glsl: add support for explicit locations inside interface blocks
[mesa.git] / src / glsl / ast_to_hir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file ast_to_hir.c
26 * Convert abstract syntax to to high-level intermediate reprensentation (HIR).
27 *
28 * During the conversion to HIR, the majority of the symantic checking is
29 * preformed on the program. This includes:
30 *
31 * * Symbol table management
32 * * Type checking
33 * * Function binding
34 *
35 * The majority of this work could be done during parsing, and the parser could
36 * probably generate HIR directly. However, this results in frequent changes
37 * to the parser code. Since we do not assume that every system this complier
38 * is built on will have Flex and Bison installed, we have to store the code
39 * generated by these tools in our version control system. In other parts of
40 * the system we've seen problems where a parser was changed but the generated
41 * code was not committed, merge conflicts where created because two developers
42 * had slightly different versions of Bison installed, etc.
43 *
44 * I have also noticed that running Bison generated parsers in GDB is very
45 * irritating. When you get a segfault on '$$ = $1->foo', you can't very
46 * well 'print $1' in GDB.
47 *
48 * As a result, my preference is to put as little C code as possible in the
49 * parser (and lexer) sources.
50 */
51
52 #include "glsl_symbol_table.h"
53 #include "glsl_parser_extras.h"
54 #include "ast.h"
55 #include "glsl_types.h"
56 #include "program/hash_table.h"
57 #include "main/shaderobj.h"
58 #include "ir.h"
59 #include "ir_builder.h"
60
61 using namespace ir_builder;
62
63 static void
64 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
65 exec_list *instructions);
66 static void
67 remove_per_vertex_blocks(exec_list *instructions,
68 _mesa_glsl_parse_state *state, ir_variable_mode mode);
69
70 /**
71 * Visitor class that finds the first instance of any write-only variable that
72 * is ever read, if any
73 */
74 class read_from_write_only_variable_visitor : public ir_hierarchical_visitor
75 {
76 public:
77 read_from_write_only_variable_visitor() : found(NULL)
78 {
79 }
80
81 virtual ir_visitor_status visit(ir_dereference_variable *ir)
82 {
83 if (this->in_assignee)
84 return visit_continue;
85
86 ir_variable *var = ir->variable_referenced();
87 /* We can have image_write_only set on both images and buffer variables,
88 * but in the former there is a distinction between reads from
89 * the variable itself (write_only) and from the memory they point to
90 * (image_write_only), while in the case of buffer variables there is
91 * no such distinction, that is why this check here is limited to
92 * buffer variables alone.
93 */
94 if (!var || var->data.mode != ir_var_shader_storage)
95 return visit_continue;
96
97 if (var->data.image_write_only) {
98 found = var;
99 return visit_stop;
100 }
101
102 return visit_continue;
103 }
104
105 ir_variable *get_variable() {
106 return found;
107 }
108
109 private:
110 ir_variable *found;
111 };
112
113 void
114 _mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
115 {
116 _mesa_glsl_initialize_variables(instructions, state);
117
118 state->symbols->separate_function_namespace = state->language_version == 110;
119
120 state->current_function = NULL;
121
122 state->toplevel_ir = instructions;
123
124 state->gs_input_prim_type_specified = false;
125 state->tcs_output_vertices_specified = false;
126 state->cs_input_local_size_specified = false;
127
128 /* Section 4.2 of the GLSL 1.20 specification states:
129 * "The built-in functions are scoped in a scope outside the global scope
130 * users declare global variables in. That is, a shader's global scope,
131 * available for user-defined functions and global variables, is nested
132 * inside the scope containing the built-in functions."
133 *
134 * Since built-in functions like ftransform() access built-in variables,
135 * it follows that those must be in the outer scope as well.
136 *
137 * We push scope here to create this nesting effect...but don't pop.
138 * This way, a shader's globals are still in the symbol table for use
139 * by the linker.
140 */
141 state->symbols->push_scope();
142
143 foreach_list_typed (ast_node, ast, link, & state->translation_unit)
144 ast->hir(instructions, state);
145
146 detect_recursion_unlinked(state, instructions);
147 detect_conflicting_assignments(state, instructions);
148
149 state->toplevel_ir = NULL;
150
151 /* Move all of the variable declarations to the front of the IR list, and
152 * reverse the order. This has the (intended!) side effect that vertex
153 * shader inputs and fragment shader outputs will appear in the IR in the
154 * same order that they appeared in the shader code. This results in the
155 * locations being assigned in the declared order. Many (arguably buggy)
156 * applications depend on this behavior, and it matches what nearly all
157 * other drivers do.
158 */
159 foreach_in_list_safe(ir_instruction, node, instructions) {
160 ir_variable *const var = node->as_variable();
161
162 if (var == NULL)
163 continue;
164
165 var->remove();
166 instructions->push_head(var);
167 }
168
169 /* Figure out if gl_FragCoord is actually used in fragment shader */
170 ir_variable *const var = state->symbols->get_variable("gl_FragCoord");
171 if (var != NULL)
172 state->fs_uses_gl_fragcoord = var->data.used;
173
174 /* From section 7.1 (Built-In Language Variables) of the GLSL 4.10 spec:
175 *
176 * If multiple shaders using members of a built-in block belonging to
177 * the same interface are linked together in the same program, they
178 * must all redeclare the built-in block in the same way, as described
179 * in section 4.3.7 "Interface Blocks" for interface block matching, or
180 * a link error will result.
181 *
182 * The phrase "using members of a built-in block" implies that if two
183 * shaders are linked together and one of them *does not use* any members
184 * of the built-in block, then that shader does not need to have a matching
185 * redeclaration of the built-in block.
186 *
187 * This appears to be a clarification to the behaviour established for
188 * gl_PerVertex by GLSL 1.50, therefore implement it regardless of GLSL
189 * version.
190 *
191 * The definition of "interface" in section 4.3.7 that applies here is as
192 * follows:
193 *
194 * The boundary between adjacent programmable pipeline stages: This
195 * spans all the outputs in all compilation units of the first stage
196 * and all the inputs in all compilation units of the second stage.
197 *
198 * Therefore this rule applies to both inter- and intra-stage linking.
199 *
200 * The easiest way to implement this is to check whether the shader uses
201 * gl_PerVertex right after ast-to-ir conversion, and if it doesn't, simply
202 * remove all the relevant variable declaration from the IR, so that the
203 * linker won't see them and complain about mismatches.
204 */
205 remove_per_vertex_blocks(instructions, state, ir_var_shader_in);
206 remove_per_vertex_blocks(instructions, state, ir_var_shader_out);
207
208 /* Check that we don't have reads from write-only variables */
209 read_from_write_only_variable_visitor v;
210 v.run(instructions);
211 ir_variable *error_var = v.get_variable();
212 if (error_var) {
213 /* It would be nice to have proper location information, but for that
214 * we would need to check this as we process each kind of AST node
215 */
216 YYLTYPE loc;
217 memset(&loc, 0, sizeof(loc));
218 _mesa_glsl_error(&loc, state, "Read from write-only variable `%s'",
219 error_var->name);
220 }
221 }
222
223
224 static ir_expression_operation
225 get_conversion_operation(const glsl_type *to, const glsl_type *from,
226 struct _mesa_glsl_parse_state *state)
227 {
228 switch (to->base_type) {
229 case GLSL_TYPE_FLOAT:
230 switch (from->base_type) {
231 case GLSL_TYPE_INT: return ir_unop_i2f;
232 case GLSL_TYPE_UINT: return ir_unop_u2f;
233 case GLSL_TYPE_DOUBLE: return ir_unop_d2f;
234 default: return (ir_expression_operation)0;
235 }
236
237 case GLSL_TYPE_UINT:
238 if (!state->is_version(400, 0) && !state->ARB_gpu_shader5_enable)
239 return (ir_expression_operation)0;
240 switch (from->base_type) {
241 case GLSL_TYPE_INT: return ir_unop_i2u;
242 default: return (ir_expression_operation)0;
243 }
244
245 case GLSL_TYPE_DOUBLE:
246 if (!state->has_double())
247 return (ir_expression_operation)0;
248 switch (from->base_type) {
249 case GLSL_TYPE_INT: return ir_unop_i2d;
250 case GLSL_TYPE_UINT: return ir_unop_u2d;
251 case GLSL_TYPE_FLOAT: return ir_unop_f2d;
252 default: return (ir_expression_operation)0;
253 }
254
255 default: return (ir_expression_operation)0;
256 }
257 }
258
259
260 /**
261 * If a conversion is available, convert one operand to a different type
262 *
263 * The \c from \c ir_rvalue is converted "in place".
264 *
265 * \param to Type that the operand it to be converted to
266 * \param from Operand that is being converted
267 * \param state GLSL compiler state
268 *
269 * \return
270 * If a conversion is possible (or unnecessary), \c true is returned.
271 * Otherwise \c false is returned.
272 */
273 bool
274 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
275 struct _mesa_glsl_parse_state *state)
276 {
277 void *ctx = state;
278 if (to->base_type == from->type->base_type)
279 return true;
280
281 /* Prior to GLSL 1.20, there are no implicit conversions */
282 if (!state->is_version(120, 0))
283 return false;
284
285 /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
286 *
287 * "There are no implicit array or structure conversions. For
288 * example, an array of int cannot be implicitly converted to an
289 * array of float.
290 */
291 if (!to->is_numeric() || !from->type->is_numeric())
292 return false;
293
294 /* We don't actually want the specific type `to`, we want a type
295 * with the same base type as `to`, but the same vector width as
296 * `from`.
297 */
298 to = glsl_type::get_instance(to->base_type, from->type->vector_elements,
299 from->type->matrix_columns);
300
301 ir_expression_operation op = get_conversion_operation(to, from->type, state);
302 if (op) {
303 from = new(ctx) ir_expression(op, to, from, NULL);
304 return true;
305 } else {
306 return false;
307 }
308 }
309
310
311 static const struct glsl_type *
312 arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
313 bool multiply,
314 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
315 {
316 const glsl_type *type_a = value_a->type;
317 const glsl_type *type_b = value_b->type;
318
319 /* From GLSL 1.50 spec, page 56:
320 *
321 * "The arithmetic binary operators add (+), subtract (-),
322 * multiply (*), and divide (/) operate on integer and
323 * floating-point scalars, vectors, and matrices."
324 */
325 if (!type_a->is_numeric() || !type_b->is_numeric()) {
326 _mesa_glsl_error(loc, state,
327 "operands to arithmetic operators must be numeric");
328 return glsl_type::error_type;
329 }
330
331
332 /* "If one operand is floating-point based and the other is
333 * not, then the conversions from Section 4.1.10 "Implicit
334 * Conversions" are applied to the non-floating-point-based operand."
335 */
336 if (!apply_implicit_conversion(type_a, value_b, state)
337 && !apply_implicit_conversion(type_b, value_a, state)) {
338 _mesa_glsl_error(loc, state,
339 "could not implicitly convert operands to "
340 "arithmetic operator");
341 return glsl_type::error_type;
342 }
343 type_a = value_a->type;
344 type_b = value_b->type;
345
346 /* "If the operands are integer types, they must both be signed or
347 * both be unsigned."
348 *
349 * From this rule and the preceeding conversion it can be inferred that
350 * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
351 * The is_numeric check above already filtered out the case where either
352 * type is not one of these, so now the base types need only be tested for
353 * equality.
354 */
355 if (type_a->base_type != type_b->base_type) {
356 _mesa_glsl_error(loc, state,
357 "base type mismatch for arithmetic operator");
358 return glsl_type::error_type;
359 }
360
361 /* "All arithmetic binary operators result in the same fundamental type
362 * (signed integer, unsigned integer, or floating-point) as the
363 * operands they operate on, after operand type conversion. After
364 * conversion, the following cases are valid
365 *
366 * * The two operands are scalars. In this case the operation is
367 * applied, resulting in a scalar."
368 */
369 if (type_a->is_scalar() && type_b->is_scalar())
370 return type_a;
371
372 /* "* One operand is a scalar, and the other is a vector or matrix.
373 * In this case, the scalar operation is applied independently to each
374 * component of the vector or matrix, resulting in the same size
375 * vector or matrix."
376 */
377 if (type_a->is_scalar()) {
378 if (!type_b->is_scalar())
379 return type_b;
380 } else if (type_b->is_scalar()) {
381 return type_a;
382 }
383
384 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
385 * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
386 * handled.
387 */
388 assert(!type_a->is_scalar());
389 assert(!type_b->is_scalar());
390
391 /* "* The two operands are vectors of the same size. In this case, the
392 * operation is done component-wise resulting in the same size
393 * vector."
394 */
395 if (type_a->is_vector() && type_b->is_vector()) {
396 if (type_a == type_b) {
397 return type_a;
398 } else {
399 _mesa_glsl_error(loc, state,
400 "vector size mismatch for arithmetic operator");
401 return glsl_type::error_type;
402 }
403 }
404
405 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
406 * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
407 * <vector, vector> have been handled. At least one of the operands must
408 * be matrix. Further, since there are no integer matrix types, the base
409 * type of both operands must be float.
410 */
411 assert(type_a->is_matrix() || type_b->is_matrix());
412 assert(type_a->base_type == GLSL_TYPE_FLOAT ||
413 type_a->base_type == GLSL_TYPE_DOUBLE);
414 assert(type_b->base_type == GLSL_TYPE_FLOAT ||
415 type_b->base_type == GLSL_TYPE_DOUBLE);
416
417 /* "* The operator is add (+), subtract (-), or divide (/), and the
418 * operands are matrices with the same number of rows and the same
419 * number of columns. In this case, the operation is done component-
420 * wise resulting in the same size matrix."
421 * * The operator is multiply (*), where both operands are matrices or
422 * one operand is a vector and the other a matrix. A right vector
423 * operand is treated as a column vector and a left vector operand as a
424 * row vector. In all these cases, it is required that the number of
425 * columns of the left operand is equal to the number of rows of the
426 * right operand. Then, the multiply (*) operation does a linear
427 * algebraic multiply, yielding an object that has the same number of
428 * rows as the left operand and the same number of columns as the right
429 * operand. Section 5.10 "Vector and Matrix Operations" explains in
430 * more detail how vectors and matrices are operated on."
431 */
432 if (! multiply) {
433 if (type_a == type_b)
434 return type_a;
435 } else {
436 const glsl_type *type = glsl_type::get_mul_type(type_a, type_b);
437
438 if (type == glsl_type::error_type) {
439 _mesa_glsl_error(loc, state,
440 "size mismatch for matrix multiplication");
441 }
442
443 return type;
444 }
445
446
447 /* "All other cases are illegal."
448 */
449 _mesa_glsl_error(loc, state, "type mismatch");
450 return glsl_type::error_type;
451 }
452
453
454 static const struct glsl_type *
455 unary_arithmetic_result_type(const struct glsl_type *type,
456 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
457 {
458 /* From GLSL 1.50 spec, page 57:
459 *
460 * "The arithmetic unary operators negate (-), post- and pre-increment
461 * and decrement (-- and ++) operate on integer or floating-point
462 * values (including vectors and matrices). All unary operators work
463 * component-wise on their operands. These result with the same type
464 * they operated on."
465 */
466 if (!type->is_numeric()) {
467 _mesa_glsl_error(loc, state,
468 "operands to arithmetic operators must be numeric");
469 return glsl_type::error_type;
470 }
471
472 return type;
473 }
474
475 /**
476 * \brief Return the result type of a bit-logic operation.
477 *
478 * If the given types to the bit-logic operator are invalid, return
479 * glsl_type::error_type.
480 *
481 * \param type_a Type of LHS of bit-logic op
482 * \param type_b Type of RHS of bit-logic op
483 */
484 static const struct glsl_type *
485 bit_logic_result_type(const struct glsl_type *type_a,
486 const struct glsl_type *type_b,
487 ast_operators op,
488 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
489 {
490 if (!state->check_bitwise_operations_allowed(loc)) {
491 return glsl_type::error_type;
492 }
493
494 /* From page 50 (page 56 of PDF) of GLSL 1.30 spec:
495 *
496 * "The bitwise operators and (&), exclusive-or (^), and inclusive-or
497 * (|). The operands must be of type signed or unsigned integers or
498 * integer vectors."
499 */
500 if (!type_a->is_integer()) {
501 _mesa_glsl_error(loc, state, "LHS of `%s' must be an integer",
502 ast_expression::operator_string(op));
503 return glsl_type::error_type;
504 }
505 if (!type_b->is_integer()) {
506 _mesa_glsl_error(loc, state, "RHS of `%s' must be an integer",
507 ast_expression::operator_string(op));
508 return glsl_type::error_type;
509 }
510
511 /* "The fundamental types of the operands (signed or unsigned) must
512 * match,"
513 */
514 if (type_a->base_type != type_b->base_type) {
515 _mesa_glsl_error(loc, state, "operands of `%s' must have the same "
516 "base type", ast_expression::operator_string(op));
517 return glsl_type::error_type;
518 }
519
520 /* "The operands cannot be vectors of differing size." */
521 if (type_a->is_vector() &&
522 type_b->is_vector() &&
523 type_a->vector_elements != type_b->vector_elements) {
524 _mesa_glsl_error(loc, state, "operands of `%s' cannot be vectors of "
525 "different sizes", ast_expression::operator_string(op));
526 return glsl_type::error_type;
527 }
528
529 /* "If one operand is a scalar and the other a vector, the scalar is
530 * applied component-wise to the vector, resulting in the same type as
531 * the vector. The fundamental types of the operands [...] will be the
532 * resulting fundamental type."
533 */
534 if (type_a->is_scalar())
535 return type_b;
536 else
537 return type_a;
538 }
539
540 static const struct glsl_type *
541 modulus_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
542 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
543 {
544 const glsl_type *type_a = value_a->type;
545 const glsl_type *type_b = value_b->type;
546
547 if (!state->check_version(130, 300, loc, "operator '%%' is reserved")) {
548 return glsl_type::error_type;
549 }
550
551 /* Section 5.9 (Expressions) of the GLSL 4.00 specification says:
552 *
553 * "The operator modulus (%) operates on signed or unsigned integers or
554 * integer vectors."
555 */
556 if (!type_a->is_integer()) {
557 _mesa_glsl_error(loc, state, "LHS of operator %% must be an integer");
558 return glsl_type::error_type;
559 }
560 if (!type_b->is_integer()) {
561 _mesa_glsl_error(loc, state, "RHS of operator %% must be an integer");
562 return glsl_type::error_type;
563 }
564
565 /* "If the fundamental types in the operands do not match, then the
566 * conversions from section 4.1.10 "Implicit Conversions" are applied
567 * to create matching types."
568 *
569 * Note that GLSL 4.00 (and GL_ARB_gpu_shader5) introduced implicit
570 * int -> uint conversion rules. Prior to that, there were no implicit
571 * conversions. So it's harmless to apply them universally - no implicit
572 * conversions will exist. If the types don't match, we'll receive false,
573 * and raise an error, satisfying the GLSL 1.50 spec, page 56:
574 *
575 * "The operand types must both be signed or unsigned."
576 */
577 if (!apply_implicit_conversion(type_a, value_b, state) &&
578 !apply_implicit_conversion(type_b, value_a, state)) {
579 _mesa_glsl_error(loc, state,
580 "could not implicitly convert operands to "
581 "modulus (%%) operator");
582 return glsl_type::error_type;
583 }
584 type_a = value_a->type;
585 type_b = value_b->type;
586
587 /* "The operands cannot be vectors of differing size. If one operand is
588 * a scalar and the other vector, then the scalar is applied component-
589 * wise to the vector, resulting in the same type as the vector. If both
590 * are vectors of the same size, the result is computed component-wise."
591 */
592 if (type_a->is_vector()) {
593 if (!type_b->is_vector()
594 || (type_a->vector_elements == type_b->vector_elements))
595 return type_a;
596 } else
597 return type_b;
598
599 /* "The operator modulus (%) is not defined for any other data types
600 * (non-integer types)."
601 */
602 _mesa_glsl_error(loc, state, "type mismatch");
603 return glsl_type::error_type;
604 }
605
606
607 static const struct glsl_type *
608 relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
609 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
610 {
611 const glsl_type *type_a = value_a->type;
612 const glsl_type *type_b = value_b->type;
613
614 /* From GLSL 1.50 spec, page 56:
615 * "The relational operators greater than (>), less than (<), greater
616 * than or equal (>=), and less than or equal (<=) operate only on
617 * scalar integer and scalar floating-point expressions."
618 */
619 if (!type_a->is_numeric()
620 || !type_b->is_numeric()
621 || !type_a->is_scalar()
622 || !type_b->is_scalar()) {
623 _mesa_glsl_error(loc, state,
624 "operands to relational operators must be scalar and "
625 "numeric");
626 return glsl_type::error_type;
627 }
628
629 /* "Either the operands' types must match, or the conversions from
630 * Section 4.1.10 "Implicit Conversions" will be applied to the integer
631 * operand, after which the types must match."
632 */
633 if (!apply_implicit_conversion(type_a, value_b, state)
634 && !apply_implicit_conversion(type_b, value_a, state)) {
635 _mesa_glsl_error(loc, state,
636 "could not implicitly convert operands to "
637 "relational operator");
638 return glsl_type::error_type;
639 }
640 type_a = value_a->type;
641 type_b = value_b->type;
642
643 if (type_a->base_type != type_b->base_type) {
644 _mesa_glsl_error(loc, state, "base type mismatch");
645 return glsl_type::error_type;
646 }
647
648 /* "The result is scalar Boolean."
649 */
650 return glsl_type::bool_type;
651 }
652
653 /**
654 * \brief Return the result type of a bit-shift operation.
655 *
656 * If the given types to the bit-shift operator are invalid, return
657 * glsl_type::error_type.
658 *
659 * \param type_a Type of LHS of bit-shift op
660 * \param type_b Type of RHS of bit-shift op
661 */
662 static const struct glsl_type *
663 shift_result_type(const struct glsl_type *type_a,
664 const struct glsl_type *type_b,
665 ast_operators op,
666 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
667 {
668 if (!state->check_bitwise_operations_allowed(loc)) {
669 return glsl_type::error_type;
670 }
671
672 /* From page 50 (page 56 of the PDF) of the GLSL 1.30 spec:
673 *
674 * "The shift operators (<<) and (>>). For both operators, the operands
675 * must be signed or unsigned integers or integer vectors. One operand
676 * can be signed while the other is unsigned."
677 */
678 if (!type_a->is_integer()) {
679 _mesa_glsl_error(loc, state, "LHS of operator %s must be an integer or "
680 "integer vector", ast_expression::operator_string(op));
681 return glsl_type::error_type;
682
683 }
684 if (!type_b->is_integer()) {
685 _mesa_glsl_error(loc, state, "RHS of operator %s must be an integer or "
686 "integer vector", ast_expression::operator_string(op));
687 return glsl_type::error_type;
688 }
689
690 /* "If the first operand is a scalar, the second operand has to be
691 * a scalar as well."
692 */
693 if (type_a->is_scalar() && !type_b->is_scalar()) {
694 _mesa_glsl_error(loc, state, "if the first operand of %s is scalar, the "
695 "second must be scalar as well",
696 ast_expression::operator_string(op));
697 return glsl_type::error_type;
698 }
699
700 /* If both operands are vectors, check that they have same number of
701 * elements.
702 */
703 if (type_a->is_vector() &&
704 type_b->is_vector() &&
705 type_a->vector_elements != type_b->vector_elements) {
706 _mesa_glsl_error(loc, state, "vector operands to operator %s must "
707 "have same number of elements",
708 ast_expression::operator_string(op));
709 return glsl_type::error_type;
710 }
711
712 /* "In all cases, the resulting type will be the same type as the left
713 * operand."
714 */
715 return type_a;
716 }
717
718 /**
719 * Returns the innermost array index expression in an rvalue tree.
720 * This is the largest indexing level -- if an array of blocks, then
721 * it is the block index rather than an indexing expression for an
722 * array-typed member of an array of blocks.
723 */
724 static ir_rvalue *
725 find_innermost_array_index(ir_rvalue *rv)
726 {
727 ir_dereference_array *last = NULL;
728 while (rv) {
729 if (rv->as_dereference_array()) {
730 last = rv->as_dereference_array();
731 rv = last->array;
732 } else if (rv->as_dereference_record())
733 rv = rv->as_dereference_record()->record;
734 else if (rv->as_swizzle())
735 rv = rv->as_swizzle()->val;
736 else
737 rv = NULL;
738 }
739
740 if (last)
741 return last->array_index;
742
743 return NULL;
744 }
745
746 /**
747 * Validates that a value can be assigned to a location with a specified type
748 *
749 * Validates that \c rhs can be assigned to some location. If the types are
750 * not an exact match but an automatic conversion is possible, \c rhs will be
751 * converted.
752 *
753 * \return
754 * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
755 * Otherwise the actual RHS to be assigned will be returned. This may be
756 * \c rhs, or it may be \c rhs after some type conversion.
757 *
758 * \note
759 * In addition to being used for assignments, this function is used to
760 * type-check return values.
761 */
762 static ir_rvalue *
763 validate_assignment(struct _mesa_glsl_parse_state *state,
764 YYLTYPE loc, ir_rvalue *lhs,
765 ir_rvalue *rhs, bool is_initializer)
766 {
767 /* If there is already some error in the RHS, just return it. Anything
768 * else will lead to an avalanche of error message back to the user.
769 */
770 if (rhs->type->is_error())
771 return rhs;
772
773 /* In the Tessellation Control Shader:
774 * If a per-vertex output variable is used as an l-value, it is an error
775 * if the expression indicating the vertex number is not the identifier
776 * `gl_InvocationID`.
777 */
778 if (state->stage == MESA_SHADER_TESS_CTRL) {
779 ir_variable *var = lhs->variable_referenced();
780 if (var->data.mode == ir_var_shader_out && !var->data.patch) {
781 ir_rvalue *index = find_innermost_array_index(lhs);
782 ir_variable *index_var = index ? index->variable_referenced() : NULL;
783 if (!index_var || strcmp(index_var->name, "gl_InvocationID") != 0) {
784 _mesa_glsl_error(&loc, state,
785 "Tessellation control shader outputs can only "
786 "be indexed by gl_InvocationID");
787 return NULL;
788 }
789 }
790 }
791
792 /* If the types are identical, the assignment can trivially proceed.
793 */
794 if (rhs->type == lhs->type)
795 return rhs;
796
797 /* If the array element types are the same and the LHS is unsized,
798 * the assignment is okay for initializers embedded in variable
799 * declarations.
800 *
801 * Note: Whole-array assignments are not permitted in GLSL 1.10, but this
802 * is handled by ir_dereference::is_lvalue.
803 */
804 const glsl_type *lhs_t = lhs->type;
805 const glsl_type *rhs_t = rhs->type;
806 bool unsized_array = false;
807 while(lhs_t->is_array()) {
808 if (rhs_t == lhs_t)
809 break; /* the rest of the inner arrays match so break out early */
810 if (!rhs_t->is_array()) {
811 unsized_array = false;
812 break; /* number of dimensions mismatch */
813 }
814 if (lhs_t->length == rhs_t->length) {
815 lhs_t = lhs_t->fields.array;
816 rhs_t = rhs_t->fields.array;
817 continue;
818 } else if (lhs_t->is_unsized_array()) {
819 unsized_array = true;
820 } else {
821 unsized_array = false;
822 break; /* sized array mismatch */
823 }
824 lhs_t = lhs_t->fields.array;
825 rhs_t = rhs_t->fields.array;
826 }
827 if (unsized_array) {
828 if (is_initializer) {
829 return rhs;
830 } else {
831 _mesa_glsl_error(&loc, state,
832 "implicitly sized arrays cannot be assigned");
833 return NULL;
834 }
835 }
836
837 /* Check for implicit conversion in GLSL 1.20 */
838 if (apply_implicit_conversion(lhs->type, rhs, state)) {
839 if (rhs->type == lhs->type)
840 return rhs;
841 }
842
843 _mesa_glsl_error(&loc, state,
844 "%s of type %s cannot be assigned to "
845 "variable of type %s",
846 is_initializer ? "initializer" : "value",
847 rhs->type->name, lhs->type->name);
848
849 return NULL;
850 }
851
852 static void
853 mark_whole_array_access(ir_rvalue *access)
854 {
855 ir_dereference_variable *deref = access->as_dereference_variable();
856
857 if (deref && deref->var) {
858 deref->var->data.max_array_access = deref->type->length - 1;
859 }
860 }
861
862 static bool
863 do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state,
864 const char *non_lvalue_description,
865 ir_rvalue *lhs, ir_rvalue *rhs,
866 ir_rvalue **out_rvalue, bool needs_rvalue,
867 bool is_initializer,
868 YYLTYPE lhs_loc)
869 {
870 void *ctx = state;
871 bool error_emitted = (lhs->type->is_error() || rhs->type->is_error());
872
873 ir_variable *lhs_var = lhs->variable_referenced();
874 if (lhs_var)
875 lhs_var->data.assigned = true;
876
877 if (!error_emitted) {
878 if (non_lvalue_description != NULL) {
879 _mesa_glsl_error(&lhs_loc, state,
880 "assignment to %s",
881 non_lvalue_description);
882 error_emitted = true;
883 } else if (lhs_var != NULL && (lhs_var->data.read_only ||
884 (lhs_var->data.mode == ir_var_shader_storage &&
885 lhs_var->data.image_read_only))) {
886 /* We can have image_read_only set on both images and buffer variables,
887 * but in the former there is a distinction between assignments to
888 * the variable itself (read_only) and to the memory they point to
889 * (image_read_only), while in the case of buffer variables there is
890 * no such distinction, that is why this check here is limited to
891 * buffer variables alone.
892 */
893 _mesa_glsl_error(&lhs_loc, state,
894 "assignment to read-only variable '%s'",
895 lhs_var->name);
896 error_emitted = true;
897 } else if (lhs->type->is_array() &&
898 !state->check_version(120, 300, &lhs_loc,
899 "whole array assignment forbidden")) {
900 /* From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
901 *
902 * "Other binary or unary expressions, non-dereferenced
903 * arrays, function names, swizzles with repeated fields,
904 * and constants cannot be l-values."
905 *
906 * The restriction on arrays is lifted in GLSL 1.20 and GLSL ES 3.00.
907 */
908 error_emitted = true;
909 } else if (!lhs->is_lvalue()) {
910 _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment");
911 error_emitted = true;
912 }
913 }
914
915 ir_rvalue *new_rhs =
916 validate_assignment(state, lhs_loc, lhs, rhs, is_initializer);
917 if (new_rhs != NULL) {
918 rhs = new_rhs;
919
920 /* If the LHS array was not declared with a size, it takes it size from
921 * the RHS. If the LHS is an l-value and a whole array, it must be a
922 * dereference of a variable. Any other case would require that the LHS
923 * is either not an l-value or not a whole array.
924 */
925 if (lhs->type->is_unsized_array()) {
926 ir_dereference *const d = lhs->as_dereference();
927
928 assert(d != NULL);
929
930 ir_variable *const var = d->variable_referenced();
931
932 assert(var != NULL);
933
934 if (var->data.max_array_access >= unsigned(rhs->type->array_size())) {
935 /* FINISHME: This should actually log the location of the RHS. */
936 _mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to "
937 "previous access",
938 var->data.max_array_access);
939 }
940
941 var->type = glsl_type::get_array_instance(lhs->type->fields.array,
942 rhs->type->array_size());
943 d->type = var->type;
944 }
945 if (lhs->type->is_array()) {
946 mark_whole_array_access(rhs);
947 mark_whole_array_access(lhs);
948 }
949 }
950
951 /* Most callers of do_assignment (assign, add_assign, pre_inc/dec,
952 * but not post_inc) need the converted assigned value as an rvalue
953 * to handle things like:
954 *
955 * i = j += 1;
956 */
957 if (needs_rvalue) {
958 ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp",
959 ir_var_temporary);
960 instructions->push_tail(var);
961 instructions->push_tail(assign(var, rhs));
962
963 if (!error_emitted) {
964 ir_dereference_variable *deref_var = new(ctx) ir_dereference_variable(var);
965 instructions->push_tail(new(ctx) ir_assignment(lhs, deref_var));
966 }
967 ir_rvalue *rvalue = new(ctx) ir_dereference_variable(var);
968
969 *out_rvalue = rvalue;
970 } else {
971 if (!error_emitted)
972 instructions->push_tail(new(ctx) ir_assignment(lhs, rhs));
973 *out_rvalue = NULL;
974 }
975
976 return error_emitted;
977 }
978
979 static ir_rvalue *
980 get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue)
981 {
982 void *ctx = ralloc_parent(lvalue);
983 ir_variable *var;
984
985 var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp",
986 ir_var_temporary);
987 instructions->push_tail(var);
988
989 instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
990 lvalue));
991
992 return new(ctx) ir_dereference_variable(var);
993 }
994
995
996 ir_rvalue *
997 ast_node::hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
998 {
999 (void) instructions;
1000 (void) state;
1001
1002 return NULL;
1003 }
1004
1005 bool
1006 ast_node::has_sequence_subexpression() const
1007 {
1008 return false;
1009 }
1010
1011 void
1012 ast_function_expression::hir_no_rvalue(exec_list *instructions,
1013 struct _mesa_glsl_parse_state *state)
1014 {
1015 (void)hir(instructions, state);
1016 }
1017
1018 void
1019 ast_aggregate_initializer::hir_no_rvalue(exec_list *instructions,
1020 struct _mesa_glsl_parse_state *state)
1021 {
1022 (void)hir(instructions, state);
1023 }
1024
1025 static ir_rvalue *
1026 do_comparison(void *mem_ctx, int operation, ir_rvalue *op0, ir_rvalue *op1)
1027 {
1028 int join_op;
1029 ir_rvalue *cmp = NULL;
1030
1031 if (operation == ir_binop_all_equal)
1032 join_op = ir_binop_logic_and;
1033 else
1034 join_op = ir_binop_logic_or;
1035
1036 switch (op0->type->base_type) {
1037 case GLSL_TYPE_FLOAT:
1038 case GLSL_TYPE_UINT:
1039 case GLSL_TYPE_INT:
1040 case GLSL_TYPE_BOOL:
1041 case GLSL_TYPE_DOUBLE:
1042 return new(mem_ctx) ir_expression(operation, op0, op1);
1043
1044 case GLSL_TYPE_ARRAY: {
1045 for (unsigned int i = 0; i < op0->type->length; i++) {
1046 ir_rvalue *e0, *e1, *result;
1047
1048 e0 = new(mem_ctx) ir_dereference_array(op0->clone(mem_ctx, NULL),
1049 new(mem_ctx) ir_constant(i));
1050 e1 = new(mem_ctx) ir_dereference_array(op1->clone(mem_ctx, NULL),
1051 new(mem_ctx) ir_constant(i));
1052 result = do_comparison(mem_ctx, operation, e0, e1);
1053
1054 if (cmp) {
1055 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
1056 } else {
1057 cmp = result;
1058 }
1059 }
1060
1061 mark_whole_array_access(op0);
1062 mark_whole_array_access(op1);
1063 break;
1064 }
1065
1066 case GLSL_TYPE_STRUCT: {
1067 for (unsigned int i = 0; i < op0->type->length; i++) {
1068 ir_rvalue *e0, *e1, *result;
1069 const char *field_name = op0->type->fields.structure[i].name;
1070
1071 e0 = new(mem_ctx) ir_dereference_record(op0->clone(mem_ctx, NULL),
1072 field_name);
1073 e1 = new(mem_ctx) ir_dereference_record(op1->clone(mem_ctx, NULL),
1074 field_name);
1075 result = do_comparison(mem_ctx, operation, e0, e1);
1076
1077 if (cmp) {
1078 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
1079 } else {
1080 cmp = result;
1081 }
1082 }
1083 break;
1084 }
1085
1086 case GLSL_TYPE_ERROR:
1087 case GLSL_TYPE_VOID:
1088 case GLSL_TYPE_SAMPLER:
1089 case GLSL_TYPE_IMAGE:
1090 case GLSL_TYPE_INTERFACE:
1091 case GLSL_TYPE_ATOMIC_UINT:
1092 case GLSL_TYPE_SUBROUTINE:
1093 /* I assume a comparison of a struct containing a sampler just
1094 * ignores the sampler present in the type.
