d5b04e9d7bb8d579fb721ce4bafb89c1a1e2ef2b
[mesa.git] / src / glsl / ast_to_hir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file ast_to_hir.c
26 * Convert abstract syntax to to high-level intermediate reprensentation (HIR).
27 *
28 * During the conversion to HIR, the majority of the symantic checking is
29 * preformed on the program. This includes:
30 *
31 * * Symbol table management
32 * * Type checking
33 * * Function binding
34 *
35 * The majority of this work could be done during parsing, and the parser could
36 * probably generate HIR directly. However, this results in frequent changes
37 * to the parser code. Since we do not assume that every system this complier
38 * is built on will have Flex and Bison installed, we have to store the code
39 * generated by these tools in our version control system. In other parts of
40 * the system we've seen problems where a parser was changed but the generated
41 * code was not committed, merge conflicts where created because two developers
42 * had slightly different versions of Bison installed, etc.
43 *
44 * I have also noticed that running Bison generated parsers in GDB is very
45 * irritating. When you get a segfault on '$$ = $1->foo', you can't very
46 * well 'print $1' in GDB.
47 *
48 * As a result, my preference is to put as little C code as possible in the
49 * parser (and lexer) sources.
50 */
51
52 #include "main/core.h" /* for struct gl_extensions */
53 #include "glsl_symbol_table.h"
54 #include "glsl_parser_extras.h"
55 #include "ast.h"
56 #include "glsl_types.h"
57 #include "ir.h"
58
59 void
60 _mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
61 {
62 _mesa_glsl_initialize_variables(instructions, state);
63
64 state->symbols->language_version = state->language_version;
65
66 state->current_function = NULL;
67
68 state->toplevel_ir = instructions;
69
70 /* Section 4.2 of the GLSL 1.20 specification states:
71 * "The built-in functions are scoped in a scope outside the global scope
72 * users declare global variables in. That is, a shader's global scope,
73 * available for user-defined functions and global variables, is nested
74 * inside the scope containing the built-in functions."
75 *
76 * Since built-in functions like ftransform() access built-in variables,
77 * it follows that those must be in the outer scope as well.
78 *
79 * We push scope here to create this nesting effect...but don't pop.
80 * This way, a shader's globals are still in the symbol table for use
81 * by the linker.
82 */
83 state->symbols->push_scope();
84
85 foreach_list_typed (ast_node, ast, link, & state->translation_unit)
86 ast->hir(instructions, state);
87
88 detect_recursion_unlinked(state, instructions);
89
90 state->toplevel_ir = NULL;
91 }
92
93
94 /**
95 * If a conversion is available, convert one operand to a different type
96 *
97 * The \c from \c ir_rvalue is converted "in place".
98 *
99 * \param to Type that the operand it to be converted to
100 * \param from Operand that is being converted
101 * \param state GLSL compiler state
102 *
103 * \return
104 * If a conversion is possible (or unnecessary), \c true is returned.
105 * Otherwise \c false is returned.
106 */
107 bool
108 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
109 struct _mesa_glsl_parse_state *state)
110 {
111 void *ctx = state;
112 if (to->base_type == from->type->base_type)
113 return true;
114
115 /* This conversion was added in GLSL 1.20. If the compilation mode is
116 * GLSL 1.10, the conversion is skipped.
117 */
118 if (state->language_version < 120)
119 return false;
120
121 /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
122 *
123 * "There are no implicit array or structure conversions. For
124 * example, an array of int cannot be implicitly converted to an
125 * array of float. There are no implicit conversions between
126 * signed and unsigned integers."
127 */
128 /* FINISHME: The above comment is partially a lie. There is int/uint
129 * FINISHME: conversion for immediate constants.
130 */
131 if (!to->is_float() || !from->type->is_numeric())
132 return false;
133
134 /* Convert to a floating point type with the same number of components
135 * as the original type - i.e. int to float, not int to vec4.
136 */
137 to = glsl_type::get_instance(GLSL_TYPE_FLOAT, from->type->vector_elements,
138 from->type->matrix_columns);
139
140 switch (from->type->base_type) {
141 case GLSL_TYPE_INT:
142 from = new(ctx) ir_expression(ir_unop_i2f, to, from, NULL);
143 break;
144 case GLSL_TYPE_UINT:
145 from = new(ctx) ir_expression(ir_unop_u2f, to, from, NULL);
146 break;
147 case GLSL_TYPE_BOOL:
148 from = new(ctx) ir_expression(ir_unop_b2f, to, from, NULL);
149 break;
150 default:
151 assert(0);
152 }
153
154 return true;
155 }
156
157
158 static const struct glsl_type *
159 arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
160 bool multiply,
161 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
162 {
163 const glsl_type *type_a = value_a->type;
164 const glsl_type *type_b = value_b->type;
165
166 /* From GLSL 1.50 spec, page 56:
167 *
168 * "The arithmetic binary operators add (+), subtract (-),
169 * multiply (*), and divide (/) operate on integer and
170 * floating-point scalars, vectors, and matrices."
171 */
172 if (!type_a->is_numeric() || !type_b->is_numeric()) {
173 _mesa_glsl_error(loc, state,
174 "Operands to arithmetic operators must be numeric");
175 return glsl_type::error_type;
176 }
177
178
179 /* "If one operand is floating-point based and the other is
180 * not, then the conversions from Section 4.1.10 "Implicit
181 * Conversions" are applied to the non-floating-point-based operand."
182 */
183 if (!apply_implicit_conversion(type_a, value_b, state)
184 && !apply_implicit_conversion(type_b, value_a, state)) {
185 _mesa_glsl_error(loc, state,
186 "Could not implicitly convert operands to "
187 "arithmetic operator");
188 return glsl_type::error_type;
189 }
190 type_a = value_a->type;
191 type_b = value_b->type;
192
193 /* "If the operands are integer types, they must both be signed or
194 * both be unsigned."
195 *
196 * From this rule and the preceeding conversion it can be inferred that
197 * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
198 * The is_numeric check above already filtered out the case where either
199 * type is not one of these, so now the base types need only be tested for
200 * equality.
201 */
202 if (type_a->base_type != type_b->base_type) {
203 _mesa_glsl_error(loc, state,
204 "base type mismatch for arithmetic operator");
205 return glsl_type::error_type;
206 }
207
208 /* "All arithmetic binary operators result in the same fundamental type
209 * (signed integer, unsigned integer, or floating-point) as the
210 * operands they operate on, after operand type conversion. After
211 * conversion, the following cases are valid
212 *
213 * * The two operands are scalars. In this case the operation is
214 * applied, resulting in a scalar."
215 */
216 if (type_a->is_scalar() && type_b->is_scalar())
217 return type_a;
218
219 /* "* One operand is a scalar, and the other is a vector or matrix.
220 * In this case, the scalar operation is applied independently to each
221 * component of the vector or matrix, resulting in the same size
222 * vector or matrix."
223 */
224 if (type_a->is_scalar()) {
225 if (!type_b->is_scalar())
226 return type_b;
227 } else if (type_b->is_scalar()) {
228 return type_a;
229 }
230
231 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
232 * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
233 * handled.
234 */
235 assert(!type_a->is_scalar());
236 assert(!type_b->is_scalar());
237
238 /* "* The two operands are vectors of the same size. In this case, the
239 * operation is done component-wise resulting in the same size
240 * vector."
241 */
242 if (type_a->is_vector() && type_b->is_vector()) {
243 if (type_a == type_b) {
244 return type_a;
245 } else {
246 _mesa_glsl_error(loc, state,
247 "vector size mismatch for arithmetic operator");
248 return glsl_type::error_type;
249 }
250 }
251
252 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
253 * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
254 * <vector, vector> have been handled. At least one of the operands must
255 * be matrix. Further, since there are no integer matrix types, the base
256 * type of both operands must be float.
257 */
258 assert(type_a->is_matrix() || type_b->is_matrix());
259 assert(type_a->base_type == GLSL_TYPE_FLOAT);
260 assert(type_b->base_type == GLSL_TYPE_FLOAT);
261
262 /* "* The operator is add (+), subtract (-), or divide (/), and the
263 * operands are matrices with the same number of rows and the same
264 * number of columns. In this case, the operation is done component-
265 * wise resulting in the same size matrix."
266 * * The operator is multiply (*), where both operands are matrices or
267 * one operand is a vector and the other a matrix. A right vector
268 * operand is treated as a column vector and a left vector operand as a
269 * row vector. In all these cases, it is required that the number of
270 * columns of the left operand is equal to the number of rows of the
271 * right operand. Then, the multiply (*) operation does a linear
272 * algebraic multiply, yielding an object that has the same number of
273 * rows as the left operand and the same number of columns as the right
274 * operand. Section 5.10 "Vector and Matrix Operations" explains in
275 * more detail how vectors and matrices are operated on."
276 */
277 if (! multiply) {
278 if (type_a == type_b)
279 return type_a;
280 } else {
281 if (type_a->is_matrix() && type_b->is_matrix()) {
282 /* Matrix multiply. The columns of A must match the rows of B. Given
283 * the other previously tested constraints, this means the vector type
284 * of a row from A must be the same as the vector type of a column from
285 * B.
286 */
287 if (type_a->row_type() == type_b->column_type()) {
288 /* The resulting matrix has the number of columns of matrix B and
289 * the number of rows of matrix A. We get the row count of A by
290 * looking at the size of a vector that makes up a column. The
291 * transpose (size of a row) is done for B.
292 */
293 const glsl_type *const type =
294 glsl_type::get_instance(type_a->base_type,
295 type_a->column_type()->vector_elements,
296 type_b->row_type()->vector_elements);
297 assert(type != glsl_type::error_type);
298
299 return type;
300 }
301 } else if (type_a->is_matrix()) {
302 /* A is a matrix and B is a column vector. Columns of A must match
303 * rows of B. Given the other previously tested constraints, this
304 * means the vector type of a row from A must be the same as the
305 * vector the type of B.
306 */
307 if (type_a->row_type() == type_b) {
308 /* The resulting vector has a number of elements equal to
309 * the number of rows of matrix A. */
310 const glsl_type *const type =
311 glsl_type::get_instance(type_a->base_type,
312 type_a->column_type()->vector_elements,
313 1);
314 assert(type != glsl_type::error_type);
315
316 return type;
317 }
318 } else {
319 assert(type_b->is_matrix());
320
321 /* A is a row vector and B is a matrix. Columns of A must match rows
322 * of B. Given the other previously tested constraints, this means
323 * the type of A must be the same as the vector type of a column from
324 * B.
325 */
326 if (type_a == type_b->column_type()) {
327 /* The resulting vector has a number of elements equal to
328 * the number of columns of matrix B. */
329 const glsl_type *const type =
330 glsl_type::get_instance(type_a->base_type,
331 type_b->row_type()->vector_elements,
332 1);
333 assert(type != glsl_type::error_type);
334
335 return type;
336 }
337 }
338
339 _mesa_glsl_error(loc, state, "size mismatch for matrix multiplication");
340 return glsl_type::error_type;
341 }
342
343
344 /* "All other cases are illegal."
345 */
346 _mesa_glsl_error(loc, state, "type mismatch");
347 return glsl_type::error_type;
348 }
349
350
351 static const struct glsl_type *
352 unary_arithmetic_result_type(const struct glsl_type *type,
353 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
354 {
355 /* From GLSL 1.50 spec, page 57:
356 *
357 * "The arithmetic unary operators negate (-), post- and pre-increment
358 * and decrement (-- and ++) operate on integer or floating-point
359 * values (including vectors and matrices). All unary operators work
360 * component-wise on their operands. These result with the same type
361 * they operated on."
362 */
363 if (!type->is_numeric()) {
364 _mesa_glsl_error(loc, state,
365 "Operands to arithmetic operators must be numeric");
366 return glsl_type::error_type;
367 }
368
369 return type;
370 }
371
372 /**
373 * \brief Return the result type of a bit-logic operation.
374 *
375 * If the given types to the bit-logic operator are invalid, return
376 * glsl_type::error_type.
377 *
378 * \param type_a Type of LHS of bit-logic op
379 * \param type_b Type of RHS of bit-logic op
380 */
381 static const struct glsl_type *
382 bit_logic_result_type(const struct glsl_type *type_a,
383 const struct glsl_type *type_b,
384 ast_operators op,
385 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
386 {
387 if (state->language_version < 130) {
388 _mesa_glsl_error(loc, state, "bit operations require GLSL 1.30");
389 return glsl_type::error_type;
390 }
391
392 /* From page 50 (page 56 of PDF) of GLSL 1.30 spec:
393 *
394 * "The bitwise operators and (&), exclusive-or (^), and inclusive-or
395 * (|). The operands must be of type signed or unsigned integers or
396 * integer vectors."
397 */
398 if (!type_a->is_integer()) {
399 _mesa_glsl_error(loc, state, "LHS of `%s' must be an integer",
400 ast_expression::operator_string(op));
401 return glsl_type::error_type;
402 }
403 if (!type_b->is_integer()) {
404 _mesa_glsl_error(loc, state, "RHS of `%s' must be an integer",
405 ast_expression::operator_string(op));
406 return glsl_type::error_type;
407 }
408
409 /* "The fundamental types of the operands (signed or unsigned) must
410 * match,"
411 */
412 if (type_a->base_type != type_b->base_type) {
413 _mesa_glsl_error(loc, state, "operands of `%s' must have the same "
414 "base type", ast_expression::operator_string(op));
415 return glsl_type::error_type;
416 }
417
418 /* "The operands cannot be vectors of differing size." */
419 if (type_a->is_vector() &&
420 type_b->is_vector() &&
421 type_a->vector_elements != type_b->vector_elements) {
422 _mesa_glsl_error(loc, state, "operands of `%s' cannot be vectors of "
423 "different sizes", ast_expression::operator_string(op));
424 return glsl_type::error_type;
425 }
426
427 /* "If one operand is a scalar and the other a vector, the scalar is
428 * applied component-wise to the vector, resulting in the same type as
429 * the vector. The fundamental types of the operands [...] will be the
430 * resulting fundamental type."
431 */
432 if (type_a->is_scalar())
433 return type_b;
434 else
435 return type_a;
436 }
437
438 static const struct glsl_type *
439 modulus_result_type(const struct glsl_type *type_a,
440 const struct glsl_type *type_b,
441 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
442 {
443 if (state->language_version < 130) {
444 _mesa_glsl_error(loc, state,
445 "operator '%%' is reserved in %s",
446 state->version_string);
447 return glsl_type::error_type;
448 }
449
450 /* From GLSL 1.50 spec, page 56:
451 * "The operator modulus (%) operates on signed or unsigned integers or
452 * integer vectors. The operand types must both be signed or both be
453 * unsigned."
454 */
455 if (!type_a->is_integer()) {
456 _mesa_glsl_error(loc, state, "LHS of operator %% must be an integer.");
457 return glsl_type::error_type;
458 }
459 if (!type_b->is_integer()) {
460 _mesa_glsl_error(loc, state, "RHS of operator %% must be an integer.");
461 return glsl_type::error_type;
462 }
463 if (type_a->base_type != type_b->base_type) {
464 _mesa_glsl_error(loc, state,
465 "operands of %% must have the same base type");
466 return glsl_type::error_type;
467 }
468
469 /* "The operands cannot be vectors of differing size. If one operand is
470 * a scalar and the other vector, then the scalar is applied component-
471 * wise to the vector, resulting in the same type as the vector. If both
472 * are vectors of the same size, the result is computed component-wise."
473 */
474 if (type_a->is_vector()) {
475 if (!type_b->is_vector()
476 || (type_a->vector_elements == type_b->vector_elements))
477 return type_a;
478 } else
479 return type_b;
480
481 /* "The operator modulus (%) is not defined for any other data types
482 * (non-integer types)."
483 */
484 _mesa_glsl_error(loc, state, "type mismatch");
485 return glsl_type::error_type;
486 }
487
488
489 static const struct glsl_type *
490 relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
491 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
492 {
493 const glsl_type *type_a = value_a->type;
494 const glsl_type *type_b = value_b->type;
495
496 /* From GLSL 1.50 spec, page 56:
497 * "The relational operators greater than (>), less than (<), greater
498 * than or equal (>=), and less than or equal (<=) operate only on
499 * scalar integer and scalar floating-point expressions."
500 */
501 if (!type_a->is_numeric()
502 || !type_b->is_numeric()
503 || !type_a->is_scalar()
504 || !type_b->is_scalar()) {
505 _mesa_glsl_error(loc, state,
506 "Operands to relational operators must be scalar and "
507 "numeric");
508 return glsl_type::error_type;
509 }
510
511 /* "Either the operands' types must match, or the conversions from
512 * Section 4.1.10 "Implicit Conversions" will be applied to the integer
513 * operand, after which the types must match."
514 */
515 if (!apply_implicit_conversion(type_a, value_b, state)
516 && !apply_implicit_conversion(type_b, value_a, state)) {
517 _mesa_glsl_error(loc, state,
518 "Could not implicitly convert operands to "
519 "relational operator");
520 return glsl_type::error_type;
521 }
522 type_a = value_a->type;
523 type_b = value_b->type;
524
525 if (type_a->base_type != type_b->base_type) {
526 _mesa_glsl_error(loc, state, "base type mismatch");
527 return glsl_type::error_type;
528 }
529
530 /* "The result is scalar Boolean."
