glsl: add support for EXT_blend_func_extended builtins
[mesa.git] / src / glsl / ast_to_hir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file ast_to_hir.c
26 * Convert abstract syntax to to high-level intermediate reprensentation (HIR).
27 *
28 * During the conversion to HIR, the majority of the symantic checking is
29 * preformed on the program. This includes:
30 *
31 * * Symbol table management
32 * * Type checking
33 * * Function binding
34 *
35 * The majority of this work could be done during parsing, and the parser could
36 * probably generate HIR directly. However, this results in frequent changes
37 * to the parser code. Since we do not assume that every system this complier
38 * is built on will have Flex and Bison installed, we have to store the code
39 * generated by these tools in our version control system. In other parts of
40 * the system we've seen problems where a parser was changed but the generated
41 * code was not committed, merge conflicts where created because two developers
42 * had slightly different versions of Bison installed, etc.
43 *
44 * I have also noticed that running Bison generated parsers in GDB is very
45 * irritating. When you get a segfault on '$$ = $1->foo', you can't very
46 * well 'print $1' in GDB.
47 *
48 * As a result, my preference is to put as little C code as possible in the
49 * parser (and lexer) sources.
50 */
51
52 #include "glsl_symbol_table.h"
53 #include "glsl_parser_extras.h"
54 #include "ast.h"
55 #include "glsl_types.h"
56 #include "program/hash_table.h"
57 #include "main/shaderobj.h"
58 #include "ir.h"
59 #include "ir_builder.h"
60
61 using namespace ir_builder;
62
63 static void
64 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
65 exec_list *instructions);
66 static void
67 remove_per_vertex_blocks(exec_list *instructions,
68 _mesa_glsl_parse_state *state, ir_variable_mode mode);
69
70 /**
71 * Visitor class that finds the first instance of any write-only variable that
72 * is ever read, if any
73 */
74 class read_from_write_only_variable_visitor : public ir_hierarchical_visitor
75 {
76 public:
77 read_from_write_only_variable_visitor() : found(NULL)
78 {
79 }
80
81 virtual ir_visitor_status visit(ir_dereference_variable *ir)
82 {
83 if (this->in_assignee)
84 return visit_continue;
85
86 ir_variable *var = ir->variable_referenced();
87 /* We can have image_write_only set on both images and buffer variables,
88 * but in the former there is a distinction between reads from
89 * the variable itself (write_only) and from the memory they point to
90 * (image_write_only), while in the case of buffer variables there is
91 * no such distinction, that is why this check here is limited to
92 * buffer variables alone.
93 */
94 if (!var || var->data.mode != ir_var_shader_storage)
95 return visit_continue;
96
97 if (var->data.image_write_only) {
98 found = var;
99 return visit_stop;
100 }
101
102 return visit_continue;
103 }
104
105 ir_variable *get_variable() {
106 return found;
107 }
108
109 private:
110 ir_variable *found;
111 };
112
113 void
114 _mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
115 {
116 _mesa_glsl_initialize_variables(instructions, state);
117
118 state->symbols->separate_function_namespace = state->language_version == 110;
119
120 state->current_function = NULL;
121
122 state->toplevel_ir = instructions;
123
124 state->gs_input_prim_type_specified = false;
125 state->tcs_output_vertices_specified = false;
126 state->cs_input_local_size_specified = false;
127
128 /* Section 4.2 of the GLSL 1.20 specification states:
129 * "The built-in functions are scoped in a scope outside the global scope
130 * users declare global variables in. That is, a shader's global scope,
131 * available for user-defined functions and global variables, is nested
132 * inside the scope containing the built-in functions."
133 *
134 * Since built-in functions like ftransform() access built-in variables,
135 * it follows that those must be in the outer scope as well.
136 *
137 * We push scope here to create this nesting effect...but don't pop.
138 * This way, a shader's globals are still in the symbol table for use
139 * by the linker.
140 */
141 state->symbols->push_scope();
142
143 foreach_list_typed (ast_node, ast, link, & state->translation_unit)
144 ast->hir(instructions, state);
145
146 detect_recursion_unlinked(state, instructions);
147 detect_conflicting_assignments(state, instructions);
148
149 state->toplevel_ir = NULL;
150
151 /* Move all of the variable declarations to the front of the IR list, and
152 * reverse the order. This has the (intended!) side effect that vertex
153 * shader inputs and fragment shader outputs will appear in the IR in the
154 * same order that they appeared in the shader code. This results in the
155 * locations being assigned in the declared order. Many (arguably buggy)
156 * applications depend on this behavior, and it matches what nearly all
157 * other drivers do.
158 */
159 foreach_in_list_safe(ir_instruction, node, instructions) {
160 ir_variable *const var = node->as_variable();
161
162 if (var == NULL)
163 continue;
164
165 var->remove();
166 instructions->push_head(var);
167 }
168
169 /* Figure out if gl_FragCoord is actually used in fragment shader */
170 ir_variable *const var = state->symbols->get_variable("gl_FragCoord");
171 if (var != NULL)
172 state->fs_uses_gl_fragcoord = var->data.used;
173
174 /* From section 7.1 (Built-In Language Variables) of the GLSL 4.10 spec:
175 *
176 * If multiple shaders using members of a built-in block belonging to
177 * the same interface are linked together in the same program, they
178 * must all redeclare the built-in block in the same way, as described
179 * in section 4.3.7 "Interface Blocks" for interface block matching, or
180 * a link error will result.
181 *
182 * The phrase "using members of a built-in block" implies that if two
183 * shaders are linked together and one of them *does not use* any members
184 * of the built-in block, then that shader does not need to have a matching
185 * redeclaration of the built-in block.
186 *
187 * This appears to be a clarification to the behaviour established for
188 * gl_PerVertex by GLSL 1.50, therefore implement it regardless of GLSL
189 * version.
190 *
191 * The definition of "interface" in section 4.3.7 that applies here is as
192 * follows:
193 *
194 * The boundary between adjacent programmable pipeline stages: This
195 * spans all the outputs in all compilation units of the first stage
196 * and all the inputs in all compilation units of the second stage.
197 *
198 * Therefore this rule applies to both inter- and intra-stage linking.
199 *
200 * The easiest way to implement this is to check whether the shader uses
201 * gl_PerVertex right after ast-to-ir conversion, and if it doesn't, simply
202 * remove all the relevant variable declaration from the IR, so that the
203 * linker won't see them and complain about mismatches.
204 */
205 remove_per_vertex_blocks(instructions, state, ir_var_shader_in);
206 remove_per_vertex_blocks(instructions, state, ir_var_shader_out);
207
208 /* Check that we don't have reads from write-only variables */
209 read_from_write_only_variable_visitor v;
210 v.run(instructions);
211 ir_variable *error_var = v.get_variable();
212 if (error_var) {
213 /* It would be nice to have proper location information, but for that
214 * we would need to check this as we process each kind of AST node
215 */
216 YYLTYPE loc;
217 memset(&loc, 0, sizeof(loc));
218 _mesa_glsl_error(&loc, state, "Read from write-only variable `%s'",
219 error_var->name);
220 }
221 }
222
223
224 static ir_expression_operation
225 get_conversion_operation(const glsl_type *to, const glsl_type *from,
226 struct _mesa_glsl_parse_state *state)
227 {
228 switch (to->base_type) {
229 case GLSL_TYPE_FLOAT:
230 switch (from->base_type) {
231 case GLSL_TYPE_INT: return ir_unop_i2f;
232 case GLSL_TYPE_UINT: return ir_unop_u2f;
233 case GLSL_TYPE_DOUBLE: return ir_unop_d2f;
234 default: return (ir_expression_operation)0;
235 }
236
237 case GLSL_TYPE_UINT:
238 if (!state->is_version(400, 0) && !state->ARB_gpu_shader5_enable)
239 return (ir_expression_operation)0;
240 switch (from->base_type) {
241 case GLSL_TYPE_INT: return ir_unop_i2u;
242 default: return (ir_expression_operation)0;
243 }
244
245 case GLSL_TYPE_DOUBLE:
246 if (!state->has_double())
247 return (ir_expression_operation)0;
248 switch (from->base_type) {
249 case GLSL_TYPE_INT: return ir_unop_i2d;
250 case GLSL_TYPE_UINT: return ir_unop_u2d;
251 case GLSL_TYPE_FLOAT: return ir_unop_f2d;
252 default: return (ir_expression_operation)0;
253 }
254
255 default: return (ir_expression_operation)0;
256 }
257 }
258
259
260 /**
261 * If a conversion is available, convert one operand to a different type
262 *
263 * The \c from \c ir_rvalue is converted "in place".
264 *
265 * \param to Type that the operand it to be converted to
266 * \param from Operand that is being converted
267 * \param state GLSL compiler state
268 *
269 * \return
270 * If a conversion is possible (or unnecessary), \c true is returned.
271 * Otherwise \c false is returned.
272 */
273 bool
274 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
275 struct _mesa_glsl_parse_state *state)
276 {
277 void *ctx = state;
278 if (to->base_type == from->type->base_type)
279 return true;
280
281 /* Prior to GLSL 1.20, there are no implicit conversions */
282 if (!state->is_version(120, 0))
283 return false;
284
285 /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
286 *
287 * "There are no implicit array or structure conversions. For
288 * example, an array of int cannot be implicitly converted to an
289 * array of float.
290 */
291 if (!to->is_numeric() || !from->type->is_numeric())
292 return false;
293
294 /* We don't actually want the specific type `to`, we want a type
295 * with the same base type as `to`, but the same vector width as
296 * `from`.
297 */
298 to = glsl_type::get_instance(to->base_type, from->type->vector_elements,
299 from->type->matrix_columns);
300
301 ir_expression_operation op = get_conversion_operation(to, from->type, state);
302 if (op) {
303 from = new(ctx) ir_expression(op, to, from, NULL);
304 return true;
305 } else {
306 return false;
307 }
308 }
309
310
311 static const struct glsl_type *
312 arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
313 bool multiply,
314 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
315 {
316 const glsl_type *type_a = value_a->type;
317 const glsl_type *type_b = value_b->type;
318
319 /* From GLSL 1.50 spec, page 56:
320 *
321 * "The arithmetic binary operators add (+), subtract (-),
322 * multiply (*), and divide (/) operate on integer and
323 * floating-point scalars, vectors, and matrices."
324 */
325 if (!type_a->is_numeric() || !type_b->is_numeric()) {
326 _mesa_glsl_error(loc, state,
327 "operands to arithmetic operators must be numeric");
328 return glsl_type::error_type;
329 }
330
331
332 /* "If one operand is floating-point based and the other is
333 * not, then the conversions from Section 4.1.10 "Implicit
334 * Conversions" are applied to the non-floating-point-based operand."
335 */
336 if (!apply_implicit_conversion(type_a, value_b, state)
337 && !apply_implicit_conversion(type_b, value_a, state)) {
338 _mesa_glsl_error(loc, state,
339 "could not implicitly convert operands to "
340 "arithmetic operator");
341 return glsl_type::error_type;
342 }
343 type_a = value_a->type;
344 type_b = value_b->type;
345
346 /* "If the operands are integer types, they must both be signed or
347 * both be unsigned."
348 *
349 * From this rule and the preceeding conversion it can be inferred that
350 * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
351 * The is_numeric check above already filtered out the case where either
352 * type is not one of these, so now the base types need only be tested for
353 * equality.
354 */
355 if (type_a->base_type != type_b->base_type) {
356 _mesa_glsl_error(loc, state,
357 "base type mismatch for arithmetic operator");
358 return glsl_type::error_type;
359 }
360
361 /* "All arithmetic binary operators result in the same fundamental type
362 * (signed integer, unsigned integer, or floating-point) as the
363 * operands they operate on, after operand type conversion. After
364 * conversion, the following cases are valid
365 *
366 * * The two operands are scalars. In this case the operation is
367 * applied, resulting in a scalar."
368 */
369 if (type_a->is_scalar() && type_b->is_scalar())
370 return type_a;
371
372 /* "* One operand is a scalar, and the other is a vector or matrix.
373 * In this case, the scalar operation is applied independently to each
374 * component of the vector or matrix, resulting in the same size
375 * vector or matrix."
376 */
377 if (type_a->is_scalar()) {
378 if (!type_b->is_scalar())
379 return type_b;
380 } else if (type_b->is_scalar()) {
381 return type_a;
382 }
383
384 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
385 * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
386 * handled.
387 */
388 assert(!type_a->is_scalar());
389 assert(!type_b->is_scalar());
390
391 /* "* The two operands are vectors of the same size. In this case, the
392 * operation is done component-wise resulting in the same size
393 * vector."
394 */
395 if (type_a->is_vector() && type_b->is_vector()) {
396 if (type_a == type_b) {
397 return type_a;
398 } else {
399 _mesa_glsl_error(loc, state,
400 "vector size mismatch for arithmetic operator");
401 return glsl_type::error_type;
402 }
403 }
404
405 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
406 * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
407 * <vector, vector> have been handled. At least one of the operands must
408 * be matrix. Further, since there are no integer matrix types, the base
409 * type of both operands must be float.
410 */
411 assert(type_a->is_matrix() || type_b->is_matrix());
412 assert(type_a->base_type == GLSL_TYPE_FLOAT ||
413 type_a->base_type == GLSL_TYPE_DOUBLE);
414 assert(type_b->base_type == GLSL_TYPE_FLOAT ||
415 type_b->base_type == GLSL_TYPE_DOUBLE);
416
417 /* "* The operator is add (+), subtract (-), or divide (/), and the
418 * operands are matrices with the same number of rows and the same
419 * number of columns. In this case, the operation is done component-
420 * wise resulting in the same size matrix."
421 * * The operator is multiply (*), where both operands are matrices or
422 * one operand is a vector and the other a matrix. A right vector
423 * operand is treated as a column vector and a left vector operand as a
424 * row vector. In all these cases, it is required that the number of
425 * columns of the left operand is equal to the number of rows of the
426 * right operand. Then, the multiply (*) operation does a linear
427 * algebraic multiply, yielding an object that has the same number of
428 * rows as the left operand and the same number of columns as the right
429 * operand. Section 5.10 "Vector and Matrix Operations" explains in
430 * more detail how vectors and matrices are operated on."
431 */
432 if (! multiply) {
433 if (type_a == type_b)
434 return type_a;
435 } else {
436 const glsl_type *type = glsl_type::get_mul_type(type_a, type_b);
437
438 if (type == glsl_type::error_type) {
439 _mesa_glsl_error(loc, state,
440 "size mismatch for matrix multiplication");
441 }
442
443 return type;
444 }
445
446
447 /* "All other cases are illegal."
448 */
449 _mesa_glsl_error(loc, state, "type mismatch");
450 return glsl_type::error_type;
451 }
452
453
454 static const struct glsl_type *
455 unary_arithmetic_result_type(const struct glsl_type *type,
456 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
457 {
458 /* From GLSL 1.50 spec, page 57:
459 *
460 * "The arithmetic unary operators negate (-), post- and pre-increment
461 * and decrement (-- and ++) operate on integer or floating-point
462 * values (including vectors and matrices). All unary operators work
463 * component-wise on their operands. These result with the same type
464 * they operated on."
465 */
466 if (!type->is_numeric()) {
467 _mesa_glsl_error(loc, state,
468 "operands to arithmetic operators must be numeric");
469 return glsl_type::error_type;
470 }
471
472 return type;
473 }
474
475 /**
476 * \brief Return the result type of a bit-logic operation.
477 *
478 * If the given types to the bit-logic operator are invalid, return
479 * glsl_type::error_type.
480 *
481 * \param type_a Type of LHS of bit-logic op
482 * \param type_b Type of RHS of bit-logic op
483 */
484 static const struct glsl_type *
485 bit_logic_result_type(const struct glsl_type *type_a,
486 const struct glsl_type *type_b,
487 ast_operators op,
488 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
489 {
490 if (!state->check_bitwise_operations_allowed(loc)) {
491 return glsl_type::error_type;
492 }
493
494 /* From page 50 (page 56 of PDF) of GLSL 1.30 spec:
495 *
496 * "The bitwise operators and (&), exclusive-or (^), and inclusive-or
497 * (|). The operands must be of type signed or unsigned integers or
498 * integer vectors."
499 */
500 if (!type_a->is_integer()) {
501 _mesa_glsl_error(loc, state, "LHS of `%s' must be an integer",
502 ast_expression::operator_string(op));
503 return glsl_type::error_type;
504 }
505 if (!type_b->is_integer()) {
506 _mesa_glsl_error(loc, state, "RHS of `%s' must be an integer",
507 ast_expression::operator_string(op));
508 return glsl_type::error_type;
509 }
510
511 /* "The fundamental types of the operands (signed or unsigned) must
512 * match,"
513 */
514 if (type_a->base_type != type_b->base_type) {
515 _mesa_glsl_error(loc, state, "operands of `%s' must have the same "
516 "base type", ast_expression::operator_string(op));
517 return glsl_type::error_type;
518 }
519
520 /* "The operands cannot be vectors of differing size." */
521 if (type_a->is_vector() &&
522 type_b->is_vector() &&
523 type_a->vector_elements != type_b->vector_elements) {
524 _mesa_glsl_error(loc, state, "operands of `%s' cannot be vectors of "
525 "different sizes", ast_expression::operator_string(op));
526 return glsl_type::error_type;
527 }
528
529 /* "If one operand is a scalar and the other a vector, the scalar is
530 * applied component-wise to the vector, resulting in the same type as
531 * the vector. The fundamental types of the operands [...] will be the
532 * resulting fundamental type."
533 */
534 if (type_a->is_scalar())
535 return type_b;
536 else
537 return type_a;
538 }
539
540 static const struct glsl_type *
541 modulus_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
542 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
543 {
544 const glsl_type *type_a = value_a->type;
545 const glsl_type *type_b = value_b->type;
546
547 if (!state->check_version(130, 300, loc, "operator '%%' is reserved")) {
548 return glsl_type::error_type;
549 }
550
551 /* Section 5.9 (Expressions) of the GLSL 4.00 specification says:
552 *
553 * "The operator modulus (%) operates on signed or unsigned integers or
554 * integer vectors."
555 */
556 if (!type_a->is_integer()) {
557 _mesa_glsl_error(loc, state, "LHS of operator %% must be an integer");
558 return glsl_type::error_type;
559 }
560 if (!type_b->is_integer()) {
561 _mesa_glsl_error(loc, state, "RHS of operator %% must be an integer");
562 return glsl_type::error_type;
563 }
564
565 /* "If the fundamental types in the operands do not match, then the
566 * conversions from section 4.1.10 "Implicit Conversions" are applied
567 * to create matching types."
568 *
569 * Note that GLSL 4.00 (and GL_ARB_gpu_shader5) introduced implicit
570 * int -> uint conversion rules. Prior to that, there were no implicit
571 * conversions. So it's harmless to apply them universally - no implicit
572 * conversions will exist. If the types don't match, we'll receive false,
573 * and raise an error, satisfying the GLSL 1.50 spec, page 56:
574 *
575 * "The operand types must both be signed or unsigned."
576 */
577 if (!apply_implicit_conversion(type_a, value_b, state) &&
578 !apply_implicit_conversion(type_b, value_a, state)) {
579 _mesa_glsl_error(loc, state,
580 "could not implicitly convert operands to "
581 "modulus (%%) operator");
582 return glsl_type::error_type;
583 }
584 type_a = value_a->type;
585 type_b = value_b->type;
586
587 /* "The operands cannot be vectors of differing size. If one operand is
588 * a scalar and the other vector, then the scalar is applied component-
589 * wise to the vector, resulting in the same type as the vector. If both
590 * are vectors of the same size, the result is computed component-wise."
591 */
592 if (type_a->is_vector()) {
593 if (!type_b->is_vector()
594 || (type_a->vector_elements == type_b->vector_elements))
595 return type_a;
596 } else
597 return type_b;
598
599 /* "The operator modulus (%) is not defined for any other data types
600 * (non-integer types)."
601 */
602 _mesa_glsl_error(loc, state, "type mismatch");
603 return glsl_type::error_type;
604 }
605
606
607 static const struct glsl_type *
608 relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
609 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
610 {
611 const glsl_type *type_a = value_a->type;
612 const glsl_type *type_b = value_b->type;
613
614 /* From GLSL 1.50 spec, page 56:
615 * "The relational operators greater than (>), less than (<), greater
616 * than or equal (>=), and less than or equal (<=) operate only on
617 * scalar integer and scalar floating-point expressions."
618 */
619 if (!type_a->is_numeric()
620 || !type_b->is_numeric()
621 || !type_a->is_scalar()
622 || !type_b->is_scalar()) {
623 _mesa_glsl_error(loc, state,
624 "operands to relational operators must be scalar and "
625 "numeric");
626 return glsl_type::error_type;
627 }
628
629 /* "Either the operands' types must match, or the conversions from
630 * Section 4.1.10 "Implicit Conversions" will be applied to the integer
631 * operand, after which the types must match."
632 */
633 if (!apply_implicit_conversion(type_a, value_b, state)
634 && !apply_implicit_conversion(type_b, value_a, state)) {
635 _mesa_glsl_error(loc, state,
636 "could not implicitly convert operands to "
637 "relational operator");
638 return glsl_type::error_type;
639 }
640 type_a = value_a->type;
641 type_b = value_b->type;
642
643 if (type_a->base_type != type_b->base_type) {
644 _mesa_glsl_error(loc, state, "base type mismatch");
645 return glsl_type::error_type;
646 }
647
648 /* "The result is scalar Boolean."
649 */
650 return glsl_type::bool_type;
651 }
652
653 /**
654 * \brief Return the result type of a bit-shift operation.
655 *
656 * If the given types to the bit-shift operator are invalid, return
657 * glsl_type::error_type.
658 *
659 * \param type_a Type of LHS of bit-shift op
660 * \param type_b Type of RHS of bit-shift op
661 */
662 static const struct glsl_type *
663 shift_result_type(const struct glsl_type *type_a,
664 const struct glsl_type *type_b,
665 ast_operators op,
666 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
667 {
668 if (!state->check_bitwise_operations_allowed(loc)) {
669 return glsl_type::error_type;
670 }
671
672 /* From page 50 (page 56 of the PDF) of the GLSL 1.30 spec:
673 *
674 * "The shift operators (<<) and (>>). For both operators, the operands
675 * must be signed or unsigned integers or integer vectors. One operand
676 * can be signed while the other is unsigned."
677 */
678 if (!type_a->is_integer()) {
679 _mesa_glsl_error(loc, state, "LHS of operator %s must be an integer or "
680 "integer vector", ast_expression::operator_string(op));
681 return glsl_type::error_type;
682
683 }
684 if (!type_b->is_integer()) {
685 _mesa_glsl_error(loc, state, "RHS of operator %s must be an integer or "
686 "integer vector", ast_expression::operator_string(op));
687 return glsl_type::error_type;
688 }
689
690 /* "If the first operand is a scalar, the second operand has to be
691 * a scalar as well."
692 */
693 if (type_a->is_scalar() && !type_b->is_scalar()) {
694 _mesa_glsl_error(loc, state, "if the first operand of %s is scalar, the "
695 "second must be scalar as well",
696 ast_expression::operator_string(op));
697 return glsl_type::error_type;
698 }
699
700 /* If both operands are vectors, check that they have same number of
701 * elements.
702 */
703 if (type_a->is_vector() &&
704 type_b->is_vector() &&
705 type_a->vector_elements != type_b->vector_elements) {
706 _mesa_glsl_error(loc, state, "vector operands to operator %s must "
707 "have same number of elements",
708 ast_expression::operator_string(op));
709 return glsl_type::error_type;
710 }
711
712 /* "In all cases, the resulting type will be the same type as the left
713 * operand."
714 */
715 return type_a;
716 }
717
718 /**
719 * Returns the innermost array index expression in an rvalue tree.
720 * This is the largest indexing level -- if an array of blocks, then
721 * it is the block index rather than an indexing expression for an
722 * array-typed member of an array of blocks.
723 */
724 static ir_rvalue *
725 find_innermost_array_index(ir_rvalue *rv)
726 {
727 ir_dereference_array *last = NULL;
728 while (rv) {
729 if (rv->as_dereference_array()) {
730 last = rv->as_dereference_array();
731 rv = last->array;
732 } else if (rv->as_dereference_record())
733 rv = rv->as_dereference_record()->record;
734 else if (rv->as_swizzle())
735 rv = rv->as_swizzle()->val;
736 else
737 rv = NULL;
738 }
739
740 if (last)
741 return last->array_index;
742
743 return NULL;
744 }
745
746 /**
747 * Validates that a value can be assigned to a location with a specified type
748 *
749 * Validates that \c rhs can be assigned to some location. If the types are
750 * not an exact match but an automatic conversion is possible, \c rhs will be
751 * converted.
752 *
753 * \return
754 * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
755 * Otherwise the actual RHS to be assigned will be returned. This may be
756 * \c rhs, or it may be \c rhs after some type conversion.
757 *
758 * \note
759 * In addition to being used for assignments, this function is used to
760 * type-check return values.
761 */
762 static ir_rvalue *
763 validate_assignment(struct _mesa_glsl_parse_state *state,
764 YYLTYPE loc, ir_rvalue *lhs,
765 ir_rvalue *rhs, bool is_initializer)
766 {
767 /* If there is already some error in the RHS, just return it. Anything
768 * else will lead to an avalanche of error message back to the user.
769 */
770 if (rhs->type->is_error())
771 return rhs;
772
773 /* In the Tessellation Control Shader:
774 * If a per-vertex output variable is used as an l-value, it is an error
775 * if the expression indicating the vertex number is not the identifier
776 * `gl_InvocationID`.
777 */
778 if (state->stage == MESA_SHADER_TESS_CTRL) {
779 ir_variable *var = lhs->variable_referenced();
780 if (var->data.mode == ir_var_shader_out && !var->data.patch) {
781 ir_rvalue *index = find_innermost_array_index(lhs);
782 ir_variable *index_var = index ? index->variable_referenced() : NULL;
783 if (!index_var || strcmp(index_var->name, "gl_InvocationID") != 0) {
784 _mesa_glsl_error(&loc, state,
785 "Tessellation control shader outputs can only "
786 "be indexed by gl_InvocationID");
787 return NULL;
788 }
789 }
790 }
791
792 /* If the types are identical, the assignment can trivially proceed.
793 */
794 if (rhs->type == lhs->type)
795 return rhs;
796
797 /* If the array element types are the same and the LHS is unsized,
798 * the assignment is okay for initializers embedded in variable
799 * declarations.
800 *
801 * Note: Whole-array assignments are not permitted in GLSL 1.10, but this
802 * is handled by ir_dereference::is_lvalue.
803 */
804 const glsl_type *lhs_t = lhs->type;
805 const glsl_type *rhs_t = rhs->type;
806 bool unsized_array = false;
807 while(lhs_t->is_array()) {
808 if (rhs_t == lhs_t)
809 break; /* the rest of the inner arrays match so break out early */
810 if (!rhs_t->is_array()) {
811 unsized_array = false;
812 break; /* number of dimensions mismatch */
813 }
814 if (lhs_t->length == rhs_t->length) {
815 lhs_t = lhs_t->fields.array;
816 rhs_t = rhs_t->fields.array;
817 continue;
818 } else if (lhs_t->is_unsized_array()) {
819 unsized_array = true;
820 } else {
821 unsized_array = false;
822 break; /* sized array mismatch */
823 }
824 lhs_t = lhs_t->fields.array;
825 rhs_t = rhs_t->fields.array;
826 }
827 if (unsized_array) {
828 if (is_initializer) {
829 return rhs;
830 } else {
831 _mesa_glsl_error(&loc, state,
832 "implicitly sized arrays cannot be assigned");
833 return NULL;
834 }
835 }
836
837 /* Check for implicit conversion in GLSL 1.20 */
838 if (apply_implicit_conversion(lhs->type, rhs, state)) {
839 if (rhs->type == lhs->type)
840 return rhs;
841 }
842
843 _mesa_glsl_error(&loc, state,
844 "%s of type %s cannot be assigned to "
845 "variable of type %s",
846 is_initializer ? "initializer" : "value",
847 rhs->type->name, lhs->type->name);
848
849 return NULL;
850 }
851
852 static void
853 mark_whole_array_access(ir_rvalue *access)
854 {
855 ir_dereference_variable *deref = access->as_dereference_variable();
856
857 if (deref && deref->var) {
858 deref->var->data.max_array_access = deref->type->length - 1;
859 }
860 }
861
862 static bool
863 do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state,
864 const char *non_lvalue_description,
865 ir_rvalue *lhs, ir_rvalue *rhs,
866 ir_rvalue **out_rvalue, bool needs_rvalue,
867 bool is_initializer,
868 YYLTYPE lhs_loc)
869 {
870 void *ctx = state;
871 bool error_emitted = (lhs->type->is_error() || rhs->type->is_error());
872
873 ir_variable *lhs_var = lhs->variable_referenced();
874 if (lhs_var)
875 lhs_var->data.assigned = true;
876
877 if (!error_emitted) {
878 if (non_lvalue_description != NULL) {
879 _mesa_glsl_error(&lhs_loc, state,
880 "assignment to %s",
881 non_lvalue_description);
882 error_emitted = true;
883 } else if (lhs_var != NULL && (lhs_var->data.read_only ||
884 (lhs_var->data.mode == ir_var_shader_storage &&
885 lhs_var->data.image_read_only))) {
886 /* We can have image_read_only set on both images and buffer variables,
887 * but in the former there is a distinction between assignments to
888 * the variable itself (read_only) and to the memory they point to
889 * (image_read_only), while in the case of buffer variables there is
890 * no such distinction, that is why this check here is limited to
891 * buffer variables alone.
892 */
893 _mesa_glsl_error(&lhs_loc, state,
894 "assignment to read-only variable '%s'",
895 lhs_var->name);
896 error_emitted = true;
897 } else if (lhs->type->is_array() &&
898 !state->check_version(120, 300, &lhs_loc,
899 "whole array assignment forbidden")) {
900 /* From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
901 *
902 * "Other binary or unary expressions, non-dereferenced
903 * arrays, function names, swizzles with repeated fields,
904 * and constants cannot be l-values."
905 *
906 * The restriction on arrays is lifted in GLSL 1.20 and GLSL ES 3.00.
907 */
908 error_emitted = true;
909 } else if (!lhs->is_lvalue()) {
910 _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment");
911 error_emitted = true;
912 }
913 }
914
915 ir_rvalue *new_rhs =
916 validate_assignment(state, lhs_loc, lhs, rhs, is_initializer);
917 if (new_rhs != NULL) {
918 rhs = new_rhs;
919
920 /* If the LHS array was not declared with a size, it takes it size from
921 * the RHS. If the LHS is an l-value and a whole array, it must be a
922 * dereference of a variable. Any other case would require that the LHS
923 * is either not an l-value or not a whole array.
924 */
925 if (lhs->type->is_unsized_array()) {
926 ir_dereference *const d = lhs->as_dereference();
927
928 assert(d != NULL);
929
930 ir_variable *const var = d->variable_referenced();
931
932 assert(var != NULL);
933
934 if (var->data.max_array_access >= unsigned(rhs->type->array_size())) {
935 /* FINISHME: This should actually log the location of the RHS. */
936 _mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to "
937 "previous access",
938 var->data.max_array_access);
939 }
940
941 var->type = glsl_type::get_array_instance(lhs->type->fields.array,
942 rhs->type->array_size());
943 d->type = var->type;
944 }
945 if (lhs->type->is_array()) {
946 mark_whole_array_access(rhs);
947 mark_whole_array_access(lhs);
948 }
949 }
950
951 /* Most callers of do_assignment (assign, add_assign, pre_inc/dec,
952 * but not post_inc) need the converted assigned value as an rvalue
953 * to handle things like:
954 *
955 * i = j += 1;
956 */
957 if (needs_rvalue) {
958 ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp",
959 ir_var_temporary);
960 instructions->push_tail(var);
961 instructions->push_tail(assign(var, rhs));
962
963 if (!error_emitted) {
964 ir_dereference_variable *deref_var = new(ctx) ir_dereference_variable(var);
965 instructions->push_tail(new(ctx) ir_assignment(lhs, deref_var));
966 }
967 ir_rvalue *rvalue = new(ctx) ir_dereference_variable(var);
968
969 *out_rvalue = rvalue;
970 } else {
971 if (!error_emitted)
972 instructions->push_tail(new(ctx) ir_assignment(lhs, rhs));
973 *out_rvalue = NULL;
974 }
975
976 return error_emitted;
977 }
978
979 static ir_rvalue *
980 get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue)
981 {
982 void *ctx = ralloc_parent(lvalue);
983 ir_variable *var;
984
985 var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp",
986 ir_var_temporary);
987 instructions->push_tail(var);
988
989 instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
990 lvalue));
991
992 return new(ctx) ir_dereference_variable(var);
993 }
994
995
996 ir_rvalue *
997 ast_node::hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
998 {
999 (void) instructions;
1000 (void) state;
1001
1002 return NULL;
1003 }
1004
1005 bool
1006 ast_node::has_sequence_subexpression() const
1007 {
1008 return false;
1009 }
1010
1011 void
1012 ast_function_expression::hir_no_rvalue(exec_list *instructions,
1013 struct _mesa_glsl_parse_state *state)
1014 {
1015 (void)hir(instructions, state);
1016 }
1017
1018 void
1019 ast_aggregate_initializer::hir_no_rvalue(exec_list *instructions,
1020 struct _mesa_glsl_parse_state *state)
1021 {
1022 (void)hir(instructions, state);
1023 }
1024
1025 static ir_rvalue *
1026 do_comparison(void *mem_ctx, int operation, ir_rvalue *op0, ir_rvalue *op1)
1027 {
1028 int join_op;
1029 ir_rvalue *cmp = NULL;
1030
1031 if (operation == ir_binop_all_equal)
1032 join_op = ir_binop_logic_and;
1033 else
1034 join_op = ir_binop_logic_or;
1035
1036 switch (op0->type->base_type) {
1037 case GLSL_TYPE_FLOAT:
1038 case GLSL_TYPE_UINT:
1039 case GLSL_TYPE_INT:
1040 case GLSL_TYPE_BOOL:
1041 case GLSL_TYPE_DOUBLE:
1042 return new(mem_ctx) ir_expression(operation, op0, op1);
1043
1044 case GLSL_TYPE_ARRAY: {
1045 for (unsigned int i = 0; i < op0->type->length; i++) {
1046 ir_rvalue *e0, *e1, *result;
1047
1048 e0 = new(mem_ctx) ir_dereference_array(op0->clone(mem_ctx, NULL),
1049 new(mem_ctx) ir_constant(i));
1050 e1 = new(mem_ctx) ir_dereference_array(op1->clone(mem_ctx, NULL),
1051 new(mem_ctx) ir_constant(i));
1052 result = do_comparison(mem_ctx, operation, e0, e1);
1053
1054 if (cmp) {
1055 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
1056 } else {
1057 cmp = result;
1058 }
1059 }
1060
1061 mark_whole_array_access(op0);
1062 mark_whole_array_access(op1);
1063 break;
1064 }
1065
1066 case GLSL_TYPE_STRUCT: {
1067 for (unsigned int i = 0; i < op0->type->length; i++) {
1068 ir_rvalue *e0, *e1, *result;
1069 const char *field_name = op0->type->fields.structure[i].name;
1070
1071 e0 = new(mem_ctx) ir_dereference_record(op0->clone(mem_ctx, NULL),
1072 field_name);
1073 e1 = new(mem_ctx) ir_dereference_record(op1->clone(mem_ctx, NULL),
1074 field_name);
1075 result = do_comparison(mem_ctx, operation, e0, e1);
1076
1077 if (cmp) {
1078 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
1079 } else {
1080 cmp = result;
1081 }
1082 }
1083 break;
1084 }
1085
1086 case GLSL_TYPE_ERROR:
1087 case GLSL_TYPE_VOID:
1088 case GLSL_TYPE_SAMPLER:
1089 case GLSL_TYPE_IMAGE:
1090 case GLSL_TYPE_INTERFACE:
1091 case GLSL_TYPE_ATOMIC_UINT:
1092 case GLSL_TYPE_SUBROUTINE:
1093 /* I assume a comparison of a struct containing a sampler just
1094 * ignores the sampler present in the type.