1095 */
1096 break;
1097 }
1098
1099 if (cmp == NULL)
1100 cmp = new(mem_ctx) ir_constant(true);
1101
1102 return cmp;
1103 }
1104
1105 /* For logical operations, we want to ensure that the operands are
1106 * scalar booleans. If it isn't, emit an error and return a constant
1107 * boolean to avoid triggering cascading error messages.
1108 */
1109 ir_rvalue *
1110 get_scalar_boolean_operand(exec_list *instructions,
1111 struct _mesa_glsl_parse_state *state,
1112 ast_expression *parent_expr,
1113 int operand,
1114 const char *operand_name,
1115 bool *error_emitted)
1116 {
1117 ast_expression *expr = parent_expr->subexpressions[operand];
1118 void *ctx = state;
1119 ir_rvalue *val = expr->hir(instructions, state);
1120
1121 if (val->type->is_boolean() && val->type->is_scalar())
1122 return val;
1123
1124 if (!*error_emitted) {
1125 YYLTYPE loc = expr->get_location();
1126 _mesa_glsl_error(&loc, state, "%s of `%s' must be scalar boolean",
1127 operand_name,
1128 parent_expr->operator_string(parent_expr->oper));
1129 *error_emitted = true;
1130 }
1131
1132 return new(ctx) ir_constant(true);
1133 }
1134
1135 /**
1136 * If name refers to a builtin array whose maximum allowed size is less than
1137 * size, report an error and return true. Otherwise return false.
1138 */
1139 void
1140 check_builtin_array_max_size(const char *name, unsigned size,
1141 YYLTYPE loc, struct _mesa_glsl_parse_state *state)
1142 {
1143 if ((strcmp("gl_TexCoord", name) == 0)
1144 && (size > state->Const.MaxTextureCoords)) {
1145 /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec:
1146 *
1147 * "The size [of gl_TexCoord] can be at most
1148 * gl_MaxTextureCoords."
1149 */
1150 _mesa_glsl_error(&loc, state, "`gl_TexCoord' array size cannot "
1151 "be larger than gl_MaxTextureCoords (%u)",
1152 state->Const.MaxTextureCoords);
1153 } else if (strcmp("gl_ClipDistance", name) == 0
1154 && size > state->Const.MaxClipPlanes) {
1155 /* From section 7.1 (Vertex Shader Special Variables) of the
1156 * GLSL 1.30 spec:
1157 *
1158 * "The gl_ClipDistance array is predeclared as unsized and
1159 * must be sized by the shader either redeclaring it with a
1160 * size or indexing it only with integral constant
1161 * expressions. ... The size can be at most
1162 * gl_MaxClipDistances."
1163 */
1164 _mesa_glsl_error(&loc, state, "`gl_ClipDistance' array size cannot "
1165 "be larger than gl_MaxClipDistances (%u)",
1166 state->Const.MaxClipPlanes);
1167 }
1168 }
1169
1170 /**
1171 * Create the constant 1, of a which is appropriate for incrementing and
1172 * decrementing values of the given GLSL type. For example, if type is vec4,
1173 * this creates a constant value of 1.0 having type float.
1174 *
1175 * If the given type is invalid for increment and decrement operators, return
1176 * a floating point 1--the error will be detected later.
1177 */
1178 static ir_rvalue *
1179 constant_one_for_inc_dec(void *ctx, const glsl_type *type)
1180 {
1181 switch (type->base_type) {
1182 case GLSL_TYPE_UINT:
1183 return new(ctx) ir_constant((unsigned) 1);
1184 case GLSL_TYPE_INT:
1185 return new(ctx) ir_constant(1);
1186 default:
1187 case GLSL_TYPE_FLOAT:
1188 return new(ctx) ir_constant(1.0f);
1189 }
1190 }
1191
1192 ir_rvalue *
1193 ast_expression::hir(exec_list *instructions,
1194 struct _mesa_glsl_parse_state *state)
1195 {
1196 return do_hir(instructions, state, true);
1197 }
1198
1199 void
1200 ast_expression::hir_no_rvalue(exec_list *instructions,
1201 struct _mesa_glsl_parse_state *state)
1202 {
1203 do_hir(instructions, state, false);
1204 }
1205
1206 ir_rvalue *
1207 ast_expression::do_hir(exec_list *instructions,
1208 struct _mesa_glsl_parse_state *state,
1209 bool needs_rvalue)
1210 {
1211 void *ctx = state;
1212 static const int operations[AST_NUM_OPERATORS] = {
1213 -1, /* ast_assign doesn't convert to ir_expression. */
1214 -1, /* ast_plus doesn't convert to ir_expression. */
1215 ir_unop_neg,
1216 ir_binop_add,
1217 ir_binop_sub,
1218 ir_binop_mul,
1219 ir_binop_div,
1220 ir_binop_mod,
1221 ir_binop_lshift,
1222 ir_binop_rshift,
1223 ir_binop_less,
1224 ir_binop_greater,
1225 ir_binop_lequal,
1226 ir_binop_gequal,
1227 ir_binop_all_equal,
1228 ir_binop_any_nequal,
1229 ir_binop_bit_and,
1230 ir_binop_bit_xor,
1231 ir_binop_bit_or,
1232 ir_unop_bit_not,
1233 ir_binop_logic_and,
1234 ir_binop_logic_xor,
1235 ir_binop_logic_or,
1236 ir_unop_logic_not,
1237
1238 /* Note: The following block of expression types actually convert
1239 * to multiple IR instructions.
1240 */
1241 ir_binop_mul, /* ast_mul_assign */
1242 ir_binop_div, /* ast_div_assign */
1243 ir_binop_mod, /* ast_mod_assign */
1244 ir_binop_add, /* ast_add_assign */
1245 ir_binop_sub, /* ast_sub_assign */
1246 ir_binop_lshift, /* ast_ls_assign */
1247 ir_binop_rshift, /* ast_rs_assign */
1248 ir_binop_bit_and, /* ast_and_assign */
1249 ir_binop_bit_xor, /* ast_xor_assign */
1250 ir_binop_bit_or, /* ast_or_assign */
1251
1252 -1, /* ast_conditional doesn't convert to ir_expression. */
1253 ir_binop_add, /* ast_pre_inc. */
1254 ir_binop_sub, /* ast_pre_dec. */
1255 ir_binop_add, /* ast_post_inc. */
1256 ir_binop_sub, /* ast_post_dec. */
1257 -1, /* ast_field_selection doesn't conv to ir_expression. */
1258 -1, /* ast_array_index doesn't convert to ir_expression. */
1259 -1, /* ast_function_call doesn't conv to ir_expression. */
1260 -1, /* ast_identifier doesn't convert to ir_expression. */
1261 -1, /* ast_int_constant doesn't convert to ir_expression. */
1262 -1, /* ast_uint_constant doesn't conv to ir_expression. */
1263 -1, /* ast_float_constant doesn't conv to ir_expression. */
1264 -1, /* ast_bool_constant doesn't conv to ir_expression. */
1265 -1, /* ast_sequence doesn't convert to ir_expression. */
1266 };
1267 ir_rvalue *result = NULL;
1268 ir_rvalue *op[3];
1269 const struct glsl_type *type; /* a temporary variable for switch cases */
1270 bool error_emitted = false;
1271 YYLTYPE loc;
1272
1273 loc = this->get_location();
1274
1275 switch (this->oper) {
1276 case ast_aggregate:
1277 assert(!"ast_aggregate: Should never get here.");
1278 break;
1279
1280 case ast_assign: {
1281 op[0] = this->subexpressions[0]->hir(instructions, state);
1282 op[1] = this->subexpressions[1]->hir(instructions, state);
1283
1284 error_emitted =
1285 do_assignment(instructions, state,
1286 this->subexpressions[0]->non_lvalue_description,
1287 op[0], op[1], &result, needs_rvalue, false,
1288 this->subexpressions[0]->get_location());
1289 break;
1290 }
1291
1292 case ast_plus:
1293 op[0] = this->subexpressions[0]->hir(instructions, state);
1294
1295 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1296
1297 error_emitted = type->is_error();
1298
1299 result = op[0];
1300 break;
1301
1302 case ast_neg:
1303 op[0] = this->subexpressions[0]->hir(instructions, state);
1304
1305 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1306
1307 error_emitted = type->is_error();
1308
1309 result = new(ctx) ir_expression(operations[this->oper], type,
1310 op[0], NULL);
1311 break;
1312
1313 case ast_add:
1314 case ast_sub:
1315 case ast_mul:
1316 case ast_div:
1317 op[0] = this->subexpressions[0]->hir(instructions, state);
1318 op[1] = this->subexpressions[1]->hir(instructions, state);
1319
1320 type = arithmetic_result_type(op[0], op[1],
1321 (this->oper == ast_mul),
1322 state, & loc);
1323 error_emitted = type->is_error();
1324
1325 result = new(ctx) ir_expression(operations[this->oper], type,
1326 op[0], op[1]);
1327 break;
1328
1329 case ast_mod:
1330 op[0] = this->subexpressions[0]->hir(instructions, state);
1331 op[1] = this->subexpressions[1]->hir(instructions, state);
1332
1333 type = modulus_result_type(op[0], op[1], state, &loc);
1334
1335 assert(operations[this->oper] == ir_binop_mod);
1336
1337 result = new(ctx) ir_expression(operations[this->oper], type,
1338 op[0], op[1]);
1339 error_emitted = type->is_error();
1340 break;
1341
1342 case ast_lshift:
1343 case ast_rshift:
1344 if (!state->check_bitwise_operations_allowed(&loc)) {
1345 error_emitted = true;
1346 }
1347
1348 op[0] = this->subexpressions[0]->hir(instructions, state);
1349 op[1] = this->subexpressions[1]->hir(instructions, state);
1350 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1351 &loc);
1352 result = new(ctx) ir_expression(operations[this->oper], type,
1353 op[0], op[1]);
1354 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1355 break;
1356
1357 case ast_less:
1358 case ast_greater:
1359 case ast_lequal:
1360 case ast_gequal:
1361 op[0] = this->subexpressions[0]->hir(instructions, state);
1362 op[1] = this->subexpressions[1]->hir(instructions, state);
1363
1364 type = relational_result_type(op[0], op[1], state, & loc);
1365
1366 /* The relational operators must either generate an error or result
1367 * in a scalar boolean. See page 57 of the GLSL 1.50 spec.
1368 */
1369 assert(type->is_error()
1370 || ((type->base_type == GLSL_TYPE_BOOL)
1371 && type->is_scalar()));
1372
1373 result = new(ctx) ir_expression(operations[this->oper], type,
1374 op[0], op[1]);
1375 error_emitted = type->is_error();
1376 break;
1377
1378 case ast_nequal:
1379 case ast_equal:
1380 op[0] = this->subexpressions[0]->hir(instructions, state);
1381 op[1] = this->subexpressions[1]->hir(instructions, state);
1382
1383 /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
1384 *
1385 * "The equality operators equal (==), and not equal (!=)
1386 * operate on all types. They result in a scalar Boolean. If
1387 * the operand types do not match, then there must be a
1388 * conversion from Section 4.1.10 "Implicit Conversions"
1389 * applied to one operand that can make them match, in which
1390 * case this conversion is done."
1391 */
1392
1393 if (op[0]->type == glsl_type::void_type || op[1]->type == glsl_type::void_type) {
1394 _mesa_glsl_error(& loc, state, "`%s': wrong operand types: "
1395 "no operation `%1$s' exists that takes a left-hand "
1396 "operand of type 'void' or a right operand of type "
1397 "'void'", (this->oper == ast_equal) ? "==" : "!=");
1398 error_emitted = true;
1399 } else if ((!apply_implicit_conversion(op[0]->type, op[1], state)
1400 && !apply_implicit_conversion(op[1]->type, op[0], state))
1401 || (op[0]->type != op[1]->type)) {
1402 _mesa_glsl_error(& loc, state, "operands of `%s' must have the same "
1403 "type", (this->oper == ast_equal) ? "==" : "!=");
1404 error_emitted = true;
1405 } else if ((op[0]->type->is_array() || op[1]->type->is_array()) &&
1406 !state->check_version(120, 300, &loc,
1407 "array comparisons forbidden")) {
1408 error_emitted = true;
1409 } else if ((op[0]->type->contains_opaque() ||
1410 op[1]->type->contains_opaque())) {
1411 _mesa_glsl_error(&loc, state, "opaque type comparisons forbidden");
1412 error_emitted = true;
1413 }
1414
1415 if (error_emitted) {
1416 result = new(ctx) ir_constant(false);
1417 } else {
1418 result = do_comparison(ctx, operations[this->oper], op[0], op[1]);
1419 assert(result->type == glsl_type::bool_type);
1420 }
1421 break;
1422
1423 case ast_bit_and:
1424 case ast_bit_xor:
1425 case ast_bit_or:
1426 op[0] = this->subexpressions[0]->hir(instructions, state);
1427 op[1] = this->subexpressions[1]->hir(instructions, state);
1428 type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
1429 state, &loc);
1430 result = new(ctx) ir_expression(operations[this->oper], type,
1431 op[0], op[1]);
1432 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1433 break;
1434
1435 case ast_bit_not:
1436 op[0] = this->subexpressions[0]->hir(instructions, state);
1437
1438 if (!state->check_bitwise_operations_allowed(&loc)) {
1439 error_emitted = true;
1440 }
1441
1442 if (!op[0]->type->is_integer()) {
1443 _mesa_glsl_error(&loc, state, "operand of `~' must be an integer");
1444 error_emitted = true;
1445 }
1446
1447 type = error_emitted ? glsl_type::error_type : op[0]->type;
1448 result = new(ctx) ir_expression(ir_unop_bit_not, type, op[0], NULL);
1449 break;
1450
1451 case ast_logic_and: {
1452 exec_list rhs_instructions;
1453 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1454 "LHS", &error_emitted);
1455 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1456 "RHS", &error_emitted);
1457
1458 if (rhs_instructions.is_empty()) {
1459 result = new(ctx) ir_expression(ir_binop_logic_and, op[0], op[1]);
1460 type = result->type;
1461 } else {
1462 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1463 "and_tmp",
1464 ir_var_temporary);
1465 instructions->push_tail(tmp);
1466
1467 ir_if *const stmt = new(ctx) ir_if(op[0]);
1468 instructions->push_tail(stmt);
1469
1470 stmt->then_instructions.append_list(&rhs_instructions);
1471 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1472 ir_assignment *const then_assign =
1473 new(ctx) ir_assignment(then_deref, op[1]);
1474 stmt->then_instructions.push_tail(then_assign);
1475
1476 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1477 ir_assignment *const else_assign =
1478 new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false));
1479 stmt->else_instructions.push_tail(else_assign);
1480
1481 result = new(ctx) ir_dereference_variable(tmp);
1482 type = tmp->type;
1483 }
1484 break;
1485 }
1486
1487 case ast_logic_or: {
1488 exec_list rhs_instructions;
1489 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1490 "LHS", &error_emitted);
1491 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1492 "RHS", &error_emitted);
1493
1494 if (rhs_instructions.is_empty()) {
1495 result = new(ctx) ir_expression(ir_binop_logic_or, op[0], op[1]);
1496 type = result->type;
1497 } else {
1498 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1499 "or_tmp",
1500 ir_var_temporary);
1501 instructions->push_tail(tmp);
1502
1503 ir_if *const stmt = new(ctx) ir_if(op[0]);
1504 instructions->push_tail(stmt);
1505
1506 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1507 ir_assignment *const then_assign =
1508 new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true));
1509 stmt->then_instructions.push_tail(then_assign);
1510
1511 stmt->else_instructions.append_list(&rhs_instructions);
1512 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1513 ir_assignment *const else_assign =
1514 new(ctx) ir_assignment(else_deref, op[1]);
1515 stmt->else_instructions.push_tail(else_assign);
1516
1517 result = new(ctx) ir_dereference_variable(tmp);
1518 type = tmp->type;
1519 }
1520 break;
1521 }
1522
1523 case ast_logic_xor:
1524 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1525 *
1526 * "The logical binary operators and (&&), or ( | | ), and
1527 * exclusive or (^^). They operate only on two Boolean
1528 * expressions and result in a Boolean expression."
1529 */
1530 op[0] = get_scalar_boolean_operand(instructions, state, this, 0, "LHS",
1531 &error_emitted);
1532 op[1] = get_scalar_boolean_operand(instructions, state, this, 1, "RHS",
1533 &error_emitted);
1534
1535 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1536 op[0], op[1]);
1537 break;
1538
1539 case ast_logic_not:
1540 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1541 "operand", &error_emitted);
1542
1543 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1544 op[0], NULL);
1545 break;
1546
1547 case ast_mul_assign:
1548 case ast_div_assign:
1549 case ast_add_assign:
1550 case ast_sub_assign: {
1551 op[0] = this->subexpressions[0]->hir(instructions, state);
1552 op[1] = this->subexpressions[1]->hir(instructions, state);
1553
1554 type = arithmetic_result_type(op[0], op[1],
1555 (this->oper == ast_mul_assign),
1556 state, & loc);
1557
1558 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1559 op[0], op[1]);
1560
1561 error_emitted =
1562 do_assignment(instructions, state,
1563 this->subexpressions[0]->non_lvalue_description,
1564 op[0]->clone(ctx, NULL), temp_rhs,
1565 &result, needs_rvalue, false,
1566 this->subexpressions[0]->get_location());
1567
1568 /* GLSL 1.10 does not allow array assignment. However, we don't have to
1569 * explicitly test for this because none of the binary expression
1570 * operators allow array operands either.
1571 */
1572
1573 break;
1574 }
1575
1576 case ast_mod_assign: {
1577 op[0] = this->subexpressions[0]->hir(instructions, state);
1578 op[1] = this->subexpressions[1]->hir(instructions, state);
1579
1580 type = modulus_result_type(op[0], op[1], state, &loc);
1581
1582 assert(operations[this->oper] == ir_binop_mod);
1583
1584 ir_rvalue *temp_rhs;
1585 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1586 op[0], op[1]);
1587
1588 error_emitted =
1589 do_assignment(instructions, state,
1590 this->subexpressions[0]->non_lvalue_description,
1591 op[0]->clone(ctx, NULL), temp_rhs,
1592 &result, needs_rvalue, false,
1593 this->subexpressions[0]->get_location());
1594 break;
1595 }
1596
1597 case ast_ls_assign:
1598 case ast_rs_assign: {
1599 op[0] = this->subexpressions[0]->hir(instructions, state);
1600 op[1] = this->subexpressions[1]->hir(instructions, state);
1601 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1602 &loc);
1603 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1604 type, op[0], op[1]);
1605 error_emitted =
1606 do_assignment(instructions, state,
1607 this->subexpressions[0]->non_lvalue_description,
1608 op[0]->clone(ctx, NULL), temp_rhs,
1609 &result, needs_rvalue, false,
1610 this->subexpressions[0]->get_location());
1611 break;
1612 }
1613
1614 case ast_and_assign:
1615 case ast_xor_assign:
1616 case ast_or_assign: {
1617 op[0] = this->subexpressions[0]->hir(instructions, state);
1618 op[1] = this->subexpressions[1]->hir(instructions, state);
1619 type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
1620 state, &loc);
1621 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1622 type, op[0], op[1]);
1623 error_emitted =
1624 do_assignment(instructions, state,
1625 this->subexpressions[0]->non_lvalue_description,
1626 op[0]->clone(ctx, NULL), temp_rhs,
1627 &result, needs_rvalue, false,
1628 this->subexpressions[0]->get_location());
1629 break;
1630 }
1631
1632 case ast_conditional: {
1633 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1634 *
1635 * "The ternary selection operator (?:). It operates on three
1636 * expressions (exp1 ? exp2 : exp3). This operator evaluates the
1637 * first expression, which must result in a scalar Boolean."
1638 */
1639 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1640 "condition", &error_emitted);
1641
1642 /* The :? operator is implemented by generating an anonymous temporary
1643 * followed by an if-statement. The last instruction in each branch of
1644 * the if-statement assigns a value to the anonymous temporary. This
1645 * temporary is the r-value of the expression.
1646 */
1647 exec_list then_instructions;
1648 exec_list else_instructions;
1649
1650 op[1] = this->subexpressions[1]->hir(&then_instructions, state);
1651 op[2] = this->subexpressions[2]->hir(&else_instructions, state);
1652
1653 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1654 *
1655 * "The second and third expressions can be any type, as
1656 * long their types match, or there is a conversion in
1657 * Section 4.1.10 "Implicit Conversions" that can be applied
1658 * to one of the expressions to make their types match. This
1659 * resulting matching type is the type of the entire
1660 * expression."
1661 */
1662 if ((!apply_implicit_conversion(op[1]->type, op[2], state)
1663 && !apply_implicit_conversion(op[2]->type, op[1], state))
1664 || (op[1]->type != op[2]->type)) {
1665 YYLTYPE loc = this->subexpressions[1]->get_location();
1666
1667 _mesa_glsl_error(& loc, state, "second and third operands of ?: "
1668 "operator must have matching types");
1669 error_emitted = true;
1670 type = glsl_type::error_type;
1671 } else {
1672 type = op[1]->type;
1673 }
1674
1675 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1676 *
1677 * "The second and third expressions must be the same type, but can
1678 * be of any type other than an array."
1679 */
1680 if (type->is_array() &&
1681 !state->check_version(120, 300, &loc,
1682 "second and third operands of ?: operator "
1683 "cannot be arrays")) {
1684 error_emitted = true;
1685 }
1686
1687 /* From section 4.1.7 of the GLSL 4.50 spec (Opaque Types):
1688 *
1689 * "Except for array indexing, structure member selection, and
1690 * parentheses, opaque variables are not allowed to be operands in
1691 * expressions; such use results in a compile-time error."
1692 */
1693 if (type->contains_opaque()) {
1694 _mesa_glsl_error(&loc, state, "opaque variables cannot be operands "
1695 "of the ?: operator");
1696 error_emitted = true;
1697 }
1698
1699 ir_constant *cond_val = op[0]->constant_expression_value();
1700
1701 if (then_instructions.is_empty()
1702 && else_instructions.is_empty()
1703 && cond_val != NULL) {
1704 result = cond_val->value.b[0] ? op[1] : op[2];
1705 } else {
1706 /* The copy to conditional_tmp reads the whole array. */
1707 if (type->is_array()) {
1708 mark_whole_array_access(op[1]);
1709 mark_whole_array_access(op[2]);
1710 }
1711
1712 ir_variable *const tmp =
1713 new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary);
1714 instructions->push_tail(tmp);
1715
1716 ir_if *const stmt = new(ctx) ir_if(op[0]);
1717 instructions->push_tail(stmt);
1718
1719 then_instructions.move_nodes_to(& stmt->then_instructions);
1720 ir_dereference *const then_deref =
1721 new(ctx) ir_dereference_variable(tmp);
1722 ir_assignment *const then_assign =
1723 new(ctx) ir_assignment(then_deref, op[1]);
1724 stmt->then_instructions.push_tail(then_assign);
1725
1726 else_instructions.move_nodes_to(& stmt->else_instructions);
1727 ir_dereference *const else_deref =
1728 new(ctx) ir_dereference_variable(tmp);
1729 ir_assignment *const else_assign =
1730 new(ctx) ir_assignment(else_deref, op[2]);
1731 stmt->else_instructions.push_tail(else_assign);
1732
1733 result = new(ctx) ir_dereference_variable(tmp);
1734 }
1735 break;
1736 }
1737
1738 case ast_pre_inc:
1739 case ast_pre_dec: {
1740 this->non_lvalue_description = (this->oper == ast_pre_inc)
1741 ? "pre-increment operation" : "pre-decrement operation";
1742
1743 op[0] = this->subexpressions[0]->hir(instructions, state);
1744 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1745
1746 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1747
1748 ir_rvalue *temp_rhs;
1749 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1750 op[0], op[1]);
1751
1752 error_emitted =
1753 do_assignment(instructions, state,
1754 this->subexpressions[0]->non_lvalue_description,
1755 op[0]->clone(ctx, NULL), temp_rhs,
1756 &result, needs_rvalue, false,
1757 this->subexpressions[0]->get_location());
1758 break;
1759 }
1760
1761 case ast_post_inc:
1762 case ast_post_dec: {
1763 this->non_lvalue_description = (this->oper == ast_post_inc)
1764 ? "post-increment operation" : "post-decrement operation";
1765 op[0] = this->subexpressions[0]->hir(instructions, state);
1766 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1767
1768 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1769
1770 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1771
1772 ir_rvalue *temp_rhs;
1773 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1774 op[0], op[1]);
1775
1776 /* Get a temporary of a copy of the lvalue before it's modified.
1777 * This may get thrown away later.
1778 */
1779 result = get_lvalue_copy(instructions, op[0]->clone(ctx, NULL));
1780
1781 ir_rvalue *junk_rvalue;
1782 error_emitted =
1783 do_assignment(instructions, state,
1784 this->subexpressions[0]->non_lvalue_description,
1785 op[0]->clone(ctx, NULL), temp_rhs,
1786 &junk_rvalue, false, false,
1787 this->subexpressions[0]->get_location());
1788
1789 break;
1790 }
1791
1792 case ast_field_selection:
1793 result = _mesa_ast_field_selection_to_hir(this, instructions, state);
1794 break;
1795
1796 case ast_array_index: {
1797 YYLTYPE index_loc = subexpressions[1]->get_location();
1798
1799 op[0] = subexpressions[0]->hir(instructions, state);
1800 op[1] = subexpressions[1]->hir(instructions, state);
1801
1802 result = _mesa_ast_array_index_to_hir(ctx, state, op[0], op[1],
1803 loc, index_loc);
1804
1805 if (result->type->is_error())
1806 error_emitted = true;
1807
1808 break;
1809 }
1810
1811 case ast_unsized_array_dim:
1812 assert(!"ast_unsized_array_dim: Should never get here.");
1813 break;
1814
1815 case ast_function_call:
1816 /* Should *NEVER* get here. ast_function_call should always be handled
1817 * by ast_function_expression::hir.
1818 */
1819 assert(0);
1820 break;
1821
1822 case ast_identifier: {
1823 /* ast_identifier can appear several places in a full abstract syntax
1824 * tree. This particular use must be at location specified in the grammar
1825 * as 'variable_identifier'.
1826 */
1827 ir_variable *var =
1828 state->symbols->get_variable(this->primary_expression.identifier);
1829
1830 if (var != NULL) {
1831 var->data.used = true;
1832 result = new(ctx) ir_dereference_variable(var);
1833 } else {
1834 _mesa_glsl_error(& loc, state, "`%s' undeclared",
1835 this->primary_expression.identifier);
1836
1837 result = ir_rvalue::error_value(ctx);
1838 error_emitted = true;
1839 }
1840 break;
1841 }
1842
1843 case ast_int_constant:
1844 result = new(ctx) ir_constant(this->primary_expression.int_constant);
1845 break;
1846
1847 case ast_uint_constant:
1848 result = new(ctx) ir_constant(this->primary_expression.uint_constant);
1849 break;
1850
1851 case ast_float_constant:
1852 result = new(ctx) ir_constant(this->primary_expression.float_constant);
1853 break;
1854
1855 case ast_bool_constant:
1856 result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant));
1857 break;
1858
1859 case ast_double_constant:
1860 result = new(ctx) ir_constant(this->primary_expression.double_constant);
1861 break;
1862
1863 case ast_sequence: {
1864 /* It should not be possible to generate a sequence in the AST without
1865 * any expressions in it.
1866 */
1867 assert(!this->expressions.is_empty());
1868
1869 /* The r-value of a sequence is the last expression in the sequence. If
1870 * the other expressions in the sequence do not have side-effects (and
1871 * therefore add instructions to the instruction list), they get dropped
1872 * on the floor.
1873 */
1874 exec_node *previous_tail_pred = NULL;
1875 YYLTYPE previous_operand_loc = loc;
1876
1877 foreach_list_typed (ast_node, ast, link, &this->expressions) {
1878 /* If one of the operands of comma operator does not generate any
1879 * code, we want to emit a warning. At each pass through the loop
1880 * previous_tail_pred will point to the last instruction in the
1881 * stream *before* processing the previous operand. Naturally,
1882 * instructions->tail_pred will point to the last instruction in the
1883 * stream *after* processing the previous operand. If the two
1884 * pointers match, then the previous operand had no effect.
1885 *
1886 * The warning behavior here differs slightly from GCC. GCC will
1887 * only emit a warning if none of the left-hand operands have an
1888 * effect. However, it will emit a warning for each. I believe that
1889 * there are some cases in C (especially with GCC extensions) where
1890 * it is useful to have an intermediate step in a sequence have no
1891 * effect, but I don't think these cases exist in GLSL. Either way,
1892 * it would be a giant hassle to replicate that behavior.
1893 */
1894 if (previous_tail_pred == instructions->tail_pred) {
1895 _mesa_glsl_warning(&previous_operand_loc, state,
1896 "left-hand operand of comma expression has "
1897 "no effect");
1898 }
1899
1900 /* tail_pred is directly accessed instead of using the get_tail()
1901 * method for performance reasons. get_tail() has extra code to
1902 * return NULL when the list is empty. We don't care about that
1903 * here, so using tail_pred directly is fine.
1904 */
1905 previous_tail_pred = instructions->tail_pred;
1906 previous_operand_loc = ast->get_location();
1907
1908 result = ast->hir(instructions, state);
1909 }
1910
1911 /* Any errors should have already been emitted in the loop above.
1912 */
1913 error_emitted = true;
1914 break;
1915 }
1916 }
1917 type = NULL; /* use result->type, not type. */
1918 assert(result != NULL || !needs_rvalue);
1919
1920 if (result && result->type->is_error() && !error_emitted)
1921 _mesa_glsl_error(& loc, state, "type mismatch");
1922
1923 return result;
1924 }
1925
1926 bool
1927 ast_expression::has_sequence_subexpression() const
1928 {
1929 switch (this->oper) {
1930 case ast_plus:
1931 case ast_neg:
1932 case ast_bit_not:
1933 case ast_logic_not:
1934 case ast_pre_inc:
1935 case ast_pre_dec:
1936 case ast_post_inc:
1937 case ast_post_dec:
1938 return this->subexpressions[0]->has_sequence_subexpression();
1939
1940 case ast_assign:
1941 case ast_add:
1942 case ast_sub:
1943 case ast_mul:
1944 case ast_div:
1945 case ast_mod:
1946 case ast_lshift:
1947 case ast_rshift:
1948 case ast_less:
1949 case ast_greater:
1950 case ast_lequal:
1951 case ast_gequal:
1952 case ast_nequal:
1953 case ast_equal:
1954 case ast_bit_and:
1955 case ast_bit_xor:
1956 case ast_bit_or:
1957 case ast_logic_and:
1958 case ast_logic_or:
1959 case ast_logic_xor:
1960 case ast_array_index:
1961 case ast_mul_assign:
1962 case ast_div_assign:
1963 case ast_add_assign:
1964 case ast_sub_assign:
1965 case ast_mod_assign:
1966 case ast_ls_assign:
1967 case ast_rs_assign:
1968 case ast_and_assign:
1969 case ast_xor_assign:
1970 case ast_or_assign:
1971 return this->subexpressions[0]->has_sequence_subexpression() ||
1972 this->subexpressions[1]->has_sequence_subexpression();
1973
1974 case ast_conditional:
1975 return this->subexpressions[0]->has_sequence_subexpression() ||
1976 this->subexpressions[1]->has_sequence_subexpression() ||
1977 this->subexpressions[2]->has_sequence_subexpression();
1978
1979 case ast_sequence:
1980 return true;
1981
1982 case ast_field_selection:
1983 case ast_identifier:
1984 case ast_int_constant:
1985 case ast_uint_constant:
1986 case ast_float_constant:
1987 case ast_bool_constant:
1988 case ast_double_constant:
1989 return false;
1990
1991 case ast_aggregate:
1992 unreachable("ast_aggregate: Should never get here.");
1993
1994 case ast_function_call:
1995 unreachable("should be handled by ast_function_expression::hir");
1996
1997 case ast_unsized_array_dim:
1998 unreachable("ast_unsized_array_dim: Should never get here.");
1999 }
2000
2001 return false;
2002 }
2003
2004 ir_rvalue *
2005 ast_expression_statement::hir(exec_list *instructions,
2006 struct _mesa_glsl_parse_state *state)
2007 {
2008 /* It is possible to have expression statements that don't have an
2009 * expression. This is the solitary semicolon:
2010 *
2011 * for (i = 0; i < 5; i++)
2012 * ;
2013 *
2014 * In this case the expression will be NULL. Test for NULL and don't do
2015 * anything in that case.
2016 */
2017 if (expression != NULL)
2018 expression->hir_no_rvalue(instructions, state);
2019
2020 /* Statements do not have r-values.