531 */
532 return glsl_type::bool_type;
533 }
534
535 /**
536 * \brief Return the result type of a bit-shift operation.
537 *
538 * If the given types to the bit-shift operator are invalid, return
539 * glsl_type::error_type.
540 *
541 * \param type_a Type of LHS of bit-shift op
542 * \param type_b Type of RHS of bit-shift op
543 */
544 static const struct glsl_type *
545 shift_result_type(const struct glsl_type *type_a,
546 const struct glsl_type *type_b,
547 ast_operators op,
548 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
549 {
550 if (state->language_version < 130) {
551 _mesa_glsl_error(loc, state, "bit operations require GLSL 1.30");
552 return glsl_type::error_type;
553 }
554
555 /* From page 50 (page 56 of the PDF) of the GLSL 1.30 spec:
556 *
557 * "The shift operators (<<) and (>>). For both operators, the operands
558 * must be signed or unsigned integers or integer vectors. One operand
559 * can be signed while the other is unsigned."
560 */
561 if (!type_a->is_integer()) {
562 _mesa_glsl_error(loc, state, "LHS of operator %s must be an integer or "
563 "integer vector", ast_expression::operator_string(op));
564 return glsl_type::error_type;
565
566 }
567 if (!type_b->is_integer()) {
568 _mesa_glsl_error(loc, state, "RHS of operator %s must be an integer or "
569 "integer vector", ast_expression::operator_string(op));
570 return glsl_type::error_type;
571 }
572
573 /* "If the first operand is a scalar, the second operand has to be
574 * a scalar as well."
575 */
576 if (type_a->is_scalar() && !type_b->is_scalar()) {
577 _mesa_glsl_error(loc, state, "If the first operand of %s is scalar, the "
578 "second must be scalar as well",
579 ast_expression::operator_string(op));
580 return glsl_type::error_type;
581 }
582
583 /* If both operands are vectors, check that they have same number of
584 * elements.
585 */
586 if (type_a->is_vector() &&
587 type_b->is_vector() &&
588 type_a->vector_elements != type_b->vector_elements) {
589 _mesa_glsl_error(loc, state, "Vector operands to operator %s must "
590 "have same number of elements",
591 ast_expression::operator_string(op));
592 return glsl_type::error_type;
593 }
594
595 /* "In all cases, the resulting type will be the same type as the left
596 * operand."
597 */
598 return type_a;
599 }
600
601 /**
602 * Validates that a value can be assigned to a location with a specified type
603 *
604 * Validates that \c rhs can be assigned to some location. If the types are
605 * not an exact match but an automatic conversion is possible, \c rhs will be
606 * converted.
607 *
608 * \return
609 * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
610 * Otherwise the actual RHS to be assigned will be returned. This may be
611 * \c rhs, or it may be \c rhs after some type conversion.
612 *
613 * \note
614 * In addition to being used for assignments, this function is used to
615 * type-check return values.
616 */
617 ir_rvalue *
618 validate_assignment(struct _mesa_glsl_parse_state *state,
619 const glsl_type *lhs_type, ir_rvalue *rhs,
620 bool is_initializer)
621 {
622 /* If there is already some error in the RHS, just return it. Anything
623 * else will lead to an avalanche of error message back to the user.
624 */
625 if (rhs->type->is_error())
626 return rhs;
627
628 /* If the types are identical, the assignment can trivially proceed.
629 */
630 if (rhs->type == lhs_type)
631 return rhs;
632
633 /* If the array element types are the same and the size of the LHS is zero,
634 * the assignment is okay for initializers embedded in variable
635 * declarations.
636 *
637 * Note: Whole-array assignments are not permitted in GLSL 1.10, but this
638 * is handled by ir_dereference::is_lvalue.
639 */
640 if (is_initializer && lhs_type->is_array() && rhs->type->is_array()
641 && (lhs_type->element_type() == rhs->type->element_type())
642 && (lhs_type->array_size() == 0)) {
643 return rhs;
644 }
645
646 /* Check for implicit conversion in GLSL 1.20 */
647 if (apply_implicit_conversion(lhs_type, rhs, state)) {
648 if (rhs->type == lhs_type)
649 return rhs;
650 }
651
652 return NULL;
653 }
654
655 static void
656 mark_whole_array_access(ir_rvalue *access)
657 {
658 ir_dereference_variable *deref = access->as_dereference_variable();
659
660 if (deref && deref->var) {
661 deref->var->max_array_access = deref->type->length - 1;
662 }
663 }
664
665 ir_rvalue *
666 do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state,
667 ir_rvalue *lhs, ir_rvalue *rhs, bool is_initializer,
668 YYLTYPE lhs_loc)
669 {
670 void *ctx = state;
671 bool error_emitted = (lhs->type->is_error() || rhs->type->is_error());
672
673 if (!error_emitted) {
674 if (lhs->variable_referenced() != NULL
675 && lhs->variable_referenced()->read_only) {
676 _mesa_glsl_error(&lhs_loc, state,
677 "assignment to read-only variable '%s'",
678 lhs->variable_referenced()->name);
679 error_emitted = true;
680
681 } else if (state->language_version <= 110 && lhs->type->is_array()) {
682 /* From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
683 *
684 * "Other binary or unary expressions, non-dereferenced
685 * arrays, function names, swizzles with repeated fields,
686 * and constants cannot be l-values."
687 */
688 _mesa_glsl_error(&lhs_loc, state, "whole array assignment is not "
689 "allowed in GLSL 1.10 or GLSL ES 1.00.");
690 error_emitted = true;
691 } else if (!lhs->is_lvalue()) {
692 _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment");
693 error_emitted = true;
694 }
695 }
696
697 ir_rvalue *new_rhs =
698 validate_assignment(state, lhs->type, rhs, is_initializer);
699 if (new_rhs == NULL) {
700 _mesa_glsl_error(& lhs_loc, state, "type mismatch");
701 } else {
702 rhs = new_rhs;
703
704 /* If the LHS array was not declared with a size, it takes it size from
705 * the RHS. If the LHS is an l-value and a whole array, it must be a
706 * dereference of a variable. Any other case would require that the LHS
707 * is either not an l-value or not a whole array.
708 */
709 if (lhs->type->array_size() == 0) {
710 ir_dereference *const d = lhs->as_dereference();
711
712 assert(d != NULL);
713
714 ir_variable *const var = d->variable_referenced();
715
716 assert(var != NULL);
717
718 if (var->max_array_access >= unsigned(rhs->type->array_size())) {
719 /* FINISHME: This should actually log the location of the RHS. */
720 _mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to "
721 "previous access",
722 var->max_array_access);
723 }
724
725 var->type = glsl_type::get_array_instance(lhs->type->element_type(),
726 rhs->type->array_size());
727 d->type = var->type;
728 }
729 mark_whole_array_access(rhs);
730 mark_whole_array_access(lhs);
731 }
732
733 /* Most callers of do_assignment (assign, add_assign, pre_inc/dec,
734 * but not post_inc) need the converted assigned value as an rvalue
735 * to handle things like:
736 *
737 * i = j += 1;
738 *
739 * So we always just store the computed value being assigned to a
740 * temporary and return a deref of that temporary. If the rvalue
741 * ends up not being used, the temp will get copy-propagated out.
742 */
743 ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp",
744 ir_var_temporary);
745 ir_dereference_variable *deref_var = new(ctx) ir_dereference_variable(var);
746 instructions->push_tail(var);
747 instructions->push_tail(new(ctx) ir_assignment(deref_var,
748 rhs,
749 NULL));
750 deref_var = new(ctx) ir_dereference_variable(var);
751
752 if (!error_emitted)
753 instructions->push_tail(new(ctx) ir_assignment(lhs, deref_var, NULL));
754
755 return new(ctx) ir_dereference_variable(var);
756 }
757
758 static ir_rvalue *
759 get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue)
760 {
761 void *ctx = ralloc_parent(lvalue);
762 ir_variable *var;
763
764 var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp",
765 ir_var_temporary);
766 instructions->push_tail(var);
767 var->mode = ir_var_auto;
768
769 instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
770 lvalue, NULL));
771
772 /* Once we've created this temporary, mark it read only so it's no
773 * longer considered an lvalue.
774 */
775 var->read_only = true;
776
777 return new(ctx) ir_dereference_variable(var);
778 }
779
780
781 ir_rvalue *
782 ast_node::hir(exec_list *instructions,
783 struct _mesa_glsl_parse_state *state)
784 {
785 (void) instructions;
786 (void) state;
787
788 return NULL;
789 }
790
791 static ir_rvalue *
792 do_comparison(void *mem_ctx, int operation, ir_rvalue *op0, ir_rvalue *op1)
793 {
794 int join_op;
795 ir_rvalue *cmp = NULL;
796
797 if (operation == ir_binop_all_equal)
798 join_op = ir_binop_logic_and;
799 else
800 join_op = ir_binop_logic_or;
801
802 switch (op0->type->base_type) {
803 case GLSL_TYPE_FLOAT:
804 case GLSL_TYPE_UINT:
805 case GLSL_TYPE_INT:
806 case GLSL_TYPE_BOOL:
807 return new(mem_ctx) ir_expression(operation, op0, op1);
808
809 case GLSL_TYPE_ARRAY: {
810 for (unsigned int i = 0; i < op0->type->length; i++) {
811 ir_rvalue *e0, *e1, *result;
812
813 e0 = new(mem_ctx) ir_dereference_array(op0->clone(mem_ctx, NULL),
814 new(mem_ctx) ir_constant(i));
815 e1 = new(mem_ctx) ir_dereference_array(op1->clone(mem_ctx, NULL),
816 new(mem_ctx) ir_constant(i));
817 result = do_comparison(mem_ctx, operation, e0, e1);
818
819 if (cmp) {
820 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
821 } else {
822 cmp = result;
823 }
824 }
825
826 mark_whole_array_access(op0);
827 mark_whole_array_access(op1);
828 break;
829 }
830
831 case GLSL_TYPE_STRUCT: {
832 for (unsigned int i = 0; i < op0->type->length; i++) {
833 ir_rvalue *e0, *e1, *result;
834 const char *field_name = op0->type->fields.structure[i].name;
835
836 e0 = new(mem_ctx) ir_dereference_record(op0->clone(mem_ctx, NULL),
837 field_name);
838 e1 = new(mem_ctx) ir_dereference_record(op1->clone(mem_ctx, NULL),
839 field_name);
840 result = do_comparison(mem_ctx, operation, e0, e1);
841
842 if (cmp) {
843 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
844 } else {
845 cmp = result;
846 }
847 }
848 break;
849 }
850
851 case GLSL_TYPE_ERROR:
852 case GLSL_TYPE_VOID:
853 case GLSL_TYPE_SAMPLER:
854 /* I assume a comparison of a struct containing a sampler just
855 * ignores the sampler present in the type.
856 */
857 break;
858
859 default:
860 assert(!"Should not get here.");
861 break;
862 }
863
864 if (cmp == NULL)
865 cmp = new(mem_ctx) ir_constant(true);
866
867 return cmp;
868 }
869
870 /* For logical operations, we want to ensure that the operands are
871 * scalar booleans. If it isn't, emit an error and return a constant
872 * boolean to avoid triggering cascading error messages.
873 */
874 ir_rvalue *
875 get_scalar_boolean_operand(exec_list *instructions,
876 struct _mesa_glsl_parse_state *state,
877 ast_expression *parent_expr,
878 int operand,
879 const char *operand_name,
880 bool *error_emitted)
881 {
882 ast_expression *expr = parent_expr->subexpressions[operand];
883 void *ctx = state;
884 ir_rvalue *val = expr->hir(instructions, state);
885
886 if (val->type->is_boolean() && val->type->is_scalar())
887 return val;
888
889 if (!*error_emitted) {
890 YYLTYPE loc = expr->get_location();
891 _mesa_glsl_error(&loc, state, "%s of `%s' must be scalar boolean",
892 operand_name,
893 parent_expr->operator_string(parent_expr->oper));
894 *error_emitted = true;
895 }
896
897 return new(ctx) ir_constant(true);
898 }
899
900 /**
901 * If name refers to a builtin array whose maximum allowed size is less than
902 * size, report an error and return true. Otherwise return false.
903 */
904 static bool
905 check_builtin_array_max_size(const char *name, unsigned size,
906 YYLTYPE loc, struct _mesa_glsl_parse_state *state)
907 {
908 if ((strcmp("gl_TexCoord", name) == 0)
909 && (size > state->Const.MaxTextureCoords)) {
910 /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec:
911 *
912 * "The size [of gl_TexCoord] can be at most
913 * gl_MaxTextureCoords."
914 */
915 _mesa_glsl_error(&loc, state, "`gl_TexCoord' array size cannot "
916 "be larger than gl_MaxTextureCoords (%u)\n",
917 state->Const.MaxTextureCoords);
918 return true;
919 } else if (strcmp("gl_ClipDistance", name) == 0
920 && size > state->Const.MaxClipPlanes) {
921 /* From section 7.1 (Vertex Shader Special Variables) of the
922 * GLSL 1.30 spec:
923 *
924 * "The gl_ClipDistance array is predeclared as unsized and
925 * must be sized by the shader either redeclaring it with a
926 * size or indexing it only with integral constant
927 * expressions. ... The size can be at most
928 * gl_MaxClipDistances."
929 */
930 _mesa_glsl_error(&loc, state, "`gl_ClipDistance' array size cannot "
931 "be larger than gl_MaxClipDistances (%u)\n",
932 state->Const.MaxClipPlanes);
933 return true;
934 }
935 return false;
936 }
937
938 /**
939 * Create the constant 1, of a which is appropriate for incrementing and
940 * decrementing values of the given GLSL type. For example, if type is vec4,
941 * this creates a constant value of 1.0 having type float.
942 *
943 * If the given type is invalid for increment and decrement operators, return
944 * a floating point 1--the error will be detected later.
945 */
946 static ir_rvalue *
947 constant_one_for_inc_dec(void *ctx, const glsl_type *type)
948 {
949 switch (type->base_type) {
950 case GLSL_TYPE_UINT:
951 return new(ctx) ir_constant((unsigned) 1);
952 case GLSL_TYPE_INT:
953 return new(ctx) ir_constant(1);
954 default:
955 case GLSL_TYPE_FLOAT:
956 return new(ctx) ir_constant(1.0f);
957 }
958 }
959
960 ir_rvalue *
961 ast_expression::hir(exec_list *instructions,
962 struct _mesa_glsl_parse_state *state)
963 {
964 void *ctx = state;
965 static const int operations[AST_NUM_OPERATORS] = {
966 -1, /* ast_assign doesn't convert to ir_expression. */
967 -1, /* ast_plus doesn't convert to ir_expression. */
968 ir_unop_neg,
969 ir_binop_add,
970 ir_binop_sub,
971 ir_binop_mul,
972 ir_binop_div,
973 ir_binop_mod,
974 ir_binop_lshift,
975 ir_binop_rshift,
976 ir_binop_less,
977 ir_binop_greater,
978 ir_binop_lequal,
979 ir_binop_gequal,
980 ir_binop_all_equal,
981 ir_binop_any_nequal,
982 ir_binop_bit_and,
983 ir_binop_bit_xor,
984 ir_binop_bit_or,
985 ir_unop_bit_not,
986 ir_binop_logic_and,
987 ir_binop_logic_xor,
988 ir_binop_logic_or,
989 ir_unop_logic_not,
990
991 /* Note: The following block of expression types actually convert
992 * to multiple IR instructions.
