mesa: set up gl_vert_result and gl_frag_attrib values for gl_ClipDistance.
[mesa.git] / src / glsl / ast_to_hir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file ast_to_hir.c
26 * Convert abstract syntax to to high-level intermediate reprensentation (HIR).
27 *
28 * During the conversion to HIR, the majority of the symantic checking is
29 * preformed on the program. This includes:
30 *
31 * * Symbol table management
32 * * Type checking
33 * * Function binding
34 *
35 * The majority of this work could be done during parsing, and the parser could
36 * probably generate HIR directly. However, this results in frequent changes
37 * to the parser code. Since we do not assume that every system this complier
38 * is built on will have Flex and Bison installed, we have to store the code
39 * generated by these tools in our version control system. In other parts of
40 * the system we've seen problems where a parser was changed but the generated
41 * code was not committed, merge conflicts where created because two developers
42 * had slightly different versions of Bison installed, etc.
43 *
44 * I have also noticed that running Bison generated parsers in GDB is very
45 * irritating. When you get a segfault on '$$ = $1->foo', you can't very
46 * well 'print $1' in GDB.
47 *
48 * As a result, my preference is to put as little C code as possible in the
49 * parser (and lexer) sources.
50 */
51
52 #include "main/core.h" /* for struct gl_extensions */
53 #include "glsl_symbol_table.h"
54 #include "glsl_parser_extras.h"
55 #include "ast.h"
56 #include "glsl_types.h"
57 #include "ir.h"
58
59 void
60 _mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
61 {
62 _mesa_glsl_initialize_variables(instructions, state);
63 _mesa_glsl_initialize_functions(state);
64
65 state->symbols->language_version = state->language_version;
66
67 state->current_function = NULL;
68
69 state->toplevel_ir = instructions;
70
71 /* Section 4.2 of the GLSL 1.20 specification states:
72 * "The built-in functions are scoped in a scope outside the global scope
73 * users declare global variables in. That is, a shader's global scope,
74 * available for user-defined functions and global variables, is nested
75 * inside the scope containing the built-in functions."
76 *
77 * Since built-in functions like ftransform() access built-in variables,
78 * it follows that those must be in the outer scope as well.
79 *
80 * We push scope here to create this nesting effect...but don't pop.
81 * This way, a shader's globals are still in the symbol table for use
82 * by the linker.
83 */
84 state->symbols->push_scope();
85
86 foreach_list_typed (ast_node, ast, link, & state->translation_unit)
87 ast->hir(instructions, state);
88
89 detect_recursion_unlinked(state, instructions);
90
91 state->toplevel_ir = NULL;
92 }
93
94
95 /**
96 * If a conversion is available, convert one operand to a different type
97 *
98 * The \c from \c ir_rvalue is converted "in place".
99 *
100 * \param to Type that the operand it to be converted to
101 * \param from Operand that is being converted
102 * \param state GLSL compiler state
103 *
104 * \return
105 * If a conversion is possible (or unnecessary), \c true is returned.
106 * Otherwise \c false is returned.
107 */
108 bool
109 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
110 struct _mesa_glsl_parse_state *state)
111 {
112 void *ctx = state;
113 if (to->base_type == from->type->base_type)
114 return true;
115
116 /* This conversion was added in GLSL 1.20. If the compilation mode is
117 * GLSL 1.10, the conversion is skipped.
118 */
119 if (state->language_version < 120)
120 return false;
121
122 /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
123 *
124 * "There are no implicit array or structure conversions. For
125 * example, an array of int cannot be implicitly converted to an
126 * array of float. There are no implicit conversions between
127 * signed and unsigned integers."
128 */
129 /* FINISHME: The above comment is partially a lie. There is int/uint
130 * FINISHME: conversion for immediate constants.
131 */
132 if (!to->is_float() || !from->type->is_numeric())
133 return false;
134
135 /* Convert to a floating point type with the same number of components
136 * as the original type - i.e. int to float, not int to vec4.
137 */
138 to = glsl_type::get_instance(GLSL_TYPE_FLOAT, from->type->vector_elements,
139 from->type->matrix_columns);
140
141 switch (from->type->base_type) {
142 case GLSL_TYPE_INT:
143 from = new(ctx) ir_expression(ir_unop_i2f, to, from, NULL);
144 break;
145 case GLSL_TYPE_UINT:
146 from = new(ctx) ir_expression(ir_unop_u2f, to, from, NULL);
147 break;
148 case GLSL_TYPE_BOOL:
149 from = new(ctx) ir_expression(ir_unop_b2f, to, from, NULL);
150 break;
151 default:
152 assert(0);
153 }
154
155 return true;
156 }
157
158
159 static const struct glsl_type *
160 arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
161 bool multiply,
162 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
163 {
164 const glsl_type *type_a = value_a->type;
165 const glsl_type *type_b = value_b->type;
166
167 /* From GLSL 1.50 spec, page 56:
168 *
169 * "The arithmetic binary operators add (+), subtract (-),
170 * multiply (*), and divide (/) operate on integer and
171 * floating-point scalars, vectors, and matrices."
172 */
173 if (!type_a->is_numeric() || !type_b->is_numeric()) {
174 _mesa_glsl_error(loc, state,
175 "Operands to arithmetic operators must be numeric");
176 return glsl_type::error_type;
177 }
178
179
180 /* "If one operand is floating-point based and the other is
181 * not, then the conversions from Section 4.1.10 "Implicit
182 * Conversions" are applied to the non-floating-point-based operand."
183 */
184 if (!apply_implicit_conversion(type_a, value_b, state)
185 && !apply_implicit_conversion(type_b, value_a, state)) {
186 _mesa_glsl_error(loc, state,
187 "Could not implicitly convert operands to "
188 "arithmetic operator");
189 return glsl_type::error_type;
190 }
191 type_a = value_a->type;
192 type_b = value_b->type;
193
194 /* "If the operands are integer types, they must both be signed or
195 * both be unsigned."
196 *
197 * From this rule and the preceeding conversion it can be inferred that
198 * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
199 * The is_numeric check above already filtered out the case where either
200 * type is not one of these, so now the base types need only be tested for
201 * equality.
202 */
203 if (type_a->base_type != type_b->base_type) {
204 _mesa_glsl_error(loc, state,
205 "base type mismatch for arithmetic operator");
206 return glsl_type::error_type;
207 }
208
209 /* "All arithmetic binary operators result in the same fundamental type
210 * (signed integer, unsigned integer, or floating-point) as the
211 * operands they operate on, after operand type conversion. After
212 * conversion, the following cases are valid
213 *
214 * * The two operands are scalars. In this case the operation is
215 * applied, resulting in a scalar."
216 */
217 if (type_a->is_scalar() && type_b->is_scalar())
218 return type_a;
219
220 /* "* One operand is a scalar, and the other is a vector or matrix.
221 * In this case, the scalar operation is applied independently to each
222 * component of the vector or matrix, resulting in the same size
223 * vector or matrix."
224 */
225 if (type_a->is_scalar()) {
226 if (!type_b->is_scalar())
227 return type_b;
228 } else if (type_b->is_scalar()) {
229 return type_a;
230 }
231
232 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
233 * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
234 * handled.
235 */
236 assert(!type_a->is_scalar());
237 assert(!type_b->is_scalar());
238
239 /* "* The two operands are vectors of the same size. In this case, the
240 * operation is done component-wise resulting in the same size
241 * vector."
242 */
243 if (type_a->is_vector() && type_b->is_vector()) {
244 if (type_a == type_b) {
245 return type_a;
246 } else {
247 _mesa_glsl_error(loc, state,
248 "vector size mismatch for arithmetic operator");
249 return glsl_type::error_type;
250 }
251 }
252
253 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
254 * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
255 * <vector, vector> have been handled. At least one of the operands must
256 * be matrix. Further, since there are no integer matrix types, the base
257 * type of both operands must be float.
258 */
259 assert(type_a->is_matrix() || type_b->is_matrix());
260 assert(type_a->base_type == GLSL_TYPE_FLOAT);
261 assert(type_b->base_type == GLSL_TYPE_FLOAT);
262
263 /* "* The operator is add (+), subtract (-), or divide (/), and the
264 * operands are matrices with the same number of rows and the same
265 * number of columns. In this case, the operation is done component-
266 * wise resulting in the same size matrix."
267 * * The operator is multiply (*), where both operands are matrices or
268 * one operand is a vector and the other a matrix. A right vector
269 * operand is treated as a column vector and a left vector operand as a
270 * row vector. In all these cases, it is required that the number of
271 * columns of the left operand is equal to the number of rows of the
272 * right operand. Then, the multiply (*) operation does a linear
273 * algebraic multiply, yielding an object that has the same number of
274 * rows as the left operand and the same number of columns as the right
275 * operand. Section 5.10 "Vector and Matrix Operations" explains in
276 * more detail how vectors and matrices are operated on."
277 */
278 if (! multiply) {
279 if (type_a == type_b)
280 return type_a;
281 } else {
282 if (type_a->is_matrix() && type_b->is_matrix()) {
283 /* Matrix multiply. The columns of A must match the rows of B. Given
284 * the other previously tested constraints, this means the vector type
285 * of a row from A must be the same as the vector type of a column from
286 * B.
287 */
288 if (type_a->row_type() == type_b->column_type()) {
289 /* The resulting matrix has the number of columns of matrix B and
290 * the number of rows of matrix A. We get the row count of A by
291 * looking at the size of a vector that makes up a column. The
292 * transpose (size of a row) is done for B.
293 */
294 const glsl_type *const type =
295 glsl_type::get_instance(type_a->base_type,
296 type_a->column_type()->vector_elements,
297 type_b->row_type()->vector_elements);
298 assert(type != glsl_type::error_type);
299
300 return type;
301 }
302 } else if (type_a->is_matrix()) {
303 /* A is a matrix and B is a column vector. Columns of A must match
304 * rows of B. Given the other previously tested constraints, this
305 * means the vector type of a row from A must be the same as the
306 * vector the type of B.
307 */
308 if (type_a->row_type() == type_b) {
309 /* The resulting vector has a number of elements equal to
310 * the number of rows of matrix A. */
311 const glsl_type *const type =
312 glsl_type::get_instance(type_a->base_type,
313 type_a->column_type()->vector_elements,
314 1);
315 assert(type != glsl_type::error_type);
316
317 return type;
318 }
319 } else {
320 assert(type_b->is_matrix());
321
322 /* A is a row vector and B is a matrix. Columns of A must match rows
323 * of B. Given the other previously tested constraints, this means
324 * the type of A must be the same as the vector type of a column from
325 * B.
326 */
327 if (type_a == type_b->column_type()) {
328 /* The resulting vector has a number of elements equal to
329 * the number of columns of matrix B. */
330 const glsl_type *const type =
331 glsl_type::get_instance(type_a->base_type,
332 type_b->row_type()->vector_elements,
333 1);
334 assert(type != glsl_type::error_type);
335
336 return type;
337 }
338 }
339
340 _mesa_glsl_error(loc, state, "size mismatch for matrix multiplication");
341 return glsl_type::error_type;
342 }
343
344
345 /* "All other cases are illegal."
346 */
347 _mesa_glsl_error(loc, state, "type mismatch");
348 return glsl_type::error_type;
349 }
350
351
352 static const struct glsl_type *
353 unary_arithmetic_result_type(const struct glsl_type *type,
354 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
355 {
356 /* From GLSL 1.50 spec, page 57:
357 *
358 * "The arithmetic unary operators negate (-), post- and pre-increment
359 * and decrement (-- and ++) operate on integer or floating-point
360 * values (including vectors and matrices). All unary operators work
361 * component-wise on their operands. These result with the same type
362 * they operated on."
363 */
364 if (!type->is_numeric()) {
365 _mesa_glsl_error(loc, state,
366 "Operands to arithmetic operators must be numeric");
367 return glsl_type::error_type;
368 }
369
370 return type;
371 }
372
373 /**
374 * \brief Return the result type of a bit-logic operation.
375 *
376 * If the given types to the bit-logic operator are invalid, return
377 * glsl_type::error_type.
378 *
379 * \param type_a Type of LHS of bit-logic op
380 * \param type_b Type of RHS of bit-logic op
381 */
382 static const struct glsl_type *
383 bit_logic_result_type(const struct glsl_type *type_a,
384 const struct glsl_type *type_b,
385 ast_operators op,
386 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
387 {
388 if (state->language_version < 130) {
389 _mesa_glsl_error(loc, state, "bit operations require GLSL 1.30");
390 return glsl_type::error_type;
391 }
392
393 /* From page 50 (page 56 of PDF) of GLSL 1.30 spec:
394 *
395 * "The bitwise operators and (&), exclusive-or (^), and inclusive-or
396 * (|). The operands must be of type signed or unsigned integers or
397 * integer vectors."
398 */
399 if (!type_a->is_integer()) {
400 _mesa_glsl_error(loc, state, "LHS of `%s' must be an integer",
401 ast_expression::operator_string(op));
402 return glsl_type::error_type;
403 }
404 if (!type_b->is_integer()) {
405 _mesa_glsl_error(loc, state, "RHS of `%s' must be an integer",
406 ast_expression::operator_string(op));
407 return glsl_type::error_type;
408 }
409
410 /* "The fundamental types of the operands (signed or unsigned) must
411 * match,"
412 */
413 if (type_a->base_type != type_b->base_type) {
414 _mesa_glsl_error(loc, state, "operands of `%s' must have the same "
415 "base type", ast_expression::operator_string(op));
416 return glsl_type::error_type;
417 }
418
419 /* "The operands cannot be vectors of differing size." */
420 if (type_a->is_vector() &&
421 type_b->is_vector() &&
422 type_a->vector_elements != type_b->vector_elements) {
423 _mesa_glsl_error(loc, state, "operands of `%s' cannot be vectors of "
424 "different sizes", ast_expression::operator_string(op));
425 return glsl_type::error_type;
426 }
427
428 /* "If one operand is a scalar and the other a vector, the scalar is
429 * applied component-wise to the vector, resulting in the same type as
430 * the vector. The fundamental types of the operands [...] will be the
431 * resulting fundamental type."
432 */
433 if (type_a->is_scalar())
434 return type_b;
435 else
436 return type_a;
437 }
438
439 static const struct glsl_type *
440 modulus_result_type(const struct glsl_type *type_a,
441 const struct glsl_type *type_b,
442 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
443 {
444 if (state->language_version < 130) {
445 _mesa_glsl_error(loc, state,
446 "operator '%%' is reserved in %s",
447 state->version_string);
448 return glsl_type::error_type;
449 }
450
451 /* From GLSL 1.50 spec, page 56:
452 * "The operator modulus (%) operates on signed or unsigned integers or
453 * integer vectors. The operand types must both be signed or both be
454 * unsigned."
455 */
456 if (!type_a->is_integer()) {
457 _mesa_glsl_error(loc, state, "LHS of operator %% must be an integer.");
458 return glsl_type::error_type;
459 }
460 if (!type_b->is_integer()) {
461 _mesa_glsl_error(loc, state, "RHS of operator %% must be an integer.");
462 return glsl_type::error_type;
463 }
464 if (type_a->base_type != type_b->base_type) {
465 _mesa_glsl_error(loc, state,
466 "operands of %% must have the same base type");
467 return glsl_type::error_type;
468 }
469
470 /* "The operands cannot be vectors of differing size. If one operand is
471 * a scalar and the other vector, then the scalar is applied component-
472 * wise to the vector, resulting in the same type as the vector. If both
473 * are vectors of the same size, the result is computed component-wise."
474 */
475 if (type_a->is_vector()) {
476 if (!type_b->is_vector()
477 || (type_a->vector_elements == type_b->vector_elements))
478 return type_a;
479 } else
480 return type_b;
481
482 /* "The operator modulus (%) is not defined for any other data types
483 * (non-integer types)."