2021 */
2022 return NULL;
2023 }
2024
2025
2026 ir_rvalue *
2027 ast_compound_statement::hir(exec_list *instructions,
2028 struct _mesa_glsl_parse_state *state)
2029 {
2030 if (new_scope)
2031 state->symbols->push_scope();
2032
2033 foreach_list_typed (ast_node, ast, link, &this->statements)
2034 ast->hir(instructions, state);
2035
2036 if (new_scope)
2037 state->symbols->pop_scope();
2038
2039 /* Compound statements do not have r-values.
2040 */
2041 return NULL;
2042 }
2043
2044 /**
2045 * Evaluate the given exec_node (which should be an ast_node representing
2046 * a single array dimension) and return its integer value.
2047 */
2048 static unsigned
2049 process_array_size(exec_node *node,
2050 struct _mesa_glsl_parse_state *state)
2051 {
2052 exec_list dummy_instructions;
2053
2054 ast_node *array_size = exec_node_data(ast_node, node, link);
2055
2056 /**
2057 * Dimensions other than the outermost dimension can by unsized if they
2058 * are immediately sized by a constructor or initializer.
2059 */
2060 if (((ast_expression*)array_size)->oper == ast_unsized_array_dim)
2061 return 0;
2062
2063 ir_rvalue *const ir = array_size->hir(& dummy_instructions, state);
2064 YYLTYPE loc = array_size->get_location();
2065
2066 if (ir == NULL) {
2067 _mesa_glsl_error(& loc, state,
2068 "array size could not be resolved");
2069 return 0;
2070 }
2071
2072 if (!ir->type->is_integer()) {
2073 _mesa_glsl_error(& loc, state,
2074 "array size must be integer type");
2075 return 0;
2076 }
2077
2078 if (!ir->type->is_scalar()) {
2079 _mesa_glsl_error(& loc, state,
2080 "array size must be scalar type");
2081 return 0;
2082 }
2083
2084 ir_constant *const size = ir->constant_expression_value();
2085 if (size == NULL || array_size->has_sequence_subexpression()) {
2086 _mesa_glsl_error(& loc, state, "array size must be a "
2087 "constant valued expression");
2088 return 0;
2089 }
2090
2091 if (size->value.i[0] <= 0) {
2092 _mesa_glsl_error(& loc, state, "array size must be > 0");
2093 return 0;
2094 }
2095
2096 assert(size->type == ir->type);
2097
2098 /* If the array size is const (and we've verified that
2099 * it is) then no instructions should have been emitted
2100 * when we converted it to HIR. If they were emitted,
2101 * then either the array size isn't const after all, or
2102 * we are emitting unnecessary instructions.
2103 */
2104 assert(dummy_instructions.is_empty());
2105
2106 return size->value.u[0];
2107 }
2108
2109 static const glsl_type *
2110 process_array_type(YYLTYPE *loc, const glsl_type *base,
2111 ast_array_specifier *array_specifier,
2112 struct _mesa_glsl_parse_state *state)
2113 {
2114 const glsl_type *array_type = base;
2115
2116 if (array_specifier != NULL) {
2117 if (base->is_array()) {
2118
2119 /* From page 19 (page 25) of the GLSL 1.20 spec:
2120 *
2121 * "Only one-dimensional arrays may be declared."
2122 */
2123 if (!state->check_arrays_of_arrays_allowed(loc)) {
2124 return glsl_type::error_type;
2125 }
2126 }
2127
2128 for (exec_node *node = array_specifier->array_dimensions.tail_pred;
2129 !node->is_head_sentinel(); node = node->prev) {
2130 unsigned array_size = process_array_size(node, state);
2131 array_type = glsl_type::get_array_instance(array_type, array_size);
2132 }
2133 }
2134
2135 return array_type;
2136 }
2137
2138 static bool
2139 precision_qualifier_allowed(const glsl_type *type)
2140 {
2141 /* Precision qualifiers apply to floating point, integer and opaque
2142 * types.
2143 *
2144 * Section 4.5.2 (Precision Qualifiers) of the GLSL 1.30 spec says:
2145 * "Any floating point or any integer declaration can have the type
2146 * preceded by one of these precision qualifiers [...] Literal
2147 * constants do not have precision qualifiers. Neither do Boolean
2148 * variables.
2149 *
2150 * Section 4.5 (Precision and Precision Qualifiers) of the GLSL 1.30
2151 * spec also says:
2152 *
2153 * "Precision qualifiers are added for code portability with OpenGL
2154 * ES, not for functionality. They have the same syntax as in OpenGL
2155 * ES."
2156 *
2157 * Section 8 (Built-In Functions) of the GLSL ES 1.00 spec says:
2158 *
2159 * "uniform lowp sampler2D sampler;
2160 * highp vec2 coord;
2161 * ...
2162 * lowp vec4 col = texture2D (sampler, coord);
2163 * // texture2D returns lowp"
2164 *
2165 * From this, we infer that GLSL 1.30 (and later) should allow precision
2166 * qualifiers on sampler types just like float and integer types.
2167 */
2168 return (type->is_float()
2169 || type->is_integer()
2170 || type->contains_opaque())
2171 && !type->without_array()->is_record();
2172 }
2173
2174 const glsl_type *
2175 ast_type_specifier::glsl_type(const char **name,
2176 struct _mesa_glsl_parse_state *state) const
2177 {
2178 const struct glsl_type *type;
2179
2180 type = state->symbols->get_type(this->type_name);
2181 *name = this->type_name;
2182
2183 YYLTYPE loc = this->get_location();
2184 type = process_array_type(&loc, type, this->array_specifier, state);
2185
2186 return type;
2187 }
2188
2189 /**
2190 * From the OpenGL ES 3.0 spec, 4.5.4 Default Precision Qualifiers:
2191 *
2192 * "The precision statement
2193 *
2194 * precision precision-qualifier type;
2195 *
2196 * can be used to establish a default precision qualifier. The type field can
2197 * be either int or float or any of the sampler types, (...) If type is float,
2198 * the directive applies to non-precision-qualified floating point type
2199 * (scalar, vector, and matrix) declarations. If type is int, the directive
2200 * applies to all non-precision-qualified integer type (scalar, vector, signed,
2201 * and unsigned) declarations."
2202 *
2203 * We use the symbol table to keep the values of the default precisions for
2204 * each 'type' in each scope and we use the 'type' string from the precision
2205 * statement as key in the symbol table. When we want to retrieve the default
2206 * precision associated with a given glsl_type we need to know the type string
2207 * associated with it. This is what this function returns.
2208 */
2209 static const char *
2210 get_type_name_for_precision_qualifier(const glsl_type *type)
2211 {
2212 switch (type->base_type) {
2213 case GLSL_TYPE_FLOAT:
2214 return "float";
2215 case GLSL_TYPE_UINT:
2216 case GLSL_TYPE_INT:
2217 return "int";
2218 case GLSL_TYPE_ATOMIC_UINT:
2219 return "atomic_uint";
2220 case GLSL_TYPE_IMAGE:
2221 /* fallthrough */
2222 case GLSL_TYPE_SAMPLER: {
2223 const unsigned type_idx =
2224 type->sampler_array + 2 * type->sampler_shadow;
2225 const unsigned offset = type->base_type == GLSL_TYPE_SAMPLER ? 0 : 4;
2226 assert(type_idx < 4);
2227 switch (type->sampler_type) {
2228 case GLSL_TYPE_FLOAT:
2229 switch (type->sampler_dimensionality) {
2230 case GLSL_SAMPLER_DIM_1D: {
2231 assert(type->base_type == GLSL_TYPE_SAMPLER);
2232 static const char *const names[4] = {
2233 "sampler1D", "sampler1DArray",
2234 "sampler1DShadow", "sampler1DArrayShadow"
2235 };
2236 return names[type_idx];
2237 }
2238 case GLSL_SAMPLER_DIM_2D: {
2239 static const char *const names[8] = {
2240 "sampler2D", "sampler2DArray",
2241 "sampler2DShadow", "sampler2DArrayShadow",
2242 "image2D", "image2DArray", NULL, NULL
2243 };
2244 return names[offset + type_idx];
2245 }
2246 case GLSL_SAMPLER_DIM_3D: {
2247 static const char *const names[8] = {
2248 "sampler3D", NULL, NULL, NULL,
2249 "image3D", NULL, NULL, NULL
2250 };
2251 return names[offset + type_idx];
2252 }
2253 case GLSL_SAMPLER_DIM_CUBE: {
2254 static const char *const names[8] = {
2255 "samplerCube", "samplerCubeArray",
2256 "samplerCubeShadow", "samplerCubeArrayShadow",
2257 "imageCube", NULL, NULL, NULL
2258 };
2259 return names[offset + type_idx];
2260 }
2261 case GLSL_SAMPLER_DIM_MS: {
2262 assert(type->base_type == GLSL_TYPE_SAMPLER);
2263 static const char *const names[4] = {
2264 "sampler2DMS", "sampler2DMSArray", NULL, NULL
2265 };
2266 return names[type_idx];
2267 }
2268 case GLSL_SAMPLER_DIM_RECT: {
2269 assert(type->base_type == GLSL_TYPE_SAMPLER);
2270 static const char *const names[4] = {
2271 "samplerRect", NULL, "samplerRectShadow", NULL
2272 };
2273 return names[type_idx];
2274 }
2275 case GLSL_SAMPLER_DIM_BUF: {
2276 assert(type->base_type == GLSL_TYPE_SAMPLER);
2277 static const char *const names[4] = {
2278 "samplerBuffer", NULL, NULL, NULL
2279 };
2280 return names[type_idx];
2281 }
2282 case GLSL_SAMPLER_DIM_EXTERNAL: {
2283 assert(type->base_type == GLSL_TYPE_SAMPLER);
2284 static const char *const names[4] = {
2285 "samplerExternalOES", NULL, NULL, NULL
2286 };
2287 return names[type_idx];
2288 }
2289 default:
2290 unreachable("Unsupported sampler/image dimensionality");
2291 } /* sampler/image float dimensionality */
2292 break;
2293 case GLSL_TYPE_INT:
2294 switch (type->sampler_dimensionality) {
2295 case GLSL_SAMPLER_DIM_1D: {
2296 assert(type->base_type == GLSL_TYPE_SAMPLER);
2297 static const char *const names[4] = {
2298 "isampler1D", "isampler1DArray", NULL, NULL
2299 };
2300 return names[type_idx];
2301 }
2302 case GLSL_SAMPLER_DIM_2D: {
2303 static const char *const names[8] = {
2304 "isampler2D", "isampler2DArray", NULL, NULL,
2305 "iimage2D", "iimage2DArray", NULL, NULL
2306 };
2307 return names[offset + type_idx];
2308 }
2309 case GLSL_SAMPLER_DIM_3D: {
2310 static const char *const names[8] = {
2311 "isampler3D", NULL, NULL, NULL,
2312 "iimage3D", NULL, NULL, NULL
2313 };
2314 return names[offset + type_idx];
2315 }
2316 case GLSL_SAMPLER_DIM_CUBE: {
2317 static const char *const names[8] = {
2318 "isamplerCube", "isamplerCubeArray", NULL, NULL,
2319 "iimageCube", NULL, NULL, NULL
2320 };
2321 return names[offset + type_idx];
2322 }
2323 case GLSL_SAMPLER_DIM_MS: {
2324 assert(type->base_type == GLSL_TYPE_SAMPLER);
2325 static const char *const names[4] = {
2326 "isampler2DMS", "isampler2DMSArray", NULL, NULL
2327 };
2328 return names[type_idx];
2329 }
2330 case GLSL_SAMPLER_DIM_RECT: {
2331 assert(type->base_type == GLSL_TYPE_SAMPLER);
2332 static const char *const names[4] = {
2333 "isamplerRect", NULL, "isamplerRectShadow", NULL
2334 };
2335 return names[type_idx];
2336 }
2337 case GLSL_SAMPLER_DIM_BUF: {
2338 assert(type->base_type == GLSL_TYPE_SAMPLER);
2339 static const char *const names[4] = {
2340 "isamplerBuffer", NULL, NULL, NULL
2341 };
2342 return names[type_idx];
2343 }
2344 default:
2345 unreachable("Unsupported isampler/iimage dimensionality");
2346 } /* sampler/image int dimensionality */
2347 break;
2348 case GLSL_TYPE_UINT:
2349 switch (type->sampler_dimensionality) {
2350 case GLSL_SAMPLER_DIM_1D: {
2351 assert(type->base_type == GLSL_TYPE_SAMPLER);
2352 static const char *const names[4] = {
2353 "usampler1D", "usampler1DArray", NULL, NULL
2354 };
2355 return names[type_idx];
2356 }
2357 case GLSL_SAMPLER_DIM_2D: {
2358 static const char *const names[8] = {
2359 "usampler2D", "usampler2DArray", NULL, NULL,
2360 "uimage2D", "uimage2DArray", NULL, NULL
2361 };
2362 return names[offset + type_idx];
2363 }
2364 case GLSL_SAMPLER_DIM_3D: {
2365 static const char *const names[8] = {
2366 "usampler3D", NULL, NULL, NULL,
2367 "uimage3D", NULL, NULL, NULL
2368 };
2369 return names[offset + type_idx];
2370 }
2371 case GLSL_SAMPLER_DIM_CUBE: {
2372 static const char *const names[8] = {
2373 "usamplerCube", "usamplerCubeArray", NULL, NULL,
2374 "uimageCube", NULL, NULL, NULL
2375 };
2376 return names[offset + type_idx];
2377 }
2378 case GLSL_SAMPLER_DIM_MS: {
2379 assert(type->base_type == GLSL_TYPE_SAMPLER);
2380 static const char *const names[4] = {
2381 "usampler2DMS", "usampler2DMSArray", NULL, NULL
2382 };
2383 return names[type_idx];
2384 }
2385 case GLSL_SAMPLER_DIM_RECT: {
2386 assert(type->base_type == GLSL_TYPE_SAMPLER);
2387 static const char *const names[4] = {
2388 "usamplerRect", NULL, "usamplerRectShadow", NULL
2389 };
2390 return names[type_idx];
2391 }
2392 case GLSL_SAMPLER_DIM_BUF: {
2393 assert(type->base_type == GLSL_TYPE_SAMPLER);
2394 static const char *const names[4] = {
2395 "usamplerBuffer", NULL, NULL, NULL
2396 };
2397 return names[type_idx];
2398 }
2399 default:
2400 unreachable("Unsupported usampler/uimage dimensionality");
2401 } /* sampler/image uint dimensionality */
2402 break;
2403 default:
2404 unreachable("Unsupported sampler/image type");
2405 } /* sampler/image type */
2406 break;
2407 } /* GLSL_TYPE_SAMPLER/GLSL_TYPE_IMAGE */
2408 break;
2409 default:
2410 unreachable("Unsupported type");
2411 } /* base type */
2412 }
2413
2414 static unsigned
2415 select_gles_precision(unsigned qual_precision,
2416 const glsl_type *type,
2417 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
2418 {
2419 /* Precision qualifiers do not have any meaning in Desktop GLSL.
2420 * In GLES we take the precision from the type qualifier if present,
2421 * otherwise, if the type of the variable allows precision qualifiers at
2422 * all, we look for the default precision qualifier for that type in the
2423 * current scope.
2424 */
2425 assert(state->es_shader);
2426
2427 unsigned precision = GLSL_PRECISION_NONE;
2428 if (qual_precision) {
2429 precision = qual_precision;
2430 } else if (precision_qualifier_allowed(type)) {
2431 const char *type_name =
2432 get_type_name_for_precision_qualifier(type->without_array());
2433 assert(type_name != NULL);
2434
2435 precision =
2436 state->symbols->get_default_precision_qualifier(type_name);
2437 if (precision == ast_precision_none) {
2438 _mesa_glsl_error(loc, state,
2439 "No precision specified in this scope for type `%s'",
2440 type->name);
2441 }
2442 }
2443 return precision;
2444 }
2445
2446 const glsl_type *
2447 ast_fully_specified_type::glsl_type(const char **name,
2448 struct _mesa_glsl_parse_state *state) const
2449 {
2450 return this->specifier->glsl_type(name, state);
2451 }
2452
2453 /**
2454 * Determine whether a toplevel variable declaration declares a varying. This
2455 * function operates by examining the variable's mode and the shader target,
2456 * so it correctly identifies linkage variables regardless of whether they are
2457 * declared using the deprecated "varying" syntax or the new "in/out" syntax.
2458 *
2459 * Passing a non-toplevel variable declaration (e.g. a function parameter) to
2460 * this function will produce undefined results.
2461 */
2462 static bool
2463 is_varying_var(ir_variable *var, gl_shader_stage target)
2464 {
2465 switch (target) {
2466 case MESA_SHADER_VERTEX:
2467 return var->data.mode == ir_var_shader_out;
2468 case MESA_SHADER_FRAGMENT:
2469 return var->data.mode == ir_var_shader_in;
2470 default:
2471 return var->data.mode == ir_var_shader_out || var->data.mode == ir_var_shader_in;
2472 }
2473 }
2474
2475
2476 /**
2477 * Matrix layout qualifiers are only allowed on certain types
2478 */
2479 static void
2480 validate_matrix_layout_for_type(struct _mesa_glsl_parse_state *state,
2481 YYLTYPE *loc,
2482 const glsl_type *type,
2483 ir_variable *var)
2484 {
2485 if (var && !var->is_in_buffer_block()) {
2486 /* Layout qualifiers may only apply to interface blocks and fields in
2487 * them.
2488 */
2489 _mesa_glsl_error(loc, state,
2490 "uniform block layout qualifiers row_major and "
2491 "column_major may not be applied to variables "
2492 "outside of uniform blocks");
2493 } else if (!type->without_array()->is_matrix()) {
2494 /* The OpenGL ES 3.0 conformance tests did not originally allow
2495 * matrix layout qualifiers on non-matrices. However, the OpenGL
2496 * 4.4 and OpenGL ES 3.0 (revision TBD) specifications were
2497 * amended to specifically allow these layouts on all types. Emit
2498 * a warning so that people know their code may not be portable.
2499 */
2500 _mesa_glsl_warning(loc, state,
2501 "uniform block layout qualifiers row_major and "
2502 "column_major applied to non-matrix types may "
2503 "be rejected by older compilers");
2504 }
2505 }
2506
2507 static bool
2508 process_qualifier_constant(struct _mesa_glsl_parse_state *state,
2509 YYLTYPE *loc,
2510 const char *qual_indentifier,
2511 ast_expression *const_expression,
2512 unsigned *value)
2513 {
2514 exec_list dummy_instructions;
2515
2516 if (const_expression == NULL) {
2517 *value = 0;
2518 return true;
2519 }
2520
2521 ir_rvalue *const ir = const_expression->hir(&dummy_instructions, state);
2522
2523 ir_constant *const const_int = ir->constant_expression_value();
2524 if (const_int == NULL || !const_int->type->is_integer()) {
2525 _mesa_glsl_error(loc, state, "%s must be an integral constant "
2526 "expression", qual_indentifier);
2527 return false;
2528 }
2529
2530 if (const_int->value.i[0] < 0) {
2531 _mesa_glsl_error(loc, state, "%s layout qualifier is invalid (%d < 0)",
2532 qual_indentifier, const_int->value.u[0]);
2533 return false;
2534 }
2535
2536 /* If the location is const (and we've verified that
2537 * it is) then no instructions should have been emitted
2538 * when we converted it to HIR. If they were emitted,
2539 * then either the location isn't const after all, or
2540 * we are emitting unnecessary instructions.
2541 */
2542 assert(dummy_instructions.is_empty());
2543
2544 *value = const_int->value.u[0];
2545 return true;
2546 }
2547
2548 static bool
2549 validate_stream_qualifier(YYLTYPE *loc, struct _mesa_glsl_parse_state *state,
2550 unsigned stream)
2551 {
2552 if (stream >= state->ctx->Const.MaxVertexStreams) {
2553 _mesa_glsl_error(loc, state,
2554 "invalid stream specified %d is larger than "
2555 "MAX_VERTEX_STREAMS - 1 (%d).",
2556 stream, state->ctx->Const.MaxVertexStreams - 1);
2557 return false;
2558 }
2559
2560 return true;
2561 }
2562
2563 static void
2564 apply_explicit_binding(struct _mesa_glsl_parse_state *state,
2565 YYLTYPE *loc,
2566 ir_variable *var,
2567 const glsl_type *type,
2568 const ast_type_qualifier *qual)
2569 {
2570 if (!qual->flags.q.uniform && !qual->flags.q.buffer) {
2571 _mesa_glsl_error(loc, state,
2572 "the \"binding\" qualifier only applies to uniforms and "
2573 "shader storage buffer objects");
2574 return;
2575 }
2576
2577 unsigned qual_binding;
2578 if (!process_qualifier_constant(state, loc, "binding", qual->binding,
2579 &qual_binding)) {
2580 return;
2581 }
2582
2583 const struct gl_context *const ctx = state->ctx;
2584 unsigned elements = type->is_array() ? type->arrays_of_arrays_size() : 1;
2585 unsigned max_index = qual_binding + elements - 1;
2586 const glsl_type *base_type = type->without_array();
2587
2588 if (base_type->is_interface()) {
2589 /* UBOs. From page 60 of the GLSL 4.20 specification:
2590 * "If the binding point for any uniform block instance is less than zero,
2591 * or greater than or equal to the implementation-dependent maximum
2592 * number of uniform buffer bindings, a compilation error will occur.
2593 * When the binding identifier is used with a uniform block instanced as
2594 * an array of size N, all elements of the array from binding through
2595 * binding + N – 1 must be within this range."
2596 *
2597 * The implementation-dependent maximum is GL_MAX_UNIFORM_BUFFER_BINDINGS.
2598 */
2599 if (qual->flags.q.uniform &&
2600 max_index >= ctx->Const.MaxUniformBufferBindings) {
2601 _mesa_glsl_error(loc, state, "layout(binding = %u) for %d UBOs exceeds "
2602 "the maximum number of UBO binding points (%d)",
2603 qual_binding, elements,
2604 ctx->Const.MaxUniformBufferBindings);
2605 return;
2606 }
2607
2608 /* SSBOs. From page 67 of the GLSL 4.30 specification:
2609 * "If the binding point for any uniform or shader storage block instance
2610 * is less than zero, or greater than or equal to the
2611 * implementation-dependent maximum number of uniform buffer bindings, a
2612 * compile-time error will occur. When the binding identifier is used
2613 * with a uniform or shader storage block instanced as an array of size
2614 * N, all elements of the array from binding through binding + N – 1 must
2615 * be within this range."
2616 */
2617 if (qual->flags.q.buffer &&
2618 max_index >= ctx->Const.MaxShaderStorageBufferBindings) {
2619 _mesa_glsl_error(loc, state, "layout(binding = %u) for %d SSBOs exceeds "
2620 "the maximum number of SSBO binding points (%d)",
2621 qual_binding, elements,
2622 ctx->Const.MaxShaderStorageBufferBindings);
2623 return;
2624 }
2625 } else if (base_type->is_sampler()) {
2626 /* Samplers. From page 63 of the GLSL 4.20 specification:
2627 * "If the binding is less than zero, or greater than or equal to the
2628 * implementation-dependent maximum supported number of units, a
2629 * compilation error will occur. When the binding identifier is used
2630 * with an array of size N, all elements of the array from binding
2631 * through binding + N - 1 must be within this range."
2632 */
2633 unsigned limit = ctx->Const.MaxCombinedTextureImageUnits;
2634
2635 if (max_index >= limit) {
2636 _mesa_glsl_error(loc, state, "layout(binding = %d) for %d samplers "
2637 "exceeds the maximum number of texture image units "
2638 "(%u)", qual_binding, elements, limit);
2639
2640 return;
2641 }
2642 } else if (base_type->contains_atomic()) {
2643 assert(ctx->Const.MaxAtomicBufferBindings <= MAX_COMBINED_ATOMIC_BUFFERS);
2644 if (qual_binding >= ctx->Const.MaxAtomicBufferBindings) {
2645 _mesa_glsl_error(loc, state, "layout(binding = %d) exceeds the "
2646 " maximum number of atomic counter buffer bindings"
2647 "(%u)", qual_binding,
2648 ctx->Const.MaxAtomicBufferBindings);
2649
2650 return;
2651 }
2652 } else if ((state->is_version(420, 310) ||
2653 state->ARB_shading_language_420pack_enable) &&
2654 base_type->is_image()) {
2655 assert(ctx->Const.MaxImageUnits <= MAX_IMAGE_UNITS);
2656 if (max_index >= ctx->Const.MaxImageUnits) {
2657 _mesa_glsl_error(loc, state, "Image binding %d exceeds the "
2658 " maximum number of image units (%d)", max_index,
2659 ctx->Const.MaxImageUnits);
2660 return;
2661 }
2662
2663 } else {
2664 _mesa_glsl_error(loc, state,
2665 "the \"binding\" qualifier only applies to uniform "
2666 "blocks, opaque variables, or arrays thereof");
2667 return;
2668 }
2669
2670 var->data.explicit_binding = true;
2671 var->data.binding = qual_binding;
2672
2673 return;
2674 }
2675
2676
2677 static glsl_interp_qualifier
2678 interpret_interpolation_qualifier(const struct ast_type_qualifier *qual,
2679 ir_variable_mode mode,
2680 struct _mesa_glsl_parse_state *state,
2681 YYLTYPE *loc)
2682 {
2683 glsl_interp_qualifier interpolation;
2684 if (qual->flags.q.flat)
2685 interpolation = INTERP_QUALIFIER_FLAT;
2686 else if (qual->flags.q.noperspective)
2687 interpolation = INTERP_QUALIFIER_NOPERSPECTIVE;
2688 else if (qual->flags.q.smooth)
2689 interpolation = INTERP_QUALIFIER_SMOOTH;
2690 else
2691 interpolation = INTERP_QUALIFIER_NONE;
2692
2693 if (interpolation != INTERP_QUALIFIER_NONE) {
2694 if (mode != ir_var_shader_in && mode != ir_var_shader_out) {
2695 _mesa_glsl_error(loc, state,
2696 "interpolation qualifier `%s' can only be applied to "
2697 "shader inputs or outputs.",
2698 interpolation_string(interpolation));
2699
2700 }
2701
2702 if ((state->stage == MESA_SHADER_VERTEX && mode == ir_var_shader_in) ||
2703 (state->stage == MESA_SHADER_FRAGMENT && mode == ir_var_shader_out)) {
2704 _mesa_glsl_error(loc, state,
2705 "interpolation qualifier `%s' cannot be applied to "
2706 "vertex shader inputs or fragment shader outputs",
2707 interpolation_string(interpolation));
2708 }
2709 }
2710
2711 return interpolation;
2712 }
2713
2714
2715 static void
2716 apply_explicit_location(const struct ast_type_qualifier *qual,
2717 ir_variable *var,
2718 struct _mesa_glsl_parse_state *state,
2719 YYLTYPE *loc)
2720 {
2721 bool fail = false;
2722
2723 unsigned qual_location;
2724 if (!process_qualifier_constant(state, loc, "location", qual->location,
2725 &qual_location)) {
2726 return;
2727 }
2728
2729 /* Checks for GL_ARB_explicit_uniform_location. */
2730 if (qual->flags.q.uniform) {
2731 if (!state->check_explicit_uniform_location_allowed(loc, var))
2732 return;
2733
2734 const struct gl_context *const ctx = state->ctx;
2735 unsigned max_loc = qual_location + var->type->uniform_locations() - 1;
2736
2737 if (max_loc >= ctx->Const.MaxUserAssignableUniformLocations) {
2738 _mesa_glsl_error(loc, state, "location(s) consumed by uniform %s "
2739 ">= MAX_UNIFORM_LOCATIONS (%u)", var->name,
2740 ctx->Const.MaxUserAssignableUniformLocations);
2741 return;
2742 }
2743
2744 var->data.explicit_location = true;
2745 var->data.location = qual_location;
2746 return;
2747 }
2748
2749 /* Between GL_ARB_explicit_attrib_location an
2750 * GL_ARB_separate_shader_objects, the inputs and outputs of any shader
2751 * stage can be assigned explicit locations. The checking here associates
2752 * the correct extension with the correct stage's input / output:
2753 *
2754 * input output
2755 * ----- ------
2756 * vertex explicit_loc sso
2757 * tess control sso sso
2758 * tess eval sso sso
2759 * geometry sso sso
2760 * fragment sso explicit_loc
2761 */
2762 switch (state->stage) {
2763 case MESA_SHADER_VERTEX:
2764 if (var->data.mode == ir_var_shader_in) {
2765 if (!state->check_explicit_attrib_location_allowed(loc, var))
2766 return;
2767
2768 break;
2769 }
2770
2771 if (var->data.mode == ir_var_shader_out) {
2772 if (!state->check_separate_shader_objects_allowed(loc, var))
2773 return;
2774
2775 break;
2776 }
2777
2778 fail = true;
2779 break;
2780
2781 case MESA_SHADER_TESS_CTRL:
2782 case MESA_SHADER_TESS_EVAL:
2783 case MESA_SHADER_GEOMETRY:
2784 if (var->data.mode == ir_var_shader_in || var->data.mode == ir_var_shader_out) {
2785 if (!state->check_separate_shader_objects_allowed(loc, var))
2786 return;
2787
2788 break;
2789 }
2790
2791 fail = true;
2792 break;
2793
2794 case MESA_SHADER_FRAGMENT:
2795 if (var->data.mode == ir_var_shader_in) {
2796 if (!state->check_separate_shader_objects_allowed(loc, var))
2797 return;
2798
2799 break;
2800 }
2801
2802 if (var->data.mode == ir_var_shader_out) {
2803 if (!state->check_explicit_attrib_location_allowed(loc, var))
2804 return;
2805
2806 break;
2807 }
2808
2809 fail = true;
2810 break;
2811
2812 case MESA_SHADER_COMPUTE:
2813 _mesa_glsl_error(loc, state,
2814 "compute shader variables cannot be given "
2815 "explicit locations");
2816 return;
2817 };
2818
2819 if (fail) {
2820 _mesa_glsl_error(loc, state,
2821 "%s cannot be given an explicit location in %s shader",
2822 mode_string(var),
2823 _mesa_shader_stage_to_string(state->stage));
2824 } else {
2825 var->data.explicit_location = true;
2826
2827 switch (state->stage) {
2828 case MESA_SHADER_VERTEX:
2829 var->data.location = (var->data.mode == ir_var_shader_in)
2830 ? (qual_location + VERT_ATTRIB_GENERIC0)
2831 : (qual_location + VARYING_SLOT_VAR0);
2832 break;
2833
2834 case MESA_SHADER_TESS_CTRL:
2835 case MESA_SHADER_TESS_EVAL:
2836 case MESA_SHADER_GEOMETRY:
2837 if (var->data.patch)
2838 var->data.location = qual_location + VARYING_SLOT_PATCH0;
2839 else
2840 var->data.location = qual_location + VARYING_SLOT_VAR0;
2841 break;
2842
2843 case MESA_SHADER_FRAGMENT:
2844 var->data.location = (var->data.mode == ir_var_shader_out)
2845 ? (qual_location + FRAG_RESULT_DATA0)
2846 : (qual_location + VARYING_SLOT_VAR0);
2847 break;
2848 case MESA_SHADER_COMPUTE:
2849 assert(!"Unexpected shader type");
2850 break;
2851 }
2852
2853 /* Check if index was set for the uniform instead of the function */
2854 if (qual->flags.q.explicit_index && qual->flags.q.subroutine) {
2855 _mesa_glsl_error(loc, state, "an index qualifier can only be "
2856 "used with subroutine functions");
2857 return;
2858 }
2859
2860 unsigned qual_index;
2861 if (qual->flags.q.explicit_index &&
2862 process_qualifier_constant(state, loc, "index", qual->index,
2863 &qual_index)) {
2864 /* From the GLSL 4.30 specification, section 4.4.2 (Output
2865 * Layout Qualifiers):
2866 *
2867 * "It is also a compile-time error if a fragment shader
2868 * sets a layout index to less than 0 or greater than 1."
2869 *
2870 * Older specifications don't mandate a behavior; we take
2871 * this as a clarification and always generate the error.
2872 */
2873 if (qual_index > 1) {
2874 _mesa_glsl_error(loc, state,
2875 "explicit index may only be 0 or 1");
2876 } else {
2877 var->data.explicit_index = true;
2878 var->data.index = qual_index;
2879 }
2880 }
2881 }
2882 }
2883
2884 static void
2885 apply_image_qualifier_to_variable(const struct ast_type_qualifier *qual,
2886 ir_variable *var,
2887 struct _mesa_glsl_parse_state *state,
2888 YYLTYPE *loc)
2889 {
2890 const glsl_type *base_type = var->type->without_array();
2891
2892 if (base_type->is_image()) {
2893 if (var->data.mode != ir_var_uniform &&
2894 var->data.mode != ir_var_function_in) {
2895 _mesa_glsl_error(loc, state, "image variables may only be declared as "
2896 "function parameters or uniform-qualified "
2897 "global variables");
2898 }
2899
2900 var->data.image_read_only |= qual->flags.q.read_only;
2901 var->data.image_write_only |= qual->flags.q.write_only;
2902 var->data.image_coherent |= qual->flags.q.coherent;
2903 var->data.image_volatile |= qual->flags.q._volatile;
2904 var->data.image_restrict |= qual->flags.q.restrict_flag;
2905 var->data.read_only = true;
2906
2907 if (qual->flags.q.explicit_image_format) {
2908 if (var->data.mode == ir_var_function_in) {
2909 _mesa_glsl_error(loc, state, "format qualifiers cannot be "
2910 "used on image function parameters");
2911 }
2912
2913 if (qual->image_base_type != base_type->sampler_type) {
2914 _mesa_glsl_error(loc, state, "format qualifier doesn't match the "
2915 "base data type of the image");
2916 }
2917
2918 var->data.image_format = qual->image_format;
2919 } else {
2920 if (var->data.mode == ir_var_uniform) {
2921 if (state->es_shader) {
2922 _mesa_glsl_error(loc, state, "all image uniforms "
2923 "must have a format layout qualifier");
2924
2925 } else if (!qual->flags.q.write_only) {
2926 _mesa_glsl_error(loc, state, "image uniforms not qualified with "
2927 "`writeonly' must have a format layout "
2928 "qualifier");
2929 }
2930 }
2931
2932 var->data.image_format = GL_NONE;
2933 }
2934
2935 /* From page 70 of the GLSL ES 3.1 specification:
2936 *
2937 * "Except for image variables qualified with the format qualifiers
2938 * r32f, r32i, and r32ui, image variables must specify either memory
2939 * qualifier readonly or the memory qualifier writeonly."