993 */
994 ir_binop_mul, /* ast_mul_assign */
995 ir_binop_div, /* ast_div_assign */
996 ir_binop_mod, /* ast_mod_assign */
997 ir_binop_add, /* ast_add_assign */
998 ir_binop_sub, /* ast_sub_assign */
999 ir_binop_lshift, /* ast_ls_assign */
1000 ir_binop_rshift, /* ast_rs_assign */
1001 ir_binop_bit_and, /* ast_and_assign */
1002 ir_binop_bit_xor, /* ast_xor_assign */
1003 ir_binop_bit_or, /* ast_or_assign */
1004
1005 -1, /* ast_conditional doesn't convert to ir_expression. */
1006 ir_binop_add, /* ast_pre_inc. */
1007 ir_binop_sub, /* ast_pre_dec. */
1008 ir_binop_add, /* ast_post_inc. */
1009 ir_binop_sub, /* ast_post_dec. */
1010 -1, /* ast_field_selection doesn't conv to ir_expression. */
1011 -1, /* ast_array_index doesn't convert to ir_expression. */
1012 -1, /* ast_function_call doesn't conv to ir_expression. */
1013 -1, /* ast_identifier doesn't convert to ir_expression. */
1014 -1, /* ast_int_constant doesn't convert to ir_expression. */
1015 -1, /* ast_uint_constant doesn't conv to ir_expression. */
1016 -1, /* ast_float_constant doesn't conv to ir_expression. */
1017 -1, /* ast_bool_constant doesn't conv to ir_expression. */
1018 -1, /* ast_sequence doesn't convert to ir_expression. */
1019 };
1020 ir_rvalue *result = NULL;
1021 ir_rvalue *op[3];
1022 const struct glsl_type *type; /* a temporary variable for switch cases */
1023 bool error_emitted = false;
1024 YYLTYPE loc;
1025
1026 loc = this->get_location();
1027
1028 switch (this->oper) {
1029 case ast_assign: {
1030 op[0] = this->subexpressions[0]->hir(instructions, state);
1031 op[1] = this->subexpressions[1]->hir(instructions, state);
1032
1033 result = do_assignment(instructions, state, op[0], op[1], false,
1034 this->subexpressions[0]->get_location());
1035 error_emitted = result->type->is_error();
1036 break;
1037 }
1038
1039 case ast_plus:
1040 op[0] = this->subexpressions[0]->hir(instructions, state);
1041
1042 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1043
1044 error_emitted = type->is_error();
1045
1046 result = op[0];
1047 break;
1048
1049 case ast_neg:
1050 op[0] = this->subexpressions[0]->hir(instructions, state);
1051
1052 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1053
1054 error_emitted = type->is_error();
1055
1056 result = new(ctx) ir_expression(operations[this->oper], type,
1057 op[0], NULL);
1058 break;
1059
1060 case ast_add:
1061 case ast_sub:
1062 case ast_mul:
1063 case ast_div:
1064 op[0] = this->subexpressions[0]->hir(instructions, state);
1065 op[1] = this->subexpressions[1]->hir(instructions, state);
1066
1067 type = arithmetic_result_type(op[0], op[1],
1068 (this->oper == ast_mul),
1069 state, & loc);
1070 error_emitted = type->is_error();
1071
1072 result = new(ctx) ir_expression(operations[this->oper], type,
1073 op[0], op[1]);
1074 break;
1075
1076 case ast_mod:
1077 op[0] = this->subexpressions[0]->hir(instructions, state);
1078 op[1] = this->subexpressions[1]->hir(instructions, state);
1079
1080 type = modulus_result_type(op[0]->type, op[1]->type, state, & loc);
1081
1082 assert(operations[this->oper] == ir_binop_mod);
1083
1084 result = new(ctx) ir_expression(operations[this->oper], type,
1085 op[0], op[1]);
1086 error_emitted = type->is_error();
1087 break;
1088
1089 case ast_lshift:
1090 case ast_rshift:
1091 if (state->language_version < 130) {
1092 _mesa_glsl_error(&loc, state, "operator %s requires GLSL 1.30",
1093 operator_string(this->oper));
1094 error_emitted = true;
1095 }
1096
1097 op[0] = this->subexpressions[0]->hir(instructions, state);
1098 op[1] = this->subexpressions[1]->hir(instructions, state);
1099 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1100 &loc);
1101 result = new(ctx) ir_expression(operations[this->oper], type,
1102 op[0], op[1]);
1103 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1104 break;
1105
1106 case ast_less:
1107 case ast_greater:
1108 case ast_lequal:
1109 case ast_gequal:
1110 op[0] = this->subexpressions[0]->hir(instructions, state);
1111 op[1] = this->subexpressions[1]->hir(instructions, state);
1112
1113 type = relational_result_type(op[0], op[1], state, & loc);
1114
1115 /* The relational operators must either generate an error or result
1116 * in a scalar boolean. See page 57 of the GLSL 1.50 spec.
1117 */
1118 assert(type->is_error()
1119 || ((type->base_type == GLSL_TYPE_BOOL)
1120 && type->is_scalar()));
1121
1122 result = new(ctx) ir_expression(operations[this->oper], type,
1123 op[0], op[1]);
1124 error_emitted = type->is_error();
1125 break;
1126
1127 case ast_nequal:
1128 case ast_equal:
1129 op[0] = this->subexpressions[0]->hir(instructions, state);
1130 op[1] = this->subexpressions[1]->hir(instructions, state);
1131
1132 /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
1133 *
1134 * "The equality operators equal (==), and not equal (!=)
1135 * operate on all types. They result in a scalar Boolean. If
1136 * the operand types do not match, then there must be a
1137 * conversion from Section 4.1.10 "Implicit Conversions"
1138 * applied to one operand that can make them match, in which
1139 * case this conversion is done."
1140 */
1141 if ((!apply_implicit_conversion(op[0]->type, op[1], state)
1142 && !apply_implicit_conversion(op[1]->type, op[0], state))
1143 || (op[0]->type != op[1]->type)) {
1144 _mesa_glsl_error(& loc, state, "operands of `%s' must have the same "
1145 "type", (this->oper == ast_equal) ? "==" : "!=");
1146 error_emitted = true;
1147 } else if ((state->language_version <= 110)
1148 && (op[0]->type->is_array() || op[1]->type->is_array())) {
1149 _mesa_glsl_error(& loc, state, "array comparisons forbidden in "
1150 "GLSL 1.10");
1151 error_emitted = true;
1152 }
1153
1154 if (error_emitted) {
1155 result = new(ctx) ir_constant(false);
1156 } else {
1157 result = do_comparison(ctx, operations[this->oper], op[0], op[1]);
1158 assert(result->type == glsl_type::bool_type);
1159 }
1160 break;
1161
1162 case ast_bit_and:
1163 case ast_bit_xor:
1164 case ast_bit_or:
1165 op[0] = this->subexpressions[0]->hir(instructions, state);
1166 op[1] = this->subexpressions[1]->hir(instructions, state);
1167 type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
1168 state, &loc);
1169 result = new(ctx) ir_expression(operations[this->oper], type,
1170 op[0], op[1]);
1171 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1172 break;
1173
1174 case ast_bit_not:
1175 op[0] = this->subexpressions[0]->hir(instructions, state);
1176
1177 if (state->language_version < 130) {
1178 _mesa_glsl_error(&loc, state, "bit-wise operations require GLSL 1.30");
1179 error_emitted = true;
1180 }
1181
1182 if (!op[0]->type->is_integer()) {
1183 _mesa_glsl_error(&loc, state, "operand of `~' must be an integer");
1184 error_emitted = true;
1185 }
1186
1187 type = op[0]->type;
1188 result = new(ctx) ir_expression(ir_unop_bit_not, type, op[0], NULL);
1189 break;
1190
1191 case ast_logic_and: {
1192 exec_list rhs_instructions;
1193 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1194 "LHS", &error_emitted);
1195 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1196 "RHS", &error_emitted);
1197
1198 ir_constant *op0_const = op[0]->constant_expression_value();
1199 if (op0_const) {
1200 if (op0_const->value.b[0]) {
1201 instructions->append_list(&rhs_instructions);
1202 result = op[1];
1203 } else {
1204 result = op0_const;
1205 }
1206 type = glsl_type::bool_type;
1207 } else {
1208 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1209 "and_tmp",
1210 ir_var_temporary);
1211 instructions->push_tail(tmp);
1212
1213 ir_if *const stmt = new(ctx) ir_if(op[0]);
1214 instructions->push_tail(stmt);
1215
1216 stmt->then_instructions.append_list(&rhs_instructions);
1217 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1218 ir_assignment *const then_assign =
1219 new(ctx) ir_assignment(then_deref, op[1], NULL);
1220 stmt->then_instructions.push_tail(then_assign);
1221
1222 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1223 ir_assignment *const else_assign =
1224 new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false), NULL);
1225 stmt->else_instructions.push_tail(else_assign);
1226
1227 result = new(ctx) ir_dereference_variable(tmp);
1228 type = tmp->type;
1229 }
1230 break;
1231 }
1232
1233 case ast_logic_or: {
1234 exec_list rhs_instructions;
1235 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1236 "LHS", &error_emitted);
1237 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1238 "RHS", &error_emitted);
1239
1240 ir_constant *op0_const = op[0]->constant_expression_value();
1241 if (op0_const) {
1242 if (op0_const->value.b[0]) {
1243 result = op0_const;
1244 } else {
1245 result = op[1];
1246 }
1247 type = glsl_type::bool_type;
1248 } else {
1249 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1250 "or_tmp",
1251 ir_var_temporary);
1252 instructions->push_tail(tmp);
1253
1254 ir_if *const stmt = new(ctx) ir_if(op[0]);
1255 instructions->push_tail(stmt);
1256
1257 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1258 ir_assignment *const then_assign =
1259 new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true), NULL);
1260 stmt->then_instructions.push_tail(then_assign);
1261
1262 stmt->else_instructions.append_list(&rhs_instructions);
1263 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1264 ir_assignment *const else_assign =
1265 new(ctx) ir_assignment(else_deref, op[1], NULL);
1266 stmt->else_instructions.push_tail(else_assign);
1267
1268 result = new(ctx) ir_dereference_variable(tmp);
1269 type = tmp->type;
1270 }
1271 break;
1272 }
1273
1274 case ast_logic_xor:
1275 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1276 *
1277 * "The logical binary operators and (&&), or ( | | ), and
1278 * exclusive or (^^). They operate only on two Boolean
1279 * expressions and result in a Boolean expression."
1280 */
1281 op[0] = get_scalar_boolean_operand(instructions, state, this, 0, "LHS",
1282 &error_emitted);
1283 op[1] = get_scalar_boolean_operand(instructions, state, this, 1, "RHS",
1284 &error_emitted);
1285
1286 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1287 op[0], op[1]);
1288 break;
1289
1290 case ast_logic_not:
1291 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1292 "operand", &error_emitted);
1293
1294 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1295 op[0], NULL);
1296 break;
1297
1298 case ast_mul_assign:
1299 case ast_div_assign:
1300 case ast_add_assign:
1301 case ast_sub_assign: {
1302 op[0] = this->subexpressions[0]->hir(instructions, state);
1303 op[1] = this->subexpressions[1]->hir(instructions, state);
1304
1305 type = arithmetic_result_type(op[0], op[1],
1306 (this->oper == ast_mul_assign),
1307 state, & loc);
1308
1309 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1310 op[0], op[1]);
1311
1312 result = do_assignment(instructions, state,
1313 op[0]->clone(ctx, NULL), temp_rhs, false,
1314 this->subexpressions[0]->get_location());
1315 error_emitted = (op[0]->type->is_error());
1316
1317 /* GLSL 1.10 does not allow array assignment. However, we don't have to
1318 * explicitly test for this because none of the binary expression
1319 * operators allow array operands either.
1320 */
1321
1322 break;
1323 }
1324
1325 case ast_mod_assign: {
1326 op[0] = this->subexpressions[0]->hir(instructions, state);
1327 op[1] = this->subexpressions[1]->hir(instructions, state);
1328
1329 type = modulus_result_type(op[0]->type, op[1]->type, state, & loc);
1330
1331 assert(operations[this->oper] == ir_binop_mod);
1332
1333 ir_rvalue *temp_rhs;
1334 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1335 op[0], op[1]);
1336
1337 result = do_assignment(instructions, state,
1338 op[0]->clone(ctx, NULL), temp_rhs, false,
1339 this->subexpressions[0]->get_location());
1340 error_emitted = type->is_error();
1341 break;
1342 }
1343
1344 case ast_ls_assign:
1345 case ast_rs_assign: {
1346 op[0] = this->subexpressions[0]->hir(instructions, state);
1347 op[1] = this->subexpressions[1]->hir(instructions, state);
1348 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1349 &loc);
1350 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1351 type, op[0], op[1]);
1352 result = do_assignment(instructions, state, op[0]->clone(ctx, NULL),
1353 temp_rhs, false,
1354 this->subexpressions[0]->get_location());
1355 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1356 break;
1357 }
1358
1359 case ast_and_assign:
1360 case ast_xor_assign:
1361 case ast_or_assign: {
1362 op[0] = this->subexpressions[0]->hir(instructions, state);
1363 op[1] = this->subexpressions[1]->hir(instructions, state);
1364 type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
1365 state, &loc);
1366 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1367 type, op[0], op[1]);
1368 result = do_assignment(instructions, state, op[0]->clone(ctx, NULL),
1369 temp_rhs, false,
1370 this->subexpressions[0]->get_location());
1371 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1372 break;
1373 }
1374
1375 case ast_conditional: {
1376 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1377 *
1378 * "The ternary selection operator (?:). It operates on three
1379 * expressions (exp1 ? exp2 : exp3). This operator evaluates the
1380 * first expression, which must result in a scalar Boolean."
1381 */
1382 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1383 "condition", &error_emitted);
1384
1385 /* The :? operator is implemented by generating an anonymous temporary
1386 * followed by an if-statement. The last instruction in each branch of
1387 * the if-statement assigns a value to the anonymous temporary. This
1388 * temporary is the r-value of the expression.
1389 */
1390 exec_list then_instructions;
1391 exec_list else_instructions;
1392
1393 op[1] = this->subexpressions[1]->hir(&then_instructions, state);
1394 op[2] = this->subexpressions[2]->hir(&else_instructions, state);
1395
1396 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1397 *
1398 * "The second and third expressions can be any type, as
1399 * long their types match, or there is a conversion in
1400 * Section 4.1.10 "Implicit Conversions" that can be applied
1401 * to one of the expressions to make their types match. This
1402 * resulting matching type is the type of the entire
1403 * expression."
1404 */
1405 if ((!apply_implicit_conversion(op[1]->type, op[2], state)
1406 && !apply_implicit_conversion(op[2]->type, op[1], state))
1407 || (op[1]->type != op[2]->type)) {
1408 YYLTYPE loc = this->subexpressions[1]->get_location();
1409
1410 _mesa_glsl_error(& loc, state, "Second and third operands of ?: "
1411 "operator must have matching types.");
1412 error_emitted = true;
1413 type = glsl_type::error_type;
1414 } else {
1415 type = op[1]->type;
1416 }
1417
1418 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1419 *
1420 * "The second and third expressions must be the same type, but can
1421 * be of any type other than an array."
1422 */
1423 if ((state->language_version <= 110) && type->is_array()) {
1424 _mesa_glsl_error(& loc, state, "Second and third operands of ?: "
1425 "operator must not be arrays.");
1426 error_emitted = true;
1427 }
1428
1429 ir_constant *cond_val = op[0]->constant_expression_value();
1430 ir_constant *then_val = op[1]->constant_expression_value();
1431 ir_constant *else_val = op[2]->constant_expression_value();
1432
1433 if (then_instructions.is_empty()
1434 && else_instructions.is_empty()
1435 && (cond_val != NULL) && (then_val != NULL) && (else_val != NULL)) {
1436 result = (cond_val->value.b[0]) ? then_val : else_val;
1437 } else {
1438 ir_variable *const tmp =
1439 new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary);
1440 instructions->push_tail(tmp);
1441
1442 ir_if *const stmt = new(ctx) ir_if(op[0]);
1443 instructions->push_tail(stmt);
1444
1445 then_instructions.move_nodes_to(& stmt->then_instructions);
1446 ir_dereference *const then_deref =
1447 new(ctx) ir_dereference_variable(tmp);
1448 ir_assignment *const then_assign =
1449 new(ctx) ir_assignment(then_deref, op[1], NULL);
1450 stmt->then_instructions.push_tail(then_assign);
1451
1452 else_instructions.move_nodes_to(& stmt->else_instructions);
1453 ir_dereference *const else_deref =
1454 new(ctx) ir_dereference_variable(tmp);
1455 ir_assignment *const else_assign =
1456 new(ctx) ir_assignment(else_deref, op[2], NULL);
1457 stmt->else_instructions.push_tail(else_assign);
1458
1459 result = new(ctx) ir_dereference_variable(tmp);
1460 }
1461 break;
1462 }
1463
1464 case ast_pre_inc:
1465 case ast_pre_dec: {
1466 op[0] = this->subexpressions[0]->hir(instructions, state);
1467 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1468
1469 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1470
1471 ir_rvalue *temp_rhs;
1472 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1473 op[0], op[1]);
1474
1475 result = do_assignment(instructions, state,
1476 op[0]->clone(ctx, NULL), temp_rhs, false,
1477 this->subexpressions[0]->get_location());
1478 error_emitted = op[0]->type->is_error();
1479 break;
1480 }
1481
1482 case ast_post_inc:
1483 case ast_post_dec: {
1484 op[0] = this->subexpressions[0]->hir(instructions, state);
1485 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1486
1487 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1488
1489 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1490
1491 ir_rvalue *temp_rhs;
1492 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1493 op[0], op[1]);
1494
1495 /* Get a temporary of a copy of the lvalue before it's modified.
1496 * This may get thrown away later.
1497 */
1498 result = get_lvalue_copy(instructions, op[0]->clone(ctx, NULL));
1499
1500 (void)do_assignment(instructions, state,
1501 op[0]->clone(ctx, NULL), temp_rhs, false,
1502 this->subexpressions[0]->get_location());
1503
1504 error_emitted = op[0]->type->is_error();
1505 break;
1506 }
1507
1508 case ast_field_selection:
1509 result = _mesa_ast_field_selection_to_hir(this, instructions, state);
1510 break;
1511
1512 case ast_array_index: {
1513 YYLTYPE index_loc = subexpressions[1]->get_location();
1514
1515 op[0] = subexpressions[0]->hir(instructions, state);
1516 op[1] = subexpressions[1]->hir(instructions, state);
1517
1518 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1519
1520 ir_rvalue *const array = op[0];
1521
1522 result = new(ctx) ir_dereference_array(op[0], op[1]);
1523
1524 /* Do not use op[0] after this point. Use array.