484 */
485 _mesa_glsl_error(loc, state, "type mismatch");
486 return glsl_type::error_type;
487 }
488
489
490 static const struct glsl_type *
491 relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
492 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
493 {
494 const glsl_type *type_a = value_a->type;
495 const glsl_type *type_b = value_b->type;
496
497 /* From GLSL 1.50 spec, page 56:
498 * "The relational operators greater than (>), less than (<), greater
499 * than or equal (>=), and less than or equal (<=) operate only on
500 * scalar integer and scalar floating-point expressions."
501 */
502 if (!type_a->is_numeric()
503 || !type_b->is_numeric()
504 || !type_a->is_scalar()
505 || !type_b->is_scalar()) {
506 _mesa_glsl_error(loc, state,
507 "Operands to relational operators must be scalar and "
508 "numeric");
509 return glsl_type::error_type;
510 }
511
512 /* "Either the operands' types must match, or the conversions from
513 * Section 4.1.10 "Implicit Conversions" will be applied to the integer
514 * operand, after which the types must match."
515 */
516 if (!apply_implicit_conversion(type_a, value_b, state)
517 && !apply_implicit_conversion(type_b, value_a, state)) {
518 _mesa_glsl_error(loc, state,
519 "Could not implicitly convert operands to "
520 "relational operator");
521 return glsl_type::error_type;
522 }
523 type_a = value_a->type;
524 type_b = value_b->type;
525
526 if (type_a->base_type != type_b->base_type) {
527 _mesa_glsl_error(loc, state, "base type mismatch");
528 return glsl_type::error_type;
529 }
530
531 /* "The result is scalar Boolean."
532 */
533 return glsl_type::bool_type;
534 }
535
536 /**
537 * \brief Return the result type of a bit-shift operation.
538 *
539 * If the given types to the bit-shift operator are invalid, return
540 * glsl_type::error_type.
541 *
542 * \param type_a Type of LHS of bit-shift op
543 * \param type_b Type of RHS of bit-shift op
544 */
545 static const struct glsl_type *
546 shift_result_type(const struct glsl_type *type_a,
547 const struct glsl_type *type_b,
548 ast_operators op,
549 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
550 {
551 if (state->language_version < 130) {
552 _mesa_glsl_error(loc, state, "bit operations require GLSL 1.30");
553 return glsl_type::error_type;
554 }
555
556 /* From page 50 (page 56 of the PDF) of the GLSL 1.30 spec:
557 *
558 * "The shift operators (<<) and (>>). For both operators, the operands
559 * must be signed or unsigned integers or integer vectors. One operand
560 * can be signed while the other is unsigned."
561 */
562 if (!type_a->is_integer()) {
563 _mesa_glsl_error(loc, state, "LHS of operator %s must be an integer or "
564 "integer vector", ast_expression::operator_string(op));
565 return glsl_type::error_type;
566
567 }
568 if (!type_b->is_integer()) {
569 _mesa_glsl_error(loc, state, "RHS of operator %s must be an integer or "
570 "integer vector", ast_expression::operator_string(op));
571 return glsl_type::error_type;
572 }
573
574 /* "If the first operand is a scalar, the second operand has to be
575 * a scalar as well."
576 */
577 if (type_a->is_scalar() && !type_b->is_scalar()) {
578 _mesa_glsl_error(loc, state, "If the first operand of %s is scalar, the "
579 "second must be scalar as well",
580 ast_expression::operator_string(op));
581 return glsl_type::error_type;
582 }
583
584 /* If both operands are vectors, check that they have same number of
585 * elements.
586 */
587 if (type_a->is_vector() &&
588 type_b->is_vector() &&
589 type_a->vector_elements != type_b->vector_elements) {
590 _mesa_glsl_error(loc, state, "Vector operands to operator %s must "
591 "have same number of elements",
592 ast_expression::operator_string(op));
593 return glsl_type::error_type;
594 }
595
596 /* "In all cases, the resulting type will be the same type as the left
597 * operand."
598 */
599 return type_a;
600 }
601
602 /**
603 * Validates that a value can be assigned to a location with a specified type
604 *
605 * Validates that \c rhs can be assigned to some location. If the types are
606 * not an exact match but an automatic conversion is possible, \c rhs will be
607 * converted.
608 *
609 * \return
610 * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
611 * Otherwise the actual RHS to be assigned will be returned. This may be
612 * \c rhs, or it may be \c rhs after some type conversion.
613 *
614 * \note
615 * In addition to being used for assignments, this function is used to
616 * type-check return values.
617 */
618 ir_rvalue *
619 validate_assignment(struct _mesa_glsl_parse_state *state,
620 const glsl_type *lhs_type, ir_rvalue *rhs,
621 bool is_initializer)
622 {
623 /* If there is already some error in the RHS, just return it. Anything
624 * else will lead to an avalanche of error message back to the user.
625 */
626 if (rhs->type->is_error())
627 return rhs;
628
629 /* If the types are identical, the assignment can trivially proceed.
630 */
631 if (rhs->type == lhs_type)
632 return rhs;
633
634 /* If the array element types are the same and the size of the LHS is zero,
635 * the assignment is okay for initializers embedded in variable
636 * declarations.
637 *
638 * Note: Whole-array assignments are not permitted in GLSL 1.10, but this
639 * is handled by ir_dereference::is_lvalue.
640 */
641 if (is_initializer && lhs_type->is_array() && rhs->type->is_array()
642 && (lhs_type->element_type() == rhs->type->element_type())
643 && (lhs_type->array_size() == 0)) {
644 return rhs;
645 }
646
647 /* Check for implicit conversion in GLSL 1.20 */
648 if (apply_implicit_conversion(lhs_type, rhs, state)) {
649 if (rhs->type == lhs_type)
650 return rhs;
651 }
652
653 return NULL;
654 }
655
656 static void
657 mark_whole_array_access(ir_rvalue *access)
658 {
659 ir_dereference_variable *deref = access->as_dereference_variable();
660
661 if (deref && deref->var) {
662 deref->var->max_array_access = deref->type->length - 1;
663 }
664 }
665
666 ir_rvalue *
667 do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state,
668 ir_rvalue *lhs, ir_rvalue *rhs, bool is_initializer,
669 YYLTYPE lhs_loc)
670 {
671 void *ctx = state;
672 bool error_emitted = (lhs->type->is_error() || rhs->type->is_error());
673
674 if (!error_emitted) {
675 if (lhs->variable_referenced() != NULL
676 && lhs->variable_referenced()->read_only) {
677 _mesa_glsl_error(&lhs_loc, state,
678 "assignment to read-only variable '%s'",
679 lhs->variable_referenced()->name);
680 error_emitted = true;
681
682 } else if (state->language_version <= 110 && lhs->type->is_array()) {
683 /* From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
684 *
685 * "Other binary or unary expressions, non-dereferenced
686 * arrays, function names, swizzles with repeated fields,
687 * and constants cannot be l-values."
688 */
689 _mesa_glsl_error(&lhs_loc, state, "whole array assignment is not "
690 "allowed in GLSL 1.10 or GLSL ES 1.00.");
691 error_emitted = true;
692 } else if (!lhs->is_lvalue()) {
693 _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment");
694 error_emitted = true;
695 }
696 }
697
698 ir_rvalue *new_rhs =
699 validate_assignment(state, lhs->type, rhs, is_initializer);
700 if (new_rhs == NULL) {
701 _mesa_glsl_error(& lhs_loc, state, "type mismatch");
702 } else {
703 rhs = new_rhs;
704
705 /* If the LHS array was not declared with a size, it takes it size from
706 * the RHS. If the LHS is an l-value and a whole array, it must be a
707 * dereference of a variable. Any other case would require that the LHS
708 * is either not an l-value or not a whole array.
709 */
710 if (lhs->type->array_size() == 0) {
711 ir_dereference *const d = lhs->as_dereference();
712
713 assert(d != NULL);
714
715 ir_variable *const var = d->variable_referenced();
716
717 assert(var != NULL);
718
719 if (var->max_array_access >= unsigned(rhs->type->array_size())) {
720 /* FINISHME: This should actually log the location of the RHS. */
721 _mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to "
722 "previous access",
723 var->max_array_access);
724 }
725
726 var->type = glsl_type::get_array_instance(lhs->type->element_type(),
727 rhs->type->array_size());
728 d->type = var->type;
729 }
730 mark_whole_array_access(rhs);
731 mark_whole_array_access(lhs);
732 }
733
734 /* Most callers of do_assignment (assign, add_assign, pre_inc/dec,
735 * but not post_inc) need the converted assigned value as an rvalue
736 * to handle things like:
737 *
738 * i = j += 1;
739 *
740 * So we always just store the computed value being assigned to a
741 * temporary and return a deref of that temporary. If the rvalue
742 * ends up not being used, the temp will get copy-propagated out.
743 */
744 ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp",
745 ir_var_temporary);
746 ir_dereference_variable *deref_var = new(ctx) ir_dereference_variable(var);
747 instructions->push_tail(var);
748 instructions->push_tail(new(ctx) ir_assignment(deref_var,
749 rhs,
750 NULL));
751 deref_var = new(ctx) ir_dereference_variable(var);
752
753 if (!error_emitted)
754 instructions->push_tail(new(ctx) ir_assignment(lhs, deref_var, NULL));
755
756 return new(ctx) ir_dereference_variable(var);
757 }
758
759 static ir_rvalue *
760 get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue)
761 {
762 void *ctx = ralloc_parent(lvalue);
763 ir_variable *var;
764
765 var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp",
766 ir_var_temporary);
767 instructions->push_tail(var);
768 var->mode = ir_var_auto;
769
770 instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
771 lvalue, NULL));
772
773 /* Once we've created this temporary, mark it read only so it's no
774 * longer considered an lvalue.
775 */
776 var->read_only = true;
777
778 return new(ctx) ir_dereference_variable(var);
779 }
780
781
782 ir_rvalue *
783 ast_node::hir(exec_list *instructions,
784 struct _mesa_glsl_parse_state *state)
785 {
786 (void) instructions;
787 (void) state;
788
789 return NULL;
790 }
791
792 static ir_rvalue *
793 do_comparison(void *mem_ctx, int operation, ir_rvalue *op0, ir_rvalue *op1)
794 {
795 int join_op;
796 ir_rvalue *cmp = NULL;
797
798 if (operation == ir_binop_all_equal)
799 join_op = ir_binop_logic_and;
800 else
801 join_op = ir_binop_logic_or;
802
803 switch (op0->type->base_type) {
804 case GLSL_TYPE_FLOAT:
805 case GLSL_TYPE_UINT:
806 case GLSL_TYPE_INT:
807 case GLSL_TYPE_BOOL:
808 return new(mem_ctx) ir_expression(operation, op0, op1);
809
810 case GLSL_TYPE_ARRAY: {
811 for (unsigned int i = 0; i < op0->type->length; i++) {
812 ir_rvalue *e0, *e1, *result;
813
814 e0 = new(mem_ctx) ir_dereference_array(op0->clone(mem_ctx, NULL),
815 new(mem_ctx) ir_constant(i));
816 e1 = new(mem_ctx) ir_dereference_array(op1->clone(mem_ctx, NULL),
817 new(mem_ctx) ir_constant(i));
818 result = do_comparison(mem_ctx, operation, e0, e1);
819
820 if (cmp) {
821 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
822 } else {
823 cmp = result;
824 }
825 }
826
827 mark_whole_array_access(op0);
828 mark_whole_array_access(op1);
829 break;
830 }
831
832 case GLSL_TYPE_STRUCT: {
833 for (unsigned int i = 0; i < op0->type->length; i++) {
834 ir_rvalue *e0, *e1, *result;
835 const char *field_name = op0->type->fields.structure[i].name;
836
837 e0 = new(mem_ctx) ir_dereference_record(op0->clone(mem_ctx, NULL),
838 field_name);
839 e1 = new(mem_ctx) ir_dereference_record(op1->clone(mem_ctx, NULL),
840 field_name);
841 result = do_comparison(mem_ctx, operation, e0, e1);
842
843 if (cmp) {
844 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
845 } else {
846 cmp = result;
847 }
848 }
849 break;
850 }
851
852 case GLSL_TYPE_ERROR:
853 case GLSL_TYPE_VOID:
854 case GLSL_TYPE_SAMPLER:
855 /* I assume a comparison of a struct containing a sampler just
856 * ignores the sampler present in the type.
857 */
858 break;
859
860 default:
861 assert(!"Should not get here.");
862 break;
863 }
864
865 if (cmp == NULL)
866 cmp = new(mem_ctx) ir_constant(true);
867
868 return cmp;
869 }
870
871 /* For logical operations, we want to ensure that the operands are
872 * scalar booleans. If it isn't, emit an error and return a constant
873 * boolean to avoid triggering cascading error messages.
874 */
875 ir_rvalue *
876 get_scalar_boolean_operand(exec_list *instructions,
877 struct _mesa_glsl_parse_state *state,
878 ast_expression *parent_expr,
879 int operand,
880 const char *operand_name,
881 bool *error_emitted)
882 {
883 ast_expression *expr = parent_expr->subexpressions[operand];
884 void *ctx = state;
885 ir_rvalue *val = expr->hir(instructions, state);
886
887 if (val->type->is_boolean() && val->type->is_scalar())
888 return val;
889
890 if (!*error_emitted) {
891 YYLTYPE loc = expr->get_location();
892 _mesa_glsl_error(&loc, state, "%s of `%s' must be scalar boolean",
893 operand_name,
894 parent_expr->operator_string(parent_expr->oper));
895 *error_emitted = true;
896 }
897
898 return new(ctx) ir_constant(true);
899 }
900
901 /**
902 * If name refers to a builtin array whose maximum allowed size is less than
903 * size, report an error and return true. Otherwise return false.
904 */
905 static bool
906 check_builtin_array_max_size(const char *name, unsigned size,
907 YYLTYPE loc, struct _mesa_glsl_parse_state *state)
908 {
909 if ((strcmp("gl_TexCoord", name) == 0)
910 && (size > state->Const.MaxTextureCoords)) {
911 /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec:
912 *
913 * "The size [of gl_TexCoord] can be at most
914 * gl_MaxTextureCoords."
915 */
916 _mesa_glsl_error(&loc, state, "`gl_TexCoord' array size cannot "
917 "be larger than gl_MaxTextureCoords (%u)\n",
918 state->Const.MaxTextureCoords);
919 return true;
920 } else if (strcmp("gl_ClipDistance", name) == 0
921 && size > state->Const.MaxClipPlanes) {
922 /* From section 7.1 (Vertex Shader Special Variables) of the
923 * GLSL 1.30 spec:
924 *
925 * "The gl_ClipDistance array is predeclared as unsized and
926 * must be sized by the shader either redeclaring it with a
927 * size or indexing it only with integral constant
928 * expressions. ... The size can be at most
929 * gl_MaxClipDistances."
930 */
931 _mesa_glsl_error(&loc, state, "`gl_ClipDistance' array size cannot "
932 "be larger than gl_MaxClipDistances (%u)\n",
933 state->Const.MaxClipPlanes);
934 return true;
935 }
936 return false;
937 }
938
939 ir_rvalue *
940 ast_expression::hir(exec_list *instructions,
941 struct _mesa_glsl_parse_state *state)
942 {
943 void *ctx = state;
944 static const int operations[AST_NUM_OPERATORS] = {
945 -1, /* ast_assign doesn't convert to ir_expression. */
946 -1, /* ast_plus doesn't convert to ir_expression. */
947 ir_unop_neg,
948 ir_binop_add,
949 ir_binop_sub,
950 ir_binop_mul,
951 ir_binop_div,
952 ir_binop_mod,
953 ir_binop_lshift,
954 ir_binop_rshift,
955 ir_binop_less,
956 ir_binop_greater,
957 ir_binop_lequal,
958 ir_binop_gequal,
959 ir_binop_all_equal,
960 ir_binop_any_nequal,
961 ir_binop_bit_and,
962 ir_binop_bit_xor,
963 ir_binop_bit_or,
964 ir_unop_bit_not,
965 ir_binop_logic_and,
966 ir_binop_logic_xor,
967 ir_binop_logic_or,
968 ir_unop_logic_not,
969
970 /* Note: The following block of expression types actually convert
971 * to multiple IR instructions.