2940 */
2941 if (state->es_shader &&
2942 var->data.image_format != GL_R32F &&
2943 var->data.image_format != GL_R32I &&
2944 var->data.image_format != GL_R32UI &&
2945 !var->data.image_read_only &&
2946 !var->data.image_write_only) {
2947 _mesa_glsl_error(loc, state, "image variables of format other than "
2948 "r32f, r32i or r32ui must be qualified `readonly' or "
2949 "`writeonly'");
2950 }
2951
2952 } else if (qual->flags.q.read_only ||
2953 qual->flags.q.write_only ||
2954 qual->flags.q.coherent ||
2955 qual->flags.q._volatile ||
2956 qual->flags.q.restrict_flag ||
2957 qual->flags.q.explicit_image_format) {
2958 _mesa_glsl_error(loc, state, "memory qualifiers may only be applied to "
2959 "images");
2960 }
2961 }
2962
2963 static inline const char*
2964 get_layout_qualifier_string(bool origin_upper_left, bool pixel_center_integer)
2965 {
2966 if (origin_upper_left && pixel_center_integer)
2967 return "origin_upper_left, pixel_center_integer";
2968 else if (origin_upper_left)
2969 return "origin_upper_left";
2970 else if (pixel_center_integer)
2971 return "pixel_center_integer";
2972 else
2973 return " ";
2974 }
2975
2976 static inline bool
2977 is_conflicting_fragcoord_redeclaration(struct _mesa_glsl_parse_state *state,
2978 const struct ast_type_qualifier *qual)
2979 {
2980 /* If gl_FragCoord was previously declared, and the qualifiers were
2981 * different in any way, return true.
2982 */
2983 if (state->fs_redeclares_gl_fragcoord) {
2984 return (state->fs_pixel_center_integer != qual->flags.q.pixel_center_integer
2985 || state->fs_origin_upper_left != qual->flags.q.origin_upper_left);
2986 }
2987
2988 return false;
2989 }
2990
2991 static inline void
2992 validate_array_dimensions(const glsl_type *t,
2993 struct _mesa_glsl_parse_state *state,
2994 YYLTYPE *loc) {
2995 if (t->is_array()) {
2996 t = t->fields.array;
2997 while (t->is_array()) {
2998 if (t->is_unsized_array()) {
2999 _mesa_glsl_error(loc, state,
3000 "only the outermost array dimension can "
3001 "be unsized",
3002 t->name);
3003 break;
3004 }
3005 t = t->fields.array;
3006 }
3007 }
3008 }
3009
3010 static void
3011 apply_layout_qualifier_to_variable(const struct ast_type_qualifier *qual,
3012 ir_variable *var,
3013 struct _mesa_glsl_parse_state *state,
3014 YYLTYPE *loc)
3015 {
3016 if (var->name != NULL && strcmp(var->name, "gl_FragCoord") == 0) {
3017
3018 /* Section 4.3.8.1, page 39 of GLSL 1.50 spec says:
3019 *
3020 * "Within any shader, the first redeclarations of gl_FragCoord
3021 * must appear before any use of gl_FragCoord."
3022 *
3023 * Generate a compiler error if above condition is not met by the
3024 * fragment shader.
3025 */
3026 ir_variable *earlier = state->symbols->get_variable("gl_FragCoord");
3027 if (earlier != NULL &&
3028 earlier->data.used &&
3029 !state->fs_redeclares_gl_fragcoord) {
3030 _mesa_glsl_error(loc, state,
3031 "gl_FragCoord used before its first redeclaration "
3032 "in fragment shader");
3033 }
3034
3035 /* Make sure all gl_FragCoord redeclarations specify the same layout
3036 * qualifiers.
3037 */
3038 if (is_conflicting_fragcoord_redeclaration(state, qual)) {
3039 const char *const qual_string =
3040 get_layout_qualifier_string(qual->flags.q.origin_upper_left,
3041 qual->flags.q.pixel_center_integer);
3042
3043 const char *const state_string =
3044 get_layout_qualifier_string(state->fs_origin_upper_left,
3045 state->fs_pixel_center_integer);
3046
3047 _mesa_glsl_error(loc, state,
3048 "gl_FragCoord redeclared with different layout "
3049 "qualifiers (%s) and (%s) ",
3050 state_string,
3051 qual_string);
3052 }
3053 state->fs_origin_upper_left = qual->flags.q.origin_upper_left;
3054 state->fs_pixel_center_integer = qual->flags.q.pixel_center_integer;
3055 state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers =
3056 !qual->flags.q.origin_upper_left && !qual->flags.q.pixel_center_integer;
3057 state->fs_redeclares_gl_fragcoord =
3058 state->fs_origin_upper_left ||
3059 state->fs_pixel_center_integer ||
3060 state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers;
3061 }
3062
3063 var->data.pixel_center_integer = qual->flags.q.pixel_center_integer;
3064 var->data.origin_upper_left = qual->flags.q.origin_upper_left;
3065 if ((qual->flags.q.origin_upper_left || qual->flags.q.pixel_center_integer)
3066 && (strcmp(var->name, "gl_FragCoord") != 0)) {
3067 const char *const qual_string = (qual->flags.q.origin_upper_left)
3068 ? "origin_upper_left" : "pixel_center_integer";
3069
3070 _mesa_glsl_error(loc, state,
3071 "layout qualifier `%s' can only be applied to "
3072 "fragment shader input `gl_FragCoord'",
3073 qual_string);
3074 }
3075
3076 if (qual->flags.q.explicit_location) {
3077 apply_explicit_location(qual, var, state, loc);
3078 } else if (qual->flags.q.explicit_index) {
3079 if (!qual->flags.q.subroutine_def)
3080 _mesa_glsl_error(loc, state,
3081 "explicit index requires explicit location");
3082 }
3083
3084 if (qual->flags.q.explicit_binding) {
3085 apply_explicit_binding(state, loc, var, var->type, qual);
3086 }
3087
3088 if (state->stage == MESA_SHADER_GEOMETRY &&
3089 qual->flags.q.out && qual->flags.q.stream) {
3090 unsigned qual_stream;
3091 if (process_qualifier_constant(state, loc, "stream", qual->stream,
3092 &qual_stream) &&
3093 validate_stream_qualifier(loc, state, qual_stream)) {
3094 var->data.stream = qual_stream;
3095 }
3096 }
3097
3098 if (var->type->contains_atomic()) {
3099 if (var->data.mode == ir_var_uniform) {
3100 if (var->data.explicit_binding) {
3101 unsigned *offset =
3102 &state->atomic_counter_offsets[var->data.binding];
3103
3104 if (*offset % ATOMIC_COUNTER_SIZE)
3105 _mesa_glsl_error(loc, state,
3106 "misaligned atomic counter offset");
3107
3108 var->data.atomic.offset = *offset;
3109 *offset += var->type->atomic_size();
3110
3111 } else {
3112 _mesa_glsl_error(loc, state,
3113 "atomic counters require explicit binding point");
3114 }
3115 } else if (var->data.mode != ir_var_function_in) {
3116 _mesa_glsl_error(loc, state, "atomic counters may only be declared as "
3117 "function parameters or uniform-qualified "
3118 "global variables");
3119 }
3120 }
3121
3122 /* Is the 'layout' keyword used with parameters that allow relaxed checking.
3123 * Many implementations of GL_ARB_fragment_coord_conventions_enable and some
3124 * implementations (only Mesa?) GL_ARB_explicit_attrib_location_enable
3125 * allowed the layout qualifier to be used with 'varying' and 'attribute'.
3126 * These extensions and all following extensions that add the 'layout'
3127 * keyword have been modified to require the use of 'in' or 'out'.
3128 *
3129 * The following extension do not allow the deprecated keywords:
3130 *
3131 * GL_AMD_conservative_depth
3132 * GL_ARB_conservative_depth
3133 * GL_ARB_gpu_shader5
3134 * GL_ARB_separate_shader_objects
3135 * GL_ARB_tessellation_shader
3136 * GL_ARB_transform_feedback3
3137 * GL_ARB_uniform_buffer_object
3138 *
3139 * It is unknown whether GL_EXT_shader_image_load_store or GL_NV_gpu_shader5
3140 * allow layout with the deprecated keywords.
3141 */
3142 const bool relaxed_layout_qualifier_checking =
3143 state->ARB_fragment_coord_conventions_enable;
3144
3145 const bool uses_deprecated_qualifier = qual->flags.q.attribute
3146 || qual->flags.q.varying;
3147 if (qual->has_layout() && uses_deprecated_qualifier) {
3148 if (relaxed_layout_qualifier_checking) {
3149 _mesa_glsl_warning(loc, state,
3150 "`layout' qualifier may not be used with "
3151 "`attribute' or `varying'");
3152 } else {
3153 _mesa_glsl_error(loc, state,
3154 "`layout' qualifier may not be used with "
3155 "`attribute' or `varying'");
3156 }
3157 }
3158
3159 /* Layout qualifiers for gl_FragDepth, which are enabled by extension
3160 * AMD_conservative_depth.
3161 */
3162 int depth_layout_count = qual->flags.q.depth_any
3163 + qual->flags.q.depth_greater
3164 + qual->flags.q.depth_less
3165 + qual->flags.q.depth_unchanged;
3166 if (depth_layout_count > 0
3167 && !state->AMD_conservative_depth_enable
3168 && !state->ARB_conservative_depth_enable) {
3169 _mesa_glsl_error(loc, state,
3170 "extension GL_AMD_conservative_depth or "
3171 "GL_ARB_conservative_depth must be enabled "
3172 "to use depth layout qualifiers");
3173 } else if (depth_layout_count > 0
3174 && strcmp(var->name, "gl_FragDepth") != 0) {
3175 _mesa_glsl_error(loc, state,
3176 "depth layout qualifiers can be applied only to "
3177 "gl_FragDepth");
3178 } else if (depth_layout_count > 1
3179 && strcmp(var->name, "gl_FragDepth") == 0) {
3180 _mesa_glsl_error(loc, state,
3181 "at most one depth layout qualifier can be applied to "
3182 "gl_FragDepth");
3183 }
3184 if (qual->flags.q.depth_any)
3185 var->data.depth_layout = ir_depth_layout_any;
3186 else if (qual->flags.q.depth_greater)
3187 var->data.depth_layout = ir_depth_layout_greater;
3188 else if (qual->flags.q.depth_less)
3189 var->data.depth_layout = ir_depth_layout_less;
3190 else if (qual->flags.q.depth_unchanged)
3191 var->data.depth_layout = ir_depth_layout_unchanged;
3192 else
3193 var->data.depth_layout = ir_depth_layout_none;
3194
3195 if (qual->flags.q.std140 ||
3196 qual->flags.q.std430 ||
3197 qual->flags.q.packed ||
3198 qual->flags.q.shared) {
3199 _mesa_glsl_error(loc, state,
3200 "uniform and shader storage block layout qualifiers "
3201 "std140, std430, packed, and shared can only be "
3202 "applied to uniform or shader storage blocks, not "
3203 "members");
3204 }
3205
3206 if (qual->flags.q.row_major || qual->flags.q.column_major) {
3207 validate_matrix_layout_for_type(state, loc, var->type, var);
3208 }
3209
3210 /* From section 4.4.1.3 of the GLSL 4.50 specification (Fragment Shader
3211 * Inputs):
3212 *
3213 * "Fragment shaders also allow the following layout qualifier on in only
3214 * (not with variable declarations)
3215 * layout-qualifier-id
3216 * early_fragment_tests
3217 * [...]"
3218 */
3219 if (qual->flags.q.early_fragment_tests) {
3220 _mesa_glsl_error(loc, state, "early_fragment_tests layout qualifier only "
3221 "valid in fragment shader input layout declaration.");
3222 }
3223 }
3224
3225 static void
3226 apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
3227 ir_variable *var,
3228 struct _mesa_glsl_parse_state *state,
3229 YYLTYPE *loc,
3230 bool is_parameter)
3231 {
3232 STATIC_ASSERT(sizeof(qual->flags.q) <= sizeof(qual->flags.i));
3233
3234 if (qual->flags.q.invariant) {
3235 if (var->data.used) {
3236 _mesa_glsl_error(loc, state,
3237 "variable `%s' may not be redeclared "
3238 "`invariant' after being used",
3239 var->name);
3240 } else {
3241 var->data.invariant = 1;
3242 }
3243 }
3244
3245 if (qual->flags.q.precise) {
3246 if (var->data.used) {
3247 _mesa_glsl_error(loc, state,
3248 "variable `%s' may not be redeclared "
3249 "`precise' after being used",
3250 var->name);
3251 } else {
3252 var->data.precise = 1;
3253 }
3254 }
3255
3256 if (qual->flags.q.subroutine && !qual->flags.q.uniform) {
3257 _mesa_glsl_error(loc, state,
3258 "`subroutine' may only be applied to uniforms, "
3259 "subroutine type declarations, or function definitions");
3260 }
3261
3262 if (qual->flags.q.constant || qual->flags.q.attribute
3263 || qual->flags.q.uniform
3264 || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
3265 var->data.read_only = 1;
3266
3267 if (qual->flags.q.centroid)
3268 var->data.centroid = 1;
3269
3270 if (qual->flags.q.sample)
3271 var->data.sample = 1;
3272
3273 /* Precision qualifiers do not hold any meaning in Desktop GLSL */
3274 if (state->es_shader) {
3275 var->data.precision =
3276 select_gles_precision(qual->precision, var->type, state, loc);
3277 }
3278
3279 if (qual->flags.q.patch)
3280 var->data.patch = 1;
3281
3282 if (qual->flags.q.attribute && state->stage != MESA_SHADER_VERTEX) {
3283 var->type = glsl_type::error_type;
3284 _mesa_glsl_error(loc, state,
3285 "`attribute' variables may not be declared in the "
3286 "%s shader",
3287 _mesa_shader_stage_to_string(state->stage));
3288 }
3289
3290 /* Disallow layout qualifiers which may only appear on layout declarations. */
3291 if (qual->flags.q.prim_type) {
3292 _mesa_glsl_error(loc, state,
3293 "Primitive type may only be specified on GS input or output "
3294 "layout declaration, not on variables.");
3295 }
3296
3297 /* Section 6.1.1 (Function Calling Conventions) of the GLSL 1.10 spec says:
3298 *
3299 * "However, the const qualifier cannot be used with out or inout."
3300 *
3301 * The same section of the GLSL 4.40 spec further clarifies this saying:
3302 *
3303 * "The const qualifier cannot be used with out or inout, or a
3304 * compile-time error results."
3305 */
3306 if (is_parameter && qual->flags.q.constant && qual->flags.q.out) {
3307 _mesa_glsl_error(loc, state,
3308 "`const' may not be applied to `out' or `inout' "
3309 "function parameters");
3310 }
3311
3312 /* If there is no qualifier that changes the mode of the variable, leave
3313 * the setting alone.
3314 */
3315 assert(var->data.mode != ir_var_temporary);
3316 if (qual->flags.q.in && qual->flags.q.out)
3317 var->data.mode = ir_var_function_inout;
3318 else if (qual->flags.q.in)
3319 var->data.mode = is_parameter ? ir_var_function_in : ir_var_shader_in;
3320 else if (qual->flags.q.attribute
3321 || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
3322 var->data.mode = ir_var_shader_in;
3323 else if (qual->flags.q.out)
3324 var->data.mode = is_parameter ? ir_var_function_out : ir_var_shader_out;
3325 else if (qual->flags.q.varying && (state->stage == MESA_SHADER_VERTEX))
3326 var->data.mode = ir_var_shader_out;
3327 else if (qual->flags.q.uniform)
3328 var->data.mode = ir_var_uniform;
3329 else if (qual->flags.q.buffer)
3330 var->data.mode = ir_var_shader_storage;
3331 else if (qual->flags.q.shared_storage)
3332 var->data.mode = ir_var_shader_shared;
3333
3334 if (!is_parameter && is_varying_var(var, state->stage)) {
3335 /* User-defined ins/outs are not permitted in compute shaders. */
3336 if (state->stage == MESA_SHADER_COMPUTE) {
3337 _mesa_glsl_error(loc, state,
3338 "user-defined input and output variables are not "
3339 "permitted in compute shaders");
3340 }
3341
3342 /* This variable is being used to link data between shader stages (in
3343 * pre-glsl-1.30 parlance, it's a "varying"). Check that it has a type
3344 * that is allowed for such purposes.
3345 *
3346 * From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
3347 *
3348 * "The varying qualifier can be used only with the data types
3349 * float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
3350 * these."
3351 *
3352 * This was relaxed in GLSL version 1.30 and GLSL ES version 3.00. From
3353 * page 31 (page 37 of the PDF) of the GLSL 1.30 spec:
3354 *
3355 * "Fragment inputs can only be signed and unsigned integers and
3356 * integer vectors, float, floating-point vectors, matrices, or
3357 * arrays of these. Structures cannot be input.
3358 *
3359 * Similar text exists in the section on vertex shader outputs.
3360 *
3361 * Similar text exists in the GLSL ES 3.00 spec, except that the GLSL ES
3362 * 3.00 spec allows structs as well. Varying structs are also allowed
3363 * in GLSL 1.50.
3364 */
3365 switch (var->type->get_scalar_type()->base_type) {
3366 case GLSL_TYPE_FLOAT:
3367 /* Ok in all GLSL versions */
3368 break;
3369 case GLSL_TYPE_UINT:
3370 case GLSL_TYPE_INT:
3371 if (state->is_version(130, 300))
3372 break;
3373 _mesa_glsl_error(loc, state,
3374 "varying variables must be of base type float in %s",
3375 state->get_version_string());
3376 break;
3377 case GLSL_TYPE_STRUCT:
3378 if (state->is_version(150, 300))
3379 break;
3380 _mesa_glsl_error(loc, state,
3381 "varying variables may not be of type struct");
3382 break;
3383 case GLSL_TYPE_DOUBLE:
3384 break;
3385 default:
3386 _mesa_glsl_error(loc, state, "illegal type for a varying variable");
3387 break;
3388 }
3389 }
3390
3391 if (state->all_invariant && (state->current_function == NULL)) {
3392 switch (state->stage) {
3393 case MESA_SHADER_VERTEX:
3394 if (var->data.mode == ir_var_shader_out)
3395 var->data.invariant = true;
3396 break;
3397 case MESA_SHADER_TESS_CTRL:
3398 case MESA_SHADER_TESS_EVAL:
3399 case MESA_SHADER_GEOMETRY:
3400 if ((var->data.mode == ir_var_shader_in)
3401 || (var->data.mode == ir_var_shader_out))
3402 var->data.invariant = true;
3403 break;
3404 case MESA_SHADER_FRAGMENT:
3405 if (var->data.mode == ir_var_shader_in)
3406 var->data.invariant = true;
3407 break;
3408 case MESA_SHADER_COMPUTE:
3409 /* Invariance isn't meaningful in compute shaders. */
3410 break;
3411 }
3412 }
3413
3414 var->data.interpolation =
3415 interpret_interpolation_qualifier(qual, (ir_variable_mode) var->data.mode,
3416 state, loc);
3417
3418 /* Does the declaration use the deprecated 'attribute' or 'varying'
3419 * keywords?
3420 */
3421 const bool uses_deprecated_qualifier = qual->flags.q.attribute
3422 || qual->flags.q.varying;
3423
3424
3425 /* Validate auxiliary storage qualifiers */
3426
3427 /* From section 4.3.4 of the GLSL 1.30 spec:
3428 * "It is an error to use centroid in in a vertex shader."
3429 *
3430 * From section 4.3.4 of the GLSL ES 3.00 spec:
3431 * "It is an error to use centroid in or interpolation qualifiers in
3432 * a vertex shader input."
3433 */
3434
3435 /* Section 4.3.6 of the GLSL 1.30 specification states:
3436 * "It is an error to use centroid out in a fragment shader."
3437 *
3438 * The GL_ARB_shading_language_420pack extension specification states:
3439 * "It is an error to use auxiliary storage qualifiers or interpolation
3440 * qualifiers on an output in a fragment shader."
3441 */
3442 if (qual->flags.q.sample && (!is_varying_var(var, state->stage) || uses_deprecated_qualifier)) {
3443 _mesa_glsl_error(loc, state,
3444 "sample qualifier may only be used on `in` or `out` "
3445 "variables between shader stages");
3446 }
3447 if (qual->flags.q.centroid && !is_varying_var(var, state->stage)) {
3448 _mesa_glsl_error(loc, state,
3449 "centroid qualifier may only be used with `in', "
3450 "`out' or `varying' variables between shader stages");
3451 }
3452
3453 if (qual->flags.q.shared_storage && state->stage != MESA_SHADER_COMPUTE) {
3454 _mesa_glsl_error(loc, state,
3455 "the shared storage qualifiers can only be used with "
3456 "compute shaders");
3457 }
3458
3459 apply_image_qualifier_to_variable(qual, var, state, loc);
3460 }
3461
3462 /**
3463 * Get the variable that is being redeclared by this declaration
3464 *
3465 * Semantic checks to verify the validity of the redeclaration are also
3466 * performed. If semantic checks fail, compilation error will be emitted via
3467 * \c _mesa_glsl_error, but a non-\c NULL pointer will still be returned.
3468 *
3469 * \returns
3470 * A pointer to an existing variable in the current scope if the declaration
3471 * is a redeclaration, \c NULL otherwise.
3472 */
3473 static ir_variable *
3474 get_variable_being_redeclared(ir_variable *var, YYLTYPE loc,
3475 struct _mesa_glsl_parse_state *state,
3476 bool allow_all_redeclarations)
3477 {
3478 /* Check if this declaration is actually a re-declaration, either to
3479 * resize an array or add qualifiers to an existing variable.
3480 *
3481 * This is allowed for variables in the current scope, or when at
3482 * global scope (for built-ins in the implicit outer scope).
3483 */
3484 ir_variable *earlier = state->symbols->get_variable(var->name);
3485 if (earlier == NULL ||
3486 (state->current_function != NULL &&
3487 !state->symbols->name_declared_this_scope(var->name))) {
3488 return NULL;
3489 }
3490
3491
3492 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
3493 *
3494 * "It is legal to declare an array without a size and then
3495 * later re-declare the same name as an array of the same
3496 * type and specify a size."
3497 */
3498 if (earlier->type->is_unsized_array() && var->type->is_array()
3499 && (var->type->fields.array == earlier->type->fields.array)) {
3500 /* FINISHME: This doesn't match the qualifiers on the two
3501 * FINISHME: declarations. It's not 100% clear whether this is
3502 * FINISHME: required or not.
3503 */
3504
3505 const unsigned size = unsigned(var->type->array_size());
3506 check_builtin_array_max_size(var->name, size, loc, state);
3507 if ((size > 0) && (size <= earlier->data.max_array_access)) {
3508 _mesa_glsl_error(& loc, state, "array size must be > %u due to "
3509 "previous access",
3510 earlier->data.max_array_access);
3511 }
3512
3513 earlier->type = var->type;
3514 delete var;
3515 var = NULL;
3516 } else if ((state->ARB_fragment_coord_conventions_enable ||
3517 state->is_version(150, 0))
3518 && strcmp(var->name, "gl_FragCoord") == 0
3519 && earlier->type == var->type
3520 && earlier->data.mode == var->data.mode) {
3521 /* Allow redeclaration of gl_FragCoord for ARB_fcc layout
3522 * qualifiers.
3523 */
3524 earlier->data.origin_upper_left = var->data.origin_upper_left;
3525 earlier->data.pixel_center_integer = var->data.pixel_center_integer;
3526
3527 /* According to section 4.3.7 of the GLSL 1.30 spec,
3528 * the following built-in varaibles can be redeclared with an
3529 * interpolation qualifier:
3530 * * gl_FrontColor
3531 * * gl_BackColor
3532 * * gl_FrontSecondaryColor
3533 * * gl_BackSecondaryColor
3534 * * gl_Color
3535 * * gl_SecondaryColor
3536 */
3537 } else if (state->is_version(130, 0)
3538 && (strcmp(var->name, "gl_FrontColor") == 0
3539 || strcmp(var->name, "gl_BackColor") == 0
3540 || strcmp(var->name, "gl_FrontSecondaryColor") == 0
3541 || strcmp(var->name, "gl_BackSecondaryColor") == 0
3542 || strcmp(var->name, "gl_Color") == 0
3543 || strcmp(var->name, "gl_SecondaryColor") == 0)
3544 && earlier->type == var->type
3545 && earlier->data.mode == var->data.mode) {
3546 earlier->data.interpolation = var->data.interpolation;
3547
3548 /* Layout qualifiers for gl_FragDepth. */
3549 } else if ((state->AMD_conservative_depth_enable ||
3550 state->ARB_conservative_depth_enable)
3551 && strcmp(var->name, "gl_FragDepth") == 0
3552 && earlier->type == var->type
3553 && earlier->data.mode == var->data.mode) {
3554
3555 /** From the AMD_conservative_depth spec:
3556 * Within any shader, the first redeclarations of gl_FragDepth
3557 * must appear before any use of gl_FragDepth.
3558 */
3559 if (earlier->data.used) {
3560 _mesa_glsl_error(&loc, state,
3561 "the first redeclaration of gl_FragDepth "
3562 "must appear before any use of gl_FragDepth");
3563 }
3564
3565 /* Prevent inconsistent redeclaration of depth layout qualifier. */
3566 if (earlier->data.depth_layout != ir_depth_layout_none
3567 && earlier->data.depth_layout != var->data.depth_layout) {
3568 _mesa_glsl_error(&loc, state,
3569 "gl_FragDepth: depth layout is declared here "
3570 "as '%s, but it was previously declared as "
3571 "'%s'",
3572 depth_layout_string(var->data.depth_layout),
3573 depth_layout_string(earlier->data.depth_layout));
3574 }
3575
3576 earlier->data.depth_layout = var->data.depth_layout;
3577
3578 } else if (allow_all_redeclarations) {
3579 if (earlier->data.mode != var->data.mode) {
3580 _mesa_glsl_error(&loc, state,
3581 "redeclaration of `%s' with incorrect qualifiers",
3582 var->name);
3583 } else if (earlier->type != var->type) {
3584 _mesa_glsl_error(&loc, state,
3585 "redeclaration of `%s' has incorrect type",
3586 var->name);
3587 }
3588 } else {
3589 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
3590 }
3591
3592 return earlier;
3593 }
3594
3595 /**
3596 * Generate the IR for an initializer in a variable declaration
3597 */
3598 ir_rvalue *
3599 process_initializer(ir_variable *var, ast_declaration *decl,
3600 ast_fully_specified_type *type,
3601 exec_list *initializer_instructions,
3602 struct _mesa_glsl_parse_state *state)
3603 {
3604 ir_rvalue *result = NULL;
3605
3606 YYLTYPE initializer_loc = decl->initializer->get_location();
3607
3608 /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
3609 *
3610 * "All uniform variables are read-only and are initialized either
3611 * directly by an application via API commands, or indirectly by
3612 * OpenGL."
3613 */
3614 if (var->data.mode == ir_var_uniform) {
3615 state->check_version(120, 0, &initializer_loc,
3616 "cannot initialize uniform %s",
3617 var->name);
3618 }
3619
3620 /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec:
3621 *
3622 * "Buffer variables cannot have initializers."
3623 */
3624 if (var->data.mode == ir_var_shader_storage) {
3625 _mesa_glsl_error(&initializer_loc, state,
3626 "cannot initialize buffer variable %s",
3627 var->name);
3628 }
3629
3630 /* From section 4.1.7 of the GLSL 4.40 spec:
3631 *
3632 * "Opaque variables [...] are initialized only through the
3633 * OpenGL API; they cannot be declared with an initializer in a
3634 * shader."
3635 */
3636 if (var->type->contains_opaque()) {
3637 _mesa_glsl_error(&initializer_loc, state,
3638 "cannot initialize opaque variable %s",
3639 var->name);
3640 }
3641
3642 if ((var->data.mode == ir_var_shader_in) && (state->current_function == NULL)) {
3643 _mesa_glsl_error(&initializer_loc, state,
3644 "cannot initialize %s shader input / %s %s",
3645 _mesa_shader_stage_to_string(state->stage),
3646 (state->stage == MESA_SHADER_VERTEX)
3647 ? "attribute" : "varying",
3648 var->name);
3649 }
3650
3651 if (var->data.mode == ir_var_shader_out && state->current_function == NULL) {
3652 _mesa_glsl_error(&initializer_loc, state,
3653 "cannot initialize %s shader output %s",
3654 _mesa_shader_stage_to_string(state->stage),
3655 var->name);
3656 }
3657
3658 /* If the initializer is an ast_aggregate_initializer, recursively store
3659 * type information from the LHS into it, so that its hir() function can do
3660 * type checking.
3661 */
3662 if (decl->initializer->oper == ast_aggregate)
3663 _mesa_ast_set_aggregate_type(var->type, decl->initializer);
3664
3665 ir_dereference *const lhs = new(state) ir_dereference_variable(var);
3666 ir_rvalue *rhs = decl->initializer->hir(initializer_instructions, state);
3667
3668 /* Calculate the constant value if this is a const or uniform
3669 * declaration.
3670 *
3671 * Section 4.3 (Storage Qualifiers) of the GLSL ES 1.00.17 spec says:
3672 *
3673 * "Declarations of globals without a storage qualifier, or with
3674 * just the const qualifier, may include initializers, in which case
3675 * they will be initialized before the first line of main() is
3676 * executed. Such initializers must be a constant expression."
3677 *
3678 * The same section of the GLSL ES 3.00.4 spec has similar language.
3679 */
3680 if (type->qualifier.flags.q.constant
3681 || type->qualifier.flags.q.uniform
3682 || (state->es_shader && state->current_function == NULL)) {
3683 ir_rvalue *new_rhs = validate_assignment(state, initializer_loc,
3684 lhs, rhs, true);
3685 if (new_rhs != NULL) {
3686 rhs = new_rhs;
3687
3688 /* Section 4.3.3 (Constant Expressions) of the GLSL ES 3.00.4 spec
3689 * says:
3690 *
3691 * "A constant expression is one of
3692 *
3693 * ...
3694 *
3695 * - an expression formed by an operator on operands that are
3696 * all constant expressions, including getting an element of
3697 * a constant array, or a field of a constant structure, or
3698 * components of a constant vector. However, the sequence
3699 * operator ( , ) and the assignment operators ( =, +=, ...)
3700 * are not included in the operators that can create a
3701 * constant expression."
3702 *
3703 * Section 12.43 (Sequence operator and constant expressions) says:
3704 *
3705 * "Should the following construct be allowed?
3706 *
3707 * float a[2,3];
3708 *
3709 * The expression within the brackets uses the sequence operator
3710 * (',') and returns the integer 3 so the construct is declaring
3711 * a single-dimensional array of size 3. In some languages, the
3712 * construct declares a two-dimensional array. It would be
3713 * preferable to make this construct illegal to avoid confusion.
3714 *
3715 * One possibility is to change the definition of the sequence
3716 * operator so that it does not return a constant-expression and
3717 * hence cannot be used to declare an array size.
3718 *
3719 * RESOLUTION: The result of a sequence operator is not a
3720 * constant-expression."
3721 *
3722 * Section 4.3.3 (Constant Expressions) of the GLSL 4.30.9 spec
3723 * contains language almost identical to the section 4.3.3 in the
3724 * GLSL ES 3.00.4 spec. This is a new limitation for these GLSL
3725 * versions.
3726 */
3727 ir_constant *constant_value = rhs->constant_expression_value();
3728 if (!constant_value ||
3729 (state->is_version(430, 300) &&
3730 decl->initializer->has_sequence_subexpression())) {
3731 const char *const variable_mode =
3732 (type->qualifier.flags.q.constant)
3733 ? "const"
3734 : ((type->qualifier.flags.q.uniform) ? "uniform" : "global");
3735
3736 /* If ARB_shading_language_420pack is enabled, initializers of
3737 * const-qualified local variables do not have to be constant
3738 * expressions. Const-qualified global variables must still be
3739 * initialized with constant expressions.
3740 */
3741 if (!state->has_420pack()
3742 || state->current_function == NULL) {
3743 _mesa_glsl_error(& initializer_loc, state,
3744 "initializer of %s variable `%s' must be a "
3745 "constant expression",
3746 variable_mode,
3747 decl->identifier);
3748 if (var->type->is_numeric()) {
3749 /* Reduce cascading errors. */
3750 var->constant_value = type->qualifier.flags.q.constant
3751 ? ir_constant::zero(state, var->type) : NULL;
3752 }
3753 }
3754 } else {
3755 rhs = constant_value;
3756 var->constant_value = type->qualifier.flags.q.constant
3757 ? constant_value : NULL;
3758 }
3759 } else {
3760 if (var->type->is_numeric()) {
3761 /* Reduce cascading errors. */
3762 var->constant_value = type->qualifier.flags.q.constant
3763 ? ir_constant::zero(state, var->type) : NULL;
3764 }
3765 }
3766 }
3767
3768 if (rhs && !rhs->type->is_error()) {
3769 bool temp = var->data.read_only;
3770 if (type->qualifier.flags.q.constant)
3771 var->data.read_only = false;
3772
3773 /* Never emit code to initialize a uniform.
3774 */
3775 const glsl_type *initializer_type;
3776 if (!type->qualifier.flags.q.uniform) {
3777 do_assignment(initializer_instructions, state,
3778 NULL,
3779 lhs, rhs,
3780 &result, true,
3781 true,
3782 type->get_location());
3783 initializer_type = result->type;
3784 } else
3785 initializer_type = rhs->type;
3786
3787 var->constant_initializer = rhs->constant_expression_value();
3788 var->data.has_initializer = true;
3789
3790 /* If the declared variable is an unsized array, it must inherrit
3791 * its full type from the initializer. A declaration such as
3792 *
3793 * uniform float a[] = float[](1.0, 2.0, 3.0, 3.0);
3794 *
3795 * becomes
3796 *
3797 * uniform float a[4] = float[](1.0, 2.0, 3.0, 3.0);
3798 *
3799 * The assignment generated in the if-statement (below) will also
3800 * automatically handle this case for non-uniforms.
