glsl/preprocessor: Extract version directive processing into a function.
[mesa.git] / src / glsl / ast_to_hir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file ast_to_hir.c
26 * Convert abstract syntax to to high-level intermediate reprensentation (HIR).
27 *
28 * During the conversion to HIR, the majority of the symantic checking is
29 * preformed on the program. This includes:
30 *
31 * * Symbol table management
32 * * Type checking
33 * * Function binding
34 *
35 * The majority of this work could be done during parsing, and the parser could
36 * probably generate HIR directly. However, this results in frequent changes
37 * to the parser code. Since we do not assume that every system this complier
38 * is built on will have Flex and Bison installed, we have to store the code
39 * generated by these tools in our version control system. In other parts of
40 * the system we've seen problems where a parser was changed but the generated
41 * code was not committed, merge conflicts where created because two developers
42 * had slightly different versions of Bison installed, etc.
43 *
44 * I have also noticed that running Bison generated parsers in GDB is very
45 * irritating. When you get a segfault on '$$ = $1->foo', you can't very
46 * well 'print $1' in GDB.
47 *
48 * As a result, my preference is to put as little C code as possible in the
49 * parser (and lexer) sources.
50 */
51
52 #include "main/core.h" /* for struct gl_extensions */
53 #include "glsl_symbol_table.h"
54 #include "glsl_parser_extras.h"
55 #include "ast.h"
56 #include "glsl_types.h"
57 #include "program/hash_table.h"
58 #include "ir.h"
59
60 static void
61 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
62 exec_list *instructions);
63
64 void
65 _mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
66 {
67 _mesa_glsl_initialize_variables(instructions, state);
68
69 state->symbols->separate_function_namespace = state->language_version == 110;
70
71 state->current_function = NULL;
72
73 state->toplevel_ir = instructions;
74
75 /* Section 4.2 of the GLSL 1.20 specification states:
76 * "The built-in functions are scoped in a scope outside the global scope
77 * users declare global variables in. That is, a shader's global scope,
78 * available for user-defined functions and global variables, is nested
79 * inside the scope containing the built-in functions."
80 *
81 * Since built-in functions like ftransform() access built-in variables,
82 * it follows that those must be in the outer scope as well.
83 *
84 * We push scope here to create this nesting effect...but don't pop.
85 * This way, a shader's globals are still in the symbol table for use
86 * by the linker.
87 */
88 state->symbols->push_scope();
89
90 foreach_list_typed (ast_node, ast, link, & state->translation_unit)
91 ast->hir(instructions, state);
92
93 detect_recursion_unlinked(state, instructions);
94 detect_conflicting_assignments(state, instructions);
95
96 state->toplevel_ir = NULL;
97 }
98
99
100 /**
101 * If a conversion is available, convert one operand to a different type
102 *
103 * The \c from \c ir_rvalue is converted "in place".
104 *
105 * \param to Type that the operand it to be converted to
106 * \param from Operand that is being converted
107 * \param state GLSL compiler state
108 *
109 * \return
110 * If a conversion is possible (or unnecessary), \c true is returned.
111 * Otherwise \c false is returned.
112 */
113 bool
114 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
115 struct _mesa_glsl_parse_state *state)
116 {
117 void *ctx = state;
118 if (to->base_type == from->type->base_type)
119 return true;
120
121 /* This conversion was added in GLSL 1.20. If the compilation mode is
122 * GLSL 1.10, the conversion is skipped.
123 */
124 if (!state->is_version(120, 0))
125 return false;
126
127 /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
128 *
129 * "There are no implicit array or structure conversions. For
130 * example, an array of int cannot be implicitly converted to an
131 * array of float. There are no implicit conversions between
132 * signed and unsigned integers."
133 */
134 /* FINISHME: The above comment is partially a lie. There is int/uint
135 * FINISHME: conversion for immediate constants.
136 */
137 if (!to->is_float() || !from->type->is_numeric())
138 return false;
139
140 /* Convert to a floating point type with the same number of components
141 * as the original type - i.e. int to float, not int to vec4.
142 */
143 to = glsl_type::get_instance(GLSL_TYPE_FLOAT, from->type->vector_elements,
144 from->type->matrix_columns);
145
146 switch (from->type->base_type) {
147 case GLSL_TYPE_INT:
148 from = new(ctx) ir_expression(ir_unop_i2f, to, from, NULL);
149 break;
150 case GLSL_TYPE_UINT:
151 from = new(ctx) ir_expression(ir_unop_u2f, to, from, NULL);
152 break;
153 case GLSL_TYPE_BOOL:
154 from = new(ctx) ir_expression(ir_unop_b2f, to, from, NULL);
155 break;
156 default:
157 assert(0);
158 }
159
160 return true;
161 }
162
163
164 static const struct glsl_type *
165 arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
166 bool multiply,
167 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
168 {
169 const glsl_type *type_a = value_a->type;
170 const glsl_type *type_b = value_b->type;
171
172 /* From GLSL 1.50 spec, page 56:
173 *
174 * "The arithmetic binary operators add (+), subtract (-),
175 * multiply (*), and divide (/) operate on integer and
176 * floating-point scalars, vectors, and matrices."
177 */
178 if (!type_a->is_numeric() || !type_b->is_numeric()) {
179 _mesa_glsl_error(loc, state,
180 "Operands to arithmetic operators must be numeric");
181 return glsl_type::error_type;
182 }
183
184
185 /* "If one operand is floating-point based and the other is
186 * not, then the conversions from Section 4.1.10 "Implicit
187 * Conversions" are applied to the non-floating-point-based operand."
188 */
189 if (!apply_implicit_conversion(type_a, value_b, state)
190 && !apply_implicit_conversion(type_b, value_a, state)) {
191 _mesa_glsl_error(loc, state,
192 "Could not implicitly convert operands to "
193 "arithmetic operator");
194 return glsl_type::error_type;
195 }
196 type_a = value_a->type;
197 type_b = value_b->type;
198
199 /* "If the operands are integer types, they must both be signed or
200 * both be unsigned."
201 *
202 * From this rule and the preceeding conversion it can be inferred that
203 * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
204 * The is_numeric check above already filtered out the case where either
205 * type is not one of these, so now the base types need only be tested for
206 * equality.
207 */
208 if (type_a->base_type != type_b->base_type) {
209 _mesa_glsl_error(loc, state,
210 "base type mismatch for arithmetic operator");
211 return glsl_type::error_type;
212 }
213
214 /* "All arithmetic binary operators result in the same fundamental type
215 * (signed integer, unsigned integer, or floating-point) as the
216 * operands they operate on, after operand type conversion. After
217 * conversion, the following cases are valid
218 *
219 * * The two operands are scalars. In this case the operation is
220 * applied, resulting in a scalar."
221 */
222 if (type_a->is_scalar() && type_b->is_scalar())
223 return type_a;
224
225 /* "* One operand is a scalar, and the other is a vector or matrix.
226 * In this case, the scalar operation is applied independently to each
227 * component of the vector or matrix, resulting in the same size
228 * vector or matrix."
229 */
230 if (type_a->is_scalar()) {
231 if (!type_b->is_scalar())
232 return type_b;
233 } else if (type_b->is_scalar()) {
234 return type_a;
235 }
236
237 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
238 * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
239 * handled.
240 */
241 assert(!type_a->is_scalar());
242 assert(!type_b->is_scalar());
243
244 /* "* The two operands are vectors of the same size. In this case, the
245 * operation is done component-wise resulting in the same size
246 * vector."
247 */
248 if (type_a->is_vector() && type_b->is_vector()) {
249 if (type_a == type_b) {
250 return type_a;
251 } else {
252 _mesa_glsl_error(loc, state,
253 "vector size mismatch for arithmetic operator");
254 return glsl_type::error_type;
255 }
256 }
257
258 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
259 * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
260 * <vector, vector> have been handled. At least one of the operands must
261 * be matrix. Further, since there are no integer matrix types, the base
262 * type of both operands must be float.
263 */
264 assert(type_a->is_matrix() || type_b->is_matrix());
265 assert(type_a->base_type == GLSL_TYPE_FLOAT);
266 assert(type_b->base_type == GLSL_TYPE_FLOAT);
267
268 /* "* The operator is add (+), subtract (-), or divide (/), and the
269 * operands are matrices with the same number of rows and the same
270 * number of columns. In this case, the operation is done component-
271 * wise resulting in the same size matrix."
272 * * The operator is multiply (*), where both operands are matrices or
273 * one operand is a vector and the other a matrix. A right vector
274 * operand is treated as a column vector and a left vector operand as a
275 * row vector. In all these cases, it is required that the number of
276 * columns of the left operand is equal to the number of rows of the
277 * right operand. Then, the multiply (*) operation does a linear
278 * algebraic multiply, yielding an object that has the same number of
279 * rows as the left operand and the same number of columns as the right
280 * operand. Section 5.10 "Vector and Matrix Operations" explains in
281 * more detail how vectors and matrices are operated on."
282 */
283 if (! multiply) {
284 if (type_a == type_b)
285 return type_a;
286 } else {
287 if (type_a->is_matrix() && type_b->is_matrix()) {
288 /* Matrix multiply. The columns of A must match the rows of B. Given
289 * the other previously tested constraints, this means the vector type
290 * of a row from A must be the same as the vector type of a column from
291 * B.
292 */
293 if (type_a->row_type() == type_b->column_type()) {
294 /* The resulting matrix has the number of columns of matrix B and
295 * the number of rows of matrix A. We get the row count of A by
296 * looking at the size of a vector that makes up a column. The
297 * transpose (size of a row) is done for B.
298 */
299 const glsl_type *const type =
300 glsl_type::get_instance(type_a->base_type,
301 type_a->column_type()->vector_elements,
302 type_b->row_type()->vector_elements);
303 assert(type != glsl_type::error_type);
304
305 return type;
306 }
307 } else if (type_a->is_matrix()) {
308 /* A is a matrix and B is a column vector. Columns of A must match
309 * rows of B. Given the other previously tested constraints, this
310 * means the vector type of a row from A must be the same as the
311 * vector the type of B.
312 */
313 if (type_a->row_type() == type_b) {
314 /* The resulting vector has a number of elements equal to
315 * the number of rows of matrix A. */
316 const glsl_type *const type =
317 glsl_type::get_instance(type_a->base_type,
318 type_a->column_type()->vector_elements,
319 1);
320 assert(type != glsl_type::error_type);
321
322 return type;
323 }
324 } else {
325 assert(type_b->is_matrix());
326
327 /* A is a row vector and B is a matrix. Columns of A must match rows
328 * of B. Given the other previously tested constraints, this means
329 * the type of A must be the same as the vector type of a column from
330 * B.
331 */
332 if (type_a == type_b->column_type()) {
333 /* The resulting vector has a number of elements equal to
334 * the number of columns of matrix B. */
335 const glsl_type *const type =
336 glsl_type::get_instance(type_a->base_type,
337 type_b->row_type()->vector_elements,
338 1);
339 assert(type != glsl_type::error_type);
340
341 return type;
342 }
343 }
344
345 _mesa_glsl_error(loc, state, "size mismatch for matrix multiplication");
346 return glsl_type::error_type;
347 }
348
349
350 /* "All other cases are illegal."
351 */
352 _mesa_glsl_error(loc, state, "type mismatch");
353 return glsl_type::error_type;
354 }
355
356
357 static const struct glsl_type *
358 unary_arithmetic_result_type(const struct glsl_type *type,
359 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
360 {
361 /* From GLSL 1.50 spec, page 57:
362 *
363 * "The arithmetic unary operators negate (-), post- and pre-increment
364 * and decrement (-- and ++) operate on integer or floating-point
365 * values (including vectors and matrices). All unary operators work
366 * component-wise on their operands. These result with the same type
367 * they operated on."
368 */
369 if (!type->is_numeric()) {
370 _mesa_glsl_error(loc, state,
371 "Operands to arithmetic operators must be numeric");
372 return glsl_type::error_type;
373 }
374
375 return type;
376 }
377
378 /**
379 * \brief Return the result type of a bit-logic operation.
380 *
381 * If the given types to the bit-logic operator are invalid, return
382 * glsl_type::error_type.
383 *
384 * \param type_a Type of LHS of bit-logic op
385 * \param type_b Type of RHS of bit-logic op
386 */
387 static const struct glsl_type *
388 bit_logic_result_type(const struct glsl_type *type_a,
389 const struct glsl_type *type_b,
390 ast_operators op,
391 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
392 {
393 if (!state->check_bitwise_operations_allowed(loc)) {
394 return glsl_type::error_type;
395 }
396
397 /* From page 50 (page 56 of PDF) of GLSL 1.30 spec:
398 *
399 * "The bitwise operators and (&), exclusive-or (^), and inclusive-or
400 * (|). The operands must be of type signed or unsigned integers or
401 * integer vectors."
402 */
403 if (!type_a->is_integer()) {
404 _mesa_glsl_error(loc, state, "LHS of `%s' must be an integer",
405 ast_expression::operator_string(op));
406 return glsl_type::error_type;
407 }
408 if (!type_b->is_integer()) {
409 _mesa_glsl_error(loc, state, "RHS of `%s' must be an integer",
410 ast_expression::operator_string(op));
411 return glsl_type::error_type;
412 }
413
414 /* "The fundamental types of the operands (signed or unsigned) must
415 * match,"
416 */
417 if (type_a->base_type != type_b->base_type) {
418 _mesa_glsl_error(loc, state, "operands of `%s' must have the same "
419 "base type", ast_expression::operator_string(op));
420 return glsl_type::error_type;
421 }
422
423 /* "The operands cannot be vectors of differing size." */
424 if (type_a->is_vector() &&
425 type_b->is_vector() &&
426 type_a->vector_elements != type_b->vector_elements) {
427 _mesa_glsl_error(loc, state, "operands of `%s' cannot be vectors of "
428 "different sizes", ast_expression::operator_string(op));
429 return glsl_type::error_type;
430 }
431
432 /* "If one operand is a scalar and the other a vector, the scalar is
433 * applied component-wise to the vector, resulting in the same type as
434 * the vector. The fundamental types of the operands [...] will be the
435 * resulting fundamental type."
436 */
437 if (type_a->is_scalar())
438 return type_b;
439 else
440 return type_a;
441 }
442
443 static const struct glsl_type *
444 modulus_result_type(const struct glsl_type *type_a,
445 const struct glsl_type *type_b,
446 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
447 {
448 if (!state->check_version(130, 300, loc, "operator '%%' is reserved")) {
449 return glsl_type::error_type;
450 }
451
452 /* From GLSL 1.50 spec, page 56:
453 * "The operator modulus (%) operates on signed or unsigned integers or
454 * integer vectors. The operand types must both be signed or both be
455 * unsigned."
456 */
457 if (!type_a->is_integer()) {
458 _mesa_glsl_error(loc, state, "LHS of operator %% must be an integer.");
459 return glsl_type::error_type;
460 }
461 if (!type_b->is_integer()) {
462 _mesa_glsl_error(loc, state, "RHS of operator %% must be an integer.");
463 return glsl_type::error_type;
464 }
465 if (type_a->base_type != type_b->base_type) {
466 _mesa_glsl_error(loc, state,
467 "operands of %% must have the same base type");
468 return glsl_type::error_type;
469 }
470
471 /* "The operands cannot be vectors of differing size. If one operand is
472 * a scalar and the other vector, then the scalar is applied component-
473 * wise to the vector, resulting in the same type as the vector. If both
474 * are vectors of the same size, the result is computed component-wise."
475 */
476 if (type_a->is_vector()) {
477 if (!type_b->is_vector()
478 || (type_a->vector_elements == type_b->vector_elements))
479 return type_a;
480 } else
481 return type_b;
482
483 /* "The operator modulus (%) is not defined for any other data types
484 * (non-integer types)."
485 */
486 _mesa_glsl_error(loc, state, "type mismatch");
487 return glsl_type::error_type;
488 }
489
490
491 static const struct glsl_type *
492 relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
493 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
494 {
495 const glsl_type *type_a = value_a->type;
496 const glsl_type *type_b = value_b->type;
497
498 /* From GLSL 1.50 spec, page 56:
499 * "The relational operators greater than (>), less than (<), greater
500 * than or equal (>=), and less than or equal (<=) operate only on
501 * scalar integer and scalar floating-point expressions."
502 */
503 if (!type_a->is_numeric()
504 || !type_b->is_numeric()
505 || !type_a->is_scalar()
506 || !type_b->is_scalar()) {
507 _mesa_glsl_error(loc, state,
508 "Operands to relational operators must be scalar and "
509 "numeric");
510 return glsl_type::error_type;
511 }
512
513 /* "Either the operands' types must match, or the conversions from
514 * Section 4.1.10 "Implicit Conversions" will be applied to the integer
515 * operand, after which the types must match."
516 */
517 if (!apply_implicit_conversion(type_a, value_b, state)
518 && !apply_implicit_conversion(type_b, value_a, state)) {
519 _mesa_glsl_error(loc, state,
520 "Could not implicitly convert operands to "
521 "relational operator");
522 return glsl_type::error_type;
523 }
524 type_a = value_a->type;
525 type_b = value_b->type;
526
527 if (type_a->base_type != type_b->base_type) {
528 _mesa_glsl_error(loc, state, "base type mismatch");
529 return glsl_type::error_type;
530 }
531
532 /* "The result is scalar Boolean."
533 */
534 return glsl_type::bool_type;
535 }
536
537 /**
538 * \brief Return the result type of a bit-shift operation.
539 *
540 * If the given types to the bit-shift operator are invalid, return
541 * glsl_type::error_type.
542 *
543 * \param type_a Type of LHS of bit-shift op
544 * \param type_b Type of RHS of bit-shift op
545 */
546 static const struct glsl_type *
547 shift_result_type(const struct glsl_type *type_a,
548 const struct glsl_type *type_b,
549 ast_operators op,
550 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
551 {
552 if (!state->check_bitwise_operations_allowed(loc)) {
553 return glsl_type::error_type;
554 }
555
556 /* From page 50 (page 56 of the PDF) of the GLSL 1.30 spec:
557 *
558 * "The shift operators (<<) and (>>). For both operators, the operands
559 * must be signed or unsigned integers or integer vectors. One operand
560 * can be signed while the other is unsigned."
