inout."
3054 *
3055 * From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
3056 *
3057 * "Other binary or unary expressions, non-dereferenced arrays,
3058 * function names, swizzles with repeated fields, and constants
3059 * cannot be l-values."
3060 *
3061 * So for GLSL 1.10, passing an array as an out or inout parameter is not
3062 * allowed. This restriction is removed in GLSL 1.20, and in GLSL ES.
3063 */
3064 if ((var->mode == ir_var_inout || var->mode == ir_var_out)
3065 && type->is_array() && state->language_version == 110) {
3066 _mesa_glsl_error(&loc, state, "Arrays cannot be out or inout parameters in GLSL 1.10");
3067 type = glsl_type::error_type;
3068 }
3069
3070 instructions->push_tail(var);
3071
3072 /* Parameter declarations do not have r-values.
3073 */
3074 return NULL;
3075 }
3076
3077
3078 void
3079 ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters,
3080 bool formal,
3081 exec_list *ir_parameters,
3082 _mesa_glsl_parse_state *state)
3083 {
3084 ast_parameter_declarator *void_param = NULL;
3085 unsigned count = 0;
3086
3087 foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) {
3088 param->formal_parameter = formal;
3089 param->hir(ir_parameters, state);
3090
3091 if (param->is_void)
3092 void_param = param;
3093
3094 count++;
3095 }
3096
3097 if ((void_param != NULL) && (count > 1)) {
3098 YYLTYPE loc = void_param->get_location();
3099
3100 _mesa_glsl_error(& loc, state,
3101 "`void' parameter must be only parameter");
3102 }
3103 }
3104
3105
3106 void
3107 emit_function(_mesa_glsl_parse_state *state, ir_function *f)
3108 {
3109 /* IR invariants disallow function declarations or definitions
3110 * nested within other function definitions. But there is no
3111 * requirement about the relative order of function declarations
3112 * and definitions with respect to one another. So simply insert
3113 * the new ir_function block at the end of the toplevel instruction
3114 * list.
3115 */
3116 state->toplevel_ir->push_tail(f);
3117 }
3118
3119
3120 ir_rvalue *
3121 ast_function::hir(exec_list *instructions,
3122 struct _mesa_glsl_parse_state *state)
3123 {
3124 void *ctx = state;
3125 ir_function *f = NULL;
3126 ir_function_signature *sig = NULL;
3127 exec_list hir_parameters;
3128
3129 const char *const name = identifier;
3130
3131 /* New functions are always added to the top-level IR instruction stream,
3132 * so this instruction list pointer is ignored. See also emit_function
3133 * (called below).
3134 */
3135 (void) instructions;
3136
3137 /* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec,
3138 *
3139 * "Function declarations (prototypes) cannot occur inside of functions;
3140 * they must be at global scope, or for the built-in functions, outside
3141 * the global scope."
3142 *
3143 * From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec,
3144 *
3145 * "User defined functions may only be defined within the global scope."
3146 *
3147 * Note that this language does not appear in GLSL 1.10.
3148 */
3149 if ((state->current_function != NULL) && (state->language_version != 110)) {
3150 YYLTYPE loc = this->get_location();
3151 _mesa_glsl_error(&loc, state,
3152 "declaration of function `%s' not allowed within "
3153 "function body", name);
3154 }
3155
3156 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
3157 *
3158 * "Identifiers starting with "gl_" are reserved for use by
3159 * OpenGL, and may not be declared in a shader as either a
3160 * variable or a function."
3161 */
3162 if (strncmp(name, "gl_", 3) == 0) {
3163 YYLTYPE loc = this->get_location();
3164 _mesa_glsl_error(&loc, state,
3165 "identifier `%s' uses reserved `gl_' prefix", name);
3166 }
3167
3168 /* Convert the list of function parameters to HIR now so that they can be
3169 * used below to compare this function's signature with previously seen
3170 * signatures for functions with the same name.
3171 */
3172 ast_parameter_declarator::parameters_to_hir(& this->parameters,
3173 is_definition,
3174 & hir_parameters, state);
3175
3176 const char *return_type_name;
3177 const glsl_type *return_type =
3178 this->return_type->specifier->glsl_type(& return_type_name, state);
3179
3180 if (!return_type) {
3181 YYLTYPE loc = this->get_location();
3182 _mesa_glsl_error(&loc, state,
3183 "function `%s' has undeclared return type `%s'",
3184 name, return_type_name);
3185 return_type = glsl_type::error_type;
3186 }
3187
3188 /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec:
3189 * "No qualifier is allowed on the return type of a function."
