b8d66dd06092fcae28d11b24b7e52c7cd2894aa0
[mesa.git] / src / glsl / ast_to_hir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file ast_to_hir.c
26 * Convert abstract syntax to to high-level intermediate reprensentation (HIR).
27 *
28 * During the conversion to HIR, the majority of the symantic checking is
29 * preformed on the program. This includes:
30 *
31 * * Symbol table management
32 * * Type checking
33 * * Function binding
34 *
35 * The majority of this work could be done during parsing, and the parser could
36 * probably generate HIR directly. However, this results in frequent changes
37 * to the parser code. Since we do not assume that every system this complier
38 * is built on will have Flex and Bison installed, we have to store the code
39 * generated by these tools in our version control system. In other parts of
40 * the system we've seen problems where a parser was changed but the generated
41 * code was not committed, merge conflicts where created because two developers
42 * had slightly different versions of Bison installed, etc.
43 *
44 * I have also noticed that running Bison generated parsers in GDB is very
45 * irritating. When you get a segfault on '$$ = $1->foo', you can't very
46 * well 'print $1' in GDB.
47 *
48 * As a result, my preference is to put as little C code as possible in the
49 * parser (and lexer) sources.
50 */
51
52 #include "glsl_symbol_table.h"
53 #include "glsl_parser_extras.h"
54 #include "ast.h"
55 #include "glsl_types.h"
56 #include "program/hash_table.h"
57 #include "main/shaderobj.h"
58 #include "ir.h"
59 #include "ir_builder.h"
60
61 using namespace ir_builder;
62
63 static void
64 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
65 exec_list *instructions);
66 static void
67 remove_per_vertex_blocks(exec_list *instructions,
68 _mesa_glsl_parse_state *state, ir_variable_mode mode);
69
70 /**
71 * Visitor class that finds the first instance of any write-only variable that
72 * is ever read, if any
73 */
74 class read_from_write_only_variable_visitor : public ir_hierarchical_visitor
75 {
76 public:
77 read_from_write_only_variable_visitor() : found(NULL)
78 {
79 }
80
81 virtual ir_visitor_status visit(ir_dereference_variable *ir)
82 {
83 if (this->in_assignee)
84 return visit_continue;
85
86 ir_variable *var = ir->variable_referenced();
87 /* We can have image_write_only set on both images and buffer variables,
88 * but in the former there is a distinction between reads from
89 * the variable itself (write_only) and from the memory they point to
90 * (image_write_only), while in the case of buffer variables there is
91 * no such distinction, that is why this check here is limited to
92 * buffer variables alone.
93 */
94 if (!var || var->data.mode != ir_var_shader_storage)
95 return visit_continue;
96
97 if (var->data.image_write_only) {
98 found = var;
99 return visit_stop;
100 }
101
102 return visit_continue;
103 }
104
105 ir_variable *get_variable() {
106 return found;
107 }
108
109 private:
110 ir_variable *found;
111 };
112
113 void
114 _mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
115 {
116 _mesa_glsl_initialize_variables(instructions, state);
117
118 state->symbols->separate_function_namespace = state->language_version == 110;
119
120 state->current_function = NULL;
121
122 state->toplevel_ir = instructions;
123
124 state->gs_input_prim_type_specified = false;
125 state->tcs_output_vertices_specified = false;
126 state->cs_input_local_size_specified = false;
127
128 /* Section 4.2 of the GLSL 1.20 specification states:
129 * "The built-in functions are scoped in a scope outside the global scope
130 * users declare global variables in. That is, a shader's global scope,
131 * available for user-defined functions and global variables, is nested
132 * inside the scope containing the built-in functions."
133 *
134 * Since built-in functions like ftransform() access built-in variables,
135 * it follows that those must be in the outer scope as well.
136 *
137 * We push scope here to create this nesting effect...but don't pop.
138 * This way, a shader's globals are still in the symbol table for use
139 * by the linker.
140 */
141 state->symbols->push_scope();
142
143 foreach_list_typed (ast_node, ast, link, & state->translation_unit)
144 ast->hir(instructions, state);
145
146 detect_recursion_unlinked(state, instructions);
147 detect_conflicting_assignments(state, instructions);
148
149 state->toplevel_ir = NULL;
150
151 /* Move all of the variable declarations to the front of the IR list, and
152 * reverse the order. This has the (intended!) side effect that vertex
153 * shader inputs and fragment shader outputs will appear in the IR in the
154 * same order that they appeared in the shader code. This results in the
155 * locations being assigned in the declared order. Many (arguably buggy)
156 * applications depend on this behavior, and it matches what nearly all
157 * other drivers do.
158 */
159 foreach_in_list_safe(ir_instruction, node, instructions) {
160 ir_variable *const var = node->as_variable();
161
162 if (var == NULL)
163 continue;
164
165 var->remove();
166 instructions->push_head(var);
167 }
168
169 /* Figure out if gl_FragCoord is actually used in fragment shader */
170 ir_variable *const var = state->symbols->get_variable("gl_FragCoord");
171 if (var != NULL)
172 state->fs_uses_gl_fragcoord = var->data.used;
173
174 /* From section 7.1 (Built-In Language Variables) of the GLSL 4.10 spec:
175 *
176 * If multiple shaders using members of a built-in block belonging to
177 * the same interface are linked together in the same program, they
178 * must all redeclare the built-in block in the same way, as described
179 * in section 4.3.7 "Interface Blocks" for interface block matching, or
180 * a link error will result.
181 *
182 * The phrase "using members of a built-in block" implies that if two
183 * shaders are linked together and one of them *does not use* any members
184 * of the built-in block, then that shader does not need to have a matching
185 * redeclaration of the built-in block.
186 *
187 * This appears to be a clarification to the behaviour established for
188 * gl_PerVertex by GLSL 1.50, therefore implement it regardless of GLSL
189 * version.
190 *
191 * The definition of "interface" in section 4.3.7 that applies here is as
192 * follows:
193 *
194 * The boundary between adjacent programmable pipeline stages: This
195 * spans all the outputs in all compilation units of the first stage
196 * and all the inputs in all compilation units of the second stage.
197 *
198 * Therefore this rule applies to both inter- and intra-stage linking.
199 *
200 * The easiest way to implement this is to check whether the shader uses
201 * gl_PerVertex right after ast-to-ir conversion, and if it doesn't, simply
202 * remove all the relevant variable declaration from the IR, so that the
203 * linker won't see them and complain about mismatches.
204 */
205 remove_per_vertex_blocks(instructions, state, ir_var_shader_in);
206 remove_per_vertex_blocks(instructions, state, ir_var_shader_out);
207
208 /* Check that we don't have reads from write-only variables */
209 read_from_write_only_variable_visitor v;
210 v.run(instructions);
211 ir_variable *error_var = v.get_variable();
212 if (error_var) {
213 /* It would be nice to have proper location information, but for that
214 * we would need to check this as we process each kind of AST node
215 */
216 YYLTYPE loc;
217 memset(&loc, 0, sizeof(loc));
218 _mesa_glsl_error(&loc, state, "Read from write-only variable `%s'",
219 error_var->name);
220 }
221 }
222
223
224 static ir_expression_operation
225 get_conversion_operation(const glsl_type *to, const glsl_type *from,
226 struct _mesa_glsl_parse_state *state)
227 {
228 switch (to->base_type) {
229 case GLSL_TYPE_FLOAT:
230 switch (from->base_type) {
231 case GLSL_TYPE_INT: return ir_unop_i2f;
232 case GLSL_TYPE_UINT: return ir_unop_u2f;
233 case GLSL_TYPE_DOUBLE: return ir_unop_d2f;
234 default: return (ir_expression_operation)0;
235 }
236
237 case GLSL_TYPE_UINT:
238 if (!state->is_version(400, 0) && !state->ARB_gpu_shader5_enable)
239 return (ir_expression_operation)0;
240 switch (from->base_type) {
241 case GLSL_TYPE_INT: return ir_unop_i2u;
242 default: return (ir_expression_operation)0;
243 }
244
245 case GLSL_TYPE_DOUBLE:
246 if (!state->has_double())
247 return (ir_expression_operation)0;
248 switch (from->base_type) {
249 case GLSL_TYPE_INT: return ir_unop_i2d;
250 case GLSL_TYPE_UINT: return ir_unop_u2d;
251 case GLSL_TYPE_FLOAT: return ir_unop_f2d;
252 default: return (ir_expression_operation)0;
253 }
254
255 default: return (ir_expression_operation)0;
256 }
257 }
258
259
260 /**
261 * If a conversion is available, convert one operand to a different type
262 *
263 * The \c from \c ir_rvalue is converted "in place".
264 *
265 * \param to Type that the operand it to be converted to
266 * \param from Operand that is being converted
267 * \param state GLSL compiler state
268 *
269 * \return
270 * If a conversion is possible (or unnecessary), \c true is returned.
271 * Otherwise \c false is returned.
272 */
273 bool
274 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
275 struct _mesa_glsl_parse_state *state)
276 {
277 void *ctx = state;
278 if (to->base_type == from->type->base_type)
279 return true;
280
281 /* Prior to GLSL 1.20, there are no implicit conversions */
282 if (!state->is_version(120, 0))
283 return false;
284
285 /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
286 *
287 * "There are no implicit array or structure conversions. For
288 * example, an array of int cannot be implicitly converted to an
289 * array of float.
290 */
291 if (!to->is_numeric() || !from->type->is_numeric())
292 return false;
293
294 /* We don't actually want the specific type `to`, we want a type
295 * with the same base type as `to`, but the same vector width as
296 * `from`.
297 */
298 to = glsl_type::get_instance(to->base_type, from->type->vector_elements,
299 from->type->matrix_columns);
300
301 ir_expression_operation op = get_conversion_operation(to, from->type, state);
302 if (op) {
303 from = new(ctx) ir_expression(op, to, from, NULL);
304 return true;
305 } else {
306 return false;
307 }
308 }
309
310
311 static const struct glsl_type *
312 arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
313 bool multiply,
314 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
315 {
316 const glsl_type *type_a = value_a->type;
317 const glsl_type *type_b = value_b->type;
318
319 /* From GLSL 1.50 spec, page 56:
320 *
321 * "The arithmetic binary operators add (+), subtract (-),
322 * multiply (*), and divide (/) operate on integer and
323 * floating-point scalars, vectors, and matrices."
324 */
325 if (!type_a->is_numeric() || !type_b->is_numeric()) {
326 _mesa_glsl_error(loc, state,
327 "operands to arithmetic operators must be numeric");
328 return glsl_type::error_type;
329 }
330
331
332 /* "If one operand is floating-point based and the other is
333 * not, then the conversions from Section 4.1.10 "Implicit
334 * Conversions" are applied to the non-floating-point-based operand."
335 */
336 if (!apply_implicit_conversion(type_a, value_b, state)
337 && !apply_implicit_conversion(type_b, value_a, state)) {
338 _mesa_glsl_error(loc, state,
339 "could not implicitly convert operands to "
340 "arithmetic operator");
341 return glsl_type::error_type;
342 }
343 type_a = value_a->type;
344 type_b = value_b->type;
345
346 /* "If the operands are integer types, they must both be signed or
347 * both be unsigned."
348 *
349 * From this rule and the preceeding conversion it can be inferred that
350 * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
351 * The is_numeric check above already filtered out the case where either
352 * type is not one of these, so now the base types need only be tested for
353 * equality.
354 */
355 if (type_a->base_type != type_b->base_type) {
356 _mesa_glsl_error(loc, state,
357 "base type mismatch for arithmetic operator");
358 return glsl_type::error_type;
359 }
360
361 /* "All arithmetic binary operators result in the same fundamental type
362 * (signed integer, unsigned integer, or floating-point) as the
363 * operands they operate on, after operand type conversion. After
364 * conversion, the following cases are valid
365 *
366 * * The two operands are scalars. In this case the operation is
367 * applied, resulting in a scalar."
368 */
369 if (type_a->is_scalar() && type_b->is_scalar())
370 return type_a;
371
372 /* "* One operand is a scalar, and the other is a vector or matrix.
373 * In this case, the scalar operation is applied independently to each
374 * component of the vector or matrix, resulting in the same size
375 * vector or matrix."
376 */
377 if (type_a->is_scalar()) {
378 if (!type_b->is_scalar())
379 return type_b;
380 } else if (type_b->is_scalar()) {
381 return type_a;
382 }
383
384 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
385 * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
386 * handled.
387 */
388 assert(!type_a->is_scalar());
389 assert(!type_b->is_scalar());
390
391 /* "* The two operands are vectors of the same size. In this case, the
392 * operation is done component-wise resulting in the same size
393 * vector."
394 */
395 if (type_a->is_vector() && type_b->is_vector()) {
396 if (type_a == type_b) {
397 return type_a;
398 } else {
399 _mesa_glsl_error(loc, state,
400 "vector size mismatch for arithmetic operator");
401 return glsl_type::error_type;
402 }
403 }
404
405 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
406 * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
407 * <vector, vector> have been handled. At least one of the operands must
408 * be matrix. Further, since there are no integer matrix types, the base
409 * type of both operands must be float.
410 */
411 assert(type_a->is_matrix() || type_b->is_matrix());
412 assert(type_a->base_type == GLSL_TYPE_FLOAT ||
413 type_a->base_type == GLSL_TYPE_DOUBLE);
414 assert(type_b->base_type == GLSL_TYPE_FLOAT ||
415 type_b->base_type == GLSL_TYPE_DOUBLE);
416
417 /* "* The operator is add (+), subtract (-), or divide (/), and the
418 * operands are matrices with the same number of rows and the same
419 * number of columns. In this case, the operation is done component-
420 * wise resulting in the same size matrix."
421 * * The operator is multiply (*), where both operands are matrices or
422 * one operand is a vector and the other a matrix. A right vector
423 * operand is treated as a column vector and a left vector operand as a
424 * row vector. In all these cases, it is required that the number of
425 * columns of the left operand is equal to the number of rows of the
426 * right operand. Then, the multiply (*) operation does a linear
427 * algebraic multiply, yielding an object that has the same number of
428 * rows as the left operand and the same number of columns as the right
429 * operand. Section 5.10 "Vector and Matrix Operations" explains in
430 * more detail how vectors and matrices are operated on."
431 */
432 if (! multiply) {
433 if (type_a == type_b)
434 return type_a;
435 } else {
436 const glsl_type *type = glsl_type::get_mul_type(type_a, type_b);
437
438 if (type == glsl_type::error_type) {
439 _mesa_glsl_error(loc, state,
440 "size mismatch for matrix multiplication");
441 }
442
443 return type;
444 }
445
446
447 /* "All other cases are illegal."
448 */
449 _mesa_glsl_error(loc, state, "type mismatch");
450 return glsl_type::error_type;
451 }
452
453
454 static const struct glsl_type *
455 unary_arithmetic_result_type(const struct glsl_type *type,
456 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
457 {
458 /* From GLSL 1.50 spec, page 57:
459 *
460 * "The arithmetic unary operators negate (-), post- and pre-increment
461 * and decrement (-- and ++) operate on integer or floating-point
462 * values (including vectors and matrices). All unary operators work
463 * component-wise on their operands. These result with the same type
464 * they operated on."
465 */
466 if (!type->is_numeric()) {
467 _mesa_glsl_error(loc, state,
468 "operands to arithmetic operators must be numeric");
469 return glsl_type::error_type;
470 }
471
472 return type;
473 }
474
475 /**
476 * \brief Return the result type of a bit-logic operation.
477 *
478 * If the given types to the bit-logic operator are invalid, return
479 * glsl_type::error_type.
480 *
481 * \param type_a Type of LHS of bit-logic op
482 * \param type_b Type of RHS of bit-logic op
483 */
484 static const struct glsl_type *
485 bit_logic_result_type(const struct glsl_type *type_a,
486 const struct glsl_type *type_b,
487 ast_operators op,
488 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
489 {
490 if (!state->check_bitwise_operations_allowed(loc)) {
491 return glsl_type::error_type;
492 }
493
494 /* From page 50 (page 56 of PDF) of GLSL 1.30 spec:
495 *
496 * "The bitwise operators and (&), exclusive-or (^), and inclusive-or
497 * (|). The operands must be of type signed or unsigned integers or
498 * integer vectors."
499 */
500 if (!type_a->is_integer()) {
501 _mesa_glsl_error(loc, state, "LHS of `%s' must be an integer",
502 ast_expression::operator_string(op));
503 return glsl_type::error_type;
504 }
505 if (!type_b->is_integer()) {
506 _mesa_glsl_error(loc, state, "RHS of `%s' must be an integer",
507 ast_expression::operator_string(op));
508 return glsl_type::error_type;
509 }
510
511 /* "The fundamental types of the operands (signed or unsigned) must
512 * match,"
513 */
514 if (type_a->base_type != type_b->base_type) {
515 _mesa_glsl_error(loc, state, "operands of `%s' must have the same "
516 "base type", ast_expression::operator_string(op));
517 return glsl_type::error_type;
518 }
519
520 /* "The operands cannot be vectors of differing size." */
521 if (type_a->is_vector() &&
522 type_b->is_vector() &&
523 type_a->vector_elements != type_b->vector_elements) {
524 _mesa_glsl_error(loc, state, "operands of `%s' cannot be vectors of "
525 "different sizes", ast_expression::operator_string(op));
526 return glsl_type::error_type;
527 }
528
529 /* "If one operand is a scalar and the other a vector, the scalar is
530 * applied component-wise to the vector, resulting in the same type as
531 * the vector. The fundamental types of the operands [...] will be the
532 * resulting fundamental type."
533 */
534 if (type_a->is_scalar())
535 return type_b;
536 else
537 return type_a;
538 }
539
540 static const struct glsl_type *
541 modulus_result_type(const struct glsl_type *type_a,
542 const struct glsl_type *type_b,
543 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
544 {
545 if (!state->check_version(130, 300, loc, "operator '%%' is reserved")) {
546 return glsl_type::error_type;
547 }
548
549 /* From GLSL 1.50 spec, page 56:
550 * "The operator modulus (%) operates on signed or unsigned integers or
551 * integer vectors. The operand types must both be signed or both be
552 * unsigned."
553 */
554 if (!type_a->is_integer()) {
555 _mesa_glsl_error(loc, state, "LHS of operator %% must be an integer");
556 return glsl_type::error_type;
557 }
558 if (!type_b->is_integer()) {
559 _mesa_glsl_error(loc, state, "RHS of operator %% must be an integer");
560 return glsl_type::error_type;
561 }
562 if (type_a->base_type != type_b->base_type) {
563 _mesa_glsl_error(loc, state,
564 "operands of %% must have the same base type");
565 return glsl_type::error_type;
566 }
567
568 /* "The operands cannot be vectors of differing size. If one operand is
569 * a scalar and the other vector, then the scalar is applied component-
570 * wise to the vector, resulting in the same type as the vector. If both
571 * are vectors of the same size, the result is computed component-wise."
572 */
573 if (type_a->is_vector()) {
574 if (!type_b->is_vector()
575 || (type_a->vector_elements == type_b->vector_elements))
576 return type_a;
577 } else
578 return type_b;
579
580 /* "The operator modulus (%) is not defined for any other data types
581 * (non-integer types)."
582 */
583 _mesa_glsl_error(loc, state, "type mismatch");
584 return glsl_type::error_type;
585 }
586
587
588 static const struct glsl_type *
589 relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
590 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
591 {
592 const glsl_type *type_a = value_a->type;
593 const glsl_type *type_b = value_b->type;
594
595 /* From GLSL 1.50 spec, page 56:
596 * "The relational operators greater than (>), less than (<), greater
597 * than or equal (>=), and less than or equal (<=) operate only on
598 * scalar integer and scalar floating-point expressions."
599 */
600 if (!type_a->is_numeric()
601 || !type_b->is_numeric()
602 || !type_a->is_scalar()
603 || !type_b->is_scalar()) {
604 _mesa_glsl_error(loc, state,
605 "operands to relational operators must be scalar and "
606 "numeric");
607 return glsl_type::error_type;
608 }
609
610 /* "Either the operands' types must match, or the conversions from
611 * Section 4.1.10 "Implicit Conversions" will be applied to the integer
612 * operand, after which the types must match."
613 */
614 if (!apply_implicit_conversion(type_a, value_b, state)
615 && !apply_implicit_conversion(type_b, value_a, state)) {
616 _mesa_glsl_error(loc, state,
617 "could not implicitly convert operands to "
618 "relational operator");
619 return glsl_type::error_type;
620 }
621 type_a = value_a->type;
622 type_b = value_b->type;
623
624 if (type_a->base_type != type_b->base_type) {
625 _mesa_glsl_error(loc, state, "base type mismatch");
626 return glsl_type::error_type;
627 }
628
629 /* "The result is scalar Boolean."
630 */
631 return glsl_type::bool_type;
632 }
633
634 /**
635 * \brief Return the result type of a bit-shift operation.
636 *
637 * If the given types to the bit-shift operator are invalid, return
638 * glsl_type::error_type.
639 *
640 * \param type_a Type of LHS of bit-shift op
641 * \param type_b Type of RHS of bit-shift op
642 */
643 static const struct glsl_type *
644 shift_result_type(const struct glsl_type *type_a,
645 const struct glsl_type *type_b,
646 ast_operators op,
647 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
648 {
649 if (!state->check_bitwise_operations_allowed(loc)) {
650 return glsl_type::error_type;
651 }
652
653 /* From page 50 (page 56 of the PDF) of the GLSL 1.30 spec:
654 *
655 * "The shift operators (<<) and (>>). For both operators, the operands
656 * must be signed or unsigned integers or integer vectors. One operand
657 * can be signed while the other is unsigned."
658 */
659 if (!type_a->is_integer()) {
660 _mesa_glsl_error(loc, state, "LHS of operator %s must be an integer or "
661 "integer vector", ast_expression::operator_string(op));
662 return glsl_type::error_type;
663
664 }
665 if (!type_b->is_integer()) {
666 _mesa_glsl_error(loc, state, "RHS of operator %s must be an integer or "
667 "integer vector", ast_expression::operator_string(op));
668 return glsl_type::error_type;
669 }
670
671 /* "If the first operand is a scalar, the second operand has to be
672 * a scalar as well."
673 */
674 if (type_a->is_scalar() && !type_b->is_scalar()) {
675 _mesa_glsl_error(loc, state, "if the first operand of %s is scalar, the "
676 "second must be scalar as well",
677 ast_expression::operator_string(op));
678 return glsl_type::error_type;
679 }
680
681 /* If both operands are vectors, check that they have same number of
682 * elements.
683 */
684 if (type_a->is_vector() &&
685 type_b->is_vector() &&
686 type_a->vector_elements != type_b->vector_elements) {
687 _mesa_glsl_error(loc, state, "vector operands to operator %s must "
688 "have same number of elements",
689 ast_expression::operator_string(op));
690 return glsl_type::error_type;
691 }
692
693 /* "In all cases, the resulting type will be the same type as the left
694 * operand."
695 */
696 return type_a;
697 }
698
699 /**
700 * Returns the innermost array index expression in an rvalue tree.
701 * This is the largest indexing level -- if an array of blocks, then
702 * it is the block index rather than an indexing expression for an
703 * array-typed member of an array of blocks.
704 */
705 static ir_rvalue *
706 find_innermost_array_index(ir_rvalue *rv)
707 {
708 ir_dereference_array *last = NULL;
709 while (rv) {
710 if (rv->as_dereference_array()) {
711 last = rv->as_dereference_array();
712 rv = last->array;
713 } else if (rv->as_dereference_record())
714 rv = rv->as_dereference_record()->record;
715 else if (rv->as_swizzle())
716 rv = rv->as_swizzle()->val;
717 else
718 rv = NULL;
719 }
720
721 if (last)
722 return last->array_index;
723
724 return NULL;
725 }
726
727 /**
728 * Validates that a value can be assigned to a location with a specified type
729 *
730 * Validates that \c rhs can be assigned to some location. If the types are
731 * not an exact match but an automatic conversion is possible, \c rhs will be
732 * converted.
733 *
734 * \return
735 * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
736 * Otherwise the actual RHS to be assigned will be returned. This may be
737 * \c rhs, or it may be \c rhs after some type conversion.
738 *
739 * \note
740 * In addition to being used for assignments, this function is used to
741 * type-check return values.
742 */
743 static ir_rvalue *
744 validate_assignment(struct _mesa_glsl_parse_state *state,
745 YYLTYPE loc, ir_rvalue *lhs,
746 ir_rvalue *rhs, bool is_initializer)
747 {
748 /* If there is already some error in the RHS, just return it. Anything
749 * else will lead to an avalanche of error message back to the user.
750 */
751 if (rhs->type->is_error())
752 return rhs;
753
754 /* In the Tessellation Control Shader:
755 * If a per-vertex output variable is used as an l-value, it is an error
756 * if the expression indicating the vertex number is not the identifier
757 * `gl_InvocationID`.
758 */
759 if (state->stage == MESA_SHADER_TESS_CTRL) {
760 ir_variable *var = lhs->variable_referenced();
761 if (var->data.mode == ir_var_shader_out && !var->data.patch) {
762 ir_rvalue *index = find_innermost_array_index(lhs);
763 ir_variable *index_var = index ? index->variable_referenced() : NULL;
764 if (!index_var || strcmp(index_var->name, "gl_InvocationID") != 0) {
765 _mesa_glsl_error(&loc, state,
766 "Tessellation control shader outputs can only "
767 "be indexed by gl_InvocationID");
768 return NULL;
769 }
770 }
771 }
772
773 /* If the types are identical, the assignment can trivially proceed.
774 */
775 if (rhs->type == lhs->type)
776 return rhs;
777
778 /* If the array element types are the same and the LHS is unsized,
779 * the assignment is okay for initializers embedded in variable
780 * declarations.
781 *
782 * Note: Whole-array assignments are not permitted in GLSL 1.10, but this
783 * is handled by ir_dereference::is_lvalue.
784 */
785 if (lhs->type->is_unsized_array() && rhs->type->is_array()
786 && (lhs->type->fields.array == rhs->type->fields.array)) {
787 if (is_initializer) {
788 return rhs;
789 } else {
790 _mesa_glsl_error(&loc, state,
791 "implicitly sized arrays cannot be assigned");
792 return NULL;
793 }
794 }
795
796 /* Check for implicit conversion in GLSL 1.20 */
797 if (apply_implicit_conversion(lhs->type, rhs, state)) {
798 if (rhs->type == lhs->type)
799 return rhs;
800 }
801
802 _mesa_glsl_error(&loc, state,
803 "%s of type %s cannot be assigned to "
804 "variable of type %s",
805 is_initializer ? "initializer" : "value",
806 rhs->type->name, lhs->type->name);
807
808 return NULL;
809 }
810
811 static void
812 mark_whole_array_access(ir_rvalue *access)
813 {
814 ir_dereference_variable *deref = access->as_dereference_variable();
815
816 if (deref && deref->var) {
817 deref->var->data.max_array_access = deref->type->length - 1;
818 }
819 }
820
821 static bool
822 do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state,
823 const char *non_lvalue_description,
824 ir_rvalue *lhs, ir_rvalue *rhs,
825 ir_rvalue **out_rvalue, bool needs_rvalue,
826 bool is_initializer,
827 YYLTYPE lhs_loc)
828 {
829 void *ctx = state;
830 bool error_emitted = (lhs->type->is_error() || rhs->type->is_error());
831 ir_rvalue *extract_channel = NULL;
832
833 /* If the assignment LHS comes back as an ir_binop_vector_extract
834 * expression, move it to the RHS as an ir_triop_vector_insert.
835 */
836 if (lhs->ir_type == ir_type_expression) {
837 ir_expression *const lhs_expr = lhs->as_expression();
838
839 if (unlikely(lhs_expr->operation == ir_binop_vector_extract)) {
840 ir_rvalue *new_rhs =
841 validate_assignment(state, lhs_loc, lhs,
842 rhs, is_initializer);
843
844 if (new_rhs == NULL) {
845 return lhs;
846 } else {
847 /* This converts:
848 * - LHS: (expression float vector_extract <vec> <channel>)
849 * - RHS: <scalar>
850 * into:
851 * - LHS: <vec>
852 * - RHS: (expression vec2 vector_insert <vec> <channel> <scalar>)
853 *
854 * The LHS type is now a vector instead of a scalar. Since GLSL
855 * allows assignments to be used as rvalues, we need to re-extract
856 * the channel from assignment_temp when returning the rvalue.
857 */
858 extract_channel = lhs_expr->operands[1];
859 rhs = new(ctx) ir_expression(ir_triop_vector_insert,
860 lhs_expr->operands[0]->type,
861 lhs_expr->operands[0],
862 new_rhs,
863 extract_channel);
864 lhs = lhs_expr->operands[0]->clone(ctx, NULL);
865 }
866 }
867 }
868
869 ir_variable *lhs_var = lhs->variable_referenced();
870 if (lhs_var)
871 lhs_var->data.assigned = true;
872
873 if (!error_emitted) {
874 if (non_lvalue_description != NULL) {
875 _mesa_glsl_error(&lhs_loc, state,
876 "assignment to %s",
877 non_lvalue_description);
878 error_emitted = true;
879 } else if (lhs_var != NULL && (lhs_var->data.read_only ||
880 (lhs_var->data.mode == ir_var_shader_storage &&
881 lhs_var->data.image_read_only))) {
882 /* We can have image_read_only set on both images and buffer variables,
883 * but in the former there is a distinction between assignments to
884 * the variable itself (read_only) and to the memory they point to
885 * (image_read_only), while in the case of buffer variables there is
886 * no such distinction, that is why this check here is limited to
887 * buffer variables alone.
888 */
889 _mesa_glsl_error(&lhs_loc, state,
890 "assignment to read-only variable '%s'",
891 lhs_var->name);
892 error_emitted = true;
893 } else if (lhs->type->is_array() &&
894 !state->check_version(120, 300, &lhs_loc,
895 "whole array assignment forbidden")) {
896 /* From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
897 *
898 * "Other binary or unary expressions, non-dereferenced
899 * arrays, function names, swizzles with repeated fields,
900 * and constants cannot be l-values."
901 *
902 * The restriction on arrays is lifted in GLSL 1.20 and GLSL ES 3.00.
903 */
904 error_emitted = true;
905 } else if (!lhs->is_lvalue()) {
906 _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment");
907 error_emitted = true;
908 }
909 }
910
911 ir_rvalue *new_rhs =
912 validate_assignment(state, lhs_loc, lhs, rhs, is_initializer);
913 if (new_rhs != NULL) {
914 rhs = new_rhs;
915
916 /* If the LHS array was not declared with a size, it takes it size from
917 * the RHS. If the LHS is an l-value and a whole array, it must be a
918 * dereference of a variable. Any other case would require that the LHS
919 * is either not an l-value or not a whole array.