561 */
562 if (!type_a->is_integer()) {
563 _mesa_glsl_error(loc, state, "LHS of operator %s must be an integer or "
564 "integer vector", ast_expression::operator_string(op));
565 return glsl_type::error_type;
566
567 }
568 if (!type_b->is_integer()) {
569 _mesa_glsl_error(loc, state, "RHS of operator %s must be an integer or "
570 "integer vector", ast_expression::operator_string(op));
571 return glsl_type::error_type;
572 }
573
574 /* "If the first operand is a scalar, the second operand has to be
575 * a scalar as well."
576 */
577 if (type_a->is_scalar() && !type_b->is_scalar()) {
578 _mesa_glsl_error(loc, state, "If the first operand of %s is scalar, the "
579 "second must be scalar as well",
580 ast_expression::operator_string(op));
581 return glsl_type::error_type;
582 }
583
584 /* If both operands are vectors, check that they have same number of
585 * elements.
586 */
587 if (type_a->is_vector() &&
588 type_b->is_vector() &&
589 type_a->vector_elements != type_b->vector_elements) {
590 _mesa_glsl_error(loc, state, "Vector operands to operator %s must "
591 "have same number of elements",
592 ast_expression::operator_string(op));
593 return glsl_type::error_type;
594 }
595
596 /* "In all cases, the resulting type will be the same type as the left
597 * operand."
598 */
599 return type_a;
600 }
601
602 /**
603 * Validates that a value can be assigned to a location with a specified type
604 *
605 * Validates that \c rhs can be assigned to some location. If the types are
606 * not an exact match but an automatic conversion is possible, \c rhs will be
607 * converted.
608 *
609 * \return
610 * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
611 * Otherwise the actual RHS to be assigned will be returned. This may be
612 * \c rhs, or it may be \c rhs after some type conversion.
613 *
614 * \note
615 * In addition to being used for assignments, this function is used to
616 * type-check return values.
617 */
618 ir_rvalue *
619 validate_assignment(struct _mesa_glsl_parse_state *state,
620 const glsl_type *lhs_type, ir_rvalue *rhs,
621 bool is_initializer)
622 {
623 /* If there is already some error in the RHS, just return it. Anything
624 * else will lead to an avalanche of error message back to the user.
625 */
626 if (rhs->type->is_error())
627 return rhs;
628
629 /* If the types are identical, the assignment can trivially proceed.
630 */
631 if (rhs->type == lhs_type)
632 return rhs;
633
634 /* If the array element types are the same and the size of the LHS is zero,
635 * the assignment is okay for initializers embedded in variable
636 * declarations.
637 *
638 * Note: Whole-array assignments are not permitted in GLSL 1.10, but this
639 * is handled by ir_dereference::is_lvalue.
640 */
641 if (is_initializer && lhs_type->is_array() && rhs->type->is_array()
642 && (lhs_type->element_type() == rhs->type->element_type())
643 && (lhs_type->array_size() == 0)) {
644 return rhs;
645 }
646
647 /* Check for implicit conversion in GLSL 1.20 */
648 if (apply_implicit_conversion(lhs_type, rhs, state)) {
649 if (rhs->type == lhs_type)
650 return rhs;
651 }
652
653 return NULL;
654 }
655
656 static void
657 mark_whole_array_access(ir_rvalue *access)
658 {
659 ir_dereference_variable *deref = access->as_dereference_variable();
660
661 if (deref && deref->var) {
662 deref->var->max_array_access = deref->type->length - 1;
663 }
664 }
665
666 ir_rvalue *
667 do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state,
668 const char *non_lvalue_description,
669 ir_rvalue *lhs, ir_rvalue *rhs, bool is_initializer,
670 YYLTYPE lhs_loc)
671 {
672 void *ctx = state;
673 bool error_emitted = (lhs->type->is_error() || rhs->type->is_error());
674
675 ir_variable *lhs_var = lhs->variable_referenced();
676 if (lhs_var)
677 lhs_var->assigned = true;
678
679 if (!error_emitted) {
680 if (non_lvalue_description != NULL) {
681 _mesa_glsl_error(&lhs_loc, state,
682 "assignment to %s",
683 non_lvalue_description);
684 error_emitted = true;
685 } else if (lhs->variable_referenced() != NULL
686 && lhs->variable_referenced()->read_only) {
687 _mesa_glsl_error(&lhs_loc, state,
688 "assignment to read-only variable '%s'",
689 lhs->variable_referenced()->name);
690 error_emitted = true;
691
692 } else if (lhs->type->is_array() &&
693 !state->check_version(120, 300, &lhs_loc,
694 "whole array assignment forbidden")) {
695 /* From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
696 *
697 * "Other binary or unary expressions, non-dereferenced
698 * arrays, function names, swizzles with repeated fields,
699 * and constants cannot be l-values."
700 *
701 * The restriction on arrays is lifted in GLSL 1.20 and GLSL ES 3.00.
702 */
703 error_emitted = true;
704 } else if (!lhs->is_lvalue()) {
705 _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment");
706 error_emitted = true;
707 }
708 }
709
710 ir_rvalue *new_rhs =
711 validate_assignment(state, lhs->type, rhs, is_initializer);
712 if (new_rhs == NULL) {
713 _mesa_glsl_error(& lhs_loc, state, "type mismatch");
714 } else {
715 rhs = new_rhs;
716
717 /* If the LHS array was not declared with a size, it takes it size from
718 * the RHS. If the LHS is an l-value and a whole array, it must be a
719 * dereference of a variable. Any other case would require that the LHS
720 * is either not an l-value or not a whole array.
721 */
722 if (lhs->type->array_size() == 0) {
723 ir_dereference *const d = lhs->as_dereference();
724
725 assert(d != NULL);
726
727 ir_variable *const var = d->variable_referenced();
728
729 assert(var != NULL);
730
731 if (var->max_array_access >= unsigned(rhs->type->array_size())) {
732 /* FINISHME: This should actually log the location of the RHS. */
733 _mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to "
734 "previous access",
735 var->max_array_access);
736 }
737
738 var->type = glsl_type::get_array_instance(lhs->type->element_type(),
739 rhs->type->array_size());
740 d->type = var->type;
741 }
742 mark_whole_array_access(rhs);
743 mark_whole_array_access(lhs);
744 }
745
746 /* Most callers of do_assignment (assign, add_assign, pre_inc/dec,
747 * but not post_inc) need the converted assigned value as an rvalue
748 * to handle things like:
749 *
750 * i = j += 1;
751 *
752 * So we always just store the computed value being assigned to a
753 * temporary and return a deref of that temporary. If the rvalue
754 * ends up not being used, the temp will get copy-propagated out.
755 */
756 ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp",
757 ir_var_temporary);
758 ir_dereference_variable *deref_var = new(ctx) ir_dereference_variable(var);
759 instructions->push_tail(var);
760 instructions->push_tail(new(ctx) ir_assignment(deref_var, rhs));
761 deref_var = new(ctx) ir_dereference_variable(var);
762
763 if (!error_emitted)
764 instructions->push_tail(new(ctx) ir_assignment(lhs, deref_var));
765
766 return new(ctx) ir_dereference_variable(var);
767 }
768
769 static ir_rvalue *
770 get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue)
771 {
772 void *ctx = ralloc_parent(lvalue);
773 ir_variable *var;
774
775 var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp",
776 ir_var_temporary);
777 instructions->push_tail(var);
778 var->mode = ir_var_auto;
779
780 instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
781 lvalue));
782
783 return new(ctx) ir_dereference_variable(var);
784 }
785
786
787 ir_rvalue *
788 ast_node::hir(exec_list *instructions,
789 struct _mesa_glsl_parse_state *state)
790 {
791 (void) instructions;
792 (void) state;
793
794 return NULL;
795 }
796
797 static ir_rvalue *
798 do_comparison(void *mem_ctx, int operation, ir_rvalue *op0, ir_rvalue *op1)
799 {
800 int join_op;
801 ir_rvalue *cmp = NULL;
802
803 if (operation == ir_binop_all_equal)
804 join_op = ir_binop_logic_and;
805 else
806 join_op = ir_binop_logic_or;
807
808 switch (op0->type->base_type) {
809 case GLSL_TYPE_FLOAT:
810 case GLSL_TYPE_UINT:
811 case GLSL_TYPE_INT:
812 case GLSL_TYPE_BOOL:
813 return new(mem_ctx) ir_expression(operation, op0, op1);
814
815 case GLSL_TYPE_ARRAY: {
816 for (unsigned int i = 0; i < op0->type->length; i++) {
817 ir_rvalue *e0, *e1, *result;
818
819 e0 = new(mem_ctx) ir_dereference_array(op0->clone(mem_ctx, NULL),
820 new(mem_ctx) ir_constant(i));
821 e1 = new(mem_ctx) ir_dereference_array(op1->clone(mem_ctx, NULL),
822 new(mem_ctx) ir_constant(i));
823 result = do_comparison(mem_ctx, operation, e0, e1);
824
825 if (cmp) {
826 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
827 } else {
828 cmp = result;
829 }
830 }
831
832 mark_whole_array_access(op0);
833 mark_whole_array_access(op1);
834 break;
835 }
836
837 case GLSL_TYPE_STRUCT: {
838 for (unsigned int i = 0; i < op0->type->length; i++) {
839 ir_rvalue *e0, *e1, *result;
840 const char *field_name = op0->type->fields.structure[i].name;
841
842 e0 = new(mem_ctx) ir_dereference_record(op0->clone(mem_ctx, NULL),
843 field_name);
844 e1 = new(mem_ctx) ir_dereference_record(op1->clone(mem_ctx, NULL),
845 field_name);
846 result = do_comparison(mem_ctx, operation, e0, e1);
847
848 if (cmp) {
849 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
850 } else {
851 cmp = result;
852 }
853 }
854 break;
855 }
856
857 case GLSL_TYPE_ERROR:
858 case GLSL_TYPE_VOID:
859 case GLSL_TYPE_SAMPLER:
860 /* I assume a comparison of a struct containing a sampler just
861 * ignores the sampler present in the type.
862 */
863 break;
864
865 default:
866 assert(!"Should not get here.");
867 break;
868 }
869
870 if (cmp == NULL)
871 cmp = new(mem_ctx) ir_constant(true);
872
873 return cmp;
874 }
875
876 /* For logical operations, we want to ensure that the operands are
877 * scalar booleans. If it isn't, emit an error and return a constant
878 * boolean to avoid triggering cascading error messages.
879 */
880 ir_rvalue *
881 get_scalar_boolean_operand(exec_list *instructions,
882 struct _mesa_glsl_parse_state *state,
883 ast_expression *parent_expr,
884 int operand,
885 const char *operand_name,
886 bool *error_emitted)
887 {
888 ast_expression *expr = parent_expr->subexpressions[operand];
889 void *ctx = state;
890 ir_rvalue *val = expr->hir(instructions, state);
891
892 if (val->type->is_boolean() && val->type->is_scalar())
893 return val;
894
895 if (!*error_emitted) {
896 YYLTYPE loc = expr->get_location();
897 _mesa_glsl_error(&loc, state, "%s of `%s' must be scalar boolean",
898 operand_name,
899 parent_expr->operator_string(parent_expr->oper));
900 *error_emitted = true;
901 }
902
903 return new(ctx) ir_constant(true);
904 }
905
906 /**
907 * If name refers to a builtin array whose maximum allowed size is less than
908 * size, report an error and return true. Otherwise return false.
909 */
910 static bool
911 check_builtin_array_max_size(const char *name, unsigned size,
912 YYLTYPE loc, struct _mesa_glsl_parse_state *state)
913 {
914 if ((strcmp("gl_TexCoord", name) == 0)
915 && (size > state->Const.MaxTextureCoords)) {
916 /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec:
917 *
918 * "The size [of gl_TexCoord] can be at most
919 * gl_MaxTextureCoords."
920 */
921 _mesa_glsl_error(&loc, state, "`gl_TexCoord' array size cannot "
922 "be larger than gl_MaxTextureCoords (%u)\n",
923 state->Const.MaxTextureCoords);
924 return true;
925 } else if (strcmp("gl_ClipDistance", name) == 0
926 && size > state->Const.MaxClipPlanes) {
927 /* From section 7.1 (Vertex Shader Special Variables) of the
928 * GLSL 1.30 spec:
929 *
930 * "The gl_ClipDistance array is predeclared as unsized and
931 * must be sized by the shader either redeclaring it with a
932 * size or indexing it only with integral constant
933 * expressions. ... The size can be at most
934 * gl_MaxClipDistances."
935 */
936 _mesa_glsl_error(&loc, state, "`gl_ClipDistance' array size cannot "
937 "be larger than gl_MaxClipDistances (%u)\n",
938 state->Const.MaxClipPlanes);
939 return true;
940 }
941 return false;
942 }
943
944 /**
945 * Create the constant 1, of a which is appropriate for incrementing and
946 * decrementing values of the given GLSL type. For example, if type is vec4,
947 * this creates a constant value of 1.0 having type float.
948 *
949 * If the given type is invalid for increment and decrement operators, return
950 * a floating point 1--the error will be detected later.
951 */
952 static ir_rvalue *
953 constant_one_for_inc_dec(void *ctx, const glsl_type *type)
954 {
955 switch (type->base_type) {
956 case GLSL_TYPE_UINT:
957 return new(ctx) ir_constant((unsigned) 1);
958 case GLSL_TYPE_INT:
959 return new(ctx) ir_constant(1);
960 default:
961 case GLSL_TYPE_FLOAT:
962 return new(ctx) ir_constant(1.0f);
963 }
964 }
965
966 ir_rvalue *
967 ast_expression::hir(exec_list *instructions,
968 struct _mesa_glsl_parse_state *state)
969 {
970 void *ctx = state;
971 static const int operations[AST_NUM_OPERATORS] = {
972 -1, /* ast_assign doesn't convert to ir_expression. */
973 -1, /* ast_plus doesn't convert to ir_expression. */
974 ir_unop_neg,
975 ir_binop_add,
976 ir_binop_sub,
977 ir_binop_mul,
978 ir_binop_div,
979 ir_binop_mod,
980 ir_binop_lshift,
981 ir_binop_rshift,
982 ir_binop_less,
983 ir_binop_greater,
984 ir_binop_lequal,
985 ir_binop_gequal,
986 ir_binop_all_equal,
987 ir_binop_any_nequal,
988 ir_binop_bit_and,
989 ir_binop_bit_xor,
990 ir_binop_bit_or,
991 ir_unop_bit_not,
992 ir_binop_logic_and,
993 ir_binop_logic_xor,
994 ir_binop_logic_or,
995 ir_unop_logic_not,
996
997 /* Note: The following block of expression types actually convert
998 * to multiple IR instructions.
999 */
1000 ir_binop_mul, /* ast_mul_assign */
1001 ir_binop_div, /* ast_div_assign */
1002 ir_binop_mod, /* ast_mod_assign */
1003 ir_binop_add, /* ast_add_assign */
1004 ir_binop_sub, /* ast_sub_assign */
1005 ir_binop_lshift, /* ast_ls_assign */
1006 ir_binop_rshift, /* ast_rs_assign */
1007 ir_binop_bit_and, /* ast_and_assign */
1008 ir_binop_bit_xor, /* ast_xor_assign */
1009 ir_binop_bit_or, /* ast_or_assign */
1010
1011 -1, /* ast_conditional doesn't convert to ir_expression. */
1012 ir_binop_add, /* ast_pre_inc. */
1013 ir_binop_sub, /* ast_pre_dec. */
1014 ir_binop_add, /* ast_post_inc. */
1015 ir_binop_sub, /* ast_post_dec. */
1016 -1, /* ast_field_selection doesn't conv to ir_expression. */
1017 -1, /* ast_array_index doesn't convert to ir_expression. */
1018 -1, /* ast_function_call doesn't conv to ir_expression. */
1019 -1, /* ast_identifier doesn't convert to ir_expression. */
1020 -1, /* ast_int_constant doesn't convert to ir_expression. */
1021 -1, /* ast_uint_constant doesn't conv to ir_expression. */
1022 -1, /* ast_float_constant doesn't conv to ir_expression. */
1023 -1, /* ast_bool_constant doesn't conv to ir_expression. */
1024 -1, /* ast_sequence doesn't convert to ir_expression. */
1025 };
1026 ir_rvalue *result = NULL;
1027 ir_rvalue *op[3];
1028 const struct glsl_type *type; /* a temporary variable for switch cases */
1029 bool error_emitted = false;
1030 YYLTYPE loc;
1031
1032 loc = this->get_location();
1033
1034 switch (this->oper) {
1035 case ast_assign: {
1036 op[0] = this->subexpressions[0]->hir(instructions, state);
1037 op[1] = this->subexpressions[1]->hir(instructions, state);
1038
1039 result = do_assignment(instructions, state,
1040 this->subexpressions[0]->non_lvalue_description,
1041 op[0], op[1], false,
1042 this->subexpressions[0]->get_location());
1043 error_emitted = result->type->is_error();
1044 break;
1045 }
1046
1047 case ast_plus:
1048 op[0] = this->subexpressions[0]->hir(instructions, state);
1049
1050 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1051
1052 error_emitted = type->is_error();
1053
1054 result = op[0];
1055 break;
1056
1057 case ast_neg:
1058 op[0] = this->subexpressions[0]->hir(instructions, state);
1059
1060 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1061
1062 error_emitted = type->is_error();
1063
1064 result = new(ctx) ir_expression(operations[this->oper], type,
1065 op[0], NULL);
1066 break;
1067
1068 case ast_add:
1069 case ast_sub:
1070 case ast_mul:
1071 case ast_div:
1072 op[0] = this->subexpressions[0]->hir(instructions, state);
1073 op[1] = this->subexpressions[1]->hir(instructions, state);
1074
1075 type = arithmetic_result_type(op[0], op[1],
1076 (this->oper == ast_mul),
1077 state, & loc);
1078 error_emitted = type->is_error();
1079
1080 result = new(ctx) ir_expression(operations[this->oper], type,
1081 op[0], op[1]);
1082 break;
1083
1084 case ast_mod:
1085 op[0] = this->subexpressions[0]->hir(instructions, state);
1086 op[1] = this->subexpressions[1]->hir(instructions, state);
1087
1088 type = modulus_result_type(op[0]->type, op[1]->type, state, & loc);
1089
1090 assert(operations[this->oper] == ir_binop_mod);
1091
1092 result = new(ctx) ir_expression(operations[this->oper], type,
1093 op[0], op[1]);
1094 error_emitted = type->is_error();
1095 break;
1096
1097 case ast_lshift:
1098 case ast_rshift:
1099 if (!state->check_bitwise_operations_allowed(&loc)) {
1100 error_emitted = true;
1101 }
1102
1103 op[0] = this->subexpressions[0]->hir(instructions, state);
1104 op[1] = this->subexpressions[1]->hir(instructions, state);
1105 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1106 &loc);
1107 result = new(ctx) ir_expression(operations[this->oper], type,
1108 op[0], op[1]);
1109 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1110 break;
1111
1112 case ast_less:
1113 case ast_greater:
1114 case ast_lequal:
1115 case ast_gequal:
1116 op[0] = this->subexpressions[0]->hir(instructions, state);
1117 op[1] = this->subexpressions[1]->hir(instructions, state);
1118
1119 type = relational_result_type(op[0], op[1], state, & loc);
1120
1121 /* The relational operators must either generate an error or result
1122 * in a scalar boolean. See page 57 of the GLSL 1.50 spec.
