glsl: Fix matrix constructors with vector parameters
[mesa.git] / src / glsl / ast_to_hir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file ast_to_hir.c
26 * Convert abstract syntax to to high-level intermediate reprensentation (HIR).
27 *
28 * During the conversion to HIR, the majority of the symantic checking is
29 * preformed on the program. This includes:
30 *
31 * * Symbol table management
32 * * Type checking
33 * * Function binding
34 *
35 * The majority of this work could be done during parsing, and the parser could
36 * probably generate HIR directly. However, this results in frequent changes
37 * to the parser code. Since we do not assume that every system this complier
38 * is built on will have Flex and Bison installed, we have to store the code
39 * generated by these tools in our version control system. In other parts of
40 * the system we've seen problems where a parser was changed but the generated
41 * code was not committed, merge conflicts where created because two developers
42 * had slightly different versions of Bison installed, etc.
43 *
44 * I have also noticed that running Bison generated parsers in GDB is very
45 * irritating. When you get a segfault on '$$ = $1->foo', you can't very
46 * well 'print $1' in GDB.
47 *
48 * As a result, my preference is to put as little C code as possible in the
49 * parser (and lexer) sources.
50 */
51
52 #include "main/core.h" /* for struct gl_extensions */
53 #include "glsl_symbol_table.h"
54 #include "glsl_parser_extras.h"
55 #include "ast.h"
56 #include "glsl_types.h"
57 #include "ir.h"
58
59 void
60 _mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
61 {
62 _mesa_glsl_initialize_variables(instructions, state);
63 _mesa_glsl_initialize_functions(instructions, state);
64
65 state->symbols->language_version = state->language_version;
66
67 state->current_function = NULL;
68
69 /* Section 4.2 of the GLSL 1.20 specification states:
70 * "The built-in functions are scoped in a scope outside the global scope
71 * users declare global variables in. That is, a shader's global scope,
72 * available for user-defined functions and global variables, is nested
73 * inside the scope containing the built-in functions."
74 *
75 * Since built-in functions like ftransform() access built-in variables,
76 * it follows that those must be in the outer scope as well.
77 *
78 * We push scope here to create this nesting effect...but don't pop.
79 * This way, a shader's globals are still in the symbol table for use
80 * by the linker.
81 */
82 state->symbols->push_scope();
83
84 foreach_list_typed (ast_node, ast, link, & state->translation_unit)
85 ast->hir(instructions, state);
86 }
87
88
89 /**
90 * If a conversion is available, convert one operand to a different type
91 *
92 * The \c from \c ir_rvalue is converted "in place".
93 *
94 * \param to Type that the operand it to be converted to
95 * \param from Operand that is being converted
96 * \param state GLSL compiler state
97 *
98 * \return
99 * If a conversion is possible (or unnecessary), \c true is returned.
100 * Otherwise \c false is returned.
101 */
102 bool
103 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
104 struct _mesa_glsl_parse_state *state)
105 {
106 void *ctx = state;
107 if (to->base_type == from->type->base_type)
108 return true;
109
110 /* This conversion was added in GLSL 1.20. If the compilation mode is
111 * GLSL 1.10, the conversion is skipped.
112 */
113 if (state->language_version < 120)
114 return false;
115
116 /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
117 *
118 * "There are no implicit array or structure conversions. For
119 * example, an array of int cannot be implicitly converted to an
120 * array of float. There are no implicit conversions between
121 * signed and unsigned integers."
122 */
123 /* FINISHME: The above comment is partially a lie. There is int/uint
124 * FINISHME: conversion for immediate constants.
125 */
126 if (!to->is_float() || !from->type->is_numeric())
127 return false;
128
129 /* Convert to a floating point type with the same number of components
130 * as the original type - i.e. int to float, not int to vec4.
131 */
132 to = glsl_type::get_instance(GLSL_TYPE_FLOAT, from->type->vector_elements,
133 from->type->matrix_columns);
134
135 switch (from->type->base_type) {
136 case GLSL_TYPE_INT:
137 from = new(ctx) ir_expression(ir_unop_i2f, to, from, NULL);
138 break;
139 case GLSL_TYPE_UINT:
140 from = new(ctx) ir_expression(ir_unop_u2f, to, from, NULL);
141 break;
142 case GLSL_TYPE_BOOL:
143 from = new(ctx) ir_expression(ir_unop_b2f, to, from, NULL);
144 break;
145 default:
146 assert(0);
147 }
148
149 return true;
150 }
151
152
153 static const struct glsl_type *
154 arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
155 bool multiply,
156 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
157 {
158 const glsl_type *type_a = value_a->type;
159 const glsl_type *type_b = value_b->type;
160
161 /* From GLSL 1.50 spec, page 56:
162 *
163 * "The arithmetic binary operators add (+), subtract (-),
164 * multiply (*), and divide (/) operate on integer and
165 * floating-point scalars, vectors, and matrices."
166 */
167 if (!type_a->is_numeric() || !type_b->is_numeric()) {
168 _mesa_glsl_error(loc, state,
169 "Operands to arithmetic operators must be numeric");
170 return glsl_type::error_type;
171 }
172
173
174 /* "If one operand is floating-point based and the other is
175 * not, then the conversions from Section 4.1.10 "Implicit
176 * Conversions" are applied to the non-floating-point-based operand."
177 */
178 if (!apply_implicit_conversion(type_a, value_b, state)
179 && !apply_implicit_conversion(type_b, value_a, state)) {
180 _mesa_glsl_error(loc, state,
181 "Could not implicitly convert operands to "
182 "arithmetic operator");
183 return glsl_type::error_type;
184 }
185 type_a = value_a->type;
186 type_b = value_b->type;
187
188 /* "If the operands are integer types, they must both be signed or
189 * both be unsigned."
190 *
191 * From this rule and the preceeding conversion it can be inferred that
192 * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
193 * The is_numeric check above already filtered out the case where either
194 * type is not one of these, so now the base types need only be tested for
195 * equality.
196 */
197 if (type_a->base_type != type_b->base_type) {
198 _mesa_glsl_error(loc, state,
199 "base type mismatch for arithmetic operator");
200 return glsl_type::error_type;
201 }
202
203 /* "All arithmetic binary operators result in the same fundamental type
204 * (signed integer, unsigned integer, or floating-point) as the
205 * operands they operate on, after operand type conversion. After
206 * conversion, the following cases are valid
207 *
208 * * The two operands are scalars. In this case the operation is
209 * applied, resulting in a scalar."
210 */
211 if (type_a->is_scalar() && type_b->is_scalar())
212 return type_a;
213
214 /* "* One operand is a scalar, and the other is a vector or matrix.
215 * In this case, the scalar operation is applied independently to each
216 * component of the vector or matrix, resulting in the same size
217 * vector or matrix."
218 */
219 if (type_a->is_scalar()) {
220 if (!type_b->is_scalar())
221 return type_b;
222 } else if (type_b->is_scalar()) {
223 return type_a;
224 }
225
226 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
227 * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
228 * handled.
229 */
230 assert(!type_a->is_scalar());
231 assert(!type_b->is_scalar());
232
233 /* "* The two operands are vectors of the same size. In this case, the
234 * operation is done component-wise resulting in the same size
235 * vector."
236 */
237 if (type_a->is_vector() && type_b->is_vector()) {
238 if (type_a == type_b) {
239 return type_a;
240 } else {
241 _mesa_glsl_error(loc, state,
242 "vector size mismatch for arithmetic operator");
243 return glsl_type::error_type;
244 }
245 }
246
247 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
248 * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
249 * <vector, vector> have been handled. At least one of the operands must
250 * be matrix. Further, since there are no integer matrix types, the base
251 * type of both operands must be float.
252 */
253 assert(type_a->is_matrix() || type_b->is_matrix());
254 assert(type_a->base_type == GLSL_TYPE_FLOAT);
255 assert(type_b->base_type == GLSL_TYPE_FLOAT);
256
257 /* "* The operator is add (+), subtract (-), or divide (/), and the
258 * operands are matrices with the same number of rows and the same
259 * number of columns. In this case, the operation is done component-
260 * wise resulting in the same size matrix."
261 * * The operator is multiply (*), where both operands are matrices or
262 * one operand is a vector and the other a matrix. A right vector
263 * operand is treated as a column vector and a left vector operand as a
264 * row vector. In all these cases, it is required that the number of
265 * columns of the left operand is equal to the number of rows of the
266 * right operand. Then, the multiply (*) operation does a linear
267 * algebraic multiply, yielding an object that has the same number of
268 * rows as the left operand and the same number of columns as the right
269 * operand. Section 5.10 "Vector and Matrix Operations" explains in
270 * more detail how vectors and matrices are operated on."
271 */
272 if (! multiply) {
273 if (type_a == type_b)
274 return type_a;
275 } else {
276 if (type_a->is_matrix() && type_b->is_matrix()) {
277 /* Matrix multiply. The columns of A must match the rows of B. Given
278 * the other previously tested constraints, this means the vector type
279 * of a row from A must be the same as the vector type of a column from
280 * B.
281 */
282 if (type_a->row_type() == type_b->column_type()) {
283 /* The resulting matrix has the number of columns of matrix B and
284 * the number of rows of matrix A. We get the row count of A by
285 * looking at the size of a vector that makes up a column. The
286 * transpose (size of a row) is done for B.
287 */
288 const glsl_type *const type =
289 glsl_type::get_instance(type_a->base_type,
290 type_a->column_type()->vector_elements,
291 type_b->row_type()->vector_elements);
292 assert(type != glsl_type::error_type);
293
294 return type;
295 }
296 } else if (type_a->is_matrix()) {
297 /* A is a matrix and B is a column vector. Columns of A must match
298 * rows of B. Given the other previously tested constraints, this
299 * means the vector type of a row from A must be the same as the
300 * vector the type of B.
301 */
302 if (type_a->row_type() == type_b) {
303 /* The resulting vector has a number of elements equal to
304 * the number of rows of matrix A. */
305 const glsl_type *const type =
306 glsl_type::get_instance(type_a->base_type,
307 type_a->column_type()->vector_elements,
308 1);
309 assert(type != glsl_type::error_type);
310
311 return type;
312 }
313 } else {
314 assert(type_b->is_matrix());
315
316 /* A is a row vector and B is a matrix. Columns of A must match rows
317 * of B. Given the other previously tested constraints, this means
318 * the type of A must be the same as the vector type of a column from
319 * B.
320 */
321 if (type_a == type_b->column_type()) {
322 /* The resulting vector has a number of elements equal to
323 * the number of columns of matrix B. */
324 const glsl_type *const type =
325 glsl_type::get_instance(type_a->base_type,
326 type_b->row_type()->vector_elements,
327 1);
328 assert(type != glsl_type::error_type);
329
330 return type;
331 }
332 }
333
334 _mesa_glsl_error(loc, state, "size mismatch for matrix multiplication");
335 return glsl_type::error_type;
336 }
337
338
339 /* "All other cases are illegal."
340 */
341 _mesa_glsl_error(loc, state, "type mismatch");
342 return glsl_type::error_type;
343 }
344
345
346 static const struct glsl_type *
347 unary_arithmetic_result_type(const struct glsl_type *type,
348 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
349 {
350 /* From GLSL 1.50 spec, page 57:
351 *
352 * "The arithmetic unary operators negate (-), post- and pre-increment
353 * and decrement (-- and ++) operate on integer or floating-point
354 * values (including vectors and matrices). All unary operators work
355 * component-wise on their operands. These result with the same type
356 * they operated on."
357 */
358 if (!type->is_numeric()) {
359 _mesa_glsl_error(loc, state,
360 "Operands to arithmetic operators must be numeric");
361 return glsl_type::error_type;
362 }
363
364 return type;
365 }
366
367 /**
368 * \brief Return the result type of a bit-logic operation.
369 *
370 * If the given types to the bit-logic operator are invalid, return
371 * glsl_type::error_type.
372 *
373 * \param type_a Type of LHS of bit-logic op
374 * \param type_b Type of RHS of bit-logic op
375 */
376 static const struct glsl_type *
377 bit_logic_result_type(const struct glsl_type *type_a,
378 const struct glsl_type *type_b,
379 ast_operators op,
380 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
381 {
382 if (state->language_version < 130) {
383 _mesa_glsl_error(loc, state, "bit operations require GLSL 1.30");
384 return glsl_type::error_type;
385 }
386
387 /* From page 50 (page 56 of PDF) of GLSL 1.30 spec:
388 *
389 * "The bitwise operators and (&), exclusive-or (^), and inclusive-or
390 * (|). The operands must be of type signed or unsigned integers or
391 * integer vectors."