1095 */
1096 break;
1097 }
1098
1099 if (cmp == NULL)
1100 cmp = new(mem_ctx) ir_constant(true);
1101
1102 return cmp;
1103 }
1104
1105 /* For logical operations, we want to ensure that the operands are
1106 * scalar booleans. If it isn't, emit an error and return a constant
1107 * boolean to avoid triggering cascading error messages.
1108 */
1109 ir_rvalue *
1110 get_scalar_boolean_operand(exec_list *instructions,
1111 struct _mesa_glsl_parse_state *state,
1112 ast_expression *parent_expr,
1113 int operand,
1114 const char *operand_name,
1115 bool *error_emitted)
1116 {
1117 ast_expression *expr = parent_expr->subexpressions[operand];
1118 void *ctx = state;
1119 ir_rvalue *val = expr->hir(instructions, state);
1120
1121 if (val->type->is_boolean() && val->type->is_scalar())
1122 return val;
1123
1124 if (!*error_emitted) {
1125 YYLTYPE loc = expr->get_location();
1126 _mesa_glsl_error(&loc, state, "%s of `%s' must be scalar boolean",
1127 operand_name,
1128 parent_expr->operator_string(parent_expr->oper));
1129 *error_emitted = true;
1130 }
1131
1132 return new(ctx) ir_constant(true);
1133 }
1134
1135 /**
1136 * If name refers to a builtin array whose maximum allowed size is less than
1137 * size, report an error and return true. Otherwise return false.
1138 */
1139 void
1140 check_builtin_array_max_size(const char *name, unsigned size,
1141 YYLTYPE loc, struct _mesa_glsl_parse_state *state)
1142 {
1143 if ((strcmp("gl_TexCoord", name) == 0)
1144 && (size > state->Const.MaxTextureCoords)) {
1145 /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec:
1146 *
1147 * "The size [of gl_TexCoord] can be at most
1148 * gl_MaxTextureCoords."
1149 */
1150 _mesa_glsl_error(&loc, state, "`gl_TexCoord' array size cannot "
1151 "be larger than gl_MaxTextureCoords (%u)",
1152 state->Const.MaxTextureCoords);
1153 } else if (strcmp("gl_ClipDistance", name) == 0
1154 && size > state->Const.MaxClipPlanes) {
1155 /* From section 7.1 (Vertex Shader Special Variables) of the
1156 * GLSL 1.30 spec:
1157 *
1158 * "The gl_ClipDistance array is predeclared as unsized and
1159 * must be sized by the shader either redeclaring it with a
1160 * size or indexing it only with integral constant
1161 * expressions. ... The size can be at most
1162 * gl_MaxClipDistances."
1163 */
1164 _mesa_glsl_error(&loc, state, "`gl_ClipDistance' array size cannot "
1165 "be larger than gl_MaxClipDistances (%u)",
1166 state->Const.MaxClipPlanes);
1167 }
1168 }
1169
1170 /**
1171 * Create the constant 1, of a which is appropriate for incrementing and
1172 * decrementing values of the given GLSL type. For example, if type is vec4,
1173 * this creates a constant value of 1.0 having type float.
1174 *
1175 * If the given type is invalid for increment and decrement operators, return
1176 * a floating point 1--the error will be detected later.
1177 */
1178 static ir_rvalue *
1179 constant_one_for_inc_dec(void *ctx, const glsl_type *type)
1180 {
1181 switch (type->base_type) {
1182 case GLSL_TYPE_UINT:
1183 return new(ctx) ir_constant((unsigned) 1);
1184 case GLSL_TYPE_INT:
1185 return new(ctx) ir_constant(1);
1186 default:
1187 case GLSL_TYPE_FLOAT:
1188 return new(ctx) ir_constant(1.0f);
1189 }
1190 }
1191
1192 ir_rvalue *
1193 ast_expression::hir(exec_list *instructions,
1194 struct _mesa_glsl_parse_state *state)
1195 {
1196 return do_hir(instructions, state, true);
1197 }
1198
1199 void
1200 ast_expression::hir_no_rvalue(exec_list *instructions,
1201 struct _mesa_glsl_parse_state *state)
1202 {
1203 do_hir(instructions, state, false);
1204 }
1205
1206 ir_rvalue *
1207 ast_expression::do_hir(exec_list *instructions,
1208 struct _mesa_glsl_parse_state *state,
1209 bool needs_rvalue)
1210 {
1211 void *ctx = state;
1212 static const int operations[AST_NUM_OPERATORS] = {
1213 -1, /* ast_assign doesn't convert to ir_expression. */
1214 -1, /* ast_plus doesn't convert to ir_expression. */
1215 ir_unop_neg,
1216 ir_binop_add,
1217 ir_binop_sub,
1218 ir_binop_mul,
1219 ir_binop_div,
1220 ir_binop_mod,
1221 ir_binop_lshift,
1222 ir_binop_rshift,
1223 ir_binop_less,
1224 ir_binop_greater,
1225 ir_binop_lequal,
1226 ir_binop_gequal,
1227 ir_binop_all_equal,
1228 ir_binop_any_nequal,
1229 ir_binop_bit_and,
1230 ir_binop_bit_xor,
1231 ir_binop_bit_or,
1232 ir_unop_bit_not,
1233 ir_binop_logic_and,
1234 ir_binop_logic_xor,
1235 ir_binop_logic_or,
1236 ir_unop_logic_not,
1237
1238 /* Note: The following block of expression types actually convert
1239 * to multiple IR instructions.
1240 */
1241 ir_binop_mul, /* ast_mul_assign */
1242 ir_binop_div, /* ast_div_assign */
1243 ir_binop_mod, /* ast_mod_assign */
1244 ir_binop_add, /* ast_add_assign */
1245 ir_binop_sub, /* ast_sub_assign */
1246 ir_binop_lshift, /* ast_ls_assign */
1247 ir_binop_rshift, /* ast_rs_assign */
1248 ir_binop_bit_and, /* ast_and_assign */
1249 ir_binop_bit_xor, /* ast_xor_assign */
1250 ir_binop_bit_or, /* ast_or_assign */
1251
1252 -1, /* ast_conditional doesn't convert to ir_expression. */
1253 ir_binop_add, /* ast_pre_inc. */
1254 ir_binop_sub, /* ast_pre_dec. */
1255 ir_binop_add, /* ast_post_inc. */
1256 ir_binop_sub, /* ast_post_dec. */
1257 -1, /* ast_field_selection doesn't conv to ir_expression. */
1258 -1, /* ast_array_index doesn't convert to ir_expression. */
1259 -1, /* ast_function_call doesn't conv to ir_expression. */
1260 -1, /* ast_identifier doesn't convert to ir_expression. */
1261 -1, /* ast_int_constant doesn't convert to ir_expression. */
1262 -1, /* ast_uint_constant doesn't conv to ir_expression. */
1263 -1, /* ast_float_constant doesn't conv to ir_expression. */
1264 -1, /* ast_bool_constant doesn't conv to ir_expression. */
1265 -1, /* ast_sequence doesn't convert to ir_expression. */
1266 };
1267 ir_rvalue *result = NULL;
1268 ir_rvalue *op[3];
1269 const struct glsl_type *type; /* a temporary variable for switch cases */
1270 bool error_emitted = false;
1271 YYLTYPE loc;
1272
1273 loc = this->get_location();
1274
1275 switch (this->oper) {
1276 case ast_aggregate:
1277 assert(!"ast_aggregate: Should never get here.");
1278 break;
1279
1280 case ast_assign: {
1281 op[0] = this->subexpressions[0]->hir(instructions, state);
1282 op[1] = this->subexpressions[1]->hir(instructions, state);
1283
1284 error_emitted =
1285 do_assignment(instructions, state,
1286 this->subexpressions[0]->non_lvalue_description,
1287 op[0], op[1], &result, needs_rvalue, false,
1288 this->subexpressions[0]->get_location());
1289 break;
1290 }
1291
1292 case ast_plus:
1293 op[0] = this->subexpressions[0]->hir(instructions, state);
1294
1295 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1296
1297 error_emitted = type->is_error();
1298
1299 result = op[0];
1300 break;
1301
1302 case ast_neg:
1303 op[0] = this->subexpressions[0]->hir(instructions, state);
1304
1305 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1306
1307 error_emitted = type->is_error();
1308
1309 result = new(ctx) ir_expression(operations[this->oper], type,
1310 op[0], NULL);
1311 break;
1312
1313 case ast_add:
1314 case ast_sub:
1315 case ast_mul:
1316 case ast_div:
1317 op[0] = this->subexpressions[0]->hir(instructions, state);
1318 op[1] = this->subexpressions[1]->hir(instructions, state);
1319
1320 type = arithmetic_result_type(op[0], op[1],
1321 (this->oper == ast_mul),
1322 state, & loc);
1323 error_emitted = type->is_error();
1324
1325 result = new(ctx) ir_expression(operations[this->oper], type,
1326 op[0], op[1]);
1327 break;
1328
1329 case ast_mod:
1330 op[0] = this->subexpressions[0]->hir(instructions, state);
1331 op[1] = this->subexpressions[1]->hir(instructions, state);
1332
1333 type = modulus_result_type(op[0], op[1], state, &loc);
1334
1335 assert(operations[this->oper] == ir_binop_mod);
1336
1337 result = new(ctx) ir_expression(operations[this->oper], type,
1338 op[0], op[1]);
1339 error_emitted = type->is_error();
1340 break;
1341
1342 case ast_lshift:
1343 case ast_rshift:
1344 if (!state->check_bitwise_operations_allowed(&loc)) {
1345 error_emitted = true;
1346 }
1347
1348 op[0] = this->subexpressions[0]->hir(instructions, state);
1349 op[1] = this->subexpressions[1]->hir(instructions, state);
1350 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1351 &loc);
1352 result = new(ctx) ir_expression(operations[this->oper], type,
1353 op[0], op[1]);
1354 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1355 break;
1356
1357 case ast_less:
1358 case ast_greater:
1359 case ast_lequal:
1360 case ast_gequal:
1361 op[0] = this->subexpressions[0]->hir(instructions, state);
1362 op[1] = this->subexpressions[1]->hir(instructions, state);
1363
1364 type = relational_result_type(op[0], op[1], state, & loc);
1365
1366 /* The relational operators must either generate an error or result
1367 * in a scalar boolean. See page 57 of the GLSL 1.50 spec.
1368 */
1369 assert(type->is_error()
1370 || ((type->base_type == GLSL_TYPE_BOOL)
1371 && type->is_scalar()));
1372
1373 result = new(ctx) ir_expression(operations[this->oper], type,
1374 op[0], op[1]);
1375 error_emitted = type->is_error();
1376 break;
1377
1378 case ast_nequal:
1379 case ast_equal:
1380 op[0] = this->subexpressions[0]->hir(instructions, state);
1381 op[1] = this->subexpressions[1]->hir(instructions, state);
1382
1383 /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
1384 *
1385 * "The equality operators equal (==), and not equal (!=)
1386 * operate on all types. They result in a scalar Boolean. If
1387 * the operand types do not match, then there must be a
1388 * conversion from Section 4.1.10 "Implicit Conversions"
1389 * applied to one operand that can make them match, in which
1390 * case this conversion is done."
1391 */
1392
1393 if (op[0]->type == glsl_type::void_type || op[1]->type == glsl_type::void_type) {
1394 _mesa_glsl_error(& loc, state, "`%s': wrong operand types: "
1395 "no operation `%1$s' exists that takes a left-hand "
1396 "operand of type 'void' or a right operand of type "
1397 "'void'", (this->oper == ast_equal) ? "==" : "!=");
1398 error_emitted = true;
1399 } else if ((!apply_implicit_conversion(op[0]->type, op[1], state)
1400 && !apply_implicit_conversion(op[1]->type, op[0], state))
1401 || (op[0]->type != op[1]->type)) {
1402 _mesa_glsl_error(& loc, state, "operands of `%s' must have the same "
1403 "type", (this->oper == ast_equal) ? "==" : "!=");
1404 error_emitted = true;
1405 } else if ((op[0]->type->is_array() || op[1]->type->is_array()) &&
1406 !state->check_version(120, 300, &loc,
1407 "array comparisons forbidden")) {
1408 error_emitted = true;
1409 } else if ((op[0]->type->contains_opaque() ||
1410 op[1]->type->contains_opaque())) {
1411 _mesa_glsl_error(&loc, state, "opaque type comparisons forbidden");
1412 error_emitted = true;
1413 }
1414
1415 if (error_emitted) {
1416 result = new(ctx) ir_constant(false);
1417 } else {
1418 result = do_comparison(ctx, operations[this->oper], op[0], op[1]);
1419 assert(result->type == glsl_type::bool_type);
1420 }
1421 break;
1422
1423 case ast_bit_and:
1424 case ast_bit_xor:
1425 case ast_bit_or:
1426 op[0] = this->subexpressions[0]->hir(instructions, state);
1427 op[1] = this->subexpressions[1]->hir(instructions, state);
1428 type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
1429 state, &loc);
1430 result = new(ctx) ir_expression(operations[this->oper], type,
1431 op[0], op[1]);
1432 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1433 break;
1434
1435 case ast_bit_not:
1436 op[0] = this->subexpressions[0]->hir(instructions, state);
1437
1438 if (!state->check_bitwise_operations_allowed(&loc)) {
1439 error_emitted = true;
1440 }
1441
1442 if (!op[0]->type->is_integer()) {
1443 _mesa_glsl_error(&loc, state, "operand of `~' must be an integer");
1444 error_emitted = true;
1445 }
1446
1447 type = error_emitted ? glsl_type::error_type : op[0]->type;
1448 result = new(ctx) ir_expression(ir_unop_bit_not, type, op[0], NULL);
1449 break;
1450
1451 case ast_logic_and: {
1452 exec_list rhs_instructions;
1453 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1454 "LHS", &error_emitted);
1455 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1456 "RHS", &error_emitted);
1457
1458 if (rhs_instructions.is_empty()) {
1459 result = new(ctx) ir_expression(ir_binop_logic_and, op[0], op[1]);
1460 type = result->type;
1461 } else {
1462 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1463 "and_tmp",
1464 ir_var_temporary);
1465 instructions->push_tail(tmp);
1466
1467 ir_if *const stmt = new(ctx) ir_if(op[0]);
1468 instructions->push_tail(stmt);
1469
1470 stmt->then_instructions.append_list(&rhs_instructions);
1471 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1472 ir_assignment *const then_assign =
1473 new(ctx) ir_assignment(then_deref, op[1]);
1474 stmt->then_instructions.push_tail(then_assign);
1475
1476 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1477 ir_assignment *const else_assign =
1478 new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false));
1479 stmt->else_instructions.push_tail(else_assign);
1480
1481 result = new(ctx) ir_dereference_variable(tmp);
1482 type = tmp->type;
1483 }
1484 break;
1485 }
1486
1487 case ast_logic_or: {
1488 exec_list rhs_instructions;
1489 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1490 "LHS", &error_emitted);
1491 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1492 "RHS", &error_emitted);
1493
1494 if (rhs_instructions.is_empty()) {
1495 result = new(ctx) ir_expression(ir_binop_logic_or, op[0], op[1]);
1496 type = result->type;
1497 } else {
1498 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1499 "or_tmp",
1500 ir_var_temporary);
1501 instructions->push_tail(tmp);
1502
1503 ir_if *const stmt = new(ctx) ir_if(op[0]);
1504 instructions->push_tail(stmt);
1505
1506 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1507 ir_assignment *const then_assign =
1508 new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true));
1509 stmt->then_instructions.push_tail(then_assign);
1510
1511 stmt->else_instructions.append_list(&rhs_instructions);
1512 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1513 ir_assignment *const else_assign =
1514 new(ctx) ir_assignment(else_deref, op[1]);
1515 stmt->else_instructions.push_tail(else_assign);
1516
1517 result = new(ctx) ir_dereference_variable(tmp);
1518 type = tmp->type;
1519 }
1520 break;
1521 }
1522
1523 case ast_logic_xor:
1524 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1525 *
1526 * "The logical binary operators and (&&), or ( | | ), and
1527 * exclusive or (^^). They operate only on two Boolean
1528 * expressions and result in a Boolean expression."
1529 */
1530 op[0] = get_scalar_boolean_operand(instructions, state, this, 0, "LHS",
1531 &error_emitted);
1532 op[1] = get_scalar_boolean_operand(instructions, state, this, 1, "RHS",
1533 &error_emitted);
1534
1535 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1536 op[0], op[1]);
1537 break;
1538
1539 case ast_logic_not:
1540 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1541 "operand", &error_emitted);
1542
1543 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1544 op[0], NULL);
1545 break;
1546
1547 case ast_mul_assign:
1548 case ast_div_assign:
1549 case ast_add_assign:
1550 case ast_sub_assign: {
1551 op[0] = this->subexpressions[0]->hir(instructions, state);
1552 op[1] = this->subexpressions[1]->hir(instructions, state);
1553
1554 type = arithmetic_result_type(op[0], op[1],
1555 (this->oper == ast_mul_assign),
1556 state, & loc);
1557
1558 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1559 op[0], op[1]);
1560
1561 error_emitted =
1562 do_assignment(instructions, state,
1563 this->subexpressions[0]->non_lvalue_description,
1564 op[0]->clone(ctx, NULL), temp_rhs,
1565 &result, needs_rvalue, false,
1566 this->subexpressions[0]->get_location());
1567
1568 /* GLSL 1.10 does not allow array assignment. However, we don't have to
1569 * explicitly test for this because none of the binary expression
1570 * operators allow array operands either.
1571 */
1572
1573 break;
1574 }
1575
1576 case ast_mod_assign: {
1577 op[0] = this->subexpressions[0]->hir(instructions, state);
1578 op[1] = this->subexpressions[1]->hir(instructions, state);
1579
1580 type = modulus_result_type(op[0], op[1], state, &loc);
1581
1582 assert(operations[this->oper] == ir_binop_mod);
1583
1584 ir_rvalue *temp_rhs;
1585 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1586 op[0], op[1]);
1587
1588 error_emitted =
1589 do_assignment(instructions, state,
1590 this->subexpressions[0]->non_lvalue_description,
1591 op[0]->clone(ctx, NULL), temp_rhs,
1592 &result, needs_rvalue, false,
1593 this->subexpressions[0]->get_location());
1594 break;
1595 }
1596
1597 case ast_ls_assign:
1598 case ast_rs_assign: {
1599 op[0] = this->subexpressions[0]->hir(instructions, state);
1600 op[1] = this->subexpressions[1]->hir(instructions, state);
1601 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1602 &loc);
1603 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1604 type, op[0], op[1]);
1605 error_emitted =
1606 do_assignment(instructions, state,
1607 this->subexpressions[0]->non_lvalue_description,
1608 op[0]->clone(ctx, NULL), temp_rhs,
1609 &result, needs_rvalue, false,
1610 this->subexpressions[0]->get_location());
1611 break;
1612 }
1613
1614 case ast_and_assign:
1615 case ast_xor_assign:
1616 case ast_or_assign: {
1617 op[0] = this->subexpressions[0]->hir(instructions, state);
1618 op[1] = this->subexpressions[1]->hir(instructions, state);
1619 type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
1620 state, &loc);
1621 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1622 type, op[0], op[1]);
1623 error_emitted =
1624 do_assignment(instructions, state,
1625 this->subexpressions[0]->non_lvalue_description,
1626 op[0]->clone(ctx, NULL), temp_rhs,
1627 &result, needs_rvalue, false,
1628 this->subexpressions[0]->get_location());
1629 break;
1630 }
1631
1632 case ast_conditional: {
1633 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1634 *
1635 * "The ternary selection operator (?:). It operates on three
1636 * expressions (exp1 ? exp2 : exp3). This operator evaluates the
1637 * first expression, which must result in a scalar Boolean."
1638 */
1639 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1640 "condition", &error_emitted);
1641
1642 /* The :? operator is implemented by generating an anonymous temporary
1643 * followed by an if-statement. The last instruction in each branch of
1644 * the if-statement assigns a value to the anonymous temporary. This
1645 * temporary is the r-value of the expression.
1646 */
1647 exec_list then_instructions;
1648 exec_list else_instructions;
1649
1650 op[1] = this->subexpressions[1]->hir(&then_instructions, state);
1651 op[2] = this->subexpressions[2]->hir(&else_instructions, state);
1652
1653 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1654 *
1655 * "The second and third expressions can be any type, as
1656 * long their types match, or there is a conversion in
1657 * Section 4.1.10 "Implicit Conversions" that can be applied
1658 * to one of the expressions to make their types match. This
1659 * resulting matching type is the type of the entire
1660 * expression."
1661 */
1662 if ((!apply_implicit_conversion(op[1]->type, op[2], state)
1663 && !apply_implicit_conversion(op[2]->type, op[1], state))
1664 || (op[1]->type != op[2]->type)) {
1665 YYLTYPE loc = this->subexpressions[1]->get_location();
1666
1667 _mesa_glsl_error(& loc, state, "second and third operands of ?: "
1668 "operator must have matching types");
1669 error_emitted = true;
1670 type = glsl_type::error_type;
1671 } else {
1672 type = op[1]->type;
1673 }
1674
1675 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1676 *
1677 * "The second and third expressions must be the same type, but can
1678 * be of any type other than an array."
1679 */
1680 if (type->is_array() &&
1681 !state->check_version(120, 300, &loc,
1682 "second and third operands of ?: operator "
1683 "cannot be arrays")) {
1684 error_emitted = true;
1685 }
1686
1687 /* From section 4.1.7 of the GLSL 4.50 spec (Opaque Types):
1688 *
1689 * "Except for array indexing, structure member selection, and
1690 * parentheses, opaque variables are not allowed to be operands in
1691 * expressions; such use results in a compile-time error."
1692 */
1693 if (type->contains_opaque()) {
1694 _mesa_glsl_error(&loc, state, "opaque variables cannot be operands "
1695 "of the ?: operator");
1696 error_emitted = true;
1697 }
1698
1699 ir_constant *cond_val = op[0]->constant_expression_value();
1700
1701 if (then_instructions.is_empty()
1702 && else_instructions.is_empty()
1703 && cond_val != NULL) {
1704 result = cond_val->value.b[0] ? op[1] : op[2];
1705 } else {
1706 /* The copy to conditional_tmp reads the whole array. */
1707 if (type->is_array()) {
1708 mark_whole_array_access(op[1]);
1709 mark_whole_array_access(op[2]);
1710 }
1711
1712 ir_variable *const tmp =
1713 new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary);
1714 instructions->push_tail(tmp);
1715
1716 ir_if *const stmt = new(ctx) ir_if(op[0]);
1717 instructions->push_tail(stmt);
1718
1719 then_instructions.move_nodes_to(& stmt->then_instructions);
1720 ir_dereference *const then_deref =
1721 new(ctx) ir_dereference_variable(tmp);
1722 ir_assignment *const then_assign =
1723 new(ctx) ir_assignment(then_deref, op[1]);
1724 stmt->then_instructions.push_tail(then_assign);
1725
1726 else_instructions.move_nodes_to(& stmt->else_instructions);
1727 ir_dereference *const else_deref =
1728 new(ctx) ir_dereference_variable(tmp);
1729 ir_assignment *const else_assign =
1730 new(ctx) ir_assignment(else_deref, op[2]);
1731 stmt->else_instructions.push_tail(else_assign);
1732
1733 result = new(ctx) ir_dereference_variable(tmp);
1734 }
1735 break;
1736 }
1737
1738 case ast_pre_inc:
1739 case ast_pre_dec: {
1740 this->non_lvalue_description = (this->oper == ast_pre_inc)
1741 ? "pre-increment operation" : "pre-decrement operation";
1742
1743 op[0] = this->subexpressions[0]->hir(instructions, state);
1744 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1745
1746 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1747
1748 ir_rvalue *temp_rhs;
1749 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1750 op[0], op[1]);
1751
1752 error_emitted =
1753 do_assignment(instructions, state,
1754 this->subexpressions[0]->non_lvalue_description,
1755 op[0]->clone(ctx, NULL), temp_rhs,
1756 &result, needs_rvalue, false,
1757 this->subexpressions[0]->get_location());
1758 break;
1759 }
1760
1761 case ast_post_inc:
1762 case ast_post_dec: {
1763 this->non_lvalue_description = (this->oper == ast_post_inc)
1764 ? "post-increment operation" : "post-decrement operation";
1765 op[0] = this->subexpressions[0]->hir(instructions, state);
1766 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1767
1768 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1769
1770 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1771
1772 ir_rvalue *temp_rhs;
1773 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1774 op[0], op[1]);
1775
1776 /* Get a temporary of a copy of the lvalue before it's modified.
1777 * This may get thrown away later.
1778 */
1779 result = get_lvalue_copy(instructions, op[0]->clone(ctx, NULL));
1780
1781 ir_rvalue *junk_rvalue;
1782 error_emitted =
1783 do_assignment(instructions, state,
1784 this->subexpressions[0]->non_lvalue_description,
1785 op[0]->clone(ctx, NULL), temp_rhs,
1786 &junk_rvalue, false, false,
1787 this->subexpressions[0]->get_location());
1788
1789 break;
1790 }
1791
1792 case ast_field_selection:
1793 result = _mesa_ast_field_selection_to_hir(this, instructions, state);
1794 break;
1795
1796 case ast_array_index: {
1797 YYLTYPE index_loc = subexpressions[1]->get_location();
1798
1799 op[0] = subexpressions[0]->hir(instructions, state);
1800 op[1] = subexpressions[1]->hir(instructions, state);
1801
1802 result = _mesa_ast_array_index_to_hir(ctx, state, op[0], op[1],
1803 loc, index_loc);
1804
1805 if (result->type->is_error())
1806 error_emitted = true;
1807
1808 break;
1809 }
1810
1811 case ast_unsized_array_dim:
1812 assert(!"ast_unsized_array_dim: Should never get here.");
1813 break;
1814
1815 case ast_function_call:
1816 /* Should *NEVER* get here. ast_function_call should always be handled
1817 * by ast_function_expression::hir.
1818 */
1819 assert(0);
1820 break;
1821
1822 case ast_identifier: {
1823 /* ast_identifier can appear several places in a full abstract syntax
1824 * tree. This particular use must be at location specified in the grammar
1825 * as 'variable_identifier'.
1826 */
1827 ir_variable *var =
1828 state->symbols->get_variable(this->primary_expression.identifier);
1829
1830 if (var != NULL) {
1831 var->data.used = true;
1832 result = new(ctx) ir_dereference_variable(var);
1833 } else {
1834 _mesa_glsl_error(& loc, state, "`%s' undeclared",
1835 this->primary_expression.identifier);
1836
1837 result = ir_rvalue::error_value(ctx);
1838 error_emitted = true;
1839 }
1840 break;
1841 }
1842
1843 case ast_int_constant:
1844 result = new(ctx) ir_constant(this->primary_expression.int_constant);
1845 break;
1846
1847 case ast_uint_constant:
1848 result = new(ctx) ir_constant(this->primary_expression.uint_constant);
1849 break;
1850
1851 case ast_float_constant:
1852 result = new(ctx) ir_constant(this->primary_expression.float_constant);
1853 break;
1854
1855 case ast_bool_constant:
1856 result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant));
1857 break;
1858
1859 case ast_double_constant:
1860 result = new(ctx) ir_constant(this->primary_expression.double_constant);
1861 break;
1862
1863 case ast_sequence: {
1864 /* It should not be possible to generate a sequence in the AST without
1865 * any expressions in it.
1866 */
1867 assert(!this->expressions.is_empty());
1868
1869 /* The r-value of a sequence is the last expression in the sequence. If
1870 * the other expressions in the sequence do not have side-effects (and
1871 * therefore add instructions to the instruction list), they get dropped
1872 * on the floor.
1873 */
1874 exec_node *previous_tail_pred = NULL;
1875 YYLTYPE previous_operand_loc = loc;
1876
1877 foreach_list_typed (ast_node, ast, link, &this->expressions) {
1878 /* If one of the operands of comma operator does not generate any
1879 * code, we want to emit a warning. At each pass through the loop
1880 * previous_tail_pred will point to the last instruction in the
1881 * stream *before* processing the previous operand. Naturally,
1882 * instructions->tail_pred will point to the last instruction in the
1883 * stream *after* processing the previous operand. If the two
1884 * pointers match, then the previous operand had no effect.
1885 *
1886 * The warning behavior here differs slightly from GCC. GCC will
1887 * only emit a warning if none of the left-hand operands have an
1888 * effect. However, it will emit a warning for each. I believe that
1889 * there are some cases in C (especially with GCC extensions) where
1890 * it is useful to have an intermediate step in a sequence have no
1891 * effect, but I don't think these cases exist in GLSL. Either way,
1892 * it would be a giant hassle to replicate that behavior.
1893 */
1894 if (previous_tail_pred == instructions->tail_pred) {
1895 _mesa_glsl_warning(&previous_operand_loc, state,
1896 "left-hand operand of comma expression has "
1897 "no effect");
1898 }
1899
1900 /* tail_pred is directly accessed instead of using the get_tail()
1901 * method for performance reasons. get_tail() has extra code to
1902 * return NULL when the list is empty. We don't care about that
1903 * here, so using tail_pred directly is fine.
1904 */
1905 previous_tail_pred = instructions->tail_pred;
1906 previous_operand_loc = ast->get_location();
1907
1908 result = ast->hir(instructions, state);
1909 }
1910
1911 /* Any errors should have already been emitted in the loop above.