972 */
973 ir_binop_mul, /* ast_mul_assign */
974 ir_binop_div, /* ast_div_assign */
975 ir_binop_mod, /* ast_mod_assign */
976 ir_binop_add, /* ast_add_assign */
977 ir_binop_sub, /* ast_sub_assign */
978 ir_binop_lshift, /* ast_ls_assign */
979 ir_binop_rshift, /* ast_rs_assign */
980 ir_binop_bit_and, /* ast_and_assign */
981 ir_binop_bit_xor, /* ast_xor_assign */
982 ir_binop_bit_or, /* ast_or_assign */
983
984 -1, /* ast_conditional doesn't convert to ir_expression. */
985 ir_binop_add, /* ast_pre_inc. */
986 ir_binop_sub, /* ast_pre_dec. */
987 ir_binop_add, /* ast_post_inc. */
988 ir_binop_sub, /* ast_post_dec. */
989 -1, /* ast_field_selection doesn't conv to ir_expression. */
990 -1, /* ast_array_index doesn't convert to ir_expression. */
991 -1, /* ast_function_call doesn't conv to ir_expression. */
992 -1, /* ast_identifier doesn't convert to ir_expression. */
993 -1, /* ast_int_constant doesn't convert to ir_expression. */
994 -1, /* ast_uint_constant doesn't conv to ir_expression. */
995 -1, /* ast_float_constant doesn't conv to ir_expression. */
996 -1, /* ast_bool_constant doesn't conv to ir_expression. */
997 -1, /* ast_sequence doesn't convert to ir_expression. */
998 };
999 ir_rvalue *result = NULL;
1000 ir_rvalue *op[3];
1001 const struct glsl_type *type; /* a temporary variable for switch cases */
1002 bool error_emitted = false;
1003 YYLTYPE loc;
1004
1005 loc = this->get_location();
1006
1007 switch (this->oper) {
1008 case ast_assign: {
1009 op[0] = this->subexpressions[0]->hir(instructions, state);
1010 op[1] = this->subexpressions[1]->hir(instructions, state);
1011
1012 result = do_assignment(instructions, state, op[0], op[1], false,
1013 this->subexpressions[0]->get_location());
1014 error_emitted = result->type->is_error();
1015 break;
1016 }
1017
1018 case ast_plus:
1019 op[0] = this->subexpressions[0]->hir(instructions, state);
1020
1021 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1022
1023 error_emitted = type->is_error();
1024
1025 result = op[0];
1026 break;
1027
1028 case ast_neg:
1029 op[0] = this->subexpressions[0]->hir(instructions, state);
1030
1031 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1032
1033 error_emitted = type->is_error();
1034
1035 result = new(ctx) ir_expression(operations[this->oper], type,
1036 op[0], NULL);
1037 break;
1038
1039 case ast_add:
1040 case ast_sub:
1041 case ast_mul:
1042 case ast_div:
1043 op[0] = this->subexpressions[0]->hir(instructions, state);
1044 op[1] = this->subexpressions[1]->hir(instructions, state);
1045
1046 type = arithmetic_result_type(op[0], op[1],
1047 (this->oper == ast_mul),
1048 state, & loc);
1049 error_emitted = type->is_error();
1050
1051 result = new(ctx) ir_expression(operations[this->oper], type,
1052 op[0], op[1]);
1053 break;
1054
1055 case ast_mod:
1056 op[0] = this->subexpressions[0]->hir(instructions, state);
1057 op[1] = this->subexpressions[1]->hir(instructions, state);
1058
1059 type = modulus_result_type(op[0]->type, op[1]->type, state, & loc);
1060
1061 assert(operations[this->oper] == ir_binop_mod);
1062
1063 result = new(ctx) ir_expression(operations[this->oper], type,
1064 op[0], op[1]);
1065 error_emitted = type->is_error();
1066 break;
1067
1068 case ast_lshift:
1069 case ast_rshift:
1070 if (state->language_version < 130) {
1071 _mesa_glsl_error(&loc, state, "operator %s requires GLSL 1.30",
1072 operator_string(this->oper));
1073 error_emitted = true;
1074 }
1075
1076 op[0] = this->subexpressions[0]->hir(instructions, state);
1077 op[1] = this->subexpressions[1]->hir(instructions, state);
1078 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1079 &loc);
1080 result = new(ctx) ir_expression(operations[this->oper], type,
1081 op[0], op[1]);
1082 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1083 break;
1084
1085 case ast_less:
1086 case ast_greater:
1087 case ast_lequal:
1088 case ast_gequal:
1089 op[0] = this->subexpressions[0]->hir(instructions, state);
1090 op[1] = this->subexpressions[1]->hir(instructions, state);
1091
1092 type = relational_result_type(op[0], op[1], state, & loc);
1093
1094 /* The relational operators must either generate an error or result
1095 * in a scalar boolean. See page 57 of the GLSL 1.50 spec.
1096 */
1097 assert(type->is_error()
1098 || ((type->base_type == GLSL_TYPE_BOOL)
1099 && type->is_scalar()));
1100
1101 result = new(ctx) ir_expression(operations[this->oper], type,
1102 op[0], op[1]);
1103 error_emitted = type->is_error();
1104 break;
1105
1106 case ast_nequal:
1107 case ast_equal:
1108 op[0] = this->subexpressions[0]->hir(instructions, state);
1109 op[1] = this->subexpressions[1]->hir(instructions, state);
1110
1111 /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
1112 *
1113 * "The equality operators equal (==), and not equal (!=)
1114 * operate on all types. They result in a scalar Boolean. If
1115 * the operand types do not match, then there must be a
1116 * conversion from Section 4.1.10 "Implicit Conversions"
1117 * applied to one operand that can make them match, in which
1118 * case this conversion is done."
1119 */
1120 if ((!apply_implicit_conversion(op[0]->type, op[1], state)
1121 && !apply_implicit_conversion(op[1]->type, op[0], state))
1122 || (op[0]->type != op[1]->type)) {
1123 _mesa_glsl_error(& loc, state, "operands of `%s' must have the same "
1124 "type", (this->oper == ast_equal) ? "==" : "!=");
1125 error_emitted = true;
1126 } else if ((state->language_version <= 110)
1127 && (op[0]->type->is_array() || op[1]->type->is_array())) {
1128 _mesa_glsl_error(& loc, state, "array comparisons forbidden in "
1129 "GLSL 1.10");
1130 error_emitted = true;
1131 }
1132
1133 if (error_emitted) {
1134 result = new(ctx) ir_constant(false);
1135 } else {
1136 result = do_comparison(ctx, operations[this->oper], op[0], op[1]);
1137 assert(result->type == glsl_type::bool_type);
1138 }
1139 break;
1140
1141 case ast_bit_and:
1142 case ast_bit_xor:
1143 case ast_bit_or:
1144 op[0] = this->subexpressions[0]->hir(instructions, state);
1145 op[1] = this->subexpressions[1]->hir(instructions, state);
1146 type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
1147 state, &loc);
1148 result = new(ctx) ir_expression(operations[this->oper], type,
1149 op[0], op[1]);
1150 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1151 break;
1152
1153 case ast_bit_not:
1154 op[0] = this->subexpressions[0]->hir(instructions, state);
1155
1156 if (state->language_version < 130) {
1157 _mesa_glsl_error(&loc, state, "bit-wise operations require GLSL 1.30");
1158 error_emitted = true;
1159 }
1160
1161 if (!op[0]->type->is_integer()) {
1162 _mesa_glsl_error(&loc, state, "operand of `~' must be an integer");
1163 error_emitted = true;
1164 }
1165
1166 type = op[0]->type;
1167 result = new(ctx) ir_expression(ir_unop_bit_not, type, op[0], NULL);
1168 break;
1169
1170 case ast_logic_and: {
1171 exec_list rhs_instructions;
1172 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1173 "LHS", &error_emitted);
1174 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1175 "RHS", &error_emitted);
1176
1177 ir_constant *op0_const = op[0]->constant_expression_value();
1178 if (op0_const) {
1179 if (op0_const->value.b[0]) {
1180 instructions->append_list(&rhs_instructions);
1181 result = op[1];
1182 } else {
1183 result = op0_const;
1184 }
1185 type = glsl_type::bool_type;
1186 } else {
1187 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1188 "and_tmp",
1189 ir_var_temporary);
1190 instructions->push_tail(tmp);
1191
1192 ir_if *const stmt = new(ctx) ir_if(op[0]);
1193 instructions->push_tail(stmt);
1194
1195 stmt->then_instructions.append_list(&rhs_instructions);
1196 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1197 ir_assignment *const then_assign =
1198 new(ctx) ir_assignment(then_deref, op[1], NULL);
1199 stmt->then_instructions.push_tail(then_assign);
1200
1201 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1202 ir_assignment *const else_assign =
1203 new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false), NULL);
1204 stmt->else_instructions.push_tail(else_assign);
1205
1206 result = new(ctx) ir_dereference_variable(tmp);
1207 type = tmp->type;
1208 }
1209 break;
1210 }
1211
1212 case ast_logic_or: {
1213 exec_list rhs_instructions;
1214 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1215 "LHS", &error_emitted);
1216 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1217 "RHS", &error_emitted);
1218
1219 ir_constant *op0_const = op[0]->constant_expression_value();
1220 if (op0_const) {
1221 if (op0_const->value.b[0]) {
1222 result = op0_const;
1223 } else {
1224 result = op[1];
1225 }
1226 type = glsl_type::bool_type;
1227 } else {
1228 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1229 "or_tmp",
1230 ir_var_temporary);
1231 instructions->push_tail(tmp);
1232
1233 ir_if *const stmt = new(ctx) ir_if(op[0]);
1234 instructions->push_tail(stmt);
1235
1236 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1237 ir_assignment *const then_assign =
1238 new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true), NULL);
1239 stmt->then_instructions.push_tail(then_assign);
1240
1241 stmt->else_instructions.append_list(&rhs_instructions);
1242 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1243 ir_assignment *const else_assign =
1244 new(ctx) ir_assignment(else_deref, op[1], NULL);
1245 stmt->else_instructions.push_tail(else_assign);
1246
1247 result = new(ctx) ir_dereference_variable(tmp);
1248 type = tmp->type;
1249 }
1250 break;
1251 }
1252
1253 case ast_logic_xor:
1254 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1255 *
1256 * "The logical binary operators and (&&), or ( | | ), and
1257 * exclusive or (^^). They operate only on two Boolean
1258 * expressions and result in a Boolean expression."
1259 */
1260 op[0] = get_scalar_boolean_operand(instructions, state, this, 0, "LHS",
1261 &error_emitted);
1262 op[1] = get_scalar_boolean_operand(instructions, state, this, 1, "RHS",
1263 &error_emitted);
1264
1265 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1266 op[0], op[1]);
1267 break;
1268
1269 case ast_logic_not:
1270 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1271 "operand", &error_emitted);
1272
1273 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1274 op[0], NULL);
1275 break;
1276
1277 case ast_mul_assign:
1278 case ast_div_assign:
1279 case ast_add_assign:
1280 case ast_sub_assign: {
1281 op[0] = this->subexpressions[0]->hir(instructions, state);
1282 op[1] = this->subexpressions[1]->hir(instructions, state);
1283
1284 type = arithmetic_result_type(op[0], op[1],
1285 (this->oper == ast_mul_assign),
1286 state, & loc);
1287
1288 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1289 op[0], op[1]);
1290
1291 result = do_assignment(instructions, state,
1292 op[0]->clone(ctx, NULL), temp_rhs, false,
1293 this->subexpressions[0]->get_location());
1294 error_emitted = (op[0]->type->is_error());
1295
1296 /* GLSL 1.10 does not allow array assignment. However, we don't have to
1297 * explicitly test for this because none of the binary expression
1298 * operators allow array operands either.
1299 */
1300
1301 break;
1302 }
1303
1304 case ast_mod_assign: {
1305 op[0] = this->subexpressions[0]->hir(instructions, state);
1306 op[1] = this->subexpressions[1]->hir(instructions, state);
1307
1308 type = modulus_result_type(op[0]->type, op[1]->type, state, & loc);
1309
1310 assert(operations[this->oper] == ir_binop_mod);
1311
1312 ir_rvalue *temp_rhs;
1313 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1314 op[0], op[1]);
1315
1316 result = do_assignment(instructions, state,
1317 op[0]->clone(ctx, NULL), temp_rhs, false,
1318 this->subexpressions[0]->get_location());
1319 error_emitted = type->is_error();
1320 break;
1321 }
1322
1323 case ast_ls_assign:
1324 case ast_rs_assign: {
1325 op[0] = this->subexpressions[0]->hir(instructions, state);
1326 op[1] = this->subexpressions[1]->hir(instructions, state);
1327 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1328 &loc);
1329 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1330 type, op[0], op[1]);
1331 result = do_assignment(instructions, state, op[0]->clone(ctx, NULL),
1332 temp_rhs, false,
1333 this->subexpressions[0]->get_location());
1334 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1335 break;
1336 }
1337
1338 case ast_and_assign:
1339 case ast_xor_assign:
1340 case ast_or_assign: {
1341 op[0] = this->subexpressions[0]->hir(instructions, state);
1342 op[1] = this->subexpressions[1]->hir(instructions, state);
1343 type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
1344 state, &loc);
1345 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1346 type, op[0], op[1]);
1347 result = do_assignment(instructions, state, op[0]->clone(ctx, NULL),
1348 temp_rhs, false,
1349 this->subexpressions[0]->get_location());
1350 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1351 break;
1352 }
1353
1354 case ast_conditional: {
1355 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1356 *
1357 * "The ternary selection operator (?:). It operates on three
1358 * expressions (exp1 ? exp2 : exp3). This operator evaluates the
1359 * first expression, which must result in a scalar Boolean."
1360 */
1361 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1362 "condition", &error_emitted);
1363
1364 /* The :? operator is implemented by generating an anonymous temporary
1365 * followed by an if-statement. The last instruction in each branch of
1366 * the if-statement assigns a value to the anonymous temporary. This
1367 * temporary is the r-value of the expression.
1368 */
1369 exec_list then_instructions;
1370 exec_list else_instructions;
1371
1372 op[1] = this->subexpressions[1]->hir(&then_instructions, state);
1373 op[2] = this->subexpressions[2]->hir(&else_instructions, state);
1374
1375 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1376 *
1377 * "The second and third expressions can be any type, as
1378 * long their types match, or there is a conversion in
1379 * Section 4.1.10 "Implicit Conversions" that can be applied
1380 * to one of the expressions to make their types match. This
1381 * resulting matching type is the type of the entire
1382 * expression."
1383 */
1384 if ((!apply_implicit_conversion(op[1]->type, op[2], state)
1385 && !apply_implicit_conversion(op[2]->type, op[1], state))
1386 || (op[1]->type != op[2]->type)) {
1387 YYLTYPE loc = this->subexpressions[1]->get_location();
1388
1389 _mesa_glsl_error(& loc, state, "Second and third operands of ?: "
1390 "operator must have matching types.");
1391 error_emitted = true;
1392 type = glsl_type::error_type;
1393 } else {
1394 type = op[1]->type;
1395 }
1396
1397 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1398 *
1399 * "The second and third expressions must be the same type, but can
1400 * be of any type other than an array."
