glsl: Allow geometry shader input instance arrays to be unsized.
[mesa.git] / src / glsl / ast_to_hir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file ast_to_hir.c
26 * Convert abstract syntax to to high-level intermediate reprensentation (HIR).
27 *
28 * During the conversion to HIR, the majority of the symantic checking is
29 * preformed on the program. This includes:
30 *
31 * * Symbol table management
32 * * Type checking
33 * * Function binding
34 *
35 * The majority of this work could be done during parsing, and the parser could
36 * probably generate HIR directly. However, this results in frequent changes
37 * to the parser code. Since we do not assume that every system this complier
38 * is built on will have Flex and Bison installed, we have to store the code
39 * generated by these tools in our version control system. In other parts of
40 * the system we've seen problems where a parser was changed but the generated
41 * code was not committed, merge conflicts where created because two developers
42 * had slightly different versions of Bison installed, etc.
43 *
44 * I have also noticed that running Bison generated parsers in GDB is very
45 * irritating. When you get a segfault on '$$ = $1->foo', you can't very
46 * well 'print $1' in GDB.
47 *
48 * As a result, my preference is to put as little C code as possible in the
49 * parser (and lexer) sources.
50 */
51
52 #include "main/core.h" /* for struct gl_extensions */
53 #include "glsl_symbol_table.h"
54 #include "glsl_parser_extras.h"
55 #include "ast.h"
56 #include "glsl_types.h"
57 #include "program/hash_table.h"
58 #include "ir.h"
59
60 static void
61 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
62 exec_list *instructions);
63
64 void
65 _mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
66 {
67 _mesa_glsl_initialize_variables(instructions, state);
68
69 state->symbols->separate_function_namespace = state->language_version == 110;
70
71 state->current_function = NULL;
72
73 state->toplevel_ir = instructions;
74
75 state->gs_input_prim_type_specified = false;
76
77 /* Section 4.2 of the GLSL 1.20 specification states:
78 * "The built-in functions are scoped in a scope outside the global scope
79 * users declare global variables in. That is, a shader's global scope,
80 * available for user-defined functions and global variables, is nested
81 * inside the scope containing the built-in functions."
82 *
83 * Since built-in functions like ftransform() access built-in variables,
84 * it follows that those must be in the outer scope as well.
85 *
86 * We push scope here to create this nesting effect...but don't pop.
87 * This way, a shader's globals are still in the symbol table for use
88 * by the linker.
89 */
90 state->symbols->push_scope();
91
92 foreach_list_typed (ast_node, ast, link, & state->translation_unit)
93 ast->hir(instructions, state);
94
95 detect_recursion_unlinked(state, instructions);
96 detect_conflicting_assignments(state, instructions);
97
98 state->toplevel_ir = NULL;
99
100 /* Move all of the variable declarations to the front of the IR list, and
101 * reverse the order. This has the (intended!) side effect that vertex
102 * shader inputs and fragment shader outputs will appear in the IR in the
103 * same order that they appeared in the shader code. This results in the
104 * locations being assigned in the declared order. Many (arguably buggy)
105 * applications depend on this behavior, and it matches what nearly all
106 * other drivers do.
107 */
108 foreach_list_safe(node, instructions) {
109 ir_variable *const var = ((ir_instruction *) node)->as_variable();
110
111 if (var == NULL)
112 continue;
113
114 var->remove();
115 instructions->push_head(var);
116 }
117 }
118
119
120 /**
121 * If a conversion is available, convert one operand to a different type
122 *
123 * The \c from \c ir_rvalue is converted "in place".
124 *
125 * \param to Type that the operand it to be converted to
126 * \param from Operand that is being converted
127 * \param state GLSL compiler state
128 *
129 * \return
130 * If a conversion is possible (or unnecessary), \c true is returned.
131 * Otherwise \c false is returned.
132 */
133 bool
134 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
135 struct _mesa_glsl_parse_state *state)
136 {
137 void *ctx = state;
138 if (to->base_type == from->type->base_type)
139 return true;
140
141 /* This conversion was added in GLSL 1.20. If the compilation mode is
142 * GLSL 1.10, the conversion is skipped.
143 */
144 if (!state->is_version(120, 0))
145 return false;
146
147 /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
148 *
149 * "There are no implicit array or structure conversions. For
150 * example, an array of int cannot be implicitly converted to an
151 * array of float. There are no implicit conversions between
152 * signed and unsigned integers."
153 */
154 /* FINISHME: The above comment is partially a lie. There is int/uint
155 * FINISHME: conversion for immediate constants.
156 */
157 if (!to->is_float() || !from->type->is_numeric())
158 return false;
159
160 /* Convert to a floating point type with the same number of components
161 * as the original type - i.e. int to float, not int to vec4.
162 */
163 to = glsl_type::get_instance(GLSL_TYPE_FLOAT, from->type->vector_elements,
164 from->type->matrix_columns);
165
166 switch (from->type->base_type) {
167 case GLSL_TYPE_INT:
168 from = new(ctx) ir_expression(ir_unop_i2f, to, from, NULL);
169 break;
170 case GLSL_TYPE_UINT:
171 from = new(ctx) ir_expression(ir_unop_u2f, to, from, NULL);
172 break;
173 case GLSL_TYPE_BOOL:
174 from = new(ctx) ir_expression(ir_unop_b2f, to, from, NULL);
175 break;
176 default:
177 assert(0);
178 }
179
180 return true;
181 }
182
183
184 static const struct glsl_type *
185 arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
186 bool multiply,
187 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
188 {
189 const glsl_type *type_a = value_a->type;
190 const glsl_type *type_b = value_b->type;
191
192 /* From GLSL 1.50 spec, page 56:
193 *
194 * "The arithmetic binary operators add (+), subtract (-),
195 * multiply (*), and divide (/) operate on integer and
196 * floating-point scalars, vectors, and matrices."
197 */
198 if (!type_a->is_numeric() || !type_b->is_numeric()) {
199 _mesa_glsl_error(loc, state,
200 "operands to arithmetic operators must be numeric");
201 return glsl_type::error_type;
202 }
203
204
205 /* "If one operand is floating-point based and the other is
206 * not, then the conversions from Section 4.1.10 "Implicit
207 * Conversions" are applied to the non-floating-point-based operand."
208 */
209 if (!apply_implicit_conversion(type_a, value_b, state)
210 && !apply_implicit_conversion(type_b, value_a, state)) {
211 _mesa_glsl_error(loc, state,
212 "could not implicitly convert operands to "
213 "arithmetic operator");
214 return glsl_type::error_type;
215 }
216 type_a = value_a->type;
217 type_b = value_b->type;
218
219 /* "If the operands are integer types, they must both be signed or
220 * both be unsigned."
221 *
222 * From this rule and the preceeding conversion it can be inferred that
223 * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
224 * The is_numeric check above already filtered out the case where either
225 * type is not one of these, so now the base types need only be tested for
226 * equality.
227 */
228 if (type_a->base_type != type_b->base_type) {
229 _mesa_glsl_error(loc, state,
230 "base type mismatch for arithmetic operator");
231 return glsl_type::error_type;
232 }
233
234 /* "All arithmetic binary operators result in the same fundamental type
235 * (signed integer, unsigned integer, or floating-point) as the
236 * operands they operate on, after operand type conversion. After
237 * conversion, the following cases are valid
238 *
239 * * The two operands are scalars. In this case the operation is
240 * applied, resulting in a scalar."
241 */
242 if (type_a->is_scalar() && type_b->is_scalar())
243 return type_a;
244
245 /* "* One operand is a scalar, and the other is a vector or matrix.
246 * In this case, the scalar operation is applied independently to each
247 * component of the vector or matrix, resulting in the same size
248 * vector or matrix."
249 */
250 if (type_a->is_scalar()) {
251 if (!type_b->is_scalar())
252 return type_b;
253 } else if (type_b->is_scalar()) {
254 return type_a;
255 }
256
257 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
258 * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
259 * handled.
260 */
261 assert(!type_a->is_scalar());
262 assert(!type_b->is_scalar());
263
264 /* "* The two operands are vectors of the same size. In this case, the
265 * operation is done component-wise resulting in the same size
266 * vector."
267 */
268 if (type_a->is_vector() && type_b->is_vector()) {
269 if (type_a == type_b) {
270 return type_a;
271 } else {
272 _mesa_glsl_error(loc, state,
273 "vector size mismatch for arithmetic operator");
274 return glsl_type::error_type;
275 }
276 }
277
278 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
279 * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
280 * <vector, vector> have been handled. At least one of the operands must
281 * be matrix. Further, since there are no integer matrix types, the base
282 * type of both operands must be float.
283 */
284 assert(type_a->is_matrix() || type_b->is_matrix());
285 assert(type_a->base_type == GLSL_TYPE_FLOAT);
286 assert(type_b->base_type == GLSL_TYPE_FLOAT);
287
288 /* "* The operator is add (+), subtract (-), or divide (/), and the
289 * operands are matrices with the same number of rows and the same
290 * number of columns. In this case, the operation is done component-
291 * wise resulting in the same size matrix."
292 * * The operator is multiply (*), where both operands are matrices or
293 * one operand is a vector and the other a matrix. A right vector
294 * operand is treated as a column vector and a left vector operand as a
295 * row vector. In all these cases, it is required that the number of
296 * columns of the left operand is equal to the number of rows of the
297 * right operand. Then, the multiply (*) operation does a linear
298 * algebraic multiply, yielding an object that has the same number of
299 * rows as the left operand and the same number of columns as the right
300 * operand. Section 5.10 "Vector and Matrix Operations" explains in
301 * more detail how vectors and matrices are operated on."
302 */
303 if (! multiply) {
304 if (type_a == type_b)
305 return type_a;
306 } else {
307 if (type_a->is_matrix() && type_b->is_matrix()) {
308 /* Matrix multiply. The columns of A must match the rows of B. Given
309 * the other previously tested constraints, this means the vector type
310 * of a row from A must be the same as the vector type of a column from
311 * B.
312 */
313 if (type_a->row_type() == type_b->column_type()) {
314 /* The resulting matrix has the number of columns of matrix B and
315 * the number of rows of matrix A. We get the row count of A by
316 * looking at the size of a vector that makes up a column. The
317 * transpose (size of a row) is done for B.
318 */
319 const glsl_type *const type =
320 glsl_type::get_instance(type_a->base_type,
321 type_a->column_type()->vector_elements,
322 type_b->row_type()->vector_elements);
323 assert(type != glsl_type::error_type);
324
325 return type;
326 }
327 } else if (type_a->is_matrix()) {
328 /* A is a matrix and B is a column vector. Columns of A must match
329 * rows of B. Given the other previously tested constraints, this
330 * means the vector type of a row from A must be the same as the
331 * vector the type of B.
332 */
333 if (type_a->row_type() == type_b) {
334 /* The resulting vector has a number of elements equal to
335 * the number of rows of matrix A. */
336 const glsl_type *const type =
337 glsl_type::get_instance(type_a->base_type,
338 type_a->column_type()->vector_elements,
339 1);
340 assert(type != glsl_type::error_type);
341
342 return type;
343 }
344 } else {
345 assert(type_b->is_matrix());
346
347 /* A is a row vector and B is a matrix. Columns of A must match rows
348 * of B. Given the other previously tested constraints, this means
349 * the type of A must be the same as the vector type of a column from
350 * B.
351 */
352 if (type_a == type_b->column_type()) {
353 /* The resulting vector has a number of elements equal to
354 * the number of columns of matrix B. */
355 const glsl_type *const type =
356 glsl_type::get_instance(type_a->base_type,
357 type_b->row_type()->vector_elements,
358 1);
359 assert(type != glsl_type::error_type);
360
361 return type;
362 }
363 }
364
365 _mesa_glsl_error(loc, state, "size mismatch for matrix multiplication");
366 return glsl_type::error_type;
367 }
368
369
370 /* "All other cases are illegal."
371 */
372 _mesa_glsl_error(loc, state, "type mismatch");
373 return glsl_type::error_type;
374 }
375
376
377 static const struct glsl_type *
378 unary_arithmetic_result_type(const struct glsl_type *type,
379 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
380 {
381 /* From GLSL 1.50 spec, page 57:
382 *
383 * "The arithmetic unary operators negate (-), post- and pre-increment
384 * and decrement (-- and ++) operate on integer or floating-point
385 * values (including vectors and matrices). All unary operators work
386 * component-wise on their operands. These result with the same type
387 * they operated on."
388 */
389 if (!type->is_numeric()) {
390 _mesa_glsl_error(loc, state,
391 "operands to arithmetic operators must be numeric");
392 return glsl_type::error_type;
393 }
394
395 return type;
396 }
397
398 /**
399 * \brief Return the result type of a bit-logic operation.
400 *
401 * If the given types to the bit-logic operator are invalid, return
402 * glsl_type::error_type.
403 *
404 * \param type_a Type of LHS of bit-logic op
405 * \param type_b Type of RHS of bit-logic op
406 */
407 static const struct glsl_type *
408 bit_logic_result_type(const struct glsl_type *type_a,
409 const struct glsl_type *type_b,
410 ast_operators op,
411 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
412 {
413 if (!state->check_bitwise_operations_allowed(loc)) {
414 return glsl_type::error_type;
415 }
416
417 /* From page 50 (page 56 of PDF) of GLSL 1.30 spec:
418 *
419 * "The bitwise operators and (&), exclusive-or (^), and inclusive-or
420 * (|). The operands must be of type signed or unsigned integers or
421 * integer vectors."
422 */
423 if (!type_a->is_integer()) {
424 _mesa_glsl_error(loc, state, "LHS of `%s' must be an integer",
425 ast_expression::operator_string(op));
426 return glsl_type::error_type;
427 }
428 if (!type_b->is_integer()) {
429 _mesa_glsl_error(loc, state, "RHS of `%s' must be an integer",
430 ast_expression::operator_string(op));
431 return glsl_type::error_type;
432 }
433
434 /* "The fundamental types of the operands (signed or unsigned) must
435 * match,"
436 */
437 if (type_a->base_type != type_b->base_type) {
438 _mesa_glsl_error(loc, state, "operands of `%s' must have the same "
439 "base type", ast_expression::operator_string(op));
440 return glsl_type::error_type;
441 }
442
443 /* "The operands cannot be vectors of differing size." */
444 if (type_a->is_vector() &&
445 type_b->is_vector() &&
446 type_a->vector_elements != type_b->vector_elements) {
447 _mesa_glsl_error(loc, state, "operands of `%s' cannot be vectors of "
448 "different sizes", ast_expression::operator_string(op));
449 return glsl_type::error_type;
450 }
451
452 /* "If one operand is a scalar and the other a vector, the scalar is
453 * applied component-wise to the vector, resulting in the same type as
454 * the vector. The fundamental types of the operands [...] will be the
455 * resulting fundamental type."
456 */
457 if (type_a->is_scalar())
458 return type_b;
459 else
460 return type_a;
461 }
462
463 static const struct glsl_type *
464 modulus_result_type(const struct glsl_type *type_a,
465 const struct glsl_type *type_b,
466 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
467 {
468 if (!state->check_version(130, 300, loc, "operator '%%' is reserved")) {
469 return glsl_type::error_type;
470 }
471
472 /* From GLSL 1.50 spec, page 56:
473 * "The operator modulus (%) operates on signed or unsigned integers or
474 * integer vectors. The operand types must both be signed or both be
475 * unsigned."
476 */
477 if (!type_a->is_integer()) {
478 _mesa_glsl_error(loc, state, "LHS of operator %% must be an integer");
479 return glsl_type::error_type;
480 }
481 if (!type_b->is_integer()) {
482 _mesa_glsl_error(loc, state, "RHS of operator %% must be an integer");
483 return glsl_type::error_type;
484 }
485 if (type_a->base_type != type_b->base_type) {
486 _mesa_glsl_error(loc, state,
487 "operands of %% must have the same base type");
488 return glsl_type::error_type;
489 }
490
491 /* "The operands cannot be vectors of differing size. If one operand is
492 * a scalar and the other vector, then the scalar is applied component-
493 * wise to the vector, resulting in the same type as the vector. If both
494 * are vectors of the same size, the result is computed component-wise."
495 */
496 if (type_a->is_vector()) {
497 if (!type_b->is_vector()
498 || (type_a->vector_elements == type_b->vector_elements))
499 return type_a;
500 } else
501 return type_b;
502
503 /* "The operator modulus (%) is not defined for any other data types
504 * (non-integer types)."
505 */
506 _mesa_glsl_error(loc, state, "type mismatch");
507 return glsl_type::error_type;
508 }
509
510
511 static const struct glsl_type *
512 relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
513 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
514 {
515 const glsl_type *type_a = value_a->type;
516 const glsl_type *type_b = value_b->type;
517
518 /* From GLSL 1.50 spec, page 56:
519 * "The relational operators greater than (>), less than (<), greater
520 * than or equal (>=), and less than or equal (<=) operate only on
521 * scalar integer and scalar floating-point expressions."
522 */
523 if (!type_a->is_numeric()
524 || !type_b->is_numeric()
525 || !type_a->is_scalar()
526 || !type_b->is_scalar()) {
527 _mesa_glsl_error(loc, state,
528 "operands to relational operators must be scalar and "
529 "numeric");
530 return glsl_type::error_type;
531 }
532
533 /* "Either the operands' types must match, or the conversions from
534 * Section 4.1.10 "Implicit Conversions" will be applied to the integer
535 * operand, after which the types must match."
536 */
537 if (!apply_implicit_conversion(type_a, value_b, state)
538 && !apply_implicit_conversion(type_b, value_a, state)) {
539 _mesa_glsl_error(loc, state,
540 "could not implicitly convert operands to "
541 "relational operator");
542 return glsl_type::error_type;
543 }
544 type_a = value_a->type;
545 type_b = value_b->type;
546
547 if (type_a->base_type != type_b->base_type) {
548 _mesa_glsl_error(loc, state, "base type mismatch");
549 return glsl_type::error_type;
550 }
551
552 /* "The result is scalar Boolean."
553 */
554 return glsl_type::bool_type;
555 }
556
557 /**
558 * \brief Return the result type of a bit-shift operation.
559 *
560 * If the given types to the bit-shift operator are invalid, return
561 * glsl_type::error_type.
562 *
563 * \param type_a Type of LHS of bit-shift op
564 * \param type_b Type of RHS of bit-shift op
565 */
566 static const struct glsl_type *
567 shift_result_type(const struct glsl_type *type_a,
568 const struct glsl_type *type_b,
569 ast_operators op,
570 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
571 {
572 if (!state->check_bitwise_operations_allowed(loc)) {
573 return glsl_type::error_type;
574 }
575
576 /* From page 50 (page 56 of the PDF) of the GLSL 1.30 spec:
577 *
578 * "The shift operators (<<) and (>>). For both operators, the operands
579 * must be signed or unsigned integers or integer vectors. One operand
580 * can be signed while the other is unsigned."
581 */
582 if (!type_a->is_integer()) {
583 _mesa_glsl_error(loc, state, "LHS of operator %s must be an integer or "
584 "integer vector", ast_expression::operator_string(op));
585 return glsl_type::error_type;
586
587 }
588 if (!type_b->is_integer()) {
589 _mesa_glsl_error(loc, state, "RHS of operator %s must be an integer or "
590 "integer vector", ast_expression::operator_string(op));
591 return glsl_type::error_type;
592 }
593
594 /* "If the first operand is a scalar, the second operand has to be
595 * a scalar as well."
596 */
597 if (type_a->is_scalar() && !type_b->is_scalar()) {
598 _mesa_glsl_error(loc, state, "if the first operand of %s is scalar, the "
599 "second must be scalar as well",
600 ast_expression::operator_string(op));
601 return glsl_type::error_type;
602 }
603
604 /* If both operands are vectors, check that they have same number of
605 * elements.
606 */
607 if (type_a->is_vector() &&
608 type_b->is_vector() &&
609 type_a->vector_elements != type_b->vector_elements) {
610 _mesa_glsl_error(loc, state, "vector operands to operator %s must "
611 "have same number of elements",
612 ast_expression::operator_string(op));
613 return glsl_type::error_type;
614 }
615
616 /* "In all cases, the resulting type will be the same type as the left
617 * operand."
618 */
619 return type_a;
620 }
621
622 /**
623 * Validates that a value can be assigned to a location with a specified type
624 *
625 * Validates that \c rhs can be assigned to some location. If the types are
626 * not an exact match but an automatic conversion is possible, \c rhs will be
627 * converted.