1912 */
1913 error_emitted = true;
1914 break;
1915 }
1916 }
1917 type = NULL; /* use result->type, not type. */
1918 assert(result != NULL || !needs_rvalue);
1919
1920 if (result && result->type->is_error() && !error_emitted)
1921 _mesa_glsl_error(& loc, state, "type mismatch");
1922
1923 return result;
1924 }
1925
1926 bool
1927 ast_expression::has_sequence_subexpression() const
1928 {
1929 switch (this->oper) {
1930 case ast_plus:
1931 case ast_neg:
1932 case ast_bit_not:
1933 case ast_logic_not:
1934 case ast_pre_inc:
1935 case ast_pre_dec:
1936 case ast_post_inc:
1937 case ast_post_dec:
1938 return this->subexpressions[0]->has_sequence_subexpression();
1939
1940 case ast_assign:
1941 case ast_add:
1942 case ast_sub:
1943 case ast_mul:
1944 case ast_div:
1945 case ast_mod:
1946 case ast_lshift:
1947 case ast_rshift:
1948 case ast_less:
1949 case ast_greater:
1950 case ast_lequal:
1951 case ast_gequal:
1952 case ast_nequal:
1953 case ast_equal:
1954 case ast_bit_and:
1955 case ast_bit_xor:
1956 case ast_bit_or:
1957 case ast_logic_and:
1958 case ast_logic_or:
1959 case ast_logic_xor:
1960 case ast_array_index:
1961 case ast_mul_assign:
1962 case ast_div_assign:
1963 case ast_add_assign:
1964 case ast_sub_assign:
1965 case ast_mod_assign:
1966 case ast_ls_assign:
1967 case ast_rs_assign:
1968 case ast_and_assign:
1969 case ast_xor_assign:
1970 case ast_or_assign:
1971 return this->subexpressions[0]->has_sequence_subexpression() ||
1972 this->subexpressions[1]->has_sequence_subexpression();
1973
1974 case ast_conditional:
1975 return this->subexpressions[0]->has_sequence_subexpression() ||
1976 this->subexpressions[1]->has_sequence_subexpression() ||
1977 this->subexpressions[2]->has_sequence_subexpression();
1978
1979 case ast_sequence:
1980 return true;
1981
1982 case ast_field_selection:
1983 case ast_identifier:
1984 case ast_int_constant:
1985 case ast_uint_constant:
1986 case ast_float_constant:
1987 case ast_bool_constant:
1988 case ast_double_constant:
1989 return false;
1990
1991 case ast_aggregate:
1992 unreachable("ast_aggregate: Should never get here.");
1993
1994 case ast_function_call:
1995 unreachable("should be handled by ast_function_expression::hir");
1996
1997 case ast_unsized_array_dim:
1998 unreachable("ast_unsized_array_dim: Should never get here.");
1999 }
2000
2001 return false;
2002 }
2003
2004 ir_rvalue *
2005 ast_expression_statement::hir(exec_list *instructions,
2006 struct _mesa_glsl_parse_state *state)
2007 {
2008 /* It is possible to have expression statements that don't have an
2009 * expression. This is the solitary semicolon:
2010 *
2011 * for (i = 0; i < 5; i++)
2012 * ;
2013 *
2014 * In this case the expression will be NULL. Test for NULL and don't do
2015 * anything in that case.
2016 */
2017 if (expression != NULL)
2018 expression->hir_no_rvalue(instructions, state);
2019
2020 /* Statements do not have r-values.
2021 */
2022 return NULL;
2023 }
2024
2025
2026 ir_rvalue *
2027 ast_compound_statement::hir(exec_list *instructions,
2028 struct _mesa_glsl_parse_state *state)
2029 {
2030 if (new_scope)
2031 state->symbols->push_scope();
2032
2033 foreach_list_typed (ast_node, ast, link, &this->statements)
2034 ast->hir(instructions, state);
2035
2036 if (new_scope)
2037 state->symbols->pop_scope();
2038
2039 /* Compound statements do not have r-values.
2040 */
2041 return NULL;
2042 }
2043
2044 /**
2045 * Evaluate the given exec_node (which should be an ast_node representing
2046 * a single array dimension) and return its integer value.
2047 */
2048 static unsigned
2049 process_array_size(exec_node *node,
2050 struct _mesa_glsl_parse_state *state)
2051 {
2052 exec_list dummy_instructions;
2053
2054 ast_node *array_size = exec_node_data(ast_node, node, link);
2055
2056 /**
2057 * Dimensions other than the outermost dimension can by unsized if they
2058 * are immediately sized by a constructor or initializer.
2059 */
2060 if (((ast_expression*)array_size)->oper == ast_unsized_array_dim)
2061 return 0;
2062
2063 ir_rvalue *const ir = array_size->hir(& dummy_instructions, state);
2064 YYLTYPE loc = array_size->get_location();
2065
2066 if (ir == NULL) {
2067 _mesa_glsl_error(& loc, state,
2068 "array size could not be resolved");
2069 return 0;
2070 }
2071
2072 if (!ir->type->is_integer()) {
2073 _mesa_glsl_error(& loc, state,
2074 "array size must be integer type");
2075 return 0;
2076 }
2077
2078 if (!ir->type->is_scalar()) {
2079 _mesa_glsl_error(& loc, state,
2080 "array size must be scalar type");
2081 return 0;
2082 }
2083
2084 ir_constant *const size = ir->constant_expression_value();
2085 if (size == NULL || array_size->has_sequence_subexpression()) {
2086 _mesa_glsl_error(& loc, state, "array size must be a "
2087 "constant valued expression");
2088 return 0;
2089 }
2090
2091 if (size->value.i[0] <= 0) {
2092 _mesa_glsl_error(& loc, state, "array size must be > 0");
2093 return 0;
2094 }
2095
2096 assert(size->type == ir->type);
2097
2098 /* If the array size is const (and we've verified that
2099 * it is) then no instructions should have been emitted
2100 * when we converted it to HIR. If they were emitted,
2101 * then either the array size isn't const after all, or
2102 * we are emitting unnecessary instructions.
2103 */
2104 assert(dummy_instructions.is_empty());
2105
2106 return size->value.u[0];
2107 }
2108
2109 static const glsl_type *
2110 process_array_type(YYLTYPE *loc, const glsl_type *base,
2111 ast_array_specifier *array_specifier,
2112 struct _mesa_glsl_parse_state *state)
2113 {
2114 const glsl_type *array_type = base;
2115
2116 if (array_specifier != NULL) {
2117 if (base->is_array()) {
2118
2119 /* From page 19 (page 25) of the GLSL 1.20 spec:
2120 *
2121 * "Only one-dimensional arrays may be declared."
2122 */
2123 if (!state->check_arrays_of_arrays_allowed(loc)) {
2124 return glsl_type::error_type;
2125 }
2126 }
2127
2128 for (exec_node *node = array_specifier->array_dimensions.tail_pred;
2129 !node->is_head_sentinel(); node = node->prev) {
2130 unsigned array_size = process_array_size(node, state);
2131 array_type = glsl_type::get_array_instance(array_type, array_size);
2132 }
2133 }
2134
2135 return array_type;
2136 }
2137
2138 static bool
2139 precision_qualifier_allowed(const glsl_type *type)
2140 {
2141 /* Precision qualifiers apply to floating point, integer and opaque
2142 * types.
2143 *
2144 * Section 4.5.2 (Precision Qualifiers) of the GLSL 1.30 spec says:
2145 * "Any floating point or any integer declaration can have the type
2146 * preceded by one of these precision qualifiers [...] Literal
2147 * constants do not have precision qualifiers. Neither do Boolean
2148 * variables.
2149 *
2150 * Section 4.5 (Precision and Precision Qualifiers) of the GLSL 1.30
2151 * spec also says:
2152 *
2153 * "Precision qualifiers are added for code portability with OpenGL
2154 * ES, not for functionality. They have the same syntax as in OpenGL
2155 * ES."
2156 *
2157 * Section 8 (Built-In Functions) of the GLSL ES 1.00 spec says:
2158 *
2159 * "uniform lowp sampler2D sampler;
2160 * highp vec2 coord;
2161 * ...
2162 * lowp vec4 col = texture2D (sampler, coord);
2163 * // texture2D returns lowp"
2164 *
2165 * From this, we infer that GLSL 1.30 (and later) should allow precision
2166 * qualifiers on sampler types just like float and integer types.
2167 */
2168 return (type->is_float()
2169 || type->is_integer()
2170 || type->contains_opaque())
2171 && !type->without_array()->is_record();
2172 }
2173
2174 const glsl_type *
2175 ast_type_specifier::glsl_type(const char **name,
2176 struct _mesa_glsl_parse_state *state) const
2177 {
2178 const struct glsl_type *type;
2179
2180 type = state->symbols->get_type(this->type_name);
2181 *name = this->type_name;
2182
2183 YYLTYPE loc = this->get_location();
2184 type = process_array_type(&loc, type, this->array_specifier, state);
2185
2186 return type;
2187 }
2188
2189 /**
2190 * From the OpenGL ES 3.0 spec, 4.5.4 Default Precision Qualifiers:
2191 *
2192 * "The precision statement
2193 *
2194 * precision precision-qualifier type;
2195 *
2196 * can be used to establish a default precision qualifier. The type field can
2197 * be either int or float or any of the sampler types, (...) If type is float,
2198 * the directive applies to non-precision-qualified floating point type
2199 * (scalar, vector, and matrix) declarations. If type is int, the directive
2200 * applies to all non-precision-qualified integer type (scalar, vector, signed,
2201 * and unsigned) declarations."
2202 *
2203 * We use the symbol table to keep the values of the default precisions for
2204 * each 'type' in each scope and we use the 'type' string from the precision
2205 * statement as key in the symbol table. When we want to retrieve the default
2206 * precision associated with a given glsl_type we need to know the type string
2207 * associated with it. This is what this function returns.
2208 */
2209 static const char *
2210 get_type_name_for_precision_qualifier(const glsl_type *type)
2211 {
2212 switch (type->base_type) {
2213 case GLSL_TYPE_FLOAT:
2214 return "float";
2215 case GLSL_TYPE_UINT:
2216 case GLSL_TYPE_INT:
2217 return "int";
2218 case GLSL_TYPE_ATOMIC_UINT:
2219 return "atomic_uint";
2220 case GLSL_TYPE_IMAGE:
2221 /* fallthrough */
2222 case GLSL_TYPE_SAMPLER: {
2223 const unsigned type_idx =
2224 type->sampler_array + 2 * type->sampler_shadow;
2225 const unsigned offset = type->base_type == GLSL_TYPE_SAMPLER ? 0 : 4;
2226 assert(type_idx < 4);
2227 switch (type->sampler_type) {
2228 case GLSL_TYPE_FLOAT:
2229 switch (type->sampler_dimensionality) {
2230 case GLSL_SAMPLER_DIM_1D: {
2231 assert(type->base_type == GLSL_TYPE_SAMPLER);
2232 static const char *const names[4] = {
2233 "sampler1D", "sampler1DArray",
2234 "sampler1DShadow", "sampler1DArrayShadow"
2235 };
2236 return names[type_idx];
2237 }
2238 case GLSL_SAMPLER_DIM_2D: {
2239 static const char *const names[8] = {
2240 "sampler2D", "sampler2DArray",
2241 "sampler2DShadow", "sampler2DArrayShadow",
2242 "image2D", "image2DArray", NULL, NULL
2243 };
2244 return names[offset + type_idx];
2245 }
2246 case GLSL_SAMPLER_DIM_3D: {
2247 static const char *const names[8] = {
2248 "sampler3D", NULL, NULL, NULL,
2249 "image3D", NULL, NULL, NULL
2250 };
2251 return names[offset + type_idx];
2252 }
2253 case GLSL_SAMPLER_DIM_CUBE: {
2254 static const char *const names[8] = {
2255 "samplerCube", "samplerCubeArray",
2256 "samplerCubeShadow", "samplerCubeArrayShadow",
2257 "imageCube", NULL, NULL, NULL
2258 };
2259 return names[offset + type_idx];
2260 }
2261 case GLSL_SAMPLER_DIM_MS: {
2262 assert(type->base_type == GLSL_TYPE_SAMPLER);
2263 static const char *const names[4] = {
2264 "sampler2DMS", "sampler2DMSArray", NULL, NULL
2265 };
2266 return names[type_idx];
2267 }
2268 case GLSL_SAMPLER_DIM_RECT: {
2269 assert(type->base_type == GLSL_TYPE_SAMPLER);
2270 static const char *const names[4] = {
2271 "samplerRect", NULL, "samplerRectShadow", NULL
2272 };
2273 return names[type_idx];
2274 }
2275 case GLSL_SAMPLER_DIM_BUF: {
2276 assert(type->base_type == GLSL_TYPE_SAMPLER);
2277 static const char *const names[4] = {
2278 "samplerBuffer", NULL, NULL, NULL
2279 };
2280 return names[type_idx];
2281 }
2282 case GLSL_SAMPLER_DIM_EXTERNAL: {
2283 assert(type->base_type == GLSL_TYPE_SAMPLER);
2284 static const char *const names[4] = {
2285 "samplerExternalOES", NULL, NULL, NULL
2286 };
2287 return names[type_idx];
2288 }
2289 default:
2290 unreachable("Unsupported sampler/image dimensionality");
2291 } /* sampler/image float dimensionality */
2292 break;
2293 case GLSL_TYPE_INT:
2294 switch (type->sampler_dimensionality) {
2295 case GLSL_SAMPLER_DIM_1D: {
2296 assert(type->base_type == GLSL_TYPE_SAMPLER);
2297 static const char *const names[4] = {
2298 "isampler1D", "isampler1DArray", NULL, NULL
2299 };
2300 return names[type_idx];
2301 }
2302 case GLSL_SAMPLER_DIM_2D: {
2303 static const char *const names[8] = {
2304 "isampler2D", "isampler2DArray", NULL, NULL,
2305 "iimage2D", "iimage2DArray", NULL, NULL
2306 };
2307 return names[offset + type_idx];
2308 }
2309 case GLSL_SAMPLER_DIM_3D: {
2310 static const char *const names[8] = {
2311 "isampler3D", NULL, NULL, NULL,
2312 "iimage3D", NULL, NULL, NULL
2313 };
2314 return names[offset + type_idx];
2315 }
2316 case GLSL_SAMPLER_DIM_CUBE: {
2317 static const char *const names[8] = {
2318 "isamplerCube", "isamplerCubeArray", NULL, NULL,
2319 "iimageCube", NULL, NULL, NULL
2320 };
2321 return names[offset + type_idx];
2322 }
2323 case GLSL_SAMPLER_DIM_MS: {
2324 assert(type->base_type == GLSL_TYPE_SAMPLER);
2325 static const char *const names[4] = {
2326 "isampler2DMS", "isampler2DMSArray", NULL, NULL
2327 };
2328 return names[type_idx];
2329 }
2330 case GLSL_SAMPLER_DIM_RECT: {
2331 assert(type->base_type == GLSL_TYPE_SAMPLER);
2332 static const char *const names[4] = {
2333 "isamplerRect", NULL, "isamplerRectShadow", NULL
2334 };
2335 return names[type_idx];
2336 }
2337 case GLSL_SAMPLER_DIM_BUF: {
2338 assert(type->base_type == GLSL_TYPE_SAMPLER);
2339 static const char *const names[4] = {
2340 "isamplerBuffer", NULL, NULL, NULL
2341 };
2342 return names[type_idx];
2343 }
2344 default:
2345 unreachable("Unsupported isampler/iimage dimensionality");
2346 } /* sampler/image int dimensionality */
2347 break;
2348 case GLSL_TYPE_UINT:
2349 switch (type->sampler_dimensionality) {
2350 case GLSL_SAMPLER_DIM_1D: {
2351 assert(type->base_type == GLSL_TYPE_SAMPLER);
2352 static const char *const names[4] = {
2353 "usampler1D", "usampler1DArray", NULL, NULL
2354 };
2355 return names[type_idx];
2356 }
2357 case GLSL_SAMPLER_DIM_2D: {
2358 static const char *const names[8] = {
2359 "usampler2D", "usampler2DArray", NULL, NULL,
2360 "uimage2D", "uimage2DArray", NULL, NULL
2361 };
2362 return names[offset + type_idx];
2363 }
2364 case GLSL_SAMPLER_DIM_3D: {
2365 static const char *const names[8] = {
2366 "usampler3D", NULL, NULL, NULL,
2367 "uimage3D", NULL, NULL, NULL
2368 };
2369 return names[offset + type_idx];
2370 }
2371 case GLSL_SAMPLER_DIM_CUBE: {
2372 static const char *const names[8] = {
2373 "usamplerCube", "usamplerCubeArray", NULL, NULL,
2374 "uimageCube", NULL, NULL, NULL
2375 };
2376 return names[offset + type_idx];
2377 }
2378 case GLSL_SAMPLER_DIM_MS: {
2379 assert(type->base_type == GLSL_TYPE_SAMPLER);
2380 static const char *const names[4] = {
2381 "usampler2DMS", "usampler2DMSArray", NULL, NULL
2382 };
2383 return names[type_idx];
2384 }
2385 case GLSL_SAMPLER_DIM_RECT: {
2386 assert(type->base_type == GLSL_TYPE_SAMPLER);
2387 static const char *const names[4] = {
2388 "usamplerRect", NULL, "usamplerRectShadow", NULL
2389 };
2390 return names[type_idx];
2391 }
2392 case GLSL_SAMPLER_DIM_BUF: {
2393 assert(type->base_type == GLSL_TYPE_SAMPLER);
2394 static const char *const names[4] = {
2395 "usamplerBuffer", NULL, NULL, NULL
2396 };
2397 return names[type_idx];
2398 }
2399 default:
2400 unreachable("Unsupported usampler/uimage dimensionality");
2401 } /* sampler/image uint dimensionality */
2402 break;
2403 default:
2404 unreachable("Unsupported sampler/image type");
2405 } /* sampler/image type */
2406 break;
2407 } /* GLSL_TYPE_SAMPLER/GLSL_TYPE_IMAGE */
2408 break;
2409 default:
2410 unreachable("Unsupported type");
2411 } /* base type */
2412 }
2413
2414 static unsigned
2415 select_gles_precision(unsigned qual_precision,
2416 const glsl_type *type,
2417 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
2418 {
2419 /* Precision qualifiers do not have any meaning in Desktop GLSL.
2420 * In GLES we take the precision from the type qualifier if present,
2421 * otherwise, if the type of the variable allows precision qualifiers at
2422 * all, we look for the default precision qualifier for that type in the
2423 * current scope.
2424 */
2425 assert(state->es_shader);
2426
2427 unsigned precision = GLSL_PRECISION_NONE;
2428 if (qual_precision) {
2429 precision = qual_precision;
2430 } else if (precision_qualifier_allowed(type)) {
2431 const char *type_name =
2432 get_type_name_for_precision_qualifier(type->without_array());
2433 assert(type_name != NULL);
2434
2435 precision =
2436 state->symbols->get_default_precision_qualifier(type_name);
2437 if (precision == ast_precision_none) {
2438 _mesa_glsl_error(loc, state,
2439 "No precision specified in this scope for type `%s'",
2440 type->name);
2441 }
2442 }
2443 return precision;
2444 }
2445
2446 const glsl_type *
2447 ast_fully_specified_type::glsl_type(const char **name,
2448 struct _mesa_glsl_parse_state *state) const
2449 {
2450 return this->specifier->glsl_type(name, state);
2451 }
2452
2453 /**
2454 * Determine whether a toplevel variable declaration declares a varying. This
2455 * function operates by examining the variable's mode and the shader target,
2456 * so it correctly identifies linkage variables regardless of whether they are
2457 * declared using the deprecated "varying" syntax or the new "in/out" syntax.
2458 *
2459 * Passing a non-toplevel variable declaration (e.g. a function parameter) to
2460 * this function will produce undefined results.
2461 */
2462 static bool
2463 is_varying_var(ir_variable *var, gl_shader_stage target)
2464 {
2465 switch (target) {
2466 case MESA_SHADER_VERTEX:
2467 return var->data.mode == ir_var_shader_out;
2468 case MESA_SHADER_FRAGMENT:
2469 return var->data.mode == ir_var_shader_in;
2470 default:
2471 return var->data.mode == ir_var_shader_out || var->data.mode == ir_var_shader_in;
2472 }
2473 }
2474
2475
2476 /**
2477 * Matrix layout qualifiers are only allowed on certain types
2478 */
2479 static void
2480 validate_matrix_layout_for_type(struct _mesa_glsl_parse_state *state,
2481 YYLTYPE *loc,
2482 const glsl_type *type,
2483 ir_variable *var)
2484 {
2485 if (var && !var->is_in_buffer_block()) {
2486 /* Layout qualifiers may only apply to interface blocks and fields in
2487 * them.
2488 */
2489 _mesa_glsl_error(loc, state,
2490 "uniform block layout qualifiers row_major and "
2491 "column_major may not be applied to variables "
2492 "outside of uniform blocks");
2493 } else if (!type->without_array()->is_matrix()) {
2494 /* The OpenGL ES 3.0 conformance tests did not originally allow
2495 * matrix layout qualifiers on non-matrices. However, the OpenGL
2496 * 4.4 and OpenGL ES 3.0 (revision TBD) specifications were
2497 * amended to specifically allow these layouts on all types. Emit
2498 * a warning so that people know their code may not be portable.
2499 */
2500 _mesa_glsl_warning(loc, state,
2501 "uniform block layout qualifiers row_major and "
2502 "column_major applied to non-matrix types may "
2503 "be rejected by older compilers");
2504 }
2505 }
2506
2507 static bool
2508 validate_binding_qualifier(struct _mesa_glsl_parse_state *state,
2509 YYLTYPE *loc,
2510 const glsl_type *type,
2511 const ast_type_qualifier *qual)
2512 {
2513 if (!qual->flags.q.uniform && !qual->flags.q.buffer) {
2514 _mesa_glsl_error(loc, state,
2515 "the \"binding\" qualifier only applies to uniforms and "
2516 "shader storage buffer objects");
2517 return false;
2518 }
2519
2520 if (qual->binding < 0) {
2521 _mesa_glsl_error(loc, state, "binding values must be >= 0");
2522 return false;
2523 }
2524
2525 const struct gl_context *const ctx = state->ctx;
2526 unsigned elements = type->is_array() ? type->arrays_of_arrays_size() : 1;
2527 unsigned max_index = qual->binding + elements - 1;
2528 const glsl_type *base_type = type->without_array();
2529
2530 if (base_type->is_interface()) {
2531 /* UBOs. From page 60 of the GLSL 4.20 specification:
2532 * "If the binding point for any uniform block instance is less than zero,
2533 * or greater than or equal to the implementation-dependent maximum
2534 * number of uniform buffer bindings, a compilation error will occur.
2535 * When the binding identifier is used with a uniform block instanced as
2536 * an array of size N, all elements of the array from binding through
2537 * binding + N – 1 must be within this range."
2538 *
2539 * The implementation-dependent maximum is GL_MAX_UNIFORM_BUFFER_BINDINGS.
2540 */
2541 if (qual->flags.q.uniform &&
2542 max_index >= ctx->Const.MaxUniformBufferBindings) {
2543 _mesa_glsl_error(loc, state, "layout(binding = %d) for %d UBOs exceeds "
2544 "the maximum number of UBO binding points (%d)",
2545 qual->binding, elements,
2546 ctx->Const.MaxUniformBufferBindings);
2547 return false;
2548 }
2549
2550 /* SSBOs. From page 67 of the GLSL 4.30 specification:
2551 * "If the binding point for any uniform or shader storage block instance
2552 * is less than zero, or greater than or equal to the
2553 * implementation-dependent maximum number of uniform buffer bindings, a
2554 * compile-time error will occur. When the binding identifier is used
2555 * with a uniform or shader storage block instanced as an array of size
2556 * N, all elements of the array from binding through binding + N – 1 must
2557 * be within this range."
2558 */
2559 if (qual->flags.q.buffer &&
2560 max_index >= ctx->Const.MaxShaderStorageBufferBindings) {
2561 _mesa_glsl_error(loc, state, "layout(binding = %d) for %d SSBOs exceeds "
2562 "the maximum number of SSBO binding points (%d)",
2563 qual->binding, elements,
2564 ctx->Const.MaxShaderStorageBufferBindings);
2565 return false;
2566 }
2567 } else if (base_type->is_sampler()) {
2568 /* Samplers. From page 63 of the GLSL 4.20 specification:
2569 * "If the binding is less than zero, or greater than or equal to the
2570 * implementation-dependent maximum supported number of units, a
2571 * compilation error will occur. When the binding identifier is used
2572 * with an array of size N, all elements of the array from binding
2573 * through binding + N - 1 must be within this range."
2574 */
2575 unsigned limit = ctx->Const.MaxCombinedTextureImageUnits;
2576
2577 if (max_index >= limit) {
2578 _mesa_glsl_error(loc, state, "layout(binding = %d) for %d samplers "
2579 "exceeds the maximum number of texture image units "
2580 "(%d)", qual->binding, elements, limit);
2581
2582 return false;
2583 }
2584 } else if (base_type->contains_atomic()) {
2585 assert(ctx->Const.MaxAtomicBufferBindings <= MAX_COMBINED_ATOMIC_BUFFERS);
2586 if (unsigned(qual->binding) >= ctx->Const.MaxAtomicBufferBindings) {
2587 _mesa_glsl_error(loc, state, "layout(binding = %d) exceeds the "
2588 " maximum number of atomic counter buffer bindings"
2589 "(%d)", qual->binding,
2590 ctx->Const.MaxAtomicBufferBindings);
2591
2592 return false;
2593 }
2594 } else if (state->is_version(420, 310) && base_type->is_image()) {
2595 assert(ctx->Const.MaxImageUnits <= MAX_IMAGE_UNITS);
2596 if (max_index >= ctx->Const.MaxImageUnits) {
2597 _mesa_glsl_error(loc, state, "Image binding %d exceeds the "
2598 " maximum number of image units (%d)", max_index,
2599 ctx->Const.MaxImageUnits);
2600 return false;
2601 }
2602
2603 } else {
2604 _mesa_glsl_error(loc, state,
2605 "the \"binding\" qualifier only applies to uniform "
2606 "blocks, opaque variables, or arrays thereof");
2607 return false;
2608 }
2609
2610 return true;
2611 }
2612
2613
2614 static glsl_interp_qualifier
2615 interpret_interpolation_qualifier(const struct ast_type_qualifier *qual,
2616 ir_variable_mode mode,
2617 struct _mesa_glsl_parse_state *state,
2618 YYLTYPE *loc)
2619 {
2620 glsl_interp_qualifier interpolation;
2621 if (qual->flags.q.flat)
2622 interpolation = INTERP_QUALIFIER_FLAT;
2623 else if (qual->flags.q.noperspective)
2624 interpolation = INTERP_QUALIFIER_NOPERSPECTIVE;
2625 else if (qual->flags.q.smooth)
2626 interpolation = INTERP_QUALIFIER_SMOOTH;
2627 else
2628 interpolation = INTERP_QUALIFIER_NONE;
2629
2630 if (interpolation != INTERP_QUALIFIER_NONE) {
2631 if (mode != ir_var_shader_in && mode != ir_var_shader_out) {
2632 _mesa_glsl_error(loc, state,
2633 "interpolation qualifier `%s' can only be applied to "
2634 "shader inputs or outputs.",
2635 interpolation_string(interpolation));
2636
2637 }
2638
2639 if ((state->stage == MESA_SHADER_VERTEX && mode == ir_var_shader_in) ||
2640 (state->stage == MESA_SHADER_FRAGMENT && mode == ir_var_shader_out)) {
2641 _mesa_glsl_error(loc, state,
2642 "interpolation qualifier `%s' cannot be applied to "
2643 "vertex shader inputs or fragment shader outputs",
2644 interpolation_string(interpolation));
2645 }
2646 }
2647
2648 return interpolation;
2649 }
2650
2651
2652 static void
2653 apply_explicit_location(const struct ast_type_qualifier *qual,
2654 ir_variable *var,
2655 struct _mesa_glsl_parse_state *state,
2656 YYLTYPE *loc)
2657 {
2658 bool fail = false;
2659
2660 /* Checks for GL_ARB_explicit_uniform_location. */
2661 if (qual->flags.q.uniform) {
2662 if (!state->check_explicit_uniform_location_allowed(loc, var))
2663 return;
2664
2665 const struct gl_context *const ctx = state->ctx;
2666 unsigned max_loc = qual->location + var->type->uniform_locations() - 1;
2667
2668 if (max_loc >= ctx->Const.MaxUserAssignableUniformLocations) {
2669 _mesa_glsl_error(loc, state, "location(s) consumed by uniform %s "
2670 ">= MAX_UNIFORM_LOCATIONS (%u)", var->name,
2671 ctx->Const.MaxUserAssignableUniformLocations);
2672 return;
2673 }
2674
2675 var->data.explicit_location = true;
2676 var->data.location = qual->location;
2677 return;
2678 }
2679
2680 /* Between GL_ARB_explicit_attrib_location an
2681 * GL_ARB_separate_shader_objects, the inputs and outputs of any shader
2682 * stage can be assigned explicit locations. The checking here associates
2683 * the correct extension with the correct stage's input / output:
2684 *
2685 * input output
2686 * ----- ------
2687 * vertex explicit_loc sso
2688 * tess control sso sso
2689 * tess eval sso sso
2690 * geometry sso sso
2691 * fragment sso explicit_loc
2692 */
2693 switch (state->stage) {
2694 case MESA_SHADER_VERTEX:
2695 if (var->data.mode == ir_var_shader_in) {
2696 if (!state->check_explicit_attrib_location_allowed(loc, var))
2697 return;
2698
2699 break;
2700 }
2701
2702 if (var->data.mode == ir_var_shader_out) {
2703 if (!state->check_separate_shader_objects_allowed(loc, var))
2704 return;
2705
2706 break;
2707 }
2708
2709 fail = true;
2710 break;
2711
2712 case MESA_SHADER_TESS_CTRL:
2713 case MESA_SHADER_TESS_EVAL:
2714 case MESA_SHADER_GEOMETRY:
2715 if (var->data.mode == ir_var_shader_in || var->data.mode == ir_var_shader_out) {
2716 if (!state->check_separate_shader_objects_allowed(loc, var))
2717 return;
2718
2719 break;
2720 }
2721
2722 fail = true;
2723 break;
2724
2725 case MESA_SHADER_FRAGMENT:
2726 if (var->data.mode == ir_var_shader_in) {
2727 if (!state->check_separate_shader_objects_allowed(loc, var))
2728 return;
2729
2730 break;
2731 }
2732
2733 if (var->data.mode == ir_var_shader_out) {
2734 if (!state->check_explicit_attrib_location_allowed(loc, var))
2735 return;
2736
2737 break;
2738 }
2739
2740 fail = true;
2741 break;
2742
2743 case MESA_SHADER_COMPUTE:
2744 _mesa_glsl_error(loc, state,
2745 "compute shader variables cannot be given "
2746 "explicit locations");
2747 return;
2748 };
2749
2750 if (fail) {
2751 _mesa_glsl_error(loc, state,
2752 "%s cannot be given an explicit location in %s shader",
2753 mode_string(var),
2754 _mesa_shader_stage_to_string(state->stage));
2755 } else {
2756 var->data.explicit_location = true;
2757
2758 switch (state->stage) {
2759 case MESA_SHADER_VERTEX:
2760 var->data.location = (var->data.mode == ir_var_shader_in)
2761 ? (qual->location + VERT_ATTRIB_GENERIC0)
2762 : (qual->location + VARYING_SLOT_VAR0);
2763 break;
2764
2765 case MESA_SHADER_TESS_CTRL:
2766 case MESA_SHADER_TESS_EVAL:
2767 case MESA_SHADER_GEOMETRY:
2768 if (var->data.patch)
2769 var->data.location = qual->location + VARYING_SLOT_PATCH0;
2770 else
2771 var->data.location = qual->location + VARYING_SLOT_VAR0;
2772 break;
2773
2774 case MESA_SHADER_FRAGMENT:
2775 var->data.location = (var->data.mode == ir_var_shader_out)
2776 ? (qual->location + FRAG_RESULT_DATA0)
2777 : (qual->location + VARYING_SLOT_VAR0);
2778 break;
2779 case MESA_SHADER_COMPUTE:
2780 assert(!"Unexpected shader type");
2781 break;
2782 }
2783
2784 if (qual->flags.q.explicit_index) {
2785 /* From the GLSL 4.30 specification, section 4.4.2 (Output
2786 * Layout Qualifiers):
2787 *
2788 * "It is also a compile-time error if a fragment shader
2789 * sets a layout index to less than 0 or greater than 1."
2790 *
2791 * Older specifications don't mandate a behavior; we take
2792 * this as a clarification and always generate the error.
2793 */
2794 if (qual->index < 0 || qual->index > 1) {
2795 _mesa_glsl_error(loc, state,
2796 "explicit index may only be 0 or 1");
2797 } else {
2798 var->data.explicit_index = true;
2799 var->data.index = qual->index;
2800 }
2801 }
2802 }
2803 }
2804
2805 static void
2806 apply_image_qualifier_to_variable(const struct ast_type_qualifier *qual,
2807 ir_variable *var,
2808 struct _mesa_glsl_parse_state *state,
2809 YYLTYPE *loc)
2810 {
2811 const glsl_type *base_type = var->type->without_array();
2812
2813 if (base_type->is_image()) {
2814 if (var->data.mode != ir_var_uniform &&
2815 var->data.mode != ir_var_function_in) {
2816 _mesa_glsl_error(loc, state, "image variables may only be declared as "
2817 "function parameters or uniform-qualified "
2818 "global variables");
2819 }
2820
2821 var->data.image_read_only |= qual->flags.q.read_only;
2822 var->data.image_write_only |= qual->flags.q.write_only;
2823 var->data.image_coherent |= qual->flags.q.coherent;
2824 var->data.image_volatile |= qual->flags.q._volatile;
2825 var->data.image_restrict |= qual->flags.q.restrict_flag;
2826 var->data.read_only = true;
2827
2828 if (qual->flags.q.explicit_image_format) {
2829 if (var->data.mode == ir_var_function_in) {
2830 _mesa_glsl_error(loc, state, "format qualifiers cannot be "
2831 "used on image function parameters");
2832 }
2833
2834 if (qual->image_base_type != base_type->sampler_type) {
2835 _mesa_glsl_error(loc, state, "format qualifier doesn't match the "
2836 "base data type of the image");
2837 }
2838
2839 var->data.image_format = qual->image_format;
2840 } else {
2841 if (var->data.mode == ir_var_uniform) {
2842 if (state->es_shader) {
2843 _mesa_glsl_error(loc, state, "all image uniforms "
2844 "must have a format layout qualifier");
2845
2846 } else if (!qual->flags.q.write_only) {
2847 _mesa_glsl_error(loc, state, "image uniforms not qualified with "
2848 "`writeonly' must have a format layout "
2849 "qualifier");
2850 }
2851 }
2852
2853 var->data.image_format = GL_NONE;
2854 }
2855
2856 /* From page 70 of the GLSL ES 3.1 specification:
2857 *
2858 * "Except for image variables qualified with the format qualifiers
2859 * r32f, r32i, and r32ui, image variables must specify either memory
2860 * qualifier readonly or the memory qualifier writeonly."
