glsl: Optimize ir_triop_lrp(x, y, a) with a = 0.0f or 1.0f
[mesa.git] / src / glsl / ast_to_hir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file ast_to_hir.c
26 * Convert abstract syntax to to high-level intermediate reprensentation (HIR).
27 *
28 * During the conversion to HIR, the majority of the symantic checking is
29 * preformed on the program. This includes:
30 *
31 * * Symbol table management
32 * * Type checking
33 * * Function binding
34 *
35 * The majority of this work could be done during parsing, and the parser could
36 * probably generate HIR directly. However, this results in frequent changes
37 * to the parser code. Since we do not assume that every system this complier
38 * is built on will have Flex and Bison installed, we have to store the code
39 * generated by these tools in our version control system. In other parts of
40 * the system we've seen problems where a parser was changed but the generated
41 * code was not committed, merge conflicts where created because two developers
42 * had slightly different versions of Bison installed, etc.
43 *
44 * I have also noticed that running Bison generated parsers in GDB is very
45 * irritating. When you get a segfault on '$$ = $1->foo', you can't very
46 * well 'print $1' in GDB.
47 *
48 * As a result, my preference is to put as little C code as possible in the
49 * parser (and lexer) sources.
50 */
51
52 #include "main/core.h" /* for struct gl_extensions */
53 #include "glsl_symbol_table.h"
54 #include "glsl_parser_extras.h"
55 #include "ast.h"
56 #include "glsl_types.h"
57 #include "program/hash_table.h"
58 #include "ir.h"
59
60 static void
61 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
62 exec_list *instructions);
63
64 void
65 _mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
66 {
67 _mesa_glsl_initialize_variables(instructions, state);
68
69 state->symbols->separate_function_namespace = state->language_version == 110;
70
71 state->current_function = NULL;
72
73 state->toplevel_ir = instructions;
74
75 /* Section 4.2 of the GLSL 1.20 specification states:
76 * "The built-in functions are scoped in a scope outside the global scope
77 * users declare global variables in. That is, a shader's global scope,
78 * available for user-defined functions and global variables, is nested
79 * inside the scope containing the built-in functions."
80 *
81 * Since built-in functions like ftransform() access built-in variables,
82 * it follows that those must be in the outer scope as well.
83 *
84 * We push scope here to create this nesting effect...but don't pop.
85 * This way, a shader's globals are still in the symbol table for use
86 * by the linker.
87 */
88 state->symbols->push_scope();
89
90 foreach_list_typed (ast_node, ast, link, & state->translation_unit)
91 ast->hir(instructions, state);
92
93 detect_recursion_unlinked(state, instructions);
94 detect_conflicting_assignments(state, instructions);
95
96 state->toplevel_ir = NULL;
97 }
98
99
100 /**
101 * If a conversion is available, convert one operand to a different type
102 *
103 * The \c from \c ir_rvalue is converted "in place".
104 *
105 * \param to Type that the operand it to be converted to
106 * \param from Operand that is being converted
107 * \param state GLSL compiler state
108 *
109 * \return
110 * If a conversion is possible (or unnecessary), \c true is returned.
111 * Otherwise \c false is returned.
112 */
113 bool
114 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
115 struct _mesa_glsl_parse_state *state)
116 {
117 void *ctx = state;
118 if (to->base_type == from->type->base_type)
119 return true;
120
121 /* This conversion was added in GLSL 1.20. If the compilation mode is
122 * GLSL 1.10, the conversion is skipped.
123 */
124 if (!state->is_version(120, 0))
125 return false;
126
127 /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
128 *
129 * "There are no implicit array or structure conversions. For
130 * example, an array of int cannot be implicitly converted to an
131 * array of float. There are no implicit conversions between
132 * signed and unsigned integers."
133 */
134 /* FINISHME: The above comment is partially a lie. There is int/uint
135 * FINISHME: conversion for immediate constants.
136 */
137 if (!to->is_float() || !from->type->is_numeric())
138 return false;
139
140 /* Convert to a floating point type with the same number of components
141 * as the original type - i.e. int to float, not int to vec4.
142 */
143 to = glsl_type::get_instance(GLSL_TYPE_FLOAT, from->type->vector_elements,
144 from->type->matrix_columns);
145
146 switch (from->type->base_type) {
147 case GLSL_TYPE_INT:
148 from = new(ctx) ir_expression(ir_unop_i2f, to, from, NULL);
149 break;
150 case GLSL_TYPE_UINT:
151 from = new(ctx) ir_expression(ir_unop_u2f, to, from, NULL);
152 break;
153 case GLSL_TYPE_BOOL:
154 from = new(ctx) ir_expression(ir_unop_b2f, to, from, NULL);
155 break;
156 default:
157 assert(0);
158 }
159
160 return true;
161 }
162
163
164 static const struct glsl_type *
165 arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
166 bool multiply,
167 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
168 {
169 const glsl_type *type_a = value_a->type;
170 const glsl_type *type_b = value_b->type;
171
172 /* From GLSL 1.50 spec, page 56:
173 *
174 * "The arithmetic binary operators add (+), subtract (-),
175 * multiply (*), and divide (/) operate on integer and
176 * floating-point scalars, vectors, and matrices."
177 */
178 if (!type_a->is_numeric() || !type_b->is_numeric()) {
179 _mesa_glsl_error(loc, state,
180 "Operands to arithmetic operators must be numeric");
181 return glsl_type::error_type;
182 }
183
184
185 /* "If one operand is floating-point based and the other is
186 * not, then the conversions from Section 4.1.10 "Implicit
187 * Conversions" are applied to the non-floating-point-based operand."
188 */
189 if (!apply_implicit_conversion(type_a, value_b, state)
190 && !apply_implicit_conversion(type_b, value_a, state)) {
191 _mesa_glsl_error(loc, state,
192 "Could not implicitly convert operands to "
193 "arithmetic operator");
194 return glsl_type::error_type;
195 }
196 type_a = value_a->type;
197 type_b = value_b->type;
198
199 /* "If the operands are integer types, they must both be signed or
200 * both be unsigned."
201 *
202 * From this rule and the preceeding conversion it can be inferred that
203 * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
204 * The is_numeric check above already filtered out the case where either
205 * type is not one of these, so now the base types need only be tested for
206 * equality.
207 */
208 if (type_a->base_type != type_b->base_type) {
209 _mesa_glsl_error(loc, state,
210 "base type mismatch for arithmetic operator");
211 return glsl_type::error_type;
212 }
213
214 /* "All arithmetic binary operators result in the same fundamental type
215 * (signed integer, unsigned integer, or floating-point) as the
216 * operands they operate on, after operand type conversion. After
217 * conversion, the following cases are valid
218 *
219 * * The two operands are scalars. In this case the operation is
220 * applied, resulting in a scalar."
221 */
222 if (type_a->is_scalar() && type_b->is_scalar())
223 return type_a;
224
225 /* "* One operand is a scalar, and the other is a vector or matrix.
226 * In this case, the scalar operation is applied independently to each
227 * component of the vector or matrix, resulting in the same size
228 * vector or matrix."
229 */
230 if (type_a->is_scalar()) {
231 if (!type_b->is_scalar())
232 return type_b;
233 } else if (type_b->is_scalar()) {
234 return type_a;
235 }
236
237 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
238 * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
239 * handled.
240 */
241 assert(!type_a->is_scalar());
242 assert(!type_b->is_scalar());
243
244 /* "* The two operands are vectors of the same size. In this case, the
245 * operation is done component-wise resulting in the same size
246 * vector."
247 */
248 if (type_a->is_vector() && type_b->is_vector()) {
249 if (type_a == type_b) {
250 return type_a;
251 } else {
252 _mesa_glsl_error(loc, state,
253 "vector size mismatch for arithmetic operator");
254 return glsl_type::error_type;
255 }
256 }
257
258 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
259 * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
260 * <vector, vector> have been handled. At least one of the operands must
261 * be matrix. Further, since there are no integer matrix types, the base
262 * type of both operands must be float.
263 */
264 assert(type_a->is_matrix() || type_b->is_matrix());
265 assert(type_a->base_type == GLSL_TYPE_FLOAT);
266 assert(type_b->base_type == GLSL_TYPE_FLOAT);
267
268 /* "* The operator is add (+), subtract (-), or divide (/), and the
269 * operands are matrices with the same number of rows and the same
270 * number of columns. In this case, the operation is done component-
271 * wise resulting in the same size matrix."
272 * * The operator is multiply (*), where both operands are matrices or
273 * one operand is a vector and the other a matrix. A right vector
274 * operand is treated as a column vector and a left vector operand as a
275 * row vector. In all these cases, it is required that the number of
276 * columns of the left operand is equal to the number of rows of the
277 * right operand. Then, the multiply (*) operation does a linear
278 * algebraic multiply, yielding an object that has the same number of
279 * rows as the left operand and the same number of columns as the right
280 * operand. Section 5.10 "Vector and Matrix Operations" explains in
281 * more detail how vectors and matrices are operated on."
282 */
283 if (! multiply) {
284 if (type_a == type_b)
285 return type_a;
286 } else {
287 if (type_a->is_matrix() && type_b->is_matrix()) {
288 /* Matrix multiply. The columns of A must match the rows of B. Given
289 * the other previously tested constraints, this means the vector type
290 * of a row from A must be the same as the vector type of a column from
291 * B.
292 */
293 if (type_a->row_type() == type_b->column_type()) {
294 /* The resulting matrix has the number of columns of matrix B and
295 * the number of rows of matrix A. We get the row count of A by
296 * looking at the size of a vector that makes up a column. The
297 * transpose (size of a row) is done for B.
298 */
299 const glsl_type *const type =
300 glsl_type::get_instance(type_a->base_type,
301 type_a->column_type()->vector_elements,
302 type_b->row_type()->vector_elements);
303 assert(type != glsl_type::error_type);
304
305 return type;
306 }
307 } else if (type_a->is_matrix()) {
308 /* A is a matrix and B is a column vector. Columns of A must match
309 * rows of B. Given the other previously tested constraints, this
310 * means the vector type of a row from A must be the same as the
311 * vector the type of B.
312 */
313 if (type_a->row_type() == type_b) {
314 /* The resulting vector has a number of elements equal to
315 * the number of rows of matrix A. */
316 const glsl_type *const type =
317 glsl_type::get_instance(type_a->base_type,
318 type_a->column_type()->vector_elements,
319 1);
320 assert(type != glsl_type::error_type);
321
322 return type;
323 }
324 } else {
325 assert(type_b->is_matrix());
326
327 /* A is a row vector and B is a matrix. Columns of A must match rows
328 * of B. Given the other previously tested constraints, this means
329 * the type of A must be the same as the vector type of a column from
330 * B.
331 */
332 if (type_a == type_b->column_type()) {
333 /* The resulting vector has a number of elements equal to
334 * the number of columns of matrix B. */
335 const glsl_type *const type =
336 glsl_type::get_instance(type_a->base_type,
337 type_b->row_type()->vector_elements,
338 1);
339 assert(type != glsl_type::error_type);
340
341 return type;
342 }
343 }
344
345 _mesa_glsl_error(loc, state, "size mismatch for matrix multiplication");
346 return glsl_type::error_type;
347 }
348
349
350 /* "All other cases are illegal."
351 */
352 _mesa_glsl_error(loc, state, "type mismatch");
353 return glsl_type::error_type;
354 }
355
356
357 static const struct glsl_type *
358 unary_arithmetic_result_type(const struct glsl_type *type,
359 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
360 {
361 /* From GLSL 1.50 spec, page 57:
362 *
363 * "The arithmetic unary operators negate (-), post- and pre-increment
364 * and decrement (-- and ++) operate on integer or floating-point
365 * values (including vectors and matrices). All unary operators work
366 * component-wise on their operands. These result with the same type
367 * they operated on."
368 */
369 if (!type->is_numeric()) {
370 _mesa_glsl_error(loc, state,
371 "Operands to arithmetic operators must be numeric");
372 return glsl_type::error_type;
373 }
374
375 return type;
376 }
377
378 /**
379 * \brief Return the result type of a bit-logic operation.
380 *
381 * If the given types to the bit-logic operator are invalid, return
382 * glsl_type::error_type.
383 *
384 * \param type_a Type of LHS of bit-logic op
385 * \param type_b Type of RHS of bit-logic op
386 */
387 static const struct glsl_type *
388 bit_logic_result_type(const struct glsl_type *type_a,
389 const struct glsl_type *type_b,
390 ast_operators op,
391 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
392 {
393 if (!state->check_bitwise_operations_allowed(loc)) {
394 return glsl_type::error_type;
395 }
396
397 /* From page 50 (page 56 of PDF) of GLSL 1.30 spec:
398 *
399 * "The bitwise operators and (&), exclusive-or (^), and inclusive-or
400 * (|). The operands must be of type signed or unsigned integers or
401 * integer vectors."
402 */
403 if (!type_a->is_integer()) {
404 _mesa_glsl_error(loc, state, "LHS of `%s' must be an integer",
405 ast_expression::operator_string(op));
406 return glsl_type::error_type;
407 }
408 if (!type_b->is_integer()) {
409 _mesa_glsl_error(loc, state, "RHS of `%s' must be an integer",
410 ast_expression::operator_string(op));
411 return glsl_type::error_type;
412 }
413
414 /* "The fundamental types of the operands (signed or unsigned) must
415 * match,"
416 */
417 if (type_a->base_type != type_b->base_type) {
418 _mesa_glsl_error(loc, state, "operands of `%s' must have the same "
419 "base type", ast_expression::operator_string(op));
420 return glsl_type::error_type;
421 }
422
423 /* "The operands cannot be vectors of differing size." */
424 if (type_a->is_vector() &&
425 type_b->is_vector() &&
426 type_a->vector_elements != type_b->vector_elements) {
427 _mesa_glsl_error(loc, state, "operands of `%s' cannot be vectors of "
428 "different sizes", ast_expression::operator_string(op));
429 return glsl_type::error_type;
430 }
431
432 /* "If one operand is a scalar and the other a vector, the scalar is
433 * applied component-wise to the vector, resulting in the same type as
434 * the vector. The fundamental types of the operands [...] will be the
435 * resulting fundamental type."
436 */
437 if (type_a->is_scalar())
438 return type_b;
439 else
440 return type_a;
441 }
442
443 static const struct glsl_type *
444 modulus_result_type(const struct glsl_type *type_a,
445 const struct glsl_type *type_b,
446 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
447 {
448 if (!state->check_version(130, 300, loc, "operator '%%' is reserved")) {
449 return glsl_type::error_type;
450 }
451
452 /* From GLSL 1.50 spec, page 56:
453 * "The operator modulus (%) operates on signed or unsigned integers or
454 * integer vectors. The operand types must both be signed or both be
455 * unsigned."
456 */
457 if (!type_a->is_integer()) {
458 _mesa_glsl_error(loc, state, "LHS of operator %% must be an integer.");
459 return glsl_type::error_type;
460 }
461 if (!type_b->is_integer()) {
462 _mesa_glsl_error(loc, state, "RHS of operator %% must be an integer.");
463 return glsl_type::error_type;
464 }
465 if (type_a->base_type != type_b->base_type) {
466 _mesa_glsl_error(loc, state,
467 "operands of %% must have the same base type");
468 return glsl_type::error_type;
469 }
470
471 /* "The operands cannot be vectors of differing size. If one operand is
472 * a scalar and the other vector, then the scalar is applied component-
473 * wise to the vector, resulting in the same type as the vector. If both
474 * are vectors of the same size, the result is computed component-wise."
475 */
476 if (type_a->is_vector()) {
477 if (!type_b->is_vector()
478 || (type_a->vector_elements == type_b->vector_elements))
479 return type_a;
480 } else
481 return type_b;
482
483 /* "The operator modulus (%) is not defined for any other data types
484 * (non-integer types)."
485 */
486 _mesa_glsl_error(loc, state, "type mismatch");
487 return glsl_type::error_type;
488 }
489
490
491 static const struct glsl_type *
492 relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
493 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
494 {
495 const glsl_type *type_a = value_a->type;
496 const glsl_type *type_b = value_b->type;
497
498 /* From GLSL 1.50 spec, page 56:
499 * "The relational operators greater than (>), less than (<), greater
500 * than or equal (>=), and less than or equal (<=) operate only on
501 * scalar integer and scalar floating-point expressions."
502 */
503 if (!type_a->is_numeric()
504 || !type_b->is_numeric()
505 || !type_a->is_scalar()
506 || !type_b->is_scalar()) {
507 _mesa_glsl_error(loc, state,
508 "Operands to relational operators must be scalar and "
509 "numeric");
510 return glsl_type::error_type;
511 }
512
513 /* "Either the operands' types must match, or the conversions from
514 * Section 4.1.10 "Implicit Conversions" will be applied to the integer
515 * operand, after which the types must match."
516 */
517 if (!apply_implicit_conversion(type_a, value_b, state)
518 && !apply_implicit_conversion(type_b, value_a, state)) {
519 _mesa_glsl_error(loc, state,
520 "Could not implicitly convert operands to "
521 "relational operator");
522 return glsl_type::error_type;
523 }
524 type_a = value_a->type;
525 type_b = value_b->type;
526
527 if (type_a->base_type != type_b->base_type) {
528 _mesa_glsl_error(loc, state, "base type mismatch");
529 return glsl_type::error_type;
530 }
531
532 /* "The result is scalar Boolean."
533 */
534 return glsl_type::bool_type;
535 }
536
537 /**
538 * \brief Return the result type of a bit-shift operation.
539 *
540 * If the given types to the bit-shift operator are invalid, return
541 * glsl_type::error_type.
542 *
543 * \param type_a Type of LHS of bit-shift op
544 * \param type_b Type of RHS of bit-shift op
545 */
546 static const struct glsl_type *
547 shift_result_type(const struct glsl_type *type_a,
548 const struct glsl_type *type_b,
549 ast_operators op,
550 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
551 {
552 if (!state->check_bitwise_operations_allowed(loc)) {
553 return glsl_type::error_type;
554 }
555
556 /* From page 50 (page 56 of the PDF) of the GLSL 1.30 spec:
557 *
558 * "The shift operators (<<) and (>>). For both operators, the operands
559 * must be signed or unsigned integers or integer vectors. One operand
560 * can be signed while the other is unsigned."
561 */
562 if (!type_a->is_integer()) {
563 _mesa_glsl_error(loc, state, "LHS of operator %s must be an integer or "
564 "integer vector", ast_expression::operator_string(op));
565 return glsl_type::error_type;
566
567 }
568 if (!type_b->is_integer()) {
569 _mesa_glsl_error(loc, state, "RHS of operator %s must be an integer or "
570 "integer vector", ast_expression::operator_string(op));
571 return glsl_type::error_type;
572 }
573
574 /* "If the first operand is a scalar, the second operand has to be
575 * a scalar as well."
576 */
577 if (type_a->is_scalar() && !type_b->is_scalar()) {
578 _mesa_glsl_error(loc, state, "If the first operand of %s is scalar, the "
579 "second must be scalar as well",
580 ast_expression::operator_string(op));
581 return glsl_type::error_type;
582 }
583
584 /* If both operands are vectors, check that they have same number of
585 * elements.
586 */
587 if (type_a->is_vector() &&
588 type_b->is_vector() &&
589 type_a->vector_elements != type_b->vector_elements) {
590 _mesa_glsl_error(loc, state, "Vector operands to operator %s must "
591 "have same number of elements",
592 ast_expression::operator_string(op));
593 return glsl_type::error_type;
594 }
595
596 /* "In all cases, the resulting type will be the same type as the left
597 * operand."
