f552b47d343b5c9508aca1ce9a9e68be9fb02bce
[mesa.git] / src / glsl / ast_to_hir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file ast_to_hir.c
26 * Convert abstract syntax to to high-level intermediate reprensentation (HIR).
27 *
28 * During the conversion to HIR, the majority of the symantic checking is
29 * preformed on the program. This includes:
30 *
31 * * Symbol table management
32 * * Type checking
33 * * Function binding
34 *
35 * The majority of this work could be done during parsing, and the parser could
36 * probably generate HIR directly. However, this results in frequent changes
37 * to the parser code. Since we do not assume that every system this complier
38 * is built on will have Flex and Bison installed, we have to store the code
39 * generated by these tools in our version control system. In other parts of
40 * the system we've seen problems where a parser was changed but the generated
41 * code was not committed, merge conflicts where created because two developers
42 * had slightly different versions of Bison installed, etc.
43 *
44 * I have also noticed that running Bison generated parsers in GDB is very
45 * irritating. When you get a segfault on '$$ = $1->foo', you can't very
46 * well 'print $1' in GDB.
47 *
48 * As a result, my preference is to put as little C code as possible in the
49 * parser (and lexer) sources.
50 */
51
52 #include "main/core.h" /* for struct gl_extensions */
53 #include "glsl_symbol_table.h"
54 #include "glsl_parser_extras.h"
55 #include "ast.h"
56 #include "glsl_types.h"
57 #include "program/hash_table.h"
58 #include "ir.h"
59
60 static void
61 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
62 exec_list *instructions);
63 static void
64 remove_per_vertex_blocks(exec_list *instructions,
65 _mesa_glsl_parse_state *state, ir_variable_mode mode);
66
67
68 void
69 _mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
70 {
71 _mesa_glsl_initialize_variables(instructions, state);
72
73 state->symbols->separate_function_namespace = state->language_version == 110;
74
75 state->current_function = NULL;
76
77 state->toplevel_ir = instructions;
78
79 state->gs_input_prim_type_specified = false;
80 state->cs_input_local_size_specified = false;
81
82 /* Section 4.2 of the GLSL 1.20 specification states:
83 * "The built-in functions are scoped in a scope outside the global scope
84 * users declare global variables in. That is, a shader's global scope,
85 * available for user-defined functions and global variables, is nested
86 * inside the scope containing the built-in functions."
87 *
88 * Since built-in functions like ftransform() access built-in variables,
89 * it follows that those must be in the outer scope as well.
90 *
91 * We push scope here to create this nesting effect...but don't pop.
92 * This way, a shader's globals are still in the symbol table for use
93 * by the linker.
94 */
95 state->symbols->push_scope();
96
97 foreach_list_typed (ast_node, ast, link, & state->translation_unit)
98 ast->hir(instructions, state);
99
100 detect_recursion_unlinked(state, instructions);
101 detect_conflicting_assignments(state, instructions);
102
103 state->toplevel_ir = NULL;
104
105 /* Move all of the variable declarations to the front of the IR list, and
106 * reverse the order. This has the (intended!) side effect that vertex
107 * shader inputs and fragment shader outputs will appear in the IR in the
108 * same order that they appeared in the shader code. This results in the
109 * locations being assigned in the declared order. Many (arguably buggy)
110 * applications depend on this behavior, and it matches what nearly all
111 * other drivers do.
112 */
113 foreach_list_safe(node, instructions) {
114 ir_variable *const var = ((ir_instruction *) node)->as_variable();
115
116 if (var == NULL)
117 continue;
118
119 var->remove();
120 instructions->push_head(var);
121 }
122
123 /* From section 7.1 (Built-In Language Variables) of the GLSL 4.10 spec:
124 *
125 * If multiple shaders using members of a built-in block belonging to
126 * the same interface are linked together in the same program, they
127 * must all redeclare the built-in block in the same way, as described
128 * in section 4.3.7 "Interface Blocks" for interface block matching, or
129 * a link error will result.
130 *
131 * The phrase "using members of a built-in block" implies that if two
132 * shaders are linked together and one of them *does not use* any members
133 * of the built-in block, then that shader does not need to have a matching
134 * redeclaration of the built-in block.
135 *
136 * This appears to be a clarification to the behaviour established for
137 * gl_PerVertex by GLSL 1.50, therefore implement it regardless of GLSL
138 * version.
139 *
140 * The definition of "interface" in section 4.3.7 that applies here is as
141 * follows:
142 *
143 * The boundary between adjacent programmable pipeline stages: This
144 * spans all the outputs in all compilation units of the first stage
145 * and all the inputs in all compilation units of the second stage.
146 *
147 * Therefore this rule applies to both inter- and intra-stage linking.
148 *
149 * The easiest way to implement this is to check whether the shader uses
150 * gl_PerVertex right after ast-to-ir conversion, and if it doesn't, simply
151 * remove all the relevant variable declaration from the IR, so that the
152 * linker won't see them and complain about mismatches.
153 */
154 remove_per_vertex_blocks(instructions, state, ir_var_shader_in);
155 remove_per_vertex_blocks(instructions, state, ir_var_shader_out);
156 }
157
158
159 /**
160 * If a conversion is available, convert one operand to a different type
161 *
162 * The \c from \c ir_rvalue is converted "in place".
163 *
164 * \param to Type that the operand it to be converted to
165 * \param from Operand that is being converted
166 * \param state GLSL compiler state
167 *
168 * \return
169 * If a conversion is possible (or unnecessary), \c true is returned.
170 * Otherwise \c false is returned.
171 */
172 bool
173 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
174 struct _mesa_glsl_parse_state *state)
175 {
176 void *ctx = state;
177 if (to->base_type == from->type->base_type)
178 return true;
179
180 /* This conversion was added in GLSL 1.20. If the compilation mode is
181 * GLSL 1.10, the conversion is skipped.
182 */
183 if (!state->is_version(120, 0))
184 return false;
185
186 /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
187 *
188 * "There are no implicit array or structure conversions. For
189 * example, an array of int cannot be implicitly converted to an
190 * array of float. There are no implicit conversions between
191 * signed and unsigned integers."
192 */
193 /* FINISHME: The above comment is partially a lie. There is int/uint
194 * FINISHME: conversion for immediate constants.
195 */
196 if (!to->is_float() || !from->type->is_numeric())
197 return false;
198
199 /* Convert to a floating point type with the same number of components
200 * as the original type - i.e. int to float, not int to vec4.
201 */
202 to = glsl_type::get_instance(GLSL_TYPE_FLOAT, from->type->vector_elements,
203 from->type->matrix_columns);
204
205 switch (from->type->base_type) {
206 case GLSL_TYPE_INT:
207 from = new(ctx) ir_expression(ir_unop_i2f, to, from, NULL);
208 break;
209 case GLSL_TYPE_UINT:
210 from = new(ctx) ir_expression(ir_unop_u2f, to, from, NULL);
211 break;
212 case GLSL_TYPE_BOOL:
213 from = new(ctx) ir_expression(ir_unop_b2f, to, from, NULL);
214 break;
215 default:
216 assert(0);
217 }
218
219 return true;
220 }
221
222
223 static const struct glsl_type *
224 arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
225 bool multiply,
226 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
227 {
228 const glsl_type *type_a = value_a->type;
229 const glsl_type *type_b = value_b->type;
230
231 /* From GLSL 1.50 spec, page 56:
232 *
233 * "The arithmetic binary operators add (+), subtract (-),
234 * multiply (*), and divide (/) operate on integer and
235 * floating-point scalars, vectors, and matrices."
236 */
237 if (!type_a->is_numeric() || !type_b->is_numeric()) {
238 _mesa_glsl_error(loc, state,
239 "operands to arithmetic operators must be numeric");
240 return glsl_type::error_type;
241 }
242
243
244 /* "If one operand is floating-point based and the other is
245 * not, then the conversions from Section 4.1.10 "Implicit
246 * Conversions" are applied to the non-floating-point-based operand."
247 */
248 if (!apply_implicit_conversion(type_a, value_b, state)
249 && !apply_implicit_conversion(type_b, value_a, state)) {
250 _mesa_glsl_error(loc, state,
251 "could not implicitly convert operands to "
252 "arithmetic operator");
253 return glsl_type::error_type;
254 }
255 type_a = value_a->type;
256 type_b = value_b->type;
257
258 /* "If the operands are integer types, they must both be signed or
259 * both be unsigned."
260 *
261 * From this rule and the preceeding conversion it can be inferred that
262 * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
263 * The is_numeric check above already filtered out the case where either
264 * type is not one of these, so now the base types need only be tested for
265 * equality.
266 */
267 if (type_a->base_type != type_b->base_type) {
268 _mesa_glsl_error(loc, state,
269 "base type mismatch for arithmetic operator");
270 return glsl_type::error_type;
271 }
272
273 /* "All arithmetic binary operators result in the same fundamental type
274 * (signed integer, unsigned integer, or floating-point) as the
275 * operands they operate on, after operand type conversion. After
276 * conversion, the following cases are valid
277 *
278 * * The two operands are scalars. In this case the operation is
279 * applied, resulting in a scalar."
280 */
281 if (type_a->is_scalar() && type_b->is_scalar())
282 return type_a;
283
284 /* "* One operand is a scalar, and the other is a vector or matrix.
285 * In this case, the scalar operation is applied independently to each
286 * component of the vector or matrix, resulting in the same size
287 * vector or matrix."
288 */
289 if (type_a->is_scalar()) {
290 if (!type_b->is_scalar())
291 return type_b;
292 } else if (type_b->is_scalar()) {
293 return type_a;
294 }
295
296 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
297 * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
298 * handled.
299 */
300 assert(!type_a->is_scalar());
301 assert(!type_b->is_scalar());
302
303 /* "* The two operands are vectors of the same size. In this case, the
304 * operation is done component-wise resulting in the same size
305 * vector."
306 */
307 if (type_a->is_vector() && type_b->is_vector()) {
308 if (type_a == type_b) {
309 return type_a;
310 } else {
311 _mesa_glsl_error(loc, state,
312 "vector size mismatch for arithmetic operator");
313 return glsl_type::error_type;
314 }
315 }
316
317 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
318 * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
319 * <vector, vector> have been handled. At least one of the operands must
320 * be matrix. Further, since there are no integer matrix types, the base
321 * type of both operands must be float.
322 */
323 assert(type_a->is_matrix() || type_b->is_matrix());
324 assert(type_a->base_type == GLSL_TYPE_FLOAT);
325 assert(type_b->base_type == GLSL_TYPE_FLOAT);
326
327 /* "* The operator is add (+), subtract (-), or divide (/), and the
328 * operands are matrices with the same number of rows and the same
329 * number of columns. In this case, the operation is done component-
330 * wise resulting in the same size matrix."
331 * * The operator is multiply (*), where both operands are matrices or
332 * one operand is a vector and the other a matrix. A right vector
333 * operand is treated as a column vector and a left vector operand as a
334 * row vector. In all these cases, it is required that the number of
335 * columns of the left operand is equal to the number of rows of the
336 * right operand. Then, the multiply (*) operation does a linear
337 * algebraic multiply, yielding an object that has the same number of
338 * rows as the left operand and the same number of columns as the right
339 * operand. Section 5.10 "Vector and Matrix Operations" explains in
340 * more detail how vectors and matrices are operated on."
341 */
342 if (! multiply) {
343 if (type_a == type_b)
344 return type_a;
345 } else {
346 if (type_a->is_matrix() && type_b->is_matrix()) {
347 /* Matrix multiply. The columns of A must match the rows of B. Given
348 * the other previously tested constraints, this means the vector type
349 * of a row from A must be the same as the vector type of a column from
350 * B.
351 */
352 if (type_a->row_type() == type_b->column_type()) {
353 /* The resulting matrix has the number of columns of matrix B and
354 * the number of rows of matrix A. We get the row count of A by
355 * looking at the size of a vector that makes up a column. The
356 * transpose (size of a row) is done for B.
357 */
358 const glsl_type *const type =
359 glsl_type::get_instance(type_a->base_type,
360 type_a->column_type()->vector_elements,
361 type_b->row_type()->vector_elements);
362 assert(type != glsl_type::error_type);
363
364 return type;
365 }
366 } else if (type_a->is_matrix()) {
367 /* A is a matrix and B is a column vector. Columns of A must match
368 * rows of B. Given the other previously tested constraints, this
369 * means the vector type of a row from A must be the same as the
370 * vector the type of B.
371 */
372 if (type_a->row_type() == type_b) {
373 /* The resulting vector has a number of elements equal to
374 * the number of rows of matrix A. */
375 const glsl_type *const type =
376 glsl_type::get_instance(type_a->base_type,
377 type_a->column_type()->vector_elements,
378 1);
379 assert(type != glsl_type::error_type);
380
381 return type;
382 }
383 } else {
384 assert(type_b->is_matrix());
385
386 /* A is a row vector and B is a matrix. Columns of A must match rows
387 * of B. Given the other previously tested constraints, this means
388 * the type of A must be the same as the vector type of a column from
389 * B.
390 */
391 if (type_a == type_b->column_type()) {
392 /* The resulting vector has a number of elements equal to
393 * the number of columns of matrix B. */
394 const glsl_type *const type =
395 glsl_type::get_instance(type_a->base_type,
396 type_b->row_type()->vector_elements,
397 1);
398 assert(type != glsl_type::error_type);
399
400 return type;
401 }
402 }
403
404 _mesa_glsl_error(loc, state, "size mismatch for matrix multiplication");
405 return glsl_type::error_type;
406 }
407
408
409 /* "All other cases are illegal."
410 */
411 _mesa_glsl_error(loc, state, "type mismatch");
412 return glsl_type::error_type;
413 }
414
415
416 static const struct glsl_type *
417 unary_arithmetic_result_type(const struct glsl_type *type,
418 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
419 {
420 /* From GLSL 1.50 spec, page 57:
421 *
422 * "The arithmetic unary operators negate (-), post- and pre-increment
423 * and decrement (-- and ++) operate on integer or floating-point
424 * values (including vectors and matrices). All unary operators work
425 * component-wise on their operands. These result with the same type
426 * they operated on."
427 */
428 if (!type->is_numeric()) {
429 _mesa_glsl_error(loc, state,
430 "operands to arithmetic operators must be numeric");
431 return glsl_type::error_type;
432 }
433
434 return type;
435 }
436
437 /**
438 * \brief Return the result type of a bit-logic operation.
439 *
440 * If the given types to the bit-logic operator are invalid, return
441 * glsl_type::error_type.
442 *
443 * \param type_a Type of LHS of bit-logic op
444 * \param type_b Type of RHS of bit-logic op
445 */
446 static const struct glsl_type *
447 bit_logic_result_type(const struct glsl_type *type_a,
448 const struct glsl_type *type_b,
449 ast_operators op,
450 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
451 {
452 if (!state->check_bitwise_operations_allowed(loc)) {
453 return glsl_type::error_type;
454 }
455
456 /* From page 50 (page 56 of PDF) of GLSL 1.30 spec:
457 *
458 * "The bitwise operators and (&), exclusive-or (^), and inclusive-or
459 * (|). The operands must be of type signed or unsigned integers or
460 * integer vectors."
461 */
462 if (!type_a->is_integer()) {
463 _mesa_glsl_error(loc, state, "LHS of `%s' must be an integer",
464 ast_expression::operator_string(op));
465 return glsl_type::error_type;
466 }
467 if (!type_b->is_integer()) {
468 _mesa_glsl_error(loc, state, "RHS of `%s' must be an integer",
469 ast_expression::operator_string(op));
470 return glsl_type::error_type;
471 }
472
473 /* "The fundamental types of the operands (signed or unsigned) must
474 * match,"
475 */
476 if (type_a->base_type != type_b->base_type) {
477 _mesa_glsl_error(loc, state, "operands of `%s' must have the same "
478 "base type", ast_expression::operator_string(op));
479 return glsl_type::error_type;
480 }
481
482 /* "The operands cannot be vectors of differing size." */
483 if (type_a->is_vector() &&
484 type_b->is_vector() &&
485 type_a->vector_elements != type_b->vector_elements) {
486 _mesa_glsl_error(loc, state, "operands of `%s' cannot be vectors of "
487 "different sizes", ast_expression::operator_string(op));
488 return glsl_type::error_type;
489 }
490
491 /* "If one operand is a scalar and the other a vector, the scalar is
492 * applied component-wise to the vector, resulting in the same type as
493 * the vector. The fundamental types of the operands [...] will be the
494 * resulting fundamental type."
495 */
496 if (type_a->is_scalar())
497 return type_b;
498 else
499 return type_a;
500 }
501
502 static const struct glsl_type *
503 modulus_result_type(const struct glsl_type *type_a,
504 const struct glsl_type *type_b,
505 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
506 {
507 if (!state->check_version(130, 300, loc, "operator '%%' is reserved")) {
508 return glsl_type::error_type;
509 }
510
511 /* From GLSL 1.50 spec, page 56:
512 * "The operator modulus (%) operates on signed or unsigned integers or
513 * integer vectors. The operand types must both be signed or both be
514 * unsigned."
515 */
516 if (!type_a->is_integer()) {
517 _mesa_glsl_error(loc, state, "LHS of operator %% must be an integer");
518 return glsl_type::error_type;
519 }
520 if (!type_b->is_integer()) {
521 _mesa_glsl_error(loc, state, "RHS of operator %% must be an integer");
522 return glsl_type::error_type;
523 }
524 if (type_a->base_type != type_b->base_type) {
525 _mesa_glsl_error(loc, state,
526 "operands of %% must have the same base type");
527 return glsl_type::error_type;
528 }
529
530 /* "The operands cannot be vectors of differing size. If one operand is
531 * a scalar and the other vector, then the scalar is applied component-
532 * wise to the vector, resulting in the same type as the vector. If both
533 * are vectors of the same size, the result is computed component-wise."
534 */
535 if (type_a->is_vector()) {
536 if (!type_b->is_vector()
537 || (type_a->vector_elements == type_b->vector_elements))
538 return type_a;
539 } else
540 return type_b;
541
542 /* "The operator modulus (%) is not defined for any other data types
543 * (non-integer types)."
544 */
545 _mesa_glsl_error(loc, state, "type mismatch");
546 return glsl_type::error_type;
547 }
548
549
550 static const struct glsl_type *
551 relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
552 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
553 {
554 const glsl_type *type_a = value_a->type;
555 const glsl_type *type_b = value_b->type;
556
557 /* From GLSL 1.50 spec, page 56:
558 * "The relational operators greater than (>), less than (<), greater
559 * than or equal (>=), and less than or equal (<=) operate only on
560 * scalar integer and scalar floating-point expressions."
561 */
562 if (!type_a->is_numeric()
563 || !type_b->is_numeric()
564 || !type_a->is_scalar()
565 || !type_b->is_scalar()) {
566 _mesa_glsl_error(loc, state,
567 "operands to relational operators must be scalar and "
568 "numeric");
569 return glsl_type::error_type;
570 }
571
572 /* "Either the operands' types must match, or the conversions from
573 * Section 4.1.10 "Implicit Conversions" will be applied to the integer
574 * operand, after which the types must match."
575 */
576 if (!apply_implicit_conversion(type_a, value_b, state)
577 && !apply_implicit_conversion(type_b, value_a, state)) {
578 _mesa_glsl_error(loc, state,
579 "could not implicitly convert operands to "
580 "relational operator");
581 return glsl_type::error_type;
582 }
583 type_a = value_a->type;
584 type_b = value_b->type;
585
586 if (type_a->base_type != type_b->base_type) {
587 _mesa_glsl_error(loc, state, "base type mismatch");
588 return glsl_type::error_type;
589 }
590
591 /* "The result is scalar Boolean."
592 */
593 return glsl_type::bool_type;
594 }
595
596 /**
597 * \brief Return the result type of a bit-shift operation.
598 *
599 * If the given types to the bit-shift operator are invalid, return
600 * glsl_type::error_type.
601 *
602 * \param type_a Type of LHS of bit-shift op
603 * \param type_b Type of RHS of bit-shift op
604 */
605 static const struct glsl_type *
606 shift_result_type(const struct glsl_type *type_a,
607 const struct glsl_type *type_b,
608 ast_operators op,
609 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
610 {
611 if (!state->check_bitwise_operations_allowed(loc)) {
612 return glsl_type::error_type;
613 }
614
615 /* From page 50 (page 56 of the PDF) of the GLSL 1.30 spec:
616 *
617 * "The shift operators (<<) and (>>). For both operators, the operands
618 * must be signed or unsigned integers or integer vectors. One operand
619 * can be signed while the other is unsigned."
620 */
621 if (!type_a->is_integer()) {
622 _mesa_glsl_error(loc, state, "LHS of operator %s must be an integer or "
623 "integer vector", ast_expression::operator_string(op));
624 return glsl_type::error_type;
625
626 }
627 if (!type_b->is_integer()) {
628 _mesa_glsl_error(loc, state, "RHS of operator %s must be an integer or "
629 "integer vector", ast_expression::operator_string(op));
630 return glsl_type::error_type;
631 }
632
633 /* "If the first operand is a scalar, the second operand has to be
634 * a scalar as well."
635 */
636 if (type_a->is_scalar() && !type_b->is_scalar()) {
637 _mesa_glsl_error(loc, state, "if the first operand of %s is scalar, the "
638 "second must be scalar as well",
639 ast_expression::operator_string(op));
640 return glsl_type::error_type;
641 }
642
643 /* If both operands are vectors, check that they have same number of
644 * elements.
645 */
646 if (type_a->is_vector() &&
647 type_b->is_vector() &&
648 type_a->vector_elements != type_b->vector_elements) {
649 _mesa_glsl_error(loc, state, "vector operands to operator %s must "
650 "have same number of elements",
651 ast_expression::operator_string(op));
652 return glsl_type::error_type;
653 }
654
655 /* "In all cases, the resulting type will be the same type as the left
656 * operand."
657 */
658 return type_a;
659 }
660
661 /**
662 * Validates that a value can be assigned to a location with a specified type
663 *
664 * Validates that \c rhs can be assigned to some location. If the types are
665 * not an exact match but an automatic conversion is possible, \c rhs will be
666 * converted.
667 *
668 * \return
669 * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
670 * Otherwise the actual RHS to be assigned will be returned. This may be
671 * \c rhs, or it may be \c rhs after some type conversion.
672 *
673 * \note
674 * In addition to being used for assignments, this function is used to
675 * type-check return values.
676 */
677 ir_rvalue *
678 validate_assignment(struct _mesa_glsl_parse_state *state,
679 YYLTYPE loc, const glsl_type *lhs_type,
680 ir_rvalue *rhs, bool is_initializer)
681 {
682 /* If there is already some error in the RHS, just return it. Anything
683 * else will lead to an avalanche of error message back to the user.
684 */
685 if (rhs->type->is_error())
686 return rhs;
687
688 /* If the types are identical, the assignment can trivially proceed.
689 */
690 if (rhs->type == lhs_type)
691 return rhs;
692
693 /* If the array element types are the same and the LHS is unsized,
694 * the assignment is okay for initializers embedded in variable
695 * declarations.
696 *
697 * Note: Whole-array assignments are not permitted in GLSL 1.10, but this
698 * is handled by ir_dereference::is_lvalue.
699 */
700 if (lhs_type->is_unsized_array() && rhs->type->is_array()
701 && (lhs_type->element_type() == rhs->type->element_type())) {
702 if (is_initializer) {
703 return rhs;
704 } else {
705 _mesa_glsl_error(&loc, state,
706 "implicitly sized arrays cannot be assigned");
707 return NULL;
708 }
709 }
710
711 /* Check for implicit conversion in GLSL 1.20 */
712 if (apply_implicit_conversion(lhs_type, rhs, state)) {
713 if (rhs->type == lhs_type)
714 return rhs;
715 }
716
717 _mesa_glsl_error(&loc, state,
718 "%s of type %s cannot be assigned to "
719 "variable of type %s",
720 is_initializer ? "initializer" : "value",
721 rhs->type->name, lhs_type->name);
722
723 return NULL;
724 }
725
726 static void
727 mark_whole_array_access(ir_rvalue *access)
728 {
729 ir_dereference_variable *deref = access->as_dereference_variable();
730
731 if (deref && deref->var) {
732 deref->var->data.max_array_access = deref->type->length - 1;
733 }
734 }
735
736 ir_rvalue *
737 do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state,
738 const char *non_lvalue_description,
739 ir_rvalue *lhs, ir_rvalue *rhs, bool is_initializer,
740 YYLTYPE lhs_loc)
741 {
742 void *ctx = state;
743 bool error_emitted = (lhs->type->is_error() || rhs->type->is_error());
744 ir_rvalue *extract_channel = NULL;
745
746 /* If the assignment LHS comes back as an ir_binop_vector_extract
747 * expression, move it to the RHS as an ir_triop_vector_insert.