3190 */
3191 if (this->return_type->has_qualifiers()) {
3192 YYLTYPE loc = this->get_location();
3193 _mesa_glsl_error(& loc, state,
3194 "function `%s' return type has qualifiers", name);
3195 }
3196
3197 /* From page 17 (page 23 of the PDF) of the GLSL 1.20 spec:
3198 *
3199 * "[Sampler types] can only be declared as function parameters
3200 * or uniform variables (see Section 4.3.5 "Uniform")".
3201 */
3202 if (return_type->contains_sampler()) {
3203 YYLTYPE loc = this->get_location();
3204 _mesa_glsl_error(&loc, state,
3205 "function `%s' return type can't contain a sampler",
3206 name);
3207 }
3208
3209 /* Verify that this function's signature either doesn't match a previously
3210 * seen signature for a function with the same name, or, if a match is found,
3211 * that the previously seen signature does not have an associated definition.
3212 */
3213 f = state->symbols->get_function(name);
3214 if (f != NULL && (state->es_shader || f->has_user_signature())) {
3215 sig = f->exact_matching_signature(&hir_parameters);
3216 if (sig != NULL) {
3217 const char *badvar = sig->qualifiers_match(&hir_parameters);
3218 if (badvar != NULL) {
3219 YYLTYPE loc = this->get_location();
3220
3221 _mesa_glsl_error(&loc, state, "function `%s' parameter `%s' "
3222 "qualifiers don't match prototype", name, badvar);
3223 }
3224
3225 if (sig->return_type != return_type) {
3226 YYLTYPE loc = this->get_location();
3227
3228 _mesa_glsl_error(&loc, state, "function `%s' return type doesn't "
3229 "match prototype", name);
3230 }
3231
3232 if (is_definition && sig->is_defined) {
3233 YYLTYPE loc = this->get_location();
3234
3235 _mesa_glsl_error(& loc, state, "function `%s' redefined", name);
3236 }
3237 }
3238 } else {
3239 f = new(ctx) ir_function(name);
3240 if (!state->symbols->add_function(f)) {
3241 /* This function name shadows a non-function use of the same name. */
3242 YYLTYPE loc = this->get_location();
3243
3244 _mesa_glsl_error(&loc, state, "function name `%s' conflicts with "
3245 "non-function", name);
3246 return NULL;
3247 }
3248
3249 emit_function(state, f);
3250 }
3251
3252 /* Verify the return type of main() */
3253 if (strcmp(name, "main") == 0) {
3254 if (! return_type->is_void()) {
3255 YYLTYPE loc = this->get_location();
3256
3257 _mesa_glsl_error(& loc, state, "main() must return void");
3258 }
3259
3260 if (!hir_parameters.is_empty()) {
3261 YYLTYPE loc = this->get_location();
3262
3263 _mesa_glsl_error(& loc, state, "main() must not take any parameters");
3264 }
3265 }
3266
3267 /* Finish storing the information about this new function in its signature.
3268 */
3269 if (sig == NULL) {
3270 sig = new(ctx) ir_function_signature(return_type);
3271 f->add_signature(sig);
3272 }
3273
3274 sig->replace_parameters(&hir_parameters);
3275 signature = sig;
3276
3277 /* Function declarations (prototypes) do not have r-values.
3278 */
3279 return NULL;
3280 }
3281
3282
3283 ir_rvalue *
3284 ast_function_definition::hir(exec_list *instructions,
3285 struct _mesa_glsl_parse_state *state)
3286 {
3287 prototype->is_definition = true;
3288 prototype->hir(instructions, state);
3289
3290 ir_function_signature *signature = prototype->signature;
3291 if (signature == NULL)
3292 return NULL;
3293
3294 assert(state->current_function == NULL);
3295 state->current_function = signature;
3296 state->found_return = false;
3297
3298 /* Duplicate parameters declared in the prototype as concrete variables.
3299 * Add these to the symbol table.
3300 */
3301 state->symbols->push_scope();
3302 foreach_iter(exec_list_iterator, iter, signature->parameters) {
3303 ir_variable *const var = ((ir_instruction *) iter.get())->as_variable();
3304
3305 assert(var != NULL);
3306
3307 /* The only way a parameter would "exist" is if two parameters have
3308 * the same name.