2861 */
2862 if (state->es_shader &&
2863 var->data.image_format != GL_R32F &&
2864 var->data.image_format != GL_R32I &&
2865 var->data.image_format != GL_R32UI &&
2866 !var->data.image_read_only &&
2867 !var->data.image_write_only) {
2868 _mesa_glsl_error(loc, state, "image variables of format other than "
2869 "r32f, r32i or r32ui must be qualified `readonly' or "
2870 "`writeonly'");
2871 }
2872
2873 } else if (qual->flags.q.read_only ||
2874 qual->flags.q.write_only ||
2875 qual->flags.q.coherent ||
2876 qual->flags.q._volatile ||
2877 qual->flags.q.restrict_flag ||
2878 qual->flags.q.explicit_image_format) {
2879 _mesa_glsl_error(loc, state, "memory qualifiers may only be applied to "
2880 "images");
2881 }
2882 }
2883
2884 static inline const char*
2885 get_layout_qualifier_string(bool origin_upper_left, bool pixel_center_integer)
2886 {
2887 if (origin_upper_left && pixel_center_integer)
2888 return "origin_upper_left, pixel_center_integer";
2889 else if (origin_upper_left)
2890 return "origin_upper_left";
2891 else if (pixel_center_integer)
2892 return "pixel_center_integer";
2893 else
2894 return " ";
2895 }
2896
2897 static inline bool
2898 is_conflicting_fragcoord_redeclaration(struct _mesa_glsl_parse_state *state,
2899 const struct ast_type_qualifier *qual)
2900 {
2901 /* If gl_FragCoord was previously declared, and the qualifiers were
2902 * different in any way, return true.
2903 */
2904 if (state->fs_redeclares_gl_fragcoord) {
2905 return (state->fs_pixel_center_integer != qual->flags.q.pixel_center_integer
2906 || state->fs_origin_upper_left != qual->flags.q.origin_upper_left);
2907 }
2908
2909 return false;
2910 }
2911
2912 static inline void
2913 validate_array_dimensions(const glsl_type *t,
2914 struct _mesa_glsl_parse_state *state,
2915 YYLTYPE *loc) {
2916 if (t->is_array()) {
2917 t = t->fields.array;
2918 while (t->is_array()) {
2919 if (t->is_unsized_array()) {
2920 _mesa_glsl_error(loc, state,
2921 "only the outermost array dimension can "
2922 "be unsized",
2923 t->name);
2924 break;
2925 }
2926 t = t->fields.array;
2927 }
2928 }
2929 }
2930
2931 static void
2932 apply_layout_qualifier_to_variable(const struct ast_type_qualifier *qual,
2933 ir_variable *var,
2934 struct _mesa_glsl_parse_state *state,
2935 YYLTYPE *loc)
2936 {
2937 if (var->name != NULL && strcmp(var->name, "gl_FragCoord") == 0) {
2938
2939 /* Section 4.3.8.1, page 39 of GLSL 1.50 spec says:
2940 *
2941 * "Within any shader, the first redeclarations of gl_FragCoord
2942 * must appear before any use of gl_FragCoord."
2943 *
2944 * Generate a compiler error if above condition is not met by the
2945 * fragment shader.
2946 */
2947 ir_variable *earlier = state->symbols->get_variable("gl_FragCoord");
2948 if (earlier != NULL &&
2949 earlier->data.used &&
2950 !state->fs_redeclares_gl_fragcoord) {
2951 _mesa_glsl_error(loc, state,
2952 "gl_FragCoord used before its first redeclaration "
2953 "in fragment shader");
2954 }
2955
2956 /* Make sure all gl_FragCoord redeclarations specify the same layout
2957 * qualifiers.
2958 */
2959 if (is_conflicting_fragcoord_redeclaration(state, qual)) {
2960 const char *const qual_string =
2961 get_layout_qualifier_string(qual->flags.q.origin_upper_left,
2962 qual->flags.q.pixel_center_integer);
2963
2964 const char *const state_string =
2965 get_layout_qualifier_string(state->fs_origin_upper_left,
2966 state->fs_pixel_center_integer);
2967
2968 _mesa_glsl_error(loc, state,
2969 "gl_FragCoord redeclared with different layout "
2970 "qualifiers (%s) and (%s) ",
2971 state_string,
2972 qual_string);
2973 }
2974 state->fs_origin_upper_left = qual->flags.q.origin_upper_left;
2975 state->fs_pixel_center_integer = qual->flags.q.pixel_center_integer;
2976 state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers =
2977 !qual->flags.q.origin_upper_left && !qual->flags.q.pixel_center_integer;
2978 state->fs_redeclares_gl_fragcoord =
2979 state->fs_origin_upper_left ||
2980 state->fs_pixel_center_integer ||
2981 state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers;
2982 }
2983
2984 var->data.pixel_center_integer = qual->flags.q.pixel_center_integer;
2985 var->data.origin_upper_left = qual->flags.q.origin_upper_left;
2986 if ((qual->flags.q.origin_upper_left || qual->flags.q.pixel_center_integer)
2987 && (strcmp(var->name, "gl_FragCoord") != 0)) {
2988 const char *const qual_string = (qual->flags.q.origin_upper_left)
2989 ? "origin_upper_left" : "pixel_center_integer";
2990
2991 _mesa_glsl_error(loc, state,
2992 "layout qualifier `%s' can only be applied to "
2993 "fragment shader input `gl_FragCoord'",
2994 qual_string);
2995 }
2996
2997 if (qual->flags.q.explicit_location) {
2998 apply_explicit_location(qual, var, state, loc);
2999 } else if (qual->flags.q.explicit_index) {
3000 _mesa_glsl_error(loc, state, "explicit index requires explicit location");
3001 }
3002
3003 if (qual->flags.q.explicit_binding &&
3004 validate_binding_qualifier(state, loc, var->type, qual)) {
3005 var->data.explicit_binding = true;
3006 var->data.binding = qual->binding;
3007 }
3008
3009 if (state->stage == MESA_SHADER_GEOMETRY &&
3010 qual->flags.q.out && qual->flags.q.stream) {
3011 var->data.stream = qual->stream;
3012 }
3013
3014 if (var->type->contains_atomic()) {
3015 if (var->data.mode == ir_var_uniform) {
3016 if (var->data.explicit_binding) {
3017 unsigned *offset =
3018 &state->atomic_counter_offsets[var->data.binding];
3019
3020 if (*offset % ATOMIC_COUNTER_SIZE)
3021 _mesa_glsl_error(loc, state,
3022 "misaligned atomic counter offset");
3023
3024 var->data.atomic.offset = *offset;
3025 *offset += var->type->atomic_size();
3026
3027 } else {
3028 _mesa_glsl_error(loc, state,
3029 "atomic counters require explicit binding point");
3030 }
3031 } else if (var->data.mode != ir_var_function_in) {
3032 _mesa_glsl_error(loc, state, "atomic counters may only be declared as "
3033 "function parameters or uniform-qualified "
3034 "global variables");
3035 }
3036 }
3037
3038 /* Is the 'layout' keyword used with parameters that allow relaxed checking.
3039 * Many implementations of GL_ARB_fragment_coord_conventions_enable and some
3040 * implementations (only Mesa?) GL_ARB_explicit_attrib_location_enable
3041 * allowed the layout qualifier to be used with 'varying' and 'attribute'.
3042 * These extensions and all following extensions that add the 'layout'
3043 * keyword have been modified to require the use of 'in' or 'out'.
3044 *
3045 * The following extension do not allow the deprecated keywords:
3046 *
3047 * GL_AMD_conservative_depth
3048 * GL_ARB_conservative_depth
3049 * GL_ARB_gpu_shader5
3050 * GL_ARB_separate_shader_objects
3051 * GL_ARB_tessellation_shader
3052 * GL_ARB_transform_feedback3
3053 * GL_ARB_uniform_buffer_object
3054 *
3055 * It is unknown whether GL_EXT_shader_image_load_store or GL_NV_gpu_shader5
3056 * allow layout with the deprecated keywords.
3057 */
3058 const bool relaxed_layout_qualifier_checking =
3059 state->ARB_fragment_coord_conventions_enable;
3060
3061 const bool uses_deprecated_qualifier = qual->flags.q.attribute
3062 || qual->flags.q.varying;
3063 if (qual->has_layout() && uses_deprecated_qualifier) {
3064 if (relaxed_layout_qualifier_checking) {
3065 _mesa_glsl_warning(loc, state,
3066 "`layout' qualifier may not be used with "
3067 "`attribute' or `varying'");
3068 } else {
3069 _mesa_glsl_error(loc, state,
3070 "`layout' qualifier may not be used with "
3071 "`attribute' or `varying'");
3072 }
3073 }
3074
3075 /* Layout qualifiers for gl_FragDepth, which are enabled by extension
3076 * AMD_conservative_depth.
3077 */
3078 int depth_layout_count = qual->flags.q.depth_any
3079 + qual->flags.q.depth_greater
3080 + qual->flags.q.depth_less
3081 + qual->flags.q.depth_unchanged;
3082 if (depth_layout_count > 0
3083 && !state->AMD_conservative_depth_enable
3084 && !state->ARB_conservative_depth_enable) {
3085 _mesa_glsl_error(loc, state,
3086 "extension GL_AMD_conservative_depth or "
3087 "GL_ARB_conservative_depth must be enabled "
3088 "to use depth layout qualifiers");
3089 } else if (depth_layout_count > 0
3090 && strcmp(var->name, "gl_FragDepth") != 0) {
3091 _mesa_glsl_error(loc, state,
3092 "depth layout qualifiers can be applied only to "
3093 "gl_FragDepth");
3094 } else if (depth_layout_count > 1
3095 && strcmp(var->name, "gl_FragDepth") == 0) {
3096 _mesa_glsl_error(loc, state,
3097 "at most one depth layout qualifier can be applied to "
3098 "gl_FragDepth");
3099 }
3100 if (qual->flags.q.depth_any)
3101 var->data.depth_layout = ir_depth_layout_any;
3102 else if (qual->flags.q.depth_greater)
3103 var->data.depth_layout = ir_depth_layout_greater;
3104 else if (qual->flags.q.depth_less)
3105 var->data.depth_layout = ir_depth_layout_less;
3106 else if (qual->flags.q.depth_unchanged)
3107 var->data.depth_layout = ir_depth_layout_unchanged;
3108 else
3109 var->data.depth_layout = ir_depth_layout_none;
3110
3111 if (qual->flags.q.std140 ||
3112 qual->flags.q.std430 ||
3113 qual->flags.q.packed ||
3114 qual->flags.q.shared) {
3115 _mesa_glsl_error(loc, state,
3116 "uniform and shader storage block layout qualifiers "
3117 "std140, std430, packed, and shared can only be "
3118 "applied to uniform or shader storage blocks, not "
3119 "members");
3120 }
3121
3122 if (qual->flags.q.row_major || qual->flags.q.column_major) {
3123 validate_matrix_layout_for_type(state, loc, var->type, var);
3124 }
3125
3126 /* From section 4.4.1.3 of the GLSL 4.50 specification (Fragment Shader
3127 * Inputs):
3128 *
3129 * "Fragment shaders also allow the following layout qualifier on in only
3130 * (not with variable declarations)
3131 * layout-qualifier-id
3132 * early_fragment_tests
3133 * [...]"
3134 */
3135 if (qual->flags.q.early_fragment_tests) {
3136 _mesa_glsl_error(loc, state, "early_fragment_tests layout qualifier only "
3137 "valid in fragment shader input layout declaration.");
3138 }
3139 }
3140
3141 static void
3142 apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
3143 ir_variable *var,
3144 struct _mesa_glsl_parse_state *state,
3145 YYLTYPE *loc,
3146 bool is_parameter)
3147 {
3148 STATIC_ASSERT(sizeof(qual->flags.q) <= sizeof(qual->flags.i));
3149
3150 if (qual->flags.q.invariant) {
3151 if (var->data.used) {
3152 _mesa_glsl_error(loc, state,
3153 "variable `%s' may not be redeclared "
3154 "`invariant' after being used",
3155 var->name);
3156 } else {
3157 var->data.invariant = 1;
3158 }
3159 }
3160
3161 if (qual->flags.q.precise) {
3162 if (var->data.used) {
3163 _mesa_glsl_error(loc, state,
3164 "variable `%s' may not be redeclared "
3165 "`precise' after being used",
3166 var->name);
3167 } else {
3168 var->data.precise = 1;
3169 }
3170 }
3171
3172 if (qual->flags.q.subroutine && !qual->flags.q.uniform) {
3173 _mesa_glsl_error(loc, state,
3174 "`subroutine' may only be applied to uniforms, "
3175 "subroutine type declarations, or function definitions");
3176 }
3177
3178 if (qual->flags.q.constant || qual->flags.q.attribute
3179 || qual->flags.q.uniform
3180 || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
3181 var->data.read_only = 1;
3182
3183 if (qual->flags.q.centroid)
3184 var->data.centroid = 1;
3185
3186 if (qual->flags.q.sample)
3187 var->data.sample = 1;
3188
3189 /* Precision qualifiers do not hold any meaning in Desktop GLSL */
3190 if (state->es_shader) {
3191 var->data.precision =
3192 select_gles_precision(qual->precision, var->type, state, loc);
3193 }
3194
3195 if (qual->flags.q.patch)
3196 var->data.patch = 1;
3197
3198 if (qual->flags.q.attribute && state->stage != MESA_SHADER_VERTEX) {
3199 var->type = glsl_type::error_type;
3200 _mesa_glsl_error(loc, state,
3201 "`attribute' variables may not be declared in the "
3202 "%s shader",
3203 _mesa_shader_stage_to_string(state->stage));
3204 }
3205
3206 /* Disallow layout qualifiers which may only appear on layout declarations. */
3207 if (qual->flags.q.prim_type) {
3208 _mesa_glsl_error(loc, state,
3209 "Primitive type may only be specified on GS input or output "
3210 "layout declaration, not on variables.");
3211 }
3212
3213 /* Section 6.1.1 (Function Calling Conventions) of the GLSL 1.10 spec says:
3214 *
3215 * "However, the const qualifier cannot be used with out or inout."
3216 *
3217 * The same section of the GLSL 4.40 spec further clarifies this saying:
3218 *
3219 * "The const qualifier cannot be used with out or inout, or a
3220 * compile-time error results."
3221 */
3222 if (is_parameter && qual->flags.q.constant && qual->flags.q.out) {
3223 _mesa_glsl_error(loc, state,
3224 "`const' may not be applied to `out' or `inout' "
3225 "function parameters");
3226 }
3227
3228 /* If there is no qualifier that changes the mode of the variable, leave
3229 * the setting alone.
3230 */
3231 assert(var->data.mode != ir_var_temporary);
3232 if (qual->flags.q.in && qual->flags.q.out)
3233 var->data.mode = ir_var_function_inout;
3234 else if (qual->flags.q.in)
3235 var->data.mode = is_parameter ? ir_var_function_in : ir_var_shader_in;
3236 else if (qual->flags.q.attribute
3237 || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
3238 var->data.mode = ir_var_shader_in;
3239 else if (qual->flags.q.out)
3240 var->data.mode = is_parameter ? ir_var_function_out : ir_var_shader_out;
3241 else if (qual->flags.q.varying && (state->stage == MESA_SHADER_VERTEX))
3242 var->data.mode = ir_var_shader_out;
3243 else if (qual->flags.q.uniform)
3244 var->data.mode = ir_var_uniform;
3245 else if (qual->flags.q.buffer)
3246 var->data.mode = ir_var_shader_storage;
3247 else if (qual->flags.q.shared_storage)
3248 var->data.mode = ir_var_shader_shared;
3249
3250 if (!is_parameter && is_varying_var(var, state->stage)) {
3251 /* User-defined ins/outs are not permitted in compute shaders. */
3252 if (state->stage == MESA_SHADER_COMPUTE) {
3253 _mesa_glsl_error(loc, state,
3254 "user-defined input and output variables are not "
3255 "permitted in compute shaders");
3256 }
3257
3258 /* This variable is being used to link data between shader stages (in
3259 * pre-glsl-1.30 parlance, it's a "varying"). Check that it has a type
3260 * that is allowed for such purposes.
3261 *
3262 * From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
3263 *
3264 * "The varying qualifier can be used only with the data types
3265 * float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
3266 * these."
3267 *
3268 * This was relaxed in GLSL version 1.30 and GLSL ES version 3.00. From
3269 * page 31 (page 37 of the PDF) of the GLSL 1.30 spec:
3270 *
3271 * "Fragment inputs can only be signed and unsigned integers and
3272 * integer vectors, float, floating-point vectors, matrices, or
3273 * arrays of these. Structures cannot be input.
3274 *
3275 * Similar text exists in the section on vertex shader outputs.
3276 *
3277 * Similar text exists in the GLSL ES 3.00 spec, except that the GLSL ES
3278 * 3.00 spec allows structs as well. Varying structs are also allowed
3279 * in GLSL 1.50.
3280 */
3281 switch (var->type->get_scalar_type()->base_type) {
3282 case GLSL_TYPE_FLOAT:
3283 /* Ok in all GLSL versions */
3284 break;
3285 case GLSL_TYPE_UINT:
3286 case GLSL_TYPE_INT:
3287 if (state->is_version(130, 300))
3288 break;
3289 _mesa_glsl_error(loc, state,
3290 "varying variables must be of base type float in %s",
3291 state->get_version_string());
3292 break;
3293 case GLSL_TYPE_STRUCT:
3294 if (state->is_version(150, 300))
3295 break;
3296 _mesa_glsl_error(loc, state,
3297 "varying variables may not be of type struct");
3298 break;
3299 case GLSL_TYPE_DOUBLE:
3300 break;
3301 default:
3302 _mesa_glsl_error(loc, state, "illegal type for a varying variable");
3303 break;
3304 }
3305 }
3306
3307 if (state->all_invariant && (state->current_function == NULL)) {
3308 switch (state->stage) {
3309 case MESA_SHADER_VERTEX:
3310 if (var->data.mode == ir_var_shader_out)
3311 var->data.invariant = true;
3312 break;
3313 case MESA_SHADER_TESS_CTRL:
3314 case MESA_SHADER_TESS_EVAL:
3315 case MESA_SHADER_GEOMETRY:
3316 if ((var->data.mode == ir_var_shader_in)
3317 || (var->data.mode == ir_var_shader_out))
3318 var->data.invariant = true;
3319 break;
3320 case MESA_SHADER_FRAGMENT:
3321 if (var->data.mode == ir_var_shader_in)
3322 var->data.invariant = true;
3323 break;
3324 case MESA_SHADER_COMPUTE:
3325 /* Invariance isn't meaningful in compute shaders. */
3326 break;
3327 }
3328 }
3329
3330 var->data.interpolation =
3331 interpret_interpolation_qualifier(qual, (ir_variable_mode) var->data.mode,
3332 state, loc);
3333
3334 /* Does the declaration use the deprecated 'attribute' or 'varying'
3335 * keywords?
3336 */
3337 const bool uses_deprecated_qualifier = qual->flags.q.attribute
3338 || qual->flags.q.varying;
3339
3340
3341 /* Validate auxiliary storage qualifiers */
3342
3343 /* From section 4.3.4 of the GLSL 1.30 spec:
3344 * "It is an error to use centroid in in a vertex shader."
3345 *
3346 * From section 4.3.4 of the GLSL ES 3.00 spec:
3347 * "It is an error to use centroid in or interpolation qualifiers in
3348 * a vertex shader input."
3349 */
3350
3351 /* Section 4.3.6 of the GLSL 1.30 specification states:
3352 * "It is an error to use centroid out in a fragment shader."
3353 *
3354 * The GL_ARB_shading_language_420pack extension specification states:
3355 * "It is an error to use auxiliary storage qualifiers or interpolation
3356 * qualifiers on an output in a fragment shader."
3357 */
3358 if (qual->flags.q.sample && (!is_varying_var(var, state->stage) || uses_deprecated_qualifier)) {
3359 _mesa_glsl_error(loc, state,
3360 "sample qualifier may only be used on `in` or `out` "
3361 "variables between shader stages");
3362 }
3363 if (qual->flags.q.centroid && !is_varying_var(var, state->stage)) {
3364 _mesa_glsl_error(loc, state,
3365 "centroid qualifier may only be used with `in', "
3366 "`out' or `varying' variables between shader stages");
3367 }
3368
3369 if (qual->flags.q.shared_storage && state->stage != MESA_SHADER_COMPUTE) {
3370 _mesa_glsl_error(loc, state,
3371 "the shared storage qualifiers can only be used with "
3372 "compute shaders");
3373 }
3374
3375 apply_image_qualifier_to_variable(qual, var, state, loc);
3376 }
3377
3378 /**
3379 * Get the variable that is being redeclared by this declaration
3380 *
3381 * Semantic checks to verify the validity of the redeclaration are also
3382 * performed. If semantic checks fail, compilation error will be emitted via
3383 * \c _mesa_glsl_error, but a non-\c NULL pointer will still be returned.
3384 *
3385 * \returns
3386 * A pointer to an existing variable in the current scope if the declaration
3387 * is a redeclaration, \c NULL otherwise.
3388 */
3389 static ir_variable *
3390 get_variable_being_redeclared(ir_variable *var, YYLTYPE loc,
3391 struct _mesa_glsl_parse_state *state,
3392 bool allow_all_redeclarations)
3393 {
3394 /* Check if this declaration is actually a re-declaration, either to
3395 * resize an array or add qualifiers to an existing variable.
3396 *
3397 * This is allowed for variables in the current scope, or when at
3398 * global scope (for built-ins in the implicit outer scope).
3399 */
3400 ir_variable *earlier = state->symbols->get_variable(var->name);
3401 if (earlier == NULL ||
3402 (state->current_function != NULL &&
3403 !state->symbols->name_declared_this_scope(var->name))) {
3404 return NULL;
3405 }
3406
3407
3408 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
3409 *
3410 * "It is legal to declare an array without a size and then
3411 * later re-declare the same name as an array of the same
3412 * type and specify a size."
3413 */
3414 if (earlier->type->is_unsized_array() && var->type->is_array()
3415 && (var->type->fields.array == earlier->type->fields.array)) {
3416 /* FINISHME: This doesn't match the qualifiers on the two
3417 * FINISHME: declarations. It's not 100% clear whether this is
3418 * FINISHME: required or not.
3419 */
3420
3421 const unsigned size = unsigned(var->type->array_size());
3422 check_builtin_array_max_size(var->name, size, loc, state);
3423 if ((size > 0) && (size <= earlier->data.max_array_access)) {
3424 _mesa_glsl_error(& loc, state, "array size must be > %u due to "
3425 "previous access",
3426 earlier->data.max_array_access);
3427 }
3428
3429 earlier->type = var->type;
3430 delete var;
3431 var = NULL;
3432 } else if ((state->ARB_fragment_coord_conventions_enable ||
3433 state->is_version(150, 0))
3434 && strcmp(var->name, "gl_FragCoord") == 0
3435 && earlier->type == var->type
3436 && earlier->data.mode == var->data.mode) {
3437 /* Allow redeclaration of gl_FragCoord for ARB_fcc layout
3438 * qualifiers.
3439 */
3440 earlier->data.origin_upper_left = var->data.origin_upper_left;
3441 earlier->data.pixel_center_integer = var->data.pixel_center_integer;
3442
3443 /* According to section 4.3.7 of the GLSL 1.30 spec,
3444 * the following built-in varaibles can be redeclared with an
3445 * interpolation qualifier:
3446 * * gl_FrontColor
3447 * * gl_BackColor
3448 * * gl_FrontSecondaryColor
3449 * * gl_BackSecondaryColor
3450 * * gl_Color
3451 * * gl_SecondaryColor
3452 */
3453 } else if (state->is_version(130, 0)
3454 && (strcmp(var->name, "gl_FrontColor") == 0
3455 || strcmp(var->name, "gl_BackColor") == 0
3456 || strcmp(var->name, "gl_FrontSecondaryColor") == 0
3457 || strcmp(var->name, "gl_BackSecondaryColor") == 0
3458 || strcmp(var->name, "gl_Color") == 0
3459 || strcmp(var->name, "gl_SecondaryColor") == 0)
3460 && earlier->type == var->type
3461 && earlier->data.mode == var->data.mode) {
3462 earlier->data.interpolation = var->data.interpolation;
3463
3464 /* Layout qualifiers for gl_FragDepth. */
3465 } else if ((state->AMD_conservative_depth_enable ||
3466 state->ARB_conservative_depth_enable)
3467 && strcmp(var->name, "gl_FragDepth") == 0
3468 && earlier->type == var->type
3469 && earlier->data.mode == var->data.mode) {
3470
3471 /** From the AMD_conservative_depth spec:
3472 * Within any shader, the first redeclarations of gl_FragDepth
3473 * must appear before any use of gl_FragDepth.
3474 */
3475 if (earlier->data.used) {
3476 _mesa_glsl_error(&loc, state,
3477 "the first redeclaration of gl_FragDepth "
3478 "must appear before any use of gl_FragDepth");
3479 }
3480
3481 /* Prevent inconsistent redeclaration of depth layout qualifier. */
3482 if (earlier->data.depth_layout != ir_depth_layout_none
3483 && earlier->data.depth_layout != var->data.depth_layout) {
3484 _mesa_glsl_error(&loc, state,
3485 "gl_FragDepth: depth layout is declared here "
3486 "as '%s, but it was previously declared as "
3487 "'%s'",
3488 depth_layout_string(var->data.depth_layout),
3489 depth_layout_string(earlier->data.depth_layout));
3490 }
3491
3492 earlier->data.depth_layout = var->data.depth_layout;
3493
3494 } else if (allow_all_redeclarations) {
3495 if (earlier->data.mode != var->data.mode) {
3496 _mesa_glsl_error(&loc, state,
3497 "redeclaration of `%s' with incorrect qualifiers",
3498 var->name);
3499 } else if (earlier->type != var->type) {
3500 _mesa_glsl_error(&loc, state,
3501 "redeclaration of `%s' has incorrect type",
3502 var->name);
3503 }
3504 } else {
3505 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
3506 }
3507
3508 return earlier;
3509 }
3510
3511 /**
3512 * Generate the IR for an initializer in a variable declaration
3513 */
3514 ir_rvalue *
3515 process_initializer(ir_variable *var, ast_declaration *decl,
3516 ast_fully_specified_type *type,
3517 exec_list *initializer_instructions,
3518 struct _mesa_glsl_parse_state *state)
3519 {
3520 ir_rvalue *result = NULL;
3521
3522 YYLTYPE initializer_loc = decl->initializer->get_location();
3523
3524 /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
3525 *
3526 * "All uniform variables are read-only and are initialized either
3527 * directly by an application via API commands, or indirectly by
3528 * OpenGL."
3529 */
3530 if (var->data.mode == ir_var_uniform) {
3531 state->check_version(120, 0, &initializer_loc,
3532 "cannot initialize uniform %s",
3533 var->name);
3534 }
3535
3536 /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec:
3537 *
3538 * "Buffer variables cannot have initializers."
3539 */
3540 if (var->data.mode == ir_var_shader_storage) {
3541 _mesa_glsl_error(&initializer_loc, state,
3542 "cannot initialize buffer variable %s",
3543 var->name);
3544 }
3545
3546 /* From section 4.1.7 of the GLSL 4.40 spec:
3547 *
3548 * "Opaque variables [...] are initialized only through the
3549 * OpenGL API; they cannot be declared with an initializer in a
3550 * shader."
3551 */
3552 if (var->type->contains_opaque()) {
3553 _mesa_glsl_error(&initializer_loc, state,
3554 "cannot initialize opaque variable %s",
3555 var->name);
3556 }
3557
3558 if ((var->data.mode == ir_var_shader_in) && (state->current_function == NULL)) {
3559 _mesa_glsl_error(&initializer_loc, state,
3560 "cannot initialize %s shader input / %s %s",
3561 _mesa_shader_stage_to_string(state->stage),
3562 (state->stage == MESA_SHADER_VERTEX)
3563 ? "attribute" : "varying",
3564 var->name);
3565 }
3566
3567 if (var->data.mode == ir_var_shader_out && state->current_function == NULL) {
3568 _mesa_glsl_error(&initializer_loc, state,
3569 "cannot initialize %s shader output %s",
3570 _mesa_shader_stage_to_string(state->stage),
3571 var->name);
3572 }
3573
3574 /* If the initializer is an ast_aggregate_initializer, recursively store
3575 * type information from the LHS into it, so that its hir() function can do
3576 * type checking.
3577 */
3578 if (decl->initializer->oper == ast_aggregate)
3579 _mesa_ast_set_aggregate_type(var->type, decl->initializer);
3580
3581 ir_dereference *const lhs = new(state) ir_dereference_variable(var);
3582 ir_rvalue *rhs = decl->initializer->hir(initializer_instructions, state);
3583
3584 /* Calculate the constant value if this is a const or uniform
3585 * declaration.
3586 *
3587 * Section 4.3 (Storage Qualifiers) of the GLSL ES 1.00.17 spec says:
3588 *
3589 * "Declarations of globals without a storage qualifier, or with
3590 * just the const qualifier, may include initializers, in which case
3591 * they will be initialized before the first line of main() is
3592 * executed. Such initializers must be a constant expression."
3593 *
3594 * The same section of the GLSL ES 3.00.4 spec has similar language.
3595 */
3596 if (type->qualifier.flags.q.constant
3597 || type->qualifier.flags.q.uniform
3598 || (state->es_shader && state->current_function == NULL)) {
3599 ir_rvalue *new_rhs = validate_assignment(state, initializer_loc,
3600 lhs, rhs, true);
3601 if (new_rhs != NULL) {
3602 rhs = new_rhs;
3603
3604 /* Section 4.3.3 (Constant Expressions) of the GLSL ES 3.00.4 spec
3605 * says:
3606 *
3607 * "A constant expression is one of
3608 *
3609 * ...
3610 *
3611 * - an expression formed by an operator on operands that are
3612 * all constant expressions, including getting an element of
3613 * a constant array, or a field of a constant structure, or
3614 * components of a constant vector. However, the sequence
3615 * operator ( , ) and the assignment operators ( =, +=, ...)
3616 * are not included in the operators that can create a
3617 * constant expression."
3618 *
3619 * Section 12.43 (Sequence operator and constant expressions) says:
3620 *
3621 * "Should the following construct be allowed?
3622 *
3623 * float a[2,3];
3624 *
3625 * The expression within the brackets uses the sequence operator
3626 * (',') and returns the integer 3 so the construct is declaring
3627 * a single-dimensional array of size 3. In some languages, the
3628 * construct declares a two-dimensional array. It would be
3629 * preferable to make this construct illegal to avoid confusion.
3630 *
3631 * One possibility is to change the definition of the sequence
3632 * operator so that it does not return a constant-expression and
3633 * hence cannot be used to declare an array size.
3634 *
3635 * RESOLUTION: The result of a sequence operator is not a
3636 * constant-expression."
3637 *
3638 * Section 4.3.3 (Constant Expressions) of the GLSL 4.30.9 spec
3639 * contains language almost identical to the section 4.3.3 in the
3640 * GLSL ES 3.00.4 spec. This is a new limitation for these GLSL
3641 * versions.
3642 */
3643 ir_constant *constant_value = rhs->constant_expression_value();
3644 if (!constant_value ||
3645 (state->is_version(430, 300) &&
3646 decl->initializer->has_sequence_subexpression())) {
3647 const char *const variable_mode =
3648 (type->qualifier.flags.q.constant)
3649 ? "const"
3650 : ((type->qualifier.flags.q.uniform) ? "uniform" : "global");
3651
3652 /* If ARB_shading_language_420pack is enabled, initializers of
3653 * const-qualified local variables do not have to be constant
3654 * expressions. Const-qualified global variables must still be
3655 * initialized with constant expressions.
3656 */
3657 if (!state->ARB_shading_language_420pack_enable
3658 || state->current_function == NULL) {
3659 _mesa_glsl_error(& initializer_loc, state,
3660 "initializer of %s variable `%s' must be a "
3661 "constant expression",
3662 variable_mode,
3663 decl->identifier);
3664 if (var->type->is_numeric()) {
3665 /* Reduce cascading errors. */
3666 var->constant_value = type->qualifier.flags.q.constant
3667 ? ir_constant::zero(state, var->type) : NULL;
3668 }
3669 }
3670 } else {
3671 rhs = constant_value;
3672 var->constant_value = type->qualifier.flags.q.constant
3673 ? constant_value : NULL;
3674 }
3675 } else {
3676 if (var->type->is_numeric()) {
3677 /* Reduce cascading errors. */
3678 var->constant_value = type->qualifier.flags.q.constant
3679 ? ir_constant::zero(state, var->type) : NULL;
3680 }
3681 }
3682 }
3683
3684 if (rhs && !rhs->type->is_error()) {
3685 bool temp = var->data.read_only;
3686 if (type->qualifier.flags.q.constant)
3687 var->data.read_only = false;
3688
3689 /* Never emit code to initialize a uniform.