920 */
921 if (lhs->type->is_unsized_array()) {
922 ir_dereference *const d = lhs->as_dereference();
923
924 assert(d != NULL);
925
926 ir_variable *const var = d->variable_referenced();
927
928 assert(var != NULL);
929
930 if (var->data.max_array_access >= unsigned(rhs->type->array_size())) {
931 /* FINISHME: This should actually log the location of the RHS. */
932 _mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to "
933 "previous access",
934 var->data.max_array_access);
935 }
936
937 var->type = glsl_type::get_array_instance(lhs->type->fields.array,
938 rhs->type->array_size());
939 d->type = var->type;
940 }
941 if (lhs->type->is_array()) {
942 mark_whole_array_access(rhs);
943 mark_whole_array_access(lhs);
944 }
945 }
946
947 /* Most callers of do_assignment (assign, add_assign, pre_inc/dec,
948 * but not post_inc) need the converted assigned value as an rvalue
949 * to handle things like:
950 *
951 * i = j += 1;
952 */
953 if (needs_rvalue) {
954 ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp",
955 ir_var_temporary);
956 instructions->push_tail(var);
957 instructions->push_tail(assign(var, rhs));
958
959 if (!error_emitted) {
960 ir_dereference_variable *deref_var = new(ctx) ir_dereference_variable(var);
961 instructions->push_tail(new(ctx) ir_assignment(lhs, deref_var));
962 }
963 ir_rvalue *rvalue = new(ctx) ir_dereference_variable(var);
964
965 if (extract_channel) {
966 rvalue = new(ctx) ir_expression(ir_binop_vector_extract,
967 rvalue,
968 extract_channel->clone(ctx, NULL));
969 }
970
971 *out_rvalue = rvalue;
972 } else {
973 if (!error_emitted)
974 instructions->push_tail(new(ctx) ir_assignment(lhs, rhs));
975 *out_rvalue = NULL;
976 }
977
978 return error_emitted;
979 }
980
981 static ir_rvalue *
982 get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue)
983 {
984 void *ctx = ralloc_parent(lvalue);
985 ir_variable *var;
986
987 var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp",
988 ir_var_temporary);
989 instructions->push_tail(var);
990
991 instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
992 lvalue));
993
994 return new(ctx) ir_dereference_variable(var);
995 }
996
997
998 ir_rvalue *
999 ast_node::hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
1000 {
1001 (void) instructions;
1002 (void) state;
1003
1004 return NULL;
1005 }
1006
1007 void
1008 ast_function_expression::hir_no_rvalue(exec_list *instructions,
1009 struct _mesa_glsl_parse_state *state)
1010 {
1011 (void)hir(instructions, state);
1012 }
1013
1014 void
1015 ast_aggregate_initializer::hir_no_rvalue(exec_list *instructions,
1016 struct _mesa_glsl_parse_state *state)
1017 {
1018 (void)hir(instructions, state);
1019 }
1020
1021 static ir_rvalue *
1022 do_comparison(void *mem_ctx, int operation, ir_rvalue *op0, ir_rvalue *op1)
1023 {
1024 int join_op;
1025 ir_rvalue *cmp = NULL;
1026
1027 if (operation == ir_binop_all_equal)
1028 join_op = ir_binop_logic_and;
1029 else
1030 join_op = ir_binop_logic_or;
1031
1032 switch (op0->type->base_type) {
1033 case GLSL_TYPE_FLOAT:
1034 case GLSL_TYPE_UINT:
1035 case GLSL_TYPE_INT:
1036 case GLSL_TYPE_BOOL:
1037 case GLSL_TYPE_DOUBLE:
1038 return new(mem_ctx) ir_expression(operation, op0, op1);
1039
1040 case GLSL_TYPE_ARRAY: {
1041 for (unsigned int i = 0; i < op0->type->length; i++) {
1042 ir_rvalue *e0, *e1, *result;
1043
1044 e0 = new(mem_ctx) ir_dereference_array(op0->clone(mem_ctx, NULL),
1045 new(mem_ctx) ir_constant(i));
1046 e1 = new(mem_ctx) ir_dereference_array(op1->clone(mem_ctx, NULL),
1047 new(mem_ctx) ir_constant(i));
1048 result = do_comparison(mem_ctx, operation, e0, e1);
1049
1050 if (cmp) {
1051 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
1052 } else {
1053 cmp = result;
1054 }
1055 }
1056
1057 mark_whole_array_access(op0);
1058 mark_whole_array_access(op1);
1059 break;
1060 }
1061
1062 case GLSL_TYPE_STRUCT: {
1063 for (unsigned int i = 0; i < op0->type->length; i++) {
1064 ir_rvalue *e0, *e1, *result;
1065 const char *field_name = op0->type->fields.structure[i].name;
1066
1067 e0 = new(mem_ctx) ir_dereference_record(op0->clone(mem_ctx, NULL),
1068 field_name);
1069 e1 = new(mem_ctx) ir_dereference_record(op1->clone(mem_ctx, NULL),
1070 field_name);
1071 result = do_comparison(mem_ctx, operation, e0, e1);
1072
1073 if (cmp) {
1074 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
1075 } else {
1076 cmp = result;
1077 }
1078 }
1079 break;
1080 }
1081
1082 case GLSL_TYPE_ERROR:
1083 case GLSL_TYPE_VOID:
1084 case GLSL_TYPE_SAMPLER:
1085 case GLSL_TYPE_IMAGE:
1086 case GLSL_TYPE_INTERFACE:
1087 case GLSL_TYPE_ATOMIC_UINT:
1088 case GLSL_TYPE_SUBROUTINE:
1089 /* I assume a comparison of a struct containing a sampler just
1090 * ignores the sampler present in the type.
1091 */
1092 break;
1093 }
1094
1095 if (cmp == NULL)
1096 cmp = new(mem_ctx) ir_constant(true);
1097
1098 return cmp;
1099 }
1100
1101 /* For logical operations, we want to ensure that the operands are
1102 * scalar booleans. If it isn't, emit an error and return a constant
1103 * boolean to avoid triggering cascading error messages.
1104 */
1105 ir_rvalue *
1106 get_scalar_boolean_operand(exec_list *instructions,
1107 struct _mesa_glsl_parse_state *state,
1108 ast_expression *parent_expr,
1109 int operand,
1110 const char *operand_name,
1111 bool *error_emitted)
1112 {
1113 ast_expression *expr = parent_expr->subexpressions[operand];
1114 void *ctx = state;
1115 ir_rvalue *val = expr->hir(instructions, state);
1116
1117 if (val->type->is_boolean() && val->type->is_scalar())
1118 return val;
1119
1120 if (!*error_emitted) {
1121 YYLTYPE loc = expr->get_location();
1122 _mesa_glsl_error(&loc, state, "%s of `%s' must be scalar boolean",
1123 operand_name,
1124 parent_expr->operator_string(parent_expr->oper));
1125 *error_emitted = true;
1126 }
1127
1128 return new(ctx) ir_constant(true);
1129 }
1130
1131 /**
1132 * If name refers to a builtin array whose maximum allowed size is less than
1133 * size, report an error and return true. Otherwise return false.
1134 */
1135 void
1136 check_builtin_array_max_size(const char *name, unsigned size,
1137 YYLTYPE loc, struct _mesa_glsl_parse_state *state)
1138 {
1139 if ((strcmp("gl_TexCoord", name) == 0)
1140 && (size > state->Const.MaxTextureCoords)) {
1141 /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec:
1142 *
1143 * "The size [of gl_TexCoord] can be at most
1144 * gl_MaxTextureCoords."
1145 */
1146 _mesa_glsl_error(&loc, state, "`gl_TexCoord' array size cannot "
1147 "be larger than gl_MaxTextureCoords (%u)",
1148 state->Const.MaxTextureCoords);
1149 } else if (strcmp("gl_ClipDistance", name) == 0
1150 && size > state->Const.MaxClipPlanes) {
1151 /* From section 7.1 (Vertex Shader Special Variables) of the
1152 * GLSL 1.30 spec:
1153 *
1154 * "The gl_ClipDistance array is predeclared as unsized and
1155 * must be sized by the shader either redeclaring it with a
1156 * size or indexing it only with integral constant
1157 * expressions. ... The size can be at most
1158 * gl_MaxClipDistances."
1159 */
1160 _mesa_glsl_error(&loc, state, "`gl_ClipDistance' array size cannot "
1161 "be larger than gl_MaxClipDistances (%u)",
1162 state->Const.MaxClipPlanes);
1163 }
1164 }
1165
1166 /**
1167 * Create the constant 1, of a which is appropriate for incrementing and
1168 * decrementing values of the given GLSL type. For example, if type is vec4,
1169 * this creates a constant value of 1.0 having type float.
1170 *
1171 * If the given type is invalid for increment and decrement operators, return
1172 * a floating point 1--the error will be detected later.
1173 */
1174 static ir_rvalue *
1175 constant_one_for_inc_dec(void *ctx, const glsl_type *type)
1176 {
1177 switch (type->base_type) {
1178 case GLSL_TYPE_UINT:
1179 return new(ctx) ir_constant((unsigned) 1);
1180 case GLSL_TYPE_INT:
1181 return new(ctx) ir_constant(1);
1182 default:
1183 case GLSL_TYPE_FLOAT:
1184 return new(ctx) ir_constant(1.0f);
1185 }
1186 }
1187
1188 ir_rvalue *
1189 ast_expression::hir(exec_list *instructions,
1190 struct _mesa_glsl_parse_state *state)
1191 {
1192 return do_hir(instructions, state, true);
1193 }
1194
1195 void
1196 ast_expression::hir_no_rvalue(exec_list *instructions,
1197 struct _mesa_glsl_parse_state *state)
1198 {
1199 do_hir(instructions, state, false);
1200 }
1201
1202 ir_rvalue *
1203 ast_expression::do_hir(exec_list *instructions,
1204 struct _mesa_glsl_parse_state *state,
1205 bool needs_rvalue)
1206 {
1207 void *ctx = state;
1208 static const int operations[AST_NUM_OPERATORS] = {
1209 -1, /* ast_assign doesn't convert to ir_expression. */
1210 -1, /* ast_plus doesn't convert to ir_expression. */
1211 ir_unop_neg,
1212 ir_binop_add,
1213 ir_binop_sub,
1214 ir_binop_mul,
1215 ir_binop_div,
1216 ir_binop_mod,
1217 ir_binop_lshift,
1218 ir_binop_rshift,
1219 ir_binop_less,
1220 ir_binop_greater,
1221 ir_binop_lequal,
1222 ir_binop_gequal,
1223 ir_binop_all_equal,
1224 ir_binop_any_nequal,
1225 ir_binop_bit_and,
1226 ir_binop_bit_xor,
1227 ir_binop_bit_or,
1228 ir_unop_bit_not,
1229 ir_binop_logic_and,
1230 ir_binop_logic_xor,
1231 ir_binop_logic_or,
1232 ir_unop_logic_not,
1233
1234 /* Note: The following block of expression types actually convert
1235 * to multiple IR instructions.
1236 */
1237 ir_binop_mul, /* ast_mul_assign */
1238 ir_binop_div, /* ast_div_assign */
1239 ir_binop_mod, /* ast_mod_assign */
1240 ir_binop_add, /* ast_add_assign */
1241 ir_binop_sub, /* ast_sub_assign */
1242 ir_binop_lshift, /* ast_ls_assign */
1243 ir_binop_rshift, /* ast_rs_assign */
1244 ir_binop_bit_and, /* ast_and_assign */
1245 ir_binop_bit_xor, /* ast_xor_assign */
1246 ir_binop_bit_or, /* ast_or_assign */
1247
1248 -1, /* ast_conditional doesn't convert to ir_expression. */
1249 ir_binop_add, /* ast_pre_inc. */
1250 ir_binop_sub, /* ast_pre_dec. */
1251 ir_binop_add, /* ast_post_inc. */
1252 ir_binop_sub, /* ast_post_dec. */
1253 -1, /* ast_field_selection doesn't conv to ir_expression. */
1254 -1, /* ast_array_index doesn't convert to ir_expression. */
1255 -1, /* ast_function_call doesn't conv to ir_expression. */
1256 -1, /* ast_identifier doesn't convert to ir_expression. */
1257 -1, /* ast_int_constant doesn't convert to ir_expression. */
1258 -1, /* ast_uint_constant doesn't conv to ir_expression. */
1259 -1, /* ast_float_constant doesn't conv to ir_expression. */
1260 -1, /* ast_bool_constant doesn't conv to ir_expression. */
1261 -1, /* ast_sequence doesn't convert to ir_expression. */
1262 };
1263 ir_rvalue *result = NULL;
1264 ir_rvalue *op[3];
1265 const struct glsl_type *type; /* a temporary variable for switch cases */
1266 bool error_emitted = false;
1267 YYLTYPE loc;
1268
1269 loc = this->get_location();
1270
1271 switch (this->oper) {
1272 case ast_aggregate:
1273 assert(!"ast_aggregate: Should never get here.");
1274 break;
1275
1276 case ast_assign: {
1277 op[0] = this->subexpressions[0]->hir(instructions, state);
1278 op[1] = this->subexpressions[1]->hir(instructions, state);
1279
1280 error_emitted =
1281 do_assignment(instructions, state,
1282 this->subexpressions[0]->non_lvalue_description,
1283 op[0], op[1], &result, needs_rvalue, false,
1284 this->subexpressions[0]->get_location());
1285 break;
1286 }
1287
1288 case ast_plus:
1289 op[0] = this->subexpressions[0]->hir(instructions, state);
1290
1291 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1292
1293 error_emitted = type->is_error();
1294
1295 result = op[0];
1296 break;
1297
1298 case ast_neg:
1299 op[0] = this->subexpressions[0]->hir(instructions, state);
1300
1301 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1302
1303 error_emitted = type->is_error();
1304
1305 result = new(ctx) ir_expression(operations[this->oper], type,
1306 op[0], NULL);
1307 break;
1308
1309 case ast_add:
1310 case ast_sub:
1311 case ast_mul:
1312 case ast_div:
1313 op[0] = this->subexpressions[0]->hir(instructions, state);
1314 op[1] = this->subexpressions[1]->hir(instructions, state);
1315
1316 type = arithmetic_result_type(op[0], op[1],
1317 (this->oper == ast_mul),
1318 state, & loc);
1319 error_emitted = type->is_error();
1320
1321 result = new(ctx) ir_expression(operations[this->oper], type,
1322 op[0], op[1]);
1323 break;
1324
1325 case ast_mod:
1326 op[0] = this->subexpressions[0]->hir(instructions, state);
1327 op[1] = this->subexpressions[1]->hir(instructions, state);
1328
1329 type = modulus_result_type(op[0]->type, op[1]->type, state, & loc);
1330
1331 assert(operations[this->oper] == ir_binop_mod);
1332
1333 result = new(ctx) ir_expression(operations[this->oper], type,
1334 op[0], op[1]);
1335 error_emitted = type->is_error();
1336 break;
1337
1338 case ast_lshift:
1339 case ast_rshift:
1340 if (!state->check_bitwise_operations_allowed(&loc)) {
1341 error_emitted = true;
1342 }
1343
1344 op[0] = this->subexpressions[0]->hir(instructions, state);
1345 op[1] = this->subexpressions[1]->hir(instructions, state);
1346 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1347 &loc);
1348 result = new(ctx) ir_expression(operations[this->oper], type,
1349 op[0], op[1]);
1350 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1351 break;
1352
1353 case ast_less:
1354 case ast_greater:
1355 case ast_lequal:
1356 case ast_gequal:
1357 op[0] = this->subexpressions[0]->hir(instructions, state);
1358 op[1] = this->subexpressions[1]->hir(instructions, state);
1359
1360 type = relational_result_type(op[0], op[1], state, & loc);
1361
1362 /* The relational operators must either generate an error or result
1363 * in a scalar boolean. See page 57 of the GLSL 1.50 spec.
1364 */
1365 assert(type->is_error()
1366 || ((type->base_type == GLSL_TYPE_BOOL)
1367 && type->is_scalar()));
1368
1369 result = new(ctx) ir_expression(operations[this->oper], type,
1370 op[0], op[1]);
1371 error_emitted = type->is_error();
1372 break;
1373
1374 case ast_nequal:
1375 case ast_equal:
1376 op[0] = this->subexpressions[0]->hir(instructions, state);
1377 op[1] = this->subexpressions[1]->hir(instructions, state);
1378
1379 /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
1380 *
1381 * "The equality operators equal (==), and not equal (!=)
1382 * operate on all types. They result in a scalar Boolean. If
1383 * the operand types do not match, then there must be a
1384 * conversion from Section 4.1.10 "Implicit Conversions"
1385 * applied to one operand that can make them match, in which
1386 * case this conversion is done."
1387 */
1388
1389 if (op[0]->type == glsl_type::void_type || op[1]->type == glsl_type::void_type) {
1390 _mesa_glsl_error(& loc, state, "`%s': wrong operand types: "
1391 "no operation `%1$s' exists that takes a left-hand "
1392 "operand of type 'void' or a right operand of type "
1393 "'void'", (this->oper == ast_equal) ? "==" : "!=");
1394 error_emitted = true;
1395 } else if ((!apply_implicit_conversion(op[0]->type, op[1], state)
1396 && !apply_implicit_conversion(op[1]->type, op[0], state))
1397 || (op[0]->type != op[1]->type)) {
1398 _mesa_glsl_error(& loc, state, "operands of `%s' must have the same "
1399 "type", (this->oper == ast_equal) ? "==" : "!=");
1400 error_emitted = true;
1401 } else if ((op[0]->type->is_array() || op[1]->type->is_array()) &&
1402 !state->check_version(120, 300, &loc,
1403 "array comparisons forbidden")) {
1404 error_emitted = true;
1405 } else if ((op[0]->type->contains_opaque() ||
1406 op[1]->type->contains_opaque())) {
1407 _mesa_glsl_error(&loc, state, "opaque type comparisons forbidden");
1408 error_emitted = true;
1409 }
1410
1411 if (error_emitted) {
1412 result = new(ctx) ir_constant(false);
1413 } else {
1414 result = do_comparison(ctx, operations[this->oper], op[0], op[1]);
1415 assert(result->type == glsl_type::bool_type);
1416 }
1417 break;
1418
1419 case ast_bit_and:
1420 case ast_bit_xor:
1421 case ast_bit_or:
1422 op[0] = this->subexpressions[0]->hir(instructions, state);
1423 op[1] = this->subexpressions[1]->hir(instructions, state);
1424 type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
1425 state, &loc);
1426 result = new(ctx) ir_expression(operations[this->oper], type,
1427 op[0], op[1]);
1428 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1429 break;
1430
1431 case ast_bit_not:
1432 op[0] = this->subexpressions[0]->hir(instructions, state);
1433
1434 if (!state->check_bitwise_operations_allowed(&loc)) {
1435 error_emitted = true;
1436 }
1437
1438 if (!op[0]->type->is_integer()) {
1439 _mesa_glsl_error(&loc, state, "operand of `~' must be an integer");
1440 error_emitted = true;
1441 }
1442
1443 type = error_emitted ? glsl_type::error_type : op[0]->type;
1444 result = new(ctx) ir_expression(ir_unop_bit_not, type, op[0], NULL);
1445 break;
1446
1447 case ast_logic_and: {
1448 exec_list rhs_instructions;
1449 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1450 "LHS", &error_emitted);
1451 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1452 "RHS", &error_emitted);
1453
1454 if (rhs_instructions.is_empty()) {
1455 result = new(ctx) ir_expression(ir_binop_logic_and, op[0], op[1]);
1456 type = result->type;
1457 } else {
1458 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1459 "and_tmp",
1460 ir_var_temporary);
1461 instructions->push_tail(tmp);
1462
1463 ir_if *const stmt = new(ctx) ir_if(op[0]);
1464 instructions->push_tail(stmt);
1465
1466 stmt->then_instructions.append_list(&rhs_instructions);
1467 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1468 ir_assignment *const then_assign =
1469 new(ctx) ir_assignment(then_deref, op[1]);
1470 stmt->then_instructions.push_tail(then_assign);
1471
1472 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1473 ir_assignment *const else_assign =
1474 new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false));
1475 stmt->else_instructions.push_tail(else_assign);
1476
1477 result = new(ctx) ir_dereference_variable(tmp);
1478 type = tmp->type;
1479 }
1480 break;
1481 }
1482
1483 case ast_logic_or: {
1484 exec_list rhs_instructions;
1485 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1486 "LHS", &error_emitted);
1487 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1488 "RHS", &error_emitted);
1489
1490 if (rhs_instructions.is_empty()) {
1491 result = new(ctx) ir_expression(ir_binop_logic_or, op[0], op[1]);
1492 type = result->type;
1493 } else {
1494 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1495 "or_tmp",
1496 ir_var_temporary);
1497 instructions->push_tail(tmp);
1498
1499 ir_if *const stmt = new(ctx) ir_if(op[0]);
1500 instructions->push_tail(stmt);
1501
1502 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1503 ir_assignment *const then_assign =
1504 new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true));
1505 stmt->then_instructions.push_tail(then_assign);
1506
1507 stmt->else_instructions.append_list(&rhs_instructions);
1508 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1509 ir_assignment *const else_assign =
1510 new(ctx) ir_assignment(else_deref, op[1]);
1511 stmt->else_instructions.push_tail(else_assign);
1512
1513 result = new(ctx) ir_dereference_variable(tmp);
1514 type = tmp->type;
1515 }
1516 break;
1517 }
1518
1519 case ast_logic_xor:
1520 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1521 *
1522 * "The logical binary operators and (&&), or ( | | ), and
1523 * exclusive or (^^). They operate only on two Boolean
1524 * expressions and result in a Boolean expression."
1525 */
1526 op[0] = get_scalar_boolean_operand(instructions, state, this, 0, "LHS",
1527 &error_emitted);
1528 op[1] = get_scalar_boolean_operand(instructions, state, this, 1, "RHS",
1529 &error_emitted);
1530
1531 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1532 op[0], op[1]);
1533 break;
1534
1535 case ast_logic_not:
1536 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1537 "operand", &error_emitted);
1538
1539 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1540 op[0], NULL);
1541 break;
1542
1543 case ast_mul_assign:
1544 case ast_div_assign:
1545 case ast_add_assign:
1546 case ast_sub_assign: {
1547 op[0] = this->subexpressions[0]->hir(instructions, state);
1548 op[1] = this->subexpressions[1]->hir(instructions, state);
1549
1550 type = arithmetic_result_type(op[0], op[1],
1551 (this->oper == ast_mul_assign),
1552 state, & loc);
1553
1554 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1555 op[0], op[1]);
1556
1557 error_emitted =
1558 do_assignment(instructions, state,
1559 this->subexpressions[0]->non_lvalue_description,
1560 op[0]->clone(ctx, NULL), temp_rhs,
1561 &result, needs_rvalue, false,
1562 this->subexpressions[0]->get_location());
1563
1564 /* GLSL 1.10 does not allow array assignment. However, we don't have to
1565 * explicitly test for this because none of the binary expression
1566 * operators allow array operands either.
1567 */
1568
1569 break;
1570 }
1571
1572 case ast_mod_assign: {
1573 op[0] = this->subexpressions[0]->hir(instructions, state);
1574 op[1] = this->subexpressions[1]->hir(instructions, state);
1575
1576 type = modulus_result_type(op[0]->type, op[1]->type, state, & loc);
1577
1578 assert(operations[this->oper] == ir_binop_mod);
1579
1580 ir_rvalue *temp_rhs;
1581 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1582 op[0], op[1]);
1583
1584 error_emitted =
1585 do_assignment(instructions, state,
1586 this->subexpressions[0]->non_lvalue_description,
1587 op[0]->clone(ctx, NULL), temp_rhs,
1588 &result, needs_rvalue, false,
1589 this->subexpressions[0]->get_location());
1590 break;
1591 }
1592
1593 case ast_ls_assign:
1594 case ast_rs_assign: {
1595 op[0] = this->subexpressions[0]->hir(instructions, state);
1596 op[1] = this->subexpressions[1]->hir(instructions, state);
1597 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1598 &loc);
1599 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1600 type, op[0], op[1]);
1601 error_emitted =
1602 do_assignment(instructions, state,
1603 this->subexpressions[0]->non_lvalue_description,
1604 op[0]->clone(ctx, NULL), temp_rhs,
1605 &result, needs_rvalue, false,
1606 this->subexpressions[0]->get_location());
1607 break;
1608 }
1609
1610 case ast_and_assign:
1611 case ast_xor_assign:
1612 case ast_or_assign: {
1613 op[0] = this->subexpressions[0]->hir(instructions, state);
1614 op[1] = this->subexpressions[1]->hir(instructions, state);
1615 type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
1616 state, &loc);
1617 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1618 type, op[0], op[1]);
1619 error_emitted =
1620 do_assignment(instructions, state,
1621 this->subexpressions[0]->non_lvalue_description,
1622 op[0]->clone(ctx, NULL), temp_rhs,
1623 &result, needs_rvalue, false,
1624 this->subexpressions[0]->get_location());
1625 break;
1626 }
1627
1628 case ast_conditional: {
1629 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1630 *
1631 * "The ternary selection operator (?:). It operates on three
1632 * expressions (exp1 ? exp2 : exp3). This operator evaluates the
1633 * first expression, which must result in a scalar Boolean."
1634 */
1635 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1636 "condition", &error_emitted);
1637
1638 /* The :? operator is implemented by generating an anonymous temporary
1639 * followed by an if-statement. The last instruction in each branch of
1640 * the if-statement assigns a value to the anonymous temporary. This
1641 * temporary is the r-value of the expression.
1642 */
1643 exec_list then_instructions;
1644 exec_list else_instructions;
1645
1646 op[1] = this->subexpressions[1]->hir(&then_instructions, state);
1647 op[2] = this->subexpressions[2]->hir(&else_instructions, state);
1648
1649 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1650 *
1651 * "The second and third expressions can be any type, as
1652 * long their types match, or there is a conversion in
1653 * Section 4.1.10 "Implicit Conversions" that can be applied
1654 * to one of the expressions to make their types match. This
1655 * resulting matching type is the type of the entire
1656 * expression."
1657 */
1658 if ((!apply_implicit_conversion(op[1]->type, op[2], state)
1659 && !apply_implicit_conversion(op[2]->type, op[1], state))
1660 || (op[1]->type != op[2]->type)) {
1661 YYLTYPE loc = this->subexpressions[1]->get_location();
1662
1663 _mesa_glsl_error(& loc, state, "second and third operands of ?: "
1664 "operator must have matching types");
1665 error_emitted = true;
1666 type = glsl_type::error_type;
1667 } else {
1668 type = op[1]->type;
1669 }
1670
1671 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1672 *
1673 * "The second and third expressions must be the same type, but can
1674 * be of any type other than an array."
1675 */
1676 if (type->is_array() &&
1677 !state->check_version(120, 300, &loc,
1678 "second and third operands of ?: operator "
1679 "cannot be arrays")) {
1680 error_emitted = true;
1681 }
1682
1683 /* From section 4.1.7 of the GLSL 4.50 spec (Opaque Types):
1684 *
1685 * "Except for array indexing, structure member selection, and
1686 * parentheses, opaque variables are not allowed to be operands in
1687 * expressions; such use results in a compile-time error."
1688 */
1689 if (type->contains_opaque()) {
1690 _mesa_glsl_error(&loc, state, "opaque variables cannot be operands "
1691 "of the ?: operator");
1692 error_emitted = true;
1693 }
1694
1695 ir_constant *cond_val = op[0]->constant_expression_value();
1696
1697 if (then_instructions.is_empty()
1698 && else_instructions.is_empty()
1699 && cond_val != NULL) {
1700 result = cond_val->value.b[0] ? op[1] : op[2];
1701 } else {
1702 /* The copy to conditional_tmp reads the whole array. */
1703 if (type->is_array()) {
1704 mark_whole_array_access(op[1]);
1705 mark_whole_array_access(op[2]);
1706 }
1707
1708 ir_variable *const tmp =
1709 new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary);
1710 instructions->push_tail(tmp);
1711
1712 ir_if *const stmt = new(ctx) ir_if(op[0]);
1713 instructions->push_tail(stmt);
1714
1715 then_instructions.move_nodes_to(& stmt->then_instructions);
1716 ir_dereference *const then_deref =
1717 new(ctx) ir_dereference_variable(tmp);
1718 ir_assignment *const then_assign =
1719 new(ctx) ir_assignment(then_deref, op[1]);
1720 stmt->then_instructions.push_tail(then_assign);
1721
1722 else_instructions.move_nodes_to(& stmt->else_instructions);
1723 ir_dereference *const else_deref =
1724 new(ctx) ir_dereference_variable(tmp);
1725 ir_assignment *const else_assign =
1726 new(ctx) ir_assignment(else_deref, op[2]);
1727 stmt->else_instructions.push_tail(else_assign);
1728
1729 result = new(ctx) ir_dereference_variable(tmp);
1730 }
1731 break;
1732 }
1733
1734 case ast_pre_inc:
1735 case ast_pre_dec: {
1736 this->non_lvalue_description = (this->oper == ast_pre_inc)
1737 ? "pre-increment operation" : "pre-decrement operation";
1738
1739 op[0] = this->subexpressions[0]->hir(instructions, state);
1740 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1741
1742 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1743
1744 ir_rvalue *temp_rhs;
1745 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1746 op[0], op[1]);
1747
1748 error_emitted =
1749 do_assignment(instructions, state,
1750 this->subexpressions[0]->non_lvalue_description,
1751 op[0]->clone(ctx, NULL), temp_rhs,
1752 &result, needs_rvalue, false,
1753 this->subexpressions[0]->get_location());
1754 break;
1755 }
1756
1757 case ast_post_inc:
1758 case ast_post_dec: {
1759 this->non_lvalue_description = (this->oper == ast_post_inc)
1760 ? "post-increment operation" : "post-decrement operation";
1761 op[0] = this->subexpressions[0]->hir(instructions, state);
1762 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1763
1764 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1765
1766 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1767
1768 ir_rvalue *temp_rhs;
1769 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1770 op[0], op[1]);
1771
1772 /* Get a temporary of a copy of the lvalue before it's modified.
1773 * This may get thrown away later.
1774 */
1775 result = get_lvalue_copy(instructions, op[0]->clone(ctx, NULL));
1776
1777 ir_rvalue *junk_rvalue;
1778 error_emitted =
1779 do_assignment(instructions, state,
1780 this->subexpressions[0]->non_lvalue_description,
1781 op[0]->clone(ctx, NULL), temp_rhs,
1782 &junk_rvalue, false, false,
1783 this->subexpressions[0]->get_location());
1784
1785 break;
1786 }
1787
1788 case ast_field_selection:
1789 result = _mesa_ast_field_selection_to_hir(this, instructions, state);
1790 break;
1791
1792 case ast_array_index: {
1793 YYLTYPE index_loc = subexpressions[1]->get_location();
1794
1795 op[0] = subexpressions[0]->hir(instructions, state);
1796 op[1] = subexpressions[1]->hir(instructions, state);
1797
1798 result = _mesa_ast_array_index_to_hir(ctx, state, op[0], op[1],
1799 loc, index_loc);
1800
1801 if (result->type->is_error())
1802 error_emitted = true;
1803
1804 break;
1805 }
1806
1807 case ast_function_call:
1808 /* Should *NEVER* get here. ast_function_call should always be handled
1809 * by ast_function_expression::hir.
1810 */
1811 assert(0);
1812 break;
1813
1814 case ast_identifier: {
1815 /* ast_identifier can appear several places in a full abstract syntax
1816 * tree. This particular use must be at location specified in the grammar
1817 * as 'variable_identifier'.
1818 */
1819 ir_variable *var =
1820 state->symbols->get_variable(this->primary_expression.identifier);
1821
1822 if (var != NULL) {
1823 var->data.used = true;
1824 result = new(ctx) ir_dereference_variable(var);
1825 } else {
1826 _mesa_glsl_error(& loc, state, "`%s' undeclared",
1827 this->primary_expression.identifier);
1828
1829 result = ir_rvalue::error_value(ctx);
1830 error_emitted = true;
1831 }
1832 break;
1833 }
1834
1835 case ast_int_constant:
1836 result = new(ctx) ir_constant(this->primary_expression.int_constant);
1837 break;
1838
1839 case ast_uint_constant:
1840 result = new(ctx) ir_constant(this->primary_expression.uint_constant);
1841 break;
1842
1843 case ast_float_constant:
1844 result = new(ctx) ir_constant(this->primary_expression.float_constant);
1845 break;
1846
1847 case ast_bool_constant:
1848 result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant));
1849 break;
1850
1851 case ast_double_constant:
1852 result = new(ctx) ir_constant(this->primary_expression.double_constant);
1853 break;
1854
1855 case ast_sequence: {
1856 /* It should not be possible to generate a sequence in the AST without
1857 * any expressions in it.