1525 */
1526 op[0] = NULL;
1527
1528
1529 if (error_emitted)
1530 break;
1531
1532 if (!array->type->is_array()
1533 && !array->type->is_matrix()
1534 && !array->type->is_vector()) {
1535 _mesa_glsl_error(& index_loc, state,
1536 "cannot dereference non-array / non-matrix / "
1537 "non-vector");
1538 error_emitted = true;
1539 }
1540
1541 if (!op[1]->type->is_integer()) {
1542 _mesa_glsl_error(& index_loc, state,
1543 "array index must be integer type");
1544 error_emitted = true;
1545 } else if (!op[1]->type->is_scalar()) {
1546 _mesa_glsl_error(& index_loc, state,
1547 "array index must be scalar");
1548 error_emitted = true;
1549 }
1550
1551 /* If the array index is a constant expression and the array has a
1552 * declared size, ensure that the access is in-bounds. If the array
1553 * index is not a constant expression, ensure that the array has a
1554 * declared size.
1555 */
1556 ir_constant *const const_index = op[1]->constant_expression_value();
1557 if (const_index != NULL) {
1558 const int idx = const_index->value.i[0];
1559 const char *type_name;
1560 unsigned bound = 0;
1561
1562 if (array->type->is_matrix()) {
1563 type_name = "matrix";
1564 } else if (array->type->is_vector()) {
1565 type_name = "vector";
1566 } else {
1567 type_name = "array";
1568 }
1569
1570 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec:
1571 *
1572 * "It is illegal to declare an array with a size, and then
1573 * later (in the same shader) index the same array with an
1574 * integral constant expression greater than or equal to the
1575 * declared size. It is also illegal to index an array with a
1576 * negative constant expression."
1577 */
1578 if (array->type->is_matrix()) {
1579 if (array->type->row_type()->vector_elements <= idx) {
1580 bound = array->type->row_type()->vector_elements;
1581 }
1582 } else if (array->type->is_vector()) {
1583 if (array->type->vector_elements <= idx) {
1584 bound = array->type->vector_elements;
1585 }
1586 } else {
1587 if ((array->type->array_size() > 0)
1588 && (array->type->array_size() <= idx)) {
1589 bound = array->type->array_size();
1590 }
1591 }
1592
1593 if (bound > 0) {
1594 _mesa_glsl_error(& loc, state, "%s index must be < %u",
1595 type_name, bound);
1596 error_emitted = true;
1597 } else if (idx < 0) {
1598 _mesa_glsl_error(& loc, state, "%s index must be >= 0",
1599 type_name);
1600 error_emitted = true;
1601 }
1602
1603 if (array->type->is_array()) {
1604 /* If the array is a variable dereference, it dereferences the
1605 * whole array, by definition. Use this to get the variable.
1606 *
1607 * FINISHME: Should some methods for getting / setting / testing
1608 * FINISHME: array access limits be added to ir_dereference?
1609 */
1610 ir_variable *const v = array->whole_variable_referenced();
1611 if ((v != NULL) && (unsigned(idx) > v->max_array_access)) {
1612 v->max_array_access = idx;
1613
1614 /* Check whether this access will, as a side effect, implicitly
1615 * cause the size of a built-in array to be too large.
1616 */
1617 if (check_builtin_array_max_size(v->name, idx+1, loc, state))
1618 error_emitted = true;
1619 }
1620 }
1621 } else if (array->type->array_size() == 0) {
1622 _mesa_glsl_error(&loc, state, "unsized array index must be constant");
1623 } else {
1624 if (array->type->is_array()) {
1625 /* whole_variable_referenced can return NULL if the array is a
1626 * member of a structure. In this case it is safe to not update
1627 * the max_array_access field because it is never used for fields
1628 * of structures.
1629 */
1630 ir_variable *v = array->whole_variable_referenced();
1631 if (v != NULL)
1632 v->max_array_access = array->type->array_size() - 1;
1633 }
1634 }
1635
1636 /* From page 23 (29 of the PDF) of the GLSL 1.30 spec:
1637 *
1638 * "Samplers aggregated into arrays within a shader (using square
1639 * brackets [ ]) can only be indexed with integral constant
1640 * expressions [...]."
1641 *
1642 * This restriction was added in GLSL 1.30. Shaders using earlier version
1643 * of the language should not be rejected by the compiler front-end for
1644 * using this construct. This allows useful things such as using a loop
1645 * counter as the index to an array of samplers. If the loop in unrolled,
1646 * the code should compile correctly. Instead, emit a warning.
1647 */
1648 if (array->type->is_array() &&
1649 array->type->element_type()->is_sampler() &&
1650 const_index == NULL) {
1651
1652 if (state->language_version == 100) {
1653 _mesa_glsl_warning(&loc, state,
1654 "sampler arrays indexed with non-constant "
1655 "expressions is optional in GLSL ES 1.00");
1656 } else if (state->language_version < 130) {
1657 _mesa_glsl_warning(&loc, state,
1658 "sampler arrays indexed with non-constant "
1659 "expressions is forbidden in GLSL 1.30 and "
1660 "later");
1661 } else {
1662 _mesa_glsl_error(&loc, state,
1663 "sampler arrays indexed with non-constant "
1664 "expressions is forbidden in GLSL 1.30 and "
1665 "later");
1666 error_emitted = true;
1667 }
1668 }
1669
1670 if (error_emitted)
1671 result->type = glsl_type::error_type;
1672
1673 break;
1674 }
1675
1676 case ast_function_call:
1677 /* Should *NEVER* get here. ast_function_call should always be handled
1678 * by ast_function_expression::hir.
1679 */
1680 assert(0);
1681 break;
1682
1683 case ast_identifier: {
1684 /* ast_identifier can appear several places in a full abstract syntax
1685 * tree. This particular use must be at location specified in the grammar
1686 * as 'variable_identifier'.
1687 */
1688 ir_variable *var =
1689 state->symbols->get_variable(this->primary_expression.identifier);
1690
1691 result = new(ctx) ir_dereference_variable(var);
1692
1693 if (var != NULL) {
1694 var->used = true;
1695 } else {
1696 _mesa_glsl_error(& loc, state, "`%s' undeclared",
1697 this->primary_expression.identifier);
1698
1699 error_emitted = true;
1700 }
1701 break;
1702 }
1703
1704 case ast_int_constant:
1705 result = new(ctx) ir_constant(this->primary_expression.int_constant);
1706 break;
1707
1708 case ast_uint_constant:
1709 result = new(ctx) ir_constant(this->primary_expression.uint_constant);
1710 break;
1711
1712 case ast_float_constant:
1713 result = new(ctx) ir_constant(this->primary_expression.float_constant);
1714 break;
1715
1716 case ast_bool_constant:
1717 result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant));
1718 break;
1719
1720 case ast_sequence: {
1721 /* It should not be possible to generate a sequence in the AST without
1722 * any expressions in it.
1723 */
1724 assert(!this->expressions.is_empty());
1725
1726 /* The r-value of a sequence is the last expression in the sequence. If
1727 * the other expressions in the sequence do not have side-effects (and
1728 * therefore add instructions to the instruction list), they get dropped
1729 * on the floor.
1730 */
1731 exec_node *previous_tail_pred = NULL;
1732 YYLTYPE previous_operand_loc = loc;
1733
1734 foreach_list_typed (ast_node, ast, link, &this->expressions) {
1735 /* If one of the operands of comma operator does not generate any
1736 * code, we want to emit a warning. At each pass through the loop
1737 * previous_tail_pred will point to the last instruction in the
1738 * stream *before* processing the previous operand. Naturally,
1739 * instructions->tail_pred will point to the last instruction in the
1740 * stream *after* processing the previous operand. If the two
1741 * pointers match, then the previous operand had no effect.
1742 *
1743 * The warning behavior here differs slightly from GCC. GCC will
1744 * only emit a warning if none of the left-hand operands have an
1745 * effect. However, it will emit a warning for each. I believe that
1746 * there are some cases in C (especially with GCC extensions) where
1747 * it is useful to have an intermediate step in a sequence have no
1748 * effect, but I don't think these cases exist in GLSL. Either way,
1749 * it would be a giant hassle to replicate that behavior.
1750 */
1751 if (previous_tail_pred == instructions->tail_pred) {
1752 _mesa_glsl_warning(&previous_operand_loc, state,
1753 "left-hand operand of comma expression has "
1754 "no effect");
1755 }
1756
1757 /* tail_pred is directly accessed instead of using the get_tail()
1758 * method for performance reasons. get_tail() has extra code to
1759 * return NULL when the list is empty. We don't care about that
1760 * here, so using tail_pred directly is fine.
1761 */
1762 previous_tail_pred = instructions->tail_pred;
1763 previous_operand_loc = ast->get_location();
1764
1765 result = ast->hir(instructions, state);
1766 }
1767
1768 /* Any errors should have already been emitted in the loop above.
1769 */
1770 error_emitted = true;
1771 break;
1772 }
1773 }
1774 type = NULL; /* use result->type, not type. */
1775 assert(result != NULL);
1776
1777 if (result->type->is_error() && !error_emitted)
1778 _mesa_glsl_error(& loc, state, "type mismatch");
1779
1780 return result;
1781 }
1782
1783
1784 ir_rvalue *
1785 ast_expression_statement::hir(exec_list *instructions,
1786 struct _mesa_glsl_parse_state *state)
1787 {
1788 /* It is possible to have expression statements that don't have an
1789 * expression. This is the solitary semicolon:
1790 *
1791 * for (i = 0; i < 5; i++)
1792 * ;
1793 *
1794 * In this case the expression will be NULL. Test for NULL and don't do
1795 * anything in that case.
1796 */
1797 if (expression != NULL)
1798 expression->hir(instructions, state);
1799
1800 /* Statements do not have r-values.
1801 */
1802 return NULL;
1803 }
1804
1805
1806 ir_rvalue *
1807 ast_compound_statement::hir(exec_list *instructions,
1808 struct _mesa_glsl_parse_state *state)
1809 {
1810 if (new_scope)
1811 state->symbols->push_scope();
1812
1813 foreach_list_typed (ast_node, ast, link, &this->statements)
1814 ast->hir(instructions, state);
1815
1816 if (new_scope)
1817 state->symbols->pop_scope();
1818
1819 /* Compound statements do not have r-values.
1820 */
1821 return NULL;
1822 }
1823
1824
1825 static const glsl_type *
1826 process_array_type(YYLTYPE *loc, const glsl_type *base, ast_node *array_size,
1827 struct _mesa_glsl_parse_state *state)
1828 {
1829 unsigned length = 0;
1830
1831 /* From page 19 (page 25) of the GLSL 1.20 spec:
1832 *
1833 * "Only one-dimensional arrays may be declared."
1834 */
1835 if (base->is_array()) {
1836 _mesa_glsl_error(loc, state,
1837 "invalid array of `%s' (only one-dimensional arrays "
1838 "may be declared)",
1839 base->name);
1840 return glsl_type::error_type;
1841 }
1842
1843 if (array_size != NULL) {
1844 exec_list dummy_instructions;
1845 ir_rvalue *const ir = array_size->hir(& dummy_instructions, state);
1846 YYLTYPE loc = array_size->get_location();
1847
1848 if (ir != NULL) {
1849 if (!ir->type->is_integer()) {
1850 _mesa_glsl_error(& loc, state, "array size must be integer type");
1851 } else if (!ir->type->is_scalar()) {
1852 _mesa_glsl_error(& loc, state, "array size must be scalar type");
1853 } else {
1854 ir_constant *const size = ir->constant_expression_value();
1855
1856 if (size == NULL) {
1857 _mesa_glsl_error(& loc, state, "array size must be a "
1858 "constant valued expression");
1859 } else if (size->value.i[0] <= 0) {
1860 _mesa_glsl_error(& loc, state, "array size must be > 0");
1861 } else {
1862 assert(size->type == ir->type);
1863 length = size->value.u[0];
1864
1865 /* If the array size is const (and we've verified that
1866 * it is) then no instructions should have been emitted
1867 * when we converted it to HIR. If they were emitted,
1868 * then either the array size isn't const after all, or
1869 * we are emitting unnecessary instructions.
1870 */
1871 assert(dummy_instructions.is_empty());
1872 }
1873 }
1874 }
1875 } else if (state->es_shader) {
1876 /* Section 10.17 of the GLSL ES 1.00 specification states that unsized
1877 * array declarations have been removed from the language.
1878 */
1879 _mesa_glsl_error(loc, state, "unsized array declarations are not "
1880 "allowed in GLSL ES 1.00.");
1881 }
1882
1883 return glsl_type::get_array_instance(base, length);
1884 }
1885
1886
1887 const glsl_type *
1888 ast_type_specifier::glsl_type(const char **name,
1889 struct _mesa_glsl_parse_state *state) const
1890 {
1891 const struct glsl_type *type;
1892
1893 type = state->symbols->get_type(this->type_name);
1894 *name = this->type_name;
1895
1896 if (this->is_array) {
1897 YYLTYPE loc = this->get_location();
1898 type = process_array_type(&loc, type, this->array_size, state);
1899 }
1900
1901 return type;
1902 }
1903
1904
1905 static void
1906 apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
1907 ir_variable *var,
1908 struct _mesa_glsl_parse_state *state,
1909 YYLTYPE *loc)
1910 {
1911 if (qual->flags.q.invariant) {
1912 if (var->used) {
1913 _mesa_glsl_error(loc, state,
1914 "variable `%s' may not be redeclared "
1915 "`invariant' after being used",
1916 var->name);
1917 } else {
1918 var->invariant = 1;
1919 }
1920 }
1921
1922 if (qual->flags.q.constant || qual->flags.q.attribute
1923 || qual->flags.q.uniform
1924 || (qual->flags.q.varying && (state->target == fragment_shader)))
1925 var->read_only = 1;
1926
1927 if (qual->flags.q.centroid)
1928 var->centroid = 1;
1929
1930 if (qual->flags.q.attribute && state->target != vertex_shader) {
1931 var->type = glsl_type::error_type;
1932 _mesa_glsl_error(loc, state,
1933 "`attribute' variables may not be declared in the "
1934 "%s shader",
1935 _mesa_glsl_shader_target_name(state->target));
1936 }
1937
1938 /* From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
1939 *
1940 * "The varying qualifier can be used only with the data types
1941 * float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
1942 * these."
1943 */
1944 if (qual->flags.q.varying) {
1945 const glsl_type *non_array_type;
1946
1947 if (var->type && var->type->is_array())
1948 non_array_type = var->type->fields.array;
1949 else
1950 non_array_type = var->type;
1951
1952 if (non_array_type && non_array_type->base_type != GLSL_TYPE_FLOAT) {
1953 var->type = glsl_type::error_type;
1954 _mesa_glsl_error(loc, state,
1955 "varying variables must be of base type float");
1956 }
1957 }
1958
1959 /* If there is no qualifier that changes the mode of the variable, leave
1960 * the setting alone.
1961 */
1962 if (qual->flags.q.in && qual->flags.q.out)
1963 var->mode = ir_var_inout;
1964 else if (qual->flags.q.attribute || qual->flags.q.in
1965 || (qual->flags.q.varying && (state->target == fragment_shader)))
1966 var->mode = ir_var_in;
1967 else if (qual->flags.q.out
1968 || (qual->flags.q.varying && (state->target == vertex_shader)))
1969 var->mode = ir_var_out;
1970 else if (qual->flags.q.uniform)
1971 var->mode = ir_var_uniform;
1972
1973 if (state->all_invariant && (state->current_function == NULL)) {
1974 switch (state->target) {
1975 case vertex_shader:
1976 if (var->mode == ir_var_out)
1977 var->invariant = true;
1978 break;
1979 case geometry_shader:
1980 if ((var->mode == ir_var_in) || (var->mode == ir_var_out))
1981 var->invariant = true;
1982 break;
1983 case fragment_shader:
1984 if (var->mode == ir_var_in)
1985 var->invariant = true;
1986 break;
1987 }
1988 }
1989
1990 if (qual->flags.q.flat)
1991 var->interpolation = INTERP_QUALIFIER_FLAT;
1992 else if (qual->flags.q.noperspective)
1993 var->interpolation = INTERP_QUALIFIER_NOPERSPECTIVE;
1994 else if (qual->flags.q.smooth)
1995 var->interpolation = INTERP_QUALIFIER_SMOOTH;
1996 else
1997 var->interpolation = INTERP_QUALIFIER_NONE;
1998
1999 var->pixel_center_integer = qual->flags.q.pixel_center_integer;
2000 var->origin_upper_left = qual->flags.q.origin_upper_left;
2001 if ((qual->flags.q.origin_upper_left || qual->flags.q.pixel_center_integer)
2002 && (strcmp(var->name, "gl_FragCoord") != 0)) {
2003 const char *const qual_string = (qual->flags.q.origin_upper_left)
2004 ? "origin_upper_left" : "pixel_center_integer";
2005
2006 _mesa_glsl_error(loc, state,
2007 "layout qualifier `%s' can only be applied to "
2008 "fragment shader input `gl_FragCoord'",
2009 qual_string);
2010 }
2011
2012 if (qual->flags.q.explicit_location) {
2013 const bool global_scope = (state->current_function == NULL);
2014 bool fail = false;
2015 const char *string = "";
2016
2017 /* In the vertex shader only shader inputs can be given explicit
2018 * locations.
