e731d839d2a7a8dae26cc06ea5550ece5f223574
[mesa.git] / src / glsl / ast_to_hir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file ast_to_hir.c
26 * Convert abstract syntax to to high-level intermediate reprensentation (HIR).
27 *
28 * During the conversion to HIR, the majority of the symantic checking is
29 * preformed on the program. This includes:
30 *
31 * * Symbol table management
32 * * Type checking
33 * * Function binding
34 *
35 * The majority of this work could be done during parsing, and the parser could
36 * probably generate HIR directly. However, this results in frequent changes
37 * to the parser code. Since we do not assume that every system this complier
38 * is built on will have Flex and Bison installed, we have to store the code
39 * generated by these tools in our version control system. In other parts of
40 * the system we've seen problems where a parser was changed but the generated
41 * code was not committed, merge conflicts where created because two developers
42 * had slightly different versions of Bison installed, etc.
43 *
44 * I have also noticed that running Bison generated parsers in GDB is very
45 * irritating. When you get a segfault on '$$ = $1->foo', you can't very
46 * well 'print $1' in GDB.
47 *
48 * As a result, my preference is to put as little C code as possible in the
49 * parser (and lexer) sources.
50 */
51
52 #include "main/core.h" /* for struct gl_extensions */
53 #include "glsl_symbol_table.h"
54 #include "glsl_parser_extras.h"
55 #include "ast.h"
56 #include "glsl_types.h"
57 #include "program/hash_table.h"
58 #include "ir.h"
59
60 static void
61 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
62 exec_list *instructions);
63 static void
64 remove_per_vertex_blocks(exec_list *instructions,
65 _mesa_glsl_parse_state *state, ir_variable_mode mode);
66
67
68 void
69 _mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
70 {
71 _mesa_glsl_initialize_variables(instructions, state);
72
73 state->symbols->separate_function_namespace = state->language_version == 110;
74
75 state->current_function = NULL;
76
77 state->toplevel_ir = instructions;
78
79 state->gs_input_prim_type_specified = false;
80 state->cs_input_local_size_specified = false;
81
82 /* Section 4.2 of the GLSL 1.20 specification states:
83 * "The built-in functions are scoped in a scope outside the global scope
84 * users declare global variables in. That is, a shader's global scope,
85 * available for user-defined functions and global variables, is nested
86 * inside the scope containing the built-in functions."
87 *
88 * Since built-in functions like ftransform() access built-in variables,
89 * it follows that those must be in the outer scope as well.
90 *
91 * We push scope here to create this nesting effect...but don't pop.
92 * This way, a shader's globals are still in the symbol table for use
93 * by the linker.
94 */
95 state->symbols->push_scope();
96
97 foreach_list_typed (ast_node, ast, link, & state->translation_unit)
98 ast->hir(instructions, state);
99
100 detect_recursion_unlinked(state, instructions);
101 detect_conflicting_assignments(state, instructions);
102
103 state->toplevel_ir = NULL;
104
105 /* Move all of the variable declarations to the front of the IR list, and
106 * reverse the order. This has the (intended!) side effect that vertex
107 * shader inputs and fragment shader outputs will appear in the IR in the
108 * same order that they appeared in the shader code. This results in the
109 * locations being assigned in the declared order. Many (arguably buggy)
110 * applications depend on this behavior, and it matches what nearly all
111 * other drivers do.
112 */
113 foreach_list_safe(node, instructions) {
114 ir_variable *const var = ((ir_instruction *) node)->as_variable();
115
116 if (var == NULL)
117 continue;
118
119 var->remove();
120 instructions->push_head(var);
121 }
122
123 /* From section 7.1 (Built-In Language Variables) of the GLSL 4.10 spec:
124 *
125 * If multiple shaders using members of a built-in block belonging to
126 * the same interface are linked together in the same program, they
127 * must all redeclare the built-in block in the same way, as described
128 * in section 4.3.7 "Interface Blocks" for interface block matching, or
129 * a link error will result.
130 *
131 * The phrase "using members of a built-in block" implies that if two
132 * shaders are linked together and one of them *does not use* any members
133 * of the built-in block, then that shader does not need to have a matching
134 * redeclaration of the built-in block.
135 *
136 * This appears to be a clarification to the behaviour established for
137 * gl_PerVertex by GLSL 1.50, therefore implement it regardless of GLSL
138 * version.
139 *
140 * The definition of "interface" in section 4.3.7 that applies here is as
141 * follows:
142 *
143 * The boundary between adjacent programmable pipeline stages: This
144 * spans all the outputs in all compilation units of the first stage
145 * and all the inputs in all compilation units of the second stage.
146 *
147 * Therefore this rule applies to both inter- and intra-stage linking.
148 *
149 * The easiest way to implement this is to check whether the shader uses
150 * gl_PerVertex right after ast-to-ir conversion, and if it doesn't, simply
151 * remove all the relevant variable declaration from the IR, so that the
152 * linker won't see them and complain about mismatches.
153 */
154 remove_per_vertex_blocks(instructions, state, ir_var_shader_in);
155 remove_per_vertex_blocks(instructions, state, ir_var_shader_out);
156 }
157
158
159 /**
160 * If a conversion is available, convert one operand to a different type
161 *
162 * The \c from \c ir_rvalue is converted "in place".
163 *
164 * \param to Type that the operand it to be converted to
165 * \param from Operand that is being converted
166 * \param state GLSL compiler state
167 *
168 * \return
169 * If a conversion is possible (or unnecessary), \c true is returned.
170 * Otherwise \c false is returned.
171 */
172 bool
173 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
174 struct _mesa_glsl_parse_state *state)
175 {
176 void *ctx = state;
177 if (to->base_type == from->type->base_type)
178 return true;
179
180 /* This conversion was added in GLSL 1.20. If the compilation mode is
181 * GLSL 1.10, the conversion is skipped.
182 */
183 if (!state->is_version(120, 0))
184 return false;
185
186 /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
187 *
188 * "There are no implicit array or structure conversions. For
189 * example, an array of int cannot be implicitly converted to an
190 * array of float. There are no implicit conversions between
191 * signed and unsigned integers."
192 */
193 /* FINISHME: The above comment is partially a lie. There is int/uint
194 * FINISHME: conversion for immediate constants.
195 */
196 if (!to->is_float() || !from->type->is_numeric())
197 return false;
198
199 /* Convert to a floating point type with the same number of components
200 * as the original type - i.e. int to float, not int to vec4.
201 */
202 to = glsl_type::get_instance(GLSL_TYPE_FLOAT, from->type->vector_elements,
203 from->type->matrix_columns);
204
205 switch (from->type->base_type) {
206 case GLSL_TYPE_INT:
207 from = new(ctx) ir_expression(ir_unop_i2f, to, from, NULL);
208 break;
209 case GLSL_TYPE_UINT:
210 from = new(ctx) ir_expression(ir_unop_u2f, to, from, NULL);
211 break;
212 case GLSL_TYPE_BOOL:
213 from = new(ctx) ir_expression(ir_unop_b2f, to, from, NULL);
214 break;
215 default:
216 assert(0);
217 }
218
219 return true;
220 }
221
222
223 static const struct glsl_type *
224 arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
225 bool multiply,
226 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
227 {
228 const glsl_type *type_a = value_a->type;
229 const glsl_type *type_b = value_b->type;
230
231 /* From GLSL 1.50 spec, page 56:
232 *
233 * "The arithmetic binary operators add (+), subtract (-),
234 * multiply (*), and divide (/) operate on integer and
235 * floating-point scalars, vectors, and matrices."
236 */
237 if (!type_a->is_numeric() || !type_b->is_numeric()) {
238 _mesa_glsl_error(loc, state,
239 "operands to arithmetic operators must be numeric");
240 return glsl_type::error_type;
241 }
242
243
244 /* "If one operand is floating-point based and the other is
245 * not, then the conversions from Section 4.1.10 "Implicit
246 * Conversions" are applied to the non-floating-point-based operand."
247 */
248 if (!apply_implicit_conversion(type_a, value_b, state)
249 && !apply_implicit_conversion(type_b, value_a, state)) {
250 _mesa_glsl_error(loc, state,
251 "could not implicitly convert operands to "
252 "arithmetic operator");
253 return glsl_type::error_type;
254 }
255 type_a = value_a->type;
256 type_b = value_b->type;
257
258 /* "If the operands are integer types, they must both be signed or
259 * both be unsigned."
260 *
261 * From this rule and the preceeding conversion it can be inferred that
262 * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
263 * The is_numeric check above already filtered out the case where either
264 * type is not one of these, so now the base types need only be tested for
265 * equality.
266 */
267 if (type_a->base_type != type_b->base_type) {
268 _mesa_glsl_error(loc, state,
269 "base type mismatch for arithmetic operator");
270 return glsl_type::error_type;
271 }
272
273 /* "All arithmetic binary operators result in the same fundamental type
274 * (signed integer, unsigned integer, or floating-point) as the
275 * operands they operate on, after operand type conversion. After
276 * conversion, the following cases are valid
277 *
278 * * The two operands are scalars. In this case the operation is
279 * applied, resulting in a scalar."
280 */
281 if (type_a->is_scalar() && type_b->is_scalar())
282 return type_a;
283
284 /* "* One operand is a scalar, and the other is a vector or matrix.
285 * In this case, the scalar operation is applied independently to each
286 * component of the vector or matrix, resulting in the same size
287 * vector or matrix."
288 */
289 if (type_a->is_scalar()) {
290 if (!type_b->is_scalar())
291 return type_b;
292 } else if (type_b->is_scalar()) {
293 return type_a;
294 }
295
296 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
297 * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
298 * handled.
299 */
300 assert(!type_a->is_scalar());
301 assert(!type_b->is_scalar());
302
303 /* "* The two operands are vectors of the same size. In this case, the
304 * operation is done component-wise resulting in the same size
305 * vector."
306 */
307 if (type_a->is_vector() && type_b->is_vector()) {
308 if (type_a == type_b) {
309 return type_a;
310 } else {
311 _mesa_glsl_error(loc, state,
312 "vector size mismatch for arithmetic operator");
313 return glsl_type::error_type;
314 }
315 }
316
317 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
318 * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
319 * <vector, vector> have been handled. At least one of the operands must
320 * be matrix. Further, since there are no integer matrix types, the base
321 * type of both operands must be float.
322 */
323 assert(type_a->is_matrix() || type_b->is_matrix());
324 assert(type_a->base_type == GLSL_TYPE_FLOAT);
325 assert(type_b->base_type == GLSL_TYPE_FLOAT);
326
327 /* "* The operator is add (+), subtract (-), or divide (/), and the
328 * operands are matrices with the same number of rows and the same
329 * number of columns. In this case, the operation is done component-
330 * wise resulting in the same size matrix."
331 * * The operator is multiply (*), where both operands are matrices or
332 * one operand is a vector and the other a matrix. A right vector
333 * operand is treated as a column vector and a left vector operand as a
334 * row vector. In all these cases, it is required that the number of
335 * columns of the left operand is equal to the number of rows of the
336 * right operand. Then, the multiply (*) operation does a linear
337 * algebraic multiply, yielding an object that has the same number of
338 * rows as the left operand and the same number of columns as the right
339 * operand. Section 5.10 "Vector and Matrix Operations" explains in
340 * more detail how vectors and matrices are operated on."
341 */
342 if (! multiply) {
343 if (type_a == type_b)
344 return type_a;
345 } else {
346 if (type_a->is_matrix() && type_b->is_matrix()) {
347 /* Matrix multiply. The columns of A must match the rows of B. Given
348 * the other previously tested constraints, this means the vector type
349 * of a row from A must be the same as the vector type of a column from
350 * B.
351 */
352 if (type_a->row_type() == type_b->column_type()) {
353 /* The resulting matrix has the number of columns of matrix B and
354 * the number of rows of matrix A. We get the row count of A by
355 * looking at the size of a vector that makes up a column. The
356 * transpose (size of a row) is done for B.
357 */
358 const glsl_type *const type =
359 glsl_type::get_instance(type_a->base_type,
360 type_a->column_type()->vector_elements,
361 type_b->row_type()->vector_elements);
362 assert(type != glsl_type::error_type);
363
364 return type;
365 }
366 } else if (type_a->is_matrix()) {
367 /* A is a matrix and B is a column vector. Columns of A must match
368 * rows of B. Given the other previously tested constraints, this
369 * means the vector type of a row from A must be the same as the
370 * vector the type of B.
371 */
372 if (type_a->row_type() == type_b) {
373 /* The resulting vector has a number of elements equal to
374 * the number of rows of matrix A. */
375 const glsl_type *const type =
376 glsl_type::get_instance(type_a->base_type,
377 type_a->column_type()->vector_elements,
378 1);
379 assert(type != glsl_type::error_type);
380
381 return type;
382 }
383 } else {
384 assert(type_b->is_matrix());
385
386 /* A is a row vector and B is a matrix. Columns of A must match rows
387 * of B. Given the other previously tested constraints, this means
388 * the type of A must be the same as the vector type of a column from
389 * B.
390 */
391 if (type_a == type_b->column_type()) {
392 /* The resulting vector has a number of elements equal to
393 * the number of columns of matrix B. */
394 const glsl_type *const type =
395 glsl_type::get_instance(type_a->base_type,
396 type_b->row_type()->vector_elements,
397 1);
398 assert(type != glsl_type::error_type);
399
400 return type;
401 }
402 }
403
404 _mesa_glsl_error(loc, state, "size mismatch for matrix multiplication");
405 return glsl_type::error_type;
406 }
407
408
409 /* "All other cases are illegal."
410 */
411 _mesa_glsl_error(loc, state, "type mismatch");
412 return glsl_type::error_type;
413 }
414
415
416 static const struct glsl_type *
417 unary_arithmetic_result_type(const struct glsl_type *type,
418 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
419 {
420 /* From GLSL 1.50 spec, page 57:
421 *
422 * "The arithmetic unary operators negate (-), post- and pre-increment
423 * and decrement (-- and ++) operate on integer or floating-point
424 * values (including vectors and matrices). All unary operators work
425 * component-wise on their operands. These result with the same type
426 * they operated on."
427 */
428 if (!type->is_numeric()) {
429 _mesa_glsl_error(loc, state,
430 "operands to arithmetic operators must be numeric");
431 return glsl_type::error_type;
432 }
433
434 return type;
435 }
436
437 /**
438 * \brief Return the result type of a bit-logic operation.
439 *
440 * If the given types to the bit-logic operator are invalid, return
441 * glsl_type::error_type.
442 *
443 * \param type_a Type of LHS of bit-logic op
444 * \param type_b Type of RHS of bit-logic op
445 */
446 static const struct glsl_type *
447 bit_logic_result_type(const struct glsl_type *type_a,
448 const struct glsl_type *type_b,
449 ast_operators op,
450 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
451 {
452 if (!state->check_bitwise_operations_allowed(loc)) {
453 return glsl_type::error_type;
454 }
455
456 /* From page 50 (page 56 of PDF) of GLSL 1.30 spec:
457 *
458 * "The bitwise operators and (&), exclusive-or (^), and inclusive-or
459 * (|). The operands must be of type signed or unsigned integers or
460 * integer vectors."
461 */
462 if (!type_a->is_integer()) {
463 _mesa_glsl_error(loc, state, "LHS of `%s' must be an integer",
464 ast_expression::operator_string(op));
465 return glsl_type::error_type;
466 }
467 if (!type_b->is_integer()) {
468 _mesa_glsl_error(loc, state, "RHS of `%s' must be an integer",
469 ast_expression::operator_string(op));
470 return glsl_type::error_type;
471 }
472
473 /* "The fundamental types of the operands (signed or unsigned) must
474 * match,"
475 */
476 if (type_a->base_type != type_b->base_type) {
477 _mesa_glsl_error(loc, state, "operands of `%s' must have the same "
478 "base type", ast_expression::operator_string(op));
479 return glsl_type::error_type;
480 }
481
482 /* "The operands cannot be vectors of differing size." */
483 if (type_a->is_vector() &&
484 type_b->is_vector() &&
485 type_a->vector_elements != type_b->vector_elements) {
486 _mesa_glsl_error(loc, state, "operands of `%s' cannot be vectors of "
487 "different sizes", ast_expression::operator_string(op));
488 return glsl_type::error_type;
489 }
490
491 /* "If one operand is a scalar and the other a vector, the scalar is
492 * applied component-wise to the vector, resulting in the same type as
493 * the vector. The fundamental types of the operands [...] will be the
494 * resulting fundamental type."
495 */
496 if (type_a->is_scalar())
497 return type_b;
498 else
499 return type_a;
500 }
501
502 static const struct glsl_type *
503 modulus_result_type(const struct glsl_type *type_a,
504 const struct glsl_type *type_b,
505 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
506 {
507 if (!state->check_version(130, 300, loc, "operator '%%' is reserved")) {
508 return glsl_type::error_type;
509 }
510
511 /* From GLSL 1.50 spec, page 56:
512 * "The operator modulus (%) operates on signed or unsigned integers or
513 * integer vectors. The operand types must both be signed or both be
514 * unsigned."
515 */
516 if (!type_a->is_integer()) {
517 _mesa_glsl_error(loc, state, "LHS of operator %% must be an integer");
518 return glsl_type::error_type;
519 }
520 if (!type_b->is_integer()) {
521 _mesa_glsl_error(loc, state, "RHS of operator %% must be an integer");
522 return glsl_type::error_type;
523 }
524 if (type_a->base_type != type_b->base_type) {
525 _mesa_glsl_error(loc, state,
526 "operands of %% must have the same base type");
527 return glsl_type::error_type;
528 }
529
530 /* "The operands cannot be vectors of differing size. If one operand is
531 * a scalar and the other vector, then the scalar is applied component-
532 * wise to the vector, resulting in the same type as the vector. If both
533 * are vectors of the same size, the result is computed component-wise."
534 */
535 if (type_a->is_vector()) {
536 if (!type_b->is_vector()
537 || (type_a->vector_elements == type_b->vector_elements))
538 return type_a;
539 } else
540 return type_b;
541
542 /* "The operator modulus (%) is not defined for any other data types
543 * (non-integer types)."
544 */
545 _mesa_glsl_error(loc, state, "type mismatch");
546 return glsl_type::error_type;
547 }
548
549
550 static const struct glsl_type *
551 relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
552 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
553 {
554 const glsl_type *type_a = value_a->type;
555 const glsl_type *type_b = value_b->type;
556
557 /* From GLSL 1.50 spec, page 56:
558 * "The relational operators greater than (>), less than (<), greater
559 * than or equal (>=), and less than or equal (<=) operate only on
560 * scalar integer and scalar floating-point expressions."
561 */
562 if (!type_a->is_numeric()
563 || !type_b->is_numeric()
564 || !type_a->is_scalar()
565 || !type_b->is_scalar()) {
566 _mesa_glsl_error(loc, state,
567 "operands to relational operators must be scalar and "
568 "numeric");
569 return glsl_type::error_type;
570 }
571
572 /* "Either the operands' types must match, or the conversions from
573 * Section 4.1.10 "Implicit Conversions" will be applied to the integer
574 * operand, after which the types must match."
575 */
576 if (!apply_implicit_conversion(type_a, value_b, state)
577 && !apply_implicit_conversion(type_b, value_a, state)) {
578 _mesa_glsl_error(loc, state,
579 "could not implicitly convert operands to "
580 "relational operator");
581 return glsl_type::error_type;
582 }
583 type_a = value_a->type;
584 type_b = value_b->type;
585
586 if (type_a->base_type != type_b->base_type) {
587 _mesa_glsl_error(loc, state, "base type mismatch");
588 return glsl_type::error_type;
589 }
590
591 /* "The result is scalar Boolean."
592 */
593 return glsl_type::bool_type;
594 }
595
596 /**
597 * \brief Return the result type of a bit-shift operation.
598 *
599 * If the given types to the bit-shift operator are invalid, return
600 * glsl_type::error_type.
601 *
602 * \param type_a Type of LHS of bit-shift op
603 * \param type_b Type of RHS of bit-shift op
604 */
605 static const struct glsl_type *
606 shift_result_type(const struct glsl_type *type_a,
607 const struct glsl_type *type_b,
608 ast_operators op,
609 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
610 {
611 if (!state->check_bitwise_operations_allowed(loc)) {
612 return glsl_type::error_type;
613 }
614
615 /* From page 50 (page 56 of the PDF) of the GLSL 1.30 spec:
616 *
617 * "The shift operators (<<) and (>>). For both operators, the operands
618 * must be signed or unsigned integers or integer vectors. One operand
619 * can be signed while the other is unsigned."
620 */
621 if (!type_a->is_integer()) {
622 _mesa_glsl_error(loc, state, "LHS of operator %s must be an integer or "
623 "integer vector", ast_expression::operator_string(op));
624 return glsl_type::error_type;
625
626 }
627 if (!type_b->is_integer()) {
628 _mesa_glsl_error(loc, state, "RHS of operator %s must be an integer or "
629 "integer vector", ast_expression::operator_string(op));
630 return glsl_type::error_type;
631 }
632
633 /* "If the first operand is a scalar, the second operand has to be
634 * a scalar as well."
635 */
636 if (type_a->is_scalar() && !type_b->is_scalar()) {
637 _mesa_glsl_error(loc, state, "if the first operand of %s is scalar, the "
638 "second must be scalar as well",
639 ast_expression::operator_string(op));
640 return glsl_type::error_type;
641 }
642
643 /* If both operands are vectors, check that they have same number of
644 * elements.
645 */
646 if (type_a->is_vector() &&
647 type_b->is_vector() &&
648 type_a->vector_elements != type_b->vector_elements) {
649 _mesa_glsl_error(loc, state, "vector operands to operator %s must "
650 "have same number of elements",
651 ast_expression::operator_string(op));
652 return glsl_type::error_type;
653 }
654
655 /* "In all cases, the resulting type will be the same type as the left
656 * operand."
657 */
658 return type_a;
659 }
660
661 /**
662 * Validates that a value can be assigned to a location with a specified type
663 *
664 * Validates that \c rhs can be assigned to some location. If the types are
665 * not an exact match but an automatic conversion is possible, \c rhs will be
666 * converted.
667 *
668 * \return
669 * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
670 * Otherwise the actual RHS to be assigned will be returned. This may be
671 * \c rhs, or it may be \c rhs after some type conversion.
672 *
673 * \note
674 * In addition to being used for assignments, this function is used to
675 * type-check return values.
676 */
677 ir_rvalue *
678 validate_assignment(struct _mesa_glsl_parse_state *state,
679 YYLTYPE loc, const glsl_type *lhs_type,
680 ir_rvalue *rhs, bool is_initializer)
681 {
682 /* If there is already some error in the RHS, just return it. Anything
683 * else will lead to an avalanche of error message back to the user.
684 */
685 if (rhs->type->is_error())
686 return rhs;
687
688 /* If the types are identical, the assignment can trivially proceed.
689 */
690 if (rhs->type == lhs_type)
691 return rhs;
692
693 /* If the array element types are the same and the LHS is unsized,
694 * the assignment is okay for initializers embedded in variable
695 * declarations.
696 *
697 * Note: Whole-array assignments are not permitted in GLSL 1.10, but this
698 * is handled by ir_dereference::is_lvalue.
699 */
700 if (lhs_type->is_unsized_array() && rhs->type->is_array()
701 && (lhs_type->element_type() == rhs->type->element_type())) {
702 if (is_initializer) {
703 return rhs;
704 } else {
705 _mesa_glsl_error(&loc, state,
706 "implicitly sized arrays cannot be assigned");
707 return NULL;
708 }
709 }
710
711 /* Check for implicit conversion in GLSL 1.20 */
712 if (apply_implicit_conversion(lhs_type, rhs, state)) {
713 if (rhs->type == lhs_type)
714 return rhs;
715 }
716
717 _mesa_glsl_error(&loc, state,
718 "%s of type %s cannot be assigned to "
719 "variable of type %s",
720 is_initializer ? "initializer" : "value",
721 rhs->type->name, lhs_type->name);
722
723 return NULL;
724 }
725
726 static void
727 mark_whole_array_access(ir_rvalue *access)
728 {
729 ir_dereference_variable *deref = access->as_dereference_variable();
730
731 if (deref && deref->var) {
732 deref->var->data.max_array_access = deref->type->length - 1;
733 }
734 }
735
736 ir_rvalue *
737 do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state,
738 const char *non_lvalue_description,
739 ir_rvalue *lhs, ir_rvalue *rhs, bool is_initializer,
740 YYLTYPE lhs_loc)
741 {
742 void *ctx = state;
743 bool error_emitted = (lhs->type->is_error() || rhs->type->is_error());
744 ir_rvalue *extract_channel = NULL;
745
746 /* If the assignment LHS comes back as an ir_binop_vector_extract
747 * expression, move it to the RHS as an ir_triop_vector_insert.
748 */
749 if (lhs->ir_type == ir_type_expression) {
750 ir_expression *const lhs_expr = lhs->as_expression();
751
752 if (unlikely(lhs_expr->operation == ir_binop_vector_extract)) {
753 ir_rvalue *new_rhs =
754 validate_assignment(state, lhs_loc, lhs->type,
755 rhs, is_initializer);
756
757 if (new_rhs == NULL) {
758 return lhs;
759 } else {
760 /* This converts:
761 * - LHS: (expression float vector_extract <vec> <channel>)
762 * - RHS: <scalar>
763 * into:
764 * - LHS: <vec>
765 * - RHS: (expression vec2 vector_insert <vec> <channel> <scalar>)
766 *
767 * The LHS type is now a vector instead of a scalar. Since GLSL
768 * allows assignments to be used as rvalues, we need to re-extract
769 * the channel from assignment_temp when returning the rvalue.
