glsl: Fix hypothetical NULL dereference in ast_process_structure_or_interface_block
[mesa.git] / src / glsl / ast_to_hir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file ast_to_hir.c
26 * Convert abstract syntax to to high-level intermediate reprensentation (HIR).
27 *
28 * During the conversion to HIR, the majority of the symantic checking is
29 * preformed on the program. This includes:
30 *
31 * * Symbol table management
32 * * Type checking
33 * * Function binding
34 *
35 * The majority of this work could be done during parsing, and the parser could
36 * probably generate HIR directly. However, this results in frequent changes
37 * to the parser code. Since we do not assume that every system this complier
38 * is built on will have Flex and Bison installed, we have to store the code
39 * generated by these tools in our version control system. In other parts of
40 * the system we've seen problems where a parser was changed but the generated
41 * code was not committed, merge conflicts where created because two developers
42 * had slightly different versions of Bison installed, etc.
43 *
44 * I have also noticed that running Bison generated parsers in GDB is very
45 * irritating. When you get a segfault on '$$ = $1->foo', you can't very
46 * well 'print $1' in GDB.
47 *
48 * As a result, my preference is to put as little C code as possible in the
49 * parser (and lexer) sources.
50 */
51
52 #include "main/core.h" /* for struct gl_extensions */
53 #include "glsl_symbol_table.h"
54 #include "glsl_parser_extras.h"
55 #include "ast.h"
56 #include "glsl_types.h"
57 #include "program/hash_table.h"
58 #include "ir.h"
59
60 static void
61 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
62 exec_list *instructions);
63
64 void
65 _mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
66 {
67 _mesa_glsl_initialize_variables(instructions, state);
68
69 state->symbols->separate_function_namespace = state->language_version == 110;
70
71 state->current_function = NULL;
72
73 state->toplevel_ir = instructions;
74
75 /* Section 4.2 of the GLSL 1.20 specification states:
76 * "The built-in functions are scoped in a scope outside the global scope
77 * users declare global variables in. That is, a shader's global scope,
78 * available for user-defined functions and global variables, is nested
79 * inside the scope containing the built-in functions."
80 *
81 * Since built-in functions like ftransform() access built-in variables,
82 * it follows that those must be in the outer scope as well.
83 *
84 * We push scope here to create this nesting effect...but don't pop.
85 * This way, a shader's globals are still in the symbol table for use
86 * by the linker.
87 */
88 state->symbols->push_scope();
89
90 foreach_list_typed (ast_node, ast, link, & state->translation_unit)
91 ast->hir(instructions, state);
92
93 detect_recursion_unlinked(state, instructions);
94 detect_conflicting_assignments(state, instructions);
95
96 state->toplevel_ir = NULL;
97 }
98
99
100 /**
101 * If a conversion is available, convert one operand to a different type
102 *
103 * The \c from \c ir_rvalue is converted "in place".
104 *
105 * \param to Type that the operand it to be converted to
106 * \param from Operand that is being converted
107 * \param state GLSL compiler state
108 *
109 * \return
110 * If a conversion is possible (or unnecessary), \c true is returned.
111 * Otherwise \c false is returned.
112 */
113 bool
114 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
115 struct _mesa_glsl_parse_state *state)
116 {
117 void *ctx = state;
118 if (to->base_type == from->type->base_type)
119 return true;
120
121 /* This conversion was added in GLSL 1.20. If the compilation mode is
122 * GLSL 1.10, the conversion is skipped.
123 */
124 if (!state->is_version(120, 0))
125 return false;
126
127 /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
128 *
129 * "There are no implicit array or structure conversions. For
130 * example, an array of int cannot be implicitly converted to an
131 * array of float. There are no implicit conversions between
132 * signed and unsigned integers."
133 */
134 /* FINISHME: The above comment is partially a lie. There is int/uint
135 * FINISHME: conversion for immediate constants.
136 */
137 if (!to->is_float() || !from->type->is_numeric())
138 return false;
139
140 /* Convert to a floating point type with the same number of components
141 * as the original type - i.e. int to float, not int to vec4.
142 */
143 to = glsl_type::get_instance(GLSL_TYPE_FLOAT, from->type->vector_elements,
144 from->type->matrix_columns);
145
146 switch (from->type->base_type) {
147 case GLSL_TYPE_INT:
148 from = new(ctx) ir_expression(ir_unop_i2f, to, from, NULL);
149 break;
150 case GLSL_TYPE_UINT:
151 from = new(ctx) ir_expression(ir_unop_u2f, to, from, NULL);
152 break;
153 case GLSL_TYPE_BOOL:
154 from = new(ctx) ir_expression(ir_unop_b2f, to, from, NULL);
155 break;
156 default:
157 assert(0);
158 }
159
160 return true;
161 }
162
163
164 static const struct glsl_type *
165 arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
166 bool multiply,
167 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
168 {
169 const glsl_type *type_a = value_a->type;
170 const glsl_type *type_b = value_b->type;
171
172 /* From GLSL 1.50 spec, page 56:
173 *
174 * "The arithmetic binary operators add (+), subtract (-),
175 * multiply (*), and divide (/) operate on integer and
176 * floating-point scalars, vectors, and matrices."
177 */
178 if (!type_a->is_numeric() || !type_b->is_numeric()) {
179 _mesa_glsl_error(loc, state,
180 "Operands to arithmetic operators must be numeric");
181 return glsl_type::error_type;
182 }
183
184
185 /* "If one operand is floating-point based and the other is
186 * not, then the conversions from Section 4.1.10 "Implicit
187 * Conversions" are applied to the non-floating-point-based operand."
188 */
189 if (!apply_implicit_conversion(type_a, value_b, state)
190 && !apply_implicit_conversion(type_b, value_a, state)) {
191 _mesa_glsl_error(loc, state,
192 "Could not implicitly convert operands to "
193 "arithmetic operator");
194 return glsl_type::error_type;
195 }
196 type_a = value_a->type;
197 type_b = value_b->type;
198
199 /* "If the operands are integer types, they must both be signed or
200 * both be unsigned."
201 *
202 * From this rule and the preceeding conversion it can be inferred that
203 * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
204 * The is_numeric check above already filtered out the case where either
205 * type is not one of these, so now the base types need only be tested for
206 * equality.
207 */
208 if (type_a->base_type != type_b->base_type) {
209 _mesa_glsl_error(loc, state,
210 "base type mismatch for arithmetic operator");
211 return glsl_type::error_type;
212 }
213
214 /* "All arithmetic binary operators result in the same fundamental type
215 * (signed integer, unsigned integer, or floating-point) as the
216 * operands they operate on, after operand type conversion. After
217 * conversion, the following cases are valid
218 *
219 * * The two operands are scalars. In this case the operation is
220 * applied, resulting in a scalar."
221 */
222 if (type_a->is_scalar() && type_b->is_scalar())
223 return type_a;
224
225 /* "* One operand is a scalar, and the other is a vector or matrix.
226 * In this case, the scalar operation is applied independently to each
227 * component of the vector or matrix, resulting in the same size
228 * vector or matrix."
229 */
230 if (type_a->is_scalar()) {
231 if (!type_b->is_scalar())
232 return type_b;
233 } else if (type_b->is_scalar()) {
234 return type_a;
235 }
236
237 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
238 * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
239 * handled.
240 */
241 assert(!type_a->is_scalar());
242 assert(!type_b->is_scalar());
243
244 /* "* The two operands are vectors of the same size. In this case, the
245 * operation is done component-wise resulting in the same size
246 * vector."
247 */
248 if (type_a->is_vector() && type_b->is_vector()) {
249 if (type_a == type_b) {
250 return type_a;
251 } else {
252 _mesa_glsl_error(loc, state,
253 "vector size mismatch for arithmetic operator");
254 return glsl_type::error_type;
255 }
256 }
257
258 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
259 * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
260 * <vector, vector> have been handled. At least one of the operands must
261 * be matrix. Further, since there are no integer matrix types, the base
262 * type of both operands must be float.
263 */
264 assert(type_a->is_matrix() || type_b->is_matrix());
265 assert(type_a->base_type == GLSL_TYPE_FLOAT);
266 assert(type_b->base_type == GLSL_TYPE_FLOAT);
267
268 /* "* The operator is add (+), subtract (-), or divide (/), and the
269 * operands are matrices with the same number of rows and the same
270 * number of columns. In this case, the operation is done component-
271 * wise resulting in the same size matrix."
272 * * The operator is multiply (*), where both operands are matrices or
273 * one operand is a vector and the other a matrix. A right vector
274 * operand is treated as a column vector and a left vector operand as a
275 * row vector. In all these cases, it is required that the number of
276 * columns of the left operand is equal to the number of rows of the
277 * right operand. Then, the multiply (*) operation does a linear
278 * algebraic multiply, yielding an object that has the same number of
279 * rows as the left operand and the same number of columns as the right
280 * operand. Section 5.10 "Vector and Matrix Operations" explains in
281 * more detail how vectors and matrices are operated on."
282 */
283 if (! multiply) {
284 if (type_a == type_b)
285 return type_a;
286 } else {
287 if (type_a->is_matrix() && type_b->is_matrix()) {
288 /* Matrix multiply. The columns of A must match the rows of B. Given
289 * the other previously tested constraints, this means the vector type
290 * of a row from A must be the same as the vector type of a column from
291 * B.
292 */
293 if (type_a->row_type() == type_b->column_type()) {
294 /* The resulting matrix has the number of columns of matrix B and
295 * the number of rows of matrix A. We get the row count of A by
296 * looking at the size of a vector that makes up a column. The
297 * transpose (size of a row) is done for B.