1858 */
1859 assert(!this->expressions.is_empty());
1860
1861 /* The r-value of a sequence is the last expression in the sequence. If
1862 * the other expressions in the sequence do not have side-effects (and
1863 * therefore add instructions to the instruction list), they get dropped
1864 * on the floor.
1865 */
1866 exec_node *previous_tail_pred = NULL;
1867 YYLTYPE previous_operand_loc = loc;
1868
1869 foreach_list_typed (ast_node, ast, link, &this->expressions) {
1870 /* If one of the operands of comma operator does not generate any
1871 * code, we want to emit a warning. At each pass through the loop
1872 * previous_tail_pred will point to the last instruction in the
1873 * stream *before* processing the previous operand. Naturally,
1874 * instructions->tail_pred will point to the last instruction in the
1875 * stream *after* processing the previous operand. If the two
1876 * pointers match, then the previous operand had no effect.
1877 *
1878 * The warning behavior here differs slightly from GCC. GCC will
1879 * only emit a warning if none of the left-hand operands have an
1880 * effect. However, it will emit a warning for each. I believe that
1881 * there are some cases in C (especially with GCC extensions) where
1882 * it is useful to have an intermediate step in a sequence have no
1883 * effect, but I don't think these cases exist in GLSL. Either way,
1884 * it would be a giant hassle to replicate that behavior.
1885 */
1886 if (previous_tail_pred == instructions->tail_pred) {
1887 _mesa_glsl_warning(&previous_operand_loc, state,
1888 "left-hand operand of comma expression has "
1889 "no effect");
1890 }
1891
1892 /* tail_pred is directly accessed instead of using the get_tail()
1893 * method for performance reasons. get_tail() has extra code to
1894 * return NULL when the list is empty. We don't care about that
1895 * here, so using tail_pred directly is fine.
1896 */
1897 previous_tail_pred = instructions->tail_pred;
1898 previous_operand_loc = ast->get_location();
1899
1900 result = ast->hir(instructions, state);
1901 }
1902
1903 /* Any errors should have already been emitted in the loop above.
1904 */
1905 error_emitted = true;
1906 break;
1907 }
1908 }
1909 type = NULL; /* use result->type, not type. */
1910 assert(result != NULL || !needs_rvalue);
1911
1912 if (result && result->type->is_error() && !error_emitted)
1913 _mesa_glsl_error(& loc, state, "type mismatch");
1914
1915 return result;
1916 }
1917
1918
1919 ir_rvalue *
1920 ast_expression_statement::hir(exec_list *instructions,
1921 struct _mesa_glsl_parse_state *state)
1922 {
1923 /* It is possible to have expression statements that don't have an
1924 * expression. This is the solitary semicolon:
1925 *
1926 * for (i = 0; i < 5; i++)
1927 * ;
1928 *
1929 * In this case the expression will be NULL. Test for NULL and don't do
1930 * anything in that case.
1931 */
1932 if (expression != NULL)
1933 expression->hir_no_rvalue(instructions, state);
1934
1935 /* Statements do not have r-values.
1936 */
1937 return NULL;
1938 }
1939
1940
1941 ir_rvalue *
1942 ast_compound_statement::hir(exec_list *instructions,
1943 struct _mesa_glsl_parse_state *state)
1944 {
1945 if (new_scope)
1946 state->symbols->push_scope();
1947
1948 foreach_list_typed (ast_node, ast, link, &this->statements)
1949 ast->hir(instructions, state);
1950
1951 if (new_scope)
1952 state->symbols->pop_scope();
1953
1954 /* Compound statements do not have r-values.
1955 */
1956 return NULL;
1957 }
1958
1959 /**
1960 * Evaluate the given exec_node (which should be an ast_node representing
1961 * a single array dimension) and return its integer value.
1962 */
1963 static unsigned
1964 process_array_size(exec_node *node,
1965 struct _mesa_glsl_parse_state *state)
1966 {
1967 exec_list dummy_instructions;
1968
1969 ast_node *array_size = exec_node_data(ast_node, node, link);
1970 ir_rvalue *const ir = array_size->hir(& dummy_instructions, state);
1971 YYLTYPE loc = array_size->get_location();
1972
1973 if (ir == NULL) {
1974 _mesa_glsl_error(& loc, state,
1975 "array size could not be resolved");
1976 return 0;
1977 }
1978
1979 if (!ir->type->is_integer()) {
1980 _mesa_glsl_error(& loc, state,
1981 "array size must be integer type");
1982 return 0;
1983 }
1984
1985 if (!ir->type->is_scalar()) {
1986 _mesa_glsl_error(& loc, state,
1987 "array size must be scalar type");
1988 return 0;
1989 }
1990
1991 ir_constant *const size = ir->constant_expression_value();
1992 if (size == NULL) {
1993 _mesa_glsl_error(& loc, state, "array size must be a "
1994 "constant valued expression");
1995 return 0;
1996 }
1997
1998 if (size->value.i[0] <= 0) {
1999 _mesa_glsl_error(& loc, state, "array size must be > 0");
2000 return 0;
2001 }
2002
2003 assert(size->type == ir->type);
2004
2005 /* If the array size is const (and we've verified that
2006 * it is) then no instructions should have been emitted
2007 * when we converted it to HIR. If they were emitted,
2008 * then either the array size isn't const after all, or
2009 * we are emitting unnecessary instructions.
2010 */
2011 assert(dummy_instructions.is_empty());
2012
2013 return size->value.u[0];
2014 }
2015
2016 static const glsl_type *
2017 process_array_type(YYLTYPE *loc, const glsl_type *base,
2018 ast_array_specifier *array_specifier,
2019 struct _mesa_glsl_parse_state *state)
2020 {
2021 const glsl_type *array_type = base;
2022
2023 if (array_specifier != NULL) {
2024 if (base->is_array()) {
2025
2026 /* From page 19 (page 25) of the GLSL 1.20 spec:
2027 *
2028 * "Only one-dimensional arrays may be declared."
2029 */
2030 if (!state->ARB_arrays_of_arrays_enable) {
2031 _mesa_glsl_error(loc, state,
2032 "invalid array of `%s'"
2033 "GL_ARB_arrays_of_arrays "
2034 "required for defining arrays of arrays",
2035 base->name);
2036 return glsl_type::error_type;
2037 }
2038
2039 if (base->length == 0) {
2040 _mesa_glsl_error(loc, state,
2041 "only the outermost array dimension can "
2042 "be unsized",
2043 base->name);
2044 return glsl_type::error_type;
2045 }
2046 }
2047
2048 for (exec_node *node = array_specifier->array_dimensions.tail_pred;
2049 !node->is_head_sentinel(); node = node->prev) {
2050 unsigned array_size = process_array_size(node, state);
2051 array_type = glsl_type::get_array_instance(array_type, array_size);
2052 }
2053
2054 if (array_specifier->is_unsized_array)
2055 array_type = glsl_type::get_array_instance(array_type, 0);
2056 }
2057
2058 return array_type;
2059 }
2060
2061
2062 const glsl_type *
2063 ast_type_specifier::glsl_type(const char **name,
2064 struct _mesa_glsl_parse_state *state) const
2065 {
2066 const struct glsl_type *type;
2067
2068 type = state->symbols->get_type(this->type_name);
2069 *name = this->type_name;
2070
2071 YYLTYPE loc = this->get_location();
2072 type = process_array_type(&loc, type, this->array_specifier, state);
2073
2074 return type;
2075 }
2076
2077 const glsl_type *
2078 ast_fully_specified_type::glsl_type(const char **name,
2079 struct _mesa_glsl_parse_state *state) const
2080 {
2081 const struct glsl_type *type = this->specifier->glsl_type(name, state);
2082
2083 if (type == NULL)
2084 return NULL;
2085
2086 if (type->base_type == GLSL_TYPE_FLOAT
2087 && state->es_shader
2088 && state->stage == MESA_SHADER_FRAGMENT
2089 && this->qualifier.precision == ast_precision_none
2090 && state->symbols->get_variable("#default precision") == NULL) {
2091 YYLTYPE loc = this->get_location();
2092 _mesa_glsl_error(&loc, state,
2093 "no precision specified this scope for type `%s'",
2094 type->name);
2095 }
2096
2097 return type;
2098 }
2099
2100 /**
2101 * Determine whether a toplevel variable declaration declares a varying. This
2102 * function operates by examining the variable's mode and the shader target,
2103 * so it correctly identifies linkage variables regardless of whether they are
2104 * declared using the deprecated "varying" syntax or the new "in/out" syntax.
2105 *
2106 * Passing a non-toplevel variable declaration (e.g. a function parameter) to
2107 * this function will produce undefined results.
2108 */
2109 static bool
2110 is_varying_var(ir_variable *var, gl_shader_stage target)
2111 {
2112 switch (target) {
2113 case MESA_SHADER_VERTEX:
2114 return var->data.mode == ir_var_shader_out;
2115 case MESA_SHADER_FRAGMENT:
2116 return var->data.mode == ir_var_shader_in;
2117 default:
2118 return var->data.mode == ir_var_shader_out || var->data.mode == ir_var_shader_in;
2119 }
2120 }
2121
2122
2123 /**
2124 * Matrix layout qualifiers are only allowed on certain types
2125 */
2126 static void
2127 validate_matrix_layout_for_type(struct _mesa_glsl_parse_state *state,
2128 YYLTYPE *loc,
2129 const glsl_type *type,
2130 ir_variable *var)
2131 {
2132 if (var && !var->is_in_buffer_block()) {
2133 /* Layout qualifiers may only apply to interface blocks and fields in
2134 * them.
2135 */
2136 _mesa_glsl_error(loc, state,
2137 "uniform block layout qualifiers row_major and "
2138 "column_major may not be applied to variables "
2139 "outside of uniform blocks");
2140 } else if (!type->is_matrix()) {
2141 /* The OpenGL ES 3.0 conformance tests did not originally allow
2142 * matrix layout qualifiers on non-matrices. However, the OpenGL
2143 * 4.4 and OpenGL ES 3.0 (revision TBD) specifications were
2144 * amended to specifically allow these layouts on all types. Emit
2145 * a warning so that people know their code may not be portable.
2146 */
2147 _mesa_glsl_warning(loc, state,
2148 "uniform block layout qualifiers row_major and "
2149 "column_major applied to non-matrix types may "
2150 "be rejected by older compilers");
2151 } else if (type->is_record()) {
2152 /* We allow 'layout(row_major)' on structure types because it's the only
2153 * way to get row-major layouts on matrices contained in structures.
2154 */
2155 _mesa_glsl_warning(loc, state,
2156 "uniform block layout qualifiers row_major and "
2157 "column_major applied to structure types is not "
2158 "strictly conformant and may be rejected by other "
2159 "compilers");
2160 }
2161 }
2162
2163 static bool
2164 validate_binding_qualifier(struct _mesa_glsl_parse_state *state,
2165 YYLTYPE *loc,
2166 const glsl_type *type,
2167 const ast_type_qualifier *qual)
2168 {
2169 if (!qual->flags.q.uniform && !qual->flags.q.buffer) {
2170 _mesa_glsl_error(loc, state,
2171 "the \"binding\" qualifier only applies to uniforms and "
2172 "shader storage buffer objects");
2173 return false;
2174 }
2175
2176 if (qual->binding < 0) {
2177 _mesa_glsl_error(loc, state, "binding values must be >= 0");
2178 return false;
2179 }
2180
2181 const struct gl_context *const ctx = state->ctx;
2182 unsigned elements = type->is_array() ? type->arrays_of_arrays_size() : 1;
2183 unsigned max_index = qual->binding + elements - 1;
2184 const glsl_type *base_type = type->without_array();
2185
2186 if (base_type->is_interface()) {
2187 /* UBOs. From page 60 of the GLSL 4.20 specification:
2188 * "If the binding point for any uniform block instance is less than zero,
2189 * or greater than or equal to the implementation-dependent maximum
2190 * number of uniform buffer bindings, a compilation error will occur.
2191 * When the binding identifier is used with a uniform block instanced as
2192 * an array of size N, all elements of the array from binding through
2193 * binding + N – 1 must be within this range."
2194 *
2195 * The implementation-dependent maximum is GL_MAX_UNIFORM_BUFFER_BINDINGS.
2196 */
2197 if (qual->flags.q.uniform &&
2198 max_index >= ctx->Const.MaxUniformBufferBindings) {
2199 _mesa_glsl_error(loc, state, "layout(binding = %d) for %d UBOs exceeds "
2200 "the maximum number of UBO binding points (%d)",
2201 qual->binding, elements,
2202 ctx->Const.MaxUniformBufferBindings);
2203 return false;
2204 }
2205
2206 /* SSBOs. From page 67 of the GLSL 4.30 specification:
2207 * "If the binding point for any uniform or shader storage block instance
2208 * is less than zero, or greater than or equal to the
2209 * implementation-dependent maximum number of uniform buffer bindings, a
2210 * compile-time error will occur. When the binding identifier is used
2211 * with a uniform or shader storage block instanced as an array of size
2212 * N, all elements of the array from binding through binding + N – 1 must
2213 * be within this range."
2214 */
2215 if (qual->flags.q.buffer &&
2216 max_index >= ctx->Const.MaxShaderStorageBufferBindings) {
2217 _mesa_glsl_error(loc, state, "layout(binding = %d) for %d SSBOs exceeds "
2218 "the maximum number of SSBO binding points (%d)",
2219 qual->binding, elements,
2220 ctx->Const.MaxShaderStorageBufferBindings);
2221 return false;
2222 }
2223 } else if (base_type->is_sampler()) {
2224 /* Samplers. From page 63 of the GLSL 4.20 specification:
2225 * "If the binding is less than zero, or greater than or equal to the
2226 * implementation-dependent maximum supported number of units, a
2227 * compilation error will occur. When the binding identifier is used
2228 * with an array of size N, all elements of the array from binding
2229 * through binding + N - 1 must be within this range."
2230 */
2231 unsigned limit = ctx->Const.MaxCombinedTextureImageUnits;
2232
2233 if (max_index >= limit) {
2234 _mesa_glsl_error(loc, state, "layout(binding = %d) for %d samplers "
2235 "exceeds the maximum number of texture image units "
2236 "(%d)", qual->binding, elements, limit);
2237
2238 return false;
2239 }
2240 } else if (base_type->contains_atomic()) {
2241 assert(ctx->Const.MaxAtomicBufferBindings <= MAX_COMBINED_ATOMIC_BUFFERS);
2242 if (unsigned(qual->binding) >= ctx->Const.MaxAtomicBufferBindings) {
2243 _mesa_glsl_error(loc, state, "layout(binding = %d) exceeds the "
2244 " maximum number of atomic counter buffer bindings"
2245 "(%d)", qual->binding,
2246 ctx->Const.MaxAtomicBufferBindings);
2247
2248 return false;
2249 }
2250 } else if (state->is_version(420, 310) && base_type->is_image()) {
2251 assert(ctx->Const.MaxImageUnits <= MAX_IMAGE_UNITS);
2252 if (max_index >= ctx->Const.MaxImageUnits) {
2253 _mesa_glsl_error(loc, state, "Image binding %d exceeds the "
2254 " maximum number of image units (%d)", max_index,
2255 ctx->Const.MaxImageUnits);
2256 return false;
2257 }
2258
2259 } else {
2260 _mesa_glsl_error(loc, state,
2261 "the \"binding\" qualifier only applies to uniform "
2262 "blocks, opaque variables, or arrays thereof");
2263 return false;
2264 }
2265
2266 return true;
2267 }
2268
2269
2270 static glsl_interp_qualifier
2271 interpret_interpolation_qualifier(const struct ast_type_qualifier *qual,
2272 ir_variable_mode mode,
2273 struct _mesa_glsl_parse_state *state,
2274 YYLTYPE *loc)
2275 {
2276 glsl_interp_qualifier interpolation;
2277 if (qual->flags.q.flat)
2278 interpolation = INTERP_QUALIFIER_FLAT;
2279 else if (qual->flags.q.noperspective)
2280 interpolation = INTERP_QUALIFIER_NOPERSPECTIVE;
2281 else if (qual->flags.q.smooth)
2282 interpolation = INTERP_QUALIFIER_SMOOTH;
2283 else
2284 interpolation = INTERP_QUALIFIER_NONE;
2285
2286 if (interpolation != INTERP_QUALIFIER_NONE) {
2287 if (mode != ir_var_shader_in && mode != ir_var_shader_out) {
2288 _mesa_glsl_error(loc, state,
2289 "interpolation qualifier `%s' can only be applied to "
2290 "shader inputs or outputs.",
2291 interpolation_string(interpolation));
2292
2293 }
2294
2295 if ((state->stage == MESA_SHADER_VERTEX && mode == ir_var_shader_in) ||
2296 (state->stage == MESA_SHADER_FRAGMENT && mode == ir_var_shader_out)) {
2297 _mesa_glsl_error(loc, state,
2298 "interpolation qualifier `%s' cannot be applied to "
2299 "vertex shader inputs or fragment shader outputs",
2300 interpolation_string(interpolation));
2301 }
2302 }
2303
2304 return interpolation;
2305 }
2306
2307
2308 static void
2309 validate_explicit_location(const struct ast_type_qualifier *qual,
2310 ir_variable *var,
2311 struct _mesa_glsl_parse_state *state,
2312 YYLTYPE *loc)
2313 {
2314 bool fail = false;
2315
2316 /* Checks for GL_ARB_explicit_uniform_location. */
2317 if (qual->flags.q.uniform) {
2318 if (!state->check_explicit_uniform_location_allowed(loc, var))
2319 return;
2320
2321 const struct gl_context *const ctx = state->ctx;
2322 unsigned max_loc = qual->location + var->type->uniform_locations() - 1;
2323
2324 /* ARB_explicit_uniform_location specification states:
2325 *
2326 * "The explicitly defined locations and the generated locations
2327 * must be in the range of 0 to MAX_UNIFORM_LOCATIONS minus one."
2328 *
2329 * "Valid locations for default-block uniform variable locations
2330 * are in the range of 0 to the implementation-defined maximum
2331 * number of uniform locations."
2332 */
2333 if (qual->location < 0) {
2334 _mesa_glsl_error(loc, state,
2335 "explicit location < 0 for uniform %s", var->name);
2336 return;
2337 }
2338
2339 if (max_loc >= ctx->Const.MaxUserAssignableUniformLocations) {
2340 _mesa_glsl_error(loc, state, "location(s) consumed by uniform %s "
2341 ">= MAX_UNIFORM_LOCATIONS (%u)", var->name,
2342 ctx->Const.MaxUserAssignableUniformLocations);
2343 return;
2344 }
2345
2346 var->data.explicit_location = true;
2347 var->data.location = qual->location;
2348 return;
2349 }
2350
2351 /* Between GL_ARB_explicit_attrib_location an
2352 * GL_ARB_separate_shader_objects, the inputs and outputs of any shader
2353 * stage can be assigned explicit locations. The checking here associates
2354 * the correct extension with the correct stage's input / output:
2355 *
2356 * input output
2357 * ----- ------
2358 * vertex explicit_loc sso
2359 * tess control sso sso
2360 * tess eval sso sso
2361 * geometry sso sso
2362 * fragment sso explicit_loc
2363 */
2364 switch (state->stage) {
2365 case MESA_SHADER_VERTEX:
2366 if (var->data.mode == ir_var_shader_in) {
2367 if (!state->check_explicit_attrib_location_allowed(loc, var))
2368 return;
2369
2370 break;
2371 }
2372
2373 if (var->data.mode == ir_var_shader_out) {
2374 if (!state->check_separate_shader_objects_allowed(loc, var))
2375 return;
2376
2377 break;
2378 }
2379
2380 fail = true;
2381 break;
2382
2383 case MESA_SHADER_TESS_CTRL:
2384 case MESA_SHADER_TESS_EVAL:
2385 case MESA_SHADER_GEOMETRY:
2386 if (var->data.mode == ir_var_shader_in || var->data.mode == ir_var_shader_out) {
2387 if (!state->check_separate_shader_objects_allowed(loc, var))
2388 return;
2389
2390 break;
2391 }
2392
2393 fail = true;
2394 break;
2395
2396 case MESA_SHADER_FRAGMENT:
2397 if (var->data.mode == ir_var_shader_in) {
2398 if (!state->check_separate_shader_objects_allowed(loc, var))
2399 return;
2400
2401 break;
2402 }
2403
2404 if (var->data.mode == ir_var_shader_out) {
2405 if (!state->check_explicit_attrib_location_allowed(loc, var))
2406 return;
2407
2408 break;
2409 }
2410
2411 fail = true;
2412 break;
2413
2414 case MESA_SHADER_COMPUTE:
2415 _mesa_glsl_error(loc, state,
2416 "compute shader variables cannot be given "
2417 "explicit locations");
2418 return;
2419 };
2420
2421 if (fail) {
2422 _mesa_glsl_error(loc, state,
2423 "%s cannot be given an explicit location in %s shader",
2424 mode_string(var),
2425 _mesa_shader_stage_to_string(state->stage));
2426 } else {
2427 var->data.explicit_location = true;
2428
2429 /* This bit of silliness is needed because invalid explicit locations
2430 * are supposed to be flagged during linking. Small negative values
2431 * biased by VERT_ATTRIB_GENERIC0 or FRAG_RESULT_DATA0 could alias
2432 * built-in values (e.g., -16+VERT_ATTRIB_GENERIC0 = VERT_ATTRIB_POS).
2433 * The linker needs to be able to differentiate these cases. This
2434 * ensures that negative values stay negative.
2435 */
2436 if (qual->location >= 0) {
2437 switch (state->stage) {
2438 case MESA_SHADER_VERTEX:
2439 var->data.location = (var->data.mode == ir_var_shader_in)
2440 ? (qual->location + VERT_ATTRIB_GENERIC0)
2441 : (qual->location + VARYING_SLOT_VAR0);
2442 break;
2443
2444 case MESA_SHADER_TESS_CTRL:
2445 case MESA_SHADER_TESS_EVAL:
2446 case MESA_SHADER_GEOMETRY:
2447 if (var->data.patch)
2448 var->data.location = qual->location + VARYING_SLOT_PATCH0;
2449 else
2450 var->data.location = qual->location + VARYING_SLOT_VAR0;
2451 break;
2452
2453 case MESA_SHADER_FRAGMENT:
2454 var->data.location = (var->data.mode == ir_var_shader_out)
2455 ? (qual->location + FRAG_RESULT_DATA0)
2456 : (qual->location + VARYING_SLOT_VAR0);
2457 break;
2458 case MESA_SHADER_COMPUTE:
2459 assert(!"Unexpected shader type");
2460 break;
2461 }
2462 } else {
2463 var->data.location = qual->location;
2464 }
2465
2466 if (qual->flags.q.explicit_index) {
2467 /* From the GLSL 4.30 specification, section 4.4.2 (Output
2468 * Layout Qualifiers):
2469 *
2470 * "It is also a compile-time error if a fragment shader
2471 * sets a layout index to less than 0 or greater than 1."
2472 *
2473 * Older specifications don't mandate a behavior; we take
2474 * this as a clarification and always generate the error.
2475 */
2476 if (qual->index < 0 || qual->index > 1) {
2477 _mesa_glsl_error(loc, state,
2478 "explicit index may only be 0 or 1");
2479 } else {
2480 var->data.explicit_index = true;
2481 var->data.index = qual->index;
2482 }
2483 }
2484 }
2485 }
2486
2487 static void
2488 apply_image_qualifier_to_variable(const struct ast_type_qualifier *qual,
2489 ir_variable *var,
2490 struct _mesa_glsl_parse_state *state,
2491 YYLTYPE *loc)
2492 {
2493 const glsl_type *base_type = var->type->without_array();
2494
2495 if (base_type->is_image()) {
2496 if (var->data.mode != ir_var_uniform &&
2497 var->data.mode != ir_var_function_in) {
2498 _mesa_glsl_error(loc, state, "image variables may only be declared as "
2499 "function parameters or uniform-qualified "
2500 "global variables");
2501 }
2502
2503 var->data.image_read_only |= qual->flags.q.read_only;
2504 var->data.image_write_only |= qual->flags.q.write_only;
2505 var->data.image_coherent |= qual->flags.q.coherent;
2506 var->data.image_volatile |= qual->flags.q._volatile;
2507 var->data.image_restrict |= qual->flags.q.restrict_flag;
2508 var->data.read_only = true;
2509
2510 if (qual->flags.q.explicit_image_format) {
2511 if (var->data.mode == ir_var_function_in) {
2512 _mesa_glsl_error(loc, state, "format qualifiers cannot be "
2513 "used on image function parameters");
2514 }
2515
2516 if (qual->image_base_type != base_type->sampler_type) {
2517 _mesa_glsl_error(loc, state, "format qualifier doesn't match the "
2518 "base data type of the image");
2519 }
2520
2521 var->data.image_format = qual->image_format;
2522 } else {
2523 if (var->data.mode == ir_var_uniform) {
2524 if (state->es_shader) {
2525 _mesa_glsl_error(loc, state, "all image uniforms "
2526 "must have a format layout qualifier");
2527
2528 } else if (!qual->flags.q.write_only) {
2529 _mesa_glsl_error(loc, state, "image uniforms not qualified with "
2530 "`writeonly' must have a format layout "
2531 "qualifier");
2532 }
2533 }
2534
2535 var->data.image_format = GL_NONE;
2536 }
2537
2538 /* From page 70 of the GLSL ES 3.1 specification:
2539 *
2540 * "Except for image variables qualified with the format qualifiers
2541 * r32f, r32i, and r32ui, image variables must specify either memory
2542 * qualifier readonly or the memory qualifier writeonly."
2543 */
2544 if (state->es_shader &&
2545 var->data.image_format != GL_R32F &&
2546 var->data.image_format != GL_R32I &&
2547 var->data.image_format != GL_R32UI &&
2548 !var->data.image_read_only &&
2549 !var->data.image_write_only) {
2550 _mesa_glsl_error(loc, state, "image variables of format other than "
2551 "r32f, r32i or r32ui must be qualified `readonly' or "
2552 "`writeonly'");
2553 }
2554
2555 } else if (qual->flags.q.read_only ||
2556 qual->flags.q.write_only ||
2557 qual->flags.q.coherent ||
2558 qual->flags.q._volatile ||
2559 qual->flags.q.restrict_flag ||
2560 qual->flags.q.explicit_image_format) {
2561 _mesa_glsl_error(loc, state, "memory qualifiers may only be applied to "
2562 "images");
2563 }
2564 }
2565
2566 static inline const char*
2567 get_layout_qualifier_string(bool origin_upper_left, bool pixel_center_integer)
2568 {
2569 if (origin_upper_left && pixel_center_integer)
2570 return "origin_upper_left, pixel_center_integer";
2571 else if (origin_upper_left)
2572 return "origin_upper_left";
2573 else if (pixel_center_integer)
2574 return "pixel_center_integer";
2575 else
2576 return " ";
2577 }
2578
2579 static inline bool
2580 is_conflicting_fragcoord_redeclaration(struct _mesa_glsl_parse_state *state,
2581 const struct ast_type_qualifier *qual)
2582 {
2583 /* If gl_FragCoord was previously declared, and the qualifiers were
2584 * different in any way, return true.
2585 */
2586 if (state->fs_redeclares_gl_fragcoord) {
2587 return (state->fs_pixel_center_integer != qual->flags.q.pixel_center_integer
2588 || state->fs_origin_upper_left != qual->flags.q.origin_upper_left);
2589 }
2590
2591 return false;
2592 }
2593
2594 static void
2595 apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
2596 ir_variable *var,
2597 struct _mesa_glsl_parse_state *state,
2598 YYLTYPE *loc,
2599 bool is_parameter)
2600 {
2601 STATIC_ASSERT(sizeof(qual->flags.q) <= sizeof(qual->flags.i));
2602
2603 if (qual->flags.q.invariant) {
2604 if (var->data.used) {
2605 _mesa_glsl_error(loc, state,
2606 "variable `%s' may not be redeclared "
2607 "`invariant' after being used",
2608 var->name);
2609 } else {
2610 var->data.invariant = 1;
2611 }
2612 }
2613
2614 if (qual->flags.q.precise) {
2615 if (var->data.used) {
2616 _mesa_glsl_error(loc, state,
2617 "variable `%s' may not be redeclared "
2618 "`precise' after being used",
2619 var->name);
2620 } else {
2621 var->data.precise = 1;
2622 }
2623 }
2624
2625 if (qual->flags.q.subroutine && !qual->flags.q.uniform) {
2626 _mesa_glsl_error(loc, state,
2627 "`subroutine' may only be applied to uniforms, "
2628 "subroutine type declarations, or function definitions");
2629 }
2630
2631 if (qual->flags.q.constant || qual->flags.q.attribute
2632 || qual->flags.q.uniform
2633 || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
2634 var->data.read_only = 1;
2635
2636 if (qual->flags.q.centroid)
2637 var->data.centroid = 1;
2638
2639 if (qual->flags.q.sample)
2640 var->data.sample = 1;
2641
2642 if (state->stage == MESA_SHADER_GEOMETRY &&
2643 qual->flags.q.out && qual->flags.q.stream) {
2644 var->data.stream = qual->stream;
2645 }
2646
2647 if (qual->flags.q.patch)
2648 var->data.patch = 1;
2649
2650 if (qual->flags.q.attribute && state->stage != MESA_SHADER_VERTEX) {
2651 var->type = glsl_type::error_type;
2652 _mesa_glsl_error(loc, state,
2653 "`attribute' variables may not be declared in the "
2654 "%s shader",
2655 _mesa_shader_stage_to_string(state->stage));
2656 }
2657
2658 /* Disallow layout qualifiers which may only appear on layout declarations. */
2659 if (qual->flags.q.prim_type) {
2660 _mesa_glsl_error(loc, state,
2661 "Primitive type may only be specified on GS input or output "
2662 "layout declaration, not on variables.");
2663 }
2664
2665 /* Section 6.1.1 (Function Calling Conventions) of the GLSL 1.10 spec says:
2666 *
2667 * "However, the const qualifier cannot be used with out or inout."
2668 *
2669 * The same section of the GLSL 4.40 spec further clarifies this saying:
2670 *
2671 * "The const qualifier cannot be used with out or inout, or a
2672 * compile-time error results."
2673 */
2674 if (is_parameter && qual->flags.q.constant && qual->flags.q.out) {
2675 _mesa_glsl_error(loc, state,
2676 "`const' may not be applied to `out' or `inout' "
2677 "function parameters");
2678 }
2679
2680 /* If there is no qualifier that changes the mode of the variable, leave
2681 * the setting alone.