628 *
629 * \return
630 * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
631 * Otherwise the actual RHS to be assigned will be returned. This may be
632 * \c rhs, or it may be \c rhs after some type conversion.
633 *
634 * \note
635 * In addition to being used for assignments, this function is used to
636 * type-check return values.
637 */
638 ir_rvalue *
639 validate_assignment(struct _mesa_glsl_parse_state *state,
640 const glsl_type *lhs_type, ir_rvalue *rhs,
641 bool is_initializer)
642 {
643 /* If there is already some error in the RHS, just return it. Anything
644 * else will lead to an avalanche of error message back to the user.
645 */
646 if (rhs->type->is_error())
647 return rhs;
648
649 /* If the types are identical, the assignment can trivially proceed.
650 */
651 if (rhs->type == lhs_type)
652 return rhs;
653
654 /* If the array element types are the same and the size of the LHS is zero,
655 * the assignment is okay for initializers embedded in variable
656 * declarations.
657 *
658 * Note: Whole-array assignments are not permitted in GLSL 1.10, but this
659 * is handled by ir_dereference::is_lvalue.
660 */
661 if (is_initializer && lhs_type->is_array() && rhs->type->is_array()
662 && (lhs_type->element_type() == rhs->type->element_type())
663 && (lhs_type->array_size() == 0)) {
664 return rhs;
665 }
666
667 /* Check for implicit conversion in GLSL 1.20 */
668 if (apply_implicit_conversion(lhs_type, rhs, state)) {
669 if (rhs->type == lhs_type)
670 return rhs;
671 }
672
673 return NULL;
674 }
675
676 static void
677 mark_whole_array_access(ir_rvalue *access)
678 {
679 ir_dereference_variable *deref = access->as_dereference_variable();
680
681 if (deref && deref->var) {
682 deref->var->max_array_access = deref->type->length - 1;
683 }
684 }
685
686 ir_rvalue *
687 do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state,
688 const char *non_lvalue_description,
689 ir_rvalue *lhs, ir_rvalue *rhs, bool is_initializer,
690 YYLTYPE lhs_loc)
691 {
692 void *ctx = state;
693 bool error_emitted = (lhs->type->is_error() || rhs->type->is_error());
694
695 /* If the assignment LHS comes back as an ir_binop_vector_extract
696 * expression, move it to the RHS as an ir_triop_vector_insert.
697 */
698 if (lhs->ir_type == ir_type_expression) {
699 ir_expression *const expr = lhs->as_expression();
700
701 if (unlikely(expr->operation == ir_binop_vector_extract)) {
702 ir_rvalue *new_rhs =
703 validate_assignment(state, lhs->type, rhs, is_initializer);
704
705 if (new_rhs == NULL) {
706 _mesa_glsl_error(& lhs_loc, state, "type mismatch");
707 return lhs;
708 } else {
709 rhs = new(ctx) ir_expression(ir_triop_vector_insert,
710 expr->operands[0]->type,
711 expr->operands[0],
712 new_rhs,
713 expr->operands[1]);
714 lhs = expr->operands[0]->clone(ctx, NULL);
715 }
716 }
717 }
718
719 ir_variable *lhs_var = lhs->variable_referenced();
720 if (lhs_var)
721 lhs_var->assigned = true;
722
723 if (!error_emitted) {
724 if (non_lvalue_description != NULL) {
725 _mesa_glsl_error(&lhs_loc, state,
726 "assignment to %s",
727 non_lvalue_description);
728 error_emitted = true;
729 } else if (lhs->variable_referenced() != NULL
730 && lhs->variable_referenced()->read_only) {
731 _mesa_glsl_error(&lhs_loc, state,
732 "assignment to read-only variable '%s'",
733 lhs->variable_referenced()->name);
734 error_emitted = true;
735
736 } else if (lhs->type->is_array() &&
737 !state->check_version(120, 300, &lhs_loc,
738 "whole array assignment forbidden")) {
739 /* From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
740 *
741 * "Other binary or unary expressions, non-dereferenced
742 * arrays, function names, swizzles with repeated fields,
743 * and constants cannot be l-values."
744 *
745 * The restriction on arrays is lifted in GLSL 1.20 and GLSL ES 3.00.
746 */
747 error_emitted = true;
748 } else if (!lhs->is_lvalue()) {
749 _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment");
750 error_emitted = true;
751 }
752 }
753
754 ir_rvalue *new_rhs =
755 validate_assignment(state, lhs->type, rhs, is_initializer);
756 if (new_rhs == NULL) {
757 _mesa_glsl_error(& lhs_loc, state, "type mismatch");
758 } else {
759 rhs = new_rhs;
760
761 /* If the LHS array was not declared with a size, it takes it size from
762 * the RHS. If the LHS is an l-value and a whole array, it must be a
763 * dereference of a variable. Any other case would require that the LHS
764 * is either not an l-value or not a whole array.
765 */
766 if (lhs->type->array_size() == 0) {
767 ir_dereference *const d = lhs->as_dereference();
768
769 assert(d != NULL);
770
771 ir_variable *const var = d->variable_referenced();
772
773 assert(var != NULL);
774
775 if (var->max_array_access >= unsigned(rhs->type->array_size())) {
776 /* FINISHME: This should actually log the location of the RHS. */
777 _mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to "
778 "previous access",
779 var->max_array_access);
780 }
781
782 var->type = glsl_type::get_array_instance(lhs->type->element_type(),
783 rhs->type->array_size());
784 d->type = var->type;
785 }
786 mark_whole_array_access(rhs);
787 mark_whole_array_access(lhs);
788 }
789
790 /* Most callers of do_assignment (assign, add_assign, pre_inc/dec,
791 * but not post_inc) need the converted assigned value as an rvalue
792 * to handle things like:
793 *
794 * i = j += 1;
795 *
796 * So we always just store the computed value being assigned to a
797 * temporary and return a deref of that temporary. If the rvalue
798 * ends up not being used, the temp will get copy-propagated out.
799 */
800 ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp",
801 ir_var_temporary);
802 ir_dereference_variable *deref_var = new(ctx) ir_dereference_variable(var);
803 instructions->push_tail(var);
804 instructions->push_tail(new(ctx) ir_assignment(deref_var, rhs));
805 deref_var = new(ctx) ir_dereference_variable(var);
806
807 if (!error_emitted)
808 instructions->push_tail(new(ctx) ir_assignment(lhs, deref_var));
809
810 return new(ctx) ir_dereference_variable(var);
811 }
812
813 static ir_rvalue *
814 get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue)
815 {
816 void *ctx = ralloc_parent(lvalue);
817 ir_variable *var;
818
819 var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp",
820 ir_var_temporary);
821 instructions->push_tail(var);
822 var->mode = ir_var_auto;
823
824 instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
825 lvalue));
826
827 return new(ctx) ir_dereference_variable(var);
828 }
829
830
831 ir_rvalue *
832 ast_node::hir(exec_list *instructions,
833 struct _mesa_glsl_parse_state *state)
834 {
835 (void) instructions;
836 (void) state;
837
838 return NULL;
839 }
840
841 static ir_rvalue *
842 do_comparison(void *mem_ctx, int operation, ir_rvalue *op0, ir_rvalue *op1)
843 {
844 int join_op;
845 ir_rvalue *cmp = NULL;
846
847 if (operation == ir_binop_all_equal)
848 join_op = ir_binop_logic_and;
849 else
850 join_op = ir_binop_logic_or;
851
852 switch (op0->type->base_type) {
853 case GLSL_TYPE_FLOAT:
854 case GLSL_TYPE_UINT:
855 case GLSL_TYPE_INT:
856 case GLSL_TYPE_BOOL:
857 return new(mem_ctx) ir_expression(operation, op0, op1);
858
859 case GLSL_TYPE_ARRAY: {
860 for (unsigned int i = 0; i < op0->type->length; i++) {
861 ir_rvalue *e0, *e1, *result;
862
863 e0 = new(mem_ctx) ir_dereference_array(op0->clone(mem_ctx, NULL),
864 new(mem_ctx) ir_constant(i));
865 e1 = new(mem_ctx) ir_dereference_array(op1->clone(mem_ctx, NULL),
866 new(mem_ctx) ir_constant(i));
867 result = do_comparison(mem_ctx, operation, e0, e1);
868
869 if (cmp) {
870 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
871 } else {
872 cmp = result;
873 }
874 }
875
876 mark_whole_array_access(op0);
877 mark_whole_array_access(op1);
878 break;
879 }
880
881 case GLSL_TYPE_STRUCT: {
882 for (unsigned int i = 0; i < op0->type->length; i++) {
883 ir_rvalue *e0, *e1, *result;
884 const char *field_name = op0->type->fields.structure[i].name;
885
886 e0 = new(mem_ctx) ir_dereference_record(op0->clone(mem_ctx, NULL),
887 field_name);
888 e1 = new(mem_ctx) ir_dereference_record(op1->clone(mem_ctx, NULL),
889 field_name);
890 result = do_comparison(mem_ctx, operation, e0, e1);
891
892 if (cmp) {
893 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
894 } else {
895 cmp = result;
896 }
897 }
898 break;
899 }
900
901 case GLSL_TYPE_ERROR:
902 case GLSL_TYPE_VOID:
903 case GLSL_TYPE_SAMPLER:
904 case GLSL_TYPE_INTERFACE:
905 /* I assume a comparison of a struct containing a sampler just
906 * ignores the sampler present in the type.
907 */
908 break;
909 }
910
911 if (cmp == NULL)
912 cmp = new(mem_ctx) ir_constant(true);
913
914 return cmp;
915 }
916
917 /* For logical operations, we want to ensure that the operands are
918 * scalar booleans. If it isn't, emit an error and return a constant
919 * boolean to avoid triggering cascading error messages.
920 */
921 ir_rvalue *
922 get_scalar_boolean_operand(exec_list *instructions,
923 struct _mesa_glsl_parse_state *state,
924 ast_expression *parent_expr,
925 int operand,
926 const char *operand_name,
927 bool *error_emitted)
928 {
929 ast_expression *expr = parent_expr->subexpressions[operand];
930 void *ctx = state;
931 ir_rvalue *val = expr->hir(instructions, state);
932
933 if (val->type->is_boolean() && val->type->is_scalar())
934 return val;
935
936 if (!*error_emitted) {
937 YYLTYPE loc = expr->get_location();
938 _mesa_glsl_error(&loc, state, "%s of `%s' must be scalar boolean",
939 operand_name,
940 parent_expr->operator_string(parent_expr->oper));
941 *error_emitted = true;
942 }
943
944 return new(ctx) ir_constant(true);
945 }
946
947 /**
948 * If name refers to a builtin array whose maximum allowed size is less than
949 * size, report an error and return true. Otherwise return false.
950 */
951 void
952 check_builtin_array_max_size(const char *name, unsigned size,
953 YYLTYPE loc, struct _mesa_glsl_parse_state *state)
954 {
955 if ((strcmp("gl_TexCoord", name) == 0)
956 && (size > state->Const.MaxTextureCoords)) {
957 /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec:
958 *
959 * "The size [of gl_TexCoord] can be at most
960 * gl_MaxTextureCoords."
961 */
962 _mesa_glsl_error(&loc, state, "`gl_TexCoord' array size cannot "
963 "be larger than gl_MaxTextureCoords (%u)",
964 state->Const.MaxTextureCoords);
965 } else if (strcmp("gl_ClipDistance", name) == 0
966 && size > state->Const.MaxClipPlanes) {
967 /* From section 7.1 (Vertex Shader Special Variables) of the
968 * GLSL 1.30 spec:
969 *
970 * "The gl_ClipDistance array is predeclared as unsized and
971 * must be sized by the shader either redeclaring it with a
972 * size or indexing it only with integral constant
973 * expressions. ... The size can be at most
974 * gl_MaxClipDistances."
975 */
976 _mesa_glsl_error(&loc, state, "`gl_ClipDistance' array size cannot "
977 "be larger than gl_MaxClipDistances (%u)",
978 state->Const.MaxClipPlanes);
979 }
980 }
981
982 /**
983 * Create the constant 1, of a which is appropriate for incrementing and
984 * decrementing values of the given GLSL type. For example, if type is vec4,
985 * this creates a constant value of 1.0 having type float.
986 *
987 * If the given type is invalid for increment and decrement operators, return
988 * a floating point 1--the error will be detected later.
989 */
990 static ir_rvalue *
991 constant_one_for_inc_dec(void *ctx, const glsl_type *type)
992 {
993 switch (type->base_type) {
994 case GLSL_TYPE_UINT:
995 return new(ctx) ir_constant((unsigned) 1);
996 case GLSL_TYPE_INT:
997 return new(ctx) ir_constant(1);
998 default:
999 case GLSL_TYPE_FLOAT:
1000 return new(ctx) ir_constant(1.0f);
1001 }
1002 }
1003
1004 ir_rvalue *
1005 ast_expression::hir(exec_list *instructions,
1006 struct _mesa_glsl_parse_state *state)
1007 {
1008 void *ctx = state;
1009 static const int operations[AST_NUM_OPERATORS] = {
1010 -1, /* ast_assign doesn't convert to ir_expression. */
1011 -1, /* ast_plus doesn't convert to ir_expression. */
1012 ir_unop_neg,
1013 ir_binop_add,
1014 ir_binop_sub,
1015 ir_binop_mul,
1016 ir_binop_div,
1017 ir_binop_mod,
1018 ir_binop_lshift,
1019 ir_binop_rshift,
1020 ir_binop_less,
1021 ir_binop_greater,
1022 ir_binop_lequal,
1023 ir_binop_gequal,
1024 ir_binop_all_equal,
1025 ir_binop_any_nequal,
1026 ir_binop_bit_and,
1027 ir_binop_bit_xor,
1028 ir_binop_bit_or,
1029 ir_unop_bit_not,
1030 ir_binop_logic_and,
1031 ir_binop_logic_xor,
1032 ir_binop_logic_or,
1033 ir_unop_logic_not,
1034
1035 /* Note: The following block of expression types actually convert
1036 * to multiple IR instructions.
1037 */
1038 ir_binop_mul, /* ast_mul_assign */
1039 ir_binop_div, /* ast_div_assign */
1040 ir_binop_mod, /* ast_mod_assign */
1041 ir_binop_add, /* ast_add_assign */
1042 ir_binop_sub, /* ast_sub_assign */
1043 ir_binop_lshift, /* ast_ls_assign */
1044 ir_binop_rshift, /* ast_rs_assign */
1045 ir_binop_bit_and, /* ast_and_assign */
1046 ir_binop_bit_xor, /* ast_xor_assign */
1047 ir_binop_bit_or, /* ast_or_assign */
1048
1049 -1, /* ast_conditional doesn't convert to ir_expression. */
1050 ir_binop_add, /* ast_pre_inc. */
1051 ir_binop_sub, /* ast_pre_dec. */
1052 ir_binop_add, /* ast_post_inc. */
1053 ir_binop_sub, /* ast_post_dec. */
1054 -1, /* ast_field_selection doesn't conv to ir_expression. */
1055 -1, /* ast_array_index doesn't convert to ir_expression. */
1056 -1, /* ast_function_call doesn't conv to ir_expression. */
1057 -1, /* ast_identifier doesn't convert to ir_expression. */
1058 -1, /* ast_int_constant doesn't convert to ir_expression. */
1059 -1, /* ast_uint_constant doesn't conv to ir_expression. */
1060 -1, /* ast_float_constant doesn't conv to ir_expression. */
1061 -1, /* ast_bool_constant doesn't conv to ir_expression. */
1062 -1, /* ast_sequence doesn't convert to ir_expression. */
1063 };
1064 ir_rvalue *result = NULL;
1065 ir_rvalue *op[3];
1066 const struct glsl_type *type; /* a temporary variable for switch cases */
1067 bool error_emitted = false;
1068 YYLTYPE loc;
1069
1070 loc = this->get_location();
1071
1072 switch (this->oper) {
1073 case ast_aggregate:
1074 assert(!"ast_aggregate: Should never get here.");
1075 break;
1076
1077 case ast_assign: {
1078 op[0] = this->subexpressions[0]->hir(instructions, state);
1079 op[1] = this->subexpressions[1]->hir(instructions, state);
1080
1081 result = do_assignment(instructions, state,
1082 this->subexpressions[0]->non_lvalue_description,
1083 op[0], op[1], false,
1084 this->subexpressions[0]->get_location());
1085 error_emitted = result->type->is_error();
1086 break;
1087 }
1088
1089 case ast_plus:
1090 op[0] = this->subexpressions[0]->hir(instructions, state);
1091
1092 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1093
1094 error_emitted = type->is_error();
1095
1096 result = op[0];
1097 break;
1098
1099 case ast_neg:
1100 op[0] = this->subexpressions[0]->hir(instructions, state);
1101
1102 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1103
1104 error_emitted = type->is_error();
1105
1106 result = new(ctx) ir_expression(operations[this->oper], type,
1107 op[0], NULL);
1108 break;
1109
1110 case ast_add:
1111 case ast_sub:
1112 case ast_mul:
1113 case ast_div:
1114 op[0] = this->subexpressions[0]->hir(instructions, state);
1115 op[1] = this->subexpressions[1]->hir(instructions, state);
1116
1117 type = arithmetic_result_type(op[0], op[1],
1118 (this->oper == ast_mul),
1119 state, & loc);
1120 error_emitted = type->is_error();
1121
1122 result = new(ctx) ir_expression(operations[this->oper], type,
1123 op[0], op[1]);
1124 break;
1125
1126 case ast_mod:
1127 op[0] = this->subexpressions[0]->hir(instructions, state);
1128 op[1] = this->subexpressions[1]->hir(instructions, state);
1129
1130 type = modulus_result_type(op[0]->type, op[1]->type, state, & loc);
1131
1132 assert(operations[this->oper] == ir_binop_mod);
1133
1134 result = new(ctx) ir_expression(operations[this->oper], type,
1135 op[0], op[1]);
1136 error_emitted = type->is_error();
1137 break;
1138
1139 case ast_lshift:
1140 case ast_rshift:
1141 if (!state->check_bitwise_operations_allowed(&loc)) {
1142 error_emitted = true;
1143 }
1144
1145 op[0] = this->subexpressions[0]->hir(instructions, state);
1146 op[1] = this->subexpressions[1]->hir(instructions, state);
1147 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1148 &loc);
1149 result = new(ctx) ir_expression(operations[this->oper], type,
1150 op[0], op[1]);
1151 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1152 break;
1153
1154 case ast_less:
1155 case ast_greater:
1156 case ast_lequal:
1157 case ast_gequal:
1158 op[0] = this->subexpressions[0]->hir(instructions, state);
1159 op[1] = this->subexpressions[1]->hir(instructions, state);
1160
1161 type = relational_result_type(op[0], op[1], state, & loc);
1162
1163 /* The relational operators must either generate an error or result
1164 * in a scalar boolean. See page 57 of the GLSL 1.50 spec.
1165 */
1166 assert(type->is_error()
1167 || ((type->base_type == GLSL_TYPE_BOOL)
1168 && type->is_scalar()));
1169
1170 result = new(ctx) ir_expression(operations[this->oper], type,
1171 op[0], op[1]);
1172 error_emitted = type->is_error();
1173 break;
1174
1175 case ast_nequal:
1176 case ast_equal:
1177 op[0] = this->subexpressions[0]->hir(instructions, state);
1178 op[1] = this->subexpressions[1]->hir(instructions, state);
1179
1180 /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
1181 *
1182 * "The equality operators equal (==), and not equal (!=)
1183 * operate on all types. They result in a scalar Boolean. If
1184 * the operand types do not match, then there must be a
1185 * conversion from Section 4.1.10 "Implicit Conversions"
1186 * applied to one operand that can make them match, in which
1187 * case this conversion is done."