770 */
771 extract_channel = lhs_expr->operands[1];
772 rhs = new(ctx) ir_expression(ir_triop_vector_insert,
773 lhs_expr->operands[0]->type,
774 lhs_expr->operands[0],
775 new_rhs,
776 extract_channel);
777 lhs = lhs_expr->operands[0]->clone(ctx, NULL);
778 }
779 }
780 }
781
782 ir_variable *lhs_var = lhs->variable_referenced();
783 if (lhs_var)
784 lhs_var->data.assigned = true;
785
786 if (!error_emitted) {
787 if (non_lvalue_description != NULL) {
788 _mesa_glsl_error(&lhs_loc, state,
789 "assignment to %s",
790 non_lvalue_description);
791 error_emitted = true;
792 } else if (lhs->variable_referenced() != NULL
793 && lhs->variable_referenced()->data.read_only) {
794 _mesa_glsl_error(&lhs_loc, state,
795 "assignment to read-only variable '%s'",
796 lhs->variable_referenced()->name);
797 error_emitted = true;
798
799 } else if (lhs->type->is_array() &&
800 !state->check_version(120, 300, &lhs_loc,
801 "whole array assignment forbidden")) {
802 /* From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
803 *
804 * "Other binary or unary expressions, non-dereferenced
805 * arrays, function names, swizzles with repeated fields,
806 * and constants cannot be l-values."
807 *
808 * The restriction on arrays is lifted in GLSL 1.20 and GLSL ES 3.00.
809 */
810 error_emitted = true;
811 } else if (!lhs->is_lvalue()) {
812 _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment");
813 error_emitted = true;
814 }
815 }
816
817 ir_rvalue *new_rhs =
818 validate_assignment(state, lhs_loc, lhs->type, rhs, is_initializer);
819 if (new_rhs != NULL) {
820 rhs = new_rhs;
821
822 /* If the LHS array was not declared with a size, it takes it size from
823 * the RHS. If the LHS is an l-value and a whole array, it must be a
824 * dereference of a variable. Any other case would require that the LHS
825 * is either not an l-value or not a whole array.
826 */
827 if (lhs->type->is_unsized_array()) {
828 ir_dereference *const d = lhs->as_dereference();
829
830 assert(d != NULL);
831
832 ir_variable *const var = d->variable_referenced();
833
834 assert(var != NULL);
835
836 if (var->data.max_array_access >= unsigned(rhs->type->array_size())) {
837 /* FINISHME: This should actually log the location of the RHS. */
838 _mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to "
839 "previous access",
840 var->data.max_array_access);
841 }
842
843 var->type = glsl_type::get_array_instance(lhs->type->element_type(),
844 rhs->type->array_size());
845 d->type = var->type;
846 }
847 if (lhs->type->is_array()) {
848 mark_whole_array_access(rhs);
849 mark_whole_array_access(lhs);
850 }
851 }
852
853 /* Most callers of do_assignment (assign, add_assign, pre_inc/dec,
854 * but not post_inc) need the converted assigned value as an rvalue
855 * to handle things like:
856 *
857 * i = j += 1;
858 *
859 * So we always just store the computed value being assigned to a
860 * temporary and return a deref of that temporary. If the rvalue
861 * ends up not being used, the temp will get copy-propagated out.
862 */
863 ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp",
864 ir_var_temporary);
865 ir_dereference_variable *deref_var = new(ctx) ir_dereference_variable(var);
866 instructions->push_tail(var);
867 instructions->push_tail(new(ctx) ir_assignment(deref_var, rhs));
868 deref_var = new(ctx) ir_dereference_variable(var);
869
870 if (!error_emitted)
871 instructions->push_tail(new(ctx) ir_assignment(lhs, deref_var));
872
873 if (extract_channel) {
874 return new(ctx) ir_expression(ir_binop_vector_extract,
875 new(ctx) ir_dereference_variable(var),
876 extract_channel->clone(ctx, NULL));
877 }
878 return new(ctx) ir_dereference_variable(var);
879 }
880
881 static ir_rvalue *
882 get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue)
883 {
884 void *ctx = ralloc_parent(lvalue);
885 ir_variable *var;
886
887 var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp",
888 ir_var_temporary);
889 instructions->push_tail(var);
890 var->data.mode = ir_var_auto;
891
892 instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
893 lvalue));
894
895 return new(ctx) ir_dereference_variable(var);
896 }
897
898
899 ir_rvalue *
900 ast_node::hir(exec_list *instructions,
901 struct _mesa_glsl_parse_state *state)
902 {
903 (void) instructions;
904 (void) state;
905
906 return NULL;
907 }
908
909 static ir_rvalue *
910 do_comparison(void *mem_ctx, int operation, ir_rvalue *op0, ir_rvalue *op1)
911 {
912 int join_op;
913 ir_rvalue *cmp = NULL;
914
915 if (operation == ir_binop_all_equal)
916 join_op = ir_binop_logic_and;
917 else
918 join_op = ir_binop_logic_or;
919
920 switch (op0->type->base_type) {
921 case GLSL_TYPE_FLOAT:
922 case GLSL_TYPE_UINT:
923 case GLSL_TYPE_INT:
924 case GLSL_TYPE_BOOL:
925 return new(mem_ctx) ir_expression(operation, op0, op1);
926
927 case GLSL_TYPE_ARRAY: {
928 for (unsigned int i = 0; i < op0->type->length; i++) {
929 ir_rvalue *e0, *e1, *result;
930
931 e0 = new(mem_ctx) ir_dereference_array(op0->clone(mem_ctx, NULL),
932 new(mem_ctx) ir_constant(i));
933 e1 = new(mem_ctx) ir_dereference_array(op1->clone(mem_ctx, NULL),
934 new(mem_ctx) ir_constant(i));
935 result = do_comparison(mem_ctx, operation, e0, e1);
936
937 if (cmp) {
938 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
939 } else {
940 cmp = result;
941 }
942 }
943
944 mark_whole_array_access(op0);
945 mark_whole_array_access(op1);
946 break;
947 }
948
949 case GLSL_TYPE_STRUCT: {
950 for (unsigned int i = 0; i < op0->type->length; i++) {
951 ir_rvalue *e0, *e1, *result;
952 const char *field_name = op0->type->fields.structure[i].name;
953
954 e0 = new(mem_ctx) ir_dereference_record(op0->clone(mem_ctx, NULL),
955 field_name);
956 e1 = new(mem_ctx) ir_dereference_record(op1->clone(mem_ctx, NULL),
957 field_name);
958 result = do_comparison(mem_ctx, operation, e0, e1);
959
960 if (cmp) {
961 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
962 } else {
963 cmp = result;
964 }
965 }
966 break;
967 }
968
969 case GLSL_TYPE_ERROR:
970 case GLSL_TYPE_VOID:
971 case GLSL_TYPE_SAMPLER:
972 case GLSL_TYPE_IMAGE:
973 case GLSL_TYPE_INTERFACE:
974 case GLSL_TYPE_ATOMIC_UINT:
975 /* I assume a comparison of a struct containing a sampler just
976 * ignores the sampler present in the type.
977 */
978 break;
979 }
980
981 if (cmp == NULL)
982 cmp = new(mem_ctx) ir_constant(true);
983
984 return cmp;
985 }
986
987 /* For logical operations, we want to ensure that the operands are
988 * scalar booleans. If it isn't, emit an error and return a constant
989 * boolean to avoid triggering cascading error messages.
990 */
991 ir_rvalue *
992 get_scalar_boolean_operand(exec_list *instructions,
993 struct _mesa_glsl_parse_state *state,
994 ast_expression *parent_expr,
995 int operand,
996 const char *operand_name,
997 bool *error_emitted)
998 {
999 ast_expression *expr = parent_expr->subexpressions[operand];
1000 void *ctx = state;
1001 ir_rvalue *val = expr->hir(instructions, state);
1002
1003 if (val->type->is_boolean() && val->type->is_scalar())
1004 return val;
1005
1006 if (!*error_emitted) {
1007 YYLTYPE loc = expr->get_location();
1008 _mesa_glsl_error(&loc, state, "%s of `%s' must be scalar boolean",
1009 operand_name,
1010 parent_expr->operator_string(parent_expr->oper));
1011 *error_emitted = true;
1012 }
1013
1014 return new(ctx) ir_constant(true);
1015 }
1016
1017 /**
1018 * If name refers to a builtin array whose maximum allowed size is less than
1019 * size, report an error and return true. Otherwise return false.
1020 */
1021 void
1022 check_builtin_array_max_size(const char *name, unsigned size,
1023 YYLTYPE loc, struct _mesa_glsl_parse_state *state)
1024 {
1025 if ((strcmp("gl_TexCoord", name) == 0)
1026 && (size > state->Const.MaxTextureCoords)) {
1027 /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec:
1028 *
1029 * "The size [of gl_TexCoord] can be at most
1030 * gl_MaxTextureCoords."
1031 */
1032 _mesa_glsl_error(&loc, state, "`gl_TexCoord' array size cannot "
1033 "be larger than gl_MaxTextureCoords (%u)",
1034 state->Const.MaxTextureCoords);
1035 } else if (strcmp("gl_ClipDistance", name) == 0
1036 && size > state->Const.MaxClipPlanes) {
1037 /* From section 7.1 (Vertex Shader Special Variables) of the
1038 * GLSL 1.30 spec:
1039 *
1040 * "The gl_ClipDistance array is predeclared as unsized and
1041 * must be sized by the shader either redeclaring it with a
1042 * size or indexing it only with integral constant
1043 * expressions. ... The size can be at most
1044 * gl_MaxClipDistances."
1045 */
1046 _mesa_glsl_error(&loc, state, "`gl_ClipDistance' array size cannot "
1047 "be larger than gl_MaxClipDistances (%u)",
1048 state->Const.MaxClipPlanes);
1049 }
1050 }
1051
1052 /**
1053 * Create the constant 1, of a which is appropriate for incrementing and
1054 * decrementing values of the given GLSL type. For example, if type is vec4,
1055 * this creates a constant value of 1.0 having type float.
1056 *
1057 * If the given type is invalid for increment and decrement operators, return
1058 * a floating point 1--the error will be detected later.
1059 */
1060 static ir_rvalue *
1061 constant_one_for_inc_dec(void *ctx, const glsl_type *type)
1062 {
1063 switch (type->base_type) {
1064 case GLSL_TYPE_UINT:
1065 return new(ctx) ir_constant((unsigned) 1);
1066 case GLSL_TYPE_INT:
1067 return new(ctx) ir_constant(1);
1068 default:
1069 case GLSL_TYPE_FLOAT:
1070 return new(ctx) ir_constant(1.0f);
1071 }
1072 }
1073
1074 ir_rvalue *
1075 ast_expression::hir(exec_list *instructions,
1076 struct _mesa_glsl_parse_state *state)
1077 {
1078 void *ctx = state;
1079 static const int operations[AST_NUM_OPERATORS] = {
1080 -1, /* ast_assign doesn't convert to ir_expression. */
1081 -1, /* ast_plus doesn't convert to ir_expression. */
1082 ir_unop_neg,
1083 ir_binop_add,
1084 ir_binop_sub,
1085 ir_binop_mul,
1086 ir_binop_div,
1087 ir_binop_mod,
1088 ir_binop_lshift,
1089 ir_binop_rshift,
1090 ir_binop_less,
1091 ir_binop_greater,
1092 ir_binop_lequal,
1093 ir_binop_gequal,
1094 ir_binop_all_equal,
1095 ir_binop_any_nequal,
1096 ir_binop_bit_and,
1097 ir_binop_bit_xor,
1098 ir_binop_bit_or,
1099 ir_unop_bit_not,
1100 ir_binop_logic_and,
1101 ir_binop_logic_xor,
1102 ir_binop_logic_or,
1103 ir_unop_logic_not,
1104
1105 /* Note: The following block of expression types actually convert
1106 * to multiple IR instructions.
1107 */
1108 ir_binop_mul, /* ast_mul_assign */
1109 ir_binop_div, /* ast_div_assign */
1110 ir_binop_mod, /* ast_mod_assign */
1111 ir_binop_add, /* ast_add_assign */
1112 ir_binop_sub, /* ast_sub_assign */
1113 ir_binop_lshift, /* ast_ls_assign */
1114 ir_binop_rshift, /* ast_rs_assign */
1115 ir_binop_bit_and, /* ast_and_assign */
1116 ir_binop_bit_xor, /* ast_xor_assign */
1117 ir_binop_bit_or, /* ast_or_assign */
1118
1119 -1, /* ast_conditional doesn't convert to ir_expression. */
1120 ir_binop_add, /* ast_pre_inc. */
1121 ir_binop_sub, /* ast_pre_dec. */
1122 ir_binop_add, /* ast_post_inc. */
1123 ir_binop_sub, /* ast_post_dec. */
1124 -1, /* ast_field_selection doesn't conv to ir_expression. */
1125 -1, /* ast_array_index doesn't convert to ir_expression. */
1126 -1, /* ast_function_call doesn't conv to ir_expression. */
1127 -1, /* ast_identifier doesn't convert to ir_expression. */
1128 -1, /* ast_int_constant doesn't convert to ir_expression. */
1129 -1, /* ast_uint_constant doesn't conv to ir_expression. */
1130 -1, /* ast_float_constant doesn't conv to ir_expression. */
1131 -1, /* ast_bool_constant doesn't conv to ir_expression. */
1132 -1, /* ast_sequence doesn't convert to ir_expression. */
1133 };
1134 ir_rvalue *result = NULL;
1135 ir_rvalue *op[3];
1136 const struct glsl_type *type; /* a temporary variable for switch cases */
1137 bool error_emitted = false;
1138 YYLTYPE loc;
1139
1140 loc = this->get_location();
1141
1142 switch (this->oper) {
1143 case ast_aggregate:
1144 assert(!"ast_aggregate: Should never get here.");
1145 break;
1146
1147 case ast_assign: {
1148 op[0] = this->subexpressions[0]->hir(instructions, state);
1149 op[1] = this->subexpressions[1]->hir(instructions, state);
1150
1151 result = do_assignment(instructions, state,
1152 this->subexpressions[0]->non_lvalue_description,
1153 op[0], op[1], false,
1154 this->subexpressions[0]->get_location());
1155 error_emitted = result->type->is_error();
1156 break;
1157 }
1158
1159 case ast_plus:
1160 op[0] = this->subexpressions[0]->hir(instructions, state);
1161
1162 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1163
1164 error_emitted = type->is_error();
1165
1166 result = op[0];
1167 break;
1168
1169 case ast_neg:
1170 op[0] = this->subexpressions[0]->hir(instructions, state);
1171
1172 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1173
1174 error_emitted = type->is_error();
1175
1176 result = new(ctx) ir_expression(operations[this->oper], type,
1177 op[0], NULL);
1178 break;
1179
1180 case ast_add:
1181 case ast_sub:
1182 case ast_mul:
1183 case ast_div:
1184 op[0] = this->subexpressions[0]->hir(instructions, state);
1185 op[1] = this->subexpressions[1]->hir(instructions, state);
1186
1187 type = arithmetic_result_type(op[0], op[1],
1188 (this->oper == ast_mul),
1189 state, & loc);
1190 error_emitted = type->is_error();
1191
1192 result = new(ctx) ir_expression(operations[this->oper], type,
1193 op[0], op[1]);
1194 break;
1195
1196 case ast_mod:
1197 op[0] = this->subexpressions[0]->hir(instructions, state);
1198 op[1] = this->subexpressions[1]->hir(instructions, state);
1199
1200 type = modulus_result_type(op[0]->type, op[1]->type, state, & loc);
1201
1202 assert(operations[this->oper] == ir_binop_mod);
1203
1204 result = new(ctx) ir_expression(operations[this->oper], type,
1205 op[0], op[1]);
1206 error_emitted = type->is_error();
1207 break;
1208
1209 case ast_lshift:
1210 case ast_rshift:
1211 if (!state->check_bitwise_operations_allowed(&loc)) {
1212 error_emitted = true;
1213 }
1214
1215 op[0] = this->subexpressions[0]->hir(instructions, state);
1216 op[1] = this->subexpressions[1]->hir(instructions, state);
1217 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1218 &loc);
1219 result = new(ctx) ir_expression(operations[this->oper], type,
1220 op[0], op[1]);
1221 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1222 break;
1223
1224 case ast_less:
1225 case ast_greater:
1226 case ast_lequal:
1227 case ast_gequal:
1228 op[0] = this->subexpressions[0]->hir(instructions, state);
1229 op[1] = this->subexpressions[1]->hir(instructions, state);
1230
1231 type = relational_result_type(op[0], op[1], state, & loc);
1232
1233 /* The relational operators must either generate an error or result
1234 * in a scalar boolean. See page 57 of the GLSL 1.50 spec.
1235 */
1236 assert(type->is_error()
1237 || ((type->base_type == GLSL_TYPE_BOOL)
1238 && type->is_scalar()));
1239
1240 result = new(ctx) ir_expression(operations[this->oper], type,
1241 op[0], op[1]);
1242 error_emitted = type->is_error();
1243 break;
1244
1245 case ast_nequal:
1246 case ast_equal:
1247 op[0] = this->subexpressions[0]->hir(instructions, state);
1248 op[1] = this->subexpressions[1]->hir(instructions, state);
1249
1250 /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
1251 *
1252 * "The equality operators equal (==), and not equal (!=)
1253 * operate on all types. They result in a scalar Boolean. If
1254 * the operand types do not match, then there must be a
1255 * conversion from Section 4.1.10 "Implicit Conversions"
1256 * applied to one operand that can make them match, in which
1257 * case this conversion is done."
1258 */
1259 if ((!apply_implicit_conversion(op[0]->type, op[1], state)
1260 && !apply_implicit_conversion(op[1]->type, op[0], state))
1261 || (op[0]->type != op[1]->type)) {
1262 _mesa_glsl_error(& loc, state, "operands of `%s' must have the same "
1263 "type", (this->oper == ast_equal) ? "==" : "!=");
1264 error_emitted = true;
1265 } else if ((op[0]->type->is_array() || op[1]->type->is_array()) &&
1266 !state->check_version(120, 300, &loc,
1267 "array comparisons forbidden")) {
1268 error_emitted = true;
1269 } else if ((op[0]->type->contains_opaque() ||
1270 op[1]->type->contains_opaque())) {
1271 _mesa_glsl_error(&loc, state, "opaque type comparisons forbidden");
1272 error_emitted = true;
1273 }
1274
1275 if (error_emitted) {
1276 result = new(ctx) ir_constant(false);
1277 } else {
1278 result = do_comparison(ctx, operations[this->oper], op[0], op[1]);
1279 assert(result->type == glsl_type::bool_type);
1280 }
1281 break;
1282
1283 case ast_bit_and:
1284 case ast_bit_xor:
1285 case ast_bit_or:
1286 op[0] = this->subexpressions[0]->hir(instructions, state);
1287 op[1] = this->subexpressions[1]->hir(instructions, state);
1288 type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
1289 state, &loc);
1290 result = new(ctx) ir_expression(operations[this->oper], type,
1291 op[0], op[1]);
1292 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1293 break;
1294
1295 case ast_bit_not:
1296 op[0] = this->subexpressions[0]->hir(instructions, state);
1297
1298 if (!state->check_bitwise_operations_allowed(&loc)) {
1299 error_emitted = true;
1300 }
1301
1302 if (!op[0]->type->is_integer()) {
1303 _mesa_glsl_error(&loc, state, "operand of `~' must be an integer");
1304 error_emitted = true;
1305 }
1306
1307 type = error_emitted ? glsl_type::error_type : op[0]->type;
1308 result = new(ctx) ir_expression(ir_unop_bit_not, type, op[0], NULL);
1309 break;
1310
1311 case ast_logic_and: {
1312 exec_list rhs_instructions;
1313 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1314 "LHS", &error_emitted);
1315 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1316 "RHS", &error_emitted);
1317
1318 if (rhs_instructions.is_empty()) {
1319 result = new(ctx) ir_expression(ir_binop_logic_and, op[0], op[1]);
1320 type = result->type;
1321 } else {
1322 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1323 "and_tmp",
1324 ir_var_temporary);
1325 instructions->push_tail(tmp);
1326
1327 ir_if *const stmt = new(ctx) ir_if(op[0]);
1328 instructions->push_tail(stmt);
1329
1330 stmt->then_instructions.append_list(&rhs_instructions);
1331 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1332 ir_assignment *const then_assign =
1333 new(ctx) ir_assignment(then_deref, op[1]);
1334 stmt->then_instructions.push_tail(then_assign);
1335
1336 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1337 ir_assignment *const else_assign =
1338 new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false));
1339 stmt->else_instructions.push_tail(else_assign);
1340
1341 result = new(ctx) ir_dereference_variable(tmp);
1342 type = tmp->type;
1343 }
1344 break;
1345 }
1346
1347 case ast_logic_or: {
1348 exec_list rhs_instructions;
1349 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1350 "LHS", &error_emitted);
1351 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1352 "RHS", &error_emitted);
1353
1354 if (rhs_instructions.is_empty()) {
1355 result = new(ctx) ir_expression(ir_binop_logic_or, op[0], op[1]);
1356 type = result->type;
1357 } else {
1358 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1359 "or_tmp",
1360 ir_var_temporary);
1361 instructions->push_tail(tmp);
1362
1363 ir_if *const stmt = new(ctx) ir_if(op[0]);
1364 instructions->push_tail(stmt);
1365
1366 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1367 ir_assignment *const then_assign =
1368 new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true));
1369 stmt->then_instructions.push_tail(then_assign);
1370
1371 stmt->else_instructions.append_list(&rhs_instructions);
1372 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1373 ir_assignment *const else_assign =
1374 new(ctx) ir_assignment(else_deref, op[1]);
1375 stmt->else_instructions.push_tail(else_assign);
1376
1377 result = new(ctx) ir_dereference_variable(tmp);
1378 type = tmp->type;
1379 }
1380 break;
1381 }
1382
1383 case ast_logic_xor:
1384 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1385 *
1386 * "The logical binary operators and (&&), or ( | | ), and
1387 * exclusive or (^^). They operate only on two Boolean
1388 * expressions and result in a Boolean expression."
1389 */
1390 op[0] = get_scalar_boolean_operand(instructions, state, this, 0, "LHS",
1391 &error_emitted);
1392 op[1] = get_scalar_boolean_operand(instructions, state, this, 1, "RHS",
1393 &error_emitted);
1394
1395 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1396 op[0], op[1]);
1397 break;
1398
1399 case ast_logic_not:
1400 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1401 "operand", &error_emitted);
1402
1403 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1404 op[0], NULL);
1405 break;
1406
1407 case ast_mul_assign:
1408 case ast_div_assign:
1409 case ast_add_assign:
1410 case ast_sub_assign: {
1411 op[0] = this->subexpressions[0]->hir(instructions, state);
1412 op[1] = this->subexpressions[1]->hir(instructions, state);
1413
1414 type = arithmetic_result_type(op[0], op[1],
1415 (this->oper == ast_mul_assign),
1416 state, & loc);
1417
1418 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1419 op[0], op[1]);
1420
1421 result = do_assignment(instructions, state,
1422 this->subexpressions[0]->non_lvalue_description,
1423 op[0]->clone(ctx, NULL), temp_rhs, false,
1424 this->subexpressions[0]->get_location());
1425 error_emitted = (op[0]->type->is_error());
1426
1427 /* GLSL 1.10 does not allow array assignment. However, we don't have to
1428 * explicitly test for this because none of the binary expression
1429 * operators allow array operands either.
1430 */
1431
1432 break;
1433 }
1434
1435 case ast_mod_assign: {
1436 op[0] = this->subexpressions[0]->hir(instructions, state);
1437 op[1] = this->subexpressions[1]->hir(instructions, state);
1438
1439 type = modulus_result_type(op[0]->type, op[1]->type, state, & loc);
1440
1441 assert(operations[this->oper] == ir_binop_mod);
1442
1443 ir_rvalue *temp_rhs;
1444 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1445 op[0], op[1]);
1446
1447 result = do_assignment(instructions, state,
1448 this->subexpressions[0]->non_lvalue_description,
1449 op[0]->clone(ctx, NULL), temp_rhs, false,
1450 this->subexpressions[0]->get_location());
1451 error_emitted = type->is_error();
1452 break;
1453 }
1454
1455 case ast_ls_assign:
1456 case ast_rs_assign: {
1457 op[0] = this->subexpressions[0]->hir(instructions, state);
1458 op[1] = this->subexpressions[1]->hir(instructions, state);
1459 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1460 &loc);
1461 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1462 type, op[0], op[1]);
1463 result = do_assignment(instructions, state,
1464 this->subexpressions[0]->non_lvalue_description,
1465 op[0]->clone(ctx, NULL), temp_rhs, false,
1466 this->subexpressions[0]->get_location());
1467 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1468 break;
1469 }
1470
1471 case ast_and_assign:
1472 case ast_xor_assign:
1473 case ast_or_assign: {
1474 op[0] = this->subexpressions[0]->hir(instructions, state);
1475 op[1] = this->subexpressions[1]->hir(instructions, state);
1476 type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
1477 state, &loc);
1478 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1479 type, op[0], op[1]);
1480 result = do_assignment(instructions, state,
1481 this->subexpressions[0]->non_lvalue_description,
1482 op[0]->clone(ctx, NULL), temp_rhs, false,
1483 this->subexpressions[0]->get_location());
1484 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1485 break;
1486 }
1487
1488 case ast_conditional: {
1489 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1490 *
1491 * "The ternary selection operator (?:). It operates on three
1492 * expressions (exp1 ? exp2 : exp3). This operator evaluates the
1493 * first expression, which must result in a scalar Boolean."