3309 */
3310 if (state->symbols->name_declared_this_scope(var->name)) {
3311 YYLTYPE loc = this->get_location();
3312
3313 _mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name);
3314 } else {
3315 state->symbols->add_variable(var);
3316 }
3317 }
3318
3319 /* Convert the body of the function to HIR. */
3320 this->body->hir(&signature->body, state);
3321 signature->is_defined = true;
3322
3323 state->symbols->pop_scope();
3324
3325 assert(state->current_function == signature);
3326 state->current_function = NULL;
3327
3328 if (!signature->return_type->is_void() && !state->found_return) {
3329 YYLTYPE loc = this->get_location();
3330 _mesa_glsl_error(& loc, state, "function `%s' has non-void return type "
3331 "%s, but no return statement",
3332 signature->function_name(),
3333 signature->return_type->name);
3334 }
3335
3336 /* Function definitions do not have r-values.
3337 */
3338 return NULL;
3339 }
3340
3341
3342 ir_rvalue *
3343 ast_jump_statement::hir(exec_list *instructions,
3344 struct _mesa_glsl_parse_state *state)
3345 {
3346 void *ctx = state;
3347
3348 switch (mode) {
3349 case ast_return: {
3350 ir_return *inst;
3351 assert(state->current_function);
3352
3353 if (opt_return_value) {
3354 ir_rvalue *const ret = opt_return_value->hir(instructions, state);
3355
3356 /* The value of the return type can be NULL if the shader says
3357 * 'return foo();' and foo() is a function that returns void.
3358 *
3359 * NOTE: The GLSL spec doesn't say that this is an error. The type
3360 * of the return value is void. If the return type of the function is
3361 * also void, then this should compile without error. Seriously.
3362 */
3363 const glsl_type *const ret_type =
3364 (ret == NULL) ? glsl_type::void_type : ret->type;
3365
3366 /* Implicit conversions are not allowed for return values. */
3367 if (state->current_function->return_type != ret_type) {
3368 YYLTYPE loc = this->get_location();
3369
3370 _mesa_glsl_error(& loc, state,
3371 "`return' with wrong type %s, in function `%s' "
3372 "returning %s",
3373 ret_type->name,
3374 state->current_function->function_name(),
3375 state->current_function->return_type->name);
3376 }
3377
3378 inst = new(ctx) ir_return(ret);
3379 } else {
3380 if (state->current_function->return_type->base_type !=
3381 GLSL_TYPE_VOID) {
3382 YYLTYPE loc = this->get_location();
3383
3384 _mesa_glsl_error(& loc, state,
3385 "`return' with no value, in function %s returning "
3386 "non-void",
3387 state->current_function->function_name());
3388 }
3389 inst = new(ctx) ir_return;
3390 }
3391
3392 state->found_return = true;
3393 instructions->push_tail(inst);
3394 break;
3395 }
3396
3397 case ast_discard:
3398 if (state->target != fragment_shader) {
3399 YYLTYPE loc = this->get_location();
3400
3401 _mesa_glsl_error(& loc, state,
3402 "`discard' may only appear in a fragment shader");
3403 }
3404 instructions->push_tail(new(ctx) ir_discard);
3405 break;
3406
3407 case ast_break:
3408 case ast_continue:
3409 if (mode == ast_continue &&
3410 state->loop_nesting_ast == NULL) {
3411 YYLTYPE loc = this->get_location();
3412
3413 _mesa_glsl_error(& loc, state,
3414 "continue may only appear in a loop");
3415 } else if (mode == ast_break &&
3416 state->loop_nesting_ast == NULL &&
3417 state->switch_state.switch_nesting_ast == NULL) {
3418 YYLTYPE loc = this->get_location();
3419
3420 _mesa_glsl_error(& loc, state,
3421 "break may only appear in a loop or a switch");
3422 } else {
3423 /* For a loop, inline the for loop expression again,
3424 * since we don't know where near the end of
3425 * the loop body the normal copy of it
3426 * is going to be placed.
3427 */
3428 if (state->loop_nesting_ast != NULL &&
3429 mode == ast_continue &&
3430 state->loop_nesting_ast->rest_expression) {
3431 state->loop_nesting_ast->rest_expression->hir(instructions,
3432 state);
3433 }
3434
3435 if (state->switch_state.is_switch_innermost &&
3436 mode == ast_break) {
3437 /* Force break out of switch by setting is_break switch state.
3438 */
3439 ir_variable *const is_break_var = state->switch_state.is_break_var;
3440 ir_dereference_variable *const deref_is_break_var =
3441 new(ctx) ir_dereference_variable(is_break_var);
3442 ir_constant *const true_val = new(ctx) ir_constant(true);
3443 ir_assignment *const set_break_var =
3444 new(ctx) ir_assignment(deref_is_break_var, true_val);
3445
3446 instructions->push_tail(set_break_var);
3447 }
3448 else {
3449 ir_loop_jump *const jump =
3450 new(ctx) ir_loop_jump((mode == ast_break)
3451 ? ir_loop_jump::jump_break
3452 : ir_loop_jump::jump_continue);
3453 instructions->push_tail(jump);
3454 }
3455 }
3456
3457 break;
3458 }
3459
3460 /* Jump instructions do not have r-values.