298 */
299 const glsl_type *const type =
300 glsl_type::get_instance(type_a->base_type,
301 type_a->column_type()->vector_elements,
302 type_b->row_type()->vector_elements);
303 assert(type != glsl_type::error_type);
304
305 return type;
306 }
307 } else if (type_a->is_matrix()) {
308 /* A is a matrix and B is a column vector. Columns of A must match
309 * rows of B. Given the other previously tested constraints, this
310 * means the vector type of a row from A must be the same as the
311 * vector the type of B.
312 */
313 if (type_a->row_type() == type_b) {
314 /* The resulting vector has a number of elements equal to
315 * the number of rows of matrix A. */
316 const glsl_type *const type =
317 glsl_type::get_instance(type_a->base_type,
318 type_a->column_type()->vector_elements,
319 1);
320 assert(type != glsl_type::error_type);
321
322 return type;
323 }
324 } else {
325 assert(type_b->is_matrix());
326
327 /* A is a row vector and B is a matrix. Columns of A must match rows
328 * of B. Given the other previously tested constraints, this means
329 * the type of A must be the same as the vector type of a column from
330 * B.
331 */
332 if (type_a == type_b->column_type()) {
333 /* The resulting vector has a number of elements equal to
334 * the number of columns of matrix B. */
335 const glsl_type *const type =
336 glsl_type::get_instance(type_a->base_type,
337 type_b->row_type()->vector_elements,
338 1);
339 assert(type != glsl_type::error_type);
340
341 return type;
342 }
343 }
344
345 _mesa_glsl_error(loc, state, "size mismatch for matrix multiplication");
346 return glsl_type::error_type;
347 }
348
349
350 /* "All other cases are illegal."
351 */
352 _mesa_glsl_error(loc, state, "type mismatch");
353 return glsl_type::error_type;
354 }
355
356
357 static const struct glsl_type *
358 unary_arithmetic_result_type(const struct glsl_type *type,
359 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
360 {
361 /* From GLSL 1.50 spec, page 57:
362 *
363 * "The arithmetic unary operators negate (-), post- and pre-increment
364 * and decrement (-- and ++) operate on integer or floating-point
365 * values (including vectors and matrices). All unary operators work
366 * component-wise on their operands. These result with the same type
367 * they operated on."
368 */
369 if (!type->is_numeric()) {
370 _mesa_glsl_error(loc, state,
371 "Operands to arithmetic operators must be numeric");
372 return glsl_type::error_type;
373 }
374
375 return type;
376 }
377
378 /**
379 * \brief Return the result type of a bit-logic operation.
380 *
381 * If the given types to the bit-logic operator are invalid, return
382 * glsl_type::error_type.
383 *
384 * \param type_a Type of LHS of bit-logic op
385 * \param type_b Type of RHS of bit-logic op
386 */
387 static const struct glsl_type *
388 bit_logic_result_type(const struct glsl_type *type_a,
389 const struct glsl_type *type_b,
390 ast_operators op,
391 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
392 {
393 if (!state->check_bitwise_operations_allowed(loc)) {
394 return glsl_type::error_type;
395 }
396
397 /* From page 50 (page 56 of PDF) of GLSL 1.30 spec:
398 *
399 * "The bitwise operators and (&), exclusive-or (^), and inclusive-or
400 * (|). The operands must be of type signed or unsigned integers or
401 * integer vectors."
402 */
403 if (!type_a->is_integer()) {
404 _mesa_glsl_error(loc, state, "LHS of `%s' must be an integer",
405 ast_expression::operator_string(op));
406 return glsl_type::error_type;
407 }
408 if (!type_b->is_integer()) {
409 _mesa_glsl_error(loc, state, "RHS of `%s' must be an integer",
410 ast_expression::operator_string(op));
411 return glsl_type::error_type;
412 }
413
414 /* "The fundamental types of the operands (signed or unsigned) must
415 * match,"
416 */
417 if (type_a->base_type != type_b->base_type) {
418 _mesa_glsl_error(loc, state, "operands of `%s' must have the same "
419 "base type", ast_expression::operator_string(op));
420 return glsl_type::error_type;
421 }
422
423 /* "The operands cannot be vectors of differing size." */
424 if (type_a->is_vector() &&
425 type_b->is_vector() &&
426 type_a->vector_elements != type_b->vector_elements) {
427 _mesa_glsl_error(loc, state, "operands of `%s' cannot be vectors of "
428 "different sizes", ast_expression::operator_string(op));
429 return glsl_type::error_type;
430 }
431
432 /* "If one operand is a scalar and the other a vector, the scalar is
433 * applied component-wise to the vector, resulting in the same type as
434 * the vector. The fundamental types of the operands [...] will be the
435 * resulting fundamental type."
436 */
437 if (type_a->is_scalar())
438 return type_b;
439 else
440 return type_a;
441 }
442
443 static const struct glsl_type *
444 modulus_result_type(const struct glsl_type *type_a,
445 const struct glsl_type *type_b,
446 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
447 {
448 if (!state->check_version(130, 300, loc, "operator '%%' is reserved")) {
449 return glsl_type::error_type;
450 }
451
452 /* From GLSL 1.50 spec, page 56:
453 * "The operator modulus (%) operates on signed or unsigned integers or
454 * integer vectors. The operand types must both be signed or both be
455 * unsigned."
456 */
457 if (!type_a->is_integer()) {
458 _mesa_glsl_error(loc, state, "LHS of operator %% must be an integer.");
459 return glsl_type::error_type;
460 }
461 if (!type_b->is_integer()) {
462 _mesa_glsl_error(loc, state, "RHS of operator %% must be an integer.");
463 return glsl_type::error_type;
464 }
465 if (type_a->base_type != type_b->base_type) {
466 _mesa_glsl_error(loc, state,
467 "operands of %% must have the same base type");
468 return glsl_type::error_type;
469 }
470
471 /* "The operands cannot be vectors of differing size. If one operand is
472 * a scalar and the other vector, then the scalar is applied component-
473 * wise to the vector, resulting in the same type as the vector. If both
474 * are vectors of the same size, the result is computed component-wise."
475 */
476 if (type_a->is_vector()) {
477 if (!type_b->is_vector()
478 || (type_a->vector_elements == type_b->vector_elements))
479 return type_a;
480 } else
481 return type_b;
482
483 /* "The operator modulus (%) is not defined for any other data types
484 * (non-integer types)."
485 */
486 _mesa_glsl_error(loc, state, "type mismatch");
487 return glsl_type::error_type;
488 }
489
490
491 static const struct glsl_type *
492 relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
493 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
494 {
495 const glsl_type *type_a = value_a->type;
496 const glsl_type *type_b = value_b->type;
497
498 /* From GLSL 1.50 spec, page 56:
499 * "The relational operators greater than (>), less than (<), greater
500 * than or equal (>=), and less than or equal (<=) operate only on
501 * scalar integer and scalar floating-point expressions."
502 */
503 if (!type_a->is_numeric()
504 || !type_b->is_numeric()
505 || !type_a->is_scalar()
506 || !type_b->is_scalar()) {
507 _mesa_glsl_error(loc, state,
508 "Operands to relational operators must be scalar and "
509 "numeric");
510 return glsl_type::error_type;
511 }
512
513 /* "Either the operands' types must match, or the conversions from
514 * Section 4.1.10 "Implicit Conversions" will be applied to the integer
515 * operand, after which the types must match."
516 */
517 if (!apply_implicit_conversion(type_a, value_b, state)
518 && !apply_implicit_conversion(type_b, value_a, state)) {
519 _mesa_glsl_error(loc, state,
520 "Could not implicitly convert operands to "
521 "relational operator");
522 return glsl_type::error_type;
523 }
524 type_a = value_a->type;
525 type_b = value_b->type;
526
527 if (type_a->base_type != type_b->base_type) {
528 _mesa_glsl_error(loc, state, "base type mismatch");
529 return glsl_type::error_type;
530 }
531
532 /* "The result is scalar Boolean."
533 */
534 return glsl_type::bool_type;
535 }
536
537 /**
538 * \brief Return the result type of a bit-shift operation.
539 *
540 * If the given types to the bit-shift operator are invalid, return
541 * glsl_type::error_type.
542 *
543 * \param type_a Type of LHS of bit-shift op
544 * \param type_b Type of RHS of bit-shift op
545 */
546 static const struct glsl_type *
547 shift_result_type(const struct glsl_type *type_a,
548 const struct glsl_type *type_b,
549 ast_operators op,
550 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
551 {
552 if (!state->check_bitwise_operations_allowed(loc)) {
553 return glsl_type::error_type;
554 }
555
556 /* From page 50 (page 56 of the PDF) of the GLSL 1.30 spec:
557 *
558 * "The shift operators (<<) and (>>). For both operators, the operands
559 * must be signed or unsigned integers or integer vectors. One operand
560 * can be signed while the other is unsigned."
561 */
562 if (!type_a->is_integer()) {
563 _mesa_glsl_error(loc, state, "LHS of operator %s must be an integer or "
564 "integer vector", ast_expression::operator_string(op));
565 return glsl_type::error_type;
566
567 }
568 if (!type_b->is_integer()) {
569 _mesa_glsl_error(loc, state, "RHS of operator %s must be an integer or "
570 "integer vector", ast_expression::operator_string(op));
571 return glsl_type::error_type;
572 }
573
574 /* "If the first operand is a scalar, the second operand has to be
575 * a scalar as well."
576 */
577 if (type_a->is_scalar() && !type_b->is_scalar()) {
578 _mesa_glsl_error(loc, state, "If the first operand of %s is scalar, the "
579 "second must be scalar as well",
580 ast_expression::operator_string(op));
581 return glsl_type::error_type;
582 }
583
584 /* If both operands are vectors, check that they have same number of
585 * elements.