1188 */
1189 if ((!apply_implicit_conversion(op[0]->type, op[1], state)
1190 && !apply_implicit_conversion(op[1]->type, op[0], state))
1191 || (op[0]->type != op[1]->type)) {
1192 _mesa_glsl_error(& loc, state, "operands of `%s' must have the same "
1193 "type", (this->oper == ast_equal) ? "==" : "!=");
1194 error_emitted = true;
1195 } else if ((op[0]->type->is_array() || op[1]->type->is_array()) &&
1196 !state->check_version(120, 300, &loc,
1197 "array comparisons forbidden")) {
1198 error_emitted = true;
1199 }
1200
1201 if (error_emitted) {
1202 result = new(ctx) ir_constant(false);
1203 } else {
1204 result = do_comparison(ctx, operations[this->oper], op[0], op[1]);
1205 assert(result->type == glsl_type::bool_type);
1206 }
1207 break;
1208
1209 case ast_bit_and:
1210 case ast_bit_xor:
1211 case ast_bit_or:
1212 op[0] = this->subexpressions[0]->hir(instructions, state);
1213 op[1] = this->subexpressions[1]->hir(instructions, state);
1214 type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
1215 state, &loc);
1216 result = new(ctx) ir_expression(operations[this->oper], type,
1217 op[0], op[1]);
1218 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1219 break;
1220
1221 case ast_bit_not:
1222 op[0] = this->subexpressions[0]->hir(instructions, state);
1223
1224 if (!state->check_bitwise_operations_allowed(&loc)) {
1225 error_emitted = true;
1226 }
1227
1228 if (!op[0]->type->is_integer()) {
1229 _mesa_glsl_error(&loc, state, "operand of `~' must be an integer");
1230 error_emitted = true;
1231 }
1232
1233 type = error_emitted ? glsl_type::error_type : op[0]->type;
1234 result = new(ctx) ir_expression(ir_unop_bit_not, type, op[0], NULL);
1235 break;
1236
1237 case ast_logic_and: {
1238 exec_list rhs_instructions;
1239 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1240 "LHS", &error_emitted);
1241 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1242 "RHS", &error_emitted);
1243
1244 if (rhs_instructions.is_empty()) {
1245 result = new(ctx) ir_expression(ir_binop_logic_and, op[0], op[1]);
1246 type = result->type;
1247 } else {
1248 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1249 "and_tmp",
1250 ir_var_temporary);
1251 instructions->push_tail(tmp);
1252
1253 ir_if *const stmt = new(ctx) ir_if(op[0]);
1254 instructions->push_tail(stmt);
1255
1256 stmt->then_instructions.append_list(&rhs_instructions);
1257 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1258 ir_assignment *const then_assign =
1259 new(ctx) ir_assignment(then_deref, op[1]);
1260 stmt->then_instructions.push_tail(then_assign);
1261
1262 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1263 ir_assignment *const else_assign =
1264 new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false));
1265 stmt->else_instructions.push_tail(else_assign);
1266
1267 result = new(ctx) ir_dereference_variable(tmp);
1268 type = tmp->type;
1269 }
1270 break;
1271 }
1272
1273 case ast_logic_or: {
1274 exec_list rhs_instructions;
1275 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1276 "LHS", &error_emitted);
1277 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1278 "RHS", &error_emitted);
1279
1280 if (rhs_instructions.is_empty()) {
1281 result = new(ctx) ir_expression(ir_binop_logic_or, op[0], op[1]);
1282 type = result->type;
1283 } else {
1284 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1285 "or_tmp",
1286 ir_var_temporary);
1287 instructions->push_tail(tmp);
1288
1289 ir_if *const stmt = new(ctx) ir_if(op[0]);
1290 instructions->push_tail(stmt);
1291
1292 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1293 ir_assignment *const then_assign =
1294 new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true));
1295 stmt->then_instructions.push_tail(then_assign);
1296
1297 stmt->else_instructions.append_list(&rhs_instructions);
1298 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1299 ir_assignment *const else_assign =
1300 new(ctx) ir_assignment(else_deref, op[1]);
1301 stmt->else_instructions.push_tail(else_assign);
1302
1303 result = new(ctx) ir_dereference_variable(tmp);
1304 type = tmp->type;
1305 }
1306 break;
1307 }
1308
1309 case ast_logic_xor:
1310 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1311 *
1312 * "The logical binary operators and (&&), or ( | | ), and
1313 * exclusive or (^^). They operate only on two Boolean
1314 * expressions and result in a Boolean expression."
1315 */
1316 op[0] = get_scalar_boolean_operand(instructions, state, this, 0, "LHS",
1317 &error_emitted);
1318 op[1] = get_scalar_boolean_operand(instructions, state, this, 1, "RHS",
1319 &error_emitted);
1320
1321 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1322 op[0], op[1]);
1323 break;
1324
1325 case ast_logic_not:
1326 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1327 "operand", &error_emitted);
1328
1329 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1330 op[0], NULL);
1331 break;
1332
1333 case ast_mul_assign:
1334 case ast_div_assign:
1335 case ast_add_assign:
1336 case ast_sub_assign: {
1337 op[0] = this->subexpressions[0]->hir(instructions, state);
1338 op[1] = this->subexpressions[1]->hir(instructions, state);
1339
1340 type = arithmetic_result_type(op[0], op[1],
1341 (this->oper == ast_mul_assign),
1342 state, & loc);
1343
1344 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1345 op[0], op[1]);
1346
1347 result = do_assignment(instructions, state,
1348 this->subexpressions[0]->non_lvalue_description,
1349 op[0]->clone(ctx, NULL), temp_rhs, false,
1350 this->subexpressions[0]->get_location());
1351 error_emitted = (op[0]->type->is_error());
1352
1353 /* GLSL 1.10 does not allow array assignment. However, we don't have to
1354 * explicitly test for this because none of the binary expression
1355 * operators allow array operands either.
1356 */
1357
1358 break;
1359 }
1360
1361 case ast_mod_assign: {
1362 op[0] = this->subexpressions[0]->hir(instructions, state);
1363 op[1] = this->subexpressions[1]->hir(instructions, state);
1364
1365 type = modulus_result_type(op[0]->type, op[1]->type, state, & loc);
1366
1367 assert(operations[this->oper] == ir_binop_mod);
1368
1369 ir_rvalue *temp_rhs;
1370 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1371 op[0], op[1]);
1372
1373 result = do_assignment(instructions, state,
1374 this->subexpressions[0]->non_lvalue_description,
1375 op[0]->clone(ctx, NULL), temp_rhs, false,
1376 this->subexpressions[0]->get_location());
1377 error_emitted = type->is_error();
1378 break;
1379 }
1380
1381 case ast_ls_assign:
1382 case ast_rs_assign: {
1383 op[0] = this->subexpressions[0]->hir(instructions, state);
1384 op[1] = this->subexpressions[1]->hir(instructions, state);
1385 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1386 &loc);
1387 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1388 type, op[0], op[1]);
1389 result = do_assignment(instructions, state,
1390 this->subexpressions[0]->non_lvalue_description,
1391 op[0]->clone(ctx, NULL), temp_rhs, false,
1392 this->subexpressions[0]->get_location());
1393 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1394 break;
1395 }
1396
1397 case ast_and_assign:
1398 case ast_xor_assign:
1399 case ast_or_assign: {
1400 op[0] = this->subexpressions[0]->hir(instructions, state);
1401 op[1] = this->subexpressions[1]->hir(instructions, state);
1402 type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
1403 state, &loc);
1404 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1405 type, op[0], op[1]);
1406 result = do_assignment(instructions, state,
1407 this->subexpressions[0]->non_lvalue_description,
1408 op[0]->clone(ctx, NULL), temp_rhs, false,
1409 this->subexpressions[0]->get_location());
1410 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1411 break;
1412 }
1413
1414 case ast_conditional: {
1415 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1416 *
1417 * "The ternary selection operator (?:). It operates on three
1418 * expressions (exp1 ? exp2 : exp3). This operator evaluates the
1419 * first expression, which must result in a scalar Boolean."
1420 */
1421 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1422 "condition", &error_emitted);
1423
1424 /* The :? operator is implemented by generating an anonymous temporary
1425 * followed by an if-statement. The last instruction in each branch of
1426 * the if-statement assigns a value to the anonymous temporary. This
1427 * temporary is the r-value of the expression.
1428 */
1429 exec_list then_instructions;
1430 exec_list else_instructions;
1431
1432 op[1] = this->subexpressions[1]->hir(&then_instructions, state);
1433 op[2] = this->subexpressions[2]->hir(&else_instructions, state);
1434
1435 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1436 *
1437 * "The second and third expressions can be any type, as
1438 * long their types match, or there is a conversion in
1439 * Section 4.1.10 "Implicit Conversions" that can be applied
1440 * to one of the expressions to make their types match. This
1441 * resulting matching type is the type of the entire
1442 * expression."
1443 */
1444 if ((!apply_implicit_conversion(op[1]->type, op[2], state)
1445 && !apply_implicit_conversion(op[2]->type, op[1], state))
1446 || (op[1]->type != op[2]->type)) {
1447 YYLTYPE loc = this->subexpressions[1]->get_location();
1448
1449 _mesa_glsl_error(& loc, state, "second and third operands of ?: "
1450 "operator must have matching types");
1451 error_emitted = true;
1452 type = glsl_type::error_type;
1453 } else {
1454 type = op[1]->type;
1455 }
1456
1457 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1458 *
1459 * "The second and third expressions must be the same type, but can
1460 * be of any type other than an array."
1461 */
1462 if (type->is_array() &&
1463 !state->check_version(120, 300, &loc,
1464 "second and third operands of ?: operator "
1465 "cannot be arrays")) {
1466 error_emitted = true;
1467 }
1468
1469 ir_constant *cond_val = op[0]->constant_expression_value();
1470 ir_constant *then_val = op[1]->constant_expression_value();
1471 ir_constant *else_val = op[2]->constant_expression_value();
1472
1473 if (then_instructions.is_empty()
1474 && else_instructions.is_empty()
1475 && (cond_val != NULL) && (then_val != NULL) && (else_val != NULL)) {
1476 result = (cond_val->value.b[0]) ? then_val : else_val;
1477 } else {
1478 ir_variable *const tmp =
1479 new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary);
1480 instructions->push_tail(tmp);
1481
1482 ir_if *const stmt = new(ctx) ir_if(op[0]);
1483 instructions->push_tail(stmt);
1484
1485 then_instructions.move_nodes_to(& stmt->then_instructions);
1486 ir_dereference *const then_deref =
1487 new(ctx) ir_dereference_variable(tmp);
1488 ir_assignment *const then_assign =
1489 new(ctx) ir_assignment(then_deref, op[1]);
1490 stmt->then_instructions.push_tail(then_assign);
1491
1492 else_instructions.move_nodes_to(& stmt->else_instructions);
1493 ir_dereference *const else_deref =
1494 new(ctx) ir_dereference_variable(tmp);
1495 ir_assignment *const else_assign =
1496 new(ctx) ir_assignment(else_deref, op[2]);
1497 stmt->else_instructions.push_tail(else_assign);
1498
1499 result = new(ctx) ir_dereference_variable(tmp);
1500 }
1501 break;
1502 }
1503
1504 case ast_pre_inc:
1505 case ast_pre_dec: {
1506 this->non_lvalue_description = (this->oper == ast_pre_inc)
1507 ? "pre-increment operation" : "pre-decrement operation";
1508
1509 op[0] = this->subexpressions[0]->hir(instructions, state);
1510 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1511
1512 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1513
1514 ir_rvalue *temp_rhs;
1515 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1516 op[0], op[1]);
1517
1518 result = do_assignment(instructions, state,
1519 this->subexpressions[0]->non_lvalue_description,
1520 op[0]->clone(ctx, NULL), temp_rhs, false,
1521 this->subexpressions[0]->get_location());
1522 error_emitted = op[0]->type->is_error();
1523 break;
1524 }
1525
1526 case ast_post_inc:
1527 case ast_post_dec: {
1528 this->non_lvalue_description = (this->oper == ast_post_inc)
1529 ? "post-increment operation" : "post-decrement operation";
1530 op[0] = this->subexpressions[0]->hir(instructions, state);
1531 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1532
1533 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1534
1535 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1536
1537 ir_rvalue *temp_rhs;
1538 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1539 op[0], op[1]);
1540
1541 /* Get a temporary of a copy of the lvalue before it's modified.
1542 * This may get thrown away later.
1543 */
1544 result = get_lvalue_copy(instructions, op[0]->clone(ctx, NULL));
1545
1546 (void)do_assignment(instructions, state,
1547 this->subexpressions[0]->non_lvalue_description,
1548 op[0]->clone(ctx, NULL), temp_rhs, false,
1549 this->subexpressions[0]->get_location());
1550
1551 error_emitted = op[0]->type->is_error();
1552 break;
1553 }
1554
1555 case ast_field_selection:
1556 result = _mesa_ast_field_selection_to_hir(this, instructions, state);
1557 break;
1558
1559 case ast_array_index: {
1560 YYLTYPE index_loc = subexpressions[1]->get_location();
1561
1562 op[0] = subexpressions[0]->hir(instructions, state);
1563 op[1] = subexpressions[1]->hir(instructions, state);
1564
1565 result = _mesa_ast_array_index_to_hir(ctx, state, op[0], op[1],
1566 loc, index_loc);
1567
1568 if (result->type->is_error())
1569 error_emitted = true;
1570
1571 break;
1572 }
1573
1574 case ast_function_call:
1575 /* Should *NEVER* get here. ast_function_call should always be handled
1576 * by ast_function_expression::hir.
1577 */
1578 assert(0);
1579 break;
1580
1581 case ast_identifier: {
1582 /* ast_identifier can appear several places in a full abstract syntax
1583 * tree. This particular use must be at location specified in the grammar
1584 * as 'variable_identifier'.
1585 */
1586 ir_variable *var =
1587 state->symbols->get_variable(this->primary_expression.identifier);
1588
1589 if (var != NULL) {
1590 var->used = true;
1591 result = new(ctx) ir_dereference_variable(var);
1592 } else {
1593 _mesa_glsl_error(& loc, state, "`%s' undeclared",
1594 this->primary_expression.identifier);
1595
1596 result = ir_rvalue::error_value(ctx);
1597 error_emitted = true;
1598 }
1599 break;
1600 }
1601
1602 case ast_int_constant:
1603 result = new(ctx) ir_constant(this->primary_expression.int_constant);
1604 break;
1605
1606 case ast_uint_constant:
1607 result = new(ctx) ir_constant(this->primary_expression.uint_constant);
1608 break;
1609
1610 case ast_float_constant:
1611 result = new(ctx) ir_constant(this->primary_expression.float_constant);
1612 break;
1613
1614 case ast_bool_constant:
1615 result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant));
1616 break;
1617
1618 case ast_sequence: {
1619 /* It should not be possible to generate a sequence in the AST without
1620 * any expressions in it.
1621 */
1622 assert(!this->expressions.is_empty());
1623
1624 /* The r-value of a sequence is the last expression in the sequence. If
1625 * the other expressions in the sequence do not have side-effects (and
1626 * therefore add instructions to the instruction list), they get dropped
1627 * on the floor.
1628 */
1629 exec_node *previous_tail_pred = NULL;
1630 YYLTYPE previous_operand_loc = loc;
1631
1632 foreach_list_typed (ast_node, ast, link, &this->expressions) {
1633 /* If one of the operands of comma operator does not generate any
1634 * code, we want to emit a warning. At each pass through the loop
1635 * previous_tail_pred will point to the last instruction in the
1636 * stream *before* processing the previous operand. Naturally,
1637 * instructions->tail_pred will point to the last instruction in the
1638 * stream *after* processing the previous operand. If the two
1639 * pointers match, then the previous operand had no effect.
1640 *
1641 * The warning behavior here differs slightly from GCC. GCC will
1642 * only emit a warning if none of the left-hand operands have an
1643 * effect. However, it will emit a warning for each. I believe that
1644 * there are some cases in C (especially with GCC extensions) where
1645 * it is useful to have an intermediate step in a sequence have no
1646 * effect, but I don't think these cases exist in GLSL. Either way,
1647 * it would be a giant hassle to replicate that behavior.
1648 */
1649 if (previous_tail_pred == instructions->tail_pred) {
1650 _mesa_glsl_warning(&previous_operand_loc, state,
1651 "left-hand operand of comma expression has "
1652 "no effect");
1653 }
1654
1655 /* tail_pred is directly accessed instead of using the get_tail()
1656 * method for performance reasons. get_tail() has extra code to
1657 * return NULL when the list is empty. We don't care about that
1658 * here, so using tail_pred directly is fine.
1659 */
1660 previous_tail_pred = instructions->tail_pred;
1661 previous_operand_loc = ast->get_location();
1662
1663 result = ast->hir(instructions, state);
1664 }
1665
1666 /* Any errors should have already been emitted in the loop above.
1667 */
1668 error_emitted = true;
1669 break;
1670 }
1671 }
1672 type = NULL; /* use result->type, not type. */
1673 assert(result != NULL);
1674
1675 if (result->type->is_error() && !error_emitted)
1676 _mesa_glsl_error(& loc, state, "type mismatch");
1677
1678 return result;
1679 }
1680
1681
1682 ir_rvalue *
1683 ast_expression_statement::hir(exec_list *instructions,
1684 struct _mesa_glsl_parse_state *state)
1685 {
1686 /* It is possible to have expression statements that don't have an
1687 * expression. This is the solitary semicolon:
1688 *
1689 * for (i = 0; i < 5; i++)
1690 * ;
1691 *
1692 * In this case the expression will be NULL. Test for NULL and don't do
1693 * anything in that case.
1694 */
1695 if (expression != NULL)
1696 expression->hir(instructions, state);
1697
1698 /* Statements do not have r-values.
1699 */
1700 return NULL;
1701 }
1702
1703
1704 ir_rvalue *
1705 ast_compound_statement::hir(exec_list *instructions,
1706 struct _mesa_glsl_parse_state *state)
1707 {
1708 if (new_scope)
1709 state->symbols->push_scope();
1710
1711 foreach_list_typed (ast_node, ast, link, &this->statements)
1712 ast->hir(instructions, state);
1713
1714 if (new_scope)
1715 state->symbols->pop_scope();
1716
1717 /* Compound statements do not have r-values.
1718 */
1719 return NULL;
1720 }
1721
1722
1723 static const glsl_type *
1724 process_array_type(YYLTYPE *loc, const glsl_type *base, ast_node *array_size,
1725 struct _mesa_glsl_parse_state *state)
1726 {
1727 unsigned length = 0;
1728
1729 if (base == NULL)
1730 return glsl_type::error_type;
1731
1732 /* From page 19 (page 25) of the GLSL 1.20 spec:
1733 *
1734 * "Only one-dimensional arrays may be declared."
1735 */
1736 if (base->is_array()) {
1737 _mesa_glsl_error(loc, state,
1738 "invalid array of `%s' (only one-dimensional arrays "
1739 "may be declared)",
1740 base->name);
1741 return glsl_type::error_type;
1742 }
1743
1744 if (array_size != NULL) {
1745 exec_list dummy_instructions;
1746 ir_rvalue *const ir = array_size->hir(& dummy_instructions, state);
1747 YYLTYPE loc = array_size->get_location();
1748
1749 if (ir != NULL) {
1750 if (!ir->type->is_integer()) {
1751 _mesa_glsl_error(& loc, state, "array size must be integer type");
1752 } else if (!ir->type->is_scalar()) {
1753 _mesa_glsl_error(& loc, state, "array size must be scalar type");
1754 } else {
1755 ir_constant *const size = ir->constant_expression_value();
1756
1757 if (size == NULL) {
1758 _mesa_glsl_error(& loc, state, "array size must be a "
1759 "constant valued expression");
1760 } else if (size->value.i[0] <= 0) {
1761 _mesa_glsl_error(& loc, state, "array size must be > 0");
1762 } else {
1763 assert(size->type == ir->type);
1764 length = size->value.u[0];
1765
1766 /* If the array size is const (and we've verified that
1767 * it is) then no instructions should have been emitted
1768 * when we converted it to HIR. If they were emitted,
1769 * then either the array size isn't const after all, or
1770 * we are emitting unnecessary instructions.
1771 */
1772 assert(dummy_instructions.is_empty());
1773 }
1774 }
1775 }
1776 } else if (state->es_shader) {
1777 /* Section 10.17 of the GLSL ES 1.00 specification states that unsized
1778 * array declarations have been removed from the language.
