glsl: Explicitly NULL-check variables before making a dereference.
[mesa.git] / src / glsl / ast_to_hir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file ast_to_hir.c
26 * Convert abstract syntax to to high-level intermediate reprensentation (HIR).
27 *
28 * During the conversion to HIR, the majority of the symantic checking is
29 * preformed on the program. This includes:
30 *
31 * * Symbol table management
32 * * Type checking
33 * * Function binding
34 *
35 * The majority of this work could be done during parsing, and the parser could
36 * probably generate HIR directly. However, this results in frequent changes
37 * to the parser code. Since we do not assume that every system this complier
38 * is built on will have Flex and Bison installed, we have to store the code
39 * generated by these tools in our version control system. In other parts of
40 * the system we've seen problems where a parser was changed but the generated
41 * code was not committed, merge conflicts where created because two developers
42 * had slightly different versions of Bison installed, etc.
43 *
44 * I have also noticed that running Bison generated parsers in GDB is very
45 * irritating. When you get a segfault on '$$ = $1->foo', you can't very
46 * well 'print $1' in GDB.
47 *
48 * As a result, my preference is to put as little C code as possible in the
49 * parser (and lexer) sources.
50 */
51
52 #include "main/core.h" /* for struct gl_extensions */
53 #include "glsl_symbol_table.h"
54 #include "glsl_parser_extras.h"
55 #include "ast.h"
56 #include "glsl_types.h"
57 #include "program/hash_table.h"
58 #include "ir.h"
59
60 void
61 _mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
62 {
63 _mesa_glsl_initialize_variables(instructions, state);
64
65 state->symbols->language_version = state->language_version;
66
67 state->current_function = NULL;
68
69 state->toplevel_ir = instructions;
70
71 /* Section 4.2 of the GLSL 1.20 specification states:
72 * "The built-in functions are scoped in a scope outside the global scope
73 * users declare global variables in. That is, a shader's global scope,
74 * available for user-defined functions and global variables, is nested
75 * inside the scope containing the built-in functions."
76 *
77 * Since built-in functions like ftransform() access built-in variables,
78 * it follows that those must be in the outer scope as well.
79 *
80 * We push scope here to create this nesting effect...but don't pop.
81 * This way, a shader's globals are still in the symbol table for use
82 * by the linker.
83 */
84 state->symbols->push_scope();
85
86 foreach_list_typed (ast_node, ast, link, & state->translation_unit)
87 ast->hir(instructions, state);
88
89 detect_recursion_unlinked(state, instructions);
90
91 state->toplevel_ir = NULL;
92 }
93
94
95 /**
96 * If a conversion is available, convert one operand to a different type
97 *
98 * The \c from \c ir_rvalue is converted "in place".
99 *
100 * \param to Type that the operand it to be converted to
101 * \param from Operand that is being converted
102 * \param state GLSL compiler state
103 *
104 * \return
105 * If a conversion is possible (or unnecessary), \c true is returned.
106 * Otherwise \c false is returned.
107 */
108 bool
109 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
110 struct _mesa_glsl_parse_state *state)
111 {
112 void *ctx = state;
113 if (to->base_type == from->type->base_type)
114 return true;
115
116 /* This conversion was added in GLSL 1.20. If the compilation mode is
117 * GLSL 1.10, the conversion is skipped.
118 */
119 if (state->language_version < 120)
120 return false;
121
122 /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
123 *
124 * "There are no implicit array or structure conversions. For
125 * example, an array of int cannot be implicitly converted to an
126 * array of float. There are no implicit conversions between
127 * signed and unsigned integers."
128 */
129 /* FINISHME: The above comment is partially a lie. There is int/uint
130 * FINISHME: conversion for immediate constants.
131 */
132 if (!to->is_float() || !from->type->is_numeric())
133 return false;
134
135 /* Convert to a floating point type with the same number of components
136 * as the original type - i.e. int to float, not int to vec4.
137 */
138 to = glsl_type::get_instance(GLSL_TYPE_FLOAT, from->type->vector_elements,
139 from->type->matrix_columns);
140
141 switch (from->type->base_type) {
142 case GLSL_TYPE_INT:
143 from = new(ctx) ir_expression(ir_unop_i2f, to, from, NULL);
144 break;
145 case GLSL_TYPE_UINT:
146 from = new(ctx) ir_expression(ir_unop_u2f, to, from, NULL);
147 break;
148 case GLSL_TYPE_BOOL:
149 from = new(ctx) ir_expression(ir_unop_b2f, to, from, NULL);
150 break;
151 default:
152 assert(0);
153 }
154
155 return true;
156 }
157
158
159 static const struct glsl_type *
160 arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
161 bool multiply,
162 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
163 {
164 const glsl_type *type_a = value_a->type;
165 const glsl_type *type_b = value_b->type;
166
167 /* From GLSL 1.50 spec, page 56:
168 *
169 * "The arithmetic binary operators add (+), subtract (-),
170 * multiply (*), and divide (/) operate on integer and
171 * floating-point scalars, vectors, and matrices."
172 */
173 if (!type_a->is_numeric() || !type_b->is_numeric()) {
174 _mesa_glsl_error(loc, state,
175 "Operands to arithmetic operators must be numeric");
176 return glsl_type::error_type;
177 }
178
179
180 /* "If one operand is floating-point based and the other is
181 * not, then the conversions from Section 4.1.10 "Implicit
182 * Conversions" are applied to the non-floating-point-based operand."
183 */
184 if (!apply_implicit_conversion(type_a, value_b, state)
185 && !apply_implicit_conversion(type_b, value_a, state)) {
186 _mesa_glsl_error(loc, state,
187 "Could not implicitly convert operands to "
188 "arithmetic operator");
189 return glsl_type::error_type;
190 }
191 type_a = value_a->type;
192 type_b = value_b->type;
193
194 /* "If the operands are integer types, they must both be signed or
195 * both be unsigned."
196 *
197 * From this rule and the preceeding conversion it can be inferred that
198 * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
199 * The is_numeric check above already filtered out the case where either
200 * type is not one of these, so now the base types need only be tested for
201 * equality.
202 */
203 if (type_a->base_type != type_b->base_type) {
204 _mesa_glsl_error(loc, state,
205 "base type mismatch for arithmetic operator");
206 return glsl_type::error_type;
207 }
208
209 /* "All arithmetic binary operators result in the same fundamental type
210 * (signed integer, unsigned integer, or floating-point) as the
211 * operands they operate on, after operand type conversion. After
212 * conversion, the following cases are valid
213 *
214 * * The two operands are scalars. In this case the operation is
215 * applied, resulting in a scalar."
216 */
217 if (type_a->is_scalar() && type_b->is_scalar())
218 return type_a;
219
220 /* "* One operand is a scalar, and the other is a vector or matrix.
221 * In this case, the scalar operation is applied independently to each
222 * component of the vector or matrix, resulting in the same size
223 * vector or matrix."
224 */
225 if (type_a->is_scalar()) {
226 if (!type_b->is_scalar())
227 return type_b;
228 } else if (type_b->is_scalar()) {
229 return type_a;
230 }
231
232 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
233 * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
234 * handled.
235 */
236 assert(!type_a->is_scalar());
237 assert(!type_b->is_scalar());
238
239 /* "* The two operands are vectors of the same size. In this case, the
240 * operation is done component-wise resulting in the same size
241 * vector."
242 */
243 if (type_a->is_vector() && type_b->is_vector()) {
244 if (type_a == type_b) {
245 return type_a;
246 } else {
247 _mesa_glsl_error(loc, state,
248 "vector size mismatch for arithmetic operator");
249 return glsl_type::error_type;
250 }
251 }
252
253 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
254 * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
255 * <vector, vector> have been handled. At least one of the operands must
256 * be matrix. Further, since there are no integer matrix types, the base
257 * type of both operands must be float.
258 */
259 assert(type_a->is_matrix() || type_b->is_matrix());
260 assert(type_a->base_type == GLSL_TYPE_FLOAT);
261 assert(type_b->base_type == GLSL_TYPE_FLOAT);
262
263 /* "* The operator is add (+), subtract (-), or divide (/), and the
264 * operands are matrices with the same number of rows and the same
265 * number of columns. In this case, the operation is done component-
266 * wise resulting in the same size matrix."
267 * * The operator is multiply (*), where both operands are matrices or
268 * one operand is a vector and the other a matrix. A right vector
269 * operand is treated as a column vector and a left vector operand as a
270 * row vector. In all these cases, it is required that the number of
271 * columns of the left operand is equal to the number of rows of the
272 * right operand. Then, the multiply (*) operation does a linear
273 * algebraic multiply, yielding an object that has the same number of
274 * rows as the left operand and the same number of columns as the right
275 * operand. Section 5.10 "Vector and Matrix Operations" explains in
276 * more detail how vectors and matrices are operated on."
277 */
278 if (! multiply) {
279 if (type_a == type_b)
280 return type_a;
281 } else {
282 if (type_a->is_matrix() && type_b->is_matrix()) {
283 /* Matrix multiply. The columns of A must match the rows of B. Given
284 * the other previously tested constraints, this means the vector type
285 * of a row from A must be the same as the vector type of a column from
286 * B.
287 */
288 if (type_a->row_type() == type_b->column_type()) {
289 /* The resulting matrix has the number of columns of matrix B and
290 * the number of rows of matrix A. We get the row count of A by
291 * looking at the size of a vector that makes up a column. The
292 * transpose (size of a row) is done for B.
293 */
294 const glsl_type *const type =
295 glsl_type::get_instance(type_a->base_type,
296 type_a->column_type()->vector_elements,
297 type_b->row_type()->vector_elements);
298 assert(type != glsl_type::error_type);
299
300 return type;
301 }
302 } else if (type_a->is_matrix()) {
303 /* A is a matrix and B is a column vector. Columns of A must match
304 * rows of B. Given the other previously tested constraints, this
305 * means the vector type of a row from A must be the same as the
306 * vector the type of B.
307 */
308 if (type_a->row_type() == type_b) {
309 /* The resulting vector has a number of elements equal to
310 * the number of rows of matrix A. */
311 const glsl_type *const type =
312 glsl_type::get_instance(type_a->base_type,
313 type_a->column_type()->vector_elements,
314 1);
315 assert(type != glsl_type::error_type);
316
317 return type;
318 }
319 } else {
320 assert(type_b->is_matrix());
321
322 /* A is a row vector and B is a matrix. Columns of A must match rows
323 * of B. Given the other previously tested constraints, this means
324 * the type of A must be the same as the vector type of a column from
325 * B.
326 */
327 if (type_a == type_b->column_type()) {
328 /* The resulting vector has a number of elements equal to
329 * the number of columns of matrix B. */
330 const glsl_type *const type =
331 glsl_type::get_instance(type_a->base_type,
332 type_b->row_type()->vector_elements,
333 1);
334 assert(type != glsl_type::error_type);
335
336 return type;
337 }
338 }
339
340 _mesa_glsl_error(loc, state, "size mismatch for matrix multiplication");
341 return glsl_type::error_type;
342 }
343
344
345 /* "All other cases are illegal."
346 */
347 _mesa_glsl_error(loc, state, "type mismatch");
348 return glsl_type::error_type;
349 }
350
351
352 static const struct glsl_type *
353 unary_arithmetic_result_type(const struct glsl_type *type,
354 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
355 {
356 /* From GLSL 1.50 spec, page 57:
357 *
358 * "The arithmetic unary operators negate (-), post- and pre-increment
359 * and decrement (-- and ++) operate on integer or floating-point
360 * values (including vectors and matrices). All unary operators work
361 * component-wise on their operands. These result with the same type
362 * they operated on."
363 */
364 if (!type->is_numeric()) {
365 _mesa_glsl_error(loc, state,
366 "Operands to arithmetic operators must be numeric");
367 return glsl_type::error_type;
368 }
369
370 return type;
371 }
372
373 /**
374 * \brief Return the result type of a bit-logic operation.
375 *
376 * If the given types to the bit-logic operator are invalid, return
377 * glsl_type::error_type.
378 *
379 * \param type_a Type of LHS of bit-logic op
380 * \param type_b Type of RHS of bit-logic op
381 */
382 static const struct glsl_type *
383 bit_logic_result_type(const struct glsl_type *type_a,
384 const struct glsl_type *type_b,
385 ast_operators op,
386 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
387 {
388 if (state->language_version < 130) {
389 _mesa_glsl_error(loc, state, "bit operations require GLSL 1.30");
390 return glsl_type::error_type;
391 }
392
393 /* From page 50 (page 56 of PDF) of GLSL 1.30 spec:
394 *
395 * "The bitwise operators and (&), exclusive-or (^), and inclusive-or
396 * (|). The operands must be of type signed or unsigned integers or
397 * integer vectors."
398 */
399 if (!type_a->is_integer()) {
400 _mesa_glsl_error(loc, state, "LHS of `%s' must be an integer",
401 ast_expression::operator_string(op));
402 return glsl_type::error_type;
403 }
404 if (!type_b->is_integer()) {
405 _mesa_glsl_error(loc, state, "RHS of `%s' must be an integer",
406 ast_expression::operator_string(op));
407 return glsl_type::error_type;
408 }
409
410 /* "The fundamental types of the operands (signed or unsigned) must
411 * match,"
412 */
413 if (type_a->base_type != type_b->base_type) {
414 _mesa_glsl_error(loc, state, "operands of `%s' must have the same "
415 "base type", ast_expression::operator_string(op));
416 return glsl_type::error_type;
417 }
418
419 /* "The operands cannot be vectors of differing size." */
420 if (type_a->is_vector() &&
421 type_b->is_vector() &&
422 type_a->vector_elements != type_b->vector_elements) {
423 _mesa_glsl_error(loc, state, "operands of `%s' cannot be vectors of "
424 "different sizes", ast_expression::operator_string(op));
425 return glsl_type::error_type;
426 }
427
428 /* "If one operand is a scalar and the other a vector, the scalar is
429 * applied component-wise to the vector, resulting in the same type as
430 * the vector. The fundamental types of the operands [...] will be the
431 * resulting fundamental type."
432 */
433 if (type_a->is_scalar())
434 return type_b;
435 else
436 return type_a;
437 }
438
439 static const struct glsl_type *
440 modulus_result_type(const struct glsl_type *type_a,
441 const struct glsl_type *type_b,
442 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
443 {
444 if (state->language_version < 130) {
445 _mesa_glsl_error(loc, state,
446 "operator '%%' is reserved in %s",
447 state->version_string);
448 return glsl_type::error_type;
449 }
450
451 /* From GLSL 1.50 spec, page 56:
452 * "The operator modulus (%) operates on signed or unsigned integers or
453 * integer vectors. The operand types must both be signed or both be
454 * unsigned."
455 */
456 if (!type_a->is_integer()) {
457 _mesa_glsl_error(loc, state, "LHS of operator %% must be an integer.");
458 return glsl_type::error_type;
459 }
460 if (!type_b->is_integer()) {
461 _mesa_glsl_error(loc, state, "RHS of operator %% must be an integer.");
462 return glsl_type::error_type;
463 }
464 if (type_a->base_type != type_b->base_type) {
465 _mesa_glsl_error(loc, state,
466 "operands of %% must have the same base type");
467 return glsl_type::error_type;
468 }
469
470 /* "The operands cannot be vectors of differing size. If one operand is
471 * a scalar and the other vector, then the scalar is applied component-
472 * wise to the vector, resulting in the same type as the vector. If both
473 * are vectors of the same size, the result is computed component-wise."
474 */
475 if (type_a->is_vector()) {
476 if (!type_b->is_vector()
477 || (type_a->vector_elements == type_b->vector_elements))
478 return type_a;
479 } else
480 return type_b;
481
482 /* "The operator modulus (%) is not defined for any other data types
483 * (non-integer types)."
484 */
485 _mesa_glsl_error(loc, state, "type mismatch");
486 return glsl_type::error_type;
487 }
488
489
490 static const struct glsl_type *
491 relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
492 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
493 {
494 const glsl_type *type_a = value_a->type;
495 const glsl_type *type_b = value_b->type;
496
497 /* From GLSL 1.50 spec, page 56:
498 * "The relational operators greater than (>), less than (<), greater
499 * than or equal (>=), and less than or equal (<=) operate only on
500 * scalar integer and scalar floating-point expressions."
501 */
502 if (!type_a->is_numeric()
503 || !type_b->is_numeric()
504 || !type_a->is_scalar()
505 || !type_b->is_scalar()) {
506 _mesa_glsl_error(loc, state,
507 "Operands to relational operators must be scalar and "
508 "numeric");
509 return glsl_type::error_type;
510 }
511
512 /* "Either the operands' types must match, or the conversions from
513 * Section 4.1.10 "Implicit Conversions" will be applied to the integer
514 * operand, after which the types must match."
515 */
516 if (!apply_implicit_conversion(type_a, value_b, state)
517 && !apply_implicit_conversion(type_b, value_a, state)) {
518 _mesa_glsl_error(loc, state,
519 "Could not implicitly convert operands to "
520 "relational operator");
521 return glsl_type::error_type;
522 }
523 type_a = value_a->type;
524 type_b = value_b->type;
525
526 if (type_a->base_type != type_b->base_type) {
527 _mesa_glsl_error(loc, state, "base type mismatch");
528 return glsl_type::error_type;
529 }
530
531 /* "The result is scalar Boolean."
532 */
533 return glsl_type::bool_type;
534 }
535
536 /**
537 * \brief Return the result type of a bit-shift operation.
538 *
539 * If the given types to the bit-shift operator are invalid, return
540 * glsl_type::error_type.