748 */
749 if (lhs->ir_type == ir_type_expression) {
750 ir_expression *const lhs_expr = lhs->as_expression();
751
752 if (unlikely(lhs_expr->operation == ir_binop_vector_extract)) {
753 ir_rvalue *new_rhs =
754 validate_assignment(state, lhs_loc, lhs->type,
755 rhs, is_initializer);
756
757 if (new_rhs == NULL) {
758 return lhs;
759 } else {
760 /* This converts:
761 * - LHS: (expression float vector_extract <vec> <channel>)
762 * - RHS: <scalar>
763 * into:
764 * - LHS: <vec>
765 * - RHS: (expression vec2 vector_insert <vec> <channel> <scalar>)
766 *
767 * The LHS type is now a vector instead of a scalar. Since GLSL
768 * allows assignments to be used as rvalues, we need to re-extract
769 * the channel from assignment_temp when returning the rvalue.
770 */
771 extract_channel = lhs_expr->operands[1];
772 rhs = new(ctx) ir_expression(ir_triop_vector_insert,
773 lhs_expr->operands[0]->type,
774 lhs_expr->operands[0],
775 new_rhs,
776 extract_channel);
777 lhs = lhs_expr->operands[0]->clone(ctx, NULL);
778 }
779 }
780 }
781
782 ir_variable *lhs_var = lhs->variable_referenced();
783 if (lhs_var)
784 lhs_var->data.assigned = true;
785
786 if (!error_emitted) {
787 if (non_lvalue_description != NULL) {
788 _mesa_glsl_error(&lhs_loc, state,
789 "assignment to %s",
790 non_lvalue_description);
791 error_emitted = true;
792 } else if (lhs->variable_referenced() != NULL
793 && lhs->variable_referenced()->data.read_only) {
794 _mesa_glsl_error(&lhs_loc, state,
795 "assignment to read-only variable '%s'",
796 lhs->variable_referenced()->name);
797 error_emitted = true;
798
799 } else if (lhs->type->is_array() &&
800 !state->check_version(120, 300, &lhs_loc,
801 "whole array assignment forbidden")) {
802 /* From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
803 *
804 * "Other binary or unary expressions, non-dereferenced
805 * arrays, function names, swizzles with repeated fields,
806 * and constants cannot be l-values."
807 *
808 * The restriction on arrays is lifted in GLSL 1.20 and GLSL ES 3.00.
809 */
810 error_emitted = true;
811 } else if (!lhs->is_lvalue()) {
812 _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment");
813 error_emitted = true;
814 }
815 }
816
817 ir_rvalue *new_rhs =
818 validate_assignment(state, lhs_loc, lhs->type, rhs, is_initializer);
819 if (new_rhs != NULL) {
820 rhs = new_rhs;
821
822 /* If the LHS array was not declared with a size, it takes it size from
823 * the RHS. If the LHS is an l-value and a whole array, it must be a
824 * dereference of a variable. Any other case would require that the LHS
825 * is either not an l-value or not a whole array.
826 */
827 if (lhs->type->is_unsized_array()) {
828 ir_dereference *const d = lhs->as_dereference();
829
830 assert(d != NULL);
831
832 ir_variable *const var = d->variable_referenced();
833
834 assert(var != NULL);
835
836 if (var->data.max_array_access >= unsigned(rhs->type->array_size())) {
837 /* FINISHME: This should actually log the location of the RHS. */
838 _mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to "
839 "previous access",
840 var->data.max_array_access);
841 }
842
843 var->type = glsl_type::get_array_instance(lhs->type->element_type(),
844 rhs->type->array_size());
845 d->type = var->type;
846 }
847 if (lhs->type->is_array()) {
848 mark_whole_array_access(rhs);
849 mark_whole_array_access(lhs);
850 }
851 }
852
853 /* Most callers of do_assignment (assign, add_assign, pre_inc/dec,
854 * but not post_inc) need the converted assigned value as an rvalue
855 * to handle things like:
856 *
857 * i = j += 1;
858 *
859 * So we always just store the computed value being assigned to a
860 * temporary and return a deref of that temporary. If the rvalue
861 * ends up not being used, the temp will get copy-propagated out.
862 */
863 ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp",
864 ir_var_temporary);
865 ir_dereference_variable *deref_var = new(ctx) ir_dereference_variable(var);
866 instructions->push_tail(var);
867 instructions->push_tail(new(ctx) ir_assignment(deref_var, rhs));
868 deref_var = new(ctx) ir_dereference_variable(var);
869
870 if (!error_emitted)
871 instructions->push_tail(new(ctx) ir_assignment(lhs, deref_var));
872
873 if (extract_channel) {
874 return new(ctx) ir_expression(ir_binop_vector_extract,
875 new(ctx) ir_dereference_variable(var),
876 extract_channel->clone(ctx, NULL));
877 }
878 return new(ctx) ir_dereference_variable(var);
879 }
880
881 static ir_rvalue *
882 get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue)
883 {
884 void *ctx = ralloc_parent(lvalue);
885 ir_variable *var;
886
887 var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp",
888 ir_var_temporary);
889 instructions->push_tail(var);
890 var->data.mode = ir_var_auto;
891
892 instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
893 lvalue));
894
895 return new(ctx) ir_dereference_variable(var);
896 }
897
898
899 ir_rvalue *
900 ast_node::hir(exec_list *instructions,
901 struct _mesa_glsl_parse_state *state)
902 {
903 (void) instructions;
904 (void) state;
905
906 return NULL;
907 }
908
909 static ir_rvalue *
910 do_comparison(void *mem_ctx, int operation, ir_rvalue *op0, ir_rvalue *op1)
911 {
912 int join_op;
913 ir_rvalue *cmp = NULL;
914
915 if (operation == ir_binop_all_equal)
916 join_op = ir_binop_logic_and;
917 else
918 join_op = ir_binop_logic_or;
919
920 switch (op0->type->base_type) {
921 case GLSL_TYPE_FLOAT:
922 case GLSL_TYPE_UINT:
923 case GLSL_TYPE_INT:
924 case GLSL_TYPE_BOOL:
925 return new(mem_ctx) ir_expression(operation, op0, op1);
926
927 case GLSL_TYPE_ARRAY: {
928 for (unsigned int i = 0; i < op0->type->length; i++) {
929 ir_rvalue *e0, *e1, *result;
930
931 e0 = new(mem_ctx) ir_dereference_array(op0->clone(mem_ctx, NULL),
932 new(mem_ctx) ir_constant(i));
933 e1 = new(mem_ctx) ir_dereference_array(op1->clone(mem_ctx, NULL),
934 new(mem_ctx) ir_constant(i));
935 result = do_comparison(mem_ctx, operation, e0, e1);
936
937 if (cmp) {
938 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
939 } else {
940 cmp = result;
941 }
942 }
943
944 mark_whole_array_access(op0);
945 mark_whole_array_access(op1);
946 break;
947 }
948
949 case GLSL_TYPE_STRUCT: {
950 for (unsigned int i = 0; i < op0->type->length; i++) {
951 ir_rvalue *e0, *e1, *result;
952 const char *field_name = op0->type->fields.structure[i].name;
953
954 e0 = new(mem_ctx) ir_dereference_record(op0->clone(mem_ctx, NULL),
955 field_name);
956 e1 = new(mem_ctx) ir_dereference_record(op1->clone(mem_ctx, NULL),
957 field_name);
958 result = do_comparison(mem_ctx, operation, e0, e1);
959
960 if (cmp) {
961 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
962 } else {
963 cmp = result;
964 }
965 }
966 break;
967 }
968
969 case GLSL_TYPE_ERROR:
970 case GLSL_TYPE_VOID:
971 case GLSL_TYPE_SAMPLER:
972 case GLSL_TYPE_IMAGE:
973 case GLSL_TYPE_INTERFACE:
974 case GLSL_TYPE_ATOMIC_UINT:
975 /* I assume a comparison of a struct containing a sampler just
976 * ignores the sampler present in the type.
977 */
978 break;
979 }
980
981 if (cmp == NULL)
982 cmp = new(mem_ctx) ir_constant(true);
983
984 return cmp;
985 }
986
987 /* For logical operations, we want to ensure that the operands are
988 * scalar booleans. If it isn't, emit an error and return a constant
989 * boolean to avoid triggering cascading error messages.
990 */
991 ir_rvalue *
992 get_scalar_boolean_operand(exec_list *instructions,
993 struct _mesa_glsl_parse_state *state,
994 ast_expression *parent_expr,
995 int operand,
996 const char *operand_name,
997 bool *error_emitted)
998 {
999 ast_expression *expr = parent_expr->subexpressions[operand];
1000 void *ctx = state;
1001 ir_rvalue *val = expr->hir(instructions, state);
1002
1003 if (val->type->is_boolean() && val->type->is_scalar())
1004 return val;
1005
1006 if (!*error_emitted) {
1007 YYLTYPE loc = expr->get_location();
1008 _mesa_glsl_error(&loc, state, "%s of `%s' must be scalar boolean",
1009 operand_name,
1010 parent_expr->operator_string(parent_expr->oper));
1011 *error_emitted = true;
1012 }
1013
1014 return new(ctx) ir_constant(true);
1015 }
1016
1017 /**
1018 * If name refers to a builtin array whose maximum allowed size is less than
1019 * size, report an error and return true. Otherwise return false.
1020 */
1021 void
1022 check_builtin_array_max_size(const char *name, unsigned size,
1023 YYLTYPE loc, struct _mesa_glsl_parse_state *state)
1024 {
1025 if ((strcmp("gl_TexCoord", name) == 0)
1026 && (size > state->Const.MaxTextureCoords)) {
1027 /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec:
1028 *
1029 * "The size [of gl_TexCoord] can be at most
1030 * gl_MaxTextureCoords."
1031 */
1032 _mesa_glsl_error(&loc, state, "`gl_TexCoord' array size cannot "
1033 "be larger than gl_MaxTextureCoords (%u)",
1034 state->Const.MaxTextureCoords);
1035 } else if (strcmp("gl_ClipDistance", name) == 0
1036 && size > state->Const.MaxClipPlanes) {
1037 /* From section 7.1 (Vertex Shader Special Variables) of the
1038 * GLSL 1.30 spec:
1039 *
1040 * "The gl_ClipDistance array is predeclared as unsized and
1041 * must be sized by the shader either redeclaring it with a
1042 * size or indexing it only with integral constant
1043 * expressions. ... The size can be at most
1044 * gl_MaxClipDistances."
1045 */
1046 _mesa_glsl_error(&loc, state, "`gl_ClipDistance' array size cannot "
1047 "be larger than gl_MaxClipDistances (%u)",
1048 state->Const.MaxClipPlanes);
1049 }
1050 }
1051
1052 /**
1053 * Create the constant 1, of a which is appropriate for incrementing and
1054 * decrementing values of the given GLSL type. For example, if type is vec4,
1055 * this creates a constant value of 1.0 having type float.
1056 *
1057 * If the given type is invalid for increment and decrement operators, return
1058 * a floating point 1--the error will be detected later.
1059 */
1060 static ir_rvalue *
1061 constant_one_for_inc_dec(void *ctx, const glsl_type *type)
1062 {
1063 switch (type->base_type) {
1064 case GLSL_TYPE_UINT:
1065 return new(ctx) ir_constant((unsigned) 1);
1066 case GLSL_TYPE_INT:
1067 return new(ctx) ir_constant(1);
1068 default:
1069 case GLSL_TYPE_FLOAT:
1070 return new(ctx) ir_constant(1.0f);
1071 }
1072 }
1073
1074 ir_rvalue *
1075 ast_expression::hir(exec_list *instructions,
1076 struct _mesa_glsl_parse_state *state)
1077 {
1078 void *ctx = state;
1079 static const int operations[AST_NUM_OPERATORS] = {
1080 -1, /* ast_assign doesn't convert to ir_expression. */
1081 -1, /* ast_plus doesn't convert to ir_expression. */
1082 ir_unop_neg,
1083 ir_binop_add,
1084 ir_binop_sub,
1085 ir_binop_mul,
1086 ir_binop_div,
1087 ir_binop_mod,
1088 ir_binop_lshift,
1089 ir_binop_rshift,
1090 ir_binop_less,
1091 ir_binop_greater,
1092 ir_binop_lequal,
1093 ir_binop_gequal,
1094 ir_binop_all_equal,
1095 ir_binop_any_nequal,
1096 ir_binop_bit_and,
1097 ir_binop_bit_xor,
1098 ir_binop_bit_or,
1099 ir_unop_bit_not,
1100 ir_binop_logic_and,
1101 ir_binop_logic_xor,
1102 ir_binop_logic_or,
1103 ir_unop_logic_not,
1104
1105 /* Note: The following block of expression types actually convert
1106 * to multiple IR instructions.
1107 */
1108 ir_binop_mul, /* ast_mul_assign */
1109 ir_binop_div, /* ast_div_assign */
1110 ir_binop_mod, /* ast_mod_assign */
1111 ir_binop_add, /* ast_add_assign */
1112 ir_binop_sub, /* ast_sub_assign */
1113 ir_binop_lshift, /* ast_ls_assign */
1114 ir_binop_rshift, /* ast_rs_assign */
1115 ir_binop_bit_and, /* ast_and_assign */
1116 ir_binop_bit_xor, /* ast_xor_assign */
1117 ir_binop_bit_or, /* ast_or_assign */
1118
1119 -1, /* ast_conditional doesn't convert to ir_expression. */
1120 ir_binop_add, /* ast_pre_inc. */
1121 ir_binop_sub, /* ast_pre_dec. */
1122 ir_binop_add, /* ast_post_inc. */
1123 ir_binop_sub, /* ast_post_dec. */
1124 -1, /* ast_field_selection doesn't conv to ir_expression. */
1125 -1, /* ast_array_index doesn't convert to ir_expression. */
1126 -1, /* ast_function_call doesn't conv to ir_expression. */
1127 -1, /* ast_identifier doesn't convert to ir_expression. */
1128 -1, /* ast_int_constant doesn't convert to ir_expression. */
1129 -1, /* ast_uint_constant doesn't conv to ir_expression. */
1130 -1, /* ast_float_constant doesn't conv to ir_expression. */
1131 -1, /* ast_bool_constant doesn't conv to ir_expression. */
1132 -1, /* ast_sequence doesn't convert to ir_expression. */
1133 };
1134 ir_rvalue *result = NULL;
1135 ir_rvalue *op[3];
1136 const struct glsl_type *type; /* a temporary variable for switch cases */
1137 bool error_emitted = false;
1138 YYLTYPE loc;
1139
1140 loc = this->get_location();
1141
1142 switch (this->oper) {
1143 case ast_aggregate:
1144 assert(!"ast_aggregate: Should never get here.");
1145 break;
1146
1147 case ast_assign: {
1148 op[0] = this->subexpressions[0]->hir(instructions, state);
1149 op[1] = this->subexpressions[1]->hir(instructions, state);
1150
1151 result = do_assignment(instructions, state,
1152 this->subexpressions[0]->non_lvalue_description,
1153 op[0], op[1], false,
1154 this->subexpressions[0]->get_location());
1155 error_emitted = result->type->is_error();
1156 break;
1157 }
1158
1159 case ast_plus:
1160 op[0] = this->subexpressions[0]->hir(instructions, state);
1161
1162 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1163
1164 error_emitted = type->is_error();
1165
1166 result = op[0];
1167 break;
1168
1169 case ast_neg:
1170 op[0] = this->subexpressions[0]->hir(instructions, state);
1171
1172 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1173
1174 error_emitted = type->is_error();
1175
1176 result = new(ctx) ir_expression(operations[this->oper], type,
1177 op[0], NULL);
1178 break;
1179
1180 case ast_add:
1181 case ast_sub:
1182 case ast_mul:
1183 case ast_div:
1184 op[0] = this->subexpressions[0]->hir(instructions, state);
1185 op[1] = this->subexpressions[1]->hir(instructions, state);
1186
1187 type = arithmetic_result_type(op[0], op[1],
1188 (this->oper == ast_mul),
1189 state, & loc);
1190 error_emitted = type->is_error();
1191
1192 result = new(ctx) ir_expression(operations[this->oper], type,
1193 op[0], op[1]);
1194 break;
1195
1196 case ast_mod:
1197 op[0] = this->subexpressions[0]->hir(instructions, state);
1198 op[1] = this->subexpressions[1]->hir(instructions, state);
1199
1200 type = modulus_result_type(op[0]->type, op[1]->type, state, & loc);
1201
1202 assert(operations[this->oper] == ir_binop_mod);
1203
1204 result = new(ctx) ir_expression(operations[this->oper], type,
1205 op[0], op[1]);
1206 error_emitted = type->is_error();
1207 break;
1208
1209 case ast_lshift:
1210 case ast_rshift:
1211 if (!state->check_bitwise_operations_allowed(&loc)) {
1212 error_emitted = true;
1213 }
1214
1215 op[0] = this->subexpressions[0]->hir(instructions, state);
1216 op[1] = this->subexpressions[1]->hir(instructions, state);
1217 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1218 &loc);
1219 result = new(ctx) ir_expression(operations[this->oper], type,
1220 op[0], op[1]);
1221 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1222 break;
1223
1224 case ast_less:
1225 case ast_greater:
1226 case ast_lequal:
1227 case ast_gequal:
1228 op[0] = this->subexpressions[0]->hir(instructions, state);
1229 op[1] = this->subexpressions[1]->hir(instructions, state);
1230
1231 type = relational_result_type(op[0], op[1], state, & loc);
1232
1233 /* The relational operators must either generate an error or result
1234 * in a scalar boolean. See page 57 of the GLSL 1.50 spec.
1235 */
1236 assert(type->is_error()
1237 || ((type->base_type == GLSL_TYPE_BOOL)
1238 && type->is_scalar()));
1239
1240 result = new(ctx) ir_expression(operations[this->oper], type,
1241 op[0], op[1]);
1242 error_emitted = type->is_error();
1243 break;
1244
1245 case ast_nequal:
1246 case ast_equal:
1247 op[0] = this->subexpressions[0]->hir(instructions, state);
1248 op[1] = this->subexpressions[1]->hir(instructions, state);
1249
1250 /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
1251 *
1252 * "The equality operators equal (==), and not equal (!=)
1253 * operate on all types. They result in a scalar Boolean. If
1254 * the operand types do not match, then there must be a
1255 * conversion from Section 4.1.10 "Implicit Conversions"
1256 * applied to one operand that can make them match, in which
1257 * case this conversion is done."
1258 */
1259 if ((!apply_implicit_conversion(op[0]->type, op[1], state)
1260 && !apply_implicit_conversion(op[1]->type, op[0], state))
1261 || (op[0]->type != op[1]->type)) {
1262 _mesa_glsl_error(& loc, state, "operands of `%s' must have the same "
1263 "type", (this->oper == ast_equal) ? "==" : "!=");
1264 error_emitted = true;
1265 } else if ((op[0]->type->is_array() || op[1]->type->is_array()) &&
1266 !state->check_version(120, 300, &loc,
1267 "array comparisons forbidden")) {
1268 error_emitted = true;
1269 } else if ((op[0]->type->contains_opaque() ||
1270 op[1]->type->contains_opaque())) {
1271 _mesa_glsl_error(&loc, state, "opaque type comparisons forbidden");
1272 error_emitted = true;
1273 }
1274
1275 if (error_emitted) {
1276 result = new(ctx) ir_constant(false);
1277 } else {
1278 result = do_comparison(ctx, operations[this->oper], op[0], op[1]);
1279 assert(result->type == glsl_type::bool_type);
1280 }
1281 break;
1282
1283 case ast_bit_and:
1284 case ast_bit_xor:
1285 case ast_bit_or:
1286 op[0] = this->subexpressions[0]->hir(instructions, state);
1287 op[1] = this->subexpressions[1]->hir(instructions, state);
1288 type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
1289 state, &loc);
1290 result = new(ctx) ir_expression(operations[this->oper], type,
1291 op[0], op[1]);
1292 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1293 break;
1294
1295 case ast_bit_not:
1296 op[0] = this->subexpressions[0]->hir(instructions, state);
1297
1298 if (!state->check_bitwise_operations_allowed(&loc)) {
1299 error_emitted = true;
1300 }
1301
1302 if (!op[0]->type->is_integer()) {
1303 _mesa_glsl_error(&loc, state, "operand of `~' must be an integer");
1304 error_emitted = true;
1305 }
1306
1307 type = error_emitted ? glsl_type::error_type : op[0]->type;
1308 result = new(ctx) ir_expression(ir_unop_bit_not, type, op[0], NULL);
1309 break;
1310
1311 case ast_logic_and: {
1312 exec_list rhs_instructions;
1313 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1314 "LHS", &error_emitted);
1315 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1316 "RHS", &error_emitted);
1317
1318 if (rhs_instructions.is_empty()) {
1319 result = new(ctx) ir_expression(ir_binop_logic_and, op[0], op[1]);
1320 type = result->type;
1321 } else {
1322 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1323 "and_tmp",
1324 ir_var_temporary);
1325 instructions->push_tail(tmp);
1326
1327 ir_if *const stmt = new(ctx) ir_if(op[0]);
1328 instructions->push_tail(stmt);
1329
1330 stmt->then_instructions.append_list(&rhs_instructions);
1331 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1332 ir_assignment *const then_assign =
1333 new(ctx) ir_assignment(then_deref, op[1]);
1334 stmt->then_instructions.push_tail(then_assign);
1335
1336 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1337 ir_assignment *const else_assign =
1338 new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false));
1339 stmt->else_instructions.push_tail(else_assign);
1340
1341 result = new(ctx) ir_dereference_variable(tmp);
1342 type = tmp->type;
1343 }
1344 break;
1345 }
1346
1347 case ast_logic_or: {
1348 exec_list rhs_instructions;
1349 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1350 "LHS", &error_emitted);
1351 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1352 "RHS", &error_emitted);
1353
1354 if (rhs_instructions.is_empty()) {
1355 result = new(ctx) ir_expression(ir_binop_logic_or, op[0], op[1]);
1356 type = result->type;
1357 } else {
1358 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1359 "or_tmp",
1360 ir_var_temporary);
1361 instructions->push_tail(tmp);
1362
1363 ir_if *const stmt = new(ctx) ir_if(op[0]);
1364 instructions->push_tail(stmt);
1365
1366 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1367 ir_assignment *const then_assign =
1368 new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true));
1369 stmt->then_instructions.push_tail(then_assign);
1370
1371 stmt->else_instructions.append_list(&rhs_instructions);
1372 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1373 ir_assignment *const else_assign =
1374 new(ctx) ir_assignment(else_deref, op[1]);
1375 stmt->else_instructions.push_tail(else_assign);
1376
1377 result = new(ctx) ir_dereference_variable(tmp);
1378 type = tmp->type;
1379 }
1380 break;
1381 }
1382
1383 case ast_logic_xor:
1384 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1385 *
1386 * "The logical binary operators and (&&), or ( | | ), and
1387 * exclusive or (^^). They operate only on two Boolean
1388 * expressions and result in a Boolean expression."
1389 */
1390 op[0] = get_scalar_boolean_operand(instructions, state, this, 0, "LHS",
1391 &error_emitted);
1392 op[1] = get_scalar_boolean_operand(instructions, state, this, 1, "RHS",
1393 &error_emitted);
1394
1395 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1396 op[0], op[1]);
1397 break;
1398
1399 case ast_logic_not:
1400 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1401 "operand", &error_emitted);
1402
1403 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1404 op[0], NULL);
1405 break;
1406
1407 case ast_mul_assign:
1408 case ast_div_assign:
1409 case ast_add_assign:
1410 case ast_sub_assign: {
1411 op[0] = this->subexpressions[0]->hir(instructions, state);
1412 op[1] = this->subexpressions[1]->hir(instructions, state);
1413
1414 type = arithmetic_result_type(op[0], op[1],
1415 (this->oper == ast_mul_assign),
1416 state, & loc);
1417
1418 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1419 op[0], op[1]);
1420
1421 result = do_assignment(instructions, state,
1422 this->subexpressions[0]->non_lvalue_description,
1423 op[0]->clone(ctx, NULL), temp_rhs, false,
1424 this->subexpressions[0]->get_location());
1425 error_emitted = (op[0]->type->is_error());
1426
1427 /* GLSL 1.10 does not allow array assignment. However, we don't have to
1428 * explicitly test for this because none of the binary expression
1429 * operators allow array operands either.
1430 */
1431
1432 break;
1433 }
1434
1435 case ast_mod_assign: {
1436 op[0] = this->subexpressions[0]->hir(instructions, state);
1437 op[1] = this->subexpressions[1]->hir(instructions, state);
1438
1439 type = modulus_result_type(op[0]->type, op[1]->type, state, & loc);
1440
1441 assert(operations[this->oper] == ir_binop_mod);
1442
1443 ir_rvalue *temp_rhs;
1444 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1445 op[0], op[1]);
1446
1447 result = do_assignment(instructions, state,
1448 this->subexpressions[0]->non_lvalue_description,
1449 op[0]->clone(ctx, NULL), temp_rhs, false,
1450 this->subexpressions[0]->get_location());
1451 error_emitted = type->is_error();
1452 break;
1453 }
1454
1455 case ast_ls_assign:
1456 case ast_rs_assign: {
1457 op[0] = this->subexpressions[0]->hir(instructions, state);
1458 op[1] = this->subexpressions[1]->hir(instructions, state);
1459 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1460 &loc);
1461 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1462 type, op[0], op[1]);
1463 result = do_assignment(instructions, state,
1464 this->subexpressions[0]->non_lvalue_description,
1465 op[0]->clone(ctx, NULL), temp_rhs, false,
1466 this->subexpressions[0]->get_location());
1467 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1468 break;
1469 }
1470
1471 case ast_and_assign:
1472 case ast_xor_assign:
1473 case ast_or_assign: {
1474 op[0] = this->subexpressions[0]->hir(instructions, state);
1475 op[1] = this->subexpressions[1]->hir(instructions, state);
1476 type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
1477 state, &loc);
1478 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1479 type, op[0], op[1]);
1480 result = do_assignment(instructions, state,
1481 this->subexpressions[0]->non_lvalue_description,
1482 op[0]->clone(ctx, NULL), temp_rhs, false,
1483 this->subexpressions[0]->get_location());
1484 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1485 break;
1486 }
1487
1488 case ast_conditional: {
1489 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1490 *
1491 * "The ternary selection operator (?:). It operates on three
1492 * expressions (exp1 ? exp2 : exp3). This operator evaluates the
1493 * first expression, which must result in a scalar Boolean."