1779 */
1780 _mesa_glsl_error(loc, state, "unsized array declarations are not "
1781 "allowed in GLSL ES 1.00");
1782 }
1783
1784 const glsl_type *array_type = glsl_type::get_array_instance(base, length);
1785 return array_type != NULL ? array_type : glsl_type::error_type;
1786 }
1787
1788
1789 const glsl_type *
1790 ast_type_specifier::glsl_type(const char **name,
1791 struct _mesa_glsl_parse_state *state) const
1792 {
1793 const struct glsl_type *type;
1794
1795 type = state->symbols->get_type(this->type_name);
1796 *name = this->type_name;
1797
1798 if (this->is_array) {
1799 YYLTYPE loc = this->get_location();
1800 type = process_array_type(&loc, type, this->array_size, state);
1801 }
1802
1803 return type;
1804 }
1805
1806
1807 /**
1808 * Determine whether a toplevel variable declaration declares a varying. This
1809 * function operates by examining the variable's mode and the shader target,
1810 * so it correctly identifies linkage variables regardless of whether they are
1811 * declared using the deprecated "varying" syntax or the new "in/out" syntax.
1812 *
1813 * Passing a non-toplevel variable declaration (e.g. a function parameter) to
1814 * this function will produce undefined results.
1815 */
1816 static bool
1817 is_varying_var(ir_variable *var, _mesa_glsl_parser_targets target)
1818 {
1819 switch (target) {
1820 case vertex_shader:
1821 return var->mode == ir_var_shader_out;
1822 case fragment_shader:
1823 return var->mode == ir_var_shader_in;
1824 default:
1825 return var->mode == ir_var_shader_out || var->mode == ir_var_shader_in;
1826 }
1827 }
1828
1829
1830 /**
1831 * Matrix layout qualifiers are only allowed on certain types
1832 */
1833 static void
1834 validate_matrix_layout_for_type(struct _mesa_glsl_parse_state *state,
1835 YYLTYPE *loc,
1836 const glsl_type *type)
1837 {
1838 if (!type->is_matrix() && !type->is_record()) {
1839 _mesa_glsl_error(loc, state,
1840 "uniform block layout qualifiers row_major and "
1841 "column_major can only be applied to matrix and "
1842 "structure types");
1843 } else if (type->is_record()) {
1844 /* We allow 'layout(row_major)' on structure types because it's the only
1845 * way to get row-major layouts on matrices contained in structures.
1846 */
1847 _mesa_glsl_warning(loc, state,
1848 "uniform block layout qualifiers row_major and "
1849 "column_major applied to structure types is not "
1850 "strictly conformant and my be rejected by other "
1851 "compilers");
1852 }
1853 }
1854
1855 static bool
1856 validate_binding_qualifier(struct _mesa_glsl_parse_state *state,
1857 YYLTYPE *loc,
1858 ir_variable *var,
1859 const ast_type_qualifier *qual)
1860 {
1861 if (var->mode != ir_var_uniform) {
1862 _mesa_glsl_error(loc, state,
1863 "the \"binding\" qualifier only applies to uniforms");
1864 return false;
1865 }
1866
1867 if (qual->binding < 0) {
1868 _mesa_glsl_error(loc, state, "binding values must be >= 0");
1869 return false;
1870 }
1871
1872 const struct gl_context *const ctx = state->ctx;
1873 unsigned elements = var->type->is_array() ? var->type->length : 1;
1874 unsigned max_index = qual->binding + elements - 1;
1875
1876 if (var->type->is_interface()) {
1877 /* UBOs. From page 60 of the GLSL 4.20 specification:
1878 * "If the binding point for any uniform block instance is less than zero,
1879 * or greater than or equal to the implementation-dependent maximum
1880 * number of uniform buffer bindings, a compilation error will occur.
1881 * When the binding identifier is used with a uniform block instanced as
1882 * an array of size N, all elements of the array from binding through
1883 * binding + N – 1 must be within this range."
1884 *
1885 * The implementation-dependent maximum is GL_MAX_UNIFORM_BUFFER_BINDINGS.
1886 */
1887 if (max_index >= ctx->Const.MaxUniformBufferBindings) {
1888 _mesa_glsl_error(loc, state, "layout(binding = %d) for %d UBOs exceeds "
1889 "the maximum number of UBO binding points (%d)",
1890 qual->binding, elements,
1891 ctx->Const.MaxUniformBufferBindings);
1892 return false;
1893 }
1894 } else if (var->type->is_sampler() ||
1895 (var->type->is_array() && var->type->fields.array->is_sampler())) {
1896 /* Samplers. From page 63 of the GLSL 4.20 specification:
1897 * "If the binding is less than zero, or greater than or equal to the
1898 * implementation-dependent maximum supported number of units, a
1899 * compilation error will occur. When the binding identifier is used
1900 * with an array of size N, all elements of the array from binding
1901 * through binding + N - 1 must be within this range."
1902 */
1903 unsigned limit;
1904 switch (state->target) {
1905 case vertex_shader:
1906 limit = ctx->Const.VertexProgram.MaxTextureImageUnits;
1907 break;
1908 case geometry_shader:
1909 limit = ctx->Const.GeometryProgram.MaxTextureImageUnits;
1910 break;
1911 case fragment_shader:
1912 limit = ctx->Const.FragmentProgram.MaxTextureImageUnits;
1913 break;
1914 }
1915
1916 if (max_index >= limit) {
1917 _mesa_glsl_error(loc, state, "layout(binding = %d) for %d samplers "
1918 "exceeds the maximum number of texture image units "
1919 "(%d)", qual->binding, elements, limit);
1920
1921 return false;
1922 }
1923 } else {
1924 _mesa_glsl_error(loc, state,
1925 "the \"binding\" qualifier only applies to uniform "
1926 "blocks, samplers, or arrays of samplers");
1927 return false;
1928 }
1929
1930 return true;
1931 }
1932
1933 static void
1934 apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
1935 ir_variable *var,
1936 struct _mesa_glsl_parse_state *state,
1937 YYLTYPE *loc,
1938 bool ubo_qualifiers_valid,
1939 bool is_parameter)
1940 {
1941 STATIC_ASSERT(sizeof(qual->flags.q) <= sizeof(qual->flags.i));
1942
1943 if (qual->flags.q.invariant) {
1944 if (var->used) {
1945 _mesa_glsl_error(loc, state,
1946 "variable `%s' may not be redeclared "
1947 "`invariant' after being used",
1948 var->name);
1949 } else {
1950 var->invariant = 1;
1951 }
1952 }
1953
1954 if (qual->flags.q.constant || qual->flags.q.attribute
1955 || qual->flags.q.uniform
1956 || (qual->flags.q.varying && (state->target == fragment_shader)))
1957 var->read_only = 1;
1958
1959 if (qual->flags.q.centroid)
1960 var->centroid = 1;
1961
1962 if (qual->flags.q.attribute && state->target != vertex_shader) {
1963 var->type = glsl_type::error_type;
1964 _mesa_glsl_error(loc, state,
1965 "`attribute' variables may not be declared in the "
1966 "%s shader",
1967 _mesa_glsl_shader_target_name(state->target));
1968 }
1969
1970 /* If there is no qualifier that changes the mode of the variable, leave
1971 * the setting alone.
1972 */
1973 if (qual->flags.q.in && qual->flags.q.out)
1974 var->mode = ir_var_function_inout;
1975 else if (qual->flags.q.in)
1976 var->mode = is_parameter ? ir_var_function_in : ir_var_shader_in;
1977 else if (qual->flags.q.attribute
1978 || (qual->flags.q.varying && (state->target == fragment_shader)))
1979 var->mode = ir_var_shader_in;
1980 else if (qual->flags.q.out)
1981 var->mode = is_parameter ? ir_var_function_out : ir_var_shader_out;
1982 else if (qual->flags.q.varying && (state->target == vertex_shader))
1983 var->mode = ir_var_shader_out;
1984 else if (qual->flags.q.uniform)
1985 var->mode = ir_var_uniform;
1986
1987 if (!is_parameter && is_varying_var(var, state->target)) {
1988 /* This variable is being used to link data between shader stages (in
1989 * pre-glsl-1.30 parlance, it's a "varying"). Check that it has a type
1990 * that is allowed for such purposes.
1991 *
1992 * From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
1993 *
1994 * "The varying qualifier can be used only with the data types
1995 * float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
1996 * these."
1997 *
1998 * This was relaxed in GLSL version 1.30 and GLSL ES version 3.00. From
1999 * page 31 (page 37 of the PDF) of the GLSL 1.30 spec:
2000 *
2001 * "Fragment inputs can only be signed and unsigned integers and
2002 * integer vectors, float, floating-point vectors, matrices, or
2003 * arrays of these. Structures cannot be input.
2004 *
2005 * Similar text exists in the section on vertex shader outputs.
2006 *
2007 * Similar text exists in the GLSL ES 3.00 spec, except that the GLSL ES
2008 * 3.00 spec allows structs as well. Varying structs are also allowed
2009 * in GLSL 1.50.
2010 */
2011 switch (var->type->get_scalar_type()->base_type) {
2012 case GLSL_TYPE_FLOAT:
2013 /* Ok in all GLSL versions */
2014 break;
2015 case GLSL_TYPE_UINT:
2016 case GLSL_TYPE_INT:
2017 if (state->is_version(130, 300))
2018 break;
2019 _mesa_glsl_error(loc, state,
2020 "varying variables must be of base type float in %s",
2021 state->get_version_string());
2022 break;
2023 case GLSL_TYPE_STRUCT:
2024 if (state->is_version(150, 300))
2025 break;
2026 _mesa_glsl_error(loc, state,
2027 "varying variables may not be of type struct");
2028 break;
2029 default:
2030 _mesa_glsl_error(loc, state, "illegal type for a varying variable");
2031 break;
2032 }
2033 }
2034
2035 if (state->all_invariant && (state->current_function == NULL)) {
2036 switch (state->target) {
2037 case vertex_shader:
2038 if (var->mode == ir_var_shader_out)
2039 var->invariant = true;
2040 break;
2041 case geometry_shader:
2042 if ((var->mode == ir_var_shader_in)
2043 || (var->mode == ir_var_shader_out))
2044 var->invariant = true;
2045 break;
2046 case fragment_shader:
2047 if (var->mode == ir_var_shader_in)
2048 var->invariant = true;
2049 break;
2050 }
2051 }
2052
2053 if (qual->flags.q.flat)
2054 var->interpolation = INTERP_QUALIFIER_FLAT;
2055 else if (qual->flags.q.noperspective)
2056 var->interpolation = INTERP_QUALIFIER_NOPERSPECTIVE;
2057 else if (qual->flags.q.smooth)
2058 var->interpolation = INTERP_QUALIFIER_SMOOTH;
2059 else
2060 var->interpolation = INTERP_QUALIFIER_NONE;
2061
2062 if (var->interpolation != INTERP_QUALIFIER_NONE &&
2063 ((state->target == vertex_shader && var->mode == ir_var_shader_in) ||
2064 (state->target == fragment_shader && var->mode == ir_var_shader_out))) {
2065 _mesa_glsl_error(loc, state,
2066 "interpolation qualifier `%s' cannot be applied to "
2067 "vertex shader inputs or fragment shader outputs",
2068 var->interpolation_string());
2069 }
2070
2071 var->pixel_center_integer = qual->flags.q.pixel_center_integer;
2072 var->origin_upper_left = qual->flags.q.origin_upper_left;
2073 if ((qual->flags.q.origin_upper_left || qual->flags.q.pixel_center_integer)
2074 && (strcmp(var->name, "gl_FragCoord") != 0)) {
2075 const char *const qual_string = (qual->flags.q.origin_upper_left)
2076 ? "origin_upper_left" : "pixel_center_integer";
2077
2078 _mesa_glsl_error(loc, state,
2079 "layout qualifier `%s' can only be applied to "
2080 "fragment shader input `gl_FragCoord'",
2081 qual_string);
2082 }
2083
2084 if (qual->flags.q.explicit_location) {
2085 const bool global_scope = (state->current_function == NULL);
2086 bool fail = false;
2087 const char *string = "";
2088
2089 /* In the vertex shader only shader inputs can be given explicit
2090 * locations.
2091 *
2092 * In the fragment shader only shader outputs can be given explicit
2093 * locations.
2094 */
2095 switch (state->target) {
2096 case vertex_shader:
2097 if (!global_scope || (var->mode != ir_var_shader_in)) {
2098 fail = true;
2099 string = "input";
2100 }
2101 break;
2102
2103 case geometry_shader:
2104 _mesa_glsl_error(loc, state,
2105 "geometry shader variables cannot be given "
2106 "explicit locations");
2107 break;
2108
2109 case fragment_shader:
2110 if (!global_scope || (var->mode != ir_var_shader_out)) {
2111 fail = true;
2112 string = "output";
2113 }
2114 break;
2115 };
2116
2117 if (fail) {
2118 _mesa_glsl_error(loc, state,
2119 "only %s shader %s variables can be given an "
2120 "explicit location",
2121 _mesa_glsl_shader_target_name(state->target),
2122 string);
2123 } else {
2124 var->explicit_location = true;
2125
2126 /* This bit of silliness is needed because invalid explicit locations
2127 * are supposed to be flagged during linking. Small negative values
2128 * biased by VERT_ATTRIB_GENERIC0 or FRAG_RESULT_DATA0 could alias
2129 * built-in values (e.g., -16+VERT_ATTRIB_GENERIC0 = VERT_ATTRIB_POS).
2130 * The linker needs to be able to differentiate these cases. This
2131 * ensures that negative values stay negative.
2132 */
2133 if (qual->location >= 0) {
2134 var->location = (state->target == vertex_shader)
2135 ? (qual->location + VERT_ATTRIB_GENERIC0)
2136 : (qual->location + FRAG_RESULT_DATA0);
2137 } else {
2138 var->location = qual->location;
2139 }
2140
2141 if (qual->flags.q.explicit_index) {
2142 /* From the GLSL 4.30 specification, section 4.4.2 (Output
2143 * Layout Qualifiers):
2144 *
2145 * "It is also a compile-time error if a fragment shader
2146 * sets a layout index to less than 0 or greater than 1."
2147 *
2148 * Older specifications don't mandate a behavior; we take
2149 * this as a clarification and always generate the error.
2150 */
2151 if (qual->index < 0 || qual->index > 1) {
2152 _mesa_glsl_error(loc, state,
2153 "explicit index may only be 0 or 1");
2154 } else {
2155 var->explicit_index = true;
2156 var->index = qual->index;
2157 }
2158 }
2159 }
2160 } else if (qual->flags.q.explicit_index) {
2161 _mesa_glsl_error(loc, state,
2162 "explicit index requires explicit location");
2163 }
2164
2165 if (qual->flags.q.explicit_binding &&
2166 validate_binding_qualifier(state, loc, var, qual)) {
2167 var->explicit_binding = true;
2168 var->binding = qual->binding;
2169 }
2170
2171 /* Does the declaration use the deprecated 'attribute' or 'varying'
2172 * keywords?
2173 */
2174 const bool uses_deprecated_qualifier = qual->flags.q.attribute
2175 || qual->flags.q.varying;
2176
2177 /* Is the 'layout' keyword used with parameters that allow relaxed checking.
2178 * Many implementations of GL_ARB_fragment_coord_conventions_enable and some
2179 * implementations (only Mesa?) GL_ARB_explicit_attrib_location_enable
2180 * allowed the layout qualifier to be used with 'varying' and 'attribute'.
2181 * These extensions and all following extensions that add the 'layout'
2182 * keyword have been modified to require the use of 'in' or 'out'.
2183 *
2184 * The following extension do not allow the deprecated keywords:
2185 *
2186 * GL_AMD_conservative_depth
2187 * GL_ARB_conservative_depth
2188 * GL_ARB_gpu_shader5
2189 * GL_ARB_separate_shader_objects
2190 * GL_ARB_tesselation_shader
2191 * GL_ARB_transform_feedback3
2192 * GL_ARB_uniform_buffer_object
2193 *
2194 * It is unknown whether GL_EXT_shader_image_load_store or GL_NV_gpu_shader5
2195 * allow layout with the deprecated keywords.
2196 */
2197 const bool relaxed_layout_qualifier_checking =
2198 state->ARB_fragment_coord_conventions_enable;
2199
2200 if (qual->has_layout() && uses_deprecated_qualifier) {
2201 if (relaxed_layout_qualifier_checking) {
2202 _mesa_glsl_warning(loc, state,
2203 "`layout' qualifier may not be used with "
2204 "`attribute' or `varying'");
2205 } else {
2206 _mesa_glsl_error(loc, state,
2207 "`layout' qualifier may not be used with "
2208 "`attribute' or `varying'");
2209 }
2210 }
2211
2212 /* Layout qualifiers for gl_FragDepth, which are enabled by extension
2213 * AMD_conservative_depth.
2214 */
2215 int depth_layout_count = qual->flags.q.depth_any
2216 + qual->flags.q.depth_greater
2217 + qual->flags.q.depth_less
2218 + qual->flags.q.depth_unchanged;
2219 if (depth_layout_count > 0
2220 && !state->AMD_conservative_depth_enable
2221 && !state->ARB_conservative_depth_enable) {
2222 _mesa_glsl_error(loc, state,
2223 "extension GL_AMD_conservative_depth or "
2224 "GL_ARB_conservative_depth must be enabled "
2225 "to use depth layout qualifiers");
2226 } else if (depth_layout_count > 0
2227 && strcmp(var->name, "gl_FragDepth") != 0) {
2228 _mesa_glsl_error(loc, state,
2229 "depth layout qualifiers can be applied only to "
2230 "gl_FragDepth");
2231 } else if (depth_layout_count > 1
2232 && strcmp(var->name, "gl_FragDepth") == 0) {
2233 _mesa_glsl_error(loc, state,
2234 "at most one depth layout qualifier can be applied to "
2235 "gl_FragDepth");
2236 }
2237 if (qual->flags.q.depth_any)
2238 var->depth_layout = ir_depth_layout_any;
2239 else if (qual->flags.q.depth_greater)
2240 var->depth_layout = ir_depth_layout_greater;
2241 else if (qual->flags.q.depth_less)
2242 var->depth_layout = ir_depth_layout_less;
2243 else if (qual->flags.q.depth_unchanged)
2244 var->depth_layout = ir_depth_layout_unchanged;
2245 else
2246 var->depth_layout = ir_depth_layout_none;
2247
2248 if (qual->flags.q.std140 ||
2249 qual->flags.q.packed ||
2250 qual->flags.q.shared) {
2251 _mesa_glsl_error(loc, state,
2252 "uniform block layout qualifiers std140, packed, and "
2253 "shared can only be applied to uniform blocks, not "
2254 "members");
2255 }
2256
2257 if (qual->flags.q.row_major || qual->flags.q.column_major) {
2258 if (!ubo_qualifiers_valid) {
2259 _mesa_glsl_error(loc, state,
2260 "uniform block layout qualifiers row_major and "
2261 "column_major can only be applied to uniform block "
2262 "members");
2263 } else
2264 validate_matrix_layout_for_type(state, loc, var->type);
2265 }
2266 }
2267
2268 /**
2269 * Get the variable that is being redeclared by this declaration
2270 *
2271 * Semantic checks to verify the validity of the redeclaration are also
2272 * performed. If semantic checks fail, compilation error will be emitted via
2273 * \c _mesa_glsl_error, but a non-\c NULL pointer will still be returned.
2274 *
2275 * \returns
2276 * A pointer to an existing variable in the current scope if the declaration
2277 * is a redeclaration, \c NULL otherwise.
2278 */
2279 ir_variable *
2280 get_variable_being_redeclared(ir_variable *var, ast_declaration *decl,
2281 struct _mesa_glsl_parse_state *state)
2282 {
2283 /* Check if this declaration is actually a re-declaration, either to
2284 * resize an array or add qualifiers to an existing variable.
2285 *
2286 * This is allowed for variables in the current scope, or when at
2287 * global scope (for built-ins in the implicit outer scope).
2288 */
2289 ir_variable *earlier = state->symbols->get_variable(decl->identifier);
2290 if (earlier == NULL ||
2291 (state->current_function != NULL &&
2292 !state->symbols->name_declared_this_scope(decl->identifier))) {
2293 return NULL;
2294 }
2295
2296
2297 YYLTYPE loc = decl->get_location();
2298
2299 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
2300 *
2301 * "It is legal to declare an array without a size and then
2302 * later re-declare the same name as an array of the same
2303 * type and specify a size."
2304 */
2305 if ((earlier->type->array_size() == 0)
2306 && var->type->is_array()
2307 && (var->type->element_type() == earlier->type->element_type())) {
2308 /* FINISHME: This doesn't match the qualifiers on the two
2309 * FINISHME: declarations. It's not 100% clear whether this is
2310 * FINISHME: required or not.