2682 */
2683 assert(var->data.mode != ir_var_temporary);
2684 if (qual->flags.q.in && qual->flags.q.out)
2685 var->data.mode = ir_var_function_inout;
2686 else if (qual->flags.q.in)
2687 var->data.mode = is_parameter ? ir_var_function_in : ir_var_shader_in;
2688 else if (qual->flags.q.attribute
2689 || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
2690 var->data.mode = ir_var_shader_in;
2691 else if (qual->flags.q.out)
2692 var->data.mode = is_parameter ? ir_var_function_out : ir_var_shader_out;
2693 else if (qual->flags.q.varying && (state->stage == MESA_SHADER_VERTEX))
2694 var->data.mode = ir_var_shader_out;
2695 else if (qual->flags.q.uniform)
2696 var->data.mode = ir_var_uniform;
2697 else if (qual->flags.q.buffer)
2698 var->data.mode = ir_var_shader_storage;
2699
2700 if (!is_parameter && is_varying_var(var, state->stage)) {
2701 /* User-defined ins/outs are not permitted in compute shaders. */
2702 if (state->stage == MESA_SHADER_COMPUTE) {
2703 _mesa_glsl_error(loc, state,
2704 "user-defined input and output variables are not "
2705 "permitted in compute shaders");
2706 }
2707
2708 /* This variable is being used to link data between shader stages (in
2709 * pre-glsl-1.30 parlance, it's a "varying"). Check that it has a type
2710 * that is allowed for such purposes.
2711 *
2712 * From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
2713 *
2714 * "The varying qualifier can be used only with the data types
2715 * float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
2716 * these."
2717 *
2718 * This was relaxed in GLSL version 1.30 and GLSL ES version 3.00. From
2719 * page 31 (page 37 of the PDF) of the GLSL 1.30 spec:
2720 *
2721 * "Fragment inputs can only be signed and unsigned integers and
2722 * integer vectors, float, floating-point vectors, matrices, or
2723 * arrays of these. Structures cannot be input.
2724 *
2725 * Similar text exists in the section on vertex shader outputs.
2726 *
2727 * Similar text exists in the GLSL ES 3.00 spec, except that the GLSL ES
2728 * 3.00 spec allows structs as well. Varying structs are also allowed
2729 * in GLSL 1.50.
2730 */
2731 switch (var->type->get_scalar_type()->base_type) {
2732 case GLSL_TYPE_FLOAT:
2733 /* Ok in all GLSL versions */
2734 break;
2735 case GLSL_TYPE_UINT:
2736 case GLSL_TYPE_INT:
2737 if (state->is_version(130, 300))
2738 break;
2739 _mesa_glsl_error(loc, state,
2740 "varying variables must be of base type float in %s",
2741 state->get_version_string());
2742 break;
2743 case GLSL_TYPE_STRUCT:
2744 if (state->is_version(150, 300))
2745 break;
2746 _mesa_glsl_error(loc, state,
2747 "varying variables may not be of type struct");
2748 break;
2749 case GLSL_TYPE_DOUBLE:
2750 break;
2751 default:
2752 _mesa_glsl_error(loc, state, "illegal type for a varying variable");
2753 break;
2754 }
2755 }
2756
2757 if (state->all_invariant && (state->current_function == NULL)) {
2758 switch (state->stage) {
2759 case MESA_SHADER_VERTEX:
2760 if (var->data.mode == ir_var_shader_out)
2761 var->data.invariant = true;
2762 break;
2763 case MESA_SHADER_TESS_CTRL:
2764 case MESA_SHADER_TESS_EVAL:
2765 case MESA_SHADER_GEOMETRY:
2766 if ((var->data.mode == ir_var_shader_in)
2767 || (var->data.mode == ir_var_shader_out))
2768 var->data.invariant = true;
2769 break;
2770 case MESA_SHADER_FRAGMENT:
2771 if (var->data.mode == ir_var_shader_in)
2772 var->data.invariant = true;
2773 break;
2774 case MESA_SHADER_COMPUTE:
2775 /* Invariance isn't meaningful in compute shaders. */
2776 break;
2777 }
2778 }
2779
2780 var->data.interpolation =
2781 interpret_interpolation_qualifier(qual, (ir_variable_mode) var->data.mode,
2782 state, loc);
2783
2784 var->data.pixel_center_integer = qual->flags.q.pixel_center_integer;
2785 var->data.origin_upper_left = qual->flags.q.origin_upper_left;
2786 if ((qual->flags.q.origin_upper_left || qual->flags.q.pixel_center_integer)
2787 && (strcmp(var->name, "gl_FragCoord") != 0)) {
2788 const char *const qual_string = (qual->flags.q.origin_upper_left)
2789 ? "origin_upper_left" : "pixel_center_integer";
2790
2791 _mesa_glsl_error(loc, state,
2792 "layout qualifier `%s' can only be applied to "
2793 "fragment shader input `gl_FragCoord'",
2794 qual_string);
2795 }
2796
2797 if (var->name != NULL && strcmp(var->name, "gl_FragCoord") == 0) {
2798
2799 /* Section 4.3.8.1, page 39 of GLSL 1.50 spec says:
2800 *
2801 * "Within any shader, the first redeclarations of gl_FragCoord
2802 * must appear before any use of gl_FragCoord."
2803 *
2804 * Generate a compiler error if above condition is not met by the
2805 * fragment shader.
2806 */
2807 ir_variable *earlier = state->symbols->get_variable("gl_FragCoord");
2808 if (earlier != NULL &&
2809 earlier->data.used &&
2810 !state->fs_redeclares_gl_fragcoord) {
2811 _mesa_glsl_error(loc, state,
2812 "gl_FragCoord used before its first redeclaration "
2813 "in fragment shader");
2814 }
2815
2816 /* Make sure all gl_FragCoord redeclarations specify the same layout
2817 * qualifiers.
2818 */
2819 if (is_conflicting_fragcoord_redeclaration(state, qual)) {
2820 const char *const qual_string =
2821 get_layout_qualifier_string(qual->flags.q.origin_upper_left,
2822 qual->flags.q.pixel_center_integer);
2823
2824 const char *const state_string =
2825 get_layout_qualifier_string(state->fs_origin_upper_left,
2826 state->fs_pixel_center_integer);
2827
2828 _mesa_glsl_error(loc, state,
2829 "gl_FragCoord redeclared with different layout "
2830 "qualifiers (%s) and (%s) ",
2831 state_string,
2832 qual_string);
2833 }
2834 state->fs_origin_upper_left = qual->flags.q.origin_upper_left;
2835 state->fs_pixel_center_integer = qual->flags.q.pixel_center_integer;
2836 state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers =
2837 !qual->flags.q.origin_upper_left && !qual->flags.q.pixel_center_integer;
2838 state->fs_redeclares_gl_fragcoord =
2839 state->fs_origin_upper_left ||
2840 state->fs_pixel_center_integer ||
2841 state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers;
2842 }
2843
2844 if (qual->flags.q.explicit_location) {
2845 validate_explicit_location(qual, var, state, loc);
2846 } else if (qual->flags.q.explicit_index) {
2847 _mesa_glsl_error(loc, state, "explicit index requires explicit location");
2848 }
2849
2850 if (qual->flags.q.explicit_binding &&
2851 validate_binding_qualifier(state, loc, var->type, qual)) {
2852 var->data.explicit_binding = true;
2853 var->data.binding = qual->binding;
2854 }
2855
2856 if (var->type->contains_atomic()) {
2857 if (var->data.mode == ir_var_uniform || var->data.mode == ir_var_shader_storage) {
2858 if (var->data.explicit_binding) {
2859 unsigned *offset =
2860 &state->atomic_counter_offsets[var->data.binding];
2861
2862 if (*offset % ATOMIC_COUNTER_SIZE)
2863 _mesa_glsl_error(loc, state,
2864 "misaligned atomic counter offset");
2865
2866 var->data.atomic.offset = *offset;
2867 *offset += var->type->atomic_size();
2868
2869 } else {
2870 _mesa_glsl_error(loc, state,
2871 "atomic counters require explicit binding point");
2872 }
2873 } else if (var->data.mode != ir_var_function_in) {
2874 _mesa_glsl_error(loc, state, "atomic counters may only be declared as "
2875 "function parameters, uniform-qualified or "
2876 "buffer-qualified global variables");
2877 }
2878 }
2879
2880 /* Does the declaration use the deprecated 'attribute' or 'varying'
2881 * keywords?
2882 */
2883 const bool uses_deprecated_qualifier = qual->flags.q.attribute
2884 || qual->flags.q.varying;
2885
2886
2887 /* Validate auxiliary storage qualifiers */
2888
2889 /* From section 4.3.4 of the GLSL 1.30 spec:
2890 * "It is an error to use centroid in in a vertex shader."
2891 *
2892 * From section 4.3.4 of the GLSL ES 3.00 spec:
2893 * "It is an error to use centroid in or interpolation qualifiers in
2894 * a vertex shader input."
2895 */
2896
2897 /* Section 4.3.6 of the GLSL 1.30 specification states:
2898 * "It is an error to use centroid out in a fragment shader."
2899 *
2900 * The GL_ARB_shading_language_420pack extension specification states:
2901 * "It is an error to use auxiliary storage qualifiers or interpolation
2902 * qualifiers on an output in a fragment shader."
2903 */
2904 if (qual->flags.q.sample && (!is_varying_var(var, state->stage) || uses_deprecated_qualifier)) {
2905 _mesa_glsl_error(loc, state,
2906 "sample qualifier may only be used on `in` or `out` "
2907 "variables between shader stages");
2908 }
2909 if (qual->flags.q.centroid && !is_varying_var(var, state->stage)) {
2910 _mesa_glsl_error(loc, state,
2911 "centroid qualifier may only be used with `in', "
2912 "`out' or `varying' variables between shader stages");
2913 }
2914
2915
2916 /* Is the 'layout' keyword used with parameters that allow relaxed checking.
2917 * Many implementations of GL_ARB_fragment_coord_conventions_enable and some
2918 * implementations (only Mesa?) GL_ARB_explicit_attrib_location_enable
2919 * allowed the layout qualifier to be used with 'varying' and 'attribute'.
2920 * These extensions and all following extensions that add the 'layout'
2921 * keyword have been modified to require the use of 'in' or 'out'.
2922 *
2923 * The following extension do not allow the deprecated keywords:
2924 *
2925 * GL_AMD_conservative_depth
2926 * GL_ARB_conservative_depth
2927 * GL_ARB_gpu_shader5
2928 * GL_ARB_separate_shader_objects
2929 * GL_ARB_tessellation_shader
2930 * GL_ARB_transform_feedback3
2931 * GL_ARB_uniform_buffer_object
2932 *
2933 * It is unknown whether GL_EXT_shader_image_load_store or GL_NV_gpu_shader5
2934 * allow layout with the deprecated keywords.
2935 */
2936 const bool relaxed_layout_qualifier_checking =
2937 state->ARB_fragment_coord_conventions_enable;
2938
2939 if (qual->has_layout() && uses_deprecated_qualifier) {
2940 if (relaxed_layout_qualifier_checking) {
2941 _mesa_glsl_warning(loc, state,
2942 "`layout' qualifier may not be used with "
2943 "`attribute' or `varying'");
2944 } else {
2945 _mesa_glsl_error(loc, state,
2946 "`layout' qualifier may not be used with "
2947 "`attribute' or `varying'");
2948 }
2949 }
2950
2951 /* Layout qualifiers for gl_FragDepth, which are enabled by extension
2952 * AMD_conservative_depth.
2953 */
2954 int depth_layout_count = qual->flags.q.depth_any
2955 + qual->flags.q.depth_greater
2956 + qual->flags.q.depth_less
2957 + qual->flags.q.depth_unchanged;
2958 if (depth_layout_count > 0
2959 && !state->AMD_conservative_depth_enable
2960 && !state->ARB_conservative_depth_enable) {
2961 _mesa_glsl_error(loc, state,
2962 "extension GL_AMD_conservative_depth or "
2963 "GL_ARB_conservative_depth must be enabled "
2964 "to use depth layout qualifiers");
2965 } else if (depth_layout_count > 0
2966 && strcmp(var->name, "gl_FragDepth") != 0) {
2967 _mesa_glsl_error(loc, state,
2968 "depth layout qualifiers can be applied only to "
2969 "gl_FragDepth");
2970 } else if (depth_layout_count > 1
2971 && strcmp(var->name, "gl_FragDepth") == 0) {
2972 _mesa_glsl_error(loc, state,
2973 "at most one depth layout qualifier can be applied to "
2974 "gl_FragDepth");
2975 }
2976 if (qual->flags.q.depth_any)
2977 var->data.depth_layout = ir_depth_layout_any;
2978 else if (qual->flags.q.depth_greater)
2979 var->data.depth_layout = ir_depth_layout_greater;
2980 else if (qual->flags.q.depth_less)
2981 var->data.depth_layout = ir_depth_layout_less;
2982 else if (qual->flags.q.depth_unchanged)
2983 var->data.depth_layout = ir_depth_layout_unchanged;
2984 else
2985 var->data.depth_layout = ir_depth_layout_none;
2986
2987 if (qual->flags.q.std140 ||
2988 qual->flags.q.std430 ||
2989 qual->flags.q.packed ||
2990 qual->flags.q.shared) {
2991 _mesa_glsl_error(loc, state,
2992 "uniform and shader storage block layout qualifiers "
2993 "std140, std430, packed, and shared can only be "
2994 "applied to uniform or shader storage blocks, not "
2995 "members");
2996 }
2997
2998 if (qual->flags.q.row_major || qual->flags.q.column_major) {
2999 validate_matrix_layout_for_type(state, loc, var->type, var);
3000 }
3001
3002 apply_image_qualifier_to_variable(qual, var, state, loc);
3003
3004 /* From section 4.4.1.3 of the GLSL 4.50 specification (Fragment Shader
3005 * Inputs):
3006 *
3007 * "Fragment shaders also allow the following layout qualifier on in only
3008 * (not with variable declarations)
3009 * layout-qualifier-id
3010 * early_fragment_tests
3011 * [...]"
3012 */
3013 if (qual->flags.q.early_fragment_tests) {
3014 _mesa_glsl_error(loc, state, "early_fragment_tests layout qualifier only "
3015 "valid in fragment shader input layout declaration.");
3016 }
3017 }
3018
3019 /**
3020 * Get the variable that is being redeclared by this declaration
3021 *
3022 * Semantic checks to verify the validity of the redeclaration are also
3023 * performed. If semantic checks fail, compilation error will be emitted via
3024 * \c _mesa_glsl_error, but a non-\c NULL pointer will still be returned.
3025 *
3026 * \returns
3027 * A pointer to an existing variable in the current scope if the declaration
3028 * is a redeclaration, \c NULL otherwise.
3029 */
3030 static ir_variable *
3031 get_variable_being_redeclared(ir_variable *var, YYLTYPE loc,
3032 struct _mesa_glsl_parse_state *state,
3033 bool allow_all_redeclarations)
3034 {
3035 /* Check if this declaration is actually a re-declaration, either to
3036 * resize an array or add qualifiers to an existing variable.
3037 *
3038 * This is allowed for variables in the current scope, or when at
3039 * global scope (for built-ins in the implicit outer scope).
3040 */
3041 ir_variable *earlier = state->symbols->get_variable(var->name);
3042 if (earlier == NULL ||
3043 (state->current_function != NULL &&
3044 !state->symbols->name_declared_this_scope(var->name))) {
3045 return NULL;
3046 }
3047
3048
3049 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
3050 *
3051 * "It is legal to declare an array without a size and then
3052 * later re-declare the same name as an array of the same
3053 * type and specify a size."
3054 */
3055 if (earlier->type->is_unsized_array() && var->type->is_array()
3056 && (var->type->fields.array == earlier->type->fields.array)) {
3057 /* FINISHME: This doesn't match the qualifiers on the two
3058 * FINISHME: declarations. It's not 100% clear whether this is
3059 * FINISHME: required or not.
3060 */
3061
3062 const unsigned size = unsigned(var->type->array_size());
3063 check_builtin_array_max_size(var->name, size, loc, state);
3064 if ((size > 0) && (size <= earlier->data.max_array_access)) {
3065 _mesa_glsl_error(& loc, state, "array size must be > %u due to "
3066 "previous access",
3067 earlier->data.max_array_access);
3068 }
3069
3070 earlier->type = var->type;
3071 delete var;
3072 var = NULL;
3073 } else if ((state->ARB_fragment_coord_conventions_enable ||
3074 state->is_version(150, 0))
3075 && strcmp(var->name, "gl_FragCoord") == 0
3076 && earlier->type == var->type
3077 && earlier->data.mode == var->data.mode) {
3078 /* Allow redeclaration of gl_FragCoord for ARB_fcc layout
3079 * qualifiers.
3080 */
3081 earlier->data.origin_upper_left = var->data.origin_upper_left;
3082 earlier->data.pixel_center_integer = var->data.pixel_center_integer;
3083
3084 /* According to section 4.3.7 of the GLSL 1.30 spec,
3085 * the following built-in varaibles can be redeclared with an
3086 * interpolation qualifier:
3087 * * gl_FrontColor
3088 * * gl_BackColor
3089 * * gl_FrontSecondaryColor
3090 * * gl_BackSecondaryColor
3091 * * gl_Color
3092 * * gl_SecondaryColor
3093 */
3094 } else if (state->is_version(130, 0)
3095 && (strcmp(var->name, "gl_FrontColor") == 0
3096 || strcmp(var->name, "gl_BackColor") == 0
3097 || strcmp(var->name, "gl_FrontSecondaryColor") == 0
3098 || strcmp(var->name, "gl_BackSecondaryColor") == 0
3099 || strcmp(var->name, "gl_Color") == 0
3100 || strcmp(var->name, "gl_SecondaryColor") == 0)
3101 && earlier->type == var->type
3102 && earlier->data.mode == var->data.mode) {
3103 earlier->data.interpolation = var->data.interpolation;
3104
3105 /* Layout qualifiers for gl_FragDepth. */
3106 } else if ((state->AMD_conservative_depth_enable ||
3107 state->ARB_conservative_depth_enable)
3108 && strcmp(var->name, "gl_FragDepth") == 0
3109 && earlier->type == var->type
3110 && earlier->data.mode == var->data.mode) {
3111
3112 /** From the AMD_conservative_depth spec:
3113 * Within any shader, the first redeclarations of gl_FragDepth
3114 * must appear before any use of gl_FragDepth.
3115 */
3116 if (earlier->data.used) {
3117 _mesa_glsl_error(&loc, state,
3118 "the first redeclaration of gl_FragDepth "
3119 "must appear before any use of gl_FragDepth");
3120 }
3121
3122 /* Prevent inconsistent redeclaration of depth layout qualifier. */
3123 if (earlier->data.depth_layout != ir_depth_layout_none
3124 && earlier->data.depth_layout != var->data.depth_layout) {
3125 _mesa_glsl_error(&loc, state,
3126 "gl_FragDepth: depth layout is declared here "
3127 "as '%s, but it was previously declared as "
3128 "'%s'",
3129 depth_layout_string(var->data.depth_layout),
3130 depth_layout_string(earlier->data.depth_layout));
3131 }
3132
3133 earlier->data.depth_layout = var->data.depth_layout;
3134
3135 } else if (allow_all_redeclarations) {
3136 if (earlier->data.mode != var->data.mode) {
3137 _mesa_glsl_error(&loc, state,
3138 "redeclaration of `%s' with incorrect qualifiers",
3139 var->name);
3140 } else if (earlier->type != var->type) {
3141 _mesa_glsl_error(&loc, state,
3142 "redeclaration of `%s' has incorrect type",
3143 var->name);
3144 }
3145 } else {
3146 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
3147 }
3148
3149 return earlier;
3150 }
3151
3152 /**
3153 * Generate the IR for an initializer in a variable declaration
3154 */
3155 ir_rvalue *
3156 process_initializer(ir_variable *var, ast_declaration *decl,
3157 ast_fully_specified_type *type,
3158 exec_list *initializer_instructions,
3159 struct _mesa_glsl_parse_state *state)
3160 {
3161 ir_rvalue *result = NULL;
3162
3163 YYLTYPE initializer_loc = decl->initializer->get_location();
3164
3165 /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
3166 *
3167 * "All uniform variables are read-only and are initialized either
3168 * directly by an application via API commands, or indirectly by
3169 * OpenGL."
3170 */
3171 if (var->data.mode == ir_var_uniform) {
3172 state->check_version(120, 0, &initializer_loc,
3173 "cannot initialize uniforms");
3174 }
3175
3176 /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec:
3177 *
3178 * "Buffer variables cannot have initializers."
3179 */
3180 if (var->data.mode == ir_var_shader_storage) {
3181 _mesa_glsl_error(& initializer_loc, state,
3182 "SSBO variables cannot have initializers");
3183 }
3184
3185 /* From section 4.1.7 of the GLSL 4.40 spec:
3186 *
3187 * "Opaque variables [...] are initialized only through the
3188 * OpenGL API; they cannot be declared with an initializer in a
3189 * shader."
3190 */
3191 if (var->type->contains_opaque()) {
3192 _mesa_glsl_error(& initializer_loc, state,
3193 "cannot initialize opaque variable");
3194 }
3195
3196 if ((var->data.mode == ir_var_shader_in) && (state->current_function == NULL)) {
3197 _mesa_glsl_error(& initializer_loc, state,
3198 "cannot initialize %s shader input / %s",
3199 _mesa_shader_stage_to_string(state->stage),
3200 (state->stage == MESA_SHADER_VERTEX)
3201 ? "attribute" : "varying");
3202 }
3203
3204 /* If the initializer is an ast_aggregate_initializer, recursively store
3205 * type information from the LHS into it, so that its hir() function can do
3206 * type checking.
3207 */
3208 if (decl->initializer->oper == ast_aggregate)
3209 _mesa_ast_set_aggregate_type(var->type, decl->initializer);
3210
3211 ir_dereference *const lhs = new(state) ir_dereference_variable(var);
3212 ir_rvalue *rhs = decl->initializer->hir(initializer_instructions, state);
3213
3214 /* Calculate the constant value if this is a const or uniform
3215 * declaration.
3216 */
3217 if (type->qualifier.flags.q.constant
3218 || type->qualifier.flags.q.uniform) {
3219 ir_rvalue *new_rhs = validate_assignment(state, initializer_loc,
3220 lhs, rhs, true);
3221 if (new_rhs != NULL) {
3222 rhs = new_rhs;
3223
3224 ir_constant *constant_value = rhs->constant_expression_value();
3225 if (!constant_value) {
3226 /* If ARB_shading_language_420pack is enabled, initializers of
3227 * const-qualified local variables do not have to be constant
3228 * expressions. Const-qualified global variables must still be
3229 * initialized with constant expressions.
3230 */
3231 if (!state->ARB_shading_language_420pack_enable
3232 || state->current_function == NULL) {
3233 _mesa_glsl_error(& initializer_loc, state,
3234 "initializer of %s variable `%s' must be a "
3235 "constant expression",
3236 (type->qualifier.flags.q.constant)
3237 ? "const" : "uniform",
3238 decl->identifier);
3239 if (var->type->is_numeric()) {
3240 /* Reduce cascading errors. */
3241 var->constant_value = ir_constant::zero(state, var->type);
3242 }
3243 }
3244 } else {
3245 rhs = constant_value;
3246 var->constant_value = constant_value;
3247 }
3248 } else {
3249 if (var->type->is_numeric()) {
3250 /* Reduce cascading errors. */
3251 var->constant_value = ir_constant::zero(state, var->type);
3252 }
3253 }
3254 }
3255
3256 if (rhs && !rhs->type->is_error()) {
3257 bool temp = var->data.read_only;
3258 if (type->qualifier.flags.q.constant)
3259 var->data.read_only = false;
3260
3261 /* Never emit code to initialize a uniform.
3262 */
3263 const glsl_type *initializer_type;
3264 if (!type->qualifier.flags.q.uniform) {
3265 do_assignment(initializer_instructions, state,
3266 NULL,
3267 lhs, rhs,
3268 &result, true,
3269 true,
3270 type->get_location());
3271 initializer_type = result->type;
3272 } else
3273 initializer_type = rhs->type;
3274
3275 var->constant_initializer = rhs->constant_expression_value();
3276 var->data.has_initializer = true;
3277
3278 /* If the declared variable is an unsized array, it must inherrit
3279 * its full type from the initializer. A declaration such as
3280 *
3281 * uniform float a[] = float[](1.0, 2.0, 3.0, 3.0);
3282 *
3283 * becomes
3284 *
3285 * uniform float a[4] = float[](1.0, 2.0, 3.0, 3.0);
3286 *
3287 * The assignment generated in the if-statement (below) will also
3288 * automatically handle this case for non-uniforms.
3289 *
3290 * If the declared variable is not an array, the types must
3291 * already match exactly. As a result, the type assignment
3292 * here can be done unconditionally. For non-uniforms the call
3293 * to do_assignment can change the type of the initializer (via
3294 * the implicit conversion rules). For uniforms the initializer
3295 * must be a constant expression, and the type of that expression
3296 * was validated above.
3297 */
3298 var->type = initializer_type;
3299
3300 var->data.read_only = temp;
3301 }
3302
3303 return result;
3304 }
3305
3306 static void
3307 validate_layout_qualifier_vertex_count(struct _mesa_glsl_parse_state *state,
3308 YYLTYPE loc, ir_variable *var,
3309 unsigned num_vertices,
3310 unsigned *size,
3311 const char *var_category)
3312 {
3313 if (var->type->is_unsized_array()) {
3314 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec says:
3315 *
3316 * All geometry shader input unsized array declarations will be
3317 * sized by an earlier input layout qualifier, when present, as per
3318 * the following table.
3319 *
3320 * Followed by a table mapping each allowed input layout qualifier to
3321 * the corresponding input length.
3322 *
3323 * Similarly for tessellation control shader outputs.
3324 */
3325 if (num_vertices != 0)
3326 var->type = glsl_type::get_array_instance(var->type->fields.array,
3327 num_vertices);
3328 } else {
3329 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec
3330 * includes the following examples of compile-time errors:
3331 *
3332 * // code sequence within one shader...
3333 * in vec4 Color1[]; // size unknown
3334 * ...Color1.length()...// illegal, length() unknown
3335 * in vec4 Color2[2]; // size is 2
3336 * ...Color1.length()...// illegal, Color1 still has no size
3337 * in vec4 Color3[3]; // illegal, input sizes are inconsistent
3338 * layout(lines) in; // legal, input size is 2, matching
3339 * in vec4 Color4[3]; // illegal, contradicts layout
3340 * ...
3341 *
3342 * To detect the case illustrated by Color3, we verify that the size of
3343 * an explicitly-sized array matches the size of any previously declared
3344 * explicitly-sized array. To detect the case illustrated by Color4, we
3345 * verify that the size of an explicitly-sized array is consistent with
3346 * any previously declared input layout.
3347 */
3348 if (num_vertices != 0 && var->type->length != num_vertices) {
3349 _mesa_glsl_error(&loc, state,
3350 "%s size contradicts previously declared layout "
3351 "(size is %u, but layout requires a size of %u)",
3352 var_category, var->type->length, num_vertices);
3353 } else if (*size != 0 && var->type->length != *size) {
3354 _mesa_glsl_error(&loc, state,
3355 "%s sizes are inconsistent (size is %u, but a "
3356 "previous declaration has size %u)",
3357 var_category, var->type->length, *size);
3358 } else {
3359 *size = var->type->length;
3360 }
3361 }
3362 }
3363
3364 static void
3365 handle_tess_ctrl_shader_output_decl(struct _mesa_glsl_parse_state *state,
3366 YYLTYPE loc, ir_variable *var)
3367 {
3368 unsigned num_vertices = 0;
3369
3370 if (state->tcs_output_vertices_specified) {
3371 num_vertices = state->out_qualifier->vertices;
3372 }
3373
3374 if (!var->type->is_array() && !var->data.patch) {
3375 _mesa_glsl_error(&loc, state,
3376 "tessellation control shader outputs must be arrays");
3377
3378 /* To avoid cascading failures, short circuit the checks below. */
3379 return;
3380 }
3381
3382 if (var->data.patch)
3383 return;
3384
3385 validate_layout_qualifier_vertex_count(state, loc, var, num_vertices,
3386 &state->tcs_output_size,
3387 "tessellation control shader output");
3388 }
3389
3390 /**
3391 * Do additional processing necessary for tessellation control/evaluation shader
3392 * input declarations. This covers both interface block arrays and bare input
3393 * variables.
3394 */
3395 static void
3396 handle_tess_shader_input_decl(struct _mesa_glsl_parse_state *state,
3397 YYLTYPE loc, ir_variable *var)
3398 {
3399 if (!var->type->is_array() && !var->data.patch) {
3400 _mesa_glsl_error(&loc, state,
3401 "per-vertex tessellation shader inputs must be arrays");
3402 /* Avoid cascading failures. */
3403 return;
3404 }
3405
3406 if (var->data.patch)
3407 return;
3408
3409 /* Unsized arrays are implicitly sized to gl_MaxPatchVertices. */
3410 if (var->type->is_unsized_array()) {
3411 var->type = glsl_type::get_array_instance(var->type->fields.array,
3412 state->Const.MaxPatchVertices);
3413 }
3414 }
3415
3416
3417 /**
3418 * Do additional processing necessary for geometry shader input declarations
3419 * (this covers both interface blocks arrays and bare input variables).
3420 */
3421 static void
3422 handle_geometry_shader_input_decl(struct _mesa_glsl_parse_state *state,
3423 YYLTYPE loc, ir_variable *var)
3424 {
3425 unsigned num_vertices = 0;
3426
3427 if (state->gs_input_prim_type_specified) {
3428 num_vertices = vertices_per_prim(state->in_qualifier->prim_type);
3429 }
3430
3431 /* Geometry shader input variables must be arrays. Caller should have
3432 * reported an error for this.
3433 */
3434 if (!var->type->is_array()) {
3435 assert(state->error);
3436
3437 /* To avoid cascading failures, short circuit the checks below. */
3438 return;
3439 }
3440
3441 validate_layout_qualifier_vertex_count(state, loc, var, num_vertices,
3442 &state->gs_input_size,
3443 "geometry shader input");
3444 }
3445
3446 void
3447 validate_identifier(const char *identifier, YYLTYPE loc,
3448 struct _mesa_glsl_parse_state *state)
3449 {
3450 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
3451 *
3452 * "Identifiers starting with "gl_" are reserved for use by
3453 * OpenGL, and may not be declared in a shader as either a
3454 * variable or a function."
3455 */
3456 if (is_gl_identifier(identifier)) {
3457 _mesa_glsl_error(&loc, state,
3458 "identifier `%s' uses reserved `gl_' prefix",
3459 identifier);
3460 } else if (strstr(identifier, "__")) {
3461 /* From page 14 (page 20 of the PDF) of the GLSL 1.10
3462 * spec:
3463 *
3464 * "In addition, all identifiers containing two
3465 * consecutive underscores (__) are reserved as
3466 * possible future keywords."
3467 *
3468 * The intention is that names containing __ are reserved for internal
3469 * use by the implementation, and names prefixed with GL_ are reserved
3470 * for use by Khronos. Names simply containing __ are dangerous to use,
3471 * but should be allowed.
3472 *
3473 * A future version of the GLSL specification will clarify this.
3474 */
3475 _mesa_glsl_warning(&loc, state,
3476 "identifier `%s' uses reserved `__' string",
3477 identifier);
3478 }
3479 }
3480
3481 static bool
3482 precision_qualifier_allowed(const glsl_type *type)
3483 {
3484 /* Precision qualifiers apply to floating point, integer and opaque
3485 * types.
3486 *
3487 * Section 4.5.2 (Precision Qualifiers) of the GLSL 1.30 spec says:
3488 * "Any floating point or any integer declaration can have the type
3489 * preceded by one of these precision qualifiers [...] Literal
3490 * constants do not have precision qualifiers. Neither do Boolean
3491 * variables.