1494 */
1495 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1496 "condition", &error_emitted);
1497
1498 /* The :? operator is implemented by generating an anonymous temporary
1499 * followed by an if-statement. The last instruction in each branch of
1500 * the if-statement assigns a value to the anonymous temporary. This
1501 * temporary is the r-value of the expression.
1502 */
1503 exec_list then_instructions;
1504 exec_list else_instructions;
1505
1506 op[1] = this->subexpressions[1]->hir(&then_instructions, state);
1507 op[2] = this->subexpressions[2]->hir(&else_instructions, state);
1508
1509 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1510 *
1511 * "The second and third expressions can be any type, as
1512 * long their types match, or there is a conversion in
1513 * Section 4.1.10 "Implicit Conversions" that can be applied
1514 * to one of the expressions to make their types match. This
1515 * resulting matching type is the type of the entire
1516 * expression."
1517 */
1518 if ((!apply_implicit_conversion(op[1]->type, op[2], state)
1519 && !apply_implicit_conversion(op[2]->type, op[1], state))
1520 || (op[1]->type != op[2]->type)) {
1521 YYLTYPE loc = this->subexpressions[1]->get_location();
1522
1523 _mesa_glsl_error(& loc, state, "second and third operands of ?: "
1524 "operator must have matching types");
1525 error_emitted = true;
1526 type = glsl_type::error_type;
1527 } else {
1528 type = op[1]->type;
1529 }
1530
1531 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1532 *
1533 * "The second and third expressions must be the same type, but can
1534 * be of any type other than an array."
1535 */
1536 if (type->is_array() &&
1537 !state->check_version(120, 300, &loc,
1538 "second and third operands of ?: operator "
1539 "cannot be arrays")) {
1540 error_emitted = true;
1541 }
1542
1543 ir_constant *cond_val = op[0]->constant_expression_value();
1544 ir_constant *then_val = op[1]->constant_expression_value();
1545 ir_constant *else_val = op[2]->constant_expression_value();
1546
1547 if (then_instructions.is_empty()
1548 && else_instructions.is_empty()
1549 && (cond_val != NULL) && (then_val != NULL) && (else_val != NULL)) {
1550 result = (cond_val->value.b[0]) ? then_val : else_val;
1551 } else {
1552 ir_variable *const tmp =
1553 new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary);
1554 instructions->push_tail(tmp);
1555
1556 ir_if *const stmt = new(ctx) ir_if(op[0]);
1557 instructions->push_tail(stmt);
1558
1559 then_instructions.move_nodes_to(& stmt->then_instructions);
1560 ir_dereference *const then_deref =
1561 new(ctx) ir_dereference_variable(tmp);
1562 ir_assignment *const then_assign =
1563 new(ctx) ir_assignment(then_deref, op[1]);
1564 stmt->then_instructions.push_tail(then_assign);
1565
1566 else_instructions.move_nodes_to(& stmt->else_instructions);
1567 ir_dereference *const else_deref =
1568 new(ctx) ir_dereference_variable(tmp);
1569 ir_assignment *const else_assign =
1570 new(ctx) ir_assignment(else_deref, op[2]);
1571 stmt->else_instructions.push_tail(else_assign);
1572
1573 result = new(ctx) ir_dereference_variable(tmp);
1574 }
1575 break;
1576 }
1577
1578 case ast_pre_inc:
1579 case ast_pre_dec: {
1580 this->non_lvalue_description = (this->oper == ast_pre_inc)
1581 ? "pre-increment operation" : "pre-decrement operation";
1582
1583 op[0] = this->subexpressions[0]->hir(instructions, state);
1584 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1585
1586 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1587
1588 ir_rvalue *temp_rhs;
1589 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1590 op[0], op[1]);
1591
1592 result = do_assignment(instructions, state,
1593 this->subexpressions[0]->non_lvalue_description,
1594 op[0]->clone(ctx, NULL), temp_rhs, false,
1595 this->subexpressions[0]->get_location());
1596 error_emitted = op[0]->type->is_error();
1597 break;
1598 }
1599
1600 case ast_post_inc:
1601 case ast_post_dec: {
1602 this->non_lvalue_description = (this->oper == ast_post_inc)
1603 ? "post-increment operation" : "post-decrement operation";
1604 op[0] = this->subexpressions[0]->hir(instructions, state);
1605 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1606
1607 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1608
1609 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1610
1611 ir_rvalue *temp_rhs;
1612 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1613 op[0], op[1]);
1614
1615 /* Get a temporary of a copy of the lvalue before it's modified.
1616 * This may get thrown away later.
1617 */
1618 result = get_lvalue_copy(instructions, op[0]->clone(ctx, NULL));
1619
1620 (void)do_assignment(instructions, state,
1621 this->subexpressions[0]->non_lvalue_description,
1622 op[0]->clone(ctx, NULL), temp_rhs, false,
1623 this->subexpressions[0]->get_location());
1624
1625 error_emitted = op[0]->type->is_error();
1626 break;
1627 }
1628
1629 case ast_field_selection:
1630 result = _mesa_ast_field_selection_to_hir(this, instructions, state);
1631 break;
1632
1633 case ast_array_index: {
1634 YYLTYPE index_loc = subexpressions[1]->get_location();
1635
1636 op[0] = subexpressions[0]->hir(instructions, state);
1637 op[1] = subexpressions[1]->hir(instructions, state);
1638
1639 result = _mesa_ast_array_index_to_hir(ctx, state, op[0], op[1],
1640 loc, index_loc);
1641
1642 if (result->type->is_error())
1643 error_emitted = true;
1644
1645 break;
1646 }
1647
1648 case ast_function_call:
1649 /* Should *NEVER* get here. ast_function_call should always be handled
1650 * by ast_function_expression::hir.
1651 */
1652 assert(0);
1653 break;
1654
1655 case ast_identifier: {
1656 /* ast_identifier can appear several places in a full abstract syntax
1657 * tree. This particular use must be at location specified in the grammar
1658 * as 'variable_identifier'.
1659 */
1660 ir_variable *var =
1661 state->symbols->get_variable(this->primary_expression.identifier);
1662
1663 if (var != NULL) {
1664 var->data.used = true;
1665 result = new(ctx) ir_dereference_variable(var);
1666 } else {
1667 _mesa_glsl_error(& loc, state, "`%s' undeclared",
1668 this->primary_expression.identifier);
1669
1670 result = ir_rvalue::error_value(ctx);
1671 error_emitted = true;
1672 }
1673 break;
1674 }
1675
1676 case ast_int_constant:
1677 result = new(ctx) ir_constant(this->primary_expression.int_constant);
1678 break;
1679
1680 case ast_uint_constant:
1681 result = new(ctx) ir_constant(this->primary_expression.uint_constant);
1682 break;
1683
1684 case ast_float_constant:
1685 result = new(ctx) ir_constant(this->primary_expression.float_constant);
1686 break;
1687
1688 case ast_bool_constant:
1689 result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant));
1690 break;
1691
1692 case ast_sequence: {
1693 /* It should not be possible to generate a sequence in the AST without
1694 * any expressions in it.
1695 */
1696 assert(!this->expressions.is_empty());
1697
1698 /* The r-value of a sequence is the last expression in the sequence. If
1699 * the other expressions in the sequence do not have side-effects (and
1700 * therefore add instructions to the instruction list), they get dropped
1701 * on the floor.
1702 */
1703 exec_node *previous_tail_pred = NULL;
1704 YYLTYPE previous_operand_loc = loc;
1705
1706 foreach_list_typed (ast_node, ast, link, &this->expressions) {
1707 /* If one of the operands of comma operator does not generate any
1708 * code, we want to emit a warning. At each pass through the loop
1709 * previous_tail_pred will point to the last instruction in the
1710 * stream *before* processing the previous operand. Naturally,
1711 * instructions->tail_pred will point to the last instruction in the
1712 * stream *after* processing the previous operand. If the two
1713 * pointers match, then the previous operand had no effect.
1714 *
1715 * The warning behavior here differs slightly from GCC. GCC will
1716 * only emit a warning if none of the left-hand operands have an
1717 * effect. However, it will emit a warning for each. I believe that
1718 * there are some cases in C (especially with GCC extensions) where
1719 * it is useful to have an intermediate step in a sequence have no
1720 * effect, but I don't think these cases exist in GLSL. Either way,
1721 * it would be a giant hassle to replicate that behavior.
1722 */
1723 if (previous_tail_pred == instructions->tail_pred) {
1724 _mesa_glsl_warning(&previous_operand_loc, state,
1725 "left-hand operand of comma expression has "
1726 "no effect");
1727 }
1728
1729 /* tail_pred is directly accessed instead of using the get_tail()
1730 * method for performance reasons. get_tail() has extra code to
1731 * return NULL when the list is empty. We don't care about that
1732 * here, so using tail_pred directly is fine.
1733 */
1734 previous_tail_pred = instructions->tail_pred;
1735 previous_operand_loc = ast->get_location();
1736
1737 result = ast->hir(instructions, state);
1738 }
1739
1740 /* Any errors should have already been emitted in the loop above.
1741 */
1742 error_emitted = true;
1743 break;
1744 }
1745 }
1746 type = NULL; /* use result->type, not type. */
1747 assert(result != NULL);
1748
1749 if (result->type->is_error() && !error_emitted)
1750 _mesa_glsl_error(& loc, state, "type mismatch");
1751
1752 return result;
1753 }
1754
1755
1756 ir_rvalue *
1757 ast_expression_statement::hir(exec_list *instructions,
1758 struct _mesa_glsl_parse_state *state)
1759 {
1760 /* It is possible to have expression statements that don't have an
1761 * expression. This is the solitary semicolon:
1762 *
1763 * for (i = 0; i < 5; i++)
1764 * ;
1765 *
1766 * In this case the expression will be NULL. Test for NULL and don't do
1767 * anything in that case.
1768 */
1769 if (expression != NULL)
1770 expression->hir(instructions, state);
1771
1772 /* Statements do not have r-values.
1773 */
1774 return NULL;
1775 }
1776
1777
1778 ir_rvalue *
1779 ast_compound_statement::hir(exec_list *instructions,
1780 struct _mesa_glsl_parse_state *state)
1781 {
1782 if (new_scope)
1783 state->symbols->push_scope();
1784
1785 foreach_list_typed (ast_node, ast, link, &this->statements)
1786 ast->hir(instructions, state);
1787
1788 if (new_scope)
1789 state->symbols->pop_scope();
1790
1791 /* Compound statements do not have r-values.
1792 */
1793 return NULL;
1794 }
1795
1796 /**
1797 * Evaluate the given exec_node (which should be an ast_node representing
1798 * a single array dimension) and return its integer value.
1799 */
1800 static const unsigned
1801 process_array_size(exec_node *node,
1802 struct _mesa_glsl_parse_state *state)
1803 {
1804 exec_list dummy_instructions;
1805
1806 ast_node *array_size = exec_node_data(ast_node, node, link);
1807 ir_rvalue *const ir = array_size->hir(& dummy_instructions,
1808 state);
1809 YYLTYPE loc = array_size->get_location();
1810
1811 if (ir == NULL) {
1812 _mesa_glsl_error(& loc, state,
1813 "array size could not be resolved");
1814 return 0;
1815 }
1816
1817 if (!ir->type->is_integer()) {
1818 _mesa_glsl_error(& loc, state,
1819 "array size must be integer type");
1820 return 0;
1821 }
1822
1823 if (!ir->type->is_scalar()) {
1824 _mesa_glsl_error(& loc, state,
1825 "array size must be scalar type");
1826 return 0;
1827 }
1828
1829 ir_constant *const size = ir->constant_expression_value();
1830 if (size == NULL) {
1831 _mesa_glsl_error(& loc, state, "array size must be a "
1832 "constant valued expression");
1833 return 0;
1834 }
1835
1836 if (size->value.i[0] <= 0) {
1837 _mesa_glsl_error(& loc, state, "array size must be > 0");
1838 return 0;
1839 }
1840
1841 assert(size->type == ir->type);
1842
1843 /* If the array size is const (and we've verified that
1844 * it is) then no instructions should have been emitted
1845 * when we converted it to HIR. If they were emitted,
1846 * then either the array size isn't const after all, or
1847 * we are emitting unnecessary instructions.
1848 */
1849 assert(dummy_instructions.is_empty());
1850
1851 return size->value.u[0];
1852 }
1853
1854 static const glsl_type *
1855 process_array_type(YYLTYPE *loc, const glsl_type *base,
1856 ast_array_specifier *array_specifier,
1857 struct _mesa_glsl_parse_state *state)
1858 {
1859 const glsl_type *array_type = base;
1860
1861 if (array_specifier != NULL) {
1862 if (base->is_array()) {
1863
1864 /* From page 19 (page 25) of the GLSL 1.20 spec:
1865 *
1866 * "Only one-dimensional arrays may be declared."
1867 */
1868 if (!state->ARB_arrays_of_arrays_enable) {
1869 _mesa_glsl_error(loc, state,
1870 "invalid array of `%s'"
1871 "GL_ARB_arrays_of_arrays "
1872 "required for defining arrays of arrays",
1873 base->name);
1874 return glsl_type::error_type;
1875 }
1876
1877 if (base->length == 0) {
1878 _mesa_glsl_error(loc, state,
1879 "only the outermost array dimension can "
1880 "be unsized",
1881 base->name);
1882 return glsl_type::error_type;
1883 }
1884 }
1885
1886 for (exec_node *node = array_specifier->array_dimensions.tail_pred;
1887 !node->is_head_sentinel(); node = node->prev) {
1888 unsigned array_size = process_array_size(node, state);
1889 array_type = glsl_type::get_array_instance(array_type,
1890 array_size);
1891 }
1892
1893 if (array_specifier->is_unsized_array)
1894 array_type = glsl_type::get_array_instance(array_type, 0);
1895 }
1896
1897 return array_type;
1898 }
1899
1900
1901 const glsl_type *
1902 ast_type_specifier::glsl_type(const char **name,
1903 struct _mesa_glsl_parse_state *state) const
1904 {
1905 const struct glsl_type *type;
1906
1907 type = state->symbols->get_type(this->type_name);
1908 *name = this->type_name;
1909
1910 YYLTYPE loc = this->get_location();
1911 type = process_array_type(&loc, type, this->array_specifier, state);
1912
1913 return type;
1914 }
1915
1916 const glsl_type *
1917 ast_fully_specified_type::glsl_type(const char **name,
1918 struct _mesa_glsl_parse_state *state) const
1919 {
1920 const struct glsl_type *type = this->specifier->glsl_type(name, state);
1921
1922 if (type == NULL)
1923 return NULL;
1924
1925 if (type->base_type == GLSL_TYPE_FLOAT
1926 && state->es_shader
1927 && state->stage == MESA_SHADER_FRAGMENT
1928 && this->qualifier.precision == ast_precision_none
1929 && state->symbols->get_variable("#default precision") == NULL) {
1930 YYLTYPE loc = this->get_location();
1931 _mesa_glsl_error(&loc, state,
1932 "no precision specified this scope for type `%s'",
1933 type->name);
1934 }
1935
1936 return type;
1937 }
1938
1939 /**
1940 * Determine whether a toplevel variable declaration declares a varying. This
1941 * function operates by examining the variable's mode and the shader target,
1942 * so it correctly identifies linkage variables regardless of whether they are
1943 * declared using the deprecated "varying" syntax or the new "in/out" syntax.
1944 *
1945 * Passing a non-toplevel variable declaration (e.g. a function parameter) to
1946 * this function will produce undefined results.
1947 */
1948 static bool
1949 is_varying_var(ir_variable *var, gl_shader_stage target)
1950 {
1951 switch (target) {
1952 case MESA_SHADER_VERTEX:
1953 return var->data.mode == ir_var_shader_out;
1954 case MESA_SHADER_FRAGMENT:
1955 return var->data.mode == ir_var_shader_in;
1956 default:
1957 return var->data.mode == ir_var_shader_out || var->data.mode == ir_var_shader_in;
1958 }
1959 }
1960
1961
1962 /**
1963 * Matrix layout qualifiers are only allowed on certain types
1964 */
1965 static void
1966 validate_matrix_layout_for_type(struct _mesa_glsl_parse_state *state,
1967 YYLTYPE *loc,
1968 const glsl_type *type,
1969 ir_variable *var)
1970 {
1971 if (var && !var->is_in_uniform_block()) {
1972 /* Layout qualifiers may only apply to interface blocks and fields in
1973 * them.
1974 */
1975 _mesa_glsl_error(loc, state,
1976 "uniform block layout qualifiers row_major and "
1977 "column_major may not be applied to variables "
1978 "outside of uniform blocks");
1979 } else if (!type->is_matrix()) {
1980 /* The OpenGL ES 3.0 conformance tests did not originally allow
1981 * matrix layout qualifiers on non-matrices. However, the OpenGL
1982 * 4.4 and OpenGL ES 3.0 (revision TBD) specifications were
1983 * amended to specifically allow these layouts on all types. Emit
1984 * a warning so that people know their code may not be portable.
1985 */
1986 _mesa_glsl_warning(loc, state,
1987 "uniform block layout qualifiers row_major and "
1988 "column_major applied to non-matrix types may "
1989 "be rejected by older compilers");
1990 } else if (type->is_record()) {
1991 /* We allow 'layout(row_major)' on structure types because it's the only
1992 * way to get row-major layouts on matrices contained in structures.
1993 */
1994 _mesa_glsl_warning(loc, state,
1995 "uniform block layout qualifiers row_major and "
1996 "column_major applied to structure types is not "
1997 "strictly conformant and may be rejected by other "
1998 "compilers");
1999 }
2000 }
2001
2002 static bool
2003 validate_binding_qualifier(struct _mesa_glsl_parse_state *state,
2004 YYLTYPE *loc,
2005 ir_variable *var,
2006 const ast_type_qualifier *qual)
2007 {
2008 if (var->data.mode != ir_var_uniform) {
2009 _mesa_glsl_error(loc, state,
2010 "the \"binding\" qualifier only applies to uniforms");
2011 return false;
2012 }
2013
2014 if (qual->binding < 0) {
2015 _mesa_glsl_error(loc, state, "binding values must be >= 0");
2016 return false;
2017 }
2018
2019 const struct gl_context *const ctx = state->ctx;
2020 unsigned elements = var->type->is_array() ? var->type->length : 1;
2021 unsigned max_index = qual->binding + elements - 1;
2022
2023 if (var->type->is_interface()) {
2024 /* UBOs. From page 60 of the GLSL 4.20 specification:
2025 * "If the binding point for any uniform block instance is less than zero,
2026 * or greater than or equal to the implementation-dependent maximum
2027 * number of uniform buffer bindings, a compilation error will occur.
2028 * When the binding identifier is used with a uniform block instanced as
2029 * an array of size N, all elements of the array from binding through
2030 * binding + N – 1 must be within this range."
2031 *
2032 * The implementation-dependent maximum is GL_MAX_UNIFORM_BUFFER_BINDINGS.
2033 */
2034 if (max_index >= ctx->Const.MaxUniformBufferBindings) {
2035 _mesa_glsl_error(loc, state, "layout(binding = %d) for %d UBOs exceeds "
2036 "the maximum number of UBO binding points (%d)",
2037 qual->binding, elements,
2038 ctx->Const.MaxUniformBufferBindings);
2039 return false;
2040 }
2041 } else if (var->type->is_sampler() ||
2042 (var->type->is_array() && var->type->fields.array->is_sampler())) {
2043 /* Samplers. From page 63 of the GLSL 4.20 specification:
2044 * "If the binding is less than zero, or greater than or equal to the
2045 * implementation-dependent maximum supported number of units, a
2046 * compilation error will occur. When the binding identifier is used
2047 * with an array of size N, all elements of the array from binding
2048 * through binding + N - 1 must be within this range."
2049 */
2050 unsigned limit = ctx->Const.Program[state->stage].MaxTextureImageUnits;
2051
2052 if (max_index >= limit) {
2053 _mesa_glsl_error(loc, state, "layout(binding = %d) for %d samplers "
2054 "exceeds the maximum number of texture image units "
2055 "(%d)", qual->binding, elements, limit);
2056
2057 return false;
2058 }
2059 } else if (var->type->contains_atomic()) {
2060 assert(ctx->Const.MaxAtomicBufferBindings <= MAX_COMBINED_ATOMIC_BUFFERS);
2061 if (unsigned(qual->binding) >= ctx->Const.MaxAtomicBufferBindings) {
2062 _mesa_glsl_error(loc, state, "layout(binding = %d) exceeds the "
2063 " maximum number of atomic counter buffer bindings"
2064 "(%d)", qual->binding,
2065 ctx->Const.MaxAtomicBufferBindings);
2066
2067 return false;
2068 }
2069 } else {
2070 _mesa_glsl_error(loc, state,
2071 "the \"binding\" qualifier only applies to uniform "
2072 "blocks, samplers, atomic counters, or arrays thereof");
2073 return false;
2074 }
2075
2076 return true;
2077 }
2078
2079
2080 static glsl_interp_qualifier
2081 interpret_interpolation_qualifier(const struct ast_type_qualifier *qual,
2082 ir_variable_mode mode,
2083 struct _mesa_glsl_parse_state *state,
2084 YYLTYPE *loc)
2085 {
2086 glsl_interp_qualifier interpolation;
2087 if (qual->flags.q.flat)
2088 interpolation = INTERP_QUALIFIER_FLAT;
2089 else if (qual->flags.q.noperspective)
2090 interpolation = INTERP_QUALIFIER_NOPERSPECTIVE;
2091 else if (qual->flags.q.smooth)
2092 interpolation = INTERP_QUALIFIER_SMOOTH;
2093 else
2094 interpolation = INTERP_QUALIFIER_NONE;
2095
2096 if (interpolation != INTERP_QUALIFIER_NONE) {
2097 if (mode != ir_var_shader_in && mode != ir_var_shader_out) {
2098 _mesa_glsl_error(loc, state,
2099 "interpolation qualifier `%s' can only be applied to "
2100 "shader inputs or outputs.",
2101 interpolation_string(interpolation));
2102
2103 }
2104
2105 if ((state->stage == MESA_SHADER_VERTEX && mode == ir_var_shader_in) ||
2106 (state->stage == MESA_SHADER_FRAGMENT && mode == ir_var_shader_out)) {
2107 _mesa_glsl_error(loc, state,
2108 "interpolation qualifier `%s' cannot be applied to "
2109 "vertex shader inputs or fragment shader outputs",
2110 interpolation_string(interpolation));
2111 }
2112 }
2113
2114 return interpolation;
2115 }
2116
2117
2118 static void
2119 validate_explicit_location(const struct ast_type_qualifier *qual,
2120 ir_variable *var,
2121 struct _mesa_glsl_parse_state *state,
2122 YYLTYPE *loc)
2123 {
2124 bool fail = false;
2125
2126 /* In the vertex shader only shader inputs can be given explicit
2127 * locations.
2128 *
2129 * In the fragment shader only shader outputs can be given explicit
2130 * locations.
2131 */
2132 switch (state->stage) {
2133 case MESA_SHADER_VERTEX:
2134 if (var->data.mode == ir_var_shader_in) {
2135 if (!state->check_explicit_attrib_location_allowed(loc, var))
2136 return;
2137
2138 break;
2139 }
2140
2141 fail = true;
2142 break;
2143
2144 case MESA_SHADER_GEOMETRY:
2145 _mesa_glsl_error(loc, state,
2146 "geometry shader variables cannot be given "
2147 "explicit locations");
2148 return;
2149
2150 case MESA_SHADER_FRAGMENT:
2151 if (var->data.mode == ir_var_shader_out) {
2152 if (!state->check_explicit_attrib_location_allowed(loc, var))
2153 return;
2154
2155 break;
2156 }
2157
2158 fail = true;
2159 break;
2160
2161 case MESA_SHADER_COMPUTE:
2162 _mesa_glsl_error(loc, state,
2163 "compute shader variables cannot be given "
2164 "explicit locations");
2165 return;
2166 };
2167
2168 if (fail) {
2169 _mesa_glsl_error(loc, state,
2170 "%s cannot be given an explicit location in %s shader",
2171 mode_string(var),
2172 _mesa_shader_stage_to_string(state->stage));
2173 } else {
2174 var->data.explicit_location = true;
2175
2176 /* This bit of silliness is needed because invalid explicit locations
2177 * are supposed to be flagged during linking. Small negative values
2178 * biased by VERT_ATTRIB_GENERIC0 or FRAG_RESULT_DATA0 could alias
2179 * built-in values (e.g., -16+VERT_ATTRIB_GENERIC0 = VERT_ATTRIB_POS).