1123 */
1124 assert(type->is_error()
1125 || ((type->base_type == GLSL_TYPE_BOOL)
1126 && type->is_scalar()));
1127
1128 result = new(ctx) ir_expression(operations[this->oper], type,
1129 op[0], op[1]);
1130 error_emitted = type->is_error();
1131 break;
1132
1133 case ast_nequal:
1134 case ast_equal:
1135 op[0] = this->subexpressions[0]->hir(instructions, state);
1136 op[1] = this->subexpressions[1]->hir(instructions, state);
1137
1138 /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
1139 *
1140 * "The equality operators equal (==), and not equal (!=)
1141 * operate on all types. They result in a scalar Boolean. If
1142 * the operand types do not match, then there must be a
1143 * conversion from Section 4.1.10 "Implicit Conversions"
1144 * applied to one operand that can make them match, in which
1145 * case this conversion is done."
1146 */
1147 if ((!apply_implicit_conversion(op[0]->type, op[1], state)
1148 && !apply_implicit_conversion(op[1]->type, op[0], state))
1149 || (op[0]->type != op[1]->type)) {
1150 _mesa_glsl_error(& loc, state, "operands of `%s' must have the same "
1151 "type", (this->oper == ast_equal) ? "==" : "!=");
1152 error_emitted = true;
1153 } else if ((op[0]->type->is_array() || op[1]->type->is_array()) &&
1154 !state->check_version(120, 300, &loc,
1155 "array comparisons forbidden")) {
1156 error_emitted = true;
1157 }
1158
1159 if (error_emitted) {
1160 result = new(ctx) ir_constant(false);
1161 } else {
1162 result = do_comparison(ctx, operations[this->oper], op[0], op[1]);
1163 assert(result->type == glsl_type::bool_type);
1164 }
1165 break;
1166
1167 case ast_bit_and:
1168 case ast_bit_xor:
1169 case ast_bit_or:
1170 op[0] = this->subexpressions[0]->hir(instructions, state);
1171 op[1] = this->subexpressions[1]->hir(instructions, state);
1172 type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
1173 state, &loc);
1174 result = new(ctx) ir_expression(operations[this->oper], type,
1175 op[0], op[1]);
1176 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1177 break;
1178
1179 case ast_bit_not:
1180 op[0] = this->subexpressions[0]->hir(instructions, state);
1181
1182 if (!state->check_bitwise_operations_allowed(&loc)) {
1183 error_emitted = true;
1184 }
1185
1186 if (!op[0]->type->is_integer()) {
1187 _mesa_glsl_error(&loc, state, "operand of `~' must be an integer");
1188 error_emitted = true;
1189 }
1190
1191 type = error_emitted ? glsl_type::error_type : op[0]->type;
1192 result = new(ctx) ir_expression(ir_unop_bit_not, type, op[0], NULL);
1193 break;
1194
1195 case ast_logic_and: {
1196 exec_list rhs_instructions;
1197 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1198 "LHS", &error_emitted);
1199 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1200 "RHS", &error_emitted);
1201
1202 if (rhs_instructions.is_empty()) {
1203 result = new(ctx) ir_expression(ir_binop_logic_and, op[0], op[1]);
1204 type = result->type;
1205 } else {
1206 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1207 "and_tmp",
1208 ir_var_temporary);
1209 instructions->push_tail(tmp);
1210
1211 ir_if *const stmt = new(ctx) ir_if(op[0]);
1212 instructions->push_tail(stmt);
1213
1214 stmt->then_instructions.append_list(&rhs_instructions);
1215 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1216 ir_assignment *const then_assign =
1217 new(ctx) ir_assignment(then_deref, op[1]);
1218 stmt->then_instructions.push_tail(then_assign);
1219
1220 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1221 ir_assignment *const else_assign =
1222 new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false));
1223 stmt->else_instructions.push_tail(else_assign);
1224
1225 result = new(ctx) ir_dereference_variable(tmp);
1226 type = tmp->type;
1227 }
1228 break;
1229 }
1230
1231 case ast_logic_or: {
1232 exec_list rhs_instructions;
1233 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1234 "LHS", &error_emitted);
1235 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1236 "RHS", &error_emitted);
1237
1238 if (rhs_instructions.is_empty()) {
1239 result = new(ctx) ir_expression(ir_binop_logic_or, op[0], op[1]);
1240 type = result->type;
1241 } else {
1242 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1243 "or_tmp",
1244 ir_var_temporary);
1245 instructions->push_tail(tmp);
1246
1247 ir_if *const stmt = new(ctx) ir_if(op[0]);
1248 instructions->push_tail(stmt);
1249
1250 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1251 ir_assignment *const then_assign =
1252 new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true));
1253 stmt->then_instructions.push_tail(then_assign);
1254
1255 stmt->else_instructions.append_list(&rhs_instructions);
1256 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1257 ir_assignment *const else_assign =
1258 new(ctx) ir_assignment(else_deref, op[1]);
1259 stmt->else_instructions.push_tail(else_assign);
1260
1261 result = new(ctx) ir_dereference_variable(tmp);
1262 type = tmp->type;
1263 }
1264 break;
1265 }
1266
1267 case ast_logic_xor:
1268 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1269 *
1270 * "The logical binary operators and (&&), or ( | | ), and
1271 * exclusive or (^^). They operate only on two Boolean
1272 * expressions and result in a Boolean expression."
1273 */
1274 op[0] = get_scalar_boolean_operand(instructions, state, this, 0, "LHS",
1275 &error_emitted);
1276 op[1] = get_scalar_boolean_operand(instructions, state, this, 1, "RHS",
1277 &error_emitted);
1278
1279 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1280 op[0], op[1]);
1281 break;
1282
1283 case ast_logic_not:
1284 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1285 "operand", &error_emitted);
1286
1287 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1288 op[0], NULL);
1289 break;
1290
1291 case ast_mul_assign:
1292 case ast_div_assign:
1293 case ast_add_assign:
1294 case ast_sub_assign: {
1295 op[0] = this->subexpressions[0]->hir(instructions, state);
1296 op[1] = this->subexpressions[1]->hir(instructions, state);
1297
1298 type = arithmetic_result_type(op[0], op[1],
1299 (this->oper == ast_mul_assign),
1300 state, & loc);
1301
1302 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1303 op[0], op[1]);
1304
1305 result = do_assignment(instructions, state,
1306 this->subexpressions[0]->non_lvalue_description,
1307 op[0]->clone(ctx, NULL), temp_rhs, false,
1308 this->subexpressions[0]->get_location());
1309 error_emitted = (op[0]->type->is_error());
1310
1311 /* GLSL 1.10 does not allow array assignment. However, we don't have to
1312 * explicitly test for this because none of the binary expression
1313 * operators allow array operands either.
1314 */
1315
1316 break;
1317 }
1318
1319 case ast_mod_assign: {
1320 op[0] = this->subexpressions[0]->hir(instructions, state);
1321 op[1] = this->subexpressions[1]->hir(instructions, state);
1322
1323 type = modulus_result_type(op[0]->type, op[1]->type, state, & loc);
1324
1325 assert(operations[this->oper] == ir_binop_mod);
1326
1327 ir_rvalue *temp_rhs;
1328 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1329 op[0], op[1]);
1330
1331 result = do_assignment(instructions, state,
1332 this->subexpressions[0]->non_lvalue_description,
1333 op[0]->clone(ctx, NULL), temp_rhs, false,
1334 this->subexpressions[0]->get_location());
1335 error_emitted = type->is_error();
1336 break;
1337 }
1338
1339 case ast_ls_assign:
1340 case ast_rs_assign: {
1341 op[0] = this->subexpressions[0]->hir(instructions, state);
1342 op[1] = this->subexpressions[1]->hir(instructions, state);
1343 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1344 &loc);
1345 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1346 type, op[0], op[1]);
1347 result = do_assignment(instructions, state,
1348 this->subexpressions[0]->non_lvalue_description,
1349 op[0]->clone(ctx, NULL), temp_rhs, false,
1350 this->subexpressions[0]->get_location());
1351 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1352 break;
1353 }
1354
1355 case ast_and_assign:
1356 case ast_xor_assign:
1357 case ast_or_assign: {
1358 op[0] = this->subexpressions[0]->hir(instructions, state);
1359 op[1] = this->subexpressions[1]->hir(instructions, state);
1360 type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
1361 state, &loc);
1362 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1363 type, op[0], op[1]);
1364 result = do_assignment(instructions, state,
1365 this->subexpressions[0]->non_lvalue_description,
1366 op[0]->clone(ctx, NULL), temp_rhs, false,
1367 this->subexpressions[0]->get_location());
1368 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1369 break;
1370 }
1371
1372 case ast_conditional: {
1373 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1374 *
1375 * "The ternary selection operator (?:). It operates on three
1376 * expressions (exp1 ? exp2 : exp3). This operator evaluates the
1377 * first expression, which must result in a scalar Boolean."
1378 */
1379 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1380 "condition", &error_emitted);
1381
1382 /* The :? operator is implemented by generating an anonymous temporary
1383 * followed by an if-statement. The last instruction in each branch of
1384 * the if-statement assigns a value to the anonymous temporary. This
1385 * temporary is the r-value of the expression.
1386 */
1387 exec_list then_instructions;
1388 exec_list else_instructions;
1389
1390 op[1] = this->subexpressions[1]->hir(&then_instructions, state);
1391 op[2] = this->subexpressions[2]->hir(&else_instructions, state);
1392
1393 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1394 *
1395 * "The second and third expressions can be any type, as
1396 * long their types match, or there is a conversion in
1397 * Section 4.1.10 "Implicit Conversions" that can be applied
1398 * to one of the expressions to make their types match. This
1399 * resulting matching type is the type of the entire
1400 * expression."
1401 */
1402 if ((!apply_implicit_conversion(op[1]->type, op[2], state)
1403 && !apply_implicit_conversion(op[2]->type, op[1], state))
1404 || (op[1]->type != op[2]->type)) {
1405 YYLTYPE loc = this->subexpressions[1]->get_location();
1406
1407 _mesa_glsl_error(& loc, state, "Second and third operands of ?: "
1408 "operator must have matching types.");
1409 error_emitted = true;
1410 type = glsl_type::error_type;
1411 } else {
1412 type = op[1]->type;
1413 }
1414
1415 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1416 *
1417 * "The second and third expressions must be the same type, but can
1418 * be of any type other than an array."
1419 */
1420 if (type->is_array() &&
1421 !state->check_version(120, 300, &loc,
1422 "Second and third operands of ?: operator "
1423 "cannot be arrays")) {
1424 error_emitted = true;
1425 }
1426
1427 ir_constant *cond_val = op[0]->constant_expression_value();
1428 ir_constant *then_val = op[1]->constant_expression_value();
1429 ir_constant *else_val = op[2]->constant_expression_value();
1430
1431 if (then_instructions.is_empty()
1432 && else_instructions.is_empty()
1433 && (cond_val != NULL) && (then_val != NULL) && (else_val != NULL)) {
1434 result = (cond_val->value.b[0]) ? then_val : else_val;
1435 } else {
1436 ir_variable *const tmp =
1437 new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary);
1438 instructions->push_tail(tmp);
1439
1440 ir_if *const stmt = new(ctx) ir_if(op[0]);
1441 instructions->push_tail(stmt);
1442
1443 then_instructions.move_nodes_to(& stmt->then_instructions);
1444 ir_dereference *const then_deref =
1445 new(ctx) ir_dereference_variable(tmp);
1446 ir_assignment *const then_assign =
1447 new(ctx) ir_assignment(then_deref, op[1]);
1448 stmt->then_instructions.push_tail(then_assign);
1449
1450 else_instructions.move_nodes_to(& stmt->else_instructions);
1451 ir_dereference *const else_deref =
1452 new(ctx) ir_dereference_variable(tmp);
1453 ir_assignment *const else_assign =
1454 new(ctx) ir_assignment(else_deref, op[2]);
1455 stmt->else_instructions.push_tail(else_assign);
1456
1457 result = new(ctx) ir_dereference_variable(tmp);
1458 }
1459 break;
1460 }
1461
1462 case ast_pre_inc:
1463 case ast_pre_dec: {
1464 this->non_lvalue_description = (this->oper == ast_pre_inc)
1465 ? "pre-increment operation" : "pre-decrement operation";
1466
1467 op[0] = this->subexpressions[0]->hir(instructions, state);
1468 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1469
1470 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1471
1472 ir_rvalue *temp_rhs;
1473 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1474 op[0], op[1]);
1475
1476 result = do_assignment(instructions, state,
1477 this->subexpressions[0]->non_lvalue_description,
1478 op[0]->clone(ctx, NULL), temp_rhs, false,
1479 this->subexpressions[0]->get_location());
1480 error_emitted = op[0]->type->is_error();
1481 break;
1482 }
1483
1484 case ast_post_inc:
1485 case ast_post_dec: {
1486 this->non_lvalue_description = (this->oper == ast_post_inc)
1487 ? "post-increment operation" : "post-decrement operation";
1488 op[0] = this->subexpressions[0]->hir(instructions, state);
1489 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1490
1491 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1492
1493 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1494
1495 ir_rvalue *temp_rhs;
1496 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1497 op[0], op[1]);
1498
1499 /* Get a temporary of a copy of the lvalue before it's modified.
1500 * This may get thrown away later.
1501 */
1502 result = get_lvalue_copy(instructions, op[0]->clone(ctx, NULL));
1503
1504 (void)do_assignment(instructions, state,
1505 this->subexpressions[0]->non_lvalue_description,
1506 op[0]->clone(ctx, NULL), temp_rhs, false,
1507 this->subexpressions[0]->get_location());
1508
1509 error_emitted = op[0]->type->is_error();
1510 break;
1511 }
1512
1513 case ast_field_selection:
1514 result = _mesa_ast_field_selection_to_hir(this, instructions, state);
1515 break;
1516
1517 case ast_array_index: {
1518 YYLTYPE index_loc = subexpressions[1]->get_location();
1519
1520 op[0] = subexpressions[0]->hir(instructions, state);
1521 op[1] = subexpressions[1]->hir(instructions, state);
1522
1523 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1524
1525 ir_rvalue *const array = op[0];
1526
1527 result = new(ctx) ir_dereference_array(op[0], op[1]);
1528
1529 /* Do not use op[0] after this point. Use array.
1530 */
1531 op[0] = NULL;
1532
1533
1534 if (error_emitted)
1535 break;
1536
1537 if (!array->type->is_array()
1538 && !array->type->is_matrix()
1539 && !array->type->is_vector()) {
1540 _mesa_glsl_error(& index_loc, state,
1541 "cannot dereference non-array / non-matrix / "
1542 "non-vector");
1543 error_emitted = true;
1544 }
1545
1546 if (!op[1]->type->is_integer()) {
1547 _mesa_glsl_error(& index_loc, state,
1548 "array index must be integer type");
1549 error_emitted = true;
1550 } else if (!op[1]->type->is_scalar()) {
1551 _mesa_glsl_error(& index_loc, state,
1552 "array index must be scalar");
1553 error_emitted = true;
1554 }
1555
1556 /* If the array index is a constant expression and the array has a
1557 * declared size, ensure that the access is in-bounds. If the array
1558 * index is not a constant expression, ensure that the array has a
1559 * declared size.
1560 */
1561 ir_constant *const const_index = op[1]->constant_expression_value();
1562 if (const_index != NULL) {
1563 const int idx = const_index->value.i[0];
1564 const char *type_name;
1565 unsigned bound = 0;
1566
1567 if (array->type->is_matrix()) {
1568 type_name = "matrix";
1569 } else if (array->type->is_vector()) {
1570 type_name = "vector";
1571 } else {
1572 type_name = "array";
1573 }
1574
1575 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec:
1576 *
1577 * "It is illegal to declare an array with a size, and then
1578 * later (in the same shader) index the same array with an
1579 * integral constant expression greater than or equal to the
1580 * declared size. It is also illegal to index an array with a
1581 * negative constant expression."
1582 */
1583 if (array->type->is_matrix()) {
1584 if (array->type->row_type()->vector_elements <= idx) {
1585 bound = array->type->row_type()->vector_elements;
1586 }
1587 } else if (array->type->is_vector()) {
1588 if (array->type->vector_elements <= idx) {
1589 bound = array->type->vector_elements;
1590 }
1591 } else {
1592 if ((array->type->array_size() > 0)
1593 && (array->type->array_size() <= idx)) {
1594 bound = array->type->array_size();
1595 }
1596 }
1597
1598 if (bound > 0) {
1599 _mesa_glsl_error(& loc, state, "%s index must be < %u",
1600 type_name, bound);
1601 error_emitted = true;
1602 } else if (idx < 0) {
1603 _mesa_glsl_error(& loc, state, "%s index must be >= 0",
1604 type_name);
1605 error_emitted = true;
1606 }
1607
1608 if (array->type->is_array()) {
1609 /* If the array is a variable dereference, it dereferences the
1610 * whole array, by definition. Use this to get the variable.
1611 *
1612 * FINISHME: Should some methods for getting / setting / testing
1613 * FINISHME: array access limits be added to ir_dereference?
1614 */
1615 ir_variable *const v = array->whole_variable_referenced();
1616 if ((v != NULL) && (unsigned(idx) > v->max_array_access)) {
1617 v->max_array_access = idx;
1618
1619 /* Check whether this access will, as a side effect, implicitly
1620 * cause the size of a built-in array to be too large.
