Merge remote-tracking branch 'mesa-public/master' into vulkan
[mesa.git] / src / glsl / ast_to_hir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file ast_to_hir.c
26 * Convert abstract syntax to to high-level intermediate reprensentation (HIR).
27 *
28 * During the conversion to HIR, the majority of the symantic checking is
29 * preformed on the program. This includes:
30 *
31 * * Symbol table management
32 * * Type checking
33 * * Function binding
34 *
35 * The majority of this work could be done during parsing, and the parser could
36 * probably generate HIR directly. However, this results in frequent changes
37 * to the parser code. Since we do not assume that every system this complier
38 * is built on will have Flex and Bison installed, we have to store the code
39 * generated by these tools in our version control system. In other parts of
40 * the system we've seen problems where a parser was changed but the generated
41 * code was not committed, merge conflicts where created because two developers
42 * had slightly different versions of Bison installed, etc.
43 *
44 * I have also noticed that running Bison generated parsers in GDB is very
45 * irritating. When you get a segfault on '$$ = $1->foo', you can't very
46 * well 'print $1' in GDB.
47 *
48 * As a result, my preference is to put as little C code as possible in the
49 * parser (and lexer) sources.
50 */
51
52 #include "glsl_symbol_table.h"
53 #include "glsl_parser_extras.h"
54 #include "ast.h"
55 #include "glsl_types.h"
56 #include "program/hash_table.h"
57 #include "main/shaderobj.h"
58 #include "ir.h"
59 #include "ir_builder.h"
60
61 using namespace ir_builder;
62
63 static void
64 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
65 exec_list *instructions);
66 static void
67 remove_per_vertex_blocks(exec_list *instructions,
68 _mesa_glsl_parse_state *state, ir_variable_mode mode);
69
70 /**
71 * Visitor class that finds the first instance of any write-only variable that
72 * is ever read, if any
73 */
74 class read_from_write_only_variable_visitor : public ir_hierarchical_visitor
75 {
76 public:
77 read_from_write_only_variable_visitor() : found(NULL)
78 {
79 }
80
81 virtual ir_visitor_status visit(ir_dereference_variable *ir)
82 {
83 if (this->in_assignee)
84 return visit_continue;
85
86 ir_variable *var = ir->variable_referenced();
87 /* We can have image_write_only set on both images and buffer variables,
88 * but in the former there is a distinction between reads from
89 * the variable itself (write_only) and from the memory they point to
90 * (image_write_only), while in the case of buffer variables there is
91 * no such distinction, that is why this check here is limited to
92 * buffer variables alone.
93 */
94 if (!var || var->data.mode != ir_var_shader_storage)
95 return visit_continue;
96
97 if (var->data.image_write_only) {
98 found = var;
99 return visit_stop;
100 }
101
102 return visit_continue;
103 }
104
105 ir_variable *get_variable() {
106 return found;
107 }
108
109 private:
110 ir_variable *found;
111 };
112
113 void
114 _mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
115 {
116 _mesa_glsl_initialize_variables(instructions, state);
117
118 state->symbols->separate_function_namespace = state->language_version == 110;
119
120 state->current_function = NULL;
121
122 state->toplevel_ir = instructions;
123
124 state->gs_input_prim_type_specified = false;
125 state->tcs_output_vertices_specified = false;
126 state->cs_input_local_size_specified = false;
127
128 /* Section 4.2 of the GLSL 1.20 specification states:
129 * "The built-in functions are scoped in a scope outside the global scope
130 * users declare global variables in. That is, a shader's global scope,
131 * available for user-defined functions and global variables, is nested
132 * inside the scope containing the built-in functions."
133 *
134 * Since built-in functions like ftransform() access built-in variables,
135 * it follows that those must be in the outer scope as well.
136 *
137 * We push scope here to create this nesting effect...but don't pop.
138 * This way, a shader's globals are still in the symbol table for use
139 * by the linker.
140 */
141 state->symbols->push_scope();
142
143 foreach_list_typed (ast_node, ast, link, & state->translation_unit)
144 ast->hir(instructions, state);
145
146 detect_recursion_unlinked(state, instructions);
147 detect_conflicting_assignments(state, instructions);
148
149 state->toplevel_ir = NULL;
150
151 /* Move all of the variable declarations to the front of the IR list, and
152 * reverse the order. This has the (intended!) side effect that vertex
153 * shader inputs and fragment shader outputs will appear in the IR in the
154 * same order that they appeared in the shader code. This results in the
155 * locations being assigned in the declared order. Many (arguably buggy)
156 * applications depend on this behavior, and it matches what nearly all
157 * other drivers do.
158 */
159 foreach_in_list_safe(ir_instruction, node, instructions) {
160 ir_variable *const var = node->as_variable();
161
162 if (var == NULL)
163 continue;
164
165 var->remove();
166 instructions->push_head(var);
167 }
168
169 /* Figure out if gl_FragCoord is actually used in fragment shader */
170 ir_variable *const var = state->symbols->get_variable("gl_FragCoord");
171 if (var != NULL)
172 state->fs_uses_gl_fragcoord = var->data.used;
173
174 /* From section 7.1 (Built-In Language Variables) of the GLSL 4.10 spec:
175 *
176 * If multiple shaders using members of a built-in block belonging to
177 * the same interface are linked together in the same program, they
178 * must all redeclare the built-in block in the same way, as described
179 * in section 4.3.7 "Interface Blocks" for interface block matching, or
180 * a link error will result.
181 *
182 * The phrase "using members of a built-in block" implies that if two
183 * shaders are linked together and one of them *does not use* any members
184 * of the built-in block, then that shader does not need to have a matching
185 * redeclaration of the built-in block.
186 *
187 * This appears to be a clarification to the behaviour established for
188 * gl_PerVertex by GLSL 1.50, therefore implement it regardless of GLSL
189 * version.
190 *
191 * The definition of "interface" in section 4.3.7 that applies here is as
192 * follows:
193 *
194 * The boundary between adjacent programmable pipeline stages: This
195 * spans all the outputs in all compilation units of the first stage
196 * and all the inputs in all compilation units of the second stage.
197 *
198 * Therefore this rule applies to both inter- and intra-stage linking.
199 *
200 * The easiest way to implement this is to check whether the shader uses
201 * gl_PerVertex right after ast-to-ir conversion, and if it doesn't, simply
202 * remove all the relevant variable declaration from the IR, so that the
203 * linker won't see them and complain about mismatches.
204 */
205 remove_per_vertex_blocks(instructions, state, ir_var_shader_in);
206 remove_per_vertex_blocks(instructions, state, ir_var_shader_out);
207
208 /* Check that we don't have reads from write-only variables */
209 read_from_write_only_variable_visitor v;
210 v.run(instructions);
211 ir_variable *error_var = v.get_variable();
212 if (error_var) {
213 /* It would be nice to have proper location information, but for that
214 * we would need to check this as we process each kind of AST node
215 */
216 YYLTYPE loc;
217 memset(&loc, 0, sizeof(loc));
218 _mesa_glsl_error(&loc, state, "Read from write-only variable `%s'",
219 error_var->name);
220 }
221 }
222
223
224 static ir_expression_operation
225 get_conversion_operation(const glsl_type *to, const glsl_type *from,
226 struct _mesa_glsl_parse_state *state)
227 {
228 switch (to->base_type) {
229 case GLSL_TYPE_FLOAT:
230 switch (from->base_type) {
231 case GLSL_TYPE_INT: return ir_unop_i2f;
232 case GLSL_TYPE_UINT: return ir_unop_u2f;
233 case GLSL_TYPE_DOUBLE: return ir_unop_d2f;
234 default: return (ir_expression_operation)0;
235 }
236
237 case GLSL_TYPE_UINT:
238 if (!state->is_version(400, 0) && !state->ARB_gpu_shader5_enable)
239 return (ir_expression_operation)0;
240 switch (from->base_type) {
241 case GLSL_TYPE_INT: return ir_unop_i2u;
242 default: return (ir_expression_operation)0;
243 }
244
245 case GLSL_TYPE_DOUBLE:
246 if (!state->has_double())
247 return (ir_expression_operation)0;
248 switch (from->base_type) {
249 case GLSL_TYPE_INT: return ir_unop_i2d;
250 case GLSL_TYPE_UINT: return ir_unop_u2d;
251 case GLSL_TYPE_FLOAT: return ir_unop_f2d;
252 default: return (ir_expression_operation)0;
253 }
254
255 default: return (ir_expression_operation)0;
256 }
257 }
258
259
260 /**
261 * If a conversion is available, convert one operand to a different type
262 *
263 * The \c from \c ir_rvalue is converted "in place".
264 *
265 * \param to Type that the operand it to be converted to
266 * \param from Operand that is being converted
267 * \param state GLSL compiler state
268 *
269 * \return
270 * If a conversion is possible (or unnecessary), \c true is returned.
271 * Otherwise \c false is returned.
272 */
273 bool
274 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
275 struct _mesa_glsl_parse_state *state)
276 {
277 void *ctx = state;
278 if (to->base_type == from->type->base_type)
279 return true;
280
281 /* Prior to GLSL 1.20, there are no implicit conversions */
282 if (!state->is_version(120, 0))
283 return false;
284
285 /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
286 *
287 * "There are no implicit array or structure conversions. For
288 * example, an array of int cannot be implicitly converted to an
289 * array of float.
290 */
291 if (!to->is_numeric() || !from->type->is_numeric())
292 return false;
293
294 /* We don't actually want the specific type `to`, we want a type
295 * with the same base type as `to`, but the same vector width as
296 * `from`.
297 */
298 to = glsl_type::get_instance(to->base_type, from->type->vector_elements,
299 from->type->matrix_columns);
300
301 ir_expression_operation op = get_conversion_operation(to, from->type, state);
302 if (op) {
303 from = new(ctx) ir_expression(op, to, from, NULL);
304 return true;
305 } else {
306 return false;
307 }
308 }
309
310
311 static const struct glsl_type *
312 arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
313 bool multiply,
314 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
315 {
316 const glsl_type *type_a = value_a->type;
317 const glsl_type *type_b = value_b->type;
318
319 /* From GLSL 1.50 spec, page 56:
320 *
321 * "The arithmetic binary operators add (+), subtract (-),
322 * multiply (*), and divide (/) operate on integer and
323 * floating-point scalars, vectors, and matrices."
324 */
325 if (!type_a->is_numeric() || !type_b->is_numeric()) {
326 _mesa_glsl_error(loc, state,
327 "operands to arithmetic operators must be numeric");
328 return glsl_type::error_type;
329 }
330
331
332 /* "If one operand is floating-point based and the other is
333 * not, then the conversions from Section 4.1.10 "Implicit
334 * Conversions" are applied to the non-floating-point-based operand."
335 */
336 if (!apply_implicit_conversion(type_a, value_b, state)
337 && !apply_implicit_conversion(type_b, value_a, state)) {
338 _mesa_glsl_error(loc, state,
339 "could not implicitly convert operands to "
340 "arithmetic operator");
341 return glsl_type::error_type;
342 }
343 type_a = value_a->type;
344 type_b = value_b->type;
345
346 /* "If the operands are integer types, they must both be signed or
347 * both be unsigned."
348 *
349 * From this rule and the preceeding conversion it can be inferred that
350 * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
351 * The is_numeric check above already filtered out the case where either
352 * type is not one of these, so now the base types need only be tested for
353 * equality.
354 */
355 if (type_a->base_type != type_b->base_type) {
356 _mesa_glsl_error(loc, state,
357 "base type mismatch for arithmetic operator");
358 return glsl_type::error_type;
359 }
360
361 /* "All arithmetic binary operators result in the same fundamental type
362 * (signed integer, unsigned integer, or floating-point) as the
363 * operands they operate on, after operand type conversion. After
364 * conversion, the following cases are valid
365 *
366 * * The two operands are scalars. In this case the operation is
367 * applied, resulting in a scalar."
368 */
369 if (type_a->is_scalar() && type_b->is_scalar())
370 return type_a;
371
372 /* "* One operand is a scalar, and the other is a vector or matrix.
373 * In this case, the scalar operation is applied independently to each
374 * component of the vector or matrix, resulting in the same size
375 * vector or matrix."
376 */
377 if (type_a->is_scalar()) {
378 if (!type_b->is_scalar())
379 return type_b;
380 } else if (type_b->is_scalar()) {
381 return type_a;
382 }
383
384 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
385 * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
386 * handled.
387 */
388 assert(!type_a->is_scalar());
389 assert(!type_b->is_scalar());
390
391 /* "* The two operands are vectors of the same size. In this case, the
392 * operation is done component-wise resulting in the same size
393 * vector."
394 */
395 if (type_a->is_vector() && type_b->is_vector()) {
396 if (type_a == type_b) {
397 return type_a;
398 } else {
399 _mesa_glsl_error(loc, state,
400 "vector size mismatch for arithmetic operator");
401 return glsl_type::error_type;
402 }
403 }
404
405 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
406 * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
407 * <vector, vector> have been handled. At least one of the operands must
408 * be matrix. Further, since there are no integer matrix types, the base
409 * type of both operands must be float.
410 */
411 assert(type_a->is_matrix() || type_b->is_matrix());
412 assert(type_a->base_type == GLSL_TYPE_FLOAT ||
413 type_a->base_type == GLSL_TYPE_DOUBLE);
414 assert(type_b->base_type == GLSL_TYPE_FLOAT ||
415 type_b->base_type == GLSL_TYPE_DOUBLE);
416
417 /* "* The operator is add (+), subtract (-), or divide (/), and the
418 * operands are matrices with the same number of rows and the same
419 * number of columns. In this case, the operation is done component-
420 * wise resulting in the same size matrix."
421 * * The operator is multiply (*), where both operands are matrices or
422 * one operand is a vector and the other a matrix. A right vector
423 * operand is treated as a column vector and a left vector operand as a
424 * row vector. In all these cases, it is required that the number of
425 * columns of the left operand is equal to the number of rows of the
426 * right operand. Then, the multiply (*) operation does a linear
427 * algebraic multiply, yielding an object that has the same number of
428 * rows as the left operand and the same number of columns as the right
429 * operand. Section 5.10 "Vector and Matrix Operations" explains in
430 * more detail how vectors and matrices are operated on."
431 */
432 if (! multiply) {
433 if (type_a == type_b)
434 return type_a;
435 } else {
436 const glsl_type *type = glsl_type::get_mul_type(type_a, type_b);
437
438 if (type == glsl_type::error_type) {
439 _mesa_glsl_error(loc, state,
440 "size mismatch for matrix multiplication");
441 }
442
443 return type;
444 }
445
446
447 /* "All other cases are illegal."
448 */
449 _mesa_glsl_error(loc, state, "type mismatch");
450 return glsl_type::error_type;
451 }
452
453
454 static const struct glsl_type *
455 unary_arithmetic_result_type(const struct glsl_type *type,
456 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
457 {
458 /* From GLSL 1.50 spec, page 57:
459 *
460 * "The arithmetic unary operators negate (-), post- and pre-increment
461 * and decrement (-- and ++) operate on integer or floating-point
462 * values (including vectors and matrices). All unary operators work
463 * component-wise on their operands. These result with the same type
464 * they operated on."
465 */
466 if (!type->is_numeric()) {
467 _mesa_glsl_error(loc, state,
468 "operands to arithmetic operators must be numeric");
469 return glsl_type::error_type;
470 }
471
472 return type;
473 }
474
475 /**
476 * \brief Return the result type of a bit-logic operation.
477 *
478 * If the given types to the bit-logic operator are invalid, return
479 * glsl_type::error_type.
480 *
481 * \param type_a Type of LHS of bit-logic op
482 * \param type_b Type of RHS of bit-logic op
483 */
484 static const struct glsl_type *
485 bit_logic_result_type(const struct glsl_type *type_a,
486 const struct glsl_type *type_b,
487 ast_operators op,
488 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
489 {
490 if (!state->check_bitwise_operations_allowed(loc)) {
491 return glsl_type::error_type;
492 }
493
494 /* From page 50 (page 56 of PDF) of GLSL 1.30 spec:
495 *
496 * "The bitwise operators and (&), exclusive-or (^), and inclusive-or
497 * (|). The operands must be of type signed or unsigned integers or
498 * integer vectors."
499 */
500 if (!type_a->is_integer()) {
501 _mesa_glsl_error(loc, state, "LHS of `%s' must be an integer",
502 ast_expression::operator_string(op));
503 return glsl_type::error_type;
504 }
505 if (!type_b->is_integer()) {
506 _mesa_glsl_error(loc, state, "RHS of `%s' must be an integer",
507 ast_expression::operator_string(op));
508 return glsl_type::error_type;
509 }
510
511 /* "The fundamental types of the operands (signed or unsigned) must
512 * match,"
513 */
514 if (type_a->base_type != type_b->base_type) {
515 _mesa_glsl_error(loc, state, "operands of `%s' must have the same "
516 "base type", ast_expression::operator_string(op));
517 return glsl_type::error_type;
518 }
519
520 /* "The operands cannot be vectors of differing size." */
521 if (type_a->is_vector() &&
522 type_b->is_vector() &&
523 type_a->vector_elements != type_b->vector_elements) {
524 _mesa_glsl_error(loc, state, "operands of `%s' cannot be vectors of "
525 "different sizes", ast_expression::operator_string(op));
526 return glsl_type::error_type;
527 }
528
529 /* "If one operand is a scalar and the other a vector, the scalar is
530 * applied component-wise to the vector, resulting in the same type as
531 * the vector. The fundamental types of the operands [...] will be the
532 * resulting fundamental type."
533 */
534 if (type_a->is_scalar())
535 return type_b;
536 else
537 return type_a;
538 }
539
540 static const struct glsl_type *
541 modulus_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
542 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
543 {
544 const glsl_type *type_a = value_a->type;
545 const glsl_type *type_b = value_b->type;
546
547 if (!state->check_version(130, 300, loc, "operator '%%' is reserved")) {
548 return glsl_type::error_type;
549 }
550
551 /* Section 5.9 (Expressions) of the GLSL 4.00 specification says:
552 *
553 * "The operator modulus (%) operates on signed or unsigned integers or
554 * integer vectors."
555 */
556 if (!type_a->is_integer()) {
557 _mesa_glsl_error(loc, state, "LHS of operator %% must be an integer");
558 return glsl_type::error_type;
559 }
560 if (!type_b->is_integer()) {
561 _mesa_glsl_error(loc, state, "RHS of operator %% must be an integer");
562 return glsl_type::error_type;
563 }
564
565 /* "If the fundamental types in the operands do not match, then the
566 * conversions from section 4.1.10 "Implicit Conversions" are applied
567 * to create matching types."
568 *
569 * Note that GLSL 4.00 (and GL_ARB_gpu_shader5) introduced implicit
570 * int -> uint conversion rules. Prior to that, there were no implicit
571 * conversions. So it's harmless to apply them universally - no implicit
572 * conversions will exist. If the types don't match, we'll receive false,
573 * and raise an error, satisfying the GLSL 1.50 spec, page 56:
574 *
575 * "The operand types must both be signed or unsigned."
576 */
577 if (!apply_implicit_conversion(type_a, value_b, state) &&
578 !apply_implicit_conversion(type_b, value_a, state)) {
579 _mesa_glsl_error(loc, state,
580 "could not implicitly convert operands to "
581 "modulus (%%) operator");
582 return glsl_type::error_type;
583 }
584 type_a = value_a->type;
585 type_b = value_b->type;
586
587 /* "The operands cannot be vectors of differing size. If one operand is
588 * a scalar and the other vector, then the scalar is applied component-
589 * wise to the vector, resulting in the same type as the vector. If both
590 * are vectors of the same size, the result is computed component-wise."
591 */
592 if (type_a->is_vector()) {
593 if (!type_b->is_vector()
594 || (type_a->vector_elements == type_b->vector_elements))
595 return type_a;
596 } else
597 return type_b;
598
599 /* "The operator modulus (%) is not defined for any other data types
600 * (non-integer types)."
601 */
602 _mesa_glsl_error(loc, state, "type mismatch");
603 return glsl_type::error_type;
604 }
605
606
607 static const struct glsl_type *
608 relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
609 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
610 {
611 const glsl_type *type_a = value_a->type;
612 const glsl_type *type_b = value_b->type;
613
614 /* From GLSL 1.50 spec, page 56:
615 * "The relational operators greater than (>), less than (<), greater
616 * than or equal (>=), and less than or equal (<=) operate only on
617 * scalar integer and scalar floating-point expressions."
618 */
619 if (!type_a->is_numeric()
620 || !type_b->is_numeric()
621 || !type_a->is_scalar()
622 || !type_b->is_scalar()) {
623 _mesa_glsl_error(loc, state,
624 "operands to relational operators must be scalar and "
625 "numeric");
626 return glsl_type::error_type;
627 }
628
629 /* "Either the operands' types must match, or the conversions from
630 * Section 4.1.10 "Implicit Conversions" will be applied to the integer
631 * operand, after which the types must match."
632 */
633 if (!apply_implicit_conversion(type_a, value_b, state)
634 && !apply_implicit_conversion(type_b, value_a, state)) {
635 _mesa_glsl_error(loc, state,
636 "could not implicitly convert operands to "
637 "relational operator");
638 return glsl_type::error_type;
639 }
640 type_a = value_a->type;
641 type_b = value_b->type;
642
643 if (type_a->base_type != type_b->base_type) {
644 _mesa_glsl_error(loc, state, "base type mismatch");
645 return glsl_type::error_type;
646 }
647
648 /* "The result is scalar Boolean."
649 */
650 return glsl_type::bool_type;
651 }
652
653 /**
654 * \brief Return the result type of a bit-shift operation.
655 *
656 * If the given types to the bit-shift operator are invalid, return
657 * glsl_type::error_type.
658 *
659 * \param type_a Type of LHS of bit-shift op
660 * \param type_b Type of RHS of bit-shift op
661 */
662 static const struct glsl_type *
663 shift_result_type(const struct glsl_type *type_a,
664 const struct glsl_type *type_b,
665 ast_operators op,
666 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
667 {
668 if (!state->check_bitwise_operations_allowed(loc)) {
669 return glsl_type::error_type;
670 }
671
672 /* From page 50 (page 56 of the PDF) of the GLSL 1.30 spec:
673 *
674 * "The shift operators (<<) and (>>). For both operators, the operands
675 * must be signed or unsigned integers or integer vectors. One operand
676 * can be signed while the other is unsigned."
677 */
678 if (!type_a->is_integer()) {
679 _mesa_glsl_error(loc, state, "LHS of operator %s must be an integer or "
680 "integer vector", ast_expression::operator_string(op));
681 return glsl_type::error_type;
682
683 }
684 if (!type_b->is_integer()) {
685 _mesa_glsl_error(loc, state, "RHS of operator %s must be an integer or "
686 "integer vector", ast_expression::operator_string(op));
687 return glsl_type::error_type;
688 }
689
690 /* "If the first operand is a scalar, the second operand has to be
691 * a scalar as well."
692 */
693 if (type_a->is_scalar() && !type_b->is_scalar()) {
694 _mesa_glsl_error(loc, state, "if the first operand of %s is scalar, the "
695 "second must be scalar as well",
696 ast_expression::operator_string(op));
697 return glsl_type::error_type;
698 }
699
700 /* If both operands are vectors, check that they have same number of
701 * elements.
702 */
703 if (type_a->is_vector() &&
704 type_b->is_vector() &&
705 type_a->vector_elements != type_b->vector_elements) {
706 _mesa_glsl_error(loc, state, "vector operands to operator %s must "
707 "have same number of elements",
708 ast_expression::operator_string(op));
709 return glsl_type::error_type;
710 }
711
712 /* "In all cases, the resulting type will be the same type as the left
713 * operand."
714 */
715 return type_a;
716 }
717
718 /**
719 * Returns the innermost array index expression in an rvalue tree.
720 * This is the largest indexing level -- if an array of blocks, then
721 * it is the block index rather than an indexing expression for an
722 * array-typed member of an array of blocks.
723 */
724 static ir_rvalue *
725 find_innermost_array_index(ir_rvalue *rv)
726 {
727 ir_dereference_array *last = NULL;
728 while (rv) {
729 if (rv->as_dereference_array()) {
730 last = rv->as_dereference_array();
731 rv = last->array;
732 } else if (rv->as_dereference_record())
733 rv = rv->as_dereference_record()->record;
734 else if (rv->as_swizzle())
735 rv = rv->as_swizzle()->val;
736 else
737 rv = NULL;
738 }
739
740 if (last)
741 return last->array_index;
742
743 return NULL;
744 }
745
746 /**
747 * Validates that a value can be assigned to a location with a specified type
748 *
749 * Validates that \c rhs can be assigned to some location. If the types are
750 * not an exact match but an automatic conversion is possible, \c rhs will be
751 * converted.
752 *
753 * \return
754 * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
755 * Otherwise the actual RHS to be assigned will be returned. This may be
756 * \c rhs, or it may be \c rhs after some type conversion.
757 *
758 * \note
759 * In addition to being used for assignments, this function is used to
760 * type-check return values.
761 */
762 static ir_rvalue *
763 validate_assignment(struct _mesa_glsl_parse_state *state,
764 YYLTYPE loc, ir_rvalue *lhs,
765 ir_rvalue *rhs, bool is_initializer)
766 {
767 /* If there is already some error in the RHS, just return it. Anything
768 * else will lead to an avalanche of error message back to the user.
769 */
770 if (rhs->type->is_error())
771 return rhs;
772
773 /* In the Tessellation Control Shader:
774 * If a per-vertex output variable is used as an l-value, it is an error
775 * if the expression indicating the vertex number is not the identifier
776 * `gl_InvocationID`.
777 */
778 if (state->stage == MESA_SHADER_TESS_CTRL) {
779 ir_variable *var = lhs->variable_referenced();
780 if (var->data.mode == ir_var_shader_out && !var->data.patch) {
781 ir_rvalue *index = find_innermost_array_index(lhs);
782 ir_variable *index_var = index ? index->variable_referenced() : NULL;
783 if (!index_var || strcmp(index_var->name, "gl_InvocationID") != 0) {
784 _mesa_glsl_error(&loc, state,
785 "Tessellation control shader outputs can only "
786 "be indexed by gl_InvocationID");
787 return NULL;
788 }
789 }
790 }
791
792 /* If the types are identical, the assignment can trivially proceed.
793 */
794 if (rhs->type == lhs->type)
795 return rhs;
796
797 /* If the array element types are the same and the LHS is unsized,
798 * the assignment is okay for initializers embedded in variable
799 * declarations.
800 *
801 * Note: Whole-array assignments are not permitted in GLSL 1.10, but this
802 * is handled by ir_dereference::is_lvalue.
803 */
804 const glsl_type *lhs_t = lhs->type;
805 const glsl_type *rhs_t = rhs->type;
806 bool unsized_array = false;
807 while(lhs_t->is_array()) {
808 if (rhs_t == lhs_t)
809 break; /* the rest of the inner arrays match so break out early */
810 if (!rhs_t->is_array()) {
811 unsized_array = false;
812 break; /* number of dimensions mismatch */
813 }
814 if (lhs_t->length == rhs_t->length) {
815 lhs_t = lhs_t->fields.array;
816 rhs_t = rhs_t->fields.array;
817 continue;
818 } else if (lhs_t->is_unsized_array()) {
819 unsized_array = true;
820 } else {
821 unsized_array = false;
822 break; /* sized array mismatch */
823 }
824 lhs_t = lhs_t->fields.array;
825 rhs_t = rhs_t->fields.array;
826 }
827 if (unsized_array) {
828 if (is_initializer) {
829 return rhs;
830 } else {
831 _mesa_glsl_error(&loc, state,
832 "implicitly sized arrays cannot be assigned");
833 return NULL;
834 }
835 }
836
837 /* Check for implicit conversion in GLSL 1.20 */
838 if (apply_implicit_conversion(lhs->type, rhs, state)) {
839 if (rhs->type == lhs->type)
840 return rhs;
841 }
842
843 _mesa_glsl_error(&loc, state,
844 "%s of type %s cannot be assigned to "
845 "variable of type %s",
846 is_initializer ? "initializer" : "value",
847 rhs->type->name, lhs->type->name);
848
849 return NULL;
850 }
851
852 static void
853 mark_whole_array_access(ir_rvalue *access)
854 {
855 ir_dereference_variable *deref = access->as_dereference_variable();
856
857 if (deref && deref->var) {
858 deref->var->data.max_array_access = deref->type->length - 1;
859 }
860 }
861
862 static bool
863 do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state,
864 const char *non_lvalue_description,
865 ir_rvalue *lhs, ir_rvalue *rhs,
866 ir_rvalue **out_rvalue, bool needs_rvalue,
867 bool is_initializer,
868 YYLTYPE lhs_loc)
869 {
870 void *ctx = state;
871 bool error_emitted = (lhs->type->is_error() || rhs->type->is_error());
872
873 ir_variable *lhs_var = lhs->variable_referenced();
874 if (lhs_var)
875 lhs_var->data.assigned = true;
876
877 if (!error_emitted) {
878 if (non_lvalue_description != NULL) {
879 _mesa_glsl_error(&lhs_loc, state,
880 "assignment to %s",
881 non_lvalue_description);
882 error_emitted = true;
883 } else if (lhs_var != NULL && (lhs_var->data.read_only ||
884 (lhs_var->data.mode == ir_var_shader_storage &&
885 lhs_var->data.image_read_only))) {
886 /* We can have image_read_only set on both images and buffer variables,
887 * but in the former there is a distinction between assignments to
888 * the variable itself (read_only) and to the memory they point to
889 * (image_read_only), while in the case of buffer variables there is
890 * no such distinction, that is why this check here is limited to
891 * buffer variables alone.
892 */
893 _mesa_glsl_error(&lhs_loc, state,
894 "assignment to read-only variable '%s'",
895 lhs_var->name);
896 error_emitted = true;
897 } else if (lhs->type->is_array() &&
898 !state->check_version(120, 300, &lhs_loc,
899 "whole array assignment forbidden")) {
900 /* From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
901 *
902 * "Other binary or unary expressions, non-dereferenced
903 * arrays, function names, swizzles with repeated fields,
904 * and constants cannot be l-values."
905 *
906 * The restriction on arrays is lifted in GLSL 1.20 and GLSL ES 3.00.
907 */
908 error_emitted = true;
909 } else if (!lhs->is_lvalue()) {
910 _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment");
911 error_emitted = true;
912 }
913 }
914
915 ir_rvalue *new_rhs =
916 validate_assignment(state, lhs_loc, lhs, rhs, is_initializer);
917 if (new_rhs != NULL) {
918 rhs = new_rhs;
919
920 /* If the LHS array was not declared with a size, it takes it size from
921 * the RHS. If the LHS is an l-value and a whole array, it must be a
922 * dereference of a variable. Any other case would require that the LHS
923 * is either not an l-value or not a whole array.
924 */
925 if (lhs->type->is_unsized_array()) {
926 ir_dereference *const d = lhs->as_dereference();
927
928 assert(d != NULL);
929
930 ir_variable *const var = d->variable_referenced();
931
932 assert(var != NULL);
933
934 if (var->data.max_array_access >= unsigned(rhs->type->array_size())) {
935 /* FINISHME: This should actually log the location of the RHS. */
936 _mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to "
937 "previous access",
938 var->data.max_array_access);
939 }
940
941 var->type = glsl_type::get_array_instance(lhs->type->fields.array,
942 rhs->type->array_size());
943 d->type = var->type;
944 }
945 if (lhs->type->is_array()) {
946 mark_whole_array_access(rhs);
947 mark_whole_array_access(lhs);
948 }
949 }
950
951 /* Most callers of do_assignment (assign, add_assign, pre_inc/dec,
952 * but not post_inc) need the converted assigned value as an rvalue
953 * to handle things like:
954 *
955 * i = j += 1;
956 */
957 if (needs_rvalue) {
958 ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp",
959 ir_var_temporary);
960 instructions->push_tail(var);
961 instructions->push_tail(assign(var, rhs));
962
963 if (!error_emitted) {
964 ir_dereference_variable *deref_var = new(ctx) ir_dereference_variable(var);
965 instructions->push_tail(new(ctx) ir_assignment(lhs, deref_var));
966 }
967 ir_rvalue *rvalue = new(ctx) ir_dereference_variable(var);
968
969 *out_rvalue = rvalue;
970 } else {
971 if (!error_emitted)
972 instructions->push_tail(new(ctx) ir_assignment(lhs, rhs));
973 *out_rvalue = NULL;
974 }
975
976 return error_emitted;
977 }
978
979 static ir_rvalue *
980 get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue)
981 {
982 void *ctx = ralloc_parent(lvalue);
983 ir_variable *var;
984
985 var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp",
986 ir_var_temporary);
987 instructions->push_tail(var);
988
989 instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
990 lvalue));
991
992 return new(ctx) ir_dereference_variable(var);
993 }
994
995
996 ir_rvalue *
997 ast_node::hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
998 {
999 (void) instructions;
1000 (void) state;
1001
1002 return NULL;
1003 }
1004
1005 bool
1006 ast_node::has_sequence_subexpression() const
1007 {
1008 return false;
1009 }
1010
1011 void
1012 ast_function_expression::hir_no_rvalue(exec_list *instructions,
1013 struct _mesa_glsl_parse_state *state)
1014 {
1015 (void)hir(instructions, state);
1016 }
1017
1018 void
1019 ast_aggregate_initializer::hir_no_rvalue(exec_list *instructions,
1020 struct _mesa_glsl_parse_state *state)
1021 {
1022 (void)hir(instructions, state);
1023 }
1024
1025 static ir_rvalue *
1026 do_comparison(void *mem_ctx, int operation, ir_rvalue *op0, ir_rvalue *op1)
1027 {
1028 int join_op;
1029 ir_rvalue *cmp = NULL;
1030
1031 if (operation == ir_binop_all_equal)
1032 join_op = ir_binop_logic_and;
1033 else
1034 join_op = ir_binop_logic_or;
1035
1036 switch (op0->type->base_type) {
1037 case GLSL_TYPE_FLOAT:
1038 case GLSL_TYPE_UINT:
1039 case GLSL_TYPE_INT:
1040 case GLSL_TYPE_BOOL:
1041 case GLSL_TYPE_DOUBLE:
1042 return new(mem_ctx) ir_expression(operation, op0, op1);
1043
1044 case GLSL_TYPE_ARRAY: {
1045 for (unsigned int i = 0; i < op0->type->length; i++) {
1046 ir_rvalue *e0, *e1, *result;
1047
1048 e0 = new(mem_ctx) ir_dereference_array(op0->clone(mem_ctx, NULL),
1049 new(mem_ctx) ir_constant(i));
1050 e1 = new(mem_ctx) ir_dereference_array(op1->clone(mem_ctx, NULL),
1051 new(mem_ctx) ir_constant(i));
1052 result = do_comparison(mem_ctx, operation, e0, e1);
1053
1054 if (cmp) {
1055 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
1056 } else {
1057 cmp = result;
1058 }
1059 }
1060
1061 mark_whole_array_access(op0);
1062 mark_whole_array_access(op1);
1063 break;
1064 }
1065
1066 case GLSL_TYPE_STRUCT: {
1067 for (unsigned int i = 0; i < op0->type->length; i++) {
1068 ir_rvalue *e0, *e1, *result;
1069 const char *field_name = op0->type->fields.structure[i].name;
1070
1071 e0 = new(mem_ctx) ir_dereference_record(op0->clone(mem_ctx, NULL),
1072 field_name);
1073 e1 = new(mem_ctx) ir_dereference_record(op1->clone(mem_ctx, NULL),
1074 field_name);
1075 result = do_comparison(mem_ctx, operation, e0, e1);
1076
1077 if (cmp) {
1078 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
1079 } else {
1080 cmp = result;
1081 }
1082 }
1083 break;
1084 }
1085
1086 case GLSL_TYPE_ERROR:
1087 case GLSL_TYPE_VOID:
1088 case GLSL_TYPE_SAMPLER:
1089 case GLSL_TYPE_IMAGE:
1090 case GLSL_TYPE_INTERFACE:
1091 case GLSL_TYPE_FUNCTION:
1092 case GLSL_TYPE_ATOMIC_UINT:
1093 case GLSL_TYPE_SUBROUTINE:
1094 /* I assume a comparison of a struct containing a sampler just
1095 * ignores the sampler present in the type.