2180 * The linker needs to be able to differentiate these cases. This
2181 * ensures that negative values stay negative.
2182 */
2183 if (qual->location >= 0) {
2184 var->data.location = (state->stage == MESA_SHADER_VERTEX)
2185 ? (qual->location + VERT_ATTRIB_GENERIC0)
2186 : (qual->location + FRAG_RESULT_DATA0);
2187 } else {
2188 var->data.location = qual->location;
2189 }
2190
2191 if (qual->flags.q.explicit_index) {
2192 /* From the GLSL 4.30 specification, section 4.4.2 (Output
2193 * Layout Qualifiers):
2194 *
2195 * "It is also a compile-time error if a fragment shader
2196 * sets a layout index to less than 0 or greater than 1."
2197 *
2198 * Older specifications don't mandate a behavior; we take
2199 * this as a clarification and always generate the error.
2200 */
2201 if (qual->index < 0 || qual->index > 1) {
2202 _mesa_glsl_error(loc, state,
2203 "explicit index may only be 0 or 1");
2204 } else {
2205 var->data.explicit_index = true;
2206 var->data.index = qual->index;
2207 }
2208 }
2209 }
2210
2211 return;
2212 }
2213
2214 static void
2215 apply_image_qualifier_to_variable(const struct ast_type_qualifier *qual,
2216 ir_variable *var,
2217 struct _mesa_glsl_parse_state *state,
2218 YYLTYPE *loc)
2219 {
2220 const glsl_type *base_type =
2221 (var->type->is_array() ? var->type->element_type() : var->type);
2222
2223 if (base_type->is_image()) {
2224 if (var->data.mode != ir_var_uniform &&
2225 var->data.mode != ir_var_function_in) {
2226 _mesa_glsl_error(loc, state, "image variables may only be declared as "
2227 "function parameters or uniform-qualified "
2228 "global variables");
2229 }
2230
2231 var->data.image.read_only |= qual->flags.q.read_only;
2232 var->data.image.write_only |= qual->flags.q.write_only;
2233 var->data.image.coherent |= qual->flags.q.coherent;
2234 var->data.image._volatile |= qual->flags.q._volatile;
2235 var->data.image._restrict |= qual->flags.q._restrict;
2236 var->data.read_only = true;
2237
2238 if (qual->flags.q.explicit_image_format) {
2239 if (var->data.mode == ir_var_function_in) {
2240 _mesa_glsl_error(loc, state, "format qualifiers cannot be "
2241 "used on image function parameters");
2242 }
2243
2244 if (qual->image_base_type != base_type->sampler_type) {
2245 _mesa_glsl_error(loc, state, "format qualifier doesn't match the "
2246 "base data type of the image");
2247 }
2248
2249 var->data.image.format = qual->image_format;
2250 } else {
2251 if (var->data.mode == ir_var_uniform && !qual->flags.q.write_only) {
2252 _mesa_glsl_error(loc, state, "uniforms not qualified with "
2253 "`writeonly' must have a format layout "
2254 "qualifier");
2255 }
2256
2257 var->data.image.format = GL_NONE;
2258 }
2259 }
2260 }
2261
2262 static void
2263 apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
2264 ir_variable *var,
2265 struct _mesa_glsl_parse_state *state,
2266 YYLTYPE *loc,
2267 bool is_parameter)
2268 {
2269 STATIC_ASSERT(sizeof(qual->flags.q) <= sizeof(qual->flags.i));
2270
2271 if (qual->flags.q.invariant) {
2272 if (var->data.used) {
2273 _mesa_glsl_error(loc, state,
2274 "variable `%s' may not be redeclared "
2275 "`invariant' after being used",
2276 var->name);
2277 } else {
2278 var->data.invariant = 1;
2279 }
2280 }
2281
2282 if (qual->flags.q.constant || qual->flags.q.attribute
2283 || qual->flags.q.uniform
2284 || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
2285 var->data.read_only = 1;
2286
2287 if (qual->flags.q.centroid)
2288 var->data.centroid = 1;
2289
2290 if (qual->flags.q.sample)
2291 var->data.sample = 1;
2292
2293 if (qual->flags.q.attribute && state->stage != MESA_SHADER_VERTEX) {
2294 var->type = glsl_type::error_type;
2295 _mesa_glsl_error(loc, state,
2296 "`attribute' variables may not be declared in the "
2297 "%s shader",
2298 _mesa_shader_stage_to_string(state->stage));
2299 }
2300
2301 /* Section 6.1.1 (Function Calling Conventions) of the GLSL 1.10 spec says:
2302 *
2303 * "However, the const qualifier cannot be used with out or inout."
2304 *
2305 * The same section of the GLSL 4.40 spec further clarifies this saying:
2306 *
2307 * "The const qualifier cannot be used with out or inout, or a
2308 * compile-time error results."
2309 */
2310 if (is_parameter && qual->flags.q.constant && qual->flags.q.out) {
2311 _mesa_glsl_error(loc, state,
2312 "`const' may not be applied to `out' or `inout' "
2313 "function parameters");
2314 }
2315
2316 /* If there is no qualifier that changes the mode of the variable, leave
2317 * the setting alone.
2318 */
2319 if (qual->flags.q.in && qual->flags.q.out)
2320 var->data.mode = ir_var_function_inout;
2321 else if (qual->flags.q.in)
2322 var->data.mode = is_parameter ? ir_var_function_in : ir_var_shader_in;
2323 else if (qual->flags.q.attribute
2324 || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
2325 var->data.mode = ir_var_shader_in;
2326 else if (qual->flags.q.out)
2327 var->data.mode = is_parameter ? ir_var_function_out : ir_var_shader_out;
2328 else if (qual->flags.q.varying && (state->stage == MESA_SHADER_VERTEX))
2329 var->data.mode = ir_var_shader_out;
2330 else if (qual->flags.q.uniform)
2331 var->data.mode = ir_var_uniform;
2332
2333 if (!is_parameter && is_varying_var(var, state->stage)) {
2334 /* User-defined ins/outs are not permitted in compute shaders. */
2335 if (state->stage == MESA_SHADER_COMPUTE) {
2336 _mesa_glsl_error(loc, state,
2337 "user-defined input and output variables are not "
2338 "permitted in compute shaders");
2339 }
2340
2341 /* This variable is being used to link data between shader stages (in
2342 * pre-glsl-1.30 parlance, it's a "varying"). Check that it has a type
2343 * that is allowed for such purposes.
2344 *
2345 * From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
2346 *
2347 * "The varying qualifier can be used only with the data types
2348 * float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
2349 * these."
2350 *
2351 * This was relaxed in GLSL version 1.30 and GLSL ES version 3.00. From
2352 * page 31 (page 37 of the PDF) of the GLSL 1.30 spec:
2353 *
2354 * "Fragment inputs can only be signed and unsigned integers and
2355 * integer vectors, float, floating-point vectors, matrices, or
2356 * arrays of these. Structures cannot be input.
2357 *
2358 * Similar text exists in the section on vertex shader outputs.
2359 *
2360 * Similar text exists in the GLSL ES 3.00 spec, except that the GLSL ES
2361 * 3.00 spec allows structs as well. Varying structs are also allowed
2362 * in GLSL 1.50.
2363 */
2364 switch (var->type->get_scalar_type()->base_type) {
2365 case GLSL_TYPE_FLOAT:
2366 /* Ok in all GLSL versions */
2367 break;
2368 case GLSL_TYPE_UINT:
2369 case GLSL_TYPE_INT:
2370 if (state->is_version(130, 300))
2371 break;
2372 _mesa_glsl_error(loc, state,
2373 "varying variables must be of base type float in %s",
2374 state->get_version_string());
2375 break;
2376 case GLSL_TYPE_STRUCT:
2377 if (state->is_version(150, 300))
2378 break;
2379 _mesa_glsl_error(loc, state,
2380 "varying variables may not be of type struct");
2381 break;
2382 default:
2383 _mesa_glsl_error(loc, state, "illegal type for a varying variable");
2384 break;
2385 }
2386 }
2387
2388 if (state->all_invariant && (state->current_function == NULL)) {
2389 switch (state->stage) {
2390 case MESA_SHADER_VERTEX:
2391 if (var->data.mode == ir_var_shader_out)
2392 var->data.invariant = true;
2393 break;
2394 case MESA_SHADER_GEOMETRY:
2395 if ((var->data.mode == ir_var_shader_in)
2396 || (var->data.mode == ir_var_shader_out))
2397 var->data.invariant = true;
2398 break;
2399 case MESA_SHADER_FRAGMENT:
2400 if (var->data.mode == ir_var_shader_in)
2401 var->data.invariant = true;
2402 break;
2403 case MESA_SHADER_COMPUTE:
2404 /* Invariance isn't meaningful in compute shaders. */
2405 break;
2406 }
2407 }
2408
2409 var->data.interpolation =
2410 interpret_interpolation_qualifier(qual, (ir_variable_mode) var->data.mode,
2411 state, loc);
2412
2413 var->data.pixel_center_integer = qual->flags.q.pixel_center_integer;
2414 var->data.origin_upper_left = qual->flags.q.origin_upper_left;
2415 if ((qual->flags.q.origin_upper_left || qual->flags.q.pixel_center_integer)
2416 && (strcmp(var->name, "gl_FragCoord") != 0)) {
2417 const char *const qual_string = (qual->flags.q.origin_upper_left)
2418 ? "origin_upper_left" : "pixel_center_integer";
2419
2420 _mesa_glsl_error(loc, state,
2421 "layout qualifier `%s' can only be applied to "
2422 "fragment shader input `gl_FragCoord'",
2423 qual_string);
2424 }
2425
2426 if (qual->flags.q.explicit_location) {
2427 validate_explicit_location(qual, var, state, loc);
2428 } else if (qual->flags.q.explicit_index) {
2429 _mesa_glsl_error(loc, state,
2430 "explicit index requires explicit location");
2431 }
2432
2433 if (qual->flags.q.explicit_binding &&
2434 validate_binding_qualifier(state, loc, var, qual)) {
2435 var->data.explicit_binding = true;
2436 var->data.binding = qual->binding;
2437 }
2438
2439 if (var->type->contains_atomic()) {
2440 if (var->data.mode == ir_var_uniform) {
2441 if (var->data.explicit_binding) {
2442 unsigned *offset =
2443 &state->atomic_counter_offsets[var->data.binding];
2444
2445 if (*offset % ATOMIC_COUNTER_SIZE)
2446 _mesa_glsl_error(loc, state,
2447 "misaligned atomic counter offset");
2448
2449 var->data.atomic.offset = *offset;
2450 *offset += var->type->atomic_size();
2451
2452 } else {
2453 _mesa_glsl_error(loc, state,
2454 "atomic counters require explicit binding point");
2455 }
2456 } else if (var->data.mode != ir_var_function_in) {
2457 _mesa_glsl_error(loc, state, "atomic counters may only be declared as "
2458 "function parameters or uniform-qualified "
2459 "global variables");
2460 }
2461 }
2462
2463 /* Does the declaration use the deprecated 'attribute' or 'varying'
2464 * keywords?
2465 */
2466 const bool uses_deprecated_qualifier = qual->flags.q.attribute
2467 || qual->flags.q.varying;
2468
2469 /* Is the 'layout' keyword used with parameters that allow relaxed checking.
2470 * Many implementations of GL_ARB_fragment_coord_conventions_enable and some
2471 * implementations (only Mesa?) GL_ARB_explicit_attrib_location_enable
2472 * allowed the layout qualifier to be used with 'varying' and 'attribute'.
2473 * These extensions and all following extensions that add the 'layout'
2474 * keyword have been modified to require the use of 'in' or 'out'.
2475 *
2476 * The following extension do not allow the deprecated keywords:
2477 *
2478 * GL_AMD_conservative_depth
2479 * GL_ARB_conservative_depth
2480 * GL_ARB_gpu_shader5
2481 * GL_ARB_separate_shader_objects
2482 * GL_ARB_tesselation_shader
2483 * GL_ARB_transform_feedback3
2484 * GL_ARB_uniform_buffer_object
2485 *
2486 * It is unknown whether GL_EXT_shader_image_load_store or GL_NV_gpu_shader5
2487 * allow layout with the deprecated keywords.
2488 */
2489 const bool relaxed_layout_qualifier_checking =
2490 state->ARB_fragment_coord_conventions_enable;
2491
2492 if (qual->has_layout() && uses_deprecated_qualifier) {
2493 if (relaxed_layout_qualifier_checking) {
2494 _mesa_glsl_warning(loc, state,
2495 "`layout' qualifier may not be used with "
2496 "`attribute' or `varying'");
2497 } else {
2498 _mesa_glsl_error(loc, state,
2499 "`layout' qualifier may not be used with "
2500 "`attribute' or `varying'");
2501 }
2502 }
2503
2504 /* Layout qualifiers for gl_FragDepth, which are enabled by extension
2505 * AMD_conservative_depth.
2506 */
2507 int depth_layout_count = qual->flags.q.depth_any
2508 + qual->flags.q.depth_greater
2509 + qual->flags.q.depth_less
2510 + qual->flags.q.depth_unchanged;
2511 if (depth_layout_count > 0
2512 && !state->AMD_conservative_depth_enable
2513 && !state->ARB_conservative_depth_enable) {
2514 _mesa_glsl_error(loc, state,
2515 "extension GL_AMD_conservative_depth or "
2516 "GL_ARB_conservative_depth must be enabled "
2517 "to use depth layout qualifiers");
2518 } else if (depth_layout_count > 0
2519 && strcmp(var->name, "gl_FragDepth") != 0) {
2520 _mesa_glsl_error(loc, state,
2521 "depth layout qualifiers can be applied only to "
2522 "gl_FragDepth");
2523 } else if (depth_layout_count > 1
2524 && strcmp(var->name, "gl_FragDepth") == 0) {
2525 _mesa_glsl_error(loc, state,
2526 "at most one depth layout qualifier can be applied to "
2527 "gl_FragDepth");
2528 }
2529 if (qual->flags.q.depth_any)
2530 var->data.depth_layout = ir_depth_layout_any;
2531 else if (qual->flags.q.depth_greater)
2532 var->data.depth_layout = ir_depth_layout_greater;
2533 else if (qual->flags.q.depth_less)
2534 var->data.depth_layout = ir_depth_layout_less;
2535 else if (qual->flags.q.depth_unchanged)
2536 var->data.depth_layout = ir_depth_layout_unchanged;
2537 else
2538 var->data.depth_layout = ir_depth_layout_none;
2539
2540 if (qual->flags.q.std140 ||
2541 qual->flags.q.packed ||
2542 qual->flags.q.shared) {
2543 _mesa_glsl_error(loc, state,
2544 "uniform block layout qualifiers std140, packed, and "
2545 "shared can only be applied to uniform blocks, not "
2546 "members");
2547 }
2548
2549 if (qual->flags.q.row_major || qual->flags.q.column_major) {
2550 validate_matrix_layout_for_type(state, loc, var->type, var);
2551 }
2552
2553 if (var->type->contains_image())
2554 apply_image_qualifier_to_variable(qual, var, state, loc);
2555 }
2556
2557 /**
2558 * Get the variable that is being redeclared by this declaration
2559 *
2560 * Semantic checks to verify the validity of the redeclaration are also
2561 * performed. If semantic checks fail, compilation error will be emitted via
2562 * \c _mesa_glsl_error, but a non-\c NULL pointer will still be returned.
2563 *
2564 * \returns
2565 * A pointer to an existing variable in the current scope if the declaration
2566 * is a redeclaration, \c NULL otherwise.
2567 */
2568 static ir_variable *
2569 get_variable_being_redeclared(ir_variable *var, YYLTYPE loc,
2570 struct _mesa_glsl_parse_state *state,
2571 bool allow_all_redeclarations)
2572 {
2573 /* Check if this declaration is actually a re-declaration, either to
2574 * resize an array or add qualifiers to an existing variable.
2575 *
2576 * This is allowed for variables in the current scope, or when at
2577 * global scope (for built-ins in the implicit outer scope).
2578 */
2579 ir_variable *earlier = state->symbols->get_variable(var->name);
2580 if (earlier == NULL ||
2581 (state->current_function != NULL &&
2582 !state->symbols->name_declared_this_scope(var->name))) {
2583 return NULL;
2584 }
2585
2586
2587 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
2588 *
2589 * "It is legal to declare an array without a size and then
2590 * later re-declare the same name as an array of the same
2591 * type and specify a size."
2592 */
2593 if (earlier->type->is_unsized_array() && var->type->is_array()
2594 && (var->type->element_type() == earlier->type->element_type())) {
2595 /* FINISHME: This doesn't match the qualifiers on the two
2596 * FINISHME: declarations. It's not 100% clear whether this is
2597 * FINISHME: required or not.
2598 */
2599
2600 const unsigned size = unsigned(var->type->array_size());
2601 check_builtin_array_max_size(var->name, size, loc, state);
2602 if ((size > 0) && (size <= earlier->data.max_array_access)) {
2603 _mesa_glsl_error(& loc, state, "array size must be > %u due to "
2604 "previous access",
2605 earlier->data.max_array_access);
2606 }
2607
2608 earlier->type = var->type;
2609 delete var;
2610 var = NULL;
2611 } else if ((state->ARB_fragment_coord_conventions_enable ||
2612 state->is_version(150, 0))
2613 && strcmp(var->name, "gl_FragCoord") == 0
2614 && earlier->type == var->type
2615 && earlier->data.mode == var->data.mode) {
2616 /* Allow redeclaration of gl_FragCoord for ARB_fcc layout
2617 * qualifiers.
2618 */
2619 earlier->data.origin_upper_left = var->data.origin_upper_left;
2620 earlier->data.pixel_center_integer = var->data.pixel_center_integer;
2621
2622 /* According to section 4.3.7 of the GLSL 1.30 spec,
2623 * the following built-in varaibles can be redeclared with an
2624 * interpolation qualifier:
2625 * * gl_FrontColor
2626 * * gl_BackColor
2627 * * gl_FrontSecondaryColor
2628 * * gl_BackSecondaryColor
2629 * * gl_Color
2630 * * gl_SecondaryColor
2631 */
2632 } else if (state->is_version(130, 0)
2633 && (strcmp(var->name, "gl_FrontColor") == 0
2634 || strcmp(var->name, "gl_BackColor") == 0
2635 || strcmp(var->name, "gl_FrontSecondaryColor") == 0
2636 || strcmp(var->name, "gl_BackSecondaryColor") == 0
2637 || strcmp(var->name, "gl_Color") == 0
2638 || strcmp(var->name, "gl_SecondaryColor") == 0)
2639 && earlier->type == var->type
2640 && earlier->data.mode == var->data.mode) {
2641 earlier->data.interpolation = var->data.interpolation;
2642
2643 /* Layout qualifiers for gl_FragDepth. */
2644 } else if ((state->AMD_conservative_depth_enable ||
2645 state->ARB_conservative_depth_enable)
2646 && strcmp(var->name, "gl_FragDepth") == 0
2647 && earlier->type == var->type
2648 && earlier->data.mode == var->data.mode) {
2649
2650 /** From the AMD_conservative_depth spec:
2651 * Within any shader, the first redeclarations of gl_FragDepth
2652 * must appear before any use of gl_FragDepth.
2653 */
2654 if (earlier->data.used) {
2655 _mesa_glsl_error(&loc, state,
2656 "the first redeclaration of gl_FragDepth "
2657 "must appear before any use of gl_FragDepth");
2658 }
2659
2660 /* Prevent inconsistent redeclaration of depth layout qualifier. */
2661 if (earlier->data.depth_layout != ir_depth_layout_none
2662 && earlier->data.depth_layout != var->data.depth_layout) {
2663 _mesa_glsl_error(&loc, state,
2664 "gl_FragDepth: depth layout is declared here "
2665 "as '%s, but it was previously declared as "
2666 "'%s'",
2667 depth_layout_string(var->data.depth_layout),
2668 depth_layout_string(earlier->data.depth_layout));
2669 }
2670
2671 earlier->data.depth_layout = var->data.depth_layout;
2672
2673 } else if (allow_all_redeclarations) {
2674 if (earlier->data.mode != var->data.mode) {
2675 _mesa_glsl_error(&loc, state,
2676 "redeclaration of `%s' with incorrect qualifiers",
2677 var->name);
2678 } else if (earlier->type != var->type) {
2679 _mesa_glsl_error(&loc, state,
2680 "redeclaration of `%s' has incorrect type",
2681 var->name);
2682 }
2683 } else {
2684 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
2685 }
2686
2687 return earlier;
2688 }
2689
2690 /**
2691 * Generate the IR for an initializer in a variable declaration
2692 */
2693 ir_rvalue *
2694 process_initializer(ir_variable *var, ast_declaration *decl,
2695 ast_fully_specified_type *type,
2696 exec_list *initializer_instructions,
2697 struct _mesa_glsl_parse_state *state)
2698 {
2699 ir_rvalue *result = NULL;
2700
2701 YYLTYPE initializer_loc = decl->initializer->get_location();
2702
2703 /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
2704 *
2705 * "All uniform variables are read-only and are initialized either
2706 * directly by an application via API commands, or indirectly by
2707 * OpenGL."
2708 */
2709 if (var->data.mode == ir_var_uniform) {
2710 state->check_version(120, 0, &initializer_loc,
2711 "cannot initialize uniforms");
2712 }
2713
2714 if (var->type->is_sampler()) {
2715 _mesa_glsl_error(& initializer_loc, state,
2716 "cannot initialize samplers");
2717 }
2718
2719 if ((var->data.mode == ir_var_shader_in) && (state->current_function == NULL)) {
2720 _mesa_glsl_error(& initializer_loc, state,
2721 "cannot initialize %s shader input / %s",
2722 _mesa_shader_stage_to_string(state->stage),
2723 (state->stage == MESA_SHADER_VERTEX)
2724 ? "attribute" : "varying");
2725 }
2726
2727 /* If the initializer is an ast_aggregate_initializer, recursively store
2728 * type information from the LHS into it, so that its hir() function can do
2729 * type checking.
2730 */
2731 if (decl->initializer->oper == ast_aggregate)
2732 _mesa_ast_set_aggregate_type(var->type, decl->initializer);
2733
2734 ir_dereference *const lhs = new(state) ir_dereference_variable(var);
2735 ir_rvalue *rhs = decl->initializer->hir(initializer_instructions,
2736 state);
2737
2738 /* Calculate the constant value if this is a const or uniform
2739 * declaration.
2740 */
2741 if (type->qualifier.flags.q.constant
2742 || type->qualifier.flags.q.uniform) {
2743 ir_rvalue *new_rhs = validate_assignment(state, initializer_loc,
2744 var->type, rhs, true);
2745 if (new_rhs != NULL) {
2746 rhs = new_rhs;
2747
2748 ir_constant *constant_value = rhs->constant_expression_value();
2749 if (!constant_value) {
2750 /* If ARB_shading_language_420pack is enabled, initializers of
2751 * const-qualified local variables do not have to be constant
2752 * expressions. Const-qualified global variables must still be
2753 * initialized with constant expressions.
2754 */
2755 if (!state->ARB_shading_language_420pack_enable
2756 || state->current_function == NULL) {
2757 _mesa_glsl_error(& initializer_loc, state,
2758 "initializer of %s variable `%s' must be a "
2759 "constant expression",
2760 (type->qualifier.flags.q.constant)
2761 ? "const" : "uniform",
2762 decl->identifier);
2763 if (var->type->is_numeric()) {
2764 /* Reduce cascading errors. */
2765 var->constant_value = ir_constant::zero(state, var->type);
2766 }
2767 }
2768 } else {
2769 rhs = constant_value;
2770 var->constant_value = constant_value;
2771 }
2772 } else {
2773 if (var->type->is_numeric()) {
2774 /* Reduce cascading errors. */
2775 var->constant_value = ir_constant::zero(state, var->type);
2776 }
2777 }
2778 }
2779
2780 if (rhs && !rhs->type->is_error()) {
2781 bool temp = var->data.read_only;
2782 if (type->qualifier.flags.q.constant)
2783 var->data.read_only = false;
2784
2785 /* Never emit code to initialize a uniform.
2786 */
2787 const glsl_type *initializer_type;
2788 if (!type->qualifier.flags.q.uniform) {
2789 result = do_assignment(initializer_instructions, state,
2790 NULL,
2791 lhs, rhs, true,
2792 type->get_location());
2793 initializer_type = result->type;
2794 } else
2795 initializer_type = rhs->type;
2796
2797 var->constant_initializer = rhs->constant_expression_value();
2798 var->data.has_initializer = true;
2799
2800 /* If the declared variable is an unsized array, it must inherrit
2801 * its full type from the initializer. A declaration such as
2802 *
2803 * uniform float a[] = float[](1.0, 2.0, 3.0, 3.0);
2804 *
2805 * becomes
2806 *
2807 * uniform float a[4] = float[](1.0, 2.0, 3.0, 3.0);
2808 *
2809 * The assignment generated in the if-statement (below) will also
2810 * automatically handle this case for non-uniforms.