3690 */
3691 const glsl_type *initializer_type;
3692 if (!type->qualifier.flags.q.uniform) {
3693 do_assignment(initializer_instructions, state,
3694 NULL,
3695 lhs, rhs,
3696 &result, true,
3697 true,
3698 type->get_location());
3699 initializer_type = result->type;
3700 } else
3701 initializer_type = rhs->type;
3702
3703 var->constant_initializer = rhs->constant_expression_value();
3704 var->data.has_initializer = true;
3705
3706 /* If the declared variable is an unsized array, it must inherrit
3707 * its full type from the initializer. A declaration such as
3708 *
3709 * uniform float a[] = float[](1.0, 2.0, 3.0, 3.0);
3710 *
3711 * becomes
3712 *
3713 * uniform float a[4] = float[](1.0, 2.0, 3.0, 3.0);
3714 *
3715 * The assignment generated in the if-statement (below) will also
3716 * automatically handle this case for non-uniforms.
3717 *
3718 * If the declared variable is not an array, the types must
3719 * already match exactly. As a result, the type assignment
3720 * here can be done unconditionally. For non-uniforms the call
3721 * to do_assignment can change the type of the initializer (via
3722 * the implicit conversion rules). For uniforms the initializer
3723 * must be a constant expression, and the type of that expression
3724 * was validated above.
3725 */
3726 var->type = initializer_type;
3727
3728 var->data.read_only = temp;
3729 }
3730
3731 return result;
3732 }
3733
3734 static void
3735 validate_layout_qualifier_vertex_count(struct _mesa_glsl_parse_state *state,
3736 YYLTYPE loc, ir_variable *var,
3737 unsigned num_vertices,
3738 unsigned *size,
3739 const char *var_category)
3740 {
3741 if (var->type->is_unsized_array()) {
3742 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec says:
3743 *
3744 * All geometry shader input unsized array declarations will be
3745 * sized by an earlier input layout qualifier, when present, as per
3746 * the following table.
3747 *
3748 * Followed by a table mapping each allowed input layout qualifier to
3749 * the corresponding input length.
3750 *
3751 * Similarly for tessellation control shader outputs.
3752 */
3753 if (num_vertices != 0)
3754 var->type = glsl_type::get_array_instance(var->type->fields.array,
3755 num_vertices);
3756 } else {
3757 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec
3758 * includes the following examples of compile-time errors:
3759 *
3760 * // code sequence within one shader...
3761 * in vec4 Color1[]; // size unknown
3762 * ...Color1.length()...// illegal, length() unknown
3763 * in vec4 Color2[2]; // size is 2
3764 * ...Color1.length()...// illegal, Color1 still has no size
3765 * in vec4 Color3[3]; // illegal, input sizes are inconsistent
3766 * layout(lines) in; // legal, input size is 2, matching
3767 * in vec4 Color4[3]; // illegal, contradicts layout
3768 * ...
3769 *
3770 * To detect the case illustrated by Color3, we verify that the size of
3771 * an explicitly-sized array matches the size of any previously declared
3772 * explicitly-sized array. To detect the case illustrated by Color4, we
3773 * verify that the size of an explicitly-sized array is consistent with
3774 * any previously declared input layout.
3775 */
3776 if (num_vertices != 0 && var->type->length != num_vertices) {
3777 _mesa_glsl_error(&loc, state,
3778 "%s size contradicts previously declared layout "
3779 "(size is %u, but layout requires a size of %u)",
3780 var_category, var->type->length, num_vertices);
3781 } else if (*size != 0 && var->type->length != *size) {
3782 _mesa_glsl_error(&loc, state,
3783 "%s sizes are inconsistent (size is %u, but a "
3784 "previous declaration has size %u)",
3785 var_category, var->type->length, *size);
3786 } else {
3787 *size = var->type->length;
3788 }
3789 }
3790 }
3791
3792 static void
3793 handle_tess_ctrl_shader_output_decl(struct _mesa_glsl_parse_state *state,
3794 YYLTYPE loc, ir_variable *var)
3795 {
3796 unsigned num_vertices = 0;
3797
3798 if (state->tcs_output_vertices_specified) {
3799 num_vertices = state->out_qualifier->vertices;
3800 }
3801
3802 if (!var->type->is_array() && !var->data.patch) {
3803 _mesa_glsl_error(&loc, state,
3804 "tessellation control shader outputs must be arrays");
3805
3806 /* To avoid cascading failures, short circuit the checks below. */
3807 return;
3808 }
3809
3810 if (var->data.patch)
3811 return;
3812
3813 validate_layout_qualifier_vertex_count(state, loc, var, num_vertices,
3814 &state->tcs_output_size,
3815 "tessellation control shader output");
3816 }
3817
3818 /**
3819 * Do additional processing necessary for tessellation control/evaluation shader
3820 * input declarations. This covers both interface block arrays and bare input
3821 * variables.
3822 */
3823 static void
3824 handle_tess_shader_input_decl(struct _mesa_glsl_parse_state *state,
3825 YYLTYPE loc, ir_variable *var)
3826 {
3827 if (!var->type->is_array() && !var->data.patch) {
3828 _mesa_glsl_error(&loc, state,
3829 "per-vertex tessellation shader inputs must be arrays");
3830 /* Avoid cascading failures. */
3831 return;
3832 }
3833
3834 if (var->data.patch)
3835 return;
3836
3837 /* Unsized arrays are implicitly sized to gl_MaxPatchVertices. */
3838 if (var->type->is_unsized_array()) {
3839 var->type = glsl_type::get_array_instance(var->type->fields.array,
3840 state->Const.MaxPatchVertices);
3841 }
3842 }
3843
3844
3845 /**
3846 * Do additional processing necessary for geometry shader input declarations
3847 * (this covers both interface blocks arrays and bare input variables).
3848 */
3849 static void
3850 handle_geometry_shader_input_decl(struct _mesa_glsl_parse_state *state,
3851 YYLTYPE loc, ir_variable *var)
3852 {
3853 unsigned num_vertices = 0;
3854
3855 if (state->gs_input_prim_type_specified) {
3856 num_vertices = vertices_per_prim(state->in_qualifier->prim_type);
3857 }
3858
3859 /* Geometry shader input variables must be arrays. Caller should have
3860 * reported an error for this.
3861 */
3862 if (!var->type->is_array()) {
3863 assert(state->error);
3864
3865 /* To avoid cascading failures, short circuit the checks below. */
3866 return;
3867 }
3868
3869 validate_layout_qualifier_vertex_count(state, loc, var, num_vertices,
3870 &state->gs_input_size,
3871 "geometry shader input");
3872 }
3873
3874 void
3875 validate_identifier(const char *identifier, YYLTYPE loc,
3876 struct _mesa_glsl_parse_state *state)
3877 {
3878 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
3879 *
3880 * "Identifiers starting with "gl_" are reserved for use by
3881 * OpenGL, and may not be declared in a shader as either a
3882 * variable or a function."
3883 */
3884 if (is_gl_identifier(identifier)) {
3885 _mesa_glsl_error(&loc, state,
3886 "identifier `%s' uses reserved `gl_' prefix",
3887 identifier);
3888 } else if (strstr(identifier, "__")) {
3889 /* From page 14 (page 20 of the PDF) of the GLSL 1.10
3890 * spec:
3891 *
3892 * "In addition, all identifiers containing two
3893 * consecutive underscores (__) are reserved as
3894 * possible future keywords."
3895 *
3896 * The intention is that names containing __ are reserved for internal
3897 * use by the implementation, and names prefixed with GL_ are reserved
3898 * for use by Khronos. Names simply containing __ are dangerous to use,
3899 * but should be allowed.
3900 *
3901 * A future version of the GLSL specification will clarify this.
3902 */
3903 _mesa_glsl_warning(&loc, state,
3904 "identifier `%s' uses reserved `__' string",
3905 identifier);
3906 }
3907 }
3908
3909 ir_rvalue *
3910 ast_declarator_list::hir(exec_list *instructions,
3911 struct _mesa_glsl_parse_state *state)
3912 {
3913 void *ctx = state;
3914 const struct glsl_type *decl_type;
3915 const char *type_name = NULL;
3916 ir_rvalue *result = NULL;
3917 YYLTYPE loc = this->get_location();
3918
3919 /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec:
3920 *
3921 * "To ensure that a particular output variable is invariant, it is
3922 * necessary to use the invariant qualifier. It can either be used to
3923 * qualify a previously declared variable as being invariant
3924 *
3925 * invariant gl_Position; // make existing gl_Position be invariant"
3926 *
3927 * In these cases the parser will set the 'invariant' flag in the declarator
3928 * list, and the type will be NULL.
3929 */
3930 if (this->invariant) {
3931 assert(this->type == NULL);
3932
3933 if (state->current_function != NULL) {
3934 _mesa_glsl_error(& loc, state,
3935 "all uses of `invariant' keyword must be at global "
3936 "scope");
3937 }
3938
3939 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
3940 assert(decl->array_specifier == NULL);
3941 assert(decl->initializer == NULL);
3942
3943 ir_variable *const earlier =
3944 state->symbols->get_variable(decl->identifier);
3945 if (earlier == NULL) {
3946 _mesa_glsl_error(& loc, state,
3947 "undeclared variable `%s' cannot be marked "
3948 "invariant", decl->identifier);
3949 } else if (!is_varying_var(earlier, state->stage)) {
3950 _mesa_glsl_error(&loc, state,
3951 "`%s' cannot be marked invariant; interfaces between "
3952 "shader stages only.", decl->identifier);
3953 } else if (earlier->data.used) {
3954 _mesa_glsl_error(& loc, state,
3955 "variable `%s' may not be redeclared "
3956 "`invariant' after being used",
3957 earlier->name);
3958 } else {
3959 earlier->data.invariant = true;
3960 }
3961 }
3962
3963 /* Invariant redeclarations do not have r-values.
3964 */
3965 return NULL;
3966 }
3967
3968 if (this->precise) {
3969 assert(this->type == NULL);
3970
3971 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
3972 assert(decl->array_specifier == NULL);
3973 assert(decl->initializer == NULL);
3974
3975 ir_variable *const earlier =
3976 state->symbols->get_variable(decl->identifier);
3977 if (earlier == NULL) {
3978 _mesa_glsl_error(& loc, state,
3979 "undeclared variable `%s' cannot be marked "
3980 "precise", decl->identifier);
3981 } else if (state->current_function != NULL &&
3982 !state->symbols->name_declared_this_scope(decl->identifier)) {
3983 /* Note: we have to check if we're in a function, since
3984 * builtins are treated as having come from another scope.
3985 */
3986 _mesa_glsl_error(& loc, state,
3987 "variable `%s' from an outer scope may not be "
3988 "redeclared `precise' in this scope",
3989 earlier->name);
3990 } else if (earlier->data.used) {
3991 _mesa_glsl_error(& loc, state,
3992 "variable `%s' may not be redeclared "
3993 "`precise' after being used",
3994 earlier->name);
3995 } else {
3996 earlier->data.precise = true;
3997 }
3998 }
3999
4000 /* Precise redeclarations do not have r-values either. */
4001 return NULL;
4002 }
4003
4004 assert(this->type != NULL);
4005 assert(!this->invariant);
4006 assert(!this->precise);
4007
4008 /* The type specifier may contain a structure definition. Process that
4009 * before any of the variable declarations.
4010 */
4011 (void) this->type->specifier->hir(instructions, state);
4012
4013 decl_type = this->type->glsl_type(& type_name, state);
4014
4015 /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec:
4016 * "Buffer variables may only be declared inside interface blocks
4017 * (section 4.3.9 “Interface Blocks”), which are then referred to as
4018 * shader storage blocks. It is a compile-time error to declare buffer
4019 * variables at global scope (outside a block)."
4020 */
4021 if (type->qualifier.flags.q.buffer && !decl_type->is_interface()) {
4022 _mesa_glsl_error(&loc, state,
4023 "buffer variables cannot be declared outside "
4024 "interface blocks");
4025 }
4026
4027 /* An offset-qualified atomic counter declaration sets the default
4028 * offset for the next declaration within the same atomic counter
4029 * buffer.
4030 */
4031 if (decl_type && decl_type->contains_atomic()) {
4032 if (type->qualifier.flags.q.explicit_binding &&
4033 type->qualifier.flags.q.explicit_offset)
4034 state->atomic_counter_offsets[type->qualifier.binding] =
4035 type->qualifier.offset;
4036 }
4037
4038 if (this->declarations.is_empty()) {
4039 /* If there is no structure involved in the program text, there are two
4040 * possible scenarios:
4041 *
4042 * - The program text contained something like 'vec4;'. This is an
4043 * empty declaration. It is valid but weird. Emit a warning.
4044 *
4045 * - The program text contained something like 'S;' and 'S' is not the
4046 * name of a known structure type. This is both invalid and weird.
4047 * Emit an error.
4048 *
4049 * - The program text contained something like 'mediump float;'
4050 * when the programmer probably meant 'precision mediump
4051 * float;' Emit a warning with a description of what they
4052 * probably meant to do.
4053 *
4054 * Note that if decl_type is NULL and there is a structure involved,
4055 * there must have been some sort of error with the structure. In this
4056 * case we assume that an error was already generated on this line of
4057 * code for the structure. There is no need to generate an additional,
4058 * confusing error.
4059 */
4060 assert(this->type->specifier->structure == NULL || decl_type != NULL
4061 || state->error);
4062
4063 if (decl_type == NULL) {
4064 _mesa_glsl_error(&loc, state,
4065 "invalid type `%s' in empty declaration",
4066 type_name);
4067 } else if (decl_type->base_type == GLSL_TYPE_ATOMIC_UINT) {
4068 /* Empty atomic counter declarations are allowed and useful
4069 * to set the default offset qualifier.
4070 */
4071 return NULL;
4072 } else if (this->type->qualifier.precision != ast_precision_none) {
4073 if (this->type->specifier->structure != NULL) {
4074 _mesa_glsl_error(&loc, state,
4075 "precision qualifiers can't be applied "
4076 "to structures");
4077 } else {
4078 static const char *const precision_names[] = {
4079 "highp",
4080 "highp",
4081 "mediump",
4082 "lowp"
4083 };
4084
4085 _mesa_glsl_warning(&loc, state,
4086 "empty declaration with precision qualifier, "
4087 "to set the default precision, use "
4088 "`precision %s %s;'",
4089 precision_names[this->type->qualifier.precision],
4090 type_name);
4091 }
4092 } else if (this->type->specifier->structure == NULL) {
4093 _mesa_glsl_warning(&loc, state, "empty declaration");
4094 }
4095 }
4096
4097 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4098 const struct glsl_type *var_type;
4099 ir_variable *var;
4100 const char *identifier = decl->identifier;
4101 /* FINISHME: Emit a warning if a variable declaration shadows a
4102 * FINISHME: declaration at a higher scope.
4103 */
4104
4105 if ((decl_type == NULL) || decl_type->is_void()) {
4106 if (type_name != NULL) {
4107 _mesa_glsl_error(& loc, state,
4108 "invalid type `%s' in declaration of `%s'",
4109 type_name, decl->identifier);
4110 } else {
4111 _mesa_glsl_error(& loc, state,
4112 "invalid type in declaration of `%s'",
4113 decl->identifier);
4114 }
4115 continue;
4116 }
4117
4118 if (this->type->qualifier.flags.q.subroutine) {
4119 const glsl_type *t;
4120 const char *name;
4121
4122 t = state->symbols->get_type(this->type->specifier->type_name);
4123 if (!t)
4124 _mesa_glsl_error(& loc, state,
4125 "invalid type in declaration of `%s'",
4126 decl->identifier);
4127 name = ralloc_asprintf(ctx, "%s_%s", _mesa_shader_stage_to_subroutine_prefix(state->stage), decl->identifier);
4128
4129 identifier = name;
4130
4131 }
4132 var_type = process_array_type(&loc, decl_type, decl->array_specifier,
4133 state);
4134
4135 var = new(ctx) ir_variable(var_type, identifier, ir_var_auto);
4136
4137 /* The 'varying in' and 'varying out' qualifiers can only be used with
4138 * ARB_geometry_shader4 and EXT_geometry_shader4, which we don't support
4139 * yet.
4140 */
4141 if (this->type->qualifier.flags.q.varying) {
4142 if (this->type->qualifier.flags.q.in) {
4143 _mesa_glsl_error(& loc, state,
4144 "`varying in' qualifier in declaration of "
4145 "`%s' only valid for geometry shaders using "
4146 "ARB_geometry_shader4 or EXT_geometry_shader4",
4147 decl->identifier);
4148 } else if (this->type->qualifier.flags.q.out) {
4149 _mesa_glsl_error(& loc, state,
4150 "`varying out' qualifier in declaration of "
4151 "`%s' only valid for geometry shaders using "
4152 "ARB_geometry_shader4 or EXT_geometry_shader4",
4153 decl->identifier);
4154 }
4155 }
4156
4157 /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
4158 *
4159 * "Global variables can only use the qualifiers const,
4160 * attribute, uniform, or varying. Only one may be
4161 * specified.
4162 *
4163 * Local variables can only use the qualifier const."
4164 *
4165 * This is relaxed in GLSL 1.30 and GLSL ES 3.00. It is also relaxed by
4166 * any extension that adds the 'layout' keyword.
4167 */
4168 if (!state->is_version(130, 300)
4169 && !state->has_explicit_attrib_location()
4170 && !state->has_separate_shader_objects()
4171 && !state->ARB_fragment_coord_conventions_enable) {
4172 if (this->type->qualifier.flags.q.out) {
4173 _mesa_glsl_error(& loc, state,
4174 "`out' qualifier in declaration of `%s' "
4175 "only valid for function parameters in %s",
4176 decl->identifier, state->get_version_string());
4177 }
4178 if (this->type->qualifier.flags.q.in) {
4179 _mesa_glsl_error(& loc, state,
4180 "`in' qualifier in declaration of `%s' "
4181 "only valid for function parameters in %s",
4182 decl->identifier, state->get_version_string());
4183 }
4184 /* FINISHME: Test for other invalid qualifiers. */
4185 }
4186
4187 apply_type_qualifier_to_variable(& this->type->qualifier, var, state,
4188 & loc, false);
4189 apply_layout_qualifier_to_variable(&this->type->qualifier, var, state,
4190 &loc);
4191
4192 if (this->type->qualifier.flags.q.invariant) {
4193 if (!is_varying_var(var, state->stage)) {
4194 _mesa_glsl_error(&loc, state,
4195 "`%s' cannot be marked invariant; interfaces between "
4196 "shader stages only", var->name);
4197 }
4198 }
4199
4200 if (state->current_function != NULL) {
4201 const char *mode = NULL;
4202 const char *extra = "";
4203
4204 /* There is no need to check for 'inout' here because the parser will
4205 * only allow that in function parameter lists.
4206 */
4207 if (this->type->qualifier.flags.q.attribute) {
4208 mode = "attribute";
4209 } else if (this->type->qualifier.flags.q.subroutine) {
4210 mode = "subroutine uniform";
4211 } else if (this->type->qualifier.flags.q.uniform) {
4212 mode = "uniform";
4213 } else if (this->type->qualifier.flags.q.varying) {
4214 mode = "varying";
4215 } else if (this->type->qualifier.flags.q.in) {
4216 mode = "in";
4217 extra = " or in function parameter list";
4218 } else if (this->type->qualifier.flags.q.out) {
4219 mode = "out";
4220 extra = " or in function parameter list";
4221 }
4222
4223 if (mode) {
4224 _mesa_glsl_error(& loc, state,
4225 "%s variable `%s' must be declared at "
4226 "global scope%s",
4227 mode, var->name, extra);
4228 }
4229 } else if (var->data.mode == ir_var_shader_in) {
4230 var->data.read_only = true;
4231
4232 if (state->stage == MESA_SHADER_VERTEX) {
4233 bool error_emitted = false;
4234
4235 /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
4236 *
4237 * "Vertex shader inputs can only be float, floating-point
4238 * vectors, matrices, signed and unsigned integers and integer
4239 * vectors. Vertex shader inputs can also form arrays of these
4240 * types, but not structures."
4241 *
4242 * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
4243 *
4244 * "Vertex shader inputs can only be float, floating-point
4245 * vectors, matrices, signed and unsigned integers and integer
4246 * vectors. They cannot be arrays or structures."
4247 *
4248 * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
4249 *
4250 * "The attribute qualifier can be used only with float,
4251 * floating-point vectors, and matrices. Attribute variables
4252 * cannot be declared as arrays or structures."
4253 *
4254 * From page 33 (page 39 of the PDF) of the GLSL ES 3.00 spec:
4255 *
4256 * "Vertex shader inputs can only be float, floating-point
4257 * vectors, matrices, signed and unsigned integers and integer
4258 * vectors. Vertex shader inputs cannot be arrays or
4259 * structures."
4260 */
4261 const glsl_type *check_type = var->type->without_array();
4262
4263 switch (check_type->base_type) {
4264 case GLSL_TYPE_FLOAT:
4265 break;
4266 case GLSL_TYPE_UINT:
4267 case GLSL_TYPE_INT:
4268 if (state->is_version(120, 300))
4269 break;
4270 case GLSL_TYPE_DOUBLE:
4271 if (check_type->base_type == GLSL_TYPE_DOUBLE && (state->is_version(410, 0) || state->ARB_vertex_attrib_64bit_enable))
4272 break;
4273 /* FALLTHROUGH */
4274 default:
4275 _mesa_glsl_error(& loc, state,
4276 "vertex shader input / attribute cannot have "
4277 "type %s`%s'",
4278 var->type->is_array() ? "array of " : "",
4279 check_type->name);
4280 error_emitted = true;
4281 }
4282
4283 if (!error_emitted && var->type->is_array() &&
4284 !state->check_version(150, 0, &loc,
4285 "vertex shader input / attribute "
4286 "cannot have array type")) {
4287 error_emitted = true;
4288 }
4289 } else if (state->stage == MESA_SHADER_GEOMETRY) {
4290 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
4291 *
4292 * Geometry shader input variables get the per-vertex values
4293 * written out by vertex shader output variables of the same
4294 * names. Since a geometry shader operates on a set of
4295 * vertices, each input varying variable (or input block, see
4296 * interface blocks below) needs to be declared as an array.
4297 */
4298 if (!var->type->is_array()) {
4299 _mesa_glsl_error(&loc, state,
4300 "geometry shader inputs must be arrays");
4301 }
4302
4303 handle_geometry_shader_input_decl(state, loc, var);
4304 } else if (state->stage == MESA_SHADER_FRAGMENT) {
4305 /* From section 4.3.4 (Input Variables) of the GLSL ES 3.10 spec:
4306 *
4307 * It is a compile-time error to declare a fragment shader
4308 * input with, or that contains, any of the following types:
4309 *
4310 * * A boolean type
4311 * * An opaque type
4312 * * An array of arrays
4313 * * An array of structures
4314 * * A structure containing an array
4315 * * A structure containing a structure
4316 */
4317 if (state->es_shader) {
4318 const glsl_type *check_type = var->type->without_array();
4319 if (check_type->is_boolean() ||
4320 check_type->contains_opaque()) {
4321 _mesa_glsl_error(&loc, state,
4322 "fragment shader input cannot have type %s",
4323 check_type->name);
4324 }
4325 if (var->type->is_array() &&
4326 var->type->fields.array->is_array()) {
4327 _mesa_glsl_error(&loc, state,
4328 "%s shader output "
4329 "cannot have an array of arrays",
4330 _mesa_shader_stage_to_string(state->stage));
4331 }
4332 if (var->type->is_array() &&
4333 var->type->fields.array->is_record()) {
4334 _mesa_glsl_error(&loc, state,
4335 "fragment shader input "
4336 "cannot have an array of structs");
4337 }
4338 if (var->type->is_record()) {
4339 for (unsigned i = 0; i < var->type->length; i++) {
4340 if (var->type->fields.structure[i].type->is_array() ||
4341 var->type->fields.structure[i].type->is_record())
4342 _mesa_glsl_error(&loc, state,
4343 "fragement shader input cannot have "
4344 "a struct that contains an "
4345 "array or struct");
4346 }
4347 }
4348 }
4349 } else if (state->stage == MESA_SHADER_TESS_CTRL ||
4350 state->stage == MESA_SHADER_TESS_EVAL) {
4351 handle_tess_shader_input_decl(state, loc, var);
4352 }
4353 } else if (var->data.mode == ir_var_shader_out) {
4354 const glsl_type *check_type = var->type->without_array();
4355
4356 /* From section 4.3.6 (Output variables) of the GLSL 4.40 spec:
4357 *
4358 * It is a compile-time error to declare a vertex, tessellation
4359 * evaluation, tessellation control, or geometry shader output
4360 * that contains any of the following:
4361 *
4362 * * A Boolean type (bool, bvec2 ...)
4363 * * An opaque type
4364 */
4365 if (check_type->is_boolean() || check_type->contains_opaque())
4366 _mesa_glsl_error(&loc, state,
4367 "%s shader output cannot have type %s",
4368 _mesa_shader_stage_to_string(state->stage),
4369 check_type->name);
4370
4371 /* From section 4.3.6 (Output variables) of the GLSL 4.40 spec:
4372 *
4373 * It is a compile-time error to declare a fragment shader output
4374 * that contains any of the following:
4375 *
4376 * * A Boolean type (bool, bvec2 ...)
4377 * * A double-precision scalar or vector (double, dvec2 ...)
4378 * * An opaque type
4379 * * Any matrix type
4380 * * A structure
4381 */
4382 if (state->stage == MESA_SHADER_FRAGMENT) {
4383 if (check_type->is_record() || check_type->is_matrix())
4384 _mesa_glsl_error(&loc, state,
4385 "fragment shader output "
4386 "cannot have struct or matrix type");
4387 switch (check_type->base_type) {
4388 case GLSL_TYPE_UINT:
4389 case GLSL_TYPE_INT:
4390 case GLSL_TYPE_FLOAT:
4391 break;
4392 default:
4393 _mesa_glsl_error(&loc, state,
4394 "fragment shader output cannot have "
4395 "type %s", check_type->name);
4396 }
4397 }
4398
4399 /* From section 4.3.6 (Output Variables) of the GLSL ES 3.10 spec:
4400 *
4401 * It is a compile-time error to declare a vertex shader output
4402 * with, or that contains, any of the following types:
4403 *
4404 * * A boolean type
4405 * * An opaque type
4406 * * An array of arrays
4407 * * An array of structures
4408 * * A structure containing an array
4409 * * A structure containing a structure
4410 *
4411 * It is a compile-time error to declare a fragment shader output
4412 * with, or that contains, any of the following types:
4413 *
4414 * * A boolean type
4415 * * An opaque type
4416 * * A matrix
4417 * * A structure
4418 * * An array of array
4419 */
4420 if (state->es_shader) {
4421 if (var->type->is_array() &&
4422 var->type->fields.array->is_array()) {
4423 _mesa_glsl_error(&loc, state,
4424 "%s shader output "
4425 "cannot have an array of arrays",
4426 _mesa_shader_stage_to_string(state->stage));
4427 }
4428 if (state->stage == MESA_SHADER_VERTEX) {
4429 if (var->type->is_array() &&
4430 var->type->fields.array->is_record()) {
4431 _mesa_glsl_error(&loc, state,
4432 "vertex shader output "
4433 "cannot have an array of structs");
4434 }
4435 if (var->type->is_record()) {
4436 for (unsigned i = 0; i < var->type->length; i++) {
4437 if (var->type->fields.structure[i].type->is_array() ||
4438 var->type->fields.structure[i].type->is_record())
4439 _mesa_glsl_error(&loc, state,
4440 "vertex shader output cannot have a "
4441 "struct that contains an "
4442 "array or struct");
4443 }
4444 }
4445 }
4446 }
4447
4448 if (state->stage == MESA_SHADER_TESS_CTRL) {
4449 handle_tess_ctrl_shader_output_decl(state, loc, var);
4450 }
4451 } else if (var->type->contains_subroutine()) {
4452 /* declare subroutine uniforms as hidden */
4453 var->data.how_declared = ir_var_hidden;
4454 }
4455
4456 /* Integer fragment inputs must be qualified with 'flat'. In GLSL ES,
4457 * so must integer vertex outputs.
4458 *
4459 * From section 4.3.4 ("Inputs") of the GLSL 1.50 spec:
4460 * "Fragment shader inputs that are signed or unsigned integers or
4461 * integer vectors must be qualified with the interpolation qualifier
4462 * flat."
4463 *
4464 * From section 4.3.4 ("Input Variables") of the GLSL 3.00 ES spec:
4465 * "Fragment shader inputs that are, or contain, signed or unsigned
4466 * integers or integer vectors must be qualified with the
4467 * interpolation qualifier flat."
4468 *
4469 * From section 4.3.6 ("Output Variables") of the GLSL 3.00 ES spec:
4470 * "Vertex shader outputs that are, or contain, signed or unsigned
4471 * integers or integer vectors must be qualified with the
4472 * interpolation qualifier flat."
4473 *
4474 * Note that prior to GLSL 1.50, this requirement applied to vertex
4475 * outputs rather than fragment inputs. That creates problems in the
4476 * presence of geometry shaders, so we adopt the GLSL 1.50 rule for all
4477 * desktop GL shaders. For GLSL ES shaders, we follow the spec and
4478 * apply the restriction to both vertex outputs and fragment inputs.
4479 *
4480 * Note also that the desktop GLSL specs are missing the text "or
4481 * contain"; this is presumably an oversight, since there is no
4482 * reasonable way to interpolate a fragment shader input that contains
4483 * an integer.
4484 */
4485 if (state->is_version(130, 300) &&
4486 var->type->contains_integer() &&
4487 var->data.interpolation != INTERP_QUALIFIER_FLAT &&
4488 ((state->stage == MESA_SHADER_FRAGMENT && var->data.mode == ir_var_shader_in)
4489 || (state->stage == MESA_SHADER_VERTEX && var->data.mode == ir_var_shader_out
4490 && state->es_shader))) {
4491 const char *var_type = (state->stage == MESA_SHADER_VERTEX) ?
4492 "vertex output" : "fragment input";
4493 _mesa_glsl_error(&loc, state, "if a %s is (or contains) "
4494 "an integer, then it must be qualified with 'flat'",
4495 var_type);
4496 }
4497
4498 /* Double fragment inputs must be qualified with 'flat'. */
4499 if (var->type->contains_double() &&
4500 var->data.interpolation != INTERP_QUALIFIER_FLAT &&
4501 state->stage == MESA_SHADER_FRAGMENT &&
4502 var->data.mode == ir_var_shader_in) {
4503 _mesa_glsl_error(&loc, state, "if a fragment input is (or contains) "
4504 "a double, then it must be qualified with 'flat'",
4505 var_type);
4506 }
4507
4508 /* Interpolation qualifiers cannot be applied to 'centroid' and
4509 * 'centroid varying'.
4510 *
4511 * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
4512 * "interpolation qualifiers may only precede the qualifiers in,
4513 * centroid in, out, or centroid out in a declaration. They do not apply
4514 * to the deprecated storage qualifiers varying or centroid varying."
4515 *
4516 * These deprecated storage qualifiers do not exist in GLSL ES 3.00.
4517 */
4518 if (state->is_version(130, 0)
4519 && this->type->qualifier.has_interpolation()
4520 && this->type->qualifier.flags.q.varying) {
4521
4522 const char *i = this->type->qualifier.interpolation_string();
4523 assert(i != NULL);
4524 const char *s;
4525 if (this->type->qualifier.flags.q.centroid)
4526 s = "centroid varying";
4527 else
4528 s = "varying";
4529
4530 _mesa_glsl_error(&loc, state,
4531 "qualifier '%s' cannot be applied to the "
4532 "deprecated storage qualifier '%s'", i, s);
4533 }
4534
4535
4536 /* Interpolation qualifiers can only apply to vertex shader outputs and
4537 * fragment shader inputs.
4538 *
4539 * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
4540 * "Outputs from a vertex shader (out) and inputs to a fragment
4541 * shader (in) can be further qualified with one or more of these
4542 * interpolation qualifiers"
4543 *
4544 * From page 31 (page 37 of the PDF) of the GLSL ES 3.00 spec:
4545 * "These interpolation qualifiers may only precede the qualifiers
4546 * in, centroid in, out, or centroid out in a declaration. They do
4547 * not apply to inputs into a vertex shader or outputs from a
4548 * fragment shader."
4549 */
4550 if (state->is_version(130, 300)
4551 && this->type->qualifier.has_interpolation()) {
4552
4553 const char *i = this->type->qualifier.interpolation_string();
4554 assert(i != NULL);
4555
4556 switch (state->stage) {
4557 case MESA_SHADER_VERTEX:
4558 if (this->type->qualifier.flags.q.in) {
4559 _mesa_glsl_error(&loc, state,
4560 "qualifier '%s' cannot be applied to vertex "
4561 "shader inputs", i);
4562 }
4563 break;
4564 case MESA_SHADER_FRAGMENT:
4565 if (this->type->qualifier.flags.q.out) {
4566 _mesa_glsl_error(&loc, state,
4567 "qualifier '%s' cannot be applied to fragment "
4568 "shader outputs", i);
4569 }
4570 break;
4571 default:
4572 break;
4573 }
4574 }
4575
4576
4577 /* From section 4.3.4 of the GLSL 4.00 spec:
4578 * "Input variables may not be declared using the patch in qualifier
4579 * in tessellation control or geometry shaders."
4580 *
4581 * From section 4.3.6 of the GLSL 4.00 spec:
4582 * "It is an error to use patch out in a vertex, tessellation
4583 * evaluation, or geometry shader."
4584 *
4585 * This doesn't explicitly forbid using them in a fragment shader, but
4586 * that's probably just an oversight.