3492 *
3493 * Section 4.5 (Precision and Precision Qualifiers) of the GLSL 1.30
3494 * spec also says:
3495 *
3496 * "Precision qualifiers are added for code portability with OpenGL
3497 * ES, not for functionality. They have the same syntax as in OpenGL
3498 * ES."
3499 *
3500 * Section 8 (Built-In Functions) of the GLSL ES 1.00 spec says:
3501 *
3502 * "uniform lowp sampler2D sampler;
3503 * highp vec2 coord;
3504 * ...
3505 * lowp vec4 col = texture2D (sampler, coord);
3506 * // texture2D returns lowp"
3507 *
3508 * From this, we infer that GLSL 1.30 (and later) should allow precision
3509 * qualifiers on sampler types just like float and integer types.
3510 */
3511 return type->is_float()
3512 || type->is_integer()
3513 || type->is_record()
3514 || type->contains_opaque();
3515 }
3516
3517 ir_rvalue *
3518 ast_declarator_list::hir(exec_list *instructions,
3519 struct _mesa_glsl_parse_state *state)
3520 {
3521 void *ctx = state;
3522 const struct glsl_type *decl_type;
3523 const char *type_name = NULL;
3524 ir_rvalue *result = NULL;
3525 YYLTYPE loc = this->get_location();
3526
3527 /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec:
3528 *
3529 * "To ensure that a particular output variable is invariant, it is
3530 * necessary to use the invariant qualifier. It can either be used to
3531 * qualify a previously declared variable as being invariant
3532 *
3533 * invariant gl_Position; // make existing gl_Position be invariant"
3534 *
3535 * In these cases the parser will set the 'invariant' flag in the declarator
3536 * list, and the type will be NULL.
3537 */
3538 if (this->invariant) {
3539 assert(this->type == NULL);
3540
3541 if (state->current_function != NULL) {
3542 _mesa_glsl_error(& loc, state,
3543 "all uses of `invariant' keyword must be at global "
3544 "scope");
3545 }
3546
3547 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
3548 assert(decl->array_specifier == NULL);
3549 assert(decl->initializer == NULL);
3550
3551 ir_variable *const earlier =
3552 state->symbols->get_variable(decl->identifier);
3553 if (earlier == NULL) {
3554 _mesa_glsl_error(& loc, state,
3555 "undeclared variable `%s' cannot be marked "
3556 "invariant", decl->identifier);
3557 } else if (!is_varying_var(earlier, state->stage)) {
3558 _mesa_glsl_error(&loc, state,
3559 "`%s' cannot be marked invariant; interfaces between "
3560 "shader stages only.", decl->identifier);
3561 } else if (earlier->data.used) {
3562 _mesa_glsl_error(& loc, state,
3563 "variable `%s' may not be redeclared "
3564 "`invariant' after being used",
3565 earlier->name);
3566 } else {
3567 earlier->data.invariant = true;
3568 }
3569 }
3570
3571 /* Invariant redeclarations do not have r-values.
3572 */
3573 return NULL;
3574 }
3575
3576 if (this->precise) {
3577 assert(this->type == NULL);
3578
3579 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
3580 assert(decl->array_specifier == NULL);
3581 assert(decl->initializer == NULL);
3582
3583 ir_variable *const earlier =
3584 state->symbols->get_variable(decl->identifier);
3585 if (earlier == NULL) {
3586 _mesa_glsl_error(& loc, state,
3587 "undeclared variable `%s' cannot be marked "
3588 "precise", decl->identifier);
3589 } else if (state->current_function != NULL &&
3590 !state->symbols->name_declared_this_scope(decl->identifier)) {
3591 /* Note: we have to check if we're in a function, since
3592 * builtins are treated as having come from another scope.
3593 */
3594 _mesa_glsl_error(& loc, state,
3595 "variable `%s' from an outer scope may not be "
3596 "redeclared `precise' in this scope",
3597 earlier->name);
3598 } else if (earlier->data.used) {
3599 _mesa_glsl_error(& loc, state,
3600 "variable `%s' may not be redeclared "
3601 "`precise' after being used",
3602 earlier->name);
3603 } else {
3604 earlier->data.precise = true;
3605 }
3606 }
3607
3608 /* Precise redeclarations do not have r-values either. */
3609 return NULL;
3610 }
3611
3612 assert(this->type != NULL);
3613 assert(!this->invariant);
3614 assert(!this->precise);
3615
3616 /* The type specifier may contain a structure definition. Process that
3617 * before any of the variable declarations.
3618 */
3619 (void) this->type->specifier->hir(instructions, state);
3620
3621 decl_type = this->type->glsl_type(& type_name, state);
3622
3623 /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec:
3624 * "Buffer variables may only be declared inside interface blocks
3625 * (section 4.3.9 “Interface Blocks”), which are then referred to as
3626 * shader storage blocks. It is a compile-time error to declare buffer
3627 * variables at global scope (outside a block)."
3628 */
3629 if (type->qualifier.flags.q.buffer && !decl_type->is_interface()) {
3630 _mesa_glsl_error(&loc, state,
3631 "buffer variables cannot be declared outside "
3632 "interface blocks");
3633 }
3634
3635 /* An offset-qualified atomic counter declaration sets the default
3636 * offset for the next declaration within the same atomic counter
3637 * buffer.
3638 */
3639 if (decl_type && decl_type->contains_atomic()) {
3640 if (type->qualifier.flags.q.explicit_binding &&
3641 type->qualifier.flags.q.explicit_offset)
3642 state->atomic_counter_offsets[type->qualifier.binding] =
3643 type->qualifier.offset;
3644 }
3645
3646 if (this->declarations.is_empty()) {
3647 /* If there is no structure involved in the program text, there are two
3648 * possible scenarios:
3649 *
3650 * - The program text contained something like 'vec4;'. This is an
3651 * empty declaration. It is valid but weird. Emit a warning.
3652 *
3653 * - The program text contained something like 'S;' and 'S' is not the
3654 * name of a known structure type. This is both invalid and weird.
3655 * Emit an error.
3656 *
3657 * - The program text contained something like 'mediump float;'
3658 * when the programmer probably meant 'precision mediump
3659 * float;' Emit a warning with a description of what they
3660 * probably meant to do.
3661 *
3662 * Note that if decl_type is NULL and there is a structure involved,
3663 * there must have been some sort of error with the structure. In this
3664 * case we assume that an error was already generated on this line of
3665 * code for the structure. There is no need to generate an additional,
3666 * confusing error.
3667 */
3668 assert(this->type->specifier->structure == NULL || decl_type != NULL
3669 || state->error);
3670
3671 if (decl_type == NULL) {
3672 _mesa_glsl_error(&loc, state,
3673 "invalid type `%s' in empty declaration",
3674 type_name);
3675 } else if (decl_type->base_type == GLSL_TYPE_ATOMIC_UINT) {
3676 /* Empty atomic counter declarations are allowed and useful
3677 * to set the default offset qualifier.
3678 */
3679 return NULL;
3680 } else if (this->type->qualifier.precision != ast_precision_none) {
3681 if (this->type->specifier->structure != NULL) {
3682 _mesa_glsl_error(&loc, state,
3683 "precision qualifiers can't be applied "
3684 "to structures");
3685 } else {
3686 static const char *const precision_names[] = {
3687 "highp",
3688 "highp",
3689 "mediump",
3690 "lowp"
3691 };
3692
3693 _mesa_glsl_warning(&loc, state,
3694 "empty declaration with precision qualifier, "
3695 "to set the default precision, use "
3696 "`precision %s %s;'",
3697 precision_names[this->type->qualifier.precision],
3698 type_name);
3699 }
3700 } else if (this->type->specifier->structure == NULL) {
3701 _mesa_glsl_warning(&loc, state, "empty declaration");
3702 }
3703 }
3704
3705 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
3706 const struct glsl_type *var_type;
3707 ir_variable *var;
3708 const char *identifier = decl->identifier;
3709 /* FINISHME: Emit a warning if a variable declaration shadows a
3710 * FINISHME: declaration at a higher scope.
3711 */
3712
3713 if ((decl_type == NULL) || decl_type->is_void()) {
3714 if (type_name != NULL) {
3715 _mesa_glsl_error(& loc, state,
3716 "invalid type `%s' in declaration of `%s'",
3717 type_name, decl->identifier);
3718 } else {
3719 _mesa_glsl_error(& loc, state,
3720 "invalid type in declaration of `%s'",
3721 decl->identifier);
3722 }
3723 continue;
3724 }
3725
3726 if (this->type->qualifier.flags.q.subroutine) {
3727 const glsl_type *t;
3728 const char *name;
3729
3730 t = state->symbols->get_type(this->type->specifier->type_name);
3731 if (!t)
3732 _mesa_glsl_error(& loc, state,
3733 "invalid type in declaration of `%s'",
3734 decl->identifier);
3735 name = ralloc_asprintf(ctx, "%s_%s", _mesa_shader_stage_to_subroutine_prefix(state->stage), decl->identifier);
3736
3737 identifier = name;
3738
3739 }
3740 var_type = process_array_type(&loc, decl_type, decl->array_specifier,
3741 state);
3742
3743 var = new(ctx) ir_variable(var_type, identifier, ir_var_auto);
3744
3745 /* The 'varying in' and 'varying out' qualifiers can only be used with
3746 * ARB_geometry_shader4 and EXT_geometry_shader4, which we don't support
3747 * yet.
3748 */
3749 if (this->type->qualifier.flags.q.varying) {
3750 if (this->type->qualifier.flags.q.in) {
3751 _mesa_glsl_error(& loc, state,
3752 "`varying in' qualifier in declaration of "
3753 "`%s' only valid for geometry shaders using "
3754 "ARB_geometry_shader4 or EXT_geometry_shader4",
3755 decl->identifier);
3756 } else if (this->type->qualifier.flags.q.out) {
3757 _mesa_glsl_error(& loc, state,
3758 "`varying out' qualifier in declaration of "
3759 "`%s' only valid for geometry shaders using "
3760 "ARB_geometry_shader4 or EXT_geometry_shader4",
3761 decl->identifier);
3762 }
3763 }
3764
3765 /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
3766 *
3767 * "Global variables can only use the qualifiers const,
3768 * attribute, uniform, or varying. Only one may be
3769 * specified.
3770 *
3771 * Local variables can only use the qualifier const."
3772 *
3773 * This is relaxed in GLSL 1.30 and GLSL ES 3.00. It is also relaxed by
3774 * any extension that adds the 'layout' keyword.
3775 */
3776 if (!state->is_version(130, 300)
3777 && !state->has_explicit_attrib_location()
3778 && !state->has_separate_shader_objects()
3779 && !state->ARB_fragment_coord_conventions_enable) {
3780 if (this->type->qualifier.flags.q.out) {
3781 _mesa_glsl_error(& loc, state,
3782 "`out' qualifier in declaration of `%s' "
3783 "only valid for function parameters in %s",
3784 decl->identifier, state->get_version_string());
3785 }
3786 if (this->type->qualifier.flags.q.in) {
3787 _mesa_glsl_error(& loc, state,
3788 "`in' qualifier in declaration of `%s' "
3789 "only valid for function parameters in %s",
3790 decl->identifier, state->get_version_string());
3791 }
3792 /* FINISHME: Test for other invalid qualifiers. */
3793 }
3794
3795 apply_type_qualifier_to_variable(& this->type->qualifier, var, state,
3796 & loc, false);
3797
3798 if (this->type->qualifier.flags.q.invariant) {
3799 if (!is_varying_var(var, state->stage)) {
3800 _mesa_glsl_error(&loc, state,
3801 "`%s' cannot be marked invariant; interfaces between "
3802 "shader stages only", var->name);
3803 }
3804 }
3805
3806 if (state->current_function != NULL) {
3807 const char *mode = NULL;
3808 const char *extra = "";
3809
3810 /* There is no need to check for 'inout' here because the parser will
3811 * only allow that in function parameter lists.
3812 */
3813 if (this->type->qualifier.flags.q.attribute) {
3814 mode = "attribute";
3815 } else if (this->type->qualifier.flags.q.subroutine) {
3816 mode = "subroutine uniform";
3817 } else if (this->type->qualifier.flags.q.uniform) {
3818 mode = "uniform";
3819 } else if (this->type->qualifier.flags.q.varying) {
3820 mode = "varying";
3821 } else if (this->type->qualifier.flags.q.in) {
3822 mode = "in";
3823 extra = " or in function parameter list";
3824 } else if (this->type->qualifier.flags.q.out) {
3825 mode = "out";
3826 extra = " or in function parameter list";
3827 }
3828
3829 if (mode) {
3830 _mesa_glsl_error(& loc, state,
3831 "%s variable `%s' must be declared at "
3832 "global scope%s",
3833 mode, var->name, extra);
3834 }
3835 } else if (var->data.mode == ir_var_shader_in) {
3836 var->data.read_only = true;
3837
3838 if (state->stage == MESA_SHADER_VERTEX) {
3839 bool error_emitted = false;
3840
3841 /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
3842 *
3843 * "Vertex shader inputs can only be float, floating-point
3844 * vectors, matrices, signed and unsigned integers and integer
3845 * vectors. Vertex shader inputs can also form arrays of these
3846 * types, but not structures."
3847 *
3848 * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
3849 *
3850 * "Vertex shader inputs can only be float, floating-point
3851 * vectors, matrices, signed and unsigned integers and integer
3852 * vectors. They cannot be arrays or structures."
3853 *
3854 * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
3855 *
3856 * "The attribute qualifier can be used only with float,
3857 * floating-point vectors, and matrices. Attribute variables
3858 * cannot be declared as arrays or structures."
3859 *
3860 * From page 33 (page 39 of the PDF) of the GLSL ES 3.00 spec:
3861 *
3862 * "Vertex shader inputs can only be float, floating-point
3863 * vectors, matrices, signed and unsigned integers and integer
3864 * vectors. Vertex shader inputs cannot be arrays or
3865 * structures."
3866 */
3867 const glsl_type *check_type = var->type->without_array();
3868
3869 switch (check_type->base_type) {
3870 case GLSL_TYPE_FLOAT:
3871 break;
3872 case GLSL_TYPE_UINT:
3873 case GLSL_TYPE_INT:
3874 if (state->is_version(120, 300))
3875 break;
3876 case GLSL_TYPE_DOUBLE:
3877 if (check_type->base_type == GLSL_TYPE_DOUBLE && (state->is_version(410, 0) || state->ARB_vertex_attrib_64bit_enable))
3878 break;
3879 /* FALLTHROUGH */
3880 default:
3881 _mesa_glsl_error(& loc, state,
3882 "vertex shader input / attribute cannot have "
3883 "type %s`%s'",
3884 var->type->is_array() ? "array of " : "",
3885 check_type->name);
3886 error_emitted = true;
3887 }
3888
3889 if (!error_emitted && var->type->is_array() &&
3890 !state->check_version(150, 0, &loc,
3891 "vertex shader input / attribute "
3892 "cannot have array type")) {
3893 error_emitted = true;
3894 }
3895 } else if (state->stage == MESA_SHADER_GEOMETRY) {
3896 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
3897 *
3898 * Geometry shader input variables get the per-vertex values
3899 * written out by vertex shader output variables of the same
3900 * names. Since a geometry shader operates on a set of
3901 * vertices, each input varying variable (or input block, see
3902 * interface blocks below) needs to be declared as an array.
3903 */
3904 if (!var->type->is_array()) {
3905 _mesa_glsl_error(&loc, state,
3906 "geometry shader inputs must be arrays");
3907 }
3908
3909 handle_geometry_shader_input_decl(state, loc, var);
3910 } else if (state->stage == MESA_SHADER_FRAGMENT) {
3911 /* From section 4.3.4 (Input Variables) of the GLSL ES 3.10 spec:
3912 *
3913 * It is a compile-time error to declare a fragment shader
3914 * input with, or that contains, any of the following types:
3915 *
3916 * * A boolean type
3917 * * An opaque type
3918 * * An array of arrays
3919 * * An array of structures
3920 * * A structure containing an array
3921 * * A structure containing a structure
3922 */
3923 if (state->es_shader) {
3924 const glsl_type *check_type = var->type->without_array();
3925 if (check_type->is_boolean() ||
3926 check_type->contains_opaque()) {
3927 _mesa_glsl_error(&loc, state,
3928 "fragment shader input cannot have type %s",
3929 check_type->name);
3930 }
3931 if (var->type->is_array() &&
3932 var->type->fields.array->is_array()) {
3933 _mesa_glsl_error(&loc, state,
3934 "%s shader output "
3935 "cannot have an array of arrays",
3936 _mesa_shader_stage_to_string(state->stage));
3937 }
3938 if (var->type->is_array() &&
3939 var->type->fields.array->is_record()) {
3940 _mesa_glsl_error(&loc, state,
3941 "fragment shader input "
3942 "cannot have an array of structs");
3943 }
3944 if (var->type->is_record()) {
3945 for (unsigned i = 0; i < var->type->length; i++) {
3946 if (var->type->fields.structure[i].type->is_array() ||
3947 var->type->fields.structure[i].type->is_record())
3948 _mesa_glsl_error(&loc, state,
3949 "fragement shader input cannot have "
3950 "a struct that contains an "
3951 "array or struct");
3952 }
3953 }
3954 }
3955 } else if (state->stage == MESA_SHADER_TESS_CTRL ||
3956 state->stage == MESA_SHADER_TESS_EVAL) {
3957 handle_tess_shader_input_decl(state, loc, var);
3958 }
3959 } else if (var->data.mode == ir_var_shader_out) {
3960 const glsl_type *check_type = var->type->without_array();
3961
3962 /* From section 4.3.6 (Output variables) of the GLSL 4.40 spec:
3963 *
3964 * It is a compile-time error to declare a vertex, tessellation
3965 * evaluation, tessellation control, or geometry shader output
3966 * that contains any of the following:
3967 *
3968 * * A Boolean type (bool, bvec2 ...)
3969 * * An opaque type
3970 */
3971 if (check_type->is_boolean() || check_type->contains_opaque())
3972 _mesa_glsl_error(&loc, state,
3973 "%s shader output cannot have type %s",
3974 _mesa_shader_stage_to_string(state->stage),
3975 check_type->name);
3976
3977 /* From section 4.3.6 (Output variables) of the GLSL 4.40 spec:
3978 *
3979 * It is a compile-time error to declare a fragment shader output
3980 * that contains any of the following:
3981 *
3982 * * A Boolean type (bool, bvec2 ...)
3983 * * A double-precision scalar or vector (double, dvec2 ...)
3984 * * An opaque type
3985 * * Any matrix type
3986 * * A structure
3987 */
3988 if (state->stage == MESA_SHADER_FRAGMENT) {
3989 if (check_type->is_record() || check_type->is_matrix())
3990 _mesa_glsl_error(&loc, state,
3991 "fragment shader output "
3992 "cannot have struct or matrix type");
3993 switch (check_type->base_type) {
3994 case GLSL_TYPE_UINT:
3995 case GLSL_TYPE_INT:
3996 case GLSL_TYPE_FLOAT:
3997 break;
3998 default:
3999 _mesa_glsl_error(&loc, state,
4000 "fragment shader output cannot have "
4001 "type %s", check_type->name);
4002 }
4003 }
4004
4005 /* From section 4.3.6 (Output Variables) of the GLSL ES 3.10 spec:
4006 *
4007 * It is a compile-time error to declare a vertex shader output
4008 * with, or that contains, any of the following types:
4009 *
4010 * * A boolean type
4011 * * An opaque type
4012 * * An array of arrays
4013 * * An array of structures
4014 * * A structure containing an array
4015 * * A structure containing a structure
4016 *
4017 * It is a compile-time error to declare a fragment shader output
4018 * with, or that contains, any of the following types:
4019 *
4020 * * A boolean type
4021 * * An opaque type
4022 * * A matrix
4023 * * A structure
4024 * * An array of array
4025 */
4026 if (state->es_shader) {
4027 if (var->type->is_array() &&
4028 var->type->fields.array->is_array()) {
4029 _mesa_glsl_error(&loc, state,
4030 "%s shader output "
4031 "cannot have an array of arrays",
4032 _mesa_shader_stage_to_string(state->stage));
4033 }
4034 if (state->stage == MESA_SHADER_VERTEX) {
4035 if (var->type->is_array() &&
4036 var->type->fields.array->is_record()) {
4037 _mesa_glsl_error(&loc, state,
4038 "vertex shader output "
4039 "cannot have an array of structs");
4040 }
4041 if (var->type->is_record()) {
4042 for (unsigned i = 0; i < var->type->length; i++) {
4043 if (var->type->fields.structure[i].type->is_array() ||
4044 var->type->fields.structure[i].type->is_record())
4045 _mesa_glsl_error(&loc, state,
4046 "vertex shader output cannot have a "
4047 "struct that contains an "
4048 "array or struct");
4049 }
4050 }
4051 }
4052 }
4053
4054 if (state->stage == MESA_SHADER_TESS_CTRL) {
4055 handle_tess_ctrl_shader_output_decl(state, loc, var);
4056 }
4057 } else if (var->type->contains_subroutine()) {
4058 /* declare subroutine uniforms as hidden */
4059 var->data.how_declared = ir_var_hidden;
4060 }
4061
4062 /* Integer fragment inputs must be qualified with 'flat'. In GLSL ES,
4063 * so must integer vertex outputs.
4064 *
4065 * From section 4.3.4 ("Inputs") of the GLSL 1.50 spec:
4066 * "Fragment shader inputs that are signed or unsigned integers or
4067 * integer vectors must be qualified with the interpolation qualifier
4068 * flat."
4069 *
4070 * From section 4.3.4 ("Input Variables") of the GLSL 3.00 ES spec:
4071 * "Fragment shader inputs that are, or contain, signed or unsigned
4072 * integers or integer vectors must be qualified with the
4073 * interpolation qualifier flat."
4074 *
4075 * From section 4.3.6 ("Output Variables") of the GLSL 3.00 ES spec:
4076 * "Vertex shader outputs that are, or contain, signed or unsigned
4077 * integers or integer vectors must be qualified with the
4078 * interpolation qualifier flat."
4079 *
4080 * Note that prior to GLSL 1.50, this requirement applied to vertex
4081 * outputs rather than fragment inputs. That creates problems in the
4082 * presence of geometry shaders, so we adopt the GLSL 1.50 rule for all
4083 * desktop GL shaders. For GLSL ES shaders, we follow the spec and
4084 * apply the restriction to both vertex outputs and fragment inputs.
4085 *
4086 * Note also that the desktop GLSL specs are missing the text "or
4087 * contain"; this is presumably an oversight, since there is no
4088 * reasonable way to interpolate a fragment shader input that contains
4089 * an integer.
4090 */
4091 if (state->is_version(130, 300) &&
4092 var->type->contains_integer() &&
4093 var->data.interpolation != INTERP_QUALIFIER_FLAT &&
4094 ((state->stage == MESA_SHADER_FRAGMENT && var->data.mode == ir_var_shader_in)
4095 || (state->stage == MESA_SHADER_VERTEX && var->data.mode == ir_var_shader_out
4096 && state->es_shader))) {
4097 const char *var_type = (state->stage == MESA_SHADER_VERTEX) ?
4098 "vertex output" : "fragment input";
4099 _mesa_glsl_error(&loc, state, "if a %s is (or contains) "
4100 "an integer, then it must be qualified with 'flat'",
4101 var_type);
4102 }
4103
4104 /* Double fragment inputs must be qualified with 'flat'. */
4105 if (var->type->contains_double() &&
4106 var->data.interpolation != INTERP_QUALIFIER_FLAT &&
4107 state->stage == MESA_SHADER_FRAGMENT &&
4108 var->data.mode == ir_var_shader_in) {
4109 _mesa_glsl_error(&loc, state, "if a fragment input is (or contains) "
4110 "a double, then it must be qualified with 'flat'",
4111 var_type);
4112 }
4113
4114 /* Interpolation qualifiers cannot be applied to 'centroid' and
4115 * 'centroid varying'.
4116 *
4117 * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
4118 * "interpolation qualifiers may only precede the qualifiers in,
4119 * centroid in, out, or centroid out in a declaration. They do not apply
4120 * to the deprecated storage qualifiers varying or centroid varying."
4121 *
4122 * These deprecated storage qualifiers do not exist in GLSL ES 3.00.
4123 */
4124 if (state->is_version(130, 0)
4125 && this->type->qualifier.has_interpolation()
4126 && this->type->qualifier.flags.q.varying) {
4127
4128 const char *i = this->type->qualifier.interpolation_string();
4129 assert(i != NULL);
4130 const char *s;
4131 if (this->type->qualifier.flags.q.centroid)
4132 s = "centroid varying";
4133 else
4134 s = "varying";
4135
4136 _mesa_glsl_error(&loc, state,
4137 "qualifier '%s' cannot be applied to the "
4138 "deprecated storage qualifier '%s'", i, s);
4139 }
4140
4141
4142 /* Interpolation qualifiers can only apply to vertex shader outputs and
4143 * fragment shader inputs.
4144 *
4145 * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
4146 * "Outputs from a vertex shader (out) and inputs to a fragment
4147 * shader (in) can be further qualified with one or more of these
4148 * interpolation qualifiers"
4149 *
4150 * From page 31 (page 37 of the PDF) of the GLSL ES 3.00 spec:
4151 * "These interpolation qualifiers may only precede the qualifiers
4152 * in, centroid in, out, or centroid out in a declaration. They do
4153 * not apply to inputs into a vertex shader or outputs from a
4154 * fragment shader."
4155 */
4156 if (state->is_version(130, 300)
4157 && this->type->qualifier.has_interpolation()) {
4158
4159 const char *i = this->type->qualifier.interpolation_string();
4160 assert(i != NULL);
4161
4162 switch (state->stage) {
4163 case MESA_SHADER_VERTEX:
4164 if (this->type->qualifier.flags.q.in) {
4165 _mesa_glsl_error(&loc, state,
4166 "qualifier '%s' cannot be applied to vertex "
4167 "shader inputs", i);
4168 }
4169 break;
4170 case MESA_SHADER_FRAGMENT:
4171 if (this->type->qualifier.flags.q.out) {
4172 _mesa_glsl_error(&loc, state,
4173 "qualifier '%s' cannot be applied to fragment "
4174 "shader outputs", i);
4175 }
4176 break;
4177 default:
4178 break;
4179 }
4180 }
4181
4182
4183 /* From section 4.3.4 of the GLSL 4.00 spec:
4184 * "Input variables may not be declared using the patch in qualifier
4185 * in tessellation control or geometry shaders."
4186 *
4187 * From section 4.3.6 of the GLSL 4.00 spec:
4188 * "It is an error to use patch out in a vertex, tessellation
4189 * evaluation, or geometry shader."
4190 *
4191 * This doesn't explicitly forbid using them in a fragment shader, but
4192 * that's probably just an oversight.
4193 */
4194 if (state->stage != MESA_SHADER_TESS_EVAL
4195 && this->type->qualifier.flags.q.patch
4196 && this->type->qualifier.flags.q.in) {
4197
4198 _mesa_glsl_error(&loc, state, "'patch in' can only be used in a "
4199 "tessellation evaluation shader");
4200 }
4201
4202 if (state->stage != MESA_SHADER_TESS_CTRL
4203 && this->type->qualifier.flags.q.patch
4204 && this->type->qualifier.flags.q.out) {
4205
4206 _mesa_glsl_error(&loc, state, "'patch out' can only be used in a "
4207 "tessellation control shader");
4208 }
4209
4210 /* Precision qualifiers exists only in GLSL versions 1.00 and >= 1.30.
4211 */
4212 if (this->type->qualifier.precision != ast_precision_none) {
4213 state->check_precision_qualifiers_allowed(&loc);
4214 }
4215
4216
4217 /* If a precision qualifier is allowed on a type, it is allowed on
4218 * an array of that type.
4219 */
4220 if (!(this->type->qualifier.precision == ast_precision_none
4221 || precision_qualifier_allowed(var->type->without_array()))) {
4222
4223 _mesa_glsl_error(&loc, state,
4224 "precision qualifiers apply only to floating point"
4225 ", integer and opaque types");
4226 }
4227
4228 /* From section 4.1.7 of the GLSL 4.40 spec:
4229 *
4230 * "[Opaque types] can only be declared as function
4231 * parameters or uniform-qualified variables."
4232 */
4233 if (var_type->contains_opaque() &&
4234 !this->type->qualifier.flags.q.uniform) {
4235 _mesa_glsl_error(&loc, state,
4236 "opaque variables must be declared uniform");
4237 }
4238
4239 /* Process the initializer and add its instructions to a temporary
4240 * list. This list will be added to the instruction stream (below) after
4241 * the declaration is added. This is done because in some cases (such as
4242 * redeclarations) the declaration may not actually be added to the
4243 * instruction stream.
4244 */
4245 exec_list initializer_instructions;
4246
4247 /* Examine var name here since var may get deleted in the next call */
4248 bool var_is_gl_id = is_gl_identifier(var->name);
4249
4250 ir_variable *earlier =
4251 get_variable_being_redeclared(var, decl->get_location(), state,
4252 false /* allow_all_redeclarations */);
4253 if (earlier != NULL) {
4254 if (var_is_gl_id &&
4255 earlier->data.how_declared == ir_var_declared_in_block) {
4256 _mesa_glsl_error(&loc, state,
4257 "`%s' has already been redeclared using "
4258 "gl_PerVertex", earlier->name);
4259 }
4260 earlier->data.how_declared = ir_var_declared_normally;
4261 }
4262
4263 if (decl->initializer != NULL) {
4264 result = process_initializer((earlier == NULL) ? var : earlier,
4265 decl, this->type,
4266 &initializer_instructions, state);
4267 }
4268
4269 /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
4270 *
4271 * "It is an error to write to a const variable outside of
4272 * its declaration, so they must be initialized when
4273 * declared."
4274 */
4275 if (this->type->qualifier.flags.q.constant && decl->initializer == NULL) {
4276 _mesa_glsl_error(& loc, state,
4277 "const declaration of `%s' must be initialized",
4278 decl->identifier);
4279 }
4280
4281 if (state->es_shader) {
4282 const glsl_type *const t = (earlier == NULL)
4283 ? var->type : earlier->type;
4284
4285 if (t->is_unsized_array())
4286 /* Section 10.17 of the GLSL ES 1.00 specification states that
4287 * unsized array declarations have been removed from the language.
4288 * Arrays that are sized using an initializer are still explicitly
4289 * sized. However, GLSL ES 1.00 does not allow array
4290 * initializers. That is only allowed in GLSL ES 3.00.
4291 *
4292 * Section 4.1.9 (Arrays) of the GLSL ES 3.00 spec says:
4293 *
4294 * "An array type can also be formed without specifying a size
4295 * if the definition includes an initializer:
4296 *
4297 * float x[] = float[2] (1.0, 2.0); // declares an array of size 2
4298 * float y[] = float[] (1.0, 2.0, 3.0); // declares an array of size 3
4299 *
4300 * float a[5];
4301 * float b[] = a;"
4302 */
4303 _mesa_glsl_error(& loc, state,
4304 "unsized array declarations are not allowed in "
4305 "GLSL ES");
4306 }
4307
4308 /* If the declaration is not a redeclaration, there are a few additional
4309 * semantic checks that must be applied. In addition, variable that was
4310 * created for the declaration should be added to the IR stream.
4311 */
4312 if (earlier == NULL) {
4313 validate_identifier(decl->identifier, loc, state);
4314
4315 /* Add the variable to the symbol table. Note that the initializer's
4316 * IR was already processed earlier (though it hasn't been emitted
4317 * yet), without the variable in scope.