586 */
587 if (type_a->is_vector() &&
588 type_b->is_vector() &&
589 type_a->vector_elements != type_b->vector_elements) {
590 _mesa_glsl_error(loc, state, "Vector operands to operator %s must "
591 "have same number of elements",
592 ast_expression::operator_string(op));
593 return glsl_type::error_type;
594 }
595
596 /* "In all cases, the resulting type will be the same type as the left
597 * operand."
598 */
599 return type_a;
600 }
601
602 /**
603 * Validates that a value can be assigned to a location with a specified type
604 *
605 * Validates that \c rhs can be assigned to some location. If the types are
606 * not an exact match but an automatic conversion is possible, \c rhs will be
607 * converted.
608 *
609 * \return
610 * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
611 * Otherwise the actual RHS to be assigned will be returned. This may be
612 * \c rhs, or it may be \c rhs after some type conversion.
613 *
614 * \note
615 * In addition to being used for assignments, this function is used to
616 * type-check return values.
617 */
618 ir_rvalue *
619 validate_assignment(struct _mesa_glsl_parse_state *state,
620 const glsl_type *lhs_type, ir_rvalue *rhs,
621 bool is_initializer)
622 {
623 /* If there is already some error in the RHS, just return it. Anything
624 * else will lead to an avalanche of error message back to the user.
625 */
626 if (rhs->type->is_error())
627 return rhs;
628
629 /* If the types are identical, the assignment can trivially proceed.
630 */
631 if (rhs->type == lhs_type)
632 return rhs;
633
634 /* If the array element types are the same and the size of the LHS is zero,
635 * the assignment is okay for initializers embedded in variable
636 * declarations.
637 *
638 * Note: Whole-array assignments are not permitted in GLSL 1.10, but this
639 * is handled by ir_dereference::is_lvalue.
640 */
641 if (is_initializer && lhs_type->is_array() && rhs->type->is_array()
642 && (lhs_type->element_type() == rhs->type->element_type())
643 && (lhs_type->array_size() == 0)) {
644 return rhs;
645 }
646
647 /* Check for implicit conversion in GLSL 1.20 */
648 if (apply_implicit_conversion(lhs_type, rhs, state)) {
649 if (rhs->type == lhs_type)
650 return rhs;
651 }
652
653 return NULL;
654 }
655
656 static void
657 mark_whole_array_access(ir_rvalue *access)
658 {
659 ir_dereference_variable *deref = access->as_dereference_variable();
660
661 if (deref && deref->var) {
662 deref->var->max_array_access = deref->type->length - 1;
663 }
664 }
665
666 ir_rvalue *
667 do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state,
668 const char *non_lvalue_description,
669 ir_rvalue *lhs, ir_rvalue *rhs, bool is_initializer,
670 YYLTYPE lhs_loc)
671 {
672 void *ctx = state;
673 bool error_emitted = (lhs->type->is_error() || rhs->type->is_error());
674
675 ir_variable *lhs_var = lhs->variable_referenced();
676 if (lhs_var)
677 lhs_var->assigned = true;
678
679 if (!error_emitted) {
680 if (non_lvalue_description != NULL) {
681 _mesa_glsl_error(&lhs_loc, state,
682 "assignment to %s",
683 non_lvalue_description);
684 error_emitted = true;
685 } else if (lhs->variable_referenced() != NULL
686 && lhs->variable_referenced()->read_only) {
687 _mesa_glsl_error(&lhs_loc, state,
688 "assignment to read-only variable '%s'",
689 lhs->variable_referenced()->name);
690 error_emitted = true;
691
692 } else if (lhs->type->is_array() &&
693 !state->check_version(120, 300, &lhs_loc,
694 "whole array assignment forbidden")) {
695 /* From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
696 *
697 * "Other binary or unary expressions, non-dereferenced
698 * arrays, function names, swizzles with repeated fields,
699 * and constants cannot be l-values."
700 *
701 * The restriction on arrays is lifted in GLSL 1.20 and GLSL ES 3.00.
702 */
703 error_emitted = true;
704 } else if (!lhs->is_lvalue()) {
705 _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment");
706 error_emitted = true;
707 }
708 }
709
710 ir_rvalue *new_rhs =
711 validate_assignment(state, lhs->type, rhs, is_initializer);
712 if (new_rhs == NULL) {
713 _mesa_glsl_error(& lhs_loc, state, "type mismatch");
714 } else {
715 rhs = new_rhs;
716
717 /* If the LHS array was not declared with a size, it takes it size from
718 * the RHS. If the LHS is an l-value and a whole array, it must be a
719 * dereference of a variable. Any other case would require that the LHS
720 * is either not an l-value or not a whole array.
721 */
722 if (lhs->type->array_size() == 0) {
723 ir_dereference *const d = lhs->as_dereference();
724
725 assert(d != NULL);
726
727 ir_variable *const var = d->variable_referenced();
728
729 assert(var != NULL);
730
731 if (var->max_array_access >= unsigned(rhs->type->array_size())) {
732 /* FINISHME: This should actually log the location of the RHS. */
733 _mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to "
734 "previous access",
735 var->max_array_access);
736 }
737
738 var->type = glsl_type::get_array_instance(lhs->type->element_type(),
739 rhs->type->array_size());
740 d->type = var->type;
741 }
742 mark_whole_array_access(rhs);
743 mark_whole_array_access(lhs);
744 }
745
746 /* Most callers of do_assignment (assign, add_assign, pre_inc/dec,
747 * but not post_inc) need the converted assigned value as an rvalue
748 * to handle things like:
749 *
750 * i = j += 1;
751 *
752 * So we always just store the computed value being assigned to a
753 * temporary and return a deref of that temporary. If the rvalue
754 * ends up not being used, the temp will get copy-propagated out.
755 */
756 ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp",
757 ir_var_temporary);
758 ir_dereference_variable *deref_var = new(ctx) ir_dereference_variable(var);
759 instructions->push_tail(var);
760 instructions->push_tail(new(ctx) ir_assignment(deref_var, rhs));
761 deref_var = new(ctx) ir_dereference_variable(var);
762
763 if (!error_emitted)
764 instructions->push_tail(new(ctx) ir_assignment(lhs, deref_var));
765
766 return new(ctx) ir_dereference_variable(var);
767 }
768
769 static ir_rvalue *
770 get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue)
771 {
772 void *ctx = ralloc_parent(lvalue);
773 ir_variable *var;
774
775 var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp",
776 ir_var_temporary);
777 instructions->push_tail(var);
778 var->mode = ir_var_auto;
779
780 instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
781 lvalue));
782
783 return new(ctx) ir_dereference_variable(var);
784 }
785
786
787 ir_rvalue *
788 ast_node::hir(exec_list *instructions,
789 struct _mesa_glsl_parse_state *state)
790 {
791 (void) instructions;
792 (void) state;
793
794 return NULL;
795 }
796
797 static ir_rvalue *
798 do_comparison(void *mem_ctx, int operation, ir_rvalue *op0, ir_rvalue *op1)
799 {
800 int join_op;
801 ir_rvalue *cmp = NULL;
802
803 if (operation == ir_binop_all_equal)
804 join_op = ir_binop_logic_and;
805 else
806 join_op = ir_binop_logic_or;
807
808 switch (op0->type->base_type) {
809 case GLSL_TYPE_FLOAT:
810 case GLSL_TYPE_UINT:
811 case GLSL_TYPE_INT:
812 case GLSL_TYPE_BOOL:
813 return new(mem_ctx) ir_expression(operation, op0, op1);
814
815 case GLSL_TYPE_ARRAY: {
816 for (unsigned int i = 0; i < op0->type->length; i++) {
817 ir_rvalue *e0, *e1, *result;
818
819 e0 = new(mem_ctx) ir_dereference_array(op0->clone(mem_ctx, NULL),
820 new(mem_ctx) ir_constant(i));
821 e1 = new(mem_ctx) ir_dereference_array(op1->clone(mem_ctx, NULL),
822 new(mem_ctx) ir_constant(i));
823 result = do_comparison(mem_ctx, operation, e0, e1);
824
825 if (cmp) {
826 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
827 } else {
828 cmp = result;
829 }
830 }
831
832 mark_whole_array_access(op0);
833 mark_whole_array_access(op1);
834 break;
835 }
836
837 case GLSL_TYPE_STRUCT: {
838 for (unsigned int i = 0; i < op0->type->length; i++) {
839 ir_rvalue *e0, *e1, *result;
840 const char *field_name = op0->type->fields.structure[i].name;
841
842 e0 = new(mem_ctx) ir_dereference_record(op0->clone(mem_ctx, NULL),
843 field_name);
844 e1 = new(mem_ctx) ir_dereference_record(op1->clone(mem_ctx, NULL),
845 field_name);
846 result = do_comparison(mem_ctx, operation, e0, e1);
847
848 if (cmp) {
849 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
850 } else {
851 cmp = result;
852 }
853 }
854 break;
855 }
856
857 case GLSL_TYPE_ERROR:
858 case GLSL_TYPE_VOID:
859 case GLSL_TYPE_SAMPLER:
860 case GLSL_TYPE_INTERFACE:
861 /* I assume a comparison of a struct containing a sampler just
862 * ignores the sampler present in the type.
863 */
864 break;
865 }
866
867 if (cmp == NULL)
868 cmp = new(mem_ctx) ir_constant(true);
869
870 return cmp;
871 }
872
873 /* For logical operations, we want to ensure that the operands are
874 * scalar booleans. If it isn't, emit an error and return a constant
875 * boolean to avoid triggering cascading error messages.