4587 */
4588 if (state->stage != MESA_SHADER_TESS_EVAL
4589 && this->type->qualifier.flags.q.patch
4590 && this->type->qualifier.flags.q.in) {
4591
4592 _mesa_glsl_error(&loc, state, "'patch in' can only be used in a "
4593 "tessellation evaluation shader");
4594 }
4595
4596 if (state->stage != MESA_SHADER_TESS_CTRL
4597 && this->type->qualifier.flags.q.patch
4598 && this->type->qualifier.flags.q.out) {
4599
4600 _mesa_glsl_error(&loc, state, "'patch out' can only be used in a "
4601 "tessellation control shader");
4602 }
4603
4604 /* Precision qualifiers exists only in GLSL versions 1.00 and >= 1.30.
4605 */
4606 if (this->type->qualifier.precision != ast_precision_none) {
4607 state->check_precision_qualifiers_allowed(&loc);
4608 }
4609
4610
4611 /* If a precision qualifier is allowed on a type, it is allowed on
4612 * an array of that type.
4613 */
4614 if (!(this->type->qualifier.precision == ast_precision_none
4615 || precision_qualifier_allowed(var->type->without_array()))) {
4616
4617 _mesa_glsl_error(&loc, state,
4618 "precision qualifiers apply only to floating point"
4619 ", integer and opaque types");
4620 }
4621
4622 /* From section 4.1.7 of the GLSL 4.40 spec:
4623 *
4624 * "[Opaque types] can only be declared as function
4625 * parameters or uniform-qualified variables."
4626 */
4627 if (var_type->contains_opaque() &&
4628 !this->type->qualifier.flags.q.uniform) {
4629 _mesa_glsl_error(&loc, state,
4630 "opaque variables must be declared uniform");
4631 }
4632
4633 /* Process the initializer and add its instructions to a temporary
4634 * list. This list will be added to the instruction stream (below) after
4635 * the declaration is added. This is done because in some cases (such as
4636 * redeclarations) the declaration may not actually be added to the
4637 * instruction stream.
4638 */
4639 exec_list initializer_instructions;
4640
4641 /* Examine var name here since var may get deleted in the next call */
4642 bool var_is_gl_id = is_gl_identifier(var->name);
4643
4644 ir_variable *earlier =
4645 get_variable_being_redeclared(var, decl->get_location(), state,
4646 false /* allow_all_redeclarations */);
4647 if (earlier != NULL) {
4648 if (var_is_gl_id &&
4649 earlier->data.how_declared == ir_var_declared_in_block) {
4650 _mesa_glsl_error(&loc, state,
4651 "`%s' has already been redeclared using "
4652 "gl_PerVertex", earlier->name);
4653 }
4654 earlier->data.how_declared = ir_var_declared_normally;
4655 }
4656
4657 if (decl->initializer != NULL) {
4658 result = process_initializer((earlier == NULL) ? var : earlier,
4659 decl, this->type,
4660 &initializer_instructions, state);
4661 } else {
4662 validate_array_dimensions(var_type, state, &loc);
4663 }
4664
4665 /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
4666 *
4667 * "It is an error to write to a const variable outside of
4668 * its declaration, so they must be initialized when
4669 * declared."
4670 */
4671 if (this->type->qualifier.flags.q.constant && decl->initializer == NULL) {
4672 _mesa_glsl_error(& loc, state,
4673 "const declaration of `%s' must be initialized",
4674 decl->identifier);
4675 }
4676
4677 if (state->es_shader) {
4678 const glsl_type *const t = (earlier == NULL)
4679 ? var->type : earlier->type;
4680
4681 if (t->is_unsized_array())
4682 /* Section 10.17 of the GLSL ES 1.00 specification states that
4683 * unsized array declarations have been removed from the language.
4684 * Arrays that are sized using an initializer are still explicitly
4685 * sized. However, GLSL ES 1.00 does not allow array
4686 * initializers. That is only allowed in GLSL ES 3.00.
4687 *
4688 * Section 4.1.9 (Arrays) of the GLSL ES 3.00 spec says:
4689 *
4690 * "An array type can also be formed without specifying a size
4691 * if the definition includes an initializer:
4692 *
4693 * float x[] = float[2] (1.0, 2.0); // declares an array of size 2
4694 * float y[] = float[] (1.0, 2.0, 3.0); // declares an array of size 3
4695 *
4696 * float a[5];
4697 * float b[] = a;"
4698 */
4699 _mesa_glsl_error(& loc, state,
4700 "unsized array declarations are not allowed in "
4701 "GLSL ES");
4702 }
4703
4704 /* If the declaration is not a redeclaration, there are a few additional
4705 * semantic checks that must be applied. In addition, variable that was
4706 * created for the declaration should be added to the IR stream.
4707 */
4708 if (earlier == NULL) {
4709 validate_identifier(decl->identifier, loc, state);
4710
4711 /* Add the variable to the symbol table. Note that the initializer's
4712 * IR was already processed earlier (though it hasn't been emitted
4713 * yet), without the variable in scope.
4714 *
4715 * This differs from most C-like languages, but it follows the GLSL
4716 * specification. From page 28 (page 34 of the PDF) of the GLSL 1.50
4717 * spec:
4718 *
4719 * "Within a declaration, the scope of a name starts immediately
4720 * after the initializer if present or immediately after the name
4721 * being declared if not."
4722 */
4723 if (!state->symbols->add_variable(var)) {
4724 YYLTYPE loc = this->get_location();
4725 _mesa_glsl_error(&loc, state, "name `%s' already taken in the "
4726 "current scope", decl->identifier);
4727 continue;
4728 }
4729
4730 /* Push the variable declaration to the top. It means that all the
4731 * variable declarations will appear in a funny last-to-first order,
4732 * but otherwise we run into trouble if a function is prototyped, a
4733 * global var is decled, then the function is defined with usage of
4734 * the global var. See glslparsertest's CorrectModule.frag.
4735 */
4736 instructions->push_head(var);
4737 }
4738
4739 instructions->append_list(&initializer_instructions);
4740 }
4741
4742
4743 /* Generally, variable declarations do not have r-values. However,
4744 * one is used for the declaration in
4745 *
4746 * while (bool b = some_condition()) {
4747 * ...
4748 * }
4749 *
4750 * so we return the rvalue from the last seen declaration here.
4751 */
4752 return result;
4753 }
4754
4755
4756 ir_rvalue *
4757 ast_parameter_declarator::hir(exec_list *instructions,
4758 struct _mesa_glsl_parse_state *state)
4759 {
4760 void *ctx = state;
4761 const struct glsl_type *type;
4762 const char *name = NULL;
4763 YYLTYPE loc = this->get_location();
4764
4765 type = this->type->glsl_type(& name, state);
4766
4767 if (type == NULL) {
4768 if (name != NULL) {
4769 _mesa_glsl_error(& loc, state,
4770 "invalid type `%s' in declaration of `%s'",
4771 name, this->identifier);
4772 } else {
4773 _mesa_glsl_error(& loc, state,
4774 "invalid type in declaration of `%s'",
4775 this->identifier);
4776 }
4777
4778 type = glsl_type::error_type;
4779 }
4780
4781 /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
4782 *
4783 * "Functions that accept no input arguments need not use void in the
4784 * argument list because prototypes (or definitions) are required and
4785 * therefore there is no ambiguity when an empty argument list "( )" is
4786 * declared. The idiom "(void)" as a parameter list is provided for
4787 * convenience."
4788 *
4789 * Placing this check here prevents a void parameter being set up
4790 * for a function, which avoids tripping up checks for main taking
4791 * parameters and lookups of an unnamed symbol.
4792 */
4793 if (type->is_void()) {
4794 if (this->identifier != NULL)
4795 _mesa_glsl_error(& loc, state,
4796 "named parameter cannot have type `void'");
4797
4798 is_void = true;
4799 return NULL;
4800 }
4801
4802 if (formal_parameter && (this->identifier == NULL)) {
4803 _mesa_glsl_error(& loc, state, "formal parameter lacks a name");
4804 return NULL;
4805 }
4806
4807 /* This only handles "vec4 foo[..]". The earlier specifier->glsl_type(...)
4808 * call already handled the "vec4[..] foo" case.
4809 */
4810 type = process_array_type(&loc, type, this->array_specifier, state);
4811
4812 if (!type->is_error() && type->is_unsized_array()) {
4813 _mesa_glsl_error(&loc, state, "arrays passed as parameters must have "
4814 "a declared size");
4815 type = glsl_type::error_type;
4816 }
4817
4818 is_void = false;
4819 ir_variable *var = new(ctx)
4820 ir_variable(type, this->identifier, ir_var_function_in);
4821
4822 /* Apply any specified qualifiers to the parameter declaration. Note that
4823 * for function parameters the default mode is 'in'.
4824 */
4825 apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc,
4826 true);
4827
4828 /* From section 4.1.7 of the GLSL 4.40 spec:
4829 *
4830 * "Opaque variables cannot be treated as l-values; hence cannot
4831 * be used as out or inout function parameters, nor can they be
4832 * assigned into."
4833 */
4834 if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
4835 && type->contains_opaque()) {
4836 _mesa_glsl_error(&loc, state, "out and inout parameters cannot "
4837 "contain opaque variables");
4838 type = glsl_type::error_type;
4839 }
4840
4841 /* From page 39 (page 45 of the PDF) of the GLSL 1.10 spec:
4842 *
4843 * "When calling a function, expressions that do not evaluate to
4844 * l-values cannot be passed to parameters declared as out or inout."
4845 *
4846 * From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
4847 *
4848 * "Other binary or unary expressions, non-dereferenced arrays,
4849 * function names, swizzles with repeated fields, and constants
4850 * cannot be l-values."
4851 *
4852 * So for GLSL 1.10, passing an array as an out or inout parameter is not
4853 * allowed. This restriction is removed in GLSL 1.20, and in GLSL ES.
4854 */
4855 if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
4856 && type->is_array()
4857 && !state->check_version(120, 100, &loc,
4858 "arrays cannot be out or inout parameters")) {
4859 type = glsl_type::error_type;
4860 }
4861
4862 instructions->push_tail(var);
4863
4864 /* Parameter declarations do not have r-values.
4865 */
4866 return NULL;
4867 }
4868
4869
4870 void
4871 ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters,
4872 bool formal,
4873 exec_list *ir_parameters,
4874 _mesa_glsl_parse_state *state)
4875 {
4876 ast_parameter_declarator *void_param = NULL;
4877 unsigned count = 0;
4878
4879 foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) {
4880 param->formal_parameter = formal;
4881 param->hir(ir_parameters, state);
4882
4883 if (param->is_void)
4884 void_param = param;
4885
4886 count++;
4887 }
4888
4889 if ((void_param != NULL) && (count > 1)) {
4890 YYLTYPE loc = void_param->get_location();
4891
4892 _mesa_glsl_error(& loc, state,
4893 "`void' parameter must be only parameter");
4894 }
4895 }
4896
4897
4898 void
4899 emit_function(_mesa_glsl_parse_state *state, ir_function *f)
4900 {
4901 /* IR invariants disallow function declarations or definitions
4902 * nested within other function definitions. But there is no
4903 * requirement about the relative order of function declarations
4904 * and definitions with respect to one another. So simply insert
4905 * the new ir_function block at the end of the toplevel instruction
4906 * list.
4907 */
4908 state->toplevel_ir->push_tail(f);
4909 }
4910
4911
4912 ir_rvalue *
4913 ast_function::hir(exec_list *instructions,
4914 struct _mesa_glsl_parse_state *state)
4915 {
4916 void *ctx = state;
4917 ir_function *f = NULL;
4918 ir_function_signature *sig = NULL;
4919 exec_list hir_parameters;
4920 YYLTYPE loc = this->get_location();
4921
4922 const char *const name = identifier;
4923
4924 /* New functions are always added to the top-level IR instruction stream,
4925 * so this instruction list pointer is ignored. See also emit_function
4926 * (called below).
4927 */
4928 (void) instructions;
4929
4930 /* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec,
4931 *
4932 * "Function declarations (prototypes) cannot occur inside of functions;
4933 * they must be at global scope, or for the built-in functions, outside
4934 * the global scope."
4935 *
4936 * From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec,
4937 *
4938 * "User defined functions may only be defined within the global scope."
4939 *
4940 * Note that this language does not appear in GLSL 1.10.
4941 */
4942 if ((state->current_function != NULL) &&
4943 state->is_version(120, 100)) {
4944 YYLTYPE loc = this->get_location();
4945 _mesa_glsl_error(&loc, state,
4946 "declaration of function `%s' not allowed within "
4947 "function body", name);
4948 }
4949
4950 validate_identifier(name, this->get_location(), state);
4951
4952 /* Convert the list of function parameters to HIR now so that they can be
4953 * used below to compare this function's signature with previously seen
4954 * signatures for functions with the same name.
4955 */
4956 ast_parameter_declarator::parameters_to_hir(& this->parameters,
4957 is_definition,
4958 & hir_parameters, state);
4959
4960 const char *return_type_name;
4961 const glsl_type *return_type =
4962 this->return_type->glsl_type(& return_type_name, state);
4963
4964 if (!return_type) {
4965 YYLTYPE loc = this->get_location();
4966 _mesa_glsl_error(&loc, state,
4967 "function `%s' has undeclared return type `%s'",
4968 name, return_type_name);
4969 return_type = glsl_type::error_type;
4970 }
4971
4972 /* ARB_shader_subroutine states:
4973 * "Subroutine declarations cannot be prototyped. It is an error to prepend
4974 * subroutine(...) to a function declaration."
4975 */
4976 if (this->return_type->qualifier.flags.q.subroutine_def && !is_definition) {
4977 YYLTYPE loc = this->get_location();
4978 _mesa_glsl_error(&loc, state,
4979 "function declaration `%s' cannot have subroutine prepended",
4980 name);
4981 }
4982
4983 /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec:
4984 * "No qualifier is allowed on the return type of a function."
4985 */
4986 if (this->return_type->has_qualifiers()) {
4987 YYLTYPE loc = this->get_location();
4988 _mesa_glsl_error(& loc, state,
4989 "function `%s' return type has qualifiers", name);
4990 }
4991
4992 /* Section 6.1 (Function Definitions) of the GLSL 1.20 spec says:
4993 *
4994 * "Arrays are allowed as arguments and as the return type. In both
4995 * cases, the array must be explicitly sized."
4996 */
4997 if (return_type->is_unsized_array()) {
4998 YYLTYPE loc = this->get_location();
4999 _mesa_glsl_error(& loc, state,
5000 "function `%s' return type array must be explicitly "
5001 "sized", name);
5002 }
5003
5004 /* From section 4.1.7 of the GLSL 4.40 spec:
5005 *
5006 * "[Opaque types] can only be declared as function parameters
5007 * or uniform-qualified variables."
5008 */
5009 if (return_type->contains_opaque()) {
5010 YYLTYPE loc = this->get_location();
5011 _mesa_glsl_error(&loc, state,
5012 "function `%s' return type can't contain an opaque type",
5013 name);
5014 }
5015
5016 /* Create an ir_function if one doesn't already exist. */
5017 f = state->symbols->get_function(name);
5018 if (f == NULL) {
5019 f = new(ctx) ir_function(name);
5020 if (!this->return_type->qualifier.flags.q.subroutine) {
5021 if (!state->symbols->add_function(f)) {
5022 /* This function name shadows a non-function use of the same name. */
5023 YYLTYPE loc = this->get_location();
5024 _mesa_glsl_error(&loc, state, "function name `%s' conflicts with "
5025 "non-function", name);
5026 return NULL;
5027 }
5028 }
5029 emit_function(state, f);
5030 }
5031
5032 /* From GLSL ES 3.0 spec, chapter 6.1 "Function Definitions", page 71:
5033 *
5034 * "A shader cannot redefine or overload built-in functions."
5035 *
5036 * While in GLSL ES 1.0 specification, chapter 8 "Built-in Functions":
5037 *
5038 * "User code can overload the built-in functions but cannot redefine
5039 * them."
5040 */
5041 if (state->es_shader && state->language_version >= 300) {
5042 /* Local shader has no exact candidates; check the built-ins. */
5043 _mesa_glsl_initialize_builtin_functions();
5044 if (_mesa_glsl_find_builtin_function_by_name(name)) {
5045 YYLTYPE loc = this->get_location();
5046 _mesa_glsl_error(& loc, state,
5047 "A shader cannot redefine or overload built-in "
5048 "function `%s' in GLSL ES 3.00", name);
5049 return NULL;
5050 }
5051 }
5052
5053 /* Verify that this function's signature either doesn't match a previously
5054 * seen signature for a function with the same name, or, if a match is found,
5055 * that the previously seen signature does not have an associated definition.
5056 */
5057 if (state->es_shader || f->has_user_signature()) {
5058 sig = f->exact_matching_signature(state, &hir_parameters);
5059 if (sig != NULL) {
5060 const char *badvar = sig->qualifiers_match(&hir_parameters);
5061 if (badvar != NULL) {
5062 YYLTYPE loc = this->get_location();
5063
5064 _mesa_glsl_error(&loc, state, "function `%s' parameter `%s' "
5065 "qualifiers don't match prototype", name, badvar);
5066 }
5067
5068 if (sig->return_type != return_type) {
5069 YYLTYPE loc = this->get_location();
5070
5071 _mesa_glsl_error(&loc, state, "function `%s' return type doesn't "
5072 "match prototype", name);
5073 }
5074
5075 if (sig->is_defined) {
5076 if (is_definition) {
5077 YYLTYPE loc = this->get_location();
5078 _mesa_glsl_error(& loc, state, "function `%s' redefined", name);
5079 } else {
5080 /* We just encountered a prototype that exactly matches a
5081 * function that's already been defined. This is redundant,
5082 * and we should ignore it.
5083 */
5084 return NULL;
5085 }
5086 }
5087 }
5088 }
5089
5090 /* Verify the return type of main() */
5091 if (strcmp(name, "main") == 0) {
5092 if (! return_type->is_void()) {
5093 YYLTYPE loc = this->get_location();
5094
5095 _mesa_glsl_error(& loc, state, "main() must return void");
5096 }
5097
5098 if (!hir_parameters.is_empty()) {
5099 YYLTYPE loc = this->get_location();
5100
5101 _mesa_glsl_error(& loc, state, "main() must not take any parameters");
5102 }
5103 }
5104
5105 /* Finish storing the information about this new function in its signature.
5106 */
5107 if (sig == NULL) {
5108 sig = new(ctx) ir_function_signature(return_type);
5109 f->add_signature(sig);
5110 }
5111
5112 sig->replace_parameters(&hir_parameters);
5113 signature = sig;
5114
5115 if (this->return_type->qualifier.flags.q.subroutine_def) {
5116 int idx;
5117
5118 f->num_subroutine_types = this->return_type->qualifier.subroutine_list->declarations.length();
5119 f->subroutine_types = ralloc_array(state, const struct glsl_type *,
5120 f->num_subroutine_types);
5121 idx = 0;
5122 foreach_list_typed(ast_declaration, decl, link, &this->return_type->qualifier.subroutine_list->declarations) {
5123 const struct glsl_type *type;
5124 /* the subroutine type must be already declared */
5125 type = state->symbols->get_type(decl->identifier);
5126 if (!type) {
5127 _mesa_glsl_error(& loc, state, "unknown type '%s' in subroutine function definition", decl->identifier);
5128 }
5129 f->subroutine_types[idx++] = type;
5130 }
5131 state->subroutines = (ir_function **)reralloc(state, state->subroutines,
5132 ir_function *,
5133 state->num_subroutines + 1);
5134 state->subroutines[state->num_subroutines] = f;
5135 state->num_subroutines++;
5136
5137 }
5138
5139 if (this->return_type->qualifier.flags.q.subroutine) {
5140 if (!state->symbols->add_type(this->identifier, glsl_type::get_subroutine_instance(this->identifier))) {
5141 _mesa_glsl_error(& loc, state, "type '%s' previously defined", this->identifier);
5142 return NULL;
5143 }
5144 state->subroutine_types = (ir_function **)reralloc(state, state->subroutine_types,
5145 ir_function *,
5146 state->num_subroutine_types + 1);
5147 state->subroutine_types[state->num_subroutine_types] = f;
5148 state->num_subroutine_types++;
5149
5150 f->is_subroutine = true;
5151 }
5152
5153 /* Function declarations (prototypes) do not have r-values.
5154 */
5155 return NULL;
5156 }
5157
5158
5159 ir_rvalue *
5160 ast_function_definition::hir(exec_list *instructions,
5161 struct _mesa_glsl_parse_state *state)
5162 {
5163 prototype->is_definition = true;
5164 prototype->hir(instructions, state);
5165
5166 ir_function_signature *signature = prototype->signature;
5167 if (signature == NULL)
5168 return NULL;
5169
5170 assert(state->current_function == NULL);
5171 state->current_function = signature;
5172 state->found_return = false;
5173
5174 /* Duplicate parameters declared in the prototype as concrete variables.
5175 * Add these to the symbol table.
5176 */
5177 state->symbols->push_scope();
5178 foreach_in_list(ir_variable, var, &signature->parameters) {
5179 assert(var->as_variable() != NULL);
5180
5181 /* The only way a parameter would "exist" is if two parameters have
5182 * the same name.
5183 */
5184 if (state->symbols->name_declared_this_scope(var->name)) {
5185 YYLTYPE loc = this->get_location();
5186
5187 _mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name);
5188 } else {
5189 state->symbols->add_variable(var);
5190 }
5191 }
5192
5193 /* Convert the body of the function to HIR. */
5194 this->body->hir(&signature->body, state);
5195 signature->is_defined = true;
5196
5197 state->symbols->pop_scope();
5198
5199 assert(state->current_function == signature);
5200 state->current_function = NULL;
5201
5202 if (!signature->return_type->is_void() && !state->found_return) {
5203 YYLTYPE loc = this->get_location();
5204 _mesa_glsl_error(& loc, state, "function `%s' has non-void return type "
5205 "%s, but no return statement",
5206 signature->function_name(),
5207 signature->return_type->name);
5208 }
5209
5210 /* Function definitions do not have r-values.
5211 */
5212 return NULL;
5213 }
5214
5215
5216 ir_rvalue *
5217 ast_jump_statement::hir(exec_list *instructions,
5218 struct _mesa_glsl_parse_state *state)
5219 {
5220 void *ctx = state;
5221
5222 switch (mode) {
5223 case ast_return: {
5224 ir_return *inst;
5225 assert(state->current_function);
5226
5227 if (opt_return_value) {
5228 ir_rvalue *ret = opt_return_value->hir(instructions, state);
5229
5230 /* The value of the return type can be NULL if the shader says
5231 * 'return foo();' and foo() is a function that returns void.
5232 *
5233 * NOTE: The GLSL spec doesn't say that this is an error. The type
5234 * of the return value is void. If the return type of the function is
5235 * also void, then this should compile without error. Seriously.
5236 */
5237 const glsl_type *const ret_type =
5238 (ret == NULL) ? glsl_type::void_type : ret->type;
5239
5240 /* Implicit conversions are not allowed for return values prior to
5241 * ARB_shading_language_420pack.
5242 */
5243 if (state->current_function->return_type != ret_type) {
5244 YYLTYPE loc = this->get_location();
5245
5246 if (state->ARB_shading_language_420pack_enable) {
5247 if (!apply_implicit_conversion(state->current_function->return_type,
5248 ret, state)) {
5249 _mesa_glsl_error(& loc, state,
5250 "could not implicitly convert return value "
5251 "to %s, in function `%s'",
5252 state->current_function->return_type->name,
5253 state->current_function->function_name());
5254 }
5255 } else {
5256 _mesa_glsl_error(& loc, state,
5257 "`return' with wrong type %s, in function `%s' "
5258 "returning %s",
5259 ret_type->name,
5260 state->current_function->function_name(),
5261 state->current_function->return_type->name);
5262 }
5263 } else if (state->current_function->return_type->base_type ==
5264 GLSL_TYPE_VOID) {
5265 YYLTYPE loc = this->get_location();
5266
5267 /* The ARB_shading_language_420pack, GLSL ES 3.0, and GLSL 4.20
5268 * specs add a clarification:
5269 *
5270 * "A void function can only use return without a return argument, even if
5271 * the return argument has void type. Return statements only accept values:
5272 *
5273 * void func1() { }
5274 * void func2() { return func1(); } // illegal return statement"
5275 */
5276 _mesa_glsl_error(& loc, state,
5277 "void functions can only use `return' without a "
5278 "return argument");
5279 }
5280
5281 inst = new(ctx) ir_return(ret);
5282 } else {
5283 if (state->current_function->return_type->base_type !=
5284 GLSL_TYPE_VOID) {
5285 YYLTYPE loc = this->get_location();
5286
5287 _mesa_glsl_error(& loc, state,
5288 "`return' with no value, in function %s returning "
5289 "non-void",
5290 state->current_function->function_name());
5291 }
5292 inst = new(ctx) ir_return;
5293 }
5294
5295 state->found_return = true;
5296 instructions->push_tail(inst);
5297 break;
5298 }
5299
5300 case ast_discard:
5301 if (state->stage != MESA_SHADER_FRAGMENT) {
5302 YYLTYPE loc = this->get_location();
5303
5304 _mesa_glsl_error(& loc, state,
5305 "`discard' may only appear in a fragment shader");
5306 }
5307 instructions->push_tail(new(ctx) ir_discard);
5308 break;
5309
5310 case ast_break:
5311 case ast_continue:
5312 if (mode == ast_continue &&
5313 state->loop_nesting_ast == NULL) {
5314 YYLTYPE loc = this->get_location();
5315
5316 _mesa_glsl_error(& loc, state, "continue may only appear in a loop");
5317 } else if (mode == ast_break &&
5318 state->loop_nesting_ast == NULL &&
5319 state->switch_state.switch_nesting_ast == NULL) {
5320 YYLTYPE loc = this->get_location();
5321
5322 _mesa_glsl_error(& loc, state,
5323 "break may only appear in a loop or a switch");
5324 } else {
5325 /* For a loop, inline the for loop expression again, since we don't
5326 * know where near the end of the loop body the normal copy of it is
5327 * going to be placed. Same goes for the condition for a do-while
5328 * loop.
5329 */
5330 if (state->loop_nesting_ast != NULL &&
5331 mode == ast_continue && !state->switch_state.is_switch_innermost) {
5332 if (state->loop_nesting_ast->rest_expression) {
5333 state->loop_nesting_ast->rest_expression->hir(instructions,
5334 state);
5335 }
5336 if (state->loop_nesting_ast->mode ==
5337 ast_iteration_statement::ast_do_while) {
5338 state->loop_nesting_ast->condition_to_hir(instructions, state);
5339 }
5340 }
5341
5342 if (state->switch_state.is_switch_innermost &&
5343 mode == ast_continue) {
5344 /* Set 'continue_inside' to true. */
5345 ir_rvalue *const true_val = new (ctx) ir_constant(true);
5346 ir_dereference_variable *deref_continue_inside_var =
5347 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
5348 instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
5349 true_val));
5350
5351 /* Break out from the switch, continue for the loop will
5352 * be called right after switch. */
5353 ir_loop_jump *const jump =
5354 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
5355 instructions->push_tail(jump);
5356
5357 } else if (state->switch_state.is_switch_innermost &&
5358 mode == ast_break) {
5359 /* Force break out of switch by inserting a break. */
5360 ir_loop_jump *const jump =
5361 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
5362 instructions->push_tail(jump);
5363 } else {
5364 ir_loop_jump *const jump =
5365 new(ctx) ir_loop_jump((mode == ast_break)
5366 ? ir_loop_jump::jump_break
5367 : ir_loop_jump::jump_continue);
5368 instructions->push_tail(jump);
5369 }
5370 }
5371
5372 break;
5373 }
5374
5375 /* Jump instructions do not have r-values.
5376 */
5377 return NULL;
5378 }
5379
5380
5381 ir_rvalue *
5382 ast_selection_statement::hir(exec_list *instructions,
5383 struct _mesa_glsl_parse_state *state)
5384 {
5385 void *ctx = state;
5386
5387 ir_rvalue *const condition = this->condition->hir(instructions, state);
5388
5389 /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
5390 *
5391 * "Any expression whose type evaluates to a Boolean can be used as the
5392 * conditional expression bool-expression. Vector types are not accepted
5393 * as the expression to if."
5394 *
5395 * The checks are separated so that higher quality diagnostics can be
5396 * generated for cases where both rules are violated.
5397 */
5398 if (!condition->type->is_boolean() || !condition->type->is_scalar()) {
5399 YYLTYPE loc = this->condition->get_location();
5400
5401 _mesa_glsl_error(& loc, state, "if-statement condition must be scalar "
5402 "boolean");
5403 }
5404
5405 ir_if *const stmt = new(ctx) ir_if(condition);
5406
5407 if (then_statement != NULL) {
5408 state->symbols->push_scope();
5409 then_statement->hir(& stmt->then_instructions, state);
5410 state->symbols->pop_scope();
5411 }
5412
5413 if (else_statement != NULL) {
5414 state->symbols->push_scope();
5415 else_statement->hir(& stmt->else_instructions, state);
5416 state->symbols->pop_scope();
5417 }
5418
5419 instructions->push_tail(stmt);
5420
5421 /* if-statements do not have r-values.
5422 */
5423 return NULL;
5424 }
5425
5426
5427 ir_rvalue *
5428 ast_switch_statement::hir(exec_list *instructions,
5429 struct _mesa_glsl_parse_state *state)
5430 {
5431 void *ctx = state;
5432
5433 ir_rvalue *const test_expression =
5434 this->test_expression->hir(instructions, state);
5435
5436 /* From page 66 (page 55 of the PDF) of the GLSL 1.50 spec:
5437 *
5438 * "The type of init-expression in a switch statement must be a
5439 * scalar integer."
5440 */
5441 if (!test_expression->type->is_scalar() ||
5442 !test_expression->type->is_integer()) {
5443 YYLTYPE loc = this->test_expression->get_location();
5444
5445 _mesa_glsl_error(& loc,
5446 state,
5447 "switch-statement expression must be scalar "
5448 "integer");
5449 }
5450
5451 /* Track the switch-statement nesting in a stack-like manner.
5452 */
5453 struct glsl_switch_state saved = state->switch_state;
5454
5455 state->switch_state.is_switch_innermost = true;
5456 state->switch_state.switch_nesting_ast = this;
5457 state->switch_state.labels_ht = hash_table_ctor(0, hash_table_pointer_hash,
5458 hash_table_pointer_compare);
5459 state->switch_state.previous_default = NULL;
5460
5461 /* Initalize is_fallthru state to false.
5462 */
5463 ir_rvalue *const is_fallthru_val = new (ctx) ir_constant(false);
5464 state->switch_state.is_fallthru_var =
5465 new(ctx) ir_variable(glsl_type::bool_type,
5466 "switch_is_fallthru_tmp",
5467 ir_var_temporary);
5468 instructions->push_tail(state->switch_state.is_fallthru_var);
5469
5470 ir_dereference_variable *deref_is_fallthru_var =
5471 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
5472 instructions->push_tail(new(ctx) ir_assignment(deref_is_fallthru_var,
5473 is_fallthru_val));
5474
5475 /* Initialize continue_inside state to false.
5476 */
5477 state->switch_state.continue_inside =
5478 new(ctx) ir_variable(glsl_type::bool_type,
5479 "continue_inside_tmp",
5480 ir_var_temporary);
5481 instructions->push_tail(state->switch_state.continue_inside);
5482
5483 ir_rvalue *const false_val = new (ctx) ir_constant(false);
5484 ir_dereference_variable *deref_continue_inside_var =
5485 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
5486 instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
5487 false_val));
5488
5489 state->switch_state.run_default =
5490 new(ctx) ir_variable(glsl_type::bool_type,
5491 "run_default_tmp",
5492 ir_var_temporary);
5493 instructions->push_tail(state->switch_state.run_default);
5494
5495 /* Loop around the switch is used for flow control. */
5496 ir_loop * loop = new(ctx) ir_loop();
5497 instructions->push_tail(loop);
5498
5499 /* Cache test expression.
5500 */
5501 test_to_hir(&loop->body_instructions, state);
5502
5503 /* Emit code for body of switch stmt.