1401 */
1402 if ((state->language_version <= 110) && type->is_array()) {
1403 _mesa_glsl_error(& loc, state, "Second and third operands of ?: "
1404 "operator must not be arrays.");
1405 error_emitted = true;
1406 }
1407
1408 ir_constant *cond_val = op[0]->constant_expression_value();
1409 ir_constant *then_val = op[1]->constant_expression_value();
1410 ir_constant *else_val = op[2]->constant_expression_value();
1411
1412 if (then_instructions.is_empty()
1413 && else_instructions.is_empty()
1414 && (cond_val != NULL) && (then_val != NULL) && (else_val != NULL)) {
1415 result = (cond_val->value.b[0]) ? then_val : else_val;
1416 } else {
1417 ir_variable *const tmp =
1418 new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary);
1419 instructions->push_tail(tmp);
1420
1421 ir_if *const stmt = new(ctx) ir_if(op[0]);
1422 instructions->push_tail(stmt);
1423
1424 then_instructions.move_nodes_to(& stmt->then_instructions);
1425 ir_dereference *const then_deref =
1426 new(ctx) ir_dereference_variable(tmp);
1427 ir_assignment *const then_assign =
1428 new(ctx) ir_assignment(then_deref, op[1], NULL);
1429 stmt->then_instructions.push_tail(then_assign);
1430
1431 else_instructions.move_nodes_to(& stmt->else_instructions);
1432 ir_dereference *const else_deref =
1433 new(ctx) ir_dereference_variable(tmp);
1434 ir_assignment *const else_assign =
1435 new(ctx) ir_assignment(else_deref, op[2], NULL);
1436 stmt->else_instructions.push_tail(else_assign);
1437
1438 result = new(ctx) ir_dereference_variable(tmp);
1439 }
1440 break;
1441 }
1442
1443 case ast_pre_inc:
1444 case ast_pre_dec: {
1445 op[0] = this->subexpressions[0]->hir(instructions, state);
1446 if (op[0]->type->base_type == GLSL_TYPE_FLOAT)
1447 op[1] = new(ctx) ir_constant(1.0f);
1448 else
1449 op[1] = new(ctx) ir_constant(1);
1450
1451 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1452
1453 ir_rvalue *temp_rhs;
1454 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1455 op[0], op[1]);
1456
1457 result = do_assignment(instructions, state,
1458 op[0]->clone(ctx, NULL), temp_rhs, false,
1459 this->subexpressions[0]->get_location());
1460 error_emitted = op[0]->type->is_error();
1461 break;
1462 }
1463
1464 case ast_post_inc:
1465 case ast_post_dec: {
1466 op[0] = this->subexpressions[0]->hir(instructions, state);
1467 if (op[0]->type->base_type == GLSL_TYPE_FLOAT)
1468 op[1] = new(ctx) ir_constant(1.0f);
1469 else
1470 op[1] = new(ctx) ir_constant(1);
1471
1472 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1473
1474 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1475
1476 ir_rvalue *temp_rhs;
1477 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1478 op[0], op[1]);
1479
1480 /* Get a temporary of a copy of the lvalue before it's modified.
1481 * This may get thrown away later.
1482 */
1483 result = get_lvalue_copy(instructions, op[0]->clone(ctx, NULL));
1484
1485 (void)do_assignment(instructions, state,
1486 op[0]->clone(ctx, NULL), temp_rhs, false,
1487 this->subexpressions[0]->get_location());
1488
1489 error_emitted = op[0]->type->is_error();
1490 break;
1491 }
1492
1493 case ast_field_selection:
1494 result = _mesa_ast_field_selection_to_hir(this, instructions, state);
1495 break;
1496
1497 case ast_array_index: {
1498 YYLTYPE index_loc = subexpressions[1]->get_location();
1499
1500 op[0] = subexpressions[0]->hir(instructions, state);
1501 op[1] = subexpressions[1]->hir(instructions, state);
1502
1503 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1504
1505 ir_rvalue *const array = op[0];
1506
1507 result = new(ctx) ir_dereference_array(op[0], op[1]);
1508
1509 /* Do not use op[0] after this point. Use array.
1510 */
1511 op[0] = NULL;
1512
1513
1514 if (error_emitted)
1515 break;
1516
1517 if (!array->type->is_array()
1518 && !array->type->is_matrix()
1519 && !array->type->is_vector()) {
1520 _mesa_glsl_error(& index_loc, state,
1521 "cannot dereference non-array / non-matrix / "
1522 "non-vector");
1523 error_emitted = true;
1524 }
1525
1526 if (!op[1]->type->is_integer()) {
1527 _mesa_glsl_error(& index_loc, state,
1528 "array index must be integer type");
1529 error_emitted = true;
1530 } else if (!op[1]->type->is_scalar()) {
1531 _mesa_glsl_error(& index_loc, state,
1532 "array index must be scalar");
1533 error_emitted = true;
1534 }
1535
1536 /* If the array index is a constant expression and the array has a
1537 * declared size, ensure that the access is in-bounds. If the array
1538 * index is not a constant expression, ensure that the array has a
1539 * declared size.
1540 */
1541 ir_constant *const const_index = op[1]->constant_expression_value();
1542 if (const_index != NULL) {
1543 const int idx = const_index->value.i[0];
1544 const char *type_name;
1545 unsigned bound = 0;
1546
1547 if (array->type->is_matrix()) {
1548 type_name = "matrix";
1549 } else if (array->type->is_vector()) {
1550 type_name = "vector";
1551 } else {
1552 type_name = "array";
1553 }
1554
1555 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec:
1556 *
1557 * "It is illegal to declare an array with a size, and then
1558 * later (in the same shader) index the same array with an
1559 * integral constant expression greater than or equal to the
1560 * declared size. It is also illegal to index an array with a
1561 * negative constant expression."
1562 */
1563 if (array->type->is_matrix()) {
1564 if (array->type->row_type()->vector_elements <= idx) {
1565 bound = array->type->row_type()->vector_elements;
1566 }
1567 } else if (array->type->is_vector()) {
1568 if (array->type->vector_elements <= idx) {
1569 bound = array->type->vector_elements;
1570 }
1571 } else {
1572 if ((array->type->array_size() > 0)
1573 && (array->type->array_size() <= idx)) {
1574 bound = array->type->array_size();
1575 }
1576 }
1577
1578 if (bound > 0) {
1579 _mesa_glsl_error(& loc, state, "%s index must be < %u",
1580 type_name, bound);
1581 error_emitted = true;
1582 } else if (idx < 0) {
1583 _mesa_glsl_error(& loc, state, "%s index must be >= 0",
1584 type_name);
1585 error_emitted = true;
1586 }
1587
1588 if (array->type->is_array()) {
1589 /* If the array is a variable dereference, it dereferences the
1590 * whole array, by definition. Use this to get the variable.
1591 *
1592 * FINISHME: Should some methods for getting / setting / testing
1593 * FINISHME: array access limits be added to ir_dereference?
1594 */
1595 ir_variable *const v = array->whole_variable_referenced();
1596 if ((v != NULL) && (unsigned(idx) > v->max_array_access)) {
1597 v->max_array_access = idx;
1598
1599 /* Check whether this access will, as a side effect, implicitly
1600 * cause the size of a built-in array to be too large.
1601 */
1602 if (check_builtin_array_max_size(v->name, idx+1, loc, state))
1603 error_emitted = true;
1604 }
1605 }
1606 } else if (array->type->array_size() == 0) {
1607 _mesa_glsl_error(&loc, state, "unsized array index must be constant");
1608 } else {
1609 if (array->type->is_array()) {
1610 /* whole_variable_referenced can return NULL if the array is a
1611 * member of a structure. In this case it is safe to not update
1612 * the max_array_access field because it is never used for fields
1613 * of structures.
1614 */
1615 ir_variable *v = array->whole_variable_referenced();
1616 if (v != NULL)
1617 v->max_array_access = array->type->array_size() - 1;
1618 }
1619 }
1620
1621 /* From page 23 (29 of the PDF) of the GLSL 1.30 spec:
1622 *
1623 * "Samplers aggregated into arrays within a shader (using square
1624 * brackets [ ]) can only be indexed with integral constant
1625 * expressions [...]."
1626 *
1627 * This restriction was added in GLSL 1.30. Shaders using earlier version
1628 * of the language should not be rejected by the compiler front-end for
1629 * using this construct. This allows useful things such as using a loop
1630 * counter as the index to an array of samplers. If the loop in unrolled,
1631 * the code should compile correctly. Instead, emit a warning.
1632 */
1633 if (array->type->is_array() &&
1634 array->type->element_type()->is_sampler() &&
1635 const_index == NULL) {
1636
1637 if (state->language_version == 100) {
1638 _mesa_glsl_warning(&loc, state,
1639 "sampler arrays indexed with non-constant "
1640 "expressions is optional in GLSL ES 1.00");
1641 } else if (state->language_version < 130) {
1642 _mesa_glsl_warning(&loc, state,
1643 "sampler arrays indexed with non-constant "
1644 "expressions is forbidden in GLSL 1.30 and "
1645 "later");
1646 } else {
1647 _mesa_glsl_error(&loc, state,
1648 "sampler arrays indexed with non-constant "
1649 "expressions is forbidden in GLSL 1.30 and "
1650 "later");
1651 error_emitted = true;
1652 }
1653 }
1654
1655 if (error_emitted)
1656 result->type = glsl_type::error_type;
1657
1658 break;
1659 }
1660
1661 case ast_function_call:
1662 /* Should *NEVER* get here. ast_function_call should always be handled
1663 * by ast_function_expression::hir.
1664 */
1665 assert(0);
1666 break;
1667
1668 case ast_identifier: {
1669 /* ast_identifier can appear several places in a full abstract syntax
1670 * tree. This particular use must be at location specified in the grammar
1671 * as 'variable_identifier'.
1672 */
1673 ir_variable *var =
1674 state->symbols->get_variable(this->primary_expression.identifier);
1675
1676 result = new(ctx) ir_dereference_variable(var);
1677
1678 if (var != NULL) {
1679 var->used = true;
1680 } else {
1681 _mesa_glsl_error(& loc, state, "`%s' undeclared",
1682 this->primary_expression.identifier);
1683
1684 error_emitted = true;
1685 }
1686 break;
1687 }
1688
1689 case ast_int_constant:
1690 result = new(ctx) ir_constant(this->primary_expression.int_constant);
1691 break;
1692
1693 case ast_uint_constant:
1694 result = new(ctx) ir_constant(this->primary_expression.uint_constant);
1695 break;
1696
1697 case ast_float_constant:
1698 result = new(ctx) ir_constant(this->primary_expression.float_constant);
1699 break;
1700
1701 case ast_bool_constant:
1702 result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant));
1703 break;
1704
1705 case ast_sequence: {
1706 /* It should not be possible to generate a sequence in the AST without
1707 * any expressions in it.
1708 */
1709 assert(!this->expressions.is_empty());
1710
1711 /* The r-value of a sequence is the last expression in the sequence. If
1712 * the other expressions in the sequence do not have side-effects (and
1713 * therefore add instructions to the instruction list), they get dropped
1714 * on the floor.
1715 */
1716 exec_node *previous_tail_pred = NULL;
1717 YYLTYPE previous_operand_loc = loc;
1718
1719 foreach_list_typed (ast_node, ast, link, &this->expressions) {
1720 /* If one of the operands of comma operator does not generate any
1721 * code, we want to emit a warning. At each pass through the loop
1722 * previous_tail_pred will point to the last instruction in the
1723 * stream *before* processing the previous operand. Naturally,
1724 * instructions->tail_pred will point to the last instruction in the
1725 * stream *after* processing the previous operand. If the two
1726 * pointers match, then the previous operand had no effect.
1727 *
1728 * The warning behavior here differs slightly from GCC. GCC will
1729 * only emit a warning if none of the left-hand operands have an
1730 * effect. However, it will emit a warning for each. I believe that
1731 * there are some cases in C (especially with GCC extensions) where
1732 * it is useful to have an intermediate step in a sequence have no
1733 * effect, but I don't think these cases exist in GLSL. Either way,
1734 * it would be a giant hassle to replicate that behavior.
1735 */
1736 if (previous_tail_pred == instructions->tail_pred) {
1737 _mesa_glsl_warning(&previous_operand_loc, state,
1738 "left-hand operand of comma expression has "
1739 "no effect");
1740 }
1741
1742 /* tail_pred is directly accessed instead of using the get_tail()
1743 * method for performance reasons. get_tail() has extra code to
1744 * return NULL when the list is empty. We don't care about that
1745 * here, so using tail_pred directly is fine.
1746 */
1747 previous_tail_pred = instructions->tail_pred;
1748 previous_operand_loc = ast->get_location();
1749
1750 result = ast->hir(instructions, state);
1751 }
1752
1753 /* Any errors should have already been emitted in the loop above.
1754 */
1755 error_emitted = true;
1756 break;
1757 }
1758 }
1759 type = NULL; /* use result->type, not type. */
1760 assert(result != NULL);
1761
1762 if (result->type->is_error() && !error_emitted)
1763 _mesa_glsl_error(& loc, state, "type mismatch");
1764
1765 return result;
1766 }
1767
1768
1769 ir_rvalue *
1770 ast_expression_statement::hir(exec_list *instructions,
1771 struct _mesa_glsl_parse_state *state)
1772 {
1773 /* It is possible to have expression statements that don't have an
1774 * expression. This is the solitary semicolon:
1775 *
1776 * for (i = 0; i < 5; i++)
1777 * ;
1778 *
1779 * In this case the expression will be NULL. Test for NULL and don't do
1780 * anything in that case.
1781 */
1782 if (expression != NULL)
1783 expression->hir(instructions, state);
1784
1785 /* Statements do not have r-values.
1786 */
1787 return NULL;
1788 }
1789
1790
1791 ir_rvalue *
1792 ast_compound_statement::hir(exec_list *instructions,
1793 struct _mesa_glsl_parse_state *state)
1794 {
1795 if (new_scope)
1796 state->symbols->push_scope();
1797
1798 foreach_list_typed (ast_node, ast, link, &this->statements)
1799 ast->hir(instructions, state);
1800
1801 if (new_scope)
1802 state->symbols->pop_scope();
1803
1804 /* Compound statements do not have r-values.
1805 */
1806 return NULL;
1807 }
1808
1809
1810 static const glsl_type *
1811 process_array_type(YYLTYPE *loc, const glsl_type *base, ast_node *array_size,
1812 struct _mesa_glsl_parse_state *state)
1813 {
1814 unsigned length = 0;
1815
1816 /* FINISHME: Reject delcarations of multidimensional arrays. */
1817
1818 if (array_size != NULL) {
1819 exec_list dummy_instructions;
1820 ir_rvalue *const ir = array_size->hir(& dummy_instructions, state);
1821 YYLTYPE loc = array_size->get_location();
1822
1823 if (ir != NULL) {
1824 if (!ir->type->is_integer()) {
1825 _mesa_glsl_error(& loc, state, "array size must be integer type");
1826 } else if (!ir->type->is_scalar()) {
1827 _mesa_glsl_error(& loc, state, "array size must be scalar type");
1828 } else {
1829 ir_constant *const size = ir->constant_expression_value();
1830
1831 if (size == NULL) {
1832 _mesa_glsl_error(& loc, state, "array size must be a "
1833 "constant valued expression");
1834 } else if (size->value.i[0] <= 0) {
1835 _mesa_glsl_error(& loc, state, "array size must be > 0");
1836 } else {
1837 assert(size->type == ir->type);
1838 length = size->value.u[0];
1839
1840 /* If the array size is const (and we've verified that
1841 * it is) then no instructions should have been emitted
1842 * when we converted it to HIR. If they were emitted,
1843 * then either the array size isn't const after all, or
1844 * we are emitting unnecessary instructions.