1494 */
1495 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1496 "condition", &error_emitted);
1497
1498 /* The :? operator is implemented by generating an anonymous temporary
1499 * followed by an if-statement. The last instruction in each branch of
1500 * the if-statement assigns a value to the anonymous temporary. This
1501 * temporary is the r-value of the expression.
1502 */
1503 exec_list then_instructions;
1504 exec_list else_instructions;
1505
1506 op[1] = this->subexpressions[1]->hir(&then_instructions, state);
1507 op[2] = this->subexpressions[2]->hir(&else_instructions, state);
1508
1509 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1510 *
1511 * "The second and third expressions can be any type, as
1512 * long their types match, or there is a conversion in
1513 * Section 4.1.10 "Implicit Conversions" that can be applied
1514 * to one of the expressions to make their types match. This
1515 * resulting matching type is the type of the entire
1516 * expression."
1517 */
1518 if ((!apply_implicit_conversion(op[1]->type, op[2], state)
1519 && !apply_implicit_conversion(op[2]->type, op[1], state))
1520 || (op[1]->type != op[2]->type)) {
1521 YYLTYPE loc = this->subexpressions[1]->get_location();
1522
1523 _mesa_glsl_error(& loc, state, "second and third operands of ?: "
1524 "operator must have matching types");
1525 error_emitted = true;
1526 type = glsl_type::error_type;
1527 } else {
1528 type = op[1]->type;
1529 }
1530
1531 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1532 *
1533 * "The second and third expressions must be the same type, but can
1534 * be of any type other than an array."
1535 */
1536 if (type->is_array() &&
1537 !state->check_version(120, 300, &loc,
1538 "second and third operands of ?: operator "
1539 "cannot be arrays")) {
1540 error_emitted = true;
1541 }
1542
1543 ir_constant *cond_val = op[0]->constant_expression_value();
1544 ir_constant *then_val = op[1]->constant_expression_value();
1545 ir_constant *else_val = op[2]->constant_expression_value();
1546
1547 if (then_instructions.is_empty()
1548 && else_instructions.is_empty()
1549 && (cond_val != NULL) && (then_val != NULL) && (else_val != NULL)) {
1550 result = (cond_val->value.b[0]) ? then_val : else_val;
1551 } else {
1552 ir_variable *const tmp =
1553 new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary);
1554 instructions->push_tail(tmp);
1555
1556 ir_if *const stmt = new(ctx) ir_if(op[0]);
1557 instructions->push_tail(stmt);
1558
1559 then_instructions.move_nodes_to(& stmt->then_instructions);
1560 ir_dereference *const then_deref =
1561 new(ctx) ir_dereference_variable(tmp);
1562 ir_assignment *const then_assign =
1563 new(ctx) ir_assignment(then_deref, op[1]);
1564 stmt->then_instructions.push_tail(then_assign);
1565
1566 else_instructions.move_nodes_to(& stmt->else_instructions);
1567 ir_dereference *const else_deref =
1568 new(ctx) ir_dereference_variable(tmp);
1569 ir_assignment *const else_assign =
1570 new(ctx) ir_assignment(else_deref, op[2]);
1571 stmt->else_instructions.push_tail(else_assign);
1572
1573 result = new(ctx) ir_dereference_variable(tmp);
1574 }
1575 break;
1576 }
1577
1578 case ast_pre_inc:
1579 case ast_pre_dec: {
1580 this->non_lvalue_description = (this->oper == ast_pre_inc)
1581 ? "pre-increment operation" : "pre-decrement operation";
1582
1583 op[0] = this->subexpressions[0]->hir(instructions, state);
1584 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1585
1586 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1587
1588 ir_rvalue *temp_rhs;
1589 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1590 op[0], op[1]);
1591
1592 result = do_assignment(instructions, state,
1593 this->subexpressions[0]->non_lvalue_description,
1594 op[0]->clone(ctx, NULL), temp_rhs, false,
1595 this->subexpressions[0]->get_location());
1596 error_emitted = op[0]->type->is_error();
1597 break;
1598 }
1599
1600 case ast_post_inc:
1601 case ast_post_dec: {
1602 this->non_lvalue_description = (this->oper == ast_post_inc)
1603 ? "post-increment operation" : "post-decrement operation";
1604 op[0] = this->subexpressions[0]->hir(instructions, state);
1605 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1606
1607 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1608
1609 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1610
1611 ir_rvalue *temp_rhs;
1612 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1613 op[0], op[1]);
1614
1615 /* Get a temporary of a copy of the lvalue before it's modified.
1616 * This may get thrown away later.
1617 */
1618 result = get_lvalue_copy(instructions, op[0]->clone(ctx, NULL));
1619
1620 (void)do_assignment(instructions, state,
1621 this->subexpressions[0]->non_lvalue_description,
1622 op[0]->clone(ctx, NULL), temp_rhs, false,
1623 this->subexpressions[0]->get_location());
1624
1625 error_emitted = op[0]->type->is_error();
1626 break;
1627 }
1628
1629 case ast_field_selection:
1630 result = _mesa_ast_field_selection_to_hir(this, instructions, state);
1631 break;
1632
1633 case ast_array_index: {
1634 YYLTYPE index_loc = subexpressions[1]->get_location();
1635
1636 op[0] = subexpressions[0]->hir(instructions, state);
1637 op[1] = subexpressions[1]->hir(instructions, state);
1638
1639 result = _mesa_ast_array_index_to_hir(ctx, state, op[0], op[1],
1640 loc, index_loc);
1641
1642 if (result->type->is_error())
1643 error_emitted = true;
1644
1645 break;
1646 }
1647
1648 case ast_function_call:
1649 /* Should *NEVER* get here. ast_function_call should always be handled
1650 * by ast_function_expression::hir.
1651 */
1652 assert(0);
1653 break;
1654
1655 case ast_identifier: {
1656 /* ast_identifier can appear several places in a full abstract syntax
1657 * tree. This particular use must be at location specified in the grammar
1658 * as 'variable_identifier'.
1659 */
1660 ir_variable *var =
1661 state->symbols->get_variable(this->primary_expression.identifier);
1662
1663 if (var != NULL) {
1664 var->data.used = true;
1665 result = new(ctx) ir_dereference_variable(var);
1666 } else {
1667 _mesa_glsl_error(& loc, state, "`%s' undeclared",
1668 this->primary_expression.identifier);
1669
1670 result = ir_rvalue::error_value(ctx);
1671 error_emitted = true;
1672 }
1673 break;
1674 }
1675
1676 case ast_int_constant:
1677 result = new(ctx) ir_constant(this->primary_expression.int_constant);
1678 break;
1679
1680 case ast_uint_constant:
1681 result = new(ctx) ir_constant(this->primary_expression.uint_constant);
1682 break;
1683
1684 case ast_float_constant:
1685 result = new(ctx) ir_constant(this->primary_expression.float_constant);
1686 break;
1687
1688 case ast_bool_constant:
1689 result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant));
1690 break;
1691
1692 case ast_sequence: {
1693 /* It should not be possible to generate a sequence in the AST without
1694 * any expressions in it.
1695 */
1696 assert(!this->expressions.is_empty());
1697
1698 /* The r-value of a sequence is the last expression in the sequence. If
1699 * the other expressions in the sequence do not have side-effects (and
1700 * therefore add instructions to the instruction list), they get dropped
1701 * on the floor.
1702 */
1703 exec_node *previous_tail_pred = NULL;
1704 YYLTYPE previous_operand_loc = loc;
1705
1706 foreach_list_typed (ast_node, ast, link, &this->expressions) {
1707 /* If one of the operands of comma operator does not generate any
1708 * code, we want to emit a warning. At each pass through the loop
1709 * previous_tail_pred will point to the last instruction in the
1710 * stream *before* processing the previous operand. Naturally,
1711 * instructions->tail_pred will point to the last instruction in the
1712 * stream *after* processing the previous operand. If the two
1713 * pointers match, then the previous operand had no effect.
1714 *
1715 * The warning behavior here differs slightly from GCC. GCC will
1716 * only emit a warning if none of the left-hand operands have an
1717 * effect. However, it will emit a warning for each. I believe that
1718 * there are some cases in C (especially with GCC extensions) where
1719 * it is useful to have an intermediate step in a sequence have no
1720 * effect, but I don't think these cases exist in GLSL. Either way,
1721 * it would be a giant hassle to replicate that behavior.
1722 */
1723 if (previous_tail_pred == instructions->tail_pred) {
1724 _mesa_glsl_warning(&previous_operand_loc, state,
1725 "left-hand operand of comma expression has "
1726 "no effect");
1727 }
1728
1729 /* tail_pred is directly accessed instead of using the get_tail()
1730 * method for performance reasons. get_tail() has extra code to
1731 * return NULL when the list is empty. We don't care about that
1732 * here, so using tail_pred directly is fine.
1733 */
1734 previous_tail_pred = instructions->tail_pred;
1735 previous_operand_loc = ast->get_location();
1736
1737 result = ast->hir(instructions, state);
1738 }
1739
1740 /* Any errors should have already been emitted in the loop above.
1741 */
1742 error_emitted = true;
1743 break;
1744 }
1745 }
1746 type = NULL; /* use result->type, not type. */
1747 assert(result != NULL);
1748
1749 if (result->type->is_error() && !error_emitted)
1750 _mesa_glsl_error(& loc, state, "type mismatch");
1751
1752 return result;
1753 }
1754
1755
1756 ir_rvalue *
1757 ast_expression_statement::hir(exec_list *instructions,
1758 struct _mesa_glsl_parse_state *state)
1759 {
1760 /* It is possible to have expression statements that don't have an
1761 * expression. This is the solitary semicolon:
1762 *
1763 * for (i = 0; i < 5; i++)
1764 * ;
1765 *
1766 * In this case the expression will be NULL. Test for NULL and don't do
1767 * anything in that case.
1768 */
1769 if (expression != NULL)
1770 expression->hir(instructions, state);
1771
1772 /* Statements do not have r-values.
1773 */
1774 return NULL;
1775 }
1776
1777
1778 ir_rvalue *
1779 ast_compound_statement::hir(exec_list *instructions,
1780 struct _mesa_glsl_parse_state *state)
1781 {
1782 if (new_scope)
1783 state->symbols->push_scope();
1784
1785 foreach_list_typed (ast_node, ast, link, &this->statements)
1786 ast->hir(instructions, state);
1787
1788 if (new_scope)
1789 state->symbols->pop_scope();
1790
1791 /* Compound statements do not have r-values.
1792 */
1793 return NULL;
1794 }
1795
1796 /**
1797 * Evaluate the given exec_node (which should be an ast_node representing
1798 * a single array dimension) and return its integer value.
1799 */
1800 static unsigned
1801 process_array_size(exec_node *node,
1802 struct _mesa_glsl_parse_state *state)
1803 {
1804 exec_list dummy_instructions;
1805
1806 ast_node *array_size = exec_node_data(ast_node, node, link);
1807 ir_rvalue *const ir = array_size->hir(& dummy_instructions,
1808 state);
1809 YYLTYPE loc = array_size->get_location();
1810
1811 if (ir == NULL) {
1812 _mesa_glsl_error(& loc, state,
1813 "array size could not be resolved");
1814 return 0;
1815 }
1816
1817 if (!ir->type->is_integer()) {
1818 _mesa_glsl_error(& loc, state,
1819 "array size must be integer type");
1820 return 0;
1821 }
1822
1823 if (!ir->type->is_scalar()) {
1824 _mesa_glsl_error(& loc, state,
1825 "array size must be scalar type");
1826 return 0;
1827 }
1828
1829 ir_constant *const size = ir->constant_expression_value();
1830 if (size == NULL) {
1831 _mesa_glsl_error(& loc, state, "array size must be a "
1832 "constant valued expression");
1833 return 0;
1834 }
1835
1836 if (size->value.i[0] <= 0) {
1837 _mesa_glsl_error(& loc, state, "array size must be > 0");
1838 return 0;
1839 }
1840
1841 assert(size->type == ir->type);
1842
1843 /* If the array size is const (and we've verified that
1844 * it is) then no instructions should have been emitted
1845 * when we converted it to HIR. If they were emitted,
1846 * then either the array size isn't const after all, or
1847 * we are emitting unnecessary instructions.
1848 */
1849 assert(dummy_instructions.is_empty());
1850
1851 return size->value.u[0];
1852 }
1853
1854 static const glsl_type *
1855 process_array_type(YYLTYPE *loc, const glsl_type *base,
1856 ast_array_specifier *array_specifier,
1857 struct _mesa_glsl_parse_state *state)
1858 {
1859 const glsl_type *array_type = base;
1860
1861 if (array_specifier != NULL) {
1862 if (base->is_array()) {
1863
1864 /* From page 19 (page 25) of the GLSL 1.20 spec:
1865 *
1866 * "Only one-dimensional arrays may be declared."
1867 */
1868 if (!state->ARB_arrays_of_arrays_enable) {
1869 _mesa_glsl_error(loc, state,
1870 "invalid array of `%s'"
1871 "GL_ARB_arrays_of_arrays "
1872 "required for defining arrays of arrays",
1873 base->name);
1874 return glsl_type::error_type;
1875 }
1876
1877 if (base->length == 0) {
1878 _mesa_glsl_error(loc, state,
1879 "only the outermost array dimension can "
1880 "be unsized",
1881 base->name);
1882 return glsl_type::error_type;
1883 }
1884 }
1885
1886 for (exec_node *node = array_specifier->array_dimensions.tail_pred;
1887 !node->is_head_sentinel(); node = node->prev) {
1888 unsigned array_size = process_array_size(node, state);
1889 array_type = glsl_type::get_array_instance(array_type,
1890 array_size);
1891 }
1892
1893 if (array_specifier->is_unsized_array)
1894 array_type = glsl_type::get_array_instance(array_type, 0);
1895 }
1896
1897 return array_type;
1898 }
1899
1900
1901 const glsl_type *
1902 ast_type_specifier::glsl_type(const char **name,
1903 struct _mesa_glsl_parse_state *state) const
1904 {
1905 const struct glsl_type *type;
1906
1907 type = state->symbols->get_type(this->type_name);
1908 *name = this->type_name;
1909
1910 YYLTYPE loc = this->get_location();
1911 type = process_array_type(&loc, type, this->array_specifier, state);
1912
1913 return type;
1914 }
1915
1916 const glsl_type *
1917 ast_fully_specified_type::glsl_type(const char **name,
1918 struct _mesa_glsl_parse_state *state) const
1919 {
1920 const struct glsl_type *type = this->specifier->glsl_type(name, state);
1921
1922 if (type == NULL)
1923 return NULL;
1924
1925 if (type->base_type == GLSL_TYPE_FLOAT
1926 && state->es_shader
1927 && state->stage == MESA_SHADER_FRAGMENT
1928 && this->qualifier.precision == ast_precision_none
1929 && state->symbols->get_variable("#default precision") == NULL) {
1930 YYLTYPE loc = this->get_location();
1931 _mesa_glsl_error(&loc, state,
1932 "no precision specified this scope for type `%s'",
1933 type->name);
1934 }
1935
1936 return type;
1937 }
1938
1939 /**
1940 * Determine whether a toplevel variable declaration declares a varying. This
1941 * function operates by examining the variable's mode and the shader target,
1942 * so it correctly identifies linkage variables regardless of whether they are
1943 * declared using the deprecated "varying" syntax or the new "in/out" syntax.
1944 *
1945 * Passing a non-toplevel variable declaration (e.g. a function parameter) to
1946 * this function will produce undefined results.
1947 */
1948 static bool
1949 is_varying_var(ir_variable *var, gl_shader_stage target)
1950 {
1951 switch (target) {
1952 case MESA_SHADER_VERTEX:
1953 return var->data.mode == ir_var_shader_out;
1954 case MESA_SHADER_FRAGMENT:
1955 return var->data.mode == ir_var_shader_in;
1956 default:
1957 return var->data.mode == ir_var_shader_out || var->data.mode == ir_var_shader_in;
1958 }
1959 }
1960
1961
1962 /**
1963 * Matrix layout qualifiers are only allowed on certain types
1964 */
1965 static void
1966 validate_matrix_layout_for_type(struct _mesa_glsl_parse_state *state,
1967 YYLTYPE *loc,
1968 const glsl_type *type,
1969 ir_variable *var)
1970 {
1971 if (var && !var->is_in_uniform_block()) {
1972 /* Layout qualifiers may only apply to interface blocks and fields in
1973 * them.
1974 */
1975 _mesa_glsl_error(loc, state,
1976 "uniform block layout qualifiers row_major and "
1977 "column_major may not be applied to variables "
1978 "outside of uniform blocks");
1979 } else if (!type->is_matrix()) {
1980 /* The OpenGL ES 3.0 conformance tests did not originally allow
1981 * matrix layout qualifiers on non-matrices. However, the OpenGL
1982 * 4.4 and OpenGL ES 3.0 (revision TBD) specifications were
1983 * amended to specifically allow these layouts on all types. Emit
1984 * a warning so that people know their code may not be portable.
1985 */
1986 _mesa_glsl_warning(loc, state,
1987 "uniform block layout qualifiers row_major and "
1988 "column_major applied to non-matrix types may "
1989 "be rejected by older compilers");
1990 } else if (type->is_record()) {
1991 /* We allow 'layout(row_major)' on structure types because it's the only
1992 * way to get row-major layouts on matrices contained in structures.
1993 */
1994 _mesa_glsl_warning(loc, state,
1995 "uniform block layout qualifiers row_major and "
1996 "column_major applied to structure types is not "
1997 "strictly conformant and may be rejected by other "
1998 "compilers");
1999 }
2000 }
2001
2002 static bool
2003 validate_binding_qualifier(struct _mesa_glsl_parse_state *state,
2004 YYLTYPE *loc,
2005 ir_variable *var,
2006 const ast_type_qualifier *qual)
2007 {
2008 if (var->data.mode != ir_var_uniform) {
2009 _mesa_glsl_error(loc, state,
2010 "the \"binding\" qualifier only applies to uniforms");
2011 return false;
2012 }
2013
2014 if (qual->binding < 0) {
2015 _mesa_glsl_error(loc, state, "binding values must be >= 0");
2016 return false;
2017 }
2018
2019 const struct gl_context *const ctx = state->ctx;
2020 unsigned elements = var->type->is_array() ? var->type->length : 1;
2021 unsigned max_index = qual->binding + elements - 1;
2022
2023 if (var->type->is_interface()) {
2024 /* UBOs. From page 60 of the GLSL 4.20 specification:
2025 * "If the binding point for any uniform block instance is less than zero,
2026 * or greater than or equal to the implementation-dependent maximum
2027 * number of uniform buffer bindings, a compilation error will occur.
2028 * When the binding identifier is used with a uniform block instanced as
2029 * an array of size N, all elements of the array from binding through
2030 * binding + N – 1 must be within this range."
2031 *
2032 * The implementation-dependent maximum is GL_MAX_UNIFORM_BUFFER_BINDINGS.
2033 */
2034 if (max_index >= ctx->Const.MaxUniformBufferBindings) {
2035 _mesa_glsl_error(loc, state, "layout(binding = %d) for %d UBOs exceeds "
2036 "the maximum number of UBO binding points (%d)",
2037 qual->binding, elements,
2038 ctx->Const.MaxUniformBufferBindings);
2039 return false;
2040 }
2041 } else if (var->type->is_sampler() ||
2042 (var->type->is_array() && var->type->fields.array->is_sampler())) {
2043 /* Samplers. From page 63 of the GLSL 4.20 specification:
2044 * "If the binding is less than zero, or greater than or equal to the
2045 * implementation-dependent maximum supported number of units, a
2046 * compilation error will occur. When the binding identifier is used
2047 * with an array of size N, all elements of the array from binding
2048 * through binding + N - 1 must be within this range."
2049 */
2050 unsigned limit = ctx->Const.Program[state->stage].MaxTextureImageUnits;
2051
2052 if (max_index >= limit) {
2053 _mesa_glsl_error(loc, state, "layout(binding = %d) for %d samplers "
2054 "exceeds the maximum number of texture image units "
2055 "(%d)", qual->binding, elements, limit);
2056
2057 return false;
2058 }
2059 } else if (var->type->contains_atomic()) {
2060 assert(ctx->Const.MaxAtomicBufferBindings <= MAX_COMBINED_ATOMIC_BUFFERS);
2061 if (unsigned(qual->binding) >= ctx->Const.MaxAtomicBufferBindings) {
2062 _mesa_glsl_error(loc, state, "layout(binding = %d) exceeds the "
2063 " maximum number of atomic counter buffer bindings"
2064 "(%d)", qual->binding,
2065 ctx->Const.MaxAtomicBufferBindings);
2066
2067 return false;
2068 }
2069 } else {
2070 _mesa_glsl_error(loc, state,
2071 "the \"binding\" qualifier only applies to uniform "
2072 "blocks, samplers, atomic counters, or arrays thereof");
2073 return false;
2074 }
2075
2076 return true;
2077 }
2078
2079
2080 static glsl_interp_qualifier
2081 interpret_interpolation_qualifier(const struct ast_type_qualifier *qual,
2082 ir_variable_mode mode,
2083 struct _mesa_glsl_parse_state *state,
2084 YYLTYPE *loc)
2085 {
2086 glsl_interp_qualifier interpolation;
2087 if (qual->flags.q.flat)
2088 interpolation = INTERP_QUALIFIER_FLAT;
2089 else if (qual->flags.q.noperspective)
2090 interpolation = INTERP_QUALIFIER_NOPERSPECTIVE;
2091 else if (qual->flags.q.smooth)
2092 interpolation = INTERP_QUALIFIER_SMOOTH;
2093 else
2094 interpolation = INTERP_QUALIFIER_NONE;
2095
2096 if (interpolation != INTERP_QUALIFIER_NONE) {
2097 if (mode != ir_var_shader_in && mode != ir_var_shader_out) {
2098 _mesa_glsl_error(loc, state,
2099 "interpolation qualifier `%s' can only be applied to "
2100 "shader inputs or outputs.",
2101 interpolation_string(interpolation));
2102
2103 }
2104
2105 if ((state->stage == MESA_SHADER_VERTEX && mode == ir_var_shader_in) ||
2106 (state->stage == MESA_SHADER_FRAGMENT && mode == ir_var_shader_out)) {
2107 _mesa_glsl_error(loc, state,
2108 "interpolation qualifier `%s' cannot be applied to "
2109 "vertex shader inputs or fragment shader outputs",
2110 interpolation_string(interpolation));
2111 }
2112 }
2113
2114 return interpolation;
2115 }
2116
2117
2118 static void
2119 validate_explicit_location(const struct ast_type_qualifier *qual,
2120 ir_variable *var,
2121 struct _mesa_glsl_parse_state *state,
2122 YYLTYPE *loc)
2123 {
2124 bool fail = false;
2125
2126 /* In the vertex shader only shader inputs can be given explicit
2127 * locations.
2128 *
2129 * In the fragment shader only shader outputs can be given explicit
2130 * locations.
2131 */
2132 switch (state->stage) {
2133 case MESA_SHADER_VERTEX:
2134 if (var->data.mode == ir_var_shader_in) {
2135 if (!state->check_explicit_attrib_location_allowed(loc, var))
2136 return;
2137
2138 break;
2139 }
2140
2141 fail = true;
2142 break;
2143
2144 case MESA_SHADER_GEOMETRY:
2145 _mesa_glsl_error(loc, state,
2146 "geometry shader variables cannot be given "
2147 "explicit locations");
2148 return;
2149
2150 case MESA_SHADER_FRAGMENT:
2151 if (var->data.mode == ir_var_shader_out) {
2152 if (!state->check_explicit_attrib_location_allowed(loc, var))
2153 return;
2154
2155 break;
2156 }
2157
2158 fail = true;
2159 break;
2160
2161 case MESA_SHADER_COMPUTE:
2162 _mesa_glsl_error(loc, state,
2163 "compute shader variables cannot be given "
2164 "explicit locations");
2165 return;
2166 };
2167
2168 if (fail) {
2169 _mesa_glsl_error(loc, state,
2170 "%s cannot be given an explicit location in %s shader",
2171 mode_string(var),
2172 _mesa_shader_stage_to_string(state->stage));
2173 } else {
2174 var->data.explicit_location = true;
2175
2176 /* This bit of silliness is needed because invalid explicit locations
2177 * are supposed to be flagged during linking. Small negative values
2178 * biased by VERT_ATTRIB_GENERIC0 or FRAG_RESULT_DATA0 could alias
2179 * built-in values (e.g., -16+VERT_ATTRIB_GENERIC0 = VERT_ATTRIB_POS).