1621 */
1622 if (check_builtin_array_max_size(v->name, idx+1, loc, state))
1623 error_emitted = true;
1624 }
1625 }
1626 } else if (array->type->array_size() == 0) {
1627 _mesa_glsl_error(&loc, state, "unsized array index must be constant");
1628 } else {
1629 if (array->type->is_array()) {
1630 /* whole_variable_referenced can return NULL if the array is a
1631 * member of a structure. In this case it is safe to not update
1632 * the max_array_access field because it is never used for fields
1633 * of structures.
1634 */
1635 ir_variable *v = array->whole_variable_referenced();
1636 if (v != NULL)
1637 v->max_array_access = array->type->array_size() - 1;
1638 }
1639 }
1640
1641 /* From page 23 (29 of the PDF) of the GLSL 1.30 spec:
1642 *
1643 * "Samplers aggregated into arrays within a shader (using square
1644 * brackets [ ]) can only be indexed with integral constant
1645 * expressions [...]."
1646 *
1647 * This restriction was added in GLSL 1.30. Shaders using earlier version
1648 * of the language should not be rejected by the compiler front-end for
1649 * using this construct. This allows useful things such as using a loop
1650 * counter as the index to an array of samplers. If the loop in unrolled,
1651 * the code should compile correctly. Instead, emit a warning.
1652 */
1653 if (array->type->is_array() &&
1654 array->type->element_type()->is_sampler() &&
1655 const_index == NULL) {
1656
1657 if (!state->is_version(130, 100)) {
1658 if (state->es_shader) {
1659 _mesa_glsl_warning(&loc, state,
1660 "sampler arrays indexed with non-constant "
1661 "expressions is optional in %s",
1662 state->get_version_string());
1663 } else {
1664 _mesa_glsl_warning(&loc, state,
1665 "sampler arrays indexed with non-constant "
1666 "expressions will be forbidden in GLSL 1.30 and "
1667 "later");
1668 }
1669 } else {
1670 _mesa_glsl_error(&loc, state,
1671 "sampler arrays indexed with non-constant "
1672 "expressions is forbidden in GLSL 1.30 and "
1673 "later");
1674 error_emitted = true;
1675 }
1676 }
1677
1678 if (error_emitted)
1679 result->type = glsl_type::error_type;
1680
1681 break;
1682 }
1683
1684 case ast_function_call:
1685 /* Should *NEVER* get here. ast_function_call should always be handled
1686 * by ast_function_expression::hir.
1687 */
1688 assert(0);
1689 break;
1690
1691 case ast_identifier: {
1692 /* ast_identifier can appear several places in a full abstract syntax
1693 * tree. This particular use must be at location specified in the grammar
1694 * as 'variable_identifier'.
1695 */
1696 ir_variable *var =
1697 state->symbols->get_variable(this->primary_expression.identifier);
1698
1699 if (var != NULL) {
1700 var->used = true;
1701 result = new(ctx) ir_dereference_variable(var);
1702 } else {
1703 _mesa_glsl_error(& loc, state, "`%s' undeclared",
1704 this->primary_expression.identifier);
1705
1706 result = ir_rvalue::error_value(ctx);
1707 error_emitted = true;
1708 }
1709 break;
1710 }
1711
1712 case ast_int_constant:
1713 result = new(ctx) ir_constant(this->primary_expression.int_constant);
1714 break;
1715
1716 case ast_uint_constant:
1717 result = new(ctx) ir_constant(this->primary_expression.uint_constant);
1718 break;
1719
1720 case ast_float_constant:
1721 result = new(ctx) ir_constant(this->primary_expression.float_constant);
1722 break;
1723
1724 case ast_bool_constant:
1725 result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant));
1726 break;
1727
1728 case ast_sequence: {
1729 /* It should not be possible to generate a sequence in the AST without
1730 * any expressions in it.
1731 */
1732 assert(!this->expressions.is_empty());
1733
1734 /* The r-value of a sequence is the last expression in the sequence. If
1735 * the other expressions in the sequence do not have side-effects (and
1736 * therefore add instructions to the instruction list), they get dropped
1737 * on the floor.
1738 */
1739 exec_node *previous_tail_pred = NULL;
1740 YYLTYPE previous_operand_loc = loc;
1741
1742 foreach_list_typed (ast_node, ast, link, &this->expressions) {
1743 /* If one of the operands of comma operator does not generate any
1744 * code, we want to emit a warning. At each pass through the loop
1745 * previous_tail_pred will point to the last instruction in the
1746 * stream *before* processing the previous operand. Naturally,
1747 * instructions->tail_pred will point to the last instruction in the
1748 * stream *after* processing the previous operand. If the two
1749 * pointers match, then the previous operand had no effect.
1750 *
1751 * The warning behavior here differs slightly from GCC. GCC will
1752 * only emit a warning if none of the left-hand operands have an
1753 * effect. However, it will emit a warning for each. I believe that
1754 * there are some cases in C (especially with GCC extensions) where
1755 * it is useful to have an intermediate step in a sequence have no
1756 * effect, but I don't think these cases exist in GLSL. Either way,
1757 * it would be a giant hassle to replicate that behavior.
1758 */
1759 if (previous_tail_pred == instructions->tail_pred) {
1760 _mesa_glsl_warning(&previous_operand_loc, state,
1761 "left-hand operand of comma expression has "
1762 "no effect");
1763 }
1764
1765 /* tail_pred is directly accessed instead of using the get_tail()
1766 * method for performance reasons. get_tail() has extra code to
1767 * return NULL when the list is empty. We don't care about that
1768 * here, so using tail_pred directly is fine.
1769 */
1770 previous_tail_pred = instructions->tail_pred;
1771 previous_operand_loc = ast->get_location();
1772
1773 result = ast->hir(instructions, state);
1774 }
1775
1776 /* Any errors should have already been emitted in the loop above.
1777 */
1778 error_emitted = true;
1779 break;
1780 }
1781 }
1782 type = NULL; /* use result->type, not type. */
1783 assert(result != NULL);
1784
1785 if (result->type->is_error() && !error_emitted)
1786 _mesa_glsl_error(& loc, state, "type mismatch");
1787
1788 return result;
1789 }
1790
1791
1792 ir_rvalue *
1793 ast_expression_statement::hir(exec_list *instructions,
1794 struct _mesa_glsl_parse_state *state)
1795 {
1796 /* It is possible to have expression statements that don't have an
1797 * expression. This is the solitary semicolon:
1798 *
1799 * for (i = 0; i < 5; i++)
1800 * ;
1801 *
1802 * In this case the expression will be NULL. Test for NULL and don't do
1803 * anything in that case.
1804 */
1805 if (expression != NULL)
1806 expression->hir(instructions, state);
1807
1808 /* Statements do not have r-values.
1809 */
1810 return NULL;
1811 }
1812
1813
1814 ir_rvalue *
1815 ast_compound_statement::hir(exec_list *instructions,
1816 struct _mesa_glsl_parse_state *state)
1817 {
1818 if (new_scope)
1819 state->symbols->push_scope();
1820
1821 foreach_list_typed (ast_node, ast, link, &this->statements)
1822 ast->hir(instructions, state);
1823
1824 if (new_scope)
1825 state->symbols->pop_scope();
1826
1827 /* Compound statements do not have r-values.
1828 */
1829 return NULL;
1830 }
1831
1832
1833 static const glsl_type *
1834 process_array_type(YYLTYPE *loc, const glsl_type *base, ast_node *array_size,
1835 struct _mesa_glsl_parse_state *state)
1836 {
1837 unsigned length = 0;
1838
1839 /* From page 19 (page 25) of the GLSL 1.20 spec:
1840 *
1841 * "Only one-dimensional arrays may be declared."
1842 */
1843 if (base->is_array()) {
1844 _mesa_glsl_error(loc, state,
1845 "invalid array of `%s' (only one-dimensional arrays "
1846 "may be declared)",
1847 base->name);
1848 return glsl_type::error_type;
1849 }
1850
1851 if (array_size != NULL) {
1852 exec_list dummy_instructions;
1853 ir_rvalue *const ir = array_size->hir(& dummy_instructions, state);
1854 YYLTYPE loc = array_size->get_location();
1855
1856 if (ir != NULL) {
1857 if (!ir->type->is_integer()) {
1858 _mesa_glsl_error(& loc, state, "array size must be integer type");
1859 } else if (!ir->type->is_scalar()) {
1860 _mesa_glsl_error(& loc, state, "array size must be scalar type");
1861 } else {
1862 ir_constant *const size = ir->constant_expression_value();
1863
1864 if (size == NULL) {
1865 _mesa_glsl_error(& loc, state, "array size must be a "
1866 "constant valued expression");
1867 } else if (size->value.i[0] <= 0) {
1868 _mesa_glsl_error(& loc, state, "array size must be > 0");
1869 } else {
1870 assert(size->type == ir->type);
1871 length = size->value.u[0];
1872
1873 /* If the array size is const (and we've verified that
1874 * it is) then no instructions should have been emitted
1875 * when we converted it to HIR. If they were emitted,
1876 * then either the array size isn't const after all, or
1877 * we are emitting unnecessary instructions.
1878 */
1879 assert(dummy_instructions.is_empty());
1880 }
1881 }
1882 }
1883 } else if (state->es_shader) {
1884 /* Section 10.17 of the GLSL ES 1.00 specification states that unsized
1885 * array declarations have been removed from the language.
1886 */
1887 _mesa_glsl_error(loc, state, "unsized array declarations are not "
1888 "allowed in GLSL ES 1.00.");
1889 }
1890
1891 return glsl_type::get_array_instance(base, length);
1892 }
1893
1894
1895 const glsl_type *
1896 ast_type_specifier::glsl_type(const char **name,
1897 struct _mesa_glsl_parse_state *state) const
1898 {
1899 const struct glsl_type *type;
1900
1901 type = state->symbols->get_type(this->type_name);
1902 *name = this->type_name;
1903
1904 if (this->is_array) {
1905 YYLTYPE loc = this->get_location();
1906 type = process_array_type(&loc, type, this->array_size, state);
1907 }
1908
1909 return type;
1910 }
1911
1912
1913 static void
1914 apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
1915 ir_variable *var,
1916 struct _mesa_glsl_parse_state *state,
1917 YYLTYPE *loc,
1918 bool ubo_qualifiers_valid)
1919 {
1920 if (qual->flags.q.invariant) {
1921 if (var->used) {
1922 _mesa_glsl_error(loc, state,
1923 "variable `%s' may not be redeclared "
1924 "`invariant' after being used",
1925 var->name);
1926 } else {
1927 var->invariant = 1;
1928 }
1929 }
1930
1931 if (qual->flags.q.constant || qual->flags.q.attribute
1932 || qual->flags.q.uniform
1933 || (qual->flags.q.varying && (state->target == fragment_shader)))
1934 var->read_only = 1;
1935
1936 if (qual->flags.q.centroid)
1937 var->centroid = 1;
1938
1939 if (qual->flags.q.attribute && state->target != vertex_shader) {
1940 var->type = glsl_type::error_type;
1941 _mesa_glsl_error(loc, state,
1942 "`attribute' variables may not be declared in the "
1943 "%s shader",
1944 _mesa_glsl_shader_target_name(state->target));
1945 }
1946
1947 /* From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
1948 *
1949 * "The varying qualifier can be used only with the data types
1950 * float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
1951 * these."
1952 */
1953 if (qual->flags.q.varying) {
1954 const glsl_type *non_array_type;
1955
1956 if (var->type && var->type->is_array())
1957 non_array_type = var->type->fields.array;
1958 else
1959 non_array_type = var->type;
1960
1961 if (non_array_type && non_array_type->base_type != GLSL_TYPE_FLOAT) {
1962 var->type = glsl_type::error_type;
1963 _mesa_glsl_error(loc, state,
1964 "varying variables must be of base type float");
1965 }
1966 }
1967
1968 /* If there is no qualifier that changes the mode of the variable, leave
1969 * the setting alone.
1970 */
1971 if (qual->flags.q.in && qual->flags.q.out)
1972 var->mode = ir_var_inout;
1973 else if (qual->flags.q.attribute || qual->flags.q.in
1974 || (qual->flags.q.varying && (state->target == fragment_shader)))
1975 var->mode = ir_var_in;
1976 else if (qual->flags.q.out
1977 || (qual->flags.q.varying && (state->target == vertex_shader)))
1978 var->mode = ir_var_out;
1979 else if (qual->flags.q.uniform)
1980 var->mode = ir_var_uniform;
1981
1982 if (state->all_invariant && (state->current_function == NULL)) {
1983 switch (state->target) {
1984 case vertex_shader:
1985 if (var->mode == ir_var_out)
1986 var->invariant = true;
1987 break;
1988 case geometry_shader:
1989 if ((var->mode == ir_var_in) || (var->mode == ir_var_out))
1990 var->invariant = true;
1991 break;
1992 case fragment_shader:
1993 if (var->mode == ir_var_in)
1994 var->invariant = true;
1995 break;
1996 }
1997 }
1998
1999 if (qual->flags.q.flat)
2000 var->interpolation = INTERP_QUALIFIER_FLAT;
2001 else if (qual->flags.q.noperspective)
2002 var->interpolation = INTERP_QUALIFIER_NOPERSPECTIVE;
2003 else if (qual->flags.q.smooth)
2004 var->interpolation = INTERP_QUALIFIER_SMOOTH;
2005 else
2006 var->interpolation = INTERP_QUALIFIER_NONE;
2007
2008 if (var->interpolation != INTERP_QUALIFIER_NONE &&
2009 !(state->target == vertex_shader && var->mode == ir_var_out) &&
2010 !(state->target == fragment_shader && var->mode == ir_var_in)) {
2011 _mesa_glsl_error(loc, state,
2012 "interpolation qualifier `%s' can only be applied to "
2013 "vertex shader outputs and fragment shader inputs.",
2014 var->interpolation_string());
2015 }
2016
2017 var->pixel_center_integer = qual->flags.q.pixel_center_integer;
2018 var->origin_upper_left = qual->flags.q.origin_upper_left;
2019 if ((qual->flags.q.origin_upper_left || qual->flags.q.pixel_center_integer)
2020 && (strcmp(var->name, "gl_FragCoord") != 0)) {
2021 const char *const qual_string = (qual->flags.q.origin_upper_left)
2022 ? "origin_upper_left" : "pixel_center_integer";
2023
2024 _mesa_glsl_error(loc, state,
2025 "layout qualifier `%s' can only be applied to "
2026 "fragment shader input `gl_FragCoord'",
2027 qual_string);
2028 }
2029
2030 if (qual->flags.q.explicit_location) {
2031 const bool global_scope = (state->current_function == NULL);
2032 bool fail = false;
2033 const char *string = "";
2034
2035 /* In the vertex shader only shader inputs can be given explicit
2036 * locations.
2037 *
2038 * In the fragment shader only shader outputs can be given explicit
2039 * locations.
2040 */
2041 switch (state->target) {
2042 case vertex_shader:
2043 if (!global_scope || (var->mode != ir_var_in)) {
2044 fail = true;
2045 string = "input";
2046 }
2047 break;
2048
2049 case geometry_shader:
2050 _mesa_glsl_error(loc, state,
2051 "geometry shader variables cannot be given "
2052 "explicit locations\n");
2053 break;
2054
2055 case fragment_shader:
2056 if (!global_scope || (var->mode != ir_var_out)) {
2057 fail = true;
2058 string = "output";
2059 }
2060 break;
2061 };
2062
2063 if (fail) {
2064 _mesa_glsl_error(loc, state,
2065 "only %s shader %s variables can be given an "
2066 "explicit location\n",
2067 _mesa_glsl_shader_target_name(state->target),
2068 string);
2069 } else {
2070 var->explicit_location = true;
2071
2072 /* This bit of silliness is needed because invalid explicit locations
2073 * are supposed to be flagged during linking. Small negative values
2074 * biased by VERT_ATTRIB_GENERIC0 or FRAG_RESULT_DATA0 could alias
2075 * built-in values (e.g., -16+VERT_ATTRIB_GENERIC0 = VERT_ATTRIB_POS).
2076 * The linker needs to be able to differentiate these cases. This
2077 * ensures that negative values stay negative.
2078 */
2079 if (qual->location >= 0) {
2080 var->location = (state->target == vertex_shader)
2081 ? (qual->location + VERT_ATTRIB_GENERIC0)
2082 : (qual->location + FRAG_RESULT_DATA0);
2083 } else {
2084 var->location = qual->location;
2085 }
2086
2087 if (qual->flags.q.explicit_index) {
2088 /* From the GLSL 4.30 specification, section 4.4.2 (Output
2089 * Layout Qualifiers):
2090 *
2091 * "It is also a compile-time error if a fragment shader
2092 * sets a layout index to less than 0 or greater than 1."
2093 *
2094 * Older specifications don't mandate a behavior; we take
2095 * this as a clarification and always generate the error.
2096 */
2097 if (qual->index < 0 || qual->index > 1) {
2098 _mesa_glsl_error(loc, state,
2099 "explicit index may only be 0 or 1\n");
2100 } else {
2101 var->explicit_index = true;
2102 var->index = qual->index;
2103 }
2104 }
2105 }
2106 } else if (qual->flags.q.explicit_index) {
2107 _mesa_glsl_error(loc, state,
2108 "explicit index requires explicit location\n");
2109 }
2110
2111 /* Does the declaration use the 'layout' keyword?
2112 */
2113 const bool uses_layout = qual->flags.q.pixel_center_integer
2114 || qual->flags.q.origin_upper_left
2115 || qual->flags.q.explicit_location; /* no need for index since it relies on location */
2116
2117 /* Does the declaration use the deprecated 'attribute' or 'varying'
2118 * keywords?
2119 */
2120 const bool uses_deprecated_qualifier = qual->flags.q.attribute
2121 || qual->flags.q.varying;
2122
2123 /* Is the 'layout' keyword used with parameters that allow relaxed checking.
2124 * Many implementations of GL_ARB_fragment_coord_conventions_enable and some
2125 * implementations (only Mesa?) GL_ARB_explicit_attrib_location_enable
2126 * allowed the layout qualifier to be used with 'varying' and 'attribute'.
2127 * These extensions and all following extensions that add the 'layout'
2128 * keyword have been modified to require the use of 'in' or 'out'.
2129 *
2130 * The following extension do not allow the deprecated keywords:
2131 *
2132 * GL_AMD_conservative_depth
2133 * GL_ARB_conservative_depth
2134 * GL_ARB_gpu_shader5
2135 * GL_ARB_separate_shader_objects
2136 * GL_ARB_tesselation_shader
2137 * GL_ARB_transform_feedback3
2138 * GL_ARB_uniform_buffer_object
2139 *
2140 * It is unknown whether GL_EXT_shader_image_load_store or GL_NV_gpu_shader5
2141 * allow layout with the deprecated keywords.