541 *
542 * \param type_a Type of LHS of bit-shift op
543 * \param type_b Type of RHS of bit-shift op
544 */
545 static const struct glsl_type *
546 shift_result_type(const struct glsl_type *type_a,
547 const struct glsl_type *type_b,
548 ast_operators op,
549 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
550 {
551 if (state->language_version < 130) {
552 _mesa_glsl_error(loc, state, "bit operations require GLSL 1.30");
553 return glsl_type::error_type;
554 }
555
556 /* From page 50 (page 56 of the PDF) of the GLSL 1.30 spec:
557 *
558 * "The shift operators (<<) and (>>). For both operators, the operands
559 * must be signed or unsigned integers or integer vectors. One operand
560 * can be signed while the other is unsigned."
561 */
562 if (!type_a->is_integer()) {
563 _mesa_glsl_error(loc, state, "LHS of operator %s must be an integer or "
564 "integer vector", ast_expression::operator_string(op));
565 return glsl_type::error_type;
566
567 }
568 if (!type_b->is_integer()) {
569 _mesa_glsl_error(loc, state, "RHS of operator %s must be an integer or "
570 "integer vector", ast_expression::operator_string(op));
571 return glsl_type::error_type;
572 }
573
574 /* "If the first operand is a scalar, the second operand has to be
575 * a scalar as well."
576 */
577 if (type_a->is_scalar() && !type_b->is_scalar()) {
578 _mesa_glsl_error(loc, state, "If the first operand of %s is scalar, the "
579 "second must be scalar as well",
580 ast_expression::operator_string(op));
581 return glsl_type::error_type;
582 }
583
584 /* If both operands are vectors, check that they have same number of
585 * elements.
586 */
587 if (type_a->is_vector() &&
588 type_b->is_vector() &&
589 type_a->vector_elements != type_b->vector_elements) {
590 _mesa_glsl_error(loc, state, "Vector operands to operator %s must "
591 "have same number of elements",
592 ast_expression::operator_string(op));
593 return glsl_type::error_type;
594 }
595
596 /* "In all cases, the resulting type will be the same type as the left
597 * operand."
598 */
599 return type_a;
600 }
601
602 /**
603 * Validates that a value can be assigned to a location with a specified type
604 *
605 * Validates that \c rhs can be assigned to some location. If the types are
606 * not an exact match but an automatic conversion is possible, \c rhs will be
607 * converted.
608 *
609 * \return
610 * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
611 * Otherwise the actual RHS to be assigned will be returned. This may be
612 * \c rhs, or it may be \c rhs after some type conversion.
613 *
614 * \note
615 * In addition to being used for assignments, this function is used to
616 * type-check return values.
617 */
618 ir_rvalue *
619 validate_assignment(struct _mesa_glsl_parse_state *state,
620 const glsl_type *lhs_type, ir_rvalue *rhs,
621 bool is_initializer)
622 {
623 /* If there is already some error in the RHS, just return it. Anything
624 * else will lead to an avalanche of error message back to the user.
625 */
626 if (rhs->type->is_error())
627 return rhs;
628
629 /* If the types are identical, the assignment can trivially proceed.
630 */
631 if (rhs->type == lhs_type)
632 return rhs;
633
634 /* If the array element types are the same and the size of the LHS is zero,
635 * the assignment is okay for initializers embedded in variable
636 * declarations.
637 *
638 * Note: Whole-array assignments are not permitted in GLSL 1.10, but this
639 * is handled by ir_dereference::is_lvalue.
640 */
641 if (is_initializer && lhs_type->is_array() && rhs->type->is_array()
642 && (lhs_type->element_type() == rhs->type->element_type())
643 && (lhs_type->array_size() == 0)) {
644 return rhs;
645 }
646
647 /* Check for implicit conversion in GLSL 1.20 */
648 if (apply_implicit_conversion(lhs_type, rhs, state)) {
649 if (rhs->type == lhs_type)
650 return rhs;
651 }
652
653 return NULL;
654 }
655
656 static void
657 mark_whole_array_access(ir_rvalue *access)
658 {
659 ir_dereference_variable *deref = access->as_dereference_variable();
660
661 if (deref && deref->var) {
662 deref->var->max_array_access = deref->type->length - 1;
663 }
664 }
665
666 ir_rvalue *
667 do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state,
668 const char *non_lvalue_description,
669 ir_rvalue *lhs, ir_rvalue *rhs, bool is_initializer,
670 YYLTYPE lhs_loc)
671 {
672 void *ctx = state;
673 bool error_emitted = (lhs->type->is_error() || rhs->type->is_error());
674
675 if (!error_emitted) {
676 if (non_lvalue_description != NULL) {
677 _mesa_glsl_error(&lhs_loc, state,
678 "assignment to %s",
679 non_lvalue_description);
680 error_emitted = true;
681 } else if (lhs->variable_referenced() != NULL
682 && lhs->variable_referenced()->read_only) {
683 _mesa_glsl_error(&lhs_loc, state,
684 "assignment to read-only variable '%s'",
685 lhs->variable_referenced()->name);
686 error_emitted = true;
687
688 } else if (state->language_version <= 110 && lhs->type->is_array()) {
689 /* From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
690 *
691 * "Other binary or unary expressions, non-dereferenced
692 * arrays, function names, swizzles with repeated fields,
693 * and constants cannot be l-values."
694 */
695 _mesa_glsl_error(&lhs_loc, state, "whole array assignment is not "
696 "allowed in GLSL 1.10 or GLSL ES 1.00.");
697 error_emitted = true;
698 } else if (!lhs->is_lvalue()) {
699 _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment");
700 error_emitted = true;
701 }
702 }
703
704 ir_rvalue *new_rhs =
705 validate_assignment(state, lhs->type, rhs, is_initializer);
706 if (new_rhs == NULL) {
707 _mesa_glsl_error(& lhs_loc, state, "type mismatch");
708 } else {
709 rhs = new_rhs;
710
711 /* If the LHS array was not declared with a size, it takes it size from
712 * the RHS. If the LHS is an l-value and a whole array, it must be a
713 * dereference of a variable. Any other case would require that the LHS
714 * is either not an l-value or not a whole array.
715 */
716 if (lhs->type->array_size() == 0) {
717 ir_dereference *const d = lhs->as_dereference();
718
719 assert(d != NULL);
720
721 ir_variable *const var = d->variable_referenced();
722
723 assert(var != NULL);
724
725 if (var->max_array_access >= unsigned(rhs->type->array_size())) {
726 /* FINISHME: This should actually log the location of the RHS. */
727 _mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to "
728 "previous access",
729 var->max_array_access);
730 }
731
732 var->type = glsl_type::get_array_instance(lhs->type->element_type(),
733 rhs->type->array_size());
734 d->type = var->type;
735 }
736 mark_whole_array_access(rhs);
737 mark_whole_array_access(lhs);
738 }
739
740 /* Most callers of do_assignment (assign, add_assign, pre_inc/dec,
741 * but not post_inc) need the converted assigned value as an rvalue
742 * to handle things like:
743 *
744 * i = j += 1;
745 *
746 * So we always just store the computed value being assigned to a
747 * temporary and return a deref of that temporary. If the rvalue
748 * ends up not being used, the temp will get copy-propagated out.
749 */
750 ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp",
751 ir_var_temporary);
752 ir_dereference_variable *deref_var = new(ctx) ir_dereference_variable(var);
753 instructions->push_tail(var);
754 instructions->push_tail(new(ctx) ir_assignment(deref_var,
755 rhs,
756 NULL));
757 deref_var = new(ctx) ir_dereference_variable(var);
758
759 if (!error_emitted)
760 instructions->push_tail(new(ctx) ir_assignment(lhs, deref_var, NULL));
761
762 return new(ctx) ir_dereference_variable(var);
763 }
764
765 static ir_rvalue *
766 get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue)
767 {
768 void *ctx = ralloc_parent(lvalue);
769 ir_variable *var;
770
771 var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp",
772 ir_var_temporary);
773 instructions->push_tail(var);
774 var->mode = ir_var_auto;
775
776 instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
777 lvalue, NULL));
778
779 return new(ctx) ir_dereference_variable(var);
780 }
781
782
783 ir_rvalue *
784 ast_node::hir(exec_list *instructions,
785 struct _mesa_glsl_parse_state *state)
786 {
787 (void) instructions;
788 (void) state;
789
790 return NULL;
791 }
792
793 static ir_rvalue *
794 do_comparison(void *mem_ctx, int operation, ir_rvalue *op0, ir_rvalue *op1)
795 {
796 int join_op;
797 ir_rvalue *cmp = NULL;
798
799 if (operation == ir_binop_all_equal)
800 join_op = ir_binop_logic_and;
801 else
802 join_op = ir_binop_logic_or;
803
804 switch (op0->type->base_type) {
805 case GLSL_TYPE_FLOAT:
806 case GLSL_TYPE_UINT:
807 case GLSL_TYPE_INT:
808 case GLSL_TYPE_BOOL:
809 return new(mem_ctx) ir_expression(operation, op0, op1);
810
811 case GLSL_TYPE_ARRAY: {
812 for (unsigned int i = 0; i < op0->type->length; i++) {
813 ir_rvalue *e0, *e1, *result;
814
815 e0 = new(mem_ctx) ir_dereference_array(op0->clone(mem_ctx, NULL),
816 new(mem_ctx) ir_constant(i));
817 e1 = new(mem_ctx) ir_dereference_array(op1->clone(mem_ctx, NULL),
818 new(mem_ctx) ir_constant(i));
819 result = do_comparison(mem_ctx, operation, e0, e1);
820
821 if (cmp) {
822 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
823 } else {
824 cmp = result;
825 }
826 }
827
828 mark_whole_array_access(op0);
829 mark_whole_array_access(op1);
830 break;
831 }
832
833 case GLSL_TYPE_STRUCT: {
834 for (unsigned int i = 0; i < op0->type->length; i++) {
835 ir_rvalue *e0, *e1, *result;
836 const char *field_name = op0->type->fields.structure[i].name;
837
838 e0 = new(mem_ctx) ir_dereference_record(op0->clone(mem_ctx, NULL),
839 field_name);
840 e1 = new(mem_ctx) ir_dereference_record(op1->clone(mem_ctx, NULL),
841 field_name);
842 result = do_comparison(mem_ctx, operation, e0, e1);
843
844 if (cmp) {
845 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
846 } else {
847 cmp = result;
848 }
849 }
850 break;
851 }
852
853 case GLSL_TYPE_ERROR:
854 case GLSL_TYPE_VOID:
855 case GLSL_TYPE_SAMPLER:
856 /* I assume a comparison of a struct containing a sampler just
857 * ignores the sampler present in the type.
858 */
859 break;
860
861 default:
862 assert(!"Should not get here.");
863 break;
864 }
865
866 if (cmp == NULL)
867 cmp = new(mem_ctx) ir_constant(true);
868
869 return cmp;
870 }
871
872 /* For logical operations, we want to ensure that the operands are
873 * scalar booleans. If it isn't, emit an error and return a constant
874 * boolean to avoid triggering cascading error messages.
875 */
876 ir_rvalue *
877 get_scalar_boolean_operand(exec_list *instructions,
878 struct _mesa_glsl_parse_state *state,
879 ast_expression *parent_expr,
880 int operand,
881 const char *operand_name,
882 bool *error_emitted)
883 {
884 ast_expression *expr = parent_expr->subexpressions[operand];
885 void *ctx = state;
886 ir_rvalue *val = expr->hir(instructions, state);
887
888 if (val->type->is_boolean() && val->type->is_scalar())
889 return val;
890
891 if (!*error_emitted) {
892 YYLTYPE loc = expr->get_location();
893 _mesa_glsl_error(&loc, state, "%s of `%s' must be scalar boolean",
894 operand_name,
895 parent_expr->operator_string(parent_expr->oper));
896 *error_emitted = true;
897 }
898
899 return new(ctx) ir_constant(true);
900 }
901
902 /**
903 * If name refers to a builtin array whose maximum allowed size is less than
904 * size, report an error and return true. Otherwise return false.
905 */
906 static bool
907 check_builtin_array_max_size(const char *name, unsigned size,
908 YYLTYPE loc, struct _mesa_glsl_parse_state *state)
909 {
910 if ((strcmp("gl_TexCoord", name) == 0)
911 && (size > state->Const.MaxTextureCoords)) {
912 /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec:
913 *
914 * "The size [of gl_TexCoord] can be at most
915 * gl_MaxTextureCoords."
916 */
917 _mesa_glsl_error(&loc, state, "`gl_TexCoord' array size cannot "
918 "be larger than gl_MaxTextureCoords (%u)\n",
919 state->Const.MaxTextureCoords);
920 return true;
921 } else if (strcmp("gl_ClipDistance", name) == 0
922 && size > state->Const.MaxClipPlanes) {
923 /* From section 7.1 (Vertex Shader Special Variables) of the
924 * GLSL 1.30 spec:
925 *
926 * "The gl_ClipDistance array is predeclared as unsized and
927 * must be sized by the shader either redeclaring it with a
928 * size or indexing it only with integral constant
929 * expressions. ... The size can be at most
930 * gl_MaxClipDistances."
931 */
932 _mesa_glsl_error(&loc, state, "`gl_ClipDistance' array size cannot "
933 "be larger than gl_MaxClipDistances (%u)\n",
934 state->Const.MaxClipPlanes);
935 return true;
936 }
937 return false;
938 }
939
940 /**
941 * Create the constant 1, of a which is appropriate for incrementing and
942 * decrementing values of the given GLSL type. For example, if type is vec4,
943 * this creates a constant value of 1.0 having type float.
944 *
945 * If the given type is invalid for increment and decrement operators, return
946 * a floating point 1--the error will be detected later.
947 */
948 static ir_rvalue *
949 constant_one_for_inc_dec(void *ctx, const glsl_type *type)
950 {
951 switch (type->base_type) {
952 case GLSL_TYPE_UINT:
953 return new(ctx) ir_constant((unsigned) 1);
954 case GLSL_TYPE_INT:
955 return new(ctx) ir_constant(1);
956 default:
957 case GLSL_TYPE_FLOAT:
958 return new(ctx) ir_constant(1.0f);
959 }
960 }
961
962 ir_rvalue *
963 ast_expression::hir(exec_list *instructions,
964 struct _mesa_glsl_parse_state *state)
965 {
966 void *ctx = state;
967 static const int operations[AST_NUM_OPERATORS] = {
968 -1, /* ast_assign doesn't convert to ir_expression. */
969 -1, /* ast_plus doesn't convert to ir_expression. */
970 ir_unop_neg,
971 ir_binop_add,
972 ir_binop_sub,
973 ir_binop_mul,
974 ir_binop_div,
975 ir_binop_mod,
976 ir_binop_lshift,
977 ir_binop_rshift,
978 ir_binop_less,
979 ir_binop_greater,
980 ir_binop_lequal,
981 ir_binop_gequal,
982 ir_binop_all_equal,
983 ir_binop_any_nequal,
984 ir_binop_bit_and,
985 ir_binop_bit_xor,
986 ir_binop_bit_or,
987 ir_unop_bit_not,
988 ir_binop_logic_and,
989 ir_binop_logic_xor,
990 ir_binop_logic_or,
991 ir_unop_logic_not,
992
993 /* Note: The following block of expression types actually convert
994 * to multiple IR instructions.