2180 * The linker needs to be able to differentiate these cases. This
2181 * ensures that negative values stay negative.
2182 */
2183 if (qual->location >= 0) {
2184 var->data.location = (state->stage == MESA_SHADER_VERTEX)
2185 ? (qual->location + VERT_ATTRIB_GENERIC0)
2186 : (qual->location + FRAG_RESULT_DATA0);
2187 } else {
2188 var->data.location = qual->location;
2189 }
2190
2191 if (qual->flags.q.explicit_index) {
2192 /* From the GLSL 4.30 specification, section 4.4.2 (Output
2193 * Layout Qualifiers):
2194 *
2195 * "It is also a compile-time error if a fragment shader
2196 * sets a layout index to less than 0 or greater than 1."
2197 *
2198 * Older specifications don't mandate a behavior; we take
2199 * this as a clarification and always generate the error.
2200 */
2201 if (qual->index < 0 || qual->index > 1) {
2202 _mesa_glsl_error(loc, state,
2203 "explicit index may only be 0 or 1");
2204 } else {
2205 var->data.explicit_index = true;
2206 var->data.index = qual->index;
2207 }
2208 }
2209 }
2210
2211 return;
2212 }
2213
2214 static void
2215 apply_image_qualifier_to_variable(const struct ast_type_qualifier *qual,
2216 ir_variable *var,
2217 struct _mesa_glsl_parse_state *state,
2218 YYLTYPE *loc)
2219 {
2220 const glsl_type *base_type =
2221 (var->type->is_array() ? var->type->element_type() : var->type);
2222
2223 if (base_type->is_image()) {
2224 if (var->data.mode != ir_var_uniform &&
2225 var->data.mode != ir_var_function_in) {
2226 _mesa_glsl_error(loc, state, "image variables may only be declared as "
2227 "function parameters or uniform-qualified "
2228 "global variables");
2229 }
2230
2231 var->data.image.read_only |= qual->flags.q.read_only;
2232 var->data.image.write_only |= qual->flags.q.write_only;
2233 var->data.image.coherent |= qual->flags.q.coherent;
2234 var->data.image._volatile |= qual->flags.q._volatile;
2235 var->data.image.restrict_flag |= qual->flags.q.restrict_flag;
2236 var->data.read_only = true;
2237
2238 if (qual->flags.q.explicit_image_format) {
2239 if (var->data.mode == ir_var_function_in) {
2240 _mesa_glsl_error(loc, state, "format qualifiers cannot be "
2241 "used on image function parameters");
2242 }
2243
2244 if (qual->image_base_type != base_type->sampler_type) {
2245 _mesa_glsl_error(loc, state, "format qualifier doesn't match the "
2246 "base data type of the image");
2247 }
2248
2249 var->data.image.format = qual->image_format;
2250 } else {
2251 if (var->data.mode == ir_var_uniform && !qual->flags.q.write_only) {
2252 _mesa_glsl_error(loc, state, "uniforms not qualified with "
2253 "`writeonly' must have a format layout "
2254 "qualifier");
2255 }
2256
2257 var->data.image.format = GL_NONE;
2258 }
2259 }
2260 }
2261
2262 static void
2263 apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
2264 ir_variable *var,
2265 struct _mesa_glsl_parse_state *state,
2266 YYLTYPE *loc,
2267 bool is_parameter)
2268 {
2269 STATIC_ASSERT(sizeof(qual->flags.q) <= sizeof(qual->flags.i));
2270
2271 if (qual->flags.q.invariant) {
2272 if (var->data.used) {
2273 _mesa_glsl_error(loc, state,
2274 "variable `%s' may not be redeclared "
2275 "`invariant' after being used",
2276 var->name);
2277 } else {
2278 var->data.invariant = 1;
2279 }
2280 }
2281
2282 if (qual->flags.q.constant || qual->flags.q.attribute
2283 || qual->flags.q.uniform
2284 || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
2285 var->data.read_only = 1;
2286
2287 if (qual->flags.q.centroid)
2288 var->data.centroid = 1;
2289
2290 if (qual->flags.q.sample)
2291 var->data.sample = 1;
2292
2293 if (qual->flags.q.attribute && state->stage != MESA_SHADER_VERTEX) {
2294 var->type = glsl_type::error_type;
2295 _mesa_glsl_error(loc, state,
2296 "`attribute' variables may not be declared in the "
2297 "%s shader",
2298 _mesa_shader_stage_to_string(state->stage));
2299 }
2300
2301 /* Section 6.1.1 (Function Calling Conventions) of the GLSL 1.10 spec says:
2302 *
2303 * "However, the const qualifier cannot be used with out or inout."
2304 *
2305 * The same section of the GLSL 4.40 spec further clarifies this saying:
2306 *
2307 * "The const qualifier cannot be used with out or inout, or a
2308 * compile-time error results."
2309 */
2310 if (is_parameter && qual->flags.q.constant && qual->flags.q.out) {
2311 _mesa_glsl_error(loc, state,
2312 "`const' may not be applied to `out' or `inout' "
2313 "function parameters");
2314 }
2315
2316 /* If there is no qualifier that changes the mode of the variable, leave
2317 * the setting alone.
2318 */
2319 if (qual->flags.q.in && qual->flags.q.out)
2320 var->data.mode = ir_var_function_inout;
2321 else if (qual->flags.q.in)
2322 var->data.mode = is_parameter ? ir_var_function_in : ir_var_shader_in;
2323 else if (qual->flags.q.attribute
2324 || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
2325 var->data.mode = ir_var_shader_in;
2326 else if (qual->flags.q.out)
2327 var->data.mode = is_parameter ? ir_var_function_out : ir_var_shader_out;
2328 else if (qual->flags.q.varying && (state->stage == MESA_SHADER_VERTEX))
2329 var->data.mode = ir_var_shader_out;
2330 else if (qual->flags.q.uniform)
2331 var->data.mode = ir_var_uniform;
2332
2333 if (!is_parameter && is_varying_var(var, state->stage)) {
2334 /* User-defined ins/outs are not permitted in compute shaders. */
2335 if (state->stage == MESA_SHADER_COMPUTE) {
2336 _mesa_glsl_error(loc, state,
2337 "user-defined input and output variables are not "
2338 "permitted in compute shaders");
2339 }
2340
2341 /* This variable is being used to link data between shader stages (in
2342 * pre-glsl-1.30 parlance, it's a "varying"). Check that it has a type
2343 * that is allowed for such purposes.
2344 *
2345 * From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
2346 *
2347 * "The varying qualifier can be used only with the data types
2348 * float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
2349 * these."
2350 *
2351 * This was relaxed in GLSL version 1.30 and GLSL ES version 3.00. From
2352 * page 31 (page 37 of the PDF) of the GLSL 1.30 spec:
2353 *
2354 * "Fragment inputs can only be signed and unsigned integers and
2355 * integer vectors, float, floating-point vectors, matrices, or
2356 * arrays of these. Structures cannot be input.
2357 *
2358 * Similar text exists in the section on vertex shader outputs.
2359 *
2360 * Similar text exists in the GLSL ES 3.00 spec, except that the GLSL ES
2361 * 3.00 spec allows structs as well. Varying structs are also allowed
2362 * in GLSL 1.50.
2363 */
2364 switch (var->type->get_scalar_type()->base_type) {
2365 case GLSL_TYPE_FLOAT:
2366 /* Ok in all GLSL versions */
2367 break;
2368 case GLSL_TYPE_UINT:
2369 case GLSL_TYPE_INT:
2370 if (state->is_version(130, 300))
2371 break;
2372 _mesa_glsl_error(loc, state,
2373 "varying variables must be of base type float in %s",
2374 state->get_version_string());
2375 break;
2376 case GLSL_TYPE_STRUCT:
2377 if (state->is_version(150, 300))
2378 break;
2379 _mesa_glsl_error(loc, state,
2380 "varying variables may not be of type struct");
2381 break;
2382 default:
2383 _mesa_glsl_error(loc, state, "illegal type for a varying variable");
2384 break;
2385 }
2386 }
2387
2388 if (state->all_invariant && (state->current_function == NULL)) {
2389 switch (state->stage) {
2390 case MESA_SHADER_VERTEX:
2391 if (var->data.mode == ir_var_shader_out)
2392 var->data.invariant = true;
2393 break;
2394 case MESA_SHADER_GEOMETRY:
2395 if ((var->data.mode == ir_var_shader_in)
2396 || (var->data.mode == ir_var_shader_out))
2397 var->data.invariant = true;
2398 break;
2399 case MESA_SHADER_FRAGMENT:
2400 if (var->data.mode == ir_var_shader_in)
2401 var->data.invariant = true;
2402 break;
2403 case MESA_SHADER_COMPUTE:
2404 /* Invariance isn't meaningful in compute shaders. */
2405 break;
2406 }
2407 }
2408
2409 var->data.interpolation =
2410 interpret_interpolation_qualifier(qual, (ir_variable_mode) var->data.mode,
2411 state, loc);
2412
2413 var->data.pixel_center_integer = qual->flags.q.pixel_center_integer;
2414 var->data.origin_upper_left = qual->flags.q.origin_upper_left;
2415 if ((qual->flags.q.origin_upper_left || qual->flags.q.pixel_center_integer)
2416 && (strcmp(var->name, "gl_FragCoord") != 0)) {
2417 const char *const qual_string = (qual->flags.q.origin_upper_left)
2418 ? "origin_upper_left" : "pixel_center_integer";
2419
2420 _mesa_glsl_error(loc, state,
2421 "layout qualifier `%s' can only be applied to "
2422 "fragment shader input `gl_FragCoord'",
2423 qual_string);
2424 }
2425
2426 if (qual->flags.q.explicit_location) {
2427 validate_explicit_location(qual, var, state, loc);
2428 } else if (qual->flags.q.explicit_index) {
2429 _mesa_glsl_error(loc, state,
2430 "explicit index requires explicit location");
2431 }
2432
2433 if (qual->flags.q.explicit_binding &&
2434 validate_binding_qualifier(state, loc, var, qual)) {
2435 var->data.explicit_binding = true;
2436 var->data.binding = qual->binding;
2437 }
2438
2439 if (var->type->contains_atomic()) {
2440 if (var->data.mode == ir_var_uniform) {
2441 if (var->data.explicit_binding) {
2442 unsigned *offset =
2443 &state->atomic_counter_offsets[var->data.binding];
2444
2445 if (*offset % ATOMIC_COUNTER_SIZE)
2446 _mesa_glsl_error(loc, state,
2447 "misaligned atomic counter offset");
2448
2449 var->data.atomic.offset = *offset;
2450 *offset += var->type->atomic_size();
2451
2452 } else {
2453 _mesa_glsl_error(loc, state,
2454 "atomic counters require explicit binding point");
2455 }
2456 } else if (var->data.mode != ir_var_function_in) {
2457 _mesa_glsl_error(loc, state, "atomic counters may only be declared as "
2458 "function parameters or uniform-qualified "
2459 "global variables");
2460 }
2461 }
2462
2463 /* Does the declaration use the deprecated 'attribute' or 'varying'
2464 * keywords?
2465 */
2466 const bool uses_deprecated_qualifier = qual->flags.q.attribute
2467 || qual->flags.q.varying;
2468
2469 /* Is the 'layout' keyword used with parameters that allow relaxed checking.
2470 * Many implementations of GL_ARB_fragment_coord_conventions_enable and some
2471 * implementations (only Mesa?) GL_ARB_explicit_attrib_location_enable
2472 * allowed the layout qualifier to be used with 'varying' and 'attribute'.
2473 * These extensions and all following extensions that add the 'layout'
2474 * keyword have been modified to require the use of 'in' or 'out'.
2475 *
2476 * The following extension do not allow the deprecated keywords:
2477 *
2478 * GL_AMD_conservative_depth
2479 * GL_ARB_conservative_depth
2480 * GL_ARB_gpu_shader5
2481 * GL_ARB_separate_shader_objects
2482 * GL_ARB_tesselation_shader
2483 * GL_ARB_transform_feedback3
2484 * GL_ARB_uniform_buffer_object
2485 *
2486 * It is unknown whether GL_EXT_shader_image_load_store or GL_NV_gpu_shader5
2487 * allow layout with the deprecated keywords.
2488 */
2489 const bool relaxed_layout_qualifier_checking =
2490 state->ARB_fragment_coord_conventions_enable;
2491
2492 if (qual->has_layout() && uses_deprecated_qualifier) {
2493 if (relaxed_layout_qualifier_checking) {
2494 _mesa_glsl_warning(loc, state,
2495 "`layout' qualifier may not be used with "
2496 "`attribute' or `varying'");
2497 } else {
2498 _mesa_glsl_error(loc, state,
2499 "`layout' qualifier may not be used with "
2500 "`attribute' or `varying'");
2501 }
2502 }
2503
2504 /* Layout qualifiers for gl_FragDepth, which are enabled by extension
2505 * AMD_conservative_depth.
2506 */
2507 int depth_layout_count = qual->flags.q.depth_any
2508 + qual->flags.q.depth_greater
2509 + qual->flags.q.depth_less
2510 + qual->flags.q.depth_unchanged;
2511 if (depth_layout_count > 0
2512 && !state->AMD_conservative_depth_enable
2513 && !state->ARB_conservative_depth_enable) {
2514 _mesa_glsl_error(loc, state,
2515 "extension GL_AMD_conservative_depth or "
2516 "GL_ARB_conservative_depth must be enabled "
2517 "to use depth layout qualifiers");
2518 } else if (depth_layout_count > 0
2519 && strcmp(var->name, "gl_FragDepth") != 0) {
2520 _mesa_glsl_error(loc, state,
2521 "depth layout qualifiers can be applied only to "
2522 "gl_FragDepth");
2523 } else if (depth_layout_count > 1
2524 && strcmp(var->name, "gl_FragDepth") == 0) {
2525 _mesa_glsl_error(loc, state,
2526 "at most one depth layout qualifier can be applied to "
2527 "gl_FragDepth");
2528 }
2529 if (qual->flags.q.depth_any)
2530 var->data.depth_layout = ir_depth_layout_any;
2531 else if (qual->flags.q.depth_greater)
2532 var->data.depth_layout = ir_depth_layout_greater;
2533 else if (qual->flags.q.depth_less)
2534 var->data.depth_layout = ir_depth_layout_less;
2535 else if (qual->flags.q.depth_unchanged)
2536 var->data.depth_layout = ir_depth_layout_unchanged;
2537 else
2538 var->data.depth_layout = ir_depth_layout_none;
2539
2540 if (qual->flags.q.std140 ||
2541 qual->flags.q.packed ||
2542 qual->flags.q.shared) {
2543 _mesa_glsl_error(loc, state,
2544 "uniform block layout qualifiers std140, packed, and "
2545 "shared can only be applied to uniform blocks, not "
2546 "members");
2547 }
2548
2549 if (qual->flags.q.row_major || qual->flags.q.column_major) {
2550 validate_matrix_layout_for_type(state, loc, var->type, var);
2551 }
2552
2553 if (var->type->contains_image())
2554 apply_image_qualifier_to_variable(qual, var, state, loc);
2555 }
2556
2557 /**
2558 * Get the variable that is being redeclared by this declaration
2559 *
2560 * Semantic checks to verify the validity of the redeclaration are also
2561 * performed. If semantic checks fail, compilation error will be emitted via
2562 * \c _mesa_glsl_error, but a non-\c NULL pointer will still be returned.
2563 *
2564 * \returns
2565 * A pointer to an existing variable in the current scope if the declaration
2566 * is a redeclaration, \c NULL otherwise.
2567 */
2568 static ir_variable *
2569 get_variable_being_redeclared(ir_variable *var, YYLTYPE loc,
2570 struct _mesa_glsl_parse_state *state,
2571 bool allow_all_redeclarations)
2572 {
2573 /* Check if this declaration is actually a re-declaration, either to
2574 * resize an array or add qualifiers to an existing variable.
2575 *
2576 * This is allowed for variables in the current scope, or when at
2577 * global scope (for built-ins in the implicit outer scope).
2578 */
2579 ir_variable *earlier = state->symbols->get_variable(var->name);
2580 if (earlier == NULL ||
2581 (state->current_function != NULL &&
2582 !state->symbols->name_declared_this_scope(var->name))) {
2583 return NULL;
2584 }
2585
2586
2587 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
2588 *
2589 * "It is legal to declare an array without a size and then
2590 * later re-declare the same name as an array of the same
2591 * type and specify a size."
2592 */
2593 if (earlier->type->is_unsized_array() && var->type->is_array()
2594 && (var->type->element_type() == earlier->type->element_type())) {
2595 /* FINISHME: This doesn't match the qualifiers on the two
2596 * FINISHME: declarations. It's not 100% clear whether this is
2597 * FINISHME: required or not.
2598 */
2599
2600 const unsigned size = unsigned(var->type->array_size());
2601 check_builtin_array_max_size(var->name, size, loc, state);
2602 if ((size > 0) && (size <= earlier->data.max_array_access)) {
2603 _mesa_glsl_error(& loc, state, "array size must be > %u due to "
2604 "previous access",
2605 earlier->data.max_array_access);
2606 }
2607
2608 earlier->type = var->type;
2609 delete var;
2610 var = NULL;
2611 } else if ((state->ARB_fragment_coord_conventions_enable ||
2612 state->is_version(150, 0))
2613 && strcmp(var->name, "gl_FragCoord") == 0
2614 && earlier->type == var->type
2615 && earlier->data.mode == var->data.mode) {
2616 /* Allow redeclaration of gl_FragCoord for ARB_fcc layout
2617 * qualifiers.
2618 */
2619 earlier->data.origin_upper_left = var->data.origin_upper_left;
2620 earlier->data.pixel_center_integer = var->data.pixel_center_integer;
2621
2622 /* According to section 4.3.7 of the GLSL 1.30 spec,
2623 * the following built-in varaibles can be redeclared with an
2624 * interpolation qualifier:
2625 * * gl_FrontColor
2626 * * gl_BackColor
2627 * * gl_FrontSecondaryColor
2628 * * gl_BackSecondaryColor
2629 * * gl_Color
2630 * * gl_SecondaryColor
2631 */
2632 } else if (state->is_version(130, 0)
2633 && (strcmp(var->name, "gl_FrontColor") == 0
2634 || strcmp(var->name, "gl_BackColor") == 0
2635 || strcmp(var->name, "gl_FrontSecondaryColor") == 0
2636 || strcmp(var->name, "gl_BackSecondaryColor") == 0
2637 || strcmp(var->name, "gl_Color") == 0
2638 || strcmp(var->name, "gl_SecondaryColor") == 0)
2639 && earlier->type == var->type
2640 && earlier->data.mode == var->data.mode) {
2641 earlier->data.interpolation = var->data.interpolation;
2642
2643 /* Layout qualifiers for gl_FragDepth. */
2644 } else if ((state->AMD_conservative_depth_enable ||
2645 state->ARB_conservative_depth_enable)
2646 && strcmp(var->name, "gl_FragDepth") == 0
2647 && earlier->type == var->type
2648 && earlier->data.mode == var->data.mode) {
2649
2650 /** From the AMD_conservative_depth spec:
2651 * Within any shader, the first redeclarations of gl_FragDepth
2652 * must appear before any use of gl_FragDepth.
2653 */
2654 if (earlier->data.used) {
2655 _mesa_glsl_error(&loc, state,
2656 "the first redeclaration of gl_FragDepth "
2657 "must appear before any use of gl_FragDepth");
2658 }
2659
2660 /* Prevent inconsistent redeclaration of depth layout qualifier. */
2661 if (earlier->data.depth_layout != ir_depth_layout_none
2662 && earlier->data.depth_layout != var->data.depth_layout) {
2663 _mesa_glsl_error(&loc, state,
2664 "gl_FragDepth: depth layout is declared here "
2665 "as '%s, but it was previously declared as "
2666 "'%s'",
2667 depth_layout_string(var->data.depth_layout),
2668 depth_layout_string(earlier->data.depth_layout));
2669 }
2670
2671 earlier->data.depth_layout = var->data.depth_layout;
2672
2673 } else if (allow_all_redeclarations) {
2674 if (earlier->data.mode != var->data.mode) {
2675 _mesa_glsl_error(&loc, state,
2676 "redeclaration of `%s' with incorrect qualifiers",
2677 var->name);
2678 } else if (earlier->type != var->type) {
2679 _mesa_glsl_error(&loc, state,
2680 "redeclaration of `%s' has incorrect type",
2681 var->name);
2682 }
2683 } else {
2684 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
2685 }
2686
2687 return earlier;
2688 }
2689
2690 /**
2691 * Generate the IR for an initializer in a variable declaration
2692 */
2693 ir_rvalue *
2694 process_initializer(ir_variable *var, ast_declaration *decl,
2695 ast_fully_specified_type *type,
2696 exec_list *initializer_instructions,
2697 struct _mesa_glsl_parse_state *state)
2698 {
2699 ir_rvalue *result = NULL;
2700
2701 YYLTYPE initializer_loc = decl->initializer->get_location();
2702
2703 /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
2704 *
2705 * "All uniform variables are read-only and are initialized either
2706 * directly by an application via API commands, or indirectly by
2707 * OpenGL."
2708 */
2709 if (var->data.mode == ir_var_uniform) {
2710 state->check_version(120, 0, &initializer_loc,
2711 "cannot initialize uniforms");
2712 }
2713
2714 /* From section 4.1.7 of the GLSL 4.40 spec:
2715 *
2716 * "Opaque variables [...] are initialized only through the
2717 * OpenGL API; they cannot be declared with an initializer in a
2718 * shader."
2719 */
2720 if (var->type->contains_opaque()) {
2721 _mesa_glsl_error(& initializer_loc, state,
2722 "cannot initialize opaque variable");
2723 }
2724
2725 if ((var->data.mode == ir_var_shader_in) && (state->current_function == NULL)) {
2726 _mesa_glsl_error(& initializer_loc, state,
2727 "cannot initialize %s shader input / %s",
2728 _mesa_shader_stage_to_string(state->stage),
2729 (state->stage == MESA_SHADER_VERTEX)
2730 ? "attribute" : "varying");
2731 }
2732
2733 /* If the initializer is an ast_aggregate_initializer, recursively store
2734 * type information from the LHS into it, so that its hir() function can do
2735 * type checking.
2736 */
2737 if (decl->initializer->oper == ast_aggregate)
2738 _mesa_ast_set_aggregate_type(var->type, decl->initializer);
2739
2740 ir_dereference *const lhs = new(state) ir_dereference_variable(var);
2741 ir_rvalue *rhs = decl->initializer->hir(initializer_instructions,
2742 state);
2743
2744 /* Calculate the constant value if this is a const or uniform
2745 * declaration.
2746 */
2747 if (type->qualifier.flags.q.constant
2748 || type->qualifier.flags.q.uniform) {
2749 ir_rvalue *new_rhs = validate_assignment(state, initializer_loc,
2750 var->type, rhs, true);
2751 if (new_rhs != NULL) {
2752 rhs = new_rhs;
2753
2754 ir_constant *constant_value = rhs->constant_expression_value();
2755 if (!constant_value) {
2756 /* If ARB_shading_language_420pack is enabled, initializers of
2757 * const-qualified local variables do not have to be constant
2758 * expressions. Const-qualified global variables must still be
2759 * initialized with constant expressions.
2760 */
2761 if (!state->ARB_shading_language_420pack_enable
2762 || state->current_function == NULL) {
2763 _mesa_glsl_error(& initializer_loc, state,
2764 "initializer of %s variable `%s' must be a "
2765 "constant expression",
2766 (type->qualifier.flags.q.constant)
2767 ? "const" : "uniform",
2768 decl->identifier);
2769 if (var->type->is_numeric()) {
2770 /* Reduce cascading errors. */
2771 var->constant_value = ir_constant::zero(state, var->type);
2772 }
2773 }
2774 } else {
2775 rhs = constant_value;
2776 var->constant_value = constant_value;
2777 }
2778 } else {
2779 if (var->type->is_numeric()) {
2780 /* Reduce cascading errors. */
2781 var->constant_value = ir_constant::zero(state, var->type);
2782 }
2783 }
2784 }
2785
2786 if (rhs && !rhs->type->is_error()) {
2787 bool temp = var->data.read_only;
2788 if (type->qualifier.flags.q.constant)
2789 var->data.read_only = false;
2790
2791 /* Never emit code to initialize a uniform.
2792 */
2793 const glsl_type *initializer_type;
2794 if (!type->qualifier.flags.q.uniform) {
2795 result = do_assignment(initializer_instructions, state,
2796 NULL,
2797 lhs, rhs, true,
2798 type->get_location());
2799 initializer_type = result->type;
2800 } else
2801 initializer_type = rhs->type;
2802
2803 var->constant_initializer = rhs->constant_expression_value();
2804 var->data.has_initializer = true;
2805
2806 /* If the declared variable is an unsized array, it must inherrit
2807 * its full type from the initializer. A declaration such as
2808 *
2809 * uniform float a[] = float[](1.0, 2.0, 3.0, 3.0);
2810 *
2811 * becomes
2812 *
2813 * uniform float a[4] = float[](1.0, 2.0, 3.0, 3.0);
2814 *
2815 * The assignment generated in the if-statement (below) will also
2816 * automatically handle this case for non-uniforms.