1845 */
1846 assert(dummy_instructions.is_empty());
1847 }
1848 }
1849 }
1850 } else if (state->es_shader) {
1851 /* Section 10.17 of the GLSL ES 1.00 specification states that unsized
1852 * array declarations have been removed from the language.
1853 */
1854 _mesa_glsl_error(loc, state, "unsized array declarations are not "
1855 "allowed in GLSL ES 1.00.");
1856 }
1857
1858 return glsl_type::get_array_instance(base, length);
1859 }
1860
1861
1862 const glsl_type *
1863 ast_type_specifier::glsl_type(const char **name,
1864 struct _mesa_glsl_parse_state *state) const
1865 {
1866 const struct glsl_type *type;
1867
1868 type = state->symbols->get_type(this->type_name);
1869 *name = this->type_name;
1870
1871 if (this->is_array) {
1872 YYLTYPE loc = this->get_location();
1873 type = process_array_type(&loc, type, this->array_size, state);
1874 }
1875
1876 return type;
1877 }
1878
1879
1880 static void
1881 apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
1882 ir_variable *var,
1883 struct _mesa_glsl_parse_state *state,
1884 YYLTYPE *loc)
1885 {
1886 if (qual->flags.q.invariant) {
1887 if (var->used) {
1888 _mesa_glsl_error(loc, state,
1889 "variable `%s' may not be redeclared "
1890 "`invariant' after being used",
1891 var->name);
1892 } else {
1893 var->invariant = 1;
1894 }
1895 }
1896
1897 if (qual->flags.q.constant || qual->flags.q.attribute
1898 || qual->flags.q.uniform
1899 || (qual->flags.q.varying && (state->target == fragment_shader)))
1900 var->read_only = 1;
1901
1902 if (qual->flags.q.centroid)
1903 var->centroid = 1;
1904
1905 if (qual->flags.q.attribute && state->target != vertex_shader) {
1906 var->type = glsl_type::error_type;
1907 _mesa_glsl_error(loc, state,
1908 "`attribute' variables may not be declared in the "
1909 "%s shader",
1910 _mesa_glsl_shader_target_name(state->target));
1911 }
1912
1913 /* From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
1914 *
1915 * "The varying qualifier can be used only with the data types
1916 * float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
1917 * these."
1918 */
1919 if (qual->flags.q.varying) {
1920 const glsl_type *non_array_type;
1921
1922 if (var->type && var->type->is_array())
1923 non_array_type = var->type->fields.array;
1924 else
1925 non_array_type = var->type;
1926
1927 if (non_array_type && non_array_type->base_type != GLSL_TYPE_FLOAT) {
1928 var->type = glsl_type::error_type;
1929 _mesa_glsl_error(loc, state,
1930 "varying variables must be of base type float");
1931 }
1932 }
1933
1934 /* If there is no qualifier that changes the mode of the variable, leave
1935 * the setting alone.
1936 */
1937 if (qual->flags.q.in && qual->flags.q.out)
1938 var->mode = ir_var_inout;
1939 else if (qual->flags.q.attribute || qual->flags.q.in
1940 || (qual->flags.q.varying && (state->target == fragment_shader)))
1941 var->mode = ir_var_in;
1942 else if (qual->flags.q.out
1943 || (qual->flags.q.varying && (state->target == vertex_shader)))
1944 var->mode = ir_var_out;
1945 else if (qual->flags.q.uniform)
1946 var->mode = ir_var_uniform;
1947
1948 if (state->all_invariant && (state->current_function == NULL)) {
1949 switch (state->target) {
1950 case vertex_shader:
1951 if (var->mode == ir_var_out)
1952 var->invariant = true;
1953 break;
1954 case geometry_shader:
1955 if ((var->mode == ir_var_in) || (var->mode == ir_var_out))
1956 var->invariant = true;
1957 break;
1958 case fragment_shader:
1959 if (var->mode == ir_var_in)
1960 var->invariant = true;
1961 break;
1962 }
1963 }
1964
1965 if (qual->flags.q.flat)
1966 var->interpolation = ir_var_flat;
1967 else if (qual->flags.q.noperspective)
1968 var->interpolation = ir_var_noperspective;
1969 else
1970 var->interpolation = ir_var_smooth;
1971
1972 var->pixel_center_integer = qual->flags.q.pixel_center_integer;
1973 var->origin_upper_left = qual->flags.q.origin_upper_left;
1974 if ((qual->flags.q.origin_upper_left || qual->flags.q.pixel_center_integer)
1975 && (strcmp(var->name, "gl_FragCoord") != 0)) {
1976 const char *const qual_string = (qual->flags.q.origin_upper_left)
1977 ? "origin_upper_left" : "pixel_center_integer";
1978
1979 _mesa_glsl_error(loc, state,
1980 "layout qualifier `%s' can only be applied to "
1981 "fragment shader input `gl_FragCoord'",
1982 qual_string);
1983 }
1984
1985 if (qual->flags.q.explicit_location) {
1986 const bool global_scope = (state->current_function == NULL);
1987 bool fail = false;
1988 const char *string = "";
1989
1990 /* In the vertex shader only shader inputs can be given explicit
1991 * locations.
1992 *
1993 * In the fragment shader only shader outputs can be given explicit
1994 * locations.
1995 */
1996 switch (state->target) {
1997 case vertex_shader:
1998 if (!global_scope || (var->mode != ir_var_in)) {
1999 fail = true;
2000 string = "input";
2001 }
2002 break;
2003
2004 case geometry_shader:
2005 _mesa_glsl_error(loc, state,
2006 "geometry shader variables cannot be given "
2007 "explicit locations\n");
2008 break;
2009
2010 case fragment_shader:
2011 if (!global_scope || (var->mode != ir_var_out)) {
2012 fail = true;
2013 string = "output";
2014 }
2015 break;
2016 };
2017
2018 if (fail) {
2019 _mesa_glsl_error(loc, state,
2020 "only %s shader %s variables can be given an "
2021 "explicit location\n",
2022 _mesa_glsl_shader_target_name(state->target),
2023 string);
2024 } else {
2025 var->explicit_location = true;
2026
2027 /* This bit of silliness is needed because invalid explicit locations
2028 * are supposed to be flagged during linking. Small negative values
2029 * biased by VERT_ATTRIB_GENERIC0 or FRAG_RESULT_DATA0 could alias
2030 * built-in values (e.g., -16+VERT_ATTRIB_GENERIC0 = VERT_ATTRIB_POS).
2031 * The linker needs to be able to differentiate these cases. This
2032 * ensures that negative values stay negative.
2033 */
2034 if (qual->location >= 0) {
2035 var->location = (state->target == vertex_shader)
2036 ? (qual->location + VERT_ATTRIB_GENERIC0)
2037 : (qual->location + FRAG_RESULT_DATA0);
2038 } else {
2039 var->location = qual->location;
2040 }
2041 }
2042 }
2043
2044 /* Does the declaration use the 'layout' keyword?
2045 */
2046 const bool uses_layout = qual->flags.q.pixel_center_integer
2047 || qual->flags.q.origin_upper_left
2048 || qual->flags.q.explicit_location;
2049
2050 /* Does the declaration use the deprecated 'attribute' or 'varying'
2051 * keywords?
2052 */
2053 const bool uses_deprecated_qualifier = qual->flags.q.attribute
2054 || qual->flags.q.varying;
2055
2056 /* Is the 'layout' keyword used with parameters that allow relaxed checking.
2057 * Many implementations of GL_ARB_fragment_coord_conventions_enable and some
2058 * implementations (only Mesa?) GL_ARB_explicit_attrib_location_enable
2059 * allowed the layout qualifier to be used with 'varying' and 'attribute'.
2060 * These extensions and all following extensions that add the 'layout'
2061 * keyword have been modified to require the use of 'in' or 'out'.
2062 *
2063 * The following extension do not allow the deprecated keywords:
2064 *
2065 * GL_AMD_conservative_depth
2066 * GL_ARB_gpu_shader5
2067 * GL_ARB_separate_shader_objects
2068 * GL_ARB_tesselation_shader
2069 * GL_ARB_transform_feedback3
2070 * GL_ARB_uniform_buffer_object
2071 *
2072 * It is unknown whether GL_EXT_shader_image_load_store or GL_NV_gpu_shader5
2073 * allow layout with the deprecated keywords.
2074 */
2075 const bool relaxed_layout_qualifier_checking =
2076 state->ARB_fragment_coord_conventions_enable;
2077
2078 if (uses_layout && uses_deprecated_qualifier) {
2079 if (relaxed_layout_qualifier_checking) {
2080 _mesa_glsl_warning(loc, state,
2081 "`layout' qualifier may not be used with "
2082 "`attribute' or `varying'");
2083 } else {
2084 _mesa_glsl_error(loc, state,
2085 "`layout' qualifier may not be used with "
2086 "`attribute' or `varying'");
2087 }
2088 }
2089
2090 /* Layout qualifiers for gl_FragDepth, which are enabled by extension
2091 * AMD_conservative_depth.
2092 */
2093 int depth_layout_count = qual->flags.q.depth_any
2094 + qual->flags.q.depth_greater
2095 + qual->flags.q.depth_less
2096 + qual->flags.q.depth_unchanged;
2097 if (depth_layout_count > 0
2098 && !state->AMD_conservative_depth_enable) {
2099 _mesa_glsl_error(loc, state,
2100 "extension GL_AMD_conservative_depth must be enabled "
2101 "to use depth layout qualifiers");
2102 } else if (depth_layout_count > 0
2103 && strcmp(var->name, "gl_FragDepth") != 0) {
2104 _mesa_glsl_error(loc, state,
2105 "depth layout qualifiers can be applied only to "
2106 "gl_FragDepth");
2107 } else if (depth_layout_count > 1
2108 && strcmp(var->name, "gl_FragDepth") == 0) {
2109 _mesa_glsl_error(loc, state,
2110 "at most one depth layout qualifier can be applied to "
2111 "gl_FragDepth");
2112 }
2113 if (qual->flags.q.depth_any)
2114 var->depth_layout = ir_depth_layout_any;
2115 else if (qual->flags.q.depth_greater)
2116 var->depth_layout = ir_depth_layout_greater;
2117 else if (qual->flags.q.depth_less)
2118 var->depth_layout = ir_depth_layout_less;
2119 else if (qual->flags.q.depth_unchanged)
2120 var->depth_layout = ir_depth_layout_unchanged;
2121 else
2122 var->depth_layout = ir_depth_layout_none;
2123 }
2124
2125 /**
2126 * Get the variable that is being redeclared by this declaration
2127 *
2128 * Semantic checks to verify the validity of the redeclaration are also
2129 * performed. If semantic checks fail, compilation error will be emitted via
2130 * \c _mesa_glsl_error, but a non-\c NULL pointer will still be returned.
2131 *
2132 * \returns
2133 * A pointer to an existing variable in the current scope if the declaration
2134 * is a redeclaration, \c NULL otherwise.
2135 */
2136 ir_variable *
2137 get_variable_being_redeclared(ir_variable *var, ast_declaration *decl,
2138 struct _mesa_glsl_parse_state *state)
2139 {
2140 /* Check if this declaration is actually a re-declaration, either to
2141 * resize an array or add qualifiers to an existing variable.
2142 *
2143 * This is allowed for variables in the current scope, or when at
2144 * global scope (for built-ins in the implicit outer scope).
2145 */
2146 ir_variable *earlier = state->symbols->get_variable(decl->identifier);
2147 if (earlier == NULL ||
2148 (state->current_function != NULL &&
2149 !state->symbols->name_declared_this_scope(decl->identifier))) {
2150 return NULL;
2151 }
2152
2153
2154 YYLTYPE loc = decl->get_location();
2155
2156 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
2157 *
2158 * "It is legal to declare an array without a size and then
2159 * later re-declare the same name as an array of the same
2160 * type and specify a size."
2161 */
2162 if ((earlier->type->array_size() == 0)
2163 && var->type->is_array()
2164 && (var->type->element_type() == earlier->type->element_type())) {
2165 /* FINISHME: This doesn't match the qualifiers on the two
2166 * FINISHME: declarations. It's not 100% clear whether this is
2167 * FINISHME: required or not.
2168 */
2169
2170 const unsigned size = unsigned(var->type->array_size());
2171 check_builtin_array_max_size(var->name, size, loc, state);
2172 if ((size > 0) && (size <= earlier->max_array_access)) {
2173 _mesa_glsl_error(& loc, state, "array size must be > %u due to "
2174 "previous access",
2175 earlier->max_array_access);
2176 }
2177
2178 earlier->type = var->type;
2179 delete var;
2180 var = NULL;
2181 } else if (state->ARB_fragment_coord_conventions_enable
2182 && strcmp(var->name, "gl_FragCoord") == 0
2183 && earlier->type == var->type
2184 && earlier->mode == var->mode) {
2185 /* Allow redeclaration of gl_FragCoord for ARB_fcc layout
2186 * qualifiers.
2187 */
2188 earlier->origin_upper_left = var->origin_upper_left;
2189 earlier->pixel_center_integer = var->pixel_center_integer;
2190
2191 /* According to section 4.3.7 of the GLSL 1.30 spec,
2192 * the following built-in varaibles can be redeclared with an
2193 * interpolation qualifier:
2194 * * gl_FrontColor
2195 * * gl_BackColor
2196 * * gl_FrontSecondaryColor
2197 * * gl_BackSecondaryColor
2198 * * gl_Color
2199 * * gl_SecondaryColor
2200 */
2201 } else if (state->language_version >= 130
2202 && (strcmp(var->name, "gl_FrontColor") == 0
2203 || strcmp(var->name, "gl_BackColor") == 0
2204 || strcmp(var->name, "gl_FrontSecondaryColor") == 0
2205 || strcmp(var->name, "gl_BackSecondaryColor") == 0
2206 || strcmp(var->name, "gl_Color") == 0
2207 || strcmp(var->name, "gl_SecondaryColor") == 0)
2208 && earlier->type == var->type
2209 && earlier->mode == var->mode) {
2210 earlier->interpolation = var->interpolation;
2211
2212 /* Layout qualifiers for gl_FragDepth. */
2213 } else if (state->AMD_conservative_depth_enable
2214 && strcmp(var->name, "gl_FragDepth") == 0
2215 && earlier->type == var->type
2216 && earlier->mode == var->mode) {
2217
2218 /** From the AMD_conservative_depth spec:
2219 * Within any shader, the first redeclarations of gl_FragDepth
2220 * must appear before any use of gl_FragDepth.
2221 */
2222 if (earlier->used) {
2223 _mesa_glsl_error(&loc, state,
2224 "the first redeclaration of gl_FragDepth "
2225 "must appear before any use of gl_FragDepth");
2226 }
2227
2228 /* Prevent inconsistent redeclaration of depth layout qualifier. */
2229 if (earlier->depth_layout != ir_depth_layout_none
2230 && earlier->depth_layout != var->depth_layout) {
2231 _mesa_glsl_error(&loc, state,
2232 "gl_FragDepth: depth layout is declared here "
2233 "as '%s, but it was previously declared as "
2234 "'%s'",
2235 depth_layout_string(var->depth_layout),
2236 depth_layout_string(earlier->depth_layout));
2237 }
2238
2239 earlier->depth_layout = var->depth_layout;
2240
2241 } else {
2242 _mesa_glsl_error(&loc, state, "`%s' redeclared", decl->identifier);
2243 }
2244
2245 return earlier;
2246 }
2247
2248 /**
2249 * Generate the IR for an initializer in a variable declaration
2250 */
2251 ir_rvalue *
2252 process_initializer(ir_variable *var, ast_declaration *decl,
2253 ast_fully_specified_type *type,
2254 exec_list *initializer_instructions,
2255 struct _mesa_glsl_parse_state *state)
2256 {
2257 ir_rvalue *result = NULL;
2258
2259 YYLTYPE initializer_loc = decl->initializer->get_location();
2260
2261 /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
2262 *
2263 * "All uniform variables are read-only and are initialized either
2264 * directly by an application via API commands, or indirectly by
2265 * OpenGL."