598 */
599 return type_a;
600 }
601
602 /**
603 * Validates that a value can be assigned to a location with a specified type
604 *
605 * Validates that \c rhs can be assigned to some location. If the types are
606 * not an exact match but an automatic conversion is possible, \c rhs will be
607 * converted.
608 *
609 * \return
610 * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
611 * Otherwise the actual RHS to be assigned will be returned. This may be
612 * \c rhs, or it may be \c rhs after some type conversion.
613 *
614 * \note
615 * In addition to being used for assignments, this function is used to
616 * type-check return values.
617 */
618 ir_rvalue *
619 validate_assignment(struct _mesa_glsl_parse_state *state,
620 const glsl_type *lhs_type, ir_rvalue *rhs,
621 bool is_initializer)
622 {
623 /* If there is already some error in the RHS, just return it. Anything
624 * else will lead to an avalanche of error message back to the user.
625 */
626 if (rhs->type->is_error())
627 return rhs;
628
629 /* If the types are identical, the assignment can trivially proceed.
630 */
631 if (rhs->type == lhs_type)
632 return rhs;
633
634 /* If the array element types are the same and the size of the LHS is zero,
635 * the assignment is okay for initializers embedded in variable
636 * declarations.
637 *
638 * Note: Whole-array assignments are not permitted in GLSL 1.10, but this
639 * is handled by ir_dereference::is_lvalue.
640 */
641 if (is_initializer && lhs_type->is_array() && rhs->type->is_array()
642 && (lhs_type->element_type() == rhs->type->element_type())
643 && (lhs_type->array_size() == 0)) {
644 return rhs;
645 }
646
647 /* Check for implicit conversion in GLSL 1.20 */
648 if (apply_implicit_conversion(lhs_type, rhs, state)) {
649 if (rhs->type == lhs_type)
650 return rhs;
651 }
652
653 return NULL;
654 }
655
656 static void
657 mark_whole_array_access(ir_rvalue *access)
658 {
659 ir_dereference_variable *deref = access->as_dereference_variable();
660
661 if (deref && deref->var) {
662 deref->var->max_array_access = deref->type->length - 1;
663 }
664 }
665
666 ir_rvalue *
667 do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state,
668 const char *non_lvalue_description,
669 ir_rvalue *lhs, ir_rvalue *rhs, bool is_initializer,
670 YYLTYPE lhs_loc)
671 {
672 void *ctx = state;
673 bool error_emitted = (lhs->type->is_error() || rhs->type->is_error());
674
675 ir_variable *lhs_var = lhs->variable_referenced();
676 if (lhs_var)
677 lhs_var->assigned = true;
678
679 if (!error_emitted) {
680 if (non_lvalue_description != NULL) {
681 _mesa_glsl_error(&lhs_loc, state,
682 "assignment to %s",
683 non_lvalue_description);
684 error_emitted = true;
685 } else if (lhs->variable_referenced() != NULL
686 && lhs->variable_referenced()->read_only) {
687 _mesa_glsl_error(&lhs_loc, state,
688 "assignment to read-only variable '%s'",
689 lhs->variable_referenced()->name);
690 error_emitted = true;
691
692 } else if (lhs->type->is_array() &&
693 !state->check_version(120, 300, &lhs_loc,
694 "whole array assignment forbidden")) {
695 /* From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
696 *
697 * "Other binary or unary expressions, non-dereferenced
698 * arrays, function names, swizzles with repeated fields,
699 * and constants cannot be l-values."
700 *
701 * The restriction on arrays is lifted in GLSL 1.20 and GLSL ES 3.00.
702 */
703 error_emitted = true;
704 } else if (!lhs->is_lvalue()) {
705 _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment");
706 error_emitted = true;
707 }
708 }
709
710 ir_rvalue *new_rhs =
711 validate_assignment(state, lhs->type, rhs, is_initializer);
712 if (new_rhs == NULL) {
713 _mesa_glsl_error(& lhs_loc, state, "type mismatch");
714 } else {
715 rhs = new_rhs;
716
717 /* If the LHS array was not declared with a size, it takes it size from
718 * the RHS. If the LHS is an l-value and a whole array, it must be a
719 * dereference of a variable. Any other case would require that the LHS
720 * is either not an l-value or not a whole array.
721 */
722 if (lhs->type->array_size() == 0) {
723 ir_dereference *const d = lhs->as_dereference();
724
725 assert(d != NULL);
726
727 ir_variable *const var = d->variable_referenced();
728
729 assert(var != NULL);
730
731 if (var->max_array_access >= unsigned(rhs->type->array_size())) {
732 /* FINISHME: This should actually log the location of the RHS. */
733 _mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to "
734 "previous access",
735 var->max_array_access);
736 }
737
738 var->type = glsl_type::get_array_instance(lhs->type->element_type(),
739 rhs->type->array_size());
740 d->type = var->type;
741 }
742 mark_whole_array_access(rhs);
743 mark_whole_array_access(lhs);
744 }
745
746 /* Most callers of do_assignment (assign, add_assign, pre_inc/dec,
747 * but not post_inc) need the converted assigned value as an rvalue
748 * to handle things like:
749 *
750 * i = j += 1;
751 *
752 * So we always just store the computed value being assigned to a
753 * temporary and return a deref of that temporary. If the rvalue
754 * ends up not being used, the temp will get copy-propagated out.
755 */
756 ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp",
757 ir_var_temporary);
758 ir_dereference_variable *deref_var = new(ctx) ir_dereference_variable(var);
759 instructions->push_tail(var);
760 instructions->push_tail(new(ctx) ir_assignment(deref_var, rhs));
761 deref_var = new(ctx) ir_dereference_variable(var);
762
763 if (!error_emitted)
764 instructions->push_tail(new(ctx) ir_assignment(lhs, deref_var));
765
766 return new(ctx) ir_dereference_variable(var);
767 }
768
769 static ir_rvalue *
770 get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue)
771 {
772 void *ctx = ralloc_parent(lvalue);
773 ir_variable *var;
774
775 var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp",
776 ir_var_temporary);
777 instructions->push_tail(var);
778 var->mode = ir_var_auto;
779
780 instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
781 lvalue));
782
783 return new(ctx) ir_dereference_variable(var);
784 }
785
786
787 ir_rvalue *
788 ast_node::hir(exec_list *instructions,
789 struct _mesa_glsl_parse_state *state)
790 {
791 (void) instructions;
792 (void) state;
793
794 return NULL;
795 }
796
797 static ir_rvalue *
798 do_comparison(void *mem_ctx, int operation, ir_rvalue *op0, ir_rvalue *op1)
799 {
800 int join_op;
801 ir_rvalue *cmp = NULL;
802
803 if (operation == ir_binop_all_equal)
804 join_op = ir_binop_logic_and;
805 else
806 join_op = ir_binop_logic_or;
807
808 switch (op0->type->base_type) {
809 case GLSL_TYPE_FLOAT:
810 case GLSL_TYPE_UINT:
811 case GLSL_TYPE_INT:
812 case GLSL_TYPE_BOOL:
813 return new(mem_ctx) ir_expression(operation, op0, op1);
814
815 case GLSL_TYPE_ARRAY: {
816 for (unsigned int i = 0; i < op0->type->length; i++) {
817 ir_rvalue *e0, *e1, *result;
818
819 e0 = new(mem_ctx) ir_dereference_array(op0->clone(mem_ctx, NULL),
820 new(mem_ctx) ir_constant(i));
821 e1 = new(mem_ctx) ir_dereference_array(op1->clone(mem_ctx, NULL),
822 new(mem_ctx) ir_constant(i));
823 result = do_comparison(mem_ctx, operation, e0, e1);
824
825 if (cmp) {
826 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
827 } else {
828 cmp = result;
829 }
830 }
831
832 mark_whole_array_access(op0);
833 mark_whole_array_access(op1);
834 break;
835 }
836
837 case GLSL_TYPE_STRUCT: {
838 for (unsigned int i = 0; i < op0->type->length; i++) {
839 ir_rvalue *e0, *e1, *result;
840 const char *field_name = op0->type->fields.structure[i].name;
841
842 e0 = new(mem_ctx) ir_dereference_record(op0->clone(mem_ctx, NULL),
843 field_name);
844 e1 = new(mem_ctx) ir_dereference_record(op1->clone(mem_ctx, NULL),
845 field_name);
846 result = do_comparison(mem_ctx, operation, e0, e1);
847
848 if (cmp) {
849 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
850 } else {
851 cmp = result;
852 }
853 }
854 break;
855 }
856
857 case GLSL_TYPE_ERROR:
858 case GLSL_TYPE_VOID:
859 case GLSL_TYPE_SAMPLER:
860 case GLSL_TYPE_INTERFACE:
861 /* I assume a comparison of a struct containing a sampler just
862 * ignores the sampler present in the type.
863 */
864 break;
865 }
866
867 if (cmp == NULL)
868 cmp = new(mem_ctx) ir_constant(true);
869
870 return cmp;
871 }
872
873 /* For logical operations, we want to ensure that the operands are
874 * scalar booleans. If it isn't, emit an error and return a constant
875 * boolean to avoid triggering cascading error messages.
876 */
877 ir_rvalue *
878 get_scalar_boolean_operand(exec_list *instructions,
879 struct _mesa_glsl_parse_state *state,
880 ast_expression *parent_expr,
881 int operand,
882 const char *operand_name,
883 bool *error_emitted)
884 {
885 ast_expression *expr = parent_expr->subexpressions[operand];
886 void *ctx = state;
887 ir_rvalue *val = expr->hir(instructions, state);
888
889 if (val->type->is_boolean() && val->type->is_scalar())
890 return val;
891
892 if (!*error_emitted) {
893 YYLTYPE loc = expr->get_location();
894 _mesa_glsl_error(&loc, state, "%s of `%s' must be scalar boolean",
895 operand_name,
896 parent_expr->operator_string(parent_expr->oper));
897 *error_emitted = true;
898 }
899
900 return new(ctx) ir_constant(true);
901 }
902
903 /**
904 * If name refers to a builtin array whose maximum allowed size is less than
905 * size, report an error and return true. Otherwise return false.
906 */
907 static bool
908 check_builtin_array_max_size(const char *name, unsigned size,
909 YYLTYPE loc, struct _mesa_glsl_parse_state *state)
910 {
911 if ((strcmp("gl_TexCoord", name) == 0)
912 && (size > state->Const.MaxTextureCoords)) {
913 /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec:
914 *
915 * "The size [of gl_TexCoord] can be at most
916 * gl_MaxTextureCoords."
917 */
918 _mesa_glsl_error(&loc, state, "`gl_TexCoord' array size cannot "
919 "be larger than gl_MaxTextureCoords (%u)\n",
920 state->Const.MaxTextureCoords);
921 return true;
922 } else if (strcmp("gl_ClipDistance", name) == 0
923 && size > state->Const.MaxClipPlanes) {
924 /* From section 7.1 (Vertex Shader Special Variables) of the
925 * GLSL 1.30 spec:
926 *
927 * "The gl_ClipDistance array is predeclared as unsized and
928 * must be sized by the shader either redeclaring it with a
929 * size or indexing it only with integral constant
930 * expressions. ... The size can be at most
931 * gl_MaxClipDistances."
932 */
933 _mesa_glsl_error(&loc, state, "`gl_ClipDistance' array size cannot "
934 "be larger than gl_MaxClipDistances (%u)\n",
935 state->Const.MaxClipPlanes);
936 return true;
937 }
938 return false;
939 }
940
941 /**
942 * Create the constant 1, of a which is appropriate for incrementing and
943 * decrementing values of the given GLSL type. For example, if type is vec4,
944 * this creates a constant value of 1.0 having type float.
945 *
946 * If the given type is invalid for increment and decrement operators, return
947 * a floating point 1--the error will be detected later.
948 */
949 static ir_rvalue *
950 constant_one_for_inc_dec(void *ctx, const glsl_type *type)
951 {
952 switch (type->base_type) {
953 case GLSL_TYPE_UINT:
954 return new(ctx) ir_constant((unsigned) 1);
955 case GLSL_TYPE_INT:
956 return new(ctx) ir_constant(1);
957 default:
958 case GLSL_TYPE_FLOAT:
959 return new(ctx) ir_constant(1.0f);
960 }
961 }
962
963 ir_rvalue *
964 ast_expression::hir(exec_list *instructions,
965 struct _mesa_glsl_parse_state *state)
966 {
967 void *ctx = state;
968 static const int operations[AST_NUM_OPERATORS] = {
969 -1, /* ast_assign doesn't convert to ir_expression. */
970 -1, /* ast_plus doesn't convert to ir_expression. */
971 ir_unop_neg,
972 ir_binop_add,
973 ir_binop_sub,
974 ir_binop_mul,
975 ir_binop_div,
976 ir_binop_mod,
977 ir_binop_lshift,
978 ir_binop_rshift,
979 ir_binop_less,
980 ir_binop_greater,
981 ir_binop_lequal,
982 ir_binop_gequal,
983 ir_binop_all_equal,
984 ir_binop_any_nequal,
985 ir_binop_bit_and,
986 ir_binop_bit_xor,
987 ir_binop_bit_or,
988 ir_unop_bit_not,
989 ir_binop_logic_and,
990 ir_binop_logic_xor,
991 ir_binop_logic_or,
992 ir_unop_logic_not,
993
994 /* Note: The following block of expression types actually convert
995 * to multiple IR instructions.
996 */
997 ir_binop_mul, /* ast_mul_assign */
998 ir_binop_div, /* ast_div_assign */
999 ir_binop_mod, /* ast_mod_assign */
1000 ir_binop_add, /* ast_add_assign */
1001 ir_binop_sub, /* ast_sub_assign */
1002 ir_binop_lshift, /* ast_ls_assign */
1003 ir_binop_rshift, /* ast_rs_assign */
1004 ir_binop_bit_and, /* ast_and_assign */
1005 ir_binop_bit_xor, /* ast_xor_assign */
1006 ir_binop_bit_or, /* ast_or_assign */
1007
1008 -1, /* ast_conditional doesn't convert to ir_expression. */
1009 ir_binop_add, /* ast_pre_inc. */
1010 ir_binop_sub, /* ast_pre_dec. */
1011 ir_binop_add, /* ast_post_inc. */
1012 ir_binop_sub, /* ast_post_dec. */
1013 -1, /* ast_field_selection doesn't conv to ir_expression. */
1014 -1, /* ast_array_index doesn't convert to ir_expression. */
1015 -1, /* ast_function_call doesn't conv to ir_expression. */
1016 -1, /* ast_identifier doesn't convert to ir_expression. */
1017 -1, /* ast_int_constant doesn't convert to ir_expression. */
1018 -1, /* ast_uint_constant doesn't conv to ir_expression. */
1019 -1, /* ast_float_constant doesn't conv to ir_expression. */
1020 -1, /* ast_bool_constant doesn't conv to ir_expression. */
1021 -1, /* ast_sequence doesn't convert to ir_expression. */
1022 };
1023 ir_rvalue *result = NULL;
1024 ir_rvalue *op[3];
1025 const struct glsl_type *type; /* a temporary variable for switch cases */
1026 bool error_emitted = false;
1027 YYLTYPE loc;
1028
1029 loc = this->get_location();
1030
1031 switch (this->oper) {
1032 case ast_assign: {
1033 op[0] = this->subexpressions[0]->hir(instructions, state);
1034 op[1] = this->subexpressions[1]->hir(instructions, state);
1035
1036 result = do_assignment(instructions, state,
1037 this->subexpressions[0]->non_lvalue_description,
1038 op[0], op[1], false,
1039 this->subexpressions[0]->get_location());
1040 error_emitted = result->type->is_error();
1041 break;
1042 }
1043
1044 case ast_plus:
1045 op[0] = this->subexpressions[0]->hir(instructions, state);
1046
1047 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1048
1049 error_emitted = type->is_error();
1050
1051 result = op[0];
1052 break;
1053
1054 case ast_neg:
1055 op[0] = this->subexpressions[0]->hir(instructions, state);
1056
1057 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1058
1059 error_emitted = type->is_error();
1060
1061 result = new(ctx) ir_expression(operations[this->oper], type,
1062 op[0], NULL);
1063 break;
1064
1065 case ast_add:
1066 case ast_sub:
1067 case ast_mul:
1068 case ast_div:
1069 op[0] = this->subexpressions[0]->hir(instructions, state);
1070 op[1] = this->subexpressions[1]->hir(instructions, state);
1071
1072 type = arithmetic_result_type(op[0], op[1],
1073 (this->oper == ast_mul),
1074 state, & loc);
1075 error_emitted = type->is_error();
1076
1077 result = new(ctx) ir_expression(operations[this->oper], type,
1078 op[0], op[1]);
1079 break;
1080
1081 case ast_mod:
1082 op[0] = this->subexpressions[0]->hir(instructions, state);
1083 op[1] = this->subexpressions[1]->hir(instructions, state);
1084
1085 type = modulus_result_type(op[0]->type, op[1]->type, state, & loc);
1086
1087 assert(operations[this->oper] == ir_binop_mod);
1088
1089 result = new(ctx) ir_expression(operations[this->oper], type,
1090 op[0], op[1]);
1091 error_emitted = type->is_error();
1092 break;
1093
1094 case ast_lshift:
1095 case ast_rshift:
1096 if (!state->check_bitwise_operations_allowed(&loc)) {
1097 error_emitted = true;
1098 }
1099
1100 op[0] = this->subexpressions[0]->hir(instructions, state);
1101 op[1] = this->subexpressions[1]->hir(instructions, state);
1102 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1103 &loc);
1104 result = new(ctx) ir_expression(operations[this->oper], type,
1105 op[0], op[1]);
1106 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1107 break;
1108
1109 case ast_less:
1110 case ast_greater:
1111 case ast_lequal:
1112 case ast_gequal:
1113 op[0] = this->subexpressions[0]->hir(instructions, state);
1114 op[1] = this->subexpressions[1]->hir(instructions, state);
1115
1116 type = relational_result_type(op[0], op[1], state, & loc);
1117
1118 /* The relational operators must either generate an error or result
1119 * in a scalar boolean. See page 57 of the GLSL 1.50 spec.
1120 */
1121 assert(type->is_error()
1122 || ((type->base_type == GLSL_TYPE_BOOL)
1123 && type->is_scalar()));
1124
1125 result = new(ctx) ir_expression(operations[this->oper], type,
1126 op[0], op[1]);
1127 error_emitted = type->is_error();
1128 break;
1129
1130 case ast_nequal:
1131 case ast_equal:
1132 op[0] = this->subexpressions[0]->hir(instructions, state);
1133 op[1] = this->subexpressions[1]->hir(instructions, state);
1134
1135 /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
1136 *
1137 * "The equality operators equal (==), and not equal (!=)
1138 * operate on all types. They result in a scalar Boolean. If
1139 * the operand types do not match, then there must be a
1140 * conversion from Section 4.1.10 "Implicit Conversions"
1141 * applied to one operand that can make them match, in which
1142 * case this conversion is done."