2811 *
2812 * If the declared variable is not an array, the types must
2813 * already match exactly. As a result, the type assignment
2814 * here can be done unconditionally. For non-uniforms the call
2815 * to do_assignment can change the type of the initializer (via
2816 * the implicit conversion rules). For uniforms the initializer
2817 * must be a constant expression, and the type of that expression
2818 * was validated above.
2819 */
2820 var->type = initializer_type;
2821
2822 var->data.read_only = temp;
2823 }
2824
2825 return result;
2826 }
2827
2828
2829 /**
2830 * Do additional processing necessary for geometry shader input declarations
2831 * (this covers both interface blocks arrays and bare input variables).
2832 */
2833 static void
2834 handle_geometry_shader_input_decl(struct _mesa_glsl_parse_state *state,
2835 YYLTYPE loc, ir_variable *var)
2836 {
2837 unsigned num_vertices = 0;
2838 if (state->gs_input_prim_type_specified) {
2839 num_vertices = vertices_per_prim(state->gs_input_prim_type);
2840 }
2841
2842 /* Geometry shader input variables must be arrays. Caller should have
2843 * reported an error for this.
2844 */
2845 if (!var->type->is_array()) {
2846 assert(state->error);
2847
2848 /* To avoid cascading failures, short circuit the checks below. */
2849 return;
2850 }
2851
2852 if (var->type->is_unsized_array()) {
2853 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec says:
2854 *
2855 * All geometry shader input unsized array declarations will be
2856 * sized by an earlier input layout qualifier, when present, as per
2857 * the following table.
2858 *
2859 * Followed by a table mapping each allowed input layout qualifier to
2860 * the corresponding input length.
2861 */
2862 if (num_vertices != 0)
2863 var->type = glsl_type::get_array_instance(var->type->fields.array,
2864 num_vertices);
2865 } else {
2866 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec
2867 * includes the following examples of compile-time errors:
2868 *
2869 * // code sequence within one shader...
2870 * in vec4 Color1[]; // size unknown
2871 * ...Color1.length()...// illegal, length() unknown
2872 * in vec4 Color2[2]; // size is 2
2873 * ...Color1.length()...// illegal, Color1 still has no size
2874 * in vec4 Color3[3]; // illegal, input sizes are inconsistent
2875 * layout(lines) in; // legal, input size is 2, matching
2876 * in vec4 Color4[3]; // illegal, contradicts layout
2877 * ...
2878 *
2879 * To detect the case illustrated by Color3, we verify that the size of
2880 * an explicitly-sized array matches the size of any previously declared
2881 * explicitly-sized array. To detect the case illustrated by Color4, we
2882 * verify that the size of an explicitly-sized array is consistent with
2883 * any previously declared input layout.
2884 */
2885 if (num_vertices != 0 && var->type->length != num_vertices) {
2886 _mesa_glsl_error(&loc, state,
2887 "geometry shader input size contradicts previously"
2888 " declared layout (size is %u, but layout requires a"
2889 " size of %u)", var->type->length, num_vertices);
2890 } else if (state->gs_input_size != 0 &&
2891 var->type->length != state->gs_input_size) {
2892 _mesa_glsl_error(&loc, state,
2893 "geometry shader input sizes are "
2894 "inconsistent (size is %u, but a previous "
2895 "declaration has size %u)",
2896 var->type->length, state->gs_input_size);
2897 } else {
2898 state->gs_input_size = var->type->length;
2899 }
2900 }
2901 }
2902
2903
2904 void
2905 validate_identifier(const char *identifier, YYLTYPE loc,
2906 struct _mesa_glsl_parse_state *state)
2907 {
2908 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
2909 *
2910 * "Identifiers starting with "gl_" are reserved for use by
2911 * OpenGL, and may not be declared in a shader as either a
2912 * variable or a function."
2913 */
2914 if (strncmp(identifier, "gl_", 3) == 0) {
2915 _mesa_glsl_error(&loc, state,
2916 "identifier `%s' uses reserved `gl_' prefix",
2917 identifier);
2918 } else if (strstr(identifier, "__")) {
2919 /* From page 14 (page 20 of the PDF) of the GLSL 1.10
2920 * spec:
2921 *
2922 * "In addition, all identifiers containing two
2923 * consecutive underscores (__) are reserved as
2924 * possible future keywords."
2925 */
2926 _mesa_glsl_error(&loc, state,
2927 "identifier `%s' uses reserved `__' string",
2928 identifier);
2929 }
2930 }
2931
2932
2933 ir_rvalue *
2934 ast_declarator_list::hir(exec_list *instructions,
2935 struct _mesa_glsl_parse_state *state)
2936 {
2937 void *ctx = state;
2938 const struct glsl_type *decl_type;
2939 const char *type_name = NULL;
2940 ir_rvalue *result = NULL;
2941 YYLTYPE loc = this->get_location();
2942
2943 /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec:
2944 *
2945 * "To ensure that a particular output variable is invariant, it is
2946 * necessary to use the invariant qualifier. It can either be used to
2947 * qualify a previously declared variable as being invariant
2948 *
2949 * invariant gl_Position; // make existing gl_Position be invariant"
2950 *
2951 * In these cases the parser will set the 'invariant' flag in the declarator
2952 * list, and the type will be NULL.
2953 */
2954 if (this->invariant) {
2955 assert(this->type == NULL);
2956
2957 if (state->current_function != NULL) {
2958 _mesa_glsl_error(& loc, state,
2959 "all uses of `invariant' keyword must be at global "
2960 "scope");
2961 }
2962
2963 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
2964 assert(decl->array_specifier == NULL);
2965 assert(decl->initializer == NULL);
2966
2967 ir_variable *const earlier =
2968 state->symbols->get_variable(decl->identifier);
2969 if (earlier == NULL) {
2970 _mesa_glsl_error(& loc, state,
2971 "undeclared variable `%s' cannot be marked "
2972 "invariant", decl->identifier);
2973 } else if ((state->stage == MESA_SHADER_VERTEX)
2974 && (earlier->data.mode != ir_var_shader_out)) {
2975 _mesa_glsl_error(& loc, state,
2976 "`%s' cannot be marked invariant, vertex shader "
2977 "outputs only", decl->identifier);
2978 } else if ((state->stage == MESA_SHADER_FRAGMENT)
2979 && (earlier->data.mode != ir_var_shader_in)) {
2980 _mesa_glsl_error(& loc, state,
2981 "`%s' cannot be marked invariant, fragment shader "
2982 "inputs only", decl->identifier);
2983 } else if (earlier->data.used) {
2984 _mesa_glsl_error(& loc, state,
2985 "variable `%s' may not be redeclared "
2986 "`invariant' after being used",
2987 earlier->name);
2988 } else {
2989 earlier->data.invariant = true;
2990 }
2991 }
2992
2993 /* Invariant redeclarations do not have r-values.
2994 */
2995 return NULL;
2996 }
2997
2998 assert(this->type != NULL);
2999 assert(!this->invariant);
3000
3001 /* The type specifier may contain a structure definition. Process that
3002 * before any of the variable declarations.
3003 */
3004 (void) this->type->specifier->hir(instructions, state);
3005
3006 decl_type = this->type->glsl_type(& type_name, state);
3007
3008 /* An offset-qualified atomic counter declaration sets the default
3009 * offset for the next declaration within the same atomic counter
3010 * buffer.
3011 */
3012 if (decl_type && decl_type->contains_atomic()) {
3013 if (type->qualifier.flags.q.explicit_binding &&
3014 type->qualifier.flags.q.explicit_offset)
3015 state->atomic_counter_offsets[type->qualifier.binding] =
3016 type->qualifier.offset;
3017 }
3018
3019 if (this->declarations.is_empty()) {
3020 /* If there is no structure involved in the program text, there are two
3021 * possible scenarios:
3022 *
3023 * - The program text contained something like 'vec4;'. This is an
3024 * empty declaration. It is valid but weird. Emit a warning.
3025 *
3026 * - The program text contained something like 'S;' and 'S' is not the
3027 * name of a known structure type. This is both invalid and weird.
3028 * Emit an error.
3029 *
3030 * - The program text contained something like 'mediump float;'
3031 * when the programmer probably meant 'precision mediump
3032 * float;' Emit a warning with a description of what they
3033 * probably meant to do.
3034 *
3035 * Note that if decl_type is NULL and there is a structure involved,
3036 * there must have been some sort of error with the structure. In this
3037 * case we assume that an error was already generated on this line of
3038 * code for the structure. There is no need to generate an additional,
3039 * confusing error.
3040 */
3041 assert(this->type->specifier->structure == NULL || decl_type != NULL
3042 || state->error);
3043
3044 if (decl_type == NULL) {
3045 _mesa_glsl_error(&loc, state,
3046 "invalid type `%s' in empty declaration",
3047 type_name);
3048 } else if (decl_type->base_type == GLSL_TYPE_ATOMIC_UINT) {
3049 /* Empty atomic counter declarations are allowed and useful
3050 * to set the default offset qualifier.
3051 */
3052 return NULL;
3053 } else if (this->type->qualifier.precision != ast_precision_none) {
3054 if (this->type->specifier->structure != NULL) {
3055 _mesa_glsl_error(&loc, state,
3056 "precision qualifiers can't be applied "
3057 "to structures");
3058 } else {
3059 static const char *const precision_names[] = {
3060 "highp",
3061 "highp",
3062 "mediump",
3063 "lowp"
3064 };
3065
3066 _mesa_glsl_warning(&loc, state,
3067 "empty declaration with precision qualifier, "
3068 "to set the default precision, use "
3069 "`precision %s %s;'",
3070 precision_names[this->type->qualifier.precision],
3071 type_name);
3072 }
3073 } else if (this->type->specifier->structure == NULL) {
3074 _mesa_glsl_warning(&loc, state, "empty declaration");
3075 }
3076 }
3077
3078 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
3079 const struct glsl_type *var_type;
3080 ir_variable *var;
3081
3082 /* FINISHME: Emit a warning if a variable declaration shadows a
3083 * FINISHME: declaration at a higher scope.
3084 */
3085
3086 if ((decl_type == NULL) || decl_type->is_void()) {
3087 if (type_name != NULL) {
3088 _mesa_glsl_error(& loc, state,
3089 "invalid type `%s' in declaration of `%s'",
3090 type_name, decl->identifier);
3091 } else {
3092 _mesa_glsl_error(& loc, state,
3093 "invalid type in declaration of `%s'",
3094 decl->identifier);
3095 }
3096 continue;
3097 }
3098
3099 var_type = process_array_type(&loc, decl_type, decl->array_specifier,
3100 state);
3101
3102 var = new(ctx) ir_variable(var_type, decl->identifier, ir_var_auto);
3103
3104 /* The 'varying in' and 'varying out' qualifiers can only be used with
3105 * ARB_geometry_shader4 and EXT_geometry_shader4, which we don't support
3106 * yet.
3107 */
3108 if (this->type->qualifier.flags.q.varying) {
3109 if (this->type->qualifier.flags.q.in) {
3110 _mesa_glsl_error(& loc, state,
3111 "`varying in' qualifier in declaration of "
3112 "`%s' only valid for geometry shaders using "
3113 "ARB_geometry_shader4 or EXT_geometry_shader4",
3114 decl->identifier);
3115 } else if (this->type->qualifier.flags.q.out) {
3116 _mesa_glsl_error(& loc, state,
3117 "`varying out' qualifier in declaration of "
3118 "`%s' only valid for geometry shaders using "
3119 "ARB_geometry_shader4 or EXT_geometry_shader4",
3120 decl->identifier);
3121 }
3122 }
3123
3124 /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
3125 *
3126 * "Global variables can only use the qualifiers const,
3127 * attribute, uni form, or varying. Only one may be
3128 * specified.
3129 *
3130 * Local variables can only use the qualifier const."
3131 *
3132 * This is relaxed in GLSL 1.30 and GLSL ES 3.00. It is also relaxed by
3133 * any extension that adds the 'layout' keyword.
3134 */
3135 if (!state->is_version(130, 300)
3136 && !state->has_explicit_attrib_location()
3137 && !state->ARB_fragment_coord_conventions_enable) {
3138 if (this->type->qualifier.flags.q.out) {
3139 _mesa_glsl_error(& loc, state,
3140 "`out' qualifier in declaration of `%s' "
3141 "only valid for function parameters in %s",
3142 decl->identifier, state->get_version_string());
3143 }
3144 if (this->type->qualifier.flags.q.in) {
3145 _mesa_glsl_error(& loc, state,
3146 "`in' qualifier in declaration of `%s' "
3147 "only valid for function parameters in %s",
3148 decl->identifier, state->get_version_string());
3149 }
3150 /* FINISHME: Test for other invalid qualifiers. */
3151 }
3152
3153 apply_type_qualifier_to_variable(& this->type->qualifier, var, state,
3154 & loc, false);
3155
3156 if (this->type->qualifier.flags.q.invariant) {
3157 if ((state->stage == MESA_SHADER_VERTEX) &&
3158 var->data.mode != ir_var_shader_out) {
3159 _mesa_glsl_error(& loc, state,
3160 "`%s' cannot be marked invariant, vertex shader "
3161 "outputs only", var->name);
3162 } else if ((state->stage == MESA_SHADER_FRAGMENT) &&
3163 var->data.mode != ir_var_shader_in) {
3164 /* FINISHME: Note that this doesn't work for invariant on
3165 * a function signature inval
3166 */
3167 _mesa_glsl_error(& loc, state,
3168 "`%s' cannot be marked invariant, fragment shader "
3169 "inputs only", var->name);
3170 }
3171 }
3172
3173 if (state->current_function != NULL) {
3174 const char *mode = NULL;
3175 const char *extra = "";
3176
3177 /* There is no need to check for 'inout' here because the parser will
3178 * only allow that in function parameter lists.
3179 */
3180 if (this->type->qualifier.flags.q.attribute) {
3181 mode = "attribute";
3182 } else if (this->type->qualifier.flags.q.uniform) {
3183 mode = "uniform";
3184 } else if (this->type->qualifier.flags.q.varying) {
3185 mode = "varying";
3186 } else if (this->type->qualifier.flags.q.in) {
3187 mode = "in";
3188 extra = " or in function parameter list";
3189 } else if (this->type->qualifier.flags.q.out) {
3190 mode = "out";
3191 extra = " or in function parameter list";
3192 }
3193
3194 if (mode) {
3195 _mesa_glsl_error(& loc, state,
3196 "%s variable `%s' must be declared at "
3197 "global scope%s",
3198 mode, var->name, extra);
3199 }
3200 } else if (var->data.mode == ir_var_shader_in) {
3201 var->data.read_only = true;
3202
3203 if (state->stage == MESA_SHADER_VERTEX) {
3204 bool error_emitted = false;
3205
3206 /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
3207 *
3208 * "Vertex shader inputs can only be float, floating-point
3209 * vectors, matrices, signed and unsigned integers and integer
3210 * vectors. Vertex shader inputs can also form arrays of these
3211 * types, but not structures."
3212 *
3213 * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
3214 *
3215 * "Vertex shader inputs can only be float, floating-point
3216 * vectors, matrices, signed and unsigned integers and integer
3217 * vectors. They cannot be arrays or structures."
3218 *
3219 * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
3220 *
3221 * "The attribute qualifier can be used only with float,
3222 * floating-point vectors, and matrices. Attribute variables
3223 * cannot be declared as arrays or structures."
3224 *
3225 * From page 33 (page 39 of the PDF) of the GLSL ES 3.00 spec:
3226 *
3227 * "Vertex shader inputs can only be float, floating-point
3228 * vectors, matrices, signed and unsigned integers and integer
3229 * vectors. Vertex shader inputs cannot be arrays or
3230 * structures."
3231 */
3232 const glsl_type *check_type = var->type;
3233 while (check_type->is_array())
3234 check_type = check_type->element_type();
3235
3236 switch (check_type->base_type) {
3237 case GLSL_TYPE_FLOAT:
3238 break;
3239 case GLSL_TYPE_UINT:
3240 case GLSL_TYPE_INT:
3241 if (state->is_version(120, 300))
3242 break;
3243 /* FALLTHROUGH */
3244 default:
3245 _mesa_glsl_error(& loc, state,
3246 "vertex shader input / attribute cannot have "
3247 "type %s`%s'",
3248 var->type->is_array() ? "array of " : "",
3249 check_type->name);
3250 error_emitted = true;
3251 }
3252
3253 if (!error_emitted && var->type->is_array() &&
3254 !state->check_version(150, 0, &loc,
3255 "vertex shader input / attribute "
3256 "cannot have array type")) {
3257 error_emitted = true;
3258 }
3259 } else if (state->stage == MESA_SHADER_GEOMETRY) {
3260 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
3261 *
3262 * Geometry shader input variables get the per-vertex values
3263 * written out by vertex shader output variables of the same
3264 * names. Since a geometry shader operates on a set of
3265 * vertices, each input varying variable (or input block, see
3266 * interface blocks below) needs to be declared as an array.
3267 */
3268 if (!var->type->is_array()) {
3269 _mesa_glsl_error(&loc, state,
3270 "geometry shader inputs must be arrays");
3271 }
3272
3273 handle_geometry_shader_input_decl(state, loc, var);
3274 }
3275 }
3276
3277 /* Integer fragment inputs must be qualified with 'flat'. In GLSL ES,
3278 * so must integer vertex outputs.
3279 *
3280 * From section 4.3.4 ("Inputs") of the GLSL 1.50 spec:
3281 * "Fragment shader inputs that are signed or unsigned integers or
3282 * integer vectors must be qualified with the interpolation qualifier
3283 * flat."
3284 *
3285 * From section 4.3.4 ("Input Variables") of the GLSL 3.00 ES spec:
3286 * "Fragment shader inputs that are, or contain, signed or unsigned
3287 * integers or integer vectors must be qualified with the
3288 * interpolation qualifier flat."
3289 *
3290 * From section 4.3.6 ("Output Variables") of the GLSL 3.00 ES spec:
3291 * "Vertex shader outputs that are, or contain, signed or unsigned
3292 * integers or integer vectors must be qualified with the
3293 * interpolation qualifier flat."
3294 *
3295 * Note that prior to GLSL 1.50, this requirement applied to vertex
3296 * outputs rather than fragment inputs. That creates problems in the
3297 * presence of geometry shaders, so we adopt the GLSL 1.50 rule for all
3298 * desktop GL shaders. For GLSL ES shaders, we follow the spec and
3299 * apply the restriction to both vertex outputs and fragment inputs.
3300 *
3301 * Note also that the desktop GLSL specs are missing the text "or
3302 * contain"; this is presumably an oversight, since there is no
3303 * reasonable way to interpolate a fragment shader input that contains
3304 * an integer.
3305 */
3306 if (state->is_version(130, 300) &&
3307 var->type->contains_integer() &&
3308 var->data.interpolation != INTERP_QUALIFIER_FLAT &&
3309 ((state->stage == MESA_SHADER_FRAGMENT && var->data.mode == ir_var_shader_in)
3310 || (state->stage == MESA_SHADER_VERTEX && var->data.mode == ir_var_shader_out
3311 && state->es_shader))) {
3312 const char *var_type = (state->stage == MESA_SHADER_VERTEX) ?
3313 "vertex output" : "fragment input";
3314 _mesa_glsl_error(&loc, state, "if a %s is (or contains) "
3315 "an integer, then it must be qualified with 'flat'",
3316 var_type);
3317 }
3318
3319
3320 /* Interpolation qualifiers cannot be applied to 'centroid' and
3321 * 'centroid varying'.
3322 *
3323 * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
3324 * "interpolation qualifiers may only precede the qualifiers in,
3325 * centroid in, out, or centroid out in a declaration. They do not apply
3326 * to the deprecated storage qualifiers varying or centroid varying."
3327 *
3328 * These deprecated storage qualifiers do not exist in GLSL ES 3.00.
3329 */
3330 if (state->is_version(130, 0)
3331 && this->type->qualifier.has_interpolation()
3332 && this->type->qualifier.flags.q.varying) {
3333
3334 const char *i = this->type->qualifier.interpolation_string();
3335 assert(i != NULL);
3336 const char *s;
3337 if (this->type->qualifier.flags.q.centroid)
3338 s = "centroid varying";
3339 else
3340 s = "varying";
3341
3342 _mesa_glsl_error(&loc, state,
3343 "qualifier '%s' cannot be applied to the "
3344 "deprecated storage qualifier '%s'", i, s);
3345 }
3346
3347
3348 /* Interpolation qualifiers can only apply to vertex shader outputs and
3349 * fragment shader inputs.
3350 *
3351 * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
3352 * "Outputs from a vertex shader (out) and inputs to a fragment
3353 * shader (in) can be further qualified with one or more of these
3354 * interpolation qualifiers"
3355 *
3356 * From page 31 (page 37 of the PDF) of the GLSL ES 3.00 spec:
3357 * "These interpolation qualifiers may only precede the qualifiers
3358 * in, centroid in, out, or centroid out in a declaration. They do
3359 * not apply to inputs into a vertex shader or outputs from a
3360 * fragment shader."
3361 */
3362 if (state->is_version(130, 300)
3363 && this->type->qualifier.has_interpolation()) {
3364
3365 const char *i = this->type->qualifier.interpolation_string();
3366 assert(i != NULL);
3367
3368 switch (state->stage) {
3369 case MESA_SHADER_VERTEX:
3370 if (this->type->qualifier.flags.q.in) {
3371 _mesa_glsl_error(&loc, state,
3372 "qualifier '%s' cannot be applied to vertex "
3373 "shader inputs", i);
3374 }
3375 break;
3376 case MESA_SHADER_FRAGMENT:
3377 if (this->type->qualifier.flags.q.out) {
3378 _mesa_glsl_error(&loc, state,
3379 "qualifier '%s' cannot be applied to fragment "
3380 "shader outputs", i);
3381 }
3382 break;
3383 default:
3384 break;
3385 }
3386 }
3387
3388
3389 /* From section 4.3.4 of the GLSL 1.30 spec:
3390 * "It is an error to use centroid in in a vertex shader."
3391 *
3392 * From section 4.3.4 of the GLSL ES 3.00 spec:
3393 * "It is an error to use centroid in or interpolation qualifiers in
3394 * a vertex shader input."
3395 */
3396 if (state->is_version(130, 300)
3397 && this->type->qualifier.flags.q.centroid
3398 && this->type->qualifier.flags.q.in
3399 && state->stage == MESA_SHADER_VERTEX) {
3400
3401 _mesa_glsl_error(&loc, state,
3402 "'centroid in' cannot be used in a vertex shader");
3403 }
3404
3405 if (state->stage == MESA_SHADER_VERTEX
3406 && this->type->qualifier.flags.q.sample
3407 && this->type->qualifier.flags.q.in) {
3408
3409 _mesa_glsl_error(&loc, state,
3410 "'sample in' cannot be used in a vertex shader");
3411 }
3412
3413 /* Section 4.3.6 of the GLSL 1.30 specification states:
3414 * "It is an error to use centroid out in a fragment shader."
3415 *
3416 * The GL_ARB_shading_language_420pack extension specification states:
3417 * "It is an error to use auxiliary storage qualifiers or interpolation
3418 * qualifiers on an output in a fragment shader."
3419 */
3420 if (state->stage == MESA_SHADER_FRAGMENT &&
3421 this->type->qualifier.flags.q.out &&
3422 this->type->qualifier.has_auxiliary_storage()) {
3423 _mesa_glsl_error(&loc, state,
3424 "auxiliary storage qualifiers cannot be used on "
3425 "fragment shader outputs");
3426 }
3427
3428 /* Precision qualifiers exists only in GLSL versions 1.00 and >= 1.30.
3429 */
3430 if (this->type->qualifier.precision != ast_precision_none) {
3431 state->check_precision_qualifiers_allowed(&loc);
3432 }
3433
3434
3435 /* Precision qualifiers apply to floating point, integer and sampler
3436 * types.
3437 *
3438 * Section 4.5.2 (Precision Qualifiers) of the GLSL 1.30 spec says:
3439 * "Any floating point or any integer declaration can have the type
3440 * preceded by one of these precision qualifiers [...] Literal
3441 * constants do not have precision qualifiers. Neither do Boolean
3442 * variables.
3443 *
3444 * Section 4.5 (Precision and Precision Qualifiers) of the GLSL 1.30
3445 * spec also says:
3446 *
3447 * "Precision qualifiers are added for code portability with OpenGL
3448 * ES, not for functionality. They have the same syntax as in OpenGL
3449 * ES."
3450 *
3451 * Section 8 (Built-In Functions) of the GLSL ES 1.00 spec says:
3452 *
3453 * "uniform lowp sampler2D sampler;
3454 * highp vec2 coord;
3455 * ...
3456 * lowp vec4 col = texture2D (sampler, coord);
3457 * // texture2D returns lowp"
3458 *
3459 * From this, we infer that GLSL 1.30 (and later) should allow precision
3460 * qualifiers on sampler types just like float and integer types.