4318 *
4319 * This differs from most C-like languages, but it follows the GLSL
4320 * specification. From page 28 (page 34 of the PDF) of the GLSL 1.50
4321 * spec:
4322 *
4323 * "Within a declaration, the scope of a name starts immediately
4324 * after the initializer if present or immediately after the name
4325 * being declared if not."
4326 */
4327 if (!state->symbols->add_variable(var)) {
4328 YYLTYPE loc = this->get_location();
4329 _mesa_glsl_error(&loc, state, "name `%s' already taken in the "
4330 "current scope", decl->identifier);
4331 continue;
4332 }
4333
4334 /* Push the variable declaration to the top. It means that all the
4335 * variable declarations will appear in a funny last-to-first order,
4336 * but otherwise we run into trouble if a function is prototyped, a
4337 * global var is decled, then the function is defined with usage of
4338 * the global var. See glslparsertest's CorrectModule.frag.
4339 */
4340 instructions->push_head(var);
4341 }
4342
4343 instructions->append_list(&initializer_instructions);
4344 }
4345
4346
4347 /* Generally, variable declarations do not have r-values. However,
4348 * one is used for the declaration in
4349 *
4350 * while (bool b = some_condition()) {
4351 * ...
4352 * }
4353 *
4354 * so we return the rvalue from the last seen declaration here.
4355 */
4356 return result;
4357 }
4358
4359
4360 ir_rvalue *
4361 ast_parameter_declarator::hir(exec_list *instructions,
4362 struct _mesa_glsl_parse_state *state)
4363 {
4364 void *ctx = state;
4365 const struct glsl_type *type;
4366 const char *name = NULL;
4367 YYLTYPE loc = this->get_location();
4368
4369 type = this->type->glsl_type(& name, state);
4370
4371 if (type == NULL) {
4372 if (name != NULL) {
4373 _mesa_glsl_error(& loc, state,
4374 "invalid type `%s' in declaration of `%s'",
4375 name, this->identifier);
4376 } else {
4377 _mesa_glsl_error(& loc, state,
4378 "invalid type in declaration of `%s'",
4379 this->identifier);
4380 }
4381
4382 type = glsl_type::error_type;
4383 }
4384
4385 /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
4386 *
4387 * "Functions that accept no input arguments need not use void in the
4388 * argument list because prototypes (or definitions) are required and
4389 * therefore there is no ambiguity when an empty argument list "( )" is
4390 * declared. The idiom "(void)" as a parameter list is provided for
4391 * convenience."
4392 *
4393 * Placing this check here prevents a void parameter being set up
4394 * for a function, which avoids tripping up checks for main taking
4395 * parameters and lookups of an unnamed symbol.
4396 */
4397 if (type->is_void()) {
4398 if (this->identifier != NULL)
4399 _mesa_glsl_error(& loc, state,
4400 "named parameter cannot have type `void'");
4401
4402 is_void = true;
4403 return NULL;
4404 }
4405
4406 if (formal_parameter && (this->identifier == NULL)) {
4407 _mesa_glsl_error(& loc, state, "formal parameter lacks a name");
4408 return NULL;
4409 }
4410
4411 /* This only handles "vec4 foo[..]". The earlier specifier->glsl_type(...)
4412 * call already handled the "vec4[..] foo" case.
4413 */
4414 type = process_array_type(&loc, type, this->array_specifier, state);
4415
4416 if (!type->is_error() && type->is_unsized_array()) {
4417 _mesa_glsl_error(&loc, state, "arrays passed as parameters must have "
4418 "a declared size");
4419 type = glsl_type::error_type;
4420 }
4421
4422 is_void = false;
4423 ir_variable *var = new(ctx)
4424 ir_variable(type, this->identifier, ir_var_function_in);
4425
4426 /* Apply any specified qualifiers to the parameter declaration. Note that
4427 * for function parameters the default mode is 'in'.
4428 */
4429 apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc,
4430 true);
4431
4432 /* From section 4.1.7 of the GLSL 4.40 spec:
4433 *
4434 * "Opaque variables cannot be treated as l-values; hence cannot
4435 * be used as out or inout function parameters, nor can they be
4436 * assigned into."
4437 */
4438 if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
4439 && type->contains_opaque()) {
4440 _mesa_glsl_error(&loc, state, "out and inout parameters cannot "
4441 "contain opaque variables");
4442 type = glsl_type::error_type;
4443 }
4444
4445 /* From page 39 (page 45 of the PDF) of the GLSL 1.10 spec:
4446 *
4447 * "When calling a function, expressions that do not evaluate to
4448 * l-values cannot be passed to parameters declared as out or inout."
4449 *
4450 * From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
4451 *
4452 * "Other binary or unary expressions, non-dereferenced arrays,
4453 * function names, swizzles with repeated fields, and constants
4454 * cannot be l-values."
4455 *
4456 * So for GLSL 1.10, passing an array as an out or inout parameter is not
4457 * allowed. This restriction is removed in GLSL 1.20, and in GLSL ES.
4458 */
4459 if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
4460 && type->is_array()
4461 && !state->check_version(120, 100, &loc,
4462 "arrays cannot be out or inout parameters")) {
4463 type = glsl_type::error_type;
4464 }
4465
4466 instructions->push_tail(var);
4467
4468 /* Parameter declarations do not have r-values.
4469 */
4470 return NULL;
4471 }
4472
4473
4474 void
4475 ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters,
4476 bool formal,
4477 exec_list *ir_parameters,
4478 _mesa_glsl_parse_state *state)
4479 {
4480 ast_parameter_declarator *void_param = NULL;
4481 unsigned count = 0;
4482
4483 foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) {
4484 param->formal_parameter = formal;
4485 param->hir(ir_parameters, state);
4486
4487 if (param->is_void)
4488 void_param = param;
4489
4490 count++;
4491 }
4492
4493 if ((void_param != NULL) && (count > 1)) {
4494 YYLTYPE loc = void_param->get_location();
4495
4496 _mesa_glsl_error(& loc, state,
4497 "`void' parameter must be only parameter");
4498 }
4499 }
4500
4501
4502 void
4503 emit_function(_mesa_glsl_parse_state *state, ir_function *f)
4504 {
4505 /* IR invariants disallow function declarations or definitions
4506 * nested within other function definitions. But there is no
4507 * requirement about the relative order of function declarations
4508 * and definitions with respect to one another. So simply insert
4509 * the new ir_function block at the end of the toplevel instruction
4510 * list.
4511 */
4512 state->toplevel_ir->push_tail(f);
4513 }
4514
4515
4516 ir_rvalue *
4517 ast_function::hir(exec_list *instructions,
4518 struct _mesa_glsl_parse_state *state)
4519 {
4520 void *ctx = state;
4521 ir_function *f = NULL;
4522 ir_function_signature *sig = NULL;
4523 exec_list hir_parameters;
4524 YYLTYPE loc = this->get_location();
4525
4526 const char *const name = identifier;
4527
4528 /* New functions are always added to the top-level IR instruction stream,
4529 * so this instruction list pointer is ignored. See also emit_function
4530 * (called below).
4531 */
4532 (void) instructions;
4533
4534 /* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec,
4535 *
4536 * "Function declarations (prototypes) cannot occur inside of functions;
4537 * they must be at global scope, or for the built-in functions, outside
4538 * the global scope."
4539 *
4540 * From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec,
4541 *
4542 * "User defined functions may only be defined within the global scope."
4543 *
4544 * Note that this language does not appear in GLSL 1.10.
4545 */
4546 if ((state->current_function != NULL) &&
4547 state->is_version(120, 100)) {
4548 YYLTYPE loc = this->get_location();
4549 _mesa_glsl_error(&loc, state,
4550 "declaration of function `%s' not allowed within "
4551 "function body", name);
4552 }
4553
4554 validate_identifier(name, this->get_location(), state);
4555
4556 /* Convert the list of function parameters to HIR now so that they can be
4557 * used below to compare this function's signature with previously seen
4558 * signatures for functions with the same name.
4559 */
4560 ast_parameter_declarator::parameters_to_hir(& this->parameters,
4561 is_definition,
4562 & hir_parameters, state);
4563
4564 const char *return_type_name;
4565 const glsl_type *return_type =
4566 this->return_type->glsl_type(& return_type_name, state);
4567
4568 if (!return_type) {
4569 YYLTYPE loc = this->get_location();
4570 _mesa_glsl_error(&loc, state,
4571 "function `%s' has undeclared return type `%s'",
4572 name, return_type_name);
4573 return_type = glsl_type::error_type;
4574 }
4575
4576 /* ARB_shader_subroutine states:
4577 * "Subroutine declarations cannot be prototyped. It is an error to prepend
4578 * subroutine(...) to a function declaration."
4579 */
4580 if (this->return_type->qualifier.flags.q.subroutine_def && !is_definition) {
4581 YYLTYPE loc = this->get_location();
4582 _mesa_glsl_error(&loc, state,
4583 "function declaration `%s' cannot have subroutine prepended",
4584 name);
4585 }
4586
4587 /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec:
4588 * "No qualifier is allowed on the return type of a function."
4589 */
4590 if (this->return_type->has_qualifiers()) {
4591 YYLTYPE loc = this->get_location();
4592 _mesa_glsl_error(& loc, state,
4593 "function `%s' return type has qualifiers", name);
4594 }
4595
4596 /* Section 6.1 (Function Definitions) of the GLSL 1.20 spec says:
4597 *
4598 * "Arrays are allowed as arguments and as the return type. In both
4599 * cases, the array must be explicitly sized."
4600 */
4601 if (return_type->is_unsized_array()) {
4602 YYLTYPE loc = this->get_location();
4603 _mesa_glsl_error(& loc, state,
4604 "function `%s' return type array must be explicitly "
4605 "sized", name);
4606 }
4607
4608 /* From section 4.1.7 of the GLSL 4.40 spec:
4609 *
4610 * "[Opaque types] can only be declared as function parameters
4611 * or uniform-qualified variables."
4612 */
4613 if (return_type->contains_opaque()) {
4614 YYLTYPE loc = this->get_location();
4615 _mesa_glsl_error(&loc, state,
4616 "function `%s' return type can't contain an opaque type",
4617 name);
4618 }
4619
4620 /* Create an ir_function if one doesn't already exist. */
4621 f = state->symbols->get_function(name);
4622 if (f == NULL) {
4623 f = new(ctx) ir_function(name);
4624 if (!this->return_type->qualifier.flags.q.subroutine) {
4625 if (!state->symbols->add_function(f)) {
4626 /* This function name shadows a non-function use of the same name. */
4627 YYLTYPE loc = this->get_location();
4628 _mesa_glsl_error(&loc, state, "function name `%s' conflicts with "
4629 "non-function", name);
4630 return NULL;
4631 }
4632 }
4633 emit_function(state, f);
4634 }
4635
4636 /* From GLSL ES 3.0 spec, chapter 6.1 "Function Definitions", page 71:
4637 *
4638 * "A shader cannot redefine or overload built-in functions."
4639 *
4640 * While in GLSL ES 1.0 specification, chapter 8 "Built-in Functions":
4641 *
4642 * "User code can overload the built-in functions but cannot redefine
4643 * them."
4644 */
4645 if (state->es_shader && state->language_version >= 300) {
4646 /* Local shader has no exact candidates; check the built-ins. */
4647 _mesa_glsl_initialize_builtin_functions();
4648 if (_mesa_glsl_find_builtin_function_by_name(name)) {
4649 YYLTYPE loc = this->get_location();
4650 _mesa_glsl_error(& loc, state,
4651 "A shader cannot redefine or overload built-in "
4652 "function `%s' in GLSL ES 3.00", name);
4653 return NULL;
4654 }
4655 }
4656
4657 /* Verify that this function's signature either doesn't match a previously
4658 * seen signature for a function with the same name, or, if a match is found,
4659 * that the previously seen signature does not have an associated definition.
4660 */
4661 if (state->es_shader || f->has_user_signature()) {
4662 sig = f->exact_matching_signature(state, &hir_parameters);
4663 if (sig != NULL) {
4664 const char *badvar = sig->qualifiers_match(&hir_parameters);
4665 if (badvar != NULL) {
4666 YYLTYPE loc = this->get_location();
4667
4668 _mesa_glsl_error(&loc, state, "function `%s' parameter `%s' "
4669 "qualifiers don't match prototype", name, badvar);
4670 }
4671
4672 if (sig->return_type != return_type) {
4673 YYLTYPE loc = this->get_location();
4674
4675 _mesa_glsl_error(&loc, state, "function `%s' return type doesn't "
4676 "match prototype", name);
4677 }
4678
4679 if (sig->is_defined) {
4680 if (is_definition) {
4681 YYLTYPE loc = this->get_location();
4682 _mesa_glsl_error(& loc, state, "function `%s' redefined", name);
4683 } else {
4684 /* We just encountered a prototype that exactly matches a
4685 * function that's already been defined. This is redundant,
4686 * and we should ignore it.
4687 */
4688 return NULL;
4689 }
4690 }
4691 }
4692 }
4693
4694 /* Verify the return type of main() */
4695 if (strcmp(name, "main") == 0) {
4696 if (! return_type->is_void()) {
4697 YYLTYPE loc = this->get_location();
4698
4699 _mesa_glsl_error(& loc, state, "main() must return void");
4700 }
4701
4702 if (!hir_parameters.is_empty()) {
4703 YYLTYPE loc = this->get_location();
4704
4705 _mesa_glsl_error(& loc, state, "main() must not take any parameters");
4706 }
4707 }
4708
4709 /* Finish storing the information about this new function in its signature.
4710 */
4711 if (sig == NULL) {
4712 sig = new(ctx) ir_function_signature(return_type);
4713 f->add_signature(sig);
4714 }
4715
4716 sig->replace_parameters(&hir_parameters);
4717 signature = sig;
4718
4719 if (this->return_type->qualifier.flags.q.subroutine_def) {
4720 int idx;
4721
4722 f->num_subroutine_types = this->return_type->qualifier.subroutine_list->declarations.length();
4723 f->subroutine_types = ralloc_array(state, const struct glsl_type *,
4724 f->num_subroutine_types);
4725 idx = 0;
4726 foreach_list_typed(ast_declaration, decl, link, &this->return_type->qualifier.subroutine_list->declarations) {
4727 const struct glsl_type *type;
4728 /* the subroutine type must be already declared */
4729 type = state->symbols->get_type(decl->identifier);
4730 if (!type) {
4731 _mesa_glsl_error(& loc, state, "unknown type '%s' in subroutine function definition", decl->identifier);
4732 }
4733 f->subroutine_types[idx++] = type;
4734 }
4735 state->subroutines = (ir_function **)reralloc(state, state->subroutines,
4736 ir_function *,
4737 state->num_subroutines + 1);
4738 state->subroutines[state->num_subroutines] = f;
4739 state->num_subroutines++;
4740
4741 }
4742
4743 if (this->return_type->qualifier.flags.q.subroutine) {
4744 if (!state->symbols->add_type(this->identifier, glsl_type::get_subroutine_instance(this->identifier))) {
4745 _mesa_glsl_error(& loc, state, "type '%s' previously defined", this->identifier);
4746 return NULL;
4747 }
4748 state->subroutine_types = (ir_function **)reralloc(state, state->subroutine_types,
4749 ir_function *,
4750 state->num_subroutine_types + 1);
4751 state->subroutine_types[state->num_subroutine_types] = f;
4752 state->num_subroutine_types++;
4753
4754 f->is_subroutine = true;
4755 }
4756
4757 /* Function declarations (prototypes) do not have r-values.
4758 */
4759 return NULL;
4760 }
4761
4762
4763 ir_rvalue *
4764 ast_function_definition::hir(exec_list *instructions,
4765 struct _mesa_glsl_parse_state *state)
4766 {
4767 prototype->is_definition = true;
4768 prototype->hir(instructions, state);
4769
4770 ir_function_signature *signature = prototype->signature;
4771 if (signature == NULL)
4772 return NULL;
4773
4774 assert(state->current_function == NULL);
4775 state->current_function = signature;
4776 state->found_return = false;
4777
4778 /* Duplicate parameters declared in the prototype as concrete variables.
4779 * Add these to the symbol table.
4780 */
4781 state->symbols->push_scope();
4782 foreach_in_list(ir_variable, var, &signature->parameters) {
4783 assert(var->as_variable() != NULL);
4784
4785 /* The only way a parameter would "exist" is if two parameters have
4786 * the same name.
4787 */
4788 if (state->symbols->name_declared_this_scope(var->name)) {
4789 YYLTYPE loc = this->get_location();
4790
4791 _mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name);
4792 } else {
4793 state->symbols->add_variable(var);
4794 }
4795 }
4796
4797 /* Convert the body of the function to HIR. */
4798 this->body->hir(&signature->body, state);
4799 signature->is_defined = true;
4800
4801 state->symbols->pop_scope();
4802
4803 assert(state->current_function == signature);
4804 state->current_function = NULL;
4805
4806 if (!signature->return_type->is_void() && !state->found_return) {
4807 YYLTYPE loc = this->get_location();
4808 _mesa_glsl_error(& loc, state, "function `%s' has non-void return type "
4809 "%s, but no return statement",
4810 signature->function_name(),
4811 signature->return_type->name);
4812 }
4813
4814 /* Function definitions do not have r-values.
4815 */
4816 return NULL;
4817 }
4818
4819
4820 ir_rvalue *
4821 ast_jump_statement::hir(exec_list *instructions,
4822 struct _mesa_glsl_parse_state *state)
4823 {
4824 void *ctx = state;
4825
4826 switch (mode) {
4827 case ast_return: {
4828 ir_return *inst;
4829 assert(state->current_function);
4830
4831 if (opt_return_value) {
4832 ir_rvalue *ret = opt_return_value->hir(instructions, state);
4833
4834 /* The value of the return type can be NULL if the shader says
4835 * 'return foo();' and foo() is a function that returns void.
4836 *
4837 * NOTE: The GLSL spec doesn't say that this is an error. The type
4838 * of the return value is void. If the return type of the function is
4839 * also void, then this should compile without error. Seriously.
4840 */
4841 const glsl_type *const ret_type =
4842 (ret == NULL) ? glsl_type::void_type : ret->type;
4843
4844 /* Implicit conversions are not allowed for return values prior to
4845 * ARB_shading_language_420pack.
4846 */
4847 if (state->current_function->return_type != ret_type) {
4848 YYLTYPE loc = this->get_location();
4849
4850 if (state->ARB_shading_language_420pack_enable) {
4851 if (!apply_implicit_conversion(state->current_function->return_type,
4852 ret, state)) {
4853 _mesa_glsl_error(& loc, state,
4854 "could not implicitly convert return value "
4855 "to %s, in function `%s'",
4856 state->current_function->return_type->name,
4857 state->current_function->function_name());
4858 }
4859 } else {
4860 _mesa_glsl_error(& loc, state,
4861 "`return' with wrong type %s, in function `%s' "
4862 "returning %s",
4863 ret_type->name,
4864 state->current_function->function_name(),
4865 state->current_function->return_type->name);
4866 }
4867 } else if (state->current_function->return_type->base_type ==
4868 GLSL_TYPE_VOID) {
4869 YYLTYPE loc = this->get_location();
4870
4871 /* The ARB_shading_language_420pack, GLSL ES 3.0, and GLSL 4.20
4872 * specs add a clarification:
4873 *
4874 * "A void function can only use return without a return argument, even if
4875 * the return argument has void type. Return statements only accept values:
4876 *
4877 * void func1() { }
4878 * void func2() { return func1(); } // illegal return statement"
4879 */
4880 _mesa_glsl_error(& loc, state,
4881 "void functions can only use `return' without a "
4882 "return argument");
4883 }
4884
4885 inst = new(ctx) ir_return(ret);
4886 } else {
4887 if (state->current_function->return_type->base_type !=
4888 GLSL_TYPE_VOID) {
4889 YYLTYPE loc = this->get_location();
4890
4891 _mesa_glsl_error(& loc, state,
4892 "`return' with no value, in function %s returning "
4893 "non-void",
4894 state->current_function->function_name());
4895 }
4896 inst = new(ctx) ir_return;
4897 }
4898
4899 state->found_return = true;
4900 instructions->push_tail(inst);
4901 break;
4902 }
4903
4904 case ast_discard:
4905 if (state->stage != MESA_SHADER_FRAGMENT) {
4906 YYLTYPE loc = this->get_location();
4907
4908 _mesa_glsl_error(& loc, state,
4909 "`discard' may only appear in a fragment shader");
4910 }
4911 instructions->push_tail(new(ctx) ir_discard);
4912 break;
4913
4914 case ast_break:
4915 case ast_continue:
4916 if (mode == ast_continue &&
4917 state->loop_nesting_ast == NULL) {
4918 YYLTYPE loc = this->get_location();
4919
4920 _mesa_glsl_error(& loc, state, "continue may only appear in a loop");
4921 } else if (mode == ast_break &&
4922 state->loop_nesting_ast == NULL &&
4923 state->switch_state.switch_nesting_ast == NULL) {
4924 YYLTYPE loc = this->get_location();
4925
4926 _mesa_glsl_error(& loc, state,
4927 "break may only appear in a loop or a switch");
4928 } else {
4929 /* For a loop, inline the for loop expression again, since we don't
4930 * know where near the end of the loop body the normal copy of it is
4931 * going to be placed. Same goes for the condition for a do-while
4932 * loop.
4933 */
4934 if (state->loop_nesting_ast != NULL &&
4935 mode == ast_continue && !state->switch_state.is_switch_innermost) {
4936 if (state->loop_nesting_ast->rest_expression) {
4937 state->loop_nesting_ast->rest_expression->hir(instructions,
4938 state);
4939 }
4940 if (state->loop_nesting_ast->mode ==
4941 ast_iteration_statement::ast_do_while) {
4942 state->loop_nesting_ast->condition_to_hir(instructions, state);
4943 }
4944 }
4945
4946 if (state->switch_state.is_switch_innermost &&
4947 mode == ast_continue) {
4948 /* Set 'continue_inside' to true. */
4949 ir_rvalue *const true_val = new (ctx) ir_constant(true);
4950 ir_dereference_variable *deref_continue_inside_var =
4951 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
4952 instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
4953 true_val));
4954
4955 /* Break out from the switch, continue for the loop will
4956 * be called right after switch. */
4957 ir_loop_jump *const jump =
4958 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
4959 instructions->push_tail(jump);
4960
4961 } else if (state->switch_state.is_switch_innermost &&
4962 mode == ast_break) {
4963 /* Force break out of switch by inserting a break. */
4964 ir_loop_jump *const jump =
4965 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
4966 instructions->push_tail(jump);
4967 } else {
4968 ir_loop_jump *const jump =
4969 new(ctx) ir_loop_jump((mode == ast_break)
4970 ? ir_loop_jump::jump_break
4971 : ir_loop_jump::jump_continue);
4972 instructions->push_tail(jump);
4973 }
4974 }
4975
4976 break;
4977 }
4978
4979 /* Jump instructions do not have r-values.
4980 */
4981 return NULL;
4982 }
4983
4984
4985 ir_rvalue *
4986 ast_selection_statement::hir(exec_list *instructions,
4987 struct _mesa_glsl_parse_state *state)
4988 {
4989 void *ctx = state;
4990
4991 ir_rvalue *const condition = this->condition->hir(instructions, state);
4992
4993 /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
4994 *
4995 * "Any expression whose type evaluates to a Boolean can be used as the
4996 * conditional expression bool-expression. Vector types are not accepted
4997 * as the expression to if."
4998 *
4999 * The checks are separated so that higher quality diagnostics can be
5000 * generated for cases where both rules are violated.
5001 */
5002 if (!condition->type->is_boolean() || !condition->type->is_scalar()) {
5003 YYLTYPE loc = this->condition->get_location();
5004
5005 _mesa_glsl_error(& loc, state, "if-statement condition must be scalar "
5006 "boolean");
5007 }
5008
5009 ir_if *const stmt = new(ctx) ir_if(condition);
5010
5011 if (then_statement != NULL) {
5012 state->symbols->push_scope();
5013 then_statement->hir(& stmt->then_instructions, state);
5014 state->symbols->pop_scope();
5015 }
5016
5017 if (else_statement != NULL) {
5018 state->symbols->push_scope();
5019 else_statement->hir(& stmt->else_instructions, state);
5020 state->symbols->pop_scope();
5021 }
5022
5023 instructions->push_tail(stmt);
5024
5025 /* if-statements do not have r-values.
5026 */
5027 return NULL;
5028 }
5029
5030
5031 ir_rvalue *
5032 ast_switch_statement::hir(exec_list *instructions,
5033 struct _mesa_glsl_parse_state *state)
5034 {
5035 void *ctx = state;
5036
5037 ir_rvalue *const test_expression =
5038 this->test_expression->hir(instructions, state);
5039
5040 /* From page 66 (page 55 of the PDF) of the GLSL 1.50 spec:
5041 *
5042 * "The type of init-expression in a switch statement must be a
5043 * scalar integer."
5044 */
5045 if (!test_expression->type->is_scalar() ||
5046 !test_expression->type->is_integer()) {
5047 YYLTYPE loc = this->test_expression->get_location();
5048
5049 _mesa_glsl_error(& loc,
5050 state,
5051 "switch-statement expression must be scalar "
5052 "integer");
5053 }
5054
5055 /* Track the switch-statement nesting in a stack-like manner.
5056 */
5057 struct glsl_switch_state saved = state->switch_state;
5058
5059 state->switch_state.is_switch_innermost = true;
5060 state->switch_state.switch_nesting_ast = this;
5061 state->switch_state.labels_ht = hash_table_ctor(0, hash_table_pointer_hash,
5062 hash_table_pointer_compare);
5063 state->switch_state.previous_default = NULL;
5064
5065 /* Initalize is_fallthru state to false.
5066 */
5067 ir_rvalue *const is_fallthru_val = new (ctx) ir_constant(false);
5068 state->switch_state.is_fallthru_var =
5069 new(ctx) ir_variable(glsl_type::bool_type,
5070 "switch_is_fallthru_tmp",
5071 ir_var_temporary);
5072 instructions->push_tail(state->switch_state.is_fallthru_var);
5073
5074 ir_dereference_variable *deref_is_fallthru_var =
5075 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
5076 instructions->push_tail(new(ctx) ir_assignment(deref_is_fallthru_var,
5077 is_fallthru_val));
5078
5079 /* Initialize continue_inside state to false.
5080 */
5081 state->switch_state.continue_inside =
5082 new(ctx) ir_variable(glsl_type::bool_type,
5083 "continue_inside_tmp",
5084 ir_var_temporary);
5085 instructions->push_tail(state->switch_state.continue_inside);
5086
5087 ir_rvalue *const false_val = new (ctx) ir_constant(false);
5088 ir_dereference_variable *deref_continue_inside_var =
5089 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
5090 instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
5091 false_val));
5092
5093 state->switch_state.run_default =
5094 new(ctx) ir_variable(glsl_type::bool_type,
5095 "run_default_tmp",
5096 ir_var_temporary);
5097 instructions->push_tail(state->switch_state.run_default);
5098
5099 /* Loop around the switch is used for flow control. */
5100 ir_loop * loop = new(ctx) ir_loop();
5101 instructions->push_tail(loop);
5102
5103 /* Cache test expression.
5104 */
5105 test_to_hir(&loop->body_instructions, state);
5106
5107 /* Emit code for body of switch stmt.
5108 */
5109 body->hir(&loop->body_instructions, state);
5110
5111 /* Insert a break at the end to exit loop. */
5112 ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
5113 loop->body_instructions.push_tail(jump);
5114
5115 /* If we are inside loop, check if continue got called inside switch. */
5116 if (state->loop_nesting_ast != NULL) {
5117 ir_dereference_variable *deref_continue_inside =
5118 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
5119 ir_if *irif = new(ctx) ir_if(deref_continue_inside);
5120 ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_continue);
5121
5122 if (state->loop_nesting_ast != NULL) {
5123 if (state->loop_nesting_ast->rest_expression) {
5124 state->loop_nesting_ast->rest_expression->hir(&irif->then_instructions,
5125 state);
5126 }
5127 if (state->loop_nesting_ast->mode ==
5128 ast_iteration_statement::ast_do_while) {
5129 state->loop_nesting_ast->condition_to_hir(&irif->then_instructions, state);
5130 }
5131 }
5132 irif->then_instructions.push_tail(jump);
5133 instructions->push_tail(irif);
5134 }
5135
5136 hash_table_dtor(state->switch_state.labels_ht);
5137
5138 state->switch_state = saved;
5139
5140 /* Switch statements do not have r-values. */
5141 return NULL;
5142 }
5143
5144
5145 void
5146 ast_switch_statement::test_to_hir(exec_list *instructions,
5147 struct _mesa_glsl_parse_state *state)
5148 {
5149 void *ctx = state;
5150
5151 /* Cache value of test expression. */
5152 ir_rvalue *const test_val =
5153 test_expression->hir(instructions,
5154 state);
5155
5156 state->switch_state.test_var = new(ctx) ir_variable(test_val->type,
5157 "switch_test_tmp",
5158 ir_var_temporary);
5159 ir_dereference_variable *deref_test_var =
5160 new(ctx) ir_dereference_variable(state->switch_state.test_var);
5161
5162 instructions->push_tail(state->switch_state.test_var);
5163 instructions->push_tail(new(ctx) ir_assignment(deref_test_var, test_val));
5164 }
5165
5166
5167 ir_rvalue *
5168 ast_switch_body::hir(exec_list *instructions,
5169 struct _mesa_glsl_parse_state *state)
5170 {
5171 if (stmts != NULL)
5172 stmts->hir(instructions, state);
5173
5174 /* Switch bodies do not have r-values. */
5175 return NULL;
5176 }
5177
5178 ir_rvalue *
5179 ast_case_statement_list::hir(exec_list *instructions,
5180 struct _mesa_glsl_parse_state *state)
5181 {
5182 exec_list default_case, after_default, tmp;
5183
5184 foreach_list_typed (ast_case_statement, case_stmt, link, & this->cases) {
5185 case_stmt->hir(&tmp, state);
5186
5187 /* Default case. */
5188 if (state->switch_state.previous_default && default_case.is_empty()) {
5189 default_case.append_list(&tmp);
5190 continue;
5191 }
5192
5193 /* If default case found, append 'after_default' list. */
5194 if (!default_case.is_empty())
5195 after_default.append_list(&tmp);
5196 else
5197 instructions->append_list(&tmp);
5198 }
5199
5200 /* Handle the default case. This is done here because default might not be
5201 * the last case. We need to add checks against following cases first to see
5202 * if default should be chosen or not.
5203 */
5204 if (!default_case.is_empty()) {
5205
5206 ir_rvalue *const true_val = new (state) ir_constant(true);
5207 ir_dereference_variable *deref_run_default_var =
5208 new(state) ir_dereference_variable(state->switch_state.run_default);
5209
5210 /* Choose to run default case initially, following conditional
5211 * assignments might change this.