392 */
393 if (!type_a->is_integer()) {
394 _mesa_glsl_error(loc, state, "LHS of `%s' must be an integer",
395 ast_expression::operator_string(op));
396 return glsl_type::error_type;
397 }
398 if (!type_b->is_integer()) {
399 _mesa_glsl_error(loc, state, "RHS of `%s' must be an integer",
400 ast_expression::operator_string(op));
401 return glsl_type::error_type;
402 }
403
404 /* "The fundamental types of the operands (signed or unsigned) must
405 * match,"
406 */
407 if (type_a->base_type != type_b->base_type) {
408 _mesa_glsl_error(loc, state, "operands of `%s' must have the same "
409 "base type", ast_expression::operator_string(op));
410 return glsl_type::error_type;
411 }
412
413 /* "The operands cannot be vectors of differing size." */
414 if (type_a->is_vector() &&
415 type_b->is_vector() &&
416 type_a->vector_elements != type_b->vector_elements) {
417 _mesa_glsl_error(loc, state, "operands of `%s' cannot be vectors of "
418 "different sizes", ast_expression::operator_string(op));
419 return glsl_type::error_type;
420 }
421
422 /* "If one operand is a scalar and the other a vector, the scalar is
423 * applied component-wise to the vector, resulting in the same type as
424 * the vector. The fundamental types of the operands [...] will be the
425 * resulting fundamental type."
426 */
427 if (type_a->is_scalar())
428 return type_b;
429 else
430 return type_a;
431 }
432
433 static const struct glsl_type *
434 modulus_result_type(const struct glsl_type *type_a,
435 const struct glsl_type *type_b,
436 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
437 {
438 /* From GLSL 1.50 spec, page 56:
439 * "The operator modulus (%) operates on signed or unsigned integers or
440 * integer vectors. The operand types must both be signed or both be
441 * unsigned."
442 */
443 if (!type_a->is_integer() || !type_b->is_integer()
444 || (type_a->base_type != type_b->base_type)) {
445 _mesa_glsl_error(loc, state, "type mismatch");
446 return glsl_type::error_type;
447 }
448
449 /* "The operands cannot be vectors of differing size. If one operand is
450 * a scalar and the other vector, then the scalar is applied component-
451 * wise to the vector, resulting in the same type as the vector. If both
452 * are vectors of the same size, the result is computed component-wise."
453 */
454 if (type_a->is_vector()) {
455 if (!type_b->is_vector()
456 || (type_a->vector_elements == type_b->vector_elements))
457 return type_a;
458 } else
459 return type_b;
460
461 /* "The operator modulus (%) is not defined for any other data types
462 * (non-integer types)."
463 */
464 _mesa_glsl_error(loc, state, "type mismatch");
465 return glsl_type::error_type;
466 }
467
468
469 static const struct glsl_type *
470 relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
471 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
472 {
473 const glsl_type *type_a = value_a->type;
474 const glsl_type *type_b = value_b->type;
475
476 /* From GLSL 1.50 spec, page 56:
477 * "The relational operators greater than (>), less than (<), greater
478 * than or equal (>=), and less than or equal (<=) operate only on
479 * scalar integer and scalar floating-point expressions."
480 */
481 if (!type_a->is_numeric()
482 || !type_b->is_numeric()
483 || !type_a->is_scalar()
484 || !type_b->is_scalar()) {
485 _mesa_glsl_error(loc, state,
486 "Operands to relational operators must be scalar and "
487 "numeric");
488 return glsl_type::error_type;
489 }
490
491 /* "Either the operands' types must match, or the conversions from
492 * Section 4.1.10 "Implicit Conversions" will be applied to the integer
493 * operand, after which the types must match."
494 */
495 if (!apply_implicit_conversion(type_a, value_b, state)
496 && !apply_implicit_conversion(type_b, value_a, state)) {
497 _mesa_glsl_error(loc, state,
498 "Could not implicitly convert operands to "
499 "relational operator");
500 return glsl_type::error_type;
501 }
502 type_a = value_a->type;
503 type_b = value_b->type;
504
505 if (type_a->base_type != type_b->base_type) {
506 _mesa_glsl_error(loc, state, "base type mismatch");
507 return glsl_type::error_type;
508 }
509
510 /* "The result is scalar Boolean."
511 */
512 return glsl_type::bool_type;
513 }
514
515 /**
516 * \brief Return the result type of a bit-shift operation.
517 *
518 * If the given types to the bit-shift operator are invalid, return
519 * glsl_type::error_type.
520 *
521 * \param type_a Type of LHS of bit-shift op
522 * \param type_b Type of RHS of bit-shift op
523 */
524 static const struct glsl_type *
525 shift_result_type(const struct glsl_type *type_a,
526 const struct glsl_type *type_b,
527 ast_operators op,
528 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
529 {
530 if (state->language_version < 130) {
531 _mesa_glsl_error(loc, state, "bit operations require GLSL 1.30");
532 return glsl_type::error_type;
533 }
534
535 /* From page 50 (page 56 of the PDF) of the GLSL 1.30 spec:
536 *
537 * "The shift operators (<<) and (>>). For both operators, the operands
538 * must be signed or unsigned integers or integer vectors. One operand
539 * can be signed while the other is unsigned."
540 */
541 if (!type_a->is_integer()) {
542 _mesa_glsl_error(loc, state, "LHS of operator %s must be an integer or "
543 "integer vector", ast_expression::operator_string(op));
544 return glsl_type::error_type;
545
546 }
547 if (!type_b->is_integer()) {
548 _mesa_glsl_error(loc, state, "RHS of operator %s must be an integer or "
549 "integer vector", ast_expression::operator_string(op));
550 return glsl_type::error_type;
551 }
552
553 /* "If the first operand is a scalar, the second operand has to be
554 * a scalar as well."
555 */
556 if (type_a->is_scalar() && !type_b->is_scalar()) {
557 _mesa_glsl_error(loc, state, "If the first operand of %s is scalar, the "
558 "second must be scalar as well",
559 ast_expression::operator_string(op));
560 return glsl_type::error_type;
561 }
562
563 /* If both operands are vectors, check that they have same number of
564 * elements.
565 */
566 if (type_a->is_vector() &&
567 type_b->is_vector() &&
568 type_a->vector_elements != type_b->vector_elements) {
569 _mesa_glsl_error(loc, state, "Vector operands to operator %s must "
570 "have same number of elements",
571 ast_expression::operator_string(op));
572 return glsl_type::error_type;
573 }
574
575 /* "In all cases, the resulting type will be the same type as the left
576 * operand."
577 */
578 return type_a;
579 }
580
581 /**
582 * Validates that a value can be assigned to a location with a specified type
583 *
584 * Validates that \c rhs can be assigned to some location. If the types are
585 * not an exact match but an automatic conversion is possible, \c rhs will be
586 * converted.
587 *
588 * \return
589 * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
590 * Otherwise the actual RHS to be assigned will be returned. This may be
591 * \c rhs, or it may be \c rhs after some type conversion.
592 *
593 * \note
594 * In addition to being used for assignments, this function is used to
595 * type-check return values.
596 */
597 ir_rvalue *
598 validate_assignment(struct _mesa_glsl_parse_state *state,
599 const glsl_type *lhs_type, ir_rvalue *rhs)
600 {
601 const glsl_type *rhs_type = rhs->type;
602
603 /* If there is already some error in the RHS, just return it. Anything
604 * else will lead to an avalanche of error message back to the user.
605 */
606 if (rhs_type->is_error())
607 return rhs;
608
609 /* If the types are identical, the assignment can trivially proceed.
610 */
611 if (rhs_type == lhs_type)
612 return rhs;
613
614 /* If the array element types are the same and the size of the LHS is zero,
615 * the assignment is okay.
616 *
617 * Note: Whole-array assignments are not permitted in GLSL 1.10, but this
618 * is handled by ir_dereference::is_lvalue.
619 */
620 if (lhs_type->is_array() && rhs->type->is_array()
621 && (lhs_type->element_type() == rhs->type->element_type())
622 && (lhs_type->array_size() == 0)) {
623 return rhs;
624 }
625
626 /* Check for implicit conversion in GLSL 1.20 */
627 if (apply_implicit_conversion(lhs_type, rhs, state)) {
628 rhs_type = rhs->type;
629 if (rhs_type == lhs_type)
630 return rhs;
631 }
632
633 return NULL;
634 }
635
636 ir_rvalue *
637 do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state,
638 ir_rvalue *lhs, ir_rvalue *rhs,
639 YYLTYPE lhs_loc)
640 {
641 void *ctx = state;
642 bool error_emitted = (lhs->type->is_error() || rhs->type->is_error());
643
644 if (!error_emitted) {
645 if (!lhs->is_lvalue()) {
646 _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment");
647 error_emitted = true;
648 }
649
650 if (state->es_shader && lhs->type->is_array()) {
651 _mesa_glsl_error(&lhs_loc, state, "whole array assignment is not "
652 "allowed in GLSL ES 1.00.");
653 error_emitted = true;
654 }
655 }
656
657 ir_rvalue *new_rhs = validate_assignment(state, lhs->type, rhs);
658 if (new_rhs == NULL) {
659 _mesa_glsl_error(& lhs_loc, state, "type mismatch");
660 } else {
661 rhs = new_rhs;
662
663 /* If the LHS array was not declared with a size, it takes it size from
664 * the RHS. If the LHS is an l-value and a whole array, it must be a
665 * dereference of a variable. Any other case would require that the LHS
666 * is either not an l-value or not a whole array.
667 */
668 if (lhs->type->array_size() == 0) {
669 ir_dereference *const d = lhs->as_dereference();
670
671 assert(d != NULL);
672
673 ir_variable *const var = d->variable_referenced();
674
675 assert(var != NULL);
676
677 if (var->max_array_access >= unsigned(rhs->type->array_size())) {
678 /* FINISHME: This should actually log the location of the RHS. */
679 _mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to "
680 "previous access",
681 var->max_array_access);
682 }
683
684 var->type = glsl_type::get_array_instance(lhs->type->element_type(),
685 rhs->type->array_size());
686 d->type = var->type;
687 }
688 }
689
690 /* Most callers of do_assignment (assign, add_assign, pre_inc/dec,
691 * but not post_inc) need the converted assigned value as an rvalue
692 * to handle things like:
693 *
694 * i = j += 1;
695 *
696 * So we always just store the computed value being assigned to a
697 * temporary and return a deref of that temporary. If the rvalue
698 * ends up not being used, the temp will get copy-propagated out.
699 */
700 ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp",
701 ir_var_temporary);
702 ir_dereference_variable *deref_var = new(ctx) ir_dereference_variable(var);
703 instructions->push_tail(var);
704 instructions->push_tail(new(ctx) ir_assignment(deref_var,
705 rhs,
706 NULL));
707 deref_var = new(ctx) ir_dereference_variable(var);
708
709 if (!error_emitted)
710 instructions->push_tail(new(ctx) ir_assignment(lhs, deref_var, NULL));
711
712 return new(ctx) ir_dereference_variable(var);
713 }
714
715 static ir_rvalue *
716 get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue)
717 {
718 void *ctx = talloc_parent(lvalue);
719 ir_variable *var;
720
721 var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp",
722 ir_var_temporary);
723 instructions->push_tail(var);
724 var->mode = ir_var_auto;
725
726 instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
727 lvalue, NULL));
728
729 /* Once we've created this temporary, mark it read only so it's no
730 * longer considered an lvalue.
731 */
732 var->read_only = true;
733
734 return new(ctx) ir_dereference_variable(var);
735 }
736
737
738 ir_rvalue *
739 ast_node::hir(exec_list *instructions,
740 struct _mesa_glsl_parse_state *state)
741 {
742 (void) instructions;
743 (void) state;
744
745 return NULL;
746 }
747
748
749 ir_rvalue *
750 ast_expression::hir(exec_list *instructions,
751 struct _mesa_glsl_parse_state *state)
752 {
753 void *ctx = state;
754 static const int operations[AST_NUM_OPERATORS] = {
755 -1, /* ast_assign doesn't convert to ir_expression. */
756 -1, /* ast_plus doesn't convert to ir_expression. */
757 ir_unop_neg,
758 ir_binop_add,
759 ir_binop_sub,
760 ir_binop_mul,
761 ir_binop_div,
762 ir_binop_mod,
763 ir_binop_lshift,
764 ir_binop_rshift,
765 ir_binop_less,
766 ir_binop_greater,
767 ir_binop_lequal,
768 ir_binop_gequal,
769 ir_binop_all_equal,
770 ir_binop_any_nequal,
771 ir_binop_bit_and,
772 ir_binop_bit_xor,
773 ir_binop_bit_or,
774 ir_unop_bit_not,
775 ir_binop_logic_and,
776 ir_binop_logic_xor,
777 ir_binop_logic_or,
778 ir_unop_logic_not,
779
780 /* Note: The following block of expression types actually convert
781 * to multiple IR instructions.