2817 *
2818 * If the declared variable is not an array, the types must
2819 * already match exactly. As a result, the type assignment
2820 * here can be done unconditionally. For non-uniforms the call
2821 * to do_assignment can change the type of the initializer (via
2822 * the implicit conversion rules). For uniforms the initializer
2823 * must be a constant expression, and the type of that expression
2824 * was validated above.
2825 */
2826 var->type = initializer_type;
2827
2828 var->data.read_only = temp;
2829 }
2830
2831 return result;
2832 }
2833
2834
2835 /**
2836 * Do additional processing necessary for geometry shader input declarations
2837 * (this covers both interface blocks arrays and bare input variables).
2838 */
2839 static void
2840 handle_geometry_shader_input_decl(struct _mesa_glsl_parse_state *state,
2841 YYLTYPE loc, ir_variable *var)
2842 {
2843 unsigned num_vertices = 0;
2844 if (state->gs_input_prim_type_specified) {
2845 num_vertices = vertices_per_prim(state->gs_input_prim_type);
2846 }
2847
2848 /* Geometry shader input variables must be arrays. Caller should have
2849 * reported an error for this.
2850 */
2851 if (!var->type->is_array()) {
2852 assert(state->error);
2853
2854 /* To avoid cascading failures, short circuit the checks below. */
2855 return;
2856 }
2857
2858 if (var->type->is_unsized_array()) {
2859 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec says:
2860 *
2861 * All geometry shader input unsized array declarations will be
2862 * sized by an earlier input layout qualifier, when present, as per
2863 * the following table.
2864 *
2865 * Followed by a table mapping each allowed input layout qualifier to
2866 * the corresponding input length.
2867 */
2868 if (num_vertices != 0)
2869 var->type = glsl_type::get_array_instance(var->type->fields.array,
2870 num_vertices);
2871 } else {
2872 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec
2873 * includes the following examples of compile-time errors:
2874 *
2875 * // code sequence within one shader...
2876 * in vec4 Color1[]; // size unknown
2877 * ...Color1.length()...// illegal, length() unknown
2878 * in vec4 Color2[2]; // size is 2
2879 * ...Color1.length()...// illegal, Color1 still has no size
2880 * in vec4 Color3[3]; // illegal, input sizes are inconsistent
2881 * layout(lines) in; // legal, input size is 2, matching
2882 * in vec4 Color4[3]; // illegal, contradicts layout
2883 * ...
2884 *
2885 * To detect the case illustrated by Color3, we verify that the size of
2886 * an explicitly-sized array matches the size of any previously declared
2887 * explicitly-sized array. To detect the case illustrated by Color4, we
2888 * verify that the size of an explicitly-sized array is consistent with
2889 * any previously declared input layout.
2890 */
2891 if (num_vertices != 0 && var->type->length != num_vertices) {
2892 _mesa_glsl_error(&loc, state,
2893 "geometry shader input size contradicts previously"
2894 " declared layout (size is %u, but layout requires a"
2895 " size of %u)", var->type->length, num_vertices);
2896 } else if (state->gs_input_size != 0 &&
2897 var->type->length != state->gs_input_size) {
2898 _mesa_glsl_error(&loc, state,
2899 "geometry shader input sizes are "
2900 "inconsistent (size is %u, but a previous "
2901 "declaration has size %u)",
2902 var->type->length, state->gs_input_size);
2903 } else {
2904 state->gs_input_size = var->type->length;
2905 }
2906 }
2907 }
2908
2909
2910 void
2911 validate_identifier(const char *identifier, YYLTYPE loc,
2912 struct _mesa_glsl_parse_state *state)
2913 {
2914 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
2915 *
2916 * "Identifiers starting with "gl_" are reserved for use by
2917 * OpenGL, and may not be declared in a shader as either a
2918 * variable or a function."
2919 */
2920 if (strncmp(identifier, "gl_", 3) == 0) {
2921 _mesa_glsl_error(&loc, state,
2922 "identifier `%s' uses reserved `gl_' prefix",
2923 identifier);
2924 } else if (strstr(identifier, "__")) {
2925 /* From page 14 (page 20 of the PDF) of the GLSL 1.10
2926 * spec:
2927 *
2928 * "In addition, all identifiers containing two
2929 * consecutive underscores (__) are reserved as
2930 * possible future keywords."
2931 *
2932 * The intention is that names containing __ are reserved for internal
2933 * use by the implementation, and names prefixed with GL_ are reserved
2934 * for use by Khronos. Names simply containing __ are dangerous to use,
2935 * but should be allowed.
2936 *
2937 * A future version of the GLSL specification will clarify this.
2938 */
2939 _mesa_glsl_warning(&loc, state,
2940 "identifier `%s' uses reserved `__' string",
2941 identifier);
2942 }
2943 }
2944
2945
2946 ir_rvalue *
2947 ast_declarator_list::hir(exec_list *instructions,
2948 struct _mesa_glsl_parse_state *state)
2949 {
2950 void *ctx = state;
2951 const struct glsl_type *decl_type;
2952 const char *type_name = NULL;
2953 ir_rvalue *result = NULL;
2954 YYLTYPE loc = this->get_location();
2955
2956 /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec:
2957 *
2958 * "To ensure that a particular output variable is invariant, it is
2959 * necessary to use the invariant qualifier. It can either be used to
2960 * qualify a previously declared variable as being invariant
2961 *
2962 * invariant gl_Position; // make existing gl_Position be invariant"
2963 *
2964 * In these cases the parser will set the 'invariant' flag in the declarator
2965 * list, and the type will be NULL.
2966 */
2967 if (this->invariant) {
2968 assert(this->type == NULL);
2969
2970 if (state->current_function != NULL) {
2971 _mesa_glsl_error(& loc, state,
2972 "all uses of `invariant' keyword must be at global "
2973 "scope");
2974 }
2975
2976 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
2977 assert(decl->array_specifier == NULL);
2978 assert(decl->initializer == NULL);
2979
2980 ir_variable *const earlier =
2981 state->symbols->get_variable(decl->identifier);
2982 if (earlier == NULL) {
2983 _mesa_glsl_error(& loc, state,
2984 "undeclared variable `%s' cannot be marked "
2985 "invariant", decl->identifier);
2986 } else if ((state->stage == MESA_SHADER_VERTEX)
2987 && (earlier->data.mode != ir_var_shader_out)) {
2988 _mesa_glsl_error(& loc, state,
2989 "`%s' cannot be marked invariant, vertex shader "
2990 "outputs only", decl->identifier);
2991 } else if ((state->stage == MESA_SHADER_FRAGMENT)
2992 && (earlier->data.mode != ir_var_shader_in)) {
2993 _mesa_glsl_error(& loc, state,
2994 "`%s' cannot be marked invariant, fragment shader "
2995 "inputs only", decl->identifier);
2996 } else if (earlier->data.used) {
2997 _mesa_glsl_error(& loc, state,
2998 "variable `%s' may not be redeclared "
2999 "`invariant' after being used",
3000 earlier->name);
3001 } else {
3002 earlier->data.invariant = true;
3003 }
3004 }
3005
3006 /* Invariant redeclarations do not have r-values.
3007 */
3008 return NULL;
3009 }
3010
3011 assert(this->type != NULL);
3012 assert(!this->invariant);
3013
3014 /* The type specifier may contain a structure definition. Process that
3015 * before any of the variable declarations.
3016 */
3017 (void) this->type->specifier->hir(instructions, state);
3018
3019 decl_type = this->type->glsl_type(& type_name, state);
3020
3021 /* An offset-qualified atomic counter declaration sets the default
3022 * offset for the next declaration within the same atomic counter
3023 * buffer.
3024 */
3025 if (decl_type && decl_type->contains_atomic()) {
3026 if (type->qualifier.flags.q.explicit_binding &&
3027 type->qualifier.flags.q.explicit_offset)
3028 state->atomic_counter_offsets[type->qualifier.binding] =
3029 type->qualifier.offset;
3030 }
3031
3032 if (this->declarations.is_empty()) {
3033 /* If there is no structure involved in the program text, there are two
3034 * possible scenarios:
3035 *
3036 * - The program text contained something like 'vec4;'. This is an
3037 * empty declaration. It is valid but weird. Emit a warning.
3038 *
3039 * - The program text contained something like 'S;' and 'S' is not the
3040 * name of a known structure type. This is both invalid and weird.
3041 * Emit an error.
3042 *
3043 * - The program text contained something like 'mediump float;'
3044 * when the programmer probably meant 'precision mediump
3045 * float;' Emit a warning with a description of what they
3046 * probably meant to do.
3047 *
3048 * Note that if decl_type is NULL and there is a structure involved,
3049 * there must have been some sort of error with the structure. In this
3050 * case we assume that an error was already generated on this line of
3051 * code for the structure. There is no need to generate an additional,
3052 * confusing error.
3053 */
3054 assert(this->type->specifier->structure == NULL || decl_type != NULL
3055 || state->error);
3056
3057 if (decl_type == NULL) {
3058 _mesa_glsl_error(&loc, state,
3059 "invalid type `%s' in empty declaration",
3060 type_name);
3061 } else if (decl_type->base_type == GLSL_TYPE_ATOMIC_UINT) {
3062 /* Empty atomic counter declarations are allowed and useful
3063 * to set the default offset qualifier.
3064 */
3065 return NULL;
3066 } else if (this->type->qualifier.precision != ast_precision_none) {
3067 if (this->type->specifier->structure != NULL) {
3068 _mesa_glsl_error(&loc, state,
3069 "precision qualifiers can't be applied "
3070 "to structures");
3071 } else {
3072 static const char *const precision_names[] = {
3073 "highp",
3074 "highp",
3075 "mediump",
3076 "lowp"
3077 };
3078
3079 _mesa_glsl_warning(&loc, state,
3080 "empty declaration with precision qualifier, "
3081 "to set the default precision, use "
3082 "`precision %s %s;'",
3083 precision_names[this->type->qualifier.precision],
3084 type_name);
3085 }
3086 } else if (this->type->specifier->structure == NULL) {
3087 _mesa_glsl_warning(&loc, state, "empty declaration");
3088 }
3089 }
3090
3091 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
3092 const struct glsl_type *var_type;
3093 ir_variable *var;
3094
3095 /* FINISHME: Emit a warning if a variable declaration shadows a
3096 * FINISHME: declaration at a higher scope.
3097 */
3098
3099 if ((decl_type == NULL) || decl_type->is_void()) {
3100 if (type_name != NULL) {
3101 _mesa_glsl_error(& loc, state,
3102 "invalid type `%s' in declaration of `%s'",
3103 type_name, decl->identifier);
3104 } else {
3105 _mesa_glsl_error(& loc, state,
3106 "invalid type in declaration of `%s'",
3107 decl->identifier);
3108 }
3109 continue;
3110 }
3111
3112 var_type = process_array_type(&loc, decl_type, decl->array_specifier,
3113 state);
3114
3115 var = new(ctx) ir_variable(var_type, decl->identifier, ir_var_auto);
3116
3117 /* The 'varying in' and 'varying out' qualifiers can only be used with
3118 * ARB_geometry_shader4 and EXT_geometry_shader4, which we don't support
3119 * yet.
3120 */
3121 if (this->type->qualifier.flags.q.varying) {
3122 if (this->type->qualifier.flags.q.in) {
3123 _mesa_glsl_error(& loc, state,
3124 "`varying in' qualifier in declaration of "
3125 "`%s' only valid for geometry shaders using "
3126 "ARB_geometry_shader4 or EXT_geometry_shader4",
3127 decl->identifier);
3128 } else if (this->type->qualifier.flags.q.out) {
3129 _mesa_glsl_error(& loc, state,
3130 "`varying out' qualifier in declaration of "
3131 "`%s' only valid for geometry shaders using "
3132 "ARB_geometry_shader4 or EXT_geometry_shader4",
3133 decl->identifier);
3134 }
3135 }
3136
3137 /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
3138 *
3139 * "Global variables can only use the qualifiers const,
3140 * attribute, uni form, or varying. Only one may be
3141 * specified.
3142 *
3143 * Local variables can only use the qualifier const."
3144 *
3145 * This is relaxed in GLSL 1.30 and GLSL ES 3.00. It is also relaxed by
3146 * any extension that adds the 'layout' keyword.
3147 */
3148 if (!state->is_version(130, 300)
3149 && !state->has_explicit_attrib_location()
3150 && !state->ARB_fragment_coord_conventions_enable) {
3151 if (this->type->qualifier.flags.q.out) {
3152 _mesa_glsl_error(& loc, state,
3153 "`out' qualifier in declaration of `%s' "
3154 "only valid for function parameters in %s",
3155 decl->identifier, state->get_version_string());
3156 }
3157 if (this->type->qualifier.flags.q.in) {
3158 _mesa_glsl_error(& loc, state,
3159 "`in' qualifier in declaration of `%s' "
3160 "only valid for function parameters in %s",
3161 decl->identifier, state->get_version_string());
3162 }
3163 /* FINISHME: Test for other invalid qualifiers. */
3164 }
3165
3166 apply_type_qualifier_to_variable(& this->type->qualifier, var, state,
3167 & loc, false);
3168
3169 if (this->type->qualifier.flags.q.invariant) {
3170 if ((state->stage == MESA_SHADER_VERTEX) &&
3171 var->data.mode != ir_var_shader_out) {
3172 _mesa_glsl_error(& loc, state,
3173 "`%s' cannot be marked invariant, vertex shader "
3174 "outputs only", var->name);
3175 } else if ((state->stage == MESA_SHADER_FRAGMENT) &&
3176 var->data.mode != ir_var_shader_in) {
3177 /* FINISHME: Note that this doesn't work for invariant on
3178 * a function signature inval
3179 */
3180 _mesa_glsl_error(& loc, state,
3181 "`%s' cannot be marked invariant, fragment shader "
3182 "inputs only", var->name);
3183 }
3184 }
3185
3186 if (state->current_function != NULL) {
3187 const char *mode = NULL;
3188 const char *extra = "";
3189
3190 /* There is no need to check for 'inout' here because the parser will
3191 * only allow that in function parameter lists.
3192 */
3193 if (this->type->qualifier.flags.q.attribute) {
3194 mode = "attribute";
3195 } else if (this->type->qualifier.flags.q.uniform) {
3196 mode = "uniform";
3197 } else if (this->type->qualifier.flags.q.varying) {
3198 mode = "varying";
3199 } else if (this->type->qualifier.flags.q.in) {
3200 mode = "in";
3201 extra = " or in function parameter list";
3202 } else if (this->type->qualifier.flags.q.out) {
3203 mode = "out";
3204 extra = " or in function parameter list";
3205 }
3206
3207 if (mode) {
3208 _mesa_glsl_error(& loc, state,
3209 "%s variable `%s' must be declared at "
3210 "global scope%s",
3211 mode, var->name, extra);
3212 }
3213 } else if (var->data.mode == ir_var_shader_in) {
3214 var->data.read_only = true;
3215
3216 if (state->stage == MESA_SHADER_VERTEX) {
3217 bool error_emitted = false;
3218
3219 /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
3220 *
3221 * "Vertex shader inputs can only be float, floating-point
3222 * vectors, matrices, signed and unsigned integers and integer
3223 * vectors. Vertex shader inputs can also form arrays of these
3224 * types, but not structures."
3225 *
3226 * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
3227 *
3228 * "Vertex shader inputs can only be float, floating-point
3229 * vectors, matrices, signed and unsigned integers and integer
3230 * vectors. They cannot be arrays or structures."
3231 *
3232 * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
3233 *
3234 * "The attribute qualifier can be used only with float,
3235 * floating-point vectors, and matrices. Attribute variables
3236 * cannot be declared as arrays or structures."
3237 *
3238 * From page 33 (page 39 of the PDF) of the GLSL ES 3.00 spec:
3239 *
3240 * "Vertex shader inputs can only be float, floating-point
3241 * vectors, matrices, signed and unsigned integers and integer
3242 * vectors. Vertex shader inputs cannot be arrays or
3243 * structures."
3244 */
3245 const glsl_type *check_type = var->type;
3246 while (check_type->is_array())
3247 check_type = check_type->element_type();
3248
3249 switch (check_type->base_type) {
3250 case GLSL_TYPE_FLOAT:
3251 break;
3252 case GLSL_TYPE_UINT:
3253 case GLSL_TYPE_INT:
3254 if (state->is_version(120, 300))
3255 break;
3256 /* FALLTHROUGH */
3257 default:
3258 _mesa_glsl_error(& loc, state,
3259 "vertex shader input / attribute cannot have "
3260 "type %s`%s'",
3261 var->type->is_array() ? "array of " : "",
3262 check_type->name);
3263 error_emitted = true;
3264 }
3265
3266 if (!error_emitted && var->type->is_array() &&
3267 !state->check_version(150, 0, &loc,
3268 "vertex shader input / attribute "
3269 "cannot have array type")) {
3270 error_emitted = true;
3271 }
3272 } else if (state->stage == MESA_SHADER_GEOMETRY) {
3273 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
3274 *
3275 * Geometry shader input variables get the per-vertex values
3276 * written out by vertex shader output variables of the same
3277 * names. Since a geometry shader operates on a set of
3278 * vertices, each input varying variable (or input block, see
3279 * interface blocks below) needs to be declared as an array.
3280 */
3281 if (!var->type->is_array()) {
3282 _mesa_glsl_error(&loc, state,
3283 "geometry shader inputs must be arrays");
3284 }
3285
3286 handle_geometry_shader_input_decl(state, loc, var);
3287 }
3288 }
3289
3290 /* Integer fragment inputs must be qualified with 'flat'. In GLSL ES,
3291 * so must integer vertex outputs.
3292 *
3293 * From section 4.3.4 ("Inputs") of the GLSL 1.50 spec:
3294 * "Fragment shader inputs that are signed or unsigned integers or
3295 * integer vectors must be qualified with the interpolation qualifier
3296 * flat."
3297 *
3298 * From section 4.3.4 ("Input Variables") of the GLSL 3.00 ES spec:
3299 * "Fragment shader inputs that are, or contain, signed or unsigned
3300 * integers or integer vectors must be qualified with the
3301 * interpolation qualifier flat."
3302 *
3303 * From section 4.3.6 ("Output Variables") of the GLSL 3.00 ES spec:
3304 * "Vertex shader outputs that are, or contain, signed or unsigned
3305 * integers or integer vectors must be qualified with the
3306 * interpolation qualifier flat."
3307 *
3308 * Note that prior to GLSL 1.50, this requirement applied to vertex
3309 * outputs rather than fragment inputs. That creates problems in the
3310 * presence of geometry shaders, so we adopt the GLSL 1.50 rule for all
3311 * desktop GL shaders. For GLSL ES shaders, we follow the spec and
3312 * apply the restriction to both vertex outputs and fragment inputs.
3313 *
3314 * Note also that the desktop GLSL specs are missing the text "or
3315 * contain"; this is presumably an oversight, since there is no
3316 * reasonable way to interpolate a fragment shader input that contains
3317 * an integer.
3318 */
3319 if (state->is_version(130, 300) &&
3320 var->type->contains_integer() &&
3321 var->data.interpolation != INTERP_QUALIFIER_FLAT &&
3322 ((state->stage == MESA_SHADER_FRAGMENT && var->data.mode == ir_var_shader_in)
3323 || (state->stage == MESA_SHADER_VERTEX && var->data.mode == ir_var_shader_out
3324 && state->es_shader))) {
3325 const char *var_type = (state->stage == MESA_SHADER_VERTEX) ?
3326 "vertex output" : "fragment input";
3327 _mesa_glsl_error(&loc, state, "if a %s is (or contains) "
3328 "an integer, then it must be qualified with 'flat'",
3329 var_type);
3330 }
3331
3332
3333 /* Interpolation qualifiers cannot be applied to 'centroid' and
3334 * 'centroid varying'.
3335 *
3336 * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
3337 * "interpolation qualifiers may only precede the qualifiers in,
3338 * centroid in, out, or centroid out in a declaration. They do not apply
3339 * to the deprecated storage qualifiers varying or centroid varying."
3340 *
3341 * These deprecated storage qualifiers do not exist in GLSL ES 3.00.
3342 */
3343 if (state->is_version(130, 0)
3344 && this->type->qualifier.has_interpolation()
3345 && this->type->qualifier.flags.q.varying) {
3346
3347 const char *i = this->type->qualifier.interpolation_string();
3348 assert(i != NULL);
3349 const char *s;
3350 if (this->type->qualifier.flags.q.centroid)
3351 s = "centroid varying";
3352 else
3353 s = "varying";
3354
3355 _mesa_glsl_error(&loc, state,
3356 "qualifier '%s' cannot be applied to the "
3357 "deprecated storage qualifier '%s'", i, s);
3358 }
3359
3360
3361 /* Interpolation qualifiers can only apply to vertex shader outputs and
3362 * fragment shader inputs.
3363 *
3364 * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
3365 * "Outputs from a vertex shader (out) and inputs to a fragment
3366 * shader (in) can be further qualified with one or more of these
3367 * interpolation qualifiers"
3368 *
3369 * From page 31 (page 37 of the PDF) of the GLSL ES 3.00 spec:
3370 * "These interpolation qualifiers may only precede the qualifiers
3371 * in, centroid in, out, or centroid out in a declaration. They do
3372 * not apply to inputs into a vertex shader or outputs from a
3373 * fragment shader."
3374 */
3375 if (state->is_version(130, 300)
3376 && this->type->qualifier.has_interpolation()) {
3377
3378 const char *i = this->type->qualifier.interpolation_string();
3379 assert(i != NULL);
3380
3381 switch (state->stage) {
3382 case MESA_SHADER_VERTEX:
3383 if (this->type->qualifier.flags.q.in) {
3384 _mesa_glsl_error(&loc, state,
3385 "qualifier '%s' cannot be applied to vertex "
3386 "shader inputs", i);
3387 }
3388 break;
3389 case MESA_SHADER_FRAGMENT:
3390 if (this->type->qualifier.flags.q.out) {
3391 _mesa_glsl_error(&loc, state,
3392 "qualifier '%s' cannot be applied to fragment "
3393 "shader outputs", i);
3394 }
3395 break;
3396 default:
3397 break;
3398 }
3399 }
3400
3401
3402 /* From section 4.3.4 of the GLSL 1.30 spec:
3403 * "It is an error to use centroid in in a vertex shader."
3404 *
3405 * From section 4.3.4 of the GLSL ES 3.00 spec:
3406 * "It is an error to use centroid in or interpolation qualifiers in
3407 * a vertex shader input."
3408 */
3409 if (state->is_version(130, 300)
3410 && this->type->qualifier.flags.q.centroid
3411 && this->type->qualifier.flags.q.in
3412 && state->stage == MESA_SHADER_VERTEX) {
3413
3414 _mesa_glsl_error(&loc, state,
3415 "'centroid in' cannot be used in a vertex shader");
3416 }
3417
3418 if (state->stage == MESA_SHADER_VERTEX
3419 && this->type->qualifier.flags.q.sample
3420 && this->type->qualifier.flags.q.in) {
3421
3422 _mesa_glsl_error(&loc, state,
3423 "'sample in' cannot be used in a vertex shader");
3424 }
3425
3426 /* Section 4.3.6 of the GLSL 1.30 specification states:
3427 * "It is an error to use centroid out in a fragment shader."
3428 *
3429 * The GL_ARB_shading_language_420pack extension specification states:
3430 * "It is an error to use auxiliary storage qualifiers or interpolation
3431 * qualifiers on an output in a fragment shader."
3432 */
3433 if (state->stage == MESA_SHADER_FRAGMENT &&
3434 this->type->qualifier.flags.q.out &&
3435 this->type->qualifier.has_auxiliary_storage()) {
3436 _mesa_glsl_error(&loc, state,
3437 "auxiliary storage qualifiers cannot be used on "
3438 "fragment shader outputs");
3439 }
3440
3441 /* Precision qualifiers exists only in GLSL versions 1.00 and >= 1.30.
3442 */
3443 if (this->type->qualifier.precision != ast_precision_none) {
3444 state->check_precision_qualifiers_allowed(&loc);
3445 }
3446
3447
3448 /* Precision qualifiers apply to floating point, integer and sampler
3449 * types.
3450 *
3451 * Section 4.5.2 (Precision Qualifiers) of the GLSL 1.30 spec says:
3452 * "Any floating point or any integer declaration can have the type
3453 * preceded by one of these precision qualifiers [...] Literal
3454 * constants do not have precision qualifiers. Neither do Boolean
3455 * variables.
3456 *
3457 * Section 4.5 (Precision and Precision Qualifiers) of the GLSL 1.30
3458 * spec also says:
3459 *
3460 * "Precision qualifiers are added for code portability with OpenGL
3461 * ES, not for functionality. They have the same syntax as in OpenGL
3462 * ES."
3463 *
3464 * Section 8 (Built-In Functions) of the GLSL ES 1.00 spec says:
3465 *
3466 * "uniform lowp sampler2D sampler;
3467 * highp vec2 coord;
3468 * ...