1143 */
1144 if ((!apply_implicit_conversion(op[0]->type, op[1], state)
1145 && !apply_implicit_conversion(op[1]->type, op[0], state))
1146 || (op[0]->type != op[1]->type)) {
1147 _mesa_glsl_error(& loc, state, "operands of `%s' must have the same "
1148 "type", (this->oper == ast_equal) ? "==" : "!=");
1149 error_emitted = true;
1150 } else if ((op[0]->type->is_array() || op[1]->type->is_array()) &&
1151 !state->check_version(120, 300, &loc,
1152 "array comparisons forbidden")) {
1153 error_emitted = true;
1154 }
1155
1156 if (error_emitted) {
1157 result = new(ctx) ir_constant(false);
1158 } else {
1159 result = do_comparison(ctx, operations[this->oper], op[0], op[1]);
1160 assert(result->type == glsl_type::bool_type);
1161 }
1162 break;
1163
1164 case ast_bit_and:
1165 case ast_bit_xor:
1166 case ast_bit_or:
1167 op[0] = this->subexpressions[0]->hir(instructions, state);
1168 op[1] = this->subexpressions[1]->hir(instructions, state);
1169 type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
1170 state, &loc);
1171 result = new(ctx) ir_expression(operations[this->oper], type,
1172 op[0], op[1]);
1173 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1174 break;
1175
1176 case ast_bit_not:
1177 op[0] = this->subexpressions[0]->hir(instructions, state);
1178
1179 if (!state->check_bitwise_operations_allowed(&loc)) {
1180 error_emitted = true;
1181 }
1182
1183 if (!op[0]->type->is_integer()) {
1184 _mesa_glsl_error(&loc, state, "operand of `~' must be an integer");
1185 error_emitted = true;
1186 }
1187
1188 type = error_emitted ? glsl_type::error_type : op[0]->type;
1189 result = new(ctx) ir_expression(ir_unop_bit_not, type, op[0], NULL);
1190 break;
1191
1192 case ast_logic_and: {
1193 exec_list rhs_instructions;
1194 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1195 "LHS", &error_emitted);
1196 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1197 "RHS", &error_emitted);
1198
1199 if (rhs_instructions.is_empty()) {
1200 result = new(ctx) ir_expression(ir_binop_logic_and, op[0], op[1]);
1201 type = result->type;
1202 } else {
1203 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1204 "and_tmp",
1205 ir_var_temporary);
1206 instructions->push_tail(tmp);
1207
1208 ir_if *const stmt = new(ctx) ir_if(op[0]);
1209 instructions->push_tail(stmt);
1210
1211 stmt->then_instructions.append_list(&rhs_instructions);
1212 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1213 ir_assignment *const then_assign =
1214 new(ctx) ir_assignment(then_deref, op[1]);
1215 stmt->then_instructions.push_tail(then_assign);
1216
1217 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1218 ir_assignment *const else_assign =
1219 new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false));
1220 stmt->else_instructions.push_tail(else_assign);
1221
1222 result = new(ctx) ir_dereference_variable(tmp);
1223 type = tmp->type;
1224 }
1225 break;
1226 }
1227
1228 case ast_logic_or: {
1229 exec_list rhs_instructions;
1230 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1231 "LHS", &error_emitted);
1232 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1233 "RHS", &error_emitted);
1234
1235 if (rhs_instructions.is_empty()) {
1236 result = new(ctx) ir_expression(ir_binop_logic_or, op[0], op[1]);
1237 type = result->type;
1238 } else {
1239 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1240 "or_tmp",
1241 ir_var_temporary);
1242 instructions->push_tail(tmp);
1243
1244 ir_if *const stmt = new(ctx) ir_if(op[0]);
1245 instructions->push_tail(stmt);
1246
1247 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1248 ir_assignment *const then_assign =
1249 new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true));
1250 stmt->then_instructions.push_tail(then_assign);
1251
1252 stmt->else_instructions.append_list(&rhs_instructions);
1253 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1254 ir_assignment *const else_assign =
1255 new(ctx) ir_assignment(else_deref, op[1]);
1256 stmt->else_instructions.push_tail(else_assign);
1257
1258 result = new(ctx) ir_dereference_variable(tmp);
1259 type = tmp->type;
1260 }
1261 break;
1262 }
1263
1264 case ast_logic_xor:
1265 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1266 *
1267 * "The logical binary operators and (&&), or ( | | ), and
1268 * exclusive or (^^). They operate only on two Boolean
1269 * expressions and result in a Boolean expression."
1270 */
1271 op[0] = get_scalar_boolean_operand(instructions, state, this, 0, "LHS",
1272 &error_emitted);
1273 op[1] = get_scalar_boolean_operand(instructions, state, this, 1, "RHS",
1274 &error_emitted);
1275
1276 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1277 op[0], op[1]);
1278 break;
1279
1280 case ast_logic_not:
1281 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1282 "operand", &error_emitted);
1283
1284 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1285 op[0], NULL);
1286 break;
1287
1288 case ast_mul_assign:
1289 case ast_div_assign:
1290 case ast_add_assign:
1291 case ast_sub_assign: {
1292 op[0] = this->subexpressions[0]->hir(instructions, state);
1293 op[1] = this->subexpressions[1]->hir(instructions, state);
1294
1295 type = arithmetic_result_type(op[0], op[1],
1296 (this->oper == ast_mul_assign),
1297 state, & loc);
1298
1299 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1300 op[0], op[1]);
1301
1302 result = do_assignment(instructions, state,
1303 this->subexpressions[0]->non_lvalue_description,
1304 op[0]->clone(ctx, NULL), temp_rhs, false,
1305 this->subexpressions[0]->get_location());
1306 error_emitted = (op[0]->type->is_error());
1307
1308 /* GLSL 1.10 does not allow array assignment. However, we don't have to
1309 * explicitly test for this because none of the binary expression
1310 * operators allow array operands either.
1311 */
1312
1313 break;
1314 }
1315
1316 case ast_mod_assign: {
1317 op[0] = this->subexpressions[0]->hir(instructions, state);
1318 op[1] = this->subexpressions[1]->hir(instructions, state);
1319
1320 type = modulus_result_type(op[0]->type, op[1]->type, state, & loc);
1321
1322 assert(operations[this->oper] == ir_binop_mod);
1323
1324 ir_rvalue *temp_rhs;
1325 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1326 op[0], op[1]);
1327
1328 result = do_assignment(instructions, state,
1329 this->subexpressions[0]->non_lvalue_description,
1330 op[0]->clone(ctx, NULL), temp_rhs, false,
1331 this->subexpressions[0]->get_location());
1332 error_emitted = type->is_error();
1333 break;
1334 }
1335
1336 case ast_ls_assign:
1337 case ast_rs_assign: {
1338 op[0] = this->subexpressions[0]->hir(instructions, state);
1339 op[1] = this->subexpressions[1]->hir(instructions, state);
1340 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1341 &loc);
1342 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1343 type, op[0], op[1]);
1344 result = do_assignment(instructions, state,
1345 this->subexpressions[0]->non_lvalue_description,
1346 op[0]->clone(ctx, NULL), temp_rhs, false,
1347 this->subexpressions[0]->get_location());
1348 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1349 break;
1350 }
1351
1352 case ast_and_assign:
1353 case ast_xor_assign:
1354 case ast_or_assign: {
1355 op[0] = this->subexpressions[0]->hir(instructions, state);
1356 op[1] = this->subexpressions[1]->hir(instructions, state);
1357 type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
1358 state, &loc);
1359 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1360 type, op[0], op[1]);
1361 result = do_assignment(instructions, state,
1362 this->subexpressions[0]->non_lvalue_description,
1363 op[0]->clone(ctx, NULL), temp_rhs, false,
1364 this->subexpressions[0]->get_location());
1365 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1366 break;
1367 }
1368
1369 case ast_conditional: {
1370 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1371 *
1372 * "The ternary selection operator (?:). It operates on three
1373 * expressions (exp1 ? exp2 : exp3). This operator evaluates the
1374 * first expression, which must result in a scalar Boolean."
1375 */
1376 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1377 "condition", &error_emitted);
1378
1379 /* The :? operator is implemented by generating an anonymous temporary
1380 * followed by an if-statement. The last instruction in each branch of
1381 * the if-statement assigns a value to the anonymous temporary. This
1382 * temporary is the r-value of the expression.
1383 */
1384 exec_list then_instructions;
1385 exec_list else_instructions;
1386
1387 op[1] = this->subexpressions[1]->hir(&then_instructions, state);
1388 op[2] = this->subexpressions[2]->hir(&else_instructions, state);
1389
1390 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1391 *
1392 * "The second and third expressions can be any type, as
1393 * long their types match, or there is a conversion in
1394 * Section 4.1.10 "Implicit Conversions" that can be applied
1395 * to one of the expressions to make their types match. This
1396 * resulting matching type is the type of the entire
1397 * expression."
1398 */
1399 if ((!apply_implicit_conversion(op[1]->type, op[2], state)
1400 && !apply_implicit_conversion(op[2]->type, op[1], state))
1401 || (op[1]->type != op[2]->type)) {
1402 YYLTYPE loc = this->subexpressions[1]->get_location();
1403
1404 _mesa_glsl_error(& loc, state, "Second and third operands of ?: "
1405 "operator must have matching types.");
1406 error_emitted = true;
1407 type = glsl_type::error_type;
1408 } else {
1409 type = op[1]->type;
1410 }
1411
1412 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1413 *
1414 * "The second and third expressions must be the same type, but can
1415 * be of any type other than an array."
1416 */
1417 if (type->is_array() &&
1418 !state->check_version(120, 300, &loc,
1419 "Second and third operands of ?: operator "
1420 "cannot be arrays")) {
1421 error_emitted = true;
1422 }
1423
1424 ir_constant *cond_val = op[0]->constant_expression_value();
1425 ir_constant *then_val = op[1]->constant_expression_value();
1426 ir_constant *else_val = op[2]->constant_expression_value();
1427
1428 if (then_instructions.is_empty()
1429 && else_instructions.is_empty()
1430 && (cond_val != NULL) && (then_val != NULL) && (else_val != NULL)) {
1431 result = (cond_val->value.b[0]) ? then_val : else_val;
1432 } else {
1433 ir_variable *const tmp =
1434 new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary);
1435 instructions->push_tail(tmp);
1436
1437 ir_if *const stmt = new(ctx) ir_if(op[0]);
1438 instructions->push_tail(stmt);
1439
1440 then_instructions.move_nodes_to(& stmt->then_instructions);
1441 ir_dereference *const then_deref =
1442 new(ctx) ir_dereference_variable(tmp);
1443 ir_assignment *const then_assign =
1444 new(ctx) ir_assignment(then_deref, op[1]);
1445 stmt->then_instructions.push_tail(then_assign);
1446
1447 else_instructions.move_nodes_to(& stmt->else_instructions);
1448 ir_dereference *const else_deref =
1449 new(ctx) ir_dereference_variable(tmp);
1450 ir_assignment *const else_assign =
1451 new(ctx) ir_assignment(else_deref, op[2]);
1452 stmt->else_instructions.push_tail(else_assign);
1453
1454 result = new(ctx) ir_dereference_variable(tmp);
1455 }
1456 break;
1457 }
1458
1459 case ast_pre_inc:
1460 case ast_pre_dec: {
1461 this->non_lvalue_description = (this->oper == ast_pre_inc)
1462 ? "pre-increment operation" : "pre-decrement operation";
1463
1464 op[0] = this->subexpressions[0]->hir(instructions, state);
1465 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1466
1467 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1468
1469 ir_rvalue *temp_rhs;
1470 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1471 op[0], op[1]);
1472
1473 result = do_assignment(instructions, state,
1474 this->subexpressions[0]->non_lvalue_description,
1475 op[0]->clone(ctx, NULL), temp_rhs, false,
1476 this->subexpressions[0]->get_location());
1477 error_emitted = op[0]->type->is_error();
1478 break;
1479 }
1480
1481 case ast_post_inc:
1482 case ast_post_dec: {
1483 this->non_lvalue_description = (this->oper == ast_post_inc)
1484 ? "post-increment operation" : "post-decrement operation";
1485 op[0] = this->subexpressions[0]->hir(instructions, state);
1486 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1487
1488 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1489
1490 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1491
1492 ir_rvalue *temp_rhs;
1493 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1494 op[0], op[1]);
1495
1496 /* Get a temporary of a copy of the lvalue before it's modified.
1497 * This may get thrown away later.
1498 */
1499 result = get_lvalue_copy(instructions, op[0]->clone(ctx, NULL));
1500
1501 (void)do_assignment(instructions, state,
1502 this->subexpressions[0]->non_lvalue_description,
1503 op[0]->clone(ctx, NULL), temp_rhs, false,
1504 this->subexpressions[0]->get_location());
1505
1506 error_emitted = op[0]->type->is_error();
1507 break;
1508 }
1509
1510 case ast_field_selection:
1511 result = _mesa_ast_field_selection_to_hir(this, instructions, state);
1512 break;
1513
1514 case ast_array_index: {
1515 YYLTYPE index_loc = subexpressions[1]->get_location();
1516
1517 op[0] = subexpressions[0]->hir(instructions, state);
1518 op[1] = subexpressions[1]->hir(instructions, state);
1519
1520 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1521
1522 ir_rvalue *const array = op[0];
1523
1524 result = new(ctx) ir_dereference_array(op[0], op[1]);
1525
1526 /* Do not use op[0] after this point. Use array.
1527 */
1528 op[0] = NULL;
1529
1530
1531 if (error_emitted)
1532 break;
1533
1534 if (!array->type->is_array()
1535 && !array->type->is_matrix()
1536 && !array->type->is_vector()) {
1537 _mesa_glsl_error(& index_loc, state,
1538 "cannot dereference non-array / non-matrix / "
1539 "non-vector");
1540 error_emitted = true;
1541 }
1542
1543 if (!op[1]->type->is_integer()) {
1544 _mesa_glsl_error(& index_loc, state,
1545 "array index must be integer type");
1546 error_emitted = true;
1547 } else if (!op[1]->type->is_scalar()) {
1548 _mesa_glsl_error(& index_loc, state,
1549 "array index must be scalar");
1550 error_emitted = true;
1551 }
1552
1553 /* If the array index is a constant expression and the array has a
1554 * declared size, ensure that the access is in-bounds. If the array
1555 * index is not a constant expression, ensure that the array has a
1556 * declared size.
1557 */
1558 ir_constant *const const_index = op[1]->constant_expression_value();
1559 if (const_index != NULL) {
1560 const int idx = const_index->value.i[0];
1561 const char *type_name;
1562 unsigned bound = 0;
1563
1564 if (array->type->is_matrix()) {
1565 type_name = "matrix";
1566 } else if (array->type->is_vector()) {
1567 type_name = "vector";
1568 } else {
1569 type_name = "array";
1570 }
1571
1572 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec:
1573 *
1574 * "It is illegal to declare an array with a size, and then
1575 * later (in the same shader) index the same array with an
1576 * integral constant expression greater than or equal to the
1577 * declared size. It is also illegal to index an array with a
1578 * negative constant expression."
1579 */
1580 if (array->type->is_matrix()) {
1581 if (array->type->row_type()->vector_elements <= idx) {
1582 bound = array->type->row_type()->vector_elements;
1583 }
1584 } else if (array->type->is_vector()) {
1585 if (array->type->vector_elements <= idx) {
1586 bound = array->type->vector_elements;
1587 }
1588 } else {
1589 if ((array->type->array_size() > 0)
1590 && (array->type->array_size() <= idx)) {
1591 bound = array->type->array_size();
1592 }
1593 }
1594
1595 if (bound > 0) {
1596 _mesa_glsl_error(& loc, state, "%s index must be < %u",
1597 type_name, bound);
1598 error_emitted = true;
1599 } else if (idx < 0) {
1600 _mesa_glsl_error(& loc, state, "%s index must be >= 0",
1601 type_name);
1602 error_emitted = true;
1603 }
1604
1605 if (array->type->is_array()) {
1606 /* If the array is a variable dereference, it dereferences the
1607 * whole array, by definition. Use this to get the variable.
1608 *
1609 * FINISHME: Should some methods for getting / setting / testing
1610 * FINISHME: array access limits be added to ir_dereference?
1611 */
1612 ir_variable *const v = array->whole_variable_referenced();
1613 if ((v != NULL) && (unsigned(idx) > v->max_array_access)) {
1614 v->max_array_access = idx;
1615
1616 /* Check whether this access will, as a side effect, implicitly
1617 * cause the size of a built-in array to be too large.
1618 */
1619 if (check_builtin_array_max_size(v->name, idx+1, loc, state))
1620 error_emitted = true;
1621 }
1622 }
1623 } else if (array->type->array_size() == 0) {
1624 _mesa_glsl_error(&loc, state, "unsized array index must be constant");
1625 } else if (array->type->is_array()
1626 && array->type->fields.array->is_interface()) {
1627 /* Page 46 in section 4.3.7 of the OpenGL ES 3.00 spec says:
1628 *
1629 * "All indexes used to index a uniform block array must be
1630 * constant integral expressions."
1631 */
1632 _mesa_glsl_error(&loc, state,
1633 "uniform block array index must be constant");
1634 } else {
1635 if (array->type->is_array()) {
1636 /* whole_variable_referenced can return NULL if the array is a
1637 * member of a structure. In this case it is safe to not update
1638 * the max_array_access field because it is never used for fields
1639 * of structures.
1640 */
1641 ir_variable *v = array->whole_variable_referenced();
1642 if (v != NULL)
1643 v->max_array_access = array->type->array_size() - 1;
1644 }
1645 }
1646
1647 /* From page 23 (29 of the PDF) of the GLSL 1.30 spec:
1648 *
1649 * "Samplers aggregated into arrays within a shader (using square
1650 * brackets [ ]) can only be indexed with integral constant
1651 * expressions [...]."
1652 *
1653 * This restriction was added in GLSL 1.30. Shaders using earlier version
1654 * of the language should not be rejected by the compiler front-end for
1655 * using this construct. This allows useful things such as using a loop
1656 * counter as the index to an array of samplers. If the loop in unrolled,
1657 * the code should compile correctly. Instead, emit a warning.
1658 */
1659 if (array->type->is_array() &&
1660 array->type->element_type()->is_sampler() &&
1661 const_index == NULL) {
1662
1663 if (!state->is_version(130, 100)) {
1664 if (state->es_shader) {
1665 _mesa_glsl_warning(&loc, state,
1666 "sampler arrays indexed with non-constant "
1667 "expressions is optional in %s",
1668 state->get_version_string());
1669 } else {
1670 _mesa_glsl_warning(&loc, state,
1671 "sampler arrays indexed with non-constant "
1672 "expressions will be forbidden in GLSL 1.30 and "
1673 "later");
1674 }
1675 } else {
1676 _mesa_glsl_error(&loc, state,
1677 "sampler arrays indexed with non-constant "
1678 "expressions is forbidden in GLSL 1.30 and "
1679 "later");
1680 error_emitted = true;
1681 }
1682 }
1683
1684 if (error_emitted)
1685 result->type = glsl_type::error_type;
1686
1687 break;
1688 }
1689
1690 case ast_function_call:
1691 /* Should *NEVER* get here. ast_function_call should always be handled
1692 * by ast_function_expression::hir.
1693 */
1694 assert(0);
1695 break;
1696
1697 case ast_identifier: {
1698 /* ast_identifier can appear several places in a full abstract syntax
1699 * tree. This particular use must be at location specified in the grammar
1700 * as 'variable_identifier'.