3801 *
3802 * If the declared variable is not an array, the types must
3803 * already match exactly. As a result, the type assignment
3804 * here can be done unconditionally. For non-uniforms the call
3805 * to do_assignment can change the type of the initializer (via
3806 * the implicit conversion rules). For uniforms the initializer
3807 * must be a constant expression, and the type of that expression
3808 * was validated above.
3809 */
3810 var->type = initializer_type;
3811
3812 var->data.read_only = temp;
3813 }
3814
3815 return result;
3816 }
3817
3818 static void
3819 validate_layout_qualifier_vertex_count(struct _mesa_glsl_parse_state *state,
3820 YYLTYPE loc, ir_variable *var,
3821 unsigned num_vertices,
3822 unsigned *size,
3823 const char *var_category)
3824 {
3825 if (var->type->is_unsized_array()) {
3826 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec says:
3827 *
3828 * All geometry shader input unsized array declarations will be
3829 * sized by an earlier input layout qualifier, when present, as per
3830 * the following table.
3831 *
3832 * Followed by a table mapping each allowed input layout qualifier to
3833 * the corresponding input length.
3834 *
3835 * Similarly for tessellation control shader outputs.
3836 */
3837 if (num_vertices != 0)
3838 var->type = glsl_type::get_array_instance(var->type->fields.array,
3839 num_vertices);
3840 } else {
3841 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec
3842 * includes the following examples of compile-time errors:
3843 *
3844 * // code sequence within one shader...
3845 * in vec4 Color1[]; // size unknown
3846 * ...Color1.length()...// illegal, length() unknown
3847 * in vec4 Color2[2]; // size is 2
3848 * ...Color1.length()...// illegal, Color1 still has no size
3849 * in vec4 Color3[3]; // illegal, input sizes are inconsistent
3850 * layout(lines) in; // legal, input size is 2, matching
3851 * in vec4 Color4[3]; // illegal, contradicts layout
3852 * ...
3853 *
3854 * To detect the case illustrated by Color3, we verify that the size of
3855 * an explicitly-sized array matches the size of any previously declared
3856 * explicitly-sized array. To detect the case illustrated by Color4, we
3857 * verify that the size of an explicitly-sized array is consistent with
3858 * any previously declared input layout.
3859 */
3860 if (num_vertices != 0 && var->type->length != num_vertices) {
3861 _mesa_glsl_error(&loc, state,
3862 "%s size contradicts previously declared layout "
3863 "(size is %u, but layout requires a size of %u)",
3864 var_category, var->type->length, num_vertices);
3865 } else if (*size != 0 && var->type->length != *size) {
3866 _mesa_glsl_error(&loc, state,
3867 "%s sizes are inconsistent (size is %u, but a "
3868 "previous declaration has size %u)",
3869 var_category, var->type->length, *size);
3870 } else {
3871 *size = var->type->length;
3872 }
3873 }
3874 }
3875
3876 static void
3877 handle_tess_ctrl_shader_output_decl(struct _mesa_glsl_parse_state *state,
3878 YYLTYPE loc, ir_variable *var)
3879 {
3880 unsigned num_vertices = 0;
3881
3882 if (state->tcs_output_vertices_specified) {
3883 if (!state->out_qualifier->vertices->
3884 process_qualifier_constant(state, "vertices",
3885 &num_vertices, false)) {
3886 return;
3887 }
3888
3889 if (num_vertices > state->Const.MaxPatchVertices) {
3890 _mesa_glsl_error(&loc, state, "vertices (%d) exceeds "
3891 "GL_MAX_PATCH_VERTICES", num_vertices);
3892 return;
3893 }
3894 }
3895
3896 if (!var->type->is_array() && !var->data.patch) {
3897 _mesa_glsl_error(&loc, state,
3898 "tessellation control shader outputs must be arrays");
3899
3900 /* To avoid cascading failures, short circuit the checks below. */
3901 return;
3902 }
3903
3904 if (var->data.patch)
3905 return;
3906
3907 validate_layout_qualifier_vertex_count(state, loc, var, num_vertices,
3908 &state->tcs_output_size,
3909 "tessellation control shader output");
3910 }
3911
3912 /**
3913 * Do additional processing necessary for tessellation control/evaluation shader
3914 * input declarations. This covers both interface block arrays and bare input
3915 * variables.
3916 */
3917 static void
3918 handle_tess_shader_input_decl(struct _mesa_glsl_parse_state *state,
3919 YYLTYPE loc, ir_variable *var)
3920 {
3921 if (!var->type->is_array() && !var->data.patch) {
3922 _mesa_glsl_error(&loc, state,
3923 "per-vertex tessellation shader inputs must be arrays");
3924 /* Avoid cascading failures. */
3925 return;
3926 }
3927
3928 if (var->data.patch)
3929 return;
3930
3931 /* Unsized arrays are implicitly sized to gl_MaxPatchVertices. */
3932 if (var->type->is_unsized_array()) {
3933 var->type = glsl_type::get_array_instance(var->type->fields.array,
3934 state->Const.MaxPatchVertices);
3935 }
3936 }
3937
3938
3939 /**
3940 * Do additional processing necessary for geometry shader input declarations
3941 * (this covers both interface blocks arrays and bare input variables).
3942 */
3943 static void
3944 handle_geometry_shader_input_decl(struct _mesa_glsl_parse_state *state,
3945 YYLTYPE loc, ir_variable *var)
3946 {
3947 unsigned num_vertices = 0;
3948
3949 if (state->gs_input_prim_type_specified) {
3950 num_vertices = vertices_per_prim(state->in_qualifier->prim_type);
3951 }
3952
3953 /* Geometry shader input variables must be arrays. Caller should have
3954 * reported an error for this.
3955 */
3956 if (!var->type->is_array()) {
3957 assert(state->error);
3958
3959 /* To avoid cascading failures, short circuit the checks below. */
3960 return;
3961 }
3962
3963 validate_layout_qualifier_vertex_count(state, loc, var, num_vertices,
3964 &state->gs_input_size,
3965 "geometry shader input");
3966 }
3967
3968 void
3969 validate_identifier(const char *identifier, YYLTYPE loc,
3970 struct _mesa_glsl_parse_state *state)
3971 {
3972 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
3973 *
3974 * "Identifiers starting with "gl_" are reserved for use by
3975 * OpenGL, and may not be declared in a shader as either a
3976 * variable or a function."
3977 */
3978 if (is_gl_identifier(identifier)) {
3979 _mesa_glsl_error(&loc, state,
3980 "identifier `%s' uses reserved `gl_' prefix",
3981 identifier);
3982 } else if (strstr(identifier, "__")) {
3983 /* From page 14 (page 20 of the PDF) of the GLSL 1.10
3984 * spec:
3985 *
3986 * "In addition, all identifiers containing two
3987 * consecutive underscores (__) are reserved as
3988 * possible future keywords."
3989 *
3990 * The intention is that names containing __ are reserved for internal
3991 * use by the implementation, and names prefixed with GL_ are reserved
3992 * for use by Khronos. Names simply containing __ are dangerous to use,
3993 * but should be allowed.
3994 *
3995 * A future version of the GLSL specification will clarify this.
3996 */
3997 _mesa_glsl_warning(&loc, state,
3998 "identifier `%s' uses reserved `__' string",
3999 identifier);
4000 }
4001 }
4002
4003 ir_rvalue *
4004 ast_declarator_list::hir(exec_list *instructions,
4005 struct _mesa_glsl_parse_state *state)
4006 {
4007 void *ctx = state;
4008 const struct glsl_type *decl_type;
4009 const char *type_name = NULL;
4010 ir_rvalue *result = NULL;
4011 YYLTYPE loc = this->get_location();
4012
4013 /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec:
4014 *
4015 * "To ensure that a particular output variable is invariant, it is
4016 * necessary to use the invariant qualifier. It can either be used to
4017 * qualify a previously declared variable as being invariant
4018 *
4019 * invariant gl_Position; // make existing gl_Position be invariant"
4020 *
4021 * In these cases the parser will set the 'invariant' flag in the declarator
4022 * list, and the type will be NULL.
4023 */
4024 if (this->invariant) {
4025 assert(this->type == NULL);
4026
4027 if (state->current_function != NULL) {
4028 _mesa_glsl_error(& loc, state,
4029 "all uses of `invariant' keyword must be at global "
4030 "scope");
4031 }
4032
4033 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4034 assert(decl->array_specifier == NULL);
4035 assert(decl->initializer == NULL);
4036
4037 ir_variable *const earlier =
4038 state->symbols->get_variable(decl->identifier);
4039 if (earlier == NULL) {
4040 _mesa_glsl_error(& loc, state,
4041 "undeclared variable `%s' cannot be marked "
4042 "invariant", decl->identifier);
4043 } else if (!is_varying_var(earlier, state->stage)) {
4044 _mesa_glsl_error(&loc, state,
4045 "`%s' cannot be marked invariant; interfaces between "
4046 "shader stages only.", decl->identifier);
4047 } else if (earlier->data.used) {
4048 _mesa_glsl_error(& loc, state,
4049 "variable `%s' may not be redeclared "
4050 "`invariant' after being used",
4051 earlier->name);
4052 } else {
4053 earlier->data.invariant = true;
4054 }
4055 }
4056
4057 /* Invariant redeclarations do not have r-values.
4058 */
4059 return NULL;
4060 }
4061
4062 if (this->precise) {
4063 assert(this->type == NULL);
4064
4065 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4066 assert(decl->array_specifier == NULL);
4067 assert(decl->initializer == NULL);
4068
4069 ir_variable *const earlier =
4070 state->symbols->get_variable(decl->identifier);
4071 if (earlier == NULL) {
4072 _mesa_glsl_error(& loc, state,
4073 "undeclared variable `%s' cannot be marked "
4074 "precise", decl->identifier);
4075 } else if (state->current_function != NULL &&
4076 !state->symbols->name_declared_this_scope(decl->identifier)) {
4077 /* Note: we have to check if we're in a function, since
4078 * builtins are treated as having come from another scope.
4079 */
4080 _mesa_glsl_error(& loc, state,
4081 "variable `%s' from an outer scope may not be "
4082 "redeclared `precise' in this scope",
4083 earlier->name);
4084 } else if (earlier->data.used) {
4085 _mesa_glsl_error(& loc, state,
4086 "variable `%s' may not be redeclared "
4087 "`precise' after being used",
4088 earlier->name);
4089 } else {
4090 earlier->data.precise = true;
4091 }
4092 }
4093
4094 /* Precise redeclarations do not have r-values either. */
4095 return NULL;
4096 }
4097
4098 assert(this->type != NULL);
4099 assert(!this->invariant);
4100 assert(!this->precise);
4101
4102 /* The type specifier may contain a structure definition. Process that
4103 * before any of the variable declarations.
4104 */
4105 (void) this->type->specifier->hir(instructions, state);
4106
4107 decl_type = this->type->glsl_type(& type_name, state);
4108
4109 /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec:
4110 * "Buffer variables may only be declared inside interface blocks
4111 * (section 4.3.9 “Interface Blocks”), which are then referred to as
4112 * shader storage blocks. It is a compile-time error to declare buffer
4113 * variables at global scope (outside a block)."
4114 */
4115 if (type->qualifier.flags.q.buffer && !decl_type->is_interface()) {
4116 _mesa_glsl_error(&loc, state,
4117 "buffer variables cannot be declared outside "
4118 "interface blocks");
4119 }
4120
4121 /* An offset-qualified atomic counter declaration sets the default
4122 * offset for the next declaration within the same atomic counter
4123 * buffer.
4124 */
4125 if (decl_type && decl_type->contains_atomic()) {
4126 if (type->qualifier.flags.q.explicit_binding &&
4127 type->qualifier.flags.q.explicit_offset) {
4128 unsigned qual_binding;
4129 unsigned qual_offset;
4130 if (process_qualifier_constant(state, &loc, "binding",
4131 type->qualifier.binding,
4132 &qual_binding)
4133 && process_qualifier_constant(state, &loc, "offset",
4134 type->qualifier.offset,
4135 &qual_offset)) {
4136 state->atomic_counter_offsets[qual_binding] = qual_offset;
4137 }
4138 }
4139 }
4140
4141 if (this->declarations.is_empty()) {
4142 /* If there is no structure involved in the program text, there are two
4143 * possible scenarios:
4144 *
4145 * - The program text contained something like 'vec4;'. This is an
4146 * empty declaration. It is valid but weird. Emit a warning.
4147 *
4148 * - The program text contained something like 'S;' and 'S' is not the
4149 * name of a known structure type. This is both invalid and weird.
4150 * Emit an error.
4151 *
4152 * - The program text contained something like 'mediump float;'
4153 * when the programmer probably meant 'precision mediump
4154 * float;' Emit a warning with a description of what they
4155 * probably meant to do.
4156 *
4157 * Note that if decl_type is NULL and there is a structure involved,
4158 * there must have been some sort of error with the structure. In this
4159 * case we assume that an error was already generated on this line of
4160 * code for the structure. There is no need to generate an additional,
4161 * confusing error.
4162 */
4163 assert(this->type->specifier->structure == NULL || decl_type != NULL
4164 || state->error);
4165
4166 if (decl_type == NULL) {
4167 _mesa_glsl_error(&loc, state,
4168 "invalid type `%s' in empty declaration",
4169 type_name);
4170 } else if (decl_type->base_type == GLSL_TYPE_ATOMIC_UINT) {
4171 /* Empty atomic counter declarations are allowed and useful
4172 * to set the default offset qualifier.
4173 */
4174 return NULL;
4175 } else if (this->type->qualifier.precision != ast_precision_none) {
4176 if (this->type->specifier->structure != NULL) {
4177 _mesa_glsl_error(&loc, state,
4178 "precision qualifiers can't be applied "
4179 "to structures");
4180 } else {
4181 static const char *const precision_names[] = {
4182 "highp",
4183 "highp",
4184 "mediump",
4185 "lowp"
4186 };
4187
4188 _mesa_glsl_warning(&loc, state,
4189 "empty declaration with precision qualifier, "
4190 "to set the default precision, use "
4191 "`precision %s %s;'",
4192 precision_names[this->type->qualifier.precision],
4193 type_name);
4194 }
4195 } else if (this->type->specifier->structure == NULL) {
4196 _mesa_glsl_warning(&loc, state, "empty declaration");
4197 }
4198 }
4199
4200 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4201 const struct glsl_type *var_type;
4202 ir_variable *var;
4203 const char *identifier = decl->identifier;
4204 /* FINISHME: Emit a warning if a variable declaration shadows a
4205 * FINISHME: declaration at a higher scope.
4206 */
4207
4208 if ((decl_type == NULL) || decl_type->is_void()) {
4209 if (type_name != NULL) {
4210 _mesa_glsl_error(& loc, state,
4211 "invalid type `%s' in declaration of `%s'",
4212 type_name, decl->identifier);
4213 } else {
4214 _mesa_glsl_error(& loc, state,
4215 "invalid type in declaration of `%s'",
4216 decl->identifier);
4217 }
4218 continue;
4219 }
4220
4221 if (this->type->qualifier.flags.q.subroutine) {
4222 const glsl_type *t;
4223 const char *name;
4224
4225 t = state->symbols->get_type(this->type->specifier->type_name);
4226 if (!t)
4227 _mesa_glsl_error(& loc, state,
4228 "invalid type in declaration of `%s'",
4229 decl->identifier);
4230 name = ralloc_asprintf(ctx, "%s_%s", _mesa_shader_stage_to_subroutine_prefix(state->stage), decl->identifier);
4231
4232 identifier = name;
4233
4234 }
4235 var_type = process_array_type(&loc, decl_type, decl->array_specifier,
4236 state);
4237
4238 var = new(ctx) ir_variable(var_type, identifier, ir_var_auto);
4239
4240 /* The 'varying in' and 'varying out' qualifiers can only be used with
4241 * ARB_geometry_shader4 and EXT_geometry_shader4, which we don't support
4242 * yet.
4243 */
4244 if (this->type->qualifier.flags.q.varying) {
4245 if (this->type->qualifier.flags.q.in) {
4246 _mesa_glsl_error(& loc, state,
4247 "`varying in' qualifier in declaration of "
4248 "`%s' only valid for geometry shaders using "
4249 "ARB_geometry_shader4 or EXT_geometry_shader4",
4250 decl->identifier);
4251 } else if (this->type->qualifier.flags.q.out) {
4252 _mesa_glsl_error(& loc, state,
4253 "`varying out' qualifier in declaration of "
4254 "`%s' only valid for geometry shaders using "
4255 "ARB_geometry_shader4 or EXT_geometry_shader4",
4256 decl->identifier);
4257 }
4258 }
4259
4260 /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
4261 *
4262 * "Global variables can only use the qualifiers const,
4263 * attribute, uniform, or varying. Only one may be
4264 * specified.
4265 *
4266 * Local variables can only use the qualifier const."
4267 *
4268 * This is relaxed in GLSL 1.30 and GLSL ES 3.00. It is also relaxed by
4269 * any extension that adds the 'layout' keyword.
4270 */
4271 if (!state->is_version(130, 300)
4272 && !state->has_explicit_attrib_location()
4273 && !state->has_separate_shader_objects()
4274 && !state->ARB_fragment_coord_conventions_enable) {
4275 if (this->type->qualifier.flags.q.out) {
4276 _mesa_glsl_error(& loc, state,
4277 "`out' qualifier in declaration of `%s' "
4278 "only valid for function parameters in %s",
4279 decl->identifier, state->get_version_string());
4280 }
4281 if (this->type->qualifier.flags.q.in) {
4282 _mesa_glsl_error(& loc, state,
4283 "`in' qualifier in declaration of `%s' "
4284 "only valid for function parameters in %s",
4285 decl->identifier, state->get_version_string());
4286 }
4287 /* FINISHME: Test for other invalid qualifiers. */
4288 }
4289
4290 apply_type_qualifier_to_variable(& this->type->qualifier, var, state,
4291 & loc, false);
4292 apply_layout_qualifier_to_variable(&this->type->qualifier, var, state,
4293 &loc);
4294
4295 if (this->type->qualifier.flags.q.invariant) {
4296 if (!is_varying_var(var, state->stage)) {
4297 _mesa_glsl_error(&loc, state,
4298 "`%s' cannot be marked invariant; interfaces between "
4299 "shader stages only", var->name);
4300 }
4301 }
4302
4303 if (state->current_function != NULL) {
4304 const char *mode = NULL;
4305 const char *extra = "";
4306
4307 /* There is no need to check for 'inout' here because the parser will
4308 * only allow that in function parameter lists.
4309 */
4310 if (this->type->qualifier.flags.q.attribute) {
4311 mode = "attribute";
4312 } else if (this->type->qualifier.flags.q.subroutine) {
4313 mode = "subroutine uniform";
4314 } else if (this->type->qualifier.flags.q.uniform) {
4315 mode = "uniform";
4316 } else if (this->type->qualifier.flags.q.varying) {
4317 mode = "varying";
4318 } else if (this->type->qualifier.flags.q.in) {
4319 mode = "in";
4320 extra = " or in function parameter list";
4321 } else if (this->type->qualifier.flags.q.out) {
4322 mode = "out";
4323 extra = " or in function parameter list";
4324 }
4325
4326 if (mode) {
4327 _mesa_glsl_error(& loc, state,
4328 "%s variable `%s' must be declared at "
4329 "global scope%s",
4330 mode, var->name, extra);
4331 }
4332 } else if (var->data.mode == ir_var_shader_in) {
4333 var->data.read_only = true;
4334
4335 if (state->stage == MESA_SHADER_VERTEX) {
4336 bool error_emitted = false;
4337
4338 /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
4339 *
4340 * "Vertex shader inputs can only be float, floating-point
4341 * vectors, matrices, signed and unsigned integers and integer
4342 * vectors. Vertex shader inputs can also form arrays of these
4343 * types, but not structures."
4344 *
4345 * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
4346 *
4347 * "Vertex shader inputs can only be float, floating-point
4348 * vectors, matrices, signed and unsigned integers and integer
4349 * vectors. They cannot be arrays or structures."
4350 *
4351 * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
4352 *
4353 * "The attribute qualifier can be used only with float,
4354 * floating-point vectors, and matrices. Attribute variables
4355 * cannot be declared as arrays or structures."
4356 *
4357 * From page 33 (page 39 of the PDF) of the GLSL ES 3.00 spec:
4358 *
4359 * "Vertex shader inputs can only be float, floating-point
4360 * vectors, matrices, signed and unsigned integers and integer
4361 * vectors. Vertex shader inputs cannot be arrays or
4362 * structures."
4363 */
4364 const glsl_type *check_type = var->type->without_array();
4365
4366 switch (check_type->base_type) {
4367 case GLSL_TYPE_FLOAT:
4368 break;
4369 case GLSL_TYPE_UINT:
4370 case GLSL_TYPE_INT:
4371 if (state->is_version(120, 300))
4372 break;
4373 case GLSL_TYPE_DOUBLE:
4374 if (check_type->base_type == GLSL_TYPE_DOUBLE && (state->is_version(410, 0) || state->ARB_vertex_attrib_64bit_enable))
4375 break;
4376 /* FALLTHROUGH */
4377 default:
4378 _mesa_glsl_error(& loc, state,
4379 "vertex shader input / attribute cannot have "
4380 "type %s`%s'",
4381 var->type->is_array() ? "array of " : "",
4382 check_type->name);
4383 error_emitted = true;
4384 }
4385
4386 if (!error_emitted && var->type->is_array() &&
4387 !state->check_version(150, 0, &loc,
4388 "vertex shader input / attribute "
4389 "cannot have array type")) {
4390 error_emitted = true;
4391 }
4392 } else if (state->stage == MESA_SHADER_GEOMETRY) {
4393 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
4394 *
4395 * Geometry shader input variables get the per-vertex values
4396 * written out by vertex shader output variables of the same
4397 * names. Since a geometry shader operates on a set of
4398 * vertices, each input varying variable (or input block, see
4399 * interface blocks below) needs to be declared as an array.
4400 */
4401 if (!var->type->is_array()) {
4402 _mesa_glsl_error(&loc, state,
4403 "geometry shader inputs must be arrays");
4404 }
4405
4406 handle_geometry_shader_input_decl(state, loc, var);
4407 } else if (state->stage == MESA_SHADER_FRAGMENT) {
4408 /* From section 4.3.4 (Input Variables) of the GLSL ES 3.10 spec:
4409 *
4410 * It is a compile-time error to declare a fragment shader
4411 * input with, or that contains, any of the following types:
4412 *
4413 * * A boolean type
4414 * * An opaque type
4415 * * An array of arrays
4416 * * An array of structures
4417 * * A structure containing an array
4418 * * A structure containing a structure
4419 */
4420 if (state->es_shader) {
4421 const glsl_type *check_type = var->type->without_array();
4422 if (check_type->is_boolean() ||
4423 check_type->contains_opaque()) {
4424 _mesa_glsl_error(&loc, state,
4425 "fragment shader input cannot have type %s",
4426 check_type->name);
4427 }
4428 if (var->type->is_array() &&
4429 var->type->fields.array->is_array()) {
4430 _mesa_glsl_error(&loc, state,
4431 "%s shader output "
4432 "cannot have an array of arrays",
4433 _mesa_shader_stage_to_string(state->stage));
4434 }
4435 if (var->type->is_array() &&
4436 var->type->fields.array->is_record()) {
4437 _mesa_glsl_error(&loc, state,
4438 "fragment shader input "
4439 "cannot have an array of structs");
4440 }
4441 if (var->type->is_record()) {
4442 for (unsigned i = 0; i < var->type->length; i++) {
4443 if (var->type->fields.structure[i].type->is_array() ||
4444 var->type->fields.structure[i].type->is_record())
4445 _mesa_glsl_error(&loc, state,
4446 "fragement shader input cannot have "
4447 "a struct that contains an "
4448 "array or struct");
4449 }
4450 }
4451 }
4452 } else if (state->stage == MESA_SHADER_TESS_CTRL ||
4453 state->stage == MESA_SHADER_TESS_EVAL) {
4454 handle_tess_shader_input_decl(state, loc, var);
4455 }
4456 } else if (var->data.mode == ir_var_shader_out) {
4457 const glsl_type *check_type = var->type->without_array();
4458
4459 /* From section 4.3.6 (Output variables) of the GLSL 4.40 spec:
4460 *
4461 * It is a compile-time error to declare a vertex, tessellation
4462 * evaluation, tessellation control, or geometry shader output
4463 * that contains any of the following:
4464 *
4465 * * A Boolean type (bool, bvec2 ...)
4466 * * An opaque type
4467 */
4468 if (check_type->is_boolean() || check_type->contains_opaque())
4469 _mesa_glsl_error(&loc, state,
4470 "%s shader output cannot have type %s",
4471 _mesa_shader_stage_to_string(state->stage),
4472 check_type->name);
4473
4474 /* From section 4.3.6 (Output variables) of the GLSL 4.40 spec:
4475 *
4476 * It is a compile-time error to declare a fragment shader output
4477 * that contains any of the following:
4478 *
4479 * * A Boolean type (bool, bvec2 ...)
4480 * * A double-precision scalar or vector (double, dvec2 ...)
4481 * * An opaque type
4482 * * Any matrix type
4483 * * A structure
4484 */
4485 if (state->stage == MESA_SHADER_FRAGMENT) {
4486 if (check_type->is_record() || check_type->is_matrix())
4487 _mesa_glsl_error(&loc, state,
4488 "fragment shader output "
4489 "cannot have struct or matrix type");
4490 switch (check_type->base_type) {
4491 case GLSL_TYPE_UINT:
4492 case GLSL_TYPE_INT:
4493 case GLSL_TYPE_FLOAT:
4494 break;
4495 default:
4496 _mesa_glsl_error(&loc, state,
4497 "fragment shader output cannot have "
4498 "type %s", check_type->name);
4499 }
4500 }
4501
4502 /* From section 4.3.6 (Output Variables) of the GLSL ES 3.10 spec:
4503 *
4504 * It is a compile-time error to declare a vertex shader output
4505 * with, or that contains, any of the following types:
4506 *
4507 * * A boolean type
4508 * * An opaque type
4509 * * An array of arrays
4510 * * An array of structures
4511 * * A structure containing an array
4512 * * A structure containing a structure
4513 *
4514 * It is a compile-time error to declare a fragment shader output
4515 * with, or that contains, any of the following types:
4516 *
4517 * * A boolean type
4518 * * An opaque type
4519 * * A matrix
4520 * * A structure
4521 * * An array of array
4522 */
4523 if (state->es_shader) {
4524 if (var->type->is_array() &&
4525 var->type->fields.array->is_array()) {
4526 _mesa_glsl_error(&loc, state,
4527 "%s shader output "
4528 "cannot have an array of arrays",
4529 _mesa_shader_stage_to_string(state->stage));
4530 }
4531 if (state->stage == MESA_SHADER_VERTEX) {
4532 if (var->type->is_array() &&
4533 var->type->fields.array->is_record()) {
4534 _mesa_glsl_error(&loc, state,
4535 "vertex shader output "
4536 "cannot have an array of structs");
4537 }
4538 if (var->type->is_record()) {
4539 for (unsigned i = 0; i < var->type->length; i++) {
4540 if (var->type->fields.structure[i].type->is_array() ||
4541 var->type->fields.structure[i].type->is_record())
4542 _mesa_glsl_error(&loc, state,
4543 "vertex shader output cannot have a "
4544 "struct that contains an "
4545 "array or struct");
4546 }
4547 }
4548 }
4549 }
4550
4551 if (state->stage == MESA_SHADER_TESS_CTRL) {
4552 handle_tess_ctrl_shader_output_decl(state, loc, var);
4553 }
4554 } else if (var->type->contains_subroutine()) {
4555 /* declare subroutine uniforms as hidden */
4556 var->data.how_declared = ir_var_hidden;
4557 }
4558
4559 /* Integer fragment inputs must be qualified with 'flat'. In GLSL ES,
4560 * so must integer vertex outputs.
4561 *
4562 * From section 4.3.4 ("Inputs") of the GLSL 1.50 spec:
4563 * "Fragment shader inputs that are signed or unsigned integers or
4564 * integer vectors must be qualified with the interpolation qualifier
4565 * flat."
4566 *
4567 * From section 4.3.4 ("Input Variables") of the GLSL 3.00 ES spec:
4568 * "Fragment shader inputs that are, or contain, signed or unsigned
4569 * integers or integer vectors must be qualified with the
4570 * interpolation qualifier flat."
4571 *
4572 * From section 4.3.6 ("Output Variables") of the GLSL 3.00 ES spec:
4573 * "Vertex shader outputs that are, or contain, signed or unsigned
4574 * integers or integer vectors must be qualified with the
4575 * interpolation qualifier flat."
4576 *
4577 * Note that prior to GLSL 1.50, this requirement applied to vertex
4578 * outputs rather than fragment inputs. That creates problems in the
4579 * presence of geometry shaders, so we adopt the GLSL 1.50 rule for all
4580 * desktop GL shaders. For GLSL ES shaders, we follow the spec and
4581 * apply the restriction to both vertex outputs and fragment inputs.
4582 *
4583 * Note also that the desktop GLSL specs are missing the text "or
4584 * contain"; this is presumably an oversight, since there is no
4585 * reasonable way to interpolate a fragment shader input that contains
4586 * an integer.
4587 */
4588 if (state->is_version(130, 300) &&
4589 var->type->contains_integer() &&
4590 var->data.interpolation != INTERP_QUALIFIER_FLAT &&
4591 ((state->stage == MESA_SHADER_FRAGMENT && var->data.mode == ir_var_shader_in)
4592 || (state->stage == MESA_SHADER_VERTEX && var->data.mode == ir_var_shader_out
4593 && state->es_shader))) {
4594 const char *var_type = (state->stage == MESA_SHADER_VERTEX) ?
4595 "vertex output" : "fragment input";
4596 _mesa_glsl_error(&loc, state, "if a %s is (or contains) "
4597 "an integer, then it must be qualified with 'flat'",
4598 var_type);
4599 }
4600
4601 /* Double fragment inputs must be qualified with 'flat'. */
4602 if (var->type->contains_double() &&
4603 var->data.interpolation != INTERP_QUALIFIER_FLAT &&
4604 state->stage == MESA_SHADER_FRAGMENT &&
4605 var->data.mode == ir_var_shader_in) {
4606 _mesa_glsl_error(&loc, state, "if a fragment input is (or contains) "
4607 "a double, then it must be qualified with 'flat'",
4608 var_type);
4609 }
4610
4611 /* Interpolation qualifiers cannot be applied to 'centroid' and
4612 * 'centroid varying'.
4613 *
4614 * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
4615 * "interpolation qualifiers may only precede the qualifiers in,
4616 * centroid in, out, or centroid out in a declaration. They do not apply
4617 * to the deprecated storage qualifiers varying or centroid varying."
4618 *
4619 * These deprecated storage qualifiers do not exist in GLSL ES 3.00.
4620 */
4621 if (state->is_version(130, 0)
4622 && this->type->qualifier.has_interpolation()
4623 && this->type->qualifier.flags.q.varying) {
4624
4625 const char *i = this->type->qualifier.interpolation_string();
4626 assert(i != NULL);
4627 const char *s;
4628 if (this->type->qualifier.flags.q.centroid)
4629 s = "centroid varying";
4630 else
4631 s = "varying";
4632
4633 _mesa_glsl_error(&loc, state,
4634 "qualifier '%s' cannot be applied to the "
4635 "deprecated storage qualifier '%s'", i, s);
4636 }
4637
4638
4639 /* Interpolation qualifiers can only apply to vertex shader outputs and
4640 * fragment shader inputs.
4641 *
4642 * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
4643 * "Outputs from a vertex shader (out) and inputs to a fragment
4644 * shader (in) can be further qualified with one or more of these
4645 * interpolation qualifiers"
4646 *
4647 * From page 31 (page 37 of the PDF) of the GLSL ES 3.00 spec:
4648 * "These interpolation qualifiers may only precede the qualifiers
4649 * in, centroid in, out, or centroid out in a declaration. They do
4650 * not apply to inputs into a vertex shader or outputs from a
4651 * fragment shader."
4652 */
4653 if (state->is_version(130, 300)
4654 && this->type->qualifier.has_interpolation()) {
4655
4656 const char *i = this->type->qualifier.interpolation_string();
4657 assert(i != NULL);
4658
4659 switch (state->stage) {
4660 case MESA_SHADER_VERTEX:
4661 if (this->type->qualifier.flags.q.in) {
4662 _mesa_glsl_error(&loc, state,
4663 "qualifier '%s' cannot be applied to vertex "
4664 "shader inputs", i);
4665 }
4666 break;
4667 case MESA_SHADER_FRAGMENT:
4668 if (this->type->qualifier.flags.q.out) {
4669 _mesa_glsl_error(&loc, state,
4670 "qualifier '%s' cannot be applied to fragment "
4671 "shader outputs", i);
4672 }
4673 break;
4674 default:
4675 break;
4676 }
4677 }
4678
4679
4680 /* From section 4.3.4 of the GLSL 4.00 spec:
4681 * "Input variables may not be declared using the patch in qualifier
4682 * in tessellation control or geometry shaders."
4683 *
4684 * From section 4.3.6 of the GLSL 4.00 spec:
4685 * "It is an error to use patch out in a vertex, tessellation
4686 * evaluation, or geometry shader."
4687 *
4688 * This doesn't explicitly forbid using them in a fragment shader, but
4689 * that's probably just an oversight.
4690 */
4691 if (state->stage != MESA_SHADER_TESS_EVAL
4692 && this->type->qualifier.flags.q.patch
4693 && this->type->qualifier.flags.q.in) {
4694
4695 _mesa_glsl_error(&loc, state, "'patch in' can only be used in a "
4696 "tessellation evaluation shader");
4697 }
4698
4699 if (state->stage != MESA_SHADER_TESS_CTRL
4700 && this->type->qualifier.flags.q.patch
4701 && this->type->qualifier.flags.q.out) {
4702
4703 _mesa_glsl_error(&loc, state, "'patch out' can only be used in a "
4704 "tessellation control shader");
4705 }
4706
4707 /* Precision qualifiers exists only in GLSL versions 1.00 and >= 1.30.
4708 */
4709 if (this->type->qualifier.precision != ast_precision_none) {
4710 state->check_precision_qualifiers_allowed(&loc);
4711 }
4712
4713
4714 /* If a precision qualifier is allowed on a type, it is allowed on
4715 * an array of that type.