2142 */
2143 const bool relaxed_layout_qualifier_checking =
2144 state->ARB_fragment_coord_conventions_enable;
2145
2146 if (uses_layout && uses_deprecated_qualifier) {
2147 if (relaxed_layout_qualifier_checking) {
2148 _mesa_glsl_warning(loc, state,
2149 "`layout' qualifier may not be used with "
2150 "`attribute' or `varying'");
2151 } else {
2152 _mesa_glsl_error(loc, state,
2153 "`layout' qualifier may not be used with "
2154 "`attribute' or `varying'");
2155 }
2156 }
2157
2158 /* Layout qualifiers for gl_FragDepth, which are enabled by extension
2159 * AMD_conservative_depth.
2160 */
2161 int depth_layout_count = qual->flags.q.depth_any
2162 + qual->flags.q.depth_greater
2163 + qual->flags.q.depth_less
2164 + qual->flags.q.depth_unchanged;
2165 if (depth_layout_count > 0
2166 && !state->AMD_conservative_depth_enable
2167 && !state->ARB_conservative_depth_enable) {
2168 _mesa_glsl_error(loc, state,
2169 "extension GL_AMD_conservative_depth or "
2170 "GL_ARB_conservative_depth must be enabled "
2171 "to use depth layout qualifiers");
2172 } else if (depth_layout_count > 0
2173 && strcmp(var->name, "gl_FragDepth") != 0) {
2174 _mesa_glsl_error(loc, state,
2175 "depth layout qualifiers can be applied only to "
2176 "gl_FragDepth");
2177 } else if (depth_layout_count > 1
2178 && strcmp(var->name, "gl_FragDepth") == 0) {
2179 _mesa_glsl_error(loc, state,
2180 "at most one depth layout qualifier can be applied to "
2181 "gl_FragDepth");
2182 }
2183 if (qual->flags.q.depth_any)
2184 var->depth_layout = ir_depth_layout_any;
2185 else if (qual->flags.q.depth_greater)
2186 var->depth_layout = ir_depth_layout_greater;
2187 else if (qual->flags.q.depth_less)
2188 var->depth_layout = ir_depth_layout_less;
2189 else if (qual->flags.q.depth_unchanged)
2190 var->depth_layout = ir_depth_layout_unchanged;
2191 else
2192 var->depth_layout = ir_depth_layout_none;
2193
2194 if (qual->flags.q.std140 ||
2195 qual->flags.q.packed ||
2196 qual->flags.q.shared) {
2197 _mesa_glsl_error(loc, state,
2198 "uniform block layout qualifiers std140, packed, and "
2199 "shared can only be applied to uniform blocks, not "
2200 "members");
2201 }
2202
2203 if (!ubo_qualifiers_valid &&
2204 (qual->flags.q.row_major || qual->flags.q.column_major)) {
2205 _mesa_glsl_error(loc, state,
2206 "uniform block layout qualifiers row_major and "
2207 "column_major can only be applied to uniform block "
2208 "members");
2209 }
2210 }
2211
2212 /**
2213 * Get the variable that is being redeclared by this declaration
2214 *
2215 * Semantic checks to verify the validity of the redeclaration are also
2216 * performed. If semantic checks fail, compilation error will be emitted via
2217 * \c _mesa_glsl_error, but a non-\c NULL pointer will still be returned.
2218 *
2219 * \returns
2220 * A pointer to an existing variable in the current scope if the declaration
2221 * is a redeclaration, \c NULL otherwise.
2222 */
2223 ir_variable *
2224 get_variable_being_redeclared(ir_variable *var, ast_declaration *decl,
2225 struct _mesa_glsl_parse_state *state)
2226 {
2227 /* Check if this declaration is actually a re-declaration, either to
2228 * resize an array or add qualifiers to an existing variable.
2229 *
2230 * This is allowed for variables in the current scope, or when at
2231 * global scope (for built-ins in the implicit outer scope).
2232 */
2233 ir_variable *earlier = state->symbols->get_variable(decl->identifier);
2234 if (earlier == NULL ||
2235 (state->current_function != NULL &&
2236 !state->symbols->name_declared_this_scope(decl->identifier))) {
2237 return NULL;
2238 }
2239
2240
2241 YYLTYPE loc = decl->get_location();
2242
2243 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
2244 *
2245 * "It is legal to declare an array without a size and then
2246 * later re-declare the same name as an array of the same
2247 * type and specify a size."
2248 */
2249 if ((earlier->type->array_size() == 0)
2250 && var->type->is_array()
2251 && (var->type->element_type() == earlier->type->element_type())) {
2252 /* FINISHME: This doesn't match the qualifiers on the two
2253 * FINISHME: declarations. It's not 100% clear whether this is
2254 * FINISHME: required or not.
2255 */
2256
2257 const unsigned size = unsigned(var->type->array_size());
2258 check_builtin_array_max_size(var->name, size, loc, state);
2259 if ((size > 0) && (size <= earlier->max_array_access)) {
2260 _mesa_glsl_error(& loc, state, "array size must be > %u due to "
2261 "previous access",
2262 earlier->max_array_access);
2263 }
2264
2265 earlier->type = var->type;
2266 delete var;
2267 var = NULL;
2268 } else if (state->ARB_fragment_coord_conventions_enable
2269 && strcmp(var->name, "gl_FragCoord") == 0
2270 && earlier->type == var->type
2271 && earlier->mode == var->mode) {
2272 /* Allow redeclaration of gl_FragCoord for ARB_fcc layout
2273 * qualifiers.
2274 */
2275 earlier->origin_upper_left = var->origin_upper_left;
2276 earlier->pixel_center_integer = var->pixel_center_integer;
2277
2278 /* According to section 4.3.7 of the GLSL 1.30 spec,
2279 * the following built-in varaibles can be redeclared with an
2280 * interpolation qualifier:
2281 * * gl_FrontColor
2282 * * gl_BackColor
2283 * * gl_FrontSecondaryColor
2284 * * gl_BackSecondaryColor
2285 * * gl_Color
2286 * * gl_SecondaryColor
2287 */
2288 } else if (state->is_version(130, 0)
2289 && (strcmp(var->name, "gl_FrontColor") == 0
2290 || strcmp(var->name, "gl_BackColor") == 0
2291 || strcmp(var->name, "gl_FrontSecondaryColor") == 0
2292 || strcmp(var->name, "gl_BackSecondaryColor") == 0
2293 || strcmp(var->name, "gl_Color") == 0
2294 || strcmp(var->name, "gl_SecondaryColor") == 0)
2295 && earlier->type == var->type
2296 && earlier->mode == var->mode) {
2297 earlier->interpolation = var->interpolation;
2298
2299 /* Layout qualifiers for gl_FragDepth. */
2300 } else if ((state->AMD_conservative_depth_enable ||
2301 state->ARB_conservative_depth_enable)
2302 && strcmp(var->name, "gl_FragDepth") == 0
2303 && earlier->type == var->type
2304 && earlier->mode == var->mode) {
2305
2306 /** From the AMD_conservative_depth spec:
2307 * Within any shader, the first redeclarations of gl_FragDepth
2308 * must appear before any use of gl_FragDepth.
2309 */
2310 if (earlier->used) {
2311 _mesa_glsl_error(&loc, state,
2312 "the first redeclaration of gl_FragDepth "
2313 "must appear before any use of gl_FragDepth");
2314 }
2315
2316 /* Prevent inconsistent redeclaration of depth layout qualifier. */
2317 if (earlier->depth_layout != ir_depth_layout_none
2318 && earlier->depth_layout != var->depth_layout) {
2319 _mesa_glsl_error(&loc, state,
2320 "gl_FragDepth: depth layout is declared here "
2321 "as '%s, but it was previously declared as "
2322 "'%s'",
2323 depth_layout_string(var->depth_layout),
2324 depth_layout_string(earlier->depth_layout));
2325 }
2326
2327 earlier->depth_layout = var->depth_layout;
2328
2329 } else {
2330 _mesa_glsl_error(&loc, state, "`%s' redeclared", decl->identifier);
2331 }
2332
2333 return earlier;
2334 }
2335
2336 /**
2337 * Generate the IR for an initializer in a variable declaration
2338 */
2339 ir_rvalue *
2340 process_initializer(ir_variable *var, ast_declaration *decl,
2341 ast_fully_specified_type *type,
2342 exec_list *initializer_instructions,
2343 struct _mesa_glsl_parse_state *state)
2344 {
2345 ir_rvalue *result = NULL;
2346
2347 YYLTYPE initializer_loc = decl->initializer->get_location();
2348
2349 /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
2350 *
2351 * "All uniform variables are read-only and are initialized either
2352 * directly by an application via API commands, or indirectly by
2353 * OpenGL."
2354 */
2355 if (var->mode == ir_var_uniform) {
2356 state->check_version(120, 0, &initializer_loc,
2357 "cannot initialize uniforms");
2358 }
2359
2360 if (var->type->is_sampler()) {
2361 _mesa_glsl_error(& initializer_loc, state,
2362 "cannot initialize samplers");
2363 }
2364
2365 if ((var->mode == ir_var_in) && (state->current_function == NULL)) {
2366 _mesa_glsl_error(& initializer_loc, state,
2367 "cannot initialize %s shader input / %s",
2368 _mesa_glsl_shader_target_name(state->target),
2369 (state->target == vertex_shader)
2370 ? "attribute" : "varying");
2371 }
2372
2373 ir_dereference *const lhs = new(state) ir_dereference_variable(var);
2374 ir_rvalue *rhs = decl->initializer->hir(initializer_instructions,
2375 state);
2376
2377 /* Calculate the constant value if this is a const or uniform
2378 * declaration.
2379 */
2380 if (type->qualifier.flags.q.constant
2381 || type->qualifier.flags.q.uniform) {
2382 ir_rvalue *new_rhs = validate_assignment(state, var->type, rhs, true);
2383 if (new_rhs != NULL) {
2384 rhs = new_rhs;
2385
2386 ir_constant *constant_value = rhs->constant_expression_value();
2387 if (!constant_value) {
2388 _mesa_glsl_error(& initializer_loc, state,
2389 "initializer of %s variable `%s' must be a "
2390 "constant expression",
2391 (type->qualifier.flags.q.constant)
2392 ? "const" : "uniform",
2393 decl->identifier);
2394 if (var->type->is_numeric()) {
2395 /* Reduce cascading errors. */
2396 var->constant_value = ir_constant::zero(state, var->type);
2397 }
2398 } else {
2399 rhs = constant_value;
2400 var->constant_value = constant_value;
2401 }
2402 } else {
2403 _mesa_glsl_error(&initializer_loc, state,
2404 "initializer of type %s cannot be assigned to "
2405 "variable of type %s",
2406 rhs->type->name, var->type->name);
2407 if (var->type->is_numeric()) {
2408 /* Reduce cascading errors. */
2409 var->constant_value = ir_constant::zero(state, var->type);
2410 }
2411 }
2412 }
2413
2414 if (rhs && !rhs->type->is_error()) {
2415 bool temp = var->read_only;
2416 if (type->qualifier.flags.q.constant)
2417 var->read_only = false;
2418
2419 /* Never emit code to initialize a uniform.
2420 */
2421 const glsl_type *initializer_type;
2422 if (!type->qualifier.flags.q.uniform) {
2423 result = do_assignment(initializer_instructions, state,
2424 NULL,
2425 lhs, rhs, true,
2426 type->get_location());
2427 initializer_type = result->type;
2428 } else
2429 initializer_type = rhs->type;
2430
2431 var->constant_initializer = rhs->constant_expression_value();
2432 var->has_initializer = true;
2433
2434 /* If the declared variable is an unsized array, it must inherrit
2435 * its full type from the initializer. A declaration such as
2436 *
2437 * uniform float a[] = float[](1.0, 2.0, 3.0, 3.0);
2438 *
2439 * becomes
2440 *
2441 * uniform float a[4] = float[](1.0, 2.0, 3.0, 3.0);
2442 *
2443 * The assignment generated in the if-statement (below) will also
2444 * automatically handle this case for non-uniforms.
2445 *
2446 * If the declared variable is not an array, the types must
2447 * already match exactly. As a result, the type assignment
2448 * here can be done unconditionally. For non-uniforms the call
2449 * to do_assignment can change the type of the initializer (via
2450 * the implicit conversion rules). For uniforms the initializer
2451 * must be a constant expression, and the type of that expression
2452 * was validated above.
2453 */
2454 var->type = initializer_type;
2455
2456 var->read_only = temp;
2457 }
2458
2459 return result;
2460 }
2461
2462 ir_rvalue *
2463 ast_declarator_list::hir(exec_list *instructions,
2464 struct _mesa_glsl_parse_state *state)
2465 {
2466 void *ctx = state;
2467 const struct glsl_type *decl_type;
2468 const char *type_name = NULL;
2469 ir_rvalue *result = NULL;
2470 YYLTYPE loc = this->get_location();
2471
2472 /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec:
2473 *
2474 * "To ensure that a particular output variable is invariant, it is
2475 * necessary to use the invariant qualifier. It can either be used to
2476 * qualify a previously declared variable as being invariant
2477 *
2478 * invariant gl_Position; // make existing gl_Position be invariant"
2479 *
2480 * In these cases the parser will set the 'invariant' flag in the declarator
2481 * list, and the type will be NULL.
2482 */
2483 if (this->invariant) {
2484 assert(this->type == NULL);
2485
2486 if (state->current_function != NULL) {
2487 _mesa_glsl_error(& loc, state,
2488 "All uses of `invariant' keyword must be at global "
2489 "scope\n");
2490 }
2491
2492 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
2493 assert(!decl->is_array);
2494 assert(decl->array_size == NULL);
2495 assert(decl->initializer == NULL);
2496
2497 ir_variable *const earlier =
2498 state->symbols->get_variable(decl->identifier);
2499 if (earlier == NULL) {
2500 _mesa_glsl_error(& loc, state,
2501 "Undeclared variable `%s' cannot be marked "
2502 "invariant\n", decl->identifier);
2503 } else if ((state->target == vertex_shader)
2504 && (earlier->mode != ir_var_out)) {
2505 _mesa_glsl_error(& loc, state,
2506 "`%s' cannot be marked invariant, vertex shader "
2507 "outputs only\n", decl->identifier);
2508 } else if ((state->target == fragment_shader)
2509 && (earlier->mode != ir_var_in)) {
2510 _mesa_glsl_error(& loc, state,
2511 "`%s' cannot be marked invariant, fragment shader "
2512 "inputs only\n", decl->identifier);
2513 } else if (earlier->used) {
2514 _mesa_glsl_error(& loc, state,
2515 "variable `%s' may not be redeclared "
2516 "`invariant' after being used",
2517 earlier->name);
2518 } else {
2519 earlier->invariant = true;
2520 }
2521 }
2522
2523 /* Invariant redeclarations do not have r-values.
2524 */
2525 return NULL;
2526 }
2527
2528 assert(this->type != NULL);
2529 assert(!this->invariant);
2530
2531 /* The type specifier may contain a structure definition. Process that
2532 * before any of the variable declarations.
2533 */
2534 (void) this->type->specifier->hir(instructions, state);
2535
2536 decl_type = this->type->specifier->glsl_type(& type_name, state);
2537 if (this->declarations.is_empty()) {
2538 /* If there is no structure involved in the program text, there are two
2539 * possible scenarios:
2540 *
2541 * - The program text contained something like 'vec4;'. This is an
2542 * empty declaration. It is valid but weird. Emit a warning.
2543 *
2544 * - The program text contained something like 'S;' and 'S' is not the
2545 * name of a known structure type. This is both invalid and weird.
2546 * Emit an error.
2547 *
2548 * Note that if decl_type is NULL and there is a structure involved,
2549 * there must have been some sort of error with the structure. In this
2550 * case we assume that an error was already generated on this line of
2551 * code for the structure. There is no need to generate an additional,
2552 * confusing error.
2553 */
2554 assert(this->type->specifier->structure == NULL || decl_type != NULL
2555 || state->error);
2556 if (this->type->specifier->structure == NULL) {
2557 if (decl_type != NULL) {
2558 _mesa_glsl_warning(&loc, state, "empty declaration");
2559 } else {
2560 _mesa_glsl_error(&loc, state,
2561 "invalid type `%s' in empty declaration",
2562 type_name);
2563 }
2564 }
2565 }
2566
2567 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
2568 const struct glsl_type *var_type;
2569 ir_variable *var;
2570
2571 /* FINISHME: Emit a warning if a variable declaration shadows a
2572 * FINISHME: declaration at a higher scope.
2573 */
2574
2575 if ((decl_type == NULL) || decl_type->is_void()) {
2576 if (type_name != NULL) {
2577 _mesa_glsl_error(& loc, state,
2578 "invalid type `%s' in declaration of `%s'",
2579 type_name, decl->identifier);
2580 } else {
2581 _mesa_glsl_error(& loc, state,
2582 "invalid type in declaration of `%s'",
2583 decl->identifier);
2584 }
2585 continue;
2586 }
2587
2588 if (decl->is_array) {
2589 var_type = process_array_type(&loc, decl_type, decl->array_size,
2590 state);
2591 if (var_type->is_error())
2592 continue;
2593 } else {
2594 var_type = decl_type;
2595 }
2596
2597 var = new(ctx) ir_variable(var_type, decl->identifier, ir_var_auto);
2598
2599 /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
2600 *
2601 * "Global variables can only use the qualifiers const,
2602 * attribute, uni form, or varying. Only one may be
2603 * specified.
2604 *
2605 * Local variables can only use the qualifier const."
2606 *
2607 * This is relaxed in GLSL 1.30 and GLSL ES 3.00. It is also relaxed by
2608 * any extension that adds the 'layout' keyword.