1096 */
1097 break;
1098 }
1099
1100 if (cmp == NULL)
1101 cmp = new(mem_ctx) ir_constant(true);
1102
1103 return cmp;
1104 }
1105
1106 /* For logical operations, we want to ensure that the operands are
1107 * scalar booleans. If it isn't, emit an error and return a constant
1108 * boolean to avoid triggering cascading error messages.
1109 */
1110 ir_rvalue *
1111 get_scalar_boolean_operand(exec_list *instructions,
1112 struct _mesa_glsl_parse_state *state,
1113 ast_expression *parent_expr,
1114 int operand,
1115 const char *operand_name,
1116 bool *error_emitted)
1117 {
1118 ast_expression *expr = parent_expr->subexpressions[operand];
1119 void *ctx = state;
1120 ir_rvalue *val = expr->hir(instructions, state);
1121
1122 if (val->type->is_boolean() && val->type->is_scalar())
1123 return val;
1124
1125 if (!*error_emitted) {
1126 YYLTYPE loc = expr->get_location();
1127 _mesa_glsl_error(&loc, state, "%s of `%s' must be scalar boolean",
1128 operand_name,
1129 parent_expr->operator_string(parent_expr->oper));
1130 *error_emitted = true;
1131 }
1132
1133 return new(ctx) ir_constant(true);
1134 }
1135
1136 /**
1137 * If name refers to a builtin array whose maximum allowed size is less than
1138 * size, report an error and return true. Otherwise return false.
1139 */
1140 void
1141 check_builtin_array_max_size(const char *name, unsigned size,
1142 YYLTYPE loc, struct _mesa_glsl_parse_state *state)
1143 {
1144 if ((strcmp("gl_TexCoord", name) == 0)
1145 && (size > state->Const.MaxTextureCoords)) {
1146 /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec:
1147 *
1148 * "The size [of gl_TexCoord] can be at most
1149 * gl_MaxTextureCoords."
1150 */
1151 _mesa_glsl_error(&loc, state, "`gl_TexCoord' array size cannot "
1152 "be larger than gl_MaxTextureCoords (%u)",
1153 state->Const.MaxTextureCoords);
1154 } else if (strcmp("gl_ClipDistance", name) == 0
1155 && size > state->Const.MaxClipPlanes) {
1156 /* From section 7.1 (Vertex Shader Special Variables) of the
1157 * GLSL 1.30 spec:
1158 *
1159 * "The gl_ClipDistance array is predeclared as unsized and
1160 * must be sized by the shader either redeclaring it with a
1161 * size or indexing it only with integral constant
1162 * expressions. ... The size can be at most
1163 * gl_MaxClipDistances."
1164 */
1165 _mesa_glsl_error(&loc, state, "`gl_ClipDistance' array size cannot "
1166 "be larger than gl_MaxClipDistances (%u)",
1167 state->Const.MaxClipPlanes);
1168 }
1169 }
1170
1171 /**
1172 * Create the constant 1, of a which is appropriate for incrementing and
1173 * decrementing values of the given GLSL type. For example, if type is vec4,
1174 * this creates a constant value of 1.0 having type float.
1175 *
1176 * If the given type is invalid for increment and decrement operators, return
1177 * a floating point 1--the error will be detected later.
1178 */
1179 static ir_rvalue *
1180 constant_one_for_inc_dec(void *ctx, const glsl_type *type)
1181 {
1182 switch (type->base_type) {
1183 case GLSL_TYPE_UINT:
1184 return new(ctx) ir_constant((unsigned) 1);
1185 case GLSL_TYPE_INT:
1186 return new(ctx) ir_constant(1);
1187 default:
1188 case GLSL_TYPE_FLOAT:
1189 return new(ctx) ir_constant(1.0f);
1190 }
1191 }
1192
1193 ir_rvalue *
1194 ast_expression::hir(exec_list *instructions,
1195 struct _mesa_glsl_parse_state *state)
1196 {
1197 return do_hir(instructions, state, true);
1198 }
1199
1200 void
1201 ast_expression::hir_no_rvalue(exec_list *instructions,
1202 struct _mesa_glsl_parse_state *state)
1203 {
1204 do_hir(instructions, state, false);
1205 }
1206
1207 ir_rvalue *
1208 ast_expression::do_hir(exec_list *instructions,
1209 struct _mesa_glsl_parse_state *state,
1210 bool needs_rvalue)
1211 {
1212 void *ctx = state;
1213 static const int operations[AST_NUM_OPERATORS] = {
1214 -1, /* ast_assign doesn't convert to ir_expression. */
1215 -1, /* ast_plus doesn't convert to ir_expression. */
1216 ir_unop_neg,
1217 ir_binop_add,
1218 ir_binop_sub,
1219 ir_binop_mul,
1220 ir_binop_div,
1221 ir_binop_mod,
1222 ir_binop_lshift,
1223 ir_binop_rshift,
1224 ir_binop_less,
1225 ir_binop_greater,
1226 ir_binop_lequal,
1227 ir_binop_gequal,
1228 ir_binop_all_equal,
1229 ir_binop_any_nequal,
1230 ir_binop_bit_and,
1231 ir_binop_bit_xor,
1232 ir_binop_bit_or,
1233 ir_unop_bit_not,
1234 ir_binop_logic_and,
1235 ir_binop_logic_xor,
1236 ir_binop_logic_or,
1237 ir_unop_logic_not,
1238
1239 /* Note: The following block of expression types actually convert
1240 * to multiple IR instructions.
1241 */
1242 ir_binop_mul, /* ast_mul_assign */
1243 ir_binop_div, /* ast_div_assign */
1244 ir_binop_mod, /* ast_mod_assign */
1245 ir_binop_add, /* ast_add_assign */
1246 ir_binop_sub, /* ast_sub_assign */
1247 ir_binop_lshift, /* ast_ls_assign */
1248 ir_binop_rshift, /* ast_rs_assign */
1249 ir_binop_bit_and, /* ast_and_assign */
1250 ir_binop_bit_xor, /* ast_xor_assign */
1251 ir_binop_bit_or, /* ast_or_assign */
1252
1253 -1, /* ast_conditional doesn't convert to ir_expression. */
1254 ir_binop_add, /* ast_pre_inc. */
1255 ir_binop_sub, /* ast_pre_dec. */
1256 ir_binop_add, /* ast_post_inc. */
1257 ir_binop_sub, /* ast_post_dec. */
1258 -1, /* ast_field_selection doesn't conv to ir_expression. */
1259 -1, /* ast_array_index doesn't convert to ir_expression. */
1260 -1, /* ast_function_call doesn't conv to ir_expression. */
1261 -1, /* ast_identifier doesn't convert to ir_expression. */
1262 -1, /* ast_int_constant doesn't convert to ir_expression. */
1263 -1, /* ast_uint_constant doesn't conv to ir_expression. */
1264 -1, /* ast_float_constant doesn't conv to ir_expression. */
1265 -1, /* ast_bool_constant doesn't conv to ir_expression. */
1266 -1, /* ast_sequence doesn't convert to ir_expression. */
1267 };
1268 ir_rvalue *result = NULL;
1269 ir_rvalue *op[3];
1270 const struct glsl_type *type; /* a temporary variable for switch cases */
1271 bool error_emitted = false;
1272 YYLTYPE loc;
1273
1274 loc = this->get_location();
1275
1276 switch (this->oper) {
1277 case ast_aggregate:
1278 assert(!"ast_aggregate: Should never get here.");
1279 break;
1280
1281 case ast_assign: {
1282 op[0] = this->subexpressions[0]->hir(instructions, state);
1283 op[1] = this->subexpressions[1]->hir(instructions, state);
1284
1285 error_emitted =
1286 do_assignment(instructions, state,
1287 this->subexpressions[0]->non_lvalue_description,
1288 op[0], op[1], &result, needs_rvalue, false,
1289 this->subexpressions[0]->get_location());
1290 break;
1291 }
1292
1293 case ast_plus:
1294 op[0] = this->subexpressions[0]->hir(instructions, state);
1295
1296 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1297
1298 error_emitted = type->is_error();
1299
1300 result = op[0];
1301 break;
1302
1303 case ast_neg:
1304 op[0] = this->subexpressions[0]->hir(instructions, state);
1305
1306 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1307
1308 error_emitted = type->is_error();
1309
1310 result = new(ctx) ir_expression(operations[this->oper], type,
1311 op[0], NULL);
1312 break;
1313
1314 case ast_add:
1315 case ast_sub:
1316 case ast_mul:
1317 case ast_div:
1318 op[0] = this->subexpressions[0]->hir(instructions, state);
1319 op[1] = this->subexpressions[1]->hir(instructions, state);
1320
1321 type = arithmetic_result_type(op[0], op[1],
1322 (this->oper == ast_mul),
1323 state, & loc);
1324 error_emitted = type->is_error();
1325
1326 result = new(ctx) ir_expression(operations[this->oper], type,
1327 op[0], op[1]);
1328 break;
1329
1330 case ast_mod:
1331 op[0] = this->subexpressions[0]->hir(instructions, state);
1332 op[1] = this->subexpressions[1]->hir(instructions, state);
1333
1334 type = modulus_result_type(op[0], op[1], state, &loc);
1335
1336 assert(operations[this->oper] == ir_binop_mod);
1337
1338 result = new(ctx) ir_expression(operations[this->oper], type,
1339 op[0], op[1]);
1340 error_emitted = type->is_error();
1341 break;
1342
1343 case ast_lshift:
1344 case ast_rshift:
1345 if (!state->check_bitwise_operations_allowed(&loc)) {
1346 error_emitted = true;
1347 }
1348
1349 op[0] = this->subexpressions[0]->hir(instructions, state);
1350 op[1] = this->subexpressions[1]->hir(instructions, state);
1351 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1352 &loc);
1353 result = new(ctx) ir_expression(operations[this->oper], type,
1354 op[0], op[1]);
1355 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1356 break;
1357
1358 case ast_less:
1359 case ast_greater:
1360 case ast_lequal:
1361 case ast_gequal:
1362 op[0] = this->subexpressions[0]->hir(instructions, state);
1363 op[1] = this->subexpressions[1]->hir(instructions, state);
1364
1365 type = relational_result_type(op[0], op[1], state, & loc);
1366
1367 /* The relational operators must either generate an error or result
1368 * in a scalar boolean. See page 57 of the GLSL 1.50 spec.
1369 */
1370 assert(type->is_error()
1371 || ((type->base_type == GLSL_TYPE_BOOL)
1372 && type->is_scalar()));
1373
1374 result = new(ctx) ir_expression(operations[this->oper], type,
1375 op[0], op[1]);
1376 error_emitted = type->is_error();
1377 break;
1378
1379 case ast_nequal:
1380 case ast_equal:
1381 op[0] = this->subexpressions[0]->hir(instructions, state);
1382 op[1] = this->subexpressions[1]->hir(instructions, state);
1383
1384 /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
1385 *
1386 * "The equality operators equal (==), and not equal (!=)
1387 * operate on all types. They result in a scalar Boolean. If
1388 * the operand types do not match, then there must be a
1389 * conversion from Section 4.1.10 "Implicit Conversions"
1390 * applied to one operand that can make them match, in which
1391 * case this conversion is done."
1392 */
1393
1394 if (op[0]->type == glsl_type::void_type || op[1]->type == glsl_type::void_type) {
1395 _mesa_glsl_error(& loc, state, "`%s': wrong operand types: "
1396 "no operation `%1$s' exists that takes a left-hand "
1397 "operand of type 'void' or a right operand of type "
1398 "'void'", (this->oper == ast_equal) ? "==" : "!=");
1399 error_emitted = true;
1400 } else if ((!apply_implicit_conversion(op[0]->type, op[1], state)
1401 && !apply_implicit_conversion(op[1]->type, op[0], state))
1402 || (op[0]->type != op[1]->type)) {
1403 _mesa_glsl_error(& loc, state, "operands of `%s' must have the same "
1404 "type", (this->oper == ast_equal) ? "==" : "!=");
1405 error_emitted = true;
1406 } else if ((op[0]->type->is_array() || op[1]->type->is_array()) &&
1407 !state->check_version(120, 300, &loc,
1408 "array comparisons forbidden")) {
1409 error_emitted = true;
1410 } else if ((op[0]->type->contains_opaque() ||
1411 op[1]->type->contains_opaque())) {
1412 _mesa_glsl_error(&loc, state, "opaque type comparisons forbidden");
1413 error_emitted = true;
1414 }
1415
1416 if (error_emitted) {
1417 result = new(ctx) ir_constant(false);
1418 } else {
1419 result = do_comparison(ctx, operations[this->oper], op[0], op[1]);
1420 assert(result->type == glsl_type::bool_type);
1421 }
1422 break;
1423
1424 case ast_bit_and:
1425 case ast_bit_xor:
1426 case ast_bit_or:
1427 op[0] = this->subexpressions[0]->hir(instructions, state);
1428 op[1] = this->subexpressions[1]->hir(instructions, state);
1429 type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
1430 state, &loc);
1431 result = new(ctx) ir_expression(operations[this->oper], type,
1432 op[0], op[1]);
1433 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1434 break;
1435
1436 case ast_bit_not:
1437 op[0] = this->subexpressions[0]->hir(instructions, state);
1438
1439 if (!state->check_bitwise_operations_allowed(&loc)) {
1440 error_emitted = true;
1441 }
1442
1443 if (!op[0]->type->is_integer()) {
1444 _mesa_glsl_error(&loc, state, "operand of `~' must be an integer");
1445 error_emitted = true;
1446 }
1447
1448 type = error_emitted ? glsl_type::error_type : op[0]->type;
1449 result = new(ctx) ir_expression(ir_unop_bit_not, type, op[0], NULL);
1450 break;
1451
1452 case ast_logic_and: {
1453 exec_list rhs_instructions;
1454 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1455 "LHS", &error_emitted);
1456 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1457 "RHS", &error_emitted);
1458
1459 if (rhs_instructions.is_empty()) {
1460 result = new(ctx) ir_expression(ir_binop_logic_and, op[0], op[1]);
1461 type = result->type;
1462 } else {
1463 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1464 "and_tmp",
1465 ir_var_temporary);
1466 instructions->push_tail(tmp);
1467
1468 ir_if *const stmt = new(ctx) ir_if(op[0]);
1469 instructions->push_tail(stmt);
1470
1471 stmt->then_instructions.append_list(&rhs_instructions);
1472 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1473 ir_assignment *const then_assign =
1474 new(ctx) ir_assignment(then_deref, op[1]);
1475 stmt->then_instructions.push_tail(then_assign);
1476
1477 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1478 ir_assignment *const else_assign =
1479 new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false));
1480 stmt->else_instructions.push_tail(else_assign);
1481
1482 result = new(ctx) ir_dereference_variable(tmp);
1483 type = tmp->type;
1484 }
1485 break;
1486 }
1487
1488 case ast_logic_or: {
1489 exec_list rhs_instructions;
1490 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1491 "LHS", &error_emitted);
1492 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1493 "RHS", &error_emitted);
1494
1495 if (rhs_instructions.is_empty()) {
1496 result = new(ctx) ir_expression(ir_binop_logic_or, op[0], op[1]);
1497 type = result->type;
1498 } else {
1499 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1500 "or_tmp",
1501 ir_var_temporary);
1502 instructions->push_tail(tmp);
1503
1504 ir_if *const stmt = new(ctx) ir_if(op[0]);
1505 instructions->push_tail(stmt);
1506
1507 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1508 ir_assignment *const then_assign =
1509 new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true));
1510 stmt->then_instructions.push_tail(then_assign);
1511
1512 stmt->else_instructions.append_list(&rhs_instructions);
1513 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1514 ir_assignment *const else_assign =
1515 new(ctx) ir_assignment(else_deref, op[1]);
1516 stmt->else_instructions.push_tail(else_assign);
1517
1518 result = new(ctx) ir_dereference_variable(tmp);
1519 type = tmp->type;
1520 }
1521 break;
1522 }
1523
1524 case ast_logic_xor:
1525 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1526 *
1527 * "The logical binary operators and (&&), or ( | | ), and
1528 * exclusive or (^^). They operate only on two Boolean
1529 * expressions and result in a Boolean expression."
1530 */
1531 op[0] = get_scalar_boolean_operand(instructions, state, this, 0, "LHS",
1532 &error_emitted);
1533 op[1] = get_scalar_boolean_operand(instructions, state, this, 1, "RHS",
1534 &error_emitted);
1535
1536 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1537 op[0], op[1]);
1538 break;
1539
1540 case ast_logic_not:
1541 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1542 "operand", &error_emitted);
1543
1544 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1545 op[0], NULL);
1546 break;
1547
1548 case ast_mul_assign:
1549 case ast_div_assign:
1550 case ast_add_assign:
1551 case ast_sub_assign: {
1552 op[0] = this->subexpressions[0]->hir(instructions, state);
1553 op[1] = this->subexpressions[1]->hir(instructions, state);
1554
1555 type = arithmetic_result_type(op[0], op[1],
1556 (this->oper == ast_mul_assign),
1557 state, & loc);
1558
1559 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1560 op[0], op[1]);
1561
1562 error_emitted =
1563 do_assignment(instructions, state,
1564 this->subexpressions[0]->non_lvalue_description,
1565 op[0]->clone(ctx, NULL), temp_rhs,
1566 &result, needs_rvalue, false,
1567 this->subexpressions[0]->get_location());
1568
1569 /* GLSL 1.10 does not allow array assignment. However, we don't have to
1570 * explicitly test for this because none of the binary expression
1571 * operators allow array operands either.
1572 */
1573
1574 break;
1575 }
1576
1577 case ast_mod_assign: {
1578 op[0] = this->subexpressions[0]->hir(instructions, state);
1579 op[1] = this->subexpressions[1]->hir(instructions, state);
1580
1581 type = modulus_result_type(op[0], op[1], state, &loc);
1582
1583 assert(operations[this->oper] == ir_binop_mod);
1584
1585 ir_rvalue *temp_rhs;
1586 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1587 op[0], op[1]);
1588
1589 error_emitted =
1590 do_assignment(instructions, state,
1591 this->subexpressions[0]->non_lvalue_description,
1592 op[0]->clone(ctx, NULL), temp_rhs,
1593 &result, needs_rvalue, false,
1594 this->subexpressions[0]->get_location());
1595 break;
1596 }
1597
1598 case ast_ls_assign:
1599 case ast_rs_assign: {
1600 op[0] = this->subexpressions[0]->hir(instructions, state);
1601 op[1] = this->subexpressions[1]->hir(instructions, state);
1602 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1603 &loc);
1604 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1605 type, op[0], op[1]);
1606 error_emitted =
1607 do_assignment(instructions, state,
1608 this->subexpressions[0]->non_lvalue_description,
1609 op[0]->clone(ctx, NULL), temp_rhs,
1610 &result, needs_rvalue, false,
1611 this->subexpressions[0]->get_location());
1612 break;
1613 }
1614
1615 case ast_and_assign:
1616 case ast_xor_assign:
1617 case ast_or_assign: {
1618 op[0] = this->subexpressions[0]->hir(instructions, state);
1619 op[1] = this->subexpressions[1]->hir(instructions, state);
1620 type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
1621 state, &loc);
1622 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1623 type, op[0], op[1]);
1624 error_emitted =
1625 do_assignment(instructions, state,
1626 this->subexpressions[0]->non_lvalue_description,
1627 op[0]->clone(ctx, NULL), temp_rhs,
1628 &result, needs_rvalue, false,
1629 this->subexpressions[0]->get_location());
1630 break;
1631 }
1632
1633 case ast_conditional: {
1634 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1635 *
1636 * "The ternary selection operator (?:). It operates on three
1637 * expressions (exp1 ? exp2 : exp3). This operator evaluates the
1638 * first expression, which must result in a scalar Boolean."
1639 */
1640 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1641 "condition", &error_emitted);
1642
1643 /* The :? operator is implemented by generating an anonymous temporary
1644 * followed by an if-statement. The last instruction in each branch of
1645 * the if-statement assigns a value to the anonymous temporary. This
1646 * temporary is the r-value of the expression.
1647 */
1648 exec_list then_instructions;
1649 exec_list else_instructions;
1650
1651 op[1] = this->subexpressions[1]->hir(&then_instructions, state);
1652 op[2] = this->subexpressions[2]->hir(&else_instructions, state);
1653
1654 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1655 *
1656 * "The second and third expressions can be any type, as
1657 * long their types match, or there is a conversion in
1658 * Section 4.1.10 "Implicit Conversions" that can be applied
1659 * to one of the expressions to make their types match. This
1660 * resulting matching type is the type of the entire
1661 * expression."
1662 */
1663 if ((!apply_implicit_conversion(op[1]->type, op[2], state)
1664 && !apply_implicit_conversion(op[2]->type, op[1], state))
1665 || (op[1]->type != op[2]->type)) {
1666 YYLTYPE loc = this->subexpressions[1]->get_location();
1667
1668 _mesa_glsl_error(& loc, state, "second and third operands of ?: "
1669 "operator must have matching types");
1670 error_emitted = true;
1671 type = glsl_type::error_type;
1672 } else {
1673 type = op[1]->type;
1674 }
1675
1676 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1677 *
1678 * "The second and third expressions must be the same type, but can
1679 * be of any type other than an array."
1680 */
1681 if (type->is_array() &&
1682 !state->check_version(120, 300, &loc,
1683 "second and third operands of ?: operator "
1684 "cannot be arrays")) {
1685 error_emitted = true;
1686 }
1687
1688 /* From section 4.1.7 of the GLSL 4.50 spec (Opaque Types):
1689 *
1690 * "Except for array indexing, structure member selection, and
1691 * parentheses, opaque variables are not allowed to be operands in
1692 * expressions; such use results in a compile-time error."
1693 */
1694 if (type->contains_opaque()) {
1695 _mesa_glsl_error(&loc, state, "opaque variables cannot be operands "
1696 "of the ?: operator");
1697 error_emitted = true;
1698 }
1699
1700 ir_constant *cond_val = op[0]->constant_expression_value();
1701
1702 if (then_instructions.is_empty()
1703 && else_instructions.is_empty()
1704 && cond_val != NULL) {
1705 result = cond_val->value.b[0] ? op[1] : op[2];
1706 } else {
1707 /* The copy to conditional_tmp reads the whole array. */
1708 if (type->is_array()) {
1709 mark_whole_array_access(op[1]);
1710 mark_whole_array_access(op[2]);
1711 }
1712
1713 ir_variable *const tmp =
1714 new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary);
1715 instructions->push_tail(tmp);
1716
1717 ir_if *const stmt = new(ctx) ir_if(op[0]);
1718 instructions->push_tail(stmt);
1719
1720 then_instructions.move_nodes_to(& stmt->then_instructions);
1721 ir_dereference *const then_deref =
1722 new(ctx) ir_dereference_variable(tmp);
1723 ir_assignment *const then_assign =
1724 new(ctx) ir_assignment(then_deref, op[1]);
1725 stmt->then_instructions.push_tail(then_assign);
1726
1727 else_instructions.move_nodes_to(& stmt->else_instructions);
1728 ir_dereference *const else_deref =
1729 new(ctx) ir_dereference_variable(tmp);
1730 ir_assignment *const else_assign =
1731 new(ctx) ir_assignment(else_deref, op[2]);
1732 stmt->else_instructions.push_tail(else_assign);
1733
1734 result = new(ctx) ir_dereference_variable(tmp);
1735 }
1736 break;
1737 }
1738
1739 case ast_pre_inc:
1740 case ast_pre_dec: {
1741 this->non_lvalue_description = (this->oper == ast_pre_inc)
1742 ? "pre-increment operation" : "pre-decrement operation";
1743
1744 op[0] = this->subexpressions[0]->hir(instructions, state);
1745 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1746
1747 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1748
1749 ir_rvalue *temp_rhs;
1750 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1751 op[0], op[1]);
1752
1753 error_emitted =
1754 do_assignment(instructions, state,
1755 this->subexpressions[0]->non_lvalue_description,
1756 op[0]->clone(ctx, NULL), temp_rhs,
1757 &result, needs_rvalue, false,
1758 this->subexpressions[0]->get_location());
1759 break;
1760 }
1761
1762 case ast_post_inc:
1763 case ast_post_dec: {
1764 this->non_lvalue_description = (this->oper == ast_post_inc)
1765 ? "post-increment operation" : "post-decrement operation";
1766 op[0] = this->subexpressions[0]->hir(instructions, state);
1767 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1768
1769 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1770
1771 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1772
1773 ir_rvalue *temp_rhs;
1774 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1775 op[0], op[1]);
1776
1777 /* Get a temporary of a copy of the lvalue before it's modified.
1778 * This may get thrown away later.
1779 */
1780 result = get_lvalue_copy(instructions, op[0]->clone(ctx, NULL));
1781
1782 ir_rvalue *junk_rvalue;
1783 error_emitted =
1784 do_assignment(instructions, state,
1785 this->subexpressions[0]->non_lvalue_description,
1786 op[0]->clone(ctx, NULL), temp_rhs,
1787 &junk_rvalue, false, false,
1788 this->subexpressions[0]->get_location());
1789
1790 break;
1791 }
1792
1793 case ast_field_selection:
1794 result = _mesa_ast_field_selection_to_hir(this, instructions, state);
1795 break;
1796
1797 case ast_array_index: {
1798 YYLTYPE index_loc = subexpressions[1]->get_location();
1799
1800 op[0] = subexpressions[0]->hir(instructions, state);
1801 op[1] = subexpressions[1]->hir(instructions, state);
1802
1803 result = _mesa_ast_array_index_to_hir(ctx, state, op[0], op[1],
1804 loc, index_loc);
1805
1806 if (result->type->is_error())
1807 error_emitted = true;
1808
1809 break;
1810 }
1811
1812 case ast_unsized_array_dim:
1813 assert(!"ast_unsized_array_dim: Should never get here.");
1814 break;
1815
1816 case ast_function_call:
1817 /* Should *NEVER* get here. ast_function_call should always be handled
1818 * by ast_function_expression::hir.
1819 */
1820 assert(0);
1821 break;
1822
1823 case ast_identifier: {
1824 /* ast_identifier can appear several places in a full abstract syntax
1825 * tree. This particular use must be at location specified in the grammar
1826 * as 'variable_identifier'.
1827 */
1828 ir_variable *var =
1829 state->symbols->get_variable(this->primary_expression.identifier);
1830
1831 if (var != NULL) {
1832 var->data.used = true;
1833 result = new(ctx) ir_dereference_variable(var);
1834 } else {
1835 _mesa_glsl_error(& loc, state, "`%s' undeclared",
1836 this->primary_expression.identifier);
1837
1838 result = ir_rvalue::error_value(ctx);
1839 error_emitted = true;
1840 }
1841 break;
1842 }
1843
1844 case ast_int_constant:
1845 result = new(ctx) ir_constant(this->primary_expression.int_constant);
1846 break;
1847
1848 case ast_uint_constant:
1849 result = new(ctx) ir_constant(this->primary_expression.uint_constant);
1850 break;
1851
1852 case ast_float_constant:
1853 result = new(ctx) ir_constant(this->primary_expression.float_constant);
1854 break;
1855
1856 case ast_bool_constant:
1857 result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant));
1858 break;
1859
1860 case ast_double_constant:
1861 result = new(ctx) ir_constant(this->primary_expression.double_constant);
1862 break;
1863
1864 case ast_sequence: {
1865 /* It should not be possible to generate a sequence in the AST without
1866 * any expressions in it.
1867 */
1868 assert(!this->expressions.is_empty());
1869
1870 /* The r-value of a sequence is the last expression in the sequence. If
1871 * the other expressions in the sequence do not have side-effects (and
1872 * therefore add instructions to the instruction list), they get dropped
1873 * on the floor.
1874 */
1875 exec_node *previous_tail_pred = NULL;
1876 YYLTYPE previous_operand_loc = loc;
1877
1878 foreach_list_typed (ast_node, ast, link, &this->expressions) {
1879 /* If one of the operands of comma operator does not generate any
1880 * code, we want to emit a warning. At each pass through the loop
1881 * previous_tail_pred will point to the last instruction in the
1882 * stream *before* processing the previous operand. Naturally,
1883 * instructions->tail_pred will point to the last instruction in the
1884 * stream *after* processing the previous operand. If the two
1885 * pointers match, then the previous operand had no effect.
1886 *
1887 * The warning behavior here differs slightly from GCC. GCC will
1888 * only emit a warning if none of the left-hand operands have an
1889 * effect. However, it will emit a warning for each. I believe that
1890 * there are some cases in C (especially with GCC extensions) where
1891 * it is useful to have an intermediate step in a sequence have no
1892 * effect, but I don't think these cases exist in GLSL. Either way,
1893 * it would be a giant hassle to replicate that behavior.
1894 */
1895 if (previous_tail_pred == instructions->tail_pred) {
1896 _mesa_glsl_warning(&previous_operand_loc, state,
1897 "left-hand operand of comma expression has "
1898 "no effect");
1899 }
1900
1901 /* tail_pred is directly accessed instead of using the get_tail()
1902 * method for performance reasons. get_tail() has extra code to
1903 * return NULL when the list is empty. We don't care about that
1904 * here, so using tail_pred directly is fine.
1905 */
1906 previous_tail_pred = instructions->tail_pred;
1907 previous_operand_loc = ast->get_location();
1908
1909 result = ast->hir(instructions, state);
1910 }
1911
1912 /* Any errors should have already been emitted in the loop above.
1913 */
1914 error_emitted = true;
1915 break;
1916 }
1917 }
1918 type = NULL; /* use result->type, not type. */
1919 assert(result != NULL || !needs_rvalue);
1920
1921 if (result && result->type->is_error() && !error_emitted)
1922 _mesa_glsl_error(& loc, state, "type mismatch");
1923
1924 return result;
1925 }
1926
1927 bool
1928 ast_expression::has_sequence_subexpression() const
1929 {
1930 switch (this->oper) {
1931 case ast_plus:
1932 case ast_neg:
1933 case ast_bit_not:
1934 case ast_logic_not:
1935 case ast_pre_inc:
1936 case ast_pre_dec:
1937 case ast_post_inc:
1938 case ast_post_dec:
1939 return this->subexpressions[0]->has_sequence_subexpression();
1940
1941 case ast_assign:
1942 case ast_add:
1943 case ast_sub:
1944 case ast_mul:
1945 case ast_div:
1946 case ast_mod:
1947 case ast_lshift:
1948 case ast_rshift:
1949 case ast_less:
1950 case ast_greater:
1951 case ast_lequal:
1952 case ast_gequal:
1953 case ast_nequal:
1954 case ast_equal:
1955 case ast_bit_and:
1956 case ast_bit_xor:
1957 case ast_bit_or:
1958 case ast_logic_and:
1959 case ast_logic_or:
1960 case ast_logic_xor:
1961 case ast_array_index:
1962 case ast_mul_assign:
1963 case ast_div_assign:
1964 case ast_add_assign:
1965 case ast_sub_assign:
1966 case ast_mod_assign:
1967 case ast_ls_assign:
1968 case ast_rs_assign:
1969 case ast_and_assign:
1970 case ast_xor_assign:
1971 case ast_or_assign:
1972 return this->subexpressions[0]->has_sequence_subexpression() ||
1973 this->subexpressions[1]->has_sequence_subexpression();
1974
1975 case ast_conditional:
1976 return this->subexpressions[0]->has_sequence_subexpression() ||
1977 this->subexpressions[1]->has_sequence_subexpression() ||
1978 this->subexpressions[2]->has_sequence_subexpression();
1979
1980 case ast_sequence:
1981 return true;
1982
1983 case ast_field_selection:
1984 case ast_identifier:
1985 case ast_int_constant:
1986 case ast_uint_constant:
1987 case ast_float_constant:
1988 case ast_bool_constant:
1989 case ast_double_constant:
1990 return false;
1991
1992 case ast_aggregate:
1993 unreachable("ast_aggregate: Should never get here.");
1994
1995 case ast_function_call:
1996 unreachable("should be handled by ast_function_expression::hir");
1997
1998 case ast_unsized_array_dim:
1999 unreachable("ast_unsized_array_dim: Should never get here.");
2000 }
2001
2002 return false;
2003 }
2004
2005 ir_rvalue *
2006 ast_expression_statement::hir(exec_list *instructions,
2007 struct _mesa_glsl_parse_state *state)
2008 {
2009 /* It is possible to have expression statements that don't have an
2010 * expression. This is the solitary semicolon:
2011 *
2012 * for (i = 0; i < 5; i++)
2013 * ;
2014 *
2015 * In this case the expression will be NULL. Test for NULL and don't do
2016 * anything in that case.