2311 */
2312
2313 const unsigned size = unsigned(var->type->array_size());
2314 check_builtin_array_max_size(var->name, size, loc, state);
2315 if ((size > 0) && (size <= earlier->max_array_access)) {
2316 _mesa_glsl_error(& loc, state, "array size must be > %u due to "
2317 "previous access",
2318 earlier->max_array_access);
2319 }
2320
2321 earlier->type = var->type;
2322 delete var;
2323 var = NULL;
2324 } else if (state->ARB_fragment_coord_conventions_enable
2325 && strcmp(var->name, "gl_FragCoord") == 0
2326 && earlier->type == var->type
2327 && earlier->mode == var->mode) {
2328 /* Allow redeclaration of gl_FragCoord for ARB_fcc layout
2329 * qualifiers.
2330 */
2331 earlier->origin_upper_left = var->origin_upper_left;
2332 earlier->pixel_center_integer = var->pixel_center_integer;
2333
2334 /* According to section 4.3.7 of the GLSL 1.30 spec,
2335 * the following built-in varaibles can be redeclared with an
2336 * interpolation qualifier:
2337 * * gl_FrontColor
2338 * * gl_BackColor
2339 * * gl_FrontSecondaryColor
2340 * * gl_BackSecondaryColor
2341 * * gl_Color
2342 * * gl_SecondaryColor
2343 */
2344 } else if (state->is_version(130, 0)
2345 && (strcmp(var->name, "gl_FrontColor") == 0
2346 || strcmp(var->name, "gl_BackColor") == 0
2347 || strcmp(var->name, "gl_FrontSecondaryColor") == 0
2348 || strcmp(var->name, "gl_BackSecondaryColor") == 0
2349 || strcmp(var->name, "gl_Color") == 0
2350 || strcmp(var->name, "gl_SecondaryColor") == 0)
2351 && earlier->type == var->type
2352 && earlier->mode == var->mode) {
2353 earlier->interpolation = var->interpolation;
2354
2355 /* Layout qualifiers for gl_FragDepth. */
2356 } else if ((state->AMD_conservative_depth_enable ||
2357 state->ARB_conservative_depth_enable)
2358 && strcmp(var->name, "gl_FragDepth") == 0
2359 && earlier->type == var->type
2360 && earlier->mode == var->mode) {
2361
2362 /** From the AMD_conservative_depth spec:
2363 * Within any shader, the first redeclarations of gl_FragDepth
2364 * must appear before any use of gl_FragDepth.
2365 */
2366 if (earlier->used) {
2367 _mesa_glsl_error(&loc, state,
2368 "the first redeclaration of gl_FragDepth "
2369 "must appear before any use of gl_FragDepth");
2370 }
2371
2372 /* Prevent inconsistent redeclaration of depth layout qualifier. */
2373 if (earlier->depth_layout != ir_depth_layout_none
2374 && earlier->depth_layout != var->depth_layout) {
2375 _mesa_glsl_error(&loc, state,
2376 "gl_FragDepth: depth layout is declared here "
2377 "as '%s, but it was previously declared as "
2378 "'%s'",
2379 depth_layout_string(var->depth_layout),
2380 depth_layout_string(earlier->depth_layout));
2381 }
2382
2383 earlier->depth_layout = var->depth_layout;
2384
2385 } else {
2386 _mesa_glsl_error(&loc, state, "`%s' redeclared", decl->identifier);
2387 }
2388
2389 return earlier;
2390 }
2391
2392 /**
2393 * Generate the IR for an initializer in a variable declaration
2394 */
2395 ir_rvalue *
2396 process_initializer(ir_variable *var, ast_declaration *decl,
2397 ast_fully_specified_type *type,
2398 exec_list *initializer_instructions,
2399 struct _mesa_glsl_parse_state *state)
2400 {
2401 ir_rvalue *result = NULL;
2402
2403 YYLTYPE initializer_loc = decl->initializer->get_location();
2404
2405 /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
2406 *
2407 * "All uniform variables are read-only and are initialized either
2408 * directly by an application via API commands, or indirectly by
2409 * OpenGL."
2410 */
2411 if (var->mode == ir_var_uniform) {
2412 state->check_version(120, 0, &initializer_loc,
2413 "cannot initialize uniforms");
2414 }
2415
2416 if (var->type->is_sampler()) {
2417 _mesa_glsl_error(& initializer_loc, state,
2418 "cannot initialize samplers");
2419 }
2420
2421 if ((var->mode == ir_var_shader_in) && (state->current_function == NULL)) {
2422 _mesa_glsl_error(& initializer_loc, state,
2423 "cannot initialize %s shader input / %s",
2424 _mesa_glsl_shader_target_name(state->target),
2425 (state->target == vertex_shader)
2426 ? "attribute" : "varying");
2427 }
2428
2429 ir_dereference *const lhs = new(state) ir_dereference_variable(var);
2430 ir_rvalue *rhs = decl->initializer->hir(initializer_instructions,
2431 state);
2432
2433 /* Calculate the constant value if this is a const or uniform
2434 * declaration.
2435 */
2436 if (type->qualifier.flags.q.constant
2437 || type->qualifier.flags.q.uniform) {
2438 ir_rvalue *new_rhs = validate_assignment(state, var->type, rhs, true);
2439 if (new_rhs != NULL) {
2440 rhs = new_rhs;
2441
2442 ir_constant *constant_value = rhs->constant_expression_value();
2443 if (!constant_value) {
2444 /* If ARB_shading_language_420pack is enabled, initializers of
2445 * const-qualified local variables do not have to be constant
2446 * expressions. Const-qualified global variables must still be
2447 * initialized with constant expressions.
2448 */
2449 if (!state->ARB_shading_language_420pack_enable
2450 || state->current_function == NULL) {
2451 _mesa_glsl_error(& initializer_loc, state,
2452 "initializer of %s variable `%s' must be a "
2453 "constant expression",
2454 (type->qualifier.flags.q.constant)
2455 ? "const" : "uniform",
2456 decl->identifier);
2457 if (var->type->is_numeric()) {
2458 /* Reduce cascading errors. */
2459 var->constant_value = ir_constant::zero(state, var->type);
2460 }
2461 }
2462 } else {
2463 rhs = constant_value;
2464 var->constant_value = constant_value;
2465 }
2466 } else {
2467 _mesa_glsl_error(&initializer_loc, state,
2468 "initializer of type %s cannot be assigned to "
2469 "variable of type %s",
2470 rhs->type->name, var->type->name);
2471 if (var->type->is_numeric()) {
2472 /* Reduce cascading errors. */
2473 var->constant_value = ir_constant::zero(state, var->type);
2474 }
2475 }
2476 }
2477
2478 if (rhs && !rhs->type->is_error()) {
2479 bool temp = var->read_only;
2480 if (type->qualifier.flags.q.constant)
2481 var->read_only = false;
2482
2483 /* Never emit code to initialize a uniform.
2484 */
2485 const glsl_type *initializer_type;
2486 if (!type->qualifier.flags.q.uniform) {
2487 result = do_assignment(initializer_instructions, state,
2488 NULL,
2489 lhs, rhs, true,
2490 type->get_location());
2491 initializer_type = result->type;
2492 } else
2493 initializer_type = rhs->type;
2494
2495 var->constant_initializer = rhs->constant_expression_value();
2496 var->has_initializer = true;
2497
2498 /* If the declared variable is an unsized array, it must inherrit
2499 * its full type from the initializer. A declaration such as
2500 *
2501 * uniform float a[] = float[](1.0, 2.0, 3.0, 3.0);
2502 *
2503 * becomes
2504 *
2505 * uniform float a[4] = float[](1.0, 2.0, 3.0, 3.0);
2506 *
2507 * The assignment generated in the if-statement (below) will also
2508 * automatically handle this case for non-uniforms.
2509 *
2510 * If the declared variable is not an array, the types must
2511 * already match exactly. As a result, the type assignment
2512 * here can be done unconditionally. For non-uniforms the call
2513 * to do_assignment can change the type of the initializer (via
2514 * the implicit conversion rules). For uniforms the initializer
2515 * must be a constant expression, and the type of that expression
2516 * was validated above.
2517 */
2518 var->type = initializer_type;
2519
2520 var->read_only = temp;
2521 }
2522
2523 return result;
2524 }
2525
2526 ir_rvalue *
2527 ast_declarator_list::hir(exec_list *instructions,
2528 struct _mesa_glsl_parse_state *state)
2529 {
2530 void *ctx = state;
2531 const struct glsl_type *decl_type;
2532 const char *type_name = NULL;
2533 ir_rvalue *result = NULL;
2534 YYLTYPE loc = this->get_location();
2535
2536 /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec:
2537 *
2538 * "To ensure that a particular output variable is invariant, it is
2539 * necessary to use the invariant qualifier. It can either be used to
2540 * qualify a previously declared variable as being invariant
2541 *
2542 * invariant gl_Position; // make existing gl_Position be invariant"
2543 *
2544 * In these cases the parser will set the 'invariant' flag in the declarator
2545 * list, and the type will be NULL.
2546 */
2547 if (this->invariant) {
2548 assert(this->type == NULL);
2549
2550 if (state->current_function != NULL) {
2551 _mesa_glsl_error(& loc, state,
2552 "all uses of `invariant' keyword must be at global "
2553 "scope");
2554 }
2555
2556 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
2557 assert(!decl->is_array);
2558 assert(decl->array_size == NULL);
2559 assert(decl->initializer == NULL);
2560
2561 ir_variable *const earlier =
2562 state->symbols->get_variable(decl->identifier);
2563 if (earlier == NULL) {
2564 _mesa_glsl_error(& loc, state,
2565 "undeclared variable `%s' cannot be marked "
2566 "invariant", decl->identifier);
2567 } else if ((state->target == vertex_shader)
2568 && (earlier->mode != ir_var_shader_out)) {
2569 _mesa_glsl_error(& loc, state,
2570 "`%s' cannot be marked invariant, vertex shader "
2571 "outputs only", decl->identifier);
2572 } else if ((state->target == fragment_shader)
2573 && (earlier->mode != ir_var_shader_in)) {
2574 _mesa_glsl_error(& loc, state,
2575 "`%s' cannot be marked invariant, fragment shader "
2576 "inputs only", decl->identifier);
2577 } else if (earlier->used) {
2578 _mesa_glsl_error(& loc, state,
2579 "variable `%s' may not be redeclared "
2580 "`invariant' after being used",
2581 earlier->name);
2582 } else {
2583 earlier->invariant = true;
2584 }
2585 }
2586
2587 /* Invariant redeclarations do not have r-values.
2588 */
2589 return NULL;
2590 }
2591
2592 assert(this->type != NULL);
2593 assert(!this->invariant);
2594
2595 /* The type specifier may contain a structure definition. Process that
2596 * before any of the variable declarations.
2597 */
2598 (void) this->type->specifier->hir(instructions, state);
2599
2600 decl_type = this->type->specifier->glsl_type(& type_name, state);
2601 if (this->declarations.is_empty()) {
2602 /* If there is no structure involved in the program text, there are two
2603 * possible scenarios:
2604 *
2605 * - The program text contained something like 'vec4;'. This is an
2606 * empty declaration. It is valid but weird. Emit a warning.
2607 *
2608 * - The program text contained something like 'S;' and 'S' is not the
2609 * name of a known structure type. This is both invalid and weird.
2610 * Emit an error.
2611 *
2612 * Note that if decl_type is NULL and there is a structure involved,
2613 * there must have been some sort of error with the structure. In this
2614 * case we assume that an error was already generated on this line of
2615 * code for the structure. There is no need to generate an additional,
2616 * confusing error.
2617 */
2618 assert(this->type->specifier->structure == NULL || decl_type != NULL
2619 || state->error);
2620 if (this->type->specifier->structure == NULL) {
2621 if (decl_type != NULL) {
2622 _mesa_glsl_warning(&loc, state, "empty declaration");
2623 } else {
2624 _mesa_glsl_error(&loc, state,
2625 "invalid type `%s' in empty declaration",
2626 type_name);
2627 }
2628 }
2629
2630 if (this->type->qualifier.precision != ast_precision_none &&
2631 this->type->specifier->structure != NULL) {
2632 _mesa_glsl_error(&loc, state, "precision qualifiers can't be applied "
2633 "to structures");
2634 }
2635 }
2636
2637 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
2638 const struct glsl_type *var_type;
2639 ir_variable *var;
2640
2641 /* FINISHME: Emit a warning if a variable declaration shadows a
2642 * FINISHME: declaration at a higher scope.
2643 */
2644
2645 if ((decl_type == NULL) || decl_type->is_void()) {
2646 if (type_name != NULL) {
2647 _mesa_glsl_error(& loc, state,
2648 "invalid type `%s' in declaration of `%s'",
2649 type_name, decl->identifier);
2650 } else {
2651 _mesa_glsl_error(& loc, state,
2652 "invalid type in declaration of `%s'",
2653 decl->identifier);
2654 }
2655 continue;
2656 }
2657
2658 if (decl->is_array) {
2659 var_type = process_array_type(&loc, decl_type, decl->array_size,
2660 state);
2661 if (var_type->is_error())
2662 continue;
2663 } else {
2664 var_type = decl_type;
2665 }
2666
2667 var = new(ctx) ir_variable(var_type, decl->identifier, ir_var_auto);
2668
2669 /* The 'varying in' and 'varying out' qualifiers can only be used with
2670 * ARB_geometry_shader4 and EXT_geometry_shader4, which we don't support
2671 * yet.
2672 */
2673 if (this->type->qualifier.flags.q.varying) {
2674 if (this->type->qualifier.flags.q.in) {
2675 _mesa_glsl_error(& loc, state,
2676 "`varying in' qualifier in declaration of "
2677 "`%s' only valid for geometry shaders using "
2678 "ARB_geometry_shader4 or EXT_geometry_shader4",
2679 decl->identifier);
2680 } else if (this->type->qualifier.flags.q.out) {
2681 _mesa_glsl_error(& loc, state,
2682 "`varying out' qualifier in declaration of "
2683 "`%s' only valid for geometry shaders using "
2684 "ARB_geometry_shader4 or EXT_geometry_shader4",
2685 decl->identifier);
2686 }
2687 }
2688
2689 /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
2690 *
2691 * "Global variables can only use the qualifiers const,
2692 * attribute, uni form, or varying. Only one may be
2693 * specified.
2694 *
2695 * Local variables can only use the qualifier const."
2696 *
2697 * This is relaxed in GLSL 1.30 and GLSL ES 3.00. It is also relaxed by
2698 * any extension that adds the 'layout' keyword.
2699 */
2700 if (!state->is_version(130, 300)
2701 && !state->ARB_explicit_attrib_location_enable
2702 && !state->ARB_fragment_coord_conventions_enable) {
2703 if (this->type->qualifier.flags.q.out) {
2704 _mesa_glsl_error(& loc, state,
2705 "`out' qualifier in declaration of `%s' "
2706 "only valid for function parameters in %s",
2707 decl->identifier, state->get_version_string());
2708 }
2709 if (this->type->qualifier.flags.q.in) {
2710 _mesa_glsl_error(& loc, state,
2711 "`in' qualifier in declaration of `%s' "
2712 "only valid for function parameters in %s",
2713 decl->identifier, state->get_version_string());
2714 }
2715 /* FINISHME: Test for other invalid qualifiers. */
2716 }
2717
2718 apply_type_qualifier_to_variable(& this->type->qualifier, var, state,
2719 & loc, this->ubo_qualifiers_valid, false);
2720
2721 if (this->type->qualifier.flags.q.invariant) {
2722 if ((state->target == vertex_shader) &&
2723 var->mode != ir_var_shader_out) {
2724 _mesa_glsl_error(& loc, state,
2725 "`%s' cannot be marked invariant, vertex shader "
2726 "outputs only", var->name);
2727 } else if ((state->target == fragment_shader) &&
2728 var->mode != ir_var_shader_in) {
2729 /* FINISHME: Note that this doesn't work for invariant on
2730 * a function signature inval
2731 */
2732 _mesa_glsl_error(& loc, state,
2733 "`%s' cannot be marked invariant, fragment shader "
2734 "inputs only", var->name);
2735 }
2736 }
2737
2738 if (state->current_function != NULL) {
2739 const char *mode = NULL;
2740 const char *extra = "";
2741
2742 /* There is no need to check for 'inout' here because the parser will
2743 * only allow that in function parameter lists.
2744 */
2745 if (this->type->qualifier.flags.q.attribute) {
2746 mode = "attribute";
2747 } else if (this->type->qualifier.flags.q.uniform) {
2748 mode = "uniform";
2749 } else if (this->type->qualifier.flags.q.varying) {
2750 mode = "varying";
2751 } else if (this->type->qualifier.flags.q.in) {
2752 mode = "in";
2753 extra = " or in function parameter list";
2754 } else if (this->type->qualifier.flags.q.out) {
2755 mode = "out";
2756 extra = " or in function parameter list";
2757 }
2758
2759 if (mode) {
2760 _mesa_glsl_error(& loc, state,
2761 "%s variable `%s' must be declared at "
2762 "global scope%s",
2763 mode, var->name, extra);
2764 }
2765 } else if (var->mode == ir_var_shader_in) {
2766 var->read_only = true;
2767
2768 if (state->target == vertex_shader) {
2769 bool error_emitted = false;
2770
2771 /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
2772 *
2773 * "Vertex shader inputs can only be float, floating-point
2774 * vectors, matrices, signed and unsigned integers and integer
2775 * vectors. Vertex shader inputs can also form arrays of these
2776 * types, but not structures."
2777 *
2778 * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
2779 *
2780 * "Vertex shader inputs can only be float, floating-point
2781 * vectors, matrices, signed and unsigned integers and integer
2782 * vectors. They cannot be arrays or structures."
2783 *
2784 * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
2785 *
2786 * "The attribute qualifier can be used only with float,
2787 * floating-point vectors, and matrices. Attribute variables
2788 * cannot be declared as arrays or structures."
2789 *
2790 * From page 33 (page 39 of the PDF) of the GLSL ES 3.00 spec:
2791 *
2792 * "Vertex shader inputs can only be float, floating-point
2793 * vectors, matrices, signed and unsigned integers and integer
2794 * vectors. Vertex shader inputs cannot be arrays or
2795 * structures."
2796 */
2797 const glsl_type *check_type = var->type->is_array()
2798 ? var->type->fields.array : var->type;
2799
2800 switch (check_type->base_type) {
2801 case GLSL_TYPE_FLOAT:
2802 break;
2803 case GLSL_TYPE_UINT:
2804 case GLSL_TYPE_INT:
2805 if (state->is_version(120, 300))
2806 break;
2807 /* FALLTHROUGH */
2808 default:
2809 _mesa_glsl_error(& loc, state,
2810 "vertex shader input / attribute cannot have "
2811 "type %s`%s'",
2812 var->type->is_array() ? "array of " : "",
2813 check_type->name);
2814 error_emitted = true;
2815 }
2816
2817 if (!error_emitted && var->type->is_array() &&
2818 !state->check_version(150, 0, &loc,
2819 "vertex shader input / attribute "
2820 "cannot have array type")) {
2821 error_emitted = true;
2822 }
2823 } else if (state->target == geometry_shader) {
2824 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
2825 *
2826 * Geometry shader input variables get the per-vertex values
2827 * written out by vertex shader output variables of the same
2828 * names. Since a geometry shader operates on a set of
2829 * vertices, each input varying variable (or input block, see
2830 * interface blocks below) needs to be declared as an array.
2831 */
2832 if (!var->type->is_array()) {
2833 _mesa_glsl_error(&loc, state,
2834 "geometry shader inputs must be arrays");
2835 }
2836 }
2837 }
2838
2839 /* Integer fragment inputs must be qualified with 'flat'. In GLSL ES,
2840 * so must integer vertex outputs.
2841 *
2842 * From section 4.3.4 ("Inputs") of the GLSL 1.50 spec:
2843 * "Fragment shader inputs that are signed or unsigned integers or
2844 * integer vectors must be qualified with the interpolation qualifier
2845 * flat."
2846 *
2847 * From section 4.3.4 ("Input Variables") of the GLSL 3.00 ES spec:
2848 * "Fragment shader inputs that are, or contain, signed or unsigned
2849 * integers or integer vectors must be qualified with the
2850 * interpolation qualifier flat."