782 */
783 ir_binop_mul, /* ast_mul_assign */
784 ir_binop_div, /* ast_div_assign */
785 ir_binop_mod, /* ast_mod_assign */
786 ir_binop_add, /* ast_add_assign */
787 ir_binop_sub, /* ast_sub_assign */
788 ir_binop_lshift, /* ast_ls_assign */
789 ir_binop_rshift, /* ast_rs_assign */
790 ir_binop_bit_and, /* ast_and_assign */
791 ir_binop_bit_xor, /* ast_xor_assign */
792 ir_binop_bit_or, /* ast_or_assign */
793
794 -1, /* ast_conditional doesn't convert to ir_expression. */
795 ir_binop_add, /* ast_pre_inc. */
796 ir_binop_sub, /* ast_pre_dec. */
797 ir_binop_add, /* ast_post_inc. */
798 ir_binop_sub, /* ast_post_dec. */
799 -1, /* ast_field_selection doesn't conv to ir_expression. */
800 -1, /* ast_array_index doesn't convert to ir_expression. */
801 -1, /* ast_function_call doesn't conv to ir_expression. */
802 -1, /* ast_identifier doesn't convert to ir_expression. */
803 -1, /* ast_int_constant doesn't convert to ir_expression. */
804 -1, /* ast_uint_constant doesn't conv to ir_expression. */
805 -1, /* ast_float_constant doesn't conv to ir_expression. */
806 -1, /* ast_bool_constant doesn't conv to ir_expression. */
807 -1, /* ast_sequence doesn't convert to ir_expression. */
808 };
809 ir_rvalue *result = NULL;
810 ir_rvalue *op[3];
811 const struct glsl_type *type = glsl_type::error_type;
812 bool error_emitted = false;
813 YYLTYPE loc;
814
815 loc = this->get_location();
816
817 switch (this->oper) {
818 case ast_assign: {
819 op[0] = this->subexpressions[0]->hir(instructions, state);
820 op[1] = this->subexpressions[1]->hir(instructions, state);
821
822 result = do_assignment(instructions, state, op[0], op[1],
823 this->subexpressions[0]->get_location());
824 error_emitted = result->type->is_error();
825 type = result->type;
826 break;
827 }
828
829 case ast_plus:
830 op[0] = this->subexpressions[0]->hir(instructions, state);
831
832 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
833
834 error_emitted = type->is_error();
835
836 result = op[0];
837 break;
838
839 case ast_neg:
840 op[0] = this->subexpressions[0]->hir(instructions, state);
841
842 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
843
844 error_emitted = type->is_error();
845
846 result = new(ctx) ir_expression(operations[this->oper], type,
847 op[0], NULL);
848 break;
849
850 case ast_add:
851 case ast_sub:
852 case ast_mul:
853 case ast_div:
854 op[0] = this->subexpressions[0]->hir(instructions, state);
855 op[1] = this->subexpressions[1]->hir(instructions, state);
856
857 type = arithmetic_result_type(op[0], op[1],
858 (this->oper == ast_mul),
859 state, & loc);
860 error_emitted = type->is_error();
861
862 result = new(ctx) ir_expression(operations[this->oper], type,
863 op[0], op[1]);
864 break;
865
866 case ast_mod:
867 op[0] = this->subexpressions[0]->hir(instructions, state);
868 op[1] = this->subexpressions[1]->hir(instructions, state);
869
870 type = modulus_result_type(op[0]->type, op[1]->type, state, & loc);
871
872 assert(operations[this->oper] == ir_binop_mod);
873
874 result = new(ctx) ir_expression(operations[this->oper], type,
875 op[0], op[1]);
876 error_emitted = type->is_error();
877 break;
878
879 case ast_lshift:
880 case ast_rshift:
881 if (state->language_version < 130) {
882 _mesa_glsl_error(&loc, state, "operator %s requires GLSL 1.30",
883 operator_string(this->oper));
884 error_emitted = true;
885 }
886
887 op[0] = this->subexpressions[0]->hir(instructions, state);
888 op[1] = this->subexpressions[1]->hir(instructions, state);
889 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
890 &loc);
891 result = new(ctx) ir_expression(operations[this->oper], type,
892 op[0], op[1]);
893 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
894 break;
895
896 case ast_less:
897 case ast_greater:
898 case ast_lequal:
899 case ast_gequal:
900 op[0] = this->subexpressions[0]->hir(instructions, state);
901 op[1] = this->subexpressions[1]->hir(instructions, state);
902
903 type = relational_result_type(op[0], op[1], state, & loc);
904
905 /* The relational operators must either generate an error or result
906 * in a scalar boolean. See page 57 of the GLSL 1.50 spec.
907 */
908 assert(type->is_error()
909 || ((type->base_type == GLSL_TYPE_BOOL)
910 && type->is_scalar()));
911
912 result = new(ctx) ir_expression(operations[this->oper], type,
913 op[0], op[1]);
914 error_emitted = type->is_error();
915 break;
916
917 case ast_nequal:
918 case ast_equal:
919 op[0] = this->subexpressions[0]->hir(instructions, state);
920 op[1] = this->subexpressions[1]->hir(instructions, state);
921
922 /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
923 *
924 * "The equality operators equal (==), and not equal (!=)
925 * operate on all types. They result in a scalar Boolean. If
926 * the operand types do not match, then there must be a
927 * conversion from Section 4.1.10 "Implicit Conversions"
928 * applied to one operand that can make them match, in which
929 * case this conversion is done."
930 */
931 if ((!apply_implicit_conversion(op[0]->type, op[1], state)
932 && !apply_implicit_conversion(op[1]->type, op[0], state))
933 || (op[0]->type != op[1]->type)) {
934 _mesa_glsl_error(& loc, state, "operands of `%s' must have the same "
935 "type", (this->oper == ast_equal) ? "==" : "!=");
936 error_emitted = true;
937 } else if ((state->language_version <= 110)
938 && (op[0]->type->is_array() || op[1]->type->is_array())) {
939 _mesa_glsl_error(& loc, state, "array comparisons forbidden in "
940 "GLSL 1.10");
941 error_emitted = true;
942 }
943
944 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
945 op[0], op[1]);
946 type = glsl_type::bool_type;
947
948 assert(result->type == glsl_type::bool_type);
949 break;
950
951 case ast_bit_and:
952 case ast_bit_xor:
953 case ast_bit_or:
954 op[0] = this->subexpressions[0]->hir(instructions, state);
955 op[1] = this->subexpressions[1]->hir(instructions, state);
956 type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
957 state, &loc);
958 result = new(ctx) ir_expression(operations[this->oper], type,
959 op[0], op[1]);
960 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
961 break;
962
963 case ast_bit_not:
964 op[0] = this->subexpressions[0]->hir(instructions, state);
965
966 if (state->language_version < 130) {
967 _mesa_glsl_error(&loc, state, "bit-wise operations require GLSL 1.30");
968 error_emitted = true;
969 }
970
971 if (!op[0]->type->is_integer()) {
972 _mesa_glsl_error(&loc, state, "operand of `~' must be an integer");
973 error_emitted = true;
974 }
975
976 type = op[0]->type;
977 result = new(ctx) ir_expression(ir_unop_bit_not, type, op[0], NULL);
978 break;
979
980 case ast_logic_and: {
981 op[0] = this->subexpressions[0]->hir(instructions, state);
982
983 if (!op[0]->type->is_boolean() || !op[0]->type->is_scalar()) {
984 YYLTYPE loc = this->subexpressions[0]->get_location();
985
986 _mesa_glsl_error(& loc, state, "LHS of `%s' must be scalar boolean",
987 operator_string(this->oper));
988 error_emitted = true;
989 }
990
991 ir_constant *op0_const = op[0]->constant_expression_value();
992 if (op0_const) {
993 if (op0_const->value.b[0]) {
994 op[1] = this->subexpressions[1]->hir(instructions, state);
995
996 if (!op[1]->type->is_boolean() || !op[1]->type->is_scalar()) {
997 YYLTYPE loc = this->subexpressions[1]->get_location();
998
999 _mesa_glsl_error(& loc, state,
1000 "RHS of `%s' must be scalar boolean",
1001 operator_string(this->oper));
1002 error_emitted = true;
1003 }
1004 result = op[1];
1005 } else {
1006 result = op0_const;
1007 }
1008 type = glsl_type::bool_type;
1009 } else {
1010 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1011 "and_tmp",
1012 ir_var_temporary);
1013 instructions->push_tail(tmp);
1014
1015 ir_if *const stmt = new(ctx) ir_if(op[0]);
1016 instructions->push_tail(stmt);
1017
1018 op[1] = this->subexpressions[1]->hir(&stmt->then_instructions, state);
1019
1020 if (!op[1]->type->is_boolean() || !op[1]->type->is_scalar()) {
1021 YYLTYPE loc = this->subexpressions[1]->get_location();
1022
1023 _mesa_glsl_error(& loc, state,
1024 "RHS of `%s' must be scalar boolean",
1025 operator_string(this->oper));
1026 error_emitted = true;
1027 }
1028
1029 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1030 ir_assignment *const then_assign =
1031 new(ctx) ir_assignment(then_deref, op[1], NULL);
1032 stmt->then_instructions.push_tail(then_assign);
1033
1034 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1035 ir_assignment *const else_assign =
1036 new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false), NULL);
1037 stmt->else_instructions.push_tail(else_assign);
1038
1039 result = new(ctx) ir_dereference_variable(tmp);
1040 type = tmp->type;
1041 }
1042 break;
1043 }
1044
1045 case ast_logic_or: {
1046 op[0] = this->subexpressions[0]->hir(instructions, state);
1047
1048 if (!op[0]->type->is_boolean() || !op[0]->type->is_scalar()) {
1049 YYLTYPE loc = this->subexpressions[0]->get_location();
1050
1051 _mesa_glsl_error(& loc, state, "LHS of `%s' must be scalar boolean",
1052 operator_string(this->oper));
1053 error_emitted = true;
1054 }
1055
1056 ir_constant *op0_const = op[0]->constant_expression_value();
1057 if (op0_const) {
1058 if (op0_const->value.b[0]) {
1059 result = op0_const;
1060 } else {
1061 op[1] = this->subexpressions[1]->hir(instructions, state);
1062
1063 if (!op[1]->type->is_boolean() || !op[1]->type->is_scalar()) {
1064 YYLTYPE loc = this->subexpressions[1]->get_location();
1065
1066 _mesa_glsl_error(& loc, state,
1067 "RHS of `%s' must be scalar boolean",
1068 operator_string(this->oper));
1069 error_emitted = true;
1070 }
1071 result = op[1];
1072 }
1073 type = glsl_type::bool_type;
1074 } else {
1075 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1076 "or_tmp",
1077 ir_var_temporary);
1078 instructions->push_tail(tmp);
1079
1080 ir_if *const stmt = new(ctx) ir_if(op[0]);
1081 instructions->push_tail(stmt);
1082
1083 op[1] = this->subexpressions[1]->hir(&stmt->else_instructions, state);
1084
1085 if (!op[1]->type->is_boolean() || !op[1]->type->is_scalar()) {
1086 YYLTYPE loc = this->subexpressions[1]->get_location();
1087
1088 _mesa_glsl_error(& loc, state, "RHS of `%s' must be scalar boolean",
1089 operator_string(this->oper));
1090 error_emitted = true;
1091 }
1092
1093 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1094 ir_assignment *const then_assign =
1095 new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true), NULL);
1096 stmt->then_instructions.push_tail(then_assign);
1097
1098 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1099 ir_assignment *const else_assign =
1100 new(ctx) ir_assignment(else_deref, op[1], NULL);
1101 stmt->else_instructions.push_tail(else_assign);
1102
1103 result = new(ctx) ir_dereference_variable(tmp);
1104 type = tmp->type;
1105 }
1106 break;
1107 }
1108
1109 case ast_logic_xor:
1110 op[0] = this->subexpressions[0]->hir(instructions, state);
1111 op[1] = this->subexpressions[1]->hir(instructions, state);
1112
1113
1114 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1115 op[0], op[1]);
1116 type = glsl_type::bool_type;
1117 break;
1118
1119 case ast_logic_not:
1120 op[0] = this->subexpressions[0]->hir(instructions, state);
1121
1122 if (!op[0]->type->is_boolean() || !op[0]->type->is_scalar()) {
1123 YYLTYPE loc = this->subexpressions[0]->get_location();
1124
1125 _mesa_glsl_error(& loc, state,
1126 "operand of `!' must be scalar boolean");
1127 error_emitted = true;
1128 }
1129
1130 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1131 op[0], NULL);
1132 type = glsl_type::bool_type;
1133 break;
1134
1135 case ast_mul_assign:
1136 case ast_div_assign:
1137 case ast_add_assign:
1138 case ast_sub_assign: {
1139 op[0] = this->subexpressions[0]->hir(instructions, state);
1140 op[1] = this->subexpressions[1]->hir(instructions, state);
1141
1142 type = arithmetic_result_type(op[0], op[1],
1143 (this->oper == ast_mul_assign),
1144 state, & loc);
1145
1146 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1147 op[0], op[1]);
1148
1149 result = do_assignment(instructions, state,
1150 op[0]->clone(ctx, NULL), temp_rhs,
1151 this->subexpressions[0]->get_location());
1152 type = result->type;
1153 error_emitted = (op[0]->type->is_error());
1154
1155 /* GLSL 1.10 does not allow array assignment. However, we don't have to
1156 * explicitly test for this because none of the binary expression
1157 * operators allow array operands either.