3469 * lowp vec4 col = texture2D (sampler, coord);
3470 * // texture2D returns lowp"
3471 *
3472 * From this, we infer that GLSL 1.30 (and later) should allow precision
3473 * qualifiers on sampler types just like float and integer types.
3474 */
3475 if (this->type->qualifier.precision != ast_precision_none
3476 && !var->type->is_float()
3477 && !var->type->is_integer()
3478 && !var->type->is_record()
3479 && !var->type->is_sampler()
3480 && !(var->type->is_array()
3481 && (var->type->fields.array->is_float()
3482 || var->type->fields.array->is_integer()))) {
3483
3484 _mesa_glsl_error(&loc, state,
3485 "precision qualifiers apply only to floating point"
3486 ", integer and sampler types");
3487 }
3488
3489 /* From section 4.1.7 of the GLSL 4.40 spec:
3490 *
3491 * "[Opaque types] can only be declared as function
3492 * parameters or uniform-qualified variables."
3493 */
3494 if (var_type->contains_opaque() &&
3495 !this->type->qualifier.flags.q.uniform) {
3496 _mesa_glsl_error(&loc, state,
3497 "opaque variables must be declared uniform");
3498 }
3499
3500 /* Process the initializer and add its instructions to a temporary
3501 * list. This list will be added to the instruction stream (below) after
3502 * the declaration is added. This is done because in some cases (such as
3503 * redeclarations) the declaration may not actually be added to the
3504 * instruction stream.
3505 */
3506 exec_list initializer_instructions;
3507 ir_variable *earlier =
3508 get_variable_being_redeclared(var, decl->get_location(), state,
3509 false /* allow_all_redeclarations */);
3510 if (earlier != NULL) {
3511 if (strncmp(var->name, "gl_", 3) == 0 &&
3512 earlier->data.how_declared == ir_var_declared_in_block) {
3513 _mesa_glsl_error(&loc, state,
3514 "`%s' has already been redeclared using "
3515 "gl_PerVertex", var->name);
3516 }
3517 earlier->data.how_declared = ir_var_declared_normally;
3518 }
3519
3520 if (decl->initializer != NULL) {
3521 result = process_initializer((earlier == NULL) ? var : earlier,
3522 decl, this->type,
3523 &initializer_instructions, state);
3524 }
3525
3526 /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
3527 *
3528 * "It is an error to write to a const variable outside of
3529 * its declaration, so they must be initialized when
3530 * declared."
3531 */
3532 if (this->type->qualifier.flags.q.constant && decl->initializer == NULL) {
3533 _mesa_glsl_error(& loc, state,
3534 "const declaration of `%s' must be initialized",
3535 decl->identifier);
3536 }
3537
3538 if (state->es_shader) {
3539 const glsl_type *const t = (earlier == NULL)
3540 ? var->type : earlier->type;
3541
3542 if (t->is_unsized_array())
3543 /* Section 10.17 of the GLSL ES 1.00 specification states that
3544 * unsized array declarations have been removed from the language.
3545 * Arrays that are sized using an initializer are still explicitly
3546 * sized. However, GLSL ES 1.00 does not allow array
3547 * initializers. That is only allowed in GLSL ES 3.00.
3548 *
3549 * Section 4.1.9 (Arrays) of the GLSL ES 3.00 spec says:
3550 *
3551 * "An array type can also be formed without specifying a size
3552 * if the definition includes an initializer:
3553 *
3554 * float x[] = float[2] (1.0, 2.0); // declares an array of size 2
3555 * float y[] = float[] (1.0, 2.0, 3.0); // declares an array of size 3
3556 *
3557 * float a[5];
3558 * float b[] = a;"
3559 */
3560 _mesa_glsl_error(& loc, state,
3561 "unsized array declarations are not allowed in "
3562 "GLSL ES");
3563 }
3564
3565 /* If the declaration is not a redeclaration, there are a few additional
3566 * semantic checks that must be applied. In addition, variable that was
3567 * created for the declaration should be added to the IR stream.
3568 */
3569 if (earlier == NULL) {
3570 validate_identifier(decl->identifier, loc, state);
3571
3572 /* Add the variable to the symbol table. Note that the initializer's
3573 * IR was already processed earlier (though it hasn't been emitted
3574 * yet), without the variable in scope.
3575 *
3576 * This differs from most C-like languages, but it follows the GLSL
3577 * specification. From page 28 (page 34 of the PDF) of the GLSL 1.50
3578 * spec:
3579 *
3580 * "Within a declaration, the scope of a name starts immediately
3581 * after the initializer if present or immediately after the name
3582 * being declared if not."
3583 */
3584 if (!state->symbols->add_variable(var)) {
3585 YYLTYPE loc = this->get_location();
3586 _mesa_glsl_error(&loc, state, "name `%s' already taken in the "
3587 "current scope", decl->identifier);
3588 continue;
3589 }
3590
3591 /* Push the variable declaration to the top. It means that all the
3592 * variable declarations will appear in a funny last-to-first order,
3593 * but otherwise we run into trouble if a function is prototyped, a
3594 * global var is decled, then the function is defined with usage of
3595 * the global var. See glslparsertest's CorrectModule.frag.
3596 */
3597 instructions->push_head(var);
3598 }
3599
3600 instructions->append_list(&initializer_instructions);
3601 }
3602
3603
3604 /* Generally, variable declarations do not have r-values. However,
3605 * one is used for the declaration in
3606 *
3607 * while (bool b = some_condition()) {
3608 * ...
3609 * }
3610 *
3611 * so we return the rvalue from the last seen declaration here.
3612 */
3613 return result;
3614 }
3615
3616
3617 ir_rvalue *
3618 ast_parameter_declarator::hir(exec_list *instructions,
3619 struct _mesa_glsl_parse_state *state)
3620 {
3621 void *ctx = state;
3622 const struct glsl_type *type;
3623 const char *name = NULL;
3624 YYLTYPE loc = this->get_location();
3625
3626 type = this->type->glsl_type(& name, state);
3627
3628 if (type == NULL) {
3629 if (name != NULL) {
3630 _mesa_glsl_error(& loc, state,
3631 "invalid type `%s' in declaration of `%s'",
3632 name, this->identifier);
3633 } else {
3634 _mesa_glsl_error(& loc, state,
3635 "invalid type in declaration of `%s'",
3636 this->identifier);
3637 }
3638
3639 type = glsl_type::error_type;
3640 }
3641
3642 /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
3643 *
3644 * "Functions that accept no input arguments need not use void in the
3645 * argument list because prototypes (or definitions) are required and
3646 * therefore there is no ambiguity when an empty argument list "( )" is
3647 * declared. The idiom "(void)" as a parameter list is provided for
3648 * convenience."
3649 *
3650 * Placing this check here prevents a void parameter being set up
3651 * for a function, which avoids tripping up checks for main taking
3652 * parameters and lookups of an unnamed symbol.
3653 */
3654 if (type->is_void()) {
3655 if (this->identifier != NULL)
3656 _mesa_glsl_error(& loc, state,
3657 "named parameter cannot have type `void'");
3658
3659 is_void = true;
3660 return NULL;
3661 }
3662
3663 if (formal_parameter && (this->identifier == NULL)) {
3664 _mesa_glsl_error(& loc, state, "formal parameter lacks a name");
3665 return NULL;
3666 }
3667
3668 /* This only handles "vec4 foo[..]". The earlier specifier->glsl_type(...)
3669 * call already handled the "vec4[..] foo" case.
3670 */
3671 type = process_array_type(&loc, type, this->array_specifier, state);
3672
3673 if (!type->is_error() && type->is_unsized_array()) {
3674 _mesa_glsl_error(&loc, state, "arrays passed as parameters must have "
3675 "a declared size");
3676 type = glsl_type::error_type;
3677 }
3678
3679 is_void = false;
3680 ir_variable *var = new(ctx)
3681 ir_variable(type, this->identifier, ir_var_function_in);
3682
3683 /* Apply any specified qualifiers to the parameter declaration. Note that
3684 * for function parameters the default mode is 'in'.
3685 */
3686 apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc,
3687 true);
3688
3689 /* From section 4.1.7 of the GLSL 4.40 spec:
3690 *
3691 * "Opaque variables cannot be treated as l-values; hence cannot
3692 * be used as out or inout function parameters, nor can they be
3693 * assigned into."
3694 */
3695 if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
3696 && type->contains_opaque()) {
3697 _mesa_glsl_error(&loc, state, "out and inout parameters cannot "
3698 "contain opaque variables");
3699 type = glsl_type::error_type;
3700 }
3701
3702 /* From page 39 (page 45 of the PDF) of the GLSL 1.10 spec:
3703 *
3704 * "When calling a function, expressions that do not evaluate to
3705 * l-values cannot be passed to parameters declared as out or inout."
3706 *
3707 * From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
3708 *
3709 * "Other binary or unary expressions, non-dereferenced arrays,
3710 * function names, swizzles with repeated fields, and constants
3711 * cannot be l-values."
3712 *
3713 * So for GLSL 1.10, passing an array as an out or inout parameter is not
3714 * allowed. This restriction is removed in GLSL 1.20, and in GLSL ES.
3715 */
3716 if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
3717 && type->is_array()
3718 && !state->check_version(120, 100, &loc,
3719 "arrays cannot be out or inout parameters")) {
3720 type = glsl_type::error_type;
3721 }
3722
3723 instructions->push_tail(var);
3724
3725 /* Parameter declarations do not have r-values.
3726 */
3727 return NULL;
3728 }
3729
3730
3731 void
3732 ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters,
3733 bool formal,
3734 exec_list *ir_parameters,
3735 _mesa_glsl_parse_state *state)
3736 {
3737 ast_parameter_declarator *void_param = NULL;
3738 unsigned count = 0;
3739
3740 foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) {
3741 param->formal_parameter = formal;
3742 param->hir(ir_parameters, state);
3743
3744 if (param->is_void)
3745 void_param = param;
3746
3747 count++;
3748 }
3749
3750 if ((void_param != NULL) && (count > 1)) {
3751 YYLTYPE loc = void_param->get_location();
3752
3753 _mesa_glsl_error(& loc, state,
3754 "`void' parameter must be only parameter");
3755 }
3756 }
3757
3758
3759 void
3760 emit_function(_mesa_glsl_parse_state *state, ir_function *f)
3761 {
3762 /* IR invariants disallow function declarations or definitions
3763 * nested within other function definitions. But there is no
3764 * requirement about the relative order of function declarations
3765 * and definitions with respect to one another. So simply insert
3766 * the new ir_function block at the end of the toplevel instruction
3767 * list.
3768 */
3769 state->toplevel_ir->push_tail(f);
3770 }
3771
3772
3773 ir_rvalue *
3774 ast_function::hir(exec_list *instructions,
3775 struct _mesa_glsl_parse_state *state)
3776 {
3777 void *ctx = state;
3778 ir_function *f = NULL;
3779 ir_function_signature *sig = NULL;
3780 exec_list hir_parameters;
3781
3782 const char *const name = identifier;
3783
3784 /* New functions are always added to the top-level IR instruction stream,
3785 * so this instruction list pointer is ignored. See also emit_function
3786 * (called below).
3787 */
3788 (void) instructions;
3789
3790 /* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec,
3791 *
3792 * "Function declarations (prototypes) cannot occur inside of functions;
3793 * they must be at global scope, or for the built-in functions, outside
3794 * the global scope."
3795 *
3796 * From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec,
3797 *
3798 * "User defined functions may only be defined within the global scope."
3799 *
3800 * Note that this language does not appear in GLSL 1.10.
3801 */
3802 if ((state->current_function != NULL) &&
3803 state->is_version(120, 100)) {
3804 YYLTYPE loc = this->get_location();
3805 _mesa_glsl_error(&loc, state,
3806 "declaration of function `%s' not allowed within "
3807 "function body", name);
3808 }
3809
3810 validate_identifier(name, this->get_location(), state);
3811
3812 /* Convert the list of function parameters to HIR now so that they can be
3813 * used below to compare this function's signature with previously seen
3814 * signatures for functions with the same name.
3815 */
3816 ast_parameter_declarator::parameters_to_hir(& this->parameters,
3817 is_definition,
3818 & hir_parameters, state);
3819
3820 const char *return_type_name;
3821 const glsl_type *return_type =
3822 this->return_type->glsl_type(& return_type_name, state);
3823
3824 if (!return_type) {
3825 YYLTYPE loc = this->get_location();
3826 _mesa_glsl_error(&loc, state,
3827 "function `%s' has undeclared return type `%s'",
3828 name, return_type_name);
3829 return_type = glsl_type::error_type;
3830 }
3831
3832 /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec:
3833 * "No qualifier is allowed on the return type of a function."
3834 */
3835 if (this->return_type->has_qualifiers()) {
3836 YYLTYPE loc = this->get_location();
3837 _mesa_glsl_error(& loc, state,
3838 "function `%s' return type has qualifiers", name);
3839 }
3840
3841 /* Section 6.1 (Function Definitions) of the GLSL 1.20 spec says:
3842 *
3843 * "Arrays are allowed as arguments and as the return type. In both
3844 * cases, the array must be explicitly sized."
3845 */
3846 if (return_type->is_unsized_array()) {
3847 YYLTYPE loc = this->get_location();
3848 _mesa_glsl_error(& loc, state,
3849 "function `%s' return type array must be explicitly "
3850 "sized", name);
3851 }
3852
3853 /* From section 4.1.7 of the GLSL 4.40 spec:
3854 *
3855 * "[Opaque types] can only be declared as function parameters
3856 * or uniform-qualified variables."
3857 */
3858 if (return_type->contains_opaque()) {
3859 YYLTYPE loc = this->get_location();
3860 _mesa_glsl_error(&loc, state,
3861 "function `%s' return type can't contain an opaque type",
3862 name);
3863 }
3864
3865 /* Verify that this function's signature either doesn't match a previously
3866 * seen signature for a function with the same name, or, if a match is found,
3867 * that the previously seen signature does not have an associated definition.
3868 */
3869 f = state->symbols->get_function(name);
3870 if (f != NULL && (state->es_shader || f->has_user_signature())) {
3871 sig = f->exact_matching_signature(state, &hir_parameters);
3872 if (sig != NULL) {
3873 const char *badvar = sig->qualifiers_match(&hir_parameters);
3874 if (badvar != NULL) {
3875 YYLTYPE loc = this->get_location();
3876
3877 _mesa_glsl_error(&loc, state, "function `%s' parameter `%s' "
3878 "qualifiers don't match prototype", name, badvar);
3879 }
3880
3881 if (sig->return_type != return_type) {
3882 YYLTYPE loc = this->get_location();
3883
3884 _mesa_glsl_error(&loc, state, "function `%s' return type doesn't "
3885 "match prototype", name);
3886 }
3887
3888 if (sig->is_defined) {
3889 if (is_definition) {
3890 YYLTYPE loc = this->get_location();
3891 _mesa_glsl_error(& loc, state, "function `%s' redefined", name);
3892 } else {
3893 /* We just encountered a prototype that exactly matches a
3894 * function that's already been defined. This is redundant,
3895 * and we should ignore it.
3896 */
3897 return NULL;
3898 }
3899 }
3900 }
3901 } else {
3902 f = new(ctx) ir_function(name);
3903 if (!state->symbols->add_function(f)) {
3904 /* This function name shadows a non-function use of the same name. */
3905 YYLTYPE loc = this->get_location();
3906
3907 _mesa_glsl_error(&loc, state, "function name `%s' conflicts with "
3908 "non-function", name);
3909 return NULL;
3910 }
3911
3912 emit_function(state, f);
3913 }
3914
3915 /* Verify the return type of main() */
3916 if (strcmp(name, "main") == 0) {
3917 if (! return_type->is_void()) {
3918 YYLTYPE loc = this->get_location();
3919
3920 _mesa_glsl_error(& loc, state, "main() must return void");
3921 }
3922
3923 if (!hir_parameters.is_empty()) {
3924 YYLTYPE loc = this->get_location();
3925
3926 _mesa_glsl_error(& loc, state, "main() must not take any parameters");
3927 }
3928 }
3929
3930 /* Finish storing the information about this new function in its signature.
3931 */
3932 if (sig == NULL) {
3933 sig = new(ctx) ir_function_signature(return_type);
3934 f->add_signature(sig);
3935 }
3936
3937 sig->replace_parameters(&hir_parameters);
3938 signature = sig;
3939
3940 /* Function declarations (prototypes) do not have r-values.
3941 */
3942 return NULL;
3943 }
3944
3945
3946 ir_rvalue *
3947 ast_function_definition::hir(exec_list *instructions,
3948 struct _mesa_glsl_parse_state *state)
3949 {
3950 prototype->is_definition = true;
3951 prototype->hir(instructions, state);
3952
3953 ir_function_signature *signature = prototype->signature;
3954 if (signature == NULL)
3955 return NULL;
3956
3957 assert(state->current_function == NULL);
3958 state->current_function = signature;
3959 state->found_return = false;
3960
3961 /* Duplicate parameters declared in the prototype as concrete variables.
3962 * Add these to the symbol table.
3963 */
3964 state->symbols->push_scope();
3965 foreach_list(n, &signature->parameters) {
3966 ir_variable *const var = ((ir_instruction *) n)->as_variable();
3967
3968 assert(var != NULL);
3969
3970 /* The only way a parameter would "exist" is if two parameters have
3971 * the same name.
3972 */
3973 if (state->symbols->name_declared_this_scope(var->name)) {
3974 YYLTYPE loc = this->get_location();
3975
3976 _mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name);
3977 } else {
3978 state->symbols->add_variable(var);
3979 }
3980 }
3981
3982 /* Convert the body of the function to HIR. */
3983 this->body->hir(&signature->body, state);
3984 signature->is_defined = true;
3985
3986 state->symbols->pop_scope();
3987
3988 assert(state->current_function == signature);
3989 state->current_function = NULL;
3990
3991 if (!signature->return_type->is_void() && !state->found_return) {
3992 YYLTYPE loc = this->get_location();
3993 _mesa_glsl_error(& loc, state, "function `%s' has non-void return type "
3994 "%s, but no return statement",
3995 signature->function_name(),
3996 signature->return_type->name);
3997 }
3998
3999 /* Function definitions do not have r-values.
4000 */
4001 return NULL;
4002 }
4003
4004
4005 ir_rvalue *
4006 ast_jump_statement::hir(exec_list *instructions,
4007 struct _mesa_glsl_parse_state *state)
4008 {
4009 void *ctx = state;
4010
4011 switch (mode) {
4012 case ast_return: {
4013 ir_return *inst;
4014 assert(state->current_function);
4015
4016 if (opt_return_value) {
4017 ir_rvalue *ret = opt_return_value->hir(instructions, state);
4018
4019 /* The value of the return type can be NULL if the shader says
4020 * 'return foo();' and foo() is a function that returns void.
4021 *
4022 * NOTE: The GLSL spec doesn't say that this is an error. The type
4023 * of the return value is void. If the return type of the function is
4024 * also void, then this should compile without error. Seriously.
4025 */
4026 const glsl_type *const ret_type =
4027 (ret == NULL) ? glsl_type::void_type : ret->type;
4028
4029 /* Implicit conversions are not allowed for return values prior to
4030 * ARB_shading_language_420pack.
4031 */
4032 if (state->current_function->return_type != ret_type) {
4033 YYLTYPE loc = this->get_location();
4034
4035 if (state->ARB_shading_language_420pack_enable) {
4036 if (!apply_implicit_conversion(state->current_function->return_type,
4037 ret, state)) {
4038 _mesa_glsl_error(& loc, state,
4039 "could not implicitly convert return value "
4040 "to %s, in function `%s'",
4041 state->current_function->return_type->name,
4042 state->current_function->function_name());
4043 }
4044 } else {
4045 _mesa_glsl_error(& loc, state,
4046 "`return' with wrong type %s, in function `%s' "
4047 "returning %s",
4048 ret_type->name,
4049 state->current_function->function_name(),
4050 state->current_function->return_type->name);
4051 }
4052 } else if (state->current_function->return_type->base_type ==
4053 GLSL_TYPE_VOID) {
4054 YYLTYPE loc = this->get_location();
4055
4056 /* The ARB_shading_language_420pack, GLSL ES 3.0, and GLSL 4.20
4057 * specs add a clarification:
4058 *
4059 * "A void function can only use return without a return argument, even if
4060 * the return argument has void type. Return statements only accept values:
4061 *
4062 * void func1() { }
4063 * void func2() { return func1(); } // illegal return statement"
4064 */
4065 _mesa_glsl_error(& loc, state,
4066 "void functions can only use `return' without a "
4067 "return argument");
4068 }
4069
4070 inst = new(ctx) ir_return(ret);
4071 } else {
4072 if (state->current_function->return_type->base_type !=
4073 GLSL_TYPE_VOID) {
4074 YYLTYPE loc = this->get_location();
4075
4076 _mesa_glsl_error(& loc, state,
4077 "`return' with no value, in function %s returning "
4078 "non-void",
4079 state->current_function->function_name());
4080 }
4081 inst = new(ctx) ir_return;
4082 }
4083
4084 state->found_return = true;
4085 instructions->push_tail(inst);
4086 break;
4087 }
4088
4089 case ast_discard:
4090 if (state->stage != MESA_SHADER_FRAGMENT) {
4091 YYLTYPE loc = this->get_location();
4092
4093 _mesa_glsl_error(& loc, state,
4094 "`discard' may only appear in a fragment shader");
4095 }
4096 instructions->push_tail(new(ctx) ir_discard);
4097 break;
4098
4099 case ast_break:
4100 case ast_continue:
4101 if (mode == ast_continue &&
4102 state->loop_nesting_ast == NULL) {
4103 YYLTYPE loc = this->get_location();
4104
4105 _mesa_glsl_error(& loc, state,
4106 "continue may only appear in a loop");
4107 } else if (mode == ast_break &&
4108 state->loop_nesting_ast == NULL &&
4109 state->switch_state.switch_nesting_ast == NULL) {
4110 YYLTYPE loc = this->get_location();
4111
4112 _mesa_glsl_error(& loc, state,
4113 "break may only appear in a loop or a switch");
4114 } else {
4115 /* For a loop, inline the for loop expression again, since we don't
4116 * know where near the end of the loop body the normal copy of it is
4117 * going to be placed. Same goes for the condition for a do-while
4118 * loop.
4119 */
4120 if (state->loop_nesting_ast != NULL &&
4121 mode == ast_continue) {
4122 if (state->loop_nesting_ast->rest_expression) {
4123 state->loop_nesting_ast->rest_expression->hir(instructions,
4124 state);
4125 }
4126 if (state->loop_nesting_ast->mode ==
4127 ast_iteration_statement::ast_do_while) {
4128 state->loop_nesting_ast->condition_to_hir(instructions, state);
4129 }
4130 }
4131
4132 if (state->switch_state.is_switch_innermost &&
4133 mode == ast_break) {
4134 /* Force break out of switch by setting is_break switch state.
4135 */
4136 ir_variable *const is_break_var = state->switch_state.is_break_var;
4137 ir_dereference_variable *const deref_is_break_var =
4138 new(ctx) ir_dereference_variable(is_break_var);
4139 ir_constant *const true_val = new(ctx) ir_constant(true);
4140 ir_assignment *const set_break_var =
4141 new(ctx) ir_assignment(deref_is_break_var, true_val);
4142
4143 instructions->push_tail(set_break_var);
4144 }
4145 else {
4146 ir_loop_jump *const jump =
4147 new(ctx) ir_loop_jump((mode == ast_break)
4148 ? ir_loop_jump::jump_break
4149 : ir_loop_jump::jump_continue);
4150 instructions->push_tail(jump);
4151 }
4152 }
4153
4154 break;
4155 }
4156
4157 /* Jump instructions do not have r-values.
4158 */
4159 return NULL;
4160 }
4161
4162
4163 ir_rvalue *
4164 ast_selection_statement::hir(exec_list *instructions,
4165 struct _mesa_glsl_parse_state *state)
4166 {
4167 void *ctx = state;
4168
4169 ir_rvalue *const condition = this->condition->hir(instructions, state);
4170
4171 /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
4172 *
4173 * "Any expression whose type evaluates to a Boolean can be used as the
4174 * conditional expression bool-expression. Vector types are not accepted
4175 * as the expression to if."
4176 *
4177 * The checks are separated so that higher quality diagnostics can be
4178 * generated for cases where both rules are violated.
4179 */
4180 if (!condition->type->is_boolean() || !condition->type->is_scalar()) {
4181 YYLTYPE loc = this->condition->get_location();
4182
4183 _mesa_glsl_error(& loc, state, "if-statement condition must be scalar "
4184 "boolean");
4185 }
4186
4187 ir_if *const stmt = new(ctx) ir_if(condition);
4188
4189 if (then_statement != NULL) {
4190 state->symbols->push_scope();
4191 then_statement->hir(& stmt->then_instructions, state);
4192 state->symbols->pop_scope();
4193 }
4194
4195 if (else_statement != NULL) {
4196 state->symbols->push_scope();
4197 else_statement->hir(& stmt->else_instructions, state);
4198 state->symbols->pop_scope();
4199 }
4200
4201 instructions->push_tail(stmt);
4202
4203 /* if-statements do not have r-values.