4716 */
4717 if (!(this->type->qualifier.precision == ast_precision_none
4718 || precision_qualifier_allowed(var->type->without_array()))) {
4719
4720 _mesa_glsl_error(&loc, state,
4721 "precision qualifiers apply only to floating point"
4722 ", integer and opaque types");
4723 }
4724
4725 /* From section 4.1.7 of the GLSL 4.40 spec:
4726 *
4727 * "[Opaque types] can only be declared as function
4728 * parameters or uniform-qualified variables."
4729 */
4730 if (var_type->contains_opaque() &&
4731 !this->type->qualifier.flags.q.uniform) {
4732 _mesa_glsl_error(&loc, state,
4733 "opaque variables must be declared uniform");
4734 }
4735
4736 /* Process the initializer and add its instructions to a temporary
4737 * list. This list will be added to the instruction stream (below) after
4738 * the declaration is added. This is done because in some cases (such as
4739 * redeclarations) the declaration may not actually be added to the
4740 * instruction stream.
4741 */
4742 exec_list initializer_instructions;
4743
4744 /* Examine var name here since var may get deleted in the next call */
4745 bool var_is_gl_id = is_gl_identifier(var->name);
4746
4747 ir_variable *earlier =
4748 get_variable_being_redeclared(var, decl->get_location(), state,
4749 false /* allow_all_redeclarations */);
4750 if (earlier != NULL) {
4751 if (var_is_gl_id &&
4752 earlier->data.how_declared == ir_var_declared_in_block) {
4753 _mesa_glsl_error(&loc, state,
4754 "`%s' has already been redeclared using "
4755 "gl_PerVertex", earlier->name);
4756 }
4757 earlier->data.how_declared = ir_var_declared_normally;
4758 }
4759
4760 if (decl->initializer != NULL) {
4761 result = process_initializer((earlier == NULL) ? var : earlier,
4762 decl, this->type,
4763 &initializer_instructions, state);
4764 } else {
4765 validate_array_dimensions(var_type, state, &loc);
4766 }
4767
4768 /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
4769 *
4770 * "It is an error to write to a const variable outside of
4771 * its declaration, so they must be initialized when
4772 * declared."
4773 */
4774 if (this->type->qualifier.flags.q.constant && decl->initializer == NULL) {
4775 _mesa_glsl_error(& loc, state,
4776 "const declaration of `%s' must be initialized",
4777 decl->identifier);
4778 }
4779
4780 if (state->es_shader) {
4781 const glsl_type *const t = (earlier == NULL)
4782 ? var->type : earlier->type;
4783
4784 if (t->is_unsized_array())
4785 /* Section 10.17 of the GLSL ES 1.00 specification states that
4786 * unsized array declarations have been removed from the language.
4787 * Arrays that are sized using an initializer are still explicitly
4788 * sized. However, GLSL ES 1.00 does not allow array
4789 * initializers. That is only allowed in GLSL ES 3.00.
4790 *
4791 * Section 4.1.9 (Arrays) of the GLSL ES 3.00 spec says:
4792 *
4793 * "An array type can also be formed without specifying a size
4794 * if the definition includes an initializer:
4795 *
4796 * float x[] = float[2] (1.0, 2.0); // declares an array of size 2
4797 * float y[] = float[] (1.0, 2.0, 3.0); // declares an array of size 3
4798 *
4799 * float a[5];
4800 * float b[] = a;"
4801 */
4802 _mesa_glsl_error(& loc, state,
4803 "unsized array declarations are not allowed in "
4804 "GLSL ES");
4805 }
4806
4807 /* If the declaration is not a redeclaration, there are a few additional
4808 * semantic checks that must be applied. In addition, variable that was
4809 * created for the declaration should be added to the IR stream.
4810 */
4811 if (earlier == NULL) {
4812 validate_identifier(decl->identifier, loc, state);
4813
4814 /* Add the variable to the symbol table. Note that the initializer's
4815 * IR was already processed earlier (though it hasn't been emitted
4816 * yet), without the variable in scope.
4817 *
4818 * This differs from most C-like languages, but it follows the GLSL
4819 * specification. From page 28 (page 34 of the PDF) of the GLSL 1.50
4820 * spec:
4821 *
4822 * "Within a declaration, the scope of a name starts immediately
4823 * after the initializer if present or immediately after the name
4824 * being declared if not."
4825 */
4826 if (!state->symbols->add_variable(var)) {
4827 YYLTYPE loc = this->get_location();
4828 _mesa_glsl_error(&loc, state, "name `%s' already taken in the "
4829 "current scope", decl->identifier);
4830 continue;
4831 }
4832
4833 /* Push the variable declaration to the top. It means that all the
4834 * variable declarations will appear in a funny last-to-first order,
4835 * but otherwise we run into trouble if a function is prototyped, a
4836 * global var is decled, then the function is defined with usage of
4837 * the global var. See glslparsertest's CorrectModule.frag.
4838 */
4839 instructions->push_head(var);
4840 }
4841
4842 instructions->append_list(&initializer_instructions);
4843 }
4844
4845
4846 /* Generally, variable declarations do not have r-values. However,
4847 * one is used for the declaration in
4848 *
4849 * while (bool b = some_condition()) {
4850 * ...
4851 * }
4852 *
4853 * so we return the rvalue from the last seen declaration here.
4854 */
4855 return result;
4856 }
4857
4858
4859 ir_rvalue *
4860 ast_parameter_declarator::hir(exec_list *instructions,
4861 struct _mesa_glsl_parse_state *state)
4862 {
4863 void *ctx = state;
4864 const struct glsl_type *type;
4865 const char *name = NULL;
4866 YYLTYPE loc = this->get_location();
4867
4868 type = this->type->glsl_type(& name, state);
4869
4870 if (type == NULL) {
4871 if (name != NULL) {
4872 _mesa_glsl_error(& loc, state,
4873 "invalid type `%s' in declaration of `%s'",
4874 name, this->identifier);
4875 } else {
4876 _mesa_glsl_error(& loc, state,
4877 "invalid type in declaration of `%s'",
4878 this->identifier);
4879 }
4880
4881 type = glsl_type::error_type;
4882 }
4883
4884 /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
4885 *
4886 * "Functions that accept no input arguments need not use void in the
4887 * argument list because prototypes (or definitions) are required and
4888 * therefore there is no ambiguity when an empty argument list "( )" is
4889 * declared. The idiom "(void)" as a parameter list is provided for
4890 * convenience."
4891 *
4892 * Placing this check here prevents a void parameter being set up
4893 * for a function, which avoids tripping up checks for main taking
4894 * parameters and lookups of an unnamed symbol.
4895 */
4896 if (type->is_void()) {
4897 if (this->identifier != NULL)
4898 _mesa_glsl_error(& loc, state,
4899 "named parameter cannot have type `void'");
4900
4901 is_void = true;
4902 return NULL;
4903 }
4904
4905 if (formal_parameter && (this->identifier == NULL)) {
4906 _mesa_glsl_error(& loc, state, "formal parameter lacks a name");
4907 return NULL;
4908 }
4909
4910 /* This only handles "vec4 foo[..]". The earlier specifier->glsl_type(...)
4911 * call already handled the "vec4[..] foo" case.
4912 */
4913 type = process_array_type(&loc, type, this->array_specifier, state);
4914
4915 if (!type->is_error() && type->is_unsized_array()) {
4916 _mesa_glsl_error(&loc, state, "arrays passed as parameters must have "
4917 "a declared size");
4918 type = glsl_type::error_type;
4919 }
4920
4921 is_void = false;
4922 ir_variable *var = new(ctx)
4923 ir_variable(type, this->identifier, ir_var_function_in);
4924
4925 /* Apply any specified qualifiers to the parameter declaration. Note that
4926 * for function parameters the default mode is 'in'.
4927 */
4928 apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc,
4929 true);
4930
4931 /* From section 4.1.7 of the GLSL 4.40 spec:
4932 *
4933 * "Opaque variables cannot be treated as l-values; hence cannot
4934 * be used as out or inout function parameters, nor can they be
4935 * assigned into."
4936 */
4937 if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
4938 && type->contains_opaque()) {
4939 _mesa_glsl_error(&loc, state, "out and inout parameters cannot "
4940 "contain opaque variables");
4941 type = glsl_type::error_type;
4942 }
4943
4944 /* From page 39 (page 45 of the PDF) of the GLSL 1.10 spec:
4945 *
4946 * "When calling a function, expressions that do not evaluate to
4947 * l-values cannot be passed to parameters declared as out or inout."
4948 *
4949 * From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
4950 *
4951 * "Other binary or unary expressions, non-dereferenced arrays,
4952 * function names, swizzles with repeated fields, and constants
4953 * cannot be l-values."
4954 *
4955 * So for GLSL 1.10, passing an array as an out or inout parameter is not
4956 * allowed. This restriction is removed in GLSL 1.20, and in GLSL ES.
4957 */
4958 if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
4959 && type->is_array()
4960 && !state->check_version(120, 100, &loc,
4961 "arrays cannot be out or inout parameters")) {
4962 type = glsl_type::error_type;
4963 }
4964
4965 instructions->push_tail(var);
4966
4967 /* Parameter declarations do not have r-values.
4968 */
4969 return NULL;
4970 }
4971
4972
4973 void
4974 ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters,
4975 bool formal,
4976 exec_list *ir_parameters,
4977 _mesa_glsl_parse_state *state)
4978 {
4979 ast_parameter_declarator *void_param = NULL;
4980 unsigned count = 0;
4981
4982 foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) {
4983 param->formal_parameter = formal;
4984 param->hir(ir_parameters, state);
4985
4986 if (param->is_void)
4987 void_param = param;
4988
4989 count++;
4990 }
4991
4992 if ((void_param != NULL) && (count > 1)) {
4993 YYLTYPE loc = void_param->get_location();
4994
4995 _mesa_glsl_error(& loc, state,
4996 "`void' parameter must be only parameter");
4997 }
4998 }
4999
5000
5001 void
5002 emit_function(_mesa_glsl_parse_state *state, ir_function *f)
5003 {
5004 /* IR invariants disallow function declarations or definitions
5005 * nested within other function definitions. But there is no
5006 * requirement about the relative order of function declarations
5007 * and definitions with respect to one another. So simply insert
5008 * the new ir_function block at the end of the toplevel instruction
5009 * list.
5010 */
5011 state->toplevel_ir->push_tail(f);
5012 }
5013
5014
5015 ir_rvalue *
5016 ast_function::hir(exec_list *instructions,
5017 struct _mesa_glsl_parse_state *state)
5018 {
5019 void *ctx = state;
5020 ir_function *f = NULL;
5021 ir_function_signature *sig = NULL;
5022 exec_list hir_parameters;
5023 YYLTYPE loc = this->get_location();
5024
5025 const char *const name = identifier;
5026
5027 /* New functions are always added to the top-level IR instruction stream,
5028 * so this instruction list pointer is ignored. See also emit_function
5029 * (called below).
5030 */
5031 (void) instructions;
5032
5033 /* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec,
5034 *
5035 * "Function declarations (prototypes) cannot occur inside of functions;
5036 * they must be at global scope, or for the built-in functions, outside
5037 * the global scope."
5038 *
5039 * From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec,
5040 *
5041 * "User defined functions may only be defined within the global scope."
5042 *
5043 * Note that this language does not appear in GLSL 1.10.
5044 */
5045 if ((state->current_function != NULL) &&
5046 state->is_version(120, 100)) {
5047 YYLTYPE loc = this->get_location();
5048 _mesa_glsl_error(&loc, state,
5049 "declaration of function `%s' not allowed within "
5050 "function body", name);
5051 }
5052
5053 validate_identifier(name, this->get_location(), state);
5054
5055 /* Convert the list of function parameters to HIR now so that they can be
5056 * used below to compare this function's signature with previously seen
5057 * signatures for functions with the same name.
5058 */
5059 ast_parameter_declarator::parameters_to_hir(& this->parameters,
5060 is_definition,
5061 & hir_parameters, state);
5062
5063 const char *return_type_name;
5064 const glsl_type *return_type =
5065 this->return_type->glsl_type(& return_type_name, state);
5066
5067 if (!return_type) {
5068 YYLTYPE loc = this->get_location();
5069 _mesa_glsl_error(&loc, state,
5070 "function `%s' has undeclared return type `%s'",
5071 name, return_type_name);
5072 return_type = glsl_type::error_type;
5073 }
5074
5075 /* ARB_shader_subroutine states:
5076 * "Subroutine declarations cannot be prototyped. It is an error to prepend
5077 * subroutine(...) to a function declaration."
5078 */
5079 if (this->return_type->qualifier.flags.q.subroutine_def && !is_definition) {
5080 YYLTYPE loc = this->get_location();
5081 _mesa_glsl_error(&loc, state,
5082 "function declaration `%s' cannot have subroutine prepended",
5083 name);
5084 }
5085
5086 /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec:
5087 * "No qualifier is allowed on the return type of a function."
5088 */
5089 if (this->return_type->has_qualifiers(state)) {
5090 YYLTYPE loc = this->get_location();
5091 _mesa_glsl_error(& loc, state,
5092 "function `%s' return type has qualifiers", name);
5093 }
5094
5095 /* Section 6.1 (Function Definitions) of the GLSL 1.20 spec says:
5096 *
5097 * "Arrays are allowed as arguments and as the return type. In both
5098 * cases, the array must be explicitly sized."
5099 */
5100 if (return_type->is_unsized_array()) {
5101 YYLTYPE loc = this->get_location();
5102 _mesa_glsl_error(& loc, state,
5103 "function `%s' return type array must be explicitly "
5104 "sized", name);
5105 }
5106
5107 /* From section 4.1.7 of the GLSL 4.40 spec:
5108 *
5109 * "[Opaque types] can only be declared as function parameters
5110 * or uniform-qualified variables."
5111 */
5112 if (return_type->contains_opaque()) {
5113 YYLTYPE loc = this->get_location();
5114 _mesa_glsl_error(&loc, state,
5115 "function `%s' return type can't contain an opaque type",
5116 name);
5117 }
5118
5119 /* Create an ir_function if one doesn't already exist. */
5120 f = state->symbols->get_function(name);
5121 if (f == NULL) {
5122 f = new(ctx) ir_function(name);
5123 if (!this->return_type->qualifier.flags.q.subroutine) {
5124 if (!state->symbols->add_function(f)) {
5125 /* This function name shadows a non-function use of the same name. */
5126 YYLTYPE loc = this->get_location();
5127 _mesa_glsl_error(&loc, state, "function name `%s' conflicts with "
5128 "non-function", name);
5129 return NULL;
5130 }
5131 }
5132 emit_function(state, f);
5133 }
5134
5135 /* From GLSL ES 3.0 spec, chapter 6.1 "Function Definitions", page 71:
5136 *
5137 * "A shader cannot redefine or overload built-in functions."
5138 *
5139 * While in GLSL ES 1.0 specification, chapter 8 "Built-in Functions":
5140 *
5141 * "User code can overload the built-in functions but cannot redefine
5142 * them."
5143 */
5144 if (state->es_shader && state->language_version >= 300) {
5145 /* Local shader has no exact candidates; check the built-ins. */
5146 _mesa_glsl_initialize_builtin_functions();
5147 if (_mesa_glsl_find_builtin_function_by_name(name)) {
5148 YYLTYPE loc = this->get_location();
5149 _mesa_glsl_error(& loc, state,
5150 "A shader cannot redefine or overload built-in "
5151 "function `%s' in GLSL ES 3.00", name);
5152 return NULL;
5153 }
5154 }
5155
5156 /* Verify that this function's signature either doesn't match a previously
5157 * seen signature for a function with the same name, or, if a match is found,
5158 * that the previously seen signature does not have an associated definition.
5159 */
5160 if (state->es_shader || f->has_user_signature()) {
5161 sig = f->exact_matching_signature(state, &hir_parameters);
5162 if (sig != NULL) {
5163 const char *badvar = sig->qualifiers_match(&hir_parameters);
5164 if (badvar != NULL) {
5165 YYLTYPE loc = this->get_location();
5166
5167 _mesa_glsl_error(&loc, state, "function `%s' parameter `%s' "
5168 "qualifiers don't match prototype", name, badvar);
5169 }
5170
5171 if (sig->return_type != return_type) {
5172 YYLTYPE loc = this->get_location();
5173
5174 _mesa_glsl_error(&loc, state, "function `%s' return type doesn't "
5175 "match prototype", name);
5176 }
5177
5178 if (sig->is_defined) {
5179 if (is_definition) {
5180 YYLTYPE loc = this->get_location();
5181 _mesa_glsl_error(& loc, state, "function `%s' redefined", name);
5182 } else {
5183 /* We just encountered a prototype that exactly matches a
5184 * function that's already been defined. This is redundant,
5185 * and we should ignore it.
5186 */
5187 return NULL;
5188 }
5189 }
5190 }
5191 }
5192
5193 /* Verify the return type of main() */
5194 if (strcmp(name, "main") == 0) {
5195 if (! return_type->is_void()) {
5196 YYLTYPE loc = this->get_location();
5197
5198 _mesa_glsl_error(& loc, state, "main() must return void");
5199 }
5200
5201 if (!hir_parameters.is_empty()) {
5202 YYLTYPE loc = this->get_location();
5203
5204 _mesa_glsl_error(& loc, state, "main() must not take any parameters");
5205 }
5206 }
5207
5208 /* Finish storing the information about this new function in its signature.
5209 */
5210 if (sig == NULL) {
5211 sig = new(ctx) ir_function_signature(return_type);
5212 f->add_signature(sig);
5213 }
5214
5215 sig->replace_parameters(&hir_parameters);
5216 signature = sig;
5217
5218 if (this->return_type->qualifier.flags.q.subroutine_def) {
5219 int idx;
5220
5221 if (this->return_type->qualifier.flags.q.explicit_index) {
5222 unsigned qual_index;
5223 if (process_qualifier_constant(state, &loc, "index",
5224 this->return_type->qualifier.index,
5225 &qual_index)) {
5226 if (!state->has_explicit_uniform_location()) {
5227 _mesa_glsl_error(&loc, state, "subroutine index requires "
5228 "GL_ARB_explicit_uniform_location or "
5229 "GLSL 4.30");
5230 } else if (qual_index >= MAX_SUBROUTINES) {
5231 _mesa_glsl_error(&loc, state,
5232 "invalid subroutine index (%d) index must "
5233 "be a number between 0 and "
5234 "GL_MAX_SUBROUTINES - 1 (%d)", qual_index,
5235 MAX_SUBROUTINES - 1);
5236 } else {
5237 f->subroutine_index = qual_index;
5238 }
5239 }
5240 }
5241
5242 f->num_subroutine_types = this->return_type->qualifier.subroutine_list->declarations.length();
5243 f->subroutine_types = ralloc_array(state, const struct glsl_type *,
5244 f->num_subroutine_types);
5245 idx = 0;
5246 foreach_list_typed(ast_declaration, decl, link, &this->return_type->qualifier.subroutine_list->declarations) {
5247 const struct glsl_type *type;
5248 /* the subroutine type must be already declared */
5249 type = state->symbols->get_type(decl->identifier);
5250 if (!type) {
5251 _mesa_glsl_error(& loc, state, "unknown type '%s' in subroutine function definition", decl->identifier);
5252 }
5253 f->subroutine_types[idx++] = type;
5254 }
5255 state->subroutines = (ir_function **)reralloc(state, state->subroutines,
5256 ir_function *,
5257 state->num_subroutines + 1);
5258 state->subroutines[state->num_subroutines] = f;
5259 state->num_subroutines++;
5260
5261 }
5262
5263 if (this->return_type->qualifier.flags.q.subroutine) {
5264 if (!state->symbols->add_type(this->identifier, glsl_type::get_subroutine_instance(this->identifier))) {
5265 _mesa_glsl_error(& loc, state, "type '%s' previously defined", this->identifier);
5266 return NULL;
5267 }
5268 state->subroutine_types = (ir_function **)reralloc(state, state->subroutine_types,
5269 ir_function *,
5270 state->num_subroutine_types + 1);
5271 state->subroutine_types[state->num_subroutine_types] = f;
5272 state->num_subroutine_types++;
5273
5274 f->is_subroutine = true;
5275 }
5276
5277 /* Function declarations (prototypes) do not have r-values.
5278 */
5279 return NULL;
5280 }
5281
5282
5283 ir_rvalue *
5284 ast_function_definition::hir(exec_list *instructions,
5285 struct _mesa_glsl_parse_state *state)
5286 {
5287 prototype->is_definition = true;
5288 prototype->hir(instructions, state);
5289
5290 ir_function_signature *signature = prototype->signature;
5291 if (signature == NULL)
5292 return NULL;
5293
5294 assert(state->current_function == NULL);
5295 state->current_function = signature;
5296 state->found_return = false;
5297
5298 /* Duplicate parameters declared in the prototype as concrete variables.
5299 * Add these to the symbol table.
5300 */
5301 state->symbols->push_scope();
5302 foreach_in_list(ir_variable, var, &signature->parameters) {
5303 assert(var->as_variable() != NULL);
5304
5305 /* The only way a parameter would "exist" is if two parameters have
5306 * the same name.
5307 */
5308 if (state->symbols->name_declared_this_scope(var->name)) {
5309 YYLTYPE loc = this->get_location();
5310
5311 _mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name);
5312 } else {
5313 state->symbols->add_variable(var);
5314 }
5315 }
5316
5317 /* Convert the body of the function to HIR. */
5318 this->body->hir(&signature->body, state);
5319 signature->is_defined = true;
5320
5321 state->symbols->pop_scope();
5322
5323 assert(state->current_function == signature);
5324 state->current_function = NULL;
5325
5326 if (!signature->return_type->is_void() && !state->found_return) {
5327 YYLTYPE loc = this->get_location();
5328 _mesa_glsl_error(& loc, state, "function `%s' has non-void return type "
5329 "%s, but no return statement",
5330 signature->function_name(),
5331 signature->return_type->name);
5332 }
5333
5334 /* Function definitions do not have r-values.
5335 */
5336 return NULL;
5337 }
5338
5339
5340 ir_rvalue *
5341 ast_jump_statement::hir(exec_list *instructions,
5342 struct _mesa_glsl_parse_state *state)
5343 {
5344 void *ctx = state;
5345
5346 switch (mode) {
5347 case ast_return: {
5348 ir_return *inst;
5349 assert(state->current_function);
5350
5351 if (opt_return_value) {
5352 ir_rvalue *ret = opt_return_value->hir(instructions, state);
5353
5354 /* The value of the return type can be NULL if the shader says
5355 * 'return foo();' and foo() is a function that returns void.
5356 *
5357 * NOTE: The GLSL spec doesn't say that this is an error. The type
5358 * of the return value is void. If the return type of the function is
5359 * also void, then this should compile without error. Seriously.
5360 */
5361 const glsl_type *const ret_type =
5362 (ret == NULL) ? glsl_type::void_type : ret->type;
5363
5364 /* Implicit conversions are not allowed for return values prior to
5365 * ARB_shading_language_420pack.
5366 */
5367 if (state->current_function->return_type != ret_type) {
5368 YYLTYPE loc = this->get_location();
5369
5370 if (state->has_420pack()) {
5371 if (!apply_implicit_conversion(state->current_function->return_type,
5372 ret, state)) {
5373 _mesa_glsl_error(& loc, state,
5374 "could not implicitly convert return value "
5375 "to %s, in function `%s'",
5376 state->current_function->return_type->name,
5377 state->current_function->function_name());
5378 }
5379 } else {
5380 _mesa_glsl_error(& loc, state,
5381 "`return' with wrong type %s, in function `%s' "
5382 "returning %s",
5383 ret_type->name,
5384 state->current_function->function_name(),
5385 state->current_function->return_type->name);
5386 }
5387 } else if (state->current_function->return_type->base_type ==
5388 GLSL_TYPE_VOID) {
5389 YYLTYPE loc = this->get_location();
5390
5391 /* The ARB_shading_language_420pack, GLSL ES 3.0, and GLSL 4.20
5392 * specs add a clarification:
5393 *
5394 * "A void function can only use return without a return argument, even if
5395 * the return argument has void type. Return statements only accept values:
5396 *
5397 * void func1() { }
5398 * void func2() { return func1(); } // illegal return statement"
5399 */
5400 _mesa_glsl_error(& loc, state,
5401 "void functions can only use `return' without a "
5402 "return argument");
5403 }
5404
5405 inst = new(ctx) ir_return(ret);
5406 } else {
5407 if (state->current_function->return_type->base_type !=
5408 GLSL_TYPE_VOID) {
5409 YYLTYPE loc = this->get_location();
5410
5411 _mesa_glsl_error(& loc, state,
5412 "`return' with no value, in function %s returning "
5413 "non-void",
5414 state->current_function->function_name());
5415 }
5416 inst = new(ctx) ir_return;
5417 }
5418
5419 state->found_return = true;
5420 instructions->push_tail(inst);
5421 break;
5422 }
5423
5424 case ast_discard:
5425 if (state->stage != MESA_SHADER_FRAGMENT) {
5426 YYLTYPE loc = this->get_location();
5427
5428 _mesa_glsl_error(& loc, state,
5429 "`discard' may only appear in a fragment shader");
5430 }
5431 instructions->push_tail(new(ctx) ir_discard);
5432 break;
5433
5434 case ast_break:
5435 case ast_continue:
5436 if (mode == ast_continue &&
5437 state->loop_nesting_ast == NULL) {
5438 YYLTYPE loc = this->get_location();
5439
5440 _mesa_glsl_error(& loc, state, "continue may only appear in a loop");
5441 } else if (mode == ast_break &&
5442 state->loop_nesting_ast == NULL &&
5443 state->switch_state.switch_nesting_ast == NULL) {
5444 YYLTYPE loc = this->get_location();
5445
5446 _mesa_glsl_error(& loc, state,
5447 "break may only appear in a loop or a switch");
5448 } else {
5449 /* For a loop, inline the for loop expression again, since we don't
5450 * know where near the end of the loop body the normal copy of it is
5451 * going to be placed. Same goes for the condition for a do-while
5452 * loop.
5453 */
5454 if (state->loop_nesting_ast != NULL &&
5455 mode == ast_continue && !state->switch_state.is_switch_innermost) {
5456 if (state->loop_nesting_ast->rest_expression) {
5457 state->loop_nesting_ast->rest_expression->hir(instructions,
5458 state);
5459 }
5460 if (state->loop_nesting_ast->mode ==
5461 ast_iteration_statement::ast_do_while) {
5462 state->loop_nesting_ast->condition_to_hir(instructions, state);
5463 }
5464 }
5465
5466 if (state->switch_state.is_switch_innermost &&
5467 mode == ast_continue) {
5468 /* Set 'continue_inside' to true. */
5469 ir_rvalue *const true_val = new (ctx) ir_constant(true);
5470 ir_dereference_variable *deref_continue_inside_var =
5471 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
5472 instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
5473 true_val));
5474
5475 /* Break out from the switch, continue for the loop will
5476 * be called right after switch. */
5477 ir_loop_jump *const jump =
5478 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
5479 instructions->push_tail(jump);
5480
5481 } else if (state->switch_state.is_switch_innermost &&
5482 mode == ast_break) {
5483 /* Force break out of switch by inserting a break. */
5484 ir_loop_jump *const jump =
5485 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
5486 instructions->push_tail(jump);
5487 } else {
5488 ir_loop_jump *const jump =
5489 new(ctx) ir_loop_jump((mode == ast_break)
5490 ? ir_loop_jump::jump_break
5491 : ir_loop_jump::jump_continue);
5492 instructions->push_tail(jump);
5493 }
5494 }
5495
5496 break;
5497 }
5498
5499 /* Jump instructions do not have r-values.
5500 */
5501 return NULL;
5502 }
5503
5504
5505 ir_rvalue *
5506 ast_selection_statement::hir(exec_list *instructions,
5507 struct _mesa_glsl_parse_state *state)
5508 {
5509 void *ctx = state;
5510
5511 ir_rvalue *const condition = this->condition->hir(instructions, state);
5512
5513 /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
5514 *
5515 * "Any expression whose type evaluates to a Boolean can be used as the
5516 * conditional expression bool-expression. Vector types are not accepted
5517 * as the expression to if."
5518 *
5519 * The checks are separated so that higher quality diagnostics can be
5520 * generated for cases where both rules are violated.
5521 */
5522 if (!condition->type->is_boolean() || !condition->type->is_scalar()) {
5523 YYLTYPE loc = this->condition->get_location();
5524
5525 _mesa_glsl_error(& loc, state, "if-statement condition must be scalar "
5526 "boolean");
5527 }
5528
5529 ir_if *const stmt = new(ctx) ir_if(condition);
5530
5531 if (then_statement != NULL) {
5532 state->symbols->push_scope();
5533 then_statement->hir(& stmt->then_instructions, state);
5534 state->symbols->pop_scope();
5535 }
5536
5537 if (else_statement != NULL) {
5538 state->symbols->push_scope();
5539 else_statement->hir(& stmt->else_instructions, state);
5540 state->symbols->pop_scope();
5541 }
5542
5543 instructions->push_tail(stmt);
5544
5545 /* if-statements do not have r-values.
5546 */
5547 return NULL;
5548 }
5549
5550
5551 ir_rvalue *
5552 ast_switch_statement::hir(exec_list *instructions,
5553 struct _mesa_glsl_parse_state *state)
5554 {
5555 void *ctx = state;
5556
5557 ir_rvalue *const test_expression =
5558 this->test_expression->hir(instructions, state);
5559
5560 /* From page 66 (page 55 of the PDF) of the GLSL 1.50 spec:
5561 *
5562 * "The type of init-expression in a switch statement must be a
5563 * scalar integer."
5564 */
5565 if (!test_expression->type->is_scalar() ||
5566 !test_expression->type->is_integer()) {
5567 YYLTYPE loc = this->test_expression->get_location();
5568
5569 _mesa_glsl_error(& loc,
5570 state,
5571 "switch-statement expression must be scalar "
5572 "integer");
5573 }
5574
5575 /* Track the switch-statement nesting in a stack-like manner.
5576 */
5577 struct glsl_switch_state saved = state->switch_state;
5578
5579 state->switch_state.is_switch_innermost = true;
5580 state->switch_state.switch_nesting_ast = this;
5581 state->switch_state.labels_ht = hash_table_ctor(0, hash_table_pointer_hash,
5582 hash_table_pointer_compare);
5583 state->switch_state.previous_default = NULL;
5584
5585 /* Initalize is_fallthru state to false.
5586 */
5587 ir_rvalue *const is_fallthru_val = new (ctx) ir_constant(false);
5588 state->switch_state.is_fallthru_var =
5589 new(ctx) ir_variable(glsl_type::bool_type,
5590 "switch_is_fallthru_tmp",
5591 ir_var_temporary);
5592 instructions->push_tail(state->switch_state.is_fallthru_var);
5593
5594 ir_dereference_variable *deref_is_fallthru_var =
5595 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
5596 instructions->push_tail(new(ctx) ir_assignment(deref_is_fallthru_var,
5597 is_fallthru_val));
5598
5599 /* Initialize continue_inside state to false.
5600 */
5601 state->switch_state.continue_inside =
5602 new(ctx) ir_variable(glsl_type::bool_type,
5603 "continue_inside_tmp",
5604 ir_var_temporary);
5605 instructions->push_tail(state->switch_state.continue_inside);
5606
5607 ir_rvalue *const false_val = new (ctx) ir_constant(false);
5608 ir_dereference_variable *deref_continue_inside_var =
5609 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
5610 instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
5611 false_val));
5612
5613 state->switch_state.run_default =
5614 new(ctx) ir_variable(glsl_type::bool_type,
5615 "run_default_tmp",
5616 ir_var_temporary);
5617 instructions->push_tail(state->switch_state.run_default);
5618
5619 /* Loop around the switch is used for flow control. */
5620 ir_loop * loop = new(ctx) ir_loop();
5621 instructions->push_tail(loop);
5622
5623 /* Cache test expression.
5624 */
5625 test_to_hir(&loop->body_instructions, state);
5626
5627 /* Emit code for body of switch stmt.
5628 */
5629 body->hir(&loop->body_instructions, state);
5630
5631 /* Insert a break at the end to exit loop. */
5632 ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
5633 loop->body_instructions.push_tail(jump);
5634
5635 /* If we are inside loop, check if continue got called inside switch. */
5636 if (state->loop_nesting_ast != NULL) {
5637 ir_dereference_variable *deref_continue_inside =
5638 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
5639 ir_if *irif = new(ctx) ir_if(deref_continue_inside);
5640 ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_continue);
5641
5642 if (state->loop_nesting_ast != NULL) {
5643 if (state->loop_nesting_ast->rest_expression) {
5644 state->loop_nesting_ast->rest_expression->hir(&irif->then_instructions,
5645 state);
5646 }
5647 if (state->loop_nesting_ast->mode ==
5648 ast_iteration_statement::ast_do_while) {
5649 state->loop_nesting_ast->condition_to_hir(&irif->then_instructions, state);
5650 }
5651 }
5652 irif->then_instructions.push_tail(jump);
5653 instructions->push_tail(irif);
5654 }
5655
5656 hash_table_dtor(state->switch_state.labels_ht);
5657
5658 state->switch_state = saved;
5659
5660 /* Switch statements do not have r-values. */
5661 return NULL;
5662 }
5663
5664
5665 void
5666 ast_switch_statement::test_to_hir(exec_list *instructions,
5667 struct _mesa_glsl_parse_state *state)
5668 {
5669 void *ctx = state;
5670
5671 /* Cache value of test expression. */
5672 ir_rvalue *const test_val =
5673 test_expression->hir(instructions,
5674 state);
5675
5676 state->switch_state.test_var = new(ctx) ir_variable(test_val->type,
5677 "switch_test_tmp",
5678 ir_var_temporary);
5679 ir_dereference_variable *deref_test_var =
5680 new(ctx) ir_dereference_variable(state->switch_state.test_var);
5681
5682 instructions->push_tail(state->switch_state.test_var);
5683 instructions->push_tail(new(ctx) ir_assignment(deref_test_var, test_val));
5684 }
5685
5686
5687 ir_rvalue *
5688 ast_switch_body::hir(exec_list *instructions,
5689 struct _mesa_glsl_parse_state *state)
5690 {
5691 if (stmts != NULL)
5692 stmts->hir(instructions, state);
5693
5694 /* Switch bodies do not have r-values. */
5695 return NULL;
5696 }
5697
5698 ir_rvalue *
5699 ast_case_statement_list::hir(exec_list *instructions,
5700 struct _mesa_glsl_parse_state *state)
5701 {
5702 exec_list default_case, after_default, tmp;
5703
5704 foreach_list_typed (ast_case_statement, case_stmt, link, & this->cases) {
5705 case_stmt->hir(&tmp, state);
5706
5707 /* Default case. */
5708 if (state->switch_state.previous_default && default_case.is_empty()) {
5709 default_case.append_list(&tmp);
5710 continue;
5711 }
5712
5713 /* If default case found, append 'after_default' list. */
5714 if (!default_case.is_empty())
5715 after_default.append_list(&tmp);
5716 else
5717 instructions->append_list(&tmp);
5718 }
5719
5720 /* Handle the default case. This is done here because default might not be
5721 * the last case. We need to add checks against following cases first to see
5722 * if default should be chosen or not.