5212 */
5213 ir_assignment *const init_var =
5214 new(state) ir_assignment(deref_run_default_var, true_val);
5215 instructions->push_tail(init_var);
5216
5217 /* Default case was the last one, no checks required. */
5218 if (after_default.is_empty()) {
5219 instructions->append_list(&default_case);
5220 return NULL;
5221 }
5222
5223 foreach_in_list(ir_instruction, ir, &after_default) {
5224 ir_assignment *assign = ir->as_assignment();
5225
5226 if (!assign)
5227 continue;
5228
5229 /* Clone the check between case label and init expression. */
5230 ir_expression *exp = (ir_expression*) assign->condition;
5231 ir_expression *clone = exp->clone(state, NULL);
5232
5233 ir_dereference_variable *deref_var =
5234 new(state) ir_dereference_variable(state->switch_state.run_default);
5235 ir_rvalue *const false_val = new (state) ir_constant(false);
5236
5237 ir_assignment *const set_false =
5238 new(state) ir_assignment(deref_var, false_val, clone);
5239
5240 instructions->push_tail(set_false);
5241 }
5242
5243 /* Append default case and all cases after it. */
5244 instructions->append_list(&default_case);
5245 instructions->append_list(&after_default);
5246 }
5247
5248 /* Case statements do not have r-values. */
5249 return NULL;
5250 }
5251
5252 ir_rvalue *
5253 ast_case_statement::hir(exec_list *instructions,
5254 struct _mesa_glsl_parse_state *state)
5255 {
5256 labels->hir(instructions, state);
5257
5258 /* Guard case statements depending on fallthru state. */
5259 ir_dereference_variable *const deref_fallthru_guard =
5260 new(state) ir_dereference_variable(state->switch_state.is_fallthru_var);
5261 ir_if *const test_fallthru = new(state) ir_if(deref_fallthru_guard);
5262
5263 foreach_list_typed (ast_node, stmt, link, & this->stmts)
5264 stmt->hir(& test_fallthru->then_instructions, state);
5265
5266 instructions->push_tail(test_fallthru);
5267
5268 /* Case statements do not have r-values. */
5269 return NULL;
5270 }
5271
5272
5273 ir_rvalue *
5274 ast_case_label_list::hir(exec_list *instructions,
5275 struct _mesa_glsl_parse_state *state)
5276 {
5277 foreach_list_typed (ast_case_label, label, link, & this->labels)
5278 label->hir(instructions, state);
5279
5280 /* Case labels do not have r-values. */
5281 return NULL;
5282 }
5283
5284 ir_rvalue *
5285 ast_case_label::hir(exec_list *instructions,
5286 struct _mesa_glsl_parse_state *state)
5287 {
5288 void *ctx = state;
5289
5290 ir_dereference_variable *deref_fallthru_var =
5291 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
5292
5293 ir_rvalue *const true_val = new(ctx) ir_constant(true);
5294
5295 /* If not default case, ... */
5296 if (this->test_value != NULL) {
5297 /* Conditionally set fallthru state based on
5298 * comparison of cached test expression value to case label.
5299 */
5300 ir_rvalue *const label_rval = this->test_value->hir(instructions, state);
5301 ir_constant *label_const = label_rval->constant_expression_value();
5302
5303 if (!label_const) {
5304 YYLTYPE loc = this->test_value->get_location();
5305
5306 _mesa_glsl_error(& loc, state,
5307 "switch statement case label must be a "
5308 "constant expression");
5309
5310 /* Stuff a dummy value in to allow processing to continue. */
5311 label_const = new(ctx) ir_constant(0);
5312 } else {
5313 ast_expression *previous_label = (ast_expression *)
5314 hash_table_find(state->switch_state.labels_ht,
5315 (void *)(uintptr_t)label_const->value.u[0]);
5316
5317 if (previous_label) {
5318 YYLTYPE loc = this->test_value->get_location();
5319 _mesa_glsl_error(& loc, state, "duplicate case value");
5320
5321 loc = previous_label->get_location();
5322 _mesa_glsl_error(& loc, state, "this is the previous case label");
5323 } else {
5324 hash_table_insert(state->switch_state.labels_ht,
5325 this->test_value,
5326 (void *)(uintptr_t)label_const->value.u[0]);
5327 }
5328 }
5329
5330 ir_dereference_variable *deref_test_var =
5331 new(ctx) ir_dereference_variable(state->switch_state.test_var);
5332
5333 ir_expression *test_cond = new(ctx) ir_expression(ir_binop_all_equal,
5334 label_const,
5335 deref_test_var);
5336
5337 /*
5338 * From GLSL 4.40 specification section 6.2 ("Selection"):
5339 *
5340 * "The type of the init-expression value in a switch statement must
5341 * be a scalar int or uint. The type of the constant-expression value
5342 * in a case label also must be a scalar int or uint. When any pair
5343 * of these values is tested for "equal value" and the types do not
5344 * match, an implicit conversion will be done to convert the int to a
5345 * uint (see section 4.1.10 “Implicit Conversions”) before the compare
5346 * is done."
5347 */
5348 if (label_const->type != state->switch_state.test_var->type) {
5349 YYLTYPE loc = this->test_value->get_location();
5350
5351 const glsl_type *type_a = label_const->type;
5352 const glsl_type *type_b = state->switch_state.test_var->type;
5353
5354 /* Check if int->uint implicit conversion is supported. */
5355 bool integer_conversion_supported =
5356 glsl_type::int_type->can_implicitly_convert_to(glsl_type::uint_type,
5357 state);
5358
5359 if ((!type_a->is_integer() || !type_b->is_integer()) ||
5360 !integer_conversion_supported) {
5361 _mesa_glsl_error(&loc, state, "type mismatch with switch "
5362 "init-expression and case label (%s != %s)",
5363 type_a->name, type_b->name);
5364 } else {
5365 /* Conversion of the case label. */
5366 if (type_a->base_type == GLSL_TYPE_INT) {
5367 if (!apply_implicit_conversion(glsl_type::uint_type,
5368 test_cond->operands[0], state))
5369 _mesa_glsl_error(&loc, state, "implicit type conversion error");
5370 } else {
5371 /* Conversion of the init-expression value. */
5372 if (!apply_implicit_conversion(glsl_type::uint_type,
5373 test_cond->operands[1], state))
5374 _mesa_glsl_error(&loc, state, "implicit type conversion error");
5375 }
5376 }
5377 }
5378
5379 ir_assignment *set_fallthru_on_test =
5380 new(ctx) ir_assignment(deref_fallthru_var, true_val, test_cond);
5381
5382 instructions->push_tail(set_fallthru_on_test);
5383 } else { /* default case */
5384 if (state->switch_state.previous_default) {
5385 YYLTYPE loc = this->get_location();
5386 _mesa_glsl_error(& loc, state,
5387 "multiple default labels in one switch");
5388
5389 loc = state->switch_state.previous_default->get_location();
5390 _mesa_glsl_error(& loc, state, "this is the first default label");
5391 }
5392 state->switch_state.previous_default = this;
5393
5394 /* Set fallthru condition on 'run_default' bool. */
5395 ir_dereference_variable *deref_run_default =
5396 new(ctx) ir_dereference_variable(state->switch_state.run_default);
5397 ir_rvalue *const cond_true = new(ctx) ir_constant(true);
5398 ir_expression *test_cond = new(ctx) ir_expression(ir_binop_all_equal,
5399 cond_true,
5400 deref_run_default);
5401
5402 /* Set falltrhu state. */
5403 ir_assignment *set_fallthru =
5404 new(ctx) ir_assignment(deref_fallthru_var, true_val, test_cond);
5405
5406 instructions->push_tail(set_fallthru);
5407 }
5408
5409 /* Case statements do not have r-values. */
5410 return NULL;
5411 }
5412
5413 void
5414 ast_iteration_statement::condition_to_hir(exec_list *instructions,
5415 struct _mesa_glsl_parse_state *state)
5416 {
5417 void *ctx = state;
5418
5419 if (condition != NULL) {
5420 ir_rvalue *const cond =
5421 condition->hir(instructions, state);
5422
5423 if ((cond == NULL)
5424 || !cond->type->is_boolean() || !cond->type->is_scalar()) {
5425 YYLTYPE loc = condition->get_location();
5426
5427 _mesa_glsl_error(& loc, state,
5428 "loop condition must be scalar boolean");
5429 } else {
5430 /* As the first code in the loop body, generate a block that looks
5431 * like 'if (!condition) break;' as the loop termination condition.
5432 */
5433 ir_rvalue *const not_cond =
5434 new(ctx) ir_expression(ir_unop_logic_not, cond);
5435
5436 ir_if *const if_stmt = new(ctx) ir_if(not_cond);
5437
5438 ir_jump *const break_stmt =
5439 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
5440
5441 if_stmt->then_instructions.push_tail(break_stmt);
5442 instructions->push_tail(if_stmt);
5443 }
5444 }
5445 }
5446
5447
5448 ir_rvalue *
5449 ast_iteration_statement::hir(exec_list *instructions,
5450 struct _mesa_glsl_parse_state *state)
5451 {
5452 void *ctx = state;
5453
5454 /* For-loops and while-loops start a new scope, but do-while loops do not.
5455 */
5456 if (mode != ast_do_while)
5457 state->symbols->push_scope();
5458
5459 if (init_statement != NULL)
5460 init_statement->hir(instructions, state);
5461
5462 ir_loop *const stmt = new(ctx) ir_loop();
5463 instructions->push_tail(stmt);
5464
5465 /* Track the current loop nesting. */
5466 ast_iteration_statement *nesting_ast = state->loop_nesting_ast;
5467
5468 state->loop_nesting_ast = this;
5469
5470 /* Likewise, indicate that following code is closest to a loop,
5471 * NOT closest to a switch.
5472 */
5473 bool saved_is_switch_innermost = state->switch_state.is_switch_innermost;
5474 state->switch_state.is_switch_innermost = false;
5475
5476 if (mode != ast_do_while)
5477 condition_to_hir(&stmt->body_instructions, state);
5478
5479 if (body != NULL)
5480 body->hir(& stmt->body_instructions, state);
5481
5482 if (rest_expression != NULL)
5483 rest_expression->hir(& stmt->body_instructions, state);
5484
5485 if (mode == ast_do_while)
5486 condition_to_hir(&stmt->body_instructions, state);
5487
5488 if (mode != ast_do_while)
5489 state->symbols->pop_scope();
5490
5491 /* Restore previous nesting before returning. */
5492 state->loop_nesting_ast = nesting_ast;
5493 state->switch_state.is_switch_innermost = saved_is_switch_innermost;
5494
5495 /* Loops do not have r-values.
5496 */
5497 return NULL;
5498 }
5499
5500
5501 /**
5502 * Determine if the given type is valid for establishing a default precision
5503 * qualifier.
5504 *
5505 * From GLSL ES 3.00 section 4.5.4 ("Default Precision Qualifiers"):
5506 *
5507 * "The precision statement
5508 *
5509 * precision precision-qualifier type;
5510 *
5511 * can be used to establish a default precision qualifier. The type field
5512 * can be either int or float or any of the sampler types, and the
5513 * precision-qualifier can be lowp, mediump, or highp."
5514 *
5515 * GLSL ES 1.00 has similar language. GLSL 1.30 doesn't allow precision
5516 * qualifiers on sampler types, but this seems like an oversight (since the
5517 * intention of including these in GLSL 1.30 is to allow compatibility with ES
5518 * shaders). So we allow int, float, and all sampler types regardless of GLSL
5519 * version.
5520 */
5521 static bool
5522 is_valid_default_precision_type(const struct glsl_type *const type)
5523 {
5524 if (type == NULL)
5525 return false;
5526
5527 switch (type->base_type) {
5528 case GLSL_TYPE_INT:
5529 case GLSL_TYPE_FLOAT:
5530 /* "int" and "float" are valid, but vectors and matrices are not. */
5531 return type->vector_elements == 1 && type->matrix_columns == 1;
5532 case GLSL_TYPE_SAMPLER:
5533 case GLSL_TYPE_IMAGE:
5534 case GLSL_TYPE_ATOMIC_UINT:
5535 return true;
5536 default:
5537 return false;
5538 }
5539 }
5540
5541
5542 ir_rvalue *
5543 ast_type_specifier::hir(exec_list *instructions,
5544 struct _mesa_glsl_parse_state *state)
5545 {
5546 if (this->default_precision == ast_precision_none && this->structure == NULL)
5547 return NULL;
5548
5549 YYLTYPE loc = this->get_location();
5550
5551 /* If this is a precision statement, check that the type to which it is
5552 * applied is either float or int.
5553 *
5554 * From section 4.5.3 of the GLSL 1.30 spec:
5555 * "The precision statement
5556 * precision precision-qualifier type;
5557 * can be used to establish a default precision qualifier. The type
5558 * field can be either int or float [...]. Any other types or
5559 * qualifiers will result in an error.
5560 */
5561 if (this->default_precision != ast_precision_none) {
5562 if (!state->check_precision_qualifiers_allowed(&loc))
5563 return NULL;
5564
5565 if (this->structure != NULL) {
5566 _mesa_glsl_error(&loc, state,
5567 "precision qualifiers do not apply to structures");
5568 return NULL;
5569 }
5570
5571 if (this->array_specifier != NULL) {
5572 _mesa_glsl_error(&loc, state,
5573 "default precision statements do not apply to "
5574 "arrays");
5575 return NULL;
5576 }
5577
5578 const struct glsl_type *const type =
5579 state->symbols->get_type(this->type_name);
5580 if (!is_valid_default_precision_type(type)) {
5581 _mesa_glsl_error(&loc, state,
5582 "default precision statements apply only to "
5583 "float, int, and opaque types");
5584 return NULL;
5585 }
5586
5587 if (type->base_type == GLSL_TYPE_FLOAT
5588 && state->es_shader
5589 && state->stage == MESA_SHADER_FRAGMENT) {
5590 /* Section 4.5.3 (Default Precision Qualifiers) of the GLSL ES 1.00
5591 * spec says:
5592 *
5593 * "The fragment language has no default precision qualifier for
5594 * floating point types."
5595 *
5596 * As a result, we have to track whether or not default precision has
5597 * been specified for float in GLSL ES fragment shaders.
5598 *
5599 * Earlier in that same section, the spec says:
5600 *
5601 * "Non-precision qualified declarations will use the precision
5602 * qualifier specified in the most recent precision statement
5603 * that is still in scope. The precision statement has the same
5604 * scoping rules as variable declarations. If it is declared
5605 * inside a compound statement, its effect stops at the end of
5606 * the innermost statement it was declared in. Precision
5607 * statements in nested scopes override precision statements in
5608 * outer scopes. Multiple precision statements for the same basic
5609 * type can appear inside the same scope, with later statements
5610 * overriding earlier statements within that scope."
5611 *
5612 * Default precision specifications follow the same scope rules as
5613 * variables. So, we can track the state of the default float
5614 * precision in the symbol table, and the rules will just work. This
5615 * is a slight abuse of the symbol table, but it has the semantics
5616 * that we want.
5617 */
5618 ir_variable *const junk =
5619 new(state) ir_variable(type, "#default precision",
5620 ir_var_auto);
5621
5622 state->symbols->add_variable(junk);
5623 }
5624
5625 /* FINISHME: Translate precision statements into IR. */
5626 return NULL;
5627 }
5628
5629 /* _mesa_ast_set_aggregate_type() sets the <structure> field so that
5630 * process_record_constructor() can do type-checking on C-style initializer
5631 * expressions of structs, but ast_struct_specifier should only be translated
5632 * to HIR if it is declaring the type of a structure.
5633 *
5634 * The ->is_declaration field is false for initializers of variables
5635 * declared separately from the struct's type definition.
5636 *
5637 * struct S { ... }; (is_declaration = true)
5638 * struct T { ... } t = { ... }; (is_declaration = true)
5639 * S s = { ... }; (is_declaration = false)
5640 */
5641 if (this->structure != NULL && this->structure->is_declaration)
5642 return this->structure->hir(instructions, state);
5643
5644 return NULL;
5645 }
5646
5647
5648 /**
5649 * Process a structure or interface block tree into an array of structure fields
5650 *
5651 * After parsing, where there are some syntax differnces, structures and
5652 * interface blocks are almost identical. They are similar enough that the
5653 * AST for each can be processed the same way into a set of
5654 * \c glsl_struct_field to describe the members.
5655 *
5656 * If we're processing an interface block, var_mode should be the type of the
5657 * interface block (ir_var_shader_in, ir_var_shader_out, ir_var_uniform or
5658 * ir_var_shader_storage). If we're processing a structure, var_mode should be
5659 * ir_var_auto.
5660 *
5661 * \return
5662 * The number of fields processed. A pointer to the array structure fields is
5663 * stored in \c *fields_ret.
5664 */
5665 unsigned
5666 ast_process_structure_or_interface_block(exec_list *instructions,
5667 struct _mesa_glsl_parse_state *state,
5668 exec_list *declarations,
5669 YYLTYPE &loc,
5670 glsl_struct_field **fields_ret,
5671 bool is_interface,
5672 enum glsl_matrix_layout matrix_layout,
5673 bool allow_reserved_names,
5674 ir_variable_mode var_mode,
5675 ast_type_qualifier *layout)
5676 {
5677 unsigned decl_count = 0;
5678
5679 /* For blocks that accept memory qualifiers (i.e. shader storage), verify
5680 * that we don't have incompatible qualifiers
5681 */
5682 if (layout && layout->flags.q.read_only && layout->flags.q.write_only) {
5683 _mesa_glsl_error(&loc, state,
5684 "Interface block sets both readonly and writeonly");
5685 }
5686
5687 /* Make an initial pass over the list of fields to determine how
5688 * many there are. Each element in this list is an ast_declarator_list.
5689 * This means that we actually need to count the number of elements in the
5690 * 'declarations' list in each of the elements.
5691 */
5692 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
5693 decl_count += decl_list->declarations.length();
5694 }
5695
5696 /* Allocate storage for the fields and process the field
5697 * declarations. As the declarations are processed, try to also convert
5698 * the types to HIR. This ensures that structure definitions embedded in
5699 * other structure definitions or in interface blocks are processed.
5700 */
5701 glsl_struct_field *const fields = ralloc_array(state, glsl_struct_field,
5702 decl_count);
5703
5704 unsigned i = 0;
5705 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
5706 const char *type_name;
5707
5708 decl_list->type->specifier->hir(instructions, state);
5709
5710 /* Section 10.9 of the GLSL ES 1.00 specification states that
5711 * embedded structure definitions have been removed from the language.
5712 */
5713 if (state->es_shader && decl_list->type->specifier->structure != NULL) {
5714 _mesa_glsl_error(&loc, state, "embedded structure definitions are "
5715 "not allowed in GLSL ES 1.00");
5716 }
5717
5718 const glsl_type *decl_type =
5719 decl_list->type->glsl_type(& type_name, state);
5720
5721 foreach_list_typed (ast_declaration, decl, link,
5722 &decl_list->declarations) {
5723 if (!allow_reserved_names)
5724 validate_identifier(decl->identifier, loc, state);
5725
5726 /* From section 4.3.9 of the GLSL 4.40 spec:
5727 *
5728 * "[In interface blocks] opaque types are not allowed."
5729 *
5730 * It should be impossible for decl_type to be NULL here. Cases that
5731 * might naturally lead to decl_type being NULL, especially for the
5732 * is_interface case, will have resulted in compilation having
5733 * already halted due to a syntax error.
5734 */
5735 const struct glsl_type *field_type =
5736 decl_type != NULL ? decl_type : glsl_type::error_type;
5737
5738 if (is_interface && field_type->contains_opaque()) {
5739 YYLTYPE loc = decl_list->get_location();
5740 _mesa_glsl_error(&loc, state,
5741 "uniform/buffer in non-default interface block contains "
5742 "opaque variable");
5743 }
5744
5745 if (field_type->contains_atomic()) {
5746 /* From section 4.1.7.3 of the GLSL 4.40 spec:
5747 *
5748 * "Members of structures cannot be declared as atomic counter
5749 * types."
5750 */
5751 YYLTYPE loc = decl_list->get_location();
5752 _mesa_glsl_error(&loc, state, "atomic counter in structure, "
5753 "shader storage block or uniform block");
5754 }
5755
5756 if (field_type->contains_image()) {
5757 /* FINISHME: Same problem as with atomic counters.
5758 * FINISHME: Request clarification from Khronos and add
5759 * FINISHME: spec quotation here.
5760 */
5761 YYLTYPE loc = decl_list->get_location();
5762 _mesa_glsl_error(&loc, state,
5763 "image in structure, shader storage block or "
5764 "uniform block");
5765 }
5766
5767 const struct ast_type_qualifier *const qual =
5768 & decl_list->type->qualifier;
5769 if (qual->flags.q.std140 ||
5770 qual->flags.q.std430 ||
5771 qual->flags.q.packed ||
5772 qual->flags.q.shared) {
5773 _mesa_glsl_error(&loc, state,
5774 "uniform/shader storage block layout qualifiers "
5775 "std140, std430, packed, and shared can only be "
5776 "applied to uniform/shader storage blocks, not "
5777 "members");
5778 }
5779
5780 if (qual->flags.q.constant) {
5781 YYLTYPE loc = decl_list->get_location();
5782 _mesa_glsl_error(&loc, state,
5783 "const storage qualifier cannot be applied "
5784 "to struct or interface block members");
5785 }
5786
5787 field_type = process_array_type(&loc, decl_type,
5788 decl->array_specifier, state);
5789 fields[i].type = field_type;
5790 fields[i].name = decl->identifier;
5791 fields[i].location = -1;
5792 fields[i].interpolation =
5793 interpret_interpolation_qualifier(qual, var_mode, state, &loc);
5794 fields[i].centroid = qual->flags.q.centroid ? 1 : 0;
5795 fields[i].sample = qual->flags.q.sample ? 1 : 0;
5796 fields[i].patch = qual->flags.q.patch ? 1 : 0;
5797
5798 /* Only save explicitly defined streams in block's field */
5799 fields[i].stream = qual->flags.q.explicit_stream ? qual->stream : -1;
5800
5801 if (qual->flags.q.row_major || qual->flags.q.column_major) {
5802 if (!qual->flags.q.uniform && !qual->flags.q.buffer) {
5803 _mesa_glsl_error(&loc, state,
5804 "row_major and column_major can only be "
5805 "applied to interface blocks");
5806 } else
5807 validate_matrix_layout_for_type(state, &loc, field_type, NULL);
5808 }
5809
5810 if (qual->flags.q.uniform && qual->has_interpolation()) {
5811 _mesa_glsl_error(&loc, state,
5812 "interpolation qualifiers cannot be used "
5813 "with uniform interface blocks");
5814 }
5815
5816 if ((qual->flags.q.uniform || !is_interface) &&
5817 qual->has_auxiliary_storage()) {
5818 _mesa_glsl_error(&loc, state,
5819 "auxiliary storage qualifiers cannot be used "
5820 "in uniform blocks or structures.");
5821 }
5822
5823 /* Propogate row- / column-major information down the fields of the
5824 * structure or interface block. Structures need this data because
5825 * the structure may contain a structure that contains ... a matrix
5826 * that need the proper layout.
5827 */
5828 if (field_type->without_array()->is_matrix()
5829 || field_type->without_array()->is_record()) {
5830 /* If no layout is specified for the field, inherit the layout
5831 * from the block.
5832 */
5833 fields[i].matrix_layout = matrix_layout;
5834
5835 if (qual->flags.q.row_major)
5836 fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
5837 else if (qual->flags.q.column_major)
5838 fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
5839
5840 /* If we're processing an interface block, the matrix layout must
5841 * be decided by this point.
5842 */
5843 assert(!is_interface
5844 || fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR
5845 || fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_COLUMN_MAJOR);
5846 }
5847
5848 /* Image qualifiers are allowed on buffer variables, which can only
5849 * be defined inside shader storage buffer objects
5850 */
5851 if (layout && var_mode == ir_var_shader_storage) {
5852 if (qual->flags.q.read_only && qual->flags.q.write_only) {
5853 _mesa_glsl_error(&loc, state,
5854 "buffer variable `%s' can't be "
5855 "readonly and writeonly.", fields[i].name);
5856 }
5857
5858 /* For readonly and writeonly qualifiers the field definition,
5859 * if set, overwrites the layout qualifier.
5860 */
5861 bool read_only = layout->flags.q.read_only;
5862 bool write_only = layout->flags.q.write_only;
5863
5864 if (qual->flags.q.read_only) {
5865 read_only = true;
5866 write_only = false;
5867 } else if (qual->flags.q.write_only) {
5868 read_only = false;
5869 write_only = true;
5870 }
5871
5872 fields[i].image_read_only = read_only;
5873 fields[i].image_write_only = write_only;
5874
5875 /* For other qualifiers, we set the flag if either the layout
5876 * qualifier or the field qualifier are set
5877 */
5878 fields[i].image_coherent = qual->flags.q.coherent ||
5879 layout->flags.q.coherent;
5880 fields[i].image_volatile = qual->flags.q._volatile ||
5881 layout->flags.q._volatile;
5882 fields[i].image_restrict = qual->flags.q.restrict_flag ||
5883 layout->flags.q.restrict_flag;
5884 }
5885
5886 i++;
5887 }
5888 }
5889
5890 assert(i == decl_count);
5891
5892 *fields_ret = fields;
5893 return decl_count;
5894 }
5895
5896
5897 ir_rvalue *
5898 ast_struct_specifier::hir(exec_list *instructions,
5899 struct _mesa_glsl_parse_state *state)
5900 {
5901 YYLTYPE loc = this->get_location();
5902
5903 /* Section 4.1.8 (Structures) of the GLSL 1.10 spec says:
5904 *
5905 * "Anonymous structures are not supported; so embedded structures must
5906 * have a declarator. A name given to an embedded struct is scoped at
5907 * the same level as the struct it is embedded in."
5908 *
5909 * The same section of the GLSL 1.20 spec says:
5910 *
5911 * "Anonymous structures are not supported. Embedded structures are not
5912 * supported.
5913 *
5914 * struct S { float f; };
5915 * struct T {
5916 * S; // Error: anonymous structures disallowed
5917 * struct { ... }; // Error: embedded structures disallowed
5918 * S s; // Okay: nested structures with name are allowed
5919 * };"
5920 *
5921 * The GLSL ES 1.00 and 3.00 specs have similar langauge and examples. So,
5922 * we allow embedded structures in 1.10 only.
5923 */
5924 if (state->language_version != 110 && state->struct_specifier_depth != 0)
5925 _mesa_glsl_error(&loc, state,
5926 "embedded structure declarations are not allowed");
5927
5928 state->struct_specifier_depth++;
5929
5930 glsl_struct_field *fields;
5931 unsigned decl_count =
5932 ast_process_structure_or_interface_block(instructions,
5933 state,
5934 &this->declarations,
5935 loc,
5936 &fields,
5937 false,
5938 GLSL_MATRIX_LAYOUT_INHERITED,
5939 false /* allow_reserved_names */,
5940 ir_var_auto,
5941 NULL);
5942
5943 validate_identifier(this->name, loc, state);
5944
5945 const glsl_type *t =
5946 glsl_type::get_record_instance(fields, decl_count, this->name);
5947
5948 if (!state->symbols->add_type(name, t)) {
5949 _mesa_glsl_error(& loc, state, "struct `%s' previously defined", name);
5950 } else {
5951 const glsl_type **s = reralloc(state, state->user_structures,
5952 const glsl_type *,
5953 state->num_user_structures + 1);
5954 if (s != NULL) {
5955 s[state->num_user_structures] = t;
5956 state->user_structures = s;
5957 state->num_user_structures++;
5958 }
5959 }
5960
5961 state->struct_specifier_depth--;
5962
5963 /* Structure type definitions do not have r-values.
5964 */
5965 return NULL;
5966 }
5967
5968
5969 /**
5970 * Visitor class which detects whether a given interface block has been used.
5971 */
5972 class interface_block_usage_visitor : public ir_hierarchical_visitor
5973 {
5974 public:
5975 interface_block_usage_visitor(ir_variable_mode mode, const glsl_type *block)
5976 : mode(mode), block(block), found(false)
5977 {
5978 }
5979
5980 virtual ir_visitor_status visit(ir_dereference_variable *ir)
5981 {
5982 if (ir->var->data.mode == mode && ir->var->get_interface_type() == block) {
5983 found = true;
5984 return visit_stop;
5985 }
5986 return visit_continue;
5987 }
5988
5989 bool usage_found() const
5990 {
5991 return this->found;
5992 }
5993
5994 private:
5995 ir_variable_mode mode;
5996 const glsl_type *block;
5997 bool found;
5998 };
5999
6000 static bool
6001 is_unsized_array_last_element(ir_variable *v)
6002 {
6003 const glsl_type *interface_type = v->get_interface_type();
6004 int length = interface_type->length;
6005
6006 assert(v->type->is_unsized_array());
6007
6008 /* Check if it is the last element of the interface */
6009 if (strcmp(interface_type->fields.structure[length-1].name, v->name) == 0)
6010 return true;
6011 return false;
6012 }
6013
6014 ir_rvalue *
6015 ast_interface_block::hir(exec_list *instructions,
6016 struct _mesa_glsl_parse_state *state)
6017 {
6018 YYLTYPE loc = this->get_location();
6019
6020 /* Interface blocks must be declared at global scope */
6021 if (state->current_function != NULL) {
6022 _mesa_glsl_error(&loc, state,
6023 "Interface block `%s' must be declared "
6024 "at global scope",
6025 this->block_name);
6026 }
6027
6028 if (!this->layout.flags.q.buffer &&
6029 this->layout.flags.q.std430) {
6030 _mesa_glsl_error(&loc, state,
6031 "std430 storage block layout qualifier is supported "
6032 "only for shader storage blocks");
6033 }
6034
6035 /* The ast_interface_block has a list of ast_declarator_lists. We
6036 * need to turn those into ir_variables with an association
6037 * with this uniform block.
6038 */
6039 enum glsl_interface_packing packing;
6040 if (this->layout.flags.q.shared) {
6041 packing = GLSL_INTERFACE_PACKING_SHARED;
6042 } else if (this->layout.flags.q.packed) {
6043 packing = GLSL_INTERFACE_PACKING_PACKED;
6044 } else if (this->layout.flags.q.std430) {
6045 packing = GLSL_INTERFACE_PACKING_STD430;
6046 } else {
6047 /* The default layout is std140.
6048 */
6049 packing = GLSL_INTERFACE_PACKING_STD140;
6050 }
6051
6052 ir_variable_mode var_mode;
6053 const char *iface_type_name;
6054 if (this->layout.flags.q.in) {
6055 var_mode = ir_var_shader_in;
6056 iface_type_name = "in";
6057 } else if (this->layout.flags.q.out) {
6058 var_mode = ir_var_shader_out;
6059 iface_type_name = "out";
6060 } else if (this->layout.flags.q.uniform) {
6061 var_mode = ir_var_uniform;
6062 iface_type_name = "uniform";
6063 } else if (this->layout.flags.q.buffer) {
6064 var_mode = ir_var_shader_storage;
6065 iface_type_name = "buffer";
6066 } else {
6067 var_mode = ir_var_auto;
6068 iface_type_name = "UNKNOWN";
6069 assert(!"interface block layout qualifier not found!");
6070 }
6071
6072 enum glsl_matrix_layout matrix_layout = GLSL_MATRIX_LAYOUT_INHERITED;
6073 if (this->layout.flags.q.row_major)
6074 matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
6075 else if (this->layout.flags.q.column_major)
6076 matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
6077
6078 bool redeclaring_per_vertex = strcmp(this->block_name, "gl_PerVertex") == 0;
6079 exec_list declared_variables;
6080 glsl_struct_field *fields;
6081
6082 /* Treat an interface block as one level of nesting, so that embedded struct
6083 * specifiers will be disallowed.