1158 */
1159
1160 break;
1161 }
1162
1163 case ast_mod_assign: {
1164 op[0] = this->subexpressions[0]->hir(instructions, state);
1165 op[1] = this->subexpressions[1]->hir(instructions, state);
1166
1167 type = modulus_result_type(op[0]->type, op[1]->type, state, & loc);
1168
1169 assert(operations[this->oper] == ir_binop_mod);
1170
1171 ir_rvalue *temp_rhs;
1172 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1173 op[0], op[1]);
1174
1175 result = do_assignment(instructions, state,
1176 op[0]->clone(ctx, NULL), temp_rhs,
1177 this->subexpressions[0]->get_location());
1178 type = result->type;
1179 error_emitted = type->is_error();
1180 break;
1181 }
1182
1183 case ast_ls_assign:
1184 case ast_rs_assign: {
1185 op[0] = this->subexpressions[0]->hir(instructions, state);
1186 op[1] = this->subexpressions[1]->hir(instructions, state);
1187 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1188 &loc);
1189 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1190 type, op[0], op[1]);
1191 result = do_assignment(instructions, state, op[0]->clone(ctx, NULL),
1192 temp_rhs,
1193 this->subexpressions[0]->get_location());
1194 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1195 break;
1196 }
1197
1198 case ast_and_assign:
1199 case ast_xor_assign:
1200 case ast_or_assign: {
1201 op[0] = this->subexpressions[0]->hir(instructions, state);
1202 op[1] = this->subexpressions[1]->hir(instructions, state);
1203 type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
1204 state, &loc);
1205 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1206 type, op[0], op[1]);
1207 result = do_assignment(instructions, state, op[0]->clone(ctx, NULL),
1208 temp_rhs,
1209 this->subexpressions[0]->get_location());
1210 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1211 break;
1212 }
1213
1214 case ast_conditional: {
1215 op[0] = this->subexpressions[0]->hir(instructions, state);
1216
1217 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1218 *
1219 * "The ternary selection operator (?:). It operates on three
1220 * expressions (exp1 ? exp2 : exp3). This operator evaluates the
1221 * first expression, which must result in a scalar Boolean."
1222 */
1223 if (!op[0]->type->is_boolean() || !op[0]->type->is_scalar()) {
1224 YYLTYPE loc = this->subexpressions[0]->get_location();
1225
1226 _mesa_glsl_error(& loc, state, "?: condition must be scalar boolean");
1227 error_emitted = true;
1228 }
1229
1230 /* The :? operator is implemented by generating an anonymous temporary
1231 * followed by an if-statement. The last instruction in each branch of
1232 * the if-statement assigns a value to the anonymous temporary. This
1233 * temporary is the r-value of the expression.
1234 */
1235 exec_list then_instructions;
1236 exec_list else_instructions;
1237
1238 op[1] = this->subexpressions[1]->hir(&then_instructions, state);
1239 op[2] = this->subexpressions[2]->hir(&else_instructions, state);
1240
1241 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1242 *
1243 * "The second and third expressions can be any type, as
1244 * long their types match, or there is a conversion in
1245 * Section 4.1.10 "Implicit Conversions" that can be applied
1246 * to one of the expressions to make their types match. This
1247 * resulting matching type is the type of the entire
1248 * expression."
1249 */
1250 if ((!apply_implicit_conversion(op[1]->type, op[2], state)
1251 && !apply_implicit_conversion(op[2]->type, op[1], state))
1252 || (op[1]->type != op[2]->type)) {
1253 YYLTYPE loc = this->subexpressions[1]->get_location();
1254
1255 _mesa_glsl_error(& loc, state, "Second and third operands of ?: "
1256 "operator must have matching types.");
1257 error_emitted = true;
1258 type = glsl_type::error_type;
1259 } else {
1260 type = op[1]->type;
1261 }
1262
1263 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1264 *
1265 * "The second and third expressions must be the same type, but can
1266 * be of any type other than an array."
1267 */
1268 if ((state->language_version <= 110) && type->is_array()) {
1269 _mesa_glsl_error(& loc, state, "Second and third operands of ?: "
1270 "operator must not be arrays.");
1271 error_emitted = true;
1272 }
1273
1274 ir_constant *cond_val = op[0]->constant_expression_value();
1275 ir_constant *then_val = op[1]->constant_expression_value();
1276 ir_constant *else_val = op[2]->constant_expression_value();
1277
1278 if (then_instructions.is_empty()
1279 && else_instructions.is_empty()
1280 && (cond_val != NULL) && (then_val != NULL) && (else_val != NULL)) {
1281 result = (cond_val->value.b[0]) ? then_val : else_val;
1282 } else {
1283 ir_variable *const tmp =
1284 new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary);
1285 instructions->push_tail(tmp);
1286
1287 ir_if *const stmt = new(ctx) ir_if(op[0]);
1288 instructions->push_tail(stmt);
1289
1290 then_instructions.move_nodes_to(& stmt->then_instructions);
1291 ir_dereference *const then_deref =
1292 new(ctx) ir_dereference_variable(tmp);
1293 ir_assignment *const then_assign =
1294 new(ctx) ir_assignment(then_deref, op[1], NULL);
1295 stmt->then_instructions.push_tail(then_assign);
1296
1297 else_instructions.move_nodes_to(& stmt->else_instructions);
1298 ir_dereference *const else_deref =
1299 new(ctx) ir_dereference_variable(tmp);
1300 ir_assignment *const else_assign =
1301 new(ctx) ir_assignment(else_deref, op[2], NULL);
1302 stmt->else_instructions.push_tail(else_assign);
1303
1304 result = new(ctx) ir_dereference_variable(tmp);
1305 }
1306 break;
1307 }
1308
1309 case ast_pre_inc:
1310 case ast_pre_dec: {
1311 op[0] = this->subexpressions[0]->hir(instructions, state);
1312 if (op[0]->type->base_type == GLSL_TYPE_FLOAT)
1313 op[1] = new(ctx) ir_constant(1.0f);
1314 else
1315 op[1] = new(ctx) ir_constant(1);
1316
1317 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1318
1319 ir_rvalue *temp_rhs;
1320 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1321 op[0], op[1]);
1322
1323 result = do_assignment(instructions, state,
1324 op[0]->clone(ctx, NULL), temp_rhs,
1325 this->subexpressions[0]->get_location());
1326 type = result->type;
1327 error_emitted = op[0]->type->is_error();
1328 break;
1329 }
1330
1331 case ast_post_inc:
1332 case ast_post_dec: {
1333 op[0] = this->subexpressions[0]->hir(instructions, state);
1334 if (op[0]->type->base_type == GLSL_TYPE_FLOAT)
1335 op[1] = new(ctx) ir_constant(1.0f);
1336 else
1337 op[1] = new(ctx) ir_constant(1);
1338
1339 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1340
1341 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1342
1343 ir_rvalue *temp_rhs;
1344 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1345 op[0], op[1]);
1346
1347 /* Get a temporary of a copy of the lvalue before it's modified.
1348 * This may get thrown away later.
1349 */
1350 result = get_lvalue_copy(instructions, op[0]->clone(ctx, NULL));
1351
1352 (void)do_assignment(instructions, state,
1353 op[0]->clone(ctx, NULL), temp_rhs,
1354 this->subexpressions[0]->get_location());
1355
1356 type = result->type;
1357 error_emitted = op[0]->type->is_error();
1358 break;
1359 }
1360
1361 case ast_field_selection:
1362 result = _mesa_ast_field_selection_to_hir(this, instructions, state);
1363 type = result->type;
1364 break;
1365
1366 case ast_array_index: {
1367 YYLTYPE index_loc = subexpressions[1]->get_location();
1368
1369 op[0] = subexpressions[0]->hir(instructions, state);
1370 op[1] = subexpressions[1]->hir(instructions, state);
1371
1372 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1373
1374 ir_rvalue *const array = op[0];
1375
1376 result = new(ctx) ir_dereference_array(op[0], op[1]);
1377
1378 /* Do not use op[0] after this point. Use array.
1379 */
1380 op[0] = NULL;
1381
1382
1383 if (error_emitted)
1384 break;
1385
1386 if (!array->type->is_array()
1387 && !array->type->is_matrix()
1388 && !array->type->is_vector()) {
1389 _mesa_glsl_error(& index_loc, state,
1390 "cannot dereference non-array / non-matrix / "
1391 "non-vector");
1392 error_emitted = true;
1393 }
1394
1395 if (!op[1]->type->is_integer()) {
1396 _mesa_glsl_error(& index_loc, state,
1397 "array index must be integer type");
1398 error_emitted = true;
1399 } else if (!op[1]->type->is_scalar()) {
1400 _mesa_glsl_error(& index_loc, state,
1401 "array index must be scalar");
1402 error_emitted = true;
1403 }
1404
1405 /* If the array index is a constant expression and the array has a
1406 * declared size, ensure that the access is in-bounds. If the array
1407 * index is not a constant expression, ensure that the array has a
1408 * declared size.
1409 */
1410 ir_constant *const const_index = op[1]->constant_expression_value();
1411 if (const_index != NULL) {
1412 const int idx = const_index->value.i[0];
1413 const char *type_name;
1414 unsigned bound = 0;
1415
1416 if (array->type->is_matrix()) {
1417 type_name = "matrix";
1418 } else if (array->type->is_vector()) {
1419 type_name = "vector";
1420 } else {
1421 type_name = "array";
1422 }
1423
1424 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec:
1425 *
1426 * "It is illegal to declare an array with a size, and then
1427 * later (in the same shader) index the same array with an
1428 * integral constant expression greater than or equal to the
1429 * declared size. It is also illegal to index an array with a
1430 * negative constant expression."
1431 */
1432 if (array->type->is_matrix()) {
1433 if (array->type->row_type()->vector_elements <= idx) {
1434 bound = array->type->row_type()->vector_elements;
1435 }
1436 } else if (array->type->is_vector()) {
1437 if (array->type->vector_elements <= idx) {
1438 bound = array->type->vector_elements;
1439 }
1440 } else {
1441 if ((array->type->array_size() > 0)
1442 && (array->type->array_size() <= idx)) {
1443 bound = array->type->array_size();
1444 }
1445 }
1446
1447 if (bound > 0) {
1448 _mesa_glsl_error(& loc, state, "%s index must be < %u",
1449 type_name, bound);
1450 error_emitted = true;
1451 } else if (idx < 0) {
1452 _mesa_glsl_error(& loc, state, "%s index must be >= 0",
1453 type_name);
1454 error_emitted = true;
1455 }
1456
1457 if (array->type->is_array()) {
1458 /* If the array is a variable dereference, it dereferences the
1459 * whole array, by definition. Use this to get the variable.
1460 *
1461 * FINISHME: Should some methods for getting / setting / testing
1462 * FINISHME: array access limits be added to ir_dereference?
1463 */
1464 ir_variable *const v = array->whole_variable_referenced();
1465 if ((v != NULL) && (unsigned(idx) > v->max_array_access))
1466 v->max_array_access = idx;
1467 }
1468 } else if (array->type->array_size() == 0) {
1469 _mesa_glsl_error(&loc, state, "unsized array index must be constant");
1470 } else {
1471 if (array->type->is_array()) {
1472 /* whole_variable_referenced can return NULL if the array is a
1473 * member of a structure. In this case it is safe to not update
1474 * the max_array_access field because it is never used for fields
1475 * of structures.
1476 */
1477 ir_variable *v = array->whole_variable_referenced();
1478 if (v != NULL)
1479 v->max_array_access = array->type->array_size();
1480 }
1481 }
1482
1483 if (error_emitted)
1484 result->type = glsl_type::error_type;
1485
1486 type = result->type;
1487 break;
1488 }
1489
1490 case ast_function_call:
1491 /* Should *NEVER* get here. ast_function_call should always be handled
1492 * by ast_function_expression::hir.