2017 */
2018 if (expression != NULL)
2019 expression->hir_no_rvalue(instructions, state);
2020
2021 /* Statements do not have r-values.
2022 */
2023 return NULL;
2024 }
2025
2026
2027 ir_rvalue *
2028 ast_compound_statement::hir(exec_list *instructions,
2029 struct _mesa_glsl_parse_state *state)
2030 {
2031 if (new_scope)
2032 state->symbols->push_scope();
2033
2034 foreach_list_typed (ast_node, ast, link, &this->statements)
2035 ast->hir(instructions, state);
2036
2037 if (new_scope)
2038 state->symbols->pop_scope();
2039
2040 /* Compound statements do not have r-values.
2041 */
2042 return NULL;
2043 }
2044
2045 /**
2046 * Evaluate the given exec_node (which should be an ast_node representing
2047 * a single array dimension) and return its integer value.
2048 */
2049 static unsigned
2050 process_array_size(exec_node *node,
2051 struct _mesa_glsl_parse_state *state)
2052 {
2053 exec_list dummy_instructions;
2054
2055 ast_node *array_size = exec_node_data(ast_node, node, link);
2056
2057 /**
2058 * Dimensions other than the outermost dimension can by unsized if they
2059 * are immediately sized by a constructor or initializer.
2060 */
2061 if (((ast_expression*)array_size)->oper == ast_unsized_array_dim)
2062 return 0;
2063
2064 ir_rvalue *const ir = array_size->hir(& dummy_instructions, state);
2065 YYLTYPE loc = array_size->get_location();
2066
2067 if (ir == NULL) {
2068 _mesa_glsl_error(& loc, state,
2069 "array size could not be resolved");
2070 return 0;
2071 }
2072
2073 if (!ir->type->is_integer()) {
2074 _mesa_glsl_error(& loc, state,
2075 "array size must be integer type");
2076 return 0;
2077 }
2078
2079 if (!ir->type->is_scalar()) {
2080 _mesa_glsl_error(& loc, state,
2081 "array size must be scalar type");
2082 return 0;
2083 }
2084
2085 ir_constant *const size = ir->constant_expression_value();
2086 if (size == NULL || array_size->has_sequence_subexpression()) {
2087 _mesa_glsl_error(& loc, state, "array size must be a "
2088 "constant valued expression");
2089 return 0;
2090 }
2091
2092 if (size->value.i[0] <= 0) {
2093 _mesa_glsl_error(& loc, state, "array size must be > 0");
2094 return 0;
2095 }
2096
2097 assert(size->type == ir->type);
2098
2099 /* If the array size is const (and we've verified that
2100 * it is) then no instructions should have been emitted
2101 * when we converted it to HIR. If they were emitted,
2102 * then either the array size isn't const after all, or
2103 * we are emitting unnecessary instructions.
2104 */
2105 assert(dummy_instructions.is_empty());
2106
2107 return size->value.u[0];
2108 }
2109
2110 static const glsl_type *
2111 process_array_type(YYLTYPE *loc, const glsl_type *base,
2112 ast_array_specifier *array_specifier,
2113 struct _mesa_glsl_parse_state *state)
2114 {
2115 const glsl_type *array_type = base;
2116
2117 if (array_specifier != NULL) {
2118 if (base->is_array()) {
2119
2120 /* From page 19 (page 25) of the GLSL 1.20 spec:
2121 *
2122 * "Only one-dimensional arrays may be declared."
2123 */
2124 if (!state->check_arrays_of_arrays_allowed(loc)) {
2125 return glsl_type::error_type;
2126 }
2127 }
2128
2129 for (exec_node *node = array_specifier->array_dimensions.tail_pred;
2130 !node->is_head_sentinel(); node = node->prev) {
2131 unsigned array_size = process_array_size(node, state);
2132 array_type = glsl_type::get_array_instance(array_type, array_size);
2133 }
2134 }
2135
2136 return array_type;
2137 }
2138
2139 static bool
2140 precision_qualifier_allowed(const glsl_type *type)
2141 {
2142 /* Precision qualifiers apply to floating point, integer and opaque
2143 * types.
2144 *
2145 * Section 4.5.2 (Precision Qualifiers) of the GLSL 1.30 spec says:
2146 * "Any floating point or any integer declaration can have the type
2147 * preceded by one of these precision qualifiers [...] Literal
2148 * constants do not have precision qualifiers. Neither do Boolean
2149 * variables.
2150 *
2151 * Section 4.5 (Precision and Precision Qualifiers) of the GLSL 1.30
2152 * spec also says:
2153 *
2154 * "Precision qualifiers are added for code portability with OpenGL
2155 * ES, not for functionality. They have the same syntax as in OpenGL
2156 * ES."
2157 *
2158 * Section 8 (Built-In Functions) of the GLSL ES 1.00 spec says:
2159 *
2160 * "uniform lowp sampler2D sampler;
2161 * highp vec2 coord;
2162 * ...
2163 * lowp vec4 col = texture2D (sampler, coord);
2164 * // texture2D returns lowp"
2165 *
2166 * From this, we infer that GLSL 1.30 (and later) should allow precision
2167 * qualifiers on sampler types just like float and integer types.
2168 */
2169 return (type->is_float()
2170 || type->is_integer()
2171 || type->contains_opaque())
2172 && !type->without_array()->is_record();
2173 }
2174
2175 const glsl_type *
2176 ast_type_specifier::glsl_type(const char **name,
2177 struct _mesa_glsl_parse_state *state) const
2178 {
2179 const struct glsl_type *type;
2180
2181 type = state->symbols->get_type(this->type_name);
2182 *name = this->type_name;
2183
2184 YYLTYPE loc = this->get_location();
2185 type = process_array_type(&loc, type, this->array_specifier, state);
2186
2187 return type;
2188 }
2189
2190 /**
2191 * From the OpenGL ES 3.0 spec, 4.5.4 Default Precision Qualifiers:
2192 *
2193 * "The precision statement
2194 *
2195 * precision precision-qualifier type;
2196 *
2197 * can be used to establish a default precision qualifier. The type field can
2198 * be either int or float or any of the sampler types, (...) If type is float,
2199 * the directive applies to non-precision-qualified floating point type
2200 * (scalar, vector, and matrix) declarations. If type is int, the directive
2201 * applies to all non-precision-qualified integer type (scalar, vector, signed,
2202 * and unsigned) declarations."
2203 *
2204 * We use the symbol table to keep the values of the default precisions for
2205 * each 'type' in each scope and we use the 'type' string from the precision
2206 * statement as key in the symbol table. When we want to retrieve the default
2207 * precision associated with a given glsl_type we need to know the type string
2208 * associated with it. This is what this function returns.
2209 */
2210 static const char *
2211 get_type_name_for_precision_qualifier(const glsl_type *type)
2212 {
2213 switch (type->base_type) {
2214 case GLSL_TYPE_FLOAT:
2215 return "float";
2216 case GLSL_TYPE_UINT:
2217 case GLSL_TYPE_INT:
2218 return "int";
2219 case GLSL_TYPE_ATOMIC_UINT:
2220 return "atomic_uint";
2221 case GLSL_TYPE_IMAGE:
2222 /* fallthrough */
2223 case GLSL_TYPE_SAMPLER: {
2224 const unsigned type_idx =
2225 type->sampler_array + 2 * type->sampler_shadow;
2226 const unsigned offset = type->base_type == GLSL_TYPE_SAMPLER ? 0 : 4;
2227 assert(type_idx < 4);
2228 switch (type->sampler_type) {
2229 case GLSL_TYPE_FLOAT:
2230 switch (type->sampler_dimensionality) {
2231 case GLSL_SAMPLER_DIM_1D: {
2232 assert(type->base_type == GLSL_TYPE_SAMPLER);
2233 static const char *const names[4] = {
2234 "sampler1D", "sampler1DArray",
2235 "sampler1DShadow", "sampler1DArrayShadow"
2236 };
2237 return names[type_idx];
2238 }
2239 case GLSL_SAMPLER_DIM_2D: {
2240 static const char *const names[8] = {
2241 "sampler2D", "sampler2DArray",
2242 "sampler2DShadow", "sampler2DArrayShadow",
2243 "image2D", "image2DArray", NULL, NULL
2244 };
2245 return names[offset + type_idx];
2246 }
2247 case GLSL_SAMPLER_DIM_3D: {
2248 static const char *const names[8] = {
2249 "sampler3D", NULL, NULL, NULL,
2250 "image3D", NULL, NULL, NULL
2251 };
2252 return names[offset + type_idx];
2253 }
2254 case GLSL_SAMPLER_DIM_CUBE: {
2255 static const char *const names[8] = {
2256 "samplerCube", "samplerCubeArray",
2257 "samplerCubeShadow", "samplerCubeArrayShadow",
2258 "imageCube", NULL, NULL, NULL
2259 };
2260 return names[offset + type_idx];
2261 }
2262 case GLSL_SAMPLER_DIM_MS: {
2263 assert(type->base_type == GLSL_TYPE_SAMPLER);
2264 static const char *const names[4] = {
2265 "sampler2DMS", "sampler2DMSArray", NULL, NULL
2266 };
2267 return names[type_idx];
2268 }
2269 case GLSL_SAMPLER_DIM_RECT: {
2270 assert(type->base_type == GLSL_TYPE_SAMPLER);
2271 static const char *const names[4] = {
2272 "samplerRect", NULL, "samplerRectShadow", NULL
2273 };
2274 return names[type_idx];
2275 }
2276 case GLSL_SAMPLER_DIM_BUF: {
2277 assert(type->base_type == GLSL_TYPE_SAMPLER);
2278 static const char *const names[4] = {
2279 "samplerBuffer", NULL, NULL, NULL
2280 };
2281 return names[type_idx];
2282 }
2283 case GLSL_SAMPLER_DIM_EXTERNAL: {
2284 assert(type->base_type == GLSL_TYPE_SAMPLER);
2285 static const char *const names[4] = {
2286 "samplerExternalOES", NULL, NULL, NULL
2287 };
2288 return names[type_idx];
2289 }
2290 default:
2291 unreachable("Unsupported sampler/image dimensionality");
2292 } /* sampler/image float dimensionality */
2293 break;
2294 case GLSL_TYPE_INT:
2295 switch (type->sampler_dimensionality) {
2296 case GLSL_SAMPLER_DIM_1D: {
2297 assert(type->base_type == GLSL_TYPE_SAMPLER);
2298 static const char *const names[4] = {
2299 "isampler1D", "isampler1DArray", NULL, NULL
2300 };
2301 return names[type_idx];
2302 }
2303 case GLSL_SAMPLER_DIM_2D: {
2304 static const char *const names[8] = {
2305 "isampler2D", "isampler2DArray", NULL, NULL,
2306 "iimage2D", "iimage2DArray", NULL, NULL
2307 };
2308 return names[offset + type_idx];
2309 }
2310 case GLSL_SAMPLER_DIM_3D: {
2311 static const char *const names[8] = {
2312 "isampler3D", NULL, NULL, NULL,
2313 "iimage3D", NULL, NULL, NULL
2314 };
2315 return names[offset + type_idx];
2316 }
2317 case GLSL_SAMPLER_DIM_CUBE: {
2318 static const char *const names[8] = {
2319 "isamplerCube", "isamplerCubeArray", NULL, NULL,
2320 "iimageCube", NULL, NULL, NULL
2321 };
2322 return names[offset + type_idx];
2323 }
2324 case GLSL_SAMPLER_DIM_MS: {
2325 assert(type->base_type == GLSL_TYPE_SAMPLER);
2326 static const char *const names[4] = {
2327 "isampler2DMS", "isampler2DMSArray", NULL, NULL
2328 };
2329 return names[type_idx];
2330 }
2331 case GLSL_SAMPLER_DIM_RECT: {
2332 assert(type->base_type == GLSL_TYPE_SAMPLER);
2333 static const char *const names[4] = {
2334 "isamplerRect", NULL, "isamplerRectShadow", NULL
2335 };
2336 return names[type_idx];
2337 }
2338 case GLSL_SAMPLER_DIM_BUF: {
2339 assert(type->base_type == GLSL_TYPE_SAMPLER);
2340 static const char *const names[4] = {
2341 "isamplerBuffer", NULL, NULL, NULL
2342 };
2343 return names[type_idx];
2344 }
2345 default:
2346 unreachable("Unsupported isampler/iimage dimensionality");
2347 } /* sampler/image int dimensionality */
2348 break;
2349 case GLSL_TYPE_UINT:
2350 switch (type->sampler_dimensionality) {
2351 case GLSL_SAMPLER_DIM_1D: {
2352 assert(type->base_type == GLSL_TYPE_SAMPLER);
2353 static const char *const names[4] = {
2354 "usampler1D", "usampler1DArray", NULL, NULL
2355 };
2356 return names[type_idx];
2357 }
2358 case GLSL_SAMPLER_DIM_2D: {
2359 static const char *const names[8] = {
2360 "usampler2D", "usampler2DArray", NULL, NULL,
2361 "uimage2D", "uimage2DArray", NULL, NULL
2362 };
2363 return names[offset + type_idx];
2364 }
2365 case GLSL_SAMPLER_DIM_3D: {
2366 static const char *const names[8] = {
2367 "usampler3D", NULL, NULL, NULL,
2368 "uimage3D", NULL, NULL, NULL
2369 };
2370 return names[offset + type_idx];
2371 }
2372 case GLSL_SAMPLER_DIM_CUBE: {
2373 static const char *const names[8] = {
2374 "usamplerCube", "usamplerCubeArray", NULL, NULL,
2375 "uimageCube", NULL, NULL, NULL
2376 };
2377 return names[offset + type_idx];
2378 }
2379 case GLSL_SAMPLER_DIM_MS: {
2380 assert(type->base_type == GLSL_TYPE_SAMPLER);
2381 static const char *const names[4] = {
2382 "usampler2DMS", "usampler2DMSArray", NULL, NULL
2383 };
2384 return names[type_idx];
2385 }
2386 case GLSL_SAMPLER_DIM_RECT: {
2387 assert(type->base_type == GLSL_TYPE_SAMPLER);
2388 static const char *const names[4] = {
2389 "usamplerRect", NULL, "usamplerRectShadow", NULL
2390 };
2391 return names[type_idx];
2392 }
2393 case GLSL_SAMPLER_DIM_BUF: {
2394 assert(type->base_type == GLSL_TYPE_SAMPLER);
2395 static const char *const names[4] = {
2396 "usamplerBuffer", NULL, NULL, NULL
2397 };
2398 return names[type_idx];
2399 }
2400 default:
2401 unreachable("Unsupported usampler/uimage dimensionality");
2402 } /* sampler/image uint dimensionality */
2403 break;
2404 default:
2405 unreachable("Unsupported sampler/image type");
2406 } /* sampler/image type */
2407 break;
2408 } /* GLSL_TYPE_SAMPLER/GLSL_TYPE_IMAGE */
2409 break;
2410 default:
2411 unreachable("Unsupported type");
2412 } /* base type */
2413 }
2414
2415 static unsigned
2416 select_gles_precision(unsigned qual_precision,
2417 const glsl_type *type,
2418 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
2419 {
2420 /* Precision qualifiers do not have any meaning in Desktop GLSL.
2421 * In GLES we take the precision from the type qualifier if present,
2422 * otherwise, if the type of the variable allows precision qualifiers at
2423 * all, we look for the default precision qualifier for that type in the
2424 * current scope.
2425 */
2426 assert(state->es_shader);
2427
2428 unsigned precision = GLSL_PRECISION_NONE;
2429 if (qual_precision) {
2430 precision = qual_precision;
2431 } else if (precision_qualifier_allowed(type)) {
2432 const char *type_name =
2433 get_type_name_for_precision_qualifier(type->without_array());
2434 assert(type_name != NULL);
2435
2436 precision =
2437 state->symbols->get_default_precision_qualifier(type_name);
2438 if (precision == ast_precision_none) {
2439 _mesa_glsl_error(loc, state,
2440 "No precision specified in this scope for type `%s'",
2441 type->name);
2442 }
2443 }
2444 return precision;
2445 }
2446
2447 const glsl_type *
2448 ast_fully_specified_type::glsl_type(const char **name,
2449 struct _mesa_glsl_parse_state *state) const
2450 {
2451 return this->specifier->glsl_type(name, state);
2452 }
2453
2454 /**
2455 * Determine whether a toplevel variable declaration declares a varying. This
2456 * function operates by examining the variable's mode and the shader target,
2457 * so it correctly identifies linkage variables regardless of whether they are
2458 * declared using the deprecated "varying" syntax or the new "in/out" syntax.
2459 *
2460 * Passing a non-toplevel variable declaration (e.g. a function parameter) to
2461 * this function will produce undefined results.
2462 */
2463 static bool
2464 is_varying_var(ir_variable *var, gl_shader_stage target)
2465 {
2466 switch (target) {
2467 case MESA_SHADER_VERTEX:
2468 return var->data.mode == ir_var_shader_out;
2469 case MESA_SHADER_FRAGMENT:
2470 return var->data.mode == ir_var_shader_in;
2471 default:
2472 return var->data.mode == ir_var_shader_out || var->data.mode == ir_var_shader_in;
2473 }
2474 }
2475
2476
2477 /**
2478 * Matrix layout qualifiers are only allowed on certain types
2479 */
2480 static void
2481 validate_matrix_layout_for_type(struct _mesa_glsl_parse_state *state,
2482 YYLTYPE *loc,
2483 const glsl_type *type,
2484 ir_variable *var)
2485 {
2486 if (var && !var->is_in_buffer_block()) {
2487 /* Layout qualifiers may only apply to interface blocks and fields in
2488 * them.
2489 */
2490 _mesa_glsl_error(loc, state,
2491 "uniform block layout qualifiers row_major and "
2492 "column_major may not be applied to variables "
2493 "outside of uniform blocks");
2494 } else if (!type->without_array()->is_matrix()) {
2495 /* The OpenGL ES 3.0 conformance tests did not originally allow
2496 * matrix layout qualifiers on non-matrices. However, the OpenGL
2497 * 4.4 and OpenGL ES 3.0 (revision TBD) specifications were
2498 * amended to specifically allow these layouts on all types. Emit
2499 * a warning so that people know their code may not be portable.
2500 */
2501 _mesa_glsl_warning(loc, state,
2502 "uniform block layout qualifiers row_major and "
2503 "column_major applied to non-matrix types may "
2504 "be rejected by older compilers");
2505 }
2506 }
2507
2508 static bool
2509 process_qualifier_constant(struct _mesa_glsl_parse_state *state,
2510 YYLTYPE *loc,
2511 const char *qual_indentifier,
2512 ast_expression *const_expression,
2513 unsigned *value)
2514 {
2515 exec_list dummy_instructions;
2516
2517 if (const_expression == NULL) {
2518 *value = 0;
2519 return true;
2520 }
2521
2522 ir_rvalue *const ir = const_expression->hir(&dummy_instructions, state);
2523
2524 ir_constant *const const_int = ir->constant_expression_value();
2525 if (const_int == NULL || !const_int->type->is_integer()) {
2526 _mesa_glsl_error(loc, state, "%s must be an integral constant "
2527 "expression", qual_indentifier);
2528 return false;
2529 }
2530
2531 if (const_int->value.i[0] < 0) {
2532 _mesa_glsl_error(loc, state, "%s layout qualifier is invalid (%d < 0)",
2533 qual_indentifier, const_int->value.u[0]);
2534 return false;
2535 }
2536
2537 /* If the location is const (and we've verified that
2538 * it is) then no instructions should have been emitted
2539 * when we converted it to HIR. If they were emitted,
2540 * then either the location isn't const after all, or
2541 * we are emitting unnecessary instructions.
2542 */
2543 assert(dummy_instructions.is_empty());
2544
2545 *value = const_int->value.u[0];
2546 return true;
2547 }
2548
2549 static bool
2550 validate_stream_qualifier(YYLTYPE *loc, struct _mesa_glsl_parse_state *state,
2551 unsigned stream)
2552 {
2553 if (stream >= state->ctx->Const.MaxVertexStreams) {
2554 _mesa_glsl_error(loc, state,
2555 "invalid stream specified %d is larger than "
2556 "MAX_VERTEX_STREAMS - 1 (%d).",
2557 stream, state->ctx->Const.MaxVertexStreams - 1);
2558 return false;
2559 }
2560
2561 return true;
2562 }
2563
2564 static void
2565 apply_explicit_binding(struct _mesa_glsl_parse_state *state,
2566 YYLTYPE *loc,
2567 ir_variable *var,
2568 const glsl_type *type,
2569 const ast_type_qualifier *qual)
2570 {
2571 if (!qual->flags.q.uniform && !qual->flags.q.buffer) {
2572 _mesa_glsl_error(loc, state,
2573 "the \"binding\" qualifier only applies to uniforms and "
2574 "shader storage buffer objects");
2575 return;
2576 }
2577
2578 unsigned qual_binding;
2579 if (!process_qualifier_constant(state, loc, "binding", qual->binding,
2580 &qual_binding)) {
2581 return;
2582 }
2583
2584 const struct gl_context *const ctx = state->ctx;
2585 unsigned elements = type->is_array() ? type->arrays_of_arrays_size() : 1;
2586 unsigned max_index = qual_binding + elements - 1;
2587 const glsl_type *base_type = type->without_array();
2588
2589 if (base_type->is_interface()) {
2590 /* UBOs. From page 60 of the GLSL 4.20 specification:
2591 * "If the binding point for any uniform block instance is less than zero,
2592 * or greater than or equal to the implementation-dependent maximum
2593 * number of uniform buffer bindings, a compilation error will occur.
2594 * When the binding identifier is used with a uniform block instanced as
2595 * an array of size N, all elements of the array from binding through
2596 * binding + N – 1 must be within this range."
2597 *
2598 * The implementation-dependent maximum is GL_MAX_UNIFORM_BUFFER_BINDINGS.
2599 */
2600 if (qual->flags.q.uniform &&
2601 max_index >= ctx->Const.MaxUniformBufferBindings) {
2602 _mesa_glsl_error(loc, state, "layout(binding = %u) for %d UBOs exceeds "
2603 "the maximum number of UBO binding points (%d)",
2604 qual_binding, elements,
2605 ctx->Const.MaxUniformBufferBindings);
2606 return;
2607 }
2608
2609 /* SSBOs. From page 67 of the GLSL 4.30 specification:
2610 * "If the binding point for any uniform or shader storage block instance
2611 * is less than zero, or greater than or equal to the
2612 * implementation-dependent maximum number of uniform buffer bindings, a
2613 * compile-time error will occur. When the binding identifier is used
2614 * with a uniform or shader storage block instanced as an array of size
2615 * N, all elements of the array from binding through binding + N – 1 must
2616 * be within this range."
2617 */
2618 if (qual->flags.q.buffer &&
2619 max_index >= ctx->Const.MaxShaderStorageBufferBindings) {
2620 _mesa_glsl_error(loc, state, "layout(binding = %u) for %d SSBOs exceeds "
2621 "the maximum number of SSBO binding points (%d)",
2622 qual_binding, elements,
2623 ctx->Const.MaxShaderStorageBufferBindings);
2624 return;
2625 }
2626 } else if (base_type->is_sampler()) {
2627 /* Samplers. From page 63 of the GLSL 4.20 specification:
2628 * "If the binding is less than zero, or greater than or equal to the
2629 * implementation-dependent maximum supported number of units, a
2630 * compilation error will occur. When the binding identifier is used
2631 * with an array of size N, all elements of the array from binding
2632 * through binding + N - 1 must be within this range."
2633 */
2634 unsigned limit = ctx->Const.MaxCombinedTextureImageUnits;
2635
2636 if (max_index >= limit) {
2637 _mesa_glsl_error(loc, state, "layout(binding = %d) for %d samplers "
2638 "exceeds the maximum number of texture image units "
2639 "(%u)", qual_binding, elements, limit);
2640
2641 return;
2642 }
2643 } else if (base_type->contains_atomic()) {
2644 assert(ctx->Const.MaxAtomicBufferBindings <= MAX_COMBINED_ATOMIC_BUFFERS);
2645 if (qual_binding >= ctx->Const.MaxAtomicBufferBindings) {
2646 _mesa_glsl_error(loc, state, "layout(binding = %d) exceeds the "
2647 " maximum number of atomic counter buffer bindings"
2648 "(%u)", qual_binding,
2649 ctx->Const.MaxAtomicBufferBindings);
2650
2651 return;
2652 }
2653 } else if (state->is_version(420, 310) && base_type->is_image()) {
2654 assert(ctx->Const.MaxImageUnits <= MAX_IMAGE_UNITS);
2655 if (max_index >= ctx->Const.MaxImageUnits) {
2656 _mesa_glsl_error(loc, state, "Image binding %d exceeds the "
2657 " maximum number of image units (%d)", max_index,
2658 ctx->Const.MaxImageUnits);
2659 return;
2660 }
2661
2662 } else {
2663 _mesa_glsl_error(loc, state,
2664 "the \"binding\" qualifier only applies to uniform "
2665 "blocks, opaque variables, or arrays thereof");
2666 return;
2667 }
2668
2669 var->data.explicit_binding = true;
2670 var->data.binding = qual_binding;
2671
2672 return;
2673 }
2674
2675
2676 static glsl_interp_qualifier
2677 interpret_interpolation_qualifier(const struct ast_type_qualifier *qual,
2678 ir_variable_mode mode,
2679 struct _mesa_glsl_parse_state *state,
2680 YYLTYPE *loc)
2681 {
2682 glsl_interp_qualifier interpolation;
2683 if (qual->flags.q.flat)
2684 interpolation = INTERP_QUALIFIER_FLAT;
2685 else if (qual->flags.q.noperspective)
2686 interpolation = INTERP_QUALIFIER_NOPERSPECTIVE;
2687 else if (qual->flags.q.smooth)
2688 interpolation = INTERP_QUALIFIER_SMOOTH;
2689 else
2690 interpolation = INTERP_QUALIFIER_NONE;
2691
2692 if (interpolation != INTERP_QUALIFIER_NONE) {
2693 if (mode != ir_var_shader_in && mode != ir_var_shader_out) {
2694 _mesa_glsl_error(loc, state,
2695 "interpolation qualifier `%s' can only be applied to "
2696 "shader inputs or outputs.",
2697 interpolation_string(interpolation));
2698
2699 }
2700
2701 if ((state->stage == MESA_SHADER_VERTEX && mode == ir_var_shader_in) ||
2702 (state->stage == MESA_SHADER_FRAGMENT && mode == ir_var_shader_out)) {
2703 _mesa_glsl_error(loc, state,
2704 "interpolation qualifier `%s' cannot be applied to "
2705 "vertex shader inputs or fragment shader outputs",
2706 interpolation_string(interpolation));
2707 }
2708 }
2709
2710 return interpolation;
2711 }
2712
2713
2714 static void
2715 apply_explicit_location(const struct ast_type_qualifier *qual,
2716 ir_variable *var,
2717 struct _mesa_glsl_parse_state *state,
2718 YYLTYPE *loc)
2719 {
2720 bool fail = false;
2721
2722 unsigned qual_location;
2723 if (!process_qualifier_constant(state, loc, "location", qual->location,
2724 &qual_location)) {
2725 return;
2726 }
2727
2728 /* Checks for GL_ARB_explicit_uniform_location. */
2729 if (qual->flags.q.uniform) {
2730 if (!state->check_explicit_uniform_location_allowed(loc, var))
2731 return;
2732
2733 const struct gl_context *const ctx = state->ctx;
2734 unsigned max_loc = qual_location + var->type->uniform_locations() - 1;
2735
2736 if (max_loc >= ctx->Const.MaxUserAssignableUniformLocations) {
2737 _mesa_glsl_error(loc, state, "location(s) consumed by uniform %s "
2738 ">= MAX_UNIFORM_LOCATIONS (%u)", var->name,
2739 ctx->Const.MaxUserAssignableUniformLocations);
2740 return;
2741 }
2742
2743 var->data.explicit_location = true;
2744 var->data.location = qual_location;
2745 return;
2746 }
2747
2748 /* Between GL_ARB_explicit_attrib_location an
2749 * GL_ARB_separate_shader_objects, the inputs and outputs of any shader
2750 * stage can be assigned explicit locations. The checking here associates
2751 * the correct extension with the correct stage's input / output:
2752 *
2753 * input output
2754 * ----- ------
2755 * vertex explicit_loc sso
2756 * tess control sso sso
2757 * tess eval sso sso
2758 * geometry sso sso
2759 * fragment sso explicit_loc
2760 */
2761 switch (state->stage) {
2762 case MESA_SHADER_VERTEX:
2763 if (var->data.mode == ir_var_shader_in) {
2764 if (!state->check_explicit_attrib_location_allowed(loc, var))
2765 return;
2766
2767 break;
2768 }
2769
2770 if (var->data.mode == ir_var_shader_out) {
2771 if (!state->check_separate_shader_objects_allowed(loc, var))
2772 return;
2773
2774 break;
2775 }
2776
2777 fail = true;
2778 break;
2779
2780 case MESA_SHADER_TESS_CTRL:
2781 case MESA_SHADER_TESS_EVAL:
2782 case MESA_SHADER_GEOMETRY:
2783 if (var->data.mode == ir_var_shader_in || var->data.mode == ir_var_shader_out) {
2784 if (!state->check_separate_shader_objects_allowed(loc, var))
2785 return;
2786
2787 break;
2788 }
2789
2790 fail = true;
2791 break;
2792
2793 case MESA_SHADER_FRAGMENT:
2794 if (var->data.mode == ir_var_shader_in) {
2795 if (!state->check_separate_shader_objects_allowed(loc, var))
2796 return;
2797
2798 break;
2799 }
2800
2801 if (var->data.mode == ir_var_shader_out) {
2802 if (!state->check_explicit_attrib_location_allowed(loc, var))
2803 return;
2804
2805 break;
2806 }
2807
2808 fail = true;
2809 break;
2810
2811 case MESA_SHADER_COMPUTE:
2812 _mesa_glsl_error(loc, state,
2813 "compute shader variables cannot be given "
2814 "explicit locations");
2815 return;
2816 };
2817
2818 if (fail) {
2819 _mesa_glsl_error(loc, state,
2820 "%s cannot be given an explicit location in %s shader",
2821 mode_string(var),
2822 _mesa_shader_stage_to_string(state->stage));
2823 } else {
2824 var->data.explicit_location = true;
2825
2826 switch (state->stage) {
2827 case MESA_SHADER_VERTEX:
2828 var->data.location = (var->data.mode == ir_var_shader_in)
2829 ? (qual_location + VERT_ATTRIB_GENERIC0)
2830 : (qual_location + VARYING_SLOT_VAR0);
2831 break;
2832
2833 case MESA_SHADER_TESS_CTRL:
2834 case MESA_SHADER_TESS_EVAL:
2835 case MESA_SHADER_GEOMETRY:
2836 if (var->data.patch)
2837 var->data.location = qual_location + VARYING_SLOT_PATCH0;
2838 else
2839 var->data.location = qual_location + VARYING_SLOT_VAR0;
2840 break;
2841
2842 case MESA_SHADER_FRAGMENT:
2843 var->data.location = (var->data.mode == ir_var_shader_out)
2844 ? (qual_location + FRAG_RESULT_DATA0)
2845 : (qual_location + VARYING_SLOT_VAR0);
2846 break;
2847 case MESA_SHADER_COMPUTE:
2848 assert(!"Unexpected shader type");
2849 break;
2850 }
2851
2852 /* Check if index was set for the uniform instead of the function */
2853 if (qual->flags.q.explicit_index && qual->flags.q.subroutine) {
2854 _mesa_glsl_error(loc, state, "an index qualifier can only be "
2855 "used with subroutine functions");
2856 return;
2857 }
2858
2859 unsigned qual_index;
2860 if (qual->flags.q.explicit_index &&
2861 process_qualifier_constant(state, loc, "index", qual->index,
2862 &qual_index)) {
2863 /* From the GLSL 4.30 specification, section 4.4.2 (Output
2864 * Layout Qualifiers):
2865 *
2866 * "It is also a compile-time error if a fragment shader
2867 * sets a layout index to less than 0 or greater than 1."
2868 *
2869 * Older specifications don't mandate a behavior; we take
2870 * this as a clarification and always generate the error.
2871 */
2872 if (qual_index > 1) {
2873 _mesa_glsl_error(loc, state,
2874 "explicit index may only be 0 or 1");
2875 } else {
2876 var->data.explicit_index = true;
2877 var->data.index = qual_index;
2878 }
2879 }
2880 }
2881 }
2882
2883 static void
2884 apply_image_qualifier_to_variable(const struct ast_type_qualifier *qual,
2885 ir_variable *var,
2886 struct _mesa_glsl_parse_state *state,
2887 YYLTYPE *loc)
2888 {
2889 const glsl_type *base_type = var->type->without_array();
2890
2891 if (base_type->is_image()) {
2892 if (var->data.mode != ir_var_uniform &&
2893 var->data.mode != ir_var_function_in) {
2894 _mesa_glsl_error(loc, state, "image variables may only be declared as "
2895 "function parameters or uniform-qualified "
2896 "global variables");
2897 }
2898
2899 var->data.image_read_only |= qual->flags.q.read_only;
2900 var->data.image_write_only |= qual->flags.q.write_only;
2901 var->data.image_coherent |= qual->flags.q.coherent;
2902 var->data.image_volatile |= qual->flags.q._volatile;
2903 var->data.image_restrict |= qual->flags.q.restrict_flag;
2904 var->data.read_only = true;
2905
2906 if (qual->flags.q.explicit_image_format) {
2907 if (var->data.mode == ir_var_function_in) {
2908 _mesa_glsl_error(loc, state, "format qualifiers cannot be "
2909 "used on image function parameters");
2910 }
2911
2912 if (qual->image_base_type != base_type->sampler_type) {
2913 _mesa_glsl_error(loc, state, "format qualifier doesn't match the "
2914 "base data type of the image");
2915 }
2916
2917 var->data.image_format = qual->image_format;
2918 } else {
2919 if (var->data.mode == ir_var_uniform) {
2920 if (state->es_shader) {
2921 _mesa_glsl_error(loc, state, "all image uniforms "
2922 "must have a format layout qualifier");
2923
2924 } else if (!qual->flags.q.write_only) {
2925 _mesa_glsl_error(loc, state, "image uniforms not qualified with "
2926 "`writeonly' must have a format layout "
2927 "qualifier");
2928 }
2929 }
2930
2931 var->data.image_format = GL_NONE;
2932 }
2933
2934 /* From page 70 of the GLSL ES 3.1 specification:
2935 *
2936 * "Except for image variables qualified with the format qualifiers
2937 * r32f, r32i, and r32ui, image variables must specify either memory
2938 * qualifier readonly or the memory qualifier writeonly."