876 */
877 ir_rvalue *
878 get_scalar_boolean_operand(exec_list *instructions,
879 struct _mesa_glsl_parse_state *state,
880 ast_expression *parent_expr,
881 int operand,
882 const char *operand_name,
883 bool *error_emitted)
884 {
885 ast_expression *expr = parent_expr->subexpressions[operand];
886 void *ctx = state;
887 ir_rvalue *val = expr->hir(instructions, state);
888
889 if (val->type->is_boolean() && val->type->is_scalar())
890 return val;
891
892 if (!*error_emitted) {
893 YYLTYPE loc = expr->get_location();
894 _mesa_glsl_error(&loc, state, "%s of `%s' must be scalar boolean",
895 operand_name,
896 parent_expr->operator_string(parent_expr->oper));
897 *error_emitted = true;
898 }
899
900 return new(ctx) ir_constant(true);
901 }
902
903 /**
904 * If name refers to a builtin array whose maximum allowed size is less than
905 * size, report an error and return true. Otherwise return false.
906 */
907 void
908 check_builtin_array_max_size(const char *name, unsigned size,
909 YYLTYPE loc, struct _mesa_glsl_parse_state *state)
910 {
911 if ((strcmp("gl_TexCoord", name) == 0)
912 && (size > state->Const.MaxTextureCoords)) {
913 /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec:
914 *
915 * "The size [of gl_TexCoord] can be at most
916 * gl_MaxTextureCoords."
917 */
918 _mesa_glsl_error(&loc, state, "`gl_TexCoord' array size cannot "
919 "be larger than gl_MaxTextureCoords (%u)\n",
920 state->Const.MaxTextureCoords);
921 } else if (strcmp("gl_ClipDistance", name) == 0
922 && size > state->Const.MaxClipPlanes) {
923 /* From section 7.1 (Vertex Shader Special Variables) of the
924 * GLSL 1.30 spec:
925 *
926 * "The gl_ClipDistance array is predeclared as unsized and
927 * must be sized by the shader either redeclaring it with a
928 * size or indexing it only with integral constant
929 * expressions. ... The size can be at most
930 * gl_MaxClipDistances."
931 */
932 _mesa_glsl_error(&loc, state, "`gl_ClipDistance' array size cannot "
933 "be larger than gl_MaxClipDistances (%u)\n",
934 state->Const.MaxClipPlanes);
935 }
936 }
937
938 /**
939 * Create the constant 1, of a which is appropriate for incrementing and
940 * decrementing values of the given GLSL type. For example, if type is vec4,
941 * this creates a constant value of 1.0 having type float.
942 *
943 * If the given type is invalid for increment and decrement operators, return
944 * a floating point 1--the error will be detected later.
945 */
946 static ir_rvalue *
947 constant_one_for_inc_dec(void *ctx, const glsl_type *type)
948 {
949 switch (type->base_type) {
950 case GLSL_TYPE_UINT:
951 return new(ctx) ir_constant((unsigned) 1);
952 case GLSL_TYPE_INT:
953 return new(ctx) ir_constant(1);
954 default:
955 case GLSL_TYPE_FLOAT:
956 return new(ctx) ir_constant(1.0f);
957 }
958 }
959
960 ir_rvalue *
961 ast_expression::hir(exec_list *instructions,
962 struct _mesa_glsl_parse_state *state)
963 {
964 void *ctx = state;
965 static const int operations[AST_NUM_OPERATORS] = {
966 -1, /* ast_assign doesn't convert to ir_expression. */
967 -1, /* ast_plus doesn't convert to ir_expression. */
968 ir_unop_neg,
969 ir_binop_add,
970 ir_binop_sub,
971 ir_binop_mul,
972 ir_binop_div,
973 ir_binop_mod,
974 ir_binop_lshift,
975 ir_binop_rshift,
976 ir_binop_less,
977 ir_binop_greater,
978 ir_binop_lequal,
979 ir_binop_gequal,
980 ir_binop_all_equal,
981 ir_binop_any_nequal,
982 ir_binop_bit_and,
983 ir_binop_bit_xor,
984 ir_binop_bit_or,
985 ir_unop_bit_not,
986 ir_binop_logic_and,
987 ir_binop_logic_xor,
988 ir_binop_logic_or,
989 ir_unop_logic_not,
990
991 /* Note: The following block of expression types actually convert
992 * to multiple IR instructions.
993 */
994 ir_binop_mul, /* ast_mul_assign */
995 ir_binop_div, /* ast_div_assign */
996 ir_binop_mod, /* ast_mod_assign */
997 ir_binop_add, /* ast_add_assign */
998 ir_binop_sub, /* ast_sub_assign */
999 ir_binop_lshift, /* ast_ls_assign */
1000 ir_binop_rshift, /* ast_rs_assign */
1001 ir_binop_bit_and, /* ast_and_assign */
1002 ir_binop_bit_xor, /* ast_xor_assign */
1003 ir_binop_bit_or, /* ast_or_assign */
1004
1005 -1, /* ast_conditional doesn't convert to ir_expression. */
1006 ir_binop_add, /* ast_pre_inc. */
1007 ir_binop_sub, /* ast_pre_dec. */
1008 ir_binop_add, /* ast_post_inc. */
1009 ir_binop_sub, /* ast_post_dec. */
1010 -1, /* ast_field_selection doesn't conv to ir_expression. */
1011 -1, /* ast_array_index doesn't convert to ir_expression. */
1012 -1, /* ast_function_call doesn't conv to ir_expression. */
1013 -1, /* ast_identifier doesn't convert to ir_expression. */
1014 -1, /* ast_int_constant doesn't convert to ir_expression. */
1015 -1, /* ast_uint_constant doesn't conv to ir_expression. */
1016 -1, /* ast_float_constant doesn't conv to ir_expression. */
1017 -1, /* ast_bool_constant doesn't conv to ir_expression. */
1018 -1, /* ast_sequence doesn't convert to ir_expression. */
1019 };
1020 ir_rvalue *result = NULL;
1021 ir_rvalue *op[3];
1022 const struct glsl_type *type; /* a temporary variable for switch cases */
1023 bool error_emitted = false;
1024 YYLTYPE loc;
1025
1026 loc = this->get_location();
1027
1028 switch (this->oper) {
1029 case ast_assign: {
1030 op[0] = this->subexpressions[0]->hir(instructions, state);
1031 op[1] = this->subexpressions[1]->hir(instructions, state);
1032
1033 result = do_assignment(instructions, state,
1034 this->subexpressions[0]->non_lvalue_description,
1035 op[0], op[1], false,
1036 this->subexpressions[0]->get_location());
1037 error_emitted = result->type->is_error();
1038 break;
1039 }
1040
1041 case ast_plus:
1042 op[0] = this->subexpressions[0]->hir(instructions, state);
1043
1044 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1045
1046 error_emitted = type->is_error();
1047
1048 result = op[0];
1049 break;
1050
1051 case ast_neg:
1052 op[0] = this->subexpressions[0]->hir(instructions, state);
1053
1054 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1055
1056 error_emitted = type->is_error();
1057
1058 result = new(ctx) ir_expression(operations[this->oper], type,
1059 op[0], NULL);
1060 break;
1061
1062 case ast_add:
1063 case ast_sub:
1064 case ast_mul:
1065 case ast_div:
1066 op[0] = this->subexpressions[0]->hir(instructions, state);
1067 op[1] = this->subexpressions[1]->hir(instructions, state);
1068
1069 type = arithmetic_result_type(op[0], op[1],
1070 (this->oper == ast_mul),
1071 state, & loc);
1072 error_emitted = type->is_error();
1073
1074 result = new(ctx) ir_expression(operations[this->oper], type,
1075 op[0], op[1]);
1076 break;
1077
1078 case ast_mod:
1079 op[0] = this->subexpressions[0]->hir(instructions, state);
1080 op[1] = this->subexpressions[1]->hir(instructions, state);
1081
1082 type = modulus_result_type(op[0]->type, op[1]->type, state, & loc);
1083
1084 assert(operations[this->oper] == ir_binop_mod);
1085
1086 result = new(ctx) ir_expression(operations[this->oper], type,
1087 op[0], op[1]);
1088 error_emitted = type->is_error();
1089 break;
1090
1091 case ast_lshift:
1092 case ast_rshift:
1093 if (!state->check_bitwise_operations_allowed(&loc)) {
1094 error_emitted = true;
1095 }
1096
1097 op[0] = this->subexpressions[0]->hir(instructions, state);
1098 op[1] = this->subexpressions[1]->hir(instructions, state);
1099 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1100 &loc);
1101 result = new(ctx) ir_expression(operations[this->oper], type,
1102 op[0], op[1]);
1103 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1104 break;
1105
1106 case ast_less:
1107 case ast_greater:
1108 case ast_lequal:
1109 case ast_gequal:
1110 op[0] = this->subexpressions[0]->hir(instructions, state);
1111 op[1] = this->subexpressions[1]->hir(instructions, state);
1112
1113 type = relational_result_type(op[0], op[1], state, & loc);
1114
1115 /* The relational operators must either generate an error or result
1116 * in a scalar boolean. See page 57 of the GLSL 1.50 spec.