2019 *
2020 * In the fragment shader only shader outputs can be given explicit
2021 * locations.
2022 */
2023 switch (state->target) {
2024 case vertex_shader:
2025 if (!global_scope || (var->mode != ir_var_in)) {
2026 fail = true;
2027 string = "input";
2028 }
2029 break;
2030
2031 case geometry_shader:
2032 _mesa_glsl_error(loc, state,
2033 "geometry shader variables cannot be given "
2034 "explicit locations\n");
2035 break;
2036
2037 case fragment_shader:
2038 if (!global_scope || (var->mode != ir_var_out)) {
2039 fail = true;
2040 string = "output";
2041 }
2042 break;
2043 };
2044
2045 if (fail) {
2046 _mesa_glsl_error(loc, state,
2047 "only %s shader %s variables can be given an "
2048 "explicit location\n",
2049 _mesa_glsl_shader_target_name(state->target),
2050 string);
2051 } else {
2052 var->explicit_location = true;
2053
2054 /* This bit of silliness is needed because invalid explicit locations
2055 * are supposed to be flagged during linking. Small negative values
2056 * biased by VERT_ATTRIB_GENERIC0 or FRAG_RESULT_DATA0 could alias
2057 * built-in values (e.g., -16+VERT_ATTRIB_GENERIC0 = VERT_ATTRIB_POS).
2058 * The linker needs to be able to differentiate these cases. This
2059 * ensures that negative values stay negative.
2060 */
2061 if (qual->location >= 0) {
2062 var->location = (state->target == vertex_shader)
2063 ? (qual->location + VERT_ATTRIB_GENERIC0)
2064 : (qual->location + FRAG_RESULT_DATA0);
2065 } else {
2066 var->location = qual->location;
2067 }
2068 }
2069 }
2070
2071 /* Does the declaration use the 'layout' keyword?
2072 */
2073 const bool uses_layout = qual->flags.q.pixel_center_integer
2074 || qual->flags.q.origin_upper_left
2075 || qual->flags.q.explicit_location;
2076
2077 /* Does the declaration use the deprecated 'attribute' or 'varying'
2078 * keywords?
2079 */
2080 const bool uses_deprecated_qualifier = qual->flags.q.attribute
2081 || qual->flags.q.varying;
2082
2083 /* Is the 'layout' keyword used with parameters that allow relaxed checking.
2084 * Many implementations of GL_ARB_fragment_coord_conventions_enable and some
2085 * implementations (only Mesa?) GL_ARB_explicit_attrib_location_enable
2086 * allowed the layout qualifier to be used with 'varying' and 'attribute'.
2087 * These extensions and all following extensions that add the 'layout'
2088 * keyword have been modified to require the use of 'in' or 'out'.
2089 *
2090 * The following extension do not allow the deprecated keywords:
2091 *
2092 * GL_AMD_conservative_depth
2093 * GL_ARB_conservative_depth
2094 * GL_ARB_gpu_shader5
2095 * GL_ARB_separate_shader_objects
2096 * GL_ARB_tesselation_shader
2097 * GL_ARB_transform_feedback3
2098 * GL_ARB_uniform_buffer_object
2099 *
2100 * It is unknown whether GL_EXT_shader_image_load_store or GL_NV_gpu_shader5
2101 * allow layout with the deprecated keywords.
2102 */
2103 const bool relaxed_layout_qualifier_checking =
2104 state->ARB_fragment_coord_conventions_enable;
2105
2106 if (uses_layout && uses_deprecated_qualifier) {
2107 if (relaxed_layout_qualifier_checking) {
2108 _mesa_glsl_warning(loc, state,
2109 "`layout' qualifier may not be used with "
2110 "`attribute' or `varying'");
2111 } else {
2112 _mesa_glsl_error(loc, state,
2113 "`layout' qualifier may not be used with "
2114 "`attribute' or `varying'");
2115 }
2116 }
2117
2118 /* Layout qualifiers for gl_FragDepth, which are enabled by extension
2119 * AMD_conservative_depth.
2120 */
2121 int depth_layout_count = qual->flags.q.depth_any
2122 + qual->flags.q.depth_greater
2123 + qual->flags.q.depth_less
2124 + qual->flags.q.depth_unchanged;
2125 if (depth_layout_count > 0
2126 && !state->AMD_conservative_depth_enable
2127 && !state->ARB_conservative_depth_enable) {
2128 _mesa_glsl_error(loc, state,
2129 "extension GL_AMD_conservative_depth or "
2130 "GL_ARB_conservative_depth must be enabled "
2131 "to use depth layout qualifiers");
2132 } else if (depth_layout_count > 0
2133 && strcmp(var->name, "gl_FragDepth") != 0) {
2134 _mesa_glsl_error(loc, state,
2135 "depth layout qualifiers can be applied only to "
2136 "gl_FragDepth");
2137 } else if (depth_layout_count > 1
2138 && strcmp(var->name, "gl_FragDepth") == 0) {
2139 _mesa_glsl_error(loc, state,
2140 "at most one depth layout qualifier can be applied to "
2141 "gl_FragDepth");
2142 }
2143 if (qual->flags.q.depth_any)
2144 var->depth_layout = ir_depth_layout_any;
2145 else if (qual->flags.q.depth_greater)
2146 var->depth_layout = ir_depth_layout_greater;
2147 else if (qual->flags.q.depth_less)
2148 var->depth_layout = ir_depth_layout_less;
2149 else if (qual->flags.q.depth_unchanged)
2150 var->depth_layout = ir_depth_layout_unchanged;
2151 else
2152 var->depth_layout = ir_depth_layout_none;
2153 }
2154
2155 /**
2156 * Get the variable that is being redeclared by this declaration
2157 *
2158 * Semantic checks to verify the validity of the redeclaration are also
2159 * performed. If semantic checks fail, compilation error will be emitted via
2160 * \c _mesa_glsl_error, but a non-\c NULL pointer will still be returned.
2161 *
2162 * \returns
2163 * A pointer to an existing variable in the current scope if the declaration
2164 * is a redeclaration, \c NULL otherwise.
2165 */
2166 ir_variable *
2167 get_variable_being_redeclared(ir_variable *var, ast_declaration *decl,
2168 struct _mesa_glsl_parse_state *state)
2169 {
2170 /* Check if this declaration is actually a re-declaration, either to
2171 * resize an array or add qualifiers to an existing variable.
2172 *
2173 * This is allowed for variables in the current scope, or when at
2174 * global scope (for built-ins in the implicit outer scope).
2175 */
2176 ir_variable *earlier = state->symbols->get_variable(decl->identifier);
2177 if (earlier == NULL ||
2178 (state->current_function != NULL &&
2179 !state->symbols->name_declared_this_scope(decl->identifier))) {
2180 return NULL;
2181 }
2182
2183
2184 YYLTYPE loc = decl->get_location();
2185
2186 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
2187 *
2188 * "It is legal to declare an array without a size and then
2189 * later re-declare the same name as an array of the same
2190 * type and specify a size."
2191 */
2192 if ((earlier->type->array_size() == 0)
2193 && var->type->is_array()
2194 && (var->type->element_type() == earlier->type->element_type())) {
2195 /* FINISHME: This doesn't match the qualifiers on the two
2196 * FINISHME: declarations. It's not 100% clear whether this is
2197 * FINISHME: required or not.
2198 */
2199
2200 const unsigned size = unsigned(var->type->array_size());
2201 check_builtin_array_max_size(var->name, size, loc, state);
2202 if ((size > 0) && (size <= earlier->max_array_access)) {
2203 _mesa_glsl_error(& loc, state, "array size must be > %u due to "
2204 "previous access",
2205 earlier->max_array_access);
2206 }
2207
2208 earlier->type = var->type;
2209 delete var;
2210 var = NULL;
2211 } else if (state->ARB_fragment_coord_conventions_enable
2212 && strcmp(var->name, "gl_FragCoord") == 0
2213 && earlier->type == var->type
2214 && earlier->mode == var->mode) {
2215 /* Allow redeclaration of gl_FragCoord for ARB_fcc layout
2216 * qualifiers.
2217 */
2218 earlier->origin_upper_left = var->origin_upper_left;
2219 earlier->pixel_center_integer = var->pixel_center_integer;
2220
2221 /* According to section 4.3.7 of the GLSL 1.30 spec,
2222 * the following built-in varaibles can be redeclared with an
2223 * interpolation qualifier:
2224 * * gl_FrontColor
2225 * * gl_BackColor
2226 * * gl_FrontSecondaryColor
2227 * * gl_BackSecondaryColor
2228 * * gl_Color
2229 * * gl_SecondaryColor
2230 */
2231 } else if (state->language_version >= 130
2232 && (strcmp(var->name, "gl_FrontColor") == 0
2233 || strcmp(var->name, "gl_BackColor") == 0
2234 || strcmp(var->name, "gl_FrontSecondaryColor") == 0
2235 || strcmp(var->name, "gl_BackSecondaryColor") == 0
2236 || strcmp(var->name, "gl_Color") == 0
2237 || strcmp(var->name, "gl_SecondaryColor") == 0)
2238 && earlier->type == var->type
2239 && earlier->mode == var->mode) {
2240 earlier->interpolation = var->interpolation;
2241
2242 /* Layout qualifiers for gl_FragDepth. */
2243 } else if ((state->AMD_conservative_depth_enable ||
2244 state->ARB_conservative_depth_enable)
2245 && strcmp(var->name, "gl_FragDepth") == 0
2246 && earlier->type == var->type
2247 && earlier->mode == var->mode) {
2248
2249 /** From the AMD_conservative_depth spec:
2250 * Within any shader, the first redeclarations of gl_FragDepth
2251 * must appear before any use of gl_FragDepth.
2252 */
2253 if (earlier->used) {
2254 _mesa_glsl_error(&loc, state,
2255 "the first redeclaration of gl_FragDepth "
2256 "must appear before any use of gl_FragDepth");
2257 }
2258
2259 /* Prevent inconsistent redeclaration of depth layout qualifier. */
2260 if (earlier->depth_layout != ir_depth_layout_none
2261 && earlier->depth_layout != var->depth_layout) {
2262 _mesa_glsl_error(&loc, state,
2263 "gl_FragDepth: depth layout is declared here "
2264 "as '%s, but it was previously declared as "
2265 "'%s'",
2266 depth_layout_string(var->depth_layout),
2267 depth_layout_string(earlier->depth_layout));
2268 }
2269
2270 earlier->depth_layout = var->depth_layout;
2271
2272 } else {
2273 _mesa_glsl_error(&loc, state, "`%s' redeclared", decl->identifier);
2274 }
2275
2276 return earlier;
2277 }
2278
2279 /**
2280 * Generate the IR for an initializer in a variable declaration
2281 */
2282 ir_rvalue *
2283 process_initializer(ir_variable *var, ast_declaration *decl,
2284 ast_fully_specified_type *type,
2285 exec_list *initializer_instructions,
2286 struct _mesa_glsl_parse_state *state)
2287 {
2288 ir_rvalue *result = NULL;
2289
2290 YYLTYPE initializer_loc = decl->initializer->get_location();
2291
2292 /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
2293 *
2294 * "All uniform variables are read-only and are initialized either
2295 * directly by an application via API commands, or indirectly by
2296 * OpenGL."
2297 */
2298 if ((state->language_version <= 110)
2299 && (var->mode == ir_var_uniform)) {
2300 _mesa_glsl_error(& initializer_loc, state,
2301 "cannot initialize uniforms in GLSL 1.10");
2302 }
2303
2304 if (var->type->is_sampler()) {
2305 _mesa_glsl_error(& initializer_loc, state,
2306 "cannot initialize samplers");
2307 }
2308
2309 if ((var->mode == ir_var_in) && (state->current_function == NULL)) {
2310 _mesa_glsl_error(& initializer_loc, state,
2311 "cannot initialize %s shader input / %s",
2312 _mesa_glsl_shader_target_name(state->target),
2313 (state->target == vertex_shader)
2314 ? "attribute" : "varying");
2315 }
2316
2317 ir_dereference *const lhs = new(state) ir_dereference_variable(var);
2318 ir_rvalue *rhs = decl->initializer->hir(initializer_instructions,
2319 state);
2320
2321 /* Calculate the constant value if this is a const or uniform
2322 * declaration.
2323 */
2324 if (type->qualifier.flags.q.constant
2325 || type->qualifier.flags.q.uniform) {
2326 ir_rvalue *new_rhs = validate_assignment(state, var->type, rhs, true);
2327 if (new_rhs != NULL) {
2328 rhs = new_rhs;
2329
2330 ir_constant *constant_value = rhs->constant_expression_value();
2331 if (!constant_value) {
2332 _mesa_glsl_error(& initializer_loc, state,
2333 "initializer of %s variable `%s' must be a "
2334 "constant expression",
2335 (type->qualifier.flags.q.constant)
2336 ? "const" : "uniform",
2337 decl->identifier);
2338 if (var->type->is_numeric()) {
2339 /* Reduce cascading errors. */
2340 var->constant_value = ir_constant::zero(state, var->type);
2341 }
2342 } else {
2343 rhs = constant_value;
2344 var->constant_value = constant_value;
2345 }
2346 } else {
2347 _mesa_glsl_error(&initializer_loc, state,
2348 "initializer of type %s cannot be assigned to "
2349 "variable of type %s",
2350 rhs->type->name, var->type->name);
2351 if (var->type->is_numeric()) {
2352 /* Reduce cascading errors. */
2353 var->constant_value = ir_constant::zero(state, var->type);
2354 }
2355 }
2356 }
2357
2358 if (rhs && !rhs->type->is_error()) {
2359 bool temp = var->read_only;
2360 if (type->qualifier.flags.q.constant)
2361 var->read_only = false;
2362
2363 /* Never emit code to initialize a uniform.
2364 */
2365 const glsl_type *initializer_type;
2366 if (!type->qualifier.flags.q.uniform) {
2367 result = do_assignment(initializer_instructions, state,
2368 lhs, rhs, true,
2369 type->get_location());
2370 initializer_type = result->type;
2371 } else
2372 initializer_type = rhs->type;
2373
2374 var->constant_initializer = rhs->constant_expression_value();
2375 var->has_initializer = true;
2376
2377 /* If the declared variable is an unsized array, it must inherrit
2378 * its full type from the initializer. A declaration such as
2379 *
2380 * uniform float a[] = float[](1.0, 2.0, 3.0, 3.0);
2381 *
2382 * becomes
2383 *
2384 * uniform float a[4] = float[](1.0, 2.0, 3.0, 3.0);
2385 *
2386 * The assignment generated in the if-statement (below) will also
2387 * automatically handle this case for non-uniforms.
2388 *
2389 * If the declared variable is not an array, the types must
2390 * already match exactly. As a result, the type assignment
2391 * here can be done unconditionally. For non-uniforms the call
2392 * to do_assignment can change the type of the initializer (via
2393 * the implicit conversion rules). For uniforms the initializer
2394 * must be a constant expression, and the type of that expression
2395 * was validated above.
2396 */
2397 var->type = initializer_type;
2398
2399 var->read_only = temp;
2400 }
2401
2402 return result;
2403 }
2404
2405 ir_rvalue *
2406 ast_declarator_list::hir(exec_list *instructions,
2407 struct _mesa_glsl_parse_state *state)
2408 {
2409 void *ctx = state;
2410 const struct glsl_type *decl_type;
2411 const char *type_name = NULL;
2412 ir_rvalue *result = NULL;
2413 YYLTYPE loc = this->get_location();
2414
2415 /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec:
2416 *
2417 * "To ensure that a particular output variable is invariant, it is
2418 * necessary to use the invariant qualifier. It can either be used to
2419 * qualify a previously declared variable as being invariant
2420 *
2421 * invariant gl_Position; // make existing gl_Position be invariant"
2422 *
2423 * In these cases the parser will set the 'invariant' flag in the declarator
2424 * list, and the type will be NULL.
2425 */
2426 if (this->invariant) {
2427 assert(this->type == NULL);
2428
2429 if (state->current_function != NULL) {
2430 _mesa_glsl_error(& loc, state,
2431 "All uses of `invariant' keyword must be at global "
2432 "scope\n");
2433 }
2434
2435 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
2436 assert(!decl->is_array);
2437 assert(decl->array_size == NULL);
2438 assert(decl->initializer == NULL);
2439
2440 ir_variable *const earlier =
2441 state->symbols->get_variable(decl->identifier);
2442 if (earlier == NULL) {
2443 _mesa_glsl_error(& loc, state,
2444 "Undeclared variable `%s' cannot be marked "
2445 "invariant\n", decl->identifier);
2446 } else if ((state->target == vertex_shader)
2447 && (earlier->mode != ir_var_out)) {
2448 _mesa_glsl_error(& loc, state,
2449 "`%s' cannot be marked invariant, vertex shader "
2450 "outputs only\n", decl->identifier);
2451 } else if ((state->target == fragment_shader)
2452 && (earlier->mode != ir_var_in)) {
2453 _mesa_glsl_error(& loc, state,
2454 "`%s' cannot be marked invariant, fragment shader "
2455 "inputs only\n", decl->identifier);
2456 } else if (earlier->used) {
2457 _mesa_glsl_error(& loc, state,
2458 "variable `%s' may not be redeclared "
2459 "`invariant' after being used",
2460 earlier->name);
2461 } else {
2462 earlier->invariant = true;
2463 }
2464 }
2465
2466 /* Invariant redeclarations do not have r-values.