2939 */
2940 if (state->es_shader &&
2941 var->data.image_format != GL_R32F &&
2942 var->data.image_format != GL_R32I &&
2943 var->data.image_format != GL_R32UI &&
2944 !var->data.image_read_only &&
2945 !var->data.image_write_only) {
2946 _mesa_glsl_error(loc, state, "image variables of format other than "
2947 "r32f, r32i or r32ui must be qualified `readonly' or "
2948 "`writeonly'");
2949 }
2950
2951 } else if (qual->flags.q.read_only ||
2952 qual->flags.q.write_only ||
2953 qual->flags.q.coherent ||
2954 qual->flags.q._volatile ||
2955 qual->flags.q.restrict_flag ||
2956 qual->flags.q.explicit_image_format) {
2957 _mesa_glsl_error(loc, state, "memory qualifiers may only be applied to "
2958 "images");
2959 }
2960 }
2961
2962 static inline const char*
2963 get_layout_qualifier_string(bool origin_upper_left, bool pixel_center_integer)
2964 {
2965 if (origin_upper_left && pixel_center_integer)
2966 return "origin_upper_left, pixel_center_integer";
2967 else if (origin_upper_left)
2968 return "origin_upper_left";
2969 else if (pixel_center_integer)
2970 return "pixel_center_integer";
2971 else
2972 return " ";
2973 }
2974
2975 static inline bool
2976 is_conflicting_fragcoord_redeclaration(struct _mesa_glsl_parse_state *state,
2977 const struct ast_type_qualifier *qual)
2978 {
2979 /* If gl_FragCoord was previously declared, and the qualifiers were
2980 * different in any way, return true.
2981 */
2982 if (state->fs_redeclares_gl_fragcoord) {
2983 return (state->fs_pixel_center_integer != qual->flags.q.pixel_center_integer
2984 || state->fs_origin_upper_left != qual->flags.q.origin_upper_left);
2985 }
2986
2987 return false;
2988 }
2989
2990 static inline void
2991 validate_array_dimensions(const glsl_type *t,
2992 struct _mesa_glsl_parse_state *state,
2993 YYLTYPE *loc) {
2994 if (t->is_array()) {
2995 t = t->fields.array;
2996 while (t->is_array()) {
2997 if (t->is_unsized_array()) {
2998 _mesa_glsl_error(loc, state,
2999 "only the outermost array dimension can "
3000 "be unsized",
3001 t->name);
3002 break;
3003 }
3004 t = t->fields.array;
3005 }
3006 }
3007 }
3008
3009 static void
3010 apply_layout_qualifier_to_variable(const struct ast_type_qualifier *qual,
3011 ir_variable *var,
3012 struct _mesa_glsl_parse_state *state,
3013 YYLTYPE *loc)
3014 {
3015 if (var->name != NULL && strcmp(var->name, "gl_FragCoord") == 0) {
3016
3017 /* Section 4.3.8.1, page 39 of GLSL 1.50 spec says:
3018 *
3019 * "Within any shader, the first redeclarations of gl_FragCoord
3020 * must appear before any use of gl_FragCoord."
3021 *
3022 * Generate a compiler error if above condition is not met by the
3023 * fragment shader.
3024 */
3025 ir_variable *earlier = state->symbols->get_variable("gl_FragCoord");
3026 if (earlier != NULL &&
3027 earlier->data.used &&
3028 !state->fs_redeclares_gl_fragcoord) {
3029 _mesa_glsl_error(loc, state,
3030 "gl_FragCoord used before its first redeclaration "
3031 "in fragment shader");
3032 }
3033
3034 /* Make sure all gl_FragCoord redeclarations specify the same layout
3035 * qualifiers.
3036 */
3037 if (is_conflicting_fragcoord_redeclaration(state, qual)) {
3038 const char *const qual_string =
3039 get_layout_qualifier_string(qual->flags.q.origin_upper_left,
3040 qual->flags.q.pixel_center_integer);
3041
3042 const char *const state_string =
3043 get_layout_qualifier_string(state->fs_origin_upper_left,
3044 state->fs_pixel_center_integer);
3045
3046 _mesa_glsl_error(loc, state,
3047 "gl_FragCoord redeclared with different layout "
3048 "qualifiers (%s) and (%s) ",
3049 state_string,
3050 qual_string);
3051 }
3052 state->fs_origin_upper_left = qual->flags.q.origin_upper_left;
3053 state->fs_pixel_center_integer = qual->flags.q.pixel_center_integer;
3054 state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers =
3055 !qual->flags.q.origin_upper_left && !qual->flags.q.pixel_center_integer;
3056 state->fs_redeclares_gl_fragcoord =
3057 state->fs_origin_upper_left ||
3058 state->fs_pixel_center_integer ||
3059 state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers;
3060 }
3061
3062 var->data.pixel_center_integer = qual->flags.q.pixel_center_integer;
3063 var->data.origin_upper_left = qual->flags.q.origin_upper_left;
3064 if ((qual->flags.q.origin_upper_left || qual->flags.q.pixel_center_integer)
3065 && (strcmp(var->name, "gl_FragCoord") != 0)) {
3066 const char *const qual_string = (qual->flags.q.origin_upper_left)
3067 ? "origin_upper_left" : "pixel_center_integer";
3068
3069 _mesa_glsl_error(loc, state,
3070 "layout qualifier `%s' can only be applied to "
3071 "fragment shader input `gl_FragCoord'",
3072 qual_string);
3073 }
3074
3075 if (qual->flags.q.explicit_location) {
3076 apply_explicit_location(qual, var, state, loc);
3077 } else if (qual->flags.q.explicit_index) {
3078 if (!qual->flags.q.subroutine_def)
3079 _mesa_glsl_error(loc, state,
3080 "explicit index requires explicit location");
3081 }
3082
3083 if (qual->flags.q.explicit_binding) {
3084 apply_explicit_binding(state, loc, var, var->type, qual);
3085 }
3086
3087 if (state->stage == MESA_SHADER_GEOMETRY &&
3088 qual->flags.q.out && qual->flags.q.stream) {
3089 unsigned qual_stream;
3090 if (process_qualifier_constant(state, loc, "stream", qual->stream,
3091 &qual_stream) &&
3092 validate_stream_qualifier(loc, state, qual_stream)) {
3093 var->data.stream = qual_stream;
3094 }
3095 }
3096
3097 if (var->type->contains_atomic()) {
3098 if (var->data.mode == ir_var_uniform) {
3099 if (var->data.explicit_binding) {
3100 unsigned *offset =
3101 &state->atomic_counter_offsets[var->data.binding];
3102
3103 if (*offset % ATOMIC_COUNTER_SIZE)
3104 _mesa_glsl_error(loc, state,
3105 "misaligned atomic counter offset");
3106
3107 var->data.atomic.offset = *offset;
3108 *offset += var->type->atomic_size();
3109
3110 } else {
3111 _mesa_glsl_error(loc, state,
3112 "atomic counters require explicit binding point");
3113 }
3114 } else if (var->data.mode != ir_var_function_in) {
3115 _mesa_glsl_error(loc, state, "atomic counters may only be declared as "
3116 "function parameters or uniform-qualified "
3117 "global variables");
3118 }
3119 }
3120
3121 /* Is the 'layout' keyword used with parameters that allow relaxed checking.
3122 * Many implementations of GL_ARB_fragment_coord_conventions_enable and some
3123 * implementations (only Mesa?) GL_ARB_explicit_attrib_location_enable
3124 * allowed the layout qualifier to be used with 'varying' and 'attribute'.
3125 * These extensions and all following extensions that add the 'layout'
3126 * keyword have been modified to require the use of 'in' or 'out'.
3127 *
3128 * The following extension do not allow the deprecated keywords:
3129 *
3130 * GL_AMD_conservative_depth
3131 * GL_ARB_conservative_depth
3132 * GL_ARB_gpu_shader5
3133 * GL_ARB_separate_shader_objects
3134 * GL_ARB_tessellation_shader
3135 * GL_ARB_transform_feedback3
3136 * GL_ARB_uniform_buffer_object
3137 *
3138 * It is unknown whether GL_EXT_shader_image_load_store or GL_NV_gpu_shader5
3139 * allow layout with the deprecated keywords.
3140 */
3141 const bool relaxed_layout_qualifier_checking =
3142 state->ARB_fragment_coord_conventions_enable;
3143
3144 const bool uses_deprecated_qualifier = qual->flags.q.attribute
3145 || qual->flags.q.varying;
3146 if (qual->has_layout() && uses_deprecated_qualifier) {
3147 if (relaxed_layout_qualifier_checking) {
3148 _mesa_glsl_warning(loc, state,
3149 "`layout' qualifier may not be used with "
3150 "`attribute' or `varying'");
3151 } else {
3152 _mesa_glsl_error(loc, state,
3153 "`layout' qualifier may not be used with "
3154 "`attribute' or `varying'");
3155 }
3156 }
3157
3158 /* Layout qualifiers for gl_FragDepth, which are enabled by extension
3159 * AMD_conservative_depth.
3160 */
3161 int depth_layout_count = qual->flags.q.depth_any
3162 + qual->flags.q.depth_greater
3163 + qual->flags.q.depth_less
3164 + qual->flags.q.depth_unchanged;
3165 if (depth_layout_count > 0
3166 && !state->AMD_conservative_depth_enable
3167 && !state->ARB_conservative_depth_enable) {
3168 _mesa_glsl_error(loc, state,
3169 "extension GL_AMD_conservative_depth or "
3170 "GL_ARB_conservative_depth must be enabled "
3171 "to use depth layout qualifiers");
3172 } else if (depth_layout_count > 0
3173 && strcmp(var->name, "gl_FragDepth") != 0) {
3174 _mesa_glsl_error(loc, state,
3175 "depth layout qualifiers can be applied only to "
3176 "gl_FragDepth");
3177 } else if (depth_layout_count > 1
3178 && strcmp(var->name, "gl_FragDepth") == 0) {
3179 _mesa_glsl_error(loc, state,
3180 "at most one depth layout qualifier can be applied to "
3181 "gl_FragDepth");
3182 }
3183 if (qual->flags.q.depth_any)
3184 var->data.depth_layout = ir_depth_layout_any;
3185 else if (qual->flags.q.depth_greater)
3186 var->data.depth_layout = ir_depth_layout_greater;
3187 else if (qual->flags.q.depth_less)
3188 var->data.depth_layout = ir_depth_layout_less;
3189 else if (qual->flags.q.depth_unchanged)
3190 var->data.depth_layout = ir_depth_layout_unchanged;
3191 else
3192 var->data.depth_layout = ir_depth_layout_none;
3193
3194 if (qual->flags.q.std140 ||
3195 qual->flags.q.std430 ||
3196 qual->flags.q.packed ||
3197 qual->flags.q.shared) {
3198 _mesa_glsl_error(loc, state,
3199 "uniform and shader storage block layout qualifiers "
3200 "std140, std430, packed, and shared can only be "
3201 "applied to uniform or shader storage blocks, not "
3202 "members");
3203 }
3204
3205 if (qual->flags.q.row_major || qual->flags.q.column_major) {
3206 validate_matrix_layout_for_type(state, loc, var->type, var);
3207 }
3208
3209 /* From section 4.4.1.3 of the GLSL 4.50 specification (Fragment Shader
3210 * Inputs):
3211 *
3212 * "Fragment shaders also allow the following layout qualifier on in only
3213 * (not with variable declarations)
3214 * layout-qualifier-id
3215 * early_fragment_tests
3216 * [...]"
3217 */
3218 if (qual->flags.q.early_fragment_tests) {
3219 _mesa_glsl_error(loc, state, "early_fragment_tests layout qualifier only "
3220 "valid in fragment shader input layout declaration.");
3221 }
3222 }
3223
3224 static void
3225 apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
3226 ir_variable *var,
3227 struct _mesa_glsl_parse_state *state,
3228 YYLTYPE *loc,
3229 bool is_parameter)
3230 {
3231 STATIC_ASSERT(sizeof(qual->flags.q) <= sizeof(qual->flags.i));
3232
3233 if (qual->flags.q.invariant) {
3234 if (var->data.used) {
3235 _mesa_glsl_error(loc, state,
3236 "variable `%s' may not be redeclared "
3237 "`invariant' after being used",
3238 var->name);
3239 } else {
3240 var->data.invariant = 1;
3241 }
3242 }
3243
3244 if (qual->flags.q.precise) {
3245 if (var->data.used) {
3246 _mesa_glsl_error(loc, state,
3247 "variable `%s' may not be redeclared "
3248 "`precise' after being used",
3249 var->name);
3250 } else {
3251 var->data.precise = 1;
3252 }
3253 }
3254
3255 if (qual->flags.q.subroutine && !qual->flags.q.uniform) {
3256 _mesa_glsl_error(loc, state,
3257 "`subroutine' may only be applied to uniforms, "
3258 "subroutine type declarations, or function definitions");
3259 }
3260
3261 if (qual->flags.q.constant || qual->flags.q.attribute
3262 || qual->flags.q.uniform
3263 || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
3264 var->data.read_only = 1;
3265
3266 if (qual->flags.q.centroid)
3267 var->data.centroid = 1;
3268
3269 if (qual->flags.q.sample)
3270 var->data.sample = 1;
3271
3272 /* Precision qualifiers do not hold any meaning in Desktop GLSL */
3273 if (state->es_shader) {
3274 var->data.precision =
3275 select_gles_precision(qual->precision, var->type, state, loc);
3276 }
3277
3278 if (qual->flags.q.patch)
3279 var->data.patch = 1;
3280
3281 if (qual->flags.q.attribute && state->stage != MESA_SHADER_VERTEX) {
3282 var->type = glsl_type::error_type;
3283 _mesa_glsl_error(loc, state,
3284 "`attribute' variables may not be declared in the "
3285 "%s shader",
3286 _mesa_shader_stage_to_string(state->stage));
3287 }
3288
3289 /* Disallow layout qualifiers which may only appear on layout declarations. */
3290 if (qual->flags.q.prim_type) {
3291 _mesa_glsl_error(loc, state,
3292 "Primitive type may only be specified on GS input or output "
3293 "layout declaration, not on variables.");
3294 }
3295
3296 /* Section 6.1.1 (Function Calling Conventions) of the GLSL 1.10 spec says:
3297 *
3298 * "However, the const qualifier cannot be used with out or inout."
3299 *
3300 * The same section of the GLSL 4.40 spec further clarifies this saying:
3301 *
3302 * "The const qualifier cannot be used with out or inout, or a
3303 * compile-time error results."
3304 */
3305 if (is_parameter && qual->flags.q.constant && qual->flags.q.out) {
3306 _mesa_glsl_error(loc, state,
3307 "`const' may not be applied to `out' or `inout' "
3308 "function parameters");
3309 }
3310
3311 /* If there is no qualifier that changes the mode of the variable, leave
3312 * the setting alone.
3313 */
3314 assert(var->data.mode != ir_var_temporary);
3315 if (qual->flags.q.in && qual->flags.q.out)
3316 var->data.mode = ir_var_function_inout;
3317 else if (qual->flags.q.in)
3318 var->data.mode = is_parameter ? ir_var_function_in : ir_var_shader_in;
3319 else if (qual->flags.q.attribute
3320 || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
3321 var->data.mode = ir_var_shader_in;
3322 else if (qual->flags.q.out)
3323 var->data.mode = is_parameter ? ir_var_function_out : ir_var_shader_out;
3324 else if (qual->flags.q.varying && (state->stage == MESA_SHADER_VERTEX))
3325 var->data.mode = ir_var_shader_out;
3326 else if (qual->flags.q.uniform)
3327 var->data.mode = ir_var_uniform;
3328 else if (qual->flags.q.buffer)
3329 var->data.mode = ir_var_shader_storage;
3330 else if (qual->flags.q.shared_storage)
3331 var->data.mode = ir_var_shader_shared;
3332
3333 if (!is_parameter && is_varying_var(var, state->stage)) {
3334 /* User-defined ins/outs are not permitted in compute shaders. */
3335 if (state->stage == MESA_SHADER_COMPUTE) {
3336 _mesa_glsl_error(loc, state,
3337 "user-defined input and output variables are not "
3338 "permitted in compute shaders");
3339 }
3340
3341 /* This variable is being used to link data between shader stages (in
3342 * pre-glsl-1.30 parlance, it's a "varying"). Check that it has a type
3343 * that is allowed for such purposes.
3344 *
3345 * From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
3346 *
3347 * "The varying qualifier can be used only with the data types
3348 * float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
3349 * these."
3350 *
3351 * This was relaxed in GLSL version 1.30 and GLSL ES version 3.00. From
3352 * page 31 (page 37 of the PDF) of the GLSL 1.30 spec:
3353 *
3354 * "Fragment inputs can only be signed and unsigned integers and
3355 * integer vectors, float, floating-point vectors, matrices, or
3356 * arrays of these. Structures cannot be input.
3357 *
3358 * Similar text exists in the section on vertex shader outputs.
3359 *
3360 * Similar text exists in the GLSL ES 3.00 spec, except that the GLSL ES
3361 * 3.00 spec allows structs as well. Varying structs are also allowed
3362 * in GLSL 1.50.
3363 */
3364 switch (var->type->get_scalar_type()->base_type) {
3365 case GLSL_TYPE_FLOAT:
3366 /* Ok in all GLSL versions */
3367 break;
3368 case GLSL_TYPE_UINT:
3369 case GLSL_TYPE_INT:
3370 if (state->is_version(130, 300))
3371 break;
3372 _mesa_glsl_error(loc, state,
3373 "varying variables must be of base type float in %s",
3374 state->get_version_string());
3375 break;
3376 case GLSL_TYPE_STRUCT:
3377 if (state->is_version(150, 300))
3378 break;
3379 _mesa_glsl_error(loc, state,
3380 "varying variables may not be of type struct");
3381 break;
3382 case GLSL_TYPE_DOUBLE:
3383 break;
3384 default:
3385 _mesa_glsl_error(loc, state, "illegal type for a varying variable");
3386 break;
3387 }
3388 }
3389
3390 if (state->all_invariant && (state->current_function == NULL)) {
3391 switch (state->stage) {
3392 case MESA_SHADER_VERTEX:
3393 if (var->data.mode == ir_var_shader_out)
3394 var->data.invariant = true;
3395 break;
3396 case MESA_SHADER_TESS_CTRL:
3397 case MESA_SHADER_TESS_EVAL:
3398 case MESA_SHADER_GEOMETRY:
3399 if ((var->data.mode == ir_var_shader_in)
3400 || (var->data.mode == ir_var_shader_out))
3401 var->data.invariant = true;
3402 break;
3403 case MESA_SHADER_FRAGMENT:
3404 if (var->data.mode == ir_var_shader_in)
3405 var->data.invariant = true;
3406 break;
3407 case MESA_SHADER_COMPUTE:
3408 /* Invariance isn't meaningful in compute shaders. */
3409 break;
3410 }
3411 }
3412
3413 var->data.interpolation =
3414 interpret_interpolation_qualifier(qual, (ir_variable_mode) var->data.mode,
3415 state, loc);
3416
3417 /* Does the declaration use the deprecated 'attribute' or 'varying'
3418 * keywords?
3419 */
3420 const bool uses_deprecated_qualifier = qual->flags.q.attribute
3421 || qual->flags.q.varying;
3422
3423
3424 /* Validate auxiliary storage qualifiers */
3425
3426 /* From section 4.3.4 of the GLSL 1.30 spec:
3427 * "It is an error to use centroid in in a vertex shader."
3428 *
3429 * From section 4.3.4 of the GLSL ES 3.00 spec:
3430 * "It is an error to use centroid in or interpolation qualifiers in
3431 * a vertex shader input."
3432 */
3433
3434 /* Section 4.3.6 of the GLSL 1.30 specification states:
3435 * "It is an error to use centroid out in a fragment shader."
3436 *
3437 * The GL_ARB_shading_language_420pack extension specification states:
3438 * "It is an error to use auxiliary storage qualifiers or interpolation
3439 * qualifiers on an output in a fragment shader."
3440 */
3441 if (qual->flags.q.sample && (!is_varying_var(var, state->stage) || uses_deprecated_qualifier)) {
3442 _mesa_glsl_error(loc, state,
3443 "sample qualifier may only be used on `in` or `out` "
3444 "variables between shader stages");
3445 }
3446 if (qual->flags.q.centroid && !is_varying_var(var, state->stage)) {
3447 _mesa_glsl_error(loc, state,
3448 "centroid qualifier may only be used with `in', "
3449 "`out' or `varying' variables between shader stages");
3450 }
3451
3452 if (qual->flags.q.shared_storage && state->stage != MESA_SHADER_COMPUTE) {
3453 _mesa_glsl_error(loc, state,
3454 "the shared storage qualifiers can only be used with "
3455 "compute shaders");
3456 }
3457
3458 apply_image_qualifier_to_variable(qual, var, state, loc);
3459 }
3460
3461 /**
3462 * Get the variable that is being redeclared by this declaration
3463 *
3464 * Semantic checks to verify the validity of the redeclaration are also
3465 * performed. If semantic checks fail, compilation error will be emitted via
3466 * \c _mesa_glsl_error, but a non-\c NULL pointer will still be returned.
3467 *
3468 * \returns
3469 * A pointer to an existing variable in the current scope if the declaration
3470 * is a redeclaration, \c NULL otherwise.
3471 */
3472 static ir_variable *
3473 get_variable_being_redeclared(ir_variable *var, YYLTYPE loc,
3474 struct _mesa_glsl_parse_state *state,
3475 bool allow_all_redeclarations)
3476 {
3477 /* Check if this declaration is actually a re-declaration, either to
3478 * resize an array or add qualifiers to an existing variable.
3479 *
3480 * This is allowed for variables in the current scope, or when at
3481 * global scope (for built-ins in the implicit outer scope).
3482 */
3483 ir_variable *earlier = state->symbols->get_variable(var->name);
3484 if (earlier == NULL ||
3485 (state->current_function != NULL &&
3486 !state->symbols->name_declared_this_scope(var->name))) {
3487 return NULL;
3488 }
3489
3490
3491 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
3492 *
3493 * "It is legal to declare an array without a size and then
3494 * later re-declare the same name as an array of the same
3495 * type and specify a size."
3496 */
3497 if (earlier->type->is_unsized_array() && var->type->is_array()
3498 && (var->type->fields.array == earlier->type->fields.array)) {
3499 /* FINISHME: This doesn't match the qualifiers on the two
3500 * FINISHME: declarations. It's not 100% clear whether this is
3501 * FINISHME: required or not.
3502 */
3503
3504 const unsigned size = unsigned(var->type->array_size());
3505 check_builtin_array_max_size(var->name, size, loc, state);
3506 if ((size > 0) && (size <= earlier->data.max_array_access)) {
3507 _mesa_glsl_error(& loc, state, "array size must be > %u due to "
3508 "previous access",
3509 earlier->data.max_array_access);
3510 }
3511
3512 earlier->type = var->type;
3513 delete var;
3514 var = NULL;
3515 } else if ((state->ARB_fragment_coord_conventions_enable ||
3516 state->is_version(150, 0))
3517 && strcmp(var->name, "gl_FragCoord") == 0
3518 && earlier->type == var->type
3519 && earlier->data.mode == var->data.mode) {
3520 /* Allow redeclaration of gl_FragCoord for ARB_fcc layout
3521 * qualifiers.
3522 */
3523 earlier->data.origin_upper_left = var->data.origin_upper_left;
3524 earlier->data.pixel_center_integer = var->data.pixel_center_integer;
3525
3526 /* According to section 4.3.7 of the GLSL 1.30 spec,
3527 * the following built-in varaibles can be redeclared with an
3528 * interpolation qualifier:
3529 * * gl_FrontColor
3530 * * gl_BackColor
3531 * * gl_FrontSecondaryColor
3532 * * gl_BackSecondaryColor
3533 * * gl_Color
3534 * * gl_SecondaryColor
3535 */
3536 } else if (state->is_version(130, 0)
3537 && (strcmp(var->name, "gl_FrontColor") == 0
3538 || strcmp(var->name, "gl_BackColor") == 0
3539 || strcmp(var->name, "gl_FrontSecondaryColor") == 0
3540 || strcmp(var->name, "gl_BackSecondaryColor") == 0
3541 || strcmp(var->name, "gl_Color") == 0
3542 || strcmp(var->name, "gl_SecondaryColor") == 0)
3543 && earlier->type == var->type
3544 && earlier->data.mode == var->data.mode) {
3545 earlier->data.interpolation = var->data.interpolation;
3546
3547 /* Layout qualifiers for gl_FragDepth. */
3548 } else if ((state->AMD_conservative_depth_enable ||
3549 state->ARB_conservative_depth_enable)
3550 && strcmp(var->name, "gl_FragDepth") == 0
3551 && earlier->type == var->type
3552 && earlier->data.mode == var->data.mode) {
3553
3554 /** From the AMD_conservative_depth spec:
3555 * Within any shader, the first redeclarations of gl_FragDepth
3556 * must appear before any use of gl_FragDepth.
3557 */
3558 if (earlier->data.used) {
3559 _mesa_glsl_error(&loc, state,
3560 "the first redeclaration of gl_FragDepth "
3561 "must appear before any use of gl_FragDepth");
3562 }
3563
3564 /* Prevent inconsistent redeclaration of depth layout qualifier. */
3565 if (earlier->data.depth_layout != ir_depth_layout_none
3566 && earlier->data.depth_layout != var->data.depth_layout) {
3567 _mesa_glsl_error(&loc, state,
3568 "gl_FragDepth: depth layout is declared here "
3569 "as '%s, but it was previously declared as "
3570 "'%s'",
3571 depth_layout_string(var->data.depth_layout),
3572 depth_layout_string(earlier->data.depth_layout));
3573 }
3574
3575 earlier->data.depth_layout = var->data.depth_layout;
3576
3577 } else if (allow_all_redeclarations) {
3578 if (earlier->data.mode != var->data.mode) {
3579 _mesa_glsl_error(&loc, state,
3580 "redeclaration of `%s' with incorrect qualifiers",
3581 var->name);
3582 } else if (earlier->type != var->type) {
3583 _mesa_glsl_error(&loc, state,
3584 "redeclaration of `%s' has incorrect type",
3585 var->name);
3586 }
3587 } else {
3588 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
3589 }
3590
3591 return earlier;
3592 }
3593
3594 /**
3595 * Generate the IR for an initializer in a variable declaration
3596 */
3597 ir_rvalue *
3598 process_initializer(ir_variable *var, ast_declaration *decl,
3599 ast_fully_specified_type *type,
3600 exec_list *initializer_instructions,
3601 struct _mesa_glsl_parse_state *state)
3602 {
3603 ir_rvalue *result = NULL;
3604
3605 YYLTYPE initializer_loc = decl->initializer->get_location();
3606
3607 /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
3608 *
3609 * "All uniform variables are read-only and are initialized either
3610 * directly by an application via API commands, or indirectly by
3611 * OpenGL."
3612 */
3613 if (var->data.mode == ir_var_uniform) {
3614 state->check_version(120, 0, &initializer_loc,
3615 "cannot initialize uniform %s",
3616 var->name);
3617 }
3618
3619 /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec:
3620 *
3621 * "Buffer variables cannot have initializers."
3622 */
3623 if (var->data.mode == ir_var_shader_storage) {
3624 _mesa_glsl_error(&initializer_loc, state,
3625 "cannot initialize buffer variable %s",
3626 var->name);
3627 }
3628
3629 /* From section 4.1.7 of the GLSL 4.40 spec:
3630 *
3631 * "Opaque variables [...] are initialized only through the
3632 * OpenGL API; they cannot be declared with an initializer in a
3633 * shader."
3634 */
3635 if (var->type->contains_opaque()) {
3636 _mesa_glsl_error(&initializer_loc, state,
3637 "cannot initialize opaque variable %s",
3638 var->name);
3639 }
3640
3641 if ((var->data.mode == ir_var_shader_in) && (state->current_function == NULL)) {
3642 _mesa_glsl_error(&initializer_loc, state,
3643 "cannot initialize %s shader input / %s %s",
3644 _mesa_shader_stage_to_string(state->stage),
3645 (state->stage == MESA_SHADER_VERTEX)
3646 ? "attribute" : "varying",
3647 var->name);
3648 }
3649
3650 if (var->data.mode == ir_var_shader_out && state->current_function == NULL) {
3651 _mesa_glsl_error(&initializer_loc, state,
3652 "cannot initialize %s shader output %s",
3653 _mesa_shader_stage_to_string(state->stage),
3654 var->name);
3655 }
3656
3657 /* If the initializer is an ast_aggregate_initializer, recursively store
3658 * type information from the LHS into it, so that its hir() function can do
3659 * type checking.
3660 */
3661 if (decl->initializer->oper == ast_aggregate)
3662 _mesa_ast_set_aggregate_type(var->type, decl->initializer);
3663
3664 ir_dereference *const lhs = new(state) ir_dereference_variable(var);
3665 ir_rvalue *rhs = decl->initializer->hir(initializer_instructions, state);
3666
3667 /* Calculate the constant value if this is a const or uniform
3668 * declaration.
3669 *
3670 * Section 4.3 (Storage Qualifiers) of the GLSL ES 1.00.17 spec says:
3671 *
3672 * "Declarations of globals without a storage qualifier, or with
3673 * just the const qualifier, may include initializers, in which case
3674 * they will be initialized before the first line of main() is
3675 * executed. Such initializers must be a constant expression."
3676 *
3677 * The same section of the GLSL ES 3.00.4 spec has similar language.
3678 */
3679 if (type->qualifier.flags.q.constant
3680 || type->qualifier.flags.q.uniform
3681 || (state->es_shader && state->current_function == NULL)) {
3682 ir_rvalue *new_rhs = validate_assignment(state, initializer_loc,
3683 lhs, rhs, true);
3684 if (new_rhs != NULL) {
3685 rhs = new_rhs;
3686
3687 /* Section 4.3.3 (Constant Expressions) of the GLSL ES 3.00.4 spec
3688 * says:
3689 *
3690 * "A constant expression is one of
3691 *
3692 * ...
3693 *
3694 * - an expression formed by an operator on operands that are
3695 * all constant expressions, including getting an element of
3696 * a constant array, or a field of a constant structure, or
3697 * components of a constant vector. However, the sequence
3698 * operator ( , ) and the assignment operators ( =, +=, ...)
3699 * are not included in the operators that can create a
3700 * constant expression."
3701 *
3702 * Section 12.43 (Sequence operator and constant expressions) says:
3703 *
3704 * "Should the following construct be allowed?
3705 *
3706 * float a[2,3];
3707 *
3708 * The expression within the brackets uses the sequence operator
3709 * (',') and returns the integer 3 so the construct is declaring
3710 * a single-dimensional array of size 3. In some languages, the
3711 * construct declares a two-dimensional array. It would be
3712 * preferable to make this construct illegal to avoid confusion.
3713 *
3714 * One possibility is to change the definition of the sequence
3715 * operator so that it does not return a constant-expression and
3716 * hence cannot be used to declare an array size.
3717 *
3718 * RESOLUTION: The result of a sequence operator is not a
3719 * constant-expression."
3720 *
3721 * Section 4.3.3 (Constant Expressions) of the GLSL 4.30.9 spec
3722 * contains language almost identical to the section 4.3.3 in the
3723 * GLSL ES 3.00.4 spec. This is a new limitation for these GLSL
3724 * versions.
3725 */
3726 ir_constant *constant_value = rhs->constant_expression_value();
3727 if (!constant_value ||
3728 (state->is_version(430, 300) &&
3729 decl->initializer->has_sequence_subexpression())) {
3730 const char *const variable_mode =
3731 (type->qualifier.flags.q.constant)
3732 ? "const"
3733 : ((type->qualifier.flags.q.uniform) ? "uniform" : "global");
3734
3735 /* If ARB_shading_language_420pack is enabled, initializers of
3736 * const-qualified local variables do not have to be constant
3737 * expressions. Const-qualified global variables must still be
3738 * initialized with constant expressions.
3739 */
3740 if (!state->ARB_shading_language_420pack_enable
3741 || state->current_function == NULL) {
3742 _mesa_glsl_error(& initializer_loc, state,
3743 "initializer of %s variable `%s' must be a "
3744 "constant expression",
3745 variable_mode,
3746 decl->identifier);
3747 if (var->type->is_numeric()) {
3748 /* Reduce cascading errors. */
3749 var->constant_value = type->qualifier.flags.q.constant
3750 ? ir_constant::zero(state, var->type) : NULL;
3751 }
3752 }
3753 } else {
3754 rhs = constant_value;
3755 var->constant_value = type->qualifier.flags.q.constant
3756 ? constant_value : NULL;
3757 }
3758 } else {
3759 if (var->type->is_numeric()) {
3760 /* Reduce cascading errors. */
3761 var->constant_value = type->qualifier.flags.q.constant
3762 ? ir_constant::zero(state, var->type) : NULL;
3763 }
3764 }
3765 }
3766
3767 if (rhs && !rhs->type->is_error()) {
3768 bool temp = var->data.read_only;
3769 if (type->qualifier.flags.q.constant)
3770 var->data.read_only = false;
3771
3772 /* Never emit code to initialize a uniform.