995 */
996 ir_binop_mul, /* ast_mul_assign */
997 ir_binop_div, /* ast_div_assign */
998 ir_binop_mod, /* ast_mod_assign */
999 ir_binop_add, /* ast_add_assign */
1000 ir_binop_sub, /* ast_sub_assign */
1001 ir_binop_lshift, /* ast_ls_assign */
1002 ir_binop_rshift, /* ast_rs_assign */
1003 ir_binop_bit_and, /* ast_and_assign */
1004 ir_binop_bit_xor, /* ast_xor_assign */
1005 ir_binop_bit_or, /* ast_or_assign */
1006
1007 -1, /* ast_conditional doesn't convert to ir_expression. */
1008 ir_binop_add, /* ast_pre_inc. */
1009 ir_binop_sub, /* ast_pre_dec. */
1010 ir_binop_add, /* ast_post_inc. */
1011 ir_binop_sub, /* ast_post_dec. */
1012 -1, /* ast_field_selection doesn't conv to ir_expression. */
1013 -1, /* ast_array_index doesn't convert to ir_expression. */
1014 -1, /* ast_function_call doesn't conv to ir_expression. */
1015 -1, /* ast_identifier doesn't convert to ir_expression. */
1016 -1, /* ast_int_constant doesn't convert to ir_expression. */
1017 -1, /* ast_uint_constant doesn't conv to ir_expression. */
1018 -1, /* ast_float_constant doesn't conv to ir_expression. */
1019 -1, /* ast_bool_constant doesn't conv to ir_expression. */
1020 -1, /* ast_sequence doesn't convert to ir_expression. */
1021 };
1022 ir_rvalue *result = NULL;
1023 ir_rvalue *op[3];
1024 const struct glsl_type *type; /* a temporary variable for switch cases */
1025 bool error_emitted = false;
1026 YYLTYPE loc;
1027
1028 loc = this->get_location();
1029
1030 switch (this->oper) {
1031 case ast_assign: {
1032 op[0] = this->subexpressions[0]->hir(instructions, state);
1033 op[1] = this->subexpressions[1]->hir(instructions, state);
1034
1035 result = do_assignment(instructions, state,
1036 this->subexpressions[0]->non_lvalue_description,
1037 op[0], op[1], false,
1038 this->subexpressions[0]->get_location());
1039 error_emitted = result->type->is_error();
1040 break;
1041 }
1042
1043 case ast_plus:
1044 op[0] = this->subexpressions[0]->hir(instructions, state);
1045
1046 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1047
1048 error_emitted = type->is_error();
1049
1050 result = op[0];
1051 break;
1052
1053 case ast_neg:
1054 op[0] = this->subexpressions[0]->hir(instructions, state);
1055
1056 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1057
1058 error_emitted = type->is_error();
1059
1060 result = new(ctx) ir_expression(operations[this->oper], type,
1061 op[0], NULL);
1062 break;
1063
1064 case ast_add:
1065 case ast_sub:
1066 case ast_mul:
1067 case ast_div:
1068 op[0] = this->subexpressions[0]->hir(instructions, state);
1069 op[1] = this->subexpressions[1]->hir(instructions, state);
1070
1071 type = arithmetic_result_type(op[0], op[1],
1072 (this->oper == ast_mul),
1073 state, & loc);
1074 error_emitted = type->is_error();
1075
1076 result = new(ctx) ir_expression(operations[this->oper], type,
1077 op[0], op[1]);
1078 break;
1079
1080 case ast_mod:
1081 op[0] = this->subexpressions[0]->hir(instructions, state);
1082 op[1] = this->subexpressions[1]->hir(instructions, state);
1083
1084 type = modulus_result_type(op[0]->type, op[1]->type, state, & loc);
1085
1086 assert(operations[this->oper] == ir_binop_mod);
1087
1088 result = new(ctx) ir_expression(operations[this->oper], type,
1089 op[0], op[1]);
1090 error_emitted = type->is_error();
1091 break;
1092
1093 case ast_lshift:
1094 case ast_rshift:
1095 if (state->language_version < 130) {
1096 _mesa_glsl_error(&loc, state, "operator %s requires GLSL 1.30",
1097 operator_string(this->oper));
1098 error_emitted = true;
1099 }
1100
1101 op[0] = this->subexpressions[0]->hir(instructions, state);
1102 op[1] = this->subexpressions[1]->hir(instructions, state);
1103 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1104 &loc);
1105 result = new(ctx) ir_expression(operations[this->oper], type,
1106 op[0], op[1]);
1107 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1108 break;
1109
1110 case ast_less:
1111 case ast_greater:
1112 case ast_lequal:
1113 case ast_gequal:
1114 op[0] = this->subexpressions[0]->hir(instructions, state);
1115 op[1] = this->subexpressions[1]->hir(instructions, state);
1116
1117 type = relational_result_type(op[0], op[1], state, & loc);
1118
1119 /* The relational operators must either generate an error or result
1120 * in a scalar boolean. See page 57 of the GLSL 1.50 spec.
1121 */
1122 assert(type->is_error()
1123 || ((type->base_type == GLSL_TYPE_BOOL)
1124 && type->is_scalar()));
1125
1126 result = new(ctx) ir_expression(operations[this->oper], type,
1127 op[0], op[1]);
1128 error_emitted = type->is_error();
1129 break;
1130
1131 case ast_nequal:
1132 case ast_equal:
1133 op[0] = this->subexpressions[0]->hir(instructions, state);
1134 op[1] = this->subexpressions[1]->hir(instructions, state);
1135
1136 /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
1137 *
1138 * "The equality operators equal (==), and not equal (!=)
1139 * operate on all types. They result in a scalar Boolean. If
1140 * the operand types do not match, then there must be a
1141 * conversion from Section 4.1.10 "Implicit Conversions"
1142 * applied to one operand that can make them match, in which
1143 * case this conversion is done."
1144 */
1145 if ((!apply_implicit_conversion(op[0]->type, op[1], state)
1146 && !apply_implicit_conversion(op[1]->type, op[0], state))
1147 || (op[0]->type != op[1]->type)) {
1148 _mesa_glsl_error(& loc, state, "operands of `%s' must have the same "
1149 "type", (this->oper == ast_equal) ? "==" : "!=");
1150 error_emitted = true;
1151 } else if ((state->language_version <= 110)
1152 && (op[0]->type->is_array() || op[1]->type->is_array())) {
1153 _mesa_glsl_error(& loc, state, "array comparisons forbidden in "
1154 "GLSL 1.10");
1155 error_emitted = true;
1156 }
1157
1158 if (error_emitted) {
1159 result = new(ctx) ir_constant(false);
1160 } else {
1161 result = do_comparison(ctx, operations[this->oper], op[0], op[1]);
1162 assert(result->type == glsl_type::bool_type);
1163 }
1164 break;
1165
1166 case ast_bit_and:
1167 case ast_bit_xor:
1168 case ast_bit_or:
1169 op[0] = this->subexpressions[0]->hir(instructions, state);
1170 op[1] = this->subexpressions[1]->hir(instructions, state);
1171 type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
1172 state, &loc);
1173 result = new(ctx) ir_expression(operations[this->oper], type,
1174 op[0], op[1]);
1175 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1176 break;
1177
1178 case ast_bit_not:
1179 op[0] = this->subexpressions[0]->hir(instructions, state);
1180
1181 if (state->language_version < 130) {
1182 _mesa_glsl_error(&loc, state, "bit-wise operations require GLSL 1.30");
1183 error_emitted = true;
1184 }
1185
1186 if (!op[0]->type->is_integer()) {
1187 _mesa_glsl_error(&loc, state, "operand of `~' must be an integer");
1188 error_emitted = true;
1189 }
1190
1191 type = error_emitted ? glsl_type::error_type : op[0]->type;
1192 result = new(ctx) ir_expression(ir_unop_bit_not, type, op[0], NULL);
1193 break;
1194
1195 case ast_logic_and: {
1196 exec_list rhs_instructions;
1197 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1198 "LHS", &error_emitted);
1199 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1200 "RHS", &error_emitted);
1201
1202 if (rhs_instructions.is_empty()) {
1203 result = new(ctx) ir_expression(ir_binop_logic_and, op[0], op[1]);
1204 type = result->type;
1205 } else {
1206 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1207 "and_tmp",
1208 ir_var_temporary);
1209 instructions->push_tail(tmp);
1210
1211 ir_if *const stmt = new(ctx) ir_if(op[0]);
1212 instructions->push_tail(stmt);
1213
1214 stmt->then_instructions.append_list(&rhs_instructions);
1215 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1216 ir_assignment *const then_assign =
1217 new(ctx) ir_assignment(then_deref, op[1], NULL);
1218 stmt->then_instructions.push_tail(then_assign);
1219
1220 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1221 ir_assignment *const else_assign =
1222 new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false), NULL);
1223 stmt->else_instructions.push_tail(else_assign);
1224
1225 result = new(ctx) ir_dereference_variable(tmp);
1226 type = tmp->type;
1227 }
1228 break;
1229 }
1230
1231 case ast_logic_or: {
1232 exec_list rhs_instructions;
1233 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1234 "LHS", &error_emitted);
1235 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1236 "RHS", &error_emitted);
1237
1238 if (rhs_instructions.is_empty()) {
1239 result = new(ctx) ir_expression(ir_binop_logic_or, op[0], op[1]);
1240 type = result->type;
1241 } else {
1242 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1243 "or_tmp",
1244 ir_var_temporary);
1245 instructions->push_tail(tmp);
1246
1247 ir_if *const stmt = new(ctx) ir_if(op[0]);
1248 instructions->push_tail(stmt);
1249
1250 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1251 ir_assignment *const then_assign =
1252 new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true), NULL);
1253 stmt->then_instructions.push_tail(then_assign);
1254
1255 stmt->else_instructions.append_list(&rhs_instructions);
1256 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1257 ir_assignment *const else_assign =
1258 new(ctx) ir_assignment(else_deref, op[1], NULL);
1259 stmt->else_instructions.push_tail(else_assign);
1260
1261 result = new(ctx) ir_dereference_variable(tmp);
1262 type = tmp->type;
1263 }
1264 break;
1265 }
1266
1267 case ast_logic_xor:
1268 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1269 *
1270 * "The logical binary operators and (&&), or ( | | ), and
1271 * exclusive or (^^). They operate only on two Boolean
1272 * expressions and result in a Boolean expression."
1273 */
1274 op[0] = get_scalar_boolean_operand(instructions, state, this, 0, "LHS",
1275 &error_emitted);
1276 op[1] = get_scalar_boolean_operand(instructions, state, this, 1, "RHS",
1277 &error_emitted);
1278
1279 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1280 op[0], op[1]);
1281 break;
1282
1283 case ast_logic_not:
1284 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1285 "operand", &error_emitted);
1286
1287 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1288 op[0], NULL);
1289 break;
1290
1291 case ast_mul_assign:
1292 case ast_div_assign:
1293 case ast_add_assign:
1294 case ast_sub_assign: {
1295 op[0] = this->subexpressions[0]->hir(instructions, state);
1296 op[1] = this->subexpressions[1]->hir(instructions, state);
1297
1298 type = arithmetic_result_type(op[0], op[1],
1299 (this->oper == ast_mul_assign),
1300 state, & loc);
1301
1302 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1303 op[0], op[1]);
1304
1305 result = do_assignment(instructions, state,
1306 this->subexpressions[0]->non_lvalue_description,
1307 op[0]->clone(ctx, NULL), temp_rhs, false,
1308 this->subexpressions[0]->get_location());
1309 error_emitted = (op[0]->type->is_error());
1310
1311 /* GLSL 1.10 does not allow array assignment. However, we don't have to
1312 * explicitly test for this because none of the binary expression
1313 * operators allow array operands either.
1314 */
1315
1316 break;
1317 }
1318
1319 case ast_mod_assign: {
1320 op[0] = this->subexpressions[0]->hir(instructions, state);
1321 op[1] = this->subexpressions[1]->hir(instructions, state);
1322
1323 type = modulus_result_type(op[0]->type, op[1]->type, state, & loc);
1324
1325 assert(operations[this->oper] == ir_binop_mod);
1326
1327 ir_rvalue *temp_rhs;
1328 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1329 op[0], op[1]);
1330
1331 result = do_assignment(instructions, state,
1332 this->subexpressions[0]->non_lvalue_description,
1333 op[0]->clone(ctx, NULL), temp_rhs, false,
1334 this->subexpressions[0]->get_location());
1335 error_emitted = type->is_error();
1336 break;
1337 }
1338
1339 case ast_ls_assign:
1340 case ast_rs_assign: {
1341 op[0] = this->subexpressions[0]->hir(instructions, state);
1342 op[1] = this->subexpressions[1]->hir(instructions, state);
1343 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1344 &loc);
1345 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1346 type, op[0], op[1]);
1347 result = do_assignment(instructions, state,
1348 this->subexpressions[0]->non_lvalue_description,
1349 op[0]->clone(ctx, NULL), temp_rhs, false,
1350 this->subexpressions[0]->get_location());
1351 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1352 break;
1353 }
1354
1355 case ast_and_assign:
1356 case ast_xor_assign:
1357 case ast_or_assign: {
1358 op[0] = this->subexpressions[0]->hir(instructions, state);
1359 op[1] = this->subexpressions[1]->hir(instructions, state);
1360 type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
1361 state, &loc);
1362 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1363 type, op[0], op[1]);
1364 result = do_assignment(instructions, state,
1365 this->subexpressions[0]->non_lvalue_description,
1366 op[0]->clone(ctx, NULL), temp_rhs, false,
1367 this->subexpressions[0]->get_location());
1368 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1369 break;
1370 }
1371
1372 case ast_conditional: {
1373 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1374 *
1375 * "The ternary selection operator (?:). It operates on three
1376 * expressions (exp1 ? exp2 : exp3). This operator evaluates the
1377 * first expression, which must result in a scalar Boolean."
1378 */
1379 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1380 "condition", &error_emitted);
1381
1382 /* The :? operator is implemented by generating an anonymous temporary
1383 * followed by an if-statement. The last instruction in each branch of
1384 * the if-statement assigns a value to the anonymous temporary. This
1385 * temporary is the r-value of the expression.
1386 */
1387 exec_list then_instructions;
1388 exec_list else_instructions;
1389
1390 op[1] = this->subexpressions[1]->hir(&then_instructions, state);
1391 op[2] = this->subexpressions[2]->hir(&else_instructions, state);
1392
1393 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1394 *
1395 * "The second and third expressions can be any type, as
1396 * long their types match, or there is a conversion in
1397 * Section 4.1.10 "Implicit Conversions" that can be applied
1398 * to one of the expressions to make their types match. This
1399 * resulting matching type is the type of the entire
1400 * expression."
1401 */
1402 if ((!apply_implicit_conversion(op[1]->type, op[2], state)
1403 && !apply_implicit_conversion(op[2]->type, op[1], state))
1404 || (op[1]->type != op[2]->type)) {
1405 YYLTYPE loc = this->subexpressions[1]->get_location();
1406
1407 _mesa_glsl_error(& loc, state, "Second and third operands of ?: "
1408 "operator must have matching types.");
1409 error_emitted = true;
1410 type = glsl_type::error_type;
1411 } else {
1412 type = op[1]->type;
1413 }
1414
1415 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1416 *
1417 * "The second and third expressions must be the same type, but can
1418 * be of any type other than an array."
1419 */
1420 if ((state->language_version <= 110) && type->is_array()) {
1421 _mesa_glsl_error(& loc, state, "Second and third operands of ?: "
1422 "operator must not be arrays.");
1423 error_emitted = true;
1424 }
1425
1426 ir_constant *cond_val = op[0]->constant_expression_value();
1427 ir_constant *then_val = op[1]->constant_expression_value();
1428 ir_constant *else_val = op[2]->constant_expression_value();
1429
1430 if (then_instructions.is_empty()
1431 && else_instructions.is_empty()
1432 && (cond_val != NULL) && (then_val != NULL) && (else_val != NULL)) {
1433 result = (cond_val->value.b[0]) ? then_val : else_val;
1434 } else {
1435 ir_variable *const tmp =
1436 new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary);
1437 instructions->push_tail(tmp);
1438
1439 ir_if *const stmt = new(ctx) ir_if(op[0]);
1440 instructions->push_tail(stmt);
1441
1442 then_instructions.move_nodes_to(& stmt->then_instructions);
1443 ir_dereference *const then_deref =
1444 new(ctx) ir_dereference_variable(tmp);
1445 ir_assignment *const then_assign =
1446 new(ctx) ir_assignment(then_deref, op[1], NULL);
1447 stmt->then_instructions.push_tail(then_assign);
1448
1449 else_instructions.move_nodes_to(& stmt->else_instructions);
1450 ir_dereference *const else_deref =
1451 new(ctx) ir_dereference_variable(tmp);
1452 ir_assignment *const else_assign =
1453 new(ctx) ir_assignment(else_deref, op[2], NULL);
1454 stmt->else_instructions.push_tail(else_assign);
1455
1456 result = new(ctx) ir_dereference_variable(tmp);
1457 }
1458 break;
1459 }
1460
1461 case ast_pre_inc:
1462 case ast_pre_dec: {
1463 this->non_lvalue_description = (this->oper == ast_pre_inc)
1464 ? "pre-increment operation" : "pre-decrement operation";
1465
1466 op[0] = this->subexpressions[0]->hir(instructions, state);
1467 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1468
1469 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1470
1471 ir_rvalue *temp_rhs;
1472 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1473 op[0], op[1]);
1474
1475 result = do_assignment(instructions, state,
1476 this->subexpressions[0]->non_lvalue_description,
1477 op[0]->clone(ctx, NULL), temp_rhs, false,
1478 this->subexpressions[0]->get_location());
1479 error_emitted = op[0]->type->is_error();
1480 break;
1481 }
1482
1483 case ast_post_inc:
1484 case ast_post_dec: {
1485 this->non_lvalue_description = (this->oper == ast_post_inc)
1486 ? "post-increment operation" : "post-decrement operation";
1487 op[0] = this->subexpressions[0]->hir(instructions, state);
1488 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1489
1490 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1491
1492 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1493
1494 ir_rvalue *temp_rhs;
1495 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1496 op[0], op[1]);
1497
1498 /* Get a temporary of a copy of the lvalue before it's modified.
1499 * This may get thrown away later.
1500 */
1501 result = get_lvalue_copy(instructions, op[0]->clone(ctx, NULL));
1502
1503 (void)do_assignment(instructions, state,
1504 this->subexpressions[0]->non_lvalue_description,
1505 op[0]->clone(ctx, NULL), temp_rhs, false,
1506 this->subexpressions[0]->get_location());
1507
1508 error_emitted = op[0]->type->is_error();
1509 break;
1510 }
1511
1512 case ast_field_selection:
1513 result = _mesa_ast_field_selection_to_hir(this, instructions, state);
1514 break;
1515
1516 case ast_array_index: {
1517 YYLTYPE index_loc = subexpressions[1]->get_location();
1518
1519 op[0] = subexpressions[0]->hir(instructions, state);
1520 op[1] = subexpressions[1]->hir(instructions, state);
1521
1522 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1523
1524 ir_rvalue *const array = op[0];
1525
1526 result = new(ctx) ir_dereference_array(op[0], op[1]);
1527
1528 /* Do not use op[0] after this point. Use array.