1117 */
1118 assert(type->is_error()
1119 || ((type->base_type == GLSL_TYPE_BOOL)
1120 && type->is_scalar()));
1121
1122 result = new(ctx) ir_expression(operations[this->oper], type,
1123 op[0], op[1]);
1124 error_emitted = type->is_error();
1125 break;
1126
1127 case ast_nequal:
1128 case ast_equal:
1129 op[0] = this->subexpressions[0]->hir(instructions, state);
1130 op[1] = this->subexpressions[1]->hir(instructions, state);
1131
1132 /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
1133 *
1134 * "The equality operators equal (==), and not equal (!=)
1135 * operate on all types. They result in a scalar Boolean. If
1136 * the operand types do not match, then there must be a
1137 * conversion from Section 4.1.10 "Implicit Conversions"
1138 * applied to one operand that can make them match, in which
1139 * case this conversion is done."
1140 */
1141 if ((!apply_implicit_conversion(op[0]->type, op[1], state)
1142 && !apply_implicit_conversion(op[1]->type, op[0], state))
1143 || (op[0]->type != op[1]->type)) {
1144 _mesa_glsl_error(& loc, state, "operands of `%s' must have the same "
1145 "type", (this->oper == ast_equal) ? "==" : "!=");
1146 error_emitted = true;
1147 } else if ((op[0]->type->is_array() || op[1]->type->is_array()) &&
1148 !state->check_version(120, 300, &loc,
1149 "array comparisons forbidden")) {
1150 error_emitted = true;
1151 }
1152
1153 if (error_emitted) {
1154 result = new(ctx) ir_constant(false);
1155 } else {
1156 result = do_comparison(ctx, operations[this->oper], op[0], op[1]);
1157 assert(result->type == glsl_type::bool_type);
1158 }
1159 break;
1160
1161 case ast_bit_and:
1162 case ast_bit_xor:
1163 case ast_bit_or:
1164 op[0] = this->subexpressions[0]->hir(instructions, state);
1165 op[1] = this->subexpressions[1]->hir(instructions, state);
1166 type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
1167 state, &loc);
1168 result = new(ctx) ir_expression(operations[this->oper], type,
1169 op[0], op[1]);
1170 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1171 break;
1172
1173 case ast_bit_not:
1174 op[0] = this->subexpressions[0]->hir(instructions, state);
1175
1176 if (!state->check_bitwise_operations_allowed(&loc)) {
1177 error_emitted = true;
1178 }
1179
1180 if (!op[0]->type->is_integer()) {
1181 _mesa_glsl_error(&loc, state, "operand of `~' must be an integer");
1182 error_emitted = true;
1183 }
1184
1185 type = error_emitted ? glsl_type::error_type : op[0]->type;
1186 result = new(ctx) ir_expression(ir_unop_bit_not, type, op[0], NULL);
1187 break;
1188
1189 case ast_logic_and: {
1190 exec_list rhs_instructions;
1191 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1192 "LHS", &error_emitted);
1193 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1194 "RHS", &error_emitted);
1195
1196 if (rhs_instructions.is_empty()) {
1197 result = new(ctx) ir_expression(ir_binop_logic_and, op[0], op[1]);
1198 type = result->type;
1199 } else {
1200 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1201 "and_tmp",
1202 ir_var_temporary);
1203 instructions->push_tail(tmp);
1204
1205 ir_if *const stmt = new(ctx) ir_if(op[0]);
1206 instructions->push_tail(stmt);
1207
1208 stmt->then_instructions.append_list(&rhs_instructions);
1209 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1210 ir_assignment *const then_assign =
1211 new(ctx) ir_assignment(then_deref, op[1]);
1212 stmt->then_instructions.push_tail(then_assign);
1213
1214 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1215 ir_assignment *const else_assign =
1216 new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false));
1217 stmt->else_instructions.push_tail(else_assign);
1218
1219 result = new(ctx) ir_dereference_variable(tmp);
1220 type = tmp->type;
1221 }
1222 break;
1223 }
1224
1225 case ast_logic_or: {
1226 exec_list rhs_instructions;
1227 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1228 "LHS", &error_emitted);
1229 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1230 "RHS", &error_emitted);
1231
1232 if (rhs_instructions.is_empty()) {
1233 result = new(ctx) ir_expression(ir_binop_logic_or, op[0], op[1]);
1234 type = result->type;
1235 } else {
1236 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1237 "or_tmp",
1238 ir_var_temporary);
1239 instructions->push_tail(tmp);
1240
1241 ir_if *const stmt = new(ctx) ir_if(op[0]);
1242 instructions->push_tail(stmt);
1243
1244 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1245 ir_assignment *const then_assign =
1246 new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true));
1247 stmt->then_instructions.push_tail(then_assign);
1248
1249 stmt->else_instructions.append_list(&rhs_instructions);
1250 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1251 ir_assignment *const else_assign =
1252 new(ctx) ir_assignment(else_deref, op[1]);
1253 stmt->else_instructions.push_tail(else_assign);
1254
1255 result = new(ctx) ir_dereference_variable(tmp);
1256 type = tmp->type;
1257 }
1258 break;
1259 }
1260
1261 case ast_logic_xor:
1262 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1263 *
1264 * "The logical binary operators and (&&), or ( | | ), and
1265 * exclusive or (^^). They operate only on two Boolean
1266 * expressions and result in a Boolean expression."
1267 */
1268 op[0] = get_scalar_boolean_operand(instructions, state, this, 0, "LHS",
1269 &error_emitted);
1270 op[1] = get_scalar_boolean_operand(instructions, state, this, 1, "RHS",
1271 &error_emitted);
1272
1273 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1274 op[0], op[1]);
1275 break;
1276
1277 case ast_logic_not:
1278 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1279 "operand", &error_emitted);
1280
1281 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1282 op[0], NULL);
1283 break;
1284
1285 case ast_mul_assign:
1286 case ast_div_assign:
1287 case ast_add_assign:
1288 case ast_sub_assign: {
1289 op[0] = this->subexpressions[0]->hir(instructions, state);
1290 op[1] = this->subexpressions[1]->hir(instructions, state);
1291
1292 type = arithmetic_result_type(op[0], op[1],
1293 (this->oper == ast_mul_assign),
1294 state, & loc);
1295
1296 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1297 op[0], op[1]);
1298
1299 result = do_assignment(instructions, state,
1300 this->subexpressions[0]->non_lvalue_description,
1301 op[0]->clone(ctx, NULL), temp_rhs, false,
1302 this->subexpressions[0]->get_location());
1303 error_emitted = (op[0]->type->is_error());
1304
1305 /* GLSL 1.10 does not allow array assignment. However, we don't have to
1306 * explicitly test for this because none of the binary expression
1307 * operators allow array operands either.
1308 */
1309
1310 break;
1311 }
1312
1313 case ast_mod_assign: {
1314 op[0] = this->subexpressions[0]->hir(instructions, state);
1315 op[1] = this->subexpressions[1]->hir(instructions, state);
1316
1317 type = modulus_result_type(op[0]->type, op[1]->type, state, & loc);
1318
1319 assert(operations[this->oper] == ir_binop_mod);
1320
1321 ir_rvalue *temp_rhs;
1322 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1323 op[0], op[1]);
1324
1325 result = do_assignment(instructions, state,
1326 this->subexpressions[0]->non_lvalue_description,
1327 op[0]->clone(ctx, NULL), temp_rhs, false,
1328 this->subexpressions[0]->get_location());
1329 error_emitted = type->is_error();
1330 break;
1331 }
1332
1333 case ast_ls_assign:
1334 case ast_rs_assign: {
1335 op[0] = this->subexpressions[0]->hir(instructions, state);
1336 op[1] = this->subexpressions[1]->hir(instructions, state);
1337 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1338 &loc);
1339 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1340 type, op[0], op[1]);
1341 result = do_assignment(instructions, state,
1342 this->subexpressions[0]->non_lvalue_description,
1343 op[0]->clone(ctx, NULL), temp_rhs, false,
1344 this->subexpressions[0]->get_location());
1345 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1346 break;
1347 }
1348
1349 case ast_and_assign:
1350 case ast_xor_assign:
1351 case ast_or_assign: {
1352 op[0] = this->subexpressions[0]->hir(instructions, state);
1353 op[1] = this->subexpressions[1]->hir(instructions, state);
1354 type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
1355 state, &loc);
1356 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1357 type, op[0], op[1]);
1358 result = do_assignment(instructions, state,
1359 this->subexpressions[0]->non_lvalue_description,
1360 op[0]->clone(ctx, NULL), temp_rhs, false,
1361 this->subexpressions[0]->get_location());
1362 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1363 break;
1364 }
1365
1366 case ast_conditional: {
1367 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1368 *
1369 * "The ternary selection operator (?:). It operates on three
1370 * expressions (exp1 ? exp2 : exp3). This operator evaluates the
1371 * first expression, which must result in a scalar Boolean."
1372 */
1373 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1374 "condition", &error_emitted);
1375
1376 /* The :? operator is implemented by generating an anonymous temporary
1377 * followed by an if-statement. The last instruction in each branch of
1378 * the if-statement assigns a value to the anonymous temporary. This
1379 * temporary is the r-value of the expression.
1380 */
1381 exec_list then_instructions;
1382 exec_list else_instructions;
1383
1384 op[1] = this->subexpressions[1]->hir(&then_instructions, state);
1385 op[2] = this->subexpressions[2]->hir(&else_instructions, state);
1386
1387 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1388 *
1389 * "The second and third expressions can be any type, as
1390 * long their types match, or there is a conversion in
1391 * Section 4.1.10 "Implicit Conversions" that can be applied
1392 * to one of the expressions to make their types match. This
1393 * resulting matching type is the type of the entire
1394 * expression."