2609 */
2610 if (!state->is_version(130, 300)
2611 && !state->ARB_explicit_attrib_location_enable
2612 && !state->ARB_fragment_coord_conventions_enable) {
2613 if (this->type->qualifier.flags.q.out) {
2614 _mesa_glsl_error(& loc, state,
2615 "`out' qualifier in declaration of `%s' "
2616 "only valid for function parameters in %s.",
2617 decl->identifier, state->get_version_string());
2618 }
2619 if (this->type->qualifier.flags.q.in) {
2620 _mesa_glsl_error(& loc, state,
2621 "`in' qualifier in declaration of `%s' "
2622 "only valid for function parameters in %s.",
2623 decl->identifier, state->get_version_string());
2624 }
2625 /* FINISHME: Test for other invalid qualifiers. */
2626 }
2627
2628 apply_type_qualifier_to_variable(& this->type->qualifier, var, state,
2629 & loc, this->ubo_qualifiers_valid);
2630
2631 if (this->type->qualifier.flags.q.invariant) {
2632 if ((state->target == vertex_shader) && !(var->mode == ir_var_out ||
2633 var->mode == ir_var_inout)) {
2634 /* FINISHME: Note that this doesn't work for invariant on
2635 * a function signature outval
2636 */
2637 _mesa_glsl_error(& loc, state,
2638 "`%s' cannot be marked invariant, vertex shader "
2639 "outputs only\n", var->name);
2640 } else if ((state->target == fragment_shader) &&
2641 !(var->mode == ir_var_in || var->mode == ir_var_inout)) {
2642 /* FINISHME: Note that this doesn't work for invariant on
2643 * a function signature inval
2644 */
2645 _mesa_glsl_error(& loc, state,
2646 "`%s' cannot be marked invariant, fragment shader "
2647 "inputs only\n", var->name);
2648 }
2649 }
2650
2651 if (state->current_function != NULL) {
2652 const char *mode = NULL;
2653 const char *extra = "";
2654
2655 /* There is no need to check for 'inout' here because the parser will
2656 * only allow that in function parameter lists.
2657 */
2658 if (this->type->qualifier.flags.q.attribute) {
2659 mode = "attribute";
2660 } else if (this->type->qualifier.flags.q.uniform) {
2661 mode = "uniform";
2662 } else if (this->type->qualifier.flags.q.varying) {
2663 mode = "varying";
2664 } else if (this->type->qualifier.flags.q.in) {
2665 mode = "in";
2666 extra = " or in function parameter list";
2667 } else if (this->type->qualifier.flags.q.out) {
2668 mode = "out";
2669 extra = " or in function parameter list";
2670 }
2671
2672 if (mode) {
2673 _mesa_glsl_error(& loc, state,
2674 "%s variable `%s' must be declared at "
2675 "global scope%s",
2676 mode, var->name, extra);
2677 }
2678 } else if (var->mode == ir_var_in) {
2679 var->read_only = true;
2680
2681 if (state->target == vertex_shader) {
2682 bool error_emitted = false;
2683
2684 /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
2685 *
2686 * "Vertex shader inputs can only be float, floating-point
2687 * vectors, matrices, signed and unsigned integers and integer
2688 * vectors. Vertex shader inputs can also form arrays of these
2689 * types, but not structures."
2690 *
2691 * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
2692 *
2693 * "Vertex shader inputs can only be float, floating-point
2694 * vectors, matrices, signed and unsigned integers and integer
2695 * vectors. They cannot be arrays or structures."
2696 *
2697 * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
2698 *
2699 * "The attribute qualifier can be used only with float,
2700 * floating-point vectors, and matrices. Attribute variables
2701 * cannot be declared as arrays or structures."
2702 *
2703 * From page 33 (page 39 of the PDF) of the GLSL ES 3.00 spec:
2704 *
2705 * "Vertex shader inputs can only be float, floating-point
2706 * vectors, matrices, signed and unsigned integers and integer
2707 * vectors. Vertex shader inputs cannot be arrays or
2708 * structures."
2709 */
2710 const glsl_type *check_type = var->type->is_array()
2711 ? var->type->fields.array : var->type;
2712
2713 switch (check_type->base_type) {
2714 case GLSL_TYPE_FLOAT:
2715 break;
2716 case GLSL_TYPE_UINT:
2717 case GLSL_TYPE_INT:
2718 if (state->is_version(120, 300))
2719 break;
2720 /* FALLTHROUGH */
2721 default:
2722 _mesa_glsl_error(& loc, state,
2723 "vertex shader input / attribute cannot have "
2724 "type %s`%s'",
2725 var->type->is_array() ? "array of " : "",
2726 check_type->name);
2727 error_emitted = true;
2728 }
2729
2730 if (!error_emitted && var->type->is_array() &&
2731 !state->check_version(140, 0, &loc,
2732 "vertex shader input / attribute "
2733 "cannot have array type")) {
2734 error_emitted = true;
2735 }
2736 }
2737 }
2738
2739 /* Integer vertex outputs must be qualified with 'flat'.
2740 *
2741 * From section 4.3.6 of the GLSL 1.30 spec:
2742 * "If a vertex output is a signed or unsigned integer or integer
2743 * vector, then it must be qualified with the interpolation qualifier
2744 * flat."
2745 *
2746 * From section 4.3.4 of the GLSL 3.00 ES spec:
2747 * "Fragment shader inputs that are signed or unsigned integers or
2748 * integer vectors must be qualified with the interpolation qualifier
2749 * flat."
2750 *
2751 * Since vertex outputs and fragment inputs must have matching
2752 * qualifiers, these two requirements are equivalent.
2753 */
2754 if (state->is_version(130, 300)
2755 && state->target == vertex_shader
2756 && state->current_function == NULL
2757 && var->type->is_integer()
2758 && var->mode == ir_var_out
2759 && var->interpolation != INTERP_QUALIFIER_FLAT) {
2760
2761 _mesa_glsl_error(&loc, state, "If a vertex output is an integer, "
2762 "then it must be qualified with 'flat'");
2763 }
2764
2765
2766 /* Interpolation qualifiers cannot be applied to 'centroid' and
2767 * 'centroid varying'.
2768 *
2769 * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
2770 * "interpolation qualifiers may only precede the qualifiers in,
2771 * centroid in, out, or centroid out in a declaration. They do not apply
2772 * to the deprecated storage qualifiers varying or centroid varying."
2773 *
2774 * These deprecated storage qualifiers do not exist in GLSL ES 3.00.
2775 */
2776 if (state->is_version(130, 0)
2777 && this->type->qualifier.has_interpolation()
2778 && this->type->qualifier.flags.q.varying) {
2779
2780 const char *i = this->type->qualifier.interpolation_string();
2781 assert(i != NULL);
2782 const char *s;
2783 if (this->type->qualifier.flags.q.centroid)
2784 s = "centroid varying";
2785 else
2786 s = "varying";
2787
2788 _mesa_glsl_error(&loc, state,
2789 "qualifier '%s' cannot be applied to the "
2790 "deprecated storage qualifier '%s'", i, s);
2791 }
2792
2793
2794 /* Interpolation qualifiers can only apply to vertex shader outputs and
2795 * fragment shader inputs.
2796 *
2797 * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
2798 * "Outputs from a vertex shader (out) and inputs to a fragment
2799 * shader (in) can be further qualified with one or more of these
2800 * interpolation qualifiers"
2801 *
2802 * From page 31 (page 37 of the PDF) of the GLSL ES 3.00 spec:
2803 * "These interpolation qualifiers may only precede the qualifiers
2804 * in, centroid in, out, or centroid out in a declaration. They do
2805 * not apply to inputs into a vertex shader or outputs from a
2806 * fragment shader."
2807 */
2808 if (state->is_version(130, 300)
2809 && this->type->qualifier.has_interpolation()) {
2810
2811 const char *i = this->type->qualifier.interpolation_string();
2812 assert(i != NULL);
2813
2814 switch (state->target) {
2815 case vertex_shader:
2816 if (this->type->qualifier.flags.q.in) {
2817 _mesa_glsl_error(&loc, state,
2818 "qualifier '%s' cannot be applied to vertex "
2819 "shader inputs", i);
2820 }
2821 break;
2822 case fragment_shader:
2823 if (this->type->qualifier.flags.q.out) {
2824 _mesa_glsl_error(&loc, state,
2825 "qualifier '%s' cannot be applied to fragment "
2826 "shader outputs", i);
2827 }
2828 break;
2829 default:
2830 assert(0);
2831 }
2832 }
2833
2834
2835 /* From section 4.3.4 of the GLSL 1.30 spec:
2836 * "It is an error to use centroid in in a vertex shader."
2837 *
2838 * From section 4.3.4 of the GLSL ES 3.00 spec:
2839 * "It is an error to use centroid in or interpolation qualifiers in
2840 * a vertex shader input."
2841 */
2842 if (state->is_version(130, 300)
2843 && this->type->qualifier.flags.q.centroid
2844 && this->type->qualifier.flags.q.in
2845 && state->target == vertex_shader) {
2846
2847 _mesa_glsl_error(&loc, state,
2848 "'centroid in' cannot be used in a vertex shader");
2849 }
2850
2851
2852 /* Precision qualifiers exists only in GLSL versions 1.00 and >= 1.30.
2853 */
2854 if (this->type->specifier->precision != ast_precision_none) {
2855 state->check_precision_qualifiers_allowed(&loc);
2856 }
2857
2858
2859 /* Precision qualifiers only apply to floating point and integer types.
2860 *
2861 * From section 4.5.2 of the GLSL 1.30 spec:
2862 * "Any floating point or any integer declaration can have the type
2863 * preceded by one of these precision qualifiers [...] Literal
2864 * constants do not have precision qualifiers. Neither do Boolean
2865 * variables.
2866 *
2867 * In GLSL ES, sampler types are also allowed.
2868 *
2869 * From page 87 of the GLSL ES spec:
2870 * "RESOLUTION: Allow sampler types to take a precision qualifier."
2871 */
2872 if (this->type->specifier->precision != ast_precision_none
2873 && !var->type->is_float()
2874 && !var->type->is_integer()
2875 && !(var->type->is_sampler() && state->es_shader)
2876 && !(var->type->is_array()
2877 && (var->type->fields.array->is_float()
2878 || var->type->fields.array->is_integer()))) {
2879
2880 _mesa_glsl_error(&loc, state,
2881 "precision qualifiers apply only to floating point"
2882 "%s types", state->es_shader ? ", integer, and sampler"
2883 : "and integer");
2884 }
2885
2886 /* From page 17 (page 23 of the PDF) of the GLSL 1.20 spec:
2887 *
2888 * "[Sampler types] can only be declared as function
2889 * parameters or uniform variables (see Section 4.3.5
2890 * "Uniform")".
2891 */
2892 if (var_type->contains_sampler() &&
2893 !this->type->qualifier.flags.q.uniform) {
2894 _mesa_glsl_error(&loc, state, "samplers must be declared uniform");
2895 }
2896
2897 /* Process the initializer and add its instructions to a temporary
2898 * list. This list will be added to the instruction stream (below) after
2899 * the declaration is added. This is done because in some cases (such as
2900 * redeclarations) the declaration may not actually be added to the
2901 * instruction stream.
2902 */
2903 exec_list initializer_instructions;
2904 ir_variable *earlier = get_variable_being_redeclared(var, decl, state);
2905
2906 if (decl->initializer != NULL) {
2907 result = process_initializer((earlier == NULL) ? var : earlier,
2908 decl, this->type,
2909 &initializer_instructions, state);
2910 }
2911
2912 /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
2913 *
2914 * "It is an error to write to a const variable outside of
2915 * its declaration, so they must be initialized when
2916 * declared."
2917 */
2918 if (this->type->qualifier.flags.q.constant && decl->initializer == NULL) {
2919 _mesa_glsl_error(& loc, state,
2920 "const declaration of `%s' must be initialized",
2921 decl->identifier);
2922 }
2923
2924 /* If the declaration is not a redeclaration, there are a few additional
2925 * semantic checks that must be applied. In addition, variable that was
2926 * created for the declaration should be added to the IR stream.
2927 */
2928 if (earlier == NULL) {
2929 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
2930 *
2931 * "Identifiers starting with "gl_" are reserved for use by
2932 * OpenGL, and may not be declared in a shader as either a
2933 * variable or a function."
2934 */
2935 if (strncmp(decl->identifier, "gl_", 3) == 0)
2936 _mesa_glsl_error(& loc, state,
2937 "identifier `%s' uses reserved `gl_' prefix",
2938 decl->identifier);
2939 else if (strstr(decl->identifier, "__")) {
2940 /* From page 14 (page 20 of the PDF) of the GLSL 1.10
2941 * spec:
2942 *
2943 * "In addition, all identifiers containing two
2944 * consecutive underscores (__) are reserved as
2945 * possible future keywords."
2946 */
2947 _mesa_glsl_error(& loc, state,
2948 "identifier `%s' uses reserved `__' string",
2949 decl->identifier);
2950 }
2951
2952 /* Add the variable to the symbol table. Note that the initializer's
2953 * IR was already processed earlier (though it hasn't been emitted
2954 * yet), without the variable in scope.
2955 *
2956 * This differs from most C-like languages, but it follows the GLSL
2957 * specification. From page 28 (page 34 of the PDF) of the GLSL 1.50
2958 * spec:
2959 *
2960 * "Within a declaration, the scope of a name starts immediately
2961 * after the initializer if present or immediately after the name
2962 * being declared if not."
2963 */
2964 if (!state->symbols->add_variable(var)) {
2965 YYLTYPE loc = this->get_location();
2966 _mesa_glsl_error(&loc, state, "name `%s' already taken in the "
2967 "current scope", decl->identifier);
2968 continue;
2969 }
2970
2971 /* Push the variable declaration to the top. It means that all the
2972 * variable declarations will appear in a funny last-to-first order,
2973 * but otherwise we run into trouble if a function is prototyped, a
2974 * global var is decled, then the function is defined with usage of
2975 * the global var. See glslparsertest's CorrectModule.frag.
2976 */
2977 instructions->push_head(var);
2978 }
2979
2980 instructions->append_list(&initializer_instructions);
2981 }
2982
2983
2984 /* Generally, variable declarations do not have r-values. However,
2985 * one is used for the declaration in
2986 *
2987 * while (bool b = some_condition()) {
2988 * ...
2989 * }
2990 *
2991 * so we return the rvalue from the last seen declaration here.
2992 */
2993 return result;
2994 }
2995
2996
2997 ir_rvalue *
2998 ast_parameter_declarator::hir(exec_list *instructions,
2999 struct _mesa_glsl_parse_state *state)
3000 {
3001 void *ctx = state;
3002 const struct glsl_type *type;
3003 const char *name = NULL;
3004 YYLTYPE loc = this->get_location();
3005
3006 type = this->type->specifier->glsl_type(& name, state);
3007
3008 if (type == NULL) {
3009 if (name != NULL) {
3010 _mesa_glsl_error(& loc, state,
3011 "invalid type `%s' in declaration of `%s'",
3012 name, this->identifier);
3013 } else {
3014 _mesa_glsl_error(& loc, state,
3015 "invalid type in declaration of `%s'",
3016 this->identifier);
3017 }
3018
3019 type = glsl_type::error_type;
3020 }
3021
3022 /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
3023 *
3024 * "Functions that accept no input arguments need not use void in the
3025 * argument list because prototypes (or definitions) are required and
3026 * therefore there is no ambiguity when an empty argument list "( )" is
3027 * declared. The idiom "(void)" as a parameter list is provided for
3028 * convenience."
3029 *
3030 * Placing this check here prevents a void parameter being set up
3031 * for a function, which avoids tripping up checks for main taking
3032 * parameters and lookups of an unnamed symbol.
3033 */
3034 if (type->is_void()) {
3035 if (this->identifier != NULL)
3036 _mesa_glsl_error(& loc, state,
3037 "named parameter cannot have type `void'");
3038
3039 is_void = true;
3040 return NULL;
3041 }
3042
3043 if (formal_parameter && (this->identifier == NULL)) {
3044 _mesa_glsl_error(& loc, state, "formal parameter lacks a name");
3045 return NULL;
3046 }
3047
3048 /* This only handles "vec4 foo[..]". The earlier specifier->glsl_type(...)
3049 * call already handled the "vec4[..] foo" case.
3050 */
3051 if (this->is_array) {
3052 type = process_array_type(&loc, type, this->array_size, state);
3053 }
3054
3055 if (!type->is_error() && type->array_size() == 0) {
3056 _mesa_glsl_error(&loc, state, "arrays passed as parameters must have "
3057 "a declared size.");
3058 type = glsl_type::error_type;
3059 }
3060
3061 is_void = false;
3062 ir_variable *var = new(ctx) ir_variable(type, this->identifier, ir_var_in);
3063
3064 /* Apply any specified qualifiers to the parameter declaration. Note that
3065 * for function parameters the default mode is 'in'.
3066 */
3067 apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc,
3068 false);
3069
3070 /* From page 17 (page 23 of the PDF) of the GLSL 1.20 spec:
3071 *
3072 * "Samplers cannot be treated as l-values; hence cannot be used
3073 * as out or inout function parameters, nor can they be assigned
3074 * into."
3075 */
3076 if ((var->mode == ir_var_inout || var->mode == ir_var_out)
3077 && type->contains_sampler()) {
3078 _mesa_glsl_error(&loc, state, "out and inout parameters cannot contain samplers");
3079 type = glsl_type::error_type;
3080 }
3081
3082 /* From page 39 (page 45 of the PDF) of the GLSL 1.10 spec:
3083 *
3084 * "When calling a function, expressions that do not evaluate to
3085 * l-values cannot be passed to parameters declared as out or inout."
3086 *
3087 * From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
3088 *
3089 * "Other binary or unary expressions, non-dereferenced arrays,
3090 * function names, swizzles with repeated fields, and constants
3091 * cannot be l-values."
3092 *
3093 * So for GLSL 1.10, passing an array as an out or inout parameter is not
3094 * allowed. This restriction is removed in GLSL 1.20, and in GLSL ES.
3095 */
3096 if ((var->mode == ir_var_inout || var->mode == ir_var_out)
3097 && type->is_array()
3098 && !state->check_version(120, 100, &loc,
3099 "Arrays cannot be out or inout parameters")) {
3100 type = glsl_type::error_type;
3101 }
3102
3103 instructions->push_tail(var);
3104
3105 /* Parameter declarations do not have r-values.
3106 */
3107 return NULL;
3108 }
3109
3110
3111 void
3112 ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters,
3113 bool formal,
3114 exec_list *ir_parameters,
3115 _mesa_glsl_parse_state *state)
3116 {
3117 ast_parameter_declarator *void_param = NULL;
3118 unsigned count = 0;
3119
3120 foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) {
3121 param->formal_parameter = formal;
3122 param->hir(ir_parameters, state);
3123
3124 if (param->is_void)
3125 void_param = param;
3126
3127 count++;
3128 }
3129
3130 if ((void_param != NULL) && (count > 1)) {
3131 YYLTYPE loc = void_param->get_location();
3132
3133 _mesa_glsl_error(& loc, state,
3134 "`void' parameter must be only parameter");
3135 }
3136 }
3137
3138
3139 void
3140 emit_function(_mesa_glsl_parse_state *state, ir_function *f)
3141 {
3142 /* IR invariants disallow function declarations or definitions
3143 * nested within other function definitions. But there is no
3144 * requirement about the relative order of function declarations
3145 * and definitions with respect to one another. So simply insert
3146 * the new ir_function block at the end of the toplevel instruction
3147 * list.