1529 */
1530 op[0] = NULL;
1531
1532
1533 if (error_emitted)
1534 break;
1535
1536 if (!array->type->is_array()
1537 && !array->type->is_matrix()
1538 && !array->type->is_vector()) {
1539 _mesa_glsl_error(& index_loc, state,
1540 "cannot dereference non-array / non-matrix / "
1541 "non-vector");
1542 error_emitted = true;
1543 }
1544
1545 if (!op[1]->type->is_integer()) {
1546 _mesa_glsl_error(& index_loc, state,
1547 "array index must be integer type");
1548 error_emitted = true;
1549 } else if (!op[1]->type->is_scalar()) {
1550 _mesa_glsl_error(& index_loc, state,
1551 "array index must be scalar");
1552 error_emitted = true;
1553 }
1554
1555 /* If the array index is a constant expression and the array has a
1556 * declared size, ensure that the access is in-bounds. If the array
1557 * index is not a constant expression, ensure that the array has a
1558 * declared size.
1559 */
1560 ir_constant *const const_index = op[1]->constant_expression_value();
1561 if (const_index != NULL) {
1562 const int idx = const_index->value.i[0];
1563 const char *type_name;
1564 unsigned bound = 0;
1565
1566 if (array->type->is_matrix()) {
1567 type_name = "matrix";
1568 } else if (array->type->is_vector()) {
1569 type_name = "vector";
1570 } else {
1571 type_name = "array";
1572 }
1573
1574 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec:
1575 *
1576 * "It is illegal to declare an array with a size, and then
1577 * later (in the same shader) index the same array with an
1578 * integral constant expression greater than or equal to the
1579 * declared size. It is also illegal to index an array with a
1580 * negative constant expression."
1581 */
1582 if (array->type->is_matrix()) {
1583 if (array->type->row_type()->vector_elements <= idx) {
1584 bound = array->type->row_type()->vector_elements;
1585 }
1586 } else if (array->type->is_vector()) {
1587 if (array->type->vector_elements <= idx) {
1588 bound = array->type->vector_elements;
1589 }
1590 } else {
1591 if ((array->type->array_size() > 0)
1592 && (array->type->array_size() <= idx)) {
1593 bound = array->type->array_size();
1594 }
1595 }
1596
1597 if (bound > 0) {
1598 _mesa_glsl_error(& loc, state, "%s index must be < %u",
1599 type_name, bound);
1600 error_emitted = true;
1601 } else if (idx < 0) {
1602 _mesa_glsl_error(& loc, state, "%s index must be >= 0",
1603 type_name);
1604 error_emitted = true;
1605 }
1606
1607 if (array->type->is_array()) {
1608 /* If the array is a variable dereference, it dereferences the
1609 * whole array, by definition. Use this to get the variable.
1610 *
1611 * FINISHME: Should some methods for getting / setting / testing
1612 * FINISHME: array access limits be added to ir_dereference?
1613 */
1614 ir_variable *const v = array->whole_variable_referenced();
1615 if ((v != NULL) && (unsigned(idx) > v->max_array_access)) {
1616 v->max_array_access = idx;
1617
1618 /* Check whether this access will, as a side effect, implicitly
1619 * cause the size of a built-in array to be too large.
1620 */
1621 if (check_builtin_array_max_size(v->name, idx+1, loc, state))
1622 error_emitted = true;
1623 }
1624 }
1625 } else if (array->type->array_size() == 0) {
1626 _mesa_glsl_error(&loc, state, "unsized array index must be constant");
1627 } else {
1628 if (array->type->is_array()) {
1629 /* whole_variable_referenced can return NULL if the array is a
1630 * member of a structure. In this case it is safe to not update
1631 * the max_array_access field because it is never used for fields
1632 * of structures.
1633 */
1634 ir_variable *v = array->whole_variable_referenced();
1635 if (v != NULL)
1636 v->max_array_access = array->type->array_size() - 1;
1637 }
1638 }
1639
1640 /* From page 23 (29 of the PDF) of the GLSL 1.30 spec:
1641 *
1642 * "Samplers aggregated into arrays within a shader (using square
1643 * brackets [ ]) can only be indexed with integral constant
1644 * expressions [...]."
1645 *
1646 * This restriction was added in GLSL 1.30. Shaders using earlier version
1647 * of the language should not be rejected by the compiler front-end for
1648 * using this construct. This allows useful things such as using a loop
1649 * counter as the index to an array of samplers. If the loop in unrolled,
1650 * the code should compile correctly. Instead, emit a warning.
1651 */
1652 if (array->type->is_array() &&
1653 array->type->element_type()->is_sampler() &&
1654 const_index == NULL) {
1655
1656 if (state->language_version == 100) {
1657 _mesa_glsl_warning(&loc, state,
1658 "sampler arrays indexed with non-constant "
1659 "expressions is optional in GLSL ES 1.00");
1660 } else if (state->language_version < 130) {
1661 _mesa_glsl_warning(&loc, state,
1662 "sampler arrays indexed with non-constant "
1663 "expressions is forbidden in GLSL 1.30 and "
1664 "later");
1665 } else {
1666 _mesa_glsl_error(&loc, state,
1667 "sampler arrays indexed with non-constant "
1668 "expressions is forbidden in GLSL 1.30 and "
1669 "later");
1670 error_emitted = true;
1671 }
1672 }
1673
1674 if (error_emitted)
1675 result->type = glsl_type::error_type;
1676
1677 break;
1678 }
1679
1680 case ast_function_call:
1681 /* Should *NEVER* get here. ast_function_call should always be handled
1682 * by ast_function_expression::hir.
1683 */
1684 assert(0);
1685 break;
1686
1687 case ast_identifier: {
1688 /* ast_identifier can appear several places in a full abstract syntax
1689 * tree. This particular use must be at location specified in the grammar
1690 * as 'variable_identifier'.
1691 */
1692 ir_variable *var =
1693 state->symbols->get_variable(this->primary_expression.identifier);
1694
1695 if (var != NULL) {
1696 var->used = true;
1697 result = new(ctx) ir_dereference_variable(var);
1698 } else {
1699 _mesa_glsl_error(& loc, state, "`%s' undeclared",
1700 this->primary_expression.identifier);
1701
1702 result = ir_call::get_error_instruction(ctx);
1703 error_emitted = true;
1704 }
1705 break;
1706 }
1707
1708 case ast_int_constant:
1709 result = new(ctx) ir_constant(this->primary_expression.int_constant);
1710 break;
1711
1712 case ast_uint_constant:
1713 result = new(ctx) ir_constant(this->primary_expression.uint_constant);
1714 break;
1715
1716 case ast_float_constant:
1717 result = new(ctx) ir_constant(this->primary_expression.float_constant);
1718 break;
1719
1720 case ast_bool_constant:
1721 result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant));
1722 break;
1723
1724 case ast_sequence: {
1725 /* It should not be possible to generate a sequence in the AST without
1726 * any expressions in it.
1727 */
1728 assert(!this->expressions.is_empty());
1729
1730 /* The r-value of a sequence is the last expression in the sequence. If
1731 * the other expressions in the sequence do not have side-effects (and
1732 * therefore add instructions to the instruction list), they get dropped
1733 * on the floor.
1734 */
1735 exec_node *previous_tail_pred = NULL;
1736 YYLTYPE previous_operand_loc = loc;
1737
1738 foreach_list_typed (ast_node, ast, link, &this->expressions) {
1739 /* If one of the operands of comma operator does not generate any
1740 * code, we want to emit a warning. At each pass through the loop
1741 * previous_tail_pred will point to the last instruction in the
1742 * stream *before* processing the previous operand. Naturally,
1743 * instructions->tail_pred will point to the last instruction in the
1744 * stream *after* processing the previous operand. If the two
1745 * pointers match, then the previous operand had no effect.
1746 *
1747 * The warning behavior here differs slightly from GCC. GCC will
1748 * only emit a warning if none of the left-hand operands have an
1749 * effect. However, it will emit a warning for each. I believe that
1750 * there are some cases in C (especially with GCC extensions) where
1751 * it is useful to have an intermediate step in a sequence have no
1752 * effect, but I don't think these cases exist in GLSL. Either way,
1753 * it would be a giant hassle to replicate that behavior.
1754 */
1755 if (previous_tail_pred == instructions->tail_pred) {
1756 _mesa_glsl_warning(&previous_operand_loc, state,
1757 "left-hand operand of comma expression has "
1758 "no effect");
1759 }
1760
1761 /* tail_pred is directly accessed instead of using the get_tail()
1762 * method for performance reasons. get_tail() has extra code to
1763 * return NULL when the list is empty. We don't care about that
1764 * here, so using tail_pred directly is fine.
1765 */
1766 previous_tail_pred = instructions->tail_pred;
1767 previous_operand_loc = ast->get_location();
1768
1769 result = ast->hir(instructions, state);
1770 }
1771
1772 /* Any errors should have already been emitted in the loop above.
1773 */
1774 error_emitted = true;
1775 break;
1776 }
1777 }
1778 type = NULL; /* use result->type, not type. */
1779 assert(result != NULL);
1780
1781 if (result->type->is_error() && !error_emitted)
1782 _mesa_glsl_error(& loc, state, "type mismatch");
1783
1784 return result;
1785 }
1786
1787
1788 ir_rvalue *
1789 ast_expression_statement::hir(exec_list *instructions,
1790 struct _mesa_glsl_parse_state *state)
1791 {
1792 /* It is possible to have expression statements that don't have an
1793 * expression. This is the solitary semicolon:
1794 *
1795 * for (i = 0; i < 5; i++)
1796 * ;
1797 *
1798 * In this case the expression will be NULL. Test for NULL and don't do
1799 * anything in that case.
1800 */
1801 if (expression != NULL)
1802 expression->hir(instructions, state);
1803
1804 /* Statements do not have r-values.
1805 */
1806 return NULL;
1807 }
1808
1809
1810 ir_rvalue *
1811 ast_compound_statement::hir(exec_list *instructions,
1812 struct _mesa_glsl_parse_state *state)
1813 {
1814 if (new_scope)
1815 state->symbols->push_scope();
1816
1817 foreach_list_typed (ast_node, ast, link, &this->statements)
1818 ast->hir(instructions, state);
1819
1820 if (new_scope)
1821 state->symbols->pop_scope();
1822
1823 /* Compound statements do not have r-values.
1824 */
1825 return NULL;
1826 }
1827
1828
1829 static const glsl_type *
1830 process_array_type(YYLTYPE *loc, const glsl_type *base, ast_node *array_size,
1831 struct _mesa_glsl_parse_state *state)
1832 {
1833 unsigned length = 0;
1834
1835 /* From page 19 (page 25) of the GLSL 1.20 spec:
1836 *
1837 * "Only one-dimensional arrays may be declared."
1838 */
1839 if (base->is_array()) {
1840 _mesa_glsl_error(loc, state,
1841 "invalid array of `%s' (only one-dimensional arrays "
1842 "may be declared)",
1843 base->name);
1844 return glsl_type::error_type;
1845 }
1846
1847 if (array_size != NULL) {
1848 exec_list dummy_instructions;
1849 ir_rvalue *const ir = array_size->hir(& dummy_instructions, state);
1850 YYLTYPE loc = array_size->get_location();
1851
1852 if (ir != NULL) {
1853 if (!ir->type->is_integer()) {
1854 _mesa_glsl_error(& loc, state, "array size must be integer type");
1855 } else if (!ir->type->is_scalar()) {
1856 _mesa_glsl_error(& loc, state, "array size must be scalar type");
1857 } else {
1858 ir_constant *const size = ir->constant_expression_value();
1859
1860 if (size == NULL) {
1861 _mesa_glsl_error(& loc, state, "array size must be a "
1862 "constant valued expression");
1863 } else if (size->value.i[0] <= 0) {
1864 _mesa_glsl_error(& loc, state, "array size must be > 0");
1865 } else {
1866 assert(size->type == ir->type);
1867 length = size->value.u[0];
1868
1869 /* If the array size is const (and we've verified that
1870 * it is) then no instructions should have been emitted
1871 * when we converted it to HIR. If they were emitted,
1872 * then either the array size isn't const after all, or
1873 * we are emitting unnecessary instructions.
1874 */
1875 assert(dummy_instructions.is_empty());
1876 }
1877 }
1878 }
1879 } else if (state->es_shader) {
1880 /* Section 10.17 of the GLSL ES 1.00 specification states that unsized
1881 * array declarations have been removed from the language.
1882 */
1883 _mesa_glsl_error(loc, state, "unsized array declarations are not "
1884 "allowed in GLSL ES 1.00.");
1885 }
1886
1887 return glsl_type::get_array_instance(base, length);
1888 }
1889
1890
1891 const glsl_type *
1892 ast_type_specifier::glsl_type(const char **name,
1893 struct _mesa_glsl_parse_state *state) const
1894 {
1895 const struct glsl_type *type;
1896
1897 type = state->symbols->get_type(this->type_name);
1898 *name = this->type_name;
1899
1900 if (this->is_array) {
1901 YYLTYPE loc = this->get_location();
1902 type = process_array_type(&loc, type, this->array_size, state);
1903 }
1904
1905 return type;
1906 }
1907
1908
1909 static void
1910 apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
1911 ir_variable *var,
1912 struct _mesa_glsl_parse_state *state,
1913 YYLTYPE *loc)
1914 {
1915 if (qual->flags.q.invariant) {
1916 if (var->used) {
1917 _mesa_glsl_error(loc, state,
1918 "variable `%s' may not be redeclared "
1919 "`invariant' after being used",
1920 var->name);
1921 } else {
1922 var->invariant = 1;
1923 }
1924 }
1925
1926 if (qual->flags.q.constant || qual->flags.q.attribute
1927 || qual->flags.q.uniform
1928 || (qual->flags.q.varying && (state->target == fragment_shader)))
1929 var->read_only = 1;
1930
1931 if (qual->flags.q.centroid)
1932 var->centroid = 1;
1933
1934 if (qual->flags.q.attribute && state->target != vertex_shader) {
1935 var->type = glsl_type::error_type;
1936 _mesa_glsl_error(loc, state,
1937 "`attribute' variables may not be declared in the "
1938 "%s shader",
1939 _mesa_glsl_shader_target_name(state->target));
1940 }
1941
1942 /* From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
1943 *
1944 * "The varying qualifier can be used only with the data types
1945 * float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
1946 * these."
1947 */
1948 if (qual->flags.q.varying) {
1949 const glsl_type *non_array_type;
1950
1951 if (var->type && var->type->is_array())
1952 non_array_type = var->type->fields.array;
1953 else
1954 non_array_type = var->type;
1955
1956 if (non_array_type && non_array_type->base_type != GLSL_TYPE_FLOAT) {
1957 var->type = glsl_type::error_type;
1958 _mesa_glsl_error(loc, state,
1959 "varying variables must be of base type float");
1960 }
1961 }
1962
1963 /* If there is no qualifier that changes the mode of the variable, leave
1964 * the setting alone.
1965 */
1966 if (qual->flags.q.in && qual->flags.q.out)
1967 var->mode = ir_var_inout;
1968 else if (qual->flags.q.attribute || qual->flags.q.in
1969 || (qual->flags.q.varying && (state->target == fragment_shader)))
1970 var->mode = ir_var_in;
1971 else if (qual->flags.q.out
1972 || (qual->flags.q.varying && (state->target == vertex_shader)))
1973 var->mode = ir_var_out;
1974 else if (qual->flags.q.uniform)
1975 var->mode = ir_var_uniform;
1976
1977 if (state->all_invariant && (state->current_function == NULL)) {
1978 switch (state->target) {
1979 case vertex_shader:
1980 if (var->mode == ir_var_out)
1981 var->invariant = true;
1982 break;
1983 case geometry_shader:
1984 if ((var->mode == ir_var_in) || (var->mode == ir_var_out))
1985 var->invariant = true;
1986 break;
1987 case fragment_shader:
1988 if (var->mode == ir_var_in)
1989 var->invariant = true;
1990 break;
1991 }
1992 }
1993
1994 if (qual->flags.q.flat)
1995 var->interpolation = INTERP_QUALIFIER_FLAT;
1996 else if (qual->flags.q.noperspective)
1997 var->interpolation = INTERP_QUALIFIER_NOPERSPECTIVE;
1998 else if (qual->flags.q.smooth)
1999 var->interpolation = INTERP_QUALIFIER_SMOOTH;
2000 else
2001 var->interpolation = INTERP_QUALIFIER_NONE;
2002
2003 if (var->interpolation != INTERP_QUALIFIER_NONE &&
2004 !(state->target == vertex_shader && var->mode == ir_var_out) &&
2005 !(state->target == fragment_shader && var->mode == ir_var_in)) {
2006 const char *qual_string = NULL;
2007 switch (var->interpolation) {
2008 case INTERP_QUALIFIER_FLAT:
2009 qual_string = "flat";
2010 break;
2011 case INTERP_QUALIFIER_NOPERSPECTIVE:
2012 qual_string = "noperspective";
2013 break;
2014 case INTERP_QUALIFIER_SMOOTH:
2015 qual_string = "smooth";
2016 break;
2017 }
2018
2019 _mesa_glsl_error(loc, state,
2020 "interpolation qualifier `%s' can only be applied to "
2021 "vertex shader outputs and fragment shader inputs.",
2022 qual_string);
2023
2024 }
2025
2026 var->pixel_center_integer = qual->flags.q.pixel_center_integer;
2027 var->origin_upper_left = qual->flags.q.origin_upper_left;
2028 if ((qual->flags.q.origin_upper_left || qual->flags.q.pixel_center_integer)
2029 && (strcmp(var->name, "gl_FragCoord") != 0)) {
2030 const char *const qual_string = (qual->flags.q.origin_upper_left)
2031 ? "origin_upper_left" : "pixel_center_integer";
2032
2033 _mesa_glsl_error(loc, state,
2034 "layout qualifier `%s' can only be applied to "
2035 "fragment shader input `gl_FragCoord'",
2036 qual_string);
2037 }
2038
2039 if (qual->flags.q.explicit_location) {
2040 const bool global_scope = (state->current_function == NULL);
2041 bool fail = false;
2042 const char *string = "";
2043
2044 /* In the vertex shader only shader inputs can be given explicit
2045 * locations.