3461 */
3462 return NULL;
3463 }
3464
3465
3466 ir_rvalue *
3467 ast_selection_statement::hir(exec_list *instructions,
3468 struct _mesa_glsl_parse_state *state)
3469 {
3470 void *ctx = state;
3471
3472 ir_rvalue *const condition = this->condition->hir(instructions, state);
3473
3474 /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
3475 *
3476 * "Any expression whose type evaluates to a Boolean can be used as the
3477 * conditional expression bool-expression. Vector types are not accepted
3478 * as the expression to if."
3479 *
3480 * The checks are separated so that higher quality diagnostics can be
3481 * generated for cases where both rules are violated.
3482 */
3483 if (!condition->type->is_boolean() || !condition->type->is_scalar()) {
3484 YYLTYPE loc = this->condition->get_location();
3485
3486 _mesa_glsl_error(& loc, state, "if-statement condition must be scalar "
3487 "boolean");
3488 }
3489
3490 ir_if *const stmt = new(ctx) ir_if(condition);
3491
3492 if (then_statement != NULL) {
3493 state->symbols->push_scope();
3494 then_statement->hir(& stmt->then_instructions, state);
3495 state->symbols->pop_scope();
3496 }
3497
3498 if (else_statement != NULL) {
3499 state->symbols->push_scope();
3500 else_statement->hir(& stmt->else_instructions, state);
3501 state->symbols->pop_scope();
3502 }
3503
3504 instructions->push_tail(stmt);
3505
3506 /* if-statements do not have r-values.
3507 */
3508 return NULL;
3509 }
3510
3511
3512 ir_rvalue *
3513 ast_switch_statement::hir(exec_list *instructions,
3514 struct _mesa_glsl_parse_state *state)
3515 {
3516 void *ctx = state;
3517
3518 ir_rvalue *const test_expression =
3519 this->test_expression->hir(instructions, state);
3520
3521 /* From page 66 (page 55 of the PDF) of the GLSL 1.50 spec:
3522 *
3523 * "The type of init-expression in a switch statement must be a
3524 * scalar integer."
3525 */
3526 if (!test_expression->type->is_scalar() ||
3527 !test_expression->type->is_integer()) {
3528 YYLTYPE loc = this->test_expression->get_location();
3529
3530 _mesa_glsl_error(& loc,
3531 state,
3532 "switch-statement expression must be scalar "
3533 "integer");
3534 }
3535
3536 /* Track the switch-statement nesting in a stack-like manner.
3537 */
3538 struct glsl_switch_state saved = state->switch_state;
3539
3540 state->switch_state.is_switch_innermost = true;
3541 state->switch_state.switch_nesting_ast = this;
3542 state->switch_state.labels_ht = hash_table_ctor(0, hash_table_pointer_hash,
3543 hash_table_pointer_compare);
3544 state->switch_state.previous_default = NULL;
3545
3546 /* Initalize is_fallthru state to false.
3547 */
3548 ir_rvalue *const is_fallthru_val = new (ctx) ir_constant(false);
3549 state->switch_state.is_fallthru_var =
3550 new(ctx) ir_variable(glsl_type::bool_type,
3551 "switch_is_fallthru_tmp",
3552 ir_var_temporary);
3553 instructions->push_tail(state->switch_state.is_fallthru_var);
3554
3555 ir_dereference_variable *deref_is_fallthru_var =
3556 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
3557 instructions->push_tail(new(ctx) ir_assignment(deref_is_fallthru_var,
3558 is_fallthru_val));
3559
3560 /* Initalize is_break state to false.
3561 */
3562 ir_rvalue *const is_break_val = new (ctx) ir_constant(false);
3563 state->switch_state.is_break_var = new(ctx) ir_variable(glsl_type::bool_type,
3564 "switch_is_break_tmp",
3565 ir_var_temporary);
3566 instructions->push_tail(state->switch_state.is_break_var);
3567
3568 ir_dereference_variable *deref_is_break_var =
3569 new(ctx) ir_dereference_variable(state->switch_state.is_break_var);
3570 instructions->push_tail(new(ctx) ir_assignment(deref_is_break_var,
3571 is_break_val));
3572
3573 /* Cache test expression.