2851 *
2852 * From section 4.3.6 ("Output Variables") of the GLSL 3.00 ES spec:
2853 * "Vertex shader outputs that are, or contain, signed or unsigned
2854 * integers or integer vectors must be qualified with the
2855 * interpolation qualifier flat."
2856 *
2857 * Note that prior to GLSL 1.50, this requirement applied to vertex
2858 * outputs rather than fragment inputs. That creates problems in the
2859 * presence of geometry shaders, so we adopt the GLSL 1.50 rule for all
2860 * desktop GL shaders. For GLSL ES shaders, we follow the spec and
2861 * apply the restriction to both vertex outputs and fragment inputs.
2862 *
2863 * Note also that the desktop GLSL specs are missing the text "or
2864 * contain"; this is presumably an oversight, since there is no
2865 * reasonable way to interpolate a fragment shader input that contains
2866 * an integer.
2867 */
2868 if (state->is_version(130, 300) &&
2869 var->type->contains_integer() &&
2870 var->interpolation != INTERP_QUALIFIER_FLAT &&
2871 ((state->target == fragment_shader && var->mode == ir_var_shader_in)
2872 || (state->target == vertex_shader && var->mode == ir_var_shader_out
2873 && state->es_shader))) {
2874 const char *var_type = (state->target == vertex_shader) ?
2875 "vertex output" : "fragment input";
2876 _mesa_glsl_error(&loc, state, "if a %s is (or contains) "
2877 "an integer, then it must be qualified with 'flat'",
2878 var_type);
2879 }
2880
2881
2882 /* Interpolation qualifiers cannot be applied to 'centroid' and
2883 * 'centroid varying'.
2884 *
2885 * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
2886 * "interpolation qualifiers may only precede the qualifiers in,
2887 * centroid in, out, or centroid out in a declaration. They do not apply
2888 * to the deprecated storage qualifiers varying or centroid varying."
2889 *
2890 * These deprecated storage qualifiers do not exist in GLSL ES 3.00.
2891 */
2892 if (state->is_version(130, 0)
2893 && this->type->qualifier.has_interpolation()
2894 && this->type->qualifier.flags.q.varying) {
2895
2896 const char *i = this->type->qualifier.interpolation_string();
2897 assert(i != NULL);
2898 const char *s;
2899 if (this->type->qualifier.flags.q.centroid)
2900 s = "centroid varying";
2901 else
2902 s = "varying";
2903
2904 _mesa_glsl_error(&loc, state,
2905 "qualifier '%s' cannot be applied to the "
2906 "deprecated storage qualifier '%s'", i, s);
2907 }
2908
2909
2910 /* Interpolation qualifiers can only apply to vertex shader outputs and
2911 * fragment shader inputs.
2912 *
2913 * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
2914 * "Outputs from a vertex shader (out) and inputs to a fragment
2915 * shader (in) can be further qualified with one or more of these
2916 * interpolation qualifiers"
2917 *
2918 * From page 31 (page 37 of the PDF) of the GLSL ES 3.00 spec:
2919 * "These interpolation qualifiers may only precede the qualifiers
2920 * in, centroid in, out, or centroid out in a declaration. They do
2921 * not apply to inputs into a vertex shader or outputs from a
2922 * fragment shader."
2923 */
2924 if (state->is_version(130, 300)
2925 && this->type->qualifier.has_interpolation()) {
2926
2927 const char *i = this->type->qualifier.interpolation_string();
2928 assert(i != NULL);
2929
2930 switch (state->target) {
2931 case vertex_shader:
2932 if (this->type->qualifier.flags.q.in) {
2933 _mesa_glsl_error(&loc, state,
2934 "qualifier '%s' cannot be applied to vertex "
2935 "shader inputs", i);
2936 }
2937 break;
2938 case fragment_shader:
2939 if (this->type->qualifier.flags.q.out) {
2940 _mesa_glsl_error(&loc, state,
2941 "qualifier '%s' cannot be applied to fragment "
2942 "shader outputs", i);
2943 }
2944 break;
2945 default:
2946 break;
2947 }
2948 }
2949
2950
2951 /* From section 4.3.4 of the GLSL 1.30 spec:
2952 * "It is an error to use centroid in in a vertex shader."
2953 *
2954 * From section 4.3.4 of the GLSL ES 3.00 spec:
2955 * "It is an error to use centroid in or interpolation qualifiers in
2956 * a vertex shader input."
2957 */
2958 if (state->is_version(130, 300)
2959 && this->type->qualifier.flags.q.centroid
2960 && this->type->qualifier.flags.q.in
2961 && state->target == vertex_shader) {
2962
2963 _mesa_glsl_error(&loc, state,
2964 "'centroid in' cannot be used in a vertex shader");
2965 }
2966
2967 /* Section 4.3.6 of the GLSL 1.30 specification states:
2968 * "It is an error to use centroid out in a fragment shader."
2969 *
2970 * The GL_ARB_shading_language_420pack extension specification states:
2971 * "It is an error to use auxiliary storage qualifiers or interpolation
2972 * qualifiers on an output in a fragment shader."
2973 */
2974 if (state->target == fragment_shader &&
2975 this->type->qualifier.flags.q.out &&
2976 this->type->qualifier.has_auxiliary_storage()) {
2977 _mesa_glsl_error(&loc, state,
2978 "auxiliary storage qualifiers cannot be used on "
2979 "fragment shader outputs");
2980 }
2981
2982 /* Precision qualifiers exists only in GLSL versions 1.00 and >= 1.30.
2983 */
2984 if (this->type->qualifier.precision != ast_precision_none) {
2985 state->check_precision_qualifiers_allowed(&loc);
2986 }
2987
2988
2989 /* Precision qualifiers only apply to floating point and integer types.
2990 *
2991 * From section 4.5.2 of the GLSL 1.30 spec:
2992 * "Any floating point or any integer declaration can have the type
2993 * preceded by one of these precision qualifiers [...] Literal
2994 * constants do not have precision qualifiers. Neither do Boolean
2995 * variables.
2996 *
2997 * In GLSL ES, sampler types are also allowed.
2998 *
2999 * From page 87 of the GLSL ES spec:
3000 * "RESOLUTION: Allow sampler types to take a precision qualifier."
3001 */
3002 if (this->type->qualifier.precision != ast_precision_none
3003 && !var->type->is_float()
3004 && !var->type->is_integer()
3005 && !var->type->is_record()
3006 && !(var->type->is_sampler() && state->es_shader)
3007 && !(var->type->is_array()
3008 && (var->type->fields.array->is_float()
3009 || var->type->fields.array->is_integer()))) {
3010
3011 _mesa_glsl_error(&loc, state,
3012 "precision qualifiers apply only to floating point"
3013 "%s types", state->es_shader ? ", integer, and sampler"
3014 : "and integer");
3015 }
3016
3017 /* From page 17 (page 23 of the PDF) of the GLSL 1.20 spec:
3018 *
3019 * "[Sampler types] can only be declared as function
3020 * parameters or uniform variables (see Section 4.3.5
3021 * "Uniform")".
3022 */
3023 if (var_type->contains_sampler() &&
3024 !this->type->qualifier.flags.q.uniform) {
3025 _mesa_glsl_error(&loc, state, "samplers must be declared uniform");
3026 }
3027
3028 /* Process the initializer and add its instructions to a temporary
3029 * list. This list will be added to the instruction stream (below) after
3030 * the declaration is added. This is done because in some cases (such as
3031 * redeclarations) the declaration may not actually be added to the
3032 * instruction stream.
3033 */
3034 exec_list initializer_instructions;
3035 ir_variable *earlier = get_variable_being_redeclared(var, decl, state);
3036
3037 if (decl->initializer != NULL) {
3038 result = process_initializer((earlier == NULL) ? var : earlier,
3039 decl, this->type,
3040 &initializer_instructions, state);
3041 }
3042
3043 /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
3044 *
3045 * "It is an error to write to a const variable outside of
3046 * its declaration, so they must be initialized when
3047 * declared."
3048 */
3049 if (this->type->qualifier.flags.q.constant && decl->initializer == NULL) {
3050 _mesa_glsl_error(& loc, state,
3051 "const declaration of `%s' must be initialized",
3052 decl->identifier);
3053 }
3054
3055 /* If the declaration is not a redeclaration, there are a few additional
3056 * semantic checks that must be applied. In addition, variable that was
3057 * created for the declaration should be added to the IR stream.
3058 */
3059 if (earlier == NULL) {
3060 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
3061 *
3062 * "Identifiers starting with "gl_" are reserved for use by
3063 * OpenGL, and may not be declared in a shader as either a
3064 * variable or a function."
3065 */
3066 if (strncmp(decl->identifier, "gl_", 3) == 0)
3067 _mesa_glsl_error(& loc, state,
3068 "identifier `%s' uses reserved `gl_' prefix",
3069 decl->identifier);
3070 else if (strstr(decl->identifier, "__")) {
3071 /* From page 14 (page 20 of the PDF) of the GLSL 1.10
3072 * spec:
3073 *
3074 * "In addition, all identifiers containing two
3075 * consecutive underscores (__) are reserved as
3076 * possible future keywords."
3077 */
3078 _mesa_glsl_error(& loc, state,
3079 "identifier `%s' uses reserved `__' string",
3080 decl->identifier);
3081 }
3082
3083 /* Add the variable to the symbol table. Note that the initializer's
3084 * IR was already processed earlier (though it hasn't been emitted
3085 * yet), without the variable in scope.
3086 *
3087 * This differs from most C-like languages, but it follows the GLSL
3088 * specification. From page 28 (page 34 of the PDF) of the GLSL 1.50
3089 * spec:
3090 *
3091 * "Within a declaration, the scope of a name starts immediately
3092 * after the initializer if present or immediately after the name
3093 * being declared if not."
3094 */
3095 if (!state->symbols->add_variable(var)) {
3096 YYLTYPE loc = this->get_location();
3097 _mesa_glsl_error(&loc, state, "name `%s' already taken in the "
3098 "current scope", decl->identifier);
3099 continue;
3100 }
3101
3102 /* Push the variable declaration to the top. It means that all the
3103 * variable declarations will appear in a funny last-to-first order,
3104 * but otherwise we run into trouble if a function is prototyped, a
3105 * global var is decled, then the function is defined with usage of
3106 * the global var. See glslparsertest's CorrectModule.frag.
3107 */
3108 instructions->push_head(var);
3109 }
3110
3111 instructions->append_list(&initializer_instructions);
3112 }
3113
3114
3115 /* Generally, variable declarations do not have r-values. However,
3116 * one is used for the declaration in
3117 *
3118 * while (bool b = some_condition()) {
3119 * ...
3120 * }
3121 *
3122 * so we return the rvalue from the last seen declaration here.
3123 */
3124 return result;
3125 }
3126
3127
3128 ir_rvalue *
3129 ast_parameter_declarator::hir(exec_list *instructions,
3130 struct _mesa_glsl_parse_state *state)
3131 {
3132 void *ctx = state;
3133 const struct glsl_type *type;
3134 const char *name = NULL;
3135 YYLTYPE loc = this->get_location();
3136
3137 type = this->type->specifier->glsl_type(& name, state);
3138
3139 if (type == NULL) {
3140 if (name != NULL) {
3141 _mesa_glsl_error(& loc, state,
3142 "invalid type `%s' in declaration of `%s'",
3143 name, this->identifier);
3144 } else {
3145 _mesa_glsl_error(& loc, state,
3146 "invalid type in declaration of `%s'",
3147 this->identifier);
3148 }
3149
3150 type = glsl_type::error_type;
3151 }
3152
3153 /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
3154 *
3155 * "Functions that accept no input arguments need not use void in the
3156 * argument list because prototypes (or definitions) are required and
3157 * therefore there is no ambiguity when an empty argument list "( )" is
3158 * declared. The idiom "(void)" as a parameter list is provided for
3159 * convenience."
3160 *
3161 * Placing this check here prevents a void parameter being set up
3162 * for a function, which avoids tripping up checks for main taking
3163 * parameters and lookups of an unnamed symbol.
3164 */
3165 if (type->is_void()) {
3166 if (this->identifier != NULL)
3167 _mesa_glsl_error(& loc, state,
3168 "named parameter cannot have type `void'");
3169
3170 is_void = true;
3171 return NULL;
3172 }
3173
3174 if (formal_parameter && (this->identifier == NULL)) {
3175 _mesa_glsl_error(& loc, state, "formal parameter lacks a name");
3176 return NULL;
3177 }
3178
3179 /* This only handles "vec4 foo[..]". The earlier specifier->glsl_type(...)
3180 * call already handled the "vec4[..] foo" case.
3181 */
3182 if (this->is_array) {
3183 type = process_array_type(&loc, type, this->array_size, state);
3184 }
3185
3186 if (!type->is_error() && type->array_size() == 0) {
3187 _mesa_glsl_error(&loc, state, "arrays passed as parameters must have "
3188 "a declared size");
3189 type = glsl_type::error_type;
3190 }
3191
3192 is_void = false;
3193 ir_variable *var = new(ctx)
3194 ir_variable(type, this->identifier, ir_var_function_in);
3195
3196 /* Apply any specified qualifiers to the parameter declaration. Note that
3197 * for function parameters the default mode is 'in'.
3198 */
3199 apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc,
3200 false, true);
3201
3202 /* From page 17 (page 23 of the PDF) of the GLSL 1.20 spec:
3203 *
3204 * "Samplers cannot be treated as l-values; hence cannot be used
3205 * as out or inout function parameters, nor can they be assigned
3206 * into."
3207 */
3208 if ((var->mode == ir_var_function_inout || var->mode == ir_var_function_out)
3209 && type->contains_sampler()) {
3210 _mesa_glsl_error(&loc, state, "out and inout parameters cannot contain samplers");
3211 type = glsl_type::error_type;
3212 }
3213
3214 /* From page 39 (page 45 of the PDF) of the GLSL 1.10 spec:
3215 *
3216 * "When calling a function, expressions that do not evaluate to
3217 * l-values cannot be passed to parameters declared as out or inout."
3218 *
3219 * From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
3220 *
3221 * "Other binary or unary expressions, non-dereferenced arrays,
3222 * function names, swizzles with repeated fields, and constants
3223 * cannot be l-values."
3224 *
3225 * So for GLSL 1.10, passing an array as an out or inout parameter is not
3226 * allowed. This restriction is removed in GLSL 1.20, and in GLSL ES.
3227 */
3228 if ((var->mode == ir_var_function_inout || var->mode == ir_var_function_out)
3229 && type->is_array()
3230 && !state->check_version(120, 100, &loc,
3231 "arrays cannot be out or inout parameters")) {
3232 type = glsl_type::error_type;
3233 }
3234
3235 instructions->push_tail(var);
3236
3237 /* Parameter declarations do not have r-values.
3238 */
3239 return NULL;
3240 }
3241
3242
3243 void
3244 ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters,
3245 bool formal,
3246 exec_list *ir_parameters,
3247 _mesa_glsl_parse_state *state)
3248 {
3249 ast_parameter_declarator *void_param = NULL;
3250 unsigned count = 0;
3251
3252 foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) {
3253 param->formal_parameter = formal;
3254 param->hir(ir_parameters, state);
3255
3256 if (param->is_void)
3257 void_param = param;
3258
3259 count++;
3260 }
3261
3262 if ((void_param != NULL) && (count > 1)) {
3263 YYLTYPE loc = void_param->get_location();
3264
3265 _mesa_glsl_error(& loc, state,
3266 "`void' parameter must be only parameter");
3267 }
3268 }
3269
3270
3271 void
3272 emit_function(_mesa_glsl_parse_state *state, ir_function *f)
3273 {
3274 /* IR invariants disallow function declarations or definitions
3275 * nested within other function definitions. But there is no
3276 * requirement about the relative order of function declarations
3277 * and definitions with respect to one another. So simply insert
3278 * the new ir_function block at the end of the toplevel instruction
3279 * list.
3280 */
3281 state->toplevel_ir->push_tail(f);
3282 }
3283
3284
3285 ir_rvalue *
3286 ast_function::hir(exec_list *instructions,
3287 struct _mesa_glsl_parse_state *state)
3288 {
3289 void *ctx = state;
3290 ir_function *f = NULL;
3291 ir_function_signature *sig = NULL;
3292 exec_list hir_parameters;
3293
3294 const char *const name = identifier;
3295
3296 /* New functions are always added to the top-level IR instruction stream,
3297 * so this instruction list pointer is ignored. See also emit_function
3298 * (called below).
3299 */
3300 (void) instructions;
3301
3302 /* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec,
3303 *
3304 * "Function declarations (prototypes) cannot occur inside of functions;
3305 * they must be at global scope, or for the built-in functions, outside
3306 * the global scope."
3307 *
3308 * From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec,
3309 *
3310 * "User defined functions may only be defined within the global scope."
3311 *
3312 * Note that this language does not appear in GLSL 1.10.
3313 */
3314 if ((state->current_function != NULL) &&
3315 state->is_version(120, 100)) {
3316 YYLTYPE loc = this->get_location();
3317 _mesa_glsl_error(&loc, state,
3318 "declaration of function `%s' not allowed within "
3319 "function body", name);
3320 }
3321
3322 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
3323 *
3324 * "Identifiers starting with "gl_" are reserved for use by
3325 * OpenGL, and may not be declared in a shader as either a
3326 * variable or a function."
3327 */
3328 if (strncmp(name, "gl_", 3) == 0) {
3329 YYLTYPE loc = this->get_location();
3330 _mesa_glsl_error(&loc, state,
3331 "identifier `%s' uses reserved `gl_' prefix", name);
3332 }
3333
3334 /* Convert the list of function parameters to HIR now so that they can be
3335 * used below to compare this function's signature with previously seen
3336 * signatures for functions with the same name.
3337 */
3338 ast_parameter_declarator::parameters_to_hir(& this->parameters,
3339 is_definition,
3340 & hir_parameters, state);
3341
3342 const char *return_type_name;
3343 const glsl_type *return_type =
3344 this->return_type->specifier->glsl_type(& return_type_name, state);
3345
3346 if (!return_type) {
3347 YYLTYPE loc = this->get_location();
3348 _mesa_glsl_error(&loc, state,
3349 "function `%s' has undeclared return type `%s'",
3350 name, return_type_name);
3351 return_type = glsl_type::error_type;
3352 }
3353
3354 /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec:
3355 * "No qualifier is allowed on the return type of a function."
3356 */
3357 if (this->return_type->has_qualifiers()) {
3358 YYLTYPE loc = this->get_location();
3359 _mesa_glsl_error(& loc, state,
3360 "function `%s' return type has qualifiers", name);
3361 }
3362
3363 /* From page 17 (page 23 of the PDF) of the GLSL 1.20 spec:
3364 *
3365 * "[Sampler types] can only be declared as function parameters
3366 * or uniform variables (see Section 4.3.5 "Uniform")".
3367 */
3368 if (return_type->contains_sampler()) {
3369 YYLTYPE loc = this->get_location();
3370 _mesa_glsl_error(&loc, state,
3371 "function `%s' return type can't contain a sampler",
3372 name);
3373 }
3374
3375 /* Verify that this function's signature either doesn't match a previously
3376 * seen signature for a function with the same name, or, if a match is found,
3377 * that the previously seen signature does not have an associated definition.
3378 */
3379 f = state->symbols->get_function(name);
3380 if (f != NULL && (state->es_shader || f->has_user_signature())) {
3381 sig = f->exact_matching_signature(&hir_parameters);
3382 if (sig != NULL) {
3383 const char *badvar = sig->qualifiers_match(&hir_parameters);
3384 if (badvar != NULL) {
3385 YYLTYPE loc = this->get_location();
3386
3387 _mesa_glsl_error(&loc, state, "function `%s' parameter `%s' "
3388 "qualifiers don't match prototype", name, badvar);
3389 }
3390
3391 if (sig->return_type != return_type) {
3392 YYLTYPE loc = this->get_location();
3393
3394 _mesa_glsl_error(&loc, state, "function `%s' return type doesn't "
3395 "match prototype", name);
3396 }
3397
3398 if (sig->is_defined) {
3399 if (is_definition) {
3400 YYLTYPE loc = this->get_location();
3401 _mesa_glsl_error(& loc, state, "function `%s' redefined", name);
3402 } else {
3403 /* We just encountered a prototype that exactly matches a
3404 * function that's already been defined. This is redundant,
3405 * and we should ignore it.