2266 */
2267 if ((state->language_version <= 110)
2268 && (var->mode == ir_var_uniform)) {
2269 _mesa_glsl_error(& initializer_loc, state,
2270 "cannot initialize uniforms in GLSL 1.10");
2271 }
2272
2273 if (var->type->is_sampler()) {
2274 _mesa_glsl_error(& initializer_loc, state,
2275 "cannot initialize samplers");
2276 }
2277
2278 if ((var->mode == ir_var_in) && (state->current_function == NULL)) {
2279 _mesa_glsl_error(& initializer_loc, state,
2280 "cannot initialize %s shader input / %s",
2281 _mesa_glsl_shader_target_name(state->target),
2282 (state->target == vertex_shader)
2283 ? "attribute" : "varying");
2284 }
2285
2286 ir_dereference *const lhs = new(state) ir_dereference_variable(var);
2287 ir_rvalue *rhs = decl->initializer->hir(initializer_instructions,
2288 state);
2289
2290 /* Calculate the constant value if this is a const or uniform
2291 * declaration.
2292 */
2293 if (type->qualifier.flags.q.constant
2294 || type->qualifier.flags.q.uniform) {
2295 ir_rvalue *new_rhs = validate_assignment(state, var->type, rhs, true);
2296 if (new_rhs != NULL) {
2297 rhs = new_rhs;
2298
2299 ir_constant *constant_value = rhs->constant_expression_value();
2300 if (!constant_value) {
2301 _mesa_glsl_error(& initializer_loc, state,
2302 "initializer of %s variable `%s' must be a "
2303 "constant expression",
2304 (type->qualifier.flags.q.constant)
2305 ? "const" : "uniform",
2306 decl->identifier);
2307 if (var->type->is_numeric()) {
2308 /* Reduce cascading errors. */
2309 var->constant_value = ir_constant::zero(state, var->type);
2310 }
2311 } else {
2312 rhs = constant_value;
2313 var->constant_value = constant_value;
2314 }
2315 } else {
2316 _mesa_glsl_error(&initializer_loc, state,
2317 "initializer of type %s cannot be assigned to "
2318 "variable of type %s",
2319 rhs->type->name, var->type->name);
2320 if (var->type->is_numeric()) {
2321 /* Reduce cascading errors. */
2322 var->constant_value = ir_constant::zero(state, var->type);
2323 }
2324 }
2325 }
2326
2327 if (rhs && !rhs->type->is_error()) {
2328 bool temp = var->read_only;
2329 if (type->qualifier.flags.q.constant)
2330 var->read_only = false;
2331
2332 /* Never emit code to initialize a uniform.
2333 */
2334 const glsl_type *initializer_type;
2335 if (!type->qualifier.flags.q.uniform) {
2336 result = do_assignment(initializer_instructions, state,
2337 lhs, rhs, true,
2338 type->get_location());
2339 initializer_type = result->type;
2340 } else
2341 initializer_type = rhs->type;
2342
2343 /* If the declared variable is an unsized array, it must inherrit
2344 * its full type from the initializer. A declaration such as
2345 *
2346 * uniform float a[] = float[](1.0, 2.0, 3.0, 3.0);
2347 *
2348 * becomes
2349 *
2350 * uniform float a[4] = float[](1.0, 2.0, 3.0, 3.0);
2351 *
2352 * The assignment generated in the if-statement (below) will also
2353 * automatically handle this case for non-uniforms.
2354 *
2355 * If the declared variable is not an array, the types must
2356 * already match exactly. As a result, the type assignment
2357 * here can be done unconditionally. For non-uniforms the call
2358 * to do_assignment can change the type of the initializer (via
2359 * the implicit conversion rules). For uniforms the initializer
2360 * must be a constant expression, and the type of that expression
2361 * was validated above.
2362 */
2363 var->type = initializer_type;
2364
2365 var->read_only = temp;
2366 }
2367
2368 return result;
2369 }
2370
2371 ir_rvalue *
2372 ast_declarator_list::hir(exec_list *instructions,
2373 struct _mesa_glsl_parse_state *state)
2374 {
2375 void *ctx = state;
2376 const struct glsl_type *decl_type;
2377 const char *type_name = NULL;
2378 ir_rvalue *result = NULL;
2379 YYLTYPE loc = this->get_location();
2380
2381 /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec:
2382 *
2383 * "To ensure that a particular output variable is invariant, it is
2384 * necessary to use the invariant qualifier. It can either be used to
2385 * qualify a previously declared variable as being invariant
2386 *
2387 * invariant gl_Position; // make existing gl_Position be invariant"
2388 *
2389 * In these cases the parser will set the 'invariant' flag in the declarator
2390 * list, and the type will be NULL.
2391 */
2392 if (this->invariant) {
2393 assert(this->type == NULL);
2394
2395 if (state->current_function != NULL) {
2396 _mesa_glsl_error(& loc, state,
2397 "All uses of `invariant' keyword must be at global "
2398 "scope\n");
2399 }
2400
2401 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
2402 assert(!decl->is_array);
2403 assert(decl->array_size == NULL);
2404 assert(decl->initializer == NULL);
2405
2406 ir_variable *const earlier =
2407 state->symbols->get_variable(decl->identifier);
2408 if (earlier == NULL) {
2409 _mesa_glsl_error(& loc, state,
2410 "Undeclared variable `%s' cannot be marked "
2411 "invariant\n", decl->identifier);
2412 } else if ((state->target == vertex_shader)
2413 && (earlier->mode != ir_var_out)) {
2414 _mesa_glsl_error(& loc, state,
2415 "`%s' cannot be marked invariant, vertex shader "
2416 "outputs only\n", decl->identifier);
2417 } else if ((state->target == fragment_shader)
2418 && (earlier->mode != ir_var_in)) {
2419 _mesa_glsl_error(& loc, state,
2420 "`%s' cannot be marked invariant, fragment shader "
2421 "inputs only\n", decl->identifier);
2422 } else if (earlier->used) {
2423 _mesa_glsl_error(& loc, state,
2424 "variable `%s' may not be redeclared "
2425 "`invariant' after being used",
2426 earlier->name);
2427 } else {
2428 earlier->invariant = true;
2429 }
2430 }
2431
2432 /* Invariant redeclarations do not have r-values.
2433 */
2434 return NULL;
2435 }
2436
2437 assert(this->type != NULL);
2438 assert(!this->invariant);
2439
2440 /* The type specifier may contain a structure definition. Process that
2441 * before any of the variable declarations.
2442 */
2443 (void) this->type->specifier->hir(instructions, state);
2444
2445 decl_type = this->type->specifier->glsl_type(& type_name, state);
2446 if (this->declarations.is_empty()) {
2447 if (decl_type != NULL) {
2448 /* Warn if this empty declaration is not for declaring a structure.
2449 */
2450 if (this->type->specifier->structure == NULL) {
2451 _mesa_glsl_warning(&loc, state, "empty declaration");
2452 }
2453 } else {
2454 _mesa_glsl_error(& loc, state, "incomplete declaration");
2455 }
2456 }
2457
2458 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
2459 const struct glsl_type *var_type;
2460 ir_variable *var;
2461
2462 /* FINISHME: Emit a warning if a variable declaration shadows a
2463 * FINISHME: declaration at a higher scope.
2464 */
2465
2466 if ((decl_type == NULL) || decl_type->is_void()) {
2467 if (type_name != NULL) {
2468 _mesa_glsl_error(& loc, state,
2469 "invalid type `%s' in declaration of `%s'",
2470 type_name, decl->identifier);
2471 } else {
2472 _mesa_glsl_error(& loc, state,
2473 "invalid type in declaration of `%s'",
2474 decl->identifier);
2475 }
2476 continue;
2477 }
2478
2479 if (decl->is_array) {
2480 var_type = process_array_type(&loc, decl_type, decl->array_size,
2481 state);
2482 } else {
2483 var_type = decl_type;
2484 }
2485
2486 var = new(ctx) ir_variable(var_type, decl->identifier, ir_var_auto);
2487
2488 /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
2489 *
2490 * "Global variables can only use the qualifiers const,
2491 * attribute, uni form, or varying. Only one may be
2492 * specified.
2493 *
2494 * Local variables can only use the qualifier const."
2495 *
2496 * This is relaxed in GLSL 1.30. It is also relaxed by any extension
2497 * that adds the 'layout' keyword.
2498 */
2499 if ((state->language_version < 130)
2500 && !state->ARB_explicit_attrib_location_enable
2501 && !state->ARB_fragment_coord_conventions_enable) {
2502 if (this->type->qualifier.flags.q.out) {
2503 _mesa_glsl_error(& loc, state,
2504 "`out' qualifier in declaration of `%s' "
2505 "only valid for function parameters in %s.",
2506 decl->identifier, state->version_string);
2507 }
2508 if (this->type->qualifier.flags.q.in) {
2509 _mesa_glsl_error(& loc, state,
2510 "`in' qualifier in declaration of `%s' "
2511 "only valid for function parameters in %s.",
2512 decl->identifier, state->version_string);
2513 }
2514 /* FINISHME: Test for other invalid qualifiers. */
2515 }
2516
2517 apply_type_qualifier_to_variable(& this->type->qualifier, var, state,
2518 & loc);
2519
2520 if (this->type->qualifier.flags.q.invariant) {
2521 if ((state->target == vertex_shader) && !(var->mode == ir_var_out ||
2522 var->mode == ir_var_inout)) {
2523 /* FINISHME: Note that this doesn't work for invariant on
2524 * a function signature outval
2525 */
2526 _mesa_glsl_error(& loc, state,
2527 "`%s' cannot be marked invariant, vertex shader "
2528 "outputs only\n", var->name);
2529 } else if ((state->target == fragment_shader) &&
2530 !(var->mode == ir_var_in || var->mode == ir_var_inout)) {
2531 /* FINISHME: Note that this doesn't work for invariant on
2532 * a function signature inval
2533 */
2534 _mesa_glsl_error(& loc, state,
2535 "`%s' cannot be marked invariant, fragment shader "
2536 "inputs only\n", var->name);
2537 }
2538 }
2539
2540 if (state->current_function != NULL) {
2541 const char *mode = NULL;
2542 const char *extra = "";
2543
2544 /* There is no need to check for 'inout' here because the parser will
2545 * only allow that in function parameter lists.
2546 */
2547 if (this->type->qualifier.flags.q.attribute) {
2548 mode = "attribute";
2549 } else if (this->type->qualifier.flags.q.uniform) {
2550 mode = "uniform";
2551 } else if (this->type->qualifier.flags.q.varying) {
2552 mode = "varying";
2553 } else if (this->type->qualifier.flags.q.in) {
2554 mode = "in";
2555 extra = " or in function parameter list";
2556 } else if (this->type->qualifier.flags.q.out) {
2557 mode = "out";
2558 extra = " or in function parameter list";
2559 }
2560
2561 if (mode) {
2562 _mesa_glsl_error(& loc, state,
2563 "%s variable `%s' must be declared at "
2564 "global scope%s",
2565 mode, var->name, extra);
2566 }
2567 } else if (var->mode == ir_var_in) {
2568 var->read_only = true;
2569
2570 if (state->target == vertex_shader) {
2571 bool error_emitted = false;
2572
2573 /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
2574 *
2575 * "Vertex shader inputs can only be float, floating-point
2576 * vectors, matrices, signed and unsigned integers and integer
2577 * vectors. Vertex shader inputs can also form arrays of these
2578 * types, but not structures."
2579 *
2580 * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
2581 *
2582 * "Vertex shader inputs can only be float, floating-point
2583 * vectors, matrices, signed and unsigned integers and integer
2584 * vectors. They cannot be arrays or structures."
2585 *
2586 * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
2587 *
2588 * "The attribute qualifier can be used only with float,
2589 * floating-point vectors, and matrices. Attribute variables
2590 * cannot be declared as arrays or structures."
2591 */
2592 const glsl_type *check_type = var->type->is_array()
2593 ? var->type->fields.array : var->type;
2594
2595 switch (check_type->base_type) {
2596 case GLSL_TYPE_FLOAT:
2597 break;
2598 case GLSL_TYPE_UINT:
2599 case GLSL_TYPE_INT:
2600 if (state->language_version > 120)
2601 break;
2602 /* FALLTHROUGH */
2603 default:
2604 _mesa_glsl_error(& loc, state,
2605 "vertex shader input / attribute cannot have "
2606 "type %s`%s'",
2607 var->type->is_array() ? "array of " : "",
2608 check_type->name);
2609 error_emitted = true;
2610 }
2611
2612 if (!error_emitted && (state->language_version <= 130)
2613 && var->type->is_array()) {
2614 _mesa_glsl_error(& loc, state,
2615 "vertex shader input / attribute cannot have "
2616 "array type");
2617 error_emitted = true;
2618 }
2619 }
2620 }
2621
2622 /* Integer vertex outputs must be qualified with 'flat'.
2623 *
2624 * From section 4.3.6 of the GLSL 1.30 spec:
2625 * "If a vertex output is a signed or unsigned integer or integer
2626 * vector, then it must be qualified with the interpolation qualifier
2627 * flat."
2628 */
2629 if (state->language_version >= 130
2630 && state->target == vertex_shader
2631 && state->current_function == NULL
2632 && var->type->is_integer()
2633 && var->mode == ir_var_out
2634 && var->interpolation != ir_var_flat) {
2635
2636 _mesa_glsl_error(&loc, state, "If a vertex output is an integer, "
2637 "then it must be qualified with 'flat'");
2638 }
2639
2640
2641 /* Interpolation qualifiers cannot be applied to 'centroid' and
2642 * 'centroid varying'.
2643 *
2644 * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
2645 * "interpolation qualifiers may only precede the qualifiers in,
2646 * centroid in, out, or centroid out in a declaration. They do not apply
2647 * to the deprecated storage qualifiers varying or centroid varying."
2648 */
2649 if (state->language_version >= 130
2650 && this->type->qualifier.has_interpolation()
2651 && this->type->qualifier.flags.q.varying) {
2652
2653 const char *i = this->type->qualifier.interpolation_string();
2654 assert(i != NULL);
2655 const char *s;
2656 if (this->type->qualifier.flags.q.centroid)
2657 s = "centroid varying";
2658 else
2659 s = "varying";
2660
2661 _mesa_glsl_error(&loc, state,
2662 "qualifier '%s' cannot be applied to the "
2663 "deprecated storage qualifier '%s'", i, s);
2664 }
2665
2666
2667 /* Interpolation qualifiers can only apply to vertex shader outputs and
2668 * fragment shader inputs.
2669 *
2670 * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
2671 * "Outputs from a vertex shader (out) and inputs to a fragment
2672 * shader (in) can be further qualified with one or more of these
2673 * interpolation qualifiers"
2674 */
2675 if (state->language_version >= 130
2676 && this->type->qualifier.has_interpolation()) {
2677
2678 const char *i = this->type->qualifier.interpolation_string();
2679 assert(i != NULL);
2680
2681 switch (state->target) {
2682 case vertex_shader:
2683 if (this->type->qualifier.flags.q.in) {
2684 _mesa_glsl_error(&loc, state,
2685 "qualifier '%s' cannot be applied to vertex "
2686 "shader inputs", i);
2687 }
2688 break;
2689 case fragment_shader:
2690 if (this->type->qualifier.flags.q.out) {
2691 _mesa_glsl_error(&loc, state,
2692 "qualifier '%s' cannot be applied to fragment "
2693 "shader outputs", i);
2694 }
2695 break;
2696 default:
2697 assert(0);
2698 }
2699 }
2700
2701
2702 /* From section 4.3.4 of the GLSL 1.30 spec:
2703 * "It is an error to use centroid in in a vertex shader."