1493 */
1494 assert(0);
1495 break;
1496
1497 case ast_identifier: {
1498 /* ast_identifier can appear several places in a full abstract syntax
1499 * tree. This particular use must be at location specified in the grammar
1500 * as 'variable_identifier'.
1501 */
1502 ir_variable *var =
1503 state->symbols->get_variable(this->primary_expression.identifier);
1504
1505 result = new(ctx) ir_dereference_variable(var);
1506
1507 if (var != NULL) {
1508 type = result->type;
1509 } else {
1510 _mesa_glsl_error(& loc, state, "`%s' undeclared",
1511 this->primary_expression.identifier);
1512
1513 error_emitted = true;
1514 }
1515 break;
1516 }
1517
1518 case ast_int_constant:
1519 type = glsl_type::int_type;
1520 result = new(ctx) ir_constant(this->primary_expression.int_constant);
1521 break;
1522
1523 case ast_uint_constant:
1524 type = glsl_type::uint_type;
1525 result = new(ctx) ir_constant(this->primary_expression.uint_constant);
1526 break;
1527
1528 case ast_float_constant:
1529 type = glsl_type::float_type;
1530 result = new(ctx) ir_constant(this->primary_expression.float_constant);
1531 break;
1532
1533 case ast_bool_constant:
1534 type = glsl_type::bool_type;
1535 result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant));
1536 break;
1537
1538 case ast_sequence: {
1539 /* It should not be possible to generate a sequence in the AST without
1540 * any expressions in it.
1541 */
1542 assert(!this->expressions.is_empty());
1543
1544 /* The r-value of a sequence is the last expression in the sequence. If
1545 * the other expressions in the sequence do not have side-effects (and
1546 * therefore add instructions to the instruction list), they get dropped
1547 * on the floor.
1548 */
1549 foreach_list_typed (ast_node, ast, link, &this->expressions)
1550 result = ast->hir(instructions, state);
1551
1552 type = result->type;
1553
1554 /* Any errors should have already been emitted in the loop above.
1555 */
1556 error_emitted = true;
1557 break;
1558 }
1559 }
1560
1561 if (type->is_error() && !error_emitted)
1562 _mesa_glsl_error(& loc, state, "type mismatch");
1563
1564 return result;
1565 }
1566
1567
1568 ir_rvalue *
1569 ast_expression_statement::hir(exec_list *instructions,
1570 struct _mesa_glsl_parse_state *state)
1571 {
1572 /* It is possible to have expression statements that don't have an
1573 * expression. This is the solitary semicolon:
1574 *
1575 * for (i = 0; i < 5; i++)
1576 * ;
1577 *
1578 * In this case the expression will be NULL. Test for NULL and don't do
1579 * anything in that case.
1580 */
1581 if (expression != NULL)
1582 expression->hir(instructions, state);
1583
1584 /* Statements do not have r-values.
1585 */
1586 return NULL;
1587 }
1588
1589
1590 ir_rvalue *
1591 ast_compound_statement::hir(exec_list *instructions,
1592 struct _mesa_glsl_parse_state *state)
1593 {
1594 if (new_scope)
1595 state->symbols->push_scope();
1596
1597 foreach_list_typed (ast_node, ast, link, &this->statements)
1598 ast->hir(instructions, state);
1599
1600 if (new_scope)
1601 state->symbols->pop_scope();
1602
1603 /* Compound statements do not have r-values.
1604 */
1605 return NULL;
1606 }
1607
1608
1609 static const glsl_type *
1610 process_array_type(YYLTYPE *loc, const glsl_type *base, ast_node *array_size,
1611 struct _mesa_glsl_parse_state *state)
1612 {
1613 unsigned length = 0;
1614
1615 /* FINISHME: Reject delcarations of multidimensional arrays. */
1616
1617 if (array_size != NULL) {
1618 exec_list dummy_instructions;
1619 ir_rvalue *const ir = array_size->hir(& dummy_instructions, state);
1620 YYLTYPE loc = array_size->get_location();
1621
1622 /* FINISHME: Verify that the grammar forbids side-effects in array
1623 * FINISHME: sizes. i.e., 'vec4 [x = 12] data'
1624 */
1625 assert(dummy_instructions.is_empty());
1626
1627 if (ir != NULL) {
1628 if (!ir->type->is_integer()) {
1629 _mesa_glsl_error(& loc, state, "array size must be integer type");
1630 } else if (!ir->type->is_scalar()) {
1631 _mesa_glsl_error(& loc, state, "array size must be scalar type");
1632 } else {
1633 ir_constant *const size = ir->constant_expression_value();
1634
1635 if (size == NULL) {
1636 _mesa_glsl_error(& loc, state, "array size must be a "
1637 "constant valued expression");
1638 } else if (size->value.i[0] <= 0) {
1639 _mesa_glsl_error(& loc, state, "array size must be > 0");
1640 } else {
1641 assert(size->type == ir->type);
1642 length = size->value.u[0];
1643 }
1644 }
1645 }
1646 } else if (state->es_shader) {
1647 /* Section 10.17 of the GLSL ES 1.00 specification states that unsized
1648 * array declarations have been removed from the language.
1649 */
1650 _mesa_glsl_error(loc, state, "unsized array declarations are not "
1651 "allowed in GLSL ES 1.00.");
1652 }
1653
1654 return glsl_type::get_array_instance(base, length);
1655 }
1656
1657
1658 const glsl_type *
1659 ast_type_specifier::glsl_type(const char **name,
1660 struct _mesa_glsl_parse_state *state) const
1661 {
1662 const struct glsl_type *type;
1663
1664 type = state->symbols->get_type(this->type_name);
1665 *name = this->type_name;
1666
1667 if (this->is_array) {
1668 YYLTYPE loc = this->get_location();
1669 type = process_array_type(&loc, type, this->array_size, state);
1670 }
1671
1672 return type;
1673 }
1674
1675
1676 static void
1677 apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
1678 ir_variable *var,
1679 struct _mesa_glsl_parse_state *state,
1680 YYLTYPE *loc)
1681 {
1682 if (qual->flags.q.invariant)
1683 var->invariant = 1;
1684
1685 /* FINISHME: Mark 'in' variables at global scope as read-only. */
1686 if (qual->flags.q.constant || qual->flags.q.attribute
1687 || qual->flags.q.uniform
1688 || (qual->flags.q.varying && (state->target == fragment_shader)))
1689 var->read_only = 1;
1690
1691 if (qual->flags.q.centroid)
1692 var->centroid = 1;
1693
1694 if (qual->flags.q.attribute && state->target != vertex_shader) {
1695 var->type = glsl_type::error_type;
1696 _mesa_glsl_error(loc, state,
1697 "`attribute' variables may not be declared in the "
1698 "%s shader",
1699 _mesa_glsl_shader_target_name(state->target));
1700 }
1701
1702 /* From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
1703 *
1704 * "The varying qualifier can be used only with the data types
1705 * float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
1706 * these."
1707 */
1708 if (qual->flags.q.varying) {
1709 const glsl_type *non_array_type;
1710
1711 if (var->type && var->type->is_array())
1712 non_array_type = var->type->fields.array;
1713 else
1714 non_array_type = var->type;
1715
1716 if (non_array_type && non_array_type->base_type != GLSL_TYPE_FLOAT) {
1717 var->type = glsl_type::error_type;
1718 _mesa_glsl_error(loc, state,
1719 "varying variables must be of base type float");
1720 }
1721 }
1722
1723 /* If there is no qualifier that changes the mode of the variable, leave
1724 * the setting alone.
1725 */
1726 if (qual->flags.q.in && qual->flags.q.out)
1727 var->mode = ir_var_inout;
1728 else if (qual->flags.q.attribute || qual->flags.q.in
1729 || (qual->flags.q.varying && (state->target == fragment_shader)))
1730 var->mode = ir_var_in;
1731 else if (qual->flags.q.out
1732 || (qual->flags.q.varying && (state->target == vertex_shader)))
1733 var->mode = ir_var_out;
1734 else if (qual->flags.q.uniform)
1735 var->mode = ir_var_uniform;
1736
1737 if (qual->flags.q.flat)
1738 var->interpolation = ir_var_flat;
1739 else if (qual->flags.q.noperspective)
1740 var->interpolation = ir_var_noperspective;
1741 else
1742 var->interpolation = ir_var_smooth;
1743
1744 var->pixel_center_integer = qual->flags.q.pixel_center_integer;
1745 var->origin_upper_left = qual->flags.q.origin_upper_left;
1746 if ((qual->flags.q.origin_upper_left || qual->flags.q.pixel_center_integer)
1747 && (strcmp(var->name, "gl_FragCoord") != 0)) {
1748 const char *const qual_string = (qual->flags.q.origin_upper_left)
1749 ? "origin_upper_left" : "pixel_center_integer";
1750
1751 _mesa_glsl_error(loc, state,
1752 "layout qualifier `%s' can only be applied to "
1753 "fragment shader input `gl_FragCoord'",
1754 qual_string);
1755 }
1756
1757 if (qual->flags.q.explicit_location) {
1758 const bool global_scope = (state->current_function == NULL);
1759 bool fail = false;
1760 const char *string = "";
1761
1762 /* In the vertex shader only shader inputs can be given explicit
1763 * locations.
1764 *
1765 * In the fragment shader only shader outputs can be given explicit
1766 * locations.
1767 */
1768 switch (state->target) {
1769 case vertex_shader:
1770 if (!global_scope || (var->mode != ir_var_in)) {
1771 fail = true;
1772 string = "input";
1773 }
1774 break;
1775
1776 case geometry_shader:
1777 _mesa_glsl_error(loc, state,
1778 "geometry shader variables cannot be given "
1779 "explicit locations\n");
1780 break;
1781
1782 case fragment_shader:
1783 if (!global_scope || (var->mode != ir_var_in)) {
1784 fail = true;
1785 string = "output";
1786 }
1787 break;
1788 };
1789
1790 if (fail) {
1791 _mesa_glsl_error(loc, state,
1792 "only %s shader %s variables can be given an "
1793 "explicit location\n",
1794 _mesa_glsl_shader_target_name(state->target),
1795 string);
1796 } else {
1797 var->explicit_location = true;
1798
1799 /* This bit of silliness is needed because invalid explicit locations
1800 * are supposed to be flagged during linking. Small negative values
1801 * biased by VERT_ATTRIB_GENERIC0 or FRAG_RESULT_DATA0 could alias
1802 * built-in values (e.g., -16+VERT_ATTRIB_GENERIC0 = VERT_ATTRIB_POS).
1803 * The linker needs to be able to differentiate these cases. This
1804 * ensures that negative values stay negative.
1805 */
1806 if (qual->location >= 0) {
1807 var->location = (state->target == vertex_shader)
1808 ? (qual->location + VERT_ATTRIB_GENERIC0)
1809 : (qual->location + FRAG_RESULT_DATA0);
1810 } else {
1811 var->location = qual->location;
1812 }
1813 }
1814 }
1815
1816 if (var->type->is_array() && state->language_version != 110) {
1817 var->array_lvalue = true;
1818 }
1819 }
1820
1821
1822 ir_rvalue *
1823 ast_declarator_list::hir(exec_list *instructions,
1824 struct _mesa_glsl_parse_state *state)
1825 {
1826 void *ctx = state;
1827 const struct glsl_type *decl_type;
1828 const char *type_name = NULL;
1829 ir_rvalue *result = NULL;
1830 YYLTYPE loc = this->get_location();
1831
1832 /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec:
1833 *
1834 * "To ensure that a particular output variable is invariant, it is
1835 * necessary to use the invariant qualifier. It can either be used to
1836 * qualify a previously declared variable as being invariant
1837 *
1838 * invariant gl_Position; // make existing gl_Position be invariant"
1839 *
1840 * In these cases the parser will set the 'invariant' flag in the declarator
1841 * list, and the type will be NULL.