3406 */
3407 return NULL;
3408 }
3409 }
3410 }
3411 } else {
3412 f = new(ctx) ir_function(name);
3413 if (!state->symbols->add_function(f)) {
3414 /* This function name shadows a non-function use of the same name. */
3415 YYLTYPE loc = this->get_location();
3416
3417 _mesa_glsl_error(&loc, state, "function name `%s' conflicts with "
3418 "non-function", name);
3419 return NULL;
3420 }
3421
3422 emit_function(state, f);
3423 }
3424
3425 /* Verify the return type of main() */
3426 if (strcmp(name, "main") == 0) {
3427 if (! return_type->is_void()) {
3428 YYLTYPE loc = this->get_location();
3429
3430 _mesa_glsl_error(& loc, state, "main() must return void");
3431 }
3432
3433 if (!hir_parameters.is_empty()) {
3434 YYLTYPE loc = this->get_location();
3435
3436 _mesa_glsl_error(& loc, state, "main() must not take any parameters");
3437 }
3438 }
3439
3440 /* Finish storing the information about this new function in its signature.
3441 */
3442 if (sig == NULL) {
3443 sig = new(ctx) ir_function_signature(return_type);
3444 f->add_signature(sig);
3445 }
3446
3447 sig->replace_parameters(&hir_parameters);
3448 signature = sig;
3449
3450 /* Function declarations (prototypes) do not have r-values.
3451 */
3452 return NULL;
3453 }
3454
3455
3456 ir_rvalue *
3457 ast_function_definition::hir(exec_list *instructions,
3458 struct _mesa_glsl_parse_state *state)
3459 {
3460 prototype->is_definition = true;
3461 prototype->hir(instructions, state);
3462
3463 ir_function_signature *signature = prototype->signature;
3464 if (signature == NULL)
3465 return NULL;
3466
3467 assert(state->current_function == NULL);
3468 state->current_function = signature;
3469 state->found_return = false;
3470
3471 /* Duplicate parameters declared in the prototype as concrete variables.
3472 * Add these to the symbol table.
3473 */
3474 state->symbols->push_scope();
3475 foreach_iter(exec_list_iterator, iter, signature->parameters) {
3476 ir_variable *const var = ((ir_instruction *) iter.get())->as_variable();
3477
3478 assert(var != NULL);
3479
3480 /* The only way a parameter would "exist" is if two parameters have
3481 * the same name.
3482 */
3483 if (state->symbols->name_declared_this_scope(var->name)) {
3484 YYLTYPE loc = this->get_location();
3485
3486 _mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name);
3487 } else {
3488 state->symbols->add_variable(var);
3489 }
3490 }
3491
3492 /* Convert the body of the function to HIR. */
3493 this->body->hir(&signature->body, state);
3494 signature->is_defined = true;
3495
3496 state->symbols->pop_scope();
3497
3498 assert(state->current_function == signature);
3499 state->current_function = NULL;
3500
3501 if (!signature->return_type->is_void() && !state->found_return) {
3502 YYLTYPE loc = this->get_location();
3503 _mesa_glsl_error(& loc, state, "function `%s' has non-void return type "
3504 "%s, but no return statement",
3505 signature->function_name(),
3506 signature->return_type->name);
3507 }
3508
3509 /* Function definitions do not have r-values.
3510 */
3511 return NULL;
3512 }
3513
3514
3515 ir_rvalue *
3516 ast_jump_statement::hir(exec_list *instructions,
3517 struct _mesa_glsl_parse_state *state)
3518 {
3519 void *ctx = state;
3520
3521 switch (mode) {
3522 case ast_return: {
3523 ir_return *inst;
3524 assert(state->current_function);
3525
3526 if (opt_return_value) {
3527 ir_rvalue *ret = opt_return_value->hir(instructions, state);
3528
3529 /* The value of the return type can be NULL if the shader says
3530 * 'return foo();' and foo() is a function that returns void.
3531 *
3532 * NOTE: The GLSL spec doesn't say that this is an error. The type
3533 * of the return value is void. If the return type of the function is
3534 * also void, then this should compile without error. Seriously.
3535 */
3536 const glsl_type *const ret_type =
3537 (ret == NULL) ? glsl_type::void_type : ret->type;
3538
3539 /* Implicit conversions are not allowed for return values prior to
3540 * ARB_shading_language_420pack.
3541 */
3542 if (state->current_function->return_type != ret_type) {
3543 YYLTYPE loc = this->get_location();
3544
3545 if (state->ARB_shading_language_420pack_enable) {
3546 if (!apply_implicit_conversion(state->current_function->return_type,
3547 ret, state)) {
3548 _mesa_glsl_error(& loc, state,
3549 "could not implicitly convert return value "
3550 "to %s, in function `%s'",
3551 state->current_function->return_type->name,
3552 state->current_function->function_name());
3553 }
3554 } else {
3555 _mesa_glsl_error(& loc, state,
3556 "`return' with wrong type %s, in function `%s' "
3557 "returning %s",
3558 ret_type->name,
3559 state->current_function->function_name(),
3560 state->current_function->return_type->name);
3561 }
3562 } else if (state->current_function->return_type->base_type ==
3563 GLSL_TYPE_VOID) {
3564 YYLTYPE loc = this->get_location();
3565
3566 /* The ARB_shading_language_420pack, GLSL ES 3.0, and GLSL 4.20
3567 * specs add a clarification:
3568 *
3569 * "A void function can only use return without a return argument, even if
3570 * the return argument has void type. Return statements only accept values:
3571 *
3572 * void func1() { }
3573 * void func2() { return func1(); } // illegal return statement"
3574 */
3575 _mesa_glsl_error(& loc, state,
3576 "void functions can only use `return' without a "
3577 "return argument");
3578 }
3579
3580 inst = new(ctx) ir_return(ret);
3581 } else {
3582 if (state->current_function->return_type->base_type !=
3583 GLSL_TYPE_VOID) {
3584 YYLTYPE loc = this->get_location();
3585
3586 _mesa_glsl_error(& loc, state,
3587 "`return' with no value, in function %s returning "
3588 "non-void",
3589 state->current_function->function_name());
3590 }
3591 inst = new(ctx) ir_return;
3592 }
3593
3594 state->found_return = true;
3595 instructions->push_tail(inst);
3596 break;
3597 }
3598
3599 case ast_discard:
3600 if (state->target != fragment_shader) {
3601 YYLTYPE loc = this->get_location();
3602
3603 _mesa_glsl_error(& loc, state,
3604 "`discard' may only appear in a fragment shader");
3605 }
3606 instructions->push_tail(new(ctx) ir_discard);
3607 break;
3608
3609 case ast_break:
3610 case ast_continue:
3611 if (mode == ast_continue &&
3612 state->loop_nesting_ast == NULL) {
3613 YYLTYPE loc = this->get_location();
3614
3615 _mesa_glsl_error(& loc, state,
3616 "continue may only appear in a loop");
3617 } else if (mode == ast_break &&
3618 state->loop_nesting_ast == NULL &&
3619 state->switch_state.switch_nesting_ast == NULL) {
3620 YYLTYPE loc = this->get_location();
3621
3622 _mesa_glsl_error(& loc, state,
3623 "break may only appear in a loop or a switch");
3624 } else {
3625 /* For a loop, inline the for loop expression again,
3626 * since we don't know where near the end of
3627 * the loop body the normal copy of it
3628 * is going to be placed.
3629 */
3630 if (state->loop_nesting_ast != NULL &&
3631 mode == ast_continue &&
3632 state->loop_nesting_ast->rest_expression) {
3633 state->loop_nesting_ast->rest_expression->hir(instructions,
3634 state);
3635 }
3636
3637 if (state->switch_state.is_switch_innermost &&
3638 mode == ast_break) {
3639 /* Force break out of switch by setting is_break switch state.
3640 */
3641 ir_variable *const is_break_var = state->switch_state.is_break_var;
3642 ir_dereference_variable *const deref_is_break_var =
3643 new(ctx) ir_dereference_variable(is_break_var);
3644 ir_constant *const true_val = new(ctx) ir_constant(true);
3645 ir_assignment *const set_break_var =
3646 new(ctx) ir_assignment(deref_is_break_var, true_val);
3647
3648 instructions->push_tail(set_break_var);
3649 }
3650 else {
3651 ir_loop_jump *const jump =
3652 new(ctx) ir_loop_jump((mode == ast_break)
3653 ? ir_loop_jump::jump_break
3654 : ir_loop_jump::jump_continue);
3655 instructions->push_tail(jump);
3656 }
3657 }
3658
3659 break;
3660 }
3661
3662 /* Jump instructions do not have r-values.
3663 */
3664 return NULL;
3665 }
3666
3667
3668 ir_rvalue *
3669 ast_selection_statement::hir(exec_list *instructions,
3670 struct _mesa_glsl_parse_state *state)
3671 {
3672 void *ctx = state;
3673
3674 ir_rvalue *const condition = this->condition->hir(instructions, state);
3675
3676 /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
3677 *
3678 * "Any expression whose type evaluates to a Boolean can be used as the
3679 * conditional expression bool-expression. Vector types are not accepted
3680 * as the expression to if."
3681 *
3682 * The checks are separated so that higher quality diagnostics can be
3683 * generated for cases where both rules are violated.
3684 */
3685 if (!condition->type->is_boolean() || !condition->type->is_scalar()) {
3686 YYLTYPE loc = this->condition->get_location();
3687
3688 _mesa_glsl_error(& loc, state, "if-statement condition must be scalar "
3689 "boolean");
3690 }
3691
3692 ir_if *const stmt = new(ctx) ir_if(condition);
3693
3694 if (then_statement != NULL) {
3695 state->symbols->push_scope();
3696 then_statement->hir(& stmt->then_instructions, state);
3697 state->symbols->pop_scope();
3698 }
3699
3700 if (else_statement != NULL) {
3701 state->symbols->push_scope();
3702 else_statement->hir(& stmt->else_instructions, state);
3703 state->symbols->pop_scope();
3704 }
3705
3706 instructions->push_tail(stmt);
3707
3708 /* if-statements do not have r-values.
3709 */
3710 return NULL;
3711 }
3712
3713
3714 ir_rvalue *
3715 ast_switch_statement::hir(exec_list *instructions,
3716 struct _mesa_glsl_parse_state *state)
3717 {
3718 void *ctx = state;
3719
3720 ir_rvalue *const test_expression =
3721 this->test_expression->hir(instructions, state);
3722
3723 /* From page 66 (page 55 of the PDF) of the GLSL 1.50 spec:
3724 *
3725 * "The type of init-expression in a switch statement must be a
3726 * scalar integer."
3727 */
3728 if (!test_expression->type->is_scalar() ||
3729 !test_expression->type->is_integer()) {
3730 YYLTYPE loc = this->test_expression->get_location();
3731
3732 _mesa_glsl_error(& loc,
3733 state,
3734 "switch-statement expression must be scalar "
3735 "integer");
3736 }
3737
3738 /* Track the switch-statement nesting in a stack-like manner.
3739 */
3740 struct glsl_switch_state saved = state->switch_state;
3741
3742 state->switch_state.is_switch_innermost = true;
3743 state->switch_state.switch_nesting_ast = this;
3744 state->switch_state.labels_ht = hash_table_ctor(0, hash_table_pointer_hash,
3745 hash_table_pointer_compare);
3746 state->switch_state.previous_default = NULL;
3747
3748 /* Initalize is_fallthru state to false.
3749 */
3750 ir_rvalue *const is_fallthru_val = new (ctx) ir_constant(false);
3751 state->switch_state.is_fallthru_var =
3752 new(ctx) ir_variable(glsl_type::bool_type,
3753 "switch_is_fallthru_tmp",
3754 ir_var_temporary);
3755 instructions->push_tail(state->switch_state.is_fallthru_var);
3756
3757 ir_dereference_variable *deref_is_fallthru_var =
3758 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
3759 instructions->push_tail(new(ctx) ir_assignment(deref_is_fallthru_var,
3760 is_fallthru_val));
3761
3762 /* Initalize is_break state to false.
3763 */
3764 ir_rvalue *const is_break_val = new (ctx) ir_constant(false);
3765 state->switch_state.is_break_var = new(ctx) ir_variable(glsl_type::bool_type,
3766 "switch_is_break_tmp",
3767 ir_var_temporary);
3768 instructions->push_tail(state->switch_state.is_break_var);
3769
3770 ir_dereference_variable *deref_is_break_var =
3771 new(ctx) ir_dereference_variable(state->switch_state.is_break_var);
3772 instructions->push_tail(new(ctx) ir_assignment(deref_is_break_var,
3773 is_break_val));
3774
3775 /* Cache test expression.
3776 */
3777 test_to_hir(instructions, state);
3778
3779 /* Emit code for body of switch stmt.
3780 */
3781 body->hir(instructions, state);
3782
3783 hash_table_dtor(state->switch_state.labels_ht);
3784
3785 state->switch_state = saved;
3786
3787 /* Switch statements do not have r-values. */
3788 return NULL;
3789 }
3790
3791
3792 void
3793 ast_switch_statement::test_to_hir(exec_list *instructions,
3794 struct _mesa_glsl_parse_state *state)
3795 {
3796 void *ctx = state;
3797
3798 /* Cache value of test expression. */
3799 ir_rvalue *const test_val =
3800 test_expression->hir(instructions,
3801 state);
3802
3803 state->switch_state.test_var = new(ctx) ir_variable(test_val->type,
3804 "switch_test_tmp",
3805 ir_var_temporary);
3806 ir_dereference_variable *deref_test_var =
3807 new(ctx) ir_dereference_variable(state->switch_state.test_var);
3808
3809 instructions->push_tail(state->switch_state.test_var);
3810 instructions->push_tail(new(ctx) ir_assignment(deref_test_var, test_val));
3811 }
3812
3813
3814 ir_rvalue *
3815 ast_switch_body::hir(exec_list *instructions,
3816 struct _mesa_glsl_parse_state *state)
3817 {
3818 if (stmts != NULL)
3819 stmts->hir(instructions, state);
3820
3821 /* Switch bodies do not have r-values. */
3822 return NULL;
3823 }
3824
3825 ir_rvalue *
3826 ast_case_statement_list::hir(exec_list *instructions,
3827 struct _mesa_glsl_parse_state *state)
3828 {
3829 foreach_list_typed (ast_case_statement, case_stmt, link, & this->cases)
3830 case_stmt->hir(instructions, state);
3831
3832 /* Case statements do not have r-values. */
3833 return NULL;
3834 }
3835
3836 ir_rvalue *
3837 ast_case_statement::hir(exec_list *instructions,
3838 struct _mesa_glsl_parse_state *state)
3839 {
3840 labels->hir(instructions, state);
3841
3842 /* Conditionally set fallthru state based on break state. */
3843 ir_constant *const false_val = new(state) ir_constant(false);
3844 ir_dereference_variable *const deref_is_fallthru_var =
3845 new(state) ir_dereference_variable(state->switch_state.is_fallthru_var);
3846 ir_dereference_variable *const deref_is_break_var =
3847 new(state) ir_dereference_variable(state->switch_state.is_break_var);
3848 ir_assignment *const reset_fallthru_on_break =
3849 new(state) ir_assignment(deref_is_fallthru_var,
3850 false_val,
3851 deref_is_break_var);
3852 instructions->push_tail(reset_fallthru_on_break);
3853
3854 /* Guard case statements depending on fallthru state. */
3855 ir_dereference_variable *const deref_fallthru_guard =
3856 new(state) ir_dereference_variable(state->switch_state.is_fallthru_var);
3857 ir_if *const test_fallthru = new(state) ir_if(deref_fallthru_guard);
3858
3859 foreach_list_typed (ast_node, stmt, link, & this->stmts)
3860 stmt->hir(& test_fallthru->then_instructions, state);
3861
3862 instructions->push_tail(test_fallthru);
3863
3864 /* Case statements do not have r-values. */
3865 return NULL;
3866 }
3867
3868
3869 ir_rvalue *
3870 ast_case_label_list::hir(exec_list *instructions,
3871 struct _mesa_glsl_parse_state *state)
3872 {
3873 foreach_list_typed (ast_case_label, label, link, & this->labels)
3874 label->hir(instructions, state);
3875
3876 /* Case labels do not have r-values. */
3877 return NULL;
3878 }
3879
3880 ir_rvalue *
3881 ast_case_label::hir(exec_list *instructions,
3882 struct _mesa_glsl_parse_state *state)
3883 {
3884 void *ctx = state;
3885
3886 ir_dereference_variable *deref_fallthru_var =
3887 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
3888
3889 ir_rvalue *const true_val = new(ctx) ir_constant(true);
3890
3891 /* If not default case, ... */
3892 if (this->test_value != NULL) {
3893 /* Conditionally set fallthru state based on
3894 * comparison of cached test expression value to case label.
3895 */
3896 ir_rvalue *const label_rval = this->test_value->hir(instructions, state);
3897 ir_constant *label_const = label_rval->constant_expression_value();
3898
3899 if (!label_const) {
3900 YYLTYPE loc = this->test_value->get_location();
3901
3902 _mesa_glsl_error(& loc, state,
3903 "switch statement case label must be a "
3904 "constant expression");
3905
3906 /* Stuff a dummy value in to allow processing to continue. */
3907 label_const = new(ctx) ir_constant(0);
3908 } else {
3909 ast_expression *previous_label = (ast_expression *)
3910 hash_table_find(state->switch_state.labels_ht,
3911 (void *)(uintptr_t)label_const->value.u[0]);
3912
3913 if (previous_label) {
3914 YYLTYPE loc = this->test_value->get_location();
3915 _mesa_glsl_error(& loc, state,
3916 "duplicate case value");
3917
3918 loc = previous_label->get_location();
3919 _mesa_glsl_error(& loc, state,
3920 "this is the previous case label");
3921 } else {
3922 hash_table_insert(state->switch_state.labels_ht,
3923 this->test_value,
3924 (void *)(uintptr_t)label_const->value.u[0]);
3925 }
3926 }
3927
3928 ir_dereference_variable *deref_test_var =
3929 new(ctx) ir_dereference_variable(state->switch_state.test_var);
3930
3931 ir_rvalue *const test_cond = new(ctx) ir_expression(ir_binop_all_equal,
3932 label_const,
3933 deref_test_var);
3934
3935 ir_assignment *set_fallthru_on_test =
3936 new(ctx) ir_assignment(deref_fallthru_var,
3937 true_val,
3938 test_cond);
3939
3940 instructions->push_tail(set_fallthru_on_test);
3941 } else { /* default case */
3942 if (state->switch_state.previous_default) {
3943 YYLTYPE loc = this->get_location();
3944 _mesa_glsl_error(& loc, state,
3945 "multiple default labels in one switch");
3946
3947 loc = state->switch_state.previous_default->get_location();
3948 _mesa_glsl_error(& loc, state,
3949 "this is the first default label");
3950 }
3951 state->switch_state.previous_default = this;
3952
3953 /* Set falltrhu state. */
3954 ir_assignment *set_fallthru =
3955 new(ctx) ir_assignment(deref_fallthru_var, true_val);
3956
3957 instructions->push_tail(set_fallthru);
3958 }
3959
3960 /* Case statements do not have r-values. */
3961 return NULL;
3962 }
3963
3964 void
3965 ast_iteration_statement::condition_to_hir(ir_loop *stmt,
3966 struct _mesa_glsl_parse_state *state)
3967 {
3968 void *ctx = state;
3969
3970 if (condition != NULL) {
3971 ir_rvalue *const cond =
3972 condition->hir(& stmt->body_instructions, state);
3973
3974 if ((cond == NULL)
3975 || !cond->type->is_boolean() || !cond->type->is_scalar()) {
3976 YYLTYPE loc = condition->get_location();
3977
3978 _mesa_glsl_error(& loc, state,
3979 "loop condition must be scalar boolean");
3980 } else {
3981 /* As the first code in the loop body, generate a block that looks
3982 * like 'if (!condition) break;' as the loop termination condition.