3773 */
3774 const glsl_type *initializer_type;
3775 if (!type->qualifier.flags.q.uniform) {
3776 do_assignment(initializer_instructions, state,
3777 NULL,
3778 lhs, rhs,
3779 &result, true,
3780 true,
3781 type->get_location());
3782 initializer_type = result->type;
3783 } else
3784 initializer_type = rhs->type;
3785
3786 var->constant_initializer = rhs->constant_expression_value();
3787 var->data.has_initializer = true;
3788
3789 /* If the declared variable is an unsized array, it must inherrit
3790 * its full type from the initializer. A declaration such as
3791 *
3792 * uniform float a[] = float[](1.0, 2.0, 3.0, 3.0);
3793 *
3794 * becomes
3795 *
3796 * uniform float a[4] = float[](1.0, 2.0, 3.0, 3.0);
3797 *
3798 * The assignment generated in the if-statement (below) will also
3799 * automatically handle this case for non-uniforms.
3800 *
3801 * If the declared variable is not an array, the types must
3802 * already match exactly. As a result, the type assignment
3803 * here can be done unconditionally. For non-uniforms the call
3804 * to do_assignment can change the type of the initializer (via
3805 * the implicit conversion rules). For uniforms the initializer
3806 * must be a constant expression, and the type of that expression
3807 * was validated above.
3808 */
3809 var->type = initializer_type;
3810
3811 var->data.read_only = temp;
3812 }
3813
3814 return result;
3815 }
3816
3817 static void
3818 validate_layout_qualifier_vertex_count(struct _mesa_glsl_parse_state *state,
3819 YYLTYPE loc, ir_variable *var,
3820 unsigned num_vertices,
3821 unsigned *size,
3822 const char *var_category)
3823 {
3824 if (var->type->is_unsized_array()) {
3825 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec says:
3826 *
3827 * All geometry shader input unsized array declarations will be
3828 * sized by an earlier input layout qualifier, when present, as per
3829 * the following table.
3830 *
3831 * Followed by a table mapping each allowed input layout qualifier to
3832 * the corresponding input length.
3833 *
3834 * Similarly for tessellation control shader outputs.
3835 */
3836 if (num_vertices != 0)
3837 var->type = glsl_type::get_array_instance(var->type->fields.array,
3838 num_vertices);
3839 } else {
3840 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec
3841 * includes the following examples of compile-time errors:
3842 *
3843 * // code sequence within one shader...
3844 * in vec4 Color1[]; // size unknown
3845 * ...Color1.length()...// illegal, length() unknown
3846 * in vec4 Color2[2]; // size is 2
3847 * ...Color1.length()...// illegal, Color1 still has no size
3848 * in vec4 Color3[3]; // illegal, input sizes are inconsistent
3849 * layout(lines) in; // legal, input size is 2, matching
3850 * in vec4 Color4[3]; // illegal, contradicts layout
3851 * ...
3852 *
3853 * To detect the case illustrated by Color3, we verify that the size of
3854 * an explicitly-sized array matches the size of any previously declared
3855 * explicitly-sized array. To detect the case illustrated by Color4, we
3856 * verify that the size of an explicitly-sized array is consistent with
3857 * any previously declared input layout.
3858 */
3859 if (num_vertices != 0 && var->type->length != num_vertices) {
3860 _mesa_glsl_error(&loc, state,
3861 "%s size contradicts previously declared layout "
3862 "(size is %u, but layout requires a size of %u)",
3863 var_category, var->type->length, num_vertices);
3864 } else if (*size != 0 && var->type->length != *size) {
3865 _mesa_glsl_error(&loc, state,
3866 "%s sizes are inconsistent (size is %u, but a "
3867 "previous declaration has size %u)",
3868 var_category, var->type->length, *size);
3869 } else {
3870 *size = var->type->length;
3871 }
3872 }
3873 }
3874
3875 static void
3876 handle_tess_ctrl_shader_output_decl(struct _mesa_glsl_parse_state *state,
3877 YYLTYPE loc, ir_variable *var)
3878 {
3879 unsigned num_vertices = 0;
3880
3881 if (state->tcs_output_vertices_specified) {
3882 if (!state->out_qualifier->vertices->
3883 process_qualifier_constant(state, "vertices",
3884 &num_vertices, false)) {
3885 return;
3886 }
3887
3888 if (num_vertices > state->Const.MaxPatchVertices) {
3889 _mesa_glsl_error(&loc, state, "vertices (%d) exceeds "
3890 "GL_MAX_PATCH_VERTICES", num_vertices);
3891 return;
3892 }
3893 }
3894
3895 if (!var->type->is_array() && !var->data.patch) {
3896 _mesa_glsl_error(&loc, state,
3897 "tessellation control shader outputs must be arrays");
3898
3899 /* To avoid cascading failures, short circuit the checks below. */
3900 return;
3901 }
3902
3903 if (var->data.patch)
3904 return;
3905
3906 validate_layout_qualifier_vertex_count(state, loc, var, num_vertices,
3907 &state->tcs_output_size,
3908 "tessellation control shader output");
3909 }
3910
3911 /**
3912 * Do additional processing necessary for tessellation control/evaluation shader
3913 * input declarations. This covers both interface block arrays and bare input
3914 * variables.
3915 */
3916 static void
3917 handle_tess_shader_input_decl(struct _mesa_glsl_parse_state *state,
3918 YYLTYPE loc, ir_variable *var)
3919 {
3920 if (!var->type->is_array() && !var->data.patch) {
3921 _mesa_glsl_error(&loc, state,
3922 "per-vertex tessellation shader inputs must be arrays");
3923 /* Avoid cascading failures. */
3924 return;
3925 }
3926
3927 if (var->data.patch)
3928 return;
3929
3930 /* Unsized arrays are implicitly sized to gl_MaxPatchVertices. */
3931 if (var->type->is_unsized_array()) {
3932 var->type = glsl_type::get_array_instance(var->type->fields.array,
3933 state->Const.MaxPatchVertices);
3934 }
3935 }
3936
3937
3938 /**
3939 * Do additional processing necessary for geometry shader input declarations
3940 * (this covers both interface blocks arrays and bare input variables).
3941 */
3942 static void
3943 handle_geometry_shader_input_decl(struct _mesa_glsl_parse_state *state,
3944 YYLTYPE loc, ir_variable *var)
3945 {
3946 unsigned num_vertices = 0;
3947
3948 if (state->gs_input_prim_type_specified) {
3949 num_vertices = vertices_per_prim(state->in_qualifier->prim_type);
3950 }
3951
3952 /* Geometry shader input variables must be arrays. Caller should have
3953 * reported an error for this.
3954 */
3955 if (!var->type->is_array()) {
3956 assert(state->error);
3957
3958 /* To avoid cascading failures, short circuit the checks below. */
3959 return;
3960 }
3961
3962 validate_layout_qualifier_vertex_count(state, loc, var, num_vertices,
3963 &state->gs_input_size,
3964 "geometry shader input");
3965 }
3966
3967 void
3968 validate_identifier(const char *identifier, YYLTYPE loc,
3969 struct _mesa_glsl_parse_state *state)
3970 {
3971 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
3972 *
3973 * "Identifiers starting with "gl_" are reserved for use by
3974 * OpenGL, and may not be declared in a shader as either a
3975 * variable or a function."
3976 */
3977 if (is_gl_identifier(identifier)) {
3978 _mesa_glsl_error(&loc, state,
3979 "identifier `%s' uses reserved `gl_' prefix",
3980 identifier);
3981 } else if (strstr(identifier, "__")) {
3982 /* From page 14 (page 20 of the PDF) of the GLSL 1.10
3983 * spec:
3984 *
3985 * "In addition, all identifiers containing two
3986 * consecutive underscores (__) are reserved as
3987 * possible future keywords."
3988 *
3989 * The intention is that names containing __ are reserved for internal
3990 * use by the implementation, and names prefixed with GL_ are reserved
3991 * for use by Khronos. Names simply containing __ are dangerous to use,
3992 * but should be allowed.
3993 *
3994 * A future version of the GLSL specification will clarify this.
3995 */
3996 _mesa_glsl_warning(&loc, state,
3997 "identifier `%s' uses reserved `__' string",
3998 identifier);
3999 }
4000 }
4001
4002 ir_rvalue *
4003 ast_declarator_list::hir(exec_list *instructions,
4004 struct _mesa_glsl_parse_state *state)
4005 {
4006 void *ctx = state;
4007 const struct glsl_type *decl_type;
4008 const char *type_name = NULL;
4009 ir_rvalue *result = NULL;
4010 YYLTYPE loc = this->get_location();
4011
4012 /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec:
4013 *
4014 * "To ensure that a particular output variable is invariant, it is
4015 * necessary to use the invariant qualifier. It can either be used to
4016 * qualify a previously declared variable as being invariant
4017 *
4018 * invariant gl_Position; // make existing gl_Position be invariant"
4019 *
4020 * In these cases the parser will set the 'invariant' flag in the declarator
4021 * list, and the type will be NULL.
4022 */
4023 if (this->invariant) {
4024 assert(this->type == NULL);
4025
4026 if (state->current_function != NULL) {
4027 _mesa_glsl_error(& loc, state,
4028 "all uses of `invariant' keyword must be at global "
4029 "scope");
4030 }
4031
4032 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4033 assert(decl->array_specifier == NULL);
4034 assert(decl->initializer == NULL);
4035
4036 ir_variable *const earlier =
4037 state->symbols->get_variable(decl->identifier);
4038 if (earlier == NULL) {
4039 _mesa_glsl_error(& loc, state,
4040 "undeclared variable `%s' cannot be marked "
4041 "invariant", decl->identifier);
4042 } else if (!is_varying_var(earlier, state->stage)) {
4043 _mesa_glsl_error(&loc, state,
4044 "`%s' cannot be marked invariant; interfaces between "
4045 "shader stages only.", decl->identifier);
4046 } else if (earlier->data.used) {
4047 _mesa_glsl_error(& loc, state,
4048 "variable `%s' may not be redeclared "
4049 "`invariant' after being used",
4050 earlier->name);
4051 } else {
4052 earlier->data.invariant = true;
4053 }
4054 }
4055
4056 /* Invariant redeclarations do not have r-values.
4057 */
4058 return NULL;
4059 }
4060
4061 if (this->precise) {
4062 assert(this->type == NULL);
4063
4064 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4065 assert(decl->array_specifier == NULL);
4066 assert(decl->initializer == NULL);
4067
4068 ir_variable *const earlier =
4069 state->symbols->get_variable(decl->identifier);
4070 if (earlier == NULL) {
4071 _mesa_glsl_error(& loc, state,
4072 "undeclared variable `%s' cannot be marked "
4073 "precise", decl->identifier);
4074 } else if (state->current_function != NULL &&
4075 !state->symbols->name_declared_this_scope(decl->identifier)) {
4076 /* Note: we have to check if we're in a function, since
4077 * builtins are treated as having come from another scope.
4078 */
4079 _mesa_glsl_error(& loc, state,
4080 "variable `%s' from an outer scope may not be "
4081 "redeclared `precise' in this scope",
4082 earlier->name);
4083 } else if (earlier->data.used) {
4084 _mesa_glsl_error(& loc, state,
4085 "variable `%s' may not be redeclared "
4086 "`precise' after being used",
4087 earlier->name);
4088 } else {
4089 earlier->data.precise = true;
4090 }
4091 }
4092
4093 /* Precise redeclarations do not have r-values either. */
4094 return NULL;
4095 }
4096
4097 assert(this->type != NULL);
4098 assert(!this->invariant);
4099 assert(!this->precise);
4100
4101 /* The type specifier may contain a structure definition. Process that
4102 * before any of the variable declarations.
4103 */
4104 (void) this->type->specifier->hir(instructions, state);
4105
4106 decl_type = this->type->glsl_type(& type_name, state);
4107
4108 /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec:
4109 * "Buffer variables may only be declared inside interface blocks
4110 * (section 4.3.9 “Interface Blocks”), which are then referred to as
4111 * shader storage blocks. It is a compile-time error to declare buffer
4112 * variables at global scope (outside a block)."
4113 */
4114 if (type->qualifier.flags.q.buffer && !decl_type->is_interface()) {
4115 _mesa_glsl_error(&loc, state,
4116 "buffer variables cannot be declared outside "
4117 "interface blocks");
4118 }
4119
4120 /* An offset-qualified atomic counter declaration sets the default
4121 * offset for the next declaration within the same atomic counter
4122 * buffer.
4123 */
4124 if (decl_type && decl_type->contains_atomic()) {
4125 if (type->qualifier.flags.q.explicit_binding &&
4126 type->qualifier.flags.q.explicit_offset) {
4127 unsigned qual_binding;
4128 unsigned qual_offset;
4129 if (process_qualifier_constant(state, &loc, "binding",
4130 type->qualifier.binding,
4131 &qual_binding)
4132 && process_qualifier_constant(state, &loc, "offset",
4133 type->qualifier.offset,
4134 &qual_offset)) {
4135 state->atomic_counter_offsets[qual_binding] = qual_offset;
4136 }
4137 }
4138 }
4139
4140 if (this->declarations.is_empty()) {
4141 /* If there is no structure involved in the program text, there are two
4142 * possible scenarios:
4143 *
4144 * - The program text contained something like 'vec4;'. This is an
4145 * empty declaration. It is valid but weird. Emit a warning.
4146 *
4147 * - The program text contained something like 'S;' and 'S' is not the
4148 * name of a known structure type. This is both invalid and weird.
4149 * Emit an error.
4150 *
4151 * - The program text contained something like 'mediump float;'
4152 * when the programmer probably meant 'precision mediump
4153 * float;' Emit a warning with a description of what they
4154 * probably meant to do.
4155 *
4156 * Note that if decl_type is NULL and there is a structure involved,
4157 * there must have been some sort of error with the structure. In this
4158 * case we assume that an error was already generated on this line of
4159 * code for the structure. There is no need to generate an additional,
4160 * confusing error.
4161 */
4162 assert(this->type->specifier->structure == NULL || decl_type != NULL
4163 || state->error);
4164
4165 if (decl_type == NULL) {
4166 _mesa_glsl_error(&loc, state,
4167 "invalid type `%s' in empty declaration",
4168 type_name);
4169 } else if (decl_type->base_type == GLSL_TYPE_ATOMIC_UINT) {
4170 /* Empty atomic counter declarations are allowed and useful
4171 * to set the default offset qualifier.
4172 */
4173 return NULL;
4174 } else if (this->type->qualifier.precision != ast_precision_none) {
4175 if (this->type->specifier->structure != NULL) {
4176 _mesa_glsl_error(&loc, state,
4177 "precision qualifiers can't be applied "
4178 "to structures");
4179 } else {
4180 static const char *const precision_names[] = {
4181 "highp",
4182 "highp",
4183 "mediump",
4184 "lowp"
4185 };
4186
4187 _mesa_glsl_warning(&loc, state,
4188 "empty declaration with precision qualifier, "
4189 "to set the default precision, use "
4190 "`precision %s %s;'",
4191 precision_names[this->type->qualifier.precision],
4192 type_name);
4193 }
4194 } else if (this->type->specifier->structure == NULL) {
4195 _mesa_glsl_warning(&loc, state, "empty declaration");
4196 }
4197 }
4198
4199 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4200 const struct glsl_type *var_type;
4201 ir_variable *var;
4202 const char *identifier = decl->identifier;
4203 /* FINISHME: Emit a warning if a variable declaration shadows a
4204 * FINISHME: declaration at a higher scope.
4205 */
4206
4207 if ((decl_type == NULL) || decl_type->is_void()) {
4208 if (type_name != NULL) {
4209 _mesa_glsl_error(& loc, state,
4210 "invalid type `%s' in declaration of `%s'",
4211 type_name, decl->identifier);
4212 } else {
4213 _mesa_glsl_error(& loc, state,
4214 "invalid type in declaration of `%s'",
4215 decl->identifier);
4216 }
4217 continue;
4218 }
4219
4220 if (this->type->qualifier.flags.q.subroutine) {
4221 const glsl_type *t;
4222 const char *name;
4223
4224 t = state->symbols->get_type(this->type->specifier->type_name);
4225 if (!t)
4226 _mesa_glsl_error(& loc, state,
4227 "invalid type in declaration of `%s'",
4228 decl->identifier);
4229 name = ralloc_asprintf(ctx, "%s_%s", _mesa_shader_stage_to_subroutine_prefix(state->stage), decl->identifier);
4230
4231 identifier = name;
4232
4233 }
4234 var_type = process_array_type(&loc, decl_type, decl->array_specifier,
4235 state);
4236
4237 var = new(ctx) ir_variable(var_type, identifier, ir_var_auto);
4238
4239 /* The 'varying in' and 'varying out' qualifiers can only be used with
4240 * ARB_geometry_shader4 and EXT_geometry_shader4, which we don't support
4241 * yet.
4242 */
4243 if (this->type->qualifier.flags.q.varying) {
4244 if (this->type->qualifier.flags.q.in) {
4245 _mesa_glsl_error(& loc, state,
4246 "`varying in' qualifier in declaration of "
4247 "`%s' only valid for geometry shaders using "
4248 "ARB_geometry_shader4 or EXT_geometry_shader4",
4249 decl->identifier);
4250 } else if (this->type->qualifier.flags.q.out) {
4251 _mesa_glsl_error(& loc, state,
4252 "`varying out' qualifier in declaration of "
4253 "`%s' only valid for geometry shaders using "
4254 "ARB_geometry_shader4 or EXT_geometry_shader4",
4255 decl->identifier);
4256 }
4257 }
4258
4259 /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
4260 *
4261 * "Global variables can only use the qualifiers const,
4262 * attribute, uniform, or varying. Only one may be
4263 * specified.
4264 *
4265 * Local variables can only use the qualifier const."
4266 *
4267 * This is relaxed in GLSL 1.30 and GLSL ES 3.00. It is also relaxed by
4268 * any extension that adds the 'layout' keyword.
4269 */
4270 if (!state->is_version(130, 300)
4271 && !state->has_explicit_attrib_location()
4272 && !state->has_separate_shader_objects()
4273 && !state->ARB_fragment_coord_conventions_enable) {
4274 if (this->type->qualifier.flags.q.out) {
4275 _mesa_glsl_error(& loc, state,
4276 "`out' qualifier in declaration of `%s' "
4277 "only valid for function parameters in %s",
4278 decl->identifier, state->get_version_string());
4279 }
4280 if (this->type->qualifier.flags.q.in) {
4281 _mesa_glsl_error(& loc, state,
4282 "`in' qualifier in declaration of `%s' "
4283 "only valid for function parameters in %s",
4284 decl->identifier, state->get_version_string());
4285 }
4286 /* FINISHME: Test for other invalid qualifiers. */
4287 }
4288
4289 apply_type_qualifier_to_variable(& this->type->qualifier, var, state,
4290 & loc, false);
4291 apply_layout_qualifier_to_variable(&this->type->qualifier, var, state,
4292 &loc);
4293
4294 if (this->type->qualifier.flags.q.invariant) {
4295 if (!is_varying_var(var, state->stage)) {
4296 _mesa_glsl_error(&loc, state,
4297 "`%s' cannot be marked invariant; interfaces between "
4298 "shader stages only", var->name);
4299 }
4300 }
4301
4302 if (state->current_function != NULL) {
4303 const char *mode = NULL;
4304 const char *extra = "";
4305
4306 /* There is no need to check for 'inout' here because the parser will
4307 * only allow that in function parameter lists.
4308 */
4309 if (this->type->qualifier.flags.q.attribute) {
4310 mode = "attribute";
4311 } else if (this->type->qualifier.flags.q.subroutine) {
4312 mode = "subroutine uniform";
4313 } else if (this->type->qualifier.flags.q.uniform) {
4314 mode = "uniform";
4315 } else if (this->type->qualifier.flags.q.varying) {
4316 mode = "varying";
4317 } else if (this->type->qualifier.flags.q.in) {
4318 mode = "in";
4319 extra = " or in function parameter list";
4320 } else if (this->type->qualifier.flags.q.out) {
4321 mode = "out";
4322 extra = " or in function parameter list";
4323 }
4324
4325 if (mode) {
4326 _mesa_glsl_error(& loc, state,
4327 "%s variable `%s' must be declared at "
4328 "global scope%s",
4329 mode, var->name, extra);
4330 }
4331 } else if (var->data.mode == ir_var_shader_in) {
4332 var->data.read_only = true;
4333
4334 if (state->stage == MESA_SHADER_VERTEX) {
4335 bool error_emitted = false;
4336
4337 /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
4338 *
4339 * "Vertex shader inputs can only be float, floating-point
4340 * vectors, matrices, signed and unsigned integers and integer
4341 * vectors. Vertex shader inputs can also form arrays of these
4342 * types, but not structures."
4343 *
4344 * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
4345 *
4346 * "Vertex shader inputs can only be float, floating-point
4347 * vectors, matrices, signed and unsigned integers and integer
4348 * vectors. They cannot be arrays or structures."
4349 *
4350 * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
4351 *
4352 * "The attribute qualifier can be used only with float,
4353 * floating-point vectors, and matrices. Attribute variables
4354 * cannot be declared as arrays or structures."
4355 *
4356 * From page 33 (page 39 of the PDF) of the GLSL ES 3.00 spec:
4357 *
4358 * "Vertex shader inputs can only be float, floating-point
4359 * vectors, matrices, signed and unsigned integers and integer
4360 * vectors. Vertex shader inputs cannot be arrays or
4361 * structures."
4362 */
4363 const glsl_type *check_type = var->type->without_array();
4364
4365 switch (check_type->base_type) {
4366 case GLSL_TYPE_FLOAT:
4367 break;
4368 case GLSL_TYPE_UINT:
4369 case GLSL_TYPE_INT:
4370 if (state->is_version(120, 300))
4371 break;
4372 case GLSL_TYPE_DOUBLE:
4373 if (check_type->base_type == GLSL_TYPE_DOUBLE && (state->is_version(410, 0) || state->ARB_vertex_attrib_64bit_enable))
4374 break;
4375 /* FALLTHROUGH */
4376 default:
4377 _mesa_glsl_error(& loc, state,
4378 "vertex shader input / attribute cannot have "
4379 "type %s`%s'",
4380 var->type->is_array() ? "array of " : "",
4381 check_type->name);
4382 error_emitted = true;
4383 }
4384
4385 if (!error_emitted && var->type->is_array() &&
4386 !state->check_version(150, 0, &loc,
4387 "vertex shader input / attribute "
4388 "cannot have array type")) {
4389 error_emitted = true;
4390 }
4391 } else if (state->stage == MESA_SHADER_GEOMETRY) {
4392 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
4393 *
4394 * Geometry shader input variables get the per-vertex values
4395 * written out by vertex shader output variables of the same
4396 * names. Since a geometry shader operates on a set of
4397 * vertices, each input varying variable (or input block, see
4398 * interface blocks below) needs to be declared as an array.
4399 */
4400 if (!var->type->is_array()) {
4401 _mesa_glsl_error(&loc, state,
4402 "geometry shader inputs must be arrays");
4403 }
4404
4405 handle_geometry_shader_input_decl(state, loc, var);
4406 } else if (state->stage == MESA_SHADER_FRAGMENT) {
4407 /* From section 4.3.4 (Input Variables) of the GLSL ES 3.10 spec:
4408 *
4409 * It is a compile-time error to declare a fragment shader
4410 * input with, or that contains, any of the following types:
4411 *
4412 * * A boolean type
4413 * * An opaque type
4414 * * An array of arrays
4415 * * An array of structures
4416 * * A structure containing an array
4417 * * A structure containing a structure
4418 */
4419 if (state->es_shader) {
4420 const glsl_type *check_type = var->type->without_array();
4421 if (check_type->is_boolean() ||
4422 check_type->contains_opaque()) {
4423 _mesa_glsl_error(&loc, state,
4424 "fragment shader input cannot have type %s",
4425 check_type->name);
4426 }
4427 if (var->type->is_array() &&
4428 var->type->fields.array->is_array()) {
4429 _mesa_glsl_error(&loc, state,
4430 "%s shader output "
4431 "cannot have an array of arrays",
4432 _mesa_shader_stage_to_string(state->stage));
4433 }
4434 if (var->type->is_array() &&
4435 var->type->fields.array->is_record()) {
4436 _mesa_glsl_error(&loc, state,
4437 "fragment shader input "
4438 "cannot have an array of structs");
4439 }
4440 if (var->type->is_record()) {
4441 for (unsigned i = 0; i < var->type->length; i++) {
4442 if (var->type->fields.structure[i].type->is_array() ||
4443 var->type->fields.structure[i].type->is_record())
4444 _mesa_glsl_error(&loc, state,
4445 "fragement shader input cannot have "
4446 "a struct that contains an "
4447 "array or struct");
4448 }
4449 }
4450 }
4451 } else if (state->stage == MESA_SHADER_TESS_CTRL ||
4452 state->stage == MESA_SHADER_TESS_EVAL) {
4453 handle_tess_shader_input_decl(state, loc, var);
4454 }
4455 } else if (var->data.mode == ir_var_shader_out) {
4456 const glsl_type *check_type = var->type->without_array();
4457
4458 /* From section 4.3.6 (Output variables) of the GLSL 4.40 spec:
4459 *
4460 * It is a compile-time error to declare a vertex, tessellation
4461 * evaluation, tessellation control, or geometry shader output
4462 * that contains any of the following:
4463 *
4464 * * A Boolean type (bool, bvec2 ...)
4465 * * An opaque type
4466 */
4467 if (check_type->is_boolean() || check_type->contains_opaque())
4468 _mesa_glsl_error(&loc, state,
4469 "%s shader output cannot have type %s",
4470 _mesa_shader_stage_to_string(state->stage),
4471 check_type->name);
4472
4473 /* From section 4.3.6 (Output variables) of the GLSL 4.40 spec:
4474 *
4475 * It is a compile-time error to declare a fragment shader output
4476 * that contains any of the following:
4477 *
4478 * * A Boolean type (bool, bvec2 ...)
4479 * * A double-precision scalar or vector (double, dvec2 ...)
4480 * * An opaque type
4481 * * Any matrix type
4482 * * A structure
4483 */
4484 if (state->stage == MESA_SHADER_FRAGMENT) {
4485 if (check_type->is_record() || check_type->is_matrix())
4486 _mesa_glsl_error(&loc, state,
4487 "fragment shader output "
4488 "cannot have struct or matrix type");
4489 switch (check_type->base_type) {
4490 case GLSL_TYPE_UINT:
4491 case GLSL_TYPE_INT:
4492 case GLSL_TYPE_FLOAT:
4493 break;
4494 default:
4495 _mesa_glsl_error(&loc, state,
4496 "fragment shader output cannot have "
4497 "type %s", check_type->name);
4498 }
4499 }
4500
4501 /* From section 4.3.6 (Output Variables) of the GLSL ES 3.10 spec:
4502 *
4503 * It is a compile-time error to declare a vertex shader output
4504 * with, or that contains, any of the following types:
4505 *
4506 * * A boolean type
4507 * * An opaque type
4508 * * An array of arrays
4509 * * An array of structures
4510 * * A structure containing an array
4511 * * A structure containing a structure
4512 *
4513 * It is a compile-time error to declare a fragment shader output
4514 * with, or that contains, any of the following types:
4515 *
4516 * * A boolean type
4517 * * An opaque type
4518 * * A matrix
4519 * * A structure
4520 * * An array of array
4521 */
4522 if (state->es_shader) {
4523 if (var->type->is_array() &&
4524 var->type->fields.array->is_array()) {
4525 _mesa_glsl_error(&loc, state,
4526 "%s shader output "
4527 "cannot have an array of arrays",
4528 _mesa_shader_stage_to_string(state->stage));
4529 }
4530 if (state->stage == MESA_SHADER_VERTEX) {
4531 if (var->type->is_array() &&
4532 var->type->fields.array->is_record()) {
4533 _mesa_glsl_error(&loc, state,
4534 "vertex shader output "
4535 "cannot have an array of structs");
4536 }
4537 if (var->type->is_record()) {
4538 for (unsigned i = 0; i < var->type->length; i++) {
4539 if (var->type->fields.structure[i].type->is_array() ||
4540 var->type->fields.structure[i].type->is_record())
4541 _mesa_glsl_error(&loc, state,
4542 "vertex shader output cannot have a "
4543 "struct that contains an "
4544 "array or struct");
4545 }
4546 }
4547 }
4548 }
4549
4550 if (state->stage == MESA_SHADER_TESS_CTRL) {
4551 handle_tess_ctrl_shader_output_decl(state, loc, var);
4552 }
4553 } else if (var->type->contains_subroutine()) {
4554 /* declare subroutine uniforms as hidden */
4555 var->data.how_declared = ir_var_hidden;
4556 }
4557
4558 /* Integer fragment inputs must be qualified with 'flat'. In GLSL ES,
4559 * so must integer vertex outputs.
4560 *
4561 * From section 4.3.4 ("Inputs") of the GLSL 1.50 spec:
4562 * "Fragment shader inputs that are signed or unsigned integers or
4563 * integer vectors must be qualified with the interpolation qualifier
4564 * flat."
4565 *
4566 * From section 4.3.4 ("Input Variables") of the GLSL 3.00 ES spec:
4567 * "Fragment shader inputs that are, or contain, signed or unsigned
4568 * integers or integer vectors must be qualified with the
4569 * interpolation qualifier flat."
4570 *
4571 * From section 4.3.6 ("Output Variables") of the GLSL 3.00 ES spec:
4572 * "Vertex shader outputs that are, or contain, signed or unsigned
4573 * integers or integer vectors must be qualified with the
4574 * interpolation qualifier flat."
4575 *
4576 * Note that prior to GLSL 1.50, this requirement applied to vertex
4577 * outputs rather than fragment inputs. That creates problems in the
4578 * presence of geometry shaders, so we adopt the GLSL 1.50 rule for all
4579 * desktop GL shaders. For GLSL ES shaders, we follow the spec and
4580 * apply the restriction to both vertex outputs and fragment inputs.
4581 *
4582 * Note also that the desktop GLSL specs are missing the text "or
4583 * contain"; this is presumably an oversight, since there is no
4584 * reasonable way to interpolate a fragment shader input that contains
4585 * an integer.
4586 */
4587 if (state->is_version(130, 300) &&
4588 var->type->contains_integer() &&
4589 var->data.interpolation != INTERP_QUALIFIER_FLAT &&
4590 ((state->stage == MESA_SHADER_FRAGMENT && var->data.mode == ir_var_shader_in)
4591 || (state->stage == MESA_SHADER_VERTEX && var->data.mode == ir_var_shader_out
4592 && state->es_shader))) {
4593 const char *var_type = (state->stage == MESA_SHADER_VERTEX) ?
4594 "vertex output" : "fragment input";
4595 _mesa_glsl_error(&loc, state, "if a %s is (or contains) "
4596 "an integer, then it must be qualified with 'flat'",
4597 var_type);
4598 }
4599
4600 /* Double fragment inputs must be qualified with 'flat'. */
4601 if (var->type->contains_double() &&
4602 var->data.interpolation != INTERP_QUALIFIER_FLAT &&
4603 state->stage == MESA_SHADER_FRAGMENT &&
4604 var->data.mode == ir_var_shader_in) {
4605 _mesa_glsl_error(&loc, state, "if a fragment input is (or contains) "
4606 "a double, then it must be qualified with 'flat'",
4607 var_type);
4608 }
4609
4610 /* Interpolation qualifiers cannot be applied to 'centroid' and
4611 * 'centroid varying'.
4612 *
4613 * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
4614 * "interpolation qualifiers may only precede the qualifiers in,
4615 * centroid in, out, or centroid out in a declaration. They do not apply
4616 * to the deprecated storage qualifiers varying or centroid varying."
4617 *
4618 * These deprecated storage qualifiers do not exist in GLSL ES 3.00.
4619 */
4620 if (state->is_version(130, 0)
4621 && this->type->qualifier.has_interpolation()
4622 && this->type->qualifier.flags.q.varying) {
4623
4624 const char *i = this->type->qualifier.interpolation_string();
4625 assert(i != NULL);
4626 const char *s;
4627 if (this->type->qualifier.flags.q.centroid)
4628 s = "centroid varying";
4629 else
4630 s = "varying";
4631
4632 _mesa_glsl_error(&loc, state,
4633 "qualifier '%s' cannot be applied to the "
4634 "deprecated storage qualifier '%s'", i, s);
4635 }
4636
4637
4638 /* Interpolation qualifiers can only apply to vertex shader outputs and
4639 * fragment shader inputs.
4640 *
4641 * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
4642 * "Outputs from a vertex shader (out) and inputs to a fragment
4643 * shader (in) can be further qualified with one or more of these
4644 * interpolation qualifiers"
4645 *
4646 * From page 31 (page 37 of the PDF) of the GLSL ES 3.00 spec:
4647 * "These interpolation qualifiers may only precede the qualifiers
4648 * in, centroid in, out, or centroid out in a declaration. They do
4649 * not apply to inputs into a vertex shader or outputs from a
4650 * fragment shader."
4651 */
4652 if (state->is_version(130, 300)
4653 && this->type->qualifier.has_interpolation()) {
4654
4655 const char *i = this->type->qualifier.interpolation_string();
4656 assert(i != NULL);
4657
4658 switch (state->stage) {
4659 case MESA_SHADER_VERTEX:
4660 if (this->type->qualifier.flags.q.in) {
4661 _mesa_glsl_error(&loc, state,
4662 "qualifier '%s' cannot be applied to vertex "
4663 "shader inputs", i);
4664 }
4665 break;
4666 case MESA_SHADER_FRAGMENT:
4667 if (this->type->qualifier.flags.q.out) {
4668 _mesa_glsl_error(&loc, state,
4669 "qualifier '%s' cannot be applied to fragment "
4670 "shader outputs", i);
4671 }
4672 break;
4673 default:
4674 break;
4675 }
4676 }
4677
4678
4679 /* From section 4.3.4 of the GLSL 4.00 spec:
4680 * "Input variables may not be declared using the patch in qualifier
4681 * in tessellation control or geometry shaders."