1701 */
1702 ir_variable *var =
1703 state->symbols->get_variable(this->primary_expression.identifier);
1704
1705 if (var != NULL) {
1706 var->used = true;
1707 result = new(ctx) ir_dereference_variable(var);
1708 } else {
1709 _mesa_glsl_error(& loc, state, "`%s' undeclared",
1710 this->primary_expression.identifier);
1711
1712 result = ir_rvalue::error_value(ctx);
1713 error_emitted = true;
1714 }
1715 break;
1716 }
1717
1718 case ast_int_constant:
1719 result = new(ctx) ir_constant(this->primary_expression.int_constant);
1720 break;
1721
1722 case ast_uint_constant:
1723 result = new(ctx) ir_constant(this->primary_expression.uint_constant);
1724 break;
1725
1726 case ast_float_constant:
1727 result = new(ctx) ir_constant(this->primary_expression.float_constant);
1728 break;
1729
1730 case ast_bool_constant:
1731 result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant));
1732 break;
1733
1734 case ast_sequence: {
1735 /* It should not be possible to generate a sequence in the AST without
1736 * any expressions in it.
1737 */
1738 assert(!this->expressions.is_empty());
1739
1740 /* The r-value of a sequence is the last expression in the sequence. If
1741 * the other expressions in the sequence do not have side-effects (and
1742 * therefore add instructions to the instruction list), they get dropped
1743 * on the floor.
1744 */
1745 exec_node *previous_tail_pred = NULL;
1746 YYLTYPE previous_operand_loc = loc;
1747
1748 foreach_list_typed (ast_node, ast, link, &this->expressions) {
1749 /* If one of the operands of comma operator does not generate any
1750 * code, we want to emit a warning. At each pass through the loop
1751 * previous_tail_pred will point to the last instruction in the
1752 * stream *before* processing the previous operand. Naturally,
1753 * instructions->tail_pred will point to the last instruction in the
1754 * stream *after* processing the previous operand. If the two
1755 * pointers match, then the previous operand had no effect.
1756 *
1757 * The warning behavior here differs slightly from GCC. GCC will
1758 * only emit a warning if none of the left-hand operands have an
1759 * effect. However, it will emit a warning for each. I believe that
1760 * there are some cases in C (especially with GCC extensions) where
1761 * it is useful to have an intermediate step in a sequence have no
1762 * effect, but I don't think these cases exist in GLSL. Either way,
1763 * it would be a giant hassle to replicate that behavior.
1764 */
1765 if (previous_tail_pred == instructions->tail_pred) {
1766 _mesa_glsl_warning(&previous_operand_loc, state,
1767 "left-hand operand of comma expression has "
1768 "no effect");
1769 }
1770
1771 /* tail_pred is directly accessed instead of using the get_tail()
1772 * method for performance reasons. get_tail() has extra code to
1773 * return NULL when the list is empty. We don't care about that
1774 * here, so using tail_pred directly is fine.
1775 */
1776 previous_tail_pred = instructions->tail_pred;
1777 previous_operand_loc = ast->get_location();
1778
1779 result = ast->hir(instructions, state);
1780 }
1781
1782 /* Any errors should have already been emitted in the loop above.
1783 */
1784 error_emitted = true;
1785 break;
1786 }
1787 }
1788 type = NULL; /* use result->type, not type. */
1789 assert(result != NULL);
1790
1791 if (result->type->is_error() && !error_emitted)
1792 _mesa_glsl_error(& loc, state, "type mismatch");
1793
1794 return result;
1795 }
1796
1797
1798 ir_rvalue *
1799 ast_expression_statement::hir(exec_list *instructions,
1800 struct _mesa_glsl_parse_state *state)
1801 {
1802 /* It is possible to have expression statements that don't have an
1803 * expression. This is the solitary semicolon:
1804 *
1805 * for (i = 0; i < 5; i++)
1806 * ;
1807 *
1808 * In this case the expression will be NULL. Test for NULL and don't do
1809 * anything in that case.
1810 */
1811 if (expression != NULL)
1812 expression->hir(instructions, state);
1813
1814 /* Statements do not have r-values.
1815 */
1816 return NULL;
1817 }
1818
1819
1820 ir_rvalue *
1821 ast_compound_statement::hir(exec_list *instructions,
1822 struct _mesa_glsl_parse_state *state)
1823 {
1824 if (new_scope)
1825 state->symbols->push_scope();
1826
1827 foreach_list_typed (ast_node, ast, link, &this->statements)
1828 ast->hir(instructions, state);
1829
1830 if (new_scope)
1831 state->symbols->pop_scope();
1832
1833 /* Compound statements do not have r-values.
1834 */
1835 return NULL;
1836 }
1837
1838
1839 static const glsl_type *
1840 process_array_type(YYLTYPE *loc, const glsl_type *base, ast_node *array_size,
1841 struct _mesa_glsl_parse_state *state)
1842 {
1843 unsigned length = 0;
1844
1845 /* From page 19 (page 25) of the GLSL 1.20 spec:
1846 *
1847 * "Only one-dimensional arrays may be declared."
1848 */
1849 if (base->is_array()) {
1850 _mesa_glsl_error(loc, state,
1851 "invalid array of `%s' (only one-dimensional arrays "
1852 "may be declared)",
1853 base->name);
1854 return glsl_type::error_type;
1855 }
1856
1857 if (array_size != NULL) {
1858 exec_list dummy_instructions;
1859 ir_rvalue *const ir = array_size->hir(& dummy_instructions, state);
1860 YYLTYPE loc = array_size->get_location();
1861
1862 if (ir != NULL) {
1863 if (!ir->type->is_integer()) {
1864 _mesa_glsl_error(& loc, state, "array size must be integer type");
1865 } else if (!ir->type->is_scalar()) {
1866 _mesa_glsl_error(& loc, state, "array size must be scalar type");
1867 } else {
1868 ir_constant *const size = ir->constant_expression_value();
1869
1870 if (size == NULL) {
1871 _mesa_glsl_error(& loc, state, "array size must be a "
1872 "constant valued expression");
1873 } else if (size->value.i[0] <= 0) {
1874 _mesa_glsl_error(& loc, state, "array size must be > 0");
1875 } else {
1876 assert(size->type == ir->type);
1877 length = size->value.u[0];
1878
1879 /* If the array size is const (and we've verified that
1880 * it is) then no instructions should have been emitted
1881 * when we converted it to HIR. If they were emitted,
1882 * then either the array size isn't const after all, or
1883 * we are emitting unnecessary instructions.
1884 */
1885 assert(dummy_instructions.is_empty());
1886 }
1887 }
1888 }
1889 } else if (state->es_shader) {
1890 /* Section 10.17 of the GLSL ES 1.00 specification states that unsized
1891 * array declarations have been removed from the language.
1892 */
1893 _mesa_glsl_error(loc, state, "unsized array declarations are not "
1894 "allowed in GLSL ES 1.00.");
1895 }
1896
1897 return glsl_type::get_array_instance(base, length);
1898 }
1899
1900
1901 const glsl_type *
1902 ast_type_specifier::glsl_type(const char **name,
1903 struct _mesa_glsl_parse_state *state) const
1904 {
1905 const struct glsl_type *type;
1906
1907 type = state->symbols->get_type(this->type_name);
1908 *name = this->type_name;
1909
1910 if (this->is_array) {
1911 YYLTYPE loc = this->get_location();
1912 type = process_array_type(&loc, type, this->array_size, state);
1913 }
1914
1915 return type;
1916 }
1917
1918
1919 /**
1920 * Determine whether a toplevel variable declaration declares a varying. This
1921 * function operates by examining the variable's mode and the shader target,
1922 * so it correctly identifies linkage variables regardless of whether they are
1923 * declared using the deprecated "varying" syntax or the new "in/out" syntax.
1924 *
1925 * Passing a non-toplevel variable declaration (e.g. a function parameter) to
1926 * this function will produce undefined results.
1927 */
1928 static bool
1929 is_varying_var(ir_variable *var, _mesa_glsl_parser_targets target)
1930 {
1931 switch (target) {
1932 case vertex_shader:
1933 return var->mode == ir_var_shader_out;
1934 case fragment_shader:
1935 return var->mode == ir_var_shader_in;
1936 default:
1937 return var->mode == ir_var_shader_out || var->mode == ir_var_shader_in;
1938 }
1939 }
1940
1941
1942 /**
1943 * Matrix layout qualifiers are only allowed on certain types
1944 */
1945 static void
1946 validate_matrix_layout_for_type(struct _mesa_glsl_parse_state *state,
1947 YYLTYPE *loc,
1948 const glsl_type *type)
1949 {
1950 if (!type->is_matrix() && !type->is_record()) {
1951 _mesa_glsl_error(loc, state,
1952 "uniform block layout qualifiers row_major and "
1953 "column_major can only be applied to matrix and "
1954 "structure types");
1955 } else if (type->is_record()) {
1956 /* We allow 'layout(row_major)' on structure types because it's the only
1957 * way to get row-major layouts on matrices contained in structures.
1958 */
1959 _mesa_glsl_warning(loc, state,
1960 "uniform block layout qualifiers row_major and "
1961 "column_major applied to structure types is not "
1962 "strictly conformant and my be rejected by other "
1963 "compilers");
1964 }
1965 }
1966
1967 static void
1968 apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
1969 ir_variable *var,
1970 struct _mesa_glsl_parse_state *state,
1971 YYLTYPE *loc,
1972 bool ubo_qualifiers_valid,
1973 bool is_parameter)
1974 {
1975 if (qual->flags.q.invariant) {
1976 if (var->used) {
1977 _mesa_glsl_error(loc, state,
1978 "variable `%s' may not be redeclared "
1979 "`invariant' after being used",
1980 var->name);
1981 } else {
1982 var->invariant = 1;
1983 }
1984 }
1985
1986 if (qual->flags.q.constant || qual->flags.q.attribute
1987 || qual->flags.q.uniform
1988 || (qual->flags.q.varying && (state->target == fragment_shader)))
1989 var->read_only = 1;
1990
1991 if (qual->flags.q.centroid)
1992 var->centroid = 1;
1993
1994 if (qual->flags.q.attribute && state->target != vertex_shader) {
1995 var->type = glsl_type::error_type;
1996 _mesa_glsl_error(loc, state,
1997 "`attribute' variables may not be declared in the "
1998 "%s shader",
1999 _mesa_glsl_shader_target_name(state->target));
2000 }
2001
2002 /* If there is no qualifier that changes the mode of the variable, leave
2003 * the setting alone.
2004 */
2005 if (qual->flags.q.in && qual->flags.q.out)
2006 var->mode = ir_var_function_inout;
2007 else if (qual->flags.q.in)
2008 var->mode = is_parameter ? ir_var_function_in : ir_var_shader_in;
2009 else if (qual->flags.q.attribute
2010 || (qual->flags.q.varying && (state->target == fragment_shader)))
2011 var->mode = ir_var_shader_in;
2012 else if (qual->flags.q.out)
2013 var->mode = is_parameter ? ir_var_function_out : ir_var_shader_out;
2014 else if (qual->flags.q.varying && (state->target == vertex_shader))
2015 var->mode = ir_var_shader_out;
2016 else if (qual->flags.q.uniform)
2017 var->mode = ir_var_uniform;
2018
2019 if (!is_parameter && is_varying_var(var, state->target)) {
2020 /* This variable is being used to link data between shader stages (in
2021 * pre-glsl-1.30 parlance, it's a "varying"). Check that it has a type
2022 * that is allowed for such purposes.
2023 *
2024 * From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
2025 *
2026 * "The varying qualifier can be used only with the data types
2027 * float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
2028 * these."
2029 *
2030 * This was relaxed in GLSL version 1.30 and GLSL ES version 3.00. From
2031 * page 31 (page 37 of the PDF) of the GLSL 1.30 spec:
2032 *
2033 * "Fragment inputs can only be signed and unsigned integers and
2034 * integer vectors, float, floating-point vectors, matrices, or
2035 * arrays of these. Structures cannot be input.
2036 *
2037 * Similar text exists in the section on vertex shader outputs.
2038 *
2039 * Similar text exists in the GLSL ES 3.00 spec, except that the GLSL ES
2040 * 3.00 spec allows structs as well. Varying structs are also allowed
2041 * in GLSL 1.50.
2042 */
2043 switch (var->type->get_scalar_type()->base_type) {
2044 case GLSL_TYPE_FLOAT:
2045 /* Ok in all GLSL versions */
2046 break;
2047 case GLSL_TYPE_UINT:
2048 case GLSL_TYPE_INT:
2049 if (state->is_version(130, 300))
2050 break;
2051 _mesa_glsl_error(loc, state,
2052 "varying variables must be of base type float in %s",
2053 state->get_version_string());
2054 break;
2055 case GLSL_TYPE_STRUCT:
2056 if (state->is_version(150, 300))
2057 break;
2058 _mesa_glsl_error(loc, state,
2059 "varying variables may not be of type struct");
2060 break;
2061 default:
2062 _mesa_glsl_error(loc, state, "illegal type for a varying variable");
2063 break;
2064 }
2065 }
2066
2067 if (state->all_invariant && (state->current_function == NULL)) {
2068 switch (state->target) {
2069 case vertex_shader:
2070 if (var->mode == ir_var_shader_out)
2071 var->invariant = true;
2072 break;
2073 case geometry_shader:
2074 if ((var->mode == ir_var_shader_in)
2075 || (var->mode == ir_var_shader_out))
2076 var->invariant = true;
2077 break;
2078 case fragment_shader:
2079 if (var->mode == ir_var_shader_in)
2080 var->invariant = true;
2081 break;
2082 }
2083 }
2084
2085 if (qual->flags.q.flat)
2086 var->interpolation = INTERP_QUALIFIER_FLAT;
2087 else if (qual->flags.q.noperspective)
2088 var->interpolation = INTERP_QUALIFIER_NOPERSPECTIVE;
2089 else if (qual->flags.q.smooth)
2090 var->interpolation = INTERP_QUALIFIER_SMOOTH;
2091 else
2092 var->interpolation = INTERP_QUALIFIER_NONE;
2093
2094 if (var->interpolation != INTERP_QUALIFIER_NONE &&
2095 !(state->target == vertex_shader && var->mode == ir_var_shader_out) &&
2096 !(state->target == fragment_shader && var->mode == ir_var_shader_in)) {
2097 _mesa_glsl_error(loc, state,
2098 "interpolation qualifier `%s' can only be applied to "
2099 "vertex shader outputs and fragment shader inputs.",
2100 var->interpolation_string());
2101 }
2102
2103 var->pixel_center_integer = qual->flags.q.pixel_center_integer;
2104 var->origin_upper_left = qual->flags.q.origin_upper_left;
2105 if ((qual->flags.q.origin_upper_left || qual->flags.q.pixel_center_integer)
2106 && (strcmp(var->name, "gl_FragCoord") != 0)) {
2107 const char *const qual_string = (qual->flags.q.origin_upper_left)
2108 ? "origin_upper_left" : "pixel_center_integer";
2109
2110 _mesa_glsl_error(loc, state,
2111 "layout qualifier `%s' can only be applied to "
2112 "fragment shader input `gl_FragCoord'",
2113 qual_string);
2114 }
2115
2116 if (qual->flags.q.explicit_location) {
2117 const bool global_scope = (state->current_function == NULL);
2118 bool fail = false;
2119 const char *string = "";
2120
2121 /* In the vertex shader only shader inputs can be given explicit
2122 * locations.
2123 *
2124 * In the fragment shader only shader outputs can be given explicit
2125 * locations.
2126 */
2127 switch (state->target) {
2128 case vertex_shader:
2129 if (!global_scope || (var->mode != ir_var_shader_in)) {
2130 fail = true;
2131 string = "input";
2132 }
2133 break;
2134
2135 case geometry_shader:
2136 _mesa_glsl_error(loc, state,
2137 "geometry shader variables cannot be given "
2138 "explicit locations\n");
2139 break;
2140
2141 case fragment_shader:
2142 if (!global_scope || (var->mode != ir_var_shader_out)) {
2143 fail = true;
2144 string = "output";
2145 }
2146 break;
2147 };
2148
2149 if (fail) {
2150 _mesa_glsl_error(loc, state,
2151 "only %s shader %s variables can be given an "
2152 "explicit location\n",
2153 _mesa_glsl_shader_target_name(state->target),
2154 string);
2155 } else {
2156 var->explicit_location = true;
2157
2158 /* This bit of silliness is needed because invalid explicit locations
2159 * are supposed to be flagged during linking. Small negative values
2160 * biased by VERT_ATTRIB_GENERIC0 or FRAG_RESULT_DATA0 could alias
2161 * built-in values (e.g., -16+VERT_ATTRIB_GENERIC0 = VERT_ATTRIB_POS).
2162 * The linker needs to be able to differentiate these cases. This
2163 * ensures that negative values stay negative.
2164 */
2165 if (qual->location >= 0) {
2166 var->location = (state->target == vertex_shader)
2167 ? (qual->location + VERT_ATTRIB_GENERIC0)
2168 : (qual->location + FRAG_RESULT_DATA0);
2169 } else {
2170 var->location = qual->location;
2171 }
2172
2173 if (qual->flags.q.explicit_index) {
2174 /* From the GLSL 4.30 specification, section 4.4.2 (Output
2175 * Layout Qualifiers):
2176 *
2177 * "It is also a compile-time error if a fragment shader
2178 * sets a layout index to less than 0 or greater than 1."
2179 *
2180 * Older specifications don't mandate a behavior; we take
2181 * this as a clarification and always generate the error.
2182 */
2183 if (qual->index < 0 || qual->index > 1) {
2184 _mesa_glsl_error(loc, state,
2185 "explicit index may only be 0 or 1\n");
2186 } else {
2187 var->explicit_index = true;
2188 var->index = qual->index;
2189 }
2190 }
2191 }
2192 } else if (qual->flags.q.explicit_index) {
2193 _mesa_glsl_error(loc, state,
2194 "explicit index requires explicit location\n");
2195 }
2196
2197 /* Does the declaration use the 'layout' keyword?
2198 */
2199 const bool uses_layout = qual->flags.q.pixel_center_integer
2200 || qual->flags.q.origin_upper_left
2201 || qual->flags.q.explicit_location; /* no need for index since it relies on location */
2202
2203 /* Does the declaration use the deprecated 'attribute' or 'varying'
2204 * keywords?
2205 */
2206 const bool uses_deprecated_qualifier = qual->flags.q.attribute
2207 || qual->flags.q.varying;
2208
2209 /* Is the 'layout' keyword used with parameters that allow relaxed checking.
2210 * Many implementations of GL_ARB_fragment_coord_conventions_enable and some
2211 * implementations (only Mesa?) GL_ARB_explicit_attrib_location_enable
2212 * allowed the layout qualifier to be used with 'varying' and 'attribute'.
2213 * These extensions and all following extensions that add the 'layout'
2214 * keyword have been modified to require the use of 'in' or 'out'.
2215 *
2216 * The following extension do not allow the deprecated keywords:
2217 *
2218 * GL_AMD_conservative_depth
2219 * GL_ARB_conservative_depth
2220 * GL_ARB_gpu_shader5
2221 * GL_ARB_separate_shader_objects
2222 * GL_ARB_tesselation_shader
2223 * GL_ARB_transform_feedback3
2224 * GL_ARB_uniform_buffer_object
2225 *
2226 * It is unknown whether GL_EXT_shader_image_load_store or GL_NV_gpu_shader5
2227 * allow layout with the deprecated keywords.
2228 */
2229 const bool relaxed_layout_qualifier_checking =
2230 state->ARB_fragment_coord_conventions_enable;
2231
2232 if (uses_layout && uses_deprecated_qualifier) {
2233 if (relaxed_layout_qualifier_checking) {
2234 _mesa_glsl_warning(loc, state,
2235 "`layout' qualifier may not be used with "
2236 "`attribute' or `varying'");
2237 } else {
2238 _mesa_glsl_error(loc, state,
2239 "`layout' qualifier may not be used with "
2240 "`attribute' or `varying'");
2241 }
2242 }
2243
2244 /* Layout qualifiers for gl_FragDepth, which are enabled by extension
2245 * AMD_conservative_depth.