3461 */
3462 if (this->type->qualifier.precision != ast_precision_none
3463 && !var->type->is_float()
3464 && !var->type->is_integer()
3465 && !var->type->is_record()
3466 && !var->type->is_sampler()
3467 && !(var->type->is_array()
3468 && (var->type->fields.array->is_float()
3469 || var->type->fields.array->is_integer()))) {
3470
3471 _mesa_glsl_error(&loc, state,
3472 "precision qualifiers apply only to floating point"
3473 ", integer and sampler types");
3474 }
3475
3476 /* From page 17 (page 23 of the PDF) of the GLSL 1.20 spec:
3477 *
3478 * "[Sampler types] can only be declared as function
3479 * parameters or uniform variables (see Section 4.3.5
3480 * "Uniform")".
3481 */
3482 if (var_type->contains_sampler() &&
3483 !this->type->qualifier.flags.q.uniform) {
3484 _mesa_glsl_error(&loc, state, "samplers must be declared uniform");
3485 }
3486
3487 /* Process the initializer and add its instructions to a temporary
3488 * list. This list will be added to the instruction stream (below) after
3489 * the declaration is added. This is done because in some cases (such as
3490 * redeclarations) the declaration may not actually be added to the
3491 * instruction stream.
3492 */
3493 exec_list initializer_instructions;
3494 ir_variable *earlier =
3495 get_variable_being_redeclared(var, decl->get_location(), state,
3496 false /* allow_all_redeclarations */);
3497 if (earlier != NULL) {
3498 if (strncmp(var->name, "gl_", 3) == 0 &&
3499 earlier->data.how_declared == ir_var_declared_in_block) {
3500 _mesa_glsl_error(&loc, state,
3501 "`%s' has already been redeclared using "
3502 "gl_PerVertex", var->name);
3503 }
3504 earlier->data.how_declared = ir_var_declared_normally;
3505 }
3506
3507 if (decl->initializer != NULL) {
3508 result = process_initializer((earlier == NULL) ? var : earlier,
3509 decl, this->type,
3510 &initializer_instructions, state);
3511 }
3512
3513 /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
3514 *
3515 * "It is an error to write to a const variable outside of
3516 * its declaration, so they must be initialized when
3517 * declared."
3518 */
3519 if (this->type->qualifier.flags.q.constant && decl->initializer == NULL) {
3520 _mesa_glsl_error(& loc, state,
3521 "const declaration of `%s' must be initialized",
3522 decl->identifier);
3523 }
3524
3525 if (state->es_shader) {
3526 const glsl_type *const t = (earlier == NULL)
3527 ? var->type : earlier->type;
3528
3529 if (t->is_unsized_array())
3530 /* Section 10.17 of the GLSL ES 1.00 specification states that
3531 * unsized array declarations have been removed from the language.
3532 * Arrays that are sized using an initializer are still explicitly
3533 * sized. However, GLSL ES 1.00 does not allow array
3534 * initializers. That is only allowed in GLSL ES 3.00.
3535 *
3536 * Section 4.1.9 (Arrays) of the GLSL ES 3.00 spec says:
3537 *
3538 * "An array type can also be formed without specifying a size
3539 * if the definition includes an initializer:
3540 *
3541 * float x[] = float[2] (1.0, 2.0); // declares an array of size 2
3542 * float y[] = float[] (1.0, 2.0, 3.0); // declares an array of size 3
3543 *
3544 * float a[5];
3545 * float b[] = a;"
3546 */
3547 _mesa_glsl_error(& loc, state,
3548 "unsized array declarations are not allowed in "
3549 "GLSL ES");
3550 }
3551
3552 /* If the declaration is not a redeclaration, there are a few additional
3553 * semantic checks that must be applied. In addition, variable that was
3554 * created for the declaration should be added to the IR stream.
3555 */
3556 if (earlier == NULL) {
3557 validate_identifier(decl->identifier, loc, state);
3558
3559 /* Add the variable to the symbol table. Note that the initializer's
3560 * IR was already processed earlier (though it hasn't been emitted
3561 * yet), without the variable in scope.
3562 *
3563 * This differs from most C-like languages, but it follows the GLSL
3564 * specification. From page 28 (page 34 of the PDF) of the GLSL 1.50
3565 * spec:
3566 *
3567 * "Within a declaration, the scope of a name starts immediately
3568 * after the initializer if present or immediately after the name
3569 * being declared if not."
3570 */
3571 if (!state->symbols->add_variable(var)) {
3572 YYLTYPE loc = this->get_location();
3573 _mesa_glsl_error(&loc, state, "name `%s' already taken in the "
3574 "current scope", decl->identifier);
3575 continue;
3576 }
3577
3578 /* Push the variable declaration to the top. It means that all the
3579 * variable declarations will appear in a funny last-to-first order,
3580 * but otherwise we run into trouble if a function is prototyped, a
3581 * global var is decled, then the function is defined with usage of
3582 * the global var. See glslparsertest's CorrectModule.frag.
3583 */
3584 instructions->push_head(var);
3585 }
3586
3587 instructions->append_list(&initializer_instructions);
3588 }
3589
3590
3591 /* Generally, variable declarations do not have r-values. However,
3592 * one is used for the declaration in
3593 *
3594 * while (bool b = some_condition()) {
3595 * ...
3596 * }
3597 *
3598 * so we return the rvalue from the last seen declaration here.
3599 */
3600 return result;
3601 }
3602
3603
3604 ir_rvalue *
3605 ast_parameter_declarator::hir(exec_list *instructions,
3606 struct _mesa_glsl_parse_state *state)
3607 {
3608 void *ctx = state;
3609 const struct glsl_type *type;
3610 const char *name = NULL;
3611 YYLTYPE loc = this->get_location();
3612
3613 type = this->type->glsl_type(& name, state);
3614
3615 if (type == NULL) {
3616 if (name != NULL) {
3617 _mesa_glsl_error(& loc, state,
3618 "invalid type `%s' in declaration of `%s'",
3619 name, this->identifier);
3620 } else {
3621 _mesa_glsl_error(& loc, state,
3622 "invalid type in declaration of `%s'",
3623 this->identifier);
3624 }
3625
3626 type = glsl_type::error_type;
3627 }
3628
3629 /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
3630 *
3631 * "Functions that accept no input arguments need not use void in the
3632 * argument list because prototypes (or definitions) are required and
3633 * therefore there is no ambiguity when an empty argument list "( )" is
3634 * declared. The idiom "(void)" as a parameter list is provided for
3635 * convenience."
3636 *
3637 * Placing this check here prevents a void parameter being set up
3638 * for a function, which avoids tripping up checks for main taking
3639 * parameters and lookups of an unnamed symbol.
3640 */
3641 if (type->is_void()) {
3642 if (this->identifier != NULL)
3643 _mesa_glsl_error(& loc, state,
3644 "named parameter cannot have type `void'");
3645
3646 is_void = true;
3647 return NULL;
3648 }
3649
3650 if (formal_parameter && (this->identifier == NULL)) {
3651 _mesa_glsl_error(& loc, state, "formal parameter lacks a name");
3652 return NULL;
3653 }
3654
3655 /* This only handles "vec4 foo[..]". The earlier specifier->glsl_type(...)
3656 * call already handled the "vec4[..] foo" case.
3657 */
3658 type = process_array_type(&loc, type, this->array_specifier, state);
3659
3660 if (!type->is_error() && type->is_unsized_array()) {
3661 _mesa_glsl_error(&loc, state, "arrays passed as parameters must have "
3662 "a declared size");
3663 type = glsl_type::error_type;
3664 }
3665
3666 is_void = false;
3667 ir_variable *var = new(ctx)
3668 ir_variable(type, this->identifier, ir_var_function_in);
3669
3670 /* Apply any specified qualifiers to the parameter declaration. Note that
3671 * for function parameters the default mode is 'in'.
3672 */
3673 apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc,
3674 true);
3675
3676 /* From page 17 (page 23 of the PDF) of the GLSL 1.20 spec:
3677 *
3678 * "Samplers cannot be treated as l-values; hence cannot be used
3679 * as out or inout function parameters, nor can they be assigned
3680 * into."
3681 */
3682 if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
3683 && type->contains_sampler()) {
3684 _mesa_glsl_error(&loc, state, "out and inout parameters cannot contain samplers");
3685 type = glsl_type::error_type;
3686 }
3687
3688 /* From page 39 (page 45 of the PDF) of the GLSL 1.10 spec:
3689 *
3690 * "When calling a function, expressions that do not evaluate to
3691 * l-values cannot be passed to parameters declared as out or inout."
3692 *
3693 * From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
3694 *
3695 * "Other binary or unary expressions, non-dereferenced arrays,
3696 * function names, swizzles with repeated fields, and constants
3697 * cannot be l-values."
3698 *
3699 * So for GLSL 1.10, passing an array as an out or inout parameter is not
3700 * allowed. This restriction is removed in GLSL 1.20, and in GLSL ES.
3701 */
3702 if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
3703 && type->is_array()
3704 && !state->check_version(120, 100, &loc,
3705 "arrays cannot be out or inout parameters")) {
3706 type = glsl_type::error_type;
3707 }
3708
3709 instructions->push_tail(var);
3710
3711 /* Parameter declarations do not have r-values.
3712 */
3713 return NULL;
3714 }
3715
3716
3717 void
3718 ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters,
3719 bool formal,
3720 exec_list *ir_parameters,
3721 _mesa_glsl_parse_state *state)
3722 {
3723 ast_parameter_declarator *void_param = NULL;
3724 unsigned count = 0;
3725
3726 foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) {
3727 param->formal_parameter = formal;
3728 param->hir(ir_parameters, state);
3729
3730 if (param->is_void)
3731 void_param = param;
3732
3733 count++;
3734 }
3735
3736 if ((void_param != NULL) && (count > 1)) {
3737 YYLTYPE loc = void_param->get_location();
3738
3739 _mesa_glsl_error(& loc, state,
3740 "`void' parameter must be only parameter");
3741 }
3742 }
3743
3744
3745 void
3746 emit_function(_mesa_glsl_parse_state *state, ir_function *f)
3747 {
3748 /* IR invariants disallow function declarations or definitions
3749 * nested within other function definitions. But there is no
3750 * requirement about the relative order of function declarations
3751 * and definitions with respect to one another. So simply insert
3752 * the new ir_function block at the end of the toplevel instruction
3753 * list.
3754 */
3755 state->toplevel_ir->push_tail(f);
3756 }
3757
3758
3759 ir_rvalue *
3760 ast_function::hir(exec_list *instructions,
3761 struct _mesa_glsl_parse_state *state)
3762 {
3763 void *ctx = state;
3764 ir_function *f = NULL;
3765 ir_function_signature *sig = NULL;
3766 exec_list hir_parameters;
3767
3768 const char *const name = identifier;
3769
3770 /* New functions are always added to the top-level IR instruction stream,
3771 * so this instruction list pointer is ignored. See also emit_function
3772 * (called below).
3773 */
3774 (void) instructions;
3775
3776 /* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec,
3777 *
3778 * "Function declarations (prototypes) cannot occur inside of functions;
3779 * they must be at global scope, or for the built-in functions, outside
3780 * the global scope."
3781 *
3782 * From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec,
3783 *
3784 * "User defined functions may only be defined within the global scope."
3785 *
3786 * Note that this language does not appear in GLSL 1.10.
3787 */
3788 if ((state->current_function != NULL) &&
3789 state->is_version(120, 100)) {
3790 YYLTYPE loc = this->get_location();
3791 _mesa_glsl_error(&loc, state,
3792 "declaration of function `%s' not allowed within "
3793 "function body", name);
3794 }
3795
3796 validate_identifier(name, this->get_location(), state);
3797
3798 /* Convert the list of function parameters to HIR now so that they can be
3799 * used below to compare this function's signature with previously seen
3800 * signatures for functions with the same name.
3801 */
3802 ast_parameter_declarator::parameters_to_hir(& this->parameters,
3803 is_definition,
3804 & hir_parameters, state);
3805
3806 const char *return_type_name;
3807 const glsl_type *return_type =
3808 this->return_type->glsl_type(& return_type_name, state);
3809
3810 if (!return_type) {
3811 YYLTYPE loc = this->get_location();
3812 _mesa_glsl_error(&loc, state,
3813 "function `%s' has undeclared return type `%s'",
3814 name, return_type_name);
3815 return_type = glsl_type::error_type;
3816 }
3817
3818 /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec:
3819 * "No qualifier is allowed on the return type of a function."
3820 */
3821 if (this->return_type->has_qualifiers()) {
3822 YYLTYPE loc = this->get_location();
3823 _mesa_glsl_error(& loc, state,
3824 "function `%s' return type has qualifiers", name);
3825 }
3826
3827 /* Section 6.1 (Function Definitions) of the GLSL 1.20 spec says:
3828 *
3829 * "Arrays are allowed as arguments and as the return type. In both
3830 * cases, the array must be explicitly sized."
3831 */
3832 if (return_type->is_unsized_array()) {
3833 YYLTYPE loc = this->get_location();
3834 _mesa_glsl_error(& loc, state,
3835 "function `%s' return type array must be explicitly "
3836 "sized", name);
3837 }
3838
3839 /* From page 17 (page 23 of the PDF) of the GLSL 1.20 spec:
3840 *
3841 * "[Sampler types] can only be declared as function parameters
3842 * or uniform variables (see Section 4.3.5 "Uniform")".
3843 */
3844 if (return_type->contains_sampler()) {
3845 YYLTYPE loc = this->get_location();
3846 _mesa_glsl_error(&loc, state,
3847 "function `%s' return type can't contain a sampler",
3848 name);
3849 }
3850
3851 /* Verify that this function's signature either doesn't match a previously
3852 * seen signature for a function with the same name, or, if a match is found,
3853 * that the previously seen signature does not have an associated definition.
3854 */
3855 f = state->symbols->get_function(name);
3856 if (f != NULL && (state->es_shader || f->has_user_signature())) {
3857 sig = f->exact_matching_signature(state, &hir_parameters);
3858 if (sig != NULL) {
3859 const char *badvar = sig->qualifiers_match(&hir_parameters);
3860 if (badvar != NULL) {
3861 YYLTYPE loc = this->get_location();
3862
3863 _mesa_glsl_error(&loc, state, "function `%s' parameter `%s' "
3864 "qualifiers don't match prototype", name, badvar);
3865 }
3866
3867 if (sig->return_type != return_type) {
3868 YYLTYPE loc = this->get_location();
3869
3870 _mesa_glsl_error(&loc, state, "function `%s' return type doesn't "
3871 "match prototype", name);
3872 }
3873
3874 if (sig->is_defined) {
3875 if (is_definition) {
3876 YYLTYPE loc = this->get_location();
3877 _mesa_glsl_error(& loc, state, "function `%s' redefined", name);
3878 } else {
3879 /* We just encountered a prototype that exactly matches a
3880 * function that's already been defined. This is redundant,
3881 * and we should ignore it.
3882 */
3883 return NULL;
3884 }
3885 }
3886 }
3887 } else {
3888 f = new(ctx) ir_function(name);
3889 if (!state->symbols->add_function(f)) {
3890 /* This function name shadows a non-function use of the same name. */
3891 YYLTYPE loc = this->get_location();
3892
3893 _mesa_glsl_error(&loc, state, "function name `%s' conflicts with "
3894 "non-function", name);
3895 return NULL;
3896 }
3897
3898 emit_function(state, f);
3899 }
3900
3901 /* Verify the return type of main() */
3902 if (strcmp(name, "main") == 0) {
3903 if (! return_type->is_void()) {
3904 YYLTYPE loc = this->get_location();
3905
3906 _mesa_glsl_error(& loc, state, "main() must return void");
3907 }
3908
3909 if (!hir_parameters.is_empty()) {
3910 YYLTYPE loc = this->get_location();
3911
3912 _mesa_glsl_error(& loc, state, "main() must not take any parameters");
3913 }
3914 }
3915
3916 /* Finish storing the information about this new function in its signature.
3917 */
3918 if (sig == NULL) {
3919 sig = new(ctx) ir_function_signature(return_type);
3920 f->add_signature(sig);
3921 }
3922
3923 sig->replace_parameters(&hir_parameters);
3924 signature = sig;
3925
3926 /* Function declarations (prototypes) do not have r-values.
3927 */
3928 return NULL;
3929 }
3930
3931
3932 ir_rvalue *
3933 ast_function_definition::hir(exec_list *instructions,
3934 struct _mesa_glsl_parse_state *state)
3935 {
3936 prototype->is_definition = true;
3937 prototype->hir(instructions, state);
3938
3939 ir_function_signature *signature = prototype->signature;
3940 if (signature == NULL)
3941 return NULL;
3942
3943 assert(state->current_function == NULL);
3944 state->current_function = signature;
3945 state->found_return = false;
3946
3947 /* Duplicate parameters declared in the prototype as concrete variables.
3948 * Add these to the symbol table.
3949 */
3950 state->symbols->push_scope();
3951 foreach_list(n, &signature->parameters) {
3952 ir_variable *const var = ((ir_instruction *) n)->as_variable();
3953
3954 assert(var != NULL);
3955
3956 /* The only way a parameter would "exist" is if two parameters have
3957 * the same name.
3958 */
3959 if (state->symbols->name_declared_this_scope(var->name)) {
3960 YYLTYPE loc = this->get_location();
3961
3962 _mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name);
3963 } else {
3964 state->symbols->add_variable(var);
3965 }
3966 }
3967
3968 /* Convert the body of the function to HIR. */
3969 this->body->hir(&signature->body, state);
3970 signature->is_defined = true;
3971
3972 state->symbols->pop_scope();
3973
3974 assert(state->current_function == signature);
3975 state->current_function = NULL;
3976
3977 if (!signature->return_type->is_void() && !state->found_return) {
3978 YYLTYPE loc = this->get_location();
3979 _mesa_glsl_error(& loc, state, "function `%s' has non-void return type "
3980 "%s, but no return statement",
3981 signature->function_name(),
3982 signature->return_type->name);
3983 }
3984
3985 /* Function definitions do not have r-values.
3986 */
3987 return NULL;
3988 }
3989
3990
3991 ir_rvalue *
3992 ast_jump_statement::hir(exec_list *instructions,
3993 struct _mesa_glsl_parse_state *state)
3994 {
3995 void *ctx = state;
3996
3997 switch (mode) {
3998 case ast_return: {
3999 ir_return *inst;
4000 assert(state->current_function);
4001
4002 if (opt_return_value) {
4003 ir_rvalue *ret = opt_return_value->hir(instructions, state);
4004
4005 /* The value of the return type can be NULL if the shader says
4006 * 'return foo();' and foo() is a function that returns void.
4007 *
4008 * NOTE: The GLSL spec doesn't say that this is an error. The type
4009 * of the return value is void. If the return type of the function is
4010 * also void, then this should compile without error. Seriously.
4011 */
4012 const glsl_type *const ret_type =
4013 (ret == NULL) ? glsl_type::void_type : ret->type;
4014
4015 /* Implicit conversions are not allowed for return values prior to
4016 * ARB_shading_language_420pack.
4017 */
4018 if (state->current_function->return_type != ret_type) {
4019 YYLTYPE loc = this->get_location();
4020
4021 if (state->ARB_shading_language_420pack_enable) {
4022 if (!apply_implicit_conversion(state->current_function->return_type,
4023 ret, state)) {
4024 _mesa_glsl_error(& loc, state,
4025 "could not implicitly convert return value "
4026 "to %s, in function `%s'",
4027 state->current_function->return_type->name,
4028 state->current_function->function_name());
4029 }
4030 } else {
4031 _mesa_glsl_error(& loc, state,
4032 "`return' with wrong type %s, in function `%s' "
4033 "returning %s",
4034 ret_type->name,
4035 state->current_function->function_name(),
4036 state->current_function->return_type->name);
4037 }
4038 } else if (state->current_function->return_type->base_type ==
4039 GLSL_TYPE_VOID) {
4040 YYLTYPE loc = this->get_location();
4041
4042 /* The ARB_shading_language_420pack, GLSL ES 3.0, and GLSL 4.20
4043 * specs add a clarification:
4044 *
4045 * "A void function can only use return without a return argument, even if
4046 * the return argument has void type. Return statements only accept values:
4047 *
4048 * void func1() { }
4049 * void func2() { return func1(); } // illegal return statement"
4050 */
4051 _mesa_glsl_error(& loc, state,
4052 "void functions can only use `return' without a "
4053 "return argument");
4054 }
4055
4056 inst = new(ctx) ir_return(ret);
4057 } else {
4058 if (state->current_function->return_type->base_type !=
4059 GLSL_TYPE_VOID) {
4060 YYLTYPE loc = this->get_location();
4061
4062 _mesa_glsl_error(& loc, state,
4063 "`return' with no value, in function %s returning "
4064 "non-void",
4065 state->current_function->function_name());
4066 }
4067 inst = new(ctx) ir_return;
4068 }
4069
4070 state->found_return = true;
4071 instructions->push_tail(inst);
4072 break;
4073 }
4074
4075 case ast_discard:
4076 if (state->stage != MESA_SHADER_FRAGMENT) {
4077 YYLTYPE loc = this->get_location();
4078
4079 _mesa_glsl_error(& loc, state,
4080 "`discard' may only appear in a fragment shader");
4081 }
4082 instructions->push_tail(new(ctx) ir_discard);
4083 break;
4084
4085 case ast_break:
4086 case ast_continue:
4087 if (mode == ast_continue &&
4088 state->loop_nesting_ast == NULL) {
4089 YYLTYPE loc = this->get_location();
4090
4091 _mesa_glsl_error(& loc, state,
4092 "continue may only appear in a loop");
4093 } else if (mode == ast_break &&
4094 state->loop_nesting_ast == NULL &&
4095 state->switch_state.switch_nesting_ast == NULL) {
4096 YYLTYPE loc = this->get_location();
4097
4098 _mesa_glsl_error(& loc, state,
4099 "break may only appear in a loop or a switch");
4100 } else {
4101 /* For a loop, inline the for loop expression again, since we don't
4102 * know where near the end of the loop body the normal copy of it is
4103 * going to be placed. Same goes for the condition for a do-while
4104 * loop.
4105 */
4106 if (state->loop_nesting_ast != NULL &&
4107 mode == ast_continue) {
4108 if (state->loop_nesting_ast->rest_expression) {
4109 state->loop_nesting_ast->rest_expression->hir(instructions,
4110 state);
4111 }
4112 if (state->loop_nesting_ast->mode ==
4113 ast_iteration_statement::ast_do_while) {
4114 state->loop_nesting_ast->condition_to_hir(instructions, state);
4115 }
4116 }
4117
4118 if (state->switch_state.is_switch_innermost &&
4119 mode == ast_break) {
4120 /* Force break out of switch by setting is_break switch state.
4121 */
4122 ir_variable *const is_break_var = state->switch_state.is_break_var;
4123 ir_dereference_variable *const deref_is_break_var =
4124 new(ctx) ir_dereference_variable(is_break_var);
4125 ir_constant *const true_val = new(ctx) ir_constant(true);
4126 ir_assignment *const set_break_var =
4127 new(ctx) ir_assignment(deref_is_break_var, true_val);
4128
4129 instructions->push_tail(set_break_var);
4130 }
4131 else {
4132 ir_loop_jump *const jump =
4133 new(ctx) ir_loop_jump((mode == ast_break)
4134 ? ir_loop_jump::jump_break
4135 : ir_loop_jump::jump_continue);
4136 instructions->push_tail(jump);
4137 }
4138 }
4139
4140 break;
4141 }
4142
4143 /* Jump instructions do not have r-values.
4144 */
4145 return NULL;
4146 }
4147
4148
4149 ir_rvalue *
4150 ast_selection_statement::hir(exec_list *instructions,
4151 struct _mesa_glsl_parse_state *state)
4152 {
4153 void *ctx = state;
4154
4155 ir_rvalue *const condition = this->condition->hir(instructions, state);
4156
4157 /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
4158 *
4159 * "Any expression whose type evaluates to a Boolean can be used as the
4160 * conditional expression bool-expression. Vector types are not accepted
4161 * as the expression to if."
4162 *
4163 * The checks are separated so that higher quality diagnostics can be
4164 * generated for cases where both rules are violated.
4165 */
4166 if (!condition->type->is_boolean() || !condition->type->is_scalar()) {
4167 YYLTYPE loc = this->condition->get_location();
4168
4169 _mesa_glsl_error(& loc, state, "if-statement condition must be scalar "
4170 "boolean");
4171 }
4172
4173 ir_if *const stmt = new(ctx) ir_if(condition);
4174
4175 if (then_statement != NULL) {
4176 state->symbols->push_scope();
4177 then_statement->hir(& stmt->then_instructions, state);
4178 state->symbols->pop_scope();
4179 }
4180
4181 if (else_statement != NULL) {
4182 state->symbols->push_scope();
4183 else_statement->hir(& stmt->else_instructions, state);
4184 state->symbols->pop_scope();
4185 }
4186
4187 instructions->push_tail(stmt);
4188
4189 /* if-statements do not have r-values.