4682 *
4683 * From section 4.3.6 of the GLSL 4.00 spec:
4684 * "It is an error to use patch out in a vertex, tessellation
4685 * evaluation, or geometry shader."
4686 *
4687 * This doesn't explicitly forbid using them in a fragment shader, but
4688 * that's probably just an oversight.
4689 */
4690 if (state->stage != MESA_SHADER_TESS_EVAL
4691 && this->type->qualifier.flags.q.patch
4692 && this->type->qualifier.flags.q.in) {
4693
4694 _mesa_glsl_error(&loc, state, "'patch in' can only be used in a "
4695 "tessellation evaluation shader");
4696 }
4697
4698 if (state->stage != MESA_SHADER_TESS_CTRL
4699 && this->type->qualifier.flags.q.patch
4700 && this->type->qualifier.flags.q.out) {
4701
4702 _mesa_glsl_error(&loc, state, "'patch out' can only be used in a "
4703 "tessellation control shader");
4704 }
4705
4706 /* Precision qualifiers exists only in GLSL versions 1.00 and >= 1.30.
4707 */
4708 if (this->type->qualifier.precision != ast_precision_none) {
4709 state->check_precision_qualifiers_allowed(&loc);
4710 }
4711
4712
4713 /* If a precision qualifier is allowed on a type, it is allowed on
4714 * an array of that type.
4715 */
4716 if (!(this->type->qualifier.precision == ast_precision_none
4717 || precision_qualifier_allowed(var->type->without_array()))) {
4718
4719 _mesa_glsl_error(&loc, state,
4720 "precision qualifiers apply only to floating point"
4721 ", integer and opaque types");
4722 }
4723
4724 /* From section 4.1.7 of the GLSL 4.40 spec:
4725 *
4726 * "[Opaque types] can only be declared as function
4727 * parameters or uniform-qualified variables."
4728 */
4729 if (var_type->contains_opaque() &&
4730 !this->type->qualifier.flags.q.uniform) {
4731 _mesa_glsl_error(&loc, state,
4732 "opaque variables must be declared uniform");
4733 }
4734
4735 /* Process the initializer and add its instructions to a temporary
4736 * list. This list will be added to the instruction stream (below) after
4737 * the declaration is added. This is done because in some cases (such as
4738 * redeclarations) the declaration may not actually be added to the
4739 * instruction stream.
4740 */
4741 exec_list initializer_instructions;
4742
4743 /* Examine var name here since var may get deleted in the next call */
4744 bool var_is_gl_id = is_gl_identifier(var->name);
4745
4746 ir_variable *earlier =
4747 get_variable_being_redeclared(var, decl->get_location(), state,
4748 false /* allow_all_redeclarations */);
4749 if (earlier != NULL) {
4750 if (var_is_gl_id &&
4751 earlier->data.how_declared == ir_var_declared_in_block) {
4752 _mesa_glsl_error(&loc, state,
4753 "`%s' has already been redeclared using "
4754 "gl_PerVertex", earlier->name);
4755 }
4756 earlier->data.how_declared = ir_var_declared_normally;
4757 }
4758
4759 if (decl->initializer != NULL) {
4760 result = process_initializer((earlier == NULL) ? var : earlier,
4761 decl, this->type,
4762 &initializer_instructions, state);
4763 } else {
4764 validate_array_dimensions(var_type, state, &loc);
4765 }
4766
4767 /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
4768 *
4769 * "It is an error to write to a const variable outside of
4770 * its declaration, so they must be initialized when
4771 * declared."
4772 */
4773 if (this->type->qualifier.flags.q.constant && decl->initializer == NULL) {
4774 _mesa_glsl_error(& loc, state,
4775 "const declaration of `%s' must be initialized",
4776 decl->identifier);
4777 }
4778
4779 if (state->es_shader) {
4780 const glsl_type *const t = (earlier == NULL)
4781 ? var->type : earlier->type;
4782
4783 if (t->is_unsized_array())
4784 /* Section 10.17 of the GLSL ES 1.00 specification states that
4785 * unsized array declarations have been removed from the language.
4786 * Arrays that are sized using an initializer are still explicitly
4787 * sized. However, GLSL ES 1.00 does not allow array
4788 * initializers. That is only allowed in GLSL ES 3.00.
4789 *
4790 * Section 4.1.9 (Arrays) of the GLSL ES 3.00 spec says:
4791 *
4792 * "An array type can also be formed without specifying a size
4793 * if the definition includes an initializer:
4794 *
4795 * float x[] = float[2] (1.0, 2.0); // declares an array of size 2
4796 * float y[] = float[] (1.0, 2.0, 3.0); // declares an array of size 3
4797 *
4798 * float a[5];
4799 * float b[] = a;"
4800 */
4801 _mesa_glsl_error(& loc, state,
4802 "unsized array declarations are not allowed in "
4803 "GLSL ES");
4804 }
4805
4806 /* If the declaration is not a redeclaration, there are a few additional
4807 * semantic checks that must be applied. In addition, variable that was
4808 * created for the declaration should be added to the IR stream.
4809 */
4810 if (earlier == NULL) {
4811 validate_identifier(decl->identifier, loc, state);
4812
4813 /* Add the variable to the symbol table. Note that the initializer's
4814 * IR was already processed earlier (though it hasn't been emitted
4815 * yet), without the variable in scope.
4816 *
4817 * This differs from most C-like languages, but it follows the GLSL
4818 * specification. From page 28 (page 34 of the PDF) of the GLSL 1.50
4819 * spec:
4820 *
4821 * "Within a declaration, the scope of a name starts immediately
4822 * after the initializer if present or immediately after the name
4823 * being declared if not."
4824 */
4825 if (!state->symbols->add_variable(var)) {
4826 YYLTYPE loc = this->get_location();
4827 _mesa_glsl_error(&loc, state, "name `%s' already taken in the "
4828 "current scope", decl->identifier);
4829 continue;
4830 }
4831
4832 /* Push the variable declaration to the top. It means that all the
4833 * variable declarations will appear in a funny last-to-first order,
4834 * but otherwise we run into trouble if a function is prototyped, a
4835 * global var is decled, then the function is defined with usage of
4836 * the global var. See glslparsertest's CorrectModule.frag.
4837 */
4838 instructions->push_head(var);
4839 }
4840
4841 instructions->append_list(&initializer_instructions);
4842 }
4843
4844
4845 /* Generally, variable declarations do not have r-values. However,
4846 * one is used for the declaration in
4847 *
4848 * while (bool b = some_condition()) {
4849 * ...
4850 * }
4851 *
4852 * so we return the rvalue from the last seen declaration here.
4853 */
4854 return result;
4855 }
4856
4857
4858 ir_rvalue *
4859 ast_parameter_declarator::hir(exec_list *instructions,
4860 struct _mesa_glsl_parse_state *state)
4861 {
4862 void *ctx = state;
4863 const struct glsl_type *type;
4864 const char *name = NULL;
4865 YYLTYPE loc = this->get_location();
4866
4867 type = this->type->glsl_type(& name, state);
4868
4869 if (type == NULL) {
4870 if (name != NULL) {
4871 _mesa_glsl_error(& loc, state,
4872 "invalid type `%s' in declaration of `%s'",
4873 name, this->identifier);
4874 } else {
4875 _mesa_glsl_error(& loc, state,
4876 "invalid type in declaration of `%s'",
4877 this->identifier);
4878 }
4879
4880 type = glsl_type::error_type;
4881 }
4882
4883 /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
4884 *
4885 * "Functions that accept no input arguments need not use void in the
4886 * argument list because prototypes (or definitions) are required and
4887 * therefore there is no ambiguity when an empty argument list "( )" is
4888 * declared. The idiom "(void)" as a parameter list is provided for
4889 * convenience."
4890 *
4891 * Placing this check here prevents a void parameter being set up
4892 * for a function, which avoids tripping up checks for main taking
4893 * parameters and lookups of an unnamed symbol.
4894 */
4895 if (type->is_void()) {
4896 if (this->identifier != NULL)
4897 _mesa_glsl_error(& loc, state,
4898 "named parameter cannot have type `void'");
4899
4900 is_void = true;
4901 return NULL;
4902 }
4903
4904 if (formal_parameter && (this->identifier == NULL)) {
4905 _mesa_glsl_error(& loc, state, "formal parameter lacks a name");
4906 return NULL;
4907 }
4908
4909 /* This only handles "vec4 foo[..]". The earlier specifier->glsl_type(...)
4910 * call already handled the "vec4[..] foo" case.
4911 */
4912 type = process_array_type(&loc, type, this->array_specifier, state);
4913
4914 if (!type->is_error() && type->is_unsized_array()) {
4915 _mesa_glsl_error(&loc, state, "arrays passed as parameters must have "
4916 "a declared size");
4917 type = glsl_type::error_type;
4918 }
4919
4920 is_void = false;
4921 ir_variable *var = new(ctx)
4922 ir_variable(type, this->identifier, ir_var_function_in);
4923
4924 /* Apply any specified qualifiers to the parameter declaration. Note that
4925 * for function parameters the default mode is 'in'.
4926 */
4927 apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc,
4928 true);
4929
4930 /* From section 4.1.7 of the GLSL 4.40 spec:
4931 *
4932 * "Opaque variables cannot be treated as l-values; hence cannot
4933 * be used as out or inout function parameters, nor can they be
4934 * assigned into."
4935 */
4936 if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
4937 && type->contains_opaque()) {
4938 _mesa_glsl_error(&loc, state, "out and inout parameters cannot "
4939 "contain opaque variables");
4940 type = glsl_type::error_type;
4941 }
4942
4943 /* From page 39 (page 45 of the PDF) of the GLSL 1.10 spec:
4944 *
4945 * "When calling a function, expressions that do not evaluate to
4946 * l-values cannot be passed to parameters declared as out or inout."
4947 *
4948 * From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
4949 *
4950 * "Other binary or unary expressions, non-dereferenced arrays,
4951 * function names, swizzles with repeated fields, and constants
4952 * cannot be l-values."
4953 *
4954 * So for GLSL 1.10, passing an array as an out or inout parameter is not
4955 * allowed. This restriction is removed in GLSL 1.20, and in GLSL ES.
4956 */
4957 if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
4958 && type->is_array()
4959 && !state->check_version(120, 100, &loc,
4960 "arrays cannot be out or inout parameters")) {
4961 type = glsl_type::error_type;
4962 }
4963
4964 instructions->push_tail(var);
4965
4966 /* Parameter declarations do not have r-values.
4967 */
4968 return NULL;
4969 }
4970
4971
4972 void
4973 ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters,
4974 bool formal,
4975 exec_list *ir_parameters,
4976 _mesa_glsl_parse_state *state)
4977 {
4978 ast_parameter_declarator *void_param = NULL;
4979 unsigned count = 0;
4980
4981 foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) {
4982 param->formal_parameter = formal;
4983 param->hir(ir_parameters, state);
4984
4985 if (param->is_void)
4986 void_param = param;
4987
4988 count++;
4989 }
4990
4991 if ((void_param != NULL) && (count > 1)) {
4992 YYLTYPE loc = void_param->get_location();
4993
4994 _mesa_glsl_error(& loc, state,
4995 "`void' parameter must be only parameter");
4996 }
4997 }
4998
4999
5000 void
5001 emit_function(_mesa_glsl_parse_state *state, ir_function *f)
5002 {
5003 /* IR invariants disallow function declarations or definitions
5004 * nested within other function definitions. But there is no
5005 * requirement about the relative order of function declarations
5006 * and definitions with respect to one another. So simply insert
5007 * the new ir_function block at the end of the toplevel instruction
5008 * list.
5009 */
5010 state->toplevel_ir->push_tail(f);
5011 }
5012
5013
5014 ir_rvalue *
5015 ast_function::hir(exec_list *instructions,
5016 struct _mesa_glsl_parse_state *state)
5017 {
5018 void *ctx = state;
5019 ir_function *f = NULL;
5020 ir_function_signature *sig = NULL;
5021 exec_list hir_parameters;
5022 YYLTYPE loc = this->get_location();
5023
5024 const char *const name = identifier;
5025
5026 /* New functions are always added to the top-level IR instruction stream,
5027 * so this instruction list pointer is ignored. See also emit_function
5028 * (called below).
5029 */
5030 (void) instructions;
5031
5032 /* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec,
5033 *
5034 * "Function declarations (prototypes) cannot occur inside of functions;
5035 * they must be at global scope, or for the built-in functions, outside
5036 * the global scope."
5037 *
5038 * From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec,
5039 *
5040 * "User defined functions may only be defined within the global scope."
5041 *
5042 * Note that this language does not appear in GLSL 1.10.
5043 */
5044 if ((state->current_function != NULL) &&
5045 state->is_version(120, 100)) {
5046 YYLTYPE loc = this->get_location();
5047 _mesa_glsl_error(&loc, state,
5048 "declaration of function `%s' not allowed within "
5049 "function body", name);
5050 }
5051
5052 validate_identifier(name, this->get_location(), state);
5053
5054 /* Convert the list of function parameters to HIR now so that they can be
5055 * used below to compare this function's signature with previously seen
5056 * signatures for functions with the same name.
5057 */
5058 ast_parameter_declarator::parameters_to_hir(& this->parameters,
5059 is_definition,
5060 & hir_parameters, state);
5061
5062 const char *return_type_name;
5063 const glsl_type *return_type =
5064 this->return_type->glsl_type(& return_type_name, state);
5065
5066 if (!return_type) {
5067 YYLTYPE loc = this->get_location();
5068 _mesa_glsl_error(&loc, state,
5069 "function `%s' has undeclared return type `%s'",
5070 name, return_type_name);
5071 return_type = glsl_type::error_type;
5072 }
5073
5074 /* ARB_shader_subroutine states:
5075 * "Subroutine declarations cannot be prototyped. It is an error to prepend
5076 * subroutine(...) to a function declaration."
5077 */
5078 if (this->return_type->qualifier.flags.q.subroutine_def && !is_definition) {
5079 YYLTYPE loc = this->get_location();
5080 _mesa_glsl_error(&loc, state,
5081 "function declaration `%s' cannot have subroutine prepended",
5082 name);
5083 }
5084
5085 /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec:
5086 * "No qualifier is allowed on the return type of a function."
5087 */
5088 if (this->return_type->has_qualifiers(state)) {
5089 YYLTYPE loc = this->get_location();
5090 _mesa_glsl_error(& loc, state,
5091 "function `%s' return type has qualifiers", name);
5092 }
5093
5094 /* Section 6.1 (Function Definitions) of the GLSL 1.20 spec says:
5095 *
5096 * "Arrays are allowed as arguments and as the return type. In both
5097 * cases, the array must be explicitly sized."
5098 */
5099 if (return_type->is_unsized_array()) {
5100 YYLTYPE loc = this->get_location();
5101 _mesa_glsl_error(& loc, state,
5102 "function `%s' return type array must be explicitly "
5103 "sized", name);
5104 }
5105
5106 /* From section 4.1.7 of the GLSL 4.40 spec:
5107 *
5108 * "[Opaque types] can only be declared as function parameters
5109 * or uniform-qualified variables."
5110 */
5111 if (return_type->contains_opaque()) {
5112 YYLTYPE loc = this->get_location();
5113 _mesa_glsl_error(&loc, state,
5114 "function `%s' return type can't contain an opaque type",
5115 name);
5116 }
5117
5118 /* Create an ir_function if one doesn't already exist. */
5119 f = state->symbols->get_function(name);
5120 if (f == NULL) {
5121 f = new(ctx) ir_function(name);
5122 if (!this->return_type->qualifier.flags.q.subroutine) {
5123 if (!state->symbols->add_function(f)) {
5124 /* This function name shadows a non-function use of the same name. */
5125 YYLTYPE loc = this->get_location();
5126 _mesa_glsl_error(&loc, state, "function name `%s' conflicts with "
5127 "non-function", name);
5128 return NULL;
5129 }
5130 }
5131 emit_function(state, f);
5132 }
5133
5134 /* From GLSL ES 3.0 spec, chapter 6.1 "Function Definitions", page 71:
5135 *
5136 * "A shader cannot redefine or overload built-in functions."
5137 *
5138 * While in GLSL ES 1.0 specification, chapter 8 "Built-in Functions":
5139 *
5140 * "User code can overload the built-in functions but cannot redefine
5141 * them."
5142 */
5143 if (state->es_shader && state->language_version >= 300) {
5144 /* Local shader has no exact candidates; check the built-ins. */
5145 _mesa_glsl_initialize_builtin_functions();
5146 if (_mesa_glsl_find_builtin_function_by_name(name)) {
5147 YYLTYPE loc = this->get_location();
5148 _mesa_glsl_error(& loc, state,
5149 "A shader cannot redefine or overload built-in "
5150 "function `%s' in GLSL ES 3.00", name);
5151 return NULL;
5152 }
5153 }
5154
5155 /* Verify that this function's signature either doesn't match a previously
5156 * seen signature for a function with the same name, or, if a match is found,
5157 * that the previously seen signature does not have an associated definition.
5158 */
5159 if (state->es_shader || f->has_user_signature()) {
5160 sig = f->exact_matching_signature(state, &hir_parameters);
5161 if (sig != NULL) {
5162 const char *badvar = sig->qualifiers_match(&hir_parameters);
5163 if (badvar != NULL) {
5164 YYLTYPE loc = this->get_location();
5165
5166 _mesa_glsl_error(&loc, state, "function `%s' parameter `%s' "
5167 "qualifiers don't match prototype", name, badvar);
5168 }
5169
5170 if (sig->return_type != return_type) {
5171 YYLTYPE loc = this->get_location();
5172
5173 _mesa_glsl_error(&loc, state, "function `%s' return type doesn't "
5174 "match prototype", name);
5175 }
5176
5177 if (sig->is_defined) {
5178 if (is_definition) {
5179 YYLTYPE loc = this->get_location();
5180 _mesa_glsl_error(& loc, state, "function `%s' redefined", name);
5181 } else {
5182 /* We just encountered a prototype that exactly matches a
5183 * function that's already been defined. This is redundant,
5184 * and we should ignore it.
5185 */
5186 return NULL;
5187 }
5188 }
5189 }
5190 }
5191
5192 /* Verify the return type of main() */
5193 if (strcmp(name, "main") == 0) {
5194 if (! return_type->is_void()) {
5195 YYLTYPE loc = this->get_location();
5196
5197 _mesa_glsl_error(& loc, state, "main() must return void");
5198 }
5199
5200 if (!hir_parameters.is_empty()) {
5201 YYLTYPE loc = this->get_location();
5202
5203 _mesa_glsl_error(& loc, state, "main() must not take any parameters");
5204 }
5205 }
5206
5207 /* Finish storing the information about this new function in its signature.
5208 */
5209 if (sig == NULL) {
5210 sig = new(ctx) ir_function_signature(return_type);
5211 f->add_signature(sig);
5212 }
5213
5214 sig->replace_parameters(&hir_parameters);
5215 signature = sig;
5216
5217 if (this->return_type->qualifier.flags.q.subroutine_def) {
5218 int idx;
5219
5220 if (this->return_type->qualifier.flags.q.explicit_index) {
5221 unsigned qual_index;
5222 if (process_qualifier_constant(state, &loc, "index",
5223 this->return_type->qualifier.index,
5224 &qual_index)) {
5225 if (!state->has_explicit_uniform_location()) {
5226 _mesa_glsl_error(&loc, state, "subroutine index requires "
5227 "GL_ARB_explicit_uniform_location or "
5228 "GLSL 4.30");
5229 } else if (qual_index >= MAX_SUBROUTINES) {
5230 _mesa_glsl_error(&loc, state,
5231 "invalid subroutine index (%d) index must "
5232 "be a number between 0 and "
5233 "GL_MAX_SUBROUTINES - 1 (%d)", qual_index,
5234 MAX_SUBROUTINES - 1);
5235 } else {
5236 f->subroutine_index = qual_index;
5237 }
5238 }
5239 }
5240
5241 f->num_subroutine_types = this->return_type->qualifier.subroutine_list->declarations.length();
5242 f->subroutine_types = ralloc_array(state, const struct glsl_type *,
5243 f->num_subroutine_types);
5244 idx = 0;
5245 foreach_list_typed(ast_declaration, decl, link, &this->return_type->qualifier.subroutine_list->declarations) {
5246 const struct glsl_type *type;
5247 /* the subroutine type must be already declared */
5248 type = state->symbols->get_type(decl->identifier);
5249 if (!type) {
5250 _mesa_glsl_error(& loc, state, "unknown type '%s' in subroutine function definition", decl->identifier);
5251 }
5252 f->subroutine_types[idx++] = type;
5253 }
5254 state->subroutines = (ir_function **)reralloc(state, state->subroutines,
5255 ir_function *,
5256 state->num_subroutines + 1);
5257 state->subroutines[state->num_subroutines] = f;
5258 state->num_subroutines++;
5259
5260 }
5261
5262 if (this->return_type->qualifier.flags.q.subroutine) {
5263 if (!state->symbols->add_type(this->identifier, glsl_type::get_subroutine_instance(this->identifier))) {
5264 _mesa_glsl_error(& loc, state, "type '%s' previously defined", this->identifier);
5265 return NULL;
5266 }
5267 state->subroutine_types = (ir_function **)reralloc(state, state->subroutine_types,
5268 ir_function *,
5269 state->num_subroutine_types + 1);
5270 state->subroutine_types[state->num_subroutine_types] = f;
5271 state->num_subroutine_types++;
5272
5273 f->is_subroutine = true;
5274 }
5275
5276 /* Function declarations (prototypes) do not have r-values.
5277 */
5278 return NULL;
5279 }
5280
5281
5282 ir_rvalue *
5283 ast_function_definition::hir(exec_list *instructions,
5284 struct _mesa_glsl_parse_state *state)
5285 {
5286 prototype->is_definition = true;
5287 prototype->hir(instructions, state);
5288
5289 ir_function_signature *signature = prototype->signature;
5290 if (signature == NULL)
5291 return NULL;
5292
5293 assert(state->current_function == NULL);
5294 state->current_function = signature;
5295 state->found_return = false;
5296
5297 /* Duplicate parameters declared in the prototype as concrete variables.
5298 * Add these to the symbol table.
5299 */
5300 state->symbols->push_scope();
5301 foreach_in_list(ir_variable, var, &signature->parameters) {
5302 assert(var->as_variable() != NULL);
5303
5304 /* The only way a parameter would "exist" is if two parameters have
5305 * the same name.
5306 */
5307 if (state->symbols->name_declared_this_scope(var->name)) {
5308 YYLTYPE loc = this->get_location();
5309
5310 _mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name);
5311 } else {
5312 state->symbols->add_variable(var);
5313 }
5314 }
5315
5316 /* Convert the body of the function to HIR. */
5317 this->body->hir(&signature->body, state);
5318 signature->is_defined = true;
5319
5320 state->symbols->pop_scope();
5321
5322 assert(state->current_function == signature);
5323 state->current_function = NULL;
5324
5325 if (!signature->return_type->is_void() && !state->found_return) {
5326 YYLTYPE loc = this->get_location();
5327 _mesa_glsl_error(& loc, state, "function `%s' has non-void return type "
5328 "%s, but no return statement",
5329 signature->function_name(),
5330 signature->return_type->name);
5331 }
5332
5333 /* Function definitions do not have r-values.
5334 */
5335 return NULL;
5336 }
5337
5338
5339 ir_rvalue *
5340 ast_jump_statement::hir(exec_list *instructions,
5341 struct _mesa_glsl_parse_state *state)
5342 {
5343 void *ctx = state;
5344
5345 switch (mode) {
5346 case ast_return: {
5347 ir_return *inst;
5348 assert(state->current_function);
5349
5350 if (opt_return_value) {
5351 ir_rvalue *ret = opt_return_value->hir(instructions, state);
5352
5353 /* The value of the return type can be NULL if the shader says
5354 * 'return foo();' and foo() is a function that returns void.
5355 *
5356 * NOTE: The GLSL spec doesn't say that this is an error. The type
5357 * of the return value is void. If the return type of the function is
5358 * also void, then this should compile without error. Seriously.
5359 */
5360 const glsl_type *const ret_type =
5361 (ret == NULL) ? glsl_type::void_type : ret->type;
5362
5363 /* Implicit conversions are not allowed for return values prior to
5364 * ARB_shading_language_420pack.
5365 */
5366 if (state->current_function->return_type != ret_type) {
5367 YYLTYPE loc = this->get_location();
5368
5369 if (state->ARB_shading_language_420pack_enable) {
5370 if (!apply_implicit_conversion(state->current_function->return_type,
5371 ret, state)) {
5372 _mesa_glsl_error(& loc, state,
5373 "could not implicitly convert return value "
5374 "to %s, in function `%s'",
5375 state->current_function->return_type->name,
5376 state->current_function->function_name());
5377 }
5378 } else {
5379 _mesa_glsl_error(& loc, state,
5380 "`return' with wrong type %s, in function `%s' "
5381 "returning %s",
5382 ret_type->name,
5383 state->current_function->function_name(),
5384 state->current_function->return_type->name);
5385 }
5386 } else if (state->current_function->return_type->base_type ==
5387 GLSL_TYPE_VOID) {
5388 YYLTYPE loc = this->get_location();
5389
5390 /* The ARB_shading_language_420pack, GLSL ES 3.0, and GLSL 4.20
5391 * specs add a clarification:
5392 *
5393 * "A void function can only use return without a return argument, even if
5394 * the return argument has void type. Return statements only accept values:
5395 *
5396 * void func1() { }
5397 * void func2() { return func1(); } // illegal return statement"
5398 */
5399 _mesa_glsl_error(& loc, state,
5400 "void functions can only use `return' without a "
5401 "return argument");
5402 }
5403
5404 inst = new(ctx) ir_return(ret);
5405 } else {
5406 if (state->current_function->return_type->base_type !=
5407 GLSL_TYPE_VOID) {
5408 YYLTYPE loc = this->get_location();
5409
5410 _mesa_glsl_error(& loc, state,
5411 "`return' with no value, in function %s returning "
5412 "non-void",
5413 state->current_function->function_name());
5414 }
5415 inst = new(ctx) ir_return;
5416 }
5417
5418 state->found_return = true;
5419 instructions->push_tail(inst);
5420 break;
5421 }
5422
5423 case ast_discard:
5424 if (state->stage != MESA_SHADER_FRAGMENT) {
5425 YYLTYPE loc = this->get_location();
5426
5427 _mesa_glsl_error(& loc, state,
5428 "`discard' may only appear in a fragment shader");
5429 }
5430 instructions->push_tail(new(ctx) ir_discard);
5431 break;
5432
5433 case ast_break:
5434 case ast_continue:
5435 if (mode == ast_continue &&
5436 state->loop_nesting_ast == NULL) {
5437 YYLTYPE loc = this->get_location();
5438
5439 _mesa_glsl_error(& loc, state, "continue may only appear in a loop");
5440 } else if (mode == ast_break &&
5441 state->loop_nesting_ast == NULL &&
5442 state->switch_state.switch_nesting_ast == NULL) {
5443 YYLTYPE loc = this->get_location();
5444
5445 _mesa_glsl_error(& loc, state,
5446 "break may only appear in a loop or a switch");
5447 } else {
5448 /* For a loop, inline the for loop expression again, since we don't
5449 * know where near the end of the loop body the normal copy of it is
5450 * going to be placed. Same goes for the condition for a do-while
5451 * loop.
5452 */
5453 if (state->loop_nesting_ast != NULL &&
5454 mode == ast_continue && !state->switch_state.is_switch_innermost) {
5455 if (state->loop_nesting_ast->rest_expression) {
5456 state->loop_nesting_ast->rest_expression->hir(instructions,
5457 state);
5458 }
5459 if (state->loop_nesting_ast->mode ==
5460 ast_iteration_statement::ast_do_while) {
5461 state->loop_nesting_ast->condition_to_hir(instructions, state);
5462 }
5463 }
5464
5465 if (state->switch_state.is_switch_innermost &&
5466 mode == ast_continue) {
5467 /* Set 'continue_inside' to true. */
5468 ir_rvalue *const true_val = new (ctx) ir_constant(true);
5469 ir_dereference_variable *deref_continue_inside_var =
5470 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
5471 instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
5472 true_val));
5473
5474 /* Break out from the switch, continue for the loop will
5475 * be called right after switch. */
5476 ir_loop_jump *const jump =
5477 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
5478 instructions->push_tail(jump);
5479
5480 } else if (state->switch_state.is_switch_innermost &&
5481 mode == ast_break) {
5482 /* Force break out of switch by inserting a break. */
5483 ir_loop_jump *const jump =
5484 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
5485 instructions->push_tail(jump);
5486 } else {
5487 ir_loop_jump *const jump =
5488 new(ctx) ir_loop_jump((mode == ast_break)
5489 ? ir_loop_jump::jump_break
5490 : ir_loop_jump::jump_continue);
5491 instructions->push_tail(jump);
5492 }
5493 }
5494
5495 break;
5496 }
5497
5498 /* Jump instructions do not have r-values.
5499 */
5500 return NULL;
5501 }
5502
5503
5504 ir_rvalue *
5505 ast_selection_statement::hir(exec_list *instructions,
5506 struct _mesa_glsl_parse_state *state)
5507 {
5508 void *ctx = state;
5509
5510 ir_rvalue *const condition = this->condition->hir(instructions, state);
5511
5512 /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
5513 *
5514 * "Any expression whose type evaluates to a Boolean can be used as the
5515 * conditional expression bool-expression. Vector types are not accepted
5516 * as the expression to if."
5517 *
5518 * The checks are separated so that higher quality diagnostics can be
5519 * generated for cases where both rules are violated.
5520 */
5521 if (!condition->type->is_boolean() || !condition->type->is_scalar()) {
5522 YYLTYPE loc = this->condition->get_location();
5523
5524 _mesa_glsl_error(& loc, state, "if-statement condition must be scalar "
5525 "boolean");
5526 }
5527
5528 ir_if *const stmt = new(ctx) ir_if(condition);
5529
5530 if (then_statement != NULL) {
5531 state->symbols->push_scope();
5532 then_statement->hir(& stmt->then_instructions, state);
5533 state->symbols->pop_scope();
5534 }
5535
5536 if (else_statement != NULL) {
5537 state->symbols->push_scope();
5538 else_statement->hir(& stmt->else_instructions, state);
5539 state->symbols->pop_scope();
5540 }
5541
5542 instructions->push_tail(stmt);
5543
5544 /* if-statements do not have r-values.
5545 */
5546 return NULL;
5547 }
5548
5549
5550 ir_rvalue *
5551 ast_switch_statement::hir(exec_list *instructions,
5552 struct _mesa_glsl_parse_state *state)
5553 {
5554 void *ctx = state;
5555
5556 ir_rvalue *const test_expression =
5557 this->test_expression->hir(instructions, state);
5558
5559 /* From page 66 (page 55 of the PDF) of the GLSL 1.50 spec:
5560 *
5561 * "The type of init-expression in a switch statement must be a
5562 * scalar integer."
5563 */
5564 if (!test_expression->type->is_scalar() ||
5565 !test_expression->type->is_integer()) {
5566 YYLTYPE loc = this->test_expression->get_location();
5567
5568 _mesa_glsl_error(& loc,
5569 state,
5570 "switch-statement expression must be scalar "
5571 "integer");
5572 }
5573
5574 /* Track the switch-statement nesting in a stack-like manner.
5575 */
5576 struct glsl_switch_state saved = state->switch_state;
5577
5578 state->switch_state.is_switch_innermost = true;
5579 state->switch_state.switch_nesting_ast = this;
5580 state->switch_state.labels_ht = hash_table_ctor(0, hash_table_pointer_hash,
5581 hash_table_pointer_compare);
5582 state->switch_state.previous_default = NULL;
5583
5584 /* Initalize is_fallthru state to false.
5585 */
5586 ir_rvalue *const is_fallthru_val = new (ctx) ir_constant(false);
5587 state->switch_state.is_fallthru_var =
5588 new(ctx) ir_variable(glsl_type::bool_type,
5589 "switch_is_fallthru_tmp",
5590 ir_var_temporary);
5591 instructions->push_tail(state->switch_state.is_fallthru_var);
5592
5593 ir_dereference_variable *deref_is_fallthru_var =
5594 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
5595 instructions->push_tail(new(ctx) ir_assignment(deref_is_fallthru_var,
5596 is_fallthru_val));
5597
5598 /* Initialize continue_inside state to false.
5599 */
5600 state->switch_state.continue_inside =
5601 new(ctx) ir_variable(glsl_type::bool_type,
5602 "continue_inside_tmp",
5603 ir_var_temporary);
5604 instructions->push_tail(state->switch_state.continue_inside);
5605
5606 ir_rvalue *const false_val = new (ctx) ir_constant(false);
5607 ir_dereference_variable *deref_continue_inside_var =
5608 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
5609 instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
5610 false_val));
5611
5612 state->switch_state.run_default =
5613 new(ctx) ir_variable(glsl_type::bool_type,
5614 "run_default_tmp",
5615 ir_var_temporary);
5616 instructions->push_tail(state->switch_state.run_default);
5617
5618 /* Loop around the switch is used for flow control. */
5619 ir_loop * loop = new(ctx) ir_loop();
5620 instructions->push_tail(loop);
5621
5622 /* Cache test expression.
5623 */
5624 test_to_hir(&loop->body_instructions, state);
5625
5626 /* Emit code for body of switch stmt.