2246 */
2247 int depth_layout_count = qual->flags.q.depth_any
2248 + qual->flags.q.depth_greater
2249 + qual->flags.q.depth_less
2250 + qual->flags.q.depth_unchanged;
2251 if (depth_layout_count > 0
2252 && !state->AMD_conservative_depth_enable
2253 && !state->ARB_conservative_depth_enable) {
2254 _mesa_glsl_error(loc, state,
2255 "extension GL_AMD_conservative_depth or "
2256 "GL_ARB_conservative_depth must be enabled "
2257 "to use depth layout qualifiers");
2258 } else if (depth_layout_count > 0
2259 && strcmp(var->name, "gl_FragDepth") != 0) {
2260 _mesa_glsl_error(loc, state,
2261 "depth layout qualifiers can be applied only to "
2262 "gl_FragDepth");
2263 } else if (depth_layout_count > 1
2264 && strcmp(var->name, "gl_FragDepth") == 0) {
2265 _mesa_glsl_error(loc, state,
2266 "at most one depth layout qualifier can be applied to "
2267 "gl_FragDepth");
2268 }
2269 if (qual->flags.q.depth_any)
2270 var->depth_layout = ir_depth_layout_any;
2271 else if (qual->flags.q.depth_greater)
2272 var->depth_layout = ir_depth_layout_greater;
2273 else if (qual->flags.q.depth_less)
2274 var->depth_layout = ir_depth_layout_less;
2275 else if (qual->flags.q.depth_unchanged)
2276 var->depth_layout = ir_depth_layout_unchanged;
2277 else
2278 var->depth_layout = ir_depth_layout_none;
2279
2280 if (qual->flags.q.std140 ||
2281 qual->flags.q.packed ||
2282 qual->flags.q.shared) {
2283 _mesa_glsl_error(loc, state,
2284 "uniform block layout qualifiers std140, packed, and "
2285 "shared can only be applied to uniform blocks, not "
2286 "members");
2287 }
2288
2289 if (qual->flags.q.row_major || qual->flags.q.column_major) {
2290 if (!ubo_qualifiers_valid) {
2291 _mesa_glsl_error(loc, state,
2292 "uniform block layout qualifiers row_major and "
2293 "column_major can only be applied to uniform block "
2294 "members");
2295 } else
2296 validate_matrix_layout_for_type(state, loc, var->type);
2297 }
2298 }
2299
2300 /**
2301 * Get the variable that is being redeclared by this declaration
2302 *
2303 * Semantic checks to verify the validity of the redeclaration are also
2304 * performed. If semantic checks fail, compilation error will be emitted via
2305 * \c _mesa_glsl_error, but a non-\c NULL pointer will still be returned.
2306 *
2307 * \returns
2308 * A pointer to an existing variable in the current scope if the declaration
2309 * is a redeclaration, \c NULL otherwise.
2310 */
2311 ir_variable *
2312 get_variable_being_redeclared(ir_variable *var, ast_declaration *decl,
2313 struct _mesa_glsl_parse_state *state)
2314 {
2315 /* Check if this declaration is actually a re-declaration, either to
2316 * resize an array or add qualifiers to an existing variable.
2317 *
2318 * This is allowed for variables in the current scope, or when at
2319 * global scope (for built-ins in the implicit outer scope).
2320 */
2321 ir_variable *earlier = state->symbols->get_variable(decl->identifier);
2322 if (earlier == NULL ||
2323 (state->current_function != NULL &&
2324 !state->symbols->name_declared_this_scope(decl->identifier))) {
2325 return NULL;
2326 }
2327
2328
2329 YYLTYPE loc = decl->get_location();
2330
2331 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
2332 *
2333 * "It is legal to declare an array without a size and then
2334 * later re-declare the same name as an array of the same
2335 * type and specify a size."
2336 */
2337 if ((earlier->type->array_size() == 0)
2338 && var->type->is_array()
2339 && (var->type->element_type() == earlier->type->element_type())) {
2340 /* FINISHME: This doesn't match the qualifiers on the two
2341 * FINISHME: declarations. It's not 100% clear whether this is
2342 * FINISHME: required or not.
2343 */
2344
2345 const unsigned size = unsigned(var->type->array_size());
2346 check_builtin_array_max_size(var->name, size, loc, state);
2347 if ((size > 0) && (size <= earlier->max_array_access)) {
2348 _mesa_glsl_error(& loc, state, "array size must be > %u due to "
2349 "previous access",
2350 earlier->max_array_access);
2351 }
2352
2353 earlier->type = var->type;
2354 delete var;
2355 var = NULL;
2356 } else if (state->ARB_fragment_coord_conventions_enable
2357 && strcmp(var->name, "gl_FragCoord") == 0
2358 && earlier->type == var->type
2359 && earlier->mode == var->mode) {
2360 /* Allow redeclaration of gl_FragCoord for ARB_fcc layout
2361 * qualifiers.
2362 */
2363 earlier->origin_upper_left = var->origin_upper_left;
2364 earlier->pixel_center_integer = var->pixel_center_integer;
2365
2366 /* According to section 4.3.7 of the GLSL 1.30 spec,
2367 * the following built-in varaibles can be redeclared with an
2368 * interpolation qualifier:
2369 * * gl_FrontColor
2370 * * gl_BackColor
2371 * * gl_FrontSecondaryColor
2372 * * gl_BackSecondaryColor
2373 * * gl_Color
2374 * * gl_SecondaryColor
2375 */
2376 } else if (state->is_version(130, 0)
2377 && (strcmp(var->name, "gl_FrontColor") == 0
2378 || strcmp(var->name, "gl_BackColor") == 0
2379 || strcmp(var->name, "gl_FrontSecondaryColor") == 0
2380 || strcmp(var->name, "gl_BackSecondaryColor") == 0
2381 || strcmp(var->name, "gl_Color") == 0
2382 || strcmp(var->name, "gl_SecondaryColor") == 0)
2383 && earlier->type == var->type
2384 && earlier->mode == var->mode) {
2385 earlier->interpolation = var->interpolation;
2386
2387 /* Layout qualifiers for gl_FragDepth. */
2388 } else if ((state->AMD_conservative_depth_enable ||
2389 state->ARB_conservative_depth_enable)
2390 && strcmp(var->name, "gl_FragDepth") == 0
2391 && earlier->type == var->type
2392 && earlier->mode == var->mode) {
2393
2394 /** From the AMD_conservative_depth spec:
2395 * Within any shader, the first redeclarations of gl_FragDepth
2396 * must appear before any use of gl_FragDepth.
2397 */
2398 if (earlier->used) {
2399 _mesa_glsl_error(&loc, state,
2400 "the first redeclaration of gl_FragDepth "
2401 "must appear before any use of gl_FragDepth");
2402 }
2403
2404 /* Prevent inconsistent redeclaration of depth layout qualifier. */
2405 if (earlier->depth_layout != ir_depth_layout_none
2406 && earlier->depth_layout != var->depth_layout) {
2407 _mesa_glsl_error(&loc, state,
2408 "gl_FragDepth: depth layout is declared here "
2409 "as '%s, but it was previously declared as "
2410 "'%s'",
2411 depth_layout_string(var->depth_layout),
2412 depth_layout_string(earlier->depth_layout));
2413 }
2414
2415 earlier->depth_layout = var->depth_layout;
2416
2417 } else {
2418 _mesa_glsl_error(&loc, state, "`%s' redeclared", decl->identifier);
2419 }
2420
2421 return earlier;
2422 }
2423
2424 /**
2425 * Generate the IR for an initializer in a variable declaration
2426 */
2427 ir_rvalue *
2428 process_initializer(ir_variable *var, ast_declaration *decl,
2429 ast_fully_specified_type *type,
2430 exec_list *initializer_instructions,
2431 struct _mesa_glsl_parse_state *state)
2432 {
2433 ir_rvalue *result = NULL;
2434
2435 YYLTYPE initializer_loc = decl->initializer->get_location();
2436
2437 /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
2438 *
2439 * "All uniform variables are read-only and are initialized either
2440 * directly by an application via API commands, or indirectly by
2441 * OpenGL."
2442 */
2443 if (var->mode == ir_var_uniform) {
2444 state->check_version(120, 0, &initializer_loc,
2445 "cannot initialize uniforms");
2446 }
2447
2448 if (var->type->is_sampler()) {
2449 _mesa_glsl_error(& initializer_loc, state,
2450 "cannot initialize samplers");
2451 }
2452
2453 if ((var->mode == ir_var_shader_in) && (state->current_function == NULL)) {
2454 _mesa_glsl_error(& initializer_loc, state,
2455 "cannot initialize %s shader input / %s",
2456 _mesa_glsl_shader_target_name(state->target),
2457 (state->target == vertex_shader)
2458 ? "attribute" : "varying");
2459 }
2460
2461 ir_dereference *const lhs = new(state) ir_dereference_variable(var);
2462 ir_rvalue *rhs = decl->initializer->hir(initializer_instructions,
2463 state);
2464
2465 /* Calculate the constant value if this is a const or uniform
2466 * declaration.
2467 */
2468 if (type->qualifier.flags.q.constant
2469 || type->qualifier.flags.q.uniform) {
2470 ir_rvalue *new_rhs = validate_assignment(state, var->type, rhs, true);
2471 if (new_rhs != NULL) {
2472 rhs = new_rhs;
2473
2474 ir_constant *constant_value = rhs->constant_expression_value();
2475 if (!constant_value) {
2476 _mesa_glsl_error(& initializer_loc, state,
2477 "initializer of %s variable `%s' must be a "
2478 "constant expression",
2479 (type->qualifier.flags.q.constant)
2480 ? "const" : "uniform",
2481 decl->identifier);
2482 if (var->type->is_numeric()) {
2483 /* Reduce cascading errors. */
2484 var->constant_value = ir_constant::zero(state, var->type);
2485 }
2486 } else {
2487 rhs = constant_value;
2488 var->constant_value = constant_value;
2489 }
2490 } else {
2491 _mesa_glsl_error(&initializer_loc, state,
2492 "initializer of type %s cannot be assigned to "
2493 "variable of type %s",
2494 rhs->type->name, var->type->name);
2495 if (var->type->is_numeric()) {
2496 /* Reduce cascading errors. */
2497 var->constant_value = ir_constant::zero(state, var->type);
2498 }
2499 }
2500 }
2501
2502 if (rhs && !rhs->type->is_error()) {
2503 bool temp = var->read_only;
2504 if (type->qualifier.flags.q.constant)
2505 var->read_only = false;
2506
2507 /* Never emit code to initialize a uniform.
2508 */
2509 const glsl_type *initializer_type;
2510 if (!type->qualifier.flags.q.uniform) {
2511 result = do_assignment(initializer_instructions, state,
2512 NULL,
2513 lhs, rhs, true,
2514 type->get_location());
2515 initializer_type = result->type;
2516 } else
2517 initializer_type = rhs->type;
2518
2519 var->constant_initializer = rhs->constant_expression_value();
2520 var->has_initializer = true;
2521
2522 /* If the declared variable is an unsized array, it must inherrit
2523 * its full type from the initializer. A declaration such as
2524 *
2525 * uniform float a[] = float[](1.0, 2.0, 3.0, 3.0);
2526 *
2527 * becomes
2528 *
2529 * uniform float a[4] = float[](1.0, 2.0, 3.0, 3.0);
2530 *
2531 * The assignment generated in the if-statement (below) will also
2532 * automatically handle this case for non-uniforms.
2533 *
2534 * If the declared variable is not an array, the types must
2535 * already match exactly. As a result, the type assignment
2536 * here can be done unconditionally. For non-uniforms the call
2537 * to do_assignment can change the type of the initializer (via
2538 * the implicit conversion rules). For uniforms the initializer
2539 * must be a constant expression, and the type of that expression
2540 * was validated above.
2541 */
2542 var->type = initializer_type;
2543
2544 var->read_only = temp;
2545 }
2546
2547 return result;
2548 }
2549
2550 ir_rvalue *
2551 ast_declarator_list::hir(exec_list *instructions,
2552 struct _mesa_glsl_parse_state *state)
2553 {
2554 void *ctx = state;
2555 const struct glsl_type *decl_type;
2556 const char *type_name = NULL;
2557 ir_rvalue *result = NULL;
2558 YYLTYPE loc = this->get_location();
2559
2560 /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec:
2561 *
2562 * "To ensure that a particular output variable is invariant, it is
2563 * necessary to use the invariant qualifier. It can either be used to
2564 * qualify a previously declared variable as being invariant
2565 *
2566 * invariant gl_Position; // make existing gl_Position be invariant"
2567 *
2568 * In these cases the parser will set the 'invariant' flag in the declarator
2569 * list, and the type will be NULL.
2570 */
2571 if (this->invariant) {
2572 assert(this->type == NULL);
2573
2574 if (state->current_function != NULL) {
2575 _mesa_glsl_error(& loc, state,
2576 "All uses of `invariant' keyword must be at global "
2577 "scope\n");
2578 }
2579
2580 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
2581 assert(!decl->is_array);
2582 assert(decl->array_size == NULL);
2583 assert(decl->initializer == NULL);
2584
2585 ir_variable *const earlier =
2586 state->symbols->get_variable(decl->identifier);
2587 if (earlier == NULL) {
2588 _mesa_glsl_error(& loc, state,
2589 "Undeclared variable `%s' cannot be marked "
2590 "invariant\n", decl->identifier);
2591 } else if ((state->target == vertex_shader)
2592 && (earlier->mode != ir_var_shader_out)) {
2593 _mesa_glsl_error(& loc, state,
2594 "`%s' cannot be marked invariant, vertex shader "
2595 "outputs only\n", decl->identifier);
2596 } else if ((state->target == fragment_shader)
2597 && (earlier->mode != ir_var_shader_in)) {
2598 _mesa_glsl_error(& loc, state,
2599 "`%s' cannot be marked invariant, fragment shader "
2600 "inputs only\n", decl->identifier);
2601 } else if (earlier->used) {
2602 _mesa_glsl_error(& loc, state,
2603 "variable `%s' may not be redeclared "
2604 "`invariant' after being used",
2605 earlier->name);
2606 } else {
2607 earlier->invariant = true;
2608 }
2609 }
2610
2611 /* Invariant redeclarations do not have r-values.
2612 */
2613 return NULL;
2614 }
2615
2616 assert(this->type != NULL);
2617 assert(!this->invariant);
2618
2619 /* The type specifier may contain a structure definition. Process that
2620 * before any of the variable declarations.
2621 */
2622 (void) this->type->specifier->hir(instructions, state);
2623
2624 decl_type = this->type->specifier->glsl_type(& type_name, state);
2625 if (this->declarations.is_empty()) {
2626 /* If there is no structure involved in the program text, there are two
2627 * possible scenarios:
2628 *
2629 * - The program text contained something like 'vec4;'. This is an
2630 * empty declaration. It is valid but weird. Emit a warning.
2631 *
2632 * - The program text contained something like 'S;' and 'S' is not the
2633 * name of a known structure type. This is both invalid and weird.
2634 * Emit an error.
2635 *
2636 * Note that if decl_type is NULL and there is a structure involved,
2637 * there must have been some sort of error with the structure. In this
2638 * case we assume that an error was already generated on this line of
2639 * code for the structure. There is no need to generate an additional,
2640 * confusing error.
2641 */
2642 assert(this->type->specifier->structure == NULL || decl_type != NULL
2643 || state->error);
2644 if (this->type->specifier->structure == NULL) {
2645 if (decl_type != NULL) {
2646 _mesa_glsl_warning(&loc, state, "empty declaration");
2647 } else {
2648 _mesa_glsl_error(&loc, state,
2649 "invalid type `%s' in empty declaration",
2650 type_name);
2651 }
2652 }
2653 }
2654
2655 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
2656 const struct glsl_type *var_type;
2657 ir_variable *var;
2658
2659 /* FINISHME: Emit a warning if a variable declaration shadows a
2660 * FINISHME: declaration at a higher scope.
2661 */
2662
2663 if ((decl_type == NULL) || decl_type->is_void()) {
2664 if (type_name != NULL) {
2665 _mesa_glsl_error(& loc, state,
2666 "invalid type `%s' in declaration of `%s'",
2667 type_name, decl->identifier);
2668 } else {
2669 _mesa_glsl_error(& loc, state,
2670 "invalid type in declaration of `%s'",
2671 decl->identifier);
2672 }
2673 continue;
2674 }
2675
2676 if (decl->is_array) {
2677 var_type = process_array_type(&loc, decl_type, decl->array_size,
2678 state);
2679 if (var_type->is_error())
2680 continue;
2681 } else {
2682 var_type = decl_type;
2683 }
2684
2685 var = new(ctx) ir_variable(var_type, decl->identifier, ir_var_auto);
2686
2687 /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
2688 *
2689 * "Global variables can only use the qualifiers const,
2690 * attribute, uni form, or varying. Only one may be
2691 * specified.
2692 *
2693 * Local variables can only use the qualifier const."
2694 *
2695 * This is relaxed in GLSL 1.30 and GLSL ES 3.00. It is also relaxed by
2696 * any extension that adds the 'layout' keyword.
2697 */
2698 if (!state->is_version(130, 300)
2699 && !state->ARB_explicit_attrib_location_enable
2700 && !state->ARB_fragment_coord_conventions_enable) {
2701 if (this->type->qualifier.flags.q.out) {
2702 _mesa_glsl_error(& loc, state,
2703 "`out' qualifier in declaration of `%s' "
2704 "only valid for function parameters in %s.",
2705 decl->identifier, state->get_version_string());
2706 }
2707 if (this->type->qualifier.flags.q.in) {
2708 _mesa_glsl_error(& loc, state,
2709 "`in' qualifier in declaration of `%s' "
2710 "only valid for function parameters in %s.",
2711 decl->identifier, state->get_version_string());
2712 }
2713 /* FINISHME: Test for other invalid qualifiers. */
2714 }
2715
2716 apply_type_qualifier_to_variable(& this->type->qualifier, var, state,
2717 & loc, this->ubo_qualifiers_valid, false);
2718
2719 if (this->type->qualifier.flags.q.invariant) {
2720 if ((state->target == vertex_shader) &&
2721 var->mode != ir_var_shader_out) {
2722 _mesa_glsl_error(& loc, state,
2723 "`%s' cannot be marked invariant, vertex shader "
2724 "outputs only\n", var->name);
2725 } else if ((state->target == fragment_shader) &&
2726 var->mode != ir_var_shader_in) {
2727 /* FINISHME: Note that this doesn't work for invariant on
2728 * a function signature inval
2729 */
2730 _mesa_glsl_error(& loc, state,
2731 "`%s' cannot be marked invariant, fragment shader "
2732 "inputs only\n", var->name);
2733 }
2734 }
2735
2736 if (state->current_function != NULL) {
2737 const char *mode = NULL;
2738 const char *extra = "";
2739
2740 /* There is no need to check for 'inout' here because the parser will
2741 * only allow that in function parameter lists.