2467 */
2468 return NULL;
2469 }
2470
2471 assert(this->type != NULL);
2472 assert(!this->invariant);
2473
2474 /* The type specifier may contain a structure definition. Process that
2475 * before any of the variable declarations.
2476 */
2477 (void) this->type->specifier->hir(instructions, state);
2478
2479 decl_type = this->type->specifier->glsl_type(& type_name, state);
2480 if (this->declarations.is_empty()) {
2481 /* If there is no structure involved in the program text, there are two
2482 * possible scenarios:
2483 *
2484 * - The program text contained something like 'vec4;'. This is an
2485 * empty declaration. It is valid but weird. Emit a warning.
2486 *
2487 * - The program text contained something like 'S;' and 'S' is not the
2488 * name of a known structure type. This is both invalid and weird.
2489 * Emit an error.
2490 *
2491 * Note that if decl_type is NULL and there is a structure involved,
2492 * there must have been some sort of error with the structure. In this
2493 * case we assume that an error was already generated on this line of
2494 * code for the structure. There is no need to generate an additional,
2495 * confusing error.
2496 */
2497 assert(this->type->specifier->structure == NULL || decl_type != NULL
2498 || state->error);
2499 if (this->type->specifier->structure == NULL) {
2500 if (decl_type != NULL) {
2501 _mesa_glsl_warning(&loc, state, "empty declaration");
2502 } else {
2503 _mesa_glsl_error(&loc, state,
2504 "invalid type `%s' in empty declaration",
2505 type_name);
2506 }
2507 }
2508 }
2509
2510 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
2511 const struct glsl_type *var_type;
2512 ir_variable *var;
2513
2514 /* FINISHME: Emit a warning if a variable declaration shadows a
2515 * FINISHME: declaration at a higher scope.
2516 */
2517
2518 if ((decl_type == NULL) || decl_type->is_void()) {
2519 if (type_name != NULL) {
2520 _mesa_glsl_error(& loc, state,
2521 "invalid type `%s' in declaration of `%s'",
2522 type_name, decl->identifier);
2523 } else {
2524 _mesa_glsl_error(& loc, state,
2525 "invalid type in declaration of `%s'",
2526 decl->identifier);
2527 }
2528 continue;
2529 }
2530
2531 if (decl->is_array) {
2532 var_type = process_array_type(&loc, decl_type, decl->array_size,
2533 state);
2534 if (var_type->is_error())
2535 continue;
2536 } else {
2537 var_type = decl_type;
2538 }
2539
2540 var = new(ctx) ir_variable(var_type, decl->identifier, ir_var_auto);
2541
2542 /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
2543 *
2544 * "Global variables can only use the qualifiers const,
2545 * attribute, uni form, or varying. Only one may be
2546 * specified.
2547 *
2548 * Local variables can only use the qualifier const."
2549 *
2550 * This is relaxed in GLSL 1.30. It is also relaxed by any extension
2551 * that adds the 'layout' keyword.
2552 */
2553 if ((state->language_version < 130)
2554 && !state->ARB_explicit_attrib_location_enable
2555 && !state->ARB_fragment_coord_conventions_enable) {
2556 if (this->type->qualifier.flags.q.out) {
2557 _mesa_glsl_error(& loc, state,
2558 "`out' qualifier in declaration of `%s' "
2559 "only valid for function parameters in %s.",
2560 decl->identifier, state->version_string);
2561 }
2562 if (this->type->qualifier.flags.q.in) {
2563 _mesa_glsl_error(& loc, state,
2564 "`in' qualifier in declaration of `%s' "
2565 "only valid for function parameters in %s.",
2566 decl->identifier, state->version_string);
2567 }
2568 /* FINISHME: Test for other invalid qualifiers. */
2569 }
2570
2571 apply_type_qualifier_to_variable(& this->type->qualifier, var, state,
2572 & loc);
2573
2574 if (this->type->qualifier.flags.q.invariant) {
2575 if ((state->target == vertex_shader) && !(var->mode == ir_var_out ||
2576 var->mode == ir_var_inout)) {
2577 /* FINISHME: Note that this doesn't work for invariant on
2578 * a function signature outval
2579 */
2580 _mesa_glsl_error(& loc, state,
2581 "`%s' cannot be marked invariant, vertex shader "
2582 "outputs only\n", var->name);
2583 } else if ((state->target == fragment_shader) &&
2584 !(var->mode == ir_var_in || var->mode == ir_var_inout)) {
2585 /* FINISHME: Note that this doesn't work for invariant on
2586 * a function signature inval
2587 */
2588 _mesa_glsl_error(& loc, state,
2589 "`%s' cannot be marked invariant, fragment shader "
2590 "inputs only\n", var->name);
2591 }
2592 }
2593
2594 if (state->current_function != NULL) {
2595 const char *mode = NULL;
2596 const char *extra = "";
2597
2598 /* There is no need to check for 'inout' here because the parser will
2599 * only allow that in function parameter lists.
2600 */
2601 if (this->type->qualifier.flags.q.attribute) {
2602 mode = "attribute";
2603 } else if (this->type->qualifier.flags.q.uniform) {
2604 mode = "uniform";
2605 } else if (this->type->qualifier.flags.q.varying) {
2606 mode = "varying";
2607 } else if (this->type->qualifier.flags.q.in) {
2608 mode = "in";
2609 extra = " or in function parameter list";
2610 } else if (this->type->qualifier.flags.q.out) {
2611 mode = "out";
2612 extra = " or in function parameter list";
2613 }
2614
2615 if (mode) {
2616 _mesa_glsl_error(& loc, state,
2617 "%s variable `%s' must be declared at "
2618 "global scope%s",
2619 mode, var->name, extra);
2620 }
2621 } else if (var->mode == ir_var_in) {
2622 var->read_only = true;
2623
2624 if (state->target == vertex_shader) {
2625 bool error_emitted = false;
2626
2627 /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
2628 *
2629 * "Vertex shader inputs can only be float, floating-point
2630 * vectors, matrices, signed and unsigned integers and integer
2631 * vectors. Vertex shader inputs can also form arrays of these
2632 * types, but not structures."
2633 *
2634 * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
2635 *
2636 * "Vertex shader inputs can only be float, floating-point
2637 * vectors, matrices, signed and unsigned integers and integer
2638 * vectors. They cannot be arrays or structures."
2639 *
2640 * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
2641 *
2642 * "The attribute qualifier can be used only with float,
2643 * floating-point vectors, and matrices. Attribute variables
2644 * cannot be declared as arrays or structures."
2645 */
2646 const glsl_type *check_type = var->type->is_array()
2647 ? var->type->fields.array : var->type;
2648
2649 switch (check_type->base_type) {
2650 case GLSL_TYPE_FLOAT:
2651 break;
2652 case GLSL_TYPE_UINT:
2653 case GLSL_TYPE_INT:
2654 if (state->language_version > 120)
2655 break;
2656 /* FALLTHROUGH */
2657 default:
2658 _mesa_glsl_error(& loc, state,
2659 "vertex shader input / attribute cannot have "
2660 "type %s`%s'",
2661 var->type->is_array() ? "array of " : "",
2662 check_type->name);
2663 error_emitted = true;
2664 }
2665
2666 if (!error_emitted && (state->language_version <= 130)
2667 && var->type->is_array()) {
2668 _mesa_glsl_error(& loc, state,
2669 "vertex shader input / attribute cannot have "
2670 "array type");
2671 error_emitted = true;
2672 }
2673 }
2674 }
2675
2676 /* Integer vertex outputs must be qualified with 'flat'.
2677 *
2678 * From section 4.3.6 of the GLSL 1.30 spec:
2679 * "If a vertex output is a signed or unsigned integer or integer
2680 * vector, then it must be qualified with the interpolation qualifier
2681 * flat."
2682 */
2683 if (state->language_version >= 130
2684 && state->target == vertex_shader
2685 && state->current_function == NULL
2686 && var->type->is_integer()
2687 && var->mode == ir_var_out
2688 && var->interpolation != INTERP_QUALIFIER_FLAT) {
2689
2690 _mesa_glsl_error(&loc, state, "If a vertex output is an integer, "
2691 "then it must be qualified with 'flat'");
2692 }
2693
2694
2695 /* Interpolation qualifiers cannot be applied to 'centroid' and
2696 * 'centroid varying'.
2697 *
2698 * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
2699 * "interpolation qualifiers may only precede the qualifiers in,
2700 * centroid in, out, or centroid out in a declaration. They do not apply
2701 * to the deprecated storage qualifiers varying or centroid varying."
2702 */
2703 if (state->language_version >= 130
2704 && this->type->qualifier.has_interpolation()
2705 && this->type->qualifier.flags.q.varying) {
2706
2707 const char *i = this->type->qualifier.interpolation_string();
2708 assert(i != NULL);
2709 const char *s;
2710 if (this->type->qualifier.flags.q.centroid)
2711 s = "centroid varying";
2712 else
2713 s = "varying";
2714
2715 _mesa_glsl_error(&loc, state,
2716 "qualifier '%s' cannot be applied to the "
2717 "deprecated storage qualifier '%s'", i, s);
2718 }
2719
2720
2721 /* Interpolation qualifiers can only apply to vertex shader outputs and
2722 * fragment shader inputs.
2723 *
2724 * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
2725 * "Outputs from a vertex shader (out) and inputs to a fragment
2726 * shader (in) can be further qualified with one or more of these
2727 * interpolation qualifiers"
2728 */
2729 if (state->language_version >= 130
2730 && this->type->qualifier.has_interpolation()) {
2731
2732 const char *i = this->type->qualifier.interpolation_string();
2733 assert(i != NULL);
2734
2735 switch (state->target) {
2736 case vertex_shader:
2737 if (this->type->qualifier.flags.q.in) {
2738 _mesa_glsl_error(&loc, state,
2739 "qualifier '%s' cannot be applied to vertex "
2740 "shader inputs", i);
2741 }
2742 break;
2743 case fragment_shader:
2744 if (this->type->qualifier.flags.q.out) {
2745 _mesa_glsl_error(&loc, state,
2746 "qualifier '%s' cannot be applied to fragment "
2747 "shader outputs", i);
2748 }
2749 break;
2750 default:
2751 assert(0);
2752 }
2753 }
2754
2755
2756 /* From section 4.3.4 of the GLSL 1.30 spec:
2757 * "It is an error to use centroid in in a vertex shader."
2758 */
2759 if (state->language_version >= 130
2760 && this->type->qualifier.flags.q.centroid
2761 && this->type->qualifier.flags.q.in
2762 && state->target == vertex_shader) {
2763
2764 _mesa_glsl_error(&loc, state,
2765 "'centroid in' cannot be used in a vertex shader");
2766 }
2767
2768
2769 /* Precision qualifiers exists only in GLSL versions 1.00 and >= 1.30.
2770 */
2771 if (this->type->specifier->precision != ast_precision_none
2772 && state->language_version != 100
2773 && state->language_version < 130) {
2774
2775 _mesa_glsl_error(&loc, state,
2776 "precision qualifiers are supported only in GLSL ES "
2777 "1.00, and GLSL 1.30 and later");
2778 }
2779
2780
2781 /* Precision qualifiers only apply to floating point and integer types.
2782 *
2783 * From section 4.5.2 of the GLSL 1.30 spec:
2784 * "Any floating point or any integer declaration can have the type
2785 * preceded by one of these precision qualifiers [...] Literal
2786 * constants do not have precision qualifiers. Neither do Boolean
2787 * variables.
2788 *
2789 * In GLSL ES, sampler types are also allowed.
2790 *
2791 * From page 87 of the GLSL ES spec:
2792 * "RESOLUTION: Allow sampler types to take a precision qualifier."
2793 */
2794 if (this->type->specifier->precision != ast_precision_none
2795 && !var->type->is_float()
2796 && !var->type->is_integer()
2797 && !(var->type->is_sampler() && state->es_shader)
2798 && !(var->type->is_array()
2799 && (var->type->fields.array->is_float()
2800 || var->type->fields.array->is_integer()))) {
2801
2802 _mesa_glsl_error(&loc, state,
2803 "precision qualifiers apply only to floating point"
2804 "%s types", state->es_shader ? ", integer, and sampler"
2805 : "and integer");
2806 }
2807
2808 /* From page 17 (page 23 of the PDF) of the GLSL 1.20 spec:
2809 *
2810 * "[Sampler types] can only be declared as function
2811 * parameters or uniform variables (see Section 4.3.5
2812 * "Uniform")".
2813 */
2814 if (var_type->contains_sampler() &&
2815 !this->type->qualifier.flags.q.uniform) {
2816 _mesa_glsl_error(&loc, state, "samplers must be declared uniform");
2817 }
2818
2819 /* Process the initializer and add its instructions to a temporary
2820 * list. This list will be added to the instruction stream (below) after
2821 * the declaration is added. This is done because in some cases (such as
2822 * redeclarations) the declaration may not actually be added to the
2823 * instruction stream.
2824 */
2825 exec_list initializer_instructions;
2826 ir_variable *earlier = get_variable_being_redeclared(var, decl, state);
2827
2828 if (decl->initializer != NULL) {
2829 result = process_initializer((earlier == NULL) ? var : earlier,
2830 decl, this->type,
2831 &initializer_instructions, state);
2832 }
2833
2834 /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
2835 *
2836 * "It is an error to write to a const variable outside of
2837 * its declaration, so they must be initialized when
2838 * declared."
2839 */
2840 if (this->type->qualifier.flags.q.constant && decl->initializer == NULL) {
2841 _mesa_glsl_error(& loc, state,
2842 "const declaration of `%s' must be initialized",
2843 decl->identifier);
2844 }
2845
2846 /* If the declaration is not a redeclaration, there are a few additional
2847 * semantic checks that must be applied. In addition, variable that was
2848 * created for the declaration should be added to the IR stream.
2849 */
2850 if (earlier == NULL) {
2851 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
2852 *
2853 * "Identifiers starting with "gl_" are reserved for use by
2854 * OpenGL, and may not be declared in a shader as either a
2855 * variable or a function."
2856 */
2857 if (strncmp(decl->identifier, "gl_", 3) == 0)
2858 _mesa_glsl_error(& loc, state,
2859 "identifier `%s' uses reserved `gl_' prefix",
2860 decl->identifier);
2861 else if (strstr(decl->identifier, "__")) {
2862 /* From page 14 (page 20 of the PDF) of the GLSL 1.10
2863 * spec:
2864 *
2865 * "In addition, all identifiers containing two
2866 * consecutive underscores (__) are reserved as
2867 * possible future keywords."
2868 */
2869 _mesa_glsl_error(& loc, state,
2870 "identifier `%s' uses reserved `__' string",
2871 decl->identifier);
2872 }
2873
2874 /* Add the variable to the symbol table. Note that the initializer's
2875 * IR was already processed earlier (though it hasn't been emitted
2876 * yet), without the variable in scope.
2877 *
2878 * This differs from most C-like languages, but it follows the GLSL
2879 * specification. From page 28 (page 34 of the PDF) of the GLSL 1.50
2880 * spec:
2881 *
2882 * "Within a declaration, the scope of a name starts immediately
2883 * after the initializer if present or immediately after the name
2884 * being declared if not."
2885 */
2886 if (!state->symbols->add_variable(var)) {
2887 YYLTYPE loc = this->get_location();
2888 _mesa_glsl_error(&loc, state, "name `%s' already taken in the "
2889 "current scope", decl->identifier);
2890 continue;
2891 }
2892
2893 /* Push the variable declaration to the top. It means that all the
2894 * variable declarations will appear in a funny last-to-first order,
2895 * but otherwise we run into trouble if a function is prototyped, a
2896 * global var is decled, then the function is defined with usage of
2897 * the global var. See glslparsertest's CorrectModule.frag.
2898 */
2899 instructions->push_head(var);
2900 }
2901
2902 instructions->append_list(&initializer_instructions);
2903 }
2904
2905
2906 /* Generally, variable declarations do not have r-values. However,
2907 * one is used for the declaration in
2908 *
2909 * while (bool b = some_condition()) {
2910 * ...
2911 * }
2912 *
2913 * so we return the rvalue from the last seen declaration here.