2046 *
2047 * In the fragment shader only shader outputs can be given explicit
2048 * locations.
2049 */
2050 switch (state->target) {
2051 case vertex_shader:
2052 if (!global_scope || (var->mode != ir_var_in)) {
2053 fail = true;
2054 string = "input";
2055 }
2056 break;
2057
2058 case geometry_shader:
2059 _mesa_glsl_error(loc, state,
2060 "geometry shader variables cannot be given "
2061 "explicit locations\n");
2062 break;
2063
2064 case fragment_shader:
2065 if (!global_scope || (var->mode != ir_var_out)) {
2066 fail = true;
2067 string = "output";
2068 }
2069 break;
2070 };
2071
2072 if (fail) {
2073 _mesa_glsl_error(loc, state,
2074 "only %s shader %s variables can be given an "
2075 "explicit location\n",
2076 _mesa_glsl_shader_target_name(state->target),
2077 string);
2078 } else {
2079 var->explicit_location = true;
2080
2081 /* This bit of silliness is needed because invalid explicit locations
2082 * are supposed to be flagged during linking. Small negative values
2083 * biased by VERT_ATTRIB_GENERIC0 or FRAG_RESULT_DATA0 could alias
2084 * built-in values (e.g., -16+VERT_ATTRIB_GENERIC0 = VERT_ATTRIB_POS).
2085 * The linker needs to be able to differentiate these cases. This
2086 * ensures that negative values stay negative.
2087 */
2088 if (qual->location >= 0) {
2089 var->location = (state->target == vertex_shader)
2090 ? (qual->location + VERT_ATTRIB_GENERIC0)
2091 : (qual->location + FRAG_RESULT_DATA0);
2092 } else {
2093 var->location = qual->location;
2094 }
2095 }
2096 }
2097
2098 /* Does the declaration use the 'layout' keyword?
2099 */
2100 const bool uses_layout = qual->flags.q.pixel_center_integer
2101 || qual->flags.q.origin_upper_left
2102 || qual->flags.q.explicit_location;
2103
2104 /* Does the declaration use the deprecated 'attribute' or 'varying'
2105 * keywords?
2106 */
2107 const bool uses_deprecated_qualifier = qual->flags.q.attribute
2108 || qual->flags.q.varying;
2109
2110 /* Is the 'layout' keyword used with parameters that allow relaxed checking.
2111 * Many implementations of GL_ARB_fragment_coord_conventions_enable and some
2112 * implementations (only Mesa?) GL_ARB_explicit_attrib_location_enable
2113 * allowed the layout qualifier to be used with 'varying' and 'attribute'.
2114 * These extensions and all following extensions that add the 'layout'
2115 * keyword have been modified to require the use of 'in' or 'out'.
2116 *
2117 * The following extension do not allow the deprecated keywords:
2118 *
2119 * GL_AMD_conservative_depth
2120 * GL_ARB_conservative_depth
2121 * GL_ARB_gpu_shader5
2122 * GL_ARB_separate_shader_objects
2123 * GL_ARB_tesselation_shader
2124 * GL_ARB_transform_feedback3
2125 * GL_ARB_uniform_buffer_object
2126 *
2127 * It is unknown whether GL_EXT_shader_image_load_store or GL_NV_gpu_shader5
2128 * allow layout with the deprecated keywords.
2129 */
2130 const bool relaxed_layout_qualifier_checking =
2131 state->ARB_fragment_coord_conventions_enable;
2132
2133 if (uses_layout && uses_deprecated_qualifier) {
2134 if (relaxed_layout_qualifier_checking) {
2135 _mesa_glsl_warning(loc, state,
2136 "`layout' qualifier may not be used with "
2137 "`attribute' or `varying'");
2138 } else {
2139 _mesa_glsl_error(loc, state,
2140 "`layout' qualifier may not be used with "
2141 "`attribute' or `varying'");
2142 }
2143 }
2144
2145 /* Layout qualifiers for gl_FragDepth, which are enabled by extension
2146 * AMD_conservative_depth.
2147 */
2148 int depth_layout_count = qual->flags.q.depth_any
2149 + qual->flags.q.depth_greater
2150 + qual->flags.q.depth_less
2151 + qual->flags.q.depth_unchanged;
2152 if (depth_layout_count > 0
2153 && !state->AMD_conservative_depth_enable
2154 && !state->ARB_conservative_depth_enable) {
2155 _mesa_glsl_error(loc, state,
2156 "extension GL_AMD_conservative_depth or "
2157 "GL_ARB_conservative_depth must be enabled "
2158 "to use depth layout qualifiers");
2159 } else if (depth_layout_count > 0
2160 && strcmp(var->name, "gl_FragDepth") != 0) {
2161 _mesa_glsl_error(loc, state,
2162 "depth layout qualifiers can be applied only to "
2163 "gl_FragDepth");
2164 } else if (depth_layout_count > 1
2165 && strcmp(var->name, "gl_FragDepth") == 0) {
2166 _mesa_glsl_error(loc, state,
2167 "at most one depth layout qualifier can be applied to "
2168 "gl_FragDepth");
2169 }
2170 if (qual->flags.q.depth_any)
2171 var->depth_layout = ir_depth_layout_any;
2172 else if (qual->flags.q.depth_greater)
2173 var->depth_layout = ir_depth_layout_greater;
2174 else if (qual->flags.q.depth_less)
2175 var->depth_layout = ir_depth_layout_less;
2176 else if (qual->flags.q.depth_unchanged)
2177 var->depth_layout = ir_depth_layout_unchanged;
2178 else
2179 var->depth_layout = ir_depth_layout_none;
2180 }
2181
2182 /**
2183 * Get the variable that is being redeclared by this declaration
2184 *
2185 * Semantic checks to verify the validity of the redeclaration are also
2186 * performed. If semantic checks fail, compilation error will be emitted via
2187 * \c _mesa_glsl_error, but a non-\c NULL pointer will still be returned.
2188 *
2189 * \returns
2190 * A pointer to an existing variable in the current scope if the declaration
2191 * is a redeclaration, \c NULL otherwise.
2192 */
2193 ir_variable *
2194 get_variable_being_redeclared(ir_variable *var, ast_declaration *decl,
2195 struct _mesa_glsl_parse_state *state)
2196 {
2197 /* Check if this declaration is actually a re-declaration, either to
2198 * resize an array or add qualifiers to an existing variable.
2199 *
2200 * This is allowed for variables in the current scope, or when at
2201 * global scope (for built-ins in the implicit outer scope).
2202 */
2203 ir_variable *earlier = state->symbols->get_variable(decl->identifier);
2204 if (earlier == NULL ||
2205 (state->current_function != NULL &&
2206 !state->symbols->name_declared_this_scope(decl->identifier))) {
2207 return NULL;
2208 }
2209
2210
2211 YYLTYPE loc = decl->get_location();
2212
2213 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
2214 *
2215 * "It is legal to declare an array without a size and then
2216 * later re-declare the same name as an array of the same
2217 * type and specify a size."
2218 */
2219 if ((earlier->type->array_size() == 0)
2220 && var->type->is_array()
2221 && (var->type->element_type() == earlier->type->element_type())) {
2222 /* FINISHME: This doesn't match the qualifiers on the two
2223 * FINISHME: declarations. It's not 100% clear whether this is
2224 * FINISHME: required or not.
2225 */
2226
2227 const unsigned size = unsigned(var->type->array_size());
2228 check_builtin_array_max_size(var->name, size, loc, state);
2229 if ((size > 0) && (size <= earlier->max_array_access)) {
2230 _mesa_glsl_error(& loc, state, "array size must be > %u due to "
2231 "previous access",
2232 earlier->max_array_access);
2233 }
2234
2235 earlier->type = var->type;
2236 delete var;
2237 var = NULL;
2238 } else if (state->ARB_fragment_coord_conventions_enable
2239 && strcmp(var->name, "gl_FragCoord") == 0
2240 && earlier->type == var->type
2241 && earlier->mode == var->mode) {
2242 /* Allow redeclaration of gl_FragCoord for ARB_fcc layout
2243 * qualifiers.
2244 */
2245 earlier->origin_upper_left = var->origin_upper_left;
2246 earlier->pixel_center_integer = var->pixel_center_integer;
2247
2248 /* According to section 4.3.7 of the GLSL 1.30 spec,
2249 * the following built-in varaibles can be redeclared with an
2250 * interpolation qualifier:
2251 * * gl_FrontColor
2252 * * gl_BackColor
2253 * * gl_FrontSecondaryColor
2254 * * gl_BackSecondaryColor
2255 * * gl_Color
2256 * * gl_SecondaryColor
2257 */
2258 } else if (state->language_version >= 130
2259 && (strcmp(var->name, "gl_FrontColor") == 0
2260 || strcmp(var->name, "gl_BackColor") == 0
2261 || strcmp(var->name, "gl_FrontSecondaryColor") == 0
2262 || strcmp(var->name, "gl_BackSecondaryColor") == 0
2263 || strcmp(var->name, "gl_Color") == 0
2264 || strcmp(var->name, "gl_SecondaryColor") == 0)
2265 && earlier->type == var->type
2266 && earlier->mode == var->mode) {
2267 earlier->interpolation = var->interpolation;
2268
2269 /* Layout qualifiers for gl_FragDepth. */
2270 } else if ((state->AMD_conservative_depth_enable ||
2271 state->ARB_conservative_depth_enable)
2272 && strcmp(var->name, "gl_FragDepth") == 0
2273 && earlier->type == var->type
2274 && earlier->mode == var->mode) {
2275
2276 /** From the AMD_conservative_depth spec:
2277 * Within any shader, the first redeclarations of gl_FragDepth
2278 * must appear before any use of gl_FragDepth.
2279 */
2280 if (earlier->used) {
2281 _mesa_glsl_error(&loc, state,
2282 "the first redeclaration of gl_FragDepth "
2283 "must appear before any use of gl_FragDepth");
2284 }
2285
2286 /* Prevent inconsistent redeclaration of depth layout qualifier. */
2287 if (earlier->depth_layout != ir_depth_layout_none
2288 && earlier->depth_layout != var->depth_layout) {
2289 _mesa_glsl_error(&loc, state,
2290 "gl_FragDepth: depth layout is declared here "
2291 "as '%s, but it was previously declared as "
2292 "'%s'",
2293 depth_layout_string(var->depth_layout),
2294 depth_layout_string(earlier->depth_layout));
2295 }
2296
2297 earlier->depth_layout = var->depth_layout;
2298
2299 } else {
2300 _mesa_glsl_error(&loc, state, "`%s' redeclared", decl->identifier);
2301 }
2302
2303 return earlier;
2304 }
2305
2306 /**
2307 * Generate the IR for an initializer in a variable declaration
2308 */
2309 ir_rvalue *
2310 process_initializer(ir_variable *var, ast_declaration *decl,
2311 ast_fully_specified_type *type,
2312 exec_list *initializer_instructions,
2313 struct _mesa_glsl_parse_state *state)
2314 {
2315 ir_rvalue *result = NULL;
2316
2317 YYLTYPE initializer_loc = decl->initializer->get_location();
2318
2319 /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
2320 *
2321 * "All uniform variables are read-only and are initialized either
2322 * directly by an application via API commands, or indirectly by
2323 * OpenGL."
2324 */
2325 if ((state->language_version <= 110)
2326 && (var->mode == ir_var_uniform)) {
2327 _mesa_glsl_error(& initializer_loc, state,
2328 "cannot initialize uniforms in GLSL 1.10");
2329 }
2330
2331 if (var->type->is_sampler()) {
2332 _mesa_glsl_error(& initializer_loc, state,
2333 "cannot initialize samplers");
2334 }
2335
2336 if ((var->mode == ir_var_in) && (state->current_function == NULL)) {
2337 _mesa_glsl_error(& initializer_loc, state,
2338 "cannot initialize %s shader input / %s",
2339 _mesa_glsl_shader_target_name(state->target),
2340 (state->target == vertex_shader)
2341 ? "attribute" : "varying");
2342 }
2343
2344 ir_dereference *const lhs = new(state) ir_dereference_variable(var);
2345 ir_rvalue *rhs = decl->initializer->hir(initializer_instructions,
2346 state);
2347
2348 /* Calculate the constant value if this is a const or uniform
2349 * declaration.
2350 */
2351 if (type->qualifier.flags.q.constant
2352 || type->qualifier.flags.q.uniform) {
2353 ir_rvalue *new_rhs = validate_assignment(state, var->type, rhs, true);
2354 if (new_rhs != NULL) {
2355 rhs = new_rhs;
2356
2357 ir_constant *constant_value = rhs->constant_expression_value();
2358 if (!constant_value) {
2359 _mesa_glsl_error(& initializer_loc, state,
2360 "initializer of %s variable `%s' must be a "
2361 "constant expression",
2362 (type->qualifier.flags.q.constant)
2363 ? "const" : "uniform",
2364 decl->identifier);
2365 if (var->type->is_numeric()) {
2366 /* Reduce cascading errors. */
2367 var->constant_value = ir_constant::zero(state, var->type);
2368 }
2369 } else {
2370 rhs = constant_value;
2371 var->constant_value = constant_value;
2372 }
2373 } else {
2374 _mesa_glsl_error(&initializer_loc, state,
2375 "initializer of type %s cannot be assigned to "
2376 "variable of type %s",
2377 rhs->type->name, var->type->name);
2378 if (var->type->is_numeric()) {
2379 /* Reduce cascading errors. */
2380 var->constant_value = ir_constant::zero(state, var->type);
2381 }
2382 }
2383 }
2384
2385 if (rhs && !rhs->type->is_error()) {
2386 bool temp = var->read_only;
2387 if (type->qualifier.flags.q.constant)
2388 var->read_only = false;
2389
2390 /* Never emit code to initialize a uniform.
2391 */
2392 const glsl_type *initializer_type;
2393 if (!type->qualifier.flags.q.uniform) {
2394 result = do_assignment(initializer_instructions, state,
2395 NULL,
2396 lhs, rhs, true,
2397 type->get_location());
2398 initializer_type = result->type;
2399 } else
2400 initializer_type = rhs->type;
2401
2402 var->constant_initializer = rhs->constant_expression_value();
2403 var->has_initializer = true;
2404
2405 /* If the declared variable is an unsized array, it must inherrit
2406 * its full type from the initializer. A declaration such as
2407 *
2408 * uniform float a[] = float[](1.0, 2.0, 3.0, 3.0);
2409 *
2410 * becomes
2411 *
2412 * uniform float a[4] = float[](1.0, 2.0, 3.0, 3.0);
2413 *
2414 * The assignment generated in the if-statement (below) will also
2415 * automatically handle this case for non-uniforms.
2416 *
2417 * If the declared variable is not an array, the types must
2418 * already match exactly. As a result, the type assignment
2419 * here can be done unconditionally. For non-uniforms the call
2420 * to do_assignment can change the type of the initializer (via
2421 * the implicit conversion rules). For uniforms the initializer
2422 * must be a constant expression, and the type of that expression
2423 * was validated above.
2424 */
2425 var->type = initializer_type;
2426
2427 var->read_only = temp;
2428 }
2429
2430 return result;
2431 }
2432
2433 ir_rvalue *
2434 ast_declarator_list::hir(exec_list *instructions,
2435 struct _mesa_glsl_parse_state *state)
2436 {
2437 void *ctx = state;
2438 const struct glsl_type *decl_type;
2439 const char *type_name = NULL;
2440 ir_rvalue *result = NULL;
2441 YYLTYPE loc = this->get_location();
2442
2443 /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec:
2444 *
2445 * "To ensure that a particular output variable is invariant, it is
2446 * necessary to use the invariant qualifier. It can either be used to
2447 * qualify a previously declared variable as being invariant
2448 *
2449 * invariant gl_Position; // make existing gl_Position be invariant"
2450 *
2451 * In these cases the parser will set the 'invariant' flag in the declarator
2452 * list, and the type will be NULL.
2453 */
2454 if (this->invariant) {
2455 assert(this->type == NULL);
2456
2457 if (state->current_function != NULL) {
2458 _mesa_glsl_error(& loc, state,
2459 "All uses of `invariant' keyword must be at global "
2460 "scope\n");
2461 }
2462
2463 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
2464 assert(!decl->is_array);
2465 assert(decl->array_size == NULL);
2466 assert(decl->initializer == NULL);
2467
2468 ir_variable *const earlier =
2469 state->symbols->get_variable(decl->identifier);
2470 if (earlier == NULL) {
2471 _mesa_glsl_error(& loc, state,
2472 "Undeclared variable `%s' cannot be marked "
2473 "invariant\n", decl->identifier);
2474 } else if ((state->target == vertex_shader)
2475 && (earlier->mode != ir_var_out)) {
2476 _mesa_glsl_error(& loc, state,
2477 "`%s' cannot be marked invariant, vertex shader "
2478 "outputs only\n", decl->identifier);
2479 } else if ((state->target == fragment_shader)
2480 && (earlier->mode != ir_var_in)) {
2481 _mesa_glsl_error(& loc, state,
2482 "`%s' cannot be marked invariant, fragment shader "
2483 "inputs only\n", decl->identifier);
2484 } else if (earlier->used) {
2485 _mesa_glsl_error(& loc, state,
2486 "variable `%s' may not be redeclared "
2487 "`invariant' after being used",
2488 earlier->name);
2489 } else {
2490 earlier->invariant = true;
2491 }
2492 }
2493
2494 /* Invariant redeclarations do not have r-values.