5723 */
5724 if (!default_case.is_empty()) {
5725
5726 ir_rvalue *const true_val = new (state) ir_constant(true);
5727 ir_dereference_variable *deref_run_default_var =
5728 new(state) ir_dereference_variable(state->switch_state.run_default);
5729
5730 /* Choose to run default case initially, following conditional
5731 * assignments might change this.
5732 */
5733 ir_assignment *const init_var =
5734 new(state) ir_assignment(deref_run_default_var, true_val);
5735 instructions->push_tail(init_var);
5736
5737 /* Default case was the last one, no checks required. */
5738 if (after_default.is_empty()) {
5739 instructions->append_list(&default_case);
5740 return NULL;
5741 }
5742
5743 foreach_in_list(ir_instruction, ir, &after_default) {
5744 ir_assignment *assign = ir->as_assignment();
5745
5746 if (!assign)
5747 continue;
5748
5749 /* Clone the check between case label and init expression. */
5750 ir_expression *exp = (ir_expression*) assign->condition;
5751 ir_expression *clone = exp->clone(state, NULL);
5752
5753 ir_dereference_variable *deref_var =
5754 new(state) ir_dereference_variable(state->switch_state.run_default);
5755 ir_rvalue *const false_val = new (state) ir_constant(false);
5756
5757 ir_assignment *const set_false =
5758 new(state) ir_assignment(deref_var, false_val, clone);
5759
5760 instructions->push_tail(set_false);
5761 }
5762
5763 /* Append default case and all cases after it. */
5764 instructions->append_list(&default_case);
5765 instructions->append_list(&after_default);
5766 }
5767
5768 /* Case statements do not have r-values. */
5769 return NULL;
5770 }
5771
5772 ir_rvalue *
5773 ast_case_statement::hir(exec_list *instructions,
5774 struct _mesa_glsl_parse_state *state)
5775 {
5776 labels->hir(instructions, state);
5777
5778 /* Guard case statements depending on fallthru state. */
5779 ir_dereference_variable *const deref_fallthru_guard =
5780 new(state) ir_dereference_variable(state->switch_state.is_fallthru_var);
5781 ir_if *const test_fallthru = new(state) ir_if(deref_fallthru_guard);
5782
5783 foreach_list_typed (ast_node, stmt, link, & this->stmts)
5784 stmt->hir(& test_fallthru->then_instructions, state);
5785
5786 instructions->push_tail(test_fallthru);
5787
5788 /* Case statements do not have r-values. */
5789 return NULL;
5790 }
5791
5792
5793 ir_rvalue *
5794 ast_case_label_list::hir(exec_list *instructions,
5795 struct _mesa_glsl_parse_state *state)
5796 {
5797 foreach_list_typed (ast_case_label, label, link, & this->labels)
5798 label->hir(instructions, state);
5799
5800 /* Case labels do not have r-values. */
5801 return NULL;
5802 }
5803
5804 ir_rvalue *
5805 ast_case_label::hir(exec_list *instructions,
5806 struct _mesa_glsl_parse_state *state)
5807 {
5808 void *ctx = state;
5809
5810 ir_dereference_variable *deref_fallthru_var =
5811 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
5812
5813 ir_rvalue *const true_val = new(ctx) ir_constant(true);
5814
5815 /* If not default case, ... */
5816 if (this->test_value != NULL) {
5817 /* Conditionally set fallthru state based on
5818 * comparison of cached test expression value to case label.
5819 */
5820 ir_rvalue *const label_rval = this->test_value->hir(instructions, state);
5821 ir_constant *label_const = label_rval->constant_expression_value();
5822
5823 if (!label_const) {
5824 YYLTYPE loc = this->test_value->get_location();
5825
5826 _mesa_glsl_error(& loc, state,
5827 "switch statement case label must be a "
5828 "constant expression");
5829
5830 /* Stuff a dummy value in to allow processing to continue. */
5831 label_const = new(ctx) ir_constant(0);
5832 } else {
5833 ast_expression *previous_label = (ast_expression *)
5834 hash_table_find(state->switch_state.labels_ht,
5835 (void *)(uintptr_t)label_const->value.u[0]);
5836
5837 if (previous_label) {
5838 YYLTYPE loc = this->test_value->get_location();
5839 _mesa_glsl_error(& loc, state, "duplicate case value");
5840
5841 loc = previous_label->get_location();
5842 _mesa_glsl_error(& loc, state, "this is the previous case label");
5843 } else {
5844 hash_table_insert(state->switch_state.labels_ht,
5845 this->test_value,
5846 (void *)(uintptr_t)label_const->value.u[0]);
5847 }
5848 }
5849
5850 ir_dereference_variable *deref_test_var =
5851 new(ctx) ir_dereference_variable(state->switch_state.test_var);
5852
5853 ir_expression *test_cond = new(ctx) ir_expression(ir_binop_all_equal,
5854 label_const,
5855 deref_test_var);
5856
5857 /*
5858 * From GLSL 4.40 specification section 6.2 ("Selection"):
5859 *
5860 * "The type of the init-expression value in a switch statement must
5861 * be a scalar int or uint. The type of the constant-expression value
5862 * in a case label also must be a scalar int or uint. When any pair
5863 * of these values is tested for "equal value" and the types do not
5864 * match, an implicit conversion will be done to convert the int to a
5865 * uint (see section 4.1.10 “Implicit Conversions”) before the compare
5866 * is done."
5867 */
5868 if (label_const->type != state->switch_state.test_var->type) {
5869 YYLTYPE loc = this->test_value->get_location();
5870
5871 const glsl_type *type_a = label_const->type;
5872 const glsl_type *type_b = state->switch_state.test_var->type;
5873
5874 /* Check if int->uint implicit conversion is supported. */
5875 bool integer_conversion_supported =
5876 glsl_type::int_type->can_implicitly_convert_to(glsl_type::uint_type,
5877 state);
5878
5879 if ((!type_a->is_integer() || !type_b->is_integer()) ||
5880 !integer_conversion_supported) {
5881 _mesa_glsl_error(&loc, state, "type mismatch with switch "
5882 "init-expression and case label (%s != %s)",
5883 type_a->name, type_b->name);
5884 } else {
5885 /* Conversion of the case label. */
5886 if (type_a->base_type == GLSL_TYPE_INT) {
5887 if (!apply_implicit_conversion(glsl_type::uint_type,
5888 test_cond->operands[0], state))
5889 _mesa_glsl_error(&loc, state, "implicit type conversion error");
5890 } else {
5891 /* Conversion of the init-expression value. */
5892 if (!apply_implicit_conversion(glsl_type::uint_type,
5893 test_cond->operands[1], state))
5894 _mesa_glsl_error(&loc, state, "implicit type conversion error");
5895 }
5896 }
5897 }
5898
5899 ir_assignment *set_fallthru_on_test =
5900 new(ctx) ir_assignment(deref_fallthru_var, true_val, test_cond);
5901
5902 instructions->push_tail(set_fallthru_on_test);
5903 } else { /* default case */
5904 if (state->switch_state.previous_default) {
5905 YYLTYPE loc = this->get_location();
5906 _mesa_glsl_error(& loc, state,
5907 "multiple default labels in one switch");
5908
5909 loc = state->switch_state.previous_default->get_location();
5910 _mesa_glsl_error(& loc, state, "this is the first default label");
5911 }
5912 state->switch_state.previous_default = this;
5913
5914 /* Set fallthru condition on 'run_default' bool. */
5915 ir_dereference_variable *deref_run_default =
5916 new(ctx) ir_dereference_variable(state->switch_state.run_default);
5917 ir_rvalue *const cond_true = new(ctx) ir_constant(true);
5918 ir_expression *test_cond = new(ctx) ir_expression(ir_binop_all_equal,
5919 cond_true,
5920 deref_run_default);
5921
5922 /* Set falltrhu state. */
5923 ir_assignment *set_fallthru =
5924 new(ctx) ir_assignment(deref_fallthru_var, true_val, test_cond);
5925
5926 instructions->push_tail(set_fallthru);
5927 }
5928
5929 /* Case statements do not have r-values. */
5930 return NULL;
5931 }
5932
5933 void
5934 ast_iteration_statement::condition_to_hir(exec_list *instructions,
5935 struct _mesa_glsl_parse_state *state)
5936 {
5937 void *ctx = state;
5938
5939 if (condition != NULL) {
5940 ir_rvalue *const cond =
5941 condition->hir(instructions, state);
5942
5943 if ((cond == NULL)
5944 || !cond->type->is_boolean() || !cond->type->is_scalar()) {
5945 YYLTYPE loc = condition->get_location();
5946
5947 _mesa_glsl_error(& loc, state,
5948 "loop condition must be scalar boolean");
5949 } else {
5950 /* As the first code in the loop body, generate a block that looks
5951 * like 'if (!condition) break;' as the loop termination condition.
5952 */
5953 ir_rvalue *const not_cond =
5954 new(ctx) ir_expression(ir_unop_logic_not, cond);
5955
5956 ir_if *const if_stmt = new(ctx) ir_if(not_cond);
5957
5958 ir_jump *const break_stmt =
5959 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
5960
5961 if_stmt->then_instructions.push_tail(break_stmt);
5962 instructions->push_tail(if_stmt);
5963 }
5964 }
5965 }
5966
5967
5968 ir_rvalue *
5969 ast_iteration_statement::hir(exec_list *instructions,
5970 struct _mesa_glsl_parse_state *state)
5971 {
5972 void *ctx = state;
5973
5974 /* For-loops and while-loops start a new scope, but do-while loops do not.
5975 */
5976 if (mode != ast_do_while)
5977 state->symbols->push_scope();
5978
5979 if (init_statement != NULL)
5980 init_statement->hir(instructions, state);
5981
5982 ir_loop *const stmt = new(ctx) ir_loop();
5983 instructions->push_tail(stmt);
5984
5985 /* Track the current loop nesting. */
5986 ast_iteration_statement *nesting_ast = state->loop_nesting_ast;
5987
5988 state->loop_nesting_ast = this;
5989
5990 /* Likewise, indicate that following code is closest to a loop,
5991 * NOT closest to a switch.
5992 */
5993 bool saved_is_switch_innermost = state->switch_state.is_switch_innermost;
5994 state->switch_state.is_switch_innermost = false;
5995
5996 if (mode != ast_do_while)
5997 condition_to_hir(&stmt->body_instructions, state);
5998
5999 if (body != NULL)
6000 body->hir(& stmt->body_instructions, state);
6001
6002 if (rest_expression != NULL)
6003 rest_expression->hir(& stmt->body_instructions, state);
6004
6005 if (mode == ast_do_while)
6006 condition_to_hir(&stmt->body_instructions, state);
6007
6008 if (mode != ast_do_while)
6009 state->symbols->pop_scope();
6010
6011 /* Restore previous nesting before returning. */
6012 state->loop_nesting_ast = nesting_ast;
6013 state->switch_state.is_switch_innermost = saved_is_switch_innermost;
6014
6015 /* Loops do not have r-values.
6016 */
6017 return NULL;
6018 }
6019
6020
6021 /**
6022 * Determine if the given type is valid for establishing a default precision
6023 * qualifier.
6024 *
6025 * From GLSL ES 3.00 section 4.5.4 ("Default Precision Qualifiers"):
6026 *
6027 * "The precision statement
6028 *
6029 * precision precision-qualifier type;
6030 *
6031 * can be used to establish a default precision qualifier. The type field
6032 * can be either int or float or any of the sampler types, and the
6033 * precision-qualifier can be lowp, mediump, or highp."
6034 *
6035 * GLSL ES 1.00 has similar language. GLSL 1.30 doesn't allow precision
6036 * qualifiers on sampler types, but this seems like an oversight (since the
6037 * intention of including these in GLSL 1.30 is to allow compatibility with ES
6038 * shaders). So we allow int, float, and all sampler types regardless of GLSL
6039 * version.
6040 */
6041 static bool
6042 is_valid_default_precision_type(const struct glsl_type *const type)
6043 {
6044 if (type == NULL)
6045 return false;
6046
6047 switch (type->base_type) {
6048 case GLSL_TYPE_INT:
6049 case GLSL_TYPE_FLOAT:
6050 /* "int" and "float" are valid, but vectors and matrices are not. */
6051 return type->vector_elements == 1 && type->matrix_columns == 1;
6052 case GLSL_TYPE_SAMPLER:
6053 case GLSL_TYPE_IMAGE:
6054 case GLSL_TYPE_ATOMIC_UINT:
6055 return true;
6056 default:
6057 return false;
6058 }
6059 }
6060
6061
6062 ir_rvalue *
6063 ast_type_specifier::hir(exec_list *instructions,
6064 struct _mesa_glsl_parse_state *state)
6065 {
6066 if (this->default_precision == ast_precision_none && this->structure == NULL)
6067 return NULL;
6068
6069 YYLTYPE loc = this->get_location();
6070
6071 /* If this is a precision statement, check that the type to which it is
6072 * applied is either float or int.
6073 *
6074 * From section 4.5.3 of the GLSL 1.30 spec:
6075 * "The precision statement
6076 * precision precision-qualifier type;
6077 * can be used to establish a default precision qualifier. The type
6078 * field can be either int or float [...]. Any other types or
6079 * qualifiers will result in an error.
6080 */
6081 if (this->default_precision != ast_precision_none) {
6082 if (!state->check_precision_qualifiers_allowed(&loc))
6083 return NULL;
6084
6085 if (this->structure != NULL) {
6086 _mesa_glsl_error(&loc, state,
6087 "precision qualifiers do not apply to structures");
6088 return NULL;
6089 }
6090
6091 if (this->array_specifier != NULL) {
6092 _mesa_glsl_error(&loc, state,
6093 "default precision statements do not apply to "
6094 "arrays");
6095 return NULL;
6096 }
6097
6098 const struct glsl_type *const type =
6099 state->symbols->get_type(this->type_name);
6100 if (!is_valid_default_precision_type(type)) {
6101 _mesa_glsl_error(&loc, state,
6102 "default precision statements apply only to "
6103 "float, int, and opaque types");
6104 return NULL;
6105 }
6106
6107 if (state->es_shader) {
6108 /* Section 4.5.3 (Default Precision Qualifiers) of the GLSL ES 1.00
6109 * spec says:
6110 *
6111 * "Non-precision qualified declarations will use the precision
6112 * qualifier specified in the most recent precision statement
6113 * that is still in scope. The precision statement has the same
6114 * scoping rules as variable declarations. If it is declared
6115 * inside a compound statement, its effect stops at the end of
6116 * the innermost statement it was declared in. Precision
6117 * statements in nested scopes override precision statements in
6118 * outer scopes. Multiple precision statements for the same basic
6119 * type can appear inside the same scope, with later statements
6120 * overriding earlier statements within that scope."
6121 *
6122 * Default precision specifications follow the same scope rules as
6123 * variables. So, we can track the state of the default precision
6124 * qualifiers in the symbol table, and the rules will just work. This
6125 * is a slight abuse of the symbol table, but it has the semantics
6126 * that we want.
6127 */
6128 state->symbols->add_default_precision_qualifier(this->type_name,
6129 this->default_precision);
6130 }
6131
6132 /* FINISHME: Translate precision statements into IR. */
6133 return NULL;
6134 }
6135
6136 /* _mesa_ast_set_aggregate_type() sets the <structure> field so that
6137 * process_record_constructor() can do type-checking on C-style initializer
6138 * expressions of structs, but ast_struct_specifier should only be translated
6139 * to HIR if it is declaring the type of a structure.
6140 *
6141 * The ->is_declaration field is false for initializers of variables
6142 * declared separately from the struct's type definition.
6143 *
6144 * struct S { ... }; (is_declaration = true)
6145 * struct T { ... } t = { ... }; (is_declaration = true)
6146 * S s = { ... }; (is_declaration = false)
6147 */
6148 if (this->structure != NULL && this->structure->is_declaration)
6149 return this->structure->hir(instructions, state);
6150
6151 return NULL;
6152 }
6153
6154
6155 /**
6156 * Process a structure or interface block tree into an array of structure fields
6157 *
6158 * After parsing, where there are some syntax differnces, structures and
6159 * interface blocks are almost identical. They are similar enough that the
6160 * AST for each can be processed the same way into a set of
6161 * \c glsl_struct_field to describe the members.
6162 *
6163 * If we're processing an interface block, var_mode should be the type of the
6164 * interface block (ir_var_shader_in, ir_var_shader_out, ir_var_uniform or
6165 * ir_var_shader_storage). If we're processing a structure, var_mode should be
6166 * ir_var_auto.
6167 *
6168 * \return
6169 * The number of fields processed. A pointer to the array structure fields is
6170 * stored in \c *fields_ret.
6171 */
6172 unsigned
6173 ast_process_struct_or_iface_block_members(exec_list *instructions,
6174 struct _mesa_glsl_parse_state *state,
6175 exec_list *declarations,
6176 glsl_struct_field **fields_ret,
6177 bool is_interface,
6178 enum glsl_matrix_layout matrix_layout,
6179 bool allow_reserved_names,
6180 ir_variable_mode var_mode,
6181 ast_type_qualifier *layout,
6182 unsigned block_stream,
6183 unsigned expl_location)
6184 {
6185 unsigned decl_count = 0;
6186
6187 /* Make an initial pass over the list of fields to determine how
6188 * many there are. Each element in this list is an ast_declarator_list.
6189 * This means that we actually need to count the number of elements in the
6190 * 'declarations' list in each of the elements.
6191 */
6192 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
6193 decl_count += decl_list->declarations.length();
6194 }
6195
6196 /* Allocate storage for the fields and process the field
6197 * declarations. As the declarations are processed, try to also convert
6198 * the types to HIR. This ensures that structure definitions embedded in
6199 * other structure definitions or in interface blocks are processed.
6200 */
6201 glsl_struct_field *const fields = ralloc_array(state, glsl_struct_field,
6202 decl_count);
6203
6204 bool first_member = true;
6205 bool first_member_has_explicit_location;
6206
6207 unsigned i = 0;
6208 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
6209 const char *type_name;
6210 YYLTYPE loc = decl_list->get_location();
6211
6212 decl_list->type->specifier->hir(instructions, state);
6213
6214 /* Section 10.9 of the GLSL ES 1.00 specification states that
6215 * embedded structure definitions have been removed from the language.
6216 */
6217 if (state->es_shader && decl_list->type->specifier->structure != NULL) {
6218 _mesa_glsl_error(&loc, state, "embedded structure definitions are "
6219 "not allowed in GLSL ES 1.00");
6220 }
6221
6222 const glsl_type *decl_type =
6223 decl_list->type->glsl_type(& type_name, state);
6224
6225 const struct ast_type_qualifier *const qual =
6226 &decl_list->type->qualifier;
6227
6228 /* From section 4.3.9 of the GLSL 4.40 spec:
6229 *
6230 * "[In interface blocks] opaque types are not allowed."
6231 *
6232 * It should be impossible for decl_type to be NULL here. Cases that
6233 * might naturally lead to decl_type being NULL, especially for the
6234 * is_interface case, will have resulted in compilation having
6235 * already halted due to a syntax error.
6236 */
6237 assert(decl_type);
6238
6239 if (is_interface && decl_type->contains_opaque()) {
6240 _mesa_glsl_error(&loc, state,
6241 "uniform/buffer in non-default interface block contains "
6242 "opaque variable");
6243 }
6244
6245 if (decl_type->contains_atomic()) {
6246 /* From section 4.1.7.3 of the GLSL 4.40 spec:
6247 *
6248 * "Members of structures cannot be declared as atomic counter
6249 * types."
6250 */
6251 _mesa_glsl_error(&loc, state, "atomic counter in structure, "
6252 "shader storage block or uniform block");
6253 }
6254
6255 if (decl_type->contains_image()) {
6256 /* FINISHME: Same problem as with atomic counters.
6257 * FINISHME: Request clarification from Khronos and add
6258 * FINISHME: spec quotation here.
6259 */
6260 _mesa_glsl_error(&loc, state,
6261 "image in structure, shader storage block or "
6262 "uniform block");
6263 }
6264
6265 if (qual->flags.q.explicit_binding) {
6266 _mesa_glsl_error(&loc, state,
6267 "binding layout qualifier cannot be applied "
6268 "to struct or interface block members");
6269 }
6270
6271 if (is_interface) {
6272 if (!first_member) {
6273 if (!layout->flags.q.explicit_location &&
6274 ((first_member_has_explicit_location &&
6275 !qual->flags.q.explicit_location) ||
6276 (!first_member_has_explicit_location &&
6277 qual->flags.q.explicit_location))) {
6278 _mesa_glsl_error(&loc, state,
6279 "when block-level location layout qualifier "
6280 "is not supplied either all members must "
6281 "have a location layout qualifier or all "
6282 "members must not have a location layout "
6283 "qualifier");
6284 }
6285 } else {
6286 first_member = false;
6287 first_member_has_explicit_location =
6288 qual->flags.q.explicit_location;
6289 }
6290 }
6291
6292 if (qual->flags.q.std140 ||
6293 qual->flags.q.std430 ||
6294 qual->flags.q.packed ||
6295 qual->flags.q.shared) {
6296 _mesa_glsl_error(&loc, state,
6297 "uniform/shader storage block layout qualifiers "
6298 "std140, std430, packed, and shared can only be "
6299 "applied to uniform/shader storage blocks, not "
6300 "members");
6301 }
6302
6303 if (qual->flags.q.constant) {
6304 _mesa_glsl_error(&loc, state,
6305 "const storage qualifier cannot be applied "
6306 "to struct or interface block members");
6307 }
6308
6309 /* From Section 4.4.2.3 (Geometry Outputs) of the GLSL 4.50 spec:
6310 *
6311 * "A block member may be declared with a stream identifier, but
6312 * the specified stream must match the stream associated with the
6313 * containing block."
6314 */
6315 if (qual->flags.q.explicit_stream) {
6316 unsigned qual_stream;
6317 if (process_qualifier_constant(state, &loc, "stream",
6318 qual->stream, &qual_stream) &&
6319 qual_stream != block_stream) {
6320 _mesa_glsl_error(&loc, state, "stream layout qualifier on "
6321 "interface block member does not match "
6322 "the interface block (%d vs %d)", qual->stream,
6323 block_stream);
6324 }
6325 }
6326
6327 if (qual->flags.q.uniform && qual->has_interpolation()) {
6328 _mesa_glsl_error(&loc, state,
6329 "interpolation qualifiers cannot be used "
6330 "with uniform interface blocks");
6331 }
6332
6333 if ((qual->flags.q.uniform || !is_interface) &&
6334 qual->has_auxiliary_storage()) {
6335 _mesa_glsl_error(&loc, state,
6336 "auxiliary storage qualifiers cannot be used "
6337 "in uniform blocks or structures.");
6338 }
6339
6340 if (qual->flags.q.row_major || qual->flags.q.column_major) {
6341 if (!qual->flags.q.uniform && !qual->flags.q.buffer) {
6342 _mesa_glsl_error(&loc, state,
6343 "row_major and column_major can only be "
6344 "applied to interface blocks");
6345 } else
6346 validate_matrix_layout_for_type(state, &loc, decl_type, NULL);
6347 }
6348
6349 if (qual->flags.q.read_only && qual->flags.q.write_only) {
6350 _mesa_glsl_error(&loc, state, "buffer variable can't be both "
6351 "readonly and writeonly.");
6352 }
6353
6354 foreach_list_typed (ast_declaration, decl, link,
6355 &decl_list->declarations) {
6356 YYLTYPE loc = decl->get_location();
6357
6358 if (!allow_reserved_names)
6359 validate_identifier(decl->identifier, loc, state);
6360
6361 const struct glsl_type *field_type =
6362 process_array_type(&loc, decl_type, decl->array_specifier, state);
6363 validate_array_dimensions(field_type, state, &loc);
6364 fields[i].type = field_type;
6365 fields[i].name = decl->identifier;
6366 fields[i].interpolation =
6367 interpret_interpolation_qualifier(qual, var_mode, state, &loc);
6368 fields[i].centroid = qual->flags.q.centroid ? 1 : 0;
6369 fields[i].sample = qual->flags.q.sample ? 1 : 0;
6370 fields[i].patch = qual->flags.q.patch ? 1 : 0;
6371 fields[i].precision = qual->precision;
6372
6373 if (qual->flags.q.explicit_location) {
6374 unsigned qual_location;
6375 if (process_qualifier_constant(state, &loc, "location",
6376 qual->location, &qual_location)) {
6377 fields[i].location = VARYING_SLOT_VAR0 + qual_location;
6378 expl_location = fields[i].location + 1;
6379 }
6380 } else {
6381 if (layout && layout->flags.q.explicit_location) {
6382 fields[i].location = expl_location;
6383 expl_location = expl_location + 1;
6384 } else {
6385 fields[i].location = -1;
6386 }
6387 }
6388
6389 /* Propogate row- / column-major information down the fields of the
6390 * structure or interface block. Structures need this data because
6391 * the structure may contain a structure that contains ... a matrix
6392 * that need the proper layout.
6393 */
6394 if (field_type->without_array()->is_matrix()
6395 || field_type->without_array()->is_record()) {
6396 /* If no layout is specified for the field, inherit the layout
6397 * from the block.
6398 */
6399 fields[i].matrix_layout = matrix_layout;
6400
6401 if (qual->flags.q.row_major)
6402 fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
6403 else if (qual->flags.q.column_major)
6404 fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
6405
6406 /* If we're processing an interface block, the matrix layout must
6407 * be decided by this point.
6408 */
6409 assert(!is_interface
6410 || fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR
6411 || fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_COLUMN_MAJOR);
6412 }
6413
6414 /* Image qualifiers are allowed on buffer variables, which can only
6415 * be defined inside shader storage buffer objects
6416 */
6417 if (layout && var_mode == ir_var_shader_storage) {
6418 /* For readonly and writeonly qualifiers the field definition,
6419 * if set, overwrites the layout qualifier.
6420 */
6421 if (qual->flags.q.read_only) {
6422 fields[i].image_read_only = true;
6423 fields[i].image_write_only = false;
6424 } else if (qual->flags.q.write_only) {
6425 fields[i].image_read_only = false;
6426 fields[i].image_write_only = true;
6427 } else {
6428 fields[i].image_read_only = layout->flags.q.read_only;
6429 fields[i].image_write_only = layout->flags.q.write_only;
6430 }
6431
6432 /* For other qualifiers, we set the flag if either the layout
6433 * qualifier or the field qualifier are set
6434 */
6435 fields[i].image_coherent = qual->flags.q.coherent ||
6436 layout->flags.q.coherent;
6437 fields[i].image_volatile = qual->flags.q._volatile ||
6438 layout->flags.q._volatile;
6439 fields[i].image_restrict = qual->flags.q.restrict_flag ||
6440 layout->flags.q.restrict_flag;
6441 }
6442
6443 i++;
6444 }
6445 }
6446
6447 assert(i == decl_count);
6448
6449 *fields_ret = fields;
6450 return decl_count;
6451 }
6452
6453
6454 ir_rvalue *
6455 ast_struct_specifier::hir(exec_list *instructions,
6456 struct _mesa_glsl_parse_state *state)
6457 {
6458 YYLTYPE loc = this->get_location();
6459
6460 /* Section 4.1.8 (Structures) of the GLSL 1.10 spec says:
6461 *
6462 * "Anonymous structures are not supported; so embedded structures must
6463 * have a declarator. A name given to an embedded struct is scoped at
6464 * the same level as the struct it is embedded in."
6465 *
6466 * The same section of the GLSL 1.20 spec says:
6467 *
6468 * "Anonymous structures are not supported. Embedded structures are not
6469 * supported.
6470 *
6471 * struct S { float f; };
6472 * struct T {
6473 * S; // Error: anonymous structures disallowed
6474 * struct { ... }; // Error: embedded structures disallowed
6475 * S s; // Okay: nested structures with name are allowed
6476 * };"
6477 *
6478 * The GLSL ES 1.00 and 3.00 specs have similar langauge and examples. So,
6479 * we allow embedded structures in 1.10 only.
6480 */
6481 if (state->language_version != 110 && state->struct_specifier_depth != 0)
6482 _mesa_glsl_error(&loc, state,
6483 "embedded structure declarations are not allowed");
6484
6485 state->struct_specifier_depth++;
6486
6487 unsigned expl_location = -1;
6488 if (layout && layout->flags.q.explicit_location) {
6489 if (!process_qualifier_constant(state, &loc, "location",
6490 layout->location, &expl_location)) {
6491 return NULL;
6492 } else {
6493 expl_location = VARYING_SLOT_VAR0 + expl_location;
6494 }
6495 }
6496
6497 glsl_struct_field *fields;
6498 unsigned decl_count =
6499 ast_process_struct_or_iface_block_members(instructions,
6500 state,
6501 &this->declarations,
6502 &fields,
6503 false,
6504 GLSL_MATRIX_LAYOUT_INHERITED,
6505 false /* allow_reserved_names */,
6506 ir_var_auto,
6507 layout,
6508 0, /* for interface only */
6509 expl_location);
6510
6511 validate_identifier(this->name, loc, state);
6512
6513 const glsl_type *t =
6514 glsl_type::get_record_instance(fields, decl_count, this->name);
6515
6516 if (!state->symbols->add_type(name, t)) {
6517 _mesa_glsl_error(& loc, state, "struct `%s' previously defined", name);
6518 } else {
6519 const glsl_type **s = reralloc(state, state->user_structures,
6520 const glsl_type *,
6521 state->num_user_structures + 1);
6522 if (s != NULL) {
6523 s[state->num_user_structures] = t;
6524 state->user_structures = s;
6525 state->num_user_structures++;
6526 }
6527 }
6528
6529 state->struct_specifier_depth--;
6530
6531 /* Structure type definitions do not have r-values.
6532 */
6533 return NULL;
6534 }
6535
6536
6537 /**
6538 * Visitor class which detects whether a given interface block has been used.
6539 */
6540 class interface_block_usage_visitor : public ir_hierarchical_visitor
6541 {
6542 public:
6543 interface_block_usage_visitor(ir_variable_mode mode, const glsl_type *block)
6544 : mode(mode), block(block), found(false)
6545 {
6546 }
6547
6548 virtual ir_visitor_status visit(ir_dereference_variable *ir)
6549 {
6550 if (ir->var->data.mode == mode && ir->var->get_interface_type() == block) {
6551 found = true;
6552 return visit_stop;
6553 }
6554 return visit_continue;
6555 }
6556
6557 bool usage_found() const
6558 {
6559 return this->found;
6560 }
6561
6562 private:
6563 ir_variable_mode mode;
6564 const glsl_type *block;
6565 bool found;
6566 };
6567
6568 static bool
6569 is_unsized_array_last_element(ir_variable *v)
6570 {
6571 const glsl_type *interface_type = v->get_interface_type();
6572 int length = interface_type->length;
6573
6574 assert(v->type->is_unsized_array());
6575
6576 /* Check if it is the last element of the interface */
6577 if (strcmp(interface_type->fields.structure[length-1].name, v->name) == 0)
6578 return true;
6579 return false;
6580 }
6581
6582 ir_rvalue *
6583 ast_interface_block::hir(exec_list *instructions,
6584 struct _mesa_glsl_parse_state *state)
6585 {
6586 YYLTYPE loc = this->get_location();
6587
6588 /* Interface blocks must be declared at global scope */
6589 if (state->current_function != NULL) {
6590 _mesa_glsl_error(&loc, state,
6591 "Interface block `%s' must be declared "
6592 "at global scope",
6593 this->block_name);
6594 }
6595
6596 if (!this->layout.flags.q.buffer &&
6597 this->layout.flags.q.std430) {
6598 _mesa_glsl_error(&loc, state,
6599 "std430 storage block layout qualifier is supported "
6600 "only for shader storage blocks");
6601 }
6602
6603 /* The ast_interface_block has a list of ast_declarator_lists. We
6604 * need to turn those into ir_variables with an association
6605 * with this uniform block.
6606 */
6607 enum glsl_interface_packing packing;
6608 if (this->layout.flags.q.shared) {
6609 packing = GLSL_INTERFACE_PACKING_SHARED;
6610 } else if (this->layout.flags.q.packed) {
6611 packing = GLSL_INTERFACE_PACKING_PACKED;
6612 } else if (this->layout.flags.q.std430) {
6613 packing = GLSL_INTERFACE_PACKING_STD430;
6614 } else {
6615 /* The default layout is std140.
6616 */
6617 packing = GLSL_INTERFACE_PACKING_STD140;
6618 }
6619
6620 ir_variable_mode var_mode;
6621 const char *iface_type_name;
6622 if (this->layout.flags.q.in) {
6623 var_mode = ir_var_shader_in;
6624 iface_type_name = "in";
6625 } else if (this->layout.flags.q.out) {
6626 var_mode = ir_var_shader_out;
6627 iface_type_name = "out";
6628 } else if (this->layout.flags.q.uniform) {
6629 var_mode = ir_var_uniform;
6630 iface_type_name = "uniform";
6631 } else if (this->layout.flags.q.buffer) {
6632 var_mode = ir_var_shader_storage;
6633 iface_type_name = "buffer";
6634 } else {
6635 var_mode = ir_var_auto;
6636 iface_type_name = "UNKNOWN";
6637 assert(!"interface block layout qualifier not found!");
6638 }
6639
6640 enum glsl_matrix_layout matrix_layout = GLSL_MATRIX_LAYOUT_INHERITED;
6641 if (this->layout.flags.q.row_major)
6642 matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
6643 else if (this->layout.flags.q.column_major)
6644 matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
6645
6646 bool redeclaring_per_vertex = strcmp(this->block_name, "gl_PerVertex") == 0;
6647 exec_list declared_variables;
6648 glsl_struct_field *fields;
6649
6650 /* Treat an interface block as one level of nesting, so that embedded struct
6651 * specifiers will be disallowed.