1842 */
1843 if (this->invariant) {
1844 assert(this->type == NULL);
1845
1846 if (state->current_function != NULL) {
1847 _mesa_glsl_error(& loc, state,
1848 "All uses of `invariant' keyword must be at global "
1849 "scope\n");
1850 }
1851
1852 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
1853 assert(!decl->is_array);
1854 assert(decl->array_size == NULL);
1855 assert(decl->initializer == NULL);
1856
1857 ir_variable *const earlier =
1858 state->symbols->get_variable(decl->identifier);
1859 if (earlier == NULL) {
1860 _mesa_glsl_error(& loc, state,
1861 "Undeclared variable `%s' cannot be marked "
1862 "invariant\n", decl->identifier);
1863 } else if ((state->target == vertex_shader)
1864 && (earlier->mode != ir_var_out)) {
1865 _mesa_glsl_error(& loc, state,
1866 "`%s' cannot be marked invariant, vertex shader "
1867 "outputs only\n", decl->identifier);
1868 } else if ((state->target == fragment_shader)
1869 && (earlier->mode != ir_var_in)) {
1870 _mesa_glsl_error(& loc, state,
1871 "`%s' cannot be marked invariant, fragment shader "
1872 "inputs only\n", decl->identifier);
1873 } else {
1874 earlier->invariant = true;
1875 }
1876 }
1877
1878 /* Invariant redeclarations do not have r-values.
1879 */
1880 return NULL;
1881 }
1882
1883 assert(this->type != NULL);
1884 assert(!this->invariant);
1885
1886 /* The type specifier may contain a structure definition. Process that
1887 * before any of the variable declarations.
1888 */
1889 (void) this->type->specifier->hir(instructions, state);
1890
1891 decl_type = this->type->specifier->glsl_type(& type_name, state);
1892 if (this->declarations.is_empty()) {
1893 /* The only valid case where the declaration list can be empty is when
1894 * the declaration is setting the default precision of a built-in type
1895 * (e.g., 'precision highp vec4;').
1896 */
1897
1898 if (decl_type != NULL) {
1899 } else {
1900 _mesa_glsl_error(& loc, state, "incomplete declaration");
1901 }
1902 }
1903
1904 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
1905 const struct glsl_type *var_type;
1906 ir_variable *var;
1907
1908 /* FINISHME: Emit a warning if a variable declaration shadows a
1909 * FINISHME: declaration at a higher scope.
1910 */
1911
1912 if ((decl_type == NULL) || decl_type->is_void()) {
1913 if (type_name != NULL) {
1914 _mesa_glsl_error(& loc, state,
1915 "invalid type `%s' in declaration of `%s'",
1916 type_name, decl->identifier);
1917 } else {
1918 _mesa_glsl_error(& loc, state,
1919 "invalid type in declaration of `%s'",
1920 decl->identifier);
1921 }
1922 continue;
1923 }
1924
1925 if (decl->is_array) {
1926 var_type = process_array_type(&loc, decl_type, decl->array_size,
1927 state);
1928 } else {
1929 var_type = decl_type;
1930 }
1931
1932 var = new(ctx) ir_variable(var_type, decl->identifier, ir_var_auto);
1933
1934 /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
1935 *
1936 * "Global variables can only use the qualifiers const,
1937 * attribute, uni form, or varying. Only one may be
1938 * specified.
1939 *
1940 * Local variables can only use the qualifier const."
1941 *
1942 * This is relaxed in GLSL 1.30.
1943 */
1944 if (state->language_version < 120) {
1945 if (this->type->qualifier.flags.q.out) {
1946 _mesa_glsl_error(& loc, state,
1947 "`out' qualifier in declaration of `%s' "
1948 "only valid for function parameters in GLSL 1.10.",
1949 decl->identifier);
1950 }
1951 if (this->type->qualifier.flags.q.in) {
1952 _mesa_glsl_error(& loc, state,
1953 "`in' qualifier in declaration of `%s' "
1954 "only valid for function parameters in GLSL 1.10.",
1955 decl->identifier);
1956 }
1957 /* FINISHME: Test for other invalid qualifiers. */
1958 }
1959
1960 apply_type_qualifier_to_variable(& this->type->qualifier, var, state,
1961 & loc);
1962
1963 if (this->type->qualifier.flags.q.invariant) {
1964 if ((state->target == vertex_shader) && !(var->mode == ir_var_out ||
1965 var->mode == ir_var_inout)) {
1966 /* FINISHME: Note that this doesn't work for invariant on
1967 * a function signature outval
1968 */
1969 _mesa_glsl_error(& loc, state,
1970 "`%s' cannot be marked invariant, vertex shader "
1971 "outputs only\n", var->name);
1972 } else if ((state->target == fragment_shader) &&
1973 !(var->mode == ir_var_in || var->mode == ir_var_inout)) {
1974 /* FINISHME: Note that this doesn't work for invariant on
1975 * a function signature inval
1976 */
1977 _mesa_glsl_error(& loc, state,
1978 "`%s' cannot be marked invariant, fragment shader "
1979 "inputs only\n", var->name);
1980 }
1981 }
1982
1983 if (state->current_function != NULL) {
1984 const char *mode = NULL;
1985 const char *extra = "";
1986
1987 /* There is no need to check for 'inout' here because the parser will
1988 * only allow that in function parameter lists.
1989 */
1990 if (this->type->qualifier.flags.q.attribute) {
1991 mode = "attribute";
1992 } else if (this->type->qualifier.flags.q.uniform) {
1993 mode = "uniform";
1994 } else if (this->type->qualifier.flags.q.varying) {
1995 mode = "varying";
1996 } else if (this->type->qualifier.flags.q.in) {
1997 mode = "in";
1998 extra = " or in function parameter list";
1999 } else if (this->type->qualifier.flags.q.out) {
2000 mode = "out";
2001 extra = " or in function parameter list";
2002 }
2003
2004 if (mode) {
2005 _mesa_glsl_error(& loc, state,
2006 "%s variable `%s' must be declared at "
2007 "global scope%s",
2008 mode, var->name, extra);
2009 }
2010 } else if (var->mode == ir_var_in) {
2011 if (state->target == vertex_shader) {
2012 bool error_emitted = false;
2013
2014 /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
2015 *
2016 * "Vertex shader inputs can only be float, floating-point
2017 * vectors, matrices, signed and unsigned integers and integer
2018 * vectors. Vertex shader inputs can also form arrays of these
2019 * types, but not structures."
2020 *
2021 * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
2022 *
2023 * "Vertex shader inputs can only be float, floating-point
2024 * vectors, matrices, signed and unsigned integers and integer
2025 * vectors. They cannot be arrays or structures."
2026 *
2027 * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
2028 *
2029 * "The attribute qualifier can be used only with float,
2030 * floating-point vectors, and matrices. Attribute variables
2031 * cannot be declared as arrays or structures."
2032 */
2033 const glsl_type *check_type = var->type->is_array()
2034 ? var->type->fields.array : var->type;
2035
2036 switch (check_type->base_type) {
2037 case GLSL_TYPE_FLOAT:
2038 break;
2039 case GLSL_TYPE_UINT:
2040 case GLSL_TYPE_INT:
2041 if (state->language_version > 120)
2042 break;
2043 /* FALLTHROUGH */
2044 default:
2045 _mesa_glsl_error(& loc, state,
2046 "vertex shader input / attribute cannot have "
2047 "type %s`%s'",
2048 var->type->is_array() ? "array of " : "",
2049 check_type->name);
2050 error_emitted = true;
2051 }
2052
2053 if (!error_emitted && (state->language_version <= 130)
2054 && var->type->is_array()) {
2055 _mesa_glsl_error(& loc, state,
2056 "vertex shader input / attribute cannot have "
2057 "array type");
2058 error_emitted = true;
2059 }
2060 }
2061 }
2062
2063 /* Process the initializer and add its instructions to a temporary
2064 * list. This list will be added to the instruction stream (below) after
2065 * the declaration is added. This is done because in some cases (such as
2066 * redeclarations) the declaration may not actually be added to the
2067 * instruction stream.
2068 */
2069 exec_list initializer_instructions;
2070 if (decl->initializer != NULL) {
2071 YYLTYPE initializer_loc = decl->initializer->get_location();
2072
2073 /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
2074 *
2075 * "All uniform variables are read-only and are initialized either
2076 * directly by an application via API commands, or indirectly by
2077 * OpenGL."
2078 */
2079 if ((state->language_version <= 110)
2080 && (var->mode == ir_var_uniform)) {
2081 _mesa_glsl_error(& initializer_loc, state,
2082 "cannot initialize uniforms in GLSL 1.10");
2083 }
2084
2085 if (var->type->is_sampler()) {
2086 _mesa_glsl_error(& initializer_loc, state,
2087 "cannot initialize samplers");
2088 }
2089
2090 if ((var->mode == ir_var_in) && (state->current_function == NULL)) {
2091 _mesa_glsl_error(& initializer_loc, state,
2092 "cannot initialize %s shader input / %s",
2093 _mesa_glsl_shader_target_name(state->target),
2094 (state->target == vertex_shader)
2095 ? "attribute" : "varying");
2096 }
2097
2098 ir_dereference *const lhs = new(ctx) ir_dereference_variable(var);
2099 ir_rvalue *rhs = decl->initializer->hir(&initializer_instructions,
2100 state);
2101
2102 /* Calculate the constant value if this is a const or uniform
2103 * declaration.
2104 */
2105 if (this->type->qualifier.flags.q.constant
2106 || this->type->qualifier.flags.q.uniform) {
2107 ir_rvalue *new_rhs = validate_assignment(state, var->type, rhs);
2108 if (new_rhs != NULL) {
2109 rhs = new_rhs;
2110
2111 ir_constant *constant_value = rhs->constant_expression_value();
2112 if (!constant_value) {
2113 _mesa_glsl_error(& initializer_loc, state,
2114 "initializer of %s variable `%s' must be a "
2115 "constant expression",
2116 (this->type->qualifier.flags.q.constant)
2117 ? "const" : "uniform",
2118 decl->identifier);
2119 if (var->type->is_numeric()) {
2120 /* Reduce cascading errors. */
2121 var->constant_value = ir_constant::zero(ctx, var->type);
2122 }
2123 } else {
2124 rhs = constant_value;
2125 var->constant_value = constant_value;
2126 }
2127 } else {
2128 _mesa_glsl_error(&initializer_loc, state,
2129 "initializer of type %s cannot be assigned to "
2130 "variable of type %s",
2131 rhs->type->name, var->type->name);
2132 if (var->type->is_numeric()) {
2133 /* Reduce cascading errors. */
2134 var->constant_value = ir_constant::zero(ctx, var->type);
2135 }
2136 }
2137 }
2138
2139 if (rhs && !rhs->type->is_error()) {
2140 bool temp = var->read_only;
2141 if (this->type->qualifier.flags.q.constant)
2142 var->read_only = false;
2143
2144 /* Never emit code to initialize a uniform.
2145 */
2146 if (!this->type->qualifier.flags.q.uniform)
2147 result = do_assignment(&initializer_instructions, state,
2148 lhs, rhs,
2149 this->get_location());
2150 var->read_only = temp;
2151 }
2152 }
2153
2154 /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
2155 *
2156 * "It is an error to write to a const variable outside of
2157 * its declaration, so they must be initialized when
2158 * declared."
2159 */
2160 if (this->type->qualifier.flags.q.constant && decl->initializer == NULL) {
2161 _mesa_glsl_error(& loc, state,
2162 "const declaration of `%s' must be initialized");
2163 }
2164
2165 /* Check if this declaration is actually a re-declaration, either to
2166 * resize an array or add qualifiers to an existing variable.
2167 *
2168 * This is allowed for variables in the current scope, or when at
2169 * global scope (for built-ins in the implicit outer scope).
2170 */
2171 ir_variable *earlier = state->symbols->get_variable(decl->identifier);
2172 if (earlier != NULL && (state->current_function == NULL ||
2173 state->symbols->name_declared_this_scope(decl->identifier))) {
2174
2175 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
2176 *
2177 * "It is legal to declare an array without a size and then
2178 * later re-declare the same name as an array of the same
2179 * type and specify a size."
2180 */
2181 if ((earlier->type->array_size() == 0)
2182 && var->type->is_array()
2183 && (var->type->element_type() == earlier->type->element_type())) {
2184 /* FINISHME: This doesn't match the qualifiers on the two
2185 * FINISHME: declarations. It's not 100% clear whether this is
2186 * FINISHME: required or not.
2187 */
2188
2189 /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec:
2190 *
2191 * "The size [of gl_TexCoord] can be at most
2192 * gl_MaxTextureCoords."
2193 */
2194 const unsigned size = unsigned(var->type->array_size());
2195 if ((strcmp("gl_TexCoord", var->name) == 0)
2196 && (size > state->Const.MaxTextureCoords)) {
2197 YYLTYPE loc = this->get_location();
2198
2199 _mesa_glsl_error(& loc, state, "`gl_TexCoord' array size cannot "
2200 "be larger than gl_MaxTextureCoords (%u)\n",
2201 state->Const.MaxTextureCoords);
2202 } else if ((size > 0) && (size <= earlier->max_array_access)) {
2203 YYLTYPE loc = this->get_location();
2204
2205 _mesa_glsl_error(& loc, state, "array size must be > %u due to "
2206 "previous access",
2207 earlier->max_array_access);
2208 }
2209
2210 earlier->type = var->type;
2211 delete var;
2212 var = NULL;
2213 } else if (state->ARB_fragment_coord_conventions_enable
2214 && strcmp(var->name, "gl_FragCoord") == 0
2215 && earlier->type == var->type
2216 && earlier->mode == var->mode) {
2217 /* Allow redeclaration of gl_FragCoord for ARB_fcc layout
2218 * qualifiers.