3574 */
3575 test_to_hir(instructions, state);
3576
3577 /* Emit code for body of switch stmt.
3578 */
3579 body->hir(instructions, state);
3580
3581 hash_table_dtor(state->switch_state.labels_ht);
3582
3583 state->switch_state = saved;
3584
3585 /* Switch statements do not have r-values. */
3586 return NULL;
3587 }
3588
3589
3590 void
3591 ast_switch_statement::test_to_hir(exec_list *instructions,
3592 struct _mesa_glsl_parse_state *state)
3593 {
3594 void *ctx = state;
3595
3596 /* Cache value of test expression. */
3597 ir_rvalue *const test_val =
3598 test_expression->hir(instructions,
3599 state);
3600
3601 state->switch_state.test_var = new(ctx) ir_variable(test_val->type,
3602 "switch_test_tmp",
3603 ir_var_temporary);
3604 ir_dereference_variable *deref_test_var =
3605 new(ctx) ir_dereference_variable(state->switch_state.test_var);
3606
3607 instructions->push_tail(state->switch_state.test_var);
3608 instructions->push_tail(new(ctx) ir_assignment(deref_test_var, test_val));
3609 }
3610
3611
3612 ir_rvalue *
3613 ast_switch_body::hir(exec_list *instructions,
3614 struct _mesa_glsl_parse_state *state)
3615 {
3616 if (stmts != NULL)
3617 stmts->hir(instructions, state);
3618
3619 /* Switch bodies do not have r-values. */
3620 return NULL;
3621 }
3622
3623 ir_rvalue *
3624 ast_case_statement_list::hir(exec_list *instructions,
3625 struct _mesa_glsl_parse_state *state)
3626 {
3627 foreach_list_typed (ast_case_statement, case_stmt, link, & this->cases)
3628 case_stmt->hir(instructions, state);
3629
3630 /* Case statements do not have r-values. */
3631 return NULL;
3632 }
3633
3634 ir_rvalue *
3635 ast_case_statement::hir(exec_list *instructions,
3636 struct _mesa_glsl_parse_state *state)
3637 {
3638 labels->hir(instructions, state);
3639
3640 /* Conditionally set fallthru state based on break state. */
3641 ir_constant *const false_val = new(state) ir_constant(false);
3642 ir_dereference_variable *const deref_is_fallthru_var =
3643 new(state) ir_dereference_variable(state->switch_state.is_fallthru_var);
3644 ir_dereference_variable *const deref_is_break_var =
3645 new(state) ir_dereference_variable(state->switch_state.is_break_var);
3646 ir_assignment *const reset_fallthru_on_break =
3647 new(state) ir_assignment(deref_is_fallthru_var,
3648 false_val,
3649 deref_is_break_var);
3650 instructions->push_tail(reset_fallthru_on_break);
3651
3652 /* Guard case statements depending on fallthru state. */
3653 ir_dereference_variable *const deref_fallthru_guard =
3654 new(state) ir_dereference_variable(state->switch_state.is_fallthru_var);
3655 ir_if *const test_fallthru = new(state) ir_if(deref_fallthru_guard);
3656
3657 foreach_list_typed (ast_node, stmt, link, & this->stmts)
3658 stmt->hir(& test_fallthru->then_instructions, state);
3659
3660 instructions->push_tail(test_fallthru);
3661
3662 /* Case statements do not have r-values. */
3663 return NULL;
3664 }
3665
3666
3667 ir_rvalue *
3668 ast_case_label_list::hir(exec_list *instructions,
3669 struct _mesa_glsl_parse_state *state)
3670 {
3671 foreach_list_typed (ast_case_label, label, link, & this->labels)
3672 label->hir(instructions, state);
3673
3674 /* Case labels do not have r-values. */
3675 return NULL;
3676 }
3677
3678 ir_rvalue *
3679 ast_case_label::hir(exec_list *instructions,
3680 struct _mesa_glsl_parse_state *state)
3681 {
3682 void *ctx = state;
3683
3684 ir_dereference_variable *deref_fallthru_var =
3685 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
3686
3687 ir_rvalue *const true_val = new(ctx) ir_constant(true);
3688
3689 /* If not default case, ... */
3690 if (this->test_value != NULL) {
3691 /* Conditionally set fallthru state based on
3692 * comparison of cached test expression value to case label.