4204 */
4205 return NULL;
4206 }
4207
4208
4209 ir_rvalue *
4210 ast_switch_statement::hir(exec_list *instructions,
4211 struct _mesa_glsl_parse_state *state)
4212 {
4213 void *ctx = state;
4214
4215 ir_rvalue *const test_expression =
4216 this->test_expression->hir(instructions, state);
4217
4218 /* From page 66 (page 55 of the PDF) of the GLSL 1.50 spec:
4219 *
4220 * "The type of init-expression in a switch statement must be a
4221 * scalar integer."
4222 */
4223 if (!test_expression->type->is_scalar() ||
4224 !test_expression->type->is_integer()) {
4225 YYLTYPE loc = this->test_expression->get_location();
4226
4227 _mesa_glsl_error(& loc,
4228 state,
4229 "switch-statement expression must be scalar "
4230 "integer");
4231 }
4232
4233 /* Track the switch-statement nesting in a stack-like manner.
4234 */
4235 struct glsl_switch_state saved = state->switch_state;
4236
4237 state->switch_state.is_switch_innermost = true;
4238 state->switch_state.switch_nesting_ast = this;
4239 state->switch_state.labels_ht = hash_table_ctor(0, hash_table_pointer_hash,
4240 hash_table_pointer_compare);
4241 state->switch_state.previous_default = NULL;
4242
4243 /* Initalize is_fallthru state to false.
4244 */
4245 ir_rvalue *const is_fallthru_val = new (ctx) ir_constant(false);
4246 state->switch_state.is_fallthru_var =
4247 new(ctx) ir_variable(glsl_type::bool_type,
4248 "switch_is_fallthru_tmp",
4249 ir_var_temporary);
4250 instructions->push_tail(state->switch_state.is_fallthru_var);
4251
4252 ir_dereference_variable *deref_is_fallthru_var =
4253 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
4254 instructions->push_tail(new(ctx) ir_assignment(deref_is_fallthru_var,
4255 is_fallthru_val));
4256
4257 /* Initalize is_break state to false.
4258 */
4259 ir_rvalue *const is_break_val = new (ctx) ir_constant(false);
4260 state->switch_state.is_break_var = new(ctx) ir_variable(glsl_type::bool_type,
4261 "switch_is_break_tmp",
4262 ir_var_temporary);
4263 instructions->push_tail(state->switch_state.is_break_var);
4264
4265 ir_dereference_variable *deref_is_break_var =
4266 new(ctx) ir_dereference_variable(state->switch_state.is_break_var);
4267 instructions->push_tail(new(ctx) ir_assignment(deref_is_break_var,
4268 is_break_val));
4269
4270 /* Cache test expression.
4271 */
4272 test_to_hir(instructions, state);
4273
4274 /* Emit code for body of switch stmt.
4275 */
4276 body->hir(instructions, state);
4277
4278 hash_table_dtor(state->switch_state.labels_ht);
4279
4280 state->switch_state = saved;
4281
4282 /* Switch statements do not have r-values. */
4283 return NULL;
4284 }
4285
4286
4287 void
4288 ast_switch_statement::test_to_hir(exec_list *instructions,
4289 struct _mesa_glsl_parse_state *state)
4290 {
4291 void *ctx = state;
4292
4293 /* Cache value of test expression. */
4294 ir_rvalue *const test_val =
4295 test_expression->hir(instructions,
4296 state);
4297
4298 state->switch_state.test_var = new(ctx) ir_variable(test_val->type,
4299 "switch_test_tmp",
4300 ir_var_temporary);
4301 ir_dereference_variable *deref_test_var =
4302 new(ctx) ir_dereference_variable(state->switch_state.test_var);
4303
4304 instructions->push_tail(state->switch_state.test_var);
4305 instructions->push_tail(new(ctx) ir_assignment(deref_test_var, test_val));
4306 }
4307
4308
4309 ir_rvalue *
4310 ast_switch_body::hir(exec_list *instructions,
4311 struct _mesa_glsl_parse_state *state)
4312 {
4313 if (stmts != NULL)
4314 stmts->hir(instructions, state);
4315
4316 /* Switch bodies do not have r-values. */
4317 return NULL;
4318 }
4319
4320 ir_rvalue *
4321 ast_case_statement_list::hir(exec_list *instructions,
4322 struct _mesa_glsl_parse_state *state)
4323 {
4324 foreach_list_typed (ast_case_statement, case_stmt, link, & this->cases)
4325 case_stmt->hir(instructions, state);
4326
4327 /* Case statements do not have r-values. */
4328 return NULL;
4329 }
4330
4331 ir_rvalue *
4332 ast_case_statement::hir(exec_list *instructions,
4333 struct _mesa_glsl_parse_state *state)
4334 {
4335 labels->hir(instructions, state);
4336
4337 /* Conditionally set fallthru state based on break state. */
4338 ir_constant *const false_val = new(state) ir_constant(false);
4339 ir_dereference_variable *const deref_is_fallthru_var =
4340 new(state) ir_dereference_variable(state->switch_state.is_fallthru_var);
4341 ir_dereference_variable *const deref_is_break_var =
4342 new(state) ir_dereference_variable(state->switch_state.is_break_var);
4343 ir_assignment *const reset_fallthru_on_break =
4344 new(state) ir_assignment(deref_is_fallthru_var,
4345 false_val,
4346 deref_is_break_var);
4347 instructions->push_tail(reset_fallthru_on_break);
4348
4349 /* Guard case statements depending on fallthru state. */
4350 ir_dereference_variable *const deref_fallthru_guard =
4351 new(state) ir_dereference_variable(state->switch_state.is_fallthru_var);
4352 ir_if *const test_fallthru = new(state) ir_if(deref_fallthru_guard);
4353
4354 foreach_list_typed (ast_node, stmt, link, & this->stmts)
4355 stmt->hir(& test_fallthru->then_instructions, state);
4356
4357 instructions->push_tail(test_fallthru);
4358
4359 /* Case statements do not have r-values. */
4360 return NULL;
4361 }
4362
4363
4364 ir_rvalue *
4365 ast_case_label_list::hir(exec_list *instructions,
4366 struct _mesa_glsl_parse_state *state)
4367 {
4368 foreach_list_typed (ast_case_label, label, link, & this->labels)
4369 label->hir(instructions, state);
4370
4371 /* Case labels do not have r-values. */
4372 return NULL;
4373 }
4374
4375 ir_rvalue *
4376 ast_case_label::hir(exec_list *instructions,
4377 struct _mesa_glsl_parse_state *state)
4378 {
4379 void *ctx = state;
4380
4381 ir_dereference_variable *deref_fallthru_var =
4382 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
4383
4384 ir_rvalue *const true_val = new(ctx) ir_constant(true);
4385
4386 /* If not default case, ... */
4387 if (this->test_value != NULL) {
4388 /* Conditionally set fallthru state based on
4389 * comparison of cached test expression value to case label.
4390 */
4391 ir_rvalue *const label_rval = this->test_value->hir(instructions, state);
4392 ir_constant *label_const = label_rval->constant_expression_value();
4393
4394 if (!label_const) {
4395 YYLTYPE loc = this->test_value->get_location();
4396
4397 _mesa_glsl_error(& loc, state,
4398 "switch statement case label must be a "
4399 "constant expression");
4400
4401 /* Stuff a dummy value in to allow processing to continue. */
4402 label_const = new(ctx) ir_constant(0);
4403 } else {
4404 ast_expression *previous_label = (ast_expression *)
4405 hash_table_find(state->switch_state.labels_ht,
4406 (void *)(uintptr_t)label_const->value.u[0]);
4407
4408 if (previous_label) {
4409 YYLTYPE loc = this->test_value->get_location();
4410 _mesa_glsl_error(& loc, state,
4411 "duplicate case value");
4412
4413 loc = previous_label->get_location();
4414 _mesa_glsl_error(& loc, state,
4415 "this is the previous case label");
4416 } else {
4417 hash_table_insert(state->switch_state.labels_ht,
4418 this->test_value,
4419 (void *)(uintptr_t)label_const->value.u[0]);
4420 }
4421 }
4422
4423 ir_dereference_variable *deref_test_var =
4424 new(ctx) ir_dereference_variable(state->switch_state.test_var);
4425
4426 ir_rvalue *const test_cond = new(ctx) ir_expression(ir_binop_all_equal,
4427 label_const,
4428 deref_test_var);
4429
4430 ir_assignment *set_fallthru_on_test =
4431 new(ctx) ir_assignment(deref_fallthru_var,
4432 true_val,
4433 test_cond);
4434
4435 instructions->push_tail(set_fallthru_on_test);
4436 } else { /* default case */
4437 if (state->switch_state.previous_default) {
4438 YYLTYPE loc = this->get_location();
4439 _mesa_glsl_error(& loc, state,
4440 "multiple default labels in one switch");
4441
4442 loc = state->switch_state.previous_default->get_location();
4443 _mesa_glsl_error(& loc, state,
4444 "this is the first default label");
4445 }
4446 state->switch_state.previous_default = this;
4447
4448 /* Set falltrhu state. */
4449 ir_assignment *set_fallthru =
4450 new(ctx) ir_assignment(deref_fallthru_var, true_val);
4451
4452 instructions->push_tail(set_fallthru);
4453 }
4454
4455 /* Case statements do not have r-values. */
4456 return NULL;
4457 }
4458
4459 void
4460 ast_iteration_statement::condition_to_hir(exec_list *instructions,
4461 struct _mesa_glsl_parse_state *state)
4462 {
4463 void *ctx = state;
4464
4465 if (condition != NULL) {
4466 ir_rvalue *const cond =
4467 condition->hir(instructions, state);
4468
4469 if ((cond == NULL)
4470 || !cond->type->is_boolean() || !cond->type->is_scalar()) {
4471 YYLTYPE loc = condition->get_location();
4472
4473 _mesa_glsl_error(& loc, state,
4474 "loop condition must be scalar boolean");
4475 } else {
4476 /* As the first code in the loop body, generate a block that looks
4477 * like 'if (!condition) break;' as the loop termination condition.
4478 */
4479 ir_rvalue *const not_cond =
4480 new(ctx) ir_expression(ir_unop_logic_not, cond);
4481
4482 ir_if *const if_stmt = new(ctx) ir_if(not_cond);
4483
4484 ir_jump *const break_stmt =
4485 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
4486
4487 if_stmt->then_instructions.push_tail(break_stmt);
4488 instructions->push_tail(if_stmt);
4489 }
4490 }
4491 }
4492
4493
4494 ir_rvalue *
4495 ast_iteration_statement::hir(exec_list *instructions,
4496 struct _mesa_glsl_parse_state *state)
4497 {
4498 void *ctx = state;
4499
4500 /* For-loops and while-loops start a new scope, but do-while loops do not.
4501 */
4502 if (mode != ast_do_while)
4503 state->symbols->push_scope();
4504
4505 if (init_statement != NULL)
4506 init_statement->hir(instructions, state);
4507
4508 ir_loop *const stmt = new(ctx) ir_loop();
4509 instructions->push_tail(stmt);
4510
4511 /* Track the current loop nesting. */
4512 ast_iteration_statement *nesting_ast = state->loop_nesting_ast;
4513
4514 state->loop_nesting_ast = this;
4515
4516 /* Likewise, indicate that following code is closest to a loop,
4517 * NOT closest to a switch.
4518 */
4519 bool saved_is_switch_innermost = state->switch_state.is_switch_innermost;
4520 state->switch_state.is_switch_innermost = false;
4521
4522 if (mode != ast_do_while)
4523 condition_to_hir(&stmt->body_instructions, state);
4524
4525 if (body != NULL)
4526 body->hir(& stmt->body_instructions, state);
4527
4528 if (rest_expression != NULL)
4529 rest_expression->hir(& stmt->body_instructions, state);
4530
4531 if (mode == ast_do_while)
4532 condition_to_hir(&stmt->body_instructions, state);
4533
4534 if (mode != ast_do_while)
4535 state->symbols->pop_scope();
4536
4537 /* Restore previous nesting before returning. */
4538 state->loop_nesting_ast = nesting_ast;
4539 state->switch_state.is_switch_innermost = saved_is_switch_innermost;
4540
4541 /* Loops do not have r-values.
4542 */
4543 return NULL;
4544 }
4545
4546
4547 /**
4548 * Determine if the given type is valid for establishing a default precision
4549 * qualifier.
4550 *
4551 * From GLSL ES 3.00 section 4.5.4 ("Default Precision Qualifiers"):
4552 *
4553 * "The precision statement
4554 *
4555 * precision precision-qualifier type;
4556 *
4557 * can be used to establish a default precision qualifier. The type field
4558 * can be either int or float or any of the sampler types, and the
4559 * precision-qualifier can be lowp, mediump, or highp."
4560 *
4561 * GLSL ES 1.00 has similar language. GLSL 1.30 doesn't allow precision
4562 * qualifiers on sampler types, but this seems like an oversight (since the
4563 * intention of including these in GLSL 1.30 is to allow compatibility with ES
4564 * shaders). So we allow int, float, and all sampler types regardless of GLSL
4565 * version.
4566 */
4567 static bool
4568 is_valid_default_precision_type(const struct glsl_type *const type)
4569 {
4570 if (type == NULL)
4571 return false;
4572
4573 switch (type->base_type) {
4574 case GLSL_TYPE_INT:
4575 case GLSL_TYPE_FLOAT:
4576 /* "int" and "float" are valid, but vectors and matrices are not. */
4577 return type->vector_elements == 1 && type->matrix_columns == 1;
4578 case GLSL_TYPE_SAMPLER:
4579 return true;
4580 default:
4581 return false;
4582 }
4583 }
4584
4585
4586 ir_rvalue *
4587 ast_type_specifier::hir(exec_list *instructions,
4588 struct _mesa_glsl_parse_state *state)
4589 {
4590 if (this->default_precision == ast_precision_none && this->structure == NULL)
4591 return NULL;
4592
4593 YYLTYPE loc = this->get_location();
4594
4595 /* If this is a precision statement, check that the type to which it is
4596 * applied is either float or int.
4597 *
4598 * From section 4.5.3 of the GLSL 1.30 spec:
4599 * "The precision statement
4600 * precision precision-qualifier type;
4601 * can be used to establish a default precision qualifier. The type
4602 * field can be either int or float [...]. Any other types or
4603 * qualifiers will result in an error.
4604 */
4605 if (this->default_precision != ast_precision_none) {
4606 if (!state->check_precision_qualifiers_allowed(&loc))
4607 return NULL;
4608
4609 if (this->structure != NULL) {
4610 _mesa_glsl_error(&loc, state,
4611 "precision qualifiers do not apply to structures");
4612 return NULL;
4613 }
4614
4615 if (this->array_specifier != NULL) {
4616 _mesa_glsl_error(&loc, state,
4617 "default precision statements do not apply to "
4618 "arrays");
4619 return NULL;
4620 }
4621
4622 const struct glsl_type *const type =
4623 state->symbols->get_type(this->type_name);
4624 if (!is_valid_default_precision_type(type)) {
4625 _mesa_glsl_error(&loc, state,
4626 "default precision statements apply only to "
4627 "float, int, and sampler types");
4628 return NULL;
4629 }
4630
4631 if (type->base_type == GLSL_TYPE_FLOAT
4632 && state->es_shader
4633 && state->stage == MESA_SHADER_FRAGMENT) {
4634 /* Section 4.5.3 (Default Precision Qualifiers) of the GLSL ES 1.00
4635 * spec says:
4636 *
4637 * "The fragment language has no default precision qualifier for
4638 * floating point types."
4639 *
4640 * As a result, we have to track whether or not default precision has
4641 * been specified for float in GLSL ES fragment shaders.
4642 *
4643 * Earlier in that same section, the spec says:
4644 *
4645 * "Non-precision qualified declarations will use the precision
4646 * qualifier specified in the most recent precision statement
4647 * that is still in scope. The precision statement has the same
4648 * scoping rules as variable declarations. If it is declared
4649 * inside a compound statement, its effect stops at the end of
4650 * the innermost statement it was declared in. Precision
4651 * statements in nested scopes override precision statements in
4652 * outer scopes. Multiple precision statements for the same basic
4653 * type can appear inside the same scope, with later statements
4654 * overriding earlier statements within that scope."
4655 *
4656 * Default precision specifications follow the same scope rules as
4657 * variables. So, we can track the state of the default float
4658 * precision in the symbol table, and the rules will just work. This
4659 * is a slight abuse of the symbol table, but it has the semantics
4660 * that we want.
4661 */
4662 ir_variable *const junk =
4663 new(state) ir_variable(type, "#default precision",
4664 ir_var_temporary);
4665
4666 state->symbols->add_variable(junk);
4667 }
4668
4669 /* FINISHME: Translate precision statements into IR. */
4670 return NULL;
4671 }
4672
4673 /* _mesa_ast_set_aggregate_type() sets the <structure> field so that
4674 * process_record_constructor() can do type-checking on C-style initializer
4675 * expressions of structs, but ast_struct_specifier should only be translated
4676 * to HIR if it is declaring the type of a structure.
4677 *
4678 * The ->is_declaration field is false for initializers of variables
4679 * declared separately from the struct's type definition.
4680 *
4681 * struct S { ... }; (is_declaration = true)
4682 * struct T { ... } t = { ... }; (is_declaration = true)
4683 * S s = { ... }; (is_declaration = false)
4684 */
4685 if (this->structure != NULL && this->structure->is_declaration)
4686 return this->structure->hir(instructions, state);
4687
4688 return NULL;
4689 }
4690
4691
4692 /**
4693 * Process a structure or interface block tree into an array of structure fields
4694 *
4695 * After parsing, where there are some syntax differnces, structures and
4696 * interface blocks are almost identical. They are similar enough that the
4697 * AST for each can be processed the same way into a set of
4698 * \c glsl_struct_field to describe the members.
4699 *
4700 * If we're processing an interface block, var_mode should be the type of the
4701 * interface block (ir_var_shader_in, ir_var_shader_out, or ir_var_uniform).
4702 * If we're processing a structure, var_mode should be ir_var_auto.
4703 *
4704 * \return
4705 * The number of fields processed. A pointer to the array structure fields is
4706 * stored in \c *fields_ret.
4707 */
4708 unsigned
4709 ast_process_structure_or_interface_block(exec_list *instructions,
4710 struct _mesa_glsl_parse_state *state,
4711 exec_list *declarations,
4712 YYLTYPE &loc,
4713 glsl_struct_field **fields_ret,
4714 bool is_interface,
4715 bool block_row_major,
4716 bool allow_reserved_names,
4717 ir_variable_mode var_mode)
4718 {
4719 unsigned decl_count = 0;
4720
4721 /* Make an initial pass over the list of fields to determine how
4722 * many there are. Each element in this list is an ast_declarator_list.
4723 * This means that we actually need to count the number of elements in the
4724 * 'declarations' list in each of the elements.
4725 */
4726 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
4727 foreach_list_const (decl_ptr, & decl_list->declarations) {
4728 decl_count++;
4729 }
4730 }
4731
4732 /* Allocate storage for the fields and process the field
4733 * declarations. As the declarations are processed, try to also convert
4734 * the types to HIR. This ensures that structure definitions embedded in
4735 * other structure definitions or in interface blocks are processed.
4736 */
4737 glsl_struct_field *const fields = ralloc_array(state, glsl_struct_field,
4738 decl_count);
4739
4740 unsigned i = 0;
4741 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
4742 const char *type_name;
4743
4744 decl_list->type->specifier->hir(instructions, state);
4745
4746 /* Section 10.9 of the GLSL ES 1.00 specification states that
4747 * embedded structure definitions have been removed from the language.
4748 */
4749 if (state->es_shader && decl_list->type->specifier->structure != NULL) {
4750 _mesa_glsl_error(&loc, state, "embedded structure definitions are "
4751 "not allowed in GLSL ES 1.00");
4752 }
4753
4754 const glsl_type *decl_type =
4755 decl_list->type->glsl_type(& type_name, state);
4756
4757 foreach_list_typed (ast_declaration, decl, link,
4758 &decl_list->declarations) {
4759 if (!allow_reserved_names)
4760 validate_identifier(decl->identifier, loc, state);
4761
4762 /* From section 4.3.9 of the GLSL 4.40 spec:
4763 *
4764 * "[In interface blocks] opaque types are not allowed."
4765 *
4766 * It should be impossible for decl_type to be NULL here. Cases that
4767 * might naturally lead to decl_type being NULL, especially for the
4768 * is_interface case, will have resulted in compilation having
4769 * already halted due to a syntax error.
4770 */
4771 const struct glsl_type *field_type =
4772 decl_type != NULL ? decl_type : glsl_type::error_type;
4773
4774 if (is_interface && field_type->contains_opaque()) {
4775 YYLTYPE loc = decl_list->get_location();
4776 _mesa_glsl_error(&loc, state,
4777 "uniform in non-default uniform block contains "
4778 "opaque variable");
4779 }
4780
4781 if (field_type->contains_atomic()) {
4782 /* FINISHME: Add a spec quotation here once updated spec
4783 * FINISHME: language is available. See Khronos bug #10903
4784 * FINISHME: on whether atomic counters are allowed in
4785 * FINISHME: structures.
4786 */
4787 YYLTYPE loc = decl_list->get_location();
4788 _mesa_glsl_error(&loc, state, "atomic counter in structure or "
4789 "uniform block");
4790 }
4791
4792 if (field_type->contains_image()) {
4793 /* FINISHME: Same problem as with atomic counters.
4794 * FINISHME: Request clarification from Khronos and add
4795 * FINISHME: spec quotation here.
4796 */
4797 YYLTYPE loc = decl_list->get_location();
4798 _mesa_glsl_error(&loc, state,
4799 "image in structure or uniform block");
4800 }
4801
4802 const struct ast_type_qualifier *const qual =
4803 & decl_list->type->qualifier;
4804 if (qual->flags.q.std140 ||
4805 qual->flags.q.packed ||
4806 qual->flags.q.shared) {
4807 _mesa_glsl_error(&loc, state,
4808 "uniform block layout qualifiers std140, packed, and "
4809 "shared can only be applied to uniform blocks, not "
4810 "members");
4811 }
4812
4813 field_type = process_array_type(&loc, decl_type,
4814 decl->array_specifier, state);
4815 fields[i].type = field_type;
4816 fields[i].name = decl->identifier;
4817 fields[i].location = -1;
4818 fields[i].interpolation =
4819 interpret_interpolation_qualifier(qual, var_mode, state, &loc);
4820 fields[i].centroid = qual->flags.q.centroid ? 1 : 0;
4821 fields[i].sample = qual->flags.q.sample ? 1 : 0;
4822
4823 if (qual->flags.q.row_major || qual->flags.q.column_major) {
4824 if (!qual->flags.q.uniform) {
4825 _mesa_glsl_error(&loc, state,
4826 "row_major and column_major can only be "
4827 "applied to uniform interface blocks");
4828 } else
4829 validate_matrix_layout_for_type(state, &loc, field_type, NULL);
4830 }
4831
4832 if (qual->flags.q.uniform && qual->has_interpolation()) {
4833 _mesa_glsl_error(&loc, state,
4834 "interpolation qualifiers cannot be used "
4835 "with uniform interface blocks");
4836 }
4837
4838 if (field_type->is_matrix() ||
4839 (field_type->is_array() && field_type->fields.array->is_matrix())) {
4840 fields[i].row_major = block_row_major;
4841 if (qual->flags.q.row_major)
4842 fields[i].row_major = true;
4843 else if (qual->flags.q.column_major)
4844 fields[i].row_major = false;
4845 }
4846
4847 i++;
4848 }
4849 }
4850
4851 assert(i == decl_count);
4852
4853 *fields_ret = fields;
4854 return decl_count;
4855 }
4856
4857
4858 ir_rvalue *
4859 ast_struct_specifier::hir(exec_list *instructions,
4860 struct _mesa_glsl_parse_state *state)
4861 {
4862 YYLTYPE loc = this->get_location();
4863
4864 /* Section 4.1.8 (Structures) of the GLSL 1.10 spec says:
4865 *
4866 * "Anonymous structures are not supported; so embedded structures must
4867 * have a declarator. A name given to an embedded struct is scoped at
4868 * the same level as the struct it is embedded in."
4869 *
4870 * The same section of the GLSL 1.20 spec says:
4871 *
4872 * "Anonymous structures are not supported. Embedded structures are not
4873 * supported.
4874 *
4875 * struct S { float f; };
4876 * struct T {
4877 * S; // Error: anonymous structures disallowed
4878 * struct { ... }; // Error: embedded structures disallowed
4879 * S s; // Okay: nested structures with name are allowed
4880 * };"
4881 *
4882 * The GLSL ES 1.00 and 3.00 specs have similar langauge and examples. So,
4883 * we allow embedded structures in 1.10 only.