5627 */
5628 body->hir(&loop->body_instructions, state);
5629
5630 /* Insert a break at the end to exit loop. */
5631 ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
5632 loop->body_instructions.push_tail(jump);
5633
5634 /* If we are inside loop, check if continue got called inside switch. */
5635 if (state->loop_nesting_ast != NULL) {
5636 ir_dereference_variable *deref_continue_inside =
5637 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
5638 ir_if *irif = new(ctx) ir_if(deref_continue_inside);
5639 ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_continue);
5640
5641 if (state->loop_nesting_ast != NULL) {
5642 if (state->loop_nesting_ast->rest_expression) {
5643 state->loop_nesting_ast->rest_expression->hir(&irif->then_instructions,
5644 state);
5645 }
5646 if (state->loop_nesting_ast->mode ==
5647 ast_iteration_statement::ast_do_while) {
5648 state->loop_nesting_ast->condition_to_hir(&irif->then_instructions, state);
5649 }
5650 }
5651 irif->then_instructions.push_tail(jump);
5652 instructions->push_tail(irif);
5653 }
5654
5655 hash_table_dtor(state->switch_state.labels_ht);
5656
5657 state->switch_state = saved;
5658
5659 /* Switch statements do not have r-values. */
5660 return NULL;
5661 }
5662
5663
5664 void
5665 ast_switch_statement::test_to_hir(exec_list *instructions,
5666 struct _mesa_glsl_parse_state *state)
5667 {
5668 void *ctx = state;
5669
5670 /* Cache value of test expression. */
5671 ir_rvalue *const test_val =
5672 test_expression->hir(instructions,
5673 state);
5674
5675 state->switch_state.test_var = new(ctx) ir_variable(test_val->type,
5676 "switch_test_tmp",
5677 ir_var_temporary);
5678 ir_dereference_variable *deref_test_var =
5679 new(ctx) ir_dereference_variable(state->switch_state.test_var);
5680
5681 instructions->push_tail(state->switch_state.test_var);
5682 instructions->push_tail(new(ctx) ir_assignment(deref_test_var, test_val));
5683 }
5684
5685
5686 ir_rvalue *
5687 ast_switch_body::hir(exec_list *instructions,
5688 struct _mesa_glsl_parse_state *state)
5689 {
5690 if (stmts != NULL)
5691 stmts->hir(instructions, state);
5692
5693 /* Switch bodies do not have r-values. */
5694 return NULL;
5695 }
5696
5697 ir_rvalue *
5698 ast_case_statement_list::hir(exec_list *instructions,
5699 struct _mesa_glsl_parse_state *state)
5700 {
5701 exec_list default_case, after_default, tmp;
5702
5703 foreach_list_typed (ast_case_statement, case_stmt, link, & this->cases) {
5704 case_stmt->hir(&tmp, state);
5705
5706 /* Default case. */
5707 if (state->switch_state.previous_default && default_case.is_empty()) {
5708 default_case.append_list(&tmp);
5709 continue;
5710 }
5711
5712 /* If default case found, append 'after_default' list. */
5713 if (!default_case.is_empty())
5714 after_default.append_list(&tmp);
5715 else
5716 instructions->append_list(&tmp);
5717 }
5718
5719 /* Handle the default case. This is done here because default might not be
5720 * the last case. We need to add checks against following cases first to see
5721 * if default should be chosen or not.
5722 */
5723 if (!default_case.is_empty()) {
5724
5725 ir_rvalue *const true_val = new (state) ir_constant(true);
5726 ir_dereference_variable *deref_run_default_var =
5727 new(state) ir_dereference_variable(state->switch_state.run_default);
5728
5729 /* Choose to run default case initially, following conditional
5730 * assignments might change this.
5731 */
5732 ir_assignment *const init_var =
5733 new(state) ir_assignment(deref_run_default_var, true_val);
5734 instructions->push_tail(init_var);
5735
5736 /* Default case was the last one, no checks required. */
5737 if (after_default.is_empty()) {
5738 instructions->append_list(&default_case);
5739 return NULL;
5740 }
5741
5742 foreach_in_list(ir_instruction, ir, &after_default) {
5743 ir_assignment *assign = ir->as_assignment();
5744
5745 if (!assign)
5746 continue;
5747
5748 /* Clone the check between case label and init expression. */
5749 ir_expression *exp = (ir_expression*) assign->condition;
5750 ir_expression *clone = exp->clone(state, NULL);
5751
5752 ir_dereference_variable *deref_var =
5753 new(state) ir_dereference_variable(state->switch_state.run_default);
5754 ir_rvalue *const false_val = new (state) ir_constant(false);
5755
5756 ir_assignment *const set_false =
5757 new(state) ir_assignment(deref_var, false_val, clone);
5758
5759 instructions->push_tail(set_false);
5760 }
5761
5762 /* Append default case and all cases after it. */
5763 instructions->append_list(&default_case);
5764 instructions->append_list(&after_default);
5765 }
5766
5767 /* Case statements do not have r-values. */
5768 return NULL;
5769 }
5770
5771 ir_rvalue *
5772 ast_case_statement::hir(exec_list *instructions,
5773 struct _mesa_glsl_parse_state *state)
5774 {
5775 labels->hir(instructions, state);
5776
5777 /* Guard case statements depending on fallthru state. */
5778 ir_dereference_variable *const deref_fallthru_guard =
5779 new(state) ir_dereference_variable(state->switch_state.is_fallthru_var);
5780 ir_if *const test_fallthru = new(state) ir_if(deref_fallthru_guard);
5781
5782 foreach_list_typed (ast_node, stmt, link, & this->stmts)
5783 stmt->hir(& test_fallthru->then_instructions, state);
5784
5785 instructions->push_tail(test_fallthru);
5786
5787 /* Case statements do not have r-values. */
5788 return NULL;
5789 }
5790
5791
5792 ir_rvalue *
5793 ast_case_label_list::hir(exec_list *instructions,
5794 struct _mesa_glsl_parse_state *state)
5795 {
5796 foreach_list_typed (ast_case_label, label, link, & this->labels)
5797 label->hir(instructions, state);
5798
5799 /* Case labels do not have r-values. */
5800 return NULL;
5801 }
5802
5803 ir_rvalue *
5804 ast_case_label::hir(exec_list *instructions,
5805 struct _mesa_glsl_parse_state *state)
5806 {
5807 void *ctx = state;
5808
5809 ir_dereference_variable *deref_fallthru_var =
5810 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
5811
5812 ir_rvalue *const true_val = new(ctx) ir_constant(true);
5813
5814 /* If not default case, ... */
5815 if (this->test_value != NULL) {
5816 /* Conditionally set fallthru state based on
5817 * comparison of cached test expression value to case label.
5818 */
5819 ir_rvalue *const label_rval = this->test_value->hir(instructions, state);
5820 ir_constant *label_const = label_rval->constant_expression_value();
5821
5822 if (!label_const) {
5823 YYLTYPE loc = this->test_value->get_location();
5824
5825 _mesa_glsl_error(& loc, state,
5826 "switch statement case label must be a "
5827 "constant expression");
5828
5829 /* Stuff a dummy value in to allow processing to continue. */
5830 label_const = new(ctx) ir_constant(0);
5831 } else {
5832 ast_expression *previous_label = (ast_expression *)
5833 hash_table_find(state->switch_state.labels_ht,
5834 (void *)(uintptr_t)label_const->value.u[0]);
5835
5836 if (previous_label) {
5837 YYLTYPE loc = this->test_value->get_location();
5838 _mesa_glsl_error(& loc, state, "duplicate case value");
5839
5840 loc = previous_label->get_location();
5841 _mesa_glsl_error(& loc, state, "this is the previous case label");
5842 } else {
5843 hash_table_insert(state->switch_state.labels_ht,
5844 this->test_value,
5845 (void *)(uintptr_t)label_const->value.u[0]);
5846 }
5847 }
5848
5849 ir_dereference_variable *deref_test_var =
5850 new(ctx) ir_dereference_variable(state->switch_state.test_var);
5851
5852 ir_expression *test_cond = new(ctx) ir_expression(ir_binop_all_equal,
5853 label_const,
5854 deref_test_var);
5855
5856 /*
5857 * From GLSL 4.40 specification section 6.2 ("Selection"):
5858 *
5859 * "The type of the init-expression value in a switch statement must
5860 * be a scalar int or uint. The type of the constant-expression value
5861 * in a case label also must be a scalar int or uint. When any pair
5862 * of these values is tested for "equal value" and the types do not
5863 * match, an implicit conversion will be done to convert the int to a
5864 * uint (see section 4.1.10 “Implicit Conversions”) before the compare
5865 * is done."
5866 */
5867 if (label_const->type != state->switch_state.test_var->type) {
5868 YYLTYPE loc = this->test_value->get_location();
5869
5870 const glsl_type *type_a = label_const->type;
5871 const glsl_type *type_b = state->switch_state.test_var->type;
5872
5873 /* Check if int->uint implicit conversion is supported. */
5874 bool integer_conversion_supported =
5875 glsl_type::int_type->can_implicitly_convert_to(glsl_type::uint_type,
5876 state);
5877
5878 if ((!type_a->is_integer() || !type_b->is_integer()) ||
5879 !integer_conversion_supported) {
5880 _mesa_glsl_error(&loc, state, "type mismatch with switch "
5881 "init-expression and case label (%s != %s)",
5882 type_a->name, type_b->name);
5883 } else {
5884 /* Conversion of the case label. */
5885 if (type_a->base_type == GLSL_TYPE_INT) {
5886 if (!apply_implicit_conversion(glsl_type::uint_type,
5887 test_cond->operands[0], state))
5888 _mesa_glsl_error(&loc, state, "implicit type conversion error");
5889 } else {
5890 /* Conversion of the init-expression value. */
5891 if (!apply_implicit_conversion(glsl_type::uint_type,
5892 test_cond->operands[1], state))
5893 _mesa_glsl_error(&loc, state, "implicit type conversion error");
5894 }
5895 }
5896 }
5897
5898 ir_assignment *set_fallthru_on_test =
5899 new(ctx) ir_assignment(deref_fallthru_var, true_val, test_cond);
5900
5901 instructions->push_tail(set_fallthru_on_test);
5902 } else { /* default case */
5903 if (state->switch_state.previous_default) {
5904 YYLTYPE loc = this->get_location();
5905 _mesa_glsl_error(& loc, state,
5906 "multiple default labels in one switch");
5907
5908 loc = state->switch_state.previous_default->get_location();
5909 _mesa_glsl_error(& loc, state, "this is the first default label");
5910 }
5911 state->switch_state.previous_default = this;
5912
5913 /* Set fallthru condition on 'run_default' bool. */
5914 ir_dereference_variable *deref_run_default =
5915 new(ctx) ir_dereference_variable(state->switch_state.run_default);
5916 ir_rvalue *const cond_true = new(ctx) ir_constant(true);
5917 ir_expression *test_cond = new(ctx) ir_expression(ir_binop_all_equal,
5918 cond_true,
5919 deref_run_default);
5920
5921 /* Set falltrhu state. */
5922 ir_assignment *set_fallthru =
5923 new(ctx) ir_assignment(deref_fallthru_var, true_val, test_cond);
5924
5925 instructions->push_tail(set_fallthru);
5926 }
5927
5928 /* Case statements do not have r-values. */
5929 return NULL;
5930 }
5931
5932 void
5933 ast_iteration_statement::condition_to_hir(exec_list *instructions,
5934 struct _mesa_glsl_parse_state *state)
5935 {
5936 void *ctx = state;
5937
5938 if (condition != NULL) {
5939 ir_rvalue *const cond =
5940 condition->hir(instructions, state);
5941
5942 if ((cond == NULL)
5943 || !cond->type->is_boolean() || !cond->type->is_scalar()) {
5944 YYLTYPE loc = condition->get_location();
5945
5946 _mesa_glsl_error(& loc, state,
5947 "loop condition must be scalar boolean");
5948 } else {
5949 /* As the first code in the loop body, generate a block that looks
5950 * like 'if (!condition) break;' as the loop termination condition.
5951 */
5952 ir_rvalue *const not_cond =
5953 new(ctx) ir_expression(ir_unop_logic_not, cond);
5954
5955 ir_if *const if_stmt = new(ctx) ir_if(not_cond);
5956
5957 ir_jump *const break_stmt =
5958 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
5959
5960 if_stmt->then_instructions.push_tail(break_stmt);
5961 instructions->push_tail(if_stmt);
5962 }
5963 }
5964 }
5965
5966
5967 ir_rvalue *
5968 ast_iteration_statement::hir(exec_list *instructions,
5969 struct _mesa_glsl_parse_state *state)
5970 {
5971 void *ctx = state;
5972
5973 /* For-loops and while-loops start a new scope, but do-while loops do not.
5974 */
5975 if (mode != ast_do_while)
5976 state->symbols->push_scope();
5977
5978 if (init_statement != NULL)
5979 init_statement->hir(instructions, state);
5980
5981 ir_loop *const stmt = new(ctx) ir_loop();
5982 instructions->push_tail(stmt);
5983
5984 /* Track the current loop nesting. */
5985 ast_iteration_statement *nesting_ast = state->loop_nesting_ast;
5986
5987 state->loop_nesting_ast = this;
5988
5989 /* Likewise, indicate that following code is closest to a loop,
5990 * NOT closest to a switch.
5991 */
5992 bool saved_is_switch_innermost = state->switch_state.is_switch_innermost;
5993 state->switch_state.is_switch_innermost = false;
5994
5995 if (mode != ast_do_while)
5996 condition_to_hir(&stmt->body_instructions, state);
5997
5998 if (body != NULL)
5999 body->hir(& stmt->body_instructions, state);
6000
6001 if (rest_expression != NULL)
6002 rest_expression->hir(& stmt->body_instructions, state);
6003
6004 if (mode == ast_do_while)
6005 condition_to_hir(&stmt->body_instructions, state);
6006
6007 if (mode != ast_do_while)
6008 state->symbols->pop_scope();
6009
6010 /* Restore previous nesting before returning. */
6011 state->loop_nesting_ast = nesting_ast;
6012 state->switch_state.is_switch_innermost = saved_is_switch_innermost;
6013
6014 /* Loops do not have r-values.
6015 */
6016 return NULL;
6017 }
6018
6019
6020 /**
6021 * Determine if the given type is valid for establishing a default precision
6022 * qualifier.
6023 *
6024 * From GLSL ES 3.00 section 4.5.4 ("Default Precision Qualifiers"):
6025 *
6026 * "The precision statement
6027 *
6028 * precision precision-qualifier type;
6029 *
6030 * can be used to establish a default precision qualifier. The type field
6031 * can be either int or float or any of the sampler types, and the
6032 * precision-qualifier can be lowp, mediump, or highp."
6033 *
6034 * GLSL ES 1.00 has similar language. GLSL 1.30 doesn't allow precision
6035 * qualifiers on sampler types, but this seems like an oversight (since the
6036 * intention of including these in GLSL 1.30 is to allow compatibility with ES
6037 * shaders). So we allow int, float, and all sampler types regardless of GLSL
6038 * version.
6039 */
6040 static bool
6041 is_valid_default_precision_type(const struct glsl_type *const type)
6042 {
6043 if (type == NULL)
6044 return false;
6045
6046 switch (type->base_type) {
6047 case GLSL_TYPE_INT:
6048 case GLSL_TYPE_FLOAT:
6049 /* "int" and "float" are valid, but vectors and matrices are not. */
6050 return type->vector_elements == 1 && type->matrix_columns == 1;
6051 case GLSL_TYPE_SAMPLER:
6052 case GLSL_TYPE_IMAGE:
6053 case GLSL_TYPE_ATOMIC_UINT:
6054 return true;
6055 default:
6056 return false;
6057 }
6058 }
6059
6060
6061 ir_rvalue *
6062 ast_type_specifier::hir(exec_list *instructions,
6063 struct _mesa_glsl_parse_state *state)
6064 {
6065 if (this->default_precision == ast_precision_none && this->structure == NULL)
6066 return NULL;
6067
6068 YYLTYPE loc = this->get_location();
6069
6070 /* If this is a precision statement, check that the type to which it is
6071 * applied is either float or int.
6072 *
6073 * From section 4.5.3 of the GLSL 1.30 spec:
6074 * "The precision statement
6075 * precision precision-qualifier type;
6076 * can be used to establish a default precision qualifier. The type
6077 * field can be either int or float [...]. Any other types or
6078 * qualifiers will result in an error.
6079 */
6080 if (this->default_precision != ast_precision_none) {
6081 if (!state->check_precision_qualifiers_allowed(&loc))
6082 return NULL;
6083
6084 if (this->structure != NULL) {
6085 _mesa_glsl_error(&loc, state,
6086 "precision qualifiers do not apply to structures");
6087 return NULL;
6088 }
6089
6090 if (this->array_specifier != NULL) {
6091 _mesa_glsl_error(&loc, state,
6092 "default precision statements do not apply to "
6093 "arrays");
6094 return NULL;
6095 }
6096
6097 const struct glsl_type *const type =
6098 state->symbols->get_type(this->type_name);
6099 if (!is_valid_default_precision_type(type)) {
6100 _mesa_glsl_error(&loc, state,
6101 "default precision statements apply only to "
6102 "float, int, and opaque types");
6103 return NULL;
6104 }
6105
6106 if (state->es_shader) {
6107 /* Section 4.5.3 (Default Precision Qualifiers) of the GLSL ES 1.00
6108 * spec says:
6109 *
6110 * "Non-precision qualified declarations will use the precision
6111 * qualifier specified in the most recent precision statement
6112 * that is still in scope. The precision statement has the same
6113 * scoping rules as variable declarations. If it is declared
6114 * inside a compound statement, its effect stops at the end of
6115 * the innermost statement it was declared in. Precision
6116 * statements in nested scopes override precision statements in
6117 * outer scopes. Multiple precision statements for the same basic
6118 * type can appear inside the same scope, with later statements
6119 * overriding earlier statements within that scope."
6120 *
6121 * Default precision specifications follow the same scope rules as
6122 * variables. So, we can track the state of the default precision
6123 * qualifiers in the symbol table, and the rules will just work. This
6124 * is a slight abuse of the symbol table, but it has the semantics
6125 * that we want.
6126 */
6127 state->symbols->add_default_precision_qualifier(this->type_name,
6128 this->default_precision);
6129 }
6130
6131 /* FINISHME: Translate precision statements into IR. */
6132 return NULL;
6133 }
6134
6135 /* _mesa_ast_set_aggregate_type() sets the <structure> field so that
6136 * process_record_constructor() can do type-checking on C-style initializer
6137 * expressions of structs, but ast_struct_specifier should only be translated
6138 * to HIR if it is declaring the type of a structure.
6139 *
6140 * The ->is_declaration field is false for initializers of variables
6141 * declared separately from the struct's type definition.
6142 *
6143 * struct S { ... }; (is_declaration = true)
6144 * struct T { ... } t = { ... }; (is_declaration = true)
6145 * S s = { ... }; (is_declaration = false)
6146 */
6147 if (this->structure != NULL && this->structure->is_declaration)
6148 return this->structure->hir(instructions, state);
6149
6150 return NULL;
6151 }
6152
6153
6154 /**
6155 * Process a structure or interface block tree into an array of structure fields
6156 *
6157 * After parsing, where there are some syntax differnces, structures and
6158 * interface blocks are almost identical. They are similar enough that the
6159 * AST for each can be processed the same way into a set of
6160 * \c glsl_struct_field to describe the members.
6161 *
6162 * If we're processing an interface block, var_mode should be the type of the
6163 * interface block (ir_var_shader_in, ir_var_shader_out, ir_var_uniform or
6164 * ir_var_shader_storage). If we're processing a structure, var_mode should be
6165 * ir_var_auto.
6166 *
6167 * \return
6168 * The number of fields processed. A pointer to the array structure fields is
6169 * stored in \c *fields_ret.
6170 */
6171 unsigned
6172 ast_process_struct_or_iface_block_members(exec_list *instructions,
6173 struct _mesa_glsl_parse_state *state,
6174 exec_list *declarations,
6175 glsl_struct_field **fields_ret,
6176 bool is_interface,
6177 enum glsl_matrix_layout matrix_layout,
6178 bool allow_reserved_names,
6179 ir_variable_mode var_mode,
6180 ast_type_qualifier *layout,
6181 unsigned block_stream)
6182 {
6183 unsigned decl_count = 0;
6184
6185 /* Make an initial pass over the list of fields to determine how
6186 * many there are. Each element in this list is an ast_declarator_list.
6187 * This means that we actually need to count the number of elements in the
6188 * 'declarations' list in each of the elements.
6189 */
6190 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
6191 decl_count += decl_list->declarations.length();
6192 }
6193
6194 /* Allocate storage for the fields and process the field
6195 * declarations. As the declarations are processed, try to also convert
6196 * the types to HIR. This ensures that structure definitions embedded in
6197 * other structure definitions or in interface blocks are processed.
6198 */
6199 glsl_struct_field *const fields = ralloc_array(state, glsl_struct_field,
6200 decl_count);
6201
6202 unsigned i = 0;
6203 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
6204 const char *type_name;
6205 YYLTYPE loc = decl_list->get_location();
6206
6207 decl_list->type->specifier->hir(instructions, state);
6208
6209 /* Section 10.9 of the GLSL ES 1.00 specification states that
6210 * embedded structure definitions have been removed from the language.
6211 */
6212 if (state->es_shader && decl_list->type->specifier->structure != NULL) {
6213 _mesa_glsl_error(&loc, state, "embedded structure definitions are "
6214 "not allowed in GLSL ES 1.00");
6215 }
6216
6217 const glsl_type *decl_type =
6218 decl_list->type->glsl_type(& type_name, state);
6219
6220 const struct ast_type_qualifier *const qual =
6221 &decl_list->type->qualifier;
6222
6223 /* From section 4.3.9 of the GLSL 4.40 spec:
6224 *
6225 * "[In interface blocks] opaque types are not allowed."
6226 *
6227 * It should be impossible for decl_type to be NULL here. Cases that
6228 * might naturally lead to decl_type being NULL, especially for the
6229 * is_interface case, will have resulted in compilation having
6230 * already halted due to a syntax error.
6231 */
6232 assert(decl_type);
6233
6234 if (is_interface && decl_type->contains_opaque()) {
6235 _mesa_glsl_error(&loc, state,
6236 "uniform/buffer in non-default interface block contains "
6237 "opaque variable");
6238 }
6239
6240 if (decl_type->contains_atomic()) {
6241 /* From section 4.1.7.3 of the GLSL 4.40 spec:
6242 *
6243 * "Members of structures cannot be declared as atomic counter
6244 * types."
6245 */
6246 _mesa_glsl_error(&loc, state, "atomic counter in structure, "
6247 "shader storage block or uniform block");
6248 }
6249
6250 if (decl_type->contains_image()) {
6251 /* FINISHME: Same problem as with atomic counters.
6252 * FINISHME: Request clarification from Khronos and add
6253 * FINISHME: spec quotation here.
6254 */
6255 _mesa_glsl_error(&loc, state,
6256 "image in structure, shader storage block or "
6257 "uniform block");
6258 }
6259
6260 if (qual->flags.q.explicit_binding) {
6261 _mesa_glsl_error(&loc, state,
6262 "binding layout qualifier cannot be applied "
6263 "to struct or interface block members");
6264 }
6265
6266 if (qual->flags.q.std140 ||
6267 qual->flags.q.std430 ||
6268 qual->flags.q.packed ||
6269 qual->flags.q.shared) {
6270 _mesa_glsl_error(&loc, state,
6271 "uniform/shader storage block layout qualifiers "
6272 "std140, std430, packed, and shared can only be "
6273 "applied to uniform/shader storage blocks, not "
6274 "members");
6275 }
6276
6277 if (qual->flags.q.constant) {
6278 _mesa_glsl_error(&loc, state,
6279 "const storage qualifier cannot be applied "
6280 "to struct or interface block members");
6281 }
6282
6283 /* From Section 4.4.2.3 (Geometry Outputs) of the GLSL 4.50 spec:
6284 *
6285 * "A block member may be declared with a stream identifier, but
6286 * the specified stream must match the stream associated with the
6287 * containing block."
6288 */
6289 if (qual->flags.q.explicit_stream) {
6290 unsigned qual_stream;
6291 if (process_qualifier_constant(state, &loc, "stream",
6292 qual->stream, &qual_stream) &&
6293 qual_stream != block_stream) {
6294 _mesa_glsl_error(&loc, state, "stream layout qualifier on "
6295 "interface block member does not match "
6296 "the interface block (%d vs %d)", qual->stream,
6297 block_stream);
6298 }
6299 }
6300
6301 if (qual->flags.q.uniform && qual->has_interpolation()) {
6302 _mesa_glsl_error(&loc, state,
6303 "interpolation qualifiers cannot be used "
6304 "with uniform interface blocks");
6305 }
6306
6307 if ((qual->flags.q.uniform || !is_interface) &&
6308 qual->has_auxiliary_storage()) {
6309 _mesa_glsl_error(&loc, state,
6310 "auxiliary storage qualifiers cannot be used "
6311 "in uniform blocks or structures.");
6312 }
6313
6314 if (qual->flags.q.row_major || qual->flags.q.column_major) {
6315 if (!qual->flags.q.uniform && !qual->flags.q.buffer) {
6316 _mesa_glsl_error(&loc, state,
6317 "row_major and column_major can only be "
6318 "applied to interface blocks");
6319 } else
6320 validate_matrix_layout_for_type(state, &loc, decl_type, NULL);
6321 }
6322
6323 if (qual->flags.q.read_only && qual->flags.q.write_only) {
6324 _mesa_glsl_error(&loc, state, "buffer variable can't be both "
6325 "readonly and writeonly.");
6326 }
6327
6328 foreach_list_typed (ast_declaration, decl, link,
6329 &decl_list->declarations) {
6330 YYLTYPE loc = decl->get_location();
6331
6332 if (!allow_reserved_names)
6333 validate_identifier(decl->identifier, loc, state);
6334
6335 const struct glsl_type *field_type =
6336 process_array_type(&loc, decl_type, decl->array_specifier, state);
6337 validate_array_dimensions(field_type, state, &loc);
6338 fields[i].type = field_type;
6339 fields[i].name = decl->identifier;
6340 fields[i].location = -1;
6341 fields[i].interpolation =
6342 interpret_interpolation_qualifier(qual, var_mode, state, &loc);
6343 fields[i].centroid = qual->flags.q.centroid ? 1 : 0;
6344 fields[i].sample = qual->flags.q.sample ? 1 : 0;
6345 fields[i].patch = qual->flags.q.patch ? 1 : 0;
6346 fields[i].precision = qual->precision;
6347
6348 /* Propogate row- / column-major information down the fields of the
6349 * structure or interface block. Structures need this data because
6350 * the structure may contain a structure that contains ... a matrix
6351 * that need the proper layout.
6352 */
6353 if (field_type->without_array()->is_matrix()
6354 || field_type->without_array()->is_record()) {
6355 /* If no layout is specified for the field, inherit the layout
6356 * from the block.
6357 */
6358 fields[i].matrix_layout = matrix_layout;
6359
6360 if (qual->flags.q.row_major)
6361 fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
6362 else if (qual->flags.q.column_major)
6363 fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
6364
6365 /* If we're processing an interface block, the matrix layout must
6366 * be decided by this point.
6367 */
6368 assert(!is_interface
6369 || fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR
6370 || fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_COLUMN_MAJOR);
6371 }
6372
6373 /* Image qualifiers are allowed on buffer variables, which can only
6374 * be defined inside shader storage buffer objects
6375 */
6376 if (layout && var_mode == ir_var_shader_storage) {
6377 /* For readonly and writeonly qualifiers the field definition,
6378 * if set, overwrites the layout qualifier.
6379 */
6380 if (qual->flags.q.read_only) {
6381 fields[i].image_read_only = true;
6382 fields[i].image_write_only = false;
6383 } else if (qual->flags.q.write_only) {
6384 fields[i].image_read_only = false;
6385 fields[i].image_write_only = true;
6386 } else {
6387 fields[i].image_read_only = layout->flags.q.read_only;
6388 fields[i].image_write_only = layout->flags.q.write_only;
6389 }
6390
6391 /* For other qualifiers, we set the flag if either the layout
6392 * qualifier or the field qualifier are set
6393 */
6394 fields[i].image_coherent = qual->flags.q.coherent ||
6395 layout->flags.q.coherent;
6396 fields[i].image_volatile = qual->flags.q._volatile ||
6397 layout->flags.q._volatile;
6398 fields[i].image_restrict = qual->flags.q.restrict_flag ||
6399 layout->flags.q.restrict_flag;
6400 }
6401
6402 i++;
6403 }
6404 }
6405
6406 assert(i == decl_count);
6407
6408 *fields_ret = fields;
6409 return decl_count;
6410 }
6411
6412
6413 ir_rvalue *
6414 ast_struct_specifier::hir(exec_list *instructions,
6415 struct _mesa_glsl_parse_state *state)
6416 {
6417 YYLTYPE loc = this->get_location();
6418
6419 /* Section 4.1.8 (Structures) of the GLSL 1.10 spec says:
6420 *
6421 * "Anonymous structures are not supported; so embedded structures must
6422 * have a declarator. A name given to an embedded struct is scoped at
6423 * the same level as the struct it is embedded in."
6424 *
6425 * The same section of the GLSL 1.20 spec says:
6426 *
6427 * "Anonymous structures are not supported. Embedded structures are not
6428 * supported.
6429 *
6430 * struct S { float f; };
6431 * struct T {
6432 * S; // Error: anonymous structures disallowed
6433 * struct { ... }; // Error: embedded structures disallowed
6434 * S s; // Okay: nested structures with name are allowed
6435 * };"
6436 *
6437 * The GLSL ES 1.00 and 3.00 specs have similar langauge and examples. So,
6438 * we allow embedded structures in 1.10 only.
6439 */
6440 if (state->language_version != 110 && state->struct_specifier_depth != 0)
6441 _mesa_glsl_error(&loc, state,
6442 "embedded structure declarations are not allowed");
6443
6444 state->struct_specifier_depth++;
6445
6446 glsl_struct_field *fields;
6447 unsigned decl_count =
6448 ast_process_struct_or_iface_block_members(instructions,
6449 state,
6450 &this->declarations,
6451 &fields,
6452 false,
6453 GLSL_MATRIX_LAYOUT_INHERITED,
6454 false /* allow_reserved_names */,
6455 ir_var_auto,
6456 NULL,
6457 0 /* for interface only */);
6458
6459 validate_identifier(this->name, loc, state);
6460
6461 const glsl_type *t =
6462 glsl_type::get_record_instance(fields, decl_count, this->name);
6463
6464 if (!state->symbols->add_type(name, t)) {
6465 _mesa_glsl_error(& loc, state, "struct `%s' previously defined", name);
6466 } else {
6467 const glsl_type **s = reralloc(state, state->user_structures,
6468 const glsl_type *,
6469 state->num_user_structures + 1);
6470 if (s != NULL) {
6471 s[state->num_user_structures] = t;
6472 state->user_structures = s;
6473 state->num_user_structures++;
6474 }
6475 }
6476
6477 state->struct_specifier_depth--;
6478
6479 /* Structure type definitions do not have r-values.
6480 */
6481 return NULL;
6482 }
6483
6484
6485 /**
6486 * Visitor class which detects whether a given interface block has been used.
6487 */
6488 class interface_block_usage_visitor : public ir_hierarchical_visitor
6489 {
6490 public:
6491 interface_block_usage_visitor(ir_variable_mode mode, const glsl_type *block)
6492 : mode(mode), block(block), found(false)
6493 {
6494 }
6495
6496 virtual ir_visitor_status visit(ir_dereference_variable *ir)
6497 {
6498 if (ir->var->data.mode == mode && ir->var->get_interface_type() == block) {
6499 found = true;
6500 return visit_stop;
6501 }
6502 return visit_continue;
6503 }
6504
6505 bool usage_found() const
6506 {
6507 return this->found;
6508 }
6509
6510 private:
6511 ir_variable_mode mode;
6512 const glsl_type *block;
6513 bool found;
6514 };
6515
6516 static bool
6517 is_unsized_array_last_element(ir_variable *v)
6518 {
6519 const glsl_type *interface_type = v->get_interface_type();
6520 int length = interface_type->length;
6521
6522 assert(v->type->is_unsized_array());
6523
6524 /* Check if it is the last element of the interface */
6525 if (strcmp(interface_type->fields.structure[length-1].name, v->name) == 0)
6526 return true;
6527 return false;
6528 }
6529
6530 ir_rvalue *
6531 ast_interface_block::hir(exec_list *instructions,
6532 struct _mesa_glsl_parse_state *state)
6533 {
6534 YYLTYPE loc = this->get_location();
6535
6536 /* Interface blocks must be declared at global scope */
6537 if (state->current_function != NULL) {
6538 _mesa_glsl_error(&loc, state,
6539 "Interface block `%s' must be declared "
6540 "at global scope",
6541 this->block_name);
6542 }
6543
6544 if (!this->layout.flags.q.buffer &&
6545 this->layout.flags.q.std430) {
6546 _mesa_glsl_error(&loc, state,
6547 "std430 storage block layout qualifier is supported "
6548 "only for shader storage blocks");
6549 }
6550
6551 /* The ast_interface_block has a list of ast_declarator_lists. We
6552 * need to turn those into ir_variables with an association
6553 * with this uniform block.
6554 */
6555 enum glsl_interface_packing packing;
6556 if (this->layout.flags.q.shared) {
6557 packing = GLSL_INTERFACE_PACKING_SHARED;
6558 } else if (this->layout.flags.q.packed) {
6559 packing = GLSL_INTERFACE_PACKING_PACKED;
6560 } else if (this->layout.flags.q.std430) {
6561 packing = GLSL_INTERFACE_PACKING_STD430;
6562 } else {
6563 /* The default layout is std140.
6564 */
6565 packing = GLSL_INTERFACE_PACKING_STD140;
6566 }
6567
6568 ir_variable_mode var_mode;
6569 const char *iface_type_name;
6570 if (this->layout.flags.q.in) {
6571 var_mode = ir_var_shader_in;
6572 iface_type_name = "in";
6573 } else if (this->layout.flags.q.out) {
6574 var_mode = ir_var_shader_out;
6575 iface_type_name = "out";
6576 } else if (this->layout.flags.q.uniform) {
6577 var_mode = ir_var_uniform;
6578 iface_type_name = "uniform";
6579 } else if (this->layout.flags.q.buffer) {
6580 var_mode = ir_var_shader_storage;
6581 iface_type_name = "buffer";
6582 } else {
6583 var_mode = ir_var_auto;
6584 iface_type_name = "UNKNOWN";
6585 assert(!"interface block layout qualifier not found!");
6586 }
6587
6588 enum glsl_matrix_layout matrix_layout = GLSL_MATRIX_LAYOUT_INHERITED;
6589 if (this->layout.flags.q.row_major)
6590 matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
6591 else if (this->layout.flags.q.column_major)
6592 matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
6593
6594 bool redeclaring_per_vertex = strcmp(this->block_name, "gl_PerVertex") == 0;
6595 exec_list declared_variables;
6596 glsl_struct_field *fields;
6597
6598 /* Treat an interface block as one level of nesting, so that embedded struct
6599 * specifiers will be disallowed.