3693 */
3694 ir_rvalue *const label_rval = this->test_value->hir(instructions, state);
3695 ir_constant *label_const = label_rval->constant_expression_value();
3696
3697 if (!label_const) {
3698 YYLTYPE loc = this->test_value->get_location();
3699
3700 _mesa_glsl_error(& loc, state,
3701 "switch statement case label must be a "
3702 "constant expression");
3703
3704 /* Stuff a dummy value in to allow processing to continue. */
3705 label_const = new(ctx) ir_constant(0);
3706 } else {
3707 ast_expression *previous_label = (ast_expression *)
3708 hash_table_find(state->switch_state.labels_ht,
3709 (void *)(uintptr_t)label_const->value.u[0]);
3710
3711 if (previous_label) {
3712 YYLTYPE loc = this->test_value->get_location();
3713 _mesa_glsl_error(& loc, state,
3714 "duplicate case value");
3715
3716 loc = previous_label->get_location();
3717 _mesa_glsl_error(& loc, state,
3718 "this is the previous case label");
3719 } else {
3720 hash_table_insert(state->switch_state.labels_ht,
3721 this->test_value,
3722 (void *)(uintptr_t)label_const->value.u[0]);
3723 }
3724 }
3725
3726 ir_dereference_variable *deref_test_var =
3727 new(ctx) ir_dereference_variable(state->switch_state.test_var);
3728
3729 ir_rvalue *const test_cond = new(ctx) ir_expression(ir_binop_all_equal,
3730 label_const,
3731 deref_test_var);
3732
3733 ir_assignment *set_fallthru_on_test =
3734 new(ctx) ir_assignment(deref_fallthru_var,
3735 true_val,
3736 test_cond);
3737
3738 instructions->push_tail(set_fallthru_on_test);
3739 } else { /* default case */
3740 if (state->switch_state.previous_default) {
3741 YYLTYPE loc = this->get_location();
3742 _mesa_glsl_error(& loc, state,
3743 "multiple default labels in one switch");
3744
3745 loc = state->switch_state.previous_default->get_location();
3746 _mesa_glsl_error(& loc, state,
3747 "this is the first default label");
3748 }
3749 state->switch_state.previous_default = this;
3750
3751 /* Set falltrhu state. */
3752 ir_assignment *set_fallthru =
3753 new(ctx) ir_assignment(deref_fallthru_var, true_val);
3754
3755 instructions->push_tail(set_fallthru);
3756 }
3757
3758 /* Case statements do not have r-values. */
3759 return NULL;
3760 }
3761
3762 void
3763 ast_iteration_statement::condition_to_hir(ir_loop *stmt,
3764 struct _mesa_glsl_parse_state *state)
3765 {
3766 void *ctx = state;
3767
3768 if (condition != NULL) {
3769 ir_rvalue *const cond =
3770 condition->hir(& stmt->body_instructions, state);
3771
3772 if ((cond == NULL)
3773 || !cond->type->is_boolean() || !cond->type->is_scalar()) {
3774 YYLTYPE loc = condition->get_location();
3775
3776 _mesa_glsl_error(& loc, state,
3777 "loop condition must be scalar boolean");
3778 } else {
3779 /* As the first code in the loop body, generate a block that looks
3780 * like 'if (!condition) break;' as the loop termination condition.
3781 */
3782 ir_rvalue *const not_cond =
3783 new(ctx) ir_expression(ir_unop_logic_not, cond);
3784
3785 ir_if *const if_stmt = new(ctx) ir_if(not_cond);
3786
3787 ir_jump *const break_stmt =
3788 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
3789
3790 if_stmt->then_instructions.push_tail(break_stmt);
3791 stmt->body_instructions.push_tail(if_stmt);
3792 }
3793 }
3794 }
3795
3796
3797 ir_rvalue *
3798 ast_iteration_statement::hir(exec_list *instructions,
3799 struct _mesa_glsl_parse_state *state)
3800 {
3801 void *ctx = state;
3802
3803 /* For-loops and while-loops start a new scope, but do-while loops do not.
3804 */
3805 if (mode != ast_do_while)
3806 state->symbols->push_scope();
3807
3808 if (init_statement != NULL)
3809 init_statement->hir(instructions, state);
3810
3811 ir_loop *const stmt = new(ctx) ir_loop();
3812 instructions->push_tail(stmt);
3813
3814 /* Track the current loop nesting. */
3815 ast_iteration_statement *nesting_ast = state->loop_nesting_ast;
3816
3817 state->loop_nesting_ast = this;
3818
3819 /* Likewise, indicate that following code is closest to a loop,
3820 * NOT closest to a switch.