3148 */
3149 state->toplevel_ir->push_tail(f);
3150 }
3151
3152
3153 ir_rvalue *
3154 ast_function::hir(exec_list *instructions,
3155 struct _mesa_glsl_parse_state *state)
3156 {
3157 void *ctx = state;
3158 ir_function *f = NULL;
3159 ir_function_signature *sig = NULL;
3160 exec_list hir_parameters;
3161
3162 const char *const name = identifier;
3163
3164 /* New functions are always added to the top-level IR instruction stream,
3165 * so this instruction list pointer is ignored. See also emit_function
3166 * (called below).
3167 */
3168 (void) instructions;
3169
3170 /* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec,
3171 *
3172 * "Function declarations (prototypes) cannot occur inside of functions;
3173 * they must be at global scope, or for the built-in functions, outside
3174 * the global scope."
3175 *
3176 * From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec,
3177 *
3178 * "User defined functions may only be defined within the global scope."
3179 *
3180 * Note that this language does not appear in GLSL 1.10.
3181 */
3182 if ((state->current_function != NULL) &&
3183 state->is_version(120, 100)) {
3184 YYLTYPE loc = this->get_location();
3185 _mesa_glsl_error(&loc, state,
3186 "declaration of function `%s' not allowed within "
3187 "function body", name);
3188 }
3189
3190 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
3191 *
3192 * "Identifiers starting with "gl_" are reserved for use by
3193 * OpenGL, and may not be declared in a shader as either a
3194 * variable or a function."
3195 */
3196 if (strncmp(name, "gl_", 3) == 0) {
3197 YYLTYPE loc = this->get_location();
3198 _mesa_glsl_error(&loc, state,
3199 "identifier `%s' uses reserved `gl_' prefix", name);
3200 }
3201
3202 /* Convert the list of function parameters to HIR now so that they can be
3203 * used below to compare this function's signature with previously seen
3204 * signatures for functions with the same name.
3205 */
3206 ast_parameter_declarator::parameters_to_hir(& this->parameters,
3207 is_definition,
3208 & hir_parameters, state);
3209
3210 const char *return_type_name;
3211 const glsl_type *return_type =
3212 this->return_type->specifier->glsl_type(& return_type_name, state);
3213
3214 if (!return_type) {
3215 YYLTYPE loc = this->get_location();
3216 _mesa_glsl_error(&loc, state,
3217 "function `%s' has undeclared return type `%s'",
3218 name, return_type_name);
3219 return_type = glsl_type::error_type;
3220 }
3221
3222 /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec:
3223 * "No qualifier is allowed on the return type of a function."
3224 */
3225 if (this->return_type->has_qualifiers()) {
3226 YYLTYPE loc = this->get_location();
3227 _mesa_glsl_error(& loc, state,
3228 "function `%s' return type has qualifiers", name);
3229 }
3230
3231 /* From page 17 (page 23 of the PDF) of the GLSL 1.20 spec:
3232 *
3233 * "[Sampler types] can only be declared as function parameters
3234 * or uniform variables (see Section 4.3.5 "Uniform")".
3235 */
3236 if (return_type->contains_sampler()) {
3237 YYLTYPE loc = this->get_location();
3238 _mesa_glsl_error(&loc, state,
3239 "function `%s' return type can't contain a sampler",
3240 name);
3241 }
3242
3243 /* Verify that this function's signature either doesn't match a previously
3244 * seen signature for a function with the same name, or, if a match is found,
3245 * that the previously seen signature does not have an associated definition.
3246 */
3247 f = state->symbols->get_function(name);
3248 if (f != NULL && (state->es_shader || f->has_user_signature())) {
3249 sig = f->exact_matching_signature(&hir_parameters);
3250 if (sig != NULL) {
3251 const char *badvar = sig->qualifiers_match(&hir_parameters);
3252 if (badvar != NULL) {
3253 YYLTYPE loc = this->get_location();
3254
3255 _mesa_glsl_error(&loc, state, "function `%s' parameter `%s' "
3256 "qualifiers don't match prototype", name, badvar);
3257 }
3258
3259 if (sig->return_type != return_type) {
3260 YYLTYPE loc = this->get_location();
3261
3262 _mesa_glsl_error(&loc, state, "function `%s' return type doesn't "
3263 "match prototype", name);
3264 }
3265
3266 if (is_definition && sig->is_defined) {
3267 YYLTYPE loc = this->get_location();
3268
3269 _mesa_glsl_error(& loc, state, "function `%s' redefined", name);
3270 }
3271 }
3272 } else {
3273 f = new(ctx) ir_function(name);
3274 if (!state->symbols->add_function(f)) {
3275 /* This function name shadows a non-function use of the same name. */
3276 YYLTYPE loc = this->get_location();
3277
3278 _mesa_glsl_error(&loc, state, "function name `%s' conflicts with "
3279 "non-function", name);
3280 return NULL;
3281 }
3282
3283 emit_function(state, f);
3284 }
3285
3286 /* Verify the return type of main() */
3287 if (strcmp(name, "main") == 0) {
3288 if (! return_type->is_void()) {
3289 YYLTYPE loc = this->get_location();
3290
3291 _mesa_glsl_error(& loc, state, "main() must return void");
3292 }
3293
3294 if (!hir_parameters.is_empty()) {
3295 YYLTYPE loc = this->get_location();
3296
3297 _mesa_glsl_error(& loc, state, "main() must not take any parameters");
3298 }
3299 }
3300
3301 /* Finish storing the information about this new function in its signature.
3302 */
3303 if (sig == NULL) {
3304 sig = new(ctx) ir_function_signature(return_type);
3305 f->add_signature(sig);
3306 }
3307
3308 sig->replace_parameters(&hir_parameters);
3309 signature = sig;
3310
3311 /* Function declarations (prototypes) do not have r-values.
3312 */
3313 return NULL;
3314 }
3315
3316
3317 ir_rvalue *
3318 ast_function_definition::hir(exec_list *instructions,
3319 struct _mesa_glsl_parse_state *state)
3320 {
3321 prototype->is_definition = true;
3322 prototype->hir(instructions, state);
3323
3324 ir_function_signature *signature = prototype->signature;
3325 if (signature == NULL)
3326 return NULL;
3327
3328 assert(state->current_function == NULL);
3329 state->current_function = signature;
3330 state->found_return = false;
3331
3332 /* Duplicate parameters declared in the prototype as concrete variables.
3333 * Add these to the symbol table.
3334 */
3335 state->symbols->push_scope();
3336 foreach_iter(exec_list_iterator, iter, signature->parameters) {
3337 ir_variable *const var = ((ir_instruction *) iter.get())->as_variable();
3338
3339 assert(var != NULL);
3340
3341 /* The only way a parameter would "exist" is if two parameters have
3342 * the same name.
3343 */
3344 if (state->symbols->name_declared_this_scope(var->name)) {
3345 YYLTYPE loc = this->get_location();
3346
3347 _mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name);
3348 } else {
3349 state->symbols->add_variable(var);
3350 }
3351 }
3352
3353 /* Convert the body of the function to HIR. */
3354 this->body->hir(&signature->body, state);
3355 signature->is_defined = true;
3356
3357 state->symbols->pop_scope();
3358
3359 assert(state->current_function == signature);
3360 state->current_function = NULL;
3361
3362 if (!signature->return_type->is_void() && !state->found_return) {
3363 YYLTYPE loc = this->get_location();
3364 _mesa_glsl_error(& loc, state, "function `%s' has non-void return type "
3365 "%s, but no return statement",
3366 signature->function_name(),
3367 signature->return_type->name);
3368 }
3369
3370 /* Function definitions do not have r-values.
3371 */
3372 return NULL;
3373 }
3374
3375
3376 ir_rvalue *
3377 ast_jump_statement::hir(exec_list *instructions,
3378 struct _mesa_glsl_parse_state *state)
3379 {
3380 void *ctx = state;
3381
3382 switch (mode) {
3383 case ast_return: {
3384 ir_return *inst;
3385 assert(state->current_function);
3386
3387 if (opt_return_value) {
3388 ir_rvalue *const ret = opt_return_value->hir(instructions, state);
3389
3390 /* The value of the return type can be NULL if the shader says
3391 * 'return foo();' and foo() is a function that returns void.
3392 *
3393 * NOTE: The GLSL spec doesn't say that this is an error. The type
3394 * of the return value is void. If the return type of the function is
3395 * also void, then this should compile without error. Seriously.
3396 */
3397 const glsl_type *const ret_type =
3398 (ret == NULL) ? glsl_type::void_type : ret->type;
3399
3400 /* Implicit conversions are not allowed for return values. */
3401 if (state->current_function->return_type != ret_type) {
3402 YYLTYPE loc = this->get_location();
3403
3404 _mesa_glsl_error(& loc, state,
3405 "`return' with wrong type %s, in function `%s' "
3406 "returning %s",
3407 ret_type->name,
3408 state->current_function->function_name(),
3409 state->current_function->return_type->name);
3410 }
3411
3412 inst = new(ctx) ir_return(ret);
3413 } else {
3414 if (state->current_function->return_type->base_type !=
3415 GLSL_TYPE_VOID) {
3416 YYLTYPE loc = this->get_location();
3417
3418 _mesa_glsl_error(& loc, state,
3419 "`return' with no value, in function %s returning "
3420 "non-void",
3421 state->current_function->function_name());
3422 }
3423 inst = new(ctx) ir_return;
3424 }
3425
3426 state->found_return = true;
3427 instructions->push_tail(inst);
3428 break;
3429 }
3430
3431 case ast_discard:
3432 if (state->target != fragment_shader) {
3433 YYLTYPE loc = this->get_location();
3434
3435 _mesa_glsl_error(& loc, state,
3436 "`discard' may only appear in a fragment shader");
3437 }
3438 instructions->push_tail(new(ctx) ir_discard);
3439 break;
3440
3441 case ast_break:
3442 case ast_continue:
3443 if (mode == ast_continue &&
3444 state->loop_nesting_ast == NULL) {
3445 YYLTYPE loc = this->get_location();
3446
3447 _mesa_glsl_error(& loc, state,
3448 "continue may only appear in a loop");
3449 } else if (mode == ast_break &&
3450 state->loop_nesting_ast == NULL &&
3451 state->switch_state.switch_nesting_ast == NULL) {
3452 YYLTYPE loc = this->get_location();
3453
3454 _mesa_glsl_error(& loc, state,
3455 "break may only appear in a loop or a switch");
3456 } else {
3457 /* For a loop, inline the for loop expression again,
3458 * since we don't know where near the end of
3459 * the loop body the normal copy of it
3460 * is going to be placed.
3461 */
3462 if (state->loop_nesting_ast != NULL &&
3463 mode == ast_continue &&
3464 state->loop_nesting_ast->rest_expression) {
3465 state->loop_nesting_ast->rest_expression->hir(instructions,
3466 state);
3467 }
3468
3469 if (state->switch_state.is_switch_innermost &&
3470 mode == ast_break) {
3471 /* Force break out of switch by setting is_break switch state.
3472 */
3473 ir_variable *const is_break_var = state->switch_state.is_break_var;
3474 ir_dereference_variable *const deref_is_break_var =
3475 new(ctx) ir_dereference_variable(is_break_var);
3476 ir_constant *const true_val = new(ctx) ir_constant(true);
3477 ir_assignment *const set_break_var =
3478 new(ctx) ir_assignment(deref_is_break_var, true_val);
3479
3480 instructions->push_tail(set_break_var);
3481 }
3482 else {
3483 ir_loop_jump *const jump =
3484 new(ctx) ir_loop_jump((mode == ast_break)
3485 ? ir_loop_jump::jump_break
3486 : ir_loop_jump::jump_continue);
3487 instructions->push_tail(jump);
3488 }
3489 }
3490
3491 break;
3492 }
3493
3494 /* Jump instructions do not have r-values.
3495 */
3496 return NULL;
3497 }
3498
3499
3500 ir_rvalue *
3501 ast_selection_statement::hir(exec_list *instructions,
3502 struct _mesa_glsl_parse_state *state)
3503 {
3504 void *ctx = state;
3505
3506 ir_rvalue *const condition = this->condition->hir(instructions, state);
3507
3508 /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
3509 *
3510 * "Any expression whose type evaluates to a Boolean can be used as the
3511 * conditional expression bool-expression. Vector types are not accepted
3512 * as the expression to if."
3513 *
3514 * The checks are separated so that higher quality diagnostics can be
3515 * generated for cases where both rules are violated.
3516 */
3517 if (!condition->type->is_boolean() || !condition->type->is_scalar()) {
3518 YYLTYPE loc = this->condition->get_location();
3519
3520 _mesa_glsl_error(& loc, state, "if-statement condition must be scalar "
3521 "boolean");
3522 }
3523
3524 ir_if *const stmt = new(ctx) ir_if(condition);
3525
3526 if (then_statement != NULL) {
3527 state->symbols->push_scope();
3528 then_statement->hir(& stmt->then_instructions, state);
3529 state->symbols->pop_scope();
3530 }
3531
3532 if (else_statement != NULL) {
3533 state->symbols->push_scope();
3534 else_statement->hir(& stmt->else_instructions, state);
3535 state->symbols->pop_scope();
3536 }
3537
3538 instructions->push_tail(stmt);
3539
3540 /* if-statements do not have r-values.
3541 */
3542 return NULL;
3543 }
3544
3545
3546 ir_rvalue *
3547 ast_switch_statement::hir(exec_list *instructions,
3548 struct _mesa_glsl_parse_state *state)
3549 {
3550 void *ctx = state;
3551
3552 ir_rvalue *const test_expression =
3553 this->test_expression->hir(instructions, state);
3554
3555 /* From page 66 (page 55 of the PDF) of the GLSL 1.50 spec:
3556 *
3557 * "The type of init-expression in a switch statement must be a
3558 * scalar integer."
3559 */
3560 if (!test_expression->type->is_scalar() ||
3561 !test_expression->type->is_integer()) {
3562 YYLTYPE loc = this->test_expression->get_location();
3563
3564 _mesa_glsl_error(& loc,
3565 state,
3566 "switch-statement expression must be scalar "
3567 "integer");
3568 }
3569
3570 /* Track the switch-statement nesting in a stack-like manner.
3571 */
3572 struct glsl_switch_state saved = state->switch_state;
3573
3574 state->switch_state.is_switch_innermost = true;
3575 state->switch_state.switch_nesting_ast = this;
3576 state->switch_state.labels_ht = hash_table_ctor(0, hash_table_pointer_hash,
3577 hash_table_pointer_compare);
3578 state->switch_state.previous_default = NULL;
3579
3580 /* Initalize is_fallthru state to false.
3581 */
3582 ir_rvalue *const is_fallthru_val = new (ctx) ir_constant(false);
3583 state->switch_state.is_fallthru_var =
3584 new(ctx) ir_variable(glsl_type::bool_type,
3585 "switch_is_fallthru_tmp",
3586 ir_var_temporary);
3587 instructions->push_tail(state->switch_state.is_fallthru_var);
3588
3589 ir_dereference_variable *deref_is_fallthru_var =
3590 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
3591 instructions->push_tail(new(ctx) ir_assignment(deref_is_fallthru_var,
3592 is_fallthru_val));
3593
3594 /* Initalize is_break state to false.
3595 */
3596 ir_rvalue *const is_break_val = new (ctx) ir_constant(false);
3597 state->switch_state.is_break_var = new(ctx) ir_variable(glsl_type::bool_type,
3598 "switch_is_break_tmp",
3599 ir_var_temporary);
3600 instructions->push_tail(state->switch_state.is_break_var);
3601
3602 ir_dereference_variable *deref_is_break_var =
3603 new(ctx) ir_dereference_variable(state->switch_state.is_break_var);
3604 instructions->push_tail(new(ctx) ir_assignment(deref_is_break_var,
3605 is_break_val));
3606
3607 /* Cache test expression.
3608 */
3609 test_to_hir(instructions, state);
3610
3611 /* Emit code for body of switch stmt.