1395 */
1396 if ((!apply_implicit_conversion(op[1]->type, op[2], state)
1397 && !apply_implicit_conversion(op[2]->type, op[1], state))
1398 || (op[1]->type != op[2]->type)) {
1399 YYLTYPE loc = this->subexpressions[1]->get_location();
1400
1401 _mesa_glsl_error(& loc, state, "Second and third operands of ?: "
1402 "operator must have matching types.");
1403 error_emitted = true;
1404 type = glsl_type::error_type;
1405 } else {
1406 type = op[1]->type;
1407 }
1408
1409 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1410 *
1411 * "The second and third expressions must be the same type, but can
1412 * be of any type other than an array."
1413 */
1414 if (type->is_array() &&
1415 !state->check_version(120, 300, &loc,
1416 "Second and third operands of ?: operator "
1417 "cannot be arrays")) {
1418 error_emitted = true;
1419 }
1420
1421 ir_constant *cond_val = op[0]->constant_expression_value();
1422 ir_constant *then_val = op[1]->constant_expression_value();
1423 ir_constant *else_val = op[2]->constant_expression_value();
1424
1425 if (then_instructions.is_empty()
1426 && else_instructions.is_empty()
1427 && (cond_val != NULL) && (then_val != NULL) && (else_val != NULL)) {
1428 result = (cond_val->value.b[0]) ? then_val : else_val;
1429 } else {
1430 ir_variable *const tmp =
1431 new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary);
1432 instructions->push_tail(tmp);
1433
1434 ir_if *const stmt = new(ctx) ir_if(op[0]);
1435 instructions->push_tail(stmt);
1436
1437 then_instructions.move_nodes_to(& stmt->then_instructions);
1438 ir_dereference *const then_deref =
1439 new(ctx) ir_dereference_variable(tmp);
1440 ir_assignment *const then_assign =
1441 new(ctx) ir_assignment(then_deref, op[1]);
1442 stmt->then_instructions.push_tail(then_assign);
1443
1444 else_instructions.move_nodes_to(& stmt->else_instructions);
1445 ir_dereference *const else_deref =
1446 new(ctx) ir_dereference_variable(tmp);
1447 ir_assignment *const else_assign =
1448 new(ctx) ir_assignment(else_deref, op[2]);
1449 stmt->else_instructions.push_tail(else_assign);
1450
1451 result = new(ctx) ir_dereference_variable(tmp);
1452 }
1453 break;
1454 }
1455
1456 case ast_pre_inc:
1457 case ast_pre_dec: {
1458 this->non_lvalue_description = (this->oper == ast_pre_inc)
1459 ? "pre-increment operation" : "pre-decrement operation";
1460
1461 op[0] = this->subexpressions[0]->hir(instructions, state);
1462 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1463
1464 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1465
1466 ir_rvalue *temp_rhs;
1467 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1468 op[0], op[1]);
1469
1470 result = do_assignment(instructions, state,
1471 this->subexpressions[0]->non_lvalue_description,
1472 op[0]->clone(ctx, NULL), temp_rhs, false,
1473 this->subexpressions[0]->get_location());
1474 error_emitted = op[0]->type->is_error();
1475 break;
1476 }
1477
1478 case ast_post_inc:
1479 case ast_post_dec: {
1480 this->non_lvalue_description = (this->oper == ast_post_inc)
1481 ? "post-increment operation" : "post-decrement operation";
1482 op[0] = this->subexpressions[0]->hir(instructions, state);
1483 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1484
1485 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1486
1487 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1488
1489 ir_rvalue *temp_rhs;
1490 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1491 op[0], op[1]);
1492
1493 /* Get a temporary of a copy of the lvalue before it's modified.
1494 * This may get thrown away later.
1495 */
1496 result = get_lvalue_copy(instructions, op[0]->clone(ctx, NULL));
1497
1498 (void)do_assignment(instructions, state,
1499 this->subexpressions[0]->non_lvalue_description,
1500 op[0]->clone(ctx, NULL), temp_rhs, false,
1501 this->subexpressions[0]->get_location());
1502
1503 error_emitted = op[0]->type->is_error();
1504 break;
1505 }
1506
1507 case ast_field_selection:
1508 result = _mesa_ast_field_selection_to_hir(this, instructions, state);
1509 break;
1510
1511 case ast_array_index: {
1512 YYLTYPE index_loc = subexpressions[1]->get_location();
1513
1514 op[0] = subexpressions[0]->hir(instructions, state);
1515 op[1] = subexpressions[1]->hir(instructions, state);
1516
1517 result = _mesa_ast_array_index_to_hir(ctx, state, op[0], op[1],
1518 loc, index_loc);
1519
1520 if (result->type->is_error())
1521 error_emitted = true;
1522
1523 break;
1524 }
1525
1526 case ast_function_call:
1527 /* Should *NEVER* get here. ast_function_call should always be handled
1528 * by ast_function_expression::hir.
1529 */
1530 assert(0);
1531 break;
1532
1533 case ast_identifier: {
1534 /* ast_identifier can appear several places in a full abstract syntax
1535 * tree. This particular use must be at location specified in the grammar
1536 * as 'variable_identifier'.
1537 */
1538 ir_variable *var =
1539 state->symbols->get_variable(this->primary_expression.identifier);
1540
1541 if (var != NULL) {
1542 var->used = true;
1543 result = new(ctx) ir_dereference_variable(var);
1544 } else {
1545 _mesa_glsl_error(& loc, state, "`%s' undeclared",
1546 this->primary_expression.identifier);
1547
1548 result = ir_rvalue::error_value(ctx);
1549 error_emitted = true;
1550 }
1551 break;
1552 }
1553
1554 case ast_int_constant:
1555 result = new(ctx) ir_constant(this->primary_expression.int_constant);
1556 break;
1557
1558 case ast_uint_constant:
1559 result = new(ctx) ir_constant(this->primary_expression.uint_constant);
1560 break;
1561
1562 case ast_float_constant:
1563 result = new(ctx) ir_constant(this->primary_expression.float_constant);
1564 break;
1565
1566 case ast_bool_constant:
1567 result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant));
1568 break;
1569
1570 case ast_sequence: {
1571 /* It should not be possible to generate a sequence in the AST without
1572 * any expressions in it.
1573 */
1574 assert(!this->expressions.is_empty());
1575
1576 /* The r-value of a sequence is the last expression in the sequence. If
1577 * the other expressions in the sequence do not have side-effects (and
1578 * therefore add instructions to the instruction list), they get dropped
1579 * on the floor.
1580 */
1581 exec_node *previous_tail_pred = NULL;
1582 YYLTYPE previous_operand_loc = loc;
1583
1584 foreach_list_typed (ast_node, ast, link, &this->expressions) {
1585 /* If one of the operands of comma operator does not generate any
1586 * code, we want to emit a warning. At each pass through the loop
1587 * previous_tail_pred will point to the last instruction in the
1588 * stream *before* processing the previous operand. Naturally,
1589 * instructions->tail_pred will point to the last instruction in the
1590 * stream *after* processing the previous operand. If the two
1591 * pointers match, then the previous operand had no effect.
1592 *
1593 * The warning behavior here differs slightly from GCC. GCC will
1594 * only emit a warning if none of the left-hand operands have an
1595 * effect. However, it will emit a warning for each. I believe that
1596 * there are some cases in C (especially with GCC extensions) where
1597 * it is useful to have an intermediate step in a sequence have no
1598 * effect, but I don't think these cases exist in GLSL. Either way,
1599 * it would be a giant hassle to replicate that behavior.
1600 */
1601 if (previous_tail_pred == instructions->tail_pred) {
1602 _mesa_glsl_warning(&previous_operand_loc, state,
1603 "left-hand operand of comma expression has "
1604 "no effect");
1605 }
1606
1607 /* tail_pred is directly accessed instead of using the get_tail()
1608 * method for performance reasons. get_tail() has extra code to
1609 * return NULL when the list is empty. We don't care about that
1610 * here, so using tail_pred directly is fine.
1611 */
1612 previous_tail_pred = instructions->tail_pred;
1613 previous_operand_loc = ast->get_location();
1614
1615 result = ast->hir(instructions, state);
1616 }
1617
1618 /* Any errors should have already been emitted in the loop above.
1619 */
1620 error_emitted = true;
1621 break;
1622 }
1623 }
1624 type = NULL; /* use result->type, not type. */
1625 assert(result != NULL);
1626
1627 if (result->type->is_error() && !error_emitted)
1628 _mesa_glsl_error(& loc, state, "type mismatch");
1629
1630 return result;
1631 }
1632
1633
1634 ir_rvalue *
1635 ast_expression_statement::hir(exec_list *instructions,
1636 struct _mesa_glsl_parse_state *state)
1637 {
1638 /* It is possible to have expression statements that don't have an
1639 * expression. This is the solitary semicolon:
1640 *
1641 * for (i = 0; i < 5; i++)
1642 * ;
1643 *
1644 * In this case the expression will be NULL. Test for NULL and don't do
1645 * anything in that case.
1646 */
1647 if (expression != NULL)
1648 expression->hir(instructions, state);
1649
1650 /* Statements do not have r-values.
1651 */
1652 return NULL;
1653 }
1654
1655
1656 ir_rvalue *
1657 ast_compound_statement::hir(exec_list *instructions,
1658 struct _mesa_glsl_parse_state *state)
1659 {
1660 if (new_scope)
1661 state->symbols->push_scope();
1662
1663 foreach_list_typed (ast_node, ast, link, &this->statements)
1664 ast->hir(instructions, state);
1665
1666 if (new_scope)
1667 state->symbols->pop_scope();
1668
1669 /* Compound statements do not have r-values.