2495 */
2496 return NULL;
2497 }
2498
2499 assert(this->type != NULL);
2500 assert(!this->invariant);
2501
2502 /* The type specifier may contain a structure definition. Process that
2503 * before any of the variable declarations.
2504 */
2505 (void) this->type->specifier->hir(instructions, state);
2506
2507 decl_type = this->type->specifier->glsl_type(& type_name, state);
2508 if (this->declarations.is_empty()) {
2509 /* If there is no structure involved in the program text, there are two
2510 * possible scenarios:
2511 *
2512 * - The program text contained something like 'vec4;'. This is an
2513 * empty declaration. It is valid but weird. Emit a warning.
2514 *
2515 * - The program text contained something like 'S;' and 'S' is not the
2516 * name of a known structure type. This is both invalid and weird.
2517 * Emit an error.
2518 *
2519 * Note that if decl_type is NULL and there is a structure involved,
2520 * there must have been some sort of error with the structure. In this
2521 * case we assume that an error was already generated on this line of
2522 * code for the structure. There is no need to generate an additional,
2523 * confusing error.
2524 */
2525 assert(this->type->specifier->structure == NULL || decl_type != NULL
2526 || state->error);
2527 if (this->type->specifier->structure == NULL) {
2528 if (decl_type != NULL) {
2529 _mesa_glsl_warning(&loc, state, "empty declaration");
2530 } else {
2531 _mesa_glsl_error(&loc, state,
2532 "invalid type `%s' in empty declaration",
2533 type_name);
2534 }
2535 }
2536 }
2537
2538 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
2539 const struct glsl_type *var_type;
2540 ir_variable *var;
2541
2542 /* FINISHME: Emit a warning if a variable declaration shadows a
2543 * FINISHME: declaration at a higher scope.
2544 */
2545
2546 if ((decl_type == NULL) || decl_type->is_void()) {
2547 if (type_name != NULL) {
2548 _mesa_glsl_error(& loc, state,
2549 "invalid type `%s' in declaration of `%s'",
2550 type_name, decl->identifier);
2551 } else {
2552 _mesa_glsl_error(& loc, state,
2553 "invalid type in declaration of `%s'",
2554 decl->identifier);
2555 }
2556 continue;
2557 }
2558
2559 if (decl->is_array) {
2560 var_type = process_array_type(&loc, decl_type, decl->array_size,
2561 state);
2562 if (var_type->is_error())
2563 continue;
2564 } else {
2565 var_type = decl_type;
2566 }
2567
2568 var = new(ctx) ir_variable(var_type, decl->identifier, ir_var_auto);
2569
2570 /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
2571 *
2572 * "Global variables can only use the qualifiers const,
2573 * attribute, uni form, or varying. Only one may be
2574 * specified.
2575 *
2576 * Local variables can only use the qualifier const."
2577 *
2578 * This is relaxed in GLSL 1.30. It is also relaxed by any extension
2579 * that adds the 'layout' keyword.
2580 */
2581 if ((state->language_version < 130)
2582 && !state->ARB_explicit_attrib_location_enable
2583 && !state->ARB_fragment_coord_conventions_enable) {
2584 if (this->type->qualifier.flags.q.out) {
2585 _mesa_glsl_error(& loc, state,
2586 "`out' qualifier in declaration of `%s' "
2587 "only valid for function parameters in %s.",
2588 decl->identifier, state->version_string);
2589 }
2590 if (this->type->qualifier.flags.q.in) {
2591 _mesa_glsl_error(& loc, state,
2592 "`in' qualifier in declaration of `%s' "
2593 "only valid for function parameters in %s.",
2594 decl->identifier, state->version_string);
2595 }
2596 /* FINISHME: Test for other invalid qualifiers. */
2597 }
2598
2599 apply_type_qualifier_to_variable(& this->type->qualifier, var, state,
2600 & loc);
2601
2602 if (this->type->qualifier.flags.q.invariant) {
2603 if ((state->target == vertex_shader) && !(var->mode == ir_var_out ||
2604 var->mode == ir_var_inout)) {
2605 /* FINISHME: Note that this doesn't work for invariant on
2606 * a function signature outval
2607 */
2608 _mesa_glsl_error(& loc, state,
2609 "`%s' cannot be marked invariant, vertex shader "
2610 "outputs only\n", var->name);
2611 } else if ((state->target == fragment_shader) &&
2612 !(var->mode == ir_var_in || var->mode == ir_var_inout)) {
2613 /* FINISHME: Note that this doesn't work for invariant on
2614 * a function signature inval
2615 */
2616 _mesa_glsl_error(& loc, state,
2617 "`%s' cannot be marked invariant, fragment shader "
2618 "inputs only\n", var->name);
2619 }
2620 }
2621
2622 if (state->current_function != NULL) {
2623 const char *mode = NULL;
2624 const char *extra = "";
2625
2626 /* There is no need to check for 'inout' here because the parser will
2627 * only allow that in function parameter lists.
2628 */
2629 if (this->type->qualifier.flags.q.attribute) {
2630 mode = "attribute";
2631 } else if (this->type->qualifier.flags.q.uniform) {
2632 mode = "uniform";
2633 } else if (this->type->qualifier.flags.q.varying) {
2634 mode = "varying";
2635 } else if (this->type->qualifier.flags.q.in) {
2636 mode = "in";
2637 extra = " or in function parameter list";
2638 } else if (this->type->qualifier.flags.q.out) {
2639 mode = "out";
2640 extra = " or in function parameter list";
2641 }
2642
2643 if (mode) {
2644 _mesa_glsl_error(& loc, state,
2645 "%s variable `%s' must be declared at "
2646 "global scope%s",
2647 mode, var->name, extra);
2648 }
2649 } else if (var->mode == ir_var_in) {
2650 var->read_only = true;
2651
2652 if (state->target == vertex_shader) {
2653 bool error_emitted = false;
2654
2655 /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
2656 *
2657 * "Vertex shader inputs can only be float, floating-point
2658 * vectors, matrices, signed and unsigned integers and integer
2659 * vectors. Vertex shader inputs can also form arrays of these
2660 * types, but not structures."
2661 *
2662 * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
2663 *
2664 * "Vertex shader inputs can only be float, floating-point
2665 * vectors, matrices, signed and unsigned integers and integer
2666 * vectors. They cannot be arrays or structures."
2667 *
2668 * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
2669 *
2670 * "The attribute qualifier can be used only with float,
2671 * floating-point vectors, and matrices. Attribute variables
2672 * cannot be declared as arrays or structures."
2673 */
2674 const glsl_type *check_type = var->type->is_array()
2675 ? var->type->fields.array : var->type;
2676
2677 switch (check_type->base_type) {
2678 case GLSL_TYPE_FLOAT:
2679 break;
2680 case GLSL_TYPE_UINT:
2681 case GLSL_TYPE_INT:
2682 if (state->language_version > 120)
2683 break;
2684 /* FALLTHROUGH */
2685 default:
2686 _mesa_glsl_error(& loc, state,
2687 "vertex shader input / attribute cannot have "
2688 "type %s`%s'",
2689 var->type->is_array() ? "array of " : "",
2690 check_type->name);
2691 error_emitted = true;
2692 }
2693
2694 if (!error_emitted && (state->language_version <= 130)
2695 && var->type->is_array()) {
2696 _mesa_glsl_error(& loc, state,
2697 "vertex shader input / attribute cannot have "
2698 "array type");
2699 error_emitted = true;
2700 }
2701 }
2702 }
2703
2704 /* Integer vertex outputs must be qualified with 'flat'.
2705 *
2706 * From section 4.3.6 of the GLSL 1.30 spec:
2707 * "If a vertex output is a signed or unsigned integer or integer
2708 * vector, then it must be qualified with the interpolation qualifier
2709 * flat."
2710 */
2711 if (state->language_version >= 130
2712 && state->target == vertex_shader
2713 && state->current_function == NULL
2714 && var->type->is_integer()
2715 && var->mode == ir_var_out
2716 && var->interpolation != INTERP_QUALIFIER_FLAT) {
2717
2718 _mesa_glsl_error(&loc, state, "If a vertex output is an integer, "
2719 "then it must be qualified with 'flat'");
2720 }
2721
2722
2723 /* Interpolation qualifiers cannot be applied to 'centroid' and
2724 * 'centroid varying'.
2725 *
2726 * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
2727 * "interpolation qualifiers may only precede the qualifiers in,
2728 * centroid in, out, or centroid out in a declaration. They do not apply
2729 * to the deprecated storage qualifiers varying or centroid varying."
2730 */
2731 if (state->language_version >= 130
2732 && this->type->qualifier.has_interpolation()
2733 && this->type->qualifier.flags.q.varying) {
2734
2735 const char *i = this->type->qualifier.interpolation_string();
2736 assert(i != NULL);
2737 const char *s;
2738 if (this->type->qualifier.flags.q.centroid)
2739 s = "centroid varying";
2740 else
2741 s = "varying";
2742
2743 _mesa_glsl_error(&loc, state,
2744 "qualifier '%s' cannot be applied to the "
2745 "deprecated storage qualifier '%s'", i, s);
2746 }
2747
2748
2749 /* Interpolation qualifiers can only apply to vertex shader outputs and
2750 * fragment shader inputs.
2751 *
2752 * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
2753 * "Outputs from a vertex shader (out) and inputs to a fragment
2754 * shader (in) can be further qualified with one or more of these
2755 * interpolation qualifiers"
2756 */
2757 if (state->language_version >= 130
2758 && this->type->qualifier.has_interpolation()) {
2759
2760 const char *i = this->type->qualifier.interpolation_string();
2761 assert(i != NULL);
2762
2763 switch (state->target) {
2764 case vertex_shader:
2765 if (this->type->qualifier.flags.q.in) {
2766 _mesa_glsl_error(&loc, state,
2767 "qualifier '%s' cannot be applied to vertex "
2768 "shader inputs", i);
2769 }
2770 break;
2771 case fragment_shader:
2772 if (this->type->qualifier.flags.q.out) {
2773 _mesa_glsl_error(&loc, state,
2774 "qualifier '%s' cannot be applied to fragment "
2775 "shader outputs", i);
2776 }
2777 break;
2778 default:
2779 assert(0);
2780 }
2781 }
2782
2783
2784 /* From section 4.3.4 of the GLSL 1.30 spec:
2785 * "It is an error to use centroid in in a vertex shader."
2786 */
2787 if (state->language_version >= 130
2788 && this->type->qualifier.flags.q.centroid
2789 && this->type->qualifier.flags.q.in
2790 && state->target == vertex_shader) {
2791
2792 _mesa_glsl_error(&loc, state,
2793 "'centroid in' cannot be used in a vertex shader");
2794 }
2795
2796
2797 /* Precision qualifiers exists only in GLSL versions 1.00 and >= 1.30.
2798 */
2799 if (this->type->specifier->precision != ast_precision_none
2800 && state->language_version != 100
2801 && state->language_version < 130) {
2802
2803 _mesa_glsl_error(&loc, state,
2804 "precision qualifiers are supported only in GLSL ES "
2805 "1.00, and GLSL 1.30 and later");
2806 }
2807
2808
2809 /* Precision qualifiers only apply to floating point and integer types.
2810 *
2811 * From section 4.5.2 of the GLSL 1.30 spec:
2812 * "Any floating point or any integer declaration can have the type
2813 * preceded by one of these precision qualifiers [...] Literal
2814 * constants do not have precision qualifiers. Neither do Boolean
2815 * variables.
2816 *
2817 * In GLSL ES, sampler types are also allowed.
2818 *
2819 * From page 87 of the GLSL ES spec:
2820 * "RESOLUTION: Allow sampler types to take a precision qualifier."
2821 */
2822 if (this->type->specifier->precision != ast_precision_none
2823 && !var->type->is_float()
2824 && !var->type->is_integer()
2825 && !(var->type->is_sampler() && state->es_shader)
2826 && !(var->type->is_array()
2827 && (var->type->fields.array->is_float()
2828 || var->type->fields.array->is_integer()))) {
2829
2830 _mesa_glsl_error(&loc, state,
2831 "precision qualifiers apply only to floating point"
2832 "%s types", state->es_shader ? ", integer, and sampler"
2833 : "and integer");
2834 }
2835
2836 /* From page 17 (page 23 of the PDF) of the GLSL 1.20 spec:
2837 *
2838 * "[Sampler types] can only be declared as function
2839 * parameters or uniform variables (see Section 4.3.5
2840 * "Uniform")".
2841 */
2842 if (var_type->contains_sampler() &&
2843 !this->type->qualifier.flags.q.uniform) {
2844 _mesa_glsl_error(&loc, state, "samplers must be declared uniform");
2845 }
2846
2847 /* Process the initializer and add its instructions to a temporary
2848 * list. This list will be added to the instruction stream (below) after
2849 * the declaration is added. This is done because in some cases (such as
2850 * redeclarations) the declaration may not actually be added to the
2851 * instruction stream.
2852 */
2853 exec_list initializer_instructions;
2854 ir_variable *earlier = get_variable_being_redeclared(var, decl, state);
2855
2856 if (decl->initializer != NULL) {
2857 result = process_initializer((earlier == NULL) ? var : earlier,
2858 decl, this->type,
2859 &initializer_instructions, state);
2860 }
2861
2862 /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
2863 *
2864 * "It is an error to write to a const variable outside of
2865 * its declaration, so they must be initialized when
2866 * declared."
2867 */
2868 if (this->type->qualifier.flags.q.constant && decl->initializer == NULL) {
2869 _mesa_glsl_error(& loc, state,
2870 "const declaration of `%s' must be initialized",
2871 decl->identifier);
2872 }
2873
2874 /* If the declaration is not a redeclaration, there are a few additional
2875 * semantic checks that must be applied. In addition, variable that was
2876 * created for the declaration should be added to the IR stream.
2877 */
2878 if (earlier == NULL) {
2879 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
2880 *
2881 * "Identifiers starting with "gl_" are reserved for use by
2882 * OpenGL, and may not be declared in a shader as either a
2883 * variable or a function."
2884 */
2885 if (strncmp(decl->identifier, "gl_", 3) == 0)
2886 _mesa_glsl_error(& loc, state,
2887 "identifier `%s' uses reserved `gl_' prefix",
2888 decl->identifier);
2889 else if (strstr(decl->identifier, "__")) {
2890 /* From page 14 (page 20 of the PDF) of the GLSL 1.10
2891 * spec:
2892 *
2893 * "In addition, all identifiers containing two
2894 * consecutive underscores (__) are reserved as
2895 * possible future keywords."
2896 */
2897 _mesa_glsl_error(& loc, state,
2898 "identifier `%s' uses reserved `__' string",
2899 decl->identifier);
2900 }
2901
2902 /* Add the variable to the symbol table. Note that the initializer's
2903 * IR was already processed earlier (though it hasn't been emitted
2904 * yet), without the variable in scope.
2905 *
2906 * This differs from most C-like languages, but it follows the GLSL
2907 * specification. From page 28 (page 34 of the PDF) of the GLSL 1.50
2908 * spec:
2909 *
2910 * "Within a declaration, the scope of a name starts immediately
2911 * after the initializer if present or immediately after the name
2912 * being declared if not."
2913 */
2914 if (!state->symbols->add_variable(var)) {
2915 YYLTYPE loc = this->get_location();
2916 _mesa_glsl_error(&loc, state, "name `%s' already taken in the "
2917 "current scope", decl->identifier);
2918 continue;
2919 }
2920
2921 /* Push the variable declaration to the top. It means that all the
2922 * variable declarations will appear in a funny last-to-first order,
2923 * but otherwise we run into trouble if a function is prototyped, a
2924 * global var is decled, then the function is defined with usage of
2925 * the global var. See glslparsertest's CorrectModule.frag.
2926 */
2927 instructions->push_head(var);
2928 }
2929
2930 instructions->append_list(&initializer_instructions);
2931 }
2932
2933
2934 /* Generally, variable declarations do not have r-values. However,
2935 * one is used for the declaration in
2936 *
2937 * while (bool b = some_condition()) {
2938 * ...
2939 * }
2940 *
2941 * so we return the rvalue from the last seen declaration here.
2942 */
2943 return result;
2944 }
2945
2946
2947 ir_rvalue *
2948 ast_parameter_declarator::hir(exec_list *instructions,
2949 struct _mesa_glsl_parse_state *state)
2950 {
2951 void *ctx = state;
2952 const struct glsl_type *type;
2953 const char *name = NULL;
2954 YYLTYPE loc = this->get_location();
2955
2956 type = this->type->specifier->glsl_type(& name, state);
2957
2958 if (type == NULL) {
2959 if (name != NULL) {
2960 _mesa_glsl_error(& loc, state,
2961 "invalid type `%s' in declaration of `%s'",
2962 name, this->identifier);
2963 } else {
2964 _mesa_glsl_error(& loc, state,
2965 "invalid type in declaration of `%s'",
2966 this->identifier);
2967 }
2968
2969 type = glsl_type::error_type;
2970 }
2971
2972 /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
2973 *
2974 * "Functions that accept no input arguments need not use void in the
2975 * argument list because prototypes (or definitions) are required and
2976 * therefore there is no ambiguity when an empty argument list "( )" is
2977 * declared. The idiom "(void)" as a parameter list is provided for
2978 * convenience."