2914 */
2915 return result;
2916 }
2917
2918
2919 ir_rvalue *
2920 ast_parameter_declarator::hir(exec_list *instructions,
2921 struct _mesa_glsl_parse_state *state)
2922 {
2923 void *ctx = state;
2924 const struct glsl_type *type;
2925 const char *name = NULL;
2926 YYLTYPE loc = this->get_location();
2927
2928 type = this->type->specifier->glsl_type(& name, state);
2929
2930 if (type == NULL) {
2931 if (name != NULL) {
2932 _mesa_glsl_error(& loc, state,
2933 "invalid type `%s' in declaration of `%s'",
2934 name, this->identifier);
2935 } else {
2936 _mesa_glsl_error(& loc, state,
2937 "invalid type in declaration of `%s'",
2938 this->identifier);
2939 }
2940
2941 type = glsl_type::error_type;
2942 }
2943
2944 /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
2945 *
2946 * "Functions that accept no input arguments need not use void in the
2947 * argument list because prototypes (or definitions) are required and
2948 * therefore there is no ambiguity when an empty argument list "( )" is
2949 * declared. The idiom "(void)" as a parameter list is provided for
2950 * convenience."
2951 *
2952 * Placing this check here prevents a void parameter being set up
2953 * for a function, which avoids tripping up checks for main taking
2954 * parameters and lookups of an unnamed symbol.
2955 */
2956 if (type->is_void()) {
2957 if (this->identifier != NULL)
2958 _mesa_glsl_error(& loc, state,
2959 "named parameter cannot have type `void'");
2960
2961 is_void = true;
2962 return NULL;
2963 }
2964
2965 if (formal_parameter && (this->identifier == NULL)) {
2966 _mesa_glsl_error(& loc, state, "formal parameter lacks a name");
2967 return NULL;
2968 }
2969
2970 /* This only handles "vec4 foo[..]". The earlier specifier->glsl_type(...)
2971 * call already handled the "vec4[..] foo" case.
2972 */
2973 if (this->is_array) {
2974 type = process_array_type(&loc, type, this->array_size, state);
2975 }
2976
2977 if (!type->is_error() && type->array_size() == 0) {
2978 _mesa_glsl_error(&loc, state, "arrays passed as parameters must have "
2979 "a declared size.");
2980 type = glsl_type::error_type;
2981 }
2982
2983 is_void = false;
2984 ir_variable *var = new(ctx) ir_variable(type, this->identifier, ir_var_in);
2985
2986 /* Apply any specified qualifiers to the parameter declaration. Note that
2987 * for function parameters the default mode is 'in'.
2988 */
2989 apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc);
2990
2991 /* From page 17 (page 23 of the PDF) of the GLSL 1.20 spec:
2992 *
2993 * "Samplers cannot be treated as l-values; hence cannot be used
2994 * as out or inout function parameters, nor can they be assigned
2995 * into."
2996 */
2997 if ((var->mode == ir_var_inout || var->mode == ir_var_out)
2998 && type->contains_sampler()) {
2999 _mesa_glsl_error(&loc, state, "out and inout parameters cannot contain samplers");
3000 type = glsl_type::error_type;
3001 }
3002
3003 /* From page 39 (page 45 of the PDF) of the GLSL 1.10 spec:
3004 *
3005 * "When calling a function, expressions that do not evaluate to
3006 * l-values cannot be passed to parameters declared as out or inout."
3007 *
3008 * From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
3009 *
3010 * "Other binary or unary expressions, non-dereferenced arrays,
3011 * function names, swizzles with repeated fields, and constants
3012 * cannot be l-values."
3013 *
3014 * So for GLSL 1.10, passing an array as an out or inout parameter is not
3015 * allowed. This restriction is removed in GLSL 1.20, and in GLSL ES.
3016 */
3017 if ((var->mode == ir_var_inout || var->mode == ir_var_out)
3018 && type->is_array() && state->language_version == 110) {
3019 _mesa_glsl_error(&loc, state, "Arrays cannot be out or inout parameters in GLSL 1.10");
3020 type = glsl_type::error_type;
3021 }
3022
3023 instructions->push_tail(var);
3024
3025 /* Parameter declarations do not have r-values.
3026 */
3027 return NULL;
3028 }
3029
3030
3031 void
3032 ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters,
3033 bool formal,
3034 exec_list *ir_parameters,
3035 _mesa_glsl_parse_state *state)
3036 {
3037 ast_parameter_declarator *void_param = NULL;
3038 unsigned count = 0;
3039
3040 foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) {
3041 param->formal_parameter = formal;
3042 param->hir(ir_parameters, state);
3043
3044 if (param->is_void)
3045 void_param = param;
3046
3047 count++;
3048 }
3049
3050 if ((void_param != NULL) && (count > 1)) {
3051 YYLTYPE loc = void_param->get_location();
3052
3053 _mesa_glsl_error(& loc, state,
3054 "`void' parameter must be only parameter");
3055 }
3056 }
3057
3058
3059 void
3060 emit_function(_mesa_glsl_parse_state *state, ir_function *f)
3061 {
3062 /* IR invariants disallow function declarations or definitions
3063 * nested within other function definitions. But there is no
3064 * requirement about the relative order of function declarations
3065 * and definitions with respect to one another. So simply insert
3066 * the new ir_function block at the end of the toplevel instruction
3067 * list.
3068 */
3069 state->toplevel_ir->push_tail(f);
3070 }
3071
3072
3073 ir_rvalue *
3074 ast_function::hir(exec_list *instructions,
3075 struct _mesa_glsl_parse_state *state)
3076 {
3077 void *ctx = state;
3078 ir_function *f = NULL;
3079 ir_function_signature *sig = NULL;
3080 exec_list hir_parameters;
3081
3082 const char *const name = identifier;
3083
3084 /* New functions are always added to the top-level IR instruction stream,
3085 * so this instruction list pointer is ignored. See also emit_function
3086 * (called below).
3087 */
3088 (void) instructions;
3089
3090 /* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec,
3091 *
3092 * "Function declarations (prototypes) cannot occur inside of functions;
3093 * they must be at global scope, or for the built-in functions, outside
3094 * the global scope."
3095 *
3096 * From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec,
3097 *
3098 * "User defined functions may only be defined within the global scope."
3099 *
3100 * Note that this language does not appear in GLSL 1.10.
3101 */
3102 if ((state->current_function != NULL) && (state->language_version != 110)) {
3103 YYLTYPE loc = this->get_location();
3104 _mesa_glsl_error(&loc, state,
3105 "declaration of function `%s' not allowed within "
3106 "function body", name);
3107 }
3108
3109 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
3110 *
3111 * "Identifiers starting with "gl_" are reserved for use by
3112 * OpenGL, and may not be declared in a shader as either a
3113 * variable or a function."
3114 */
3115 if (strncmp(name, "gl_", 3) == 0) {
3116 YYLTYPE loc = this->get_location();
3117 _mesa_glsl_error(&loc, state,
3118 "identifier `%s' uses reserved `gl_' prefix", name);
3119 }
3120
3121 /* Convert the list of function parameters to HIR now so that they can be
3122 * used below to compare this function's signature with previously seen
3123 * signatures for functions with the same name.
3124 */
3125 ast_parameter_declarator::parameters_to_hir(& this->parameters,
3126 is_definition,
3127 & hir_parameters, state);
3128
3129 const char *return_type_name;
3130 const glsl_type *return_type =
3131 this->return_type->specifier->glsl_type(& return_type_name, state);
3132
3133 if (!return_type) {
3134 YYLTYPE loc = this->get_location();
3135 _mesa_glsl_error(&loc, state,
3136 "function `%s' has undeclared return type `%s'",
3137 name, return_type_name);
3138 return_type = glsl_type::error_type;
3139 }
3140
3141 /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec:
3142 * "No qualifier is allowed on the return type of a function."
3143 */
3144 if (this->return_type->has_qualifiers()) {
3145 YYLTYPE loc = this->get_location();
3146 _mesa_glsl_error(& loc, state,
3147 "function `%s' return type has qualifiers", name);
3148 }
3149
3150 /* From page 17 (page 23 of the PDF) of the GLSL 1.20 spec:
3151 *
3152 * "[Sampler types] can only be declared as function parameters
3153 * or uniform variables (see Section 4.3.5 "Uniform")".
3154 */
3155 if (return_type->contains_sampler()) {
3156 YYLTYPE loc = this->get_location();
3157 _mesa_glsl_error(&loc, state,
3158 "function `%s' return type can't contain a sampler",
3159 name);
3160 }
3161
3162 /* Verify that this function's signature either doesn't match a previously
3163 * seen signature for a function with the same name, or, if a match is found,
3164 * that the previously seen signature does not have an associated definition.
3165 */
3166 f = state->symbols->get_function(name);
3167 if (f != NULL && (state->es_shader || f->has_user_signature())) {
3168 sig = f->exact_matching_signature(&hir_parameters);
3169 if (sig != NULL) {
3170 const char *badvar = sig->qualifiers_match(&hir_parameters);
3171 if (badvar != NULL) {
3172 YYLTYPE loc = this->get_location();
3173
3174 _mesa_glsl_error(&loc, state, "function `%s' parameter `%s' "
3175 "qualifiers don't match prototype", name, badvar);
3176 }
3177
3178 if (sig->return_type != return_type) {
3179 YYLTYPE loc = this->get_location();
3180
3181 _mesa_glsl_error(&loc, state, "function `%s' return type doesn't "
3182 "match prototype", name);
3183 }
3184
3185 if (is_definition && sig->is_defined) {
3186 YYLTYPE loc = this->get_location();
3187
3188 _mesa_glsl_error(& loc, state, "function `%s' redefined", name);
3189 }
3190 }
3191 } else {
3192 f = new(ctx) ir_function(name);
3193 if (!state->symbols->add_function(f)) {
3194 /* This function name shadows a non-function use of the same name. */
3195 YYLTYPE loc = this->get_location();
3196
3197 _mesa_glsl_error(&loc, state, "function name `%s' conflicts with "
3198 "non-function", name);
3199 return NULL;
3200 }
3201
3202 emit_function(state, f);
3203 }
3204
3205 /* Verify the return type of main() */
3206 if (strcmp(name, "main") == 0) {
3207 if (! return_type->is_void()) {
3208 YYLTYPE loc = this->get_location();
3209
3210 _mesa_glsl_error(& loc, state, "main() must return void");
3211 }
3212
3213 if (!hir_parameters.is_empty()) {
3214 YYLTYPE loc = this->get_location();
3215
3216 _mesa_glsl_error(& loc, state, "main() must not take any parameters");
3217 }
3218 }
3219
3220 /* Finish storing the information about this new function in its signature.
3221 */
3222 if (sig == NULL) {
3223 sig = new(ctx) ir_function_signature(return_type);
3224 f->add_signature(sig);
3225 }
3226
3227 sig->replace_parameters(&hir_parameters);
3228 signature = sig;
3229
3230 /* Function declarations (prototypes) do not have r-values.
3231 */
3232 return NULL;
3233 }
3234
3235
3236 ir_rvalue *
3237 ast_function_definition::hir(exec_list *instructions,
3238 struct _mesa_glsl_parse_state *state)
3239 {
3240 prototype->is_definition = true;
3241 prototype->hir(instructions, state);
3242
3243 ir_function_signature *signature = prototype->signature;
3244 if (signature == NULL)
3245 return NULL;
3246
3247 assert(state->current_function == NULL);
3248 state->current_function = signature;
3249 state->found_return = false;
3250
3251 /* Duplicate parameters declared in the prototype as concrete variables.
3252 * Add these to the symbol table.
3253 */
3254 state->symbols->push_scope();
3255 foreach_iter(exec_list_iterator, iter, signature->parameters) {
3256 ir_variable *const var = ((ir_instruction *) iter.get())->as_variable();
3257
3258 assert(var != NULL);
3259
3260 /* The only way a parameter would "exist" is if two parameters have
3261 * the same name.
3262 */
3263 if (state->symbols->name_declared_this_scope(var->name)) {
3264 YYLTYPE loc = this->get_location();
3265
3266 _mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name);
3267 } else {
3268 state->symbols->add_variable(var);
3269 }
3270 }
3271
3272 /* Convert the body of the function to HIR. */
3273 this->body->hir(&signature->body, state);
3274 signature->is_defined = true;
3275
3276 state->symbols->pop_scope();
3277
3278 assert(state->current_function == signature);
3279 state->current_function = NULL;
3280
3281 if (!signature->return_type->is_void() && !state->found_return) {
3282 YYLTYPE loc = this->get_location();
3283 _mesa_glsl_error(& loc, state, "function `%s' has non-void return type "
3284 "%s, but no return statement",
3285 signature->function_name(),
3286 signature->return_type->name);
3287 }
3288
3289 /* Function definitions do not have r-values.
3290 */
3291 return NULL;
3292 }
3293
3294
3295 ir_rvalue *
3296 ast_jump_statement::hir(exec_list *instructions,
3297 struct _mesa_glsl_parse_state *state)
3298 {
3299 void *ctx = state;
3300
3301 switch (mode) {
3302 case ast_return: {
3303 ir_return *inst;
3304 assert(state->current_function);
3305
3306 if (opt_return_value) {
3307 ir_rvalue *const ret = opt_return_value->hir(instructions, state);
3308
3309 /* The value of the return type can be NULL if the shader says
3310 * 'return foo();' and foo() is a function that returns void.
3311 *
3312 * NOTE: The GLSL spec doesn't say that this is an error. The type
3313 * of the return value is void. If the return type of the function is
3314 * also void, then this should compile without error. Seriously.
3315 */
3316 const glsl_type *const ret_type =
3317 (ret == NULL) ? glsl_type::void_type : ret->type;
3318
3319 /* Implicit conversions are not allowed for return values. */
3320 if (state->current_function->return_type != ret_type) {
3321 YYLTYPE loc = this->get_location();
3322
3323 _mesa_glsl_error(& loc, state,
3324 "`return' with wrong type %s, in function `%s' "
3325 "returning %s",
3326 ret_type->name,
3327 state->current_function->function_name(),
3328 state->current_function->return_type->name);
3329 }
3330
3331 inst = new(ctx) ir_return(ret);
3332 } else {
3333 if (state->current_function->return_type->base_type !=
3334 GLSL_TYPE_VOID) {
3335 YYLTYPE loc = this->get_location();
3336
3337 _mesa_glsl_error(& loc, state,
3338 "`return' with no value, in function %s returning "
3339 "non-void",
3340 state->current_function->function_name());
3341 }
3342 inst = new(ctx) ir_return;
3343 }
3344
3345 state->found_return = true;
3346 instructions->push_tail(inst);
3347 break;
3348 }
3349
3350 case ast_discard:
3351 if (state->target != fragment_shader) {
3352 YYLTYPE loc = this->get_location();
3353
3354 _mesa_glsl_error(& loc, state,
3355 "`discard' may only appear in a fragment shader");
3356 }
3357 instructions->push_tail(new(ctx) ir_discard);
3358 break;
3359
3360 case ast_break:
3361 case ast_continue:
3362 if (mode == ast_continue &&
3363 state->loop_nesting_ast == NULL) {
3364 YYLTYPE loc = this->get_location();
3365
3366 _mesa_glsl_error(& loc, state,
3367 "continue may only appear in a loop");
3368 } else if (mode == ast_break &&
3369 state->loop_nesting_ast == NULL &&
3370 state->switch_nesting_ast == NULL) {
3371 YYLTYPE loc = this->get_location();
3372
3373 _mesa_glsl_error(& loc, state,
3374 "break may only appear in a loop or a switch");
3375 } else {
3376 /* For a loop, inline the for loop expression again,
3377 * since we don't know where near the end of
3378 * the loop body the normal copy of it
3379 * is going to be placed.
3380 */
3381 if (state->loop_nesting_ast != NULL &&
3382 mode == ast_continue &&
3383 state->loop_nesting_ast->rest_expression) {
3384 state->loop_nesting_ast->rest_expression->hir(instructions,
3385 state);
3386 }
3387
3388 if (state->is_switch_innermost &&
3389 mode == ast_break) {
3390 /* Force break out of switch by setting is_break switch state.
3391 */
3392 ir_variable *const is_break_var = state->is_break_var;
3393 ir_dereference_variable *const deref_is_break_var =
3394 new(ctx) ir_dereference_variable(is_break_var);
3395 ir_constant *const true_val = new(ctx) ir_constant(true);
3396 ir_assignment *const set_break_var =
3397 new(ctx) ir_assignment(deref_is_break_var,
3398 true_val,
3399 NULL);
3400
3401 instructions->push_tail(set_break_var);
3402 }
3403 else {
3404 ir_loop_jump *const jump =
3405 new(ctx) ir_loop_jump((mode == ast_break)
3406 ? ir_loop_jump::jump_break
3407 : ir_loop_jump::jump_continue);
3408 instructions->push_tail(jump);
3409 }
3410 }
3411
3412 break;
3413 }
3414
3415 /* Jump instructions do not have r-values.
3416 */
3417 return NULL;
3418 }
3419
3420
3421 ir_rvalue *
3422 ast_selection_statement::hir(exec_list *instructions,
3423 struct _mesa_glsl_parse_state *state)
3424 {
3425 void *ctx = state;
3426
3427 ir_rvalue *const condition = this->condition->hir(instructions, state);
3428
3429 /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
3430 *
3431 * "Any expression whose type evaluates to a Boolean can be used as the
3432 * conditional expression bool-expression. Vector types are not accepted
3433 * as the expression to if."
3434 *
3435 * The checks are separated so that higher quality diagnostics can be
3436 * generated for cases where both rules are violated.