1670 */
1671 return NULL;
1672 }
1673
1674
1675 static const glsl_type *
1676 process_array_type(YYLTYPE *loc, const glsl_type *base, ast_node *array_size,
1677 struct _mesa_glsl_parse_state *state)
1678 {
1679 unsigned length = 0;
1680
1681 /* From page 19 (page 25) of the GLSL 1.20 spec:
1682 *
1683 * "Only one-dimensional arrays may be declared."
1684 */
1685 if (base->is_array()) {
1686 _mesa_glsl_error(loc, state,
1687 "invalid array of `%s' (only one-dimensional arrays "
1688 "may be declared)",
1689 base->name);
1690 return glsl_type::error_type;
1691 }
1692
1693 if (array_size != NULL) {
1694 exec_list dummy_instructions;
1695 ir_rvalue *const ir = array_size->hir(& dummy_instructions, state);
1696 YYLTYPE loc = array_size->get_location();
1697
1698 if (ir != NULL) {
1699 if (!ir->type->is_integer()) {
1700 _mesa_glsl_error(& loc, state, "array size must be integer type");
1701 } else if (!ir->type->is_scalar()) {
1702 _mesa_glsl_error(& loc, state, "array size must be scalar type");
1703 } else {
1704 ir_constant *const size = ir->constant_expression_value();
1705
1706 if (size == NULL) {
1707 _mesa_glsl_error(& loc, state, "array size must be a "
1708 "constant valued expression");
1709 } else if (size->value.i[0] <= 0) {
1710 _mesa_glsl_error(& loc, state, "array size must be > 0");
1711 } else {
1712 assert(size->type == ir->type);
1713 length = size->value.u[0];
1714
1715 /* If the array size is const (and we've verified that
1716 * it is) then no instructions should have been emitted
1717 * when we converted it to HIR. If they were emitted,
1718 * then either the array size isn't const after all, or
1719 * we are emitting unnecessary instructions.
1720 */
1721 assert(dummy_instructions.is_empty());
1722 }
1723 }
1724 }
1725 } else if (state->es_shader) {
1726 /* Section 10.17 of the GLSL ES 1.00 specification states that unsized
1727 * array declarations have been removed from the language.
1728 */
1729 _mesa_glsl_error(loc, state, "unsized array declarations are not "
1730 "allowed in GLSL ES 1.00.");
1731 }
1732
1733 return glsl_type::get_array_instance(base, length);
1734 }
1735
1736
1737 const glsl_type *
1738 ast_type_specifier::glsl_type(const char **name,
1739 struct _mesa_glsl_parse_state *state) const
1740 {
1741 const struct glsl_type *type;
1742
1743 type = state->symbols->get_type(this->type_name);
1744 *name = this->type_name;
1745
1746 if (this->is_array) {
1747 YYLTYPE loc = this->get_location();
1748 type = process_array_type(&loc, type, this->array_size, state);
1749 }
1750
1751 return type;
1752 }
1753
1754
1755 /**
1756 * Determine whether a toplevel variable declaration declares a varying. This
1757 * function operates by examining the variable's mode and the shader target,
1758 * so it correctly identifies linkage variables regardless of whether they are
1759 * declared using the deprecated "varying" syntax or the new "in/out" syntax.
1760 *
1761 * Passing a non-toplevel variable declaration (e.g. a function parameter) to
1762 * this function will produce undefined results.
1763 */
1764 static bool
1765 is_varying_var(ir_variable *var, _mesa_glsl_parser_targets target)
1766 {
1767 switch (target) {
1768 case vertex_shader:
1769 return var->mode == ir_var_shader_out;
1770 case fragment_shader:
1771 return var->mode == ir_var_shader_in;
1772 default:
1773 return var->mode == ir_var_shader_out || var->mode == ir_var_shader_in;
1774 }
1775 }
1776
1777
1778 /**
1779 * Matrix layout qualifiers are only allowed on certain types
1780 */
1781 static void
1782 validate_matrix_layout_for_type(struct _mesa_glsl_parse_state *state,
1783 YYLTYPE *loc,
1784 const glsl_type *type)
1785 {
1786 if (!type->is_matrix() && !type->is_record()) {
1787 _mesa_glsl_error(loc, state,
1788 "uniform block layout qualifiers row_major and "
1789 "column_major can only be applied to matrix and "
1790 "structure types");
1791 } else if (type->is_record()) {
1792 /* We allow 'layout(row_major)' on structure types because it's the only
1793 * way to get row-major layouts on matrices contained in structures.
1794 */
1795 _mesa_glsl_warning(loc, state,
1796 "uniform block layout qualifiers row_major and "
1797 "column_major applied to structure types is not "
1798 "strictly conformant and my be rejected by other "
1799 "compilers");
1800 }
1801 }
1802
1803 static void
1804 apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
1805 ir_variable *var,
1806 struct _mesa_glsl_parse_state *state,
1807 YYLTYPE *loc,
1808 bool ubo_qualifiers_valid,
1809 bool is_parameter)
1810 {
1811 if (qual->flags.q.invariant) {
1812 if (var->used) {
1813 _mesa_glsl_error(loc, state,
1814 "variable `%s' may not be redeclared "
1815 "`invariant' after being used",
1816 var->name);
1817 } else {
1818 var->invariant = 1;
1819 }
1820 }
1821
1822 if (qual->flags.q.constant || qual->flags.q.attribute
1823 || qual->flags.q.uniform
1824 || (qual->flags.q.varying && (state->target == fragment_shader)))
1825 var->read_only = 1;
1826
1827 if (qual->flags.q.centroid)
1828 var->centroid = 1;
1829
1830 if (qual->flags.q.attribute && state->target != vertex_shader) {
1831 var->type = glsl_type::error_type;
1832 _mesa_glsl_error(loc, state,
1833 "`attribute' variables may not be declared in the "
1834 "%s shader",
1835 _mesa_glsl_shader_target_name(state->target));
1836 }
1837
1838 /* If there is no qualifier that changes the mode of the variable, leave
1839 * the setting alone.
1840 */
1841 if (qual->flags.q.in && qual->flags.q.out)
1842 var->mode = ir_var_function_inout;
1843 else if (qual->flags.q.in)
1844 var->mode = is_parameter ? ir_var_function_in : ir_var_shader_in;
1845 else if (qual->flags.q.attribute
1846 || (qual->flags.q.varying && (state->target == fragment_shader)))
1847 var->mode = ir_var_shader_in;
1848 else if (qual->flags.q.out)
1849 var->mode = is_parameter ? ir_var_function_out : ir_var_shader_out;
1850 else if (qual->flags.q.varying && (state->target == vertex_shader))
1851 var->mode = ir_var_shader_out;
1852 else if (qual->flags.q.uniform)
1853 var->mode = ir_var_uniform;
1854
1855 if (!is_parameter && is_varying_var(var, state->target)) {
1856 /* This variable is being used to link data between shader stages (in
1857 * pre-glsl-1.30 parlance, it's a "varying"). Check that it has a type
1858 * that is allowed for such purposes.
1859 *
1860 * From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
1861 *
1862 * "The varying qualifier can be used only with the data types
1863 * float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
1864 * these."
1865 *
1866 * This was relaxed in GLSL version 1.30 and GLSL ES version 3.00. From
1867 * page 31 (page 37 of the PDF) of the GLSL 1.30 spec:
1868 *
1869 * "Fragment inputs can only be signed and unsigned integers and
1870 * integer vectors, float, floating-point vectors, matrices, or
1871 * arrays of these. Structures cannot be input.
1872 *
1873 * Similar text exists in the section on vertex shader outputs.
1874 *
1875 * Similar text exists in the GLSL ES 3.00 spec, except that the GLSL ES
1876 * 3.00 spec allows structs as well. Varying structs are also allowed
1877 * in GLSL 1.50.
1878 */
1879 switch (var->type->get_scalar_type()->base_type) {
1880 case GLSL_TYPE_FLOAT:
1881 /* Ok in all GLSL versions */
1882 break;
1883 case GLSL_TYPE_UINT:
1884 case GLSL_TYPE_INT:
1885 if (state->is_version(130, 300))
1886 break;
1887 _mesa_glsl_error(loc, state,
1888 "varying variables must be of base type float in %s",
1889 state->get_version_string());
1890 break;
1891 case GLSL_TYPE_STRUCT:
1892 if (state->is_version(150, 300))
1893 break;
1894 _mesa_glsl_error(loc, state,
1895 "varying variables may not be of type struct");
1896 break;
1897 default:
1898 _mesa_glsl_error(loc, state, "illegal type for a varying variable");
1899 break;
1900 }
1901 }
1902
1903 if (state->all_invariant && (state->current_function == NULL)) {
1904 switch (state->target) {
1905 case vertex_shader:
1906 if (var->mode == ir_var_shader_out)
1907 var->invariant = true;
1908 break;
1909 case geometry_shader:
1910 if ((var->mode == ir_var_shader_in)
1911 || (var->mode == ir_var_shader_out))
1912 var->invariant = true;
1913 break;
1914 case fragment_shader:
1915 if (var->mode == ir_var_shader_in)
1916 var->invariant = true;
1917 break;
1918 }
1919 }
1920
1921 if (qual->flags.q.flat)
1922 var->interpolation = INTERP_QUALIFIER_FLAT;
1923 else if (qual->flags.q.noperspective)
1924 var->interpolation = INTERP_QUALIFIER_NOPERSPECTIVE;
1925 else if (qual->flags.q.smooth)
1926 var->interpolation = INTERP_QUALIFIER_SMOOTH;
1927 else
1928 var->interpolation = INTERP_QUALIFIER_NONE;
1929
1930 if (var->interpolation != INTERP_QUALIFIER_NONE &&
1931 !(state->target == vertex_shader && var->mode == ir_var_shader_out) &&
1932 !(state->target == fragment_shader && var->mode == ir_var_shader_in)) {
1933 _mesa_glsl_error(loc, state,
1934 "interpolation qualifier `%s' can only be applied to "
1935 "vertex shader outputs and fragment shader inputs.",
1936 var->interpolation_string());
1937 }
1938
1939 var->pixel_center_integer = qual->flags.q.pixel_center_integer;
1940 var->origin_upper_left = qual->flags.q.origin_upper_left;
1941 if ((qual->flags.q.origin_upper_left || qual->flags.q.pixel_center_integer)
1942 && (strcmp(var->name, "gl_FragCoord") != 0)) {
1943 const char *const qual_string = (qual->flags.q.origin_upper_left)
1944 ? "origin_upper_left" : "pixel_center_integer";
1945
1946 _mesa_glsl_error(loc, state,
1947 "layout qualifier `%s' can only be applied to "
1948 "fragment shader input `gl_FragCoord'",
1949 qual_string);
1950 }
1951
1952 if (qual->flags.q.explicit_location) {
1953 const bool global_scope = (state->current_function == NULL);
1954 bool fail = false;
1955 const char *string = "";
1956
1957 /* In the vertex shader only shader inputs can be given explicit
1958 * locations.