5504 */
5505 body->hir(&loop->body_instructions, state);
5506
5507 /* Insert a break at the end to exit loop. */
5508 ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
5509 loop->body_instructions.push_tail(jump);
5510
5511 /* If we are inside loop, check if continue got called inside switch. */
5512 if (state->loop_nesting_ast != NULL) {
5513 ir_dereference_variable *deref_continue_inside =
5514 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
5515 ir_if *irif = new(ctx) ir_if(deref_continue_inside);
5516 ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_continue);
5517
5518 if (state->loop_nesting_ast != NULL) {
5519 if (state->loop_nesting_ast->rest_expression) {
5520 state->loop_nesting_ast->rest_expression->hir(&irif->then_instructions,
5521 state);
5522 }
5523 if (state->loop_nesting_ast->mode ==
5524 ast_iteration_statement::ast_do_while) {
5525 state->loop_nesting_ast->condition_to_hir(&irif->then_instructions, state);
5526 }
5527 }
5528 irif->then_instructions.push_tail(jump);
5529 instructions->push_tail(irif);
5530 }
5531
5532 hash_table_dtor(state->switch_state.labels_ht);
5533
5534 state->switch_state = saved;
5535
5536 /* Switch statements do not have r-values. */
5537 return NULL;
5538 }
5539
5540
5541 void
5542 ast_switch_statement::test_to_hir(exec_list *instructions,
5543 struct _mesa_glsl_parse_state *state)
5544 {
5545 void *ctx = state;
5546
5547 /* Cache value of test expression. */
5548 ir_rvalue *const test_val =
5549 test_expression->hir(instructions,
5550 state);
5551
5552 state->switch_state.test_var = new(ctx) ir_variable(test_val->type,
5553 "switch_test_tmp",
5554 ir_var_temporary);
5555 ir_dereference_variable *deref_test_var =
5556 new(ctx) ir_dereference_variable(state->switch_state.test_var);
5557
5558 instructions->push_tail(state->switch_state.test_var);
5559 instructions->push_tail(new(ctx) ir_assignment(deref_test_var, test_val));
5560 }
5561
5562
5563 ir_rvalue *
5564 ast_switch_body::hir(exec_list *instructions,
5565 struct _mesa_glsl_parse_state *state)
5566 {
5567 if (stmts != NULL)
5568 stmts->hir(instructions, state);
5569
5570 /* Switch bodies do not have r-values. */
5571 return NULL;
5572 }
5573
5574 ir_rvalue *
5575 ast_case_statement_list::hir(exec_list *instructions,
5576 struct _mesa_glsl_parse_state *state)
5577 {
5578 exec_list default_case, after_default, tmp;
5579
5580 foreach_list_typed (ast_case_statement, case_stmt, link, & this->cases) {
5581 case_stmt->hir(&tmp, state);
5582
5583 /* Default case. */
5584 if (state->switch_state.previous_default && default_case.is_empty()) {
5585 default_case.append_list(&tmp);
5586 continue;
5587 }
5588
5589 /* If default case found, append 'after_default' list. */
5590 if (!default_case.is_empty())
5591 after_default.append_list(&tmp);
5592 else
5593 instructions->append_list(&tmp);
5594 }
5595
5596 /* Handle the default case. This is done here because default might not be
5597 * the last case. We need to add checks against following cases first to see
5598 * if default should be chosen or not.
5599 */
5600 if (!default_case.is_empty()) {
5601
5602 ir_rvalue *const true_val = new (state) ir_constant(true);
5603 ir_dereference_variable *deref_run_default_var =
5604 new(state) ir_dereference_variable(state->switch_state.run_default);
5605
5606 /* Choose to run default case initially, following conditional
5607 * assignments might change this.
5608 */
5609 ir_assignment *const init_var =
5610 new(state) ir_assignment(deref_run_default_var, true_val);
5611 instructions->push_tail(init_var);
5612
5613 /* Default case was the last one, no checks required. */
5614 if (after_default.is_empty()) {
5615 instructions->append_list(&default_case);
5616 return NULL;
5617 }
5618
5619 foreach_in_list(ir_instruction, ir, &after_default) {
5620 ir_assignment *assign = ir->as_assignment();
5621
5622 if (!assign)
5623 continue;
5624
5625 /* Clone the check between case label and init expression. */
5626 ir_expression *exp = (ir_expression*) assign->condition;
5627 ir_expression *clone = exp->clone(state, NULL);
5628
5629 ir_dereference_variable *deref_var =
5630 new(state) ir_dereference_variable(state->switch_state.run_default);
5631 ir_rvalue *const false_val = new (state) ir_constant(false);
5632
5633 ir_assignment *const set_false =
5634 new(state) ir_assignment(deref_var, false_val, clone);
5635
5636 instructions->push_tail(set_false);
5637 }
5638
5639 /* Append default case and all cases after it. */
5640 instructions->append_list(&default_case);
5641 instructions->append_list(&after_default);
5642 }
5643
5644 /* Case statements do not have r-values. */
5645 return NULL;
5646 }
5647
5648 ir_rvalue *
5649 ast_case_statement::hir(exec_list *instructions,
5650 struct _mesa_glsl_parse_state *state)
5651 {
5652 labels->hir(instructions, state);
5653
5654 /* Guard case statements depending on fallthru state. */
5655 ir_dereference_variable *const deref_fallthru_guard =
5656 new(state) ir_dereference_variable(state->switch_state.is_fallthru_var);
5657 ir_if *const test_fallthru = new(state) ir_if(deref_fallthru_guard);
5658
5659 foreach_list_typed (ast_node, stmt, link, & this->stmts)
5660 stmt->hir(& test_fallthru->then_instructions, state);
5661
5662 instructions->push_tail(test_fallthru);
5663
5664 /* Case statements do not have r-values. */
5665 return NULL;
5666 }
5667
5668
5669 ir_rvalue *
5670 ast_case_label_list::hir(exec_list *instructions,
5671 struct _mesa_glsl_parse_state *state)
5672 {
5673 foreach_list_typed (ast_case_label, label, link, & this->labels)
5674 label->hir(instructions, state);
5675
5676 /* Case labels do not have r-values. */
5677 return NULL;
5678 }
5679
5680 ir_rvalue *
5681 ast_case_label::hir(exec_list *instructions,
5682 struct _mesa_glsl_parse_state *state)
5683 {
5684 void *ctx = state;
5685
5686 ir_dereference_variable *deref_fallthru_var =
5687 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
5688
5689 ir_rvalue *const true_val = new(ctx) ir_constant(true);
5690
5691 /* If not default case, ... */
5692 if (this->test_value != NULL) {
5693 /* Conditionally set fallthru state based on
5694 * comparison of cached test expression value to case label.
5695 */
5696 ir_rvalue *const label_rval = this->test_value->hir(instructions, state);
5697 ir_constant *label_const = label_rval->constant_expression_value();
5698
5699 if (!label_const) {
5700 YYLTYPE loc = this->test_value->get_location();
5701
5702 _mesa_glsl_error(& loc, state,
5703 "switch statement case label must be a "
5704 "constant expression");
5705
5706 /* Stuff a dummy value in to allow processing to continue. */
5707 label_const = new(ctx) ir_constant(0);
5708 } else {
5709 ast_expression *previous_label = (ast_expression *)
5710 hash_table_find(state->switch_state.labels_ht,
5711 (void *)(uintptr_t)label_const->value.u[0]);
5712
5713 if (previous_label) {
5714 YYLTYPE loc = this->test_value->get_location();
5715 _mesa_glsl_error(& loc, state, "duplicate case value");
5716
5717 loc = previous_label->get_location();
5718 _mesa_glsl_error(& loc, state, "this is the previous case label");
5719 } else {
5720 hash_table_insert(state->switch_state.labels_ht,
5721 this->test_value,
5722 (void *)(uintptr_t)label_const->value.u[0]);
5723 }
5724 }
5725
5726 ir_dereference_variable *deref_test_var =
5727 new(ctx) ir_dereference_variable(state->switch_state.test_var);
5728
5729 ir_expression *test_cond = new(ctx) ir_expression(ir_binop_all_equal,
5730 label_const,
5731 deref_test_var);
5732
5733 /*
5734 * From GLSL 4.40 specification section 6.2 ("Selection"):
5735 *
5736 * "The type of the init-expression value in a switch statement must
5737 * be a scalar int or uint. The type of the constant-expression value
5738 * in a case label also must be a scalar int or uint. When any pair
5739 * of these values is tested for "equal value" and the types do not
5740 * match, an implicit conversion will be done to convert the int to a
5741 * uint (see section 4.1.10 “Implicit Conversions”) before the compare
5742 * is done."
5743 */
5744 if (label_const->type != state->switch_state.test_var->type) {
5745 YYLTYPE loc = this->test_value->get_location();
5746
5747 const glsl_type *type_a = label_const->type;
5748 const glsl_type *type_b = state->switch_state.test_var->type;
5749
5750 /* Check if int->uint implicit conversion is supported. */
5751 bool integer_conversion_supported =
5752 glsl_type::int_type->can_implicitly_convert_to(glsl_type::uint_type,
5753 state);
5754
5755 if ((!type_a->is_integer() || !type_b->is_integer()) ||
5756 !integer_conversion_supported) {
5757 _mesa_glsl_error(&loc, state, "type mismatch with switch "
5758 "init-expression and case label (%s != %s)",
5759 type_a->name, type_b->name);
5760 } else {
5761 /* Conversion of the case label. */
5762 if (type_a->base_type == GLSL_TYPE_INT) {
5763 if (!apply_implicit_conversion(glsl_type::uint_type,
5764 test_cond->operands[0], state))
5765 _mesa_glsl_error(&loc, state, "implicit type conversion error");
5766 } else {
5767 /* Conversion of the init-expression value. */
5768 if (!apply_implicit_conversion(glsl_type::uint_type,
5769 test_cond->operands[1], state))
5770 _mesa_glsl_error(&loc, state, "implicit type conversion error");
5771 }
5772 }
5773 }
5774
5775 ir_assignment *set_fallthru_on_test =
5776 new(ctx) ir_assignment(deref_fallthru_var, true_val, test_cond);
5777
5778 instructions->push_tail(set_fallthru_on_test);
5779 } else { /* default case */
5780 if (state->switch_state.previous_default) {
5781 YYLTYPE loc = this->get_location();
5782 _mesa_glsl_error(& loc, state,
5783 "multiple default labels in one switch");
5784
5785 loc = state->switch_state.previous_default->get_location();
5786 _mesa_glsl_error(& loc, state, "this is the first default label");
5787 }
5788 state->switch_state.previous_default = this;
5789
5790 /* Set fallthru condition on 'run_default' bool. */
5791 ir_dereference_variable *deref_run_default =
5792 new(ctx) ir_dereference_variable(state->switch_state.run_default);
5793 ir_rvalue *const cond_true = new(ctx) ir_constant(true);
5794 ir_expression *test_cond = new(ctx) ir_expression(ir_binop_all_equal,
5795 cond_true,
5796 deref_run_default);
5797
5798 /* Set falltrhu state. */
5799 ir_assignment *set_fallthru =
5800 new(ctx) ir_assignment(deref_fallthru_var, true_val, test_cond);
5801
5802 instructions->push_tail(set_fallthru);
5803 }
5804
5805 /* Case statements do not have r-values. */
5806 return NULL;
5807 }
5808
5809 void
5810 ast_iteration_statement::condition_to_hir(exec_list *instructions,
5811 struct _mesa_glsl_parse_state *state)
5812 {
5813 void *ctx = state;
5814
5815 if (condition != NULL) {
5816 ir_rvalue *const cond =
5817 condition->hir(instructions, state);
5818
5819 if ((cond == NULL)
5820 || !cond->type->is_boolean() || !cond->type->is_scalar()) {
5821 YYLTYPE loc = condition->get_location();
5822
5823 _mesa_glsl_error(& loc, state,
5824 "loop condition must be scalar boolean");
5825 } else {
5826 /* As the first code in the loop body, generate a block that looks
5827 * like 'if (!condition) break;' as the loop termination condition.
5828 */
5829 ir_rvalue *const not_cond =
5830 new(ctx) ir_expression(ir_unop_logic_not, cond);
5831
5832 ir_if *const if_stmt = new(ctx) ir_if(not_cond);
5833
5834 ir_jump *const break_stmt =
5835 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
5836
5837 if_stmt->then_instructions.push_tail(break_stmt);
5838 instructions->push_tail(if_stmt);
5839 }
5840 }
5841 }
5842
5843
5844 ir_rvalue *
5845 ast_iteration_statement::hir(exec_list *instructions,
5846 struct _mesa_glsl_parse_state *state)
5847 {
5848 void *ctx = state;
5849
5850 /* For-loops and while-loops start a new scope, but do-while loops do not.
5851 */
5852 if (mode != ast_do_while)
5853 state->symbols->push_scope();
5854
5855 if (init_statement != NULL)
5856 init_statement->hir(instructions, state);
5857
5858 ir_loop *const stmt = new(ctx) ir_loop();
5859 instructions->push_tail(stmt);
5860
5861 /* Track the current loop nesting. */
5862 ast_iteration_statement *nesting_ast = state->loop_nesting_ast;
5863
5864 state->loop_nesting_ast = this;
5865
5866 /* Likewise, indicate that following code is closest to a loop,
5867 * NOT closest to a switch.
5868 */
5869 bool saved_is_switch_innermost = state->switch_state.is_switch_innermost;
5870 state->switch_state.is_switch_innermost = false;
5871
5872 if (mode != ast_do_while)
5873 condition_to_hir(&stmt->body_instructions, state);
5874
5875 if (body != NULL)
5876 body->hir(& stmt->body_instructions, state);
5877
5878 if (rest_expression != NULL)
5879 rest_expression->hir(& stmt->body_instructions, state);
5880
5881 if (mode == ast_do_while)
5882 condition_to_hir(&stmt->body_instructions, state);
5883
5884 if (mode != ast_do_while)
5885 state->symbols->pop_scope();
5886
5887 /* Restore previous nesting before returning. */
5888 state->loop_nesting_ast = nesting_ast;
5889 state->switch_state.is_switch_innermost = saved_is_switch_innermost;
5890
5891 /* Loops do not have r-values.
5892 */
5893 return NULL;
5894 }
5895
5896
5897 /**
5898 * Determine if the given type is valid for establishing a default precision
5899 * qualifier.
5900 *
5901 * From GLSL ES 3.00 section 4.5.4 ("Default Precision Qualifiers"):
5902 *
5903 * "The precision statement
5904 *
5905 * precision precision-qualifier type;
5906 *
5907 * can be used to establish a default precision qualifier. The type field
5908 * can be either int or float or any of the sampler types, and the
5909 * precision-qualifier can be lowp, mediump, or highp."
5910 *
5911 * GLSL ES 1.00 has similar language. GLSL 1.30 doesn't allow precision
5912 * qualifiers on sampler types, but this seems like an oversight (since the
5913 * intention of including these in GLSL 1.30 is to allow compatibility with ES
5914 * shaders). So we allow int, float, and all sampler types regardless of GLSL
5915 * version.
5916 */
5917 static bool
5918 is_valid_default_precision_type(const struct glsl_type *const type)
5919 {
5920 if (type == NULL)
5921 return false;
5922
5923 switch (type->base_type) {
5924 case GLSL_TYPE_INT:
5925 case GLSL_TYPE_FLOAT:
5926 /* "int" and "float" are valid, but vectors and matrices are not. */
5927 return type->vector_elements == 1 && type->matrix_columns == 1;
5928 case GLSL_TYPE_SAMPLER:
5929 case GLSL_TYPE_IMAGE:
5930 case GLSL_TYPE_ATOMIC_UINT:
5931 return true;
5932 default:
5933 return false;
5934 }
5935 }
5936
5937
5938 ir_rvalue *
5939 ast_type_specifier::hir(exec_list *instructions,
5940 struct _mesa_glsl_parse_state *state)
5941 {
5942 if (this->default_precision == ast_precision_none && this->structure == NULL)
5943 return NULL;
5944
5945 YYLTYPE loc = this->get_location();
5946
5947 /* If this is a precision statement, check that the type to which it is
5948 * applied is either float or int.
5949 *
5950 * From section 4.5.3 of the GLSL 1.30 spec:
5951 * "The precision statement
5952 * precision precision-qualifier type;
5953 * can be used to establish a default precision qualifier. The type
5954 * field can be either int or float [...]. Any other types or
5955 * qualifiers will result in an error.
5956 */
5957 if (this->default_precision != ast_precision_none) {
5958 if (!state->check_precision_qualifiers_allowed(&loc))
5959 return NULL;
5960
5961 if (this->structure != NULL) {
5962 _mesa_glsl_error(&loc, state,
5963 "precision qualifiers do not apply to structures");
5964 return NULL;
5965 }
5966
5967 if (this->array_specifier != NULL) {
5968 _mesa_glsl_error(&loc, state,
5969 "default precision statements do not apply to "
5970 "arrays");
5971 return NULL;
5972 }
5973
5974 const struct glsl_type *const type =
5975 state->symbols->get_type(this->type_name);
5976 if (!is_valid_default_precision_type(type)) {
5977 _mesa_glsl_error(&loc, state,
5978 "default precision statements apply only to "
5979 "float, int, and opaque types");
5980 return NULL;
5981 }
5982
5983 if (state->es_shader) {
5984 /* Section 4.5.3 (Default Precision Qualifiers) of the GLSL ES 1.00
5985 * spec says:
5986 *
5987 * "Non-precision qualified declarations will use the precision
5988 * qualifier specified in the most recent precision statement
5989 * that is still in scope. The precision statement has the same
5990 * scoping rules as variable declarations. If it is declared
5991 * inside a compound statement, its effect stops at the end of
5992 * the innermost statement it was declared in. Precision
5993 * statements in nested scopes override precision statements in
5994 * outer scopes. Multiple precision statements for the same basic
5995 * type can appear inside the same scope, with later statements
5996 * overriding earlier statements within that scope."
5997 *
5998 * Default precision specifications follow the same scope rules as
5999 * variables. So, we can track the state of the default precision
6000 * qualifiers in the symbol table, and the rules will just work. This
6001 * is a slight abuse of the symbol table, but it has the semantics
6002 * that we want.
6003 */
6004 state->symbols->add_default_precision_qualifier(this->type_name,
6005 this->default_precision);
6006 }
6007
6008 /* FINISHME: Translate precision statements into IR. */
6009 return NULL;
6010 }
6011
6012 /* _mesa_ast_set_aggregate_type() sets the <structure> field so that
6013 * process_record_constructor() can do type-checking on C-style initializer
6014 * expressions of structs, but ast_struct_specifier should only be translated
6015 * to HIR if it is declaring the type of a structure.
6016 *
6017 * The ->is_declaration field is false for initializers of variables
6018 * declared separately from the struct's type definition.
6019 *
6020 * struct S { ... }; (is_declaration = true)
6021 * struct T { ... } t = { ... }; (is_declaration = true)
6022 * S s = { ... }; (is_declaration = false)
6023 */
6024 if (this->structure != NULL && this->structure->is_declaration)
6025 return this->structure->hir(instructions, state);
6026
6027 return NULL;
6028 }
6029
6030
6031 /**
6032 * Process a structure or interface block tree into an array of structure fields
6033 *
6034 * After parsing, where there are some syntax differnces, structures and
6035 * interface blocks are almost identical. They are similar enough that the
6036 * AST for each can be processed the same way into a set of
6037 * \c glsl_struct_field to describe the members.
6038 *
6039 * If we're processing an interface block, var_mode should be the type of the
6040 * interface block (ir_var_shader_in, ir_var_shader_out, ir_var_uniform or
6041 * ir_var_shader_storage). If we're processing a structure, var_mode should be
6042 * ir_var_auto.
6043 *
6044 * \return
6045 * The number of fields processed. A pointer to the array structure fields is
6046 * stored in \c *fields_ret.
6047 */
6048 unsigned
6049 ast_process_struct_or_iface_block_members(exec_list *instructions,
6050 struct _mesa_glsl_parse_state *state,
6051 exec_list *declarations,
6052 glsl_struct_field **fields_ret,
6053 bool is_interface,
6054 enum glsl_matrix_layout matrix_layout,
6055 bool allow_reserved_names,
6056 ir_variable_mode var_mode,
6057 ast_type_qualifier *layout)
6058 {
6059 unsigned decl_count = 0;
6060
6061 /* Make an initial pass over the list of fields to determine how
6062 * many there are. Each element in this list is an ast_declarator_list.
6063 * This means that we actually need to count the number of elements in the
6064 * 'declarations' list in each of the elements.
6065 */
6066 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
6067 decl_count += decl_list->declarations.length();
6068 }
6069
6070 /* Allocate storage for the fields and process the field
6071 * declarations. As the declarations are processed, try to also convert
6072 * the types to HIR. This ensures that structure definitions embedded in
6073 * other structure definitions or in interface blocks are processed.
6074 */
6075 glsl_struct_field *const fields = ralloc_array(state, glsl_struct_field,
6076 decl_count);
6077
6078 unsigned i = 0;
6079 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
6080 const char *type_name;
6081 YYLTYPE loc = decl_list->get_location();
6082
6083 decl_list->type->specifier->hir(instructions, state);
6084
6085 /* Section 10.9 of the GLSL ES 1.00 specification states that
6086 * embedded structure definitions have been removed from the language.
6087 */
6088 if (state->es_shader && decl_list->type->specifier->structure != NULL) {
6089 _mesa_glsl_error(&loc, state, "embedded structure definitions are "
6090 "not allowed in GLSL ES 1.00");
6091 }
6092
6093 const glsl_type *decl_type =
6094 decl_list->type->glsl_type(& type_name, state);
6095
6096 const struct ast_type_qualifier *const qual =
6097 &decl_list->type->qualifier;
6098
6099 /* From section 4.3.9 of the GLSL 4.40 spec:
6100 *
6101 * "[In interface blocks] opaque types are not allowed."
6102 *
6103 * It should be impossible for decl_type to be NULL here. Cases that
6104 * might naturally lead to decl_type being NULL, especially for the
6105 * is_interface case, will have resulted in compilation having
6106 * already halted due to a syntax error.
6107 */
6108 assert(decl_type);
6109
6110 if (is_interface && decl_type->contains_opaque()) {
6111 _mesa_glsl_error(&loc, state,
6112 "uniform/buffer in non-default interface block contains "
6113 "opaque variable");
6114 }
6115
6116 if (decl_type->contains_atomic()) {
6117 /* From section 4.1.7.3 of the GLSL 4.40 spec:
6118 *
6119 * "Members of structures cannot be declared as atomic counter
6120 * types."
6121 */
6122 _mesa_glsl_error(&loc, state, "atomic counter in structure, "
6123 "shader storage block or uniform block");
6124 }
6125
6126 if (decl_type->contains_image()) {
6127 /* FINISHME: Same problem as with atomic counters.
6128 * FINISHME: Request clarification from Khronos and add
6129 * FINISHME: spec quotation here.
6130 */
6131 _mesa_glsl_error(&loc, state,
6132 "image in structure, shader storage block or "
6133 "uniform block");
6134 }
6135
6136 if (qual->flags.q.explicit_binding) {
6137 _mesa_glsl_error(&loc, state,
6138 "binding layout qualifier cannot be applied "
6139 "to struct or interface block members");
6140 }
6141
6142 if (qual->flags.q.std140 ||
6143 qual->flags.q.std430 ||
6144 qual->flags.q.packed ||
6145 qual->flags.q.shared) {
6146 _mesa_glsl_error(&loc, state,
6147 "uniform/shader storage block layout qualifiers "
6148 "std140, std430, packed, and shared can only be "
6149 "applied to uniform/shader storage blocks, not "
6150 "members");
6151 }
6152
6153 if (qual->flags.q.constant) {
6154 _mesa_glsl_error(&loc, state,
6155 "const storage qualifier cannot be applied "
6156 "to struct or interface block members");
6157 }
6158
6159 /* From Section 4.4.2.3 (Geometry Outputs) of the GLSL 4.50 spec:
6160 *
6161 * "A block member may be declared with a stream identifier, but
6162 * the specified stream must match the stream associated with the
6163 * containing block."
6164 */
6165 if (qual->flags.q.explicit_stream &&
6166 qual->stream != layout->stream) {
6167 _mesa_glsl_error(&loc, state, "stream layout qualifier on interface "
6168 "block member does not match the interface block "
6169 "(%d vs %d)", qual->stream, layout->stream);
6170 }
6171
6172 if (qual->flags.q.uniform && qual->has_interpolation()) {
6173 _mesa_glsl_error(&loc, state,
6174 "interpolation qualifiers cannot be used "
6175 "with uniform interface blocks");
6176 }
6177
6178 if ((qual->flags.q.uniform || !is_interface) &&
6179 qual->has_auxiliary_storage()) {
6180 _mesa_glsl_error(&loc, state,
6181 "auxiliary storage qualifiers cannot be used "
6182 "in uniform blocks or structures.");
6183 }
6184
6185 if (qual->flags.q.row_major || qual->flags.q.column_major) {
6186 if (!qual->flags.q.uniform && !qual->flags.q.buffer) {
6187 _mesa_glsl_error(&loc, state,
6188 "row_major and column_major can only be "
6189 "applied to interface blocks");
6190 } else
6191 validate_matrix_layout_for_type(state, &loc, decl_type, NULL);
6192 }
6193
6194 if (qual->flags.q.read_only && qual->flags.q.write_only) {
6195 _mesa_glsl_error(&loc, state, "buffer variable can't be both "
6196 "readonly and writeonly.");
6197 }
6198
6199 foreach_list_typed (ast_declaration, decl, link,
6200 &decl_list->declarations) {
6201 YYLTYPE loc = decl->get_location();
6202
6203 if (!allow_reserved_names)
6204 validate_identifier(decl->identifier, loc, state);
6205
6206 const struct glsl_type *field_type =
6207 process_array_type(&loc, decl_type, decl->array_specifier, state);
6208 validate_array_dimensions(field_type, state, &loc);
6209 fields[i].type = field_type;
6210 fields[i].name = decl->identifier;
6211 fields[i].location = -1;
6212 fields[i].interpolation =
6213 interpret_interpolation_qualifier(qual, var_mode, state, &loc);
6214 fields[i].centroid = qual->flags.q.centroid ? 1 : 0;
6215 fields[i].sample = qual->flags.q.sample ? 1 : 0;
6216 fields[i].patch = qual->flags.q.patch ? 1 : 0;
6217 fields[i].precision = qual->precision;
6218
6219 /* Propogate row- / column-major information down the fields of the
6220 * structure or interface block. Structures need this data because
6221 * the structure may contain a structure that contains ... a matrix
6222 * that need the proper layout.
6223 */
6224 if (field_type->without_array()->is_matrix()
6225 || field_type->without_array()->is_record()) {
6226 /* If no layout is specified for the field, inherit the layout
6227 * from the block.
6228 */
6229 fields[i].matrix_layout = matrix_layout;
6230
6231 if (qual->flags.q.row_major)
6232 fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
6233 else if (qual->flags.q.column_major)
6234 fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
6235
6236 /* If we're processing an interface block, the matrix layout must
6237 * be decided by this point.
6238 */
6239 assert(!is_interface
6240 || fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR
6241 || fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_COLUMN_MAJOR);
6242 }
6243
6244 /* Image qualifiers are allowed on buffer variables, which can only
6245 * be defined inside shader storage buffer objects
6246 */
6247 if (layout && var_mode == ir_var_shader_storage) {
6248 /* For readonly and writeonly qualifiers the field definition,
6249 * if set, overwrites the layout qualifier.
6250 */
6251 if (qual->flags.q.read_only) {
6252 fields[i].image_read_only = true;
6253 fields[i].image_write_only = false;
6254 } else if (qual->flags.q.write_only) {
6255 fields[i].image_read_only = false;
6256 fields[i].image_write_only = true;
6257 } else {
6258 fields[i].image_read_only = layout->flags.q.read_only;
6259 fields[i].image_write_only = layout->flags.q.write_only;
6260 }
6261
6262 /* For other qualifiers, we set the flag if either the layout
6263 * qualifier or the field qualifier are set
6264 */
6265 fields[i].image_coherent = qual->flags.q.coherent ||
6266 layout->flags.q.coherent;
6267 fields[i].image_volatile = qual->flags.q._volatile ||
6268 layout->flags.q._volatile;
6269 fields[i].image_restrict = qual->flags.q.restrict_flag ||
6270 layout->flags.q.restrict_flag;
6271 }
6272
6273 i++;
6274 }
6275 }
6276
6277 assert(i == decl_count);
6278
6279 *fields_ret = fields;
6280 return decl_count;
6281 }
6282
6283
6284 ir_rvalue *
6285 ast_struct_specifier::hir(exec_list *instructions,
6286 struct _mesa_glsl_parse_state *state)
6287 {
6288 YYLTYPE loc = this->get_location();
6289
6290 /* Section 4.1.8 (Structures) of the GLSL 1.10 spec says:
6291 *
6292 * "Anonymous structures are not supported; so embedded structures must
6293 * have a declarator. A name given to an embedded struct is scoped at
6294 * the same level as the struct it is embedded in."
6295 *
6296 * The same section of the GLSL 1.20 spec says:
6297 *
6298 * "Anonymous structures are not supported. Embedded structures are not
6299 * supported.
6300 *
6301 * struct S { float f; };
6302 * struct T {
6303 * S; // Error: anonymous structures disallowed
6304 * struct { ... }; // Error: embedded structures disallowed
6305 * S s; // Okay: nested structures with name are allowed
6306 * };"
6307 *
6308 * The GLSL ES 1.00 and 3.00 specs have similar langauge and examples. So,
6309 * we allow embedded structures in 1.10 only.
6310 */
6311 if (state->language_version != 110 && state->struct_specifier_depth != 0)
6312 _mesa_glsl_error(&loc, state,
6313 "embedded structure declarations are not allowed");
6314
6315 state->struct_specifier_depth++;
6316
6317 glsl_struct_field *fields;
6318 unsigned decl_count =
6319 ast_process_struct_or_iface_block_members(instructions,
6320 state,
6321 &this->declarations,
6322 &fields,
6323 false,
6324 GLSL_MATRIX_LAYOUT_INHERITED,
6325 false /* allow_reserved_names */,
6326 ir_var_auto,
6327 NULL);
6328
6329 validate_identifier(this->name, loc, state);
6330
6331 const glsl_type *t =
6332 glsl_type::get_record_instance(fields, decl_count, this->name);
6333
6334 if (!state->symbols->add_type(name, t)) {
6335 _mesa_glsl_error(& loc, state, "struct `%s' previously defined", name);
6336 } else {
6337 const glsl_type **s = reralloc(state, state->user_structures,
6338 const glsl_type *,
6339 state->num_user_structures + 1);
6340 if (s != NULL) {
6341 s[state->num_user_structures] = t;
6342 state->user_structures = s;
6343 state->num_user_structures++;
6344 }
6345 }
6346
6347 state->struct_specifier_depth--;
6348
6349 /* Structure type definitions do not have r-values.
6350 */
6351 return NULL;
6352 }
6353
6354
6355 /**
6356 * Visitor class which detects whether a given interface block has been used.
6357 */
6358 class interface_block_usage_visitor : public ir_hierarchical_visitor
6359 {
6360 public:
6361 interface_block_usage_visitor(ir_variable_mode mode, const glsl_type *block)
6362 : mode(mode), block(block), found(false)
6363 {
6364 }
6365
6366 virtual ir_visitor_status visit(ir_dereference_variable *ir)
6367 {
6368 if (ir->var->data.mode == mode && ir->var->get_interface_type() == block) {
6369 found = true;
6370 return visit_stop;
6371 }
6372 return visit_continue;
6373 }
6374
6375 bool usage_found() const
6376 {
6377 return this->found;
6378 }
6379
6380 private:
6381 ir_variable_mode mode;
6382 const glsl_type *block;
6383 bool found;
6384 };
6385
6386 static bool
6387 is_unsized_array_last_element(ir_variable *v)
6388 {
6389 const glsl_type *interface_type = v->get_interface_type();
6390 int length = interface_type->length;
6391
6392 assert(v->type->is_unsized_array());
6393
6394 /* Check if it is the last element of the interface */
6395 if (strcmp(interface_type->fields.structure[length-1].name, v->name) == 0)
6396 return true;
6397 return false;
6398 }
6399
6400 ir_rvalue *
6401 ast_interface_block::hir(exec_list *instructions,
6402 struct _mesa_glsl_parse_state *state)
6403 {
6404 YYLTYPE loc = this->get_location();
6405
6406 /* Interface blocks must be declared at global scope */
6407 if (state->current_function != NULL) {
6408 _mesa_glsl_error(&loc, state,
6409 "Interface block `%s' must be declared "
6410 "at global scope",
6411 this->block_name);
6412 }
6413
6414 if (!this->layout.flags.q.buffer &&
6415 this->layout.flags.q.std430) {
6416 _mesa_glsl_error(&loc, state,
6417 "std430 storage block layout qualifier is supported "
6418 "only for shader storage blocks");
6419 }
6420
6421 /* The ast_interface_block has a list of ast_declarator_lists. We
6422 * need to turn those into ir_variables with an association
6423 * with this uniform block.
6424 */
6425 enum glsl_interface_packing packing;
6426 if (this->layout.flags.q.shared) {
6427 packing = GLSL_INTERFACE_PACKING_SHARED;
6428 } else if (this->layout.flags.q.packed) {
6429 packing = GLSL_INTERFACE_PACKING_PACKED;
6430 } else if (this->layout.flags.q.std430) {
6431 packing = GLSL_INTERFACE_PACKING_STD430;
6432 } else {
6433 /* The default layout is std140.
6434 */
6435 packing = GLSL_INTERFACE_PACKING_STD140;
6436 }
6437
6438 ir_variable_mode var_mode;
6439 const char *iface_type_name;
6440 if (this->layout.flags.q.in) {
6441 var_mode = ir_var_shader_in;
6442 iface_type_name = "in";
6443 } else if (this->layout.flags.q.out) {
6444 var_mode = ir_var_shader_out;
6445 iface_type_name = "out";
6446 } else if (this->layout.flags.q.uniform) {
6447 var_mode = ir_var_uniform;
6448 iface_type_name = "uniform";
6449 } else if (this->layout.flags.q.buffer) {
6450 var_mode = ir_var_shader_storage;
6451 iface_type_name = "buffer";
6452 } else {
6453 var_mode = ir_var_auto;
6454 iface_type_name = "UNKNOWN";
6455 assert(!"interface block layout qualifier not found!");
6456 }
6457
6458 enum glsl_matrix_layout matrix_layout = GLSL_MATRIX_LAYOUT_INHERITED;
6459 if (this->layout.flags.q.row_major)
6460 matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
6461 else if (this->layout.flags.q.column_major)
6462 matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
6463
6464 bool redeclaring_per_vertex = strcmp(this->block_name, "gl_PerVertex") == 0;
6465 exec_list declared_variables;
6466 glsl_struct_field *fields;
6467
6468 /* Treat an interface block as one level of nesting, so that embedded struct
6469 * specifiers will be disallowed.