6084 */
6085 state->struct_specifier_depth++;
6086
6087 unsigned int num_variables =
6088 ast_process_structure_or_interface_block(&declared_variables,
6089 state,
6090 &this->declarations,
6091 loc,
6092 &fields,
6093 true,
6094 matrix_layout,
6095 redeclaring_per_vertex,
6096 var_mode,
6097 &this->layout);
6098
6099 state->struct_specifier_depth--;
6100
6101 if (!redeclaring_per_vertex) {
6102 validate_identifier(this->block_name, loc, state);
6103
6104 /* From section 4.3.9 ("Interface Blocks") of the GLSL 4.50 spec:
6105 *
6106 * "Block names have no other use within a shader beyond interface
6107 * matching; it is a compile-time error to use a block name at global
6108 * scope for anything other than as a block name."
6109 */
6110 ir_variable *var = state->symbols->get_variable(this->block_name);
6111 if (var && !var->type->is_interface()) {
6112 _mesa_glsl_error(&loc, state, "Block name `%s' is "
6113 "already used in the scope.",
6114 this->block_name);
6115 }
6116 }
6117
6118 const glsl_type *earlier_per_vertex = NULL;
6119 if (redeclaring_per_vertex) {
6120 /* Find the previous declaration of gl_PerVertex. If we're redeclaring
6121 * the named interface block gl_in, we can find it by looking at the
6122 * previous declaration of gl_in. Otherwise we can find it by looking
6123 * at the previous decalartion of any of the built-in outputs,
6124 * e.g. gl_Position.
6125 *
6126 * Also check that the instance name and array-ness of the redeclaration
6127 * are correct.
6128 */
6129 switch (var_mode) {
6130 case ir_var_shader_in:
6131 if (ir_variable *earlier_gl_in =
6132 state->symbols->get_variable("gl_in")) {
6133 earlier_per_vertex = earlier_gl_in->get_interface_type();
6134 } else {
6135 _mesa_glsl_error(&loc, state,
6136 "redeclaration of gl_PerVertex input not allowed "
6137 "in the %s shader",
6138 _mesa_shader_stage_to_string(state->stage));
6139 }
6140 if (this->instance_name == NULL ||
6141 strcmp(this->instance_name, "gl_in") != 0 || this->array_specifier == NULL) {
6142 _mesa_glsl_error(&loc, state,
6143 "gl_PerVertex input must be redeclared as "
6144 "gl_in[]");
6145 }
6146 break;
6147 case ir_var_shader_out:
6148 if (ir_variable *earlier_gl_Position =
6149 state->symbols->get_variable("gl_Position")) {
6150 earlier_per_vertex = earlier_gl_Position->get_interface_type();
6151 } else if (ir_variable *earlier_gl_out =
6152 state->symbols->get_variable("gl_out")) {
6153 earlier_per_vertex = earlier_gl_out->get_interface_type();
6154 } else {
6155 _mesa_glsl_error(&loc, state,
6156 "redeclaration of gl_PerVertex output not "
6157 "allowed in the %s shader",
6158 _mesa_shader_stage_to_string(state->stage));
6159 }
6160 if (state->stage == MESA_SHADER_TESS_CTRL) {
6161 if (this->instance_name == NULL ||
6162 strcmp(this->instance_name, "gl_out") != 0 || this->array_specifier == NULL) {
6163 _mesa_glsl_error(&loc, state,
6164 "gl_PerVertex output must be redeclared as "
6165 "gl_out[]");
6166 }
6167 } else {
6168 if (this->instance_name != NULL) {
6169 _mesa_glsl_error(&loc, state,
6170 "gl_PerVertex output may not be redeclared with "
6171 "an instance name");
6172 }
6173 }
6174 break;
6175 default:
6176 _mesa_glsl_error(&loc, state,
6177 "gl_PerVertex must be declared as an input or an "
6178 "output");
6179 break;
6180 }
6181
6182 if (earlier_per_vertex == NULL) {
6183 /* An error has already been reported. Bail out to avoid null
6184 * dereferences later in this function.
6185 */
6186 return NULL;
6187 }
6188
6189 /* Copy locations from the old gl_PerVertex interface block. */
6190 for (unsigned i = 0; i < num_variables; i++) {
6191 int j = earlier_per_vertex->field_index(fields[i].name);
6192 if (j == -1) {
6193 _mesa_glsl_error(&loc, state,
6194 "redeclaration of gl_PerVertex must be a subset "
6195 "of the built-in members of gl_PerVertex");
6196 } else {
6197 fields[i].location =
6198 earlier_per_vertex->fields.structure[j].location;
6199 fields[i].interpolation =
6200 earlier_per_vertex->fields.structure[j].interpolation;
6201 fields[i].centroid =
6202 earlier_per_vertex->fields.structure[j].centroid;
6203 fields[i].sample =
6204 earlier_per_vertex->fields.structure[j].sample;
6205 fields[i].patch =
6206 earlier_per_vertex->fields.structure[j].patch;
6207 }
6208 }
6209
6210 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10
6211 * spec:
6212 *
6213 * If a built-in interface block is redeclared, it must appear in
6214 * the shader before any use of any member included in the built-in
6215 * declaration, or a compilation error will result.
6216 *
6217 * This appears to be a clarification to the behaviour established for
6218 * gl_PerVertex by GLSL 1.50, therefore we implement this behaviour
6219 * regardless of GLSL version.
6220 */
6221 interface_block_usage_visitor v(var_mode, earlier_per_vertex);
6222 v.run(instructions);
6223 if (v.usage_found()) {
6224 _mesa_glsl_error(&loc, state,
6225 "redeclaration of a built-in interface block must "
6226 "appear before any use of any member of the "
6227 "interface block");
6228 }
6229 }
6230
6231 const glsl_type *block_type =
6232 glsl_type::get_interface_instance(fields,
6233 num_variables,
6234 packing,
6235 this->block_name);
6236 if (this->layout.flags.q.explicit_binding)
6237 validate_binding_qualifier(state, &loc, block_type, &this->layout);
6238
6239 if (!state->symbols->add_interface(block_type->name, block_type, var_mode)) {
6240 YYLTYPE loc = this->get_location();
6241 _mesa_glsl_error(&loc, state, "interface block `%s' with type `%s' "
6242 "already taken in the current scope",
6243 this->block_name, iface_type_name);
6244 }
6245
6246 /* Since interface blocks cannot contain statements, it should be
6247 * impossible for the block to generate any instructions.
6248 */
6249 assert(declared_variables.is_empty());
6250
6251 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
6252 *
6253 * Geometry shader input variables get the per-vertex values written
6254 * out by vertex shader output variables of the same names. Since a
6255 * geometry shader operates on a set of vertices, each input varying
6256 * variable (or input block, see interface blocks below) needs to be
6257 * declared as an array.
6258 */
6259 if (state->stage == MESA_SHADER_GEOMETRY && this->array_specifier == NULL &&
6260 var_mode == ir_var_shader_in) {
6261 _mesa_glsl_error(&loc, state, "geometry shader inputs must be arrays");
6262 } else if ((state->stage == MESA_SHADER_TESS_CTRL ||
6263 state->stage == MESA_SHADER_TESS_EVAL) &&
6264 this->array_specifier == NULL &&
6265 var_mode == ir_var_shader_in) {
6266 _mesa_glsl_error(&loc, state, "per-vertex tessellation shader inputs must be arrays");
6267 } else if (state->stage == MESA_SHADER_TESS_CTRL &&
6268 this->array_specifier == NULL &&
6269 var_mode == ir_var_shader_out) {
6270 _mesa_glsl_error(&loc, state, "tessellation control shader outputs must be arrays");
6271 }
6272
6273
6274 /* Page 39 (page 45 of the PDF) of section 4.3.7 in the GLSL ES 3.00 spec
6275 * says:
6276 *
6277 * "If an instance name (instance-name) is used, then it puts all the
6278 * members inside a scope within its own name space, accessed with the
6279 * field selector ( . ) operator (analogously to structures)."
6280 */
6281 if (this->instance_name) {
6282 if (redeclaring_per_vertex) {
6283 /* When a built-in in an unnamed interface block is redeclared,
6284 * get_variable_being_redeclared() calls
6285 * check_builtin_array_max_size() to make sure that built-in array
6286 * variables aren't redeclared to illegal sizes. But we're looking
6287 * at a redeclaration of a named built-in interface block. So we
6288 * have to manually call check_builtin_array_max_size() for all parts
6289 * of the interface that are arrays.
6290 */
6291 for (unsigned i = 0; i < num_variables; i++) {
6292 if (fields[i].type->is_array()) {
6293 const unsigned size = fields[i].type->array_size();
6294 check_builtin_array_max_size(fields[i].name, size, loc, state);
6295 }
6296 }
6297 } else {
6298 validate_identifier(this->instance_name, loc, state);
6299 }
6300
6301 ir_variable *var;
6302
6303 if (this->array_specifier != NULL) {
6304 /* Section 4.3.7 (Interface Blocks) of the GLSL 1.50 spec says:
6305 *
6306 * For uniform blocks declared an array, each individual array
6307 * element corresponds to a separate buffer object backing one
6308 * instance of the block. As the array size indicates the number
6309 * of buffer objects needed, uniform block array declarations
6310 * must specify an array size.
6311 *
6312 * And a few paragraphs later:
6313 *
6314 * Geometry shader input blocks must be declared as arrays and
6315 * follow the array declaration and linking rules for all
6316 * geometry shader inputs. All other input and output block
6317 * arrays must specify an array size.
6318 *
6319 * The same applies to tessellation shaders.
6320 *
6321 * The upshot of this is that the only circumstance where an
6322 * interface array size *doesn't* need to be specified is on a
6323 * geometry shader input, tessellation control shader input,
6324 * tessellation control shader output, and tessellation evaluation
6325 * shader input.
6326 */
6327 if (this->array_specifier->is_unsized_array) {
6328 bool allow_inputs = state->stage == MESA_SHADER_GEOMETRY ||
6329 state->stage == MESA_SHADER_TESS_CTRL ||
6330 state->stage == MESA_SHADER_TESS_EVAL;
6331 bool allow_outputs = state->stage == MESA_SHADER_TESS_CTRL;
6332
6333 if (this->layout.flags.q.in) {
6334 if (!allow_inputs)
6335 _mesa_glsl_error(&loc, state,
6336 "unsized input block arrays not allowed in "
6337 "%s shader",
6338 _mesa_shader_stage_to_string(state->stage));
6339 } else if (this->layout.flags.q.out) {
6340 if (!allow_outputs)
6341 _mesa_glsl_error(&loc, state,
6342 "unsized output block arrays not allowed in "
6343 "%s shader",
6344 _mesa_shader_stage_to_string(state->stage));
6345 } else {
6346 /* by elimination, this is a uniform block array */
6347 _mesa_glsl_error(&loc, state,
6348 "unsized uniform block arrays not allowed in "
6349 "%s shader",
6350 _mesa_shader_stage_to_string(state->stage));
6351 }
6352 }
6353
6354 const glsl_type *block_array_type =
6355 process_array_type(&loc, block_type, this->array_specifier, state);
6356
6357 /* From section 4.3.9 (Interface Blocks) of the GLSL ES 3.10 spec:
6358 *
6359 * * Arrays of arrays of blocks are not allowed
6360 */
6361 if (state->es_shader && block_array_type->is_array() &&
6362 block_array_type->fields.array->is_array()) {
6363 _mesa_glsl_error(&loc, state,
6364 "arrays of arrays interface blocks are "
6365 "not allowed");
6366 }
6367
6368 if (this->layout.flags.q.explicit_binding)
6369 validate_binding_qualifier(state, &loc, block_array_type,
6370 &this->layout);
6371
6372 var = new(state) ir_variable(block_array_type,
6373 this->instance_name,
6374 var_mode);
6375 } else {
6376 var = new(state) ir_variable(block_type,
6377 this->instance_name,
6378 var_mode);
6379 }
6380
6381 var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
6382 ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
6383
6384 if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
6385 var->data.read_only = true;
6386
6387 if (state->stage == MESA_SHADER_GEOMETRY && var_mode == ir_var_shader_in)
6388 handle_geometry_shader_input_decl(state, loc, var);
6389 else if ((state->stage == MESA_SHADER_TESS_CTRL ||
6390 state->stage == MESA_SHADER_TESS_EVAL) && var_mode == ir_var_shader_in)
6391 handle_tess_shader_input_decl(state, loc, var);
6392 else if (state->stage == MESA_SHADER_TESS_CTRL && var_mode == ir_var_shader_out)
6393 handle_tess_ctrl_shader_output_decl(state, loc, var);
6394
6395 for (unsigned i = 0; i < num_variables; i++) {
6396 if (fields[i].type->is_unsized_array()) {
6397 if (var_mode == ir_var_shader_storage) {
6398 if (i != (num_variables - 1)) {
6399 _mesa_glsl_error(&loc, state, "unsized array `%s' definition: "
6400 "only last member of a shader storage block "
6401 "can be defined as unsized array",
6402 fields[i].name);
6403 }
6404 } else {
6405 /* From GLSL ES 3.10 spec, section 4.1.9 "Arrays":
6406 *
6407 * "If an array is declared as the last member of a shader storage
6408 * block and the size is not specified at compile-time, it is
6409 * sized at run-time. In all other cases, arrays are sized only
6410 * at compile-time."
6411 */
6412 if (state->es_shader) {
6413 _mesa_glsl_error(&loc, state, "unsized array `%s' definition: "
6414 "only last member of a shader storage block "
6415 "can be defined as unsized array",
6416 fields[i].name);
6417 }
6418 }
6419 }
6420 }
6421
6422 if (ir_variable *earlier =
6423 state->symbols->get_variable(this->instance_name)) {
6424 if (!redeclaring_per_vertex) {
6425 _mesa_glsl_error(&loc, state, "`%s' redeclared",
6426 this->instance_name);
6427 }
6428 earlier->data.how_declared = ir_var_declared_normally;
6429 earlier->type = var->type;
6430 earlier->reinit_interface_type(block_type);
6431 delete var;
6432 } else {
6433 /* Propagate the "binding" keyword into this UBO's fields;
6434 * the UBO declaration itself doesn't get an ir_variable unless it
6435 * has an instance name. This is ugly.
6436 */
6437 var->data.explicit_binding = this->layout.flags.q.explicit_binding;
6438 var->data.binding = this->layout.binding;
6439
6440 state->symbols->add_variable(var);
6441 instructions->push_tail(var);
6442 }
6443 } else {
6444 /* In order to have an array size, the block must also be declared with
6445 * an instance name.
6446 */
6447 assert(this->array_specifier == NULL);
6448
6449 for (unsigned i = 0; i < num_variables; i++) {
6450 ir_variable *var =
6451 new(state) ir_variable(fields[i].type,
6452 ralloc_strdup(state, fields[i].name),
6453 var_mode);
6454 var->data.interpolation = fields[i].interpolation;
6455 var->data.centroid = fields[i].centroid;
6456 var->data.sample = fields[i].sample;
6457 var->data.patch = fields[i].patch;
6458 var->init_interface_type(block_type);
6459
6460 if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
6461 var->data.read_only = true;
6462
6463 if (fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED) {
6464 var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
6465 ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
6466 } else {
6467 var->data.matrix_layout = fields[i].matrix_layout;
6468 }
6469
6470 if (fields[i].stream != -1 &&
6471 ((unsigned)fields[i].stream) != this->layout.stream) {
6472 _mesa_glsl_error(&loc, state,
6473 "stream layout qualifier on "
6474 "interface block member `%s' does not match "
6475 "the interface block (%d vs %d)",
6476 var->name, fields[i].stream, this->layout.stream);
6477 }
6478
6479 var->data.stream = this->layout.stream;
6480
6481 if (var->data.mode == ir_var_shader_storage) {
6482 var->data.image_read_only = fields[i].image_read_only;
6483 var->data.image_write_only = fields[i].image_write_only;
6484 var->data.image_coherent = fields[i].image_coherent;
6485 var->data.image_volatile = fields[i].image_volatile;
6486 var->data.image_restrict = fields[i].image_restrict;
6487 }
6488
6489 /* Examine var name here since var may get deleted in the next call */
6490 bool var_is_gl_id = is_gl_identifier(var->name);
6491
6492 if (redeclaring_per_vertex) {
6493 ir_variable *earlier =
6494 get_variable_being_redeclared(var, loc, state,
6495 true /* allow_all_redeclarations */);
6496 if (!var_is_gl_id || earlier == NULL) {
6497 _mesa_glsl_error(&loc, state,
6498 "redeclaration of gl_PerVertex can only "
6499 "include built-in variables");
6500 } else if (earlier->data.how_declared == ir_var_declared_normally) {
6501 _mesa_glsl_error(&loc, state,
6502 "`%s' has already been redeclared",
6503 earlier->name);
6504 } else {
6505 earlier->data.how_declared = ir_var_declared_in_block;
6506 earlier->reinit_interface_type(block_type);
6507 }
6508 continue;
6509 }
6510
6511 if (state->symbols->get_variable(var->name) != NULL)
6512 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
6513
6514 /* Propagate the "binding" keyword into this UBO/SSBO's fields.
6515 * The UBO declaration itself doesn't get an ir_variable unless it
6516 * has an instance name. This is ugly.
6517 */
6518 var->data.explicit_binding = this->layout.flags.q.explicit_binding;
6519 var->data.binding = this->layout.binding;
6520
6521 if (var->type->is_unsized_array()) {
6522 if (var->is_in_shader_storage_block()) {
6523 if (!is_unsized_array_last_element(var)) {
6524 _mesa_glsl_error(&loc, state, "unsized array `%s' definition: "
6525 "only last member of a shader storage block "
6526 "can be defined as unsized array",
6527 var->name);
6528 }
6529 var->data.from_ssbo_unsized_array = true;
6530 } else {
6531 /* From GLSL ES 3.10 spec, section 4.1.9 "Arrays":
6532 *
6533 * "If an array is declared as the last member of a shader storage
6534 * block and the size is not specified at compile-time, it is
6535 * sized at run-time. In all other cases, arrays are sized only
6536 * at compile-time."
6537 */
6538 if (state->es_shader) {
6539 _mesa_glsl_error(&loc, state, "unsized array `%s' definition: "
6540 "only last member of a shader storage block "
6541 "can be defined as unsized array",
6542 var->name);
6543 }
6544 }
6545 }
6546
6547 state->symbols->add_variable(var);
6548 instructions->push_tail(var);
6549 }
6550
6551 if (redeclaring_per_vertex && block_type != earlier_per_vertex) {
6552 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10 spec:
6553 *
6554 * It is also a compilation error ... to redeclare a built-in
6555 * block and then use a member from that built-in block that was
6556 * not included in the redeclaration.
6557 *
6558 * This appears to be a clarification to the behaviour established
6559 * for gl_PerVertex by GLSL 1.50, therefore we implement this
6560 * behaviour regardless of GLSL version.
6561 *
6562 * To prevent the shader from using a member that was not included in
6563 * the redeclaration, we disable any ir_variables that are still
6564 * associated with the old declaration of gl_PerVertex (since we've
6565 * already updated all of the variables contained in the new
6566 * gl_PerVertex to point to it).
6567 *
6568 * As a side effect this will prevent
6569 * validate_intrastage_interface_blocks() from getting confused and
6570 * thinking there are conflicting definitions of gl_PerVertex in the
6571 * shader.
6572 */
6573 foreach_in_list_safe(ir_instruction, node, instructions) {
6574 ir_variable *const var = node->as_variable();
6575 if (var != NULL &&
6576 var->get_interface_type() == earlier_per_vertex &&
6577 var->data.mode == var_mode) {
6578 if (var->data.how_declared == ir_var_declared_normally) {
6579 _mesa_glsl_error(&loc, state,
6580 "redeclaration of gl_PerVertex cannot "
6581 "follow a redeclaration of `%s'",
6582 var->name);
6583 }
6584 state->symbols->disable_variable(var->name);
6585 var->remove();
6586 }
6587 }
6588 }
6589 }
6590
6591 return NULL;
6592 }
6593
6594
6595 ir_rvalue *
6596 ast_tcs_output_layout::hir(exec_list *instructions,
6597 struct _mesa_glsl_parse_state *state)
6598 {
6599 YYLTYPE loc = this->get_location();
6600
6601 /* If any tessellation control output layout declaration preceded this
6602 * one, make sure it was consistent with this one.
6603 */
6604 if (state->tcs_output_vertices_specified &&
6605 state->out_qualifier->vertices != this->vertices) {
6606 _mesa_glsl_error(&loc, state,
6607 "tessellation control shader output layout does not "
6608 "match previous declaration");
6609 return NULL;
6610 }
6611
6612 /* If any shader outputs occurred before this declaration and specified an
6613 * array size, make sure the size they specified is consistent with the
6614 * primitive type.
6615 */
6616 unsigned num_vertices = this->vertices;
6617 if (state->tcs_output_size != 0 && state->tcs_output_size != num_vertices) {
6618 _mesa_glsl_error(&loc, state,
6619 "this tessellation control shader output layout "
6620 "specifies %u vertices, but a previous output "
6621 "is declared with size %u",
6622 num_vertices, state->tcs_output_size);
6623 return NULL;
6624 }
6625
6626 state->tcs_output_vertices_specified = true;
6627
6628 /* If any shader outputs occurred before this declaration and did not
6629 * specify an array size, their size is determined now.
6630 */
6631 foreach_in_list (ir_instruction, node, instructions) {
6632 ir_variable *var = node->as_variable();
6633 if (var == NULL || var->data.mode != ir_var_shader_out)
6634 continue;
6635
6636 /* Note: Not all tessellation control shader output are arrays. */
6637 if (!var->type->is_unsized_array() || var->data.patch)
6638 continue;
6639
6640 if (var->data.max_array_access >= num_vertices) {
6641 _mesa_glsl_error(&loc, state,
6642 "this tessellation control shader output layout "
6643 "specifies %u vertices, but an access to element "
6644 "%u of output `%s' already exists", num_vertices,
6645 var->data.max_array_access, var->name);
6646 } else {
6647 var->type = glsl_type::get_array_instance(var->type->fields.array,
6648 num_vertices);
6649 }
6650 }
6651
6652 return NULL;
6653 }
6654
6655
6656 ir_rvalue *
6657 ast_gs_input_layout::hir(exec_list *instructions,
6658 struct _mesa_glsl_parse_state *state)
6659 {
6660 YYLTYPE loc = this->get_location();
6661
6662 /* If any geometry input layout declaration preceded this one, make sure it
6663 * was consistent with this one.
6664 */
6665 if (state->gs_input_prim_type_specified &&
6666 state->in_qualifier->prim_type != this->prim_type) {
6667 _mesa_glsl_error(&loc, state,
6668 "geometry shader input layout does not match"
6669 " previous declaration");
6670 return NULL;
6671 }
6672
6673 /* If any shader inputs occurred before this declaration and specified an
6674 * array size, make sure the size they specified is consistent with the
6675 * primitive type.
6676 */
6677 unsigned num_vertices = vertices_per_prim(this->prim_type);
6678 if (state->gs_input_size != 0 && state->gs_input_size != num_vertices) {
6679 _mesa_glsl_error(&loc, state,
6680 "this geometry shader input layout implies %u vertices"
6681 " per primitive, but a previous input is declared"
6682 " with size %u", num_vertices, state->gs_input_size);
6683 return NULL;
6684 }
6685
6686 state->gs_input_prim_type_specified = true;
6687
6688 /* If any shader inputs occurred before this declaration and did not
6689 * specify an array size, their size is determined now.
6690 */
6691 foreach_in_list(ir_instruction, node, instructions) {
6692 ir_variable *var = node->as_variable();
6693 if (var == NULL || var->data.mode != ir_var_shader_in)
6694 continue;
6695
6696 /* Note: gl_PrimitiveIDIn has mode ir_var_shader_in, but it's not an
6697 * array; skip it.
6698 */
6699
6700 if (var->type->is_unsized_array()) {
6701 if (var->data.max_array_access >= num_vertices) {
6702 _mesa_glsl_error(&loc, state,
6703 "this geometry shader input layout implies %u"
6704 " vertices, but an access to element %u of input"
6705 " `%s' already exists", num_vertices,
6706 var->data.max_array_access, var->name);
6707 } else {
6708 var->type = glsl_type::get_array_instance(var->type->fields.array,
6709 num_vertices);
6710 }
6711 }
6712 }
6713
6714 return NULL;
6715 }
6716
6717
6718 ir_rvalue *
6719 ast_cs_input_layout::hir(exec_list *instructions,
6720 struct _mesa_glsl_parse_state *state)
6721 {
6722 YYLTYPE loc = this->get_location();
6723
6724 /* If any compute input layout declaration preceded this one, make sure it
6725 * was consistent with this one.
6726 */
6727 if (state->cs_input_local_size_specified) {
6728 for (int i = 0; i < 3; i++) {
6729 if (state->cs_input_local_size[i] != this->local_size[i]) {
6730 _mesa_glsl_error(&loc, state,
6731 "compute shader input layout does not match"
6732 " previous declaration");
6733 return NULL;
6734 }
6735 }
6736 }
6737
6738 /* From the ARB_compute_shader specification:
6739 *
6740 * If the local size of the shader in any dimension is greater
6741 * than the maximum size supported by the implementation for that
6742 * dimension, a compile-time error results.
6743 *
6744 * It is not clear from the spec how the error should be reported if
6745 * the total size of the work group exceeds
6746 * MAX_COMPUTE_WORK_GROUP_INVOCATIONS, but it seems reasonable to
6747 * report it at compile time as well.
6748 */
6749 GLuint64 total_invocations = 1;
6750 for (int i = 0; i < 3; i++) {
6751 if (this->local_size[i] > state->ctx->Const.MaxComputeWorkGroupSize[i]) {
6752 _mesa_glsl_error(&loc, state,
6753 "local_size_%c exceeds MAX_COMPUTE_WORK_GROUP_SIZE"
6754 " (%d)", 'x' + i,
6755 state->ctx->Const.MaxComputeWorkGroupSize[i]);
6756 break;
6757 }
6758 total_invocations *= this->local_size[i];
6759 if (total_invocations >
6760 state->ctx->Const.MaxComputeWorkGroupInvocations) {
6761 _mesa_glsl_error(&loc, state,
6762 "product of local_sizes exceeds "
6763 "MAX_COMPUTE_WORK_GROUP_INVOCATIONS (%d)",
6764 state->ctx->Const.MaxComputeWorkGroupInvocations);
6765 break;
6766 }
6767 }
6768
6769 state->cs_input_local_size_specified = true;
6770 for (int i = 0; i < 3; i++)
6771 state->cs_input_local_size[i] = this->local_size[i];
6772
6773 /* We may now declare the built-in constant gl_WorkGroupSize (see
6774 * builtin_variable_generator::generate_constants() for why we didn't
6775 * declare it earlier).
6776 */
6777 ir_variable *var = new(state->symbols)
6778 ir_variable(glsl_type::uvec3_type, "gl_WorkGroupSize", ir_var_auto);
6779 var->data.how_declared = ir_var_declared_implicitly;
6780 var->data.read_only = true;
6781 instructions->push_tail(var);
6782 state->symbols->add_variable(var);
6783 ir_constant_data data;
6784 memset(&data, 0, sizeof(data));
6785 for (int i = 0; i < 3; i++)
6786 data.u[i] = this->local_size[i];
6787 var->constant_value = new(var) ir_constant(glsl_type::uvec3_type, &data);
6788 var->constant_initializer =
6789 new(var) ir_constant(glsl_type::uvec3_type, &data);
6790 var->data.has_initializer = true;
6791
6792 return NULL;
6793 }
6794
6795
6796 static void
6797 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
6798 exec_list *instructions)
6799 {
6800 bool gl_FragColor_assigned = false;
6801 bool gl_FragData_assigned = false;
6802 bool user_defined_fs_output_assigned = false;
6803 ir_variable *user_defined_fs_output = NULL;
6804
6805 /* It would be nice to have proper location information. */
6806 YYLTYPE loc;
6807 memset(&loc, 0, sizeof(loc));
6808
6809 foreach_in_list(ir_instruction, node, instructions) {
6810 ir_variable *var = node->as_variable();
6811
6812 if (!var || !var->data.assigned)
6813 continue;
6814
6815 if (strcmp(var->name, "gl_FragColor") == 0)
6816 gl_FragColor_assigned = true;
6817 else if (strcmp(var->name, "gl_FragData") == 0)
6818 gl_FragData_assigned = true;
6819 else if (!is_gl_identifier(var->name)) {
6820 if (state->stage == MESA_SHADER_FRAGMENT &&
6821 var->data.mode == ir_var_shader_out) {
6822 user_defined_fs_output_assigned = true;
6823 user_defined_fs_output = var;
6824 }
6825 }
6826 }
6827
6828 /* From the GLSL 1.30 spec:
6829 *
6830 * "If a shader statically assigns a value to gl_FragColor, it
6831 * may not assign a value to any element of gl_FragData. If a
6832 * shader statically writes a value to any element of
6833 * gl_FragData, it may not assign a value to
6834 * gl_FragColor. That is, a shader may assign values to either
6835 * gl_FragColor or gl_FragData, but not both. Multiple shaders
6836 * linked together must also consistently write just one of
6837 * these variables. Similarly, if user declared output
6838 * variables are in use (statically assigned to), then the
6839 * built-in variables gl_FragColor and gl_FragData may not be
6840 * assigned to. These incorrect usages all generate compile
6841 * time errors."
6842 */
6843 if (gl_FragColor_assigned && gl_FragData_assigned) {
6844 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
6845 "`gl_FragColor' and `gl_FragData'");
6846 } else if (gl_FragColor_assigned && user_defined_fs_output_assigned) {
6847 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
6848 "`gl_FragColor' and `%s'",
6849 user_defined_fs_output->name);
6850 } else if (gl_FragData_assigned && user_defined_fs_output_assigned) {
6851 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
6852 "`gl_FragData' and `%s'",
6853 user_defined_fs_output->name);
6854 }
6855 }
6856
6857
6858 static void
6859 remove_per_vertex_blocks(exec_list *instructions,
6860 _mesa_glsl_parse_state *state, ir_variable_mode mode)
6861 {
6862 /* Find the gl_PerVertex interface block of the appropriate (in/out) mode,
6863 * if it exists in this shader type.
6864 */
6865 const glsl_type *per_vertex = NULL;
6866 switch (mode) {
6867 case ir_var_shader_in:
6868 if (ir_variable *gl_in = state->symbols->get_variable("gl_in"))
6869 per_vertex = gl_in->get_interface_type();
6870 break;
6871 case ir_var_shader_out:
6872 if (ir_variable *gl_Position =
6873 state->symbols->get_variable("gl_Position")) {
6874 per_vertex = gl_Position->get_interface_type();
6875 }
6876 break;
6877 default:
6878 assert(!"Unexpected mode");
6879 break;
6880 }
6881
6882 /* If we didn't find a built-in gl_PerVertex interface block, then we don't
6883 * need to do anything.
6884 */
6885 if (per_vertex == NULL)
6886 return;
6887
6888 /* If the interface block is used by the shader, then we don't need to do
6889 * anything.
6890 */
6891 interface_block_usage_visitor v(mode, per_vertex);
6892 v.run(instructions);
6893 if (v.usage_found())
6894 return;
6895
6896 /* Remove any ir_variable declarations that refer to the interface block
6897 * we're removing.
6898 */
6899 foreach_in_list_safe(ir_instruction, node, instructions) {
6900 ir_variable *const var = node->as_variable();
6901 if (var != NULL && var->get_interface_type() == per_vertex &&
6902 var->data.mode == mode) {
6903 state->symbols->disable_variable(var->name);
6904 var->remove();
6905 }
6906 }
6907 }