2742 */
2743 if (this->type->qualifier.flags.q.attribute) {
2744 mode = "attribute";
2745 } else if (this->type->qualifier.flags.q.uniform) {
2746 mode = "uniform";
2747 } else if (this->type->qualifier.flags.q.varying) {
2748 mode = "varying";
2749 } else if (this->type->qualifier.flags.q.in) {
2750 mode = "in";
2751 extra = " or in function parameter list";
2752 } else if (this->type->qualifier.flags.q.out) {
2753 mode = "out";
2754 extra = " or in function parameter list";
2755 }
2756
2757 if (mode) {
2758 _mesa_glsl_error(& loc, state,
2759 "%s variable `%s' must be declared at "
2760 "global scope%s",
2761 mode, var->name, extra);
2762 }
2763 } else if (var->mode == ir_var_shader_in) {
2764 var->read_only = true;
2765
2766 if (state->target == vertex_shader) {
2767 bool error_emitted = false;
2768
2769 /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
2770 *
2771 * "Vertex shader inputs can only be float, floating-point
2772 * vectors, matrices, signed and unsigned integers and integer
2773 * vectors. Vertex shader inputs can also form arrays of these
2774 * types, but not structures."
2775 *
2776 * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
2777 *
2778 * "Vertex shader inputs can only be float, floating-point
2779 * vectors, matrices, signed and unsigned integers and integer
2780 * vectors. They cannot be arrays or structures."
2781 *
2782 * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
2783 *
2784 * "The attribute qualifier can be used only with float,
2785 * floating-point vectors, and matrices. Attribute variables
2786 * cannot be declared as arrays or structures."
2787 *
2788 * From page 33 (page 39 of the PDF) of the GLSL ES 3.00 spec:
2789 *
2790 * "Vertex shader inputs can only be float, floating-point
2791 * vectors, matrices, signed and unsigned integers and integer
2792 * vectors. Vertex shader inputs cannot be arrays or
2793 * structures."
2794 */
2795 const glsl_type *check_type = var->type->is_array()
2796 ? var->type->fields.array : var->type;
2797
2798 switch (check_type->base_type) {
2799 case GLSL_TYPE_FLOAT:
2800 break;
2801 case GLSL_TYPE_UINT:
2802 case GLSL_TYPE_INT:
2803 if (state->is_version(120, 300))
2804 break;
2805 /* FALLTHROUGH */
2806 default:
2807 _mesa_glsl_error(& loc, state,
2808 "vertex shader input / attribute cannot have "
2809 "type %s`%s'",
2810 var->type->is_array() ? "array of " : "",
2811 check_type->name);
2812 error_emitted = true;
2813 }
2814
2815 if (!error_emitted && var->type->is_array() &&
2816 !state->check_version(140, 0, &loc,
2817 "vertex shader input / attribute "
2818 "cannot have array type")) {
2819 error_emitted = true;
2820 }
2821 }
2822 }
2823
2824 /* Integer fragment inputs must be qualified with 'flat'. In GLSL ES,
2825 * so must integer vertex outputs.
2826 *
2827 * From section 4.3.4 ("Inputs") of the GLSL 1.50 spec:
2828 * "Fragment shader inputs that are signed or unsigned integers or
2829 * integer vectors must be qualified with the interpolation qualifier
2830 * flat."
2831 *
2832 * From section 4.3.4 ("Input Variables") of the GLSL 3.00 ES spec:
2833 * "Fragment shader inputs that are, or contain, signed or unsigned
2834 * integers or integer vectors must be qualified with the
2835 * interpolation qualifier flat."
2836 *
2837 * From section 4.3.6 ("Output Variables") of the GLSL 3.00 ES spec:
2838 * "Vertex shader outputs that are, or contain, signed or unsigned
2839 * integers or integer vectors must be qualified with the
2840 * interpolation qualifier flat."
2841 *
2842 * Note that prior to GLSL 1.50, this requirement applied to vertex
2843 * outputs rather than fragment inputs. That creates problems in the
2844 * presence of geometry shaders, so we adopt the GLSL 1.50 rule for all
2845 * desktop GL shaders. For GLSL ES shaders, we follow the spec and
2846 * apply the restriction to both vertex outputs and fragment inputs.
2847 *
2848 * Note also that the desktop GLSL specs are missing the text "or
2849 * contain"; this is presumably an oversight, since there is no
2850 * reasonable way to interpolate a fragment shader input that contains
2851 * an integer.
2852 */
2853 if (state->is_version(130, 300) &&
2854 var->type->contains_integer() &&
2855 var->interpolation != INTERP_QUALIFIER_FLAT &&
2856 ((state->target == fragment_shader && var->mode == ir_var_shader_in)
2857 || (state->target == vertex_shader && var->mode == ir_var_shader_out
2858 && state->es_shader))) {
2859 const char *var_type = (state->target == vertex_shader) ?
2860 "vertex output" : "fragment input";
2861 _mesa_glsl_error(&loc, state, "If a %s is (or contains) "
2862 "an integer, then it must be qualified with 'flat'",
2863 var_type);
2864 }
2865
2866
2867 /* Interpolation qualifiers cannot be applied to 'centroid' and
2868 * 'centroid varying'.
2869 *
2870 * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
2871 * "interpolation qualifiers may only precede the qualifiers in,
2872 * centroid in, out, or centroid out in a declaration. They do not apply
2873 * to the deprecated storage qualifiers varying or centroid varying."
2874 *
2875 * These deprecated storage qualifiers do not exist in GLSL ES 3.00.
2876 */
2877 if (state->is_version(130, 0)
2878 && this->type->qualifier.has_interpolation()
2879 && this->type->qualifier.flags.q.varying) {
2880
2881 const char *i = this->type->qualifier.interpolation_string();
2882 assert(i != NULL);
2883 const char *s;
2884 if (this->type->qualifier.flags.q.centroid)
2885 s = "centroid varying";
2886 else
2887 s = "varying";
2888
2889 _mesa_glsl_error(&loc, state,
2890 "qualifier '%s' cannot be applied to the "
2891 "deprecated storage qualifier '%s'", i, s);
2892 }
2893
2894
2895 /* Interpolation qualifiers can only apply to vertex shader outputs and
2896 * fragment shader inputs.
2897 *
2898 * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
2899 * "Outputs from a vertex shader (out) and inputs to a fragment
2900 * shader (in) can be further qualified with one or more of these
2901 * interpolation qualifiers"
2902 *
2903 * From page 31 (page 37 of the PDF) of the GLSL ES 3.00 spec:
2904 * "These interpolation qualifiers may only precede the qualifiers
2905 * in, centroid in, out, or centroid out in a declaration. They do
2906 * not apply to inputs into a vertex shader or outputs from a
2907 * fragment shader."
2908 */
2909 if (state->is_version(130, 300)
2910 && this->type->qualifier.has_interpolation()) {
2911
2912 const char *i = this->type->qualifier.interpolation_string();
2913 assert(i != NULL);
2914
2915 switch (state->target) {
2916 case vertex_shader:
2917 if (this->type->qualifier.flags.q.in) {
2918 _mesa_glsl_error(&loc, state,
2919 "qualifier '%s' cannot be applied to vertex "
2920 "shader inputs", i);
2921 }
2922 break;
2923 case fragment_shader:
2924 if (this->type->qualifier.flags.q.out) {
2925 _mesa_glsl_error(&loc, state,
2926 "qualifier '%s' cannot be applied to fragment "
2927 "shader outputs", i);
2928 }
2929 break;
2930 default:
2931 assert(0);
2932 }
2933 }
2934
2935
2936 /* From section 4.3.4 of the GLSL 1.30 spec:
2937 * "It is an error to use centroid in in a vertex shader."
2938 *
2939 * From section 4.3.4 of the GLSL ES 3.00 spec:
2940 * "It is an error to use centroid in or interpolation qualifiers in
2941 * a vertex shader input."
2942 */
2943 if (state->is_version(130, 300)
2944 && this->type->qualifier.flags.q.centroid
2945 && this->type->qualifier.flags.q.in
2946 && state->target == vertex_shader) {
2947
2948 _mesa_glsl_error(&loc, state,
2949 "'centroid in' cannot be used in a vertex shader");
2950 }
2951
2952
2953 /* Precision qualifiers exists only in GLSL versions 1.00 and >= 1.30.
2954 */
2955 if (this->type->specifier->precision != ast_precision_none) {
2956 state->check_precision_qualifiers_allowed(&loc);
2957 }
2958
2959
2960 /* Precision qualifiers only apply to floating point and integer types.
2961 *
2962 * From section 4.5.2 of the GLSL 1.30 spec:
2963 * "Any floating point or any integer declaration can have the type
2964 * preceded by one of these precision qualifiers [...] Literal
2965 * constants do not have precision qualifiers. Neither do Boolean
2966 * variables.
2967 *
2968 * In GLSL ES, sampler types are also allowed.
2969 *
2970 * From page 87 of the GLSL ES spec:
2971 * "RESOLUTION: Allow sampler types to take a precision qualifier."
2972 */
2973 if (this->type->specifier->precision != ast_precision_none
2974 && !var->type->is_float()
2975 && !var->type->is_integer()
2976 && !(var->type->is_sampler() && state->es_shader)
2977 && !(var->type->is_array()
2978 && (var->type->fields.array->is_float()
2979 || var->type->fields.array->is_integer()))) {
2980
2981 _mesa_glsl_error(&loc, state,
2982 "precision qualifiers apply only to floating point"
2983 "%s types", state->es_shader ? ", integer, and sampler"
2984 : "and integer");
2985 }
2986
2987 /* From page 17 (page 23 of the PDF) of the GLSL 1.20 spec:
2988 *
2989 * "[Sampler types] can only be declared as function
2990 * parameters or uniform variables (see Section 4.3.5
2991 * "Uniform")".
2992 */
2993 if (var_type->contains_sampler() &&
2994 !this->type->qualifier.flags.q.uniform) {
2995 _mesa_glsl_error(&loc, state, "samplers must be declared uniform");
2996 }
2997
2998 /* Process the initializer and add its instructions to a temporary
2999 * list. This list will be added to the instruction stream (below) after
3000 * the declaration is added. This is done because in some cases (such as
3001 * redeclarations) the declaration may not actually be added to the
3002 * instruction stream.
3003 */
3004 exec_list initializer_instructions;
3005 ir_variable *earlier = get_variable_being_redeclared(var, decl, state);
3006
3007 if (decl->initializer != NULL) {
3008 result = process_initializer((earlier == NULL) ? var : earlier,
3009 decl, this->type,
3010 &initializer_instructions, state);
3011 }
3012
3013 /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
3014 *
3015 * "It is an error to write to a const variable outside of
3016 * its declaration, so they must be initialized when
3017 * declared."
3018 */
3019 if (this->type->qualifier.flags.q.constant && decl->initializer == NULL) {
3020 _mesa_glsl_error(& loc, state,
3021 "const declaration of `%s' must be initialized",
3022 decl->identifier);
3023 }
3024
3025 /* If the declaration is not a redeclaration, there are a few additional
3026 * semantic checks that must be applied. In addition, variable that was
3027 * created for the declaration should be added to the IR stream.
3028 */
3029 if (earlier == NULL) {
3030 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
3031 *
3032 * "Identifiers starting with "gl_" are reserved for use by
3033 * OpenGL, and may not be declared in a shader as either a
3034 * variable or a function."
3035 */
3036 if (strncmp(decl->identifier, "gl_", 3) == 0)
3037 _mesa_glsl_error(& loc, state,
3038 "identifier `%s' uses reserved `gl_' prefix",
3039 decl->identifier);
3040 else if (strstr(decl->identifier, "__")) {
3041 /* From page 14 (page 20 of the PDF) of the GLSL 1.10
3042 * spec:
3043 *
3044 * "In addition, all identifiers containing two
3045 * consecutive underscores (__) are reserved as
3046 * possible future keywords."
3047 */
3048 _mesa_glsl_error(& loc, state,
3049 "identifier `%s' uses reserved `__' string",
3050 decl->identifier);
3051 }
3052
3053 /* Add the variable to the symbol table. Note that the initializer's
3054 * IR was already processed earlier (though it hasn't been emitted
3055 * yet), without the variable in scope.
3056 *
3057 * This differs from most C-like languages, but it follows the GLSL
3058 * specification. From page 28 (page 34 of the PDF) of the GLSL 1.50
3059 * spec:
3060 *
3061 * "Within a declaration, the scope of a name starts immediately
3062 * after the initializer if present or immediately after the name
3063 * being declared if not."
3064 */
3065 if (!state->symbols->add_variable(var)) {
3066 YYLTYPE loc = this->get_location();
3067 _mesa_glsl_error(&loc, state, "name `%s' already taken in the "
3068 "current scope", decl->identifier);
3069 continue;
3070 }
3071
3072 /* Push the variable declaration to the top. It means that all the
3073 * variable declarations will appear in a funny last-to-first order,
3074 * but otherwise we run into trouble if a function is prototyped, a
3075 * global var is decled, then the function is defined with usage of
3076 * the global var. See glslparsertest's CorrectModule.frag.
3077 */
3078 instructions->push_head(var);
3079 }
3080
3081 instructions->append_list(&initializer_instructions);
3082 }
3083
3084
3085 /* Generally, variable declarations do not have r-values. However,
3086 * one is used for the declaration in
3087 *
3088 * while (bool b = some_condition()) {
3089 * ...
3090 * }
3091 *
3092 * so we return the rvalue from the last seen declaration here.
3093 */
3094 return result;
3095 }
3096
3097
3098 ir_rvalue *
3099 ast_parameter_declarator::hir(exec_list *instructions,
3100 struct _mesa_glsl_parse_state *state)
3101 {
3102 void *ctx = state;
3103 const struct glsl_type *type;
3104 const char *name = NULL;
3105 YYLTYPE loc = this->get_location();
3106
3107 type = this->type->specifier->glsl_type(& name, state);
3108
3109 if (type == NULL) {
3110 if (name != NULL) {
3111 _mesa_glsl_error(& loc, state,
3112 "invalid type `%s' in declaration of `%s'",
3113 name, this->identifier);
3114 } else {
3115 _mesa_glsl_error(& loc, state,
3116 "invalid type in declaration of `%s'",
3117 this->identifier);
3118 }
3119
3120 type = glsl_type::error_type;
3121 }
3122
3123 /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
3124 *
3125 * "Functions that accept no input arguments need not use void in the
3126 * argument list because prototypes (or definitions) are required and
3127 * therefore there is no ambiguity when an empty argument list "( )" is
3128 * declared. The idiom "(void)" as a parameter list is provided for
3129 * convenience."
3130 *
3131 * Placing this check here prevents a void parameter being set up
3132 * for a function, which avoids tripping up checks for main taking
3133 * parameters and lookups of an unnamed symbol.
3134 */
3135 if (type->is_void()) {
3136 if (this->identifier != NULL)
3137 _mesa_glsl_error(& loc, state,
3138 "named parameter cannot have type `void'");
3139
3140 is_void = true;
3141 return NULL;
3142 }
3143
3144 if (formal_parameter && (this->identifier == NULL)) {
3145 _mesa_glsl_error(& loc, state, "formal parameter lacks a name");
3146 return NULL;
3147 }
3148
3149 /* This only handles "vec4 foo[..]". The earlier specifier->glsl_type(...)
3150 * call already handled the "vec4[..] foo" case.
3151 */
3152 if (this->is_array) {
3153 type = process_array_type(&loc, type, this->array_size, state);
3154 }
3155
3156 if (!type->is_error() && type->array_size() == 0) {
3157 _mesa_glsl_error(&loc, state, "arrays passed as parameters must have "
3158 "a declared size.");
3159 type = glsl_type::error_type;
3160 }
3161
3162 is_void = false;
3163 ir_variable *var = new(ctx)
3164 ir_variable(type, this->identifier, ir_var_function_in);
3165
3166 /* Apply any specified qualifiers to the parameter declaration. Note that
3167 * for function parameters the default mode is 'in'.
3168 */
3169 apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc,
3170 false, true);
3171
3172 /* From page 17 (page 23 of the PDF) of the GLSL 1.20 spec:
3173 *
3174 * "Samplers cannot be treated as l-values; hence cannot be used
3175 * as out or inout function parameters, nor can they be assigned
3176 * into."
3177 */
3178 if ((var->mode == ir_var_function_inout || var->mode == ir_var_function_out)
3179 && type->contains_sampler()) {
3180 _mesa_glsl_error(&loc, state, "out and inout parameters cannot contain samplers");
3181 type = glsl_type::error_type;
3182 }
3183
3184 /* From page 39 (page 45 of the PDF) of the GLSL 1.10 spec:
3185 *
3186 * "When calling a function, expressions that do not evaluate to
3187 * l-values cannot be passed to parameters declared as out or inout."
3188 *
3189 * From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
3190 *
3191 * "Other binary or unary expressions, non-dereferenced arrays,
3192 * function names, swizzles with repeated fields, and constants
3193 * cannot be l-values."
3194 *
3195 * So for GLSL 1.10, passing an array as an out or inout parameter is not
3196 * allowed. This restriction is removed in GLSL 1.20, and in GLSL ES.
3197 */
3198 if ((var->mode == ir_var_function_inout || var->mode == ir_var_function_out)
3199 && type->is_array()
3200 && !state->check_version(120, 100, &loc,
3201 "Arrays cannot be out or inout parameters")) {
3202 type = glsl_type::error_type;
3203 }
3204
3205 instructions->push_tail(var);
3206
3207 /* Parameter declarations do not have r-values.
3208 */
3209 return NULL;
3210 }
3211
3212
3213 void
3214 ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters,
3215 bool formal,
3216 exec_list *ir_parameters,
3217 _mesa_glsl_parse_state *state)
3218 {
3219 ast_parameter_declarator *void_param = NULL;
3220 unsigned count = 0;
3221
3222 foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) {
3223 param->formal_parameter = formal;
3224 param->hir(ir_parameters, state);
3225
3226 if (param->is_void)
3227 void_param = param;
3228
3229 count++;
3230 }
3231
3232 if ((void_param != NULL) && (count > 1)) {
3233 YYLTYPE loc = void_param->get_location();
3234
3235 _mesa_glsl_error(& loc, state,
3236 "`void' parameter must be only parameter");
3237 }
3238 }
3239
3240
3241 void
3242 emit_function(_mesa_glsl_parse_state *state, ir_function *f)
3243 {
3244 /* IR invariants disallow function declarations or definitions
3245 * nested within other function definitions. But there is no
3246 * requirement about the relative order of function declarations
3247 * and definitions with respect to one another. So simply insert
3248 * the new ir_function block at the end of the toplevel instruction
3249 * list.
3250 */
3251 state->toplevel_ir->push_tail(f);
3252 }
3253
3254
3255 ir_rvalue *
3256 ast_function::hir(exec_list *instructions,
3257 struct _mesa_glsl_parse_state *state)
3258 {
3259 void *ctx = state;
3260 ir_function *f = NULL;
3261 ir_function_signature *sig = NULL;
3262 exec_list hir_parameters;
3263
3264 const char *const name = identifier;
3265
3266 /* New functions are always added to the top-level IR instruction stream,
3267 * so this instruction list pointer is ignored. See also emit_function
3268 * (called below).
3269 */
3270 (void) instructions;
3271
3272 /* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec,
3273 *
3274 * "Function declarations (prototypes) cannot occur inside of functions;
3275 * they must be at global scope, or for the built-in functions, outside
3276 * the global scope."
3277 *
3278 * From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec,
3279 *
3280 * "User defined functions may only be defined within the global scope."
3281 *
3282 * Note that this language does not appear in GLSL 1.10.