2219 */
2220 earlier->origin_upper_left = var->origin_upper_left;
2221 earlier->pixel_center_integer = var->pixel_center_integer;
2222 } else {
2223 YYLTYPE loc = this->get_location();
2224 _mesa_glsl_error(&loc, state, "`%s' redeclared", decl->identifier);
2225 }
2226
2227 continue;
2228 }
2229
2230 /* By now, we know it's a new variable declaration (we didn't hit the
2231 * above "continue").
2232 *
2233 * From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
2234 *
2235 * "Identifiers starting with "gl_" are reserved for use by
2236 * OpenGL, and may not be declared in a shader as either a
2237 * variable or a function."
2238 */
2239 if (strncmp(decl->identifier, "gl_", 3) == 0)
2240 _mesa_glsl_error(& loc, state,
2241 "identifier `%s' uses reserved `gl_' prefix",
2242 decl->identifier);
2243
2244 /* Add the variable to the symbol table. Note that the initializer's
2245 * IR was already processed earlier (though it hasn't been emitted yet),
2246 * without the variable in scope.
2247 *
2248 * This differs from most C-like languages, but it follows the GLSL
2249 * specification. From page 28 (page 34 of the PDF) of the GLSL 1.50
2250 * spec:
2251 *
2252 * "Within a declaration, the scope of a name starts immediately
2253 * after the initializer if present or immediately after the name
2254 * being declared if not."
2255 */
2256 if (!state->symbols->add_variable(var->name, var)) {
2257 YYLTYPE loc = this->get_location();
2258 _mesa_glsl_error(&loc, state, "name `%s' already taken in the "
2259 "current scope", decl->identifier);
2260 continue;
2261 }
2262
2263 /* Push the variable declaration to the top. It means that all
2264 * the variable declarations will appear in a funny
2265 * last-to-first order, but otherwise we run into trouble if a
2266 * function is prototyped, a global var is decled, then the
2267 * function is defined with usage of the global var. See
2268 * glslparsertest's CorrectModule.frag.
2269 */
2270 instructions->push_head(var);
2271 instructions->append_list(&initializer_instructions);
2272 }
2273
2274
2275 /* Generally, variable declarations do not have r-values. However,
2276 * one is used for the declaration in
2277 *
2278 * while (bool b = some_condition()) {
2279 * ...
2280 * }
2281 *
2282 * so we return the rvalue from the last seen declaration here.
2283 */
2284 return result;
2285 }
2286
2287
2288 ir_rvalue *
2289 ast_parameter_declarator::hir(exec_list *instructions,
2290 struct _mesa_glsl_parse_state *state)
2291 {
2292 void *ctx = state;
2293 const struct glsl_type *type;
2294 const char *name = NULL;
2295 YYLTYPE loc = this->get_location();
2296
2297 type = this->type->specifier->glsl_type(& name, state);
2298
2299 if (type == NULL) {
2300 if (name != NULL) {
2301 _mesa_glsl_error(& loc, state,
2302 "invalid type `%s' in declaration of `%s'",
2303 name, this->identifier);
2304 } else {
2305 _mesa_glsl_error(& loc, state,
2306 "invalid type in declaration of `%s'",
2307 this->identifier);
2308 }
2309
2310 type = glsl_type::error_type;
2311 }
2312
2313 /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
2314 *
2315 * "Functions that accept no input arguments need not use void in the
2316 * argument list because prototypes (or definitions) are required and
2317 * therefore there is no ambiguity when an empty argument list "( )" is
2318 * declared. The idiom "(void)" as a parameter list is provided for
2319 * convenience."
2320 *
2321 * Placing this check here prevents a void parameter being set up
2322 * for a function, which avoids tripping up checks for main taking
2323 * parameters and lookups of an unnamed symbol.
2324 */
2325 if (type->is_void()) {
2326 if (this->identifier != NULL)
2327 _mesa_glsl_error(& loc, state,
2328 "named parameter cannot have type `void'");
2329
2330 is_void = true;
2331 return NULL;
2332 }
2333
2334 if (formal_parameter && (this->identifier == NULL)) {
2335 _mesa_glsl_error(& loc, state, "formal parameter lacks a name");
2336 return NULL;
2337 }
2338
2339 /* This only handles "vec4 foo[..]". The earlier specifier->glsl_type(...)
2340 * call already handled the "vec4[..] foo" case.
2341 */
2342 if (this->is_array) {
2343 type = process_array_type(&loc, type, this->array_size, state);
2344 }
2345
2346 if (type->array_size() == 0) {
2347 _mesa_glsl_error(&loc, state, "arrays passed as parameters must have "
2348 "a declared size.");
2349 type = glsl_type::error_type;
2350 }
2351
2352 is_void = false;
2353 ir_variable *var = new(ctx) ir_variable(type, this->identifier, ir_var_in);
2354
2355 /* Apply any specified qualifiers to the parameter declaration. Note that
2356 * for function parameters the default mode is 'in'.
2357 */
2358 apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc);
2359
2360 instructions->push_tail(var);
2361
2362 /* Parameter declarations do not have r-values.
2363 */
2364 return NULL;
2365 }
2366
2367
2368 void
2369 ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters,
2370 bool formal,
2371 exec_list *ir_parameters,
2372 _mesa_glsl_parse_state *state)
2373 {
2374 ast_parameter_declarator *void_param = NULL;
2375 unsigned count = 0;
2376
2377 foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) {
2378 param->formal_parameter = formal;
2379 param->hir(ir_parameters, state);
2380
2381 if (param->is_void)
2382 void_param = param;
2383
2384 count++;
2385 }
2386
2387 if ((void_param != NULL) && (count > 1)) {
2388 YYLTYPE loc = void_param->get_location();
2389
2390 _mesa_glsl_error(& loc, state,
2391 "`void' parameter must be only parameter");
2392 }
2393 }
2394
2395
2396 ir_rvalue *
2397 ast_function::hir(exec_list *instructions,
2398 struct _mesa_glsl_parse_state *state)
2399 {
2400 void *ctx = state;
2401 ir_function *f = NULL;
2402 ir_function_signature *sig = NULL;
2403 exec_list hir_parameters;
2404
2405 const char *const name = identifier;
2406
2407 /* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec,
2408 *
2409 * "Function declarations (prototypes) cannot occur inside of functions;
2410 * they must be at global scope, or for the built-in functions, outside
2411 * the global scope."
2412 *
2413 * From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec,
2414 *
2415 * "User defined functions may only be defined within the global scope."
2416 *
2417 * Note that this language does not appear in GLSL 1.10.
2418 */
2419 if ((state->current_function != NULL) && (state->language_version != 110)) {
2420 YYLTYPE loc = this->get_location();
2421 _mesa_glsl_error(&loc, state,
2422 "declaration of function `%s' not allowed within "
2423 "function body", name);
2424 }
2425
2426 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
2427 *
2428 * "Identifiers starting with "gl_" are reserved for use by
2429 * OpenGL, and may not be declared in a shader as either a
2430 * variable or a function."
2431 */
2432 if (strncmp(name, "gl_", 3) == 0) {
2433 YYLTYPE loc = this->get_location();
2434 _mesa_glsl_error(&loc, state,
2435 "identifier `%s' uses reserved `gl_' prefix", name);
2436 }
2437
2438 /* Convert the list of function parameters to HIR now so that they can be
2439 * used below to compare this function's signature with previously seen
2440 * signatures for functions with the same name.
2441 */
2442 ast_parameter_declarator::parameters_to_hir(& this->parameters,
2443 is_definition,
2444 & hir_parameters, state);
2445
2446 const char *return_type_name;
2447 const glsl_type *return_type =
2448 this->return_type->specifier->glsl_type(& return_type_name, state);
2449
2450 if (!return_type) {
2451 YYLTYPE loc = this->get_location();
2452 _mesa_glsl_error(&loc, state,
2453 "function `%s' has undeclared return type `%s'",
2454 name, return_type_name);
2455 return_type = glsl_type::error_type;
2456 }
2457
2458 /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec:
2459 * "No qualifier is allowed on the return type of a function."
2460 */
2461 if (this->return_type->has_qualifiers()) {
2462 YYLTYPE loc = this->get_location();
2463 _mesa_glsl_error(& loc, state,
2464 "function `%s' return type has qualifiers", name);
2465 }
2466
2467 /* Verify that this function's signature either doesn't match a previously
2468 * seen signature for a function with the same name, or, if a match is found,
2469 * that the previously seen signature does not have an associated definition.
2470 */
2471 f = state->symbols->get_function(name);
2472 if (f != NULL && (state->es_shader || f->has_user_signature())) {
2473 sig = f->exact_matching_signature(&hir_parameters);
2474 if (sig != NULL) {
2475 const char *badvar = sig->qualifiers_match(&hir_parameters);
2476 if (badvar != NULL) {
2477 YYLTYPE loc = this->get_location();
2478
2479 _mesa_glsl_error(&loc, state, "function `%s' parameter `%s' "
2480 "qualifiers don't match prototype", name, badvar);
2481 }
2482
2483 if (sig->return_type != return_type) {
2484 YYLTYPE loc = this->get_location();
2485
2486 _mesa_glsl_error(&loc, state, "function `%s' return type doesn't "
2487 "match prototype", name);
2488 }
2489
2490 if (is_definition && sig->is_defined) {
2491 YYLTYPE loc = this->get_location();
2492
2493 _mesa_glsl_error(& loc, state, "function `%s' redefined", name);
2494 }
2495 }
2496 } else {
2497 f = new(ctx) ir_function(name);
2498 if (!state->symbols->add_function(f->name, f)) {
2499 /* This function name shadows a non-function use of the same name. */
2500 YYLTYPE loc = this->get_location();
2501
2502 _mesa_glsl_error(&loc, state, "function name `%s' conflicts with "
2503 "non-function", name);
2504 return NULL;
2505 }
2506
2507 /* Emit the new function header */
2508 if (state->current_function == NULL)
2509 instructions->push_tail(f);
2510 else {
2511 /* IR invariants disallow function declarations or definitions nested
2512 * within other function definitions. Insert the new ir_function
2513 * block in the instruction sequence before the ir_function block
2514 * containing the current ir_function_signature.
2515 *
2516 * This can only happen in a GLSL 1.10 shader. In all other GLSL
2517 * versions this nesting is disallowed. There is a check for this at
2518 * the top of this function.
2519 */
2520 ir_function *const curr =
2521 const_cast<ir_function *>(state->current_function->function());
2522
2523 curr->insert_before(f);
2524 }
2525 }
2526
2527 /* Verify the return type of main() */
2528 if (strcmp(name, "main") == 0) {
2529 if (! return_type->is_void()) {
2530 YYLTYPE loc = this->get_location();
2531
2532 _mesa_glsl_error(& loc, state, "main() must return void");
2533 }
2534
2535 if (!hir_parameters.is_empty()) {
2536 YYLTYPE loc = this->get_location();
2537
2538 _mesa_glsl_error(& loc, state, "main() must not take any parameters");
2539 }
2540 }
2541
2542 /* Finish storing the information about this new function in its signature.
2543 */
2544 if (sig == NULL) {
2545 sig = new(ctx) ir_function_signature(return_type);
2546 f->add_signature(sig);
2547 }
2548
2549 sig->replace_parameters(&hir_parameters);
2550 signature = sig;
2551
2552 /* Function declarations (prototypes) do not have r-values.
2553 */
2554 return NULL;
2555 }
2556
2557
2558 ir_rvalue *
2559 ast_function_definition::hir(exec_list *instructions,
2560 struct _mesa_glsl_parse_state *state)
2561 {
2562 prototype->is_definition = true;
2563 prototype->hir(instructions, state);
2564
2565 ir_function_signature *signature = prototype->signature;
2566 if (signature == NULL)
2567 return NULL;
2568
2569 assert(state->current_function == NULL);
2570 state->current_function = signature;
2571 state->found_return = false;
2572
2573 /* Duplicate parameters declared in the prototype as concrete variables.
2574 * Add these to the symbol table.
2575 */
2576 state->symbols->push_scope();
2577 foreach_iter(exec_list_iterator, iter, signature->parameters) {
2578 ir_variable *const var = ((ir_instruction *) iter.get())->as_variable();
2579
2580 assert(var != NULL);
2581
2582 /* The only way a parameter would "exist" is if two parameters have
2583 * the same name.