6470 */
6471 state->struct_specifier_depth++;
6472
6473 /* For blocks that accept memory qualifiers (i.e. shader storage), verify
6474 * that we don't have incompatible qualifiers
6475 */
6476 if (this->layout.flags.q.read_only && this->layout.flags.q.write_only) {
6477 _mesa_glsl_error(&loc, state,
6478 "Interface block sets both readonly and writeonly");
6479 }
6480
6481 unsigned int num_variables =
6482 ast_process_struct_or_iface_block_members(&declared_variables,
6483 state,
6484 &this->declarations,
6485 &fields,
6486 true,
6487 matrix_layout,
6488 redeclaring_per_vertex,
6489 var_mode,
6490 &this->layout);
6491
6492 state->struct_specifier_depth--;
6493
6494 if (!redeclaring_per_vertex) {
6495 validate_identifier(this->block_name, loc, state);
6496
6497 /* From section 4.3.9 ("Interface Blocks") of the GLSL 4.50 spec:
6498 *
6499 * "Block names have no other use within a shader beyond interface
6500 * matching; it is a compile-time error to use a block name at global
6501 * scope for anything other than as a block name."
6502 */
6503 ir_variable *var = state->symbols->get_variable(this->block_name);
6504 if (var && !var->type->is_interface()) {
6505 _mesa_glsl_error(&loc, state, "Block name `%s' is "
6506 "already used in the scope.",
6507 this->block_name);
6508 }
6509 }
6510
6511 const glsl_type *earlier_per_vertex = NULL;
6512 if (redeclaring_per_vertex) {
6513 /* Find the previous declaration of gl_PerVertex. If we're redeclaring
6514 * the named interface block gl_in, we can find it by looking at the
6515 * previous declaration of gl_in. Otherwise we can find it by looking
6516 * at the previous decalartion of any of the built-in outputs,
6517 * e.g. gl_Position.
6518 *
6519 * Also check that the instance name and array-ness of the redeclaration
6520 * are correct.
6521 */
6522 switch (var_mode) {
6523 case ir_var_shader_in:
6524 if (ir_variable *earlier_gl_in =
6525 state->symbols->get_variable("gl_in")) {
6526 earlier_per_vertex = earlier_gl_in->get_interface_type();
6527 } else {
6528 _mesa_glsl_error(&loc, state,
6529 "redeclaration of gl_PerVertex input not allowed "
6530 "in the %s shader",
6531 _mesa_shader_stage_to_string(state->stage));
6532 }
6533 if (this->instance_name == NULL ||
6534 strcmp(this->instance_name, "gl_in") != 0 || this->array_specifier == NULL ||
6535 !this->array_specifier->is_single_dimension()) {
6536 _mesa_glsl_error(&loc, state,
6537 "gl_PerVertex input must be redeclared as "
6538 "gl_in[]");
6539 }
6540 break;
6541 case ir_var_shader_out:
6542 if (ir_variable *earlier_gl_Position =
6543 state->symbols->get_variable("gl_Position")) {
6544 earlier_per_vertex = earlier_gl_Position->get_interface_type();
6545 } else if (ir_variable *earlier_gl_out =
6546 state->symbols->get_variable("gl_out")) {
6547 earlier_per_vertex = earlier_gl_out->get_interface_type();
6548 } else {
6549 _mesa_glsl_error(&loc, state,
6550 "redeclaration of gl_PerVertex output not "
6551 "allowed in the %s shader",
6552 _mesa_shader_stage_to_string(state->stage));
6553 }
6554 if (state->stage == MESA_SHADER_TESS_CTRL) {
6555 if (this->instance_name == NULL ||
6556 strcmp(this->instance_name, "gl_out") != 0 || this->array_specifier == NULL) {
6557 _mesa_glsl_error(&loc, state,
6558 "gl_PerVertex output must be redeclared as "
6559 "gl_out[]");
6560 }
6561 } else {
6562 if (this->instance_name != NULL) {
6563 _mesa_glsl_error(&loc, state,
6564 "gl_PerVertex output may not be redeclared with "
6565 "an instance name");
6566 }
6567 }
6568 break;
6569 default:
6570 _mesa_glsl_error(&loc, state,
6571 "gl_PerVertex must be declared as an input or an "
6572 "output");
6573 break;
6574 }
6575
6576 if (earlier_per_vertex == NULL) {
6577 /* An error has already been reported. Bail out to avoid null
6578 * dereferences later in this function.
6579 */
6580 return NULL;
6581 }
6582
6583 /* Copy locations from the old gl_PerVertex interface block. */
6584 for (unsigned i = 0; i < num_variables; i++) {
6585 int j = earlier_per_vertex->field_index(fields[i].name);
6586 if (j == -1) {
6587 _mesa_glsl_error(&loc, state,
6588 "redeclaration of gl_PerVertex must be a subset "
6589 "of the built-in members of gl_PerVertex");
6590 } else {
6591 fields[i].location =
6592 earlier_per_vertex->fields.structure[j].location;
6593 fields[i].interpolation =
6594 earlier_per_vertex->fields.structure[j].interpolation;
6595 fields[i].centroid =
6596 earlier_per_vertex->fields.structure[j].centroid;
6597 fields[i].sample =
6598 earlier_per_vertex->fields.structure[j].sample;
6599 fields[i].patch =
6600 earlier_per_vertex->fields.structure[j].patch;
6601 fields[i].precision =
6602 earlier_per_vertex->fields.structure[j].precision;
6603 }
6604 }
6605
6606 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10
6607 * spec:
6608 *
6609 * If a built-in interface block is redeclared, it must appear in
6610 * the shader before any use of any member included in the built-in
6611 * declaration, or a compilation error will result.
6612 *
6613 * This appears to be a clarification to the behaviour established for
6614 * gl_PerVertex by GLSL 1.50, therefore we implement this behaviour
6615 * regardless of GLSL version.
6616 */
6617 interface_block_usage_visitor v(var_mode, earlier_per_vertex);
6618 v.run(instructions);
6619 if (v.usage_found()) {
6620 _mesa_glsl_error(&loc, state,
6621 "redeclaration of a built-in interface block must "
6622 "appear before any use of any member of the "
6623 "interface block");
6624 }
6625 }
6626
6627 const glsl_type *block_type =
6628 glsl_type::get_interface_instance(fields,
6629 num_variables,
6630 packing,
6631 this->block_name);
6632 if (this->layout.flags.q.explicit_binding)
6633 validate_binding_qualifier(state, &loc, block_type, &this->layout);
6634
6635 if (!state->symbols->add_interface(block_type->name, block_type, var_mode)) {
6636 YYLTYPE loc = this->get_location();
6637 _mesa_glsl_error(&loc, state, "interface block `%s' with type `%s' "
6638 "already taken in the current scope",
6639 this->block_name, iface_type_name);
6640 }
6641
6642 /* Since interface blocks cannot contain statements, it should be
6643 * impossible for the block to generate any instructions.
6644 */
6645 assert(declared_variables.is_empty());
6646
6647 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
6648 *
6649 * Geometry shader input variables get the per-vertex values written
6650 * out by vertex shader output variables of the same names. Since a
6651 * geometry shader operates on a set of vertices, each input varying
6652 * variable (or input block, see interface blocks below) needs to be
6653 * declared as an array.
6654 */
6655 if (state->stage == MESA_SHADER_GEOMETRY && this->array_specifier == NULL &&
6656 var_mode == ir_var_shader_in) {
6657 _mesa_glsl_error(&loc, state, "geometry shader inputs must be arrays");
6658 } else if ((state->stage == MESA_SHADER_TESS_CTRL ||
6659 state->stage == MESA_SHADER_TESS_EVAL) &&
6660 this->array_specifier == NULL &&
6661 var_mode == ir_var_shader_in) {
6662 _mesa_glsl_error(&loc, state, "per-vertex tessellation shader inputs must be arrays");
6663 } else if (state->stage == MESA_SHADER_TESS_CTRL &&
6664 this->array_specifier == NULL &&
6665 var_mode == ir_var_shader_out) {
6666 _mesa_glsl_error(&loc, state, "tessellation control shader outputs must be arrays");
6667 }
6668
6669
6670 /* Page 39 (page 45 of the PDF) of section 4.3.7 in the GLSL ES 3.00 spec
6671 * says:
6672 *
6673 * "If an instance name (instance-name) is used, then it puts all the
6674 * members inside a scope within its own name space, accessed with the
6675 * field selector ( . ) operator (analogously to structures)."
6676 */
6677 if (this->instance_name) {
6678 if (redeclaring_per_vertex) {
6679 /* When a built-in in an unnamed interface block is redeclared,
6680 * get_variable_being_redeclared() calls
6681 * check_builtin_array_max_size() to make sure that built-in array
6682 * variables aren't redeclared to illegal sizes. But we're looking
6683 * at a redeclaration of a named built-in interface block. So we
6684 * have to manually call check_builtin_array_max_size() for all parts
6685 * of the interface that are arrays.
6686 */
6687 for (unsigned i = 0; i < num_variables; i++) {
6688 if (fields[i].type->is_array()) {
6689 const unsigned size = fields[i].type->array_size();
6690 check_builtin_array_max_size(fields[i].name, size, loc, state);
6691 }
6692 }
6693 } else {
6694 validate_identifier(this->instance_name, loc, state);
6695 }
6696
6697 ir_variable *var;
6698
6699 if (this->array_specifier != NULL) {
6700 const glsl_type *block_array_type =
6701 process_array_type(&loc, block_type, this->array_specifier, state);
6702
6703 /* Section 4.3.7 (Interface Blocks) of the GLSL 1.50 spec says:
6704 *
6705 * For uniform blocks declared an array, each individual array
6706 * element corresponds to a separate buffer object backing one
6707 * instance of the block. As the array size indicates the number
6708 * of buffer objects needed, uniform block array declarations
6709 * must specify an array size.
6710 *
6711 * And a few paragraphs later:
6712 *
6713 * Geometry shader input blocks must be declared as arrays and
6714 * follow the array declaration and linking rules for all
6715 * geometry shader inputs. All other input and output block
6716 * arrays must specify an array size.
6717 *
6718 * The same applies to tessellation shaders.
6719 *
6720 * The upshot of this is that the only circumstance where an
6721 * interface array size *doesn't* need to be specified is on a
6722 * geometry shader input, tessellation control shader input,
6723 * tessellation control shader output, and tessellation evaluation
6724 * shader input.
6725 */
6726 if (block_array_type->is_unsized_array()) {
6727 bool allow_inputs = state->stage == MESA_SHADER_GEOMETRY ||
6728 state->stage == MESA_SHADER_TESS_CTRL ||
6729 state->stage == MESA_SHADER_TESS_EVAL;
6730 bool allow_outputs = state->stage == MESA_SHADER_TESS_CTRL;
6731
6732 if (this->layout.flags.q.in) {
6733 if (!allow_inputs)
6734 _mesa_glsl_error(&loc, state,
6735 "unsized input block arrays not allowed in "
6736 "%s shader",
6737 _mesa_shader_stage_to_string(state->stage));
6738 } else if (this->layout.flags.q.out) {
6739 if (!allow_outputs)
6740 _mesa_glsl_error(&loc, state,
6741 "unsized output block arrays not allowed in "
6742 "%s shader",
6743 _mesa_shader_stage_to_string(state->stage));
6744 } else {
6745 /* by elimination, this is a uniform block array */
6746 _mesa_glsl_error(&loc, state,
6747 "unsized uniform block arrays not allowed in "
6748 "%s shader",
6749 _mesa_shader_stage_to_string(state->stage));
6750 }
6751 }
6752
6753 /* From section 4.3.9 (Interface Blocks) of the GLSL ES 3.10 spec:
6754 *
6755 * * Arrays of arrays of blocks are not allowed
6756 */
6757 if (state->es_shader && block_array_type->is_array() &&
6758 block_array_type->fields.array->is_array()) {
6759 _mesa_glsl_error(&loc, state,
6760 "arrays of arrays interface blocks are "
6761 "not allowed");
6762 }
6763
6764 if (this->layout.flags.q.explicit_binding)
6765 validate_binding_qualifier(state, &loc, block_array_type,
6766 &this->layout);
6767
6768 var = new(state) ir_variable(block_array_type,
6769 this->instance_name,
6770 var_mode);
6771 } else {
6772 var = new(state) ir_variable(block_type,
6773 this->instance_name,
6774 var_mode);
6775 }
6776
6777 var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
6778 ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
6779
6780 if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
6781 var->data.read_only = true;
6782
6783 if (state->stage == MESA_SHADER_GEOMETRY && var_mode == ir_var_shader_in)
6784 handle_geometry_shader_input_decl(state, loc, var);
6785 else if ((state->stage == MESA_SHADER_TESS_CTRL ||
6786 state->stage == MESA_SHADER_TESS_EVAL) && var_mode == ir_var_shader_in)
6787 handle_tess_shader_input_decl(state, loc, var);
6788 else if (state->stage == MESA_SHADER_TESS_CTRL && var_mode == ir_var_shader_out)
6789 handle_tess_ctrl_shader_output_decl(state, loc, var);
6790
6791 for (unsigned i = 0; i < num_variables; i++) {
6792 if (fields[i].type->is_unsized_array()) {
6793 if (var_mode == ir_var_shader_storage) {
6794 if (i != (num_variables - 1)) {
6795 _mesa_glsl_error(&loc, state, "unsized array `%s' definition: "
6796 "only last member of a shader storage block "
6797 "can be defined as unsized array",
6798 fields[i].name);
6799 }
6800 } else {
6801 /* From GLSL ES 3.10 spec, section 4.1.9 "Arrays":
6802 *
6803 * "If an array is declared as the last member of a shader storage
6804 * block and the size is not specified at compile-time, it is
6805 * sized at run-time. In all other cases, arrays are sized only
6806 * at compile-time."
6807 */
6808 if (state->es_shader) {
6809 _mesa_glsl_error(&loc, state, "unsized array `%s' definition: "
6810 "only last member of a shader storage block "
6811 "can be defined as unsized array",
6812 fields[i].name);
6813 }
6814 }
6815 }
6816 }
6817
6818 if (ir_variable *earlier =
6819 state->symbols->get_variable(this->instance_name)) {
6820 if (!redeclaring_per_vertex) {
6821 _mesa_glsl_error(&loc, state, "`%s' redeclared",
6822 this->instance_name);
6823 }
6824 earlier->data.how_declared = ir_var_declared_normally;
6825 earlier->type = var->type;
6826 earlier->reinit_interface_type(block_type);
6827 delete var;
6828 } else {
6829 /* Propagate the "binding" keyword into this UBO's fields;
6830 * the UBO declaration itself doesn't get an ir_variable unless it
6831 * has an instance name. This is ugly.
6832 */
6833 var->data.explicit_binding = this->layout.flags.q.explicit_binding;
6834 var->data.binding = this->layout.binding;
6835
6836 var->data.stream = this->layout.stream;
6837
6838 state->symbols->add_variable(var);
6839 instructions->push_tail(var);
6840 }
6841 } else {
6842 /* In order to have an array size, the block must also be declared with
6843 * an instance name.
6844 */
6845 assert(this->array_specifier == NULL);
6846
6847 for (unsigned i = 0; i < num_variables; i++) {
6848 ir_variable *var =
6849 new(state) ir_variable(fields[i].type,
6850 ralloc_strdup(state, fields[i].name),
6851 var_mode);
6852 var->data.interpolation = fields[i].interpolation;
6853 var->data.centroid = fields[i].centroid;
6854 var->data.sample = fields[i].sample;
6855 var->data.patch = fields[i].patch;
6856 var->data.stream = this->layout.stream;
6857 var->init_interface_type(block_type);
6858
6859 if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
6860 var->data.read_only = true;
6861
6862 /* Precision qualifiers do not have any meaning in Desktop GLSL */
6863 if (state->es_shader) {
6864 var->data.precision =
6865 select_gles_precision(fields[i].precision, fields[i].type,
6866 state, &loc);
6867 }
6868
6869 if (fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED) {
6870 var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
6871 ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
6872 } else {
6873 var->data.matrix_layout = fields[i].matrix_layout;
6874 }
6875
6876 if (var->data.mode == ir_var_shader_storage) {
6877 var->data.image_read_only = fields[i].image_read_only;
6878 var->data.image_write_only = fields[i].image_write_only;
6879 var->data.image_coherent = fields[i].image_coherent;
6880 var->data.image_volatile = fields[i].image_volatile;
6881 var->data.image_restrict = fields[i].image_restrict;
6882 }
6883
6884 /* Examine var name here since var may get deleted in the next call */
6885 bool var_is_gl_id = is_gl_identifier(var->name);
6886
6887 if (redeclaring_per_vertex) {
6888 ir_variable *earlier =
6889 get_variable_being_redeclared(var, loc, state,
6890 true /* allow_all_redeclarations */);
6891 if (!var_is_gl_id || earlier == NULL) {
6892 _mesa_glsl_error(&loc, state,
6893 "redeclaration of gl_PerVertex can only "
6894 "include built-in variables");
6895 } else if (earlier->data.how_declared == ir_var_declared_normally) {
6896 _mesa_glsl_error(&loc, state,
6897 "`%s' has already been redeclared",
6898 earlier->name);
6899 } else {
6900 earlier->data.how_declared = ir_var_declared_in_block;
6901 earlier->reinit_interface_type(block_type);
6902 }
6903 continue;
6904 }
6905
6906 if (state->symbols->get_variable(var->name) != NULL)
6907 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
6908
6909 /* Propagate the "binding" keyword into this UBO/SSBO's fields.
6910 * The UBO declaration itself doesn't get an ir_variable unless it
6911 * has an instance name. This is ugly.
6912 */
6913 var->data.explicit_binding = this->layout.flags.q.explicit_binding;
6914 var->data.binding = this->layout.binding;
6915
6916 if (var->type->is_unsized_array()) {
6917 if (var->is_in_shader_storage_block()) {
6918 if (!is_unsized_array_last_element(var)) {
6919 _mesa_glsl_error(&loc, state, "unsized array `%s' definition: "
6920 "only last member of a shader storage block "
6921 "can be defined as unsized array",
6922 var->name);
6923 }
6924 var->data.from_ssbo_unsized_array = true;
6925 } else {
6926 /* From GLSL ES 3.10 spec, section 4.1.9 "Arrays":
6927 *
6928 * "If an array is declared as the last member of a shader storage
6929 * block and the size is not specified at compile-time, it is
6930 * sized at run-time. In all other cases, arrays are sized only
6931 * at compile-time."
6932 */
6933 if (state->es_shader) {
6934 _mesa_glsl_error(&loc, state, "unsized array `%s' definition: "
6935 "only last member of a shader storage block "
6936 "can be defined as unsized array",
6937 var->name);
6938 }
6939 }
6940 }
6941
6942 state->symbols->add_variable(var);
6943 instructions->push_tail(var);
6944 }
6945
6946 if (redeclaring_per_vertex && block_type != earlier_per_vertex) {
6947 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10 spec:
6948 *
6949 * It is also a compilation error ... to redeclare a built-in
6950 * block and then use a member from that built-in block that was
6951 * not included in the redeclaration.
6952 *
6953 * This appears to be a clarification to the behaviour established
6954 * for gl_PerVertex by GLSL 1.50, therefore we implement this
6955 * behaviour regardless of GLSL version.
6956 *
6957 * To prevent the shader from using a member that was not included in
6958 * the redeclaration, we disable any ir_variables that are still
6959 * associated with the old declaration of gl_PerVertex (since we've
6960 * already updated all of the variables contained in the new
6961 * gl_PerVertex to point to it).
6962 *
6963 * As a side effect this will prevent
6964 * validate_intrastage_interface_blocks() from getting confused and
6965 * thinking there are conflicting definitions of gl_PerVertex in the
6966 * shader.
6967 */
6968 foreach_in_list_safe(ir_instruction, node, instructions) {
6969 ir_variable *const var = node->as_variable();
6970 if (var != NULL &&
6971 var->get_interface_type() == earlier_per_vertex &&
6972 var->data.mode == var_mode) {
6973 if (var->data.how_declared == ir_var_declared_normally) {
6974 _mesa_glsl_error(&loc, state,
6975 "redeclaration of gl_PerVertex cannot "
6976 "follow a redeclaration of `%s'",
6977 var->name);
6978 }
6979 state->symbols->disable_variable(var->name);
6980 var->remove();
6981 }
6982 }
6983 }
6984 }
6985
6986 return NULL;
6987 }
6988
6989
6990 ir_rvalue *
6991 ast_tcs_output_layout::hir(exec_list *instructions,
6992 struct _mesa_glsl_parse_state *state)
6993 {
6994 YYLTYPE loc = this->get_location();
6995
6996 /* If any tessellation control output layout declaration preceded this
6997 * one, make sure it was consistent with this one.
6998 */
6999 if (state->tcs_output_vertices_specified &&
7000 state->out_qualifier->vertices != this->vertices) {
7001 _mesa_glsl_error(&loc, state,
7002 "tessellation control shader output layout does not "
7003 "match previous declaration");
7004 return NULL;
7005 }
7006
7007 /* If any shader outputs occurred before this declaration and specified an
7008 * array size, make sure the size they specified is consistent with the
7009 * primitive type.
7010 */
7011 unsigned num_vertices = this->vertices;
7012 if (state->tcs_output_size != 0 && state->tcs_output_size != num_vertices) {
7013 _mesa_glsl_error(&loc, state,
7014 "this tessellation control shader output layout "
7015 "specifies %u vertices, but a previous output "
7016 "is declared with size %u",
7017 num_vertices, state->tcs_output_size);
7018 return NULL;
7019 }
7020
7021 state->tcs_output_vertices_specified = true;
7022
7023 /* If any shader outputs occurred before this declaration and did not
7024 * specify an array size, their size is determined now.
7025 */
7026 foreach_in_list (ir_instruction, node, instructions) {
7027 ir_variable *var = node->as_variable();
7028 if (var == NULL || var->data.mode != ir_var_shader_out)
7029 continue;
7030
7031 /* Note: Not all tessellation control shader output are arrays. */
7032 if (!var->type->is_unsized_array() || var->data.patch)
7033 continue;
7034
7035 if (var->data.max_array_access >= num_vertices) {
7036 _mesa_glsl_error(&loc, state,
7037 "this tessellation control shader output layout "
7038 "specifies %u vertices, but an access to element "
7039 "%u of output `%s' already exists", num_vertices,
7040 var->data.max_array_access, var->name);
7041 } else {
7042 var->type = glsl_type::get_array_instance(var->type->fields.array,
7043 num_vertices);
7044 }
7045 }
7046
7047 return NULL;
7048 }
7049
7050
7051 ir_rvalue *
7052 ast_gs_input_layout::hir(exec_list *instructions,
7053 struct _mesa_glsl_parse_state *state)
7054 {
7055 YYLTYPE loc = this->get_location();
7056
7057 /* If any geometry input layout declaration preceded this one, make sure it
7058 * was consistent with this one.
7059 */
7060 if (state->gs_input_prim_type_specified &&
7061 state->in_qualifier->prim_type != this->prim_type) {
7062 _mesa_glsl_error(&loc, state,
7063 "geometry shader input layout does not match"
7064 " previous declaration");
7065 return NULL;
7066 }
7067
7068 /* If any shader inputs occurred before this declaration and specified an
7069 * array size, make sure the size they specified is consistent with the
7070 * primitive type.
7071 */
7072 unsigned num_vertices = vertices_per_prim(this->prim_type);
7073 if (state->gs_input_size != 0 && state->gs_input_size != num_vertices) {
7074 _mesa_glsl_error(&loc, state,
7075 "this geometry shader input layout implies %u vertices"
7076 " per primitive, but a previous input is declared"
7077 " with size %u", num_vertices, state->gs_input_size);
7078 return NULL;
7079 }
7080
7081 state->gs_input_prim_type_specified = true;
7082
7083 /* If any shader inputs occurred before this declaration and did not
7084 * specify an array size, their size is determined now.
7085 */
7086 foreach_in_list(ir_instruction, node, instructions) {
7087 ir_variable *var = node->as_variable();
7088 if (var == NULL || var->data.mode != ir_var_shader_in)
7089 continue;
7090
7091 /* Note: gl_PrimitiveIDIn has mode ir_var_shader_in, but it's not an
7092 * array; skip it.
7093 */
7094
7095 if (var->type->is_unsized_array()) {
7096 if (var->data.max_array_access >= num_vertices) {
7097 _mesa_glsl_error(&loc, state,
7098 "this geometry shader input layout implies %u"
7099 " vertices, but an access to element %u of input"
7100 " `%s' already exists", num_vertices,
7101 var->data.max_array_access, var->name);
7102 } else {
7103 var->type = glsl_type::get_array_instance(var->type->fields.array,
7104 num_vertices);
7105 }
7106 }
7107 }
7108
7109 return NULL;
7110 }
7111
7112
7113 ir_rvalue *
7114 ast_cs_input_layout::hir(exec_list *instructions,
7115 struct _mesa_glsl_parse_state *state)
7116 {
7117 YYLTYPE loc = this->get_location();
7118
7119 /* If any compute input layout declaration preceded this one, make sure it
7120 * was consistent with this one.
7121 */
7122 if (state->cs_input_local_size_specified) {
7123 for (int i = 0; i < 3; i++) {
7124 if (state->cs_input_local_size[i] != this->local_size[i]) {
7125 _mesa_glsl_error(&loc, state,
7126 "compute shader input layout does not match"
7127 " previous declaration");
7128 return NULL;
7129 }
7130 }
7131 }
7132
7133 /* From the ARB_compute_shader specification:
7134 *
7135 * If the local size of the shader in any dimension is greater
7136 * than the maximum size supported by the implementation for that
7137 * dimension, a compile-time error results.
7138 *
7139 * It is not clear from the spec how the error should be reported if
7140 * the total size of the work group exceeds
7141 * MAX_COMPUTE_WORK_GROUP_INVOCATIONS, but it seems reasonable to
7142 * report it at compile time as well.
7143 */
7144 GLuint64 total_invocations = 1;
7145 for (int i = 0; i < 3; i++) {
7146 if (this->local_size[i] > state->ctx->Const.MaxComputeWorkGroupSize[i]) {
7147 _mesa_glsl_error(&loc, state,
7148 "local_size_%c exceeds MAX_COMPUTE_WORK_GROUP_SIZE"
7149 " (%d)", 'x' + i,
7150 state->ctx->Const.MaxComputeWorkGroupSize[i]);
7151 break;
7152 }
7153 total_invocations *= this->local_size[i];
7154 if (total_invocations >
7155 state->ctx->Const.MaxComputeWorkGroupInvocations) {
7156 _mesa_glsl_error(&loc, state,
7157 "product of local_sizes exceeds "
7158 "MAX_COMPUTE_WORK_GROUP_INVOCATIONS (%d)",
7159 state->ctx->Const.MaxComputeWorkGroupInvocations);
7160 break;
7161 }
7162 }
7163
7164 state->cs_input_local_size_specified = true;
7165 for (int i = 0; i < 3; i++)
7166 state->cs_input_local_size[i] = this->local_size[i];
7167
7168 /* We may now declare the built-in constant gl_WorkGroupSize (see
7169 * builtin_variable_generator::generate_constants() for why we didn't
7170 * declare it earlier).
7171 */
7172 ir_variable *var = new(state->symbols)
7173 ir_variable(glsl_type::uvec3_type, "gl_WorkGroupSize", ir_var_auto);
7174 var->data.how_declared = ir_var_declared_implicitly;
7175 var->data.read_only = true;
7176 instructions->push_tail(var);
7177 state->symbols->add_variable(var);
7178 ir_constant_data data;
7179 memset(&data, 0, sizeof(data));
7180 for (int i = 0; i < 3; i++)
7181 data.u[i] = this->local_size[i];
7182 var->constant_value = new(var) ir_constant(glsl_type::uvec3_type, &data);
7183 var->constant_initializer =
7184 new(var) ir_constant(glsl_type::uvec3_type, &data);
7185 var->data.has_initializer = true;
7186
7187 return NULL;
7188 }
7189
7190
7191 static void
7192 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
7193 exec_list *instructions)
7194 {
7195 bool gl_FragColor_assigned = false;
7196 bool gl_FragData_assigned = false;
7197 bool gl_FragSecondaryColor_assigned = false;
7198 bool gl_FragSecondaryData_assigned = false;
7199 bool user_defined_fs_output_assigned = false;
7200 ir_variable *user_defined_fs_output = NULL;
7201
7202 /* It would be nice to have proper location information. */
7203 YYLTYPE loc;
7204 memset(&loc, 0, sizeof(loc));
7205
7206 foreach_in_list(ir_instruction, node, instructions) {
7207 ir_variable *var = node->as_variable();
7208
7209 if (!var || !var->data.assigned)
7210 continue;
7211
7212 if (strcmp(var->name, "gl_FragColor") == 0)
7213 gl_FragColor_assigned = true;
7214 else if (strcmp(var->name, "gl_FragData") == 0)
7215 gl_FragData_assigned = true;
7216 else if (strcmp(var->name, "gl_SecondaryFragColorEXT") == 0)
7217 gl_FragSecondaryColor_assigned = true;
7218 else if (strcmp(var->name, "gl_SecondaryFragDataEXT") == 0)
7219 gl_FragSecondaryData_assigned = true;
7220 else if (!is_gl_identifier(var->name)) {
7221 if (state->stage == MESA_SHADER_FRAGMENT &&
7222 var->data.mode == ir_var_shader_out) {
7223 user_defined_fs_output_assigned = true;
7224 user_defined_fs_output = var;
7225 }
7226 }
7227 }
7228
7229 /* From the GLSL 1.30 spec:
7230 *
7231 * "If a shader statically assigns a value to gl_FragColor, it
7232 * may not assign a value to any element of gl_FragData. If a
7233 * shader statically writes a value to any element of
7234 * gl_FragData, it may not assign a value to
7235 * gl_FragColor. That is, a shader may assign values to either
7236 * gl_FragColor or gl_FragData, but not both. Multiple shaders
7237 * linked together must also consistently write just one of
7238 * these variables. Similarly, if user declared output
7239 * variables are in use (statically assigned to), then the
7240 * built-in variables gl_FragColor and gl_FragData may not be
7241 * assigned to. These incorrect usages all generate compile
7242 * time errors."
7243 */
7244 if (gl_FragColor_assigned && gl_FragData_assigned) {
7245 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7246 "`gl_FragColor' and `gl_FragData'");
7247 } else if (gl_FragColor_assigned && user_defined_fs_output_assigned) {
7248 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7249 "`gl_FragColor' and `%s'",
7250 user_defined_fs_output->name);
7251 } else if (gl_FragSecondaryColor_assigned && gl_FragSecondaryData_assigned) {
7252 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7253 "`gl_FragSecondaryColorEXT' and"
7254 " `gl_FragSecondaryDataEXT'");
7255 } else if (gl_FragColor_assigned && gl_FragSecondaryData_assigned) {
7256 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7257 "`gl_FragColor' and"
7258 " `gl_FragSecondaryDataEXT'");
7259 } else if (gl_FragData_assigned && gl_FragSecondaryColor_assigned) {
7260 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7261 "`gl_FragData' and"
7262 " `gl_FragSecondaryColorEXT'");
7263 } else if (gl_FragData_assigned && user_defined_fs_output_assigned) {
7264 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7265 "`gl_FragData' and `%s'",
7266 user_defined_fs_output->name);
7267 }
7268
7269 if ((gl_FragSecondaryColor_assigned || gl_FragSecondaryData_assigned) &&
7270 !state->EXT_blend_func_extended_enable) {
7271 _mesa_glsl_error(&loc, state,
7272 "Dual source blending requires EXT_blend_func_extended");
7273 }
7274 }
7275
7276
7277 static void
7278 remove_per_vertex_blocks(exec_list *instructions,
7279 _mesa_glsl_parse_state *state, ir_variable_mode mode)
7280 {
7281 /* Find the gl_PerVertex interface block of the appropriate (in/out) mode,
7282 * if it exists in this shader type.
7283 */
7284 const glsl_type *per_vertex = NULL;
7285 switch (mode) {
7286 case ir_var_shader_in:
7287 if (ir_variable *gl_in = state->symbols->get_variable("gl_in"))
7288 per_vertex = gl_in->get_interface_type();
7289 break;
7290 case ir_var_shader_out:
7291 if (ir_variable *gl_Position =
7292 state->symbols->get_variable("gl_Position")) {
7293 per_vertex = gl_Position->get_interface_type();
7294 }
7295 break;
7296 default:
7297 assert(!"Unexpected mode");
7298 break;
7299 }
7300
7301 /* If we didn't find a built-in gl_PerVertex interface block, then we don't
7302 * need to do anything.
7303 */
7304 if (per_vertex == NULL)
7305 return;
7306
7307 /* If the interface block is used by the shader, then we don't need to do
7308 * anything.
7309 */
7310 interface_block_usage_visitor v(mode, per_vertex);
7311 v.run(instructions);
7312 if (v.usage_found())
7313 return;
7314
7315 /* Remove any ir_variable declarations that refer to the interface block
7316 * we're removing.
7317 */
7318 foreach_in_list_safe(ir_instruction, node, instructions) {
7319 ir_variable *const var = node->as_variable();
7320 if (var != NULL && var->get_interface_type() == per_vertex &&
7321 var->data.mode == mode) {
7322 state->symbols->disable_variable(var->name);
7323 var->remove();
7324 }
7325 }
7326 }