4190 */
4191 return NULL;
4192 }
4193
4194
4195 ir_rvalue *
4196 ast_switch_statement::hir(exec_list *instructions,
4197 struct _mesa_glsl_parse_state *state)
4198 {
4199 void *ctx = state;
4200
4201 ir_rvalue *const test_expression =
4202 this->test_expression->hir(instructions, state);
4203
4204 /* From page 66 (page 55 of the PDF) of the GLSL 1.50 spec:
4205 *
4206 * "The type of init-expression in a switch statement must be a
4207 * scalar integer."
4208 */
4209 if (!test_expression->type->is_scalar() ||
4210 !test_expression->type->is_integer()) {
4211 YYLTYPE loc = this->test_expression->get_location();
4212
4213 _mesa_glsl_error(& loc,
4214 state,
4215 "switch-statement expression must be scalar "
4216 "integer");
4217 }
4218
4219 /* Track the switch-statement nesting in a stack-like manner.
4220 */
4221 struct glsl_switch_state saved = state->switch_state;
4222
4223 state->switch_state.is_switch_innermost = true;
4224 state->switch_state.switch_nesting_ast = this;
4225 state->switch_state.labels_ht = hash_table_ctor(0, hash_table_pointer_hash,
4226 hash_table_pointer_compare);
4227 state->switch_state.previous_default = NULL;
4228
4229 /* Initalize is_fallthru state to false.
4230 */
4231 ir_rvalue *const is_fallthru_val = new (ctx) ir_constant(false);
4232 state->switch_state.is_fallthru_var =
4233 new(ctx) ir_variable(glsl_type::bool_type,
4234 "switch_is_fallthru_tmp",
4235 ir_var_temporary);
4236 instructions->push_tail(state->switch_state.is_fallthru_var);
4237
4238 ir_dereference_variable *deref_is_fallthru_var =
4239 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
4240 instructions->push_tail(new(ctx) ir_assignment(deref_is_fallthru_var,
4241 is_fallthru_val));
4242
4243 /* Initalize is_break state to false.
4244 */
4245 ir_rvalue *const is_break_val = new (ctx) ir_constant(false);
4246 state->switch_state.is_break_var = new(ctx) ir_variable(glsl_type::bool_type,
4247 "switch_is_break_tmp",
4248 ir_var_temporary);
4249 instructions->push_tail(state->switch_state.is_break_var);
4250
4251 ir_dereference_variable *deref_is_break_var =
4252 new(ctx) ir_dereference_variable(state->switch_state.is_break_var);
4253 instructions->push_tail(new(ctx) ir_assignment(deref_is_break_var,
4254 is_break_val));
4255
4256 /* Cache test expression.
4257 */
4258 test_to_hir(instructions, state);
4259
4260 /* Emit code for body of switch stmt.
4261 */
4262 body->hir(instructions, state);
4263
4264 hash_table_dtor(state->switch_state.labels_ht);
4265
4266 state->switch_state = saved;
4267
4268 /* Switch statements do not have r-values. */
4269 return NULL;
4270 }
4271
4272
4273 void
4274 ast_switch_statement::test_to_hir(exec_list *instructions,
4275 struct _mesa_glsl_parse_state *state)
4276 {
4277 void *ctx = state;
4278
4279 /* Cache value of test expression. */
4280 ir_rvalue *const test_val =
4281 test_expression->hir(instructions,
4282 state);
4283
4284 state->switch_state.test_var = new(ctx) ir_variable(test_val->type,
4285 "switch_test_tmp",
4286 ir_var_temporary);
4287 ir_dereference_variable *deref_test_var =
4288 new(ctx) ir_dereference_variable(state->switch_state.test_var);
4289
4290 instructions->push_tail(state->switch_state.test_var);
4291 instructions->push_tail(new(ctx) ir_assignment(deref_test_var, test_val));
4292 }
4293
4294
4295 ir_rvalue *
4296 ast_switch_body::hir(exec_list *instructions,
4297 struct _mesa_glsl_parse_state *state)
4298 {
4299 if (stmts != NULL)
4300 stmts->hir(instructions, state);
4301
4302 /* Switch bodies do not have r-values. */
4303 return NULL;
4304 }
4305
4306 ir_rvalue *
4307 ast_case_statement_list::hir(exec_list *instructions,
4308 struct _mesa_glsl_parse_state *state)
4309 {
4310 foreach_list_typed (ast_case_statement, case_stmt, link, & this->cases)
4311 case_stmt->hir(instructions, state);
4312
4313 /* Case statements do not have r-values. */
4314 return NULL;
4315 }
4316
4317 ir_rvalue *
4318 ast_case_statement::hir(exec_list *instructions,
4319 struct _mesa_glsl_parse_state *state)
4320 {
4321 labels->hir(instructions, state);
4322
4323 /* Conditionally set fallthru state based on break state. */
4324 ir_constant *const false_val = new(state) ir_constant(false);
4325 ir_dereference_variable *const deref_is_fallthru_var =
4326 new(state) ir_dereference_variable(state->switch_state.is_fallthru_var);
4327 ir_dereference_variable *const deref_is_break_var =
4328 new(state) ir_dereference_variable(state->switch_state.is_break_var);
4329 ir_assignment *const reset_fallthru_on_break =
4330 new(state) ir_assignment(deref_is_fallthru_var,
4331 false_val,
4332 deref_is_break_var);
4333 instructions->push_tail(reset_fallthru_on_break);
4334
4335 /* Guard case statements depending on fallthru state. */
4336 ir_dereference_variable *const deref_fallthru_guard =
4337 new(state) ir_dereference_variable(state->switch_state.is_fallthru_var);
4338 ir_if *const test_fallthru = new(state) ir_if(deref_fallthru_guard);
4339
4340 foreach_list_typed (ast_node, stmt, link, & this->stmts)
4341 stmt->hir(& test_fallthru->then_instructions, state);
4342
4343 instructions->push_tail(test_fallthru);
4344
4345 /* Case statements do not have r-values. */
4346 return NULL;
4347 }
4348
4349
4350 ir_rvalue *
4351 ast_case_label_list::hir(exec_list *instructions,
4352 struct _mesa_glsl_parse_state *state)
4353 {
4354 foreach_list_typed (ast_case_label, label, link, & this->labels)
4355 label->hir(instructions, state);
4356
4357 /* Case labels do not have r-values. */
4358 return NULL;
4359 }
4360
4361 ir_rvalue *
4362 ast_case_label::hir(exec_list *instructions,
4363 struct _mesa_glsl_parse_state *state)
4364 {
4365 void *ctx = state;
4366
4367 ir_dereference_variable *deref_fallthru_var =
4368 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
4369
4370 ir_rvalue *const true_val = new(ctx) ir_constant(true);
4371
4372 /* If not default case, ... */
4373 if (this->test_value != NULL) {
4374 /* Conditionally set fallthru state based on
4375 * comparison of cached test expression value to case label.
4376 */
4377 ir_rvalue *const label_rval = this->test_value->hir(instructions, state);
4378 ir_constant *label_const = label_rval->constant_expression_value();
4379
4380 if (!label_const) {
4381 YYLTYPE loc = this->test_value->get_location();
4382
4383 _mesa_glsl_error(& loc, state,
4384 "switch statement case label must be a "
4385 "constant expression");
4386
4387 /* Stuff a dummy value in to allow processing to continue. */
4388 label_const = new(ctx) ir_constant(0);
4389 } else {
4390 ast_expression *previous_label = (ast_expression *)
4391 hash_table_find(state->switch_state.labels_ht,
4392 (void *)(uintptr_t)label_const->value.u[0]);
4393
4394 if (previous_label) {
4395 YYLTYPE loc = this->test_value->get_location();
4396 _mesa_glsl_error(& loc, state,
4397 "duplicate case value");
4398
4399 loc = previous_label->get_location();
4400 _mesa_glsl_error(& loc, state,
4401 "this is the previous case label");
4402 } else {
4403 hash_table_insert(state->switch_state.labels_ht,
4404 this->test_value,
4405 (void *)(uintptr_t)label_const->value.u[0]);
4406 }
4407 }
4408
4409 ir_dereference_variable *deref_test_var =
4410 new(ctx) ir_dereference_variable(state->switch_state.test_var);
4411
4412 ir_rvalue *const test_cond = new(ctx) ir_expression(ir_binop_all_equal,
4413 label_const,
4414 deref_test_var);
4415
4416 ir_assignment *set_fallthru_on_test =
4417 new(ctx) ir_assignment(deref_fallthru_var,
4418 true_val,
4419 test_cond);
4420
4421 instructions->push_tail(set_fallthru_on_test);
4422 } else { /* default case */
4423 if (state->switch_state.previous_default) {
4424 YYLTYPE loc = this->get_location();
4425 _mesa_glsl_error(& loc, state,
4426 "multiple default labels in one switch");
4427
4428 loc = state->switch_state.previous_default->get_location();
4429 _mesa_glsl_error(& loc, state,
4430 "this is the first default label");
4431 }
4432 state->switch_state.previous_default = this;
4433
4434 /* Set falltrhu state. */
4435 ir_assignment *set_fallthru =
4436 new(ctx) ir_assignment(deref_fallthru_var, true_val);
4437
4438 instructions->push_tail(set_fallthru);
4439 }
4440
4441 /* Case statements do not have r-values. */
4442 return NULL;
4443 }
4444
4445 void
4446 ast_iteration_statement::condition_to_hir(exec_list *instructions,
4447 struct _mesa_glsl_parse_state *state)
4448 {
4449 void *ctx = state;
4450
4451 if (condition != NULL) {
4452 ir_rvalue *const cond =
4453 condition->hir(instructions, state);
4454
4455 if ((cond == NULL)
4456 || !cond->type->is_boolean() || !cond->type->is_scalar()) {
4457 YYLTYPE loc = condition->get_location();
4458
4459 _mesa_glsl_error(& loc, state,
4460 "loop condition must be scalar boolean");
4461 } else {
4462 /* As the first code in the loop body, generate a block that looks
4463 * like 'if (!condition) break;' as the loop termination condition.
4464 */
4465 ir_rvalue *const not_cond =
4466 new(ctx) ir_expression(ir_unop_logic_not, cond);
4467
4468 ir_if *const if_stmt = new(ctx) ir_if(not_cond);
4469
4470 ir_jump *const break_stmt =
4471 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
4472
4473 if_stmt->then_instructions.push_tail(break_stmt);
4474 instructions->push_tail(if_stmt);
4475 }
4476 }
4477 }
4478
4479
4480 ir_rvalue *
4481 ast_iteration_statement::hir(exec_list *instructions,
4482 struct _mesa_glsl_parse_state *state)
4483 {
4484 void *ctx = state;
4485
4486 /* For-loops and while-loops start a new scope, but do-while loops do not.
4487 */
4488 if (mode != ast_do_while)
4489 state->symbols->push_scope();
4490
4491 if (init_statement != NULL)
4492 init_statement->hir(instructions, state);
4493
4494 ir_loop *const stmt = new(ctx) ir_loop();
4495 instructions->push_tail(stmt);
4496
4497 /* Track the current loop nesting. */
4498 ast_iteration_statement *nesting_ast = state->loop_nesting_ast;
4499
4500 state->loop_nesting_ast = this;
4501
4502 /* Likewise, indicate that following code is closest to a loop,
4503 * NOT closest to a switch.
4504 */
4505 bool saved_is_switch_innermost = state->switch_state.is_switch_innermost;
4506 state->switch_state.is_switch_innermost = false;
4507
4508 if (mode != ast_do_while)
4509 condition_to_hir(&stmt->body_instructions, state);
4510
4511 if (body != NULL)
4512 body->hir(& stmt->body_instructions, state);
4513
4514 if (rest_expression != NULL)
4515 rest_expression->hir(& stmt->body_instructions, state);
4516
4517 if (mode == ast_do_while)
4518 condition_to_hir(&stmt->body_instructions, state);
4519
4520 if (mode != ast_do_while)
4521 state->symbols->pop_scope();
4522
4523 /* Restore previous nesting before returning. */
4524 state->loop_nesting_ast = nesting_ast;
4525 state->switch_state.is_switch_innermost = saved_is_switch_innermost;
4526
4527 /* Loops do not have r-values.
4528 */
4529 return NULL;
4530 }
4531
4532
4533 /**
4534 * Determine if the given type is valid for establishing a default precision
4535 * qualifier.
4536 *
4537 * From GLSL ES 3.00 section 4.5.4 ("Default Precision Qualifiers"):
4538 *
4539 * "The precision statement
4540 *
4541 * precision precision-qualifier type;
4542 *
4543 * can be used to establish a default precision qualifier. The type field
4544 * can be either int or float or any of the sampler types, and the
4545 * precision-qualifier can be lowp, mediump, or highp."
4546 *
4547 * GLSL ES 1.00 has similar language. GLSL 1.30 doesn't allow precision
4548 * qualifiers on sampler types, but this seems like an oversight (since the
4549 * intention of including these in GLSL 1.30 is to allow compatibility with ES
4550 * shaders). So we allow int, float, and all sampler types regardless of GLSL
4551 * version.
4552 */
4553 static bool
4554 is_valid_default_precision_type(const struct glsl_type *const type)
4555 {
4556 if (type == NULL)
4557 return false;
4558
4559 switch (type->base_type) {
4560 case GLSL_TYPE_INT:
4561 case GLSL_TYPE_FLOAT:
4562 /* "int" and "float" are valid, but vectors and matrices are not. */
4563 return type->vector_elements == 1 && type->matrix_columns == 1;
4564 case GLSL_TYPE_SAMPLER:
4565 return true;
4566 default:
4567 return false;
4568 }
4569 }
4570
4571
4572 ir_rvalue *
4573 ast_type_specifier::hir(exec_list *instructions,
4574 struct _mesa_glsl_parse_state *state)
4575 {
4576 if (this->default_precision == ast_precision_none && this->structure == NULL)
4577 return NULL;
4578
4579 YYLTYPE loc = this->get_location();
4580
4581 /* If this is a precision statement, check that the type to which it is
4582 * applied is either float or int.
4583 *
4584 * From section 4.5.3 of the GLSL 1.30 spec:
4585 * "The precision statement
4586 * precision precision-qualifier type;
4587 * can be used to establish a default precision qualifier. The type
4588 * field can be either int or float [...]. Any other types or
4589 * qualifiers will result in an error.
4590 */
4591 if (this->default_precision != ast_precision_none) {
4592 if (!state->check_precision_qualifiers_allowed(&loc))
4593 return NULL;
4594
4595 if (this->structure != NULL) {
4596 _mesa_glsl_error(&loc, state,
4597 "precision qualifiers do not apply to structures");
4598 return NULL;
4599 }
4600
4601 if (this->array_specifier != NULL) {
4602 _mesa_glsl_error(&loc, state,
4603 "default precision statements do not apply to "
4604 "arrays");
4605 return NULL;
4606 }
4607
4608 const struct glsl_type *const type =
4609 state->symbols->get_type(this->type_name);
4610 if (!is_valid_default_precision_type(type)) {
4611 _mesa_glsl_error(&loc, state,
4612 "default precision statements apply only to "
4613 "float, int, and sampler types");
4614 return NULL;
4615 }
4616
4617 if (type->base_type == GLSL_TYPE_FLOAT
4618 && state->es_shader
4619 && state->stage == MESA_SHADER_FRAGMENT) {
4620 /* Section 4.5.3 (Default Precision Qualifiers) of the GLSL ES 1.00
4621 * spec says:
4622 *
4623 * "The fragment language has no default precision qualifier for
4624 * floating point types."
4625 *
4626 * As a result, we have to track whether or not default precision has
4627 * been specified for float in GLSL ES fragment shaders.
4628 *
4629 * Earlier in that same section, the spec says:
4630 *
4631 * "Non-precision qualified declarations will use the precision
4632 * qualifier specified in the most recent precision statement
4633 * that is still in scope. The precision statement has the same
4634 * scoping rules as variable declarations. If it is declared
4635 * inside a compound statement, its effect stops at the end of
4636 * the innermost statement it was declared in. Precision
4637 * statements in nested scopes override precision statements in
4638 * outer scopes. Multiple precision statements for the same basic
4639 * type can appear inside the same scope, with later statements
4640 * overriding earlier statements within that scope."
4641 *
4642 * Default precision specifications follow the same scope rules as
4643 * variables. So, we can track the state of the default float
4644 * precision in the symbol table, and the rules will just work. This
4645 * is a slight abuse of the symbol table, but it has the semantics
4646 * that we want.
4647 */
4648 ir_variable *const junk =
4649 new(state) ir_variable(type, "#default precision",
4650 ir_var_temporary);
4651
4652 state->symbols->add_variable(junk);
4653 }
4654
4655 /* FINISHME: Translate precision statements into IR. */
4656 return NULL;
4657 }
4658
4659 /* _mesa_ast_set_aggregate_type() sets the <structure> field so that
4660 * process_record_constructor() can do type-checking on C-style initializer
4661 * expressions of structs, but ast_struct_specifier should only be translated
4662 * to HIR if it is declaring the type of a structure.
4663 *
4664 * The ->is_declaration field is false for initializers of variables
4665 * declared separately from the struct's type definition.
4666 *
4667 * struct S { ... }; (is_declaration = true)
4668 * struct T { ... } t = { ... }; (is_declaration = true)
4669 * S s = { ... }; (is_declaration = false)
4670 */
4671 if (this->structure != NULL && this->structure->is_declaration)
4672 return this->structure->hir(instructions, state);
4673
4674 return NULL;
4675 }
4676
4677
4678 /**
4679 * Process a structure or interface block tree into an array of structure fields
4680 *
4681 * After parsing, where there are some syntax differnces, structures and
4682 * interface blocks are almost identical. They are similar enough that the
4683 * AST for each can be processed the same way into a set of
4684 * \c glsl_struct_field to describe the members.
4685 *
4686 * If we're processing an interface block, var_mode should be the type of the
4687 * interface block (ir_var_shader_in, ir_var_shader_out, or ir_var_uniform).
4688 * If we're processing a structure, var_mode should be ir_var_auto.
4689 *
4690 * \return
4691 * The number of fields processed. A pointer to the array structure fields is
4692 * stored in \c *fields_ret.
4693 */
4694 unsigned
4695 ast_process_structure_or_interface_block(exec_list *instructions,
4696 struct _mesa_glsl_parse_state *state,
4697 exec_list *declarations,
4698 YYLTYPE &loc,
4699 glsl_struct_field **fields_ret,
4700 bool is_interface,
4701 bool block_row_major,
4702 bool allow_reserved_names,
4703 ir_variable_mode var_mode)
4704 {
4705 unsigned decl_count = 0;
4706
4707 /* Make an initial pass over the list of fields to determine how
4708 * many there are. Each element in this list is an ast_declarator_list.
4709 * This means that we actually need to count the number of elements in the
4710 * 'declarations' list in each of the elements.
4711 */
4712 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
4713 foreach_list_const (decl_ptr, & decl_list->declarations) {
4714 decl_count++;
4715 }
4716 }
4717
4718 /* Allocate storage for the fields and process the field
4719 * declarations. As the declarations are processed, try to also convert
4720 * the types to HIR. This ensures that structure definitions embedded in
4721 * other structure definitions or in interface blocks are processed.
4722 */
4723 glsl_struct_field *const fields = ralloc_array(state, glsl_struct_field,
4724 decl_count);
4725
4726 unsigned i = 0;
4727 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
4728 const char *type_name;
4729
4730 decl_list->type->specifier->hir(instructions, state);
4731
4732 /* Section 10.9 of the GLSL ES 1.00 specification states that
4733 * embedded structure definitions have been removed from the language.
4734 */
4735 if (state->es_shader && decl_list->type->specifier->structure != NULL) {
4736 _mesa_glsl_error(&loc, state, "embedded structure definitions are "
4737 "not allowed in GLSL ES 1.00");
4738 }
4739
4740 const glsl_type *decl_type =
4741 decl_list->type->glsl_type(& type_name, state);
4742
4743 foreach_list_typed (ast_declaration, decl, link,
4744 &decl_list->declarations) {
4745 if (!allow_reserved_names)
4746 validate_identifier(decl->identifier, loc, state);
4747
4748 /* From the GL_ARB_uniform_buffer_object spec:
4749 *
4750 * "Sampler types are not allowed inside of uniform
4751 * blocks. All other types, arrays, and structures
4752 * allowed for uniforms are allowed within a uniform
4753 * block."
4754 *
4755 * It should be impossible for decl_type to be NULL here. Cases that
4756 * might naturally lead to decl_type being NULL, especially for the
4757 * is_interface case, will have resulted in compilation having
4758 * already halted due to a syntax error.
4759 */
4760 const struct glsl_type *field_type =
4761 decl_type != NULL ? decl_type : glsl_type::error_type;
4762
4763 if (is_interface && field_type->contains_sampler()) {
4764 YYLTYPE loc = decl_list->get_location();
4765 _mesa_glsl_error(&loc, state,
4766 "uniform in non-default uniform block contains sampler");
4767 }
4768
4769 if (field_type->contains_atomic()) {
4770 /* FINISHME: Add a spec quotation here once updated spec
4771 * FINISHME: language is available. See Khronos bug #10903
4772 * FINISHME: on whether atomic counters are allowed in
4773 * FINISHME: structures.
4774 */
4775 YYLTYPE loc = decl_list->get_location();
4776 _mesa_glsl_error(&loc, state, "atomic counter in structure or "
4777 "uniform block");
4778 }
4779
4780 const struct ast_type_qualifier *const qual =
4781 & decl_list->type->qualifier;
4782 if (qual->flags.q.std140 ||
4783 qual->flags.q.packed ||
4784 qual->flags.q.shared) {
4785 _mesa_glsl_error(&loc, state,
4786 "uniform block layout qualifiers std140, packed, and "
4787 "shared can only be applied to uniform blocks, not "
4788 "members");
4789 }
4790
4791 field_type = process_array_type(&loc, decl_type,
4792 decl->array_specifier, state);
4793 fields[i].type = field_type;
4794 fields[i].name = decl->identifier;
4795 fields[i].location = -1;
4796 fields[i].interpolation =
4797 interpret_interpolation_qualifier(qual, var_mode, state, &loc);
4798 fields[i].centroid = qual->flags.q.centroid ? 1 : 0;
4799 fields[i].sample = qual->flags.q.sample ? 1 : 0;
4800
4801 if (qual->flags.q.row_major || qual->flags.q.column_major) {
4802 if (!qual->flags.q.uniform) {
4803 _mesa_glsl_error(&loc, state,
4804 "row_major and column_major can only be "
4805 "applied to uniform interface blocks");
4806 } else
4807 validate_matrix_layout_for_type(state, &loc, field_type, NULL);
4808 }
4809
4810 if (qual->flags.q.uniform && qual->has_interpolation()) {
4811 _mesa_glsl_error(&loc, state,
4812 "interpolation qualifiers cannot be used "
4813 "with uniform interface blocks");
4814 }
4815
4816 if (field_type->is_matrix() ||
4817 (field_type->is_array() && field_type->fields.array->is_matrix())) {
4818 fields[i].row_major = block_row_major;
4819 if (qual->flags.q.row_major)
4820 fields[i].row_major = true;
4821 else if (qual->flags.q.column_major)
4822 fields[i].row_major = false;
4823 }
4824
4825 i++;
4826 }
4827 }
4828
4829 assert(i == decl_count);
4830
4831 *fields_ret = fields;
4832 return decl_count;
4833 }
4834
4835
4836 ir_rvalue *
4837 ast_struct_specifier::hir(exec_list *instructions,
4838 struct _mesa_glsl_parse_state *state)
4839 {
4840 YYLTYPE loc = this->get_location();
4841
4842 /* Section 4.1.8 (Structures) of the GLSL 1.10 spec says:
4843 *
4844 * "Anonymous structures are not supported; so embedded structures must
4845 * have a declarator. A name given to an embedded struct is scoped at
4846 * the same level as the struct it is embedded in."
4847 *
4848 * The same section of the GLSL 1.20 spec says:
4849 *
4850 * "Anonymous structures are not supported. Embedded structures are not
4851 * supported.
4852 *
4853 * struct S { float f; };
4854 * struct T {
4855 * S; // Error: anonymous structures disallowed
4856 * struct { ... }; // Error: embedded structures disallowed
4857 * S s; // Okay: nested structures with name are allowed
4858 * };"
4859 *
4860 * The GLSL ES 1.00 and 3.00 specs have similar langauge and examples. So,
4861 * we allow embedded structures in 1.10 only.
4862 */
4863 if (state->language_version != 110 && state->struct_specifier_depth != 0)
4864 _mesa_glsl_error(&loc, state,
4865 "embedded structure declartions are not allowed");
4866
4867 state->struct_specifier_depth++;
4868
4869 glsl_struct_field *fields;
4870 unsigned decl_count =
4871 ast_process_structure_or_interface_block(instructions,
4872 state,
4873 &this->declarations,
4874 loc,
4875 &fields,
4876 false,
4877 false,
4878 false /* allow_reserved_names */,
4879 ir_var_auto);
4880
4881 validate_identifier(this->name, loc, state);
4882
4883 const glsl_type *t =
4884 glsl_type::get_record_instance(fields, decl_count, this->name);
4885
4886 if (!state->symbols->add_type(name, t)) {
4887 _mesa_glsl_error(& loc, state, "struct `%s' previously defined", name);
4888 } else {
4889 const glsl_type **s = reralloc(state, state->user_structures,
4890 const glsl_type *,
4891 state->num_user_structures + 1);
4892 if (s != NULL) {
4893 s[state->num_user_structures] = t;
4894 state->user_structures = s;
4895 state->num_user_structures++;
4896 }
4897 }
4898
4899 state->struct_specifier_depth--;
4900
4901 /* Structure type definitions do not have r-values.