3983 */
3984 ir_rvalue *const not_cond =
3985 new(ctx) ir_expression(ir_unop_logic_not, cond);
3986
3987 ir_if *const if_stmt = new(ctx) ir_if(not_cond);
3988
3989 ir_jump *const break_stmt =
3990 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
3991
3992 if_stmt->then_instructions.push_tail(break_stmt);
3993 stmt->body_instructions.push_tail(if_stmt);
3994 }
3995 }
3996 }
3997
3998
3999 ir_rvalue *
4000 ast_iteration_statement::hir(exec_list *instructions,
4001 struct _mesa_glsl_parse_state *state)
4002 {
4003 void *ctx = state;
4004
4005 /* For-loops and while-loops start a new scope, but do-while loops do not.
4006 */
4007 if (mode != ast_do_while)
4008 state->symbols->push_scope();
4009
4010 if (init_statement != NULL)
4011 init_statement->hir(instructions, state);
4012
4013 ir_loop *const stmt = new(ctx) ir_loop();
4014 instructions->push_tail(stmt);
4015
4016 /* Track the current loop nesting. */
4017 ast_iteration_statement *nesting_ast = state->loop_nesting_ast;
4018
4019 state->loop_nesting_ast = this;
4020
4021 /* Likewise, indicate that following code is closest to a loop,
4022 * NOT closest to a switch.
4023 */
4024 bool saved_is_switch_innermost = state->switch_state.is_switch_innermost;
4025 state->switch_state.is_switch_innermost = false;
4026
4027 if (mode != ast_do_while)
4028 condition_to_hir(stmt, state);
4029
4030 if (body != NULL)
4031 body->hir(& stmt->body_instructions, state);
4032
4033 if (rest_expression != NULL)
4034 rest_expression->hir(& stmt->body_instructions, state);
4035
4036 if (mode == ast_do_while)
4037 condition_to_hir(stmt, state);
4038
4039 if (mode != ast_do_while)
4040 state->symbols->pop_scope();
4041
4042 /* Restore previous nesting before returning. */
4043 state->loop_nesting_ast = nesting_ast;
4044 state->switch_state.is_switch_innermost = saved_is_switch_innermost;
4045
4046 /* Loops do not have r-values.
4047 */
4048 return NULL;
4049 }
4050
4051
4052 /**
4053 * Determine if the given type is valid for establishing a default precision
4054 * qualifier.
4055 *
4056 * From GLSL ES 3.00 section 4.5.4 ("Default Precision Qualifiers"):
4057 *
4058 * "The precision statement
4059 *
4060 * precision precision-qualifier type;
4061 *
4062 * can be used to establish a default precision qualifier. The type field
4063 * can be either int or float or any of the sampler types, and the
4064 * precision-qualifier can be lowp, mediump, or highp."
4065 *
4066 * GLSL ES 1.00 has similar language. GLSL 1.30 doesn't allow precision
4067 * qualifiers on sampler types, but this seems like an oversight (since the
4068 * intention of including these in GLSL 1.30 is to allow compatibility with ES
4069 * shaders). So we allow int, float, and all sampler types regardless of GLSL
4070 * version.
4071 */
4072 static bool
4073 is_valid_default_precision_type(const struct _mesa_glsl_parse_state *state,
4074 const char *type_name)
4075 {
4076 const struct glsl_type *type = state->symbols->get_type(type_name);
4077 if (type == NULL)
4078 return false;
4079
4080 switch (type->base_type) {
4081 case GLSL_TYPE_INT:
4082 case GLSL_TYPE_FLOAT:
4083 /* "int" and "float" are valid, but vectors and matrices are not. */
4084 return type->vector_elements == 1 && type->matrix_columns == 1;
4085 case GLSL_TYPE_SAMPLER:
4086 return true;
4087 default:
4088 return false;
4089 }
4090 }
4091
4092
4093 ir_rvalue *
4094 ast_type_specifier::hir(exec_list *instructions,
4095 struct _mesa_glsl_parse_state *state)
4096 {
4097 if (this->default_precision == ast_precision_none && this->structure == NULL)
4098 return NULL;
4099
4100 YYLTYPE loc = this->get_location();
4101
4102 /* If this is a precision statement, check that the type to which it is
4103 * applied is either float or int.
4104 *
4105 * From section 4.5.3 of the GLSL 1.30 spec:
4106 * "The precision statement
4107 * precision precision-qualifier type;
4108 * can be used to establish a default precision qualifier. The type
4109 * field can be either int or float [...]. Any other types or
4110 * qualifiers will result in an error.
4111 */
4112 if (this->default_precision != ast_precision_none) {
4113 if (!state->check_precision_qualifiers_allowed(&loc))
4114 return NULL;
4115
4116 if (this->structure != NULL) {
4117 _mesa_glsl_error(&loc, state,
4118 "precision qualifiers do not apply to structures");
4119 return NULL;
4120 }
4121
4122 if (this->is_array) {
4123 _mesa_glsl_error(&loc, state,
4124 "default precision statements do not apply to "
4125 "arrays");
4126 return NULL;
4127 }
4128 if (!is_valid_default_precision_type(state, this->type_name)) {
4129 _mesa_glsl_error(&loc, state,
4130 "default precision statements apply only to types "
4131 "float, int, and sampler types");
4132 return NULL;
4133 }
4134
4135 /* FINISHME: Translate precision statements into IR. */
4136 return NULL;
4137 }
4138
4139 /* _mesa_ast_set_aggregate_type() sets the <structure> field so that
4140 * process_record_constructor() can do type-checking on C-style initializer
4141 * expressions of structs, but ast_struct_specifier should only be translated
4142 * to HIR if it is declaring the type of a structure.
4143 *
4144 * The ->is_declaration field is false for initializers of variables
4145 * declared separately from the struct's type definition.
4146 *
4147 * struct S { ... }; (is_declaration = true)
4148 * struct T { ... } t = { ... }; (is_declaration = true)
4149 * S s = { ... }; (is_declaration = false)
4150 */
4151 if (this->structure != NULL && this->structure->is_declaration)
4152 return this->structure->hir(instructions, state);
4153
4154 return NULL;
4155 }
4156
4157
4158 /**
4159 * Process a structure or interface block tree into an array of structure fields
4160 *
4161 * After parsing, where there are some syntax differnces, structures and
4162 * interface blocks are almost identical. They are similar enough that the
4163 * AST for each can be processed the same way into a set of
4164 * \c glsl_struct_field to describe the members.
4165 *
4166 * \return
4167 * The number of fields processed. A pointer to the array structure fields is
4168 * stored in \c *fields_ret.
4169 */
4170 unsigned
4171 ast_process_structure_or_interface_block(exec_list *instructions,
4172 struct _mesa_glsl_parse_state *state,
4173 exec_list *declarations,
4174 YYLTYPE &loc,
4175 glsl_struct_field **fields_ret,
4176 bool is_interface,
4177 bool block_row_major)
4178 {
4179 unsigned decl_count = 0;
4180
4181 /* Make an initial pass over the list of fields to determine how
4182 * many there are. Each element in this list is an ast_declarator_list.
4183 * This means that we actually need to count the number of elements in the
4184 * 'declarations' list in each of the elements.
4185 */
4186 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
4187 foreach_list_const (decl_ptr, & decl_list->declarations) {
4188 decl_count++;
4189 }
4190 }
4191
4192 /* Allocate storage for the fields and process the field
4193 * declarations. As the declarations are processed, try to also convert
4194 * the types to HIR. This ensures that structure definitions embedded in
4195 * other structure definitions or in interface blocks are processed.
4196 */
4197 glsl_struct_field *const fields = ralloc_array(state, glsl_struct_field,
4198 decl_count);
4199
4200 unsigned i = 0;
4201 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
4202 const char *type_name;
4203
4204 decl_list->type->specifier->hir(instructions, state);
4205
4206 /* Section 10.9 of the GLSL ES 1.00 specification states that
4207 * embedded structure definitions have been removed from the language.
4208 */
4209 if (state->es_shader && decl_list->type->specifier->structure != NULL) {
4210 _mesa_glsl_error(&loc, state, "embedded structure definitions are "
4211 "not allowed in GLSL ES 1.00");
4212 }
4213
4214 const glsl_type *decl_type =
4215 decl_list->type->specifier->glsl_type(& type_name, state);
4216
4217 foreach_list_typed (ast_declaration, decl, link,
4218 &decl_list->declarations) {
4219 /* From the GL_ARB_uniform_buffer_object spec:
4220 *
4221 * "Sampler types are not allowed inside of uniform
4222 * blocks. All other types, arrays, and structures
4223 * allowed for uniforms are allowed within a uniform
4224 * block."
4225 *
4226 * It should be impossible for decl_type to be NULL here. Cases that
4227 * might naturally lead to decl_type being NULL, especially for the
4228 * is_interface case, will have resulted in compilation having
4229 * already halted due to a syntax error.
4230 */
4231 const struct glsl_type *field_type =
4232 decl_type != NULL ? decl_type : glsl_type::error_type;
4233
4234 if (is_interface && field_type->contains_sampler()) {
4235 YYLTYPE loc = decl_list->get_location();
4236 _mesa_glsl_error(&loc, state,
4237 "uniform in non-default uniform block contains sampler");
4238 }
4239
4240 const struct ast_type_qualifier *const qual =
4241 & decl_list->type->qualifier;
4242 if (qual->flags.q.std140 ||
4243 qual->flags.q.packed ||
4244 qual->flags.q.shared) {
4245 _mesa_glsl_error(&loc, state,
4246 "uniform block layout qualifiers std140, packed, and "
4247 "shared can only be applied to uniform blocks, not "
4248 "members");
4249 }
4250
4251 if (decl->is_array) {
4252 field_type = process_array_type(&loc, decl_type, decl->array_size,
4253 state);
4254 }
4255 fields[i].type = field_type;
4256 fields[i].name = decl->identifier;
4257
4258 if (qual->flags.q.row_major || qual->flags.q.column_major) {
4259 if (!qual->flags.q.uniform) {
4260 _mesa_glsl_error(&loc, state,
4261 "row_major and column_major can only be "
4262 "applied to uniform interface blocks");
4263 } else if (!field_type->is_matrix() && !field_type->is_record()) {
4264 _mesa_glsl_error(&loc, state,
4265 "uniform block layout qualifiers row_major and "
4266 "column_major can only be applied to matrix and "
4267 "structure types");
4268 } else
4269 validate_matrix_layout_for_type(state, &loc, field_type);
4270 }
4271
4272 if (qual->flags.q.uniform && qual->has_interpolation()) {
4273 _mesa_glsl_error(&loc, state,
4274 "interpolation qualifiers cannot be used "
4275 "with uniform interface blocks");
4276 }
4277
4278 if (field_type->is_matrix() ||
4279 (field_type->is_array() && field_type->fields.array->is_matrix())) {
4280 fields[i].row_major = block_row_major;
4281 if (qual->flags.q.row_major)
4282 fields[i].row_major = true;
4283 else if (qual->flags.q.column_major)
4284 fields[i].row_major = false;
4285 }
4286
4287 i++;
4288 }
4289 }
4290
4291 assert(i == decl_count);
4292
4293 *fields_ret = fields;
4294 return decl_count;
4295 }
4296
4297
4298 ir_rvalue *
4299 ast_struct_specifier::hir(exec_list *instructions,
4300 struct _mesa_glsl_parse_state *state)
4301 {
4302 YYLTYPE loc = this->get_location();
4303 glsl_struct_field *fields;
4304 unsigned decl_count =
4305 ast_process_structure_or_interface_block(instructions,
4306 state,
4307 &this->declarations,
4308 loc,
4309 &fields,
4310 false,
4311 false);
4312
4313 const glsl_type *t =
4314 glsl_type::get_record_instance(fields, decl_count, this->name);
4315
4316 if (!state->symbols->add_type(name, t)) {
4317 _mesa_glsl_error(& loc, state, "struct `%s' previously defined", name);
4318 } else {
4319 const glsl_type **s = reralloc(state, state->user_structures,
4320 const glsl_type *,
4321 state->num_user_structures + 1);
4322 if (s != NULL) {
4323 s[state->num_user_structures] = t;
4324 state->user_structures = s;
4325 state->num_user_structures++;
4326 }
4327 }
4328
4329 /* Structure type definitions do not have r-values.
4330 */
4331 return NULL;
4332 }
4333
4334 ir_rvalue *
4335 ast_interface_block::hir(exec_list *instructions,
4336 struct _mesa_glsl_parse_state *state)
4337 {
4338 YYLTYPE loc = this->get_location();
4339
4340 /* The ast_interface_block has a list of ast_declarator_lists. We
4341 * need to turn those into ir_variables with an association
4342 * with this uniform block.
4343 */
4344 enum glsl_interface_packing packing;
4345 if (this->layout.flags.q.shared) {
4346 packing = GLSL_INTERFACE_PACKING_SHARED;
4347 } else if (this->layout.flags.q.packed) {
4348 packing = GLSL_INTERFACE_PACKING_PACKED;
4349 } else {
4350 /* The default layout is std140.
4351 */
4352 packing = GLSL_INTERFACE_PACKING_STD140;
4353 }
4354
4355 bool block_row_major = this->layout.flags.q.row_major;
4356 exec_list declared_variables;
4357 glsl_struct_field *fields;
4358 unsigned int num_variables =
4359 ast_process_structure_or_interface_block(&declared_variables,
4360 state,
4361 &this->declarations,
4362 loc,
4363 &fields,
4364 true,
4365 block_row_major);
4366
4367 ir_variable_mode var_mode;
4368 const char *iface_type_name;
4369 if (this->layout.flags.q.in) {
4370 var_mode = ir_var_shader_in;
4371 iface_type_name = "in";
4372 } else if (this->layout.flags.q.out) {
4373 var_mode = ir_var_shader_out;
4374 iface_type_name = "out";
4375 } else if (this->layout.flags.q.uniform) {
4376 var_mode = ir_var_uniform;
4377 iface_type_name = "uniform";
4378 } else {
4379 var_mode = ir_var_auto;
4380 iface_type_name = "UNKNOWN";
4381 assert(!"interface block layout qualifier not found!");
4382 }
4383
4384 const glsl_type *block_type =
4385 glsl_type::get_interface_instance(fields,
4386 num_variables,
4387 packing,
4388 this->block_name);
4389
4390 if (!state->symbols->add_interface(block_type->name, block_type, var_mode)) {
4391 YYLTYPE loc = this->get_location();
4392 _mesa_glsl_error(&loc, state, "interface block `%s' with type `%s' "
4393 "already taken in the current scope",
4394 this->block_name, iface_type_name);
4395 }
4396
4397 /* Since interface blocks cannot contain statements, it should be
4398 * impossible for the block to generate any instructions.
4399 */
4400 assert(declared_variables.is_empty());
4401
4402 /* Page 39 (page 45 of the PDF) of section 4.3.7 in the GLSL ES 3.00 spec
4403 * says:
4404 *
4405 * "If an instance name (instance-name) is used, then it puts all the
4406 * members inside a scope within its own name space, accessed with the
4407 * field selector ( . ) operator (analogously to structures)."
4408 */
4409 if (this->instance_name) {
4410 ir_variable *var;
4411
4412 if (this->is_array) {
4413 /* Section 4.3.7 (Interface Blocks) of the GLSL 1.50 spec says:
4414 *
4415 * For uniform blocks declared an array, each individual array
4416 * element corresponds to a separate buffer object backing one
4417 * instance of the block. As the array size indicates the number
4418 * of buffer objects needed, uniform block array declarations
4419 * must specify an array size.
4420 *
4421 * And a few paragraphs later:
4422 *
4423 * Geometry shader input blocks must be declared as arrays and
4424 * follow the array declaration and linking rules for all
4425 * geometry shader inputs. All other input and output block
4426 * arrays must specify an array size.
4427 *
4428 * The upshot of this is that the only circumstance where an
4429 * interface array size *doesn't* need to be specified is on a
4430 * geometry shader input.
4431 */
4432 if (this->array_size == NULL &&
4433 (state->target != geometry_shader || !this->layout.flags.q.in)) {
4434 _mesa_glsl_error(&loc, state,
4435 "only geometry shader inputs may be unsized "
4436 "instance block arrays");
4437
4438 }
4439
4440 const glsl_type *block_array_type =
4441 process_array_type(&loc, block_type, this->array_size, state);
4442
4443 var = new(state) ir_variable(block_array_type,
4444 this->instance_name,
4445 var_mode);
4446 } else {
4447 var = new(state) ir_variable(block_type,
4448 this->instance_name,
4449 var_mode);
4450 }
4451
4452 var->interface_type = block_type;
4453 state->symbols->add_variable(var);
4454 instructions->push_tail(var);
4455 } else {
4456 /* In order to have an array size, the block must also be declared with
4457 * an instane name.
4458 */
4459 assert(!this->is_array);
4460
4461 for (unsigned i = 0; i < num_variables; i++) {
4462 ir_variable *var =
4463 new(state) ir_variable(fields[i].type,
4464 ralloc_strdup(state, fields[i].name),
4465 var_mode);
4466 var->interface_type = block_type;
4467
4468 /* Propagate the "binding" keyword into this UBO's fields;
4469 * the UBO declaration itself doesn't get an ir_variable unless it
4470 * has an instance name. This is ugly.
4471 */
4472 var->explicit_binding = this->layout.flags.q.explicit_binding;
4473 var->binding = this->layout.binding;
4474
4475 state->symbols->add_variable(var);
4476 instructions->push_tail(var);
4477 }
4478 }
4479
4480 return NULL;
4481 }
4482
4483
4484 ir_rvalue *
4485 ast_gs_input_layout::hir(exec_list *instructions,
4486 struct _mesa_glsl_parse_state *state)
4487 {
4488 YYLTYPE loc = this->get_location();
4489
4490 /* If any geometry input layout declaration preceded this one, make sure it
4491 * was consistent with this one.
4492 */
4493 if (state->gs_input_prim_type_specified &&
4494 state->gs_input_prim_type != this->prim_type) {
4495 _mesa_glsl_error(&loc, state,
4496 "geometry shader input layout does not match"
4497 " previous declaration");
4498 return NULL;
4499 }
4500
4501 state->gs_input_prim_type_specified = true;
4502 state->gs_input_prim_type = this->prim_type;
4503
4504 return NULL;
4505 }
4506
4507
4508 static void
4509 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
4510 exec_list *instructions)
4511 {
4512 bool gl_FragColor_assigned = false;
4513 bool gl_FragData_assigned = false;
4514 bool user_defined_fs_output_assigned = false;
4515 ir_variable *user_defined_fs_output = NULL;
4516
4517 /* It would be nice to have proper location information. */
4518 YYLTYPE loc;
4519 memset(&loc, 0, sizeof(loc));
4520
4521 foreach_list(node, instructions) {
4522 ir_variable *var = ((ir_instruction *)node)->as_variable();
4523
4524 if (!var || !var->assigned)
4525 continue;
4526
4527 if (strcmp(var->name, "gl_FragColor") == 0)
4528 gl_FragColor_assigned = true;
4529 else if (strcmp(var->name, "gl_FragData") == 0)
4530 gl_FragData_assigned = true;
4531 else if (strncmp(var->name, "gl_", 3) != 0) {
4532 if (state->target == fragment_shader &&
4533 var->mode == ir_var_shader_out) {
4534 user_defined_fs_output_assigned = true;
4535 user_defined_fs_output = var;
4536 }
4537 }
4538 }
4539
4540 /* From the GLSL 1.30 spec:
4541 *
4542 * "If a shader statically assigns a value to gl_FragColor, it
4543 * may not assign a value to any element of gl_FragData. If a
4544 * shader statically writes a value to any element of
4545 * gl_FragData, it may not assign a value to
4546 * gl_FragColor. That is, a shader may assign values to either
4547 * gl_FragColor or gl_FragData, but not both. Multiple shaders
4548 * linked together must also consistently write just one of
4549 * these variables. Similarly, if user declared output
4550 * variables are in use (statically assigned to), then the
4551 * built-in variables gl_FragColor and gl_FragData may not be
4552 * assigned to. These incorrect usages all generate compile
4553 * time errors."
4554 */
4555 if (gl_FragColor_assigned && gl_FragData_assigned) {
4556 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
4557 "`gl_FragColor' and `gl_FragData'");
4558 } else if (gl_FragColor_assigned && user_defined_fs_output_assigned) {
4559 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
4560 "`gl_FragColor' and `%s'",
4561 user_defined_fs_output->name);
4562 } else if (gl_FragData_assigned && user_defined_fs_output_assigned) {
4563 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
4564 "`gl_FragData' and `%s'",
4565 user_defined_fs_output->name);
4566 }
4567 }