3283 */
3284 if ((state->current_function != NULL) &&
3285 state->is_version(120, 100)) {
3286 YYLTYPE loc = this->get_location();
3287 _mesa_glsl_error(&loc, state,
3288 "declaration of function `%s' not allowed within "
3289 "function body", name);
3290 }
3291
3292 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
3293 *
3294 * "Identifiers starting with "gl_" are reserved for use by
3295 * OpenGL, and may not be declared in a shader as either a
3296 * variable or a function."
3297 */
3298 if (strncmp(name, "gl_", 3) == 0) {
3299 YYLTYPE loc = this->get_location();
3300 _mesa_glsl_error(&loc, state,
3301 "identifier `%s' uses reserved `gl_' prefix", name);
3302 }
3303
3304 /* Convert the list of function parameters to HIR now so that they can be
3305 * used below to compare this function's signature with previously seen
3306 * signatures for functions with the same name.
3307 */
3308 ast_parameter_declarator::parameters_to_hir(& this->parameters,
3309 is_definition,
3310 & hir_parameters, state);
3311
3312 const char *return_type_name;
3313 const glsl_type *return_type =
3314 this->return_type->specifier->glsl_type(& return_type_name, state);
3315
3316 if (!return_type) {
3317 YYLTYPE loc = this->get_location();
3318 _mesa_glsl_error(&loc, state,
3319 "function `%s' has undeclared return type `%s'",
3320 name, return_type_name);
3321 return_type = glsl_type::error_type;
3322 }
3323
3324 /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec:
3325 * "No qualifier is allowed on the return type of a function."
3326 */
3327 if (this->return_type->has_qualifiers()) {
3328 YYLTYPE loc = this->get_location();
3329 _mesa_glsl_error(& loc, state,
3330 "function `%s' return type has qualifiers", name);
3331 }
3332
3333 /* From page 17 (page 23 of the PDF) of the GLSL 1.20 spec:
3334 *
3335 * "[Sampler types] can only be declared as function parameters
3336 * or uniform variables (see Section 4.3.5 "Uniform")".
3337 */
3338 if (return_type->contains_sampler()) {
3339 YYLTYPE loc = this->get_location();
3340 _mesa_glsl_error(&loc, state,
3341 "function `%s' return type can't contain a sampler",
3342 name);
3343 }
3344
3345 /* Verify that this function's signature either doesn't match a previously
3346 * seen signature for a function with the same name, or, if a match is found,
3347 * that the previously seen signature does not have an associated definition.
3348 */
3349 f = state->symbols->get_function(name);
3350 if (f != NULL && (state->es_shader || f->has_user_signature())) {
3351 sig = f->exact_matching_signature(&hir_parameters);
3352 if (sig != NULL) {
3353 const char *badvar = sig->qualifiers_match(&hir_parameters);
3354 if (badvar != NULL) {
3355 YYLTYPE loc = this->get_location();
3356
3357 _mesa_glsl_error(&loc, state, "function `%s' parameter `%s' "
3358 "qualifiers don't match prototype", name, badvar);
3359 }
3360
3361 if (sig->return_type != return_type) {
3362 YYLTYPE loc = this->get_location();
3363
3364 _mesa_glsl_error(&loc, state, "function `%s' return type doesn't "
3365 "match prototype", name);
3366 }
3367
3368 if (is_definition && sig->is_defined) {
3369 YYLTYPE loc = this->get_location();
3370
3371 _mesa_glsl_error(& loc, state, "function `%s' redefined", name);
3372 }
3373 }
3374 } else {
3375 f = new(ctx) ir_function(name);
3376 if (!state->symbols->add_function(f)) {
3377 /* This function name shadows a non-function use of the same name. */
3378 YYLTYPE loc = this->get_location();
3379
3380 _mesa_glsl_error(&loc, state, "function name `%s' conflicts with "
3381 "non-function", name);
3382 return NULL;
3383 }
3384
3385 emit_function(state, f);
3386 }
3387
3388 /* Verify the return type of main() */
3389 if (strcmp(name, "main") == 0) {
3390 if (! return_type->is_void()) {
3391 YYLTYPE loc = this->get_location();
3392
3393 _mesa_glsl_error(& loc, state, "main() must return void");
3394 }
3395
3396 if (!hir_parameters.is_empty()) {
3397 YYLTYPE loc = this->get_location();
3398
3399 _mesa_glsl_error(& loc, state, "main() must not take any parameters");
3400 }
3401 }
3402
3403 /* Finish storing the information about this new function in its signature.
3404 */
3405 if (sig == NULL) {
3406 sig = new(ctx) ir_function_signature(return_type);
3407 f->add_signature(sig);
3408 }
3409
3410 sig->replace_parameters(&hir_parameters);
3411 signature = sig;
3412
3413 /* Function declarations (prototypes) do not have r-values.
3414 */
3415 return NULL;
3416 }
3417
3418
3419 ir_rvalue *
3420 ast_function_definition::hir(exec_list *instructions,
3421 struct _mesa_glsl_parse_state *state)
3422 {
3423 prototype->is_definition = true;
3424 prototype->hir(instructions, state);
3425
3426 ir_function_signature *signature = prototype->signature;
3427 if (signature == NULL)
3428 return NULL;
3429
3430 assert(state->current_function == NULL);
3431 state->current_function = signature;
3432 state->found_return = false;
3433
3434 /* Duplicate parameters declared in the prototype as concrete variables.
3435 * Add these to the symbol table.
3436 */
3437 state->symbols->push_scope();
3438 foreach_iter(exec_list_iterator, iter, signature->parameters) {
3439 ir_variable *const var = ((ir_instruction *) iter.get())->as_variable();
3440
3441 assert(var != NULL);
3442
3443 /* The only way a parameter would "exist" is if two parameters have
3444 * the same name.
3445 */
3446 if (state->symbols->name_declared_this_scope(var->name)) {
3447 YYLTYPE loc = this->get_location();
3448
3449 _mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name);
3450 } else {
3451 state->symbols->add_variable(var);
3452 }
3453 }
3454
3455 /* Convert the body of the function to HIR. */
3456 this->body->hir(&signature->body, state);
3457 signature->is_defined = true;
3458
3459 state->symbols->pop_scope();
3460
3461 assert(state->current_function == signature);
3462 state->current_function = NULL;
3463
3464 if (!signature->return_type->is_void() && !state->found_return) {
3465 YYLTYPE loc = this->get_location();
3466 _mesa_glsl_error(& loc, state, "function `%s' has non-void return type "
3467 "%s, but no return statement",
3468 signature->function_name(),
3469 signature->return_type->name);
3470 }
3471
3472 /* Function definitions do not have r-values.
3473 */
3474 return NULL;
3475 }
3476
3477
3478 ir_rvalue *
3479 ast_jump_statement::hir(exec_list *instructions,
3480 struct _mesa_glsl_parse_state *state)
3481 {
3482 void *ctx = state;
3483
3484 switch (mode) {
3485 case ast_return: {
3486 ir_return *inst;
3487 assert(state->current_function);
3488
3489 if (opt_return_value) {
3490 ir_rvalue *const ret = opt_return_value->hir(instructions, state);
3491
3492 /* The value of the return type can be NULL if the shader says
3493 * 'return foo();' and foo() is a function that returns void.
3494 *
3495 * NOTE: The GLSL spec doesn't say that this is an error. The type
3496 * of the return value is void. If the return type of the function is
3497 * also void, then this should compile without error. Seriously.
3498 */
3499 const glsl_type *const ret_type =
3500 (ret == NULL) ? glsl_type::void_type : ret->type;
3501
3502 /* Implicit conversions are not allowed for return values. */
3503 if (state->current_function->return_type != ret_type) {
3504 YYLTYPE loc = this->get_location();
3505
3506 _mesa_glsl_error(& loc, state,
3507 "`return' with wrong type %s, in function `%s' "
3508 "returning %s",
3509 ret_type->name,
3510 state->current_function->function_name(),
3511 state->current_function->return_type->name);
3512 }
3513
3514 inst = new(ctx) ir_return(ret);
3515 } else {
3516 if (state->current_function->return_type->base_type !=
3517 GLSL_TYPE_VOID) {
3518 YYLTYPE loc = this->get_location();
3519
3520 _mesa_glsl_error(& loc, state,
3521 "`return' with no value, in function %s returning "
3522 "non-void",
3523 state->current_function->function_name());
3524 }
3525 inst = new(ctx) ir_return;
3526 }
3527
3528 state->found_return = true;
3529 instructions->push_tail(inst);
3530 break;
3531 }
3532
3533 case ast_discard:
3534 if (state->target != fragment_shader) {
3535 YYLTYPE loc = this->get_location();
3536
3537 _mesa_glsl_error(& loc, state,
3538 "`discard' may only appear in a fragment shader");
3539 }
3540 instructions->push_tail(new(ctx) ir_discard);
3541 break;
3542
3543 case ast_break:
3544 case ast_continue:
3545 if (mode == ast_continue &&
3546 state->loop_nesting_ast == NULL) {
3547 YYLTYPE loc = this->get_location();
3548
3549 _mesa_glsl_error(& loc, state,
3550 "continue may only appear in a loop");
3551 } else if (mode == ast_break &&
3552 state->loop_nesting_ast == NULL &&
3553 state->switch_state.switch_nesting_ast == NULL) {
3554 YYLTYPE loc = this->get_location();
3555
3556 _mesa_glsl_error(& loc, state,
3557 "break may only appear in a loop or a switch");
3558 } else {
3559 /* For a loop, inline the for loop expression again,
3560 * since we don't know where near the end of
3561 * the loop body the normal copy of it
3562 * is going to be placed.
3563 */
3564 if (state->loop_nesting_ast != NULL &&
3565 mode == ast_continue &&
3566 state->loop_nesting_ast->rest_expression) {
3567 state->loop_nesting_ast->rest_expression->hir(instructions,
3568 state);
3569 }
3570
3571 if (state->switch_state.is_switch_innermost &&
3572 mode == ast_break) {
3573 /* Force break out of switch by setting is_break switch state.
3574 */
3575 ir_variable *const is_break_var = state->switch_state.is_break_var;
3576 ir_dereference_variable *const deref_is_break_var =
3577 new(ctx) ir_dereference_variable(is_break_var);
3578 ir_constant *const true_val = new(ctx) ir_constant(true);
3579 ir_assignment *const set_break_var =
3580 new(ctx) ir_assignment(deref_is_break_var, true_val);
3581
3582 instructions->push_tail(set_break_var);
3583 }
3584 else {
3585 ir_loop_jump *const jump =
3586 new(ctx) ir_loop_jump((mode == ast_break)
3587 ? ir_loop_jump::jump_break
3588 : ir_loop_jump::jump_continue);
3589 instructions->push_tail(jump);
3590 }
3591 }
3592
3593 break;
3594 }
3595
3596 /* Jump instructions do not have r-values.
3597 */
3598 return NULL;
3599 }
3600
3601
3602 ir_rvalue *
3603 ast_selection_statement::hir(exec_list *instructions,
3604 struct _mesa_glsl_parse_state *state)
3605 {
3606 void *ctx = state;
3607
3608 ir_rvalue *const condition = this->condition->hir(instructions, state);
3609
3610 /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
3611 *
3612 * "Any expression whose type evaluates to a Boolean can be used as the
3613 * conditional expression bool-expression. Vector types are not accepted
3614 * as the expression to if."
3615 *
3616 * The checks are separated so that higher quality diagnostics can be
3617 * generated for cases where both rules are violated.
3618 */
3619 if (!condition->type->is_boolean() || !condition->type->is_scalar()) {
3620 YYLTYPE loc = this->condition->get_location();
3621
3622 _mesa_glsl_error(& loc, state, "if-statement condition must be scalar "
3623 "boolean");
3624 }
3625
3626 ir_if *const stmt = new(ctx) ir_if(condition);
3627
3628 if (then_statement != NULL) {
3629 state->symbols->push_scope();
3630 then_statement->hir(& stmt->then_instructions, state);
3631 state->symbols->pop_scope();
3632 }
3633
3634 if (else_statement != NULL) {
3635 state->symbols->push_scope();
3636 else_statement->hir(& stmt->else_instructions, state);
3637 state->symbols->pop_scope();
3638 }
3639
3640 instructions->push_tail(stmt);
3641
3642 /* if-statements do not have r-values.
3643 */
3644 return NULL;
3645 }
3646
3647
3648 ir_rvalue *
3649 ast_switch_statement::hir(exec_list *instructions,
3650 struct _mesa_glsl_parse_state *state)
3651 {
3652 void *ctx = state;
3653
3654 ir_rvalue *const test_expression =
3655 this->test_expression->hir(instructions, state);
3656
3657 /* From page 66 (page 55 of the PDF) of the GLSL 1.50 spec:
3658 *
3659 * "The type of init-expression in a switch statement must be a
3660 * scalar integer."
3661 */
3662 if (!test_expression->type->is_scalar() ||
3663 !test_expression->type->is_integer()) {
3664 YYLTYPE loc = this->test_expression->get_location();
3665
3666 _mesa_glsl_error(& loc,
3667 state,
3668 "switch-statement expression must be scalar "
3669 "integer");
3670 }
3671
3672 /* Track the switch-statement nesting in a stack-like manner.
3673 */
3674 struct glsl_switch_state saved = state->switch_state;
3675
3676 state->switch_state.is_switch_innermost = true;
3677 state->switch_state.switch_nesting_ast = this;
3678 state->switch_state.labels_ht = hash_table_ctor(0, hash_table_pointer_hash,
3679 hash_table_pointer_compare);
3680 state->switch_state.previous_default = NULL;
3681
3682 /* Initalize is_fallthru state to false.
3683 */
3684 ir_rvalue *const is_fallthru_val = new (ctx) ir_constant(false);
3685 state->switch_state.is_fallthru_var =
3686 new(ctx) ir_variable(glsl_type::bool_type,
3687 "switch_is_fallthru_tmp",
3688 ir_var_temporary);
3689 instructions->push_tail(state->switch_state.is_fallthru_var);
3690
3691 ir_dereference_variable *deref_is_fallthru_var =
3692 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
3693 instructions->push_tail(new(ctx) ir_assignment(deref_is_fallthru_var,
3694 is_fallthru_val));
3695
3696 /* Initalize is_break state to false.
3697 */
3698 ir_rvalue *const is_break_val = new (ctx) ir_constant(false);
3699 state->switch_state.is_break_var = new(ctx) ir_variable(glsl_type::bool_type,
3700 "switch_is_break_tmp",
3701 ir_var_temporary);
3702 instructions->push_tail(state->switch_state.is_break_var);
3703
3704 ir_dereference_variable *deref_is_break_var =
3705 new(ctx) ir_dereference_variable(state->switch_state.is_break_var);
3706 instructions->push_tail(new(ctx) ir_assignment(deref_is_break_var,
3707 is_break_val));
3708
3709 /* Cache test expression.
3710 */
3711 test_to_hir(instructions, state);
3712
3713 /* Emit code for body of switch stmt.
3714 */
3715 body->hir(instructions, state);
3716
3717 hash_table_dtor(state->switch_state.labels_ht);
3718
3719 state->switch_state = saved;
3720
3721 /* Switch statements do not have r-values. */
3722 return NULL;
3723 }
3724
3725
3726 void
3727 ast_switch_statement::test_to_hir(exec_list *instructions,
3728 struct _mesa_glsl_parse_state *state)
3729 {
3730 void *ctx = state;
3731
3732 /* Cache value of test expression. */
3733 ir_rvalue *const test_val =
3734 test_expression->hir(instructions,
3735 state);
3736
3737 state->switch_state.test_var = new(ctx) ir_variable(test_val->type,
3738 "switch_test_tmp",
3739 ir_var_temporary);
3740 ir_dereference_variable *deref_test_var =
3741 new(ctx) ir_dereference_variable(state->switch_state.test_var);
3742
3743 instructions->push_tail(state->switch_state.test_var);
3744 instructions->push_tail(new(ctx) ir_assignment(deref_test_var, test_val));
3745 }
3746
3747
3748 ir_rvalue *
3749 ast_switch_body::hir(exec_list *instructions,
3750 struct _mesa_glsl_parse_state *state)
3751 {
3752 if (stmts != NULL)
3753 stmts->hir(instructions, state);
3754
3755 /* Switch bodies do not have r-values. */
3756 return NULL;
3757 }
3758
3759 ir_rvalue *
3760 ast_case_statement_list::hir(exec_list *instructions,
3761 struct _mesa_glsl_parse_state *state)
3762 {
3763 foreach_list_typed (ast_case_statement, case_stmt, link, & this->cases)
3764 case_stmt->hir(instructions, state);
3765
3766 /* Case statements do not have r-values. */
3767 return NULL;
3768 }
3769
3770 ir_rvalue *
3771 ast_case_statement::hir(exec_list *instructions,
3772 struct _mesa_glsl_parse_state *state)
3773 {
3774 labels->hir(instructions, state);
3775
3776 /* Conditionally set fallthru state based on break state. */
3777 ir_constant *const false_val = new(state) ir_constant(false);
3778 ir_dereference_variable *const deref_is_fallthru_var =
3779 new(state) ir_dereference_variable(state->switch_state.is_fallthru_var);
3780 ir_dereference_variable *const deref_is_break_var =
3781 new(state) ir_dereference_variable(state->switch_state.is_break_var);
3782 ir_assignment *const reset_fallthru_on_break =
3783 new(state) ir_assignment(deref_is_fallthru_var,
3784 false_val,
3785 deref_is_break_var);
3786 instructions->push_tail(reset_fallthru_on_break);
3787
3788 /* Guard case statements depending on fallthru state. */
3789 ir_dereference_variable *const deref_fallthru_guard =
3790 new(state) ir_dereference_variable(state->switch_state.is_fallthru_var);
3791 ir_if *const test_fallthru = new(state) ir_if(deref_fallthru_guard);
3792
3793 foreach_list_typed (ast_node, stmt, link, & this->stmts)
3794 stmt->hir(& test_fallthru->then_instructions, state);
3795
3796 instructions->push_tail(test_fallthru);
3797
3798 /* Case statements do not have r-values. */
3799 return NULL;
3800 }
3801
3802
3803 ir_rvalue *
3804 ast_case_label_list::hir(exec_list *instructions,
3805 struct _mesa_glsl_parse_state *state)
3806 {
3807 foreach_list_typed (ast_case_label, label, link, & this->labels)
3808 label->hir(instructions, state);
3809
3810 /* Case labels do not have r-values. */
3811 return NULL;
3812 }
3813
3814 ir_rvalue *
3815 ast_case_label::hir(exec_list *instructions,
3816 struct _mesa_glsl_parse_state *state)
3817 {
3818 void *ctx = state;
3819
3820 ir_dereference_variable *deref_fallthru_var =
3821 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
3822
3823 ir_rvalue *const true_val = new(ctx) ir_constant(true);
3824
3825 /* If not default case, ... */
3826 if (this->test_value != NULL) {
3827 /* Conditionally set fallthru state based on
3828 * comparison of cached test expression value to case label.