3612 */
3613 body->hir(instructions, state);
3614
3615 hash_table_dtor(state->switch_state.labels_ht);
3616
3617 state->switch_state = saved;
3618
3619 /* Switch statements do not have r-values. */
3620 return NULL;
3621 }
3622
3623
3624 void
3625 ast_switch_statement::test_to_hir(exec_list *instructions,
3626 struct _mesa_glsl_parse_state *state)
3627 {
3628 void *ctx = state;
3629
3630 /* Cache value of test expression. */
3631 ir_rvalue *const test_val =
3632 test_expression->hir(instructions,
3633 state);
3634
3635 state->switch_state.test_var = new(ctx) ir_variable(test_val->type,
3636 "switch_test_tmp",
3637 ir_var_temporary);
3638 ir_dereference_variable *deref_test_var =
3639 new(ctx) ir_dereference_variable(state->switch_state.test_var);
3640
3641 instructions->push_tail(state->switch_state.test_var);
3642 instructions->push_tail(new(ctx) ir_assignment(deref_test_var, test_val));
3643 }
3644
3645
3646 ir_rvalue *
3647 ast_switch_body::hir(exec_list *instructions,
3648 struct _mesa_glsl_parse_state *state)
3649 {
3650 if (stmts != NULL)
3651 stmts->hir(instructions, state);
3652
3653 /* Switch bodies do not have r-values. */
3654 return NULL;
3655 }
3656
3657 ir_rvalue *
3658 ast_case_statement_list::hir(exec_list *instructions,
3659 struct _mesa_glsl_parse_state *state)
3660 {
3661 foreach_list_typed (ast_case_statement, case_stmt, link, & this->cases)
3662 case_stmt->hir(instructions, state);
3663
3664 /* Case statements do not have r-values. */
3665 return NULL;
3666 }
3667
3668 ir_rvalue *
3669 ast_case_statement::hir(exec_list *instructions,
3670 struct _mesa_glsl_parse_state *state)
3671 {
3672 labels->hir(instructions, state);
3673
3674 /* Conditionally set fallthru state based on break state. */
3675 ir_constant *const false_val = new(state) ir_constant(false);
3676 ir_dereference_variable *const deref_is_fallthru_var =
3677 new(state) ir_dereference_variable(state->switch_state.is_fallthru_var);
3678 ir_dereference_variable *const deref_is_break_var =
3679 new(state) ir_dereference_variable(state->switch_state.is_break_var);
3680 ir_assignment *const reset_fallthru_on_break =
3681 new(state) ir_assignment(deref_is_fallthru_var,
3682 false_val,
3683 deref_is_break_var);
3684 instructions->push_tail(reset_fallthru_on_break);
3685
3686 /* Guard case statements depending on fallthru state. */
3687 ir_dereference_variable *const deref_fallthru_guard =
3688 new(state) ir_dereference_variable(state->switch_state.is_fallthru_var);
3689 ir_if *const test_fallthru = new(state) ir_if(deref_fallthru_guard);
3690
3691 foreach_list_typed (ast_node, stmt, link, & this->stmts)
3692 stmt->hir(& test_fallthru->then_instructions, state);
3693
3694 instructions->push_tail(test_fallthru);
3695
3696 /* Case statements do not have r-values. */
3697 return NULL;
3698 }
3699
3700
3701 ir_rvalue *
3702 ast_case_label_list::hir(exec_list *instructions,
3703 struct _mesa_glsl_parse_state *state)
3704 {
3705 foreach_list_typed (ast_case_label, label, link, & this->labels)
3706 label->hir(instructions, state);
3707
3708 /* Case labels do not have r-values. */
3709 return NULL;
3710 }
3711
3712 ir_rvalue *
3713 ast_case_label::hir(exec_list *instructions,
3714 struct _mesa_glsl_parse_state *state)
3715 {
3716 void *ctx = state;
3717
3718 ir_dereference_variable *deref_fallthru_var =
3719 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
3720
3721 ir_rvalue *const true_val = new(ctx) ir_constant(true);
3722
3723 /* If not default case, ... */
3724 if (this->test_value != NULL) {
3725 /* Conditionally set fallthru state based on
3726 * comparison of cached test expression value to case label.
3727 */
3728 ir_rvalue *const label_rval = this->test_value->hir(instructions, state);
3729 ir_constant *label_const = label_rval->constant_expression_value();
3730
3731 if (!label_const) {
3732 YYLTYPE loc = this->test_value->get_location();
3733
3734 _mesa_glsl_error(& loc, state,
3735 "switch statement case label must be a "
3736 "constant expression");
3737
3738 /* Stuff a dummy value in to allow processing to continue. */
3739 label_const = new(ctx) ir_constant(0);
3740 } else {
3741 ast_expression *previous_label = (ast_expression *)
3742 hash_table_find(state->switch_state.labels_ht,
3743 (void *)(uintptr_t)label_const->value.u[0]);
3744
3745 if (previous_label) {
3746 YYLTYPE loc = this->test_value->get_location();
3747 _mesa_glsl_error(& loc, state,
3748 "duplicate case value");
3749
3750 loc = previous_label->get_location();
3751 _mesa_glsl_error(& loc, state,
3752 "this is the previous case label");
3753 } else {
3754 hash_table_insert(state->switch_state.labels_ht,
3755 this->test_value,
3756 (void *)(uintptr_t)label_const->value.u[0]);
3757 }
3758 }
3759
3760 ir_dereference_variable *deref_test_var =
3761 new(ctx) ir_dereference_variable(state->switch_state.test_var);
3762
3763 ir_rvalue *const test_cond = new(ctx) ir_expression(ir_binop_all_equal,
3764 label_const,
3765 deref_test_var);
3766
3767 ir_assignment *set_fallthru_on_test =
3768 new(ctx) ir_assignment(deref_fallthru_var,
3769 true_val,
3770 test_cond);
3771
3772 instructions->push_tail(set_fallthru_on_test);
3773 } else { /* default case */
3774 if (state->switch_state.previous_default) {
3775 YYLTYPE loc = this->get_location();
3776 _mesa_glsl_error(& loc, state,
3777 "multiple default labels in one switch");
3778
3779 loc = state->switch_state.previous_default->get_location();
3780 _mesa_glsl_error(& loc, state,
3781 "this is the first default label");
3782 }
3783 state->switch_state.previous_default = this;
3784
3785 /* Set falltrhu state. */
3786 ir_assignment *set_fallthru =
3787 new(ctx) ir_assignment(deref_fallthru_var, true_val);
3788
3789 instructions->push_tail(set_fallthru);
3790 }
3791
3792 /* Case statements do not have r-values. */
3793 return NULL;
3794 }
3795
3796 void
3797 ast_iteration_statement::condition_to_hir(ir_loop *stmt,
3798 struct _mesa_glsl_parse_state *state)
3799 {
3800 void *ctx = state;
3801
3802 if (condition != NULL) {
3803 ir_rvalue *const cond =
3804 condition->hir(& stmt->body_instructions, state);
3805
3806 if ((cond == NULL)
3807 || !cond->type->is_boolean() || !cond->type->is_scalar()) {
3808 YYLTYPE loc = condition->get_location();
3809
3810 _mesa_glsl_error(& loc, state,
3811 "loop condition must be scalar boolean");
3812 } else {
3813 /* As the first code in the loop body, generate a block that looks
3814 * like 'if (!condition) break;' as the loop termination condition.
3815 */
3816 ir_rvalue *const not_cond =
3817 new(ctx) ir_expression(ir_unop_logic_not, cond);
3818
3819 ir_if *const if_stmt = new(ctx) ir_if(not_cond);
3820
3821 ir_jump *const break_stmt =
3822 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
3823
3824 if_stmt->then_instructions.push_tail(break_stmt);
3825 stmt->body_instructions.push_tail(if_stmt);
3826 }
3827 }
3828 }
3829
3830
3831 ir_rvalue *
3832 ast_iteration_statement::hir(exec_list *instructions,
3833 struct _mesa_glsl_parse_state *state)
3834 {
3835 void *ctx = state;
3836
3837 /* For-loops and while-loops start a new scope, but do-while loops do not.
3838 */
3839 if (mode != ast_do_while)
3840 state->symbols->push_scope();
3841
3842 if (init_statement != NULL)
3843 init_statement->hir(instructions, state);
3844
3845 ir_loop *const stmt = new(ctx) ir_loop();
3846 instructions->push_tail(stmt);
3847
3848 /* Track the current loop nesting. */
3849 ast_iteration_statement *nesting_ast = state->loop_nesting_ast;
3850
3851 state->loop_nesting_ast = this;
3852
3853 /* Likewise, indicate that following code is closest to a loop,
3854 * NOT closest to a switch.
3855 */
3856 bool saved_is_switch_innermost = state->switch_state.is_switch_innermost;
3857 state->switch_state.is_switch_innermost = false;
3858
3859 if (mode != ast_do_while)
3860 condition_to_hir(stmt, state);
3861
3862 if (body != NULL)
3863 body->hir(& stmt->body_instructions, state);
3864
3865 if (rest_expression != NULL)
3866 rest_expression->hir(& stmt->body_instructions, state);
3867
3868 if (mode == ast_do_while)
3869 condition_to_hir(stmt, state);
3870
3871 if (mode != ast_do_while)
3872 state->symbols->pop_scope();
3873
3874 /* Restore previous nesting before returning. */
3875 state->loop_nesting_ast = nesting_ast;
3876 state->switch_state.is_switch_innermost = saved_is_switch_innermost;
3877
3878 /* Loops do not have r-values.
3879 */
3880 return NULL;
3881 }
3882
3883
3884 ir_rvalue *
3885 ast_type_specifier::hir(exec_list *instructions,
3886 struct _mesa_glsl_parse_state *state)
3887 {
3888 if (!this->is_precision_statement && this->structure == NULL)
3889 return NULL;
3890
3891 YYLTYPE loc = this->get_location();
3892
3893 if (this->precision != ast_precision_none
3894 && !state->check_precision_qualifiers_allowed(&loc)) {
3895 return NULL;
3896 }
3897 if (this->precision != ast_precision_none
3898 && this->structure != NULL) {
3899 _mesa_glsl_error(&loc, state,
3900 "precision qualifiers do not apply to structures");
3901 return NULL;
3902 }
3903
3904 /* If this is a precision statement, check that the type to which it is
3905 * applied is either float or int.
3906 *
3907 * From section 4.5.3 of the GLSL 1.30 spec:
3908 * "The precision statement
3909 * precision precision-qualifier type;
3910 * can be used to establish a default precision qualifier. The type
3911 * field can be either int or float [...]. Any other types or
3912 * qualifiers will result in an error.
3913 */
3914 if (this->is_precision_statement) {
3915 assert(this->precision != ast_precision_none);
3916 assert(this->structure == NULL); /* The check for structures was
3917 * performed above. */
3918 if (this->is_array) {
3919 _mesa_glsl_error(&loc, state,
3920 "default precision statements do not apply to "
3921 "arrays");
3922 return NULL;
3923 }
3924 if (strcmp(this->type_name, "float") != 0 &&
3925 strcmp(this->type_name, "int") != 0) {
3926 _mesa_glsl_error(&loc, state,
3927 "default precision statements apply only to types "
3928 "float and int");
3929 return NULL;
3930 }
3931
3932 /* FINISHME: Translate precision statements into IR. */
3933 return NULL;
3934 }
3935
3936 if (this->structure != NULL)
3937 return this->structure->hir(instructions, state);
3938
3939 return NULL;
3940 }
3941
3942
3943 ir_rvalue *
3944 ast_struct_specifier::hir(exec_list *instructions,
3945 struct _mesa_glsl_parse_state *state)
3946 {
3947 unsigned decl_count = 0;
3948
3949 /* Make an initial pass over the list of structure fields to determine how
3950 * many there are. Each element in this list is an ast_declarator_list.
3951 * This means that we actually need to count the number of elements in the
3952 * 'declarations' list in each of the elements.
3953 */
3954 foreach_list_typed (ast_declarator_list, decl_list, link,
3955 &this->declarations) {
3956 foreach_list_const (decl_ptr, & decl_list->declarations) {
3957 decl_count++;
3958 }
3959 }
3960
3961 /* Allocate storage for the structure fields and process the field
3962 * declarations. As the declarations are processed, try to also convert
3963 * the types to HIR. This ensures that structure definitions embedded in
3964 * other structure definitions are processed.
3965 */
3966 glsl_struct_field *const fields = ralloc_array(state, glsl_struct_field,
3967 decl_count);
3968
3969 unsigned i = 0;
3970 foreach_list_typed (ast_declarator_list, decl_list, link,
3971 &this->declarations) {
3972 const char *type_name;
3973
3974 decl_list->type->specifier->hir(instructions, state);
3975
3976 /* Section 10.9 of the GLSL ES 1.00 specification states that
3977 * embedded structure definitions have been removed from the language.
3978 */
3979 if (state->es_shader && decl_list->type->specifier->structure != NULL) {
3980 YYLTYPE loc = this->get_location();
3981 _mesa_glsl_error(&loc, state, "Embedded structure definitions are "
3982 "not allowed in GLSL ES 1.00.");
3983 }
3984
3985 const glsl_type *decl_type =
3986 decl_list->type->specifier->glsl_type(& type_name, state);
3987
3988 foreach_list_typed (ast_declaration, decl, link,
3989 &decl_list->declarations) {
3990 const struct glsl_type *field_type = decl_type;
3991 if (decl->is_array) {
3992 YYLTYPE loc = decl->get_location();
3993 field_type = process_array_type(&loc, decl_type, decl->array_size,
3994 state);
3995 }
3996 fields[i].type = (field_type != NULL)
3997 ? field_type : glsl_type::error_type;
3998 fields[i].name = decl->identifier;
3999 i++;
4000 }
4001 }
4002
4003 assert(i == decl_count);
4004
4005 const glsl_type *t =
4006 glsl_type::get_record_instance(fields, decl_count, this->name);
4007
4008 YYLTYPE loc = this->get_location();
4009 if (!state->symbols->add_type(name, t)) {
4010 _mesa_glsl_error(& loc, state, "struct `%s' previously defined", name);
4011 } else {
4012 const glsl_type **s = reralloc(state, state->user_structures,
4013 const glsl_type *,
4014 state->num_user_structures + 1);
4015 if (s != NULL) {
4016 s[state->num_user_structures] = t;
4017 state->user_structures = s;
4018 state->num_user_structures++;
4019 }
4020 }
4021
4022 /* Structure type definitions do not have r-values.
4023 */
4024 return NULL;
4025 }
4026
4027 static struct gl_uniform_block *
4028 get_next_uniform_block(struct _mesa_glsl_parse_state *state)
4029 {
4030 if (state->num_uniform_blocks >= state->uniform_block_array_size) {
4031 state->uniform_block_array_size *= 2;
4032 if (state->uniform_block_array_size <= 4)
4033 state->uniform_block_array_size = 4;
4034
4035 state->uniform_blocks = reralloc(state,
4036 state->uniform_blocks,
4037 struct gl_uniform_block,
4038 state->uniform_block_array_size);
4039 }
4040
4041 memset(&state->uniform_blocks[state->num_uniform_blocks],
4042 0, sizeof(*state->uniform_blocks));
4043 return &state->uniform_blocks[state->num_uniform_blocks++];
4044 }
4045
4046 ir_rvalue *
4047 ast_uniform_block::hir(exec_list *instructions,
4048 struct _mesa_glsl_parse_state *state)
4049 {
4050 /* The ast_uniform_block has a list of ast_declarator_lists. We
4051 * need to turn those into ir_variables with an association
4052 * with this uniform block.
4053 */
4054 struct gl_uniform_block *ubo = get_next_uniform_block(state);
4055 ubo->Name = ralloc_strdup(state->uniform_blocks, this->block_name);
4056
4057 unsigned int num_variables = 0;
4058 foreach_list_typed(ast_declarator_list, decl_list, link, &declarations) {
4059 foreach_list_const(node, &decl_list->declarations) {
4060 num_variables++;
4061 }
4062 }
4063
4064 bool block_row_major = this->layout.flags.q.row_major;
4065
4066 ubo->Uniforms = rzalloc_array(state->uniform_blocks,
4067 struct gl_uniform_buffer_variable,
4068 num_variables);
4069
4070 foreach_list_typed(ast_declarator_list, decl_list, link, &declarations) {
4071 exec_list declared_variables;
4072
4073 decl_list->hir(&declared_variables, state);
4074
4075 foreach_list_const(node, &declared_variables) {
4076 ir_variable *var = (ir_variable *)node;
4077
4078 struct gl_uniform_buffer_variable *ubo_var =
4079 &ubo->Uniforms[ubo->NumUniforms++];
4080
4081 var->uniform_block = ubo - state->uniform_blocks;
4082
4083 ubo_var->Name = ralloc_strdup(state->uniform_blocks, var->name);
4084 ubo_var->Type = var->type;
4085 ubo_var->Buffer = ubo - state->uniform_blocks;
4086 ubo_var->Offset = 0; /* Assigned at link time. */
4087
4088 if (var->type->is_matrix() ||
4089 (var->type->is_array() && var->type->fields.array->is_matrix())) {
4090 ubo_var->RowMajor = block_row_major;
4091 if (decl_list->type->qualifier.flags.q.row_major)
4092 ubo_var->RowMajor = true;
4093 else if (decl_list->type->qualifier.flags.q.column_major)
4094 ubo_var->RowMajor = false;
4095 }
4096
4097 /* From the GL_ARB_uniform_buffer_object spec:
4098 *
4099 * "Sampler types are not allowed inside of uniform
4100 * blocks. All other types, arrays, and structures
4101 * allowed for uniforms are allowed within a uniform
4102 * block."
4103 */
4104 if (var->type->contains_sampler()) {
4105 YYLTYPE loc = decl_list->get_location();
4106 _mesa_glsl_error(&loc, state,
4107 "Uniform in non-default uniform block contains sampler\n");
4108 }
4109 }
4110
4111 instructions->append_list(&declared_variables);
4112 }
4113
4114 return NULL;
4115 }
4116
4117 static void
4118 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
4119 exec_list *instructions)
4120 {
4121 bool gl_FragColor_assigned = false;
4122 bool gl_FragData_assigned = false;
4123 bool user_defined_fs_output_assigned = false;
4124 ir_variable *user_defined_fs_output = NULL;
4125
4126 /* It would be nice to have proper location information. */
4127 YYLTYPE loc;
4128 memset(&loc, 0, sizeof(loc));
4129
4130 foreach_list(node, instructions) {
4131 ir_variable *var = ((ir_instruction *)node)->as_variable();
4132
4133 if (!var || !var->assigned)
4134 continue;
4135
4136 if (strcmp(var->name, "gl_FragColor") == 0)
4137 gl_FragColor_assigned = true;
4138 else if (strcmp(var->name, "gl_FragData") == 0)
4139 gl_FragData_assigned = true;
4140 else if (strncmp(var->name, "gl_", 3) != 0) {
4141 if (state->target == fragment_shader &&
4142 (var->mode == ir_var_out || var->mode == ir_var_inout)) {
4143 user_defined_fs_output_assigned = true;
4144 user_defined_fs_output = var;
4145 }
4146 }
4147 }
4148
4149 /* From the GLSL 1.30 spec:
4150 *
4151 * "If a shader statically assigns a value to gl_FragColor, it
4152 * may not assign a value to any element of gl_FragData. If a
4153 * shader statically writes a value to any element of
4154 * gl_FragData, it may not assign a value to
4155 * gl_FragColor. That is, a shader may assign values to either
4156 * gl_FragColor or gl_FragData, but not both. Multiple shaders
4157 * linked together must also consistently write just one of
4158 * these variables. Similarly, if user declared output
4159 * variables are in use (statically assigned to), then the
4160 * built-in variables gl_FragColor and gl_FragData may not be
4161 * assigned to. These incorrect usages all generate compile
4162 * time errors."
4163 */
4164 if (gl_FragColor_assigned && gl_FragData_assigned) {
4165 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
4166 "`gl_FragColor' and `gl_FragData'\n");
4167 } else if (gl_FragColor_assigned && user_defined_fs_output_assigned) {
4168 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
4169 "`gl_FragColor' and `%s'\n",
4170 user_defined_fs_output->name);
4171 } else if (gl_FragData_assigned && user_defined_fs_output_assigned) {
4172 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
4173 "`gl_FragData' and `%s'\n",
4174 user_defined_fs_output->name);
4175 }
4176 }