4902 */
4903 return NULL;
4904 }
4905
4906
4907 /**
4908 * Visitor class which detects whether a given interface block has been used.
4909 */
4910 class interface_block_usage_visitor : public ir_hierarchical_visitor
4911 {
4912 public:
4913 interface_block_usage_visitor(ir_variable_mode mode, const glsl_type *block)
4914 : mode(mode), block(block), found(false)
4915 {
4916 }
4917
4918 virtual ir_visitor_status visit(ir_dereference_variable *ir)
4919 {
4920 if (ir->var->data.mode == mode && ir->var->get_interface_type() == block) {
4921 found = true;
4922 return visit_stop;
4923 }
4924 return visit_continue;
4925 }
4926
4927 bool usage_found() const
4928 {
4929 return this->found;
4930 }
4931
4932 private:
4933 ir_variable_mode mode;
4934 const glsl_type *block;
4935 bool found;
4936 };
4937
4938
4939 ir_rvalue *
4940 ast_interface_block::hir(exec_list *instructions,
4941 struct _mesa_glsl_parse_state *state)
4942 {
4943 YYLTYPE loc = this->get_location();
4944
4945 /* The ast_interface_block has a list of ast_declarator_lists. We
4946 * need to turn those into ir_variables with an association
4947 * with this uniform block.
4948 */
4949 enum glsl_interface_packing packing;
4950 if (this->layout.flags.q.shared) {
4951 packing = GLSL_INTERFACE_PACKING_SHARED;
4952 } else if (this->layout.flags.q.packed) {
4953 packing = GLSL_INTERFACE_PACKING_PACKED;
4954 } else {
4955 /* The default layout is std140.
4956 */
4957 packing = GLSL_INTERFACE_PACKING_STD140;
4958 }
4959
4960 ir_variable_mode var_mode;
4961 const char *iface_type_name;
4962 if (this->layout.flags.q.in) {
4963 var_mode = ir_var_shader_in;
4964 iface_type_name = "in";
4965 } else if (this->layout.flags.q.out) {
4966 var_mode = ir_var_shader_out;
4967 iface_type_name = "out";
4968 } else if (this->layout.flags.q.uniform) {
4969 var_mode = ir_var_uniform;
4970 iface_type_name = "uniform";
4971 } else {
4972 var_mode = ir_var_auto;
4973 iface_type_name = "UNKNOWN";
4974 assert(!"interface block layout qualifier not found!");
4975 }
4976
4977 bool redeclaring_per_vertex = strcmp(this->block_name, "gl_PerVertex") == 0;
4978 bool block_row_major = this->layout.flags.q.row_major;
4979 exec_list declared_variables;
4980 glsl_struct_field *fields;
4981 unsigned int num_variables =
4982 ast_process_structure_or_interface_block(&declared_variables,
4983 state,
4984 &this->declarations,
4985 loc,
4986 &fields,
4987 true,
4988 block_row_major,
4989 redeclaring_per_vertex,
4990 var_mode);
4991
4992 if (!redeclaring_per_vertex)
4993 validate_identifier(this->block_name, loc, state);
4994
4995 const glsl_type *earlier_per_vertex = NULL;
4996 if (redeclaring_per_vertex) {
4997 /* Find the previous declaration of gl_PerVertex. If we're redeclaring
4998 * the named interface block gl_in, we can find it by looking at the
4999 * previous declaration of gl_in. Otherwise we can find it by looking
5000 * at the previous decalartion of any of the built-in outputs,
5001 * e.g. gl_Position.
5002 *
5003 * Also check that the instance name and array-ness of the redeclaration
5004 * are correct.
5005 */
5006 switch (var_mode) {
5007 case ir_var_shader_in:
5008 if (ir_variable *earlier_gl_in =
5009 state->symbols->get_variable("gl_in")) {
5010 earlier_per_vertex = earlier_gl_in->get_interface_type();
5011 } else {
5012 _mesa_glsl_error(&loc, state,
5013 "redeclaration of gl_PerVertex input not allowed "
5014 "in the %s shader",
5015 _mesa_shader_stage_to_string(state->stage));
5016 }
5017 if (this->instance_name == NULL ||
5018 strcmp(this->instance_name, "gl_in") != 0 || this->array_specifier == NULL) {
5019 _mesa_glsl_error(&loc, state,
5020 "gl_PerVertex input must be redeclared as "
5021 "gl_in[]");
5022 }
5023 break;
5024 case ir_var_shader_out:
5025 if (ir_variable *earlier_gl_Position =
5026 state->symbols->get_variable("gl_Position")) {
5027 earlier_per_vertex = earlier_gl_Position->get_interface_type();
5028 } else {
5029 _mesa_glsl_error(&loc, state,
5030 "redeclaration of gl_PerVertex output not "
5031 "allowed in the %s shader",
5032 _mesa_shader_stage_to_string(state->stage));
5033 }
5034 if (this->instance_name != NULL) {
5035 _mesa_glsl_error(&loc, state,
5036 "gl_PerVertex input may not be redeclared with "
5037 "an instance name");
5038 }
5039 break;
5040 default:
5041 _mesa_glsl_error(&loc, state,
5042 "gl_PerVertex must be declared as an input or an "
5043 "output");
5044 break;
5045 }
5046
5047 if (earlier_per_vertex == NULL) {
5048 /* An error has already been reported. Bail out to avoid null
5049 * dereferences later in this function.
5050 */
5051 return NULL;
5052 }
5053
5054 /* Copy locations from the old gl_PerVertex interface block. */
5055 for (unsigned i = 0; i < num_variables; i++) {
5056 int j = earlier_per_vertex->field_index(fields[i].name);
5057 if (j == -1) {
5058 _mesa_glsl_error(&loc, state,
5059 "redeclaration of gl_PerVertex must be a subset "
5060 "of the built-in members of gl_PerVertex");
5061 } else {
5062 fields[i].location =
5063 earlier_per_vertex->fields.structure[j].location;
5064 fields[i].interpolation =
5065 earlier_per_vertex->fields.structure[j].interpolation;
5066 fields[i].centroid =
5067 earlier_per_vertex->fields.structure[j].centroid;
5068 fields[i].sample =
5069 earlier_per_vertex->fields.structure[j].sample;
5070 }
5071 }
5072
5073 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10
5074 * spec:
5075 *
5076 * If a built-in interface block is redeclared, it must appear in
5077 * the shader before any use of any member included in the built-in
5078 * declaration, or a compilation error will result.
5079 *
5080 * This appears to be a clarification to the behaviour established for
5081 * gl_PerVertex by GLSL 1.50, therefore we implement this behaviour
5082 * regardless of GLSL version.
5083 */
5084 interface_block_usage_visitor v(var_mode, earlier_per_vertex);
5085 v.run(instructions);
5086 if (v.usage_found()) {
5087 _mesa_glsl_error(&loc, state,
5088 "redeclaration of a built-in interface block must "
5089 "appear before any use of any member of the "
5090 "interface block");
5091 }
5092 }
5093
5094 const glsl_type *block_type =
5095 glsl_type::get_interface_instance(fields,
5096 num_variables,
5097 packing,
5098 this->block_name);
5099
5100 if (!state->symbols->add_interface(block_type->name, block_type, var_mode)) {
5101 YYLTYPE loc = this->get_location();
5102 _mesa_glsl_error(&loc, state, "interface block `%s' with type `%s' "
5103 "already taken in the current scope",
5104 this->block_name, iface_type_name);
5105 }
5106
5107 /* Since interface blocks cannot contain statements, it should be
5108 * impossible for the block to generate any instructions.
5109 */
5110 assert(declared_variables.is_empty());
5111
5112 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
5113 *
5114 * Geometry shader input variables get the per-vertex values written
5115 * out by vertex shader output variables of the same names. Since a
5116 * geometry shader operates on a set of vertices, each input varying
5117 * variable (or input block, see interface blocks below) needs to be
5118 * declared as an array.
5119 */
5120 if (state->stage == MESA_SHADER_GEOMETRY && this->array_specifier == NULL &&
5121 var_mode == ir_var_shader_in) {
5122 _mesa_glsl_error(&loc, state, "geometry shader inputs must be arrays");
5123 }
5124
5125 /* Page 39 (page 45 of the PDF) of section 4.3.7 in the GLSL ES 3.00 spec
5126 * says:
5127 *
5128 * "If an instance name (instance-name) is used, then it puts all the
5129 * members inside a scope within its own name space, accessed with the
5130 * field selector ( . ) operator (analogously to structures)."
5131 */
5132 if (this->instance_name) {
5133 if (redeclaring_per_vertex) {
5134 /* When a built-in in an unnamed interface block is redeclared,
5135 * get_variable_being_redeclared() calls
5136 * check_builtin_array_max_size() to make sure that built-in array
5137 * variables aren't redeclared to illegal sizes. But we're looking
5138 * at a redeclaration of a named built-in interface block. So we
5139 * have to manually call check_builtin_array_max_size() for all parts
5140 * of the interface that are arrays.
5141 */
5142 for (unsigned i = 0; i < num_variables; i++) {
5143 if (fields[i].type->is_array()) {
5144 const unsigned size = fields[i].type->array_size();
5145 check_builtin_array_max_size(fields[i].name, size, loc, state);
5146 }
5147 }
5148 } else {
5149 validate_identifier(this->instance_name, loc, state);
5150 }
5151
5152 ir_variable *var;
5153
5154 if (this->array_specifier != NULL) {
5155 /* Section 4.3.7 (Interface Blocks) of the GLSL 1.50 spec says:
5156 *
5157 * For uniform blocks declared an array, each individual array
5158 * element corresponds to a separate buffer object backing one
5159 * instance of the block. As the array size indicates the number
5160 * of buffer objects needed, uniform block array declarations
5161 * must specify an array size.
5162 *
5163 * And a few paragraphs later:
5164 *
5165 * Geometry shader input blocks must be declared as arrays and
5166 * follow the array declaration and linking rules for all
5167 * geometry shader inputs. All other input and output block
5168 * arrays must specify an array size.
5169 *
5170 * The upshot of this is that the only circumstance where an
5171 * interface array size *doesn't* need to be specified is on a
5172 * geometry shader input.
5173 */
5174 if (this->array_specifier->is_unsized_array &&
5175 (state->stage != MESA_SHADER_GEOMETRY || !this->layout.flags.q.in)) {
5176 _mesa_glsl_error(&loc, state,
5177 "only geometry shader inputs may be unsized "
5178 "instance block arrays");
5179
5180 }
5181
5182 const glsl_type *block_array_type =
5183 process_array_type(&loc, block_type, this->array_specifier, state);
5184
5185 var = new(state) ir_variable(block_array_type,
5186 this->instance_name,
5187 var_mode);
5188 } else {
5189 var = new(state) ir_variable(block_type,
5190 this->instance_name,
5191 var_mode);
5192 }
5193
5194 if (state->stage == MESA_SHADER_GEOMETRY && var_mode == ir_var_shader_in)
5195 handle_geometry_shader_input_decl(state, loc, var);
5196
5197 if (ir_variable *earlier =
5198 state->symbols->get_variable(this->instance_name)) {
5199 if (!redeclaring_per_vertex) {
5200 _mesa_glsl_error(&loc, state, "`%s' redeclared",
5201 this->instance_name);
5202 }
5203 earlier->data.how_declared = ir_var_declared_normally;
5204 earlier->type = var->type;
5205 earlier->reinit_interface_type(block_type);
5206 delete var;
5207 } else {
5208 state->symbols->add_variable(var);
5209 instructions->push_tail(var);
5210 }
5211 } else {
5212 /* In order to have an array size, the block must also be declared with
5213 * an instane name.
5214 */
5215 assert(this->array_specifier == NULL);
5216
5217 for (unsigned i = 0; i < num_variables; i++) {
5218 ir_variable *var =
5219 new(state) ir_variable(fields[i].type,
5220 ralloc_strdup(state, fields[i].name),
5221 var_mode);
5222 var->data.interpolation = fields[i].interpolation;
5223 var->data.centroid = fields[i].centroid;
5224 var->data.sample = fields[i].sample;
5225 var->init_interface_type(block_type);
5226
5227 if (redeclaring_per_vertex) {
5228 ir_variable *earlier =
5229 get_variable_being_redeclared(var, loc, state,
5230 true /* allow_all_redeclarations */);
5231 if (strncmp(var->name, "gl_", 3) != 0 || earlier == NULL) {
5232 _mesa_glsl_error(&loc, state,
5233 "redeclaration of gl_PerVertex can only "
5234 "include built-in variables");
5235 } else if (earlier->data.how_declared == ir_var_declared_normally) {
5236 _mesa_glsl_error(&loc, state,
5237 "`%s' has already been redeclared", var->name);
5238 } else {
5239 earlier->data.how_declared = ir_var_declared_in_block;
5240 earlier->reinit_interface_type(block_type);
5241 }
5242 continue;
5243 }
5244
5245 if (state->symbols->get_variable(var->name) != NULL)
5246 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
5247
5248 /* Propagate the "binding" keyword into this UBO's fields;
5249 * the UBO declaration itself doesn't get an ir_variable unless it
5250 * has an instance name. This is ugly.
5251 */
5252 var->data.explicit_binding = this->layout.flags.q.explicit_binding;
5253 var->data.binding = this->layout.binding;
5254
5255 state->symbols->add_variable(var);
5256 instructions->push_tail(var);
5257 }
5258
5259 if (redeclaring_per_vertex && block_type != earlier_per_vertex) {
5260 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10 spec:
5261 *
5262 * It is also a compilation error ... to redeclare a built-in
5263 * block and then use a member from that built-in block that was
5264 * not included in the redeclaration.
5265 *
5266 * This appears to be a clarification to the behaviour established
5267 * for gl_PerVertex by GLSL 1.50, therefore we implement this
5268 * behaviour regardless of GLSL version.
5269 *
5270 * To prevent the shader from using a member that was not included in
5271 * the redeclaration, we disable any ir_variables that are still
5272 * associated with the old declaration of gl_PerVertex (since we've
5273 * already updated all of the variables contained in the new
5274 * gl_PerVertex to point to it).
5275 *
5276 * As a side effect this will prevent
5277 * validate_intrastage_interface_blocks() from getting confused and
5278 * thinking there are conflicting definitions of gl_PerVertex in the
5279 * shader.
5280 */
5281 foreach_list_safe(node, instructions) {
5282 ir_variable *const var = ((ir_instruction *) node)->as_variable();
5283 if (var != NULL &&
5284 var->get_interface_type() == earlier_per_vertex &&
5285 var->data.mode == var_mode) {
5286 if (var->data.how_declared == ir_var_declared_normally) {
5287 _mesa_glsl_error(&loc, state,
5288 "redeclaration of gl_PerVertex cannot "
5289 "follow a redeclaration of `%s'",
5290 var->name);
5291 }
5292 state->symbols->disable_variable(var->name);
5293 var->remove();
5294 }
5295 }
5296 }
5297 }
5298
5299 return NULL;
5300 }
5301
5302
5303 ir_rvalue *
5304 ast_gs_input_layout::hir(exec_list *instructions,
5305 struct _mesa_glsl_parse_state *state)
5306 {
5307 YYLTYPE loc = this->get_location();
5308
5309 /* If any geometry input layout declaration preceded this one, make sure it
5310 * was consistent with this one.
5311 */
5312 if (state->gs_input_prim_type_specified &&
5313 state->gs_input_prim_type != this->prim_type) {
5314 _mesa_glsl_error(&loc, state,
5315 "geometry shader input layout does not match"
5316 " previous declaration");
5317 return NULL;
5318 }
5319
5320 /* If any shader inputs occurred before this declaration and specified an
5321 * array size, make sure the size they specified is consistent with the
5322 * primitive type.
5323 */
5324 unsigned num_vertices = vertices_per_prim(this->prim_type);
5325 if (state->gs_input_size != 0 && state->gs_input_size != num_vertices) {
5326 _mesa_glsl_error(&loc, state,
5327 "this geometry shader input layout implies %u vertices"
5328 " per primitive, but a previous input is declared"
5329 " with size %u", num_vertices, state->gs_input_size);
5330 return NULL;
5331 }
5332
5333 state->gs_input_prim_type_specified = true;
5334 state->gs_input_prim_type = this->prim_type;
5335
5336 /* If any shader inputs occurred before this declaration and did not
5337 * specify an array size, their size is determined now.
5338 */
5339 foreach_list (node, instructions) {
5340 ir_variable *var = ((ir_instruction *) node)->as_variable();
5341 if (var == NULL || var->data.mode != ir_var_shader_in)
5342 continue;
5343
5344 /* Note: gl_PrimitiveIDIn has mode ir_var_shader_in, but it's not an
5345 * array; skip it.
5346 */
5347
5348 if (var->type->is_unsized_array()) {
5349 if (var->data.max_array_access >= num_vertices) {
5350 _mesa_glsl_error(&loc, state,
5351 "this geometry shader input layout implies %u"
5352 " vertices, but an access to element %u of input"
5353 " `%s' already exists", num_vertices,
5354 var->data.max_array_access, var->name);
5355 } else {
5356 var->type = glsl_type::get_array_instance(var->type->fields.array,
5357 num_vertices);
5358 }
5359 }
5360 }
5361
5362 return NULL;
5363 }
5364
5365
5366 ir_rvalue *
5367 ast_cs_input_layout::hir(exec_list *instructions,
5368 struct _mesa_glsl_parse_state *state)
5369 {
5370 YYLTYPE loc = this->get_location();
5371
5372 /* If any compute input layout declaration preceded this one, make sure it
5373 * was consistent with this one.
5374 */
5375 if (state->cs_input_local_size_specified) {
5376 for (int i = 0; i < 3; i++) {
5377 if (state->cs_input_local_size[i] != this->local_size[i]) {
5378 _mesa_glsl_error(&loc, state,
5379 "compute shader input layout does not match"
5380 " previous declaration");
5381 return NULL;
5382 }
5383 }
5384 }
5385
5386 /* From the ARB_compute_shader specification:
5387 *
5388 * If the local size of the shader in any dimension is greater
5389 * than the maximum size supported by the implementation for that
5390 * dimension, a compile-time error results.
5391 *
5392 * It is not clear from the spec how the error should be reported if
5393 * the total size of the work group exceeds
5394 * MAX_COMPUTE_WORK_GROUP_INVOCATIONS, but it seems reasonable to
5395 * report it at compile time as well.
5396 */
5397 GLuint64 total_invocations = 1;
5398 for (int i = 0; i < 3; i++) {
5399 if (this->local_size[i] > state->ctx->Const.MaxComputeWorkGroupSize[i]) {
5400 _mesa_glsl_error(&loc, state,
5401 "local_size_%c exceeds MAX_COMPUTE_WORK_GROUP_SIZE"
5402 " (%d)", 'x' + i,
5403 state->ctx->Const.MaxComputeWorkGroupSize[i]);
5404 break;
5405 }
5406 total_invocations *= this->local_size[i];
5407 if (total_invocations >
5408 state->ctx->Const.MaxComputeWorkGroupInvocations) {
5409 _mesa_glsl_error(&loc, state,
5410 "product of local_sizes exceeds "
5411 "MAX_COMPUTE_WORK_GROUP_INVOCATIONS (%d)",
5412 state->ctx->Const.MaxComputeWorkGroupInvocations);
5413 break;
5414 }
5415 }
5416
5417 state->cs_input_local_size_specified = true;
5418 for (int i = 0; i < 3; i++)
5419 state->cs_input_local_size[i] = this->local_size[i];
5420
5421 /* We may now declare the built-in constant gl_WorkGroupSize (see
5422 * builtin_variable_generator::generate_constants() for why we didn't
5423 * declare it earlier).
5424 */
5425 ir_variable *var = new(state->symbols)
5426 ir_variable(glsl_type::ivec3_type, "gl_WorkGroupSize", ir_var_auto);
5427 var->data.how_declared = ir_var_declared_implicitly;
5428 var->data.read_only = true;
5429 instructions->push_tail(var);
5430 state->symbols->add_variable(var);
5431 ir_constant_data data;
5432 memset(&data, 0, sizeof(data));
5433 for (int i = 0; i < 3; i++)
5434 data.i[i] = this->local_size[i];
5435 var->constant_value = new(var) ir_constant(glsl_type::ivec3_type, &data);
5436 var->constant_initializer =
5437 new(var) ir_constant(glsl_type::ivec3_type, &data);
5438 var->data.has_initializer = true;
5439
5440 return NULL;
5441 }
5442
5443
5444 static void
5445 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
5446 exec_list *instructions)
5447 {
5448 bool gl_FragColor_assigned = false;
5449 bool gl_FragData_assigned = false;
5450 bool user_defined_fs_output_assigned = false;
5451 ir_variable *user_defined_fs_output = NULL;
5452
5453 /* It would be nice to have proper location information. */
5454 YYLTYPE loc;
5455 memset(&loc, 0, sizeof(loc));
5456
5457 foreach_list(node, instructions) {
5458 ir_variable *var = ((ir_instruction *)node)->as_variable();
5459
5460 if (!var || !var->data.assigned)
5461 continue;
5462
5463 if (strcmp(var->name, "gl_FragColor") == 0)
5464 gl_FragColor_assigned = true;
5465 else if (strcmp(var->name, "gl_FragData") == 0)
5466 gl_FragData_assigned = true;
5467 else if (strncmp(var->name, "gl_", 3) != 0) {
5468 if (state->stage == MESA_SHADER_FRAGMENT &&
5469 var->data.mode == ir_var_shader_out) {
5470 user_defined_fs_output_assigned = true;
5471 user_defined_fs_output = var;
5472 }
5473 }
5474 }
5475
5476 /* From the GLSL 1.30 spec:
5477 *
5478 * "If a shader statically assigns a value to gl_FragColor, it
5479 * may not assign a value to any element of gl_FragData. If a
5480 * shader statically writes a value to any element of
5481 * gl_FragData, it may not assign a value to
5482 * gl_FragColor. That is, a shader may assign values to either
5483 * gl_FragColor or gl_FragData, but not both. Multiple shaders
5484 * linked together must also consistently write just one of
5485 * these variables. Similarly, if user declared output
5486 * variables are in use (statically assigned to), then the
5487 * built-in variables gl_FragColor and gl_FragData may not be
5488 * assigned to. These incorrect usages all generate compile
5489 * time errors."
5490 */
5491 if (gl_FragColor_assigned && gl_FragData_assigned) {
5492 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
5493 "`gl_FragColor' and `gl_FragData'");
5494 } else if (gl_FragColor_assigned && user_defined_fs_output_assigned) {
5495 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
5496 "`gl_FragColor' and `%s'",
5497 user_defined_fs_output->name);
5498 } else if (gl_FragData_assigned && user_defined_fs_output_assigned) {
5499 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
5500 "`gl_FragData' and `%s'",
5501 user_defined_fs_output->name);
5502 }
5503 }
5504
5505
5506 static void
5507 remove_per_vertex_blocks(exec_list *instructions,
5508 _mesa_glsl_parse_state *state, ir_variable_mode mode)
5509 {
5510 /* Find the gl_PerVertex interface block of the appropriate (in/out) mode,
5511 * if it exists in this shader type.
5512 */
5513 const glsl_type *per_vertex = NULL;
5514 switch (mode) {
5515 case ir_var_shader_in:
5516 if (ir_variable *gl_in = state->symbols->get_variable("gl_in"))
5517 per_vertex = gl_in->get_interface_type();
5518 break;
5519 case ir_var_shader_out:
5520 if (ir_variable *gl_Position =
5521 state->symbols->get_variable("gl_Position")) {
5522 per_vertex = gl_Position->get_interface_type();
5523 }
5524 break;
5525 default:
5526 assert(!"Unexpected mode");
5527 break;
5528 }
5529
5530 /* If we didn't find a built-in gl_PerVertex interface block, then we don't
5531 * need to do anything.
5532 */
5533 if (per_vertex == NULL)
5534 return;
5535
5536 /* If the interface block is used by the shader, then we don't need to do
5537 * anything.
5538 */
5539 interface_block_usage_visitor v(mode, per_vertex);
5540 v.run(instructions);
5541 if (v.usage_found())
5542 return;
5543
5544 /* Remove any ir_variable declarations that refer to the interface block
5545 * we're removing.
5546 */
5547 foreach_list_safe(node, instructions) {
5548 ir_variable *const var = ((ir_instruction *) node)->as_variable();
5549 if (var != NULL && var->get_interface_type() == per_vertex &&
5550 var->data.mode == mode) {
5551 state->symbols->disable_variable(var->name);
5552 var->remove();
5553 }
5554 }
5555 }