3829 */
3830 ir_rvalue *const label_rval = this->test_value->hir(instructions, state);
3831 ir_constant *label_const = label_rval->constant_expression_value();
3832
3833 if (!label_const) {
3834 YYLTYPE loc = this->test_value->get_location();
3835
3836 _mesa_glsl_error(& loc, state,
3837 "switch statement case label must be a "
3838 "constant expression");
3839
3840 /* Stuff a dummy value in to allow processing to continue. */
3841 label_const = new(ctx) ir_constant(0);
3842 } else {
3843 ast_expression *previous_label = (ast_expression *)
3844 hash_table_find(state->switch_state.labels_ht,
3845 (void *)(uintptr_t)label_const->value.u[0]);
3846
3847 if (previous_label) {
3848 YYLTYPE loc = this->test_value->get_location();
3849 _mesa_glsl_error(& loc, state,
3850 "duplicate case value");
3851
3852 loc = previous_label->get_location();
3853 _mesa_glsl_error(& loc, state,
3854 "this is the previous case label");
3855 } else {
3856 hash_table_insert(state->switch_state.labels_ht,
3857 this->test_value,
3858 (void *)(uintptr_t)label_const->value.u[0]);
3859 }
3860 }
3861
3862 ir_dereference_variable *deref_test_var =
3863 new(ctx) ir_dereference_variable(state->switch_state.test_var);
3864
3865 ir_rvalue *const test_cond = new(ctx) ir_expression(ir_binop_all_equal,
3866 label_const,
3867 deref_test_var);
3868
3869 ir_assignment *set_fallthru_on_test =
3870 new(ctx) ir_assignment(deref_fallthru_var,
3871 true_val,
3872 test_cond);
3873
3874 instructions->push_tail(set_fallthru_on_test);
3875 } else { /* default case */
3876 if (state->switch_state.previous_default) {
3877 YYLTYPE loc = this->get_location();
3878 _mesa_glsl_error(& loc, state,
3879 "multiple default labels in one switch");
3880
3881 loc = state->switch_state.previous_default->get_location();
3882 _mesa_glsl_error(& loc, state,
3883 "this is the first default label");
3884 }
3885 state->switch_state.previous_default = this;
3886
3887 /* Set falltrhu state. */
3888 ir_assignment *set_fallthru =
3889 new(ctx) ir_assignment(deref_fallthru_var, true_val);
3890
3891 instructions->push_tail(set_fallthru);
3892 }
3893
3894 /* Case statements do not have r-values. */
3895 return NULL;
3896 }
3897
3898 void
3899 ast_iteration_statement::condition_to_hir(ir_loop *stmt,
3900 struct _mesa_glsl_parse_state *state)
3901 {
3902 void *ctx = state;
3903
3904 if (condition != NULL) {
3905 ir_rvalue *const cond =
3906 condition->hir(& stmt->body_instructions, state);
3907
3908 if ((cond == NULL)
3909 || !cond->type->is_boolean() || !cond->type->is_scalar()) {
3910 YYLTYPE loc = condition->get_location();
3911
3912 _mesa_glsl_error(& loc, state,
3913 "loop condition must be scalar boolean");
3914 } else {
3915 /* As the first code in the loop body, generate a block that looks
3916 * like 'if (!condition) break;' as the loop termination condition.
3917 */
3918 ir_rvalue *const not_cond =
3919 new(ctx) ir_expression(ir_unop_logic_not, cond);
3920
3921 ir_if *const if_stmt = new(ctx) ir_if(not_cond);
3922
3923 ir_jump *const break_stmt =
3924 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
3925
3926 if_stmt->then_instructions.push_tail(break_stmt);
3927 stmt->body_instructions.push_tail(if_stmt);
3928 }
3929 }
3930 }
3931
3932
3933 ir_rvalue *
3934 ast_iteration_statement::hir(exec_list *instructions,
3935 struct _mesa_glsl_parse_state *state)
3936 {
3937 void *ctx = state;
3938
3939 /* For-loops and while-loops start a new scope, but do-while loops do not.
3940 */
3941 if (mode != ast_do_while)
3942 state->symbols->push_scope();
3943
3944 if (init_statement != NULL)
3945 init_statement->hir(instructions, state);
3946
3947 ir_loop *const stmt = new(ctx) ir_loop();
3948 instructions->push_tail(stmt);
3949
3950 /* Track the current loop nesting. */
3951 ast_iteration_statement *nesting_ast = state->loop_nesting_ast;
3952
3953 state->loop_nesting_ast = this;
3954
3955 /* Likewise, indicate that following code is closest to a loop,
3956 * NOT closest to a switch.
3957 */
3958 bool saved_is_switch_innermost = state->switch_state.is_switch_innermost;
3959 state->switch_state.is_switch_innermost = false;
3960
3961 if (mode != ast_do_while)
3962 condition_to_hir(stmt, state);
3963
3964 if (body != NULL)
3965 body->hir(& stmt->body_instructions, state);
3966
3967 if (rest_expression != NULL)
3968 rest_expression->hir(& stmt->body_instructions, state);
3969
3970 if (mode == ast_do_while)
3971 condition_to_hir(stmt, state);
3972
3973 if (mode != ast_do_while)
3974 state->symbols->pop_scope();
3975
3976 /* Restore previous nesting before returning. */
3977 state->loop_nesting_ast = nesting_ast;
3978 state->switch_state.is_switch_innermost = saved_is_switch_innermost;
3979
3980 /* Loops do not have r-values.
3981 */
3982 return NULL;
3983 }
3984
3985
3986 /**
3987 * Determine if the given type is valid for establishing a default precision
3988 * qualifier.
3989 *
3990 * From GLSL ES 3.00 section 4.5.4 ("Default Precision Qualifiers"):
3991 *
3992 * "The precision statement
3993 *
3994 * precision precision-qualifier type;
3995 *
3996 * can be used to establish a default precision qualifier. The type field
3997 * can be either int or float or any of the sampler types, and the
3998 * precision-qualifier can be lowp, mediump, or highp."
3999 *
4000 * GLSL ES 1.00 has similar language. GLSL 1.30 doesn't allow precision
4001 * qualifiers on sampler types, but this seems like an oversight (since the
4002 * intention of including these in GLSL 1.30 is to allow compatibility with ES
4003 * shaders). So we allow int, float, and all sampler types regardless of GLSL
4004 * version.
4005 */
4006 static bool
4007 is_valid_default_precision_type(const struct _mesa_glsl_parse_state *state,
4008 const char *type_name)
4009 {
4010 const struct glsl_type *type = state->symbols->get_type(type_name);
4011 if (type == NULL)
4012 return false;
4013
4014 switch (type->base_type) {
4015 case GLSL_TYPE_INT:
4016 case GLSL_TYPE_FLOAT:
4017 /* "int" and "float" are valid, but vectors and matrices are not. */
4018 return type->vector_elements == 1 && type->matrix_columns == 1;
4019 case GLSL_TYPE_SAMPLER:
4020 return true;
4021 default:
4022 return false;
4023 }
4024 }
4025
4026
4027 ir_rvalue *
4028 ast_type_specifier::hir(exec_list *instructions,
4029 struct _mesa_glsl_parse_state *state)
4030 {
4031 if (!this->is_precision_statement && this->structure == NULL)
4032 return NULL;
4033
4034 YYLTYPE loc = this->get_location();
4035
4036 if (this->precision != ast_precision_none
4037 && !state->check_precision_qualifiers_allowed(&loc)) {
4038 return NULL;
4039 }
4040 if (this->precision != ast_precision_none
4041 && this->structure != NULL) {
4042 _mesa_glsl_error(&loc, state,
4043 "precision qualifiers do not apply to structures");
4044 return NULL;
4045 }
4046
4047 /* If this is a precision statement, check that the type to which it is
4048 * applied is either float or int.
4049 *
4050 * From section 4.5.3 of the GLSL 1.30 spec:
4051 * "The precision statement
4052 * precision precision-qualifier type;
4053 * can be used to establish a default precision qualifier. The type
4054 * field can be either int or float [...]. Any other types or
4055 * qualifiers will result in an error.
4056 */
4057 if (this->is_precision_statement) {
4058 assert(this->precision != ast_precision_none);
4059 assert(this->structure == NULL); /* The check for structures was
4060 * performed above. */
4061 if (this->is_array) {
4062 _mesa_glsl_error(&loc, state,
4063 "default precision statements do not apply to "
4064 "arrays");
4065 return NULL;
4066 }
4067 if (!is_valid_default_precision_type(state, this->type_name)) {
4068 _mesa_glsl_error(&loc, state,
4069 "default precision statements apply only to types "
4070 "float, int, and sampler types");
4071 return NULL;
4072 }
4073
4074 /* FINISHME: Translate precision statements into IR. */
4075 return NULL;
4076 }
4077
4078 if (this->structure != NULL)
4079 return this->structure->hir(instructions, state);
4080
4081 return NULL;
4082 }
4083
4084
4085 /**
4086 * Process a structure or interface block tree into an array of structure fields
4087 *
4088 * After parsing, where there are some syntax differnces, structures and
4089 * interface blocks are almost identical. They are similar enough that the
4090 * AST for each can be processed the same way into a set of
4091 * \c glsl_struct_field to describe the members.
4092 *
4093 * \return
4094 * The number of fields processed. A pointer to the array structure fields is
4095 * stored in \c *fields_ret.
4096 */
4097 unsigned
4098 ast_process_structure_or_interface_block(exec_list *instructions,
4099 struct _mesa_glsl_parse_state *state,
4100 exec_list *declarations,
4101 YYLTYPE &loc,
4102 glsl_struct_field **fields_ret,
4103 bool is_interface,
4104 bool block_row_major)
4105 {
4106 unsigned decl_count = 0;
4107
4108 /* Make an initial pass over the list of fields to determine how
4109 * many there are. Each element in this list is an ast_declarator_list.
4110 * This means that we actually need to count the number of elements in the
4111 * 'declarations' list in each of the elements.
4112 */
4113 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
4114 foreach_list_const (decl_ptr, & decl_list->declarations) {
4115 decl_count++;
4116 }
4117 }
4118
4119 /* Allocate storage for the fields and process the field
4120 * declarations. As the declarations are processed, try to also convert
4121 * the types to HIR. This ensures that structure definitions embedded in
4122 * other structure definitions or in interface blocks are processed.
4123 */
4124 glsl_struct_field *const fields = ralloc_array(state, glsl_struct_field,
4125 decl_count);
4126
4127 unsigned i = 0;
4128 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
4129 const char *type_name;
4130
4131 decl_list->type->specifier->hir(instructions, state);
4132
4133 /* Section 10.9 of the GLSL ES 1.00 specification states that
4134 * embedded structure definitions have been removed from the language.
4135 */
4136 if (state->es_shader && decl_list->type->specifier->structure != NULL) {
4137 _mesa_glsl_error(&loc, state, "Embedded structure definitions are "
4138 "not allowed in GLSL ES 1.00.");
4139 }
4140
4141 const glsl_type *decl_type =
4142 decl_list->type->specifier->glsl_type(& type_name, state);
4143
4144 foreach_list_typed (ast_declaration, decl, link,
4145 &decl_list->declarations) {
4146 /* From the GL_ARB_uniform_buffer_object spec:
4147 *
4148 * "Sampler types are not allowed inside of uniform
4149 * blocks. All other types, arrays, and structures
4150 * allowed for uniforms are allowed within a uniform
4151 * block."
4152 */
4153 const struct glsl_type *field_type = decl_type;
4154
4155 if (is_interface && field_type->contains_sampler()) {
4156 YYLTYPE loc = decl_list->get_location();
4157 _mesa_glsl_error(&loc, state,
4158 "Uniform in non-default uniform block contains sampler\n");
4159 }
4160
4161 const struct ast_type_qualifier *const qual =
4162 & decl_list->type->qualifier;
4163 if (qual->flags.q.std140 ||
4164 qual->flags.q.packed ||
4165 qual->flags.q.shared) {
4166 _mesa_glsl_error(&loc, state,
4167 "uniform block layout qualifiers std140, packed, and "
4168 "shared can only be applied to uniform blocks, not "
4169 "members");
4170 }
4171
4172 if (decl->is_array) {
4173 field_type = process_array_type(&loc, decl_type, decl->array_size,
4174 state);
4175 }
4176 fields[i].type = (field_type != NULL)
4177 ? field_type : glsl_type::error_type;
4178 fields[i].name = decl->identifier;
4179
4180 if (qual->flags.q.row_major || qual->flags.q.column_major) {
4181 if (!field_type->is_matrix() && !field_type->is_record()) {
4182 _mesa_glsl_error(&loc, state,
4183 "uniform block layout qualifiers row_major and "
4184 "column_major can only be applied to matrix and "
4185 "structure types");
4186 } else
4187 validate_matrix_layout_for_type(state, &loc, field_type);
4188 }
4189
4190 if (field_type->is_matrix() ||
4191 (field_type->is_array() && field_type->fields.array->is_matrix())) {
4192 fields[i].row_major = block_row_major;
4193 if (qual->flags.q.row_major)
4194 fields[i].row_major = true;
4195 else if (qual->flags.q.column_major)
4196 fields[i].row_major = false;
4197 }
4198
4199 i++;
4200 }
4201 }
4202
4203 assert(i == decl_count);
4204
4205 *fields_ret = fields;
4206 return decl_count;
4207 }
4208
4209
4210 ir_rvalue *
4211 ast_struct_specifier::hir(exec_list *instructions,
4212 struct _mesa_glsl_parse_state *state)
4213 {
4214 YYLTYPE loc = this->get_location();
4215 glsl_struct_field *fields;
4216 unsigned decl_count =
4217 ast_process_structure_or_interface_block(instructions,
4218 state,
4219 &this->declarations,
4220 loc,
4221 &fields,
4222 false,
4223 false);
4224
4225 const glsl_type *t =
4226 glsl_type::get_record_instance(fields, decl_count, this->name);
4227
4228 if (!state->symbols->add_type(name, t)) {
4229 _mesa_glsl_error(& loc, state, "struct `%s' previously defined", name);
4230 } else {
4231 const glsl_type **s = reralloc(state, state->user_structures,
4232 const glsl_type *,
4233 state->num_user_structures + 1);
4234 if (s != NULL) {
4235 s[state->num_user_structures] = t;
4236 state->user_structures = s;
4237 state->num_user_structures++;
4238 }
4239 }
4240
4241 /* Structure type definitions do not have r-values.
4242 */
4243 return NULL;
4244 }
4245
4246 ir_rvalue *
4247 ast_uniform_block::hir(exec_list *instructions,
4248 struct _mesa_glsl_parse_state *state)
4249 {
4250 YYLTYPE loc = this->get_location();
4251
4252 /* The ast_uniform_block has a list of ast_declarator_lists. We
4253 * need to turn those into ir_variables with an association
4254 * with this uniform block.
4255 */
4256 enum glsl_interface_packing packing;
4257 if (this->layout.flags.q.shared) {
4258 packing = GLSL_INTERFACE_PACKING_SHARED;
4259 } else if (this->layout.flags.q.packed) {
4260 packing = GLSL_INTERFACE_PACKING_PACKED;
4261 } else {
4262 /* The default layout is std140.
4263 */
4264 packing = GLSL_INTERFACE_PACKING_STD140;
4265 }
4266
4267 bool block_row_major = this->layout.flags.q.row_major;
4268 exec_list declared_variables;
4269 glsl_struct_field *fields;
4270 unsigned int num_variables =
4271 ast_process_structure_or_interface_block(&declared_variables,
4272 state,
4273 &this->declarations,
4274 loc,
4275 &fields,
4276 true,
4277 block_row_major);
4278
4279 const glsl_type *block_type =
4280 glsl_type::get_interface_instance(fields,
4281 num_variables,
4282 packing,
4283 this->block_name);
4284
4285 if (!state->symbols->add_type(block_type->name, block_type)) {
4286 YYLTYPE loc = this->get_location();
4287 _mesa_glsl_error(&loc, state, "Uniform block name `%s' already taken in "
4288 "the current scope.\n", this->block_name);
4289 }
4290
4291 /* Since interface blocks cannot contain statements, it should be
4292 * impossible for the block to generate any instructions.
4293 */
4294 assert(declared_variables.is_empty());
4295
4296 /* Page 39 (page 45 of the PDF) of section 4.3.7 in the GLSL ES 3.00 spec
4297 * says:
4298 *
4299 * "If an instance name (instance-name) is used, then it puts all the
4300 * members inside a scope within its own name space, accessed with the
4301 * field selector ( . ) operator (analogously to structures)."
4302 */
4303 if (this->instance_name) {
4304 ir_variable *var;
4305
4306 if (this->array_size != NULL) {
4307 const glsl_type *block_array_type =
4308 process_array_type(&loc, block_type, this->array_size, state);
4309
4310 var = new(state) ir_variable(block_array_type,
4311 this->instance_name,
4312 ir_var_uniform);
4313 } else {
4314 var = new(state) ir_variable(block_type,
4315 this->instance_name,
4316 ir_var_uniform);
4317 }
4318
4319 var->interface_type = block_type;
4320 state->symbols->add_variable(var);
4321 instructions->push_tail(var);
4322 } else {
4323 /* In order to have an array size, the block must also be declared with
4324 * an instane name.
4325 */
4326 assert(this->array_size == NULL);
4327
4328 for (unsigned i = 0; i < num_variables; i++) {
4329 ir_variable *var =
4330 new(state) ir_variable(fields[i].type,
4331 ralloc_strdup(state, fields[i].name),
4332 ir_var_uniform);
4333 var->interface_type = block_type;
4334
4335 state->symbols->add_variable(var);
4336 instructions->push_tail(var);
4337 }
4338 }
4339
4340 return NULL;
4341 }
4342
4343 static void
4344 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
4345 exec_list *instructions)
4346 {
4347 bool gl_FragColor_assigned = false;
4348 bool gl_FragData_assigned = false;
4349 bool user_defined_fs_output_assigned = false;
4350 ir_variable *user_defined_fs_output = NULL;
4351
4352 /* It would be nice to have proper location information. */
4353 YYLTYPE loc;
4354 memset(&loc, 0, sizeof(loc));
4355
4356 foreach_list(node, instructions) {
4357 ir_variable *var = ((ir_instruction *)node)->as_variable();
4358
4359 if (!var || !var->assigned)
4360 continue;
4361
4362 if (strcmp(var->name, "gl_FragColor") == 0)
4363 gl_FragColor_assigned = true;
4364 else if (strcmp(var->name, "gl_FragData") == 0)
4365 gl_FragData_assigned = true;
4366 else if (strncmp(var->name, "gl_", 3) != 0) {
4367 if (state->target == fragment_shader &&
4368 var->mode == ir_var_shader_out) {
4369 user_defined_fs_output_assigned = true;
4370 user_defined_fs_output = var;
4371 }
4372 }
4373 }
4374
4375 /* From the GLSL 1.30 spec:
4376 *
4377 * "If a shader statically assigns a value to gl_FragColor, it
4378 * may not assign a value to any element of gl_FragData. If a
4379 * shader statically writes a value to any element of
4380 * gl_FragData, it may not assign a value to
4381 * gl_FragColor. That is, a shader may assign values to either
4382 * gl_FragColor or gl_FragData, but not both. Multiple shaders
4383 * linked together must also consistently write just one of
4384 * these variables. Similarly, if user declared output
4385 * variables are in use (statically assigned to), then the
4386 * built-in variables gl_FragColor and gl_FragData may not be
4387 * assigned to. These incorrect usages all generate compile
4388 * time errors."
4389 */
4390 if (gl_FragColor_assigned && gl_FragData_assigned) {
4391 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
4392 "`gl_FragColor' and `gl_FragData'\n");
4393 } else if (gl_FragColor_assigned && user_defined_fs_output_assigned) {
4394 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
4395 "`gl_FragColor' and `%s'\n",
4396 user_defined_fs_output->name);
4397 } else if (gl_FragData_assigned && user_defined_fs_output_assigned) {
4398 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
4399 "`gl_FragData' and `%s'\n",
4400 user_defined_fs_output->name);
4401 }
4402 }