3821 */
3822 bool saved_is_switch_innermost = state->switch_state.is_switch_innermost;
3823 state->switch_state.is_switch_innermost = false;
3824
3825 if (mode != ast_do_while)
3826 condition_to_hir(stmt, state);
3827
3828 if (body != NULL)
3829 body->hir(& stmt->body_instructions, state);
3830
3831 if (rest_expression != NULL)
3832 rest_expression->hir(& stmt->body_instructions, state);
3833
3834 if (mode == ast_do_while)
3835 condition_to_hir(stmt, state);
3836
3837 if (mode != ast_do_while)
3838 state->symbols->pop_scope();
3839
3840 /* Restore previous nesting before returning. */
3841 state->loop_nesting_ast = nesting_ast;
3842 state->switch_state.is_switch_innermost = saved_is_switch_innermost;
3843
3844 /* Loops do not have r-values.
3845 */
3846 return NULL;
3847 }
3848
3849
3850 ir_rvalue *
3851 ast_type_specifier::hir(exec_list *instructions,
3852 struct _mesa_glsl_parse_state *state)
3853 {
3854 if (!this->is_precision_statement && this->structure == NULL)
3855 return NULL;
3856
3857 YYLTYPE loc = this->get_location();
3858
3859 if (this->precision != ast_precision_none
3860 && state->language_version != 100
3861 && state->language_version < 130) {
3862 _mesa_glsl_error(&loc, state,
3863 "precision qualifiers exist only in "
3864 "GLSL ES 1.00, and GLSL 1.30 and later");
3865 return NULL;
3866 }
3867 if (this->precision != ast_precision_none
3868 && this->structure != NULL) {
3869 _mesa_glsl_error(&loc, state,
3870 "precision qualifiers do not apply to structures");
3871 return NULL;
3872 }
3873
3874 /* If this is a precision statement, check that the type to which it is
3875 * applied is either float or int.
3876 *
3877 * From section 4.5.3 of the GLSL 1.30 spec:
3878 * "The precision statement
3879 * precision precision-qualifier type;
3880 * can be used to establish a default precision qualifier. The type
3881 * field can be either int or float [...]. Any other types or
3882 * qualifiers will result in an error.
3883 */
3884 if (this->is_precision_statement) {
3885 assert(this->precision != ast_precision_none);
3886 assert(this->structure == NULL); /* The check for structures was
3887 * performed above. */
3888 if (this->is_array) {
3889 _mesa_glsl_error(&loc, state,
3890 "default precision statements do not apply to "
3891 "arrays");
3892 return NULL;
3893 }
3894 if (strcmp(this->type_name, "float") != 0 &&
3895 strcmp(this->type_name, "int") != 0) {
3896 _mesa_glsl_error(&loc, state,
3897 "default precision statements apply only to types "
3898 "float and int");
3899 return NULL;
3900 }
3901
3902 /* FINISHME: Translate precision statements into IR. */
3903 return NULL;
3904 }
3905
3906 if (this->structure != NULL)
3907 return this->structure->hir(instructions, state);
3908
3909 return NULL;
3910 }
3911
3912
3913 ir_rvalue *
3914 ast_struct_specifier::hir(exec_list *instructions,
3915 struct _mesa_glsl_parse_state *state)
3916 {
3917 unsigned decl_count = 0;
3918
3919 /* Make an initial pass over the list of structure fields to determine how
3920 * many there are. Each element in this list is an ast_declarator_list.
3921 * This means that we actually need to count the number of elements in the
3922 * 'declarations' list in each of the elements.
3923 */
3924 foreach_list_typed (ast_declarator_list, decl_list, link,
3925 &this->declarations) {
3926 foreach_list_const (decl_ptr, & decl_list->declarations) {
3927 decl_count++;
3928 }
3929 }
3930
3931 /* Allocate storage for the structure fields and process the field
3932 * declarations. As the declarations are processed, try to also convert
3933 * the types to HIR. This ensures that structure definitions embedded in
3934 * other structure definitions are processed.
3935 */
3936 glsl_struct_field *const fields = ralloc_array(state, glsl_struct_field,
3937 decl_count);
3938
3939 unsigned i = 0;
3940 foreach_list_typed (ast_declarator_list, decl_list, link,
3941 &this->declarations) {
3942 const char *type_name;
3943
3944 decl_list->type->specifier->hir(instructions, state);
3945
3946 /* Section 10.9 of the GLSL ES 1.00 specification states that
3947 * embedded structure definitions have been removed from the language.