6600 */
6601 state->struct_specifier_depth++;
6602
6603 /* For blocks that accept memory qualifiers (i.e. shader storage), verify
6604 * that we don't have incompatible qualifiers
6605 */
6606 if (this->layout.flags.q.read_only && this->layout.flags.q.write_only) {
6607 _mesa_glsl_error(&loc, state,
6608 "Interface block sets both readonly and writeonly");
6609 }
6610
6611 unsigned qual_stream;
6612 if (!process_qualifier_constant(state, &loc, "stream", this->layout.stream,
6613 &qual_stream) ||
6614 !validate_stream_qualifier(&loc, state, qual_stream)) {
6615 /* If the stream qualifier is invalid it doesn't make sense to continue
6616 * on and try to compare stream layouts on member variables against it
6617 * so just return early.
6618 */
6619 return NULL;
6620 }
6621
6622 unsigned int num_variables =
6623 ast_process_struct_or_iface_block_members(&declared_variables,
6624 state,
6625 &this->declarations,
6626 &fields,
6627 true,
6628 matrix_layout,
6629 redeclaring_per_vertex,
6630 var_mode,
6631 &this->layout,
6632 qual_stream);
6633
6634 state->struct_specifier_depth--;
6635
6636 if (!redeclaring_per_vertex) {
6637 validate_identifier(this->block_name, loc, state);
6638
6639 /* From section 4.3.9 ("Interface Blocks") of the GLSL 4.50 spec:
6640 *
6641 * "Block names have no other use within a shader beyond interface
6642 * matching; it is a compile-time error to use a block name at global
6643 * scope for anything other than as a block name."
6644 */
6645 ir_variable *var = state->symbols->get_variable(this->block_name);
6646 if (var && !var->type->is_interface()) {
6647 _mesa_glsl_error(&loc, state, "Block name `%s' is "
6648 "already used in the scope.",
6649 this->block_name);
6650 }
6651 }
6652
6653 const glsl_type *earlier_per_vertex = NULL;
6654 if (redeclaring_per_vertex) {
6655 /* Find the previous declaration of gl_PerVertex. If we're redeclaring
6656 * the named interface block gl_in, we can find it by looking at the
6657 * previous declaration of gl_in. Otherwise we can find it by looking
6658 * at the previous decalartion of any of the built-in outputs,
6659 * e.g. gl_Position.
6660 *
6661 * Also check that the instance name and array-ness of the redeclaration
6662 * are correct.
6663 */
6664 switch (var_mode) {
6665 case ir_var_shader_in:
6666 if (ir_variable *earlier_gl_in =
6667 state->symbols->get_variable("gl_in")) {
6668 earlier_per_vertex = earlier_gl_in->get_interface_type();
6669 } else {
6670 _mesa_glsl_error(&loc, state,
6671 "redeclaration of gl_PerVertex input not allowed "
6672 "in the %s shader",
6673 _mesa_shader_stage_to_string(state->stage));
6674 }
6675 if (this->instance_name == NULL ||
6676 strcmp(this->instance_name, "gl_in") != 0 || this->array_specifier == NULL ||
6677 !this->array_specifier->is_single_dimension()) {
6678 _mesa_glsl_error(&loc, state,
6679 "gl_PerVertex input must be redeclared as "
6680 "gl_in[]");
6681 }
6682 break;
6683 case ir_var_shader_out:
6684 if (ir_variable *earlier_gl_Position =
6685 state->symbols->get_variable("gl_Position")) {
6686 earlier_per_vertex = earlier_gl_Position->get_interface_type();
6687 } else if (ir_variable *earlier_gl_out =
6688 state->symbols->get_variable("gl_out")) {
6689 earlier_per_vertex = earlier_gl_out->get_interface_type();
6690 } else {
6691 _mesa_glsl_error(&loc, state,
6692 "redeclaration of gl_PerVertex output not "
6693 "allowed in the %s shader",
6694 _mesa_shader_stage_to_string(state->stage));
6695 }
6696 if (state->stage == MESA_SHADER_TESS_CTRL) {
6697 if (this->instance_name == NULL ||
6698 strcmp(this->instance_name, "gl_out") != 0 || this->array_specifier == NULL) {
6699 _mesa_glsl_error(&loc, state,
6700 "gl_PerVertex output must be redeclared as "
6701 "gl_out[]");
6702 }
6703 } else {
6704 if (this->instance_name != NULL) {
6705 _mesa_glsl_error(&loc, state,
6706 "gl_PerVertex output may not be redeclared with "
6707 "an instance name");
6708 }
6709 }
6710 break;
6711 default:
6712 _mesa_glsl_error(&loc, state,
6713 "gl_PerVertex must be declared as an input or an "
6714 "output");
6715 break;
6716 }
6717
6718 if (earlier_per_vertex == NULL) {
6719 /* An error has already been reported. Bail out to avoid null
6720 * dereferences later in this function.
6721 */
6722 return NULL;
6723 }
6724
6725 /* Copy locations from the old gl_PerVertex interface block. */
6726 for (unsigned i = 0; i < num_variables; i++) {
6727 int j = earlier_per_vertex->field_index(fields[i].name);
6728 if (j == -1) {
6729 _mesa_glsl_error(&loc, state,
6730 "redeclaration of gl_PerVertex must be a subset "
6731 "of the built-in members of gl_PerVertex");
6732 } else {
6733 fields[i].location =
6734 earlier_per_vertex->fields.structure[j].location;
6735 fields[i].interpolation =
6736 earlier_per_vertex->fields.structure[j].interpolation;
6737 fields[i].centroid =
6738 earlier_per_vertex->fields.structure[j].centroid;
6739 fields[i].sample =
6740 earlier_per_vertex->fields.structure[j].sample;
6741 fields[i].patch =
6742 earlier_per_vertex->fields.structure[j].patch;
6743 fields[i].precision =
6744 earlier_per_vertex->fields.structure[j].precision;
6745 }
6746 }
6747
6748 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10
6749 * spec:
6750 *
6751 * If a built-in interface block is redeclared, it must appear in
6752 * the shader before any use of any member included in the built-in
6753 * declaration, or a compilation error will result.
6754 *
6755 * This appears to be a clarification to the behaviour established for
6756 * gl_PerVertex by GLSL 1.50, therefore we implement this behaviour
6757 * regardless of GLSL version.
6758 */
6759 interface_block_usage_visitor v(var_mode, earlier_per_vertex);
6760 v.run(instructions);
6761 if (v.usage_found()) {
6762 _mesa_glsl_error(&loc, state,
6763 "redeclaration of a built-in interface block must "
6764 "appear before any use of any member of the "
6765 "interface block");
6766 }
6767 }
6768
6769 const glsl_type *block_type =
6770 glsl_type::get_interface_instance(fields,
6771 num_variables,
6772 packing,
6773 this->block_name);
6774
6775 if (!state->symbols->add_interface(block_type->name, block_type, var_mode)) {
6776 YYLTYPE loc = this->get_location();
6777 _mesa_glsl_error(&loc, state, "interface block `%s' with type `%s' "
6778 "already taken in the current scope",
6779 this->block_name, iface_type_name);
6780 }
6781
6782 /* Since interface blocks cannot contain statements, it should be
6783 * impossible for the block to generate any instructions.
6784 */
6785 assert(declared_variables.is_empty());
6786
6787 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
6788 *
6789 * Geometry shader input variables get the per-vertex values written
6790 * out by vertex shader output variables of the same names. Since a
6791 * geometry shader operates on a set of vertices, each input varying
6792 * variable (or input block, see interface blocks below) needs to be
6793 * declared as an array.
6794 */
6795 if (state->stage == MESA_SHADER_GEOMETRY && this->array_specifier == NULL &&
6796 var_mode == ir_var_shader_in) {
6797 _mesa_glsl_error(&loc, state, "geometry shader inputs must be arrays");
6798 } else if ((state->stage == MESA_SHADER_TESS_CTRL ||
6799 state->stage == MESA_SHADER_TESS_EVAL) &&
6800 this->array_specifier == NULL &&
6801 var_mode == ir_var_shader_in) {
6802 _mesa_glsl_error(&loc, state, "per-vertex tessellation shader inputs must be arrays");
6803 } else if (state->stage == MESA_SHADER_TESS_CTRL &&
6804 this->array_specifier == NULL &&
6805 var_mode == ir_var_shader_out) {
6806 _mesa_glsl_error(&loc, state, "tessellation control shader outputs must be arrays");
6807 }
6808
6809
6810 /* Page 39 (page 45 of the PDF) of section 4.3.7 in the GLSL ES 3.00 spec
6811 * says:
6812 *
6813 * "If an instance name (instance-name) is used, then it puts all the
6814 * members inside a scope within its own name space, accessed with the
6815 * field selector ( . ) operator (analogously to structures)."
6816 */
6817 if (this->instance_name) {
6818 if (redeclaring_per_vertex) {
6819 /* When a built-in in an unnamed interface block is redeclared,
6820 * get_variable_being_redeclared() calls
6821 * check_builtin_array_max_size() to make sure that built-in array
6822 * variables aren't redeclared to illegal sizes. But we're looking
6823 * at a redeclaration of a named built-in interface block. So we
6824 * have to manually call check_builtin_array_max_size() for all parts
6825 * of the interface that are arrays.
6826 */
6827 for (unsigned i = 0; i < num_variables; i++) {
6828 if (fields[i].type->is_array()) {
6829 const unsigned size = fields[i].type->array_size();
6830 check_builtin_array_max_size(fields[i].name, size, loc, state);
6831 }
6832 }
6833 } else {
6834 validate_identifier(this->instance_name, loc, state);
6835 }
6836
6837 ir_variable *var;
6838
6839 if (this->array_specifier != NULL) {
6840 const glsl_type *block_array_type =
6841 process_array_type(&loc, block_type, this->array_specifier, state);
6842
6843 /* Section 4.3.7 (Interface Blocks) of the GLSL 1.50 spec says:
6844 *
6845 * For uniform blocks declared an array, each individual array
6846 * element corresponds to a separate buffer object backing one
6847 * instance of the block. As the array size indicates the number
6848 * of buffer objects needed, uniform block array declarations
6849 * must specify an array size.
6850 *
6851 * And a few paragraphs later:
6852 *
6853 * Geometry shader input blocks must be declared as arrays and
6854 * follow the array declaration and linking rules for all
6855 * geometry shader inputs. All other input and output block
6856 * arrays must specify an array size.
6857 *
6858 * The same applies to tessellation shaders.
6859 *
6860 * The upshot of this is that the only circumstance where an
6861 * interface array size *doesn't* need to be specified is on a
6862 * geometry shader input, tessellation control shader input,
6863 * tessellation control shader output, and tessellation evaluation
6864 * shader input.
6865 */
6866 if (block_array_type->is_unsized_array()) {
6867 bool allow_inputs = state->stage == MESA_SHADER_GEOMETRY ||
6868 state->stage == MESA_SHADER_TESS_CTRL ||
6869 state->stage == MESA_SHADER_TESS_EVAL;
6870 bool allow_outputs = state->stage == MESA_SHADER_TESS_CTRL;
6871
6872 if (this->layout.flags.q.in) {
6873 if (!allow_inputs)
6874 _mesa_glsl_error(&loc, state,
6875 "unsized input block arrays not allowed in "
6876 "%s shader",
6877 _mesa_shader_stage_to_string(state->stage));
6878 } else if (this->layout.flags.q.out) {
6879 if (!allow_outputs)
6880 _mesa_glsl_error(&loc, state,
6881 "unsized output block arrays not allowed in "
6882 "%s shader",
6883 _mesa_shader_stage_to_string(state->stage));
6884 } else {
6885 /* by elimination, this is a uniform block array */
6886 _mesa_glsl_error(&loc, state,
6887 "unsized uniform block arrays not allowed in "
6888 "%s shader",
6889 _mesa_shader_stage_to_string(state->stage));
6890 }
6891 }
6892
6893 /* From section 4.3.9 (Interface Blocks) of the GLSL ES 3.10 spec:
6894 *
6895 * * Arrays of arrays of blocks are not allowed
6896 */
6897 if (state->es_shader && block_array_type->is_array() &&
6898 block_array_type->fields.array->is_array()) {
6899 _mesa_glsl_error(&loc, state,
6900 "arrays of arrays interface blocks are "
6901 "not allowed");
6902 }
6903
6904 var = new(state) ir_variable(block_array_type,
6905 this->instance_name,
6906 var_mode);
6907 } else {
6908 var = new(state) ir_variable(block_type,
6909 this->instance_name,
6910 var_mode);
6911 }
6912
6913 var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
6914 ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
6915
6916 if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
6917 var->data.read_only = true;
6918
6919 if (state->stage == MESA_SHADER_GEOMETRY && var_mode == ir_var_shader_in)
6920 handle_geometry_shader_input_decl(state, loc, var);
6921 else if ((state->stage == MESA_SHADER_TESS_CTRL ||
6922 state->stage == MESA_SHADER_TESS_EVAL) && var_mode == ir_var_shader_in)
6923 handle_tess_shader_input_decl(state, loc, var);
6924 else if (state->stage == MESA_SHADER_TESS_CTRL && var_mode == ir_var_shader_out)
6925 handle_tess_ctrl_shader_output_decl(state, loc, var);
6926
6927 for (unsigned i = 0; i < num_variables; i++) {
6928 if (fields[i].type->is_unsized_array()) {
6929 if (var_mode == ir_var_shader_storage) {
6930 if (i != (num_variables - 1)) {
6931 _mesa_glsl_error(&loc, state, "unsized array `%s' definition: "
6932 "only last member of a shader storage block "
6933 "can be defined as unsized array",
6934 fields[i].name);
6935 }
6936 } else {
6937 /* From GLSL ES 3.10 spec, section 4.1.9 "Arrays":
6938 *
6939 * "If an array is declared as the last member of a shader storage
6940 * block and the size is not specified at compile-time, it is
6941 * sized at run-time. In all other cases, arrays are sized only
6942 * at compile-time."
6943 */
6944 if (state->es_shader) {
6945 _mesa_glsl_error(&loc, state, "unsized array `%s' definition: "
6946 "only last member of a shader storage block "
6947 "can be defined as unsized array",
6948 fields[i].name);
6949 }
6950 }
6951 }
6952 }
6953
6954 if (ir_variable *earlier =
6955 state->symbols->get_variable(this->instance_name)) {
6956 if (!redeclaring_per_vertex) {
6957 _mesa_glsl_error(&loc, state, "`%s' redeclared",
6958 this->instance_name);
6959 }
6960 earlier->data.how_declared = ir_var_declared_normally;
6961 earlier->type = var->type;
6962 earlier->reinit_interface_type(block_type);
6963 delete var;
6964 } else {
6965 if (this->layout.flags.q.explicit_binding) {
6966 apply_explicit_binding(state, &loc, var, var->type,
6967 &this->layout);
6968 }
6969
6970 var->data.stream = qual_stream;
6971
6972 state->symbols->add_variable(var);
6973 instructions->push_tail(var);
6974 }
6975 } else {
6976 /* In order to have an array size, the block must also be declared with
6977 * an instance name.
6978 */
6979 assert(this->array_specifier == NULL);
6980
6981 for (unsigned i = 0; i < num_variables; i++) {
6982 ir_variable *var =
6983 new(state) ir_variable(fields[i].type,
6984 ralloc_strdup(state, fields[i].name),
6985 var_mode);
6986 var->data.interpolation = fields[i].interpolation;
6987 var->data.centroid = fields[i].centroid;
6988 var->data.sample = fields[i].sample;
6989 var->data.patch = fields[i].patch;
6990 var->data.stream = qual_stream;
6991 var->init_interface_type(block_type);
6992
6993 if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
6994 var->data.read_only = true;
6995
6996 /* Precision qualifiers do not have any meaning in Desktop GLSL */
6997 if (state->es_shader) {
6998 var->data.precision =
6999 select_gles_precision(fields[i].precision, fields[i].type,
7000 state, &loc);
7001 }
7002
7003 if (fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED) {
7004 var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
7005 ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
7006 } else {
7007 var->data.matrix_layout = fields[i].matrix_layout;
7008 }
7009
7010 if (var->data.mode == ir_var_shader_storage) {
7011 var->data.image_read_only = fields[i].image_read_only;
7012 var->data.image_write_only = fields[i].image_write_only;
7013 var->data.image_coherent = fields[i].image_coherent;
7014 var->data.image_volatile = fields[i].image_volatile;
7015 var->data.image_restrict = fields[i].image_restrict;
7016 }
7017
7018 /* Examine var name here since var may get deleted in the next call */
7019 bool var_is_gl_id = is_gl_identifier(var->name);
7020
7021 if (redeclaring_per_vertex) {
7022 ir_variable *earlier =
7023 get_variable_being_redeclared(var, loc, state,
7024 true /* allow_all_redeclarations */);
7025 if (!var_is_gl_id || earlier == NULL) {
7026 _mesa_glsl_error(&loc, state,
7027 "redeclaration of gl_PerVertex can only "
7028 "include built-in variables");
7029 } else if (earlier->data.how_declared == ir_var_declared_normally) {
7030 _mesa_glsl_error(&loc, state,
7031 "`%s' has already been redeclared",
7032 earlier->name);
7033 } else {
7034 earlier->data.how_declared = ir_var_declared_in_block;
7035 earlier->reinit_interface_type(block_type);
7036 }
7037 continue;
7038 }
7039
7040 if (state->symbols->get_variable(var->name) != NULL)
7041 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
7042
7043 /* Propagate the "binding" keyword into this UBO/SSBO's fields.
7044 * The UBO declaration itself doesn't get an ir_variable unless it
7045 * has an instance name. This is ugly.
7046 */
7047 if (this->layout.flags.q.explicit_binding) {
7048 apply_explicit_binding(state, &loc, var,
7049 var->get_interface_type(), &this->layout);
7050 }
7051
7052 if (var->type->is_unsized_array()) {
7053 if (var->is_in_shader_storage_block()) {
7054 if (!is_unsized_array_last_element(var)) {
7055 _mesa_glsl_error(&loc, state, "unsized array `%s' definition: "
7056 "only last member of a shader storage block "
7057 "can be defined as unsized array",
7058 var->name);
7059 }
7060 var->data.from_ssbo_unsized_array = true;
7061 } else {
7062 /* From GLSL ES 3.10 spec, section 4.1.9 "Arrays":
7063 *
7064 * "If an array is declared as the last member of a shader storage
7065 * block and the size is not specified at compile-time, it is
7066 * sized at run-time. In all other cases, arrays are sized only
7067 * at compile-time."
7068 */
7069 if (state->es_shader) {
7070 _mesa_glsl_error(&loc, state, "unsized array `%s' definition: "
7071 "only last member of a shader storage block "
7072 "can be defined as unsized array",
7073 var->name);
7074 }
7075 }
7076 }
7077
7078 state->symbols->add_variable(var);
7079 instructions->push_tail(var);
7080 }
7081
7082 if (redeclaring_per_vertex && block_type != earlier_per_vertex) {
7083 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10 spec:
7084 *
7085 * It is also a compilation error ... to redeclare a built-in
7086 * block and then use a member from that built-in block that was
7087 * not included in the redeclaration.
7088 *
7089 * This appears to be a clarification to the behaviour established
7090 * for gl_PerVertex by GLSL 1.50, therefore we implement this
7091 * behaviour regardless of GLSL version.
7092 *
7093 * To prevent the shader from using a member that was not included in
7094 * the redeclaration, we disable any ir_variables that are still
7095 * associated with the old declaration of gl_PerVertex (since we've
7096 * already updated all of the variables contained in the new
7097 * gl_PerVertex to point to it).
7098 *
7099 * As a side effect this will prevent
7100 * validate_intrastage_interface_blocks() from getting confused and
7101 * thinking there are conflicting definitions of gl_PerVertex in the
7102 * shader.
7103 */
7104 foreach_in_list_safe(ir_instruction, node, instructions) {
7105 ir_variable *const var = node->as_variable();
7106 if (var != NULL &&
7107 var->get_interface_type() == earlier_per_vertex &&
7108 var->data.mode == var_mode) {
7109 if (var->data.how_declared == ir_var_declared_normally) {
7110 _mesa_glsl_error(&loc, state,
7111 "redeclaration of gl_PerVertex cannot "
7112 "follow a redeclaration of `%s'",
7113 var->name);
7114 }
7115 state->symbols->disable_variable(var->name);
7116 var->remove();
7117 }
7118 }
7119 }
7120 }
7121
7122 return NULL;
7123 }
7124
7125
7126 ir_rvalue *
7127 ast_tcs_output_layout::hir(exec_list *instructions,
7128 struct _mesa_glsl_parse_state *state)
7129 {
7130 YYLTYPE loc = this->get_location();
7131
7132 unsigned num_vertices;
7133 if (!state->out_qualifier->vertices->
7134 process_qualifier_constant(state, "vertices", &num_vertices,
7135 false)) {
7136 /* return here to stop cascading incorrect error messages */
7137 return NULL;
7138 }
7139
7140 /* If any shader outputs occurred before this declaration and specified an
7141 * array size, make sure the size they specified is consistent with the
7142 * primitive type.
7143 */
7144 if (state->tcs_output_size != 0 && state->tcs_output_size != num_vertices) {
7145 _mesa_glsl_error(&loc, state,
7146 "this tessellation control shader output layout "
7147 "specifies %u vertices, but a previous output "
7148 "is declared with size %u",
7149 num_vertices, state->tcs_output_size);
7150 return NULL;
7151 }
7152
7153 state->tcs_output_vertices_specified = true;
7154
7155 /* If any shader outputs occurred before this declaration and did not
7156 * specify an array size, their size is determined now.
7157 */
7158 foreach_in_list (ir_instruction, node, instructions) {
7159 ir_variable *var = node->as_variable();
7160 if (var == NULL || var->data.mode != ir_var_shader_out)
7161 continue;
7162
7163 /* Note: Not all tessellation control shader output are arrays. */
7164 if (!var->type->is_unsized_array() || var->data.patch)
7165 continue;
7166
7167 if (var->data.max_array_access >= num_vertices) {
7168 _mesa_glsl_error(&loc, state,
7169 "this tessellation control shader output layout "
7170 "specifies %u vertices, but an access to element "
7171 "%u of output `%s' already exists", num_vertices,
7172 var->data.max_array_access, var->name);
7173 } else {
7174 var->type = glsl_type::get_array_instance(var->type->fields.array,
7175 num_vertices);
7176 }
7177 }
7178
7179 return NULL;
7180 }
7181
7182
7183 ir_rvalue *
7184 ast_gs_input_layout::hir(exec_list *instructions,
7185 struct _mesa_glsl_parse_state *state)
7186 {
7187 YYLTYPE loc = this->get_location();
7188
7189 /* If any geometry input layout declaration preceded this one, make sure it
7190 * was consistent with this one.
7191 */
7192 if (state->gs_input_prim_type_specified &&
7193 state->in_qualifier->prim_type != this->prim_type) {
7194 _mesa_glsl_error(&loc, state,
7195 "geometry shader input layout does not match"
7196 " previous declaration");
7197 return NULL;
7198 }
7199
7200 /* If any shader inputs occurred before this declaration and specified an
7201 * array size, make sure the size they specified is consistent with the
7202 * primitive type.
7203 */
7204 unsigned num_vertices = vertices_per_prim(this->prim_type);
7205 if (state->gs_input_size != 0 && state->gs_input_size != num_vertices) {
7206 _mesa_glsl_error(&loc, state,
7207 "this geometry shader input layout implies %u vertices"
7208 " per primitive, but a previous input is declared"
7209 " with size %u", num_vertices, state->gs_input_size);
7210 return NULL;
7211 }
7212
7213 state->gs_input_prim_type_specified = true;
7214
7215 /* If any shader inputs occurred before this declaration and did not
7216 * specify an array size, their size is determined now.
7217 */
7218 foreach_in_list(ir_instruction, node, instructions) {
7219 ir_variable *var = node->as_variable();
7220 if (var == NULL || var->data.mode != ir_var_shader_in)
7221 continue;
7222
7223 /* Note: gl_PrimitiveIDIn has mode ir_var_shader_in, but it's not an
7224 * array; skip it.
7225 */
7226
7227 if (var->type->is_unsized_array()) {
7228 if (var->data.max_array_access >= num_vertices) {
7229 _mesa_glsl_error(&loc, state,
7230 "this geometry shader input layout implies %u"
7231 " vertices, but an access to element %u of input"
7232 " `%s' already exists", num_vertices,
7233 var->data.max_array_access, var->name);
7234 } else {
7235 var->type = glsl_type::get_array_instance(var->type->fields.array,
7236 num_vertices);
7237 }
7238 }
7239 }
7240
7241 return NULL;
7242 }
7243
7244
7245 ir_rvalue *
7246 ast_cs_input_layout::hir(exec_list *instructions,
7247 struct _mesa_glsl_parse_state *state)
7248 {
7249 YYLTYPE loc = this->get_location();
7250
7251 /* From the ARB_compute_shader specification:
7252 *
7253 * If the local size of the shader in any dimension is greater
7254 * than the maximum size supported by the implementation for that
7255 * dimension, a compile-time error results.
7256 *
7257 * It is not clear from the spec how the error should be reported if
7258 * the total size of the work group exceeds
7259 * MAX_COMPUTE_WORK_GROUP_INVOCATIONS, but it seems reasonable to
7260 * report it at compile time as well.
7261 */
7262 GLuint64 total_invocations = 1;
7263 unsigned qual_local_size[3];
7264 for (int i = 0; i < 3; i++) {
7265
7266 char *local_size_str = ralloc_asprintf(NULL, "invalid local_size_%c",
7267 'x' + i);
7268 /* Infer a local_size of 1 for unspecified dimensions */
7269 if (this->local_size[i] == NULL) {
7270 qual_local_size[i] = 1;
7271 } else if (!this->local_size[i]->
7272 process_qualifier_constant(state, local_size_str,
7273 &qual_local_size[i], false)) {
7274 ralloc_free(local_size_str);
7275 return NULL;
7276 }
7277 ralloc_free(local_size_str);
7278
7279 if (qual_local_size[i] > state->ctx->Const.MaxComputeWorkGroupSize[i]) {
7280 _mesa_glsl_error(&loc, state,
7281 "local_size_%c exceeds MAX_COMPUTE_WORK_GROUP_SIZE"
7282 " (%d)", 'x' + i,
7283 state->ctx->Const.MaxComputeWorkGroupSize[i]);
7284 break;
7285 }
7286 total_invocations *= qual_local_size[i];
7287 if (total_invocations >
7288 state->ctx->Const.MaxComputeWorkGroupInvocations) {
7289 _mesa_glsl_error(&loc, state,
7290 "product of local_sizes exceeds "
7291 "MAX_COMPUTE_WORK_GROUP_INVOCATIONS (%d)",
7292 state->ctx->Const.MaxComputeWorkGroupInvocations);
7293 break;
7294 }
7295 }
7296
7297 /* If any compute input layout declaration preceded this one, make sure it
7298 * was consistent with this one.
7299 */
7300 if (state->cs_input_local_size_specified) {
7301 for (int i = 0; i < 3; i++) {
7302 if (state->cs_input_local_size[i] != qual_local_size[i]) {
7303 _mesa_glsl_error(&loc, state,
7304 "compute shader input layout does not match"
7305 " previous declaration");
7306 return NULL;
7307 }
7308 }
7309 }
7310
7311 state->cs_input_local_size_specified = true;
7312 for (int i = 0; i < 3; i++)
7313 state->cs_input_local_size[i] = qual_local_size[i];
7314
7315 /* We may now declare the built-in constant gl_WorkGroupSize (see
7316 * builtin_variable_generator::generate_constants() for why we didn't
7317 * declare it earlier).
7318 */
7319 ir_variable *var = new(state->symbols)
7320 ir_variable(glsl_type::uvec3_type, "gl_WorkGroupSize", ir_var_auto);
7321 var->data.how_declared = ir_var_declared_implicitly;
7322 var->data.read_only = true;
7323 instructions->push_tail(var);
7324 state->symbols->add_variable(var);
7325 ir_constant_data data;
7326 memset(&data, 0, sizeof(data));
7327 for (int i = 0; i < 3; i++)
7328 data.u[i] = qual_local_size[i];
7329 var->constant_value = new(var) ir_constant(glsl_type::uvec3_type, &data);
7330 var->constant_initializer =
7331 new(var) ir_constant(glsl_type::uvec3_type, &data);
7332 var->data.has_initializer = true;
7333
7334 return NULL;
7335 }
7336
7337
7338 static void
7339 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
7340 exec_list *instructions)
7341 {
7342 bool gl_FragColor_assigned = false;
7343 bool gl_FragData_assigned = false;
7344 bool gl_FragSecondaryColor_assigned = false;
7345 bool gl_FragSecondaryData_assigned = false;
7346 bool user_defined_fs_output_assigned = false;
7347 ir_variable *user_defined_fs_output = NULL;
7348
7349 /* It would be nice to have proper location information. */
7350 YYLTYPE loc;
7351 memset(&loc, 0, sizeof(loc));
7352
7353 foreach_in_list(ir_instruction, node, instructions) {
7354 ir_variable *var = node->as_variable();
7355
7356 if (!var || !var->data.assigned)
7357 continue;
7358
7359 if (strcmp(var->name, "gl_FragColor") == 0)
7360 gl_FragColor_assigned = true;
7361 else if (strcmp(var->name, "gl_FragData") == 0)
7362 gl_FragData_assigned = true;
7363 else if (strcmp(var->name, "gl_SecondaryFragColorEXT") == 0)
7364 gl_FragSecondaryColor_assigned = true;
7365 else if (strcmp(var->name, "gl_SecondaryFragDataEXT") == 0)
7366 gl_FragSecondaryData_assigned = true;
7367 else if (!is_gl_identifier(var->name)) {
7368 if (state->stage == MESA_SHADER_FRAGMENT &&
7369 var->data.mode == ir_var_shader_out) {
7370 user_defined_fs_output_assigned = true;
7371 user_defined_fs_output = var;
7372 }
7373 }
7374 }
7375
7376 /* From the GLSL 1.30 spec:
7377 *
7378 * "If a shader statically assigns a value to gl_FragColor, it
7379 * may not assign a value to any element of gl_FragData. If a
7380 * shader statically writes a value to any element of
7381 * gl_FragData, it may not assign a value to
7382 * gl_FragColor. That is, a shader may assign values to either
7383 * gl_FragColor or gl_FragData, but not both. Multiple shaders
7384 * linked together must also consistently write just one of
7385 * these variables. Similarly, if user declared output
7386 * variables are in use (statically assigned to), then the
7387 * built-in variables gl_FragColor and gl_FragData may not be
7388 * assigned to. These incorrect usages all generate compile
7389 * time errors."
7390 */
7391 if (gl_FragColor_assigned && gl_FragData_assigned) {
7392 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7393 "`gl_FragColor' and `gl_FragData'");
7394 } else if (gl_FragColor_assigned && user_defined_fs_output_assigned) {
7395 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7396 "`gl_FragColor' and `%s'",
7397 user_defined_fs_output->name);
7398 } else if (gl_FragSecondaryColor_assigned && gl_FragSecondaryData_assigned) {
7399 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7400 "`gl_FragSecondaryColorEXT' and"
7401 " `gl_FragSecondaryDataEXT'");
7402 } else if (gl_FragColor_assigned && gl_FragSecondaryData_assigned) {
7403 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7404 "`gl_FragColor' and"
7405 " `gl_FragSecondaryDataEXT'");
7406 } else if (gl_FragData_assigned && gl_FragSecondaryColor_assigned) {
7407 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7408 "`gl_FragData' and"
7409 " `gl_FragSecondaryColorEXT'");
7410 } else if (gl_FragData_assigned && user_defined_fs_output_assigned) {
7411 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7412 "`gl_FragData' and `%s'",
7413 user_defined_fs_output->name);
7414 }
7415
7416 if ((gl_FragSecondaryColor_assigned || gl_FragSecondaryData_assigned) &&
7417 !state->EXT_blend_func_extended_enable) {
7418 _mesa_glsl_error(&loc, state,
7419 "Dual source blending requires EXT_blend_func_extended");
7420 }
7421 }
7422
7423
7424 static void
7425 remove_per_vertex_blocks(exec_list *instructions,
7426 _mesa_glsl_parse_state *state, ir_variable_mode mode)
7427 {
7428 /* Find the gl_PerVertex interface block of the appropriate (in/out) mode,
7429 * if it exists in this shader type.
7430 */
7431 const glsl_type *per_vertex = NULL;
7432 switch (mode) {
7433 case ir_var_shader_in:
7434 if (ir_variable *gl_in = state->symbols->get_variable("gl_in"))
7435 per_vertex = gl_in->get_interface_type();
7436 break;
7437 case ir_var_shader_out:
7438 if (ir_variable *gl_Position =
7439 state->symbols->get_variable("gl_Position")) {
7440 per_vertex = gl_Position->get_interface_type();
7441 }
7442 break;
7443 default:
7444 assert(!"Unexpected mode");
7445 break;
7446 }
7447
7448 /* If we didn't find a built-in gl_PerVertex interface block, then we don't
7449 * need to do anything.
7450 */
7451 if (per_vertex == NULL)
7452 return;
7453
7454 /* If the interface block is used by the shader, then we don't need to do
7455 * anything.
7456 */
7457 interface_block_usage_visitor v(mode, per_vertex);
7458 v.run(instructions);
7459 if (v.usage_found())
7460 return;
7461
7462 /* Remove any ir_variable declarations that refer to the interface block
7463 * we're removing.
7464 */
7465 foreach_in_list_safe(ir_instruction, node, instructions) {
7466 ir_variable *const var = node->as_variable();
7467 if (var != NULL && var->get_interface_type() == per_vertex &&
7468 var->data.mode == mode) {
7469 state->symbols->disable_variable(var->name);
7470 var->remove();
7471 }
7472 }
7473 }