4884 */
4885 if (state->language_version != 110 && state->struct_specifier_depth != 0)
4886 _mesa_glsl_error(&loc, state,
4887 "embedded structure declartions are not allowed");
4888
4889 state->struct_specifier_depth++;
4890
4891 glsl_struct_field *fields;
4892 unsigned decl_count =
4893 ast_process_structure_or_interface_block(instructions,
4894 state,
4895 &this->declarations,
4896 loc,
4897 &fields,
4898 false,
4899 false,
4900 false /* allow_reserved_names */,
4901 ir_var_auto);
4902
4903 validate_identifier(this->name, loc, state);
4904
4905 const glsl_type *t =
4906 glsl_type::get_record_instance(fields, decl_count, this->name);
4907
4908 if (!state->symbols->add_type(name, t)) {
4909 _mesa_glsl_error(& loc, state, "struct `%s' previously defined", name);
4910 } else {
4911 const glsl_type **s = reralloc(state, state->user_structures,
4912 const glsl_type *,
4913 state->num_user_structures + 1);
4914 if (s != NULL) {
4915 s[state->num_user_structures] = t;
4916 state->user_structures = s;
4917 state->num_user_structures++;
4918 }
4919 }
4920
4921 state->struct_specifier_depth--;
4922
4923 /* Structure type definitions do not have r-values.
4924 */
4925 return NULL;
4926 }
4927
4928
4929 /**
4930 * Visitor class which detects whether a given interface block has been used.
4931 */
4932 class interface_block_usage_visitor : public ir_hierarchical_visitor
4933 {
4934 public:
4935 interface_block_usage_visitor(ir_variable_mode mode, const glsl_type *block)
4936 : mode(mode), block(block), found(false)
4937 {
4938 }
4939
4940 virtual ir_visitor_status visit(ir_dereference_variable *ir)
4941 {
4942 if (ir->var->data.mode == mode && ir->var->get_interface_type() == block) {
4943 found = true;
4944 return visit_stop;
4945 }
4946 return visit_continue;
4947 }
4948
4949 bool usage_found() const
4950 {
4951 return this->found;
4952 }
4953
4954 private:
4955 ir_variable_mode mode;
4956 const glsl_type *block;
4957 bool found;
4958 };
4959
4960
4961 ir_rvalue *
4962 ast_interface_block::hir(exec_list *instructions,
4963 struct _mesa_glsl_parse_state *state)
4964 {
4965 YYLTYPE loc = this->get_location();
4966
4967 /* The ast_interface_block has a list of ast_declarator_lists. We
4968 * need to turn those into ir_variables with an association
4969 * with this uniform block.
4970 */
4971 enum glsl_interface_packing packing;
4972 if (this->layout.flags.q.shared) {
4973 packing = GLSL_INTERFACE_PACKING_SHARED;
4974 } else if (this->layout.flags.q.packed) {
4975 packing = GLSL_INTERFACE_PACKING_PACKED;
4976 } else {
4977 /* The default layout is std140.
4978 */
4979 packing = GLSL_INTERFACE_PACKING_STD140;
4980 }
4981
4982 ir_variable_mode var_mode;
4983 const char *iface_type_name;
4984 if (this->layout.flags.q.in) {
4985 var_mode = ir_var_shader_in;
4986 iface_type_name = "in";
4987 } else if (this->layout.flags.q.out) {
4988 var_mode = ir_var_shader_out;
4989 iface_type_name = "out";
4990 } else if (this->layout.flags.q.uniform) {
4991 var_mode = ir_var_uniform;
4992 iface_type_name = "uniform";
4993 } else {
4994 var_mode = ir_var_auto;
4995 iface_type_name = "UNKNOWN";
4996 assert(!"interface block layout qualifier not found!");
4997 }
4998
4999 bool redeclaring_per_vertex = strcmp(this->block_name, "gl_PerVertex") == 0;
5000 bool block_row_major = this->layout.flags.q.row_major;
5001 exec_list declared_variables;
5002 glsl_struct_field *fields;
5003 unsigned int num_variables =
5004 ast_process_structure_or_interface_block(&declared_variables,
5005 state,
5006 &this->declarations,
5007 loc,
5008 &fields,
5009 true,
5010 block_row_major,
5011 redeclaring_per_vertex,
5012 var_mode);
5013
5014 if (!redeclaring_per_vertex)
5015 validate_identifier(this->block_name, loc, state);
5016
5017 const glsl_type *earlier_per_vertex = NULL;
5018 if (redeclaring_per_vertex) {
5019 /* Find the previous declaration of gl_PerVertex. If we're redeclaring
5020 * the named interface block gl_in, we can find it by looking at the
5021 * previous declaration of gl_in. Otherwise we can find it by looking
5022 * at the previous decalartion of any of the built-in outputs,
5023 * e.g. gl_Position.
5024 *
5025 * Also check that the instance name and array-ness of the redeclaration
5026 * are correct.
5027 */
5028 switch (var_mode) {
5029 case ir_var_shader_in:
5030 if (ir_variable *earlier_gl_in =
5031 state->symbols->get_variable("gl_in")) {
5032 earlier_per_vertex = earlier_gl_in->get_interface_type();
5033 } else {
5034 _mesa_glsl_error(&loc, state,
5035 "redeclaration of gl_PerVertex input not allowed "
5036 "in the %s shader",
5037 _mesa_shader_stage_to_string(state->stage));
5038 }
5039 if (this->instance_name == NULL ||
5040 strcmp(this->instance_name, "gl_in") != 0 || this->array_specifier == NULL) {
5041 _mesa_glsl_error(&loc, state,
5042 "gl_PerVertex input must be redeclared as "
5043 "gl_in[]");
5044 }
5045 break;
5046 case ir_var_shader_out:
5047 if (ir_variable *earlier_gl_Position =
5048 state->symbols->get_variable("gl_Position")) {
5049 earlier_per_vertex = earlier_gl_Position->get_interface_type();
5050 } else {
5051 _mesa_glsl_error(&loc, state,
5052 "redeclaration of gl_PerVertex output not "
5053 "allowed in the %s shader",
5054 _mesa_shader_stage_to_string(state->stage));
5055 }
5056 if (this->instance_name != NULL) {
5057 _mesa_glsl_error(&loc, state,
5058 "gl_PerVertex input may not be redeclared with "
5059 "an instance name");
5060 }
5061 break;
5062 default:
5063 _mesa_glsl_error(&loc, state,
5064 "gl_PerVertex must be declared as an input or an "
5065 "output");
5066 break;
5067 }
5068
5069 if (earlier_per_vertex == NULL) {
5070 /* An error has already been reported. Bail out to avoid null
5071 * dereferences later in this function.
5072 */
5073 return NULL;
5074 }
5075
5076 /* Copy locations from the old gl_PerVertex interface block. */
5077 for (unsigned i = 0; i < num_variables; i++) {
5078 int j = earlier_per_vertex->field_index(fields[i].name);
5079 if (j == -1) {
5080 _mesa_glsl_error(&loc, state,
5081 "redeclaration of gl_PerVertex must be a subset "
5082 "of the built-in members of gl_PerVertex");
5083 } else {
5084 fields[i].location =
5085 earlier_per_vertex->fields.structure[j].location;
5086 fields[i].interpolation =
5087 earlier_per_vertex->fields.structure[j].interpolation;
5088 fields[i].centroid =
5089 earlier_per_vertex->fields.structure[j].centroid;
5090 fields[i].sample =
5091 earlier_per_vertex->fields.structure[j].sample;
5092 }
5093 }
5094
5095 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10
5096 * spec:
5097 *
5098 * If a built-in interface block is redeclared, it must appear in
5099 * the shader before any use of any member included in the built-in
5100 * declaration, or a compilation error will result.
5101 *
5102 * This appears to be a clarification to the behaviour established for
5103 * gl_PerVertex by GLSL 1.50, therefore we implement this behaviour
5104 * regardless of GLSL version.
5105 */
5106 interface_block_usage_visitor v(var_mode, earlier_per_vertex);
5107 v.run(instructions);
5108 if (v.usage_found()) {
5109 _mesa_glsl_error(&loc, state,
5110 "redeclaration of a built-in interface block must "
5111 "appear before any use of any member of the "
5112 "interface block");
5113 }
5114 }
5115
5116 const glsl_type *block_type =
5117 glsl_type::get_interface_instance(fields,
5118 num_variables,
5119 packing,
5120 this->block_name);
5121
5122 if (!state->symbols->add_interface(block_type->name, block_type, var_mode)) {
5123 YYLTYPE loc = this->get_location();
5124 _mesa_glsl_error(&loc, state, "interface block `%s' with type `%s' "
5125 "already taken in the current scope",
5126 this->block_name, iface_type_name);
5127 }
5128
5129 /* Since interface blocks cannot contain statements, it should be
5130 * impossible for the block to generate any instructions.
5131 */
5132 assert(declared_variables.is_empty());
5133
5134 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
5135 *
5136 * Geometry shader input variables get the per-vertex values written
5137 * out by vertex shader output variables of the same names. Since a
5138 * geometry shader operates on a set of vertices, each input varying
5139 * variable (or input block, see interface blocks below) needs to be
5140 * declared as an array.
5141 */
5142 if (state->stage == MESA_SHADER_GEOMETRY && this->array_specifier == NULL &&
5143 var_mode == ir_var_shader_in) {
5144 _mesa_glsl_error(&loc, state, "geometry shader inputs must be arrays");
5145 }
5146
5147 /* Page 39 (page 45 of the PDF) of section 4.3.7 in the GLSL ES 3.00 spec
5148 * says:
5149 *
5150 * "If an instance name (instance-name) is used, then it puts all the
5151 * members inside a scope within its own name space, accessed with the
5152 * field selector ( . ) operator (analogously to structures)."
5153 */
5154 if (this->instance_name) {
5155 if (redeclaring_per_vertex) {
5156 /* When a built-in in an unnamed interface block is redeclared,
5157 * get_variable_being_redeclared() calls
5158 * check_builtin_array_max_size() to make sure that built-in array
5159 * variables aren't redeclared to illegal sizes. But we're looking
5160 * at a redeclaration of a named built-in interface block. So we
5161 * have to manually call check_builtin_array_max_size() for all parts
5162 * of the interface that are arrays.
5163 */
5164 for (unsigned i = 0; i < num_variables; i++) {
5165 if (fields[i].type->is_array()) {
5166 const unsigned size = fields[i].type->array_size();
5167 check_builtin_array_max_size(fields[i].name, size, loc, state);
5168 }
5169 }
5170 } else {
5171 validate_identifier(this->instance_name, loc, state);
5172 }
5173
5174 ir_variable *var;
5175
5176 if (this->array_specifier != NULL) {
5177 /* Section 4.3.7 (Interface Blocks) of the GLSL 1.50 spec says:
5178 *
5179 * For uniform blocks declared an array, each individual array
5180 * element corresponds to a separate buffer object backing one
5181 * instance of the block. As the array size indicates the number
5182 * of buffer objects needed, uniform block array declarations
5183 * must specify an array size.
5184 *
5185 * And a few paragraphs later:
5186 *
5187 * Geometry shader input blocks must be declared as arrays and
5188 * follow the array declaration and linking rules for all
5189 * geometry shader inputs. All other input and output block
5190 * arrays must specify an array size.
5191 *
5192 * The upshot of this is that the only circumstance where an
5193 * interface array size *doesn't* need to be specified is on a
5194 * geometry shader input.
5195 */
5196 if (this->array_specifier->is_unsized_array &&
5197 (state->stage != MESA_SHADER_GEOMETRY || !this->layout.flags.q.in)) {
5198 _mesa_glsl_error(&loc, state,
5199 "only geometry shader inputs may be unsized "
5200 "instance block arrays");
5201
5202 }
5203
5204 const glsl_type *block_array_type =
5205 process_array_type(&loc, block_type, this->array_specifier, state);
5206
5207 var = new(state) ir_variable(block_array_type,
5208 this->instance_name,
5209 var_mode);
5210 } else {
5211 var = new(state) ir_variable(block_type,
5212 this->instance_name,
5213 var_mode);
5214 }
5215
5216 if (state->stage == MESA_SHADER_GEOMETRY && var_mode == ir_var_shader_in)
5217 handle_geometry_shader_input_decl(state, loc, var);
5218
5219 if (ir_variable *earlier =
5220 state->symbols->get_variable(this->instance_name)) {
5221 if (!redeclaring_per_vertex) {
5222 _mesa_glsl_error(&loc, state, "`%s' redeclared",
5223 this->instance_name);
5224 }
5225 earlier->data.how_declared = ir_var_declared_normally;
5226 earlier->type = var->type;
5227 earlier->reinit_interface_type(block_type);
5228 delete var;
5229 } else {
5230 state->symbols->add_variable(var);
5231 instructions->push_tail(var);
5232 }
5233 } else {
5234 /* In order to have an array size, the block must also be declared with
5235 * an instane name.
5236 */
5237 assert(this->array_specifier == NULL);
5238
5239 for (unsigned i = 0; i < num_variables; i++) {
5240 ir_variable *var =
5241 new(state) ir_variable(fields[i].type,
5242 ralloc_strdup(state, fields[i].name),
5243 var_mode);
5244 var->data.interpolation = fields[i].interpolation;
5245 var->data.centroid = fields[i].centroid;
5246 var->data.sample = fields[i].sample;
5247 var->init_interface_type(block_type);
5248
5249 if (redeclaring_per_vertex) {
5250 ir_variable *earlier =
5251 get_variable_being_redeclared(var, loc, state,
5252 true /* allow_all_redeclarations */);
5253 if (strncmp(var->name, "gl_", 3) != 0 || earlier == NULL) {
5254 _mesa_glsl_error(&loc, state,
5255 "redeclaration of gl_PerVertex can only "
5256 "include built-in variables");
5257 } else if (earlier->data.how_declared == ir_var_declared_normally) {
5258 _mesa_glsl_error(&loc, state,
5259 "`%s' has already been redeclared", var->name);
5260 } else {
5261 earlier->data.how_declared = ir_var_declared_in_block;
5262 earlier->reinit_interface_type(block_type);
5263 }
5264 continue;
5265 }
5266
5267 if (state->symbols->get_variable(var->name) != NULL)
5268 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
5269
5270 /* Propagate the "binding" keyword into this UBO's fields;
5271 * the UBO declaration itself doesn't get an ir_variable unless it
5272 * has an instance name. This is ugly.
5273 */
5274 var->data.explicit_binding = this->layout.flags.q.explicit_binding;
5275 var->data.binding = this->layout.binding;
5276
5277 state->symbols->add_variable(var);
5278 instructions->push_tail(var);
5279 }
5280
5281 if (redeclaring_per_vertex && block_type != earlier_per_vertex) {
5282 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10 spec:
5283 *
5284 * It is also a compilation error ... to redeclare a built-in
5285 * block and then use a member from that built-in block that was
5286 * not included in the redeclaration.
5287 *
5288 * This appears to be a clarification to the behaviour established
5289 * for gl_PerVertex by GLSL 1.50, therefore we implement this
5290 * behaviour regardless of GLSL version.
5291 *
5292 * To prevent the shader from using a member that was not included in
5293 * the redeclaration, we disable any ir_variables that are still
5294 * associated with the old declaration of gl_PerVertex (since we've
5295 * already updated all of the variables contained in the new
5296 * gl_PerVertex to point to it).
5297 *
5298 * As a side effect this will prevent
5299 * validate_intrastage_interface_blocks() from getting confused and
5300 * thinking there are conflicting definitions of gl_PerVertex in the
5301 * shader.
5302 */
5303 foreach_list_safe(node, instructions) {
5304 ir_variable *const var = ((ir_instruction *) node)->as_variable();
5305 if (var != NULL &&
5306 var->get_interface_type() == earlier_per_vertex &&
5307 var->data.mode == var_mode) {
5308 if (var->data.how_declared == ir_var_declared_normally) {
5309 _mesa_glsl_error(&loc, state,
5310 "redeclaration of gl_PerVertex cannot "
5311 "follow a redeclaration of `%s'",
5312 var->name);
5313 }
5314 state->symbols->disable_variable(var->name);
5315 var->remove();
5316 }
5317 }
5318 }
5319 }
5320
5321 return NULL;
5322 }
5323
5324
5325 ir_rvalue *
5326 ast_gs_input_layout::hir(exec_list *instructions,
5327 struct _mesa_glsl_parse_state *state)
5328 {
5329 YYLTYPE loc = this->get_location();
5330
5331 /* If any geometry input layout declaration preceded this one, make sure it
5332 * was consistent with this one.
5333 */
5334 if (state->gs_input_prim_type_specified &&
5335 state->gs_input_prim_type != this->prim_type) {
5336 _mesa_glsl_error(&loc, state,
5337 "geometry shader input layout does not match"
5338 " previous declaration");
5339 return NULL;
5340 }
5341
5342 /* If any shader inputs occurred before this declaration and specified an
5343 * array size, make sure the size they specified is consistent with the
5344 * primitive type.
5345 */
5346 unsigned num_vertices = vertices_per_prim(this->prim_type);
5347 if (state->gs_input_size != 0 && state->gs_input_size != num_vertices) {
5348 _mesa_glsl_error(&loc, state,
5349 "this geometry shader input layout implies %u vertices"
5350 " per primitive, but a previous input is declared"
5351 " with size %u", num_vertices, state->gs_input_size);
5352 return NULL;
5353 }
5354
5355 state->gs_input_prim_type_specified = true;
5356 state->gs_input_prim_type = this->prim_type;
5357
5358 /* If any shader inputs occurred before this declaration and did not
5359 * specify an array size, their size is determined now.
5360 */
5361 foreach_list (node, instructions) {
5362 ir_variable *var = ((ir_instruction *) node)->as_variable();
5363 if (var == NULL || var->data.mode != ir_var_shader_in)
5364 continue;
5365
5366 /* Note: gl_PrimitiveIDIn has mode ir_var_shader_in, but it's not an
5367 * array; skip it.
5368 */
5369
5370 if (var->type->is_unsized_array()) {
5371 if (var->data.max_array_access >= num_vertices) {
5372 _mesa_glsl_error(&loc, state,
5373 "this geometry shader input layout implies %u"
5374 " vertices, but an access to element %u of input"
5375 " `%s' already exists", num_vertices,
5376 var->data.max_array_access, var->name);
5377 } else {
5378 var->type = glsl_type::get_array_instance(var->type->fields.array,
5379 num_vertices);
5380 }
5381 }
5382 }
5383
5384 return NULL;
5385 }
5386
5387
5388 ir_rvalue *
5389 ast_cs_input_layout::hir(exec_list *instructions,
5390 struct _mesa_glsl_parse_state *state)
5391 {
5392 YYLTYPE loc = this->get_location();
5393
5394 /* If any compute input layout declaration preceded this one, make sure it
5395 * was consistent with this one.
5396 */
5397 if (state->cs_input_local_size_specified) {
5398 for (int i = 0; i < 3; i++) {
5399 if (state->cs_input_local_size[i] != this->local_size[i]) {
5400 _mesa_glsl_error(&loc, state,
5401 "compute shader input layout does not match"
5402 " previous declaration");
5403 return NULL;
5404 }
5405 }
5406 }
5407
5408 /* From the ARB_compute_shader specification:
5409 *
5410 * If the local size of the shader in any dimension is greater
5411 * than the maximum size supported by the implementation for that
5412 * dimension, a compile-time error results.
5413 *
5414 * It is not clear from the spec how the error should be reported if
5415 * the total size of the work group exceeds
5416 * MAX_COMPUTE_WORK_GROUP_INVOCATIONS, but it seems reasonable to
5417 * report it at compile time as well.
5418 */
5419 GLuint64 total_invocations = 1;
5420 for (int i = 0; i < 3; i++) {
5421 if (this->local_size[i] > state->ctx->Const.MaxComputeWorkGroupSize[i]) {
5422 _mesa_glsl_error(&loc, state,
5423 "local_size_%c exceeds MAX_COMPUTE_WORK_GROUP_SIZE"
5424 " (%d)", 'x' + i,
5425 state->ctx->Const.MaxComputeWorkGroupSize[i]);
5426 break;
5427 }
5428 total_invocations *= this->local_size[i];
5429 if (total_invocations >
5430 state->ctx->Const.MaxComputeWorkGroupInvocations) {
5431 _mesa_glsl_error(&loc, state,
5432 "product of local_sizes exceeds "
5433 "MAX_COMPUTE_WORK_GROUP_INVOCATIONS (%d)",
5434 state->ctx->Const.MaxComputeWorkGroupInvocations);
5435 break;
5436 }
5437 }
5438
5439 state->cs_input_local_size_specified = true;
5440 for (int i = 0; i < 3; i++)
5441 state->cs_input_local_size[i] = this->local_size[i];
5442
5443 /* We may now declare the built-in constant gl_WorkGroupSize (see
5444 * builtin_variable_generator::generate_constants() for why we didn't
5445 * declare it earlier).
5446 */
5447 ir_variable *var = new(state->symbols)
5448 ir_variable(glsl_type::ivec3_type, "gl_WorkGroupSize", ir_var_auto);
5449 var->data.how_declared = ir_var_declared_implicitly;
5450 var->data.read_only = true;
5451 instructions->push_tail(var);
5452 state->symbols->add_variable(var);
5453 ir_constant_data data;
5454 memset(&data, 0, sizeof(data));
5455 for (int i = 0; i < 3; i++)
5456 data.i[i] = this->local_size[i];
5457 var->constant_value = new(var) ir_constant(glsl_type::ivec3_type, &data);
5458 var->constant_initializer =
5459 new(var) ir_constant(glsl_type::ivec3_type, &data);
5460 var->data.has_initializer = true;
5461
5462 return NULL;
5463 }
5464
5465
5466 static void
5467 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
5468 exec_list *instructions)
5469 {
5470 bool gl_FragColor_assigned = false;
5471 bool gl_FragData_assigned = false;
5472 bool user_defined_fs_output_assigned = false;
5473 ir_variable *user_defined_fs_output = NULL;
5474
5475 /* It would be nice to have proper location information. */
5476 YYLTYPE loc;
5477 memset(&loc, 0, sizeof(loc));
5478
5479 foreach_list(node, instructions) {
5480 ir_variable *var = ((ir_instruction *)node)->as_variable();
5481
5482 if (!var || !var->data.assigned)
5483 continue;
5484
5485 if (strcmp(var->name, "gl_FragColor") == 0)
5486 gl_FragColor_assigned = true;
5487 else if (strcmp(var->name, "gl_FragData") == 0)
5488 gl_FragData_assigned = true;
5489 else if (strncmp(var->name, "gl_", 3) != 0) {
5490 if (state->stage == MESA_SHADER_FRAGMENT &&
5491 var->data.mode == ir_var_shader_out) {
5492 user_defined_fs_output_assigned = true;
5493 user_defined_fs_output = var;
5494 }
5495 }
5496 }
5497
5498 /* From the GLSL 1.30 spec:
5499 *
5500 * "If a shader statically assigns a value to gl_FragColor, it
5501 * may not assign a value to any element of gl_FragData. If a
5502 * shader statically writes a value to any element of
5503 * gl_FragData, it may not assign a value to
5504 * gl_FragColor. That is, a shader may assign values to either
5505 * gl_FragColor or gl_FragData, but not both. Multiple shaders
5506 * linked together must also consistently write just one of
5507 * these variables. Similarly, if user declared output
5508 * variables are in use (statically assigned to), then the
5509 * built-in variables gl_FragColor and gl_FragData may not be
5510 * assigned to. These incorrect usages all generate compile
5511 * time errors."
5512 */
5513 if (gl_FragColor_assigned && gl_FragData_assigned) {
5514 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
5515 "`gl_FragColor' and `gl_FragData'");
5516 } else if (gl_FragColor_assigned && user_defined_fs_output_assigned) {
5517 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
5518 "`gl_FragColor' and `%s'",
5519 user_defined_fs_output->name);
5520 } else if (gl_FragData_assigned && user_defined_fs_output_assigned) {
5521 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
5522 "`gl_FragData' and `%s'",
5523 user_defined_fs_output->name);
5524 }
5525 }
5526
5527
5528 static void
5529 remove_per_vertex_blocks(exec_list *instructions,
5530 _mesa_glsl_parse_state *state, ir_variable_mode mode)
5531 {
5532 /* Find the gl_PerVertex interface block of the appropriate (in/out) mode,
5533 * if it exists in this shader type.
5534 */
5535 const glsl_type *per_vertex = NULL;
5536 switch (mode) {
5537 case ir_var_shader_in:
5538 if (ir_variable *gl_in = state->symbols->get_variable("gl_in"))
5539 per_vertex = gl_in->get_interface_type();
5540 break;
5541 case ir_var_shader_out:
5542 if (ir_variable *gl_Position =
5543 state->symbols->get_variable("gl_Position")) {
5544 per_vertex = gl_Position->get_interface_type();
5545 }
5546 break;
5547 default:
5548 assert(!"Unexpected mode");
5549 break;
5550 }
5551
5552 /* If we didn't find a built-in gl_PerVertex interface block, then we don't
5553 * need to do anything.
5554 */
5555 if (per_vertex == NULL)
5556 return;
5557
5558 /* If the interface block is used by the shader, then we don't need to do
5559 * anything.
5560 */
5561 interface_block_usage_visitor v(mode, per_vertex);
5562 v.run(instructions);
5563 if (v.usage_found())
5564 return;
5565
5566 /* Remove any ir_variable declarations that refer to the interface block
5567 * we're removing.
5568 */
5569 foreach_list_safe(node, instructions) {
5570 ir_variable *const var = ((ir_instruction *) node)->as_variable();
5571 if (var != NULL && var->get_interface_type() == per_vertex &&
5572 var->data.mode == mode) {
5573 state->symbols->disable_variable(var->name);
5574 var->remove();
5575 }
5576 }
5577 }