2979 *
2980 * Placing this check here prevents a void parameter being set up
2981 * for a function, which avoids tripping up checks for main taking
2982 * parameters and lookups of an unnamed symbol.
2983 */
2984 if (type->is_void()) {
2985 if (this->identifier != NULL)
2986 _mesa_glsl_error(& loc, state,
2987 "named parameter cannot have type `void'");
2988
2989 is_void = true;
2990 return NULL;
2991 }
2992
2993 if (formal_parameter && (this->identifier == NULL)) {
2994 _mesa_glsl_error(& loc, state, "formal parameter lacks a name");
2995 return NULL;
2996 }
2997
2998 /* This only handles "vec4 foo[..]". The earlier specifier->glsl_type(...)
2999 * call already handled the "vec4[..] foo" case.
3000 */
3001 if (this->is_array) {
3002 type = process_array_type(&loc, type, this->array_size, state);
3003 }
3004
3005 if (!type->is_error() && type->array_size() == 0) {
3006 _mesa_glsl_error(&loc, state, "arrays passed as parameters must have "
3007 "a declared size.");
3008 type = glsl_type::error_type;
3009 }
3010
3011 is_void = false;
3012 ir_variable *var = new(ctx) ir_variable(type, this->identifier, ir_var_in);
3013
3014 /* Apply any specified qualifiers to the parameter declaration. Note that
3015 * for function parameters the default mode is 'in'.
3016 */
3017 apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc);
3018
3019 /* From page 17 (page 23 of the PDF) of the GLSL 1.20 spec:
3020 *
3021 * "Samplers cannot be treated as l-values; hence cannot be used
3022 * as out or inout function parameters, nor can they be assigned
3023 * into."
3024 */
3025 if ((var->mode == ir_var_inout || var->mode == ir_var_out)
3026 && type->contains_sampler()) {
3027 _mesa_glsl_error(&loc, state, "out and inout parameters cannot contain samplers");
3028 type = glsl_type::error_type;
3029 }
3030
3031 /* From page 39 (page 45 of the PDF) of the GLSL 1.10 spec:
3032 *
3033 * "When calling a function, expressions that do not evaluate to
3034 * l-values cannot be passed to parameters declared as out or inout."
3035 *
3036 * From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
3037 *
3038 * "Other binary or unary expressions, non-dereferenced arrays,
3039 * function names, swizzles with repeated fields, and constants
3040 * cannot be l-values."
3041 *
3042 * So for GLSL 1.10, passing an array as an out or inout parameter is not
3043 * allowed. This restriction is removed in GLSL 1.20, and in GLSL ES.
3044 */
3045 if ((var->mode == ir_var_inout || var->mode == ir_var_out)
3046 && type->is_array() && state->language_version == 110) {
3047 _mesa_glsl_error(&loc, state, "Arrays cannot be out or inout parameters in GLSL 1.10");
3048 type = glsl_type::error_type;
3049 }
3050
3051 instructions->push_tail(var);
3052
3053 /* Parameter declarations do not have r-values.
3054 */
3055 return NULL;
3056 }
3057
3058
3059 void
3060 ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters,
3061 bool formal,
3062 exec_list *ir_parameters,
3063 _mesa_glsl_parse_state *state)
3064 {
3065 ast_parameter_declarator *void_param = NULL;
3066 unsigned count = 0;
3067
3068 foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) {
3069 param->formal_parameter = formal;
3070 param->hir(ir_parameters, state);
3071
3072 if (param->is_void)
3073 void_param = param;
3074
3075 count++;
3076 }
3077
3078 if ((void_param != NULL) && (count > 1)) {
3079 YYLTYPE loc = void_param->get_location();
3080
3081 _mesa_glsl_error(& loc, state,
3082 "`void' parameter must be only parameter");
3083 }
3084 }
3085
3086
3087 void
3088 emit_function(_mesa_glsl_parse_state *state, ir_function *f)
3089 {
3090 /* IR invariants disallow function declarations or definitions
3091 * nested within other function definitions. But there is no
3092 * requirement about the relative order of function declarations
3093 * and definitions with respect to one another. So simply insert
3094 * the new ir_function block at the end of the toplevel instruction
3095 * list.
3096 */
3097 state->toplevel_ir->push_tail(f);
3098 }
3099
3100
3101 ir_rvalue *
3102 ast_function::hir(exec_list *instructions,
3103 struct _mesa_glsl_parse_state *state)
3104 {
3105 void *ctx = state;
3106 ir_function *f = NULL;
3107 ir_function_signature *sig = NULL;
3108 exec_list hir_parameters;
3109
3110 const char *const name = identifier;
3111
3112 /* New functions are always added to the top-level IR instruction stream,
3113 * so this instruction list pointer is ignored. See also emit_function
3114 * (called below).
3115 */
3116 (void) instructions;
3117
3118 /* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec,
3119 *
3120 * "Function declarations (prototypes) cannot occur inside of functions;
3121 * they must be at global scope, or for the built-in functions, outside
3122 * the global scope."
3123 *
3124 * From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec,
3125 *
3126 * "User defined functions may only be defined within the global scope."
3127 *
3128 * Note that this language does not appear in GLSL 1.10.
3129 */
3130 if ((state->current_function != NULL) && (state->language_version != 110)) {
3131 YYLTYPE loc = this->get_location();
3132 _mesa_glsl_error(&loc, state,
3133 "declaration of function `%s' not allowed within "
3134 "function body", name);
3135 }
3136
3137 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
3138 *
3139 * "Identifiers starting with "gl_" are reserved for use by
3140 * OpenGL, and may not be declared in a shader as either a
3141 * variable or a function."
3142 */
3143 if (strncmp(name, "gl_", 3) == 0) {
3144 YYLTYPE loc = this->get_location();
3145 _mesa_glsl_error(&loc, state,
3146 "identifier `%s' uses reserved `gl_' prefix", name);
3147 }
3148
3149 /* Convert the list of function parameters to HIR now so that they can be
3150 * used below to compare this function's signature with previously seen
3151 * signatures for functions with the same name.
3152 */
3153 ast_parameter_declarator::parameters_to_hir(& this->parameters,
3154 is_definition,
3155 & hir_parameters, state);
3156
3157 const char *return_type_name;
3158 const glsl_type *return_type =
3159 this->return_type->specifier->glsl_type(& return_type_name, state);
3160
3161 if (!return_type) {
3162 YYLTYPE loc = this->get_location();
3163 _mesa_glsl_error(&loc, state,
3164 "function `%s' has undeclared return type `%s'",
3165 name, return_type_name);
3166 return_type = glsl_type::error_type;
3167 }
3168
3169 /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec:
3170 * "No qualifier is allowed on the return type of a function."
3171 */
3172 if (this->return_type->has_qualifiers()) {
3173 YYLTYPE loc = this->get_location();
3174 _mesa_glsl_error(& loc, state,
3175 "function `%s' return type has qualifiers", name);
3176 }
3177
3178 /* From page 17 (page 23 of the PDF) of the GLSL 1.20 spec:
3179 *
3180 * "[Sampler types] can only be declared as function parameters
3181 * or uniform variables (see Section 4.3.5 "Uniform")".
3182 */
3183 if (return_type->contains_sampler()) {
3184 YYLTYPE loc = this->get_location();
3185 _mesa_glsl_error(&loc, state,
3186 "function `%s' return type can't contain a sampler",
3187 name);
3188 }
3189
3190 /* Verify that this function's signature either doesn't match a previously
3191 * seen signature for a function with the same name, or, if a match is found,
3192 * that the previously seen signature does not have an associated definition.
3193 */
3194 f = state->symbols->get_function(name);
3195 if (f != NULL && (state->es_shader || f->has_user_signature())) {
3196 sig = f->exact_matching_signature(&hir_parameters);
3197 if (sig != NULL) {
3198 const char *badvar = sig->qualifiers_match(&hir_parameters);
3199 if (badvar != NULL) {
3200 YYLTYPE loc = this->get_location();
3201
3202 _mesa_glsl_error(&loc, state, "function `%s' parameter `%s' "
3203 "qualifiers don't match prototype", name, badvar);
3204 }
3205
3206 if (sig->return_type != return_type) {
3207 YYLTYPE loc = this->get_location();
3208
3209 _mesa_glsl_error(&loc, state, "function `%s' return type doesn't "
3210 "match prototype", name);
3211 }
3212
3213 if (is_definition && sig->is_defined) {
3214 YYLTYPE loc = this->get_location();
3215
3216 _mesa_glsl_error(& loc, state, "function `%s' redefined", name);
3217 }
3218 }
3219 } else {
3220 f = new(ctx) ir_function(name);
3221 if (!state->symbols->add_function(f)) {
3222 /* This function name shadows a non-function use of the same name. */
3223 YYLTYPE loc = this->get_location();
3224
3225 _mesa_glsl_error(&loc, state, "function name `%s' conflicts with "
3226 "non-function", name);
3227 return NULL;
3228 }
3229
3230 emit_function(state, f);
3231 }
3232
3233 /* Verify the return type of main() */
3234 if (strcmp(name, "main") == 0) {
3235 if (! return_type->is_void()) {
3236 YYLTYPE loc = this->get_location();
3237
3238 _mesa_glsl_error(& loc, state, "main() must return void");
3239 }
3240
3241 if (!hir_parameters.is_empty()) {
3242 YYLTYPE loc = this->get_location();
3243
3244 _mesa_glsl_error(& loc, state, "main() must not take any parameters");
3245 }
3246 }
3247
3248 /* Finish storing the information about this new function in its signature.
3249 */
3250 if (sig == NULL) {
3251 sig = new(ctx) ir_function_signature(return_type);
3252 f->add_signature(sig);
3253 }
3254
3255 sig->replace_parameters(&hir_parameters);
3256 signature = sig;
3257
3258 /* Function declarations (prototypes) do not have r-values.
3259 */
3260 return NULL;
3261 }
3262
3263
3264 ir_rvalue *
3265 ast_function_definition::hir(exec_list *instructions,
3266 struct _mesa_glsl_parse_state *state)
3267 {
3268 prototype->is_definition = true;
3269 prototype->hir(instructions, state);
3270
3271 ir_function_signature *signature = prototype->signature;
3272 if (signature == NULL)
3273 return NULL;
3274
3275 assert(state->current_function == NULL);
3276 state->current_function = signature;
3277 state->found_return = false;
3278
3279 /* Duplicate parameters declared in the prototype as concrete variables.
3280 * Add these to the symbol table.
3281 */
3282 state->symbols->push_scope();
3283 foreach_iter(exec_list_iterator, iter, signature->parameters) {
3284 ir_variable *const var = ((ir_instruction *) iter.get())->as_variable();
3285
3286 assert(var != NULL);
3287
3288 /* The only way a parameter would "exist" is if two parameters have
3289 * the same name.
3290 */
3291 if (state->symbols->name_declared_this_scope(var->name)) {
3292 YYLTYPE loc = this->get_location();
3293
3294 _mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name);
3295 } else {
3296 state->symbols->add_variable(var);
3297 }
3298 }
3299
3300 /* Convert the body of the function to HIR. */
3301 this->body->hir(&signature->body, state);
3302 signature->is_defined = true;
3303
3304 state->symbols->pop_scope();
3305
3306 assert(state->current_function == signature);
3307 state->current_function = NULL;
3308
3309 if (!signature->return_type->is_void() && !state->found_return) {
3310 YYLTYPE loc = this->get_location();
3311 _mesa_glsl_error(& loc, state, "function `%s' has non-void return type "
3312 "%s, but no return statement",
3313 signature->function_name(),
3314 signature->return_type->name);
3315 }
3316
3317 /* Function definitions do not have r-values.
3318 */
3319 return NULL;
3320 }
3321
3322
3323 ir_rvalue *
3324 ast_jump_statement::hir(exec_list *instructions,
3325 struct _mesa_glsl_parse_state *state)
3326 {
3327 void *ctx = state;
3328
3329 switch (mode) {
3330 case ast_return: {
3331 ir_return *inst;
3332 assert(state->current_function);
3333
3334 if (opt_return_value) {
3335 ir_rvalue *const ret = opt_return_value->hir(instructions, state);
3336
3337 /* The value of the return type can be NULL if the shader says
3338 * 'return foo();' and foo() is a function that returns void.
3339 *
3340 * NOTE: The GLSL spec doesn't say that this is an error. The type
3341 * of the return value is void. If the return type of the function is
3342 * also void, then this should compile without error. Seriously.
3343 */
3344 const glsl_type *const ret_type =
3345 (ret == NULL) ? glsl_type::void_type : ret->type;
3346
3347 /* Implicit conversions are not allowed for return values. */
3348 if (state->current_function->return_type != ret_type) {
3349 YYLTYPE loc = this->get_location();
3350
3351 _mesa_glsl_error(& loc, state,
3352 "`return' with wrong type %s, in function `%s' "
3353 "returning %s",
3354 ret_type->name,
3355 state->current_function->function_name(),
3356 state->current_function->return_type->name);
3357 }
3358
3359 inst = new(ctx) ir_return(ret);
3360 } else {
3361 if (state->current_function->return_type->base_type !=
3362 GLSL_TYPE_VOID) {
3363 YYLTYPE loc = this->get_location();
3364
3365 _mesa_glsl_error(& loc, state,
3366 "`return' with no value, in function %s returning "
3367 "non-void",
3368 state->current_function->function_name());
3369 }
3370 inst = new(ctx) ir_return;
3371 }
3372
3373 state->found_return = true;
3374 instructions->push_tail(inst);
3375 break;
3376 }
3377
3378 case ast_discard:
3379 if (state->target != fragment_shader) {
3380 YYLTYPE loc = this->get_location();
3381
3382 _mesa_glsl_error(& loc, state,
3383 "`discard' may only appear in a fragment shader");
3384 }
3385 instructions->push_tail(new(ctx) ir_discard);
3386 break;
3387
3388 case ast_break:
3389 case ast_continue:
3390 if (mode == ast_continue &&
3391 state->loop_nesting_ast == NULL) {
3392 YYLTYPE loc = this->get_location();
3393
3394 _mesa_glsl_error(& loc, state,
3395 "continue may only appear in a loop");
3396 } else if (mode == ast_break &&
3397 state->loop_nesting_ast == NULL &&
3398 state->switch_state.switch_nesting_ast == NULL) {
3399 YYLTYPE loc = this->get_location();
3400
3401 _mesa_glsl_error(& loc, state,
3402 "break may only appear in a loop or a switch");
3403 } else {
3404 /* For a loop, inline the for loop expression again,
3405 * since we don't know where near the end of
3406 * the loop body the normal copy of it
3407 * is going to be placed.
3408 */
3409 if (state->loop_nesting_ast != NULL &&
3410 mode == ast_continue &&
3411 state->loop_nesting_ast->rest_expression) {
3412 state->loop_nesting_ast->rest_expression->hir(instructions,
3413 state);
3414 }
3415
3416 if (state->switch_state.is_switch_innermost &&
3417 mode == ast_break) {
3418 /* Force break out of switch by setting is_break switch state.
3419 */
3420 ir_variable *const is_break_var = state->switch_state.is_break_var;
3421 ir_dereference_variable *const deref_is_break_var =
3422 new(ctx) ir_dereference_variable(is_break_var);
3423 ir_constant *const true_val = new(ctx) ir_constant(true);
3424 ir_assignment *const set_break_var =
3425 new(ctx) ir_assignment(deref_is_break_var,
3426 true_val,
3427 NULL);
3428
3429 instructions->push_tail(set_break_var);
3430 }
3431 else {
3432 ir_loop_jump *const jump =
3433 new(ctx) ir_loop_jump((mode == ast_break)
3434 ? ir_loop_jump::jump_break
3435 : ir_loop_jump::jump_continue);
3436 instructions->push_tail(jump);
3437 }
3438 }
3439
3440 break;
3441 }
3442
3443 /* Jump instructions do not have r-values.
3444 */
3445 return NULL;
3446 }
3447
3448
3449 ir_rvalue *
3450 ast_selection_statement::hir(exec_list *instructions,
3451 struct _mesa_glsl_parse_state *state)
3452 {
3453 void *ctx = state;
3454
3455 ir_rvalue *const condition = this->condition->hir(instructions, state);
3456
3457 /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
3458 *
3459 * "Any expression whose type evaluates to a Boolean can be used as the
3460 * conditional expression bool-expression. Vector types are not accepted
3461 * as the expression to if."
3462 *
3463 * The checks are separated so that higher quality diagnostics can be
3464 * generated for cases where both rules are violated.
3465 */
3466 if (!condition->type->is_boolean() || !condition->type->is_scalar()) {
3467 YYLTYPE loc = this->condition->get_location();
3468
3469 _mesa_glsl_error(& loc, state, "if-statement condition must be scalar "
3470 "boolean");
3471 }
3472
3473 ir_if *const stmt = new(ctx) ir_if(condition);
3474
3475 if (then_statement != NULL) {
3476 state->symbols->push_scope();
3477 then_statement->hir(& stmt->then_instructions, state);
3478 state->symbols->pop_scope();
3479 }
3480
3481 if (else_statement != NULL) {
3482 state->symbols->push_scope();
3483 else_statement->hir(& stmt->else_instructions, state);
3484 state->symbols->pop_scope();
3485 }
3486
3487 instructions->push_tail(stmt);
3488
3489 /* if-statements do not have r-values.
3490 */
3491 return NULL;
3492 }
3493
3494
3495 ir_rvalue *
3496 ast_switch_statement::hir(exec_list *instructions,
3497 struct _mesa_glsl_parse_state *state)
3498 {
3499 void *ctx = state;
3500
3501 ir_rvalue *const test_expression =
3502 this->test_expression->hir(instructions, state);
3503
3504 /* From page 66 (page 55 of the PDF) of the GLSL 1.50 spec:
3505 *
3506 * "The type of init-expression in a switch statement must be a
3507 * scalar integer."