6652 */
6653 state->struct_specifier_depth++;
6654
6655 /* For blocks that accept memory qualifiers (i.e. shader storage), verify
6656 * that we don't have incompatible qualifiers
6657 */
6658 if (this->layout.flags.q.read_only && this->layout.flags.q.write_only) {
6659 _mesa_glsl_error(&loc, state,
6660 "Interface block sets both readonly and writeonly");
6661 }
6662
6663 unsigned qual_stream;
6664 if (!process_qualifier_constant(state, &loc, "stream", this->layout.stream,
6665 &qual_stream) ||
6666 !validate_stream_qualifier(&loc, state, qual_stream)) {
6667 /* If the stream qualifier is invalid it doesn't make sense to continue
6668 * on and try to compare stream layouts on member variables against it
6669 * so just return early.
6670 */
6671 return NULL;
6672 }
6673
6674 unsigned expl_location = -1;
6675 if (layout.flags.q.explicit_location) {
6676 if (!process_qualifier_constant(state, &loc, "location",
6677 layout.location, &expl_location)) {
6678 return NULL;
6679 } else {
6680 expl_location = VARYING_SLOT_VAR0 + expl_location;
6681 }
6682 }
6683
6684 unsigned int num_variables =
6685 ast_process_struct_or_iface_block_members(&declared_variables,
6686 state,
6687 &this->declarations,
6688 &fields,
6689 true,
6690 matrix_layout,
6691 redeclaring_per_vertex,
6692 var_mode,
6693 &this->layout,
6694 qual_stream,
6695 expl_location);
6696
6697 state->struct_specifier_depth--;
6698
6699 if (!redeclaring_per_vertex) {
6700 validate_identifier(this->block_name, loc, state);
6701
6702 /* From section 4.3.9 ("Interface Blocks") of the GLSL 4.50 spec:
6703 *
6704 * "Block names have no other use within a shader beyond interface
6705 * matching; it is a compile-time error to use a block name at global
6706 * scope for anything other than as a block name."
6707 */
6708 ir_variable *var = state->symbols->get_variable(this->block_name);
6709 if (var && !var->type->is_interface()) {
6710 _mesa_glsl_error(&loc, state, "Block name `%s' is "
6711 "already used in the scope.",
6712 this->block_name);
6713 }
6714 }
6715
6716 const glsl_type *earlier_per_vertex = NULL;
6717 if (redeclaring_per_vertex) {
6718 /* Find the previous declaration of gl_PerVertex. If we're redeclaring
6719 * the named interface block gl_in, we can find it by looking at the
6720 * previous declaration of gl_in. Otherwise we can find it by looking
6721 * at the previous decalartion of any of the built-in outputs,
6722 * e.g. gl_Position.
6723 *
6724 * Also check that the instance name and array-ness of the redeclaration
6725 * are correct.
6726 */
6727 switch (var_mode) {
6728 case ir_var_shader_in:
6729 if (ir_variable *earlier_gl_in =
6730 state->symbols->get_variable("gl_in")) {
6731 earlier_per_vertex = earlier_gl_in->get_interface_type();
6732 } else {
6733 _mesa_glsl_error(&loc, state,
6734 "redeclaration of gl_PerVertex input not allowed "
6735 "in the %s shader",
6736 _mesa_shader_stage_to_string(state->stage));
6737 }
6738 if (this->instance_name == NULL ||
6739 strcmp(this->instance_name, "gl_in") != 0 || this->array_specifier == NULL ||
6740 !this->array_specifier->is_single_dimension()) {
6741 _mesa_glsl_error(&loc, state,
6742 "gl_PerVertex input must be redeclared as "
6743 "gl_in[]");
6744 }
6745 break;
6746 case ir_var_shader_out:
6747 if (ir_variable *earlier_gl_Position =
6748 state->symbols->get_variable("gl_Position")) {
6749 earlier_per_vertex = earlier_gl_Position->get_interface_type();
6750 } else if (ir_variable *earlier_gl_out =
6751 state->symbols->get_variable("gl_out")) {
6752 earlier_per_vertex = earlier_gl_out->get_interface_type();
6753 } else {
6754 _mesa_glsl_error(&loc, state,
6755 "redeclaration of gl_PerVertex output not "
6756 "allowed in the %s shader",
6757 _mesa_shader_stage_to_string(state->stage));
6758 }
6759 if (state->stage == MESA_SHADER_TESS_CTRL) {
6760 if (this->instance_name == NULL ||
6761 strcmp(this->instance_name, "gl_out") != 0 || this->array_specifier == NULL) {
6762 _mesa_glsl_error(&loc, state,
6763 "gl_PerVertex output must be redeclared as "
6764 "gl_out[]");
6765 }
6766 } else {
6767 if (this->instance_name != NULL) {
6768 _mesa_glsl_error(&loc, state,
6769 "gl_PerVertex output may not be redeclared with "
6770 "an instance name");
6771 }
6772 }
6773 break;
6774 default:
6775 _mesa_glsl_error(&loc, state,
6776 "gl_PerVertex must be declared as an input or an "
6777 "output");
6778 break;
6779 }
6780
6781 if (earlier_per_vertex == NULL) {
6782 /* An error has already been reported. Bail out to avoid null
6783 * dereferences later in this function.
6784 */
6785 return NULL;
6786 }
6787
6788 /* Copy locations from the old gl_PerVertex interface block. */
6789 for (unsigned i = 0; i < num_variables; i++) {
6790 int j = earlier_per_vertex->field_index(fields[i].name);
6791 if (j == -1) {
6792 _mesa_glsl_error(&loc, state,
6793 "redeclaration of gl_PerVertex must be a subset "
6794 "of the built-in members of gl_PerVertex");
6795 } else {
6796 fields[i].location =
6797 earlier_per_vertex->fields.structure[j].location;
6798 fields[i].interpolation =
6799 earlier_per_vertex->fields.structure[j].interpolation;
6800 fields[i].centroid =
6801 earlier_per_vertex->fields.structure[j].centroid;
6802 fields[i].sample =
6803 earlier_per_vertex->fields.structure[j].sample;
6804 fields[i].patch =
6805 earlier_per_vertex->fields.structure[j].patch;
6806 fields[i].precision =
6807 earlier_per_vertex->fields.structure[j].precision;
6808 }
6809 }
6810
6811 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10
6812 * spec:
6813 *
6814 * If a built-in interface block is redeclared, it must appear in
6815 * the shader before any use of any member included in the built-in
6816 * declaration, or a compilation error will result.
6817 *
6818 * This appears to be a clarification to the behaviour established for
6819 * gl_PerVertex by GLSL 1.50, therefore we implement this behaviour
6820 * regardless of GLSL version.
6821 */
6822 interface_block_usage_visitor v(var_mode, earlier_per_vertex);
6823 v.run(instructions);
6824 if (v.usage_found()) {
6825 _mesa_glsl_error(&loc, state,
6826 "redeclaration of a built-in interface block must "
6827 "appear before any use of any member of the "
6828 "interface block");
6829 }
6830 }
6831
6832 const glsl_type *block_type =
6833 glsl_type::get_interface_instance(fields,
6834 num_variables,
6835 packing,
6836 this->block_name);
6837
6838 if (!state->symbols->add_interface(block_type->name, block_type, var_mode)) {
6839 YYLTYPE loc = this->get_location();
6840 _mesa_glsl_error(&loc, state, "interface block `%s' with type `%s' "
6841 "already taken in the current scope",
6842 this->block_name, iface_type_name);
6843 }
6844
6845 /* Since interface blocks cannot contain statements, it should be
6846 * impossible for the block to generate any instructions.
6847 */
6848 assert(declared_variables.is_empty());
6849
6850 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
6851 *
6852 * Geometry shader input variables get the per-vertex values written
6853 * out by vertex shader output variables of the same names. Since a
6854 * geometry shader operates on a set of vertices, each input varying
6855 * variable (or input block, see interface blocks below) needs to be
6856 * declared as an array.
6857 */
6858 if (state->stage == MESA_SHADER_GEOMETRY && this->array_specifier == NULL &&
6859 var_mode == ir_var_shader_in) {
6860 _mesa_glsl_error(&loc, state, "geometry shader inputs must be arrays");
6861 } else if ((state->stage == MESA_SHADER_TESS_CTRL ||
6862 state->stage == MESA_SHADER_TESS_EVAL) &&
6863 this->array_specifier == NULL &&
6864 var_mode == ir_var_shader_in) {
6865 _mesa_glsl_error(&loc, state, "per-vertex tessellation shader inputs must be arrays");
6866 } else if (state->stage == MESA_SHADER_TESS_CTRL &&
6867 this->array_specifier == NULL &&
6868 var_mode == ir_var_shader_out) {
6869 _mesa_glsl_error(&loc, state, "tessellation control shader outputs must be arrays");
6870 }
6871
6872
6873 /* Page 39 (page 45 of the PDF) of section 4.3.7 in the GLSL ES 3.00 spec
6874 * says:
6875 *
6876 * "If an instance name (instance-name) is used, then it puts all the
6877 * members inside a scope within its own name space, accessed with the
6878 * field selector ( . ) operator (analogously to structures)."
6879 */
6880 if (this->instance_name) {
6881 if (redeclaring_per_vertex) {
6882 /* When a built-in in an unnamed interface block is redeclared,
6883 * get_variable_being_redeclared() calls
6884 * check_builtin_array_max_size() to make sure that built-in array
6885 * variables aren't redeclared to illegal sizes. But we're looking
6886 * at a redeclaration of a named built-in interface block. So we
6887 * have to manually call check_builtin_array_max_size() for all parts
6888 * of the interface that are arrays.
6889 */
6890 for (unsigned i = 0; i < num_variables; i++) {
6891 if (fields[i].type->is_array()) {
6892 const unsigned size = fields[i].type->array_size();
6893 check_builtin_array_max_size(fields[i].name, size, loc, state);
6894 }
6895 }
6896 } else {
6897 validate_identifier(this->instance_name, loc, state);
6898 }
6899
6900 ir_variable *var;
6901
6902 if (this->array_specifier != NULL) {
6903 const glsl_type *block_array_type =
6904 process_array_type(&loc, block_type, this->array_specifier, state);
6905
6906 /* Section 4.3.7 (Interface Blocks) of the GLSL 1.50 spec says:
6907 *
6908 * For uniform blocks declared an array, each individual array
6909 * element corresponds to a separate buffer object backing one
6910 * instance of the block. As the array size indicates the number
6911 * of buffer objects needed, uniform block array declarations
6912 * must specify an array size.
6913 *
6914 * And a few paragraphs later:
6915 *
6916 * Geometry shader input blocks must be declared as arrays and
6917 * follow the array declaration and linking rules for all
6918 * geometry shader inputs. All other input and output block
6919 * arrays must specify an array size.
6920 *
6921 * The same applies to tessellation shaders.
6922 *
6923 * The upshot of this is that the only circumstance where an
6924 * interface array size *doesn't* need to be specified is on a
6925 * geometry shader input, tessellation control shader input,
6926 * tessellation control shader output, and tessellation evaluation
6927 * shader input.
6928 */
6929 if (block_array_type->is_unsized_array()) {
6930 bool allow_inputs = state->stage == MESA_SHADER_GEOMETRY ||
6931 state->stage == MESA_SHADER_TESS_CTRL ||
6932 state->stage == MESA_SHADER_TESS_EVAL;
6933 bool allow_outputs = state->stage == MESA_SHADER_TESS_CTRL;
6934
6935 if (this->layout.flags.q.in) {
6936 if (!allow_inputs)
6937 _mesa_glsl_error(&loc, state,
6938 "unsized input block arrays not allowed in "
6939 "%s shader",
6940 _mesa_shader_stage_to_string(state->stage));
6941 } else if (this->layout.flags.q.out) {
6942 if (!allow_outputs)
6943 _mesa_glsl_error(&loc, state,
6944 "unsized output block arrays not allowed in "
6945 "%s shader",
6946 _mesa_shader_stage_to_string(state->stage));
6947 } else {
6948 /* by elimination, this is a uniform block array */
6949 _mesa_glsl_error(&loc, state,
6950 "unsized uniform block arrays not allowed in "
6951 "%s shader",
6952 _mesa_shader_stage_to_string(state->stage));
6953 }
6954 }
6955
6956 /* From section 4.3.9 (Interface Blocks) of the GLSL ES 3.10 spec:
6957 *
6958 * * Arrays of arrays of blocks are not allowed
6959 */
6960 if (state->es_shader && block_array_type->is_array() &&
6961 block_array_type->fields.array->is_array()) {
6962 _mesa_glsl_error(&loc, state,
6963 "arrays of arrays interface blocks are "
6964 "not allowed");
6965 }
6966
6967 var = new(state) ir_variable(block_array_type,
6968 this->instance_name,
6969 var_mode);
6970 } else {
6971 var = new(state) ir_variable(block_type,
6972 this->instance_name,
6973 var_mode);
6974 }
6975
6976 var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
6977 ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
6978
6979 if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
6980 var->data.read_only = true;
6981
6982 if (state->stage == MESA_SHADER_GEOMETRY && var_mode == ir_var_shader_in)
6983 handle_geometry_shader_input_decl(state, loc, var);
6984 else if ((state->stage == MESA_SHADER_TESS_CTRL ||
6985 state->stage == MESA_SHADER_TESS_EVAL) && var_mode == ir_var_shader_in)
6986 handle_tess_shader_input_decl(state, loc, var);
6987 else if (state->stage == MESA_SHADER_TESS_CTRL && var_mode == ir_var_shader_out)
6988 handle_tess_ctrl_shader_output_decl(state, loc, var);
6989
6990 for (unsigned i = 0; i < num_variables; i++) {
6991 if (fields[i].type->is_unsized_array()) {
6992 if (var_mode == ir_var_shader_storage) {
6993 if (i != (num_variables - 1)) {
6994 _mesa_glsl_error(&loc, state, "unsized array `%s' definition: "
6995 "only last member of a shader storage block "
6996 "can be defined as unsized array",
6997 fields[i].name);
6998 }
6999 } else {
7000 /* From GLSL ES 3.10 spec, section 4.1.9 "Arrays":
7001 *
7002 * "If an array is declared as the last member of a shader storage
7003 * block and the size is not specified at compile-time, it is
7004 * sized at run-time. In all other cases, arrays are sized only
7005 * at compile-time."
7006 */
7007 if (state->es_shader) {
7008 _mesa_glsl_error(&loc, state, "unsized array `%s' definition: "
7009 "only last member of a shader storage block "
7010 "can be defined as unsized array",
7011 fields[i].name);
7012 }
7013 }
7014 }
7015 }
7016
7017 if (ir_variable *earlier =
7018 state->symbols->get_variable(this->instance_name)) {
7019 if (!redeclaring_per_vertex) {
7020 _mesa_glsl_error(&loc, state, "`%s' redeclared",
7021 this->instance_name);
7022 }
7023 earlier->data.how_declared = ir_var_declared_normally;
7024 earlier->type = var->type;
7025 earlier->reinit_interface_type(block_type);
7026 delete var;
7027 } else {
7028 if (this->layout.flags.q.explicit_binding) {
7029 apply_explicit_binding(state, &loc, var, var->type,
7030 &this->layout);
7031 }
7032
7033 var->data.stream = qual_stream;
7034 if (layout.flags.q.explicit_location) {
7035 var->data.location = expl_location;
7036 var->data.explicit_location = true;
7037 }
7038
7039 state->symbols->add_variable(var);
7040 instructions->push_tail(var);
7041 }
7042 } else {
7043 /* In order to have an array size, the block must also be declared with
7044 * an instance name.
7045 */
7046 assert(this->array_specifier == NULL);
7047
7048 for (unsigned i = 0; i < num_variables; i++) {
7049 ir_variable *var =
7050 new(state) ir_variable(fields[i].type,
7051 ralloc_strdup(state, fields[i].name),
7052 var_mode);
7053 var->data.interpolation = fields[i].interpolation;
7054 var->data.centroid = fields[i].centroid;
7055 var->data.sample = fields[i].sample;
7056 var->data.patch = fields[i].patch;
7057 var->data.stream = qual_stream;
7058 var->data.location = fields[i].location;
7059 if (fields[i].location != -1)
7060 var->data.explicit_location = true;
7061 var->init_interface_type(block_type);
7062
7063 if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
7064 var->data.read_only = true;
7065
7066 /* Precision qualifiers do not have any meaning in Desktop GLSL */
7067 if (state->es_shader) {
7068 var->data.precision =
7069 select_gles_precision(fields[i].precision, fields[i].type,
7070 state, &loc);
7071 }
7072
7073 if (fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED) {
7074 var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
7075 ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
7076 } else {
7077 var->data.matrix_layout = fields[i].matrix_layout;
7078 }
7079
7080 if (var->data.mode == ir_var_shader_storage) {
7081 var->data.image_read_only = fields[i].image_read_only;
7082 var->data.image_write_only = fields[i].image_write_only;
7083 var->data.image_coherent = fields[i].image_coherent;
7084 var->data.image_volatile = fields[i].image_volatile;
7085 var->data.image_restrict = fields[i].image_restrict;
7086 }
7087
7088 /* Examine var name here since var may get deleted in the next call */
7089 bool var_is_gl_id = is_gl_identifier(var->name);
7090
7091 if (redeclaring_per_vertex) {
7092 ir_variable *earlier =
7093 get_variable_being_redeclared(var, loc, state,
7094 true /* allow_all_redeclarations */);
7095 if (!var_is_gl_id || earlier == NULL) {
7096 _mesa_glsl_error(&loc, state,
7097 "redeclaration of gl_PerVertex can only "
7098 "include built-in variables");
7099 } else if (earlier->data.how_declared == ir_var_declared_normally) {
7100 _mesa_glsl_error(&loc, state,
7101 "`%s' has already been redeclared",
7102 earlier->name);
7103 } else {
7104 earlier->data.how_declared = ir_var_declared_in_block;
7105 earlier->reinit_interface_type(block_type);
7106 }
7107 continue;
7108 }
7109
7110 if (state->symbols->get_variable(var->name) != NULL)
7111 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
7112
7113 /* Propagate the "binding" keyword into this UBO/SSBO's fields.
7114 * The UBO declaration itself doesn't get an ir_variable unless it
7115 * has an instance name. This is ugly.
7116 */
7117 if (this->layout.flags.q.explicit_binding) {
7118 apply_explicit_binding(state, &loc, var,
7119 var->get_interface_type(), &this->layout);
7120 }
7121
7122 if (var->type->is_unsized_array()) {
7123 if (var->is_in_shader_storage_block()) {
7124 if (!is_unsized_array_last_element(var)) {
7125 _mesa_glsl_error(&loc, state, "unsized array `%s' definition: "
7126 "only last member of a shader storage block "
7127 "can be defined as unsized array",
7128 var->name);
7129 }
7130 var->data.from_ssbo_unsized_array = true;
7131 } else {
7132 /* From GLSL ES 3.10 spec, section 4.1.9 "Arrays":
7133 *
7134 * "If an array is declared as the last member of a shader storage
7135 * block and the size is not specified at compile-time, it is
7136 * sized at run-time. In all other cases, arrays are sized only
7137 * at compile-time."
7138 */
7139 if (state->es_shader) {
7140 _mesa_glsl_error(&loc, state, "unsized array `%s' definition: "
7141 "only last member of a shader storage block "
7142 "can be defined as unsized array",
7143 var->name);
7144 }
7145 }
7146 }
7147
7148 state->symbols->add_variable(var);
7149 instructions->push_tail(var);
7150 }
7151
7152 if (redeclaring_per_vertex && block_type != earlier_per_vertex) {
7153 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10 spec:
7154 *
7155 * It is also a compilation error ... to redeclare a built-in
7156 * block and then use a member from that built-in block that was
7157 * not included in the redeclaration.
7158 *
7159 * This appears to be a clarification to the behaviour established
7160 * for gl_PerVertex by GLSL 1.50, therefore we implement this
7161 * behaviour regardless of GLSL version.
7162 *
7163 * To prevent the shader from using a member that was not included in
7164 * the redeclaration, we disable any ir_variables that are still
7165 * associated with the old declaration of gl_PerVertex (since we've
7166 * already updated all of the variables contained in the new
7167 * gl_PerVertex to point to it).
7168 *
7169 * As a side effect this will prevent
7170 * validate_intrastage_interface_blocks() from getting confused and
7171 * thinking there are conflicting definitions of gl_PerVertex in the
7172 * shader.
7173 */
7174 foreach_in_list_safe(ir_instruction, node, instructions) {
7175 ir_variable *const var = node->as_variable();
7176 if (var != NULL &&
7177 var->get_interface_type() == earlier_per_vertex &&
7178 var->data.mode == var_mode) {
7179 if (var->data.how_declared == ir_var_declared_normally) {
7180 _mesa_glsl_error(&loc, state,
7181 "redeclaration of gl_PerVertex cannot "
7182 "follow a redeclaration of `%s'",
7183 var->name);
7184 }
7185 state->symbols->disable_variable(var->name);
7186 var->remove();
7187 }
7188 }
7189 }
7190 }
7191
7192 return NULL;
7193 }
7194
7195
7196 ir_rvalue *
7197 ast_tcs_output_layout::hir(exec_list *instructions,
7198 struct _mesa_glsl_parse_state *state)
7199 {
7200 YYLTYPE loc = this->get_location();
7201
7202 unsigned num_vertices;
7203 if (!state->out_qualifier->vertices->
7204 process_qualifier_constant(state, "vertices", &num_vertices,
7205 false)) {
7206 /* return here to stop cascading incorrect error messages */
7207 return NULL;
7208 }
7209
7210 /* If any shader outputs occurred before this declaration and specified an
7211 * array size, make sure the size they specified is consistent with the
7212 * primitive type.
7213 */
7214 if (state->tcs_output_size != 0 && state->tcs_output_size != num_vertices) {
7215 _mesa_glsl_error(&loc, state,
7216 "this tessellation control shader output layout "
7217 "specifies %u vertices, but a previous output "
7218 "is declared with size %u",
7219 num_vertices, state->tcs_output_size);
7220 return NULL;
7221 }
7222
7223 state->tcs_output_vertices_specified = true;
7224
7225 /* If any shader outputs occurred before this declaration and did not
7226 * specify an array size, their size is determined now.
7227 */
7228 foreach_in_list (ir_instruction, node, instructions) {
7229 ir_variable *var = node->as_variable();
7230 if (var == NULL || var->data.mode != ir_var_shader_out)
7231 continue;
7232
7233 /* Note: Not all tessellation control shader output are arrays. */
7234 if (!var->type->is_unsized_array() || var->data.patch)
7235 continue;
7236
7237 if (var->data.max_array_access >= num_vertices) {
7238 _mesa_glsl_error(&loc, state,
7239 "this tessellation control shader output layout "
7240 "specifies %u vertices, but an access to element "
7241 "%u of output `%s' already exists", num_vertices,
7242 var->data.max_array_access, var->name);
7243 } else {
7244 var->type = glsl_type::get_array_instance(var->type->fields.array,
7245 num_vertices);
7246 }
7247 }
7248
7249 return NULL;
7250 }
7251
7252
7253 ir_rvalue *
7254 ast_gs_input_layout::hir(exec_list *instructions,
7255 struct _mesa_glsl_parse_state *state)
7256 {
7257 YYLTYPE loc = this->get_location();
7258
7259 /* If any geometry input layout declaration preceded this one, make sure it
7260 * was consistent with this one.
7261 */
7262 if (state->gs_input_prim_type_specified &&
7263 state->in_qualifier->prim_type != this->prim_type) {
7264 _mesa_glsl_error(&loc, state,
7265 "geometry shader input layout does not match"
7266 " previous declaration");
7267 return NULL;
7268 }
7269
7270 /* If any shader inputs occurred before this declaration and specified an
7271 * array size, make sure the size they specified is consistent with the
7272 * primitive type.
7273 */
7274 unsigned num_vertices = vertices_per_prim(this->prim_type);
7275 if (state->gs_input_size != 0 && state->gs_input_size != num_vertices) {
7276 _mesa_glsl_error(&loc, state,
7277 "this geometry shader input layout implies %u vertices"
7278 " per primitive, but a previous input is declared"
7279 " with size %u", num_vertices, state->gs_input_size);
7280 return NULL;
7281 }
7282
7283 state->gs_input_prim_type_specified = true;
7284
7285 /* If any shader inputs occurred before this declaration and did not
7286 * specify an array size, their size is determined now.
7287 */
7288 foreach_in_list(ir_instruction, node, instructions) {
7289 ir_variable *var = node->as_variable();
7290 if (var == NULL || var->data.mode != ir_var_shader_in)
7291 continue;
7292
7293 /* Note: gl_PrimitiveIDIn has mode ir_var_shader_in, but it's not an
7294 * array; skip it.
7295 */
7296
7297 if (var->type->is_unsized_array()) {
7298 if (var->data.max_array_access >= num_vertices) {
7299 _mesa_glsl_error(&loc, state,
7300 "this geometry shader input layout implies %u"
7301 " vertices, but an access to element %u of input"
7302 " `%s' already exists", num_vertices,
7303 var->data.max_array_access, var->name);
7304 } else {
7305 var->type = glsl_type::get_array_instance(var->type->fields.array,
7306 num_vertices);
7307 }
7308 }
7309 }
7310
7311 return NULL;
7312 }
7313
7314
7315 ir_rvalue *
7316 ast_cs_input_layout::hir(exec_list *instructions,
7317 struct _mesa_glsl_parse_state *state)
7318 {
7319 YYLTYPE loc = this->get_location();
7320
7321 /* From the ARB_compute_shader specification:
7322 *
7323 * If the local size of the shader in any dimension is greater
7324 * than the maximum size supported by the implementation for that
7325 * dimension, a compile-time error results.
7326 *
7327 * It is not clear from the spec how the error should be reported if
7328 * the total size of the work group exceeds
7329 * MAX_COMPUTE_WORK_GROUP_INVOCATIONS, but it seems reasonable to
7330 * report it at compile time as well.
7331 */
7332 GLuint64 total_invocations = 1;
7333 unsigned qual_local_size[3];
7334 for (int i = 0; i < 3; i++) {
7335
7336 char *local_size_str = ralloc_asprintf(NULL, "invalid local_size_%c",
7337 'x' + i);
7338 /* Infer a local_size of 1 for unspecified dimensions */
7339 if (this->local_size[i] == NULL) {
7340 qual_local_size[i] = 1;
7341 } else if (!this->local_size[i]->
7342 process_qualifier_constant(state, local_size_str,
7343 &qual_local_size[i], false)) {
7344 ralloc_free(local_size_str);
7345 return NULL;
7346 }
7347 ralloc_free(local_size_str);
7348
7349 if (qual_local_size[i] > state->ctx->Const.MaxComputeWorkGroupSize[i]) {
7350 _mesa_glsl_error(&loc, state,
7351 "local_size_%c exceeds MAX_COMPUTE_WORK_GROUP_SIZE"
7352 " (%d)", 'x' + i,
7353 state->ctx->Const.MaxComputeWorkGroupSize[i]);
7354 break;
7355 }
7356 total_invocations *= qual_local_size[i];
7357 if (total_invocations >
7358 state->ctx->Const.MaxComputeWorkGroupInvocations) {
7359 _mesa_glsl_error(&loc, state,
7360 "product of local_sizes exceeds "
7361 "MAX_COMPUTE_WORK_GROUP_INVOCATIONS (%d)",
7362 state->ctx->Const.MaxComputeWorkGroupInvocations);
7363 break;
7364 }
7365 }
7366
7367 /* If any compute input layout declaration preceded this one, make sure it
7368 * was consistent with this one.
7369 */
7370 if (state->cs_input_local_size_specified) {
7371 for (int i = 0; i < 3; i++) {
7372 if (state->cs_input_local_size[i] != qual_local_size[i]) {
7373 _mesa_glsl_error(&loc, state,
7374 "compute shader input layout does not match"
7375 " previous declaration");
7376 return NULL;
7377 }
7378 }
7379 }
7380
7381 state->cs_input_local_size_specified = true;
7382 for (int i = 0; i < 3; i++)
7383 state->cs_input_local_size[i] = qual_local_size[i];
7384
7385 /* We may now declare the built-in constant gl_WorkGroupSize (see
7386 * builtin_variable_generator::generate_constants() for why we didn't
7387 * declare it earlier).
7388 */
7389 ir_variable *var = new(state->symbols)
7390 ir_variable(glsl_type::uvec3_type, "gl_WorkGroupSize", ir_var_auto);
7391 var->data.how_declared = ir_var_declared_implicitly;
7392 var->data.read_only = true;
7393 instructions->push_tail(var);
7394 state->symbols->add_variable(var);
7395 ir_constant_data data;
7396 memset(&data, 0, sizeof(data));
7397 for (int i = 0; i < 3; i++)
7398 data.u[i] = qual_local_size[i];
7399 var->constant_value = new(var) ir_constant(glsl_type::uvec3_type, &data);
7400 var->constant_initializer =
7401 new(var) ir_constant(glsl_type::uvec3_type, &data);
7402 var->data.has_initializer = true;
7403
7404 return NULL;
7405 }
7406
7407
7408 static void
7409 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
7410 exec_list *instructions)
7411 {
7412 bool gl_FragColor_assigned = false;
7413 bool gl_FragData_assigned = false;
7414 bool gl_FragSecondaryColor_assigned = false;
7415 bool gl_FragSecondaryData_assigned = false;
7416 bool user_defined_fs_output_assigned = false;
7417 ir_variable *user_defined_fs_output = NULL;
7418
7419 /* It would be nice to have proper location information. */
7420 YYLTYPE loc;
7421 memset(&loc, 0, sizeof(loc));
7422
7423 foreach_in_list(ir_instruction, node, instructions) {
7424 ir_variable *var = node->as_variable();
7425
7426 if (!var || !var->data.assigned)
7427 continue;
7428
7429 if (strcmp(var->name, "gl_FragColor") == 0)
7430 gl_FragColor_assigned = true;
7431 else if (strcmp(var->name, "gl_FragData") == 0)
7432 gl_FragData_assigned = true;
7433 else if (strcmp(var->name, "gl_SecondaryFragColorEXT") == 0)
7434 gl_FragSecondaryColor_assigned = true;
7435 else if (strcmp(var->name, "gl_SecondaryFragDataEXT") == 0)
7436 gl_FragSecondaryData_assigned = true;
7437 else if (!is_gl_identifier(var->name)) {
7438 if (state->stage == MESA_SHADER_FRAGMENT &&
7439 var->data.mode == ir_var_shader_out) {
7440 user_defined_fs_output_assigned = true;
7441 user_defined_fs_output = var;
7442 }
7443 }
7444 }
7445
7446 /* From the GLSL 1.30 spec:
7447 *
7448 * "If a shader statically assigns a value to gl_FragColor, it
7449 * may not assign a value to any element of gl_FragData. If a
7450 * shader statically writes a value to any element of
7451 * gl_FragData, it may not assign a value to
7452 * gl_FragColor. That is, a shader may assign values to either
7453 * gl_FragColor or gl_FragData, but not both. Multiple shaders
7454 * linked together must also consistently write just one of
7455 * these variables. Similarly, if user declared output
7456 * variables are in use (statically assigned to), then the
7457 * built-in variables gl_FragColor and gl_FragData may not be
7458 * assigned to. These incorrect usages all generate compile
7459 * time errors."
7460 */
7461 if (gl_FragColor_assigned && gl_FragData_assigned) {
7462 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7463 "`gl_FragColor' and `gl_FragData'");
7464 } else if (gl_FragColor_assigned && user_defined_fs_output_assigned) {
7465 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7466 "`gl_FragColor' and `%s'",
7467 user_defined_fs_output->name);
7468 } else if (gl_FragSecondaryColor_assigned && gl_FragSecondaryData_assigned) {
7469 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7470 "`gl_FragSecondaryColorEXT' and"
7471 " `gl_FragSecondaryDataEXT'");
7472 } else if (gl_FragColor_assigned && gl_FragSecondaryData_assigned) {
7473 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7474 "`gl_FragColor' and"
7475 " `gl_FragSecondaryDataEXT'");
7476 } else if (gl_FragData_assigned && gl_FragSecondaryColor_assigned) {
7477 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7478 "`gl_FragData' and"
7479 " `gl_FragSecondaryColorEXT'");
7480 } else if (gl_FragData_assigned && user_defined_fs_output_assigned) {
7481 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7482 "`gl_FragData' and `%s'",
7483 user_defined_fs_output->name);
7484 }
7485
7486 if ((gl_FragSecondaryColor_assigned || gl_FragSecondaryData_assigned) &&
7487 !state->EXT_blend_func_extended_enable) {
7488 _mesa_glsl_error(&loc, state,
7489 "Dual source blending requires EXT_blend_func_extended");
7490 }
7491 }
7492
7493
7494 static void
7495 remove_per_vertex_blocks(exec_list *instructions,
7496 _mesa_glsl_parse_state *state, ir_variable_mode mode)
7497 {
7498 /* Find the gl_PerVertex interface block of the appropriate (in/out) mode,
7499 * if it exists in this shader type.
7500 */
7501 const glsl_type *per_vertex = NULL;
7502 switch (mode) {
7503 case ir_var_shader_in:
7504 if (ir_variable *gl_in = state->symbols->get_variable("gl_in"))
7505 per_vertex = gl_in->get_interface_type();
7506 break;
7507 case ir_var_shader_out:
7508 if (ir_variable *gl_Position =
7509 state->symbols->get_variable("gl_Position")) {
7510 per_vertex = gl_Position->get_interface_type();
7511 }
7512 break;
7513 default:
7514 assert(!"Unexpected mode");
7515 break;
7516 }
7517
7518 /* If we didn't find a built-in gl_PerVertex interface block, then we don't
7519 * need to do anything.
7520 */
7521 if (per_vertex == NULL)
7522 return;
7523
7524 /* If the interface block is used by the shader, then we don't need to do
7525 * anything.
7526 */
7527 interface_block_usage_visitor v(mode, per_vertex);
7528 v.run(instructions);
7529 if (v.usage_found())
7530 return;
7531
7532 /* Remove any ir_variable declarations that refer to the interface block
7533 * we're removing.
7534 */
7535 foreach_in_list_safe(ir_instruction, node, instructions) {
7536 ir_variable *const var = node->as_variable();
7537 if (var != NULL && var->get_interface_type() == per_vertex &&
7538 var->data.mode == mode) {
7539 state->symbols->disable_variable(var->name);
7540 var->remove();
7541 }
7542 }
7543 }