2704 */
2705 if (state->language_version >= 130
2706 && this->type->qualifier.flags.q.centroid
2707 && this->type->qualifier.flags.q.in
2708 && state->target == vertex_shader) {
2709
2710 _mesa_glsl_error(&loc, state,
2711 "'centroid in' cannot be used in a vertex shader");
2712 }
2713
2714
2715 /* Precision qualifiers exists only in GLSL versions 1.00 and >= 1.30.
2716 */
2717 if (this->type->specifier->precision != ast_precision_none
2718 && state->language_version != 100
2719 && state->language_version < 130) {
2720
2721 _mesa_glsl_error(&loc, state,
2722 "precision qualifiers are supported only in GLSL ES "
2723 "1.00, and GLSL 1.30 and later");
2724 }
2725
2726
2727 /* Precision qualifiers only apply to floating point and integer types.
2728 *
2729 * From section 4.5.2 of the GLSL 1.30 spec:
2730 * "Any floating point or any integer declaration can have the type
2731 * preceded by one of these precision qualifiers [...] Literal
2732 * constants do not have precision qualifiers. Neither do Boolean
2733 * variables.
2734 *
2735 * In GLSL ES, sampler types are also allowed.
2736 *
2737 * From page 87 of the GLSL ES spec:
2738 * "RESOLUTION: Allow sampler types to take a precision qualifier."
2739 */
2740 if (this->type->specifier->precision != ast_precision_none
2741 && !var->type->is_float()
2742 && !var->type->is_integer()
2743 && !(var->type->is_sampler() && state->es_shader)
2744 && !(var->type->is_array()
2745 && (var->type->fields.array->is_float()
2746 || var->type->fields.array->is_integer()))) {
2747
2748 _mesa_glsl_error(&loc, state,
2749 "precision qualifiers apply only to floating point"
2750 "%s types", state->es_shader ? ", integer, and sampler"
2751 : "and integer");
2752 }
2753
2754 /* From page 17 (page 23 of the PDF) of the GLSL 1.20 spec:
2755 *
2756 * "[Sampler types] can only be declared as function
2757 * parameters or uniform variables (see Section 4.3.5
2758 * "Uniform")".
2759 */
2760 if (var_type->contains_sampler() &&
2761 !this->type->qualifier.flags.q.uniform) {
2762 _mesa_glsl_error(&loc, state, "samplers must be declared uniform");
2763 }
2764
2765 /* Process the initializer and add its instructions to a temporary
2766 * list. This list will be added to the instruction stream (below) after
2767 * the declaration is added. This is done because in some cases (such as
2768 * redeclarations) the declaration may not actually be added to the
2769 * instruction stream.
2770 */
2771 exec_list initializer_instructions;
2772 ir_variable *earlier = get_variable_being_redeclared(var, decl, state);
2773
2774 if (decl->initializer != NULL) {
2775 result = process_initializer((earlier == NULL) ? var : earlier,
2776 decl, this->type,
2777 &initializer_instructions, state);
2778 }
2779
2780 /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
2781 *
2782 * "It is an error to write to a const variable outside of
2783 * its declaration, so they must be initialized when
2784 * declared."
2785 */
2786 if (this->type->qualifier.flags.q.constant && decl->initializer == NULL) {
2787 _mesa_glsl_error(& loc, state,
2788 "const declaration of `%s' must be initialized",
2789 decl->identifier);
2790 }
2791
2792 /* If the declaration is not a redeclaration, there are a few additional
2793 * semantic checks that must be applied. In addition, variable that was
2794 * created for the declaration should be added to the IR stream.
2795 */
2796 if (earlier == NULL) {
2797 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
2798 *
2799 * "Identifiers starting with "gl_" are reserved for use by
2800 * OpenGL, and may not be declared in a shader as either a
2801 * variable or a function."
2802 */
2803 if (strncmp(decl->identifier, "gl_", 3) == 0)
2804 _mesa_glsl_error(& loc, state,
2805 "identifier `%s' uses reserved `gl_' prefix",
2806 decl->identifier);
2807
2808 /* Add the variable to the symbol table. Note that the initializer's
2809 * IR was already processed earlier (though it hasn't been emitted
2810 * yet), without the variable in scope.
2811 *
2812 * This differs from most C-like languages, but it follows the GLSL
2813 * specification. From page 28 (page 34 of the PDF) of the GLSL 1.50
2814 * spec:
2815 *
2816 * "Within a declaration, the scope of a name starts immediately
2817 * after the initializer if present or immediately after the name
2818 * being declared if not."
2819 */
2820 if (!state->symbols->add_variable(var)) {
2821 YYLTYPE loc = this->get_location();
2822 _mesa_glsl_error(&loc, state, "name `%s' already taken in the "
2823 "current scope", decl->identifier);
2824 continue;
2825 }
2826
2827 /* Push the variable declaration to the top. It means that all the
2828 * variable declarations will appear in a funny last-to-first order,
2829 * but otherwise we run into trouble if a function is prototyped, a
2830 * global var is decled, then the function is defined with usage of
2831 * the global var. See glslparsertest's CorrectModule.frag.
2832 */
2833 instructions->push_head(var);
2834 }
2835
2836 instructions->append_list(&initializer_instructions);
2837 }
2838
2839
2840 /* Generally, variable declarations do not have r-values. However,
2841 * one is used for the declaration in
2842 *
2843 * while (bool b = some_condition()) {
2844 * ...
2845 * }
2846 *
2847 * so we return the rvalue from the last seen declaration here.
2848 */
2849 return result;
2850 }
2851
2852
2853 ir_rvalue *
2854 ast_parameter_declarator::hir(exec_list *instructions,
2855 struct _mesa_glsl_parse_state *state)
2856 {
2857 void *ctx = state;
2858 const struct glsl_type *type;
2859 const char *name = NULL;
2860 YYLTYPE loc = this->get_location();
2861
2862 type = this->type->specifier->glsl_type(& name, state);
2863
2864 if (type == NULL) {
2865 if (name != NULL) {
2866 _mesa_glsl_error(& loc, state,
2867 "invalid type `%s' in declaration of `%s'",
2868 name, this->identifier);
2869 } else {
2870 _mesa_glsl_error(& loc, state,
2871 "invalid type in declaration of `%s'",
2872 this->identifier);
2873 }
2874
2875 type = glsl_type::error_type;
2876 }
2877
2878 /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
2879 *
2880 * "Functions that accept no input arguments need not use void in the
2881 * argument list because prototypes (or definitions) are required and
2882 * therefore there is no ambiguity when an empty argument list "( )" is
2883 * declared. The idiom "(void)" as a parameter list is provided for
2884 * convenience."
2885 *
2886 * Placing this check here prevents a void parameter being set up
2887 * for a function, which avoids tripping up checks for main taking
2888 * parameters and lookups of an unnamed symbol.
2889 */
2890 if (type->is_void()) {
2891 if (this->identifier != NULL)
2892 _mesa_glsl_error(& loc, state,
2893 "named parameter cannot have type `void'");
2894
2895 is_void = true;
2896 return NULL;
2897 }
2898
2899 if (formal_parameter && (this->identifier == NULL)) {
2900 _mesa_glsl_error(& loc, state, "formal parameter lacks a name");
2901 return NULL;
2902 }
2903
2904 /* This only handles "vec4 foo[..]". The earlier specifier->glsl_type(...)
2905 * call already handled the "vec4[..] foo" case.
2906 */
2907 if (this->is_array) {
2908 type = process_array_type(&loc, type, this->array_size, state);
2909 }
2910
2911 if (type->array_size() == 0) {
2912 _mesa_glsl_error(&loc, state, "arrays passed as parameters must have "
2913 "a declared size.");
2914 type = glsl_type::error_type;
2915 }
2916
2917 is_void = false;
2918 ir_variable *var = new(ctx) ir_variable(type, this->identifier, ir_var_in);
2919
2920 /* Apply any specified qualifiers to the parameter declaration. Note that
2921 * for function parameters the default mode is 'in'.
2922 */
2923 apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc);
2924
2925 /* From page 17 (page 23 of the PDF) of the GLSL 1.20 spec:
2926 *
2927 * "Samplers cannot be treated as l-values; hence cannot be used
2928 * as out or inout function parameters, nor can they be assigned
2929 * into."
2930 */
2931 if ((var->mode == ir_var_inout || var->mode == ir_var_out)
2932 && type->contains_sampler()) {
2933 _mesa_glsl_error(&loc, state, "out and inout parameters cannot contain samplers");
2934 type = glsl_type::error_type;
2935 }
2936
2937 /* From page 39 (page 45 of the PDF) of the GLSL 1.10 spec:
2938 *
2939 * "When calling a function, expressions that do not evaluate to
2940 * l-values cannot be passed to parameters declared as out or inout."
2941 *
2942 * From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
2943 *
2944 * "Other binary or unary expressions, non-dereferenced arrays,
2945 * function names, swizzles with repeated fields, and constants
2946 * cannot be l-values."
2947 *
2948 * So for GLSL 1.10, passing an array as an out or inout parameter is not
2949 * allowed. This restriction is removed in GLSL 1.20, and in GLSL ES.
2950 */
2951 if ((var->mode == ir_var_inout || var->mode == ir_var_out)
2952 && type->is_array() && state->language_version == 110) {
2953 _mesa_glsl_error(&loc, state, "Arrays cannot be out or inout parameters in GLSL 1.10");
2954 type = glsl_type::error_type;
2955 }
2956
2957 instructions->push_tail(var);
2958
2959 /* Parameter declarations do not have r-values.
2960 */
2961 return NULL;
2962 }
2963
2964
2965 void
2966 ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters,
2967 bool formal,
2968 exec_list *ir_parameters,
2969 _mesa_glsl_parse_state *state)
2970 {
2971 ast_parameter_declarator *void_param = NULL;
2972 unsigned count = 0;
2973
2974 foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) {
2975 param->formal_parameter = formal;
2976 param->hir(ir_parameters, state);
2977
2978 if (param->is_void)
2979 void_param = param;
2980
2981 count++;
2982 }
2983
2984 if ((void_param != NULL) && (count > 1)) {
2985 YYLTYPE loc = void_param->get_location();
2986
2987 _mesa_glsl_error(& loc, state,
2988 "`void' parameter must be only parameter");
2989 }
2990 }
2991
2992
2993 void
2994 emit_function(_mesa_glsl_parse_state *state, ir_function *f)
2995 {
2996 /* IR invariants disallow function declarations or definitions
2997 * nested within other function definitions. But there is no
2998 * requirement about the relative order of function declarations
2999 * and definitions with respect to one another. So simply insert
3000 * the new ir_function block at the end of the toplevel instruction
3001 * list.
3002 */
3003 state->toplevel_ir->push_tail(f);
3004 }
3005
3006
3007 ir_rvalue *
3008 ast_function::hir(exec_list *instructions,
3009 struct _mesa_glsl_parse_state *state)
3010 {
3011 void *ctx = state;
3012 ir_function *f = NULL;
3013 ir_function_signature *sig = NULL;
3014 exec_list hir_parameters;
3015
3016 const char *const name = identifier;
3017
3018 /* New functions are always added to the top-level IR instruction stream,
3019 * so this instruction list pointer is ignored. See also emit_function
3020 * (called below).
3021 */
3022 (void) instructions;
3023
3024 /* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec,
3025 *
3026 * "Function declarations (prototypes) cannot occur inside of functions;
3027 * they must be at global scope, or for the built-in functions, outside
3028 * the global scope."
3029 *
3030 * From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec,
3031 *
3032 * "User defined functions may only be defined within the global scope."
3033 *
3034 * Note that this language does not appear in GLSL 1.10.
3035 */
3036 if ((state->current_function != NULL) && (state->language_version != 110)) {
3037 YYLTYPE loc = this->get_location();
3038 _mesa_glsl_error(&loc, state,
3039 "declaration of function `%s' not allowed within "
3040 "function body", name);
3041 }
3042
3043 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
3044 *
3045 * "Identifiers starting with "gl_" are reserved for use by
3046 * OpenGL, and may not be declared in a shader as either a
3047 * variable or a function."
3048 */
3049 if (strncmp(name, "gl_", 3) == 0) {
3050 YYLTYPE loc = this->get_location();
3051 _mesa_glsl_error(&loc, state,
3052 "identifier `%s' uses reserved `gl_' prefix", name);
3053 }
3054
3055 /* Convert the list of function parameters to HIR now so that they can be
3056 * used below to compare this function's signature with previously seen
3057 * signatures for functions with the same name.
3058 */
3059 ast_parameter_declarator::parameters_to_hir(& this->parameters,
3060 is_definition,
3061 & hir_parameters, state);
3062
3063 const char *return_type_name;
3064 const glsl_type *return_type =
3065 this->return_type->specifier->glsl_type(& return_type_name, state);
3066
3067 if (!return_type) {
3068 YYLTYPE loc = this->get_location();
3069 _mesa_glsl_error(&loc, state,
3070 "function `%s' has undeclared return type `%s'",
3071 name, return_type_name);
3072 return_type = glsl_type::error_type;
3073 }
3074
3075 /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec:
3076 * "No qualifier is allowed on the return type of a function."
3077 */
3078 if (this->return_type->has_qualifiers()) {
3079 YYLTYPE loc = this->get_location();
3080 _mesa_glsl_error(& loc, state,
3081 "function `%s' return type has qualifiers", name);
3082 }
3083
3084 /* From page 17 (page 23 of the PDF) of the GLSL 1.20 spec:
3085 *
3086 * "[Sampler types] can only be declared as function parameters
3087 * or uniform variables (see Section 4.3.5 "Uniform")".
3088 */
3089 if (return_type->contains_sampler()) {
3090 YYLTYPE loc = this->get_location();
3091 _mesa_glsl_error(&loc, state,
3092 "function `%s' return type can't contain a sampler",
3093 name);
3094 }
3095
3096 /* Verify that this function's signature either doesn't match a previously
3097 * seen signature for a function with the same name, or, if a match is found,
3098 * that the previously seen signature does not have an associated definition.
3099 */
3100 f = state->symbols->get_function(name);
3101 if (f != NULL && (state->es_shader || f->has_user_signature())) {
3102 sig = f->exact_matching_signature(&hir_parameters);
3103 if (sig != NULL) {
3104 const char *badvar = sig->qualifiers_match(&hir_parameters);
3105 if (badvar != NULL) {
3106 YYLTYPE loc = this->get_location();
3107
3108 _mesa_glsl_error(&loc, state, "function `%s' parameter `%s' "
3109 "qualifiers don't match prototype", name, badvar);
3110 }
3111
3112 if (sig->return_type != return_type) {
3113 YYLTYPE loc = this->get_location();
3114
3115 _mesa_glsl_error(&loc, state, "function `%s' return type doesn't "
3116 "match prototype", name);
3117 }
3118
3119 if (is_definition && sig->is_defined) {
3120 YYLTYPE loc = this->get_location();
3121
3122 _mesa_glsl_error(& loc, state, "function `%s' redefined", name);
3123 }
3124 }
3125 } else {
3126 f = new(ctx) ir_function(name);
3127 if (!state->symbols->add_function(f)) {
3128 /* This function name shadows a non-function use of the same name. */
3129 YYLTYPE loc = this->get_location();
3130
3131 _mesa_glsl_error(&loc, state, "function name `%s' conflicts with "
3132 "non-function", name);
3133 return NULL;
3134 }
3135
3136 emit_function(state, f);
3137 }
3138
3139 /* Verify the return type of main() */
3140 if (strcmp(name, "main") == 0) {
3141 if (! return_type->is_void()) {
3142 YYLTYPE loc = this->get_location();
3143
3144 _mesa_glsl_error(& loc, state, "main() must return void");
3145 }
3146
3147 if (!hir_parameters.is_empty()) {
3148 YYLTYPE loc = this->get_location();
3149
3150 _mesa_glsl_error(& loc, state, "main() must not take any parameters");
3151 }
3152 }
3153
3154 /* Finish storing the information about this new function in its signature.