3948 */
3949 if (state->es_shader && decl_list->type->specifier->structure != NULL) {
3950 YYLTYPE loc = this->get_location();
3951 _mesa_glsl_error(&loc, state, "Embedded structure definitions are "
3952 "not allowed in GLSL ES 1.00.");
3953 }
3954
3955 const glsl_type *decl_type =
3956 decl_list->type->specifier->glsl_type(& type_name, state);
3957
3958 foreach_list_typed (ast_declaration, decl, link,
3959 &decl_list->declarations) {
3960 const struct glsl_type *field_type = decl_type;
3961 if (decl->is_array) {
3962 YYLTYPE loc = decl->get_location();
3963 field_type = process_array_type(&loc, decl_type, decl->array_size,
3964 state);
3965 }
3966 fields[i].type = (field_type != NULL)
3967 ? field_type : glsl_type::error_type;
3968 fields[i].name = decl->identifier;
3969 i++;
3970 }
3971 }
3972
3973 assert(i == decl_count);
3974
3975 const glsl_type *t =
3976 glsl_type::get_record_instance(fields, decl_count, this->name);
3977
3978 YYLTYPE loc = this->get_location();
3979 if (!state->symbols->add_type(name, t)) {
3980 _mesa_glsl_error(& loc, state, "struct `%s' previously defined", name);
3981 } else {
3982 const glsl_type **s = reralloc(state, state->user_structures,
3983 const glsl_type *,
3984 state->num_user_structures + 1);
3985 if (s != NULL) {
3986 s[state->num_user_structures] = t;
3987 state->user_structures = s;
3988 state->num_user_structures++;
3989 }
3990 }
3991
3992 /* Structure type definitions do not have r-values.
3993 */
3994 return NULL;
3995 }
3996
3997 ir_rvalue *
3998 ast_uniform_block::hir(exec_list *instructions,
3999 struct _mesa_glsl_parse_state *state)
4000 {
4001 /* The ast_uniform_block has a list of ast_declarator_lists. We
4002 * need to turn those into ir_variables with an association
4003 * with this uniform block.
4004 */
4005 foreach_list_typed(ast_declarator_list, decl_list, link, &declarations) {
4006 exec_list declared_variables;
4007
4008 decl_list->hir(&declared_variables, state);
4009
4010 instructions->append_list(&declared_variables);
4011 }
4012
4013 return NULL;
4014 }
4015
4016 static void
4017 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
4018 exec_list *instructions)
4019 {
4020 bool gl_FragColor_assigned = false;
4021 bool gl_FragData_assigned = false;
4022 bool user_defined_fs_output_assigned = false;
4023 ir_variable *user_defined_fs_output = NULL;
4024
4025 /* It would be nice to have proper location information. */
4026 YYLTYPE loc;
4027 memset(&loc, 0, sizeof(loc));
4028
4029 foreach_list(node, instructions) {
4030 ir_variable *var = ((ir_instruction *)node)->as_variable();
4031
4032 if (!var || !var->assigned)
4033 continue;
4034
4035 if (strcmp(var->name, "gl_FragColor") == 0)
4036 gl_FragColor_assigned = true;
4037 else if (strcmp(var->name, "gl_FragData") == 0)
4038 gl_FragData_assigned = true;
4039 else if (strncmp(var->name, "gl_", 3) != 0) {
4040 if (state->target == fragment_shader &&
4041 (var->mode == ir_var_out || var->mode == ir_var_inout)) {
4042 user_defined_fs_output_assigned = true;
4043 user_defined_fs_output = var;
4044 }
4045 }
4046 }
4047
4048 /* From the GLSL 1.30 spec:
4049 *
4050 * "If a shader statically assigns a value to gl_FragColor, it
4051 * may not assign a value to any element of gl_FragData. If a
4052 * shader statically writes a value to any element of
4053 * gl_FragData, it may not assign a value to
4054 * gl_FragColor. That is, a shader may assign values to either
4055 * gl_FragColor or gl_FragData, but not both. Multiple shaders
4056 * linked together must also consistently write just one of
4057 * these variables. Similarly, if user declared output
4058 * variables are in use (statically assigned to), then the
4059 * built-in variables gl_FragColor and gl_FragData may not be
4060 * assigned to. These incorrect usages all generate compile
4061 * time errors."
4062 */
4063 if (gl_FragColor_assigned && gl_FragData_assigned) {
4064 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
4065 "`gl_FragColor' and `gl_FragData'\n");
4066 } else if (gl_FragColor_assigned && user_defined_fs_output_assigned) {
4067 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
4068 "`gl_FragColor' and `%s'\n",
4069 user_defined_fs_output->name);
4070 } else if (gl_FragData_assigned && user_defined_fs_output_assigned) {
4071 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
4072 "`gl_FragData' and `%s'\n",
4073 user_defined_fs_output->name);
4074 }
4075 }