2584 */
2585 if (state->symbols->name_declared_this_scope(var->name)) {
2586 YYLTYPE loc = this->get_location();
2587
2588 _mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name);
2589 } else {
2590 state->symbols->add_variable(var->name, var);
2591 }
2592 }
2593
2594 /* Convert the body of the function to HIR. */
2595 this->body->hir(&signature->body, state);
2596 signature->is_defined = true;
2597
2598 state->symbols->pop_scope();
2599
2600 assert(state->current_function == signature);
2601 state->current_function = NULL;
2602
2603 if (!signature->return_type->is_void() && !state->found_return) {
2604 YYLTYPE loc = this->get_location();
2605 _mesa_glsl_error(& loc, state, "function `%s' has non-void return type "
2606 "%s, but no return statement",
2607 signature->function_name(),
2608 signature->return_type->name);
2609 }
2610
2611 /* Function definitions do not have r-values.
2612 */
2613 return NULL;
2614 }
2615
2616
2617 ir_rvalue *
2618 ast_jump_statement::hir(exec_list *instructions,
2619 struct _mesa_glsl_parse_state *state)
2620 {
2621 void *ctx = state;
2622
2623 switch (mode) {
2624 case ast_return: {
2625 ir_return *inst;
2626 assert(state->current_function);
2627
2628 if (opt_return_value) {
2629 if (state->current_function->return_type->base_type ==
2630 GLSL_TYPE_VOID) {
2631 YYLTYPE loc = this->get_location();
2632
2633 _mesa_glsl_error(& loc, state,
2634 "`return` with a value, in function `%s' "
2635 "returning void",
2636 state->current_function->function_name());
2637 }
2638
2639 ir_rvalue *const ret = opt_return_value->hir(instructions, state);
2640 assert(ret != NULL);
2641
2642 /* Implicit conversions are not allowed for return values. */
2643 if (state->current_function->return_type != ret->type) {
2644 YYLTYPE loc = this->get_location();
2645
2646 _mesa_glsl_error(& loc, state,
2647 "`return' with wrong type %s, in function `%s' "
2648 "returning %s",
2649 ret->type->name,
2650 state->current_function->function_name(),
2651 state->current_function->return_type->name);
2652 }
2653
2654 inst = new(ctx) ir_return(ret);
2655 } else {
2656 if (state->current_function->return_type->base_type !=
2657 GLSL_TYPE_VOID) {
2658 YYLTYPE loc = this->get_location();
2659
2660 _mesa_glsl_error(& loc, state,
2661 "`return' with no value, in function %s returning "
2662 "non-void",
2663 state->current_function->function_name());
2664 }
2665 inst = new(ctx) ir_return;
2666 }
2667
2668 state->found_return = true;
2669 instructions->push_tail(inst);
2670 break;
2671 }
2672
2673 case ast_discard:
2674 if (state->target != fragment_shader) {
2675 YYLTYPE loc = this->get_location();
2676
2677 _mesa_glsl_error(& loc, state,
2678 "`discard' may only appear in a fragment shader");
2679 }
2680 instructions->push_tail(new(ctx) ir_discard);
2681 break;
2682
2683 case ast_break:
2684 case ast_continue:
2685 /* FINISHME: Handle switch-statements. They cannot contain 'continue',
2686 * FINISHME: and they use a different IR instruction for 'break'.
2687 */
2688 /* FINISHME: Correctly handle the nesting. If a switch-statement is
2689 * FINISHME: inside a loop, a 'continue' is valid and will bind to the
2690 * FINISHME: loop.
2691 */
2692 if (state->loop_or_switch_nesting == NULL) {
2693 YYLTYPE loc = this->get_location();
2694
2695 _mesa_glsl_error(& loc, state,
2696 "`%s' may only appear in a loop",
2697 (mode == ast_break) ? "break" : "continue");
2698 } else {
2699 ir_loop *const loop = state->loop_or_switch_nesting->as_loop();
2700
2701 /* Inline the for loop expression again, since we don't know
2702 * where near the end of the loop body the normal copy of it
2703 * is going to be placed.
2704 */
2705 if (mode == ast_continue &&
2706 state->loop_or_switch_nesting_ast->rest_expression) {
2707 state->loop_or_switch_nesting_ast->rest_expression->hir(instructions,
2708 state);
2709 }
2710
2711 if (loop != NULL) {
2712 ir_loop_jump *const jump =
2713 new(ctx) ir_loop_jump((mode == ast_break)
2714 ? ir_loop_jump::jump_break
2715 : ir_loop_jump::jump_continue);
2716 instructions->push_tail(jump);
2717 }
2718 }
2719
2720 break;
2721 }
2722
2723 /* Jump instructions do not have r-values.
2724 */
2725 return NULL;
2726 }
2727
2728
2729 ir_rvalue *
2730 ast_selection_statement::hir(exec_list *instructions,
2731 struct _mesa_glsl_parse_state *state)
2732 {
2733 void *ctx = state;
2734
2735 ir_rvalue *const condition = this->condition->hir(instructions, state);
2736
2737 /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
2738 *
2739 * "Any expression whose type evaluates to a Boolean can be used as the
2740 * conditional expression bool-expression. Vector types are not accepted
2741 * as the expression to if."
2742 *
2743 * The checks are separated so that higher quality diagnostics can be
2744 * generated for cases where both rules are violated.
2745 */
2746 if (!condition->type->is_boolean() || !condition->type->is_scalar()) {
2747 YYLTYPE loc = this->condition->get_location();
2748
2749 _mesa_glsl_error(& loc, state, "if-statement condition must be scalar "
2750 "boolean");
2751 }
2752
2753 ir_if *const stmt = new(ctx) ir_if(condition);
2754
2755 if (then_statement != NULL) {
2756 state->symbols->push_scope();
2757 then_statement->hir(& stmt->then_instructions, state);
2758 state->symbols->pop_scope();
2759 }
2760
2761 if (else_statement != NULL) {
2762 state->symbols->push_scope();
2763 else_statement->hir(& stmt->else_instructions, state);
2764 state->symbols->pop_scope();
2765 }
2766
2767 instructions->push_tail(stmt);
2768
2769 /* if-statements do not have r-values.
2770 */
2771 return NULL;
2772 }
2773
2774
2775 void
2776 ast_iteration_statement::condition_to_hir(ir_loop *stmt,
2777 struct _mesa_glsl_parse_state *state)
2778 {
2779 void *ctx = state;
2780
2781 if (condition != NULL) {
2782 ir_rvalue *const cond =
2783 condition->hir(& stmt->body_instructions, state);
2784
2785 if ((cond == NULL)
2786 || !cond->type->is_boolean() || !cond->type->is_scalar()) {
2787 YYLTYPE loc = condition->get_location();
2788
2789 _mesa_glsl_error(& loc, state,
2790 "loop condition must be scalar boolean");
2791 } else {
2792 /* As the first code in the loop body, generate a block that looks
2793 * like 'if (!condition) break;' as the loop termination condition.
2794 */
2795 ir_rvalue *const not_cond =
2796 new(ctx) ir_expression(ir_unop_logic_not, glsl_type::bool_type, cond,
2797 NULL);
2798
2799 ir_if *const if_stmt = new(ctx) ir_if(not_cond);
2800
2801 ir_jump *const break_stmt =
2802 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
2803
2804 if_stmt->then_instructions.push_tail(break_stmt);
2805 stmt->body_instructions.push_tail(if_stmt);
2806 }
2807 }
2808 }
2809
2810
2811 ir_rvalue *
2812 ast_iteration_statement::hir(exec_list *instructions,
2813 struct _mesa_glsl_parse_state *state)
2814 {
2815 void *ctx = state;
2816
2817 /* For-loops and while-loops start a new scope, but do-while loops do not.
2818 */
2819 if (mode != ast_do_while)
2820 state->symbols->push_scope();
2821
2822 if (init_statement != NULL)
2823 init_statement->hir(instructions, state);
2824
2825 ir_loop *const stmt = new(ctx) ir_loop();
2826 instructions->push_tail(stmt);
2827
2828 /* Track the current loop and / or switch-statement nesting.
2829 */
2830 ir_instruction *const nesting = state->loop_or_switch_nesting;
2831 ast_iteration_statement *nesting_ast = state->loop_or_switch_nesting_ast;
2832
2833 state->loop_or_switch_nesting = stmt;
2834 state->loop_or_switch_nesting_ast = this;
2835
2836 if (mode != ast_do_while)
2837 condition_to_hir(stmt, state);
2838
2839 if (body != NULL)
2840 body->hir(& stmt->body_instructions, state);
2841
2842 if (rest_expression != NULL)
2843 rest_expression->hir(& stmt->body_instructions, state);
2844
2845 if (mode == ast_do_while)
2846 condition_to_hir(stmt, state);
2847
2848 if (mode != ast_do_while)
2849 state->symbols->pop_scope();
2850
2851 /* Restore previous nesting before returning.
2852 */
2853 state->loop_or_switch_nesting = nesting;
2854 state->loop_or_switch_nesting_ast = nesting_ast;
2855
2856 /* Loops do not have r-values.
2857 */
2858 return NULL;
2859 }
2860
2861
2862 ir_rvalue *
2863 ast_type_specifier::hir(exec_list *instructions,
2864 struct _mesa_glsl_parse_state *state)
2865 {
2866 if (this->structure != NULL)
2867 return this->structure->hir(instructions, state);
2868
2869 return NULL;
2870 }
2871
2872
2873 ir_rvalue *
2874 ast_struct_specifier::hir(exec_list *instructions,
2875 struct _mesa_glsl_parse_state *state)
2876 {
2877 unsigned decl_count = 0;
2878
2879 /* Make an initial pass over the list of structure fields to determine how
2880 * many there are. Each element in this list is an ast_declarator_list.
2881 * This means that we actually need to count the number of elements in the
2882 * 'declarations' list in each of the elements.
2883 */
2884 foreach_list_typed (ast_declarator_list, decl_list, link,
2885 &this->declarations) {
2886 foreach_list_const (decl_ptr, & decl_list->declarations) {
2887 decl_count++;
2888 }
2889 }
2890
2891 /* Allocate storage for the structure fields and process the field
2892 * declarations. As the declarations are processed, try to also convert
2893 * the types to HIR. This ensures that structure definitions embedded in
2894 * other structure definitions are processed.
2895 */
2896 glsl_struct_field *const fields = talloc_array(state, glsl_struct_field,
2897 decl_count);
2898
2899 unsigned i = 0;
2900 foreach_list_typed (ast_declarator_list, decl_list, link,
2901 &this->declarations) {
2902 const char *type_name;
2903
2904 decl_list->type->specifier->hir(instructions, state);
2905
2906 /* Section 10.9 of the GLSL ES 1.00 specification states that
2907 * embedded structure definitions have been removed from the language.
2908 */
2909 if (state->es_shader && decl_list->type->specifier->structure != NULL) {
2910 YYLTYPE loc = this->get_location();
2911 _mesa_glsl_error(&loc, state, "Embedded structure definitions are "
2912 "not allowed in GLSL ES 1.00.");
2913 }
2914
2915 const glsl_type *decl_type =
2916 decl_list->type->specifier->glsl_type(& type_name, state);
2917
2918 foreach_list_typed (ast_declaration, decl, link,
2919 &decl_list->declarations) {
2920 const struct glsl_type *field_type = decl_type;
2921 if (decl->is_array) {
2922 YYLTYPE loc = decl->get_location();
2923 field_type = process_array_type(&loc, decl_type, decl->array_size,
2924 state);
2925 }
2926 fields[i].type = (field_type != NULL)
2927 ? field_type : glsl_type::error_type;
2928 fields[i].name = decl->identifier;
2929 i++;
2930 }
2931 }
2932
2933 assert(i == decl_count);
2934
2935 const glsl_type *t =
2936 glsl_type::get_record_instance(fields, decl_count, this->name);
2937
2938 YYLTYPE loc = this->get_location();
2939 if (!state->symbols->add_type(name, t)) {
2940 _mesa_glsl_error(& loc, state, "struct `%s' previously defined", name);
2941 } else {
2942
2943 const glsl_type **s = (const glsl_type **)
2944 realloc(state->user_structures,
2945 sizeof(state->user_structures[0]) *
2946 (state->num_user_structures + 1));
2947 if (s != NULL) {
2948 s[state->num_user_structures] = t;
2949 state->user_structures = s;
2950 state->num_user_structures++;
2951 }
2952 }
2953
2954 /* Structure type definitions do not have r-values.
2955 */
2956 return NULL;
2957 }