1959 *
1960 * In the fragment shader only shader outputs can be given explicit
1961 * locations.
1962 */
1963 switch (state->target) {
1964 case vertex_shader:
1965 if (!global_scope || (var->mode != ir_var_shader_in)) {
1966 fail = true;
1967 string = "input";
1968 }
1969 break;
1970
1971 case geometry_shader:
1972 _mesa_glsl_error(loc, state,
1973 "geometry shader variables cannot be given "
1974 "explicit locations\n");
1975 break;
1976
1977 case fragment_shader:
1978 if (!global_scope || (var->mode != ir_var_shader_out)) {
1979 fail = true;
1980 string = "output";
1981 }
1982 break;
1983 };
1984
1985 if (fail) {
1986 _mesa_glsl_error(loc, state,
1987 "only %s shader %s variables can be given an "
1988 "explicit location\n",
1989 _mesa_glsl_shader_target_name(state->target),
1990 string);
1991 } else {
1992 var->explicit_location = true;
1993
1994 /* This bit of silliness is needed because invalid explicit locations
1995 * are supposed to be flagged during linking. Small negative values
1996 * biased by VERT_ATTRIB_GENERIC0 or FRAG_RESULT_DATA0 could alias
1997 * built-in values (e.g., -16+VERT_ATTRIB_GENERIC0 = VERT_ATTRIB_POS).
1998 * The linker needs to be able to differentiate these cases. This
1999 * ensures that negative values stay negative.
2000 */
2001 if (qual->location >= 0) {
2002 var->location = (state->target == vertex_shader)
2003 ? (qual->location + VERT_ATTRIB_GENERIC0)
2004 : (qual->location + FRAG_RESULT_DATA0);
2005 } else {
2006 var->location = qual->location;
2007 }
2008
2009 if (qual->flags.q.explicit_index) {
2010 /* From the GLSL 4.30 specification, section 4.4.2 (Output
2011 * Layout Qualifiers):
2012 *
2013 * "It is also a compile-time error if a fragment shader
2014 * sets a layout index to less than 0 or greater than 1."
2015 *
2016 * Older specifications don't mandate a behavior; we take
2017 * this as a clarification and always generate the error.
2018 */
2019 if (qual->index < 0 || qual->index > 1) {
2020 _mesa_glsl_error(loc, state,
2021 "explicit index may only be 0 or 1\n");
2022 } else {
2023 var->explicit_index = true;
2024 var->index = qual->index;
2025 }
2026 }
2027 }
2028 } else if (qual->flags.q.explicit_index) {
2029 _mesa_glsl_error(loc, state,
2030 "explicit index requires explicit location\n");
2031 }
2032
2033 /* Does the declaration use the 'layout' keyword?
2034 */
2035 const bool uses_layout = qual->flags.q.pixel_center_integer
2036 || qual->flags.q.origin_upper_left
2037 || qual->flags.q.explicit_location; /* no need for index since it relies on location */
2038
2039 /* Does the declaration use the deprecated 'attribute' or 'varying'
2040 * keywords?
2041 */
2042 const bool uses_deprecated_qualifier = qual->flags.q.attribute
2043 || qual->flags.q.varying;
2044
2045 /* Is the 'layout' keyword used with parameters that allow relaxed checking.
2046 * Many implementations of GL_ARB_fragment_coord_conventions_enable and some
2047 * implementations (only Mesa?) GL_ARB_explicit_attrib_location_enable
2048 * allowed the layout qualifier to be used with 'varying' and 'attribute'.
2049 * These extensions and all following extensions that add the 'layout'
2050 * keyword have been modified to require the use of 'in' or 'out'.
2051 *
2052 * The following extension do not allow the deprecated keywords:
2053 *
2054 * GL_AMD_conservative_depth
2055 * GL_ARB_conservative_depth
2056 * GL_ARB_gpu_shader5
2057 * GL_ARB_separate_shader_objects
2058 * GL_ARB_tesselation_shader
2059 * GL_ARB_transform_feedback3
2060 * GL_ARB_uniform_buffer_object
2061 *
2062 * It is unknown whether GL_EXT_shader_image_load_store or GL_NV_gpu_shader5
2063 * allow layout with the deprecated keywords.
2064 */
2065 const bool relaxed_layout_qualifier_checking =
2066 state->ARB_fragment_coord_conventions_enable;
2067
2068 if (uses_layout && uses_deprecated_qualifier) {
2069 if (relaxed_layout_qualifier_checking) {
2070 _mesa_glsl_warning(loc, state,
2071 "`layout' qualifier may not be used with "
2072 "`attribute' or `varying'");
2073 } else {
2074 _mesa_glsl_error(loc, state,
2075 "`layout' qualifier may not be used with "
2076 "`attribute' or `varying'");
2077 }
2078 }
2079
2080 /* Layout qualifiers for gl_FragDepth, which are enabled by extension
2081 * AMD_conservative_depth.
2082 */
2083 int depth_layout_count = qual->flags.q.depth_any
2084 + qual->flags.q.depth_greater
2085 + qual->flags.q.depth_less
2086 + qual->flags.q.depth_unchanged;
2087 if (depth_layout_count > 0
2088 && !state->AMD_conservative_depth_enable
2089 && !state->ARB_conservative_depth_enable) {
2090 _mesa_glsl_error(loc, state,
2091 "extension GL_AMD_conservative_depth or "
2092 "GL_ARB_conservative_depth must be enabled "
2093 "to use depth layout qualifiers");
2094 } else if (depth_layout_count > 0
2095 && strcmp(var->name, "gl_FragDepth") != 0) {
2096 _mesa_glsl_error(loc, state,
2097 "depth layout qualifiers can be applied only to "
2098 "gl_FragDepth");
2099 } else if (depth_layout_count > 1
2100 && strcmp(var->name, "gl_FragDepth") == 0) {
2101 _mesa_glsl_error(loc, state,
2102 "at most one depth layout qualifier can be applied to "
2103 "gl_FragDepth");
2104 }
2105 if (qual->flags.q.depth_any)
2106 var->depth_layout = ir_depth_layout_any;
2107 else if (qual->flags.q.depth_greater)
2108 var->depth_layout = ir_depth_layout_greater;
2109 else if (qual->flags.q.depth_less)
2110 var->depth_layout = ir_depth_layout_less;
2111 else if (qual->flags.q.depth_unchanged)
2112 var->depth_layout = ir_depth_layout_unchanged;
2113 else
2114 var->depth_layout = ir_depth_layout_none;
2115
2116 if (qual->flags.q.std140 ||
2117 qual->flags.q.packed ||
2118 qual->flags.q.shared) {
2119 _mesa_glsl_error(loc, state,
2120 "uniform block layout qualifiers std140, packed, and "
2121 "shared can only be applied to uniform blocks, not "
2122 "members");
2123 }
2124
2125 if (qual->flags.q.row_major || qual->flags.q.column_major) {
2126 if (!ubo_qualifiers_valid) {
2127 _mesa_glsl_error(loc, state,
2128 "uniform block layout qualifiers row_major and "
2129 "column_major can only be applied to uniform block "
2130 "members");
2131 } else
2132 validate_matrix_layout_for_type(state, loc, var->type);
2133 }
2134 }
2135
2136 /**
2137 * Get the variable that is being redeclared by this declaration
2138 *
2139 * Semantic checks to verify the validity of the redeclaration are also
2140 * performed. If semantic checks fail, compilation error will be emitted via
2141 * \c _mesa_glsl_error, but a non-\c NULL pointer will still be returned.
2142 *
2143 * \returns
2144 * A pointer to an existing variable in the current scope if the declaration
2145 * is a redeclaration, \c NULL otherwise.
2146 */
2147 ir_variable *
2148 get_variable_being_redeclared(ir_variable *var, ast_declaration *decl,
2149 struct _mesa_glsl_parse_state *state)
2150 {
2151 /* Check if this declaration is actually a re-declaration, either to
2152 * resize an array or add qualifiers to an existing variable.
2153 *
2154 * This is allowed for variables in the current scope, or when at
2155 * global scope (for built-ins in the implicit outer scope).
2156 */
2157 ir_variable *earlier = state->symbols->get_variable(decl->identifier);
2158 if (earlier == NULL ||
2159 (state->current_function != NULL &&
2160 !state->symbols->name_declared_this_scope(decl->identifier))) {
2161 return NULL;