3155 */
3156 if (sig == NULL) {
3157 sig = new(ctx) ir_function_signature(return_type);
3158 f->add_signature(sig);
3159 }
3160
3161 sig->replace_parameters(&hir_parameters);
3162 signature = sig;
3163
3164 /* Function declarations (prototypes) do not have r-values.
3165 */
3166 return NULL;
3167 }
3168
3169
3170 ir_rvalue *
3171 ast_function_definition::hir(exec_list *instructions,
3172 struct _mesa_glsl_parse_state *state)
3173 {
3174 prototype->is_definition = true;
3175 prototype->hir(instructions, state);
3176
3177 ir_function_signature *signature = prototype->signature;
3178 if (signature == NULL)
3179 return NULL;
3180
3181 assert(state->current_function == NULL);
3182 state->current_function = signature;
3183 state->found_return = false;
3184
3185 /* Duplicate parameters declared in the prototype as concrete variables.
3186 * Add these to the symbol table.
3187 */
3188 state->symbols->push_scope();
3189 foreach_iter(exec_list_iterator, iter, signature->parameters) {
3190 ir_variable *const var = ((ir_instruction *) iter.get())->as_variable();
3191
3192 assert(var != NULL);
3193
3194 /* The only way a parameter would "exist" is if two parameters have
3195 * the same name.
3196 */
3197 if (state->symbols->name_declared_this_scope(var->name)) {
3198 YYLTYPE loc = this->get_location();
3199
3200 _mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name);
3201 } else {
3202 state->symbols->add_variable(var);
3203 }
3204 }
3205
3206 /* Convert the body of the function to HIR. */
3207 this->body->hir(&signature->body, state);
3208 signature->is_defined = true;
3209
3210 state->symbols->pop_scope();
3211
3212 assert(state->current_function == signature);
3213 state->current_function = NULL;
3214
3215 if (!signature->return_type->is_void() && !state->found_return) {
3216 YYLTYPE loc = this->get_location();
3217 _mesa_glsl_error(& loc, state, "function `%s' has non-void return type "
3218 "%s, but no return statement",
3219 signature->function_name(),
3220 signature->return_type->name);
3221 }
3222
3223 /* Function definitions do not have r-values.
3224 */
3225 return NULL;
3226 }
3227
3228
3229 ir_rvalue *
3230 ast_jump_statement::hir(exec_list *instructions,
3231 struct _mesa_glsl_parse_state *state)
3232 {
3233 void *ctx = state;
3234
3235 switch (mode) {
3236 case ast_return: {
3237 ir_return *inst;
3238 assert(state->current_function);
3239
3240 if (opt_return_value) {
3241 ir_rvalue *const ret = opt_return_value->hir(instructions, state);
3242
3243 /* The value of the return type can be NULL if the shader says
3244 * 'return foo();' and foo() is a function that returns void.
3245 *
3246 * NOTE: The GLSL spec doesn't say that this is an error. The type
3247 * of the return value is void. If the return type of the function is
3248 * also void, then this should compile without error. Seriously.
3249 */
3250 const glsl_type *const ret_type =
3251 (ret == NULL) ? glsl_type::void_type : ret->type;
3252
3253 /* Implicit conversions are not allowed for return values. */
3254 if (state->current_function->return_type != ret_type) {
3255 YYLTYPE loc = this->get_location();
3256
3257 _mesa_glsl_error(& loc, state,
3258 "`return' with wrong type %s, in function `%s' "
3259 "returning %s",
3260 ret_type->name,
3261 state->current_function->function_name(),
3262 state->current_function->return_type->name);
3263 }
3264
3265 inst = new(ctx) ir_return(ret);
3266 } else {
3267 if (state->current_function->return_type->base_type !=
3268 GLSL_TYPE_VOID) {
3269 YYLTYPE loc = this->get_location();
3270
3271 _mesa_glsl_error(& loc, state,
3272 "`return' with no value, in function %s returning "
3273 "non-void",
3274 state->current_function->function_name());
3275 }
3276 inst = new(ctx) ir_return;
3277 }
3278
3279 state->found_return = true;
3280 instructions->push_tail(inst);
3281 break;
3282 }
3283
3284 case ast_discard:
3285 if (state->target != fragment_shader) {
3286 YYLTYPE loc = this->get_location();
3287
3288 _mesa_glsl_error(& loc, state,
3289 "`discard' may only appear in a fragment shader");
3290 }
3291 instructions->push_tail(new(ctx) ir_discard);
3292 break;
3293
3294 case ast_break:
3295 case ast_continue:
3296 /* FINISHME: Handle switch-statements. They cannot contain 'continue',
3297 * FINISHME: and they use a different IR instruction for 'break'.
3298 */
3299 /* FINISHME: Correctly handle the nesting. If a switch-statement is
3300 * FINISHME: inside a loop, a 'continue' is valid and will bind to the
3301 * FINISHME: loop.
3302 */
3303 if (state->loop_or_switch_nesting == NULL) {
3304 YYLTYPE loc = this->get_location();
3305
3306 _mesa_glsl_error(& loc, state,
3307 "`%s' may only appear in a loop",
3308 (mode == ast_break) ? "break" : "continue");
3309 } else {
3310 ir_loop *const loop = state->loop_or_switch_nesting->as_loop();
3311
3312 /* Inline the for loop expression again, since we don't know
3313 * where near the end of the loop body the normal copy of it
3314 * is going to be placed.
3315 */
3316 if (mode == ast_continue &&
3317 state->loop_or_switch_nesting_ast->rest_expression) {
3318 state->loop_or_switch_nesting_ast->rest_expression->hir(instructions,
3319 state);
3320 }
3321
3322 if (loop != NULL) {
3323 ir_loop_jump *const jump =
3324 new(ctx) ir_loop_jump((mode == ast_break)
3325 ? ir_loop_jump::jump_break
3326 : ir_loop_jump::jump_continue);
3327 instructions->push_tail(jump);
3328 }
3329 }
3330
3331 break;
3332 }
3333
3334 /* Jump instructions do not have r-values.
3335 */
3336 return NULL;
3337 }
3338
3339
3340 ir_rvalue *
3341 ast_selection_statement::hir(exec_list *instructions,
3342 struct _mesa_glsl_parse_state *state)
3343 {
3344 void *ctx = state;
3345
3346 ir_rvalue *const condition = this->condition->hir(instructions, state);
3347
3348 /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
3349 *
3350 * "Any expression whose type evaluates to a Boolean can be used as the
3351 * conditional expression bool-expression. Vector types are not accepted
3352 * as the expression to if."
3353 *
3354 * The checks are separated so that higher quality diagnostics can be
3355 * generated for cases where both rules are violated.
3356 */
3357 if (!condition->type->is_boolean() || !condition->type->is_scalar()) {
3358 YYLTYPE loc = this->condition->get_location();
3359
3360 _mesa_glsl_error(& loc, state, "if-statement condition must be scalar "
3361 "boolean");
3362 }
3363
3364 ir_if *const stmt = new(ctx) ir_if(condition);
3365
3366 if (then_statement != NULL) {
3367 state->symbols->push_scope();
3368 then_statement->hir(& stmt->then_instructions, state);
3369 state->symbols->pop_scope();
3370 }
3371
3372 if (else_statement != NULL) {
3373 state->symbols->push_scope();
3374 else_statement->hir(& stmt->else_instructions, state);
3375 state->symbols->pop_scope();
3376 }
3377
3378 instructions->push_tail(stmt);
3379
3380 /* if-statements do not have r-values.
3381 */
3382 return NULL;
3383 }
3384
3385
3386 void
3387 ast_iteration_statement::condition_to_hir(ir_loop *stmt,
3388 struct _mesa_glsl_parse_state *state)
3389 {
3390 void *ctx = state;
3391
3392 if (condition != NULL) {
3393 ir_rvalue *const cond =
3394 condition->hir(& stmt->body_instructions, state);
3395
3396 if ((cond == NULL)
3397 || !cond->type->is_boolean() || !cond->type->is_scalar()) {
3398 YYLTYPE loc = condition->get_location();
3399
3400 _mesa_glsl_error(& loc, state,
3401 "loop condition must be scalar boolean");
3402 } else {
3403 /* As the first code in the loop body, generate a block that looks
3404 * like 'if (!condition) break;' as the loop termination condition.
3405 */
3406 ir_rvalue *const not_cond =
3407 new(ctx) ir_expression(ir_unop_logic_not, glsl_type::bool_type, cond,
3408 NULL);
3409
3410 ir_if *const if_stmt = new(ctx) ir_if(not_cond);
3411
3412 ir_jump *const break_stmt =
3413 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
3414
3415 if_stmt->then_instructions.push_tail(break_stmt);
3416 stmt->body_instructions.push_tail(if_stmt);
3417 }
3418 }
3419 }
3420
3421
3422 ir_rvalue *
3423 ast_iteration_statement::hir(exec_list *instructions,
3424 struct _mesa_glsl_parse_state *state)
3425 {
3426 void *ctx = state;
3427
3428 /* For-loops and while-loops start a new scope, but do-while loops do not.
3429 */
3430 if (mode != ast_do_while)
3431 state->symbols->push_scope();
3432
3433 if (init_statement != NULL)
3434 init_statement->hir(instructions, state);
3435
3436 ir_loop *const stmt = new(ctx) ir_loop();
3437 instructions->push_tail(stmt);
3438
3439 /* Track the current loop and / or switch-statement nesting.
3440 */
3441 ir_instruction *const nesting = state->loop_or_switch_nesting;
3442 ast_iteration_statement *nesting_ast = state->loop_or_switch_nesting_ast;
3443
3444 state->loop_or_switch_nesting = stmt;
3445 state->loop_or_switch_nesting_ast = this;
3446
3447 if (mode != ast_do_while)
3448 condition_to_hir(stmt, state);
3449
3450 if (body != NULL)
3451 body->hir(& stmt->body_instructions, state);
3452
3453 if (rest_expression != NULL)
3454 rest_expression->hir(& stmt->body_instructions, state);
3455
3456 if (mode == ast_do_while)
3457 condition_to_hir(stmt, state);
3458
3459 if (mode != ast_do_while)
3460 state->symbols->pop_scope();
3461
3462 /* Restore previous nesting before returning.
3463 */
3464 state->loop_or_switch_nesting = nesting;
3465 state->loop_or_switch_nesting_ast = nesting_ast;
3466
3467 /* Loops do not have r-values.
3468 */
3469 return NULL;
3470 }
3471
3472
3473 ir_rvalue *
3474 ast_type_specifier::hir(exec_list *instructions,
3475 struct _mesa_glsl_parse_state *state)
3476 {
3477 if (!this->is_precision_statement && this->structure == NULL)
3478 return NULL;
3479
3480 YYLTYPE loc = this->get_location();
3481
3482 if (this->precision != ast_precision_none
3483 && state->language_version != 100
3484 && state->language_version < 130) {
3485 _mesa_glsl_error(&loc, state,
3486 "precision qualifiers exist only in "
3487 "GLSL ES 1.00, and GLSL 1.30 and later");
3488 return NULL;
3489 }
3490 if (this->precision != ast_precision_none
3491 && this->structure != NULL) {
3492 _mesa_glsl_error(&loc, state,
3493 "precision qualifiers do not apply to structures");
3494 return NULL;
3495 }
3496
3497 /* If this is a precision statement, check that the type to which it is
3498 * applied is either float or int.
3499 *
3500 * From section 4.5.3 of the GLSL 1.30 spec:
3501 * "The precision statement
3502 * precision precision-qualifier type;
3503 * can be used to establish a default precision qualifier. The type
3504 * field can be either int or float [...]. Any other types or
3505 * qualifiers will result in an error.
3506 */
3507 if (this->is_precision_statement) {
3508 assert(this->precision != ast_precision_none);
3509 assert(this->structure == NULL); /* The check for structures was
3510 * performed above. */
3511 if (this->is_array) {
3512 _mesa_glsl_error(&loc, state,
3513 "default precision statements do not apply to "
3514 "arrays");
3515 return NULL;
3516 }
3517 if (this->type_specifier != ast_float
3518 && this->type_specifier != ast_int) {
3519 _mesa_glsl_error(&loc, state,
3520 "default precision statements apply only to types "
3521 "float and int");
3522 return NULL;
3523 }
3524
3525 /* FINISHME: Translate precision statements into IR. */
3526 return NULL;
3527 }
3528
3529 if (this->structure != NULL)
3530 return this->structure->hir(instructions, state);
3531
3532 return NULL;
3533 }
3534
3535
3536 ir_rvalue *
3537 ast_struct_specifier::hir(exec_list *instructions,
3538 struct _mesa_glsl_parse_state *state)
3539 {
3540 unsigned decl_count = 0;
3541
3542 /* Make an initial pass over the list of structure fields to determine how
3543 * many there are. Each element in this list is an ast_declarator_list.
3544 * This means that we actually need to count the number of elements in the
3545 * 'declarations' list in each of the elements.
3546 */
3547 foreach_list_typed (ast_declarator_list, decl_list, link,
3548 &this->declarations) {
3549 foreach_list_const (decl_ptr, & decl_list->declarations) {
3550 decl_count++;
3551 }
3552 }
3553
3554 /* Allocate storage for the structure fields and process the field
3555 * declarations. As the declarations are processed, try to also convert
3556 * the types to HIR. This ensures that structure definitions embedded in
3557 * other structure definitions are processed.
3558 */
3559 glsl_struct_field *const fields = ralloc_array(state, glsl_struct_field,
3560 decl_count);
3561
3562 unsigned i = 0;
3563 foreach_list_typed (ast_declarator_list, decl_list, link,
3564 &this->declarations) {
3565 const char *type_name;
3566
3567 decl_list->type->specifier->hir(instructions, state);
3568
3569 /* Section 10.9 of the GLSL ES 1.00 specification states that
3570 * embedded structure definitions have been removed from the language.
3571 */
3572 if (state->es_shader && decl_list->type->specifier->structure != NULL) {
3573 YYLTYPE loc = this->get_location();
3574 _mesa_glsl_error(&loc, state, "Embedded structure definitions are "
3575 "not allowed in GLSL ES 1.00.");
3576 }
3577
3578 const glsl_type *decl_type =
3579 decl_list->type->specifier->glsl_type(& type_name, state);
3580
3581 foreach_list_typed (ast_declaration, decl, link,
3582 &decl_list->declarations) {
3583 const struct glsl_type *field_type = decl_type;
3584 if (decl->is_array) {
3585 YYLTYPE loc = decl->get_location();
3586 field_type = process_array_type(&loc, decl_type, decl->array_size,
3587 state);
3588 }
3589 fields[i].type = (field_type != NULL)
3590 ? field_type : glsl_type::error_type;
3591 fields[i].name = decl->identifier;
3592 i++;
3593 }
3594 }
3595
3596 assert(i == decl_count);
3597
3598 const glsl_type *t =
3599 glsl_type::get_record_instance(fields, decl_count, this->name);
3600
3601 YYLTYPE loc = this->get_location();
3602 if (!state->symbols->add_type(name, t)) {
3603 _mesa_glsl_error(& loc, state, "struct `%s' previously defined", name);
3604 } else {
3605 const glsl_type **s = reralloc(state, state->user_structures,
3606 const glsl_type *,
3607 state->num_user_structures + 1);
3608 if (s != NULL) {
3609 s[state->num_user_structures] = t;
3610 state->user_structures = s;
3611 state->num_user_structures++;
3612 }
3613 }
3614
3615 /* Structure type definitions do not have r-values.
3616 */
3617 return NULL;
3618 }