3508 *
3509 * The checks are separated so that higher quality diagnostics can be
3510 * generated for cases where the rule is violated.
3511 */
3512 if (!test_expression->type->is_integer()) {
3513 YYLTYPE loc = this->test_expression->get_location();
3514
3515 _mesa_glsl_error(& loc,
3516 state,
3517 "switch-statement expression must be scalar "
3518 "integer");
3519 }
3520
3521 /* Track the switch-statement nesting in a stack-like manner.
3522 */
3523 struct glsl_switch_state saved = state->switch_state;
3524
3525 state->switch_state.is_switch_innermost = true;
3526 state->switch_state.switch_nesting_ast = this;
3527 state->switch_state.labels_ht = hash_table_ctor(0, hash_table_pointer_hash,
3528 hash_table_pointer_compare);
3529 state->switch_state.previous_default = NULL;
3530
3531 /* Initalize is_fallthru state to false.
3532 */
3533 ir_rvalue *const is_fallthru_val = new (ctx) ir_constant(false);
3534 state->switch_state.is_fallthru_var =
3535 new(ctx) ir_variable(glsl_type::bool_type,
3536 "switch_is_fallthru_tmp",
3537 ir_var_temporary);
3538 instructions->push_tail(state->switch_state.is_fallthru_var);
3539
3540 ir_dereference_variable *deref_is_fallthru_var =
3541 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
3542 instructions->push_tail(new(ctx) ir_assignment(deref_is_fallthru_var,
3543 is_fallthru_val,
3544 NULL));
3545
3546 /* Initalize is_break state to false.
3547 */
3548 ir_rvalue *const is_break_val = new (ctx) ir_constant(false);
3549 state->switch_state.is_break_var = new(ctx) ir_variable(glsl_type::bool_type,
3550 "switch_is_break_tmp",
3551 ir_var_temporary);
3552 instructions->push_tail(state->switch_state.is_break_var);
3553
3554 ir_dereference_variable *deref_is_break_var =
3555 new(ctx) ir_dereference_variable(state->switch_state.is_break_var);
3556 instructions->push_tail(new(ctx) ir_assignment(deref_is_break_var,
3557 is_break_val,
3558 NULL));
3559
3560 /* Cache test expression.
3561 */
3562 test_to_hir(instructions, state);
3563
3564 /* Emit code for body of switch stmt.
3565 */
3566 body->hir(instructions, state);
3567
3568 hash_table_dtor(state->switch_state.labels_ht);
3569
3570 state->switch_state = saved;
3571
3572 /* Switch statements do not have r-values.
3573 */
3574 return NULL;
3575 }
3576
3577
3578 void
3579 ast_switch_statement::test_to_hir(exec_list *instructions,
3580 struct _mesa_glsl_parse_state *state)
3581 {
3582 void *ctx = state;
3583
3584 /* Cache value of test expression.
3585 */
3586 ir_rvalue *const test_val =
3587 test_expression->hir(instructions,
3588 state);
3589
3590 state->switch_state.test_var = new(ctx) ir_variable(glsl_type::int_type,
3591 "switch_test_tmp",
3592 ir_var_temporary);
3593 ir_dereference_variable *deref_test_var =
3594 new(ctx) ir_dereference_variable(state->switch_state.test_var);
3595
3596 instructions->push_tail(state->switch_state.test_var);
3597 instructions->push_tail(new(ctx) ir_assignment(deref_test_var,
3598 test_val,
3599 NULL));
3600 }
3601
3602
3603 ir_rvalue *
3604 ast_switch_body::hir(exec_list *instructions,
3605 struct _mesa_glsl_parse_state *state)
3606 {
3607 if (stmts != NULL)
3608 stmts->hir(instructions, state);
3609
3610 /* Switch bodies do not have r-values.
3611 */
3612 return NULL;
3613 }
3614
3615
3616 ir_rvalue *
3617 ast_case_statement_list::hir(exec_list *instructions,
3618 struct _mesa_glsl_parse_state *state)
3619 {
3620 foreach_list_typed (ast_case_statement, case_stmt, link, & this->cases)
3621 case_stmt->hir(instructions, state);
3622
3623 /* Case statements do not have r-values.
3624 */
3625 return NULL;
3626 }
3627
3628
3629 ir_rvalue *
3630 ast_case_statement::hir(exec_list *instructions,
3631 struct _mesa_glsl_parse_state *state)
3632 {
3633 labels->hir(instructions, state);
3634
3635 /* Conditionally set fallthru state based on break state.
3636 */
3637 ir_constant *const false_val = new(state) ir_constant(false);
3638 ir_dereference_variable *const deref_is_fallthru_var =
3639 new(state) ir_dereference_variable(state->switch_state.is_fallthru_var);
3640 ir_dereference_variable *const deref_is_break_var =
3641 new(state) ir_dereference_variable(state->switch_state.is_break_var);
3642 ir_assignment *const reset_fallthru_on_break =
3643 new(state) ir_assignment(deref_is_fallthru_var,
3644 false_val,
3645 deref_is_break_var);
3646 instructions->push_tail(reset_fallthru_on_break);
3647
3648 /* Guard case statements depending on fallthru state.
3649 */
3650 ir_dereference_variable *const deref_fallthru_guard =
3651 new(state) ir_dereference_variable(state->switch_state.is_fallthru_var);
3652 ir_if *const test_fallthru = new(state) ir_if(deref_fallthru_guard);
3653
3654 foreach_list_typed (ast_node, stmt, link, & this->stmts)
3655 stmt->hir(& test_fallthru->then_instructions, state);
3656
3657 instructions->push_tail(test_fallthru);
3658
3659 /* Case statements do not have r-values.
3660 */
3661 return NULL;
3662 }
3663
3664
3665 ir_rvalue *
3666 ast_case_label_list::hir(exec_list *instructions,
3667 struct _mesa_glsl_parse_state *state)
3668 {
3669 foreach_list_typed (ast_case_label, label, link, & this->labels)
3670 label->hir(instructions, state);
3671
3672 /* Case labels do not have r-values.
3673 */
3674 return NULL;
3675 }
3676
3677
3678 ir_rvalue *
3679 ast_case_label::hir(exec_list *instructions,
3680 struct _mesa_glsl_parse_state *state)
3681 {
3682 void *ctx = state;
3683
3684 ir_dereference_variable *deref_fallthru_var =
3685 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
3686
3687 ir_rvalue *const true_val = new(ctx) ir_constant(true);
3688
3689 /* If not default case, ...
3690 */
3691 if (this->test_value != NULL) {
3692 /* Conditionally set fallthru state based on
3693 * comparison of cached test expression value to case label.
3694 */
3695 ir_rvalue *const label_rval = this->test_value->hir(instructions, state);
3696 ir_constant *label_const = label_rval->constant_expression_value();
3697
3698 if (!label_const) {
3699 YYLTYPE loc = this->test_value->get_location();
3700
3701 _mesa_glsl_error(& loc, state,
3702 "switch statement case label must be a "
3703 "constant expression");
3704
3705 /* Stuff a dummy value in to allow processing to continue. */
3706 label_const = new(ctx) ir_constant(0);
3707 } else {
3708 ast_expression *previous_label = (ast_expression *)
3709 hash_table_find(state->switch_state.labels_ht,
3710 (void *)(uintptr_t)label_const->value.u[0]);
3711
3712 if (previous_label) {
3713 YYLTYPE loc = this->test_value->get_location();
3714 _mesa_glsl_error(& loc, state,
3715 "duplicate case value");
3716
3717 loc = previous_label->get_location();
3718 _mesa_glsl_error(& loc, state,
3719 "this is the previous case label");
3720 } else {
3721 hash_table_insert(state->switch_state.labels_ht,
3722 this->test_value,
3723 (void *)(uintptr_t)label_const->value.u[0]);
3724 }
3725 }
3726
3727 ir_dereference_variable *deref_test_var =
3728 new(ctx) ir_dereference_variable(state->switch_state.test_var);
3729
3730 ir_rvalue *const test_cond = new(ctx) ir_expression(ir_binop_all_equal,
3731 glsl_type::bool_type,
3732 label_const,
3733 deref_test_var);
3734
3735 ir_assignment *set_fallthru_on_test =
3736 new(ctx) ir_assignment(deref_fallthru_var,
3737 true_val,
3738 test_cond);
3739
3740 instructions->push_tail(set_fallthru_on_test);
3741 } else { /* default case */
3742 if (state->switch_state.previous_default) {
3743 printf("a\n");
3744 YYLTYPE loc = this->get_location();
3745 _mesa_glsl_error(& loc, state,
3746 "multiple default labels in one switch");
3747
3748 printf("b\n");
3749
3750 loc = state->switch_state.previous_default->get_location();
3751 _mesa_glsl_error(& loc, state,
3752 "this is the first default label");
3753 }
3754 state->switch_state.previous_default = this;
3755
3756 /* Set falltrhu state.
3757 */
3758 ir_assignment *set_fallthru =
3759 new(ctx) ir_assignment(deref_fallthru_var,
3760 true_val,
3761 NULL);
3762
3763 instructions->push_tail(set_fallthru);
3764 }
3765
3766 /* Case statements do not have r-values.
3767 */
3768 return NULL;
3769 }
3770
3771
3772 void
3773 ast_iteration_statement::condition_to_hir(ir_loop *stmt,
3774 struct _mesa_glsl_parse_state *state)
3775 {
3776 void *ctx = state;
3777
3778 if (condition != NULL) {
3779 ir_rvalue *const cond =
3780 condition->hir(& stmt->body_instructions, state);
3781
3782 if ((cond == NULL)
3783 || !cond->type->is_boolean() || !cond->type->is_scalar()) {
3784 YYLTYPE loc = condition->get_location();
3785
3786 _mesa_glsl_error(& loc, state,
3787 "loop condition must be scalar boolean");
3788 } else {
3789 /* As the first code in the loop body, generate a block that looks
3790 * like 'if (!condition) break;' as the loop termination condition.
3791 */
3792 ir_rvalue *const not_cond =
3793 new(ctx) ir_expression(ir_unop_logic_not, glsl_type::bool_type, cond,
3794 NULL);
3795
3796 ir_if *const if_stmt = new(ctx) ir_if(not_cond);
3797
3798 ir_jump *const break_stmt =
3799 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
3800
3801 if_stmt->then_instructions.push_tail(break_stmt);
3802 stmt->body_instructions.push_tail(if_stmt);
3803 }
3804 }
3805 }
3806
3807
3808 ir_rvalue *
3809 ast_iteration_statement::hir(exec_list *instructions,
3810 struct _mesa_glsl_parse_state *state)
3811 {
3812 void *ctx = state;
3813
3814 /* For-loops and while-loops start a new scope, but do-while loops do not.
3815 */
3816 if (mode != ast_do_while)
3817 state->symbols->push_scope();
3818
3819 if (init_statement != NULL)
3820 init_statement->hir(instructions, state);
3821
3822 ir_loop *const stmt = new(ctx) ir_loop();
3823 instructions->push_tail(stmt);
3824
3825 /* Track the current loop nesting.
3826 */
3827 ast_iteration_statement *nesting_ast = state->loop_nesting_ast;
3828
3829 state->loop_nesting_ast = this;
3830
3831 /* Likewise, indicate that following code is closest to a loop,
3832 * NOT closest to a switch.
3833 */
3834 bool saved_is_switch_innermost = state->switch_state.is_switch_innermost;
3835 state->switch_state.is_switch_innermost = false;
3836
3837 if (mode != ast_do_while)
3838 condition_to_hir(stmt, state);
3839
3840 if (body != NULL)
3841 body->hir(& stmt->body_instructions, state);
3842
3843 if (rest_expression != NULL)
3844 rest_expression->hir(& stmt->body_instructions, state);
3845
3846 if (mode == ast_do_while)
3847 condition_to_hir(stmt, state);
3848
3849 if (mode != ast_do_while)
3850 state->symbols->pop_scope();
3851
3852 /* Restore previous nesting before returning.
3853 */
3854 state->loop_nesting_ast = nesting_ast;
3855 state->switch_state.is_switch_innermost = saved_is_switch_innermost;
3856
3857 /* Loops do not have r-values.
3858 */
3859 return NULL;
3860 }
3861
3862
3863 ir_rvalue *
3864 ast_type_specifier::hir(exec_list *instructions,
3865 struct _mesa_glsl_parse_state *state)
3866 {
3867 if (!this->is_precision_statement && this->structure == NULL)
3868 return NULL;
3869
3870 YYLTYPE loc = this->get_location();
3871
3872 if (this->precision != ast_precision_none
3873 && state->language_version != 100
3874 && state->language_version < 130) {
3875 _mesa_glsl_error(&loc, state,
3876 "precision qualifiers exist only in "
3877 "GLSL ES 1.00, and GLSL 1.30 and later");
3878 return NULL;
3879 }
3880 if (this->precision != ast_precision_none
3881 && this->structure != NULL) {
3882 _mesa_glsl_error(&loc, state,
3883 "precision qualifiers do not apply to structures");
3884 return NULL;
3885 }
3886
3887 /* If this is a precision statement, check that the type to which it is
3888 * applied is either float or int.
3889 *
3890 * From section 4.5.3 of the GLSL 1.30 spec:
3891 * "The precision statement
3892 * precision precision-qualifier type;
3893 * can be used to establish a default precision qualifier. The type
3894 * field can be either int or float [...]. Any other types or
3895 * qualifiers will result in an error.
3896 */
3897 if (this->is_precision_statement) {
3898 assert(this->precision != ast_precision_none);
3899 assert(this->structure == NULL); /* The check for structures was
3900 * performed above. */
3901 if (this->is_array) {
3902 _mesa_glsl_error(&loc, state,
3903 "default precision statements do not apply to "
3904 "arrays");
3905 return NULL;
3906 }
3907 if (this->type_specifier != ast_float
3908 && this->type_specifier != ast_int) {
3909 _mesa_glsl_error(&loc, state,
3910 "default precision statements apply only to types "
3911 "float and int");
3912 return NULL;
3913 }
3914
3915 /* FINISHME: Translate precision statements into IR. */
3916 return NULL;
3917 }
3918
3919 if (this->structure != NULL)
3920 return this->structure->hir(instructions, state);
3921
3922 return NULL;
3923 }
3924
3925
3926 ir_rvalue *
3927 ast_struct_specifier::hir(exec_list *instructions,
3928 struct _mesa_glsl_parse_state *state)
3929 {
3930 unsigned decl_count = 0;
3931
3932 /* Make an initial pass over the list of structure fields to determine how
3933 * many there are. Each element in this list is an ast_declarator_list.
3934 * This means that we actually need to count the number of elements in the
3935 * 'declarations' list in each of the elements.
3936 */
3937 foreach_list_typed (ast_declarator_list, decl_list, link,
3938 &this->declarations) {
3939 foreach_list_const (decl_ptr, & decl_list->declarations) {
3940 decl_count++;
3941 }
3942 }
3943
3944 /* Allocate storage for the structure fields and process the field
3945 * declarations. As the declarations are processed, try to also convert
3946 * the types to HIR. This ensures that structure definitions embedded in
3947 * other structure definitions are processed.
3948 */
3949 glsl_struct_field *const fields = ralloc_array(state, glsl_struct_field,
3950 decl_count);
3951
3952 unsigned i = 0;
3953 foreach_list_typed (ast_declarator_list, decl_list, link,
3954 &this->declarations) {
3955 const char *type_name;
3956
3957 decl_list->type->specifier->hir(instructions, state);
3958
3959 /* Section 10.9 of the GLSL ES 1.00 specification states that
3960 * embedded structure definitions have been removed from the language.
3961 */
3962 if (state->es_shader && decl_list->type->specifier->structure != NULL) {
3963 YYLTYPE loc = this->get_location();
3964 _mesa_glsl_error(&loc, state, "Embedded structure definitions are "
3965 "not allowed in GLSL ES 1.00.");
3966 }
3967
3968 const glsl_type *decl_type =
3969 decl_list->type->specifier->glsl_type(& type_name, state);
3970
3971 foreach_list_typed (ast_declaration, decl, link,
3972 &decl_list->declarations) {
3973 const struct glsl_type *field_type = decl_type;
3974 if (decl->is_array) {
3975 YYLTYPE loc = decl->get_location();
3976 field_type = process_array_type(&loc, decl_type, decl->array_size,
3977 state);
3978 }
3979 fields[i].type = (field_type != NULL)
3980 ? field_type : glsl_type::error_type;
3981 fields[i].name = decl->identifier;
3982 i++;
3983 }
3984 }
3985
3986 assert(i == decl_count);
3987
3988 const glsl_type *t =
3989 glsl_type::get_record_instance(fields, decl_count, this->name);
3990
3991 YYLTYPE loc = this->get_location();
3992 if (!state->symbols->add_type(name, t)) {
3993 _mesa_glsl_error(& loc, state, "struct `%s' previously defined", name);
3994 } else {
3995 const glsl_type **s = reralloc(state, state->user_structures,
3996 const glsl_type *,
3997 state->num_user_structures + 1);
3998 if (s != NULL) {
3999 s[state->num_user_structures] = t;
4000 state->user_structures = s;
4001 state->num_user_structures++;
4002 }
4003 }
4004
4005 /* Structure type definitions do not have r-values.
4006 */
4007 return NULL;
4008 }