3437 */
3438 if (!condition->type->is_boolean() || !condition->type->is_scalar()) {
3439 YYLTYPE loc = this->condition->get_location();
3440
3441 _mesa_glsl_error(& loc, state, "if-statement condition must be scalar "
3442 "boolean");
3443 }
3444
3445 ir_if *const stmt = new(ctx) ir_if(condition);
3446
3447 if (then_statement != NULL) {
3448 state->symbols->push_scope();
3449 then_statement->hir(& stmt->then_instructions, state);
3450 state->symbols->pop_scope();
3451 }
3452
3453 if (else_statement != NULL) {
3454 state->symbols->push_scope();
3455 else_statement->hir(& stmt->else_instructions, state);
3456 state->symbols->pop_scope();
3457 }
3458
3459 instructions->push_tail(stmt);
3460
3461 /* if-statements do not have r-values.
3462 */
3463 return NULL;
3464 }
3465
3466
3467 ir_rvalue *
3468 ast_switch_statement::hir(exec_list *instructions,
3469 struct _mesa_glsl_parse_state *state)
3470 {
3471 void *ctx = state;
3472
3473 ir_rvalue *const test_expression =
3474 this->test_expression->hir(instructions, state);
3475
3476 /* From page 66 (page 55 of the PDF) of the GLSL 1.50 spec:
3477 *
3478 * "The type of init-expression in a switch statement must be a
3479 * scalar integer."
3480 *
3481 * The checks are separated so that higher quality diagnostics can be
3482 * generated for cases where the rule is violated.
3483 */
3484 if (!test_expression->type->is_integer()) {
3485 YYLTYPE loc = this->test_expression->get_location();
3486
3487 _mesa_glsl_error(& loc,
3488 state,
3489 "switch-statement expression must be scalar "
3490 "integer");
3491 }
3492
3493 /* Track the switch-statement nesting in a stack-like manner.
3494 */
3495 ir_variable *saved_test_var = state->test_var;
3496 ir_variable *saved_is_fallthru_var = state->is_fallthru_var;
3497
3498 bool save_is_switch_innermost = state->is_switch_innermost;
3499 ast_switch_statement *saved_nesting_ast = state->switch_nesting_ast;
3500
3501 state->is_switch_innermost = true;
3502 state->switch_nesting_ast = this;
3503
3504 /* Initalize is_fallthru state to false.
3505 */
3506 ir_rvalue *const is_fallthru_val = new (ctx) ir_constant(false);
3507 state->is_fallthru_var = new(ctx) ir_variable(glsl_type::bool_type,
3508 "switch_is_fallthru_tmp",
3509 ir_var_temporary);
3510 instructions->push_tail(state->is_fallthru_var);
3511
3512 ir_dereference_variable *deref_is_fallthru_var =
3513 new(ctx) ir_dereference_variable(state->is_fallthru_var);
3514 instructions->push_tail(new(ctx) ir_assignment(deref_is_fallthru_var,
3515 is_fallthru_val,
3516 NULL));
3517
3518 /* Initalize is_break state to false.
3519 */
3520 ir_rvalue *const is_break_val = new (ctx) ir_constant(false);
3521 state->is_break_var = new(ctx) ir_variable(glsl_type::bool_type,
3522 "switch_is_break_tmp",
3523 ir_var_temporary);
3524 instructions->push_tail(state->is_break_var);
3525
3526 ir_dereference_variable *deref_is_break_var =
3527 new(ctx) ir_dereference_variable(state->is_break_var);
3528 instructions->push_tail(new(ctx) ir_assignment(deref_is_break_var,
3529 is_break_val,
3530 NULL));
3531
3532 /* Cache test expression.
3533 */
3534 test_to_hir(instructions, state);
3535
3536 /* Emit code for body of switch stmt.
3537 */
3538 body->hir(instructions, state);
3539
3540 /* Restore previous nesting before returning.
3541 */
3542 state->switch_nesting_ast = saved_nesting_ast;
3543 state->is_switch_innermost = save_is_switch_innermost;
3544
3545 state->test_var = saved_test_var;
3546 state->is_fallthru_var = saved_is_fallthru_var;
3547
3548 /* Switch statements do not have r-values.
3549 */
3550 return NULL;
3551 }
3552
3553
3554 void
3555 ast_switch_statement::test_to_hir(exec_list *instructions,
3556 struct _mesa_glsl_parse_state *state)
3557 {
3558 void *ctx = state;
3559
3560 /* Cache value of test expression.
3561 */
3562 ir_rvalue *const test_val =
3563 test_expression->hir(instructions,
3564 state);
3565
3566 state->test_var = new(ctx) ir_variable(glsl_type::int_type,
3567 "switch_test_tmp",
3568 ir_var_temporary);
3569 ir_dereference_variable *deref_test_var =
3570 new(ctx) ir_dereference_variable(state->test_var);
3571
3572 instructions->push_tail(state->test_var);
3573 instructions->push_tail(new(ctx) ir_assignment(deref_test_var,
3574 test_val,
3575 NULL));
3576 }
3577
3578
3579 ir_rvalue *
3580 ast_switch_body::hir(exec_list *instructions,
3581 struct _mesa_glsl_parse_state *state)
3582 {
3583 if (stmts != NULL)
3584 stmts->hir(instructions, state);
3585
3586 /* Switch bodies do not have r-values.
3587 */
3588 return NULL;
3589 }
3590
3591
3592 ir_rvalue *
3593 ast_case_statement_list::hir(exec_list *instructions,
3594 struct _mesa_glsl_parse_state *state)
3595 {
3596 foreach_list_typed (ast_case_statement, case_stmt, link, & this->cases)
3597 case_stmt->hir(instructions, state);
3598
3599 /* Case statements do not have r-values.
3600 */
3601 return NULL;
3602 }
3603
3604
3605 ir_rvalue *
3606 ast_case_statement::hir(exec_list *instructions,
3607 struct _mesa_glsl_parse_state *state)
3608 {
3609 labels->hir(instructions, state);
3610
3611 /* Conditionally set fallthru state based on break state.
3612 */
3613 ir_constant *const false_val = new(state) ir_constant(false);
3614 ir_dereference_variable *const deref_is_fallthru_var =
3615 new(state) ir_dereference_variable(state->is_fallthru_var);
3616 ir_dereference_variable *const deref_is_break_var =
3617 new(state) ir_dereference_variable(state->is_break_var);
3618 ir_assignment *const reset_fallthru_on_break =
3619 new(state) ir_assignment(deref_is_fallthru_var,
3620 false_val,
3621 deref_is_break_var);
3622 instructions->push_tail(reset_fallthru_on_break);
3623
3624 /* Guard case statements depending on fallthru state.
3625 */
3626 ir_dereference_variable *const deref_fallthru_guard =
3627 new(state) ir_dereference_variable(state->is_fallthru_var);
3628 ir_if *const test_fallthru = new(state) ir_if(deref_fallthru_guard);
3629
3630 foreach_list_typed (ast_node, stmt, link, & this->stmts)
3631 stmt->hir(& test_fallthru->then_instructions, state);
3632
3633 instructions->push_tail(test_fallthru);
3634
3635 /* Case statements do not have r-values.
3636 */
3637 return NULL;
3638 }
3639
3640
3641 ir_rvalue *
3642 ast_case_label_list::hir(exec_list *instructions,
3643 struct _mesa_glsl_parse_state *state)
3644 {
3645 foreach_list_typed (ast_case_label, label, link, & this->labels)
3646 label->hir(instructions, state);
3647
3648 /* Case labels do not have r-values.
3649 */
3650 return NULL;
3651 }
3652
3653
3654 ir_rvalue *
3655 ast_case_label::hir(exec_list *instructions,
3656 struct _mesa_glsl_parse_state *state)
3657 {
3658 void *ctx = state;
3659
3660 ir_dereference_variable *deref_fallthru_var =
3661 new(ctx) ir_dereference_variable(state->is_fallthru_var);
3662
3663 ir_rvalue *const true_val = new(ctx) ir_constant(true);
3664
3665 /* If not default case, ...
3666 */
3667 if (this->test_value != NULL) {
3668 /* Conditionally set fallthru state based on
3669 * comparison of cached test expression value to case label.
3670 */
3671 ir_rvalue *const test_val = this->test_value->hir(instructions, state);
3672
3673 ir_dereference_variable *deref_test_var =
3674 new(ctx) ir_dereference_variable(state->test_var);
3675
3676 ir_rvalue *const test_cond = new(ctx) ir_expression(ir_binop_all_equal,
3677 glsl_type::bool_type,
3678 test_val,
3679 deref_test_var);
3680
3681 ir_assignment *set_fallthru_on_test =
3682 new(ctx) ir_assignment(deref_fallthru_var,
3683 true_val,
3684 test_cond);
3685
3686 instructions->push_tail(set_fallthru_on_test);
3687 } else { /* default case */
3688 /* Set falltrhu state.
3689 */
3690 ir_assignment *set_fallthru =
3691 new(ctx) ir_assignment(deref_fallthru_var,
3692 true_val,
3693 NULL);
3694
3695 instructions->push_tail(set_fallthru);
3696 }
3697
3698 /* Case statements do not have r-values.
3699 */
3700 return NULL;
3701 }
3702
3703
3704 void
3705 ast_iteration_statement::condition_to_hir(ir_loop *stmt,
3706 struct _mesa_glsl_parse_state *state)
3707 {
3708 void *ctx = state;
3709
3710 if (condition != NULL) {
3711 ir_rvalue *const cond =
3712 condition->hir(& stmt->body_instructions, state);
3713
3714 if ((cond == NULL)
3715 || !cond->type->is_boolean() || !cond->type->is_scalar()) {
3716 YYLTYPE loc = condition->get_location();
3717
3718 _mesa_glsl_error(& loc, state,
3719 "loop condition must be scalar boolean");
3720 } else {
3721 /* As the first code in the loop body, generate a block that looks
3722 * like 'if (!condition) break;' as the loop termination condition.
3723 */
3724 ir_rvalue *const not_cond =
3725 new(ctx) ir_expression(ir_unop_logic_not, glsl_type::bool_type, cond,
3726 NULL);
3727
3728 ir_if *const if_stmt = new(ctx) ir_if(not_cond);
3729
3730 ir_jump *const break_stmt =
3731 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
3732
3733 if_stmt->then_instructions.push_tail(break_stmt);
3734 stmt->body_instructions.push_tail(if_stmt);
3735 }
3736 }
3737 }
3738
3739
3740 ir_rvalue *
3741 ast_iteration_statement::hir(exec_list *instructions,
3742 struct _mesa_glsl_parse_state *state)
3743 {
3744 void *ctx = state;
3745
3746 /* For-loops and while-loops start a new scope, but do-while loops do not.
3747 */
3748 if (mode != ast_do_while)
3749 state->symbols->push_scope();
3750
3751 if (init_statement != NULL)
3752 init_statement->hir(instructions, state);
3753
3754 ir_loop *const stmt = new(ctx) ir_loop();
3755 instructions->push_tail(stmt);
3756
3757 /* Track the current loop nesting.
3758 */
3759 ast_iteration_statement *nesting_ast = state->loop_nesting_ast;
3760
3761 state->loop_nesting_ast = this;
3762
3763 /* Likewise, indicate that following code is closest to a loop,
3764 * NOT closest to a switch.
3765 */
3766 bool saved_is_switch_innermost = state->is_switch_innermost;
3767 state->is_switch_innermost = false;
3768
3769 if (mode != ast_do_while)
3770 condition_to_hir(stmt, state);
3771
3772 if (body != NULL)
3773 body->hir(& stmt->body_instructions, state);
3774
3775 if (rest_expression != NULL)
3776 rest_expression->hir(& stmt->body_instructions, state);
3777
3778 if (mode == ast_do_while)
3779 condition_to_hir(stmt, state);
3780
3781 if (mode != ast_do_while)
3782 state->symbols->pop_scope();
3783
3784 /* Restore previous nesting before returning.
3785 */
3786 state->loop_nesting_ast = nesting_ast;
3787 state->is_switch_innermost = saved_is_switch_innermost;
3788
3789 /* Loops do not have r-values.
3790 */
3791 return NULL;
3792 }
3793
3794
3795 ir_rvalue *
3796 ast_type_specifier::hir(exec_list *instructions,
3797 struct _mesa_glsl_parse_state *state)
3798 {
3799 if (!this->is_precision_statement && this->structure == NULL)
3800 return NULL;
3801
3802 YYLTYPE loc = this->get_location();
3803
3804 if (this->precision != ast_precision_none
3805 && state->language_version != 100
3806 && state->language_version < 130) {
3807 _mesa_glsl_error(&loc, state,
3808 "precision qualifiers exist only in "
3809 "GLSL ES 1.00, and GLSL 1.30 and later");
3810 return NULL;
3811 }
3812 if (this->precision != ast_precision_none
3813 && this->structure != NULL) {
3814 _mesa_glsl_error(&loc, state,
3815 "precision qualifiers do not apply to structures");
3816 return NULL;
3817 }
3818
3819 /* If this is a precision statement, check that the type to which it is
3820 * applied is either float or int.
3821 *
3822 * From section 4.5.3 of the GLSL 1.30 spec:
3823 * "The precision statement
3824 * precision precision-qualifier type;
3825 * can be used to establish a default precision qualifier. The type
3826 * field can be either int or float [...]. Any other types or
3827 * qualifiers will result in an error.
3828 */
3829 if (this->is_precision_statement) {
3830 assert(this->precision != ast_precision_none);
3831 assert(this->structure == NULL); /* The check for structures was
3832 * performed above. */
3833 if (this->is_array) {
3834 _mesa_glsl_error(&loc, state,
3835 "default precision statements do not apply to "
3836 "arrays");
3837 return NULL;
3838 }
3839 if (this->type_specifier != ast_float
3840 && this->type_specifier != ast_int) {
3841 _mesa_glsl_error(&loc, state,
3842 "default precision statements apply only to types "
3843 "float and int");
3844 return NULL;
3845 }
3846
3847 /* FINISHME: Translate precision statements into IR. */
3848 return NULL;
3849 }
3850
3851 if (this->structure != NULL)
3852 return this->structure->hir(instructions, state);
3853
3854 return NULL;
3855 }
3856
3857
3858 ir_rvalue *
3859 ast_struct_specifier::hir(exec_list *instructions,
3860 struct _mesa_glsl_parse_state *state)
3861 {
3862 unsigned decl_count = 0;
3863
3864 /* Make an initial pass over the list of structure fields to determine how
3865 * many there are. Each element in this list is an ast_declarator_list.
3866 * This means that we actually need to count the number of elements in the
3867 * 'declarations' list in each of the elements.
3868 */
3869 foreach_list_typed (ast_declarator_list, decl_list, link,
3870 &this->declarations) {
3871 foreach_list_const (decl_ptr, & decl_list->declarations) {
3872 decl_count++;
3873 }
3874 }
3875
3876 /* Allocate storage for the structure fields and process the field
3877 * declarations. As the declarations are processed, try to also convert
3878 * the types to HIR. This ensures that structure definitions embedded in
3879 * other structure definitions are processed.
3880 */
3881 glsl_struct_field *const fields = ralloc_array(state, glsl_struct_field,
3882 decl_count);
3883
3884 unsigned i = 0;
3885 foreach_list_typed (ast_declarator_list, decl_list, link,
3886 &this->declarations) {
3887 const char *type_name;
3888
3889 decl_list->type->specifier->hir(instructions, state);
3890
3891 /* Section 10.9 of the GLSL ES 1.00 specification states that
3892 * embedded structure definitions have been removed from the language.
3893 */
3894 if (state->es_shader && decl_list->type->specifier->structure != NULL) {
3895 YYLTYPE loc = this->get_location();
3896 _mesa_glsl_error(&loc, state, "Embedded structure definitions are "
3897 "not allowed in GLSL ES 1.00.");
3898 }
3899
3900 const glsl_type *decl_type =
3901 decl_list->type->specifier->glsl_type(& type_name, state);
3902
3903 foreach_list_typed (ast_declaration, decl, link,
3904 &decl_list->declarations) {
3905 const struct glsl_type *field_type = decl_type;
3906 if (decl->is_array) {
3907 YYLTYPE loc = decl->get_location();
3908 field_type = process_array_type(&loc, decl_type, decl->array_size,
3909 state);
3910 }
3911 fields[i].type = (field_type != NULL)
3912 ? field_type : glsl_type::error_type;
3913 fields[i].name = decl->identifier;
3914 i++;
3915 }
3916 }
3917
3918 assert(i == decl_count);
3919
3920 const glsl_type *t =
3921 glsl_type::get_record_instance(fields, decl_count, this->name);
3922
3923 YYLTYPE loc = this->get_location();
3924 if (!state->symbols->add_type(name, t)) {
3925 _mesa_glsl_error(& loc, state, "struct `%s' previously defined", name);
3926 } else {
3927 const glsl_type **s = reralloc(state, state->user_structures,
3928 const glsl_type *,
3929 state->num_user_structures + 1);
3930 if (s != NULL) {
3931 s[state->num_user_structures] = t;
3932 state->user_structures = s;
3933 state->num_user_structures++;
3934 }
3935 }
3936
3937 /* Structure type definitions do not have r-values.
3938 */
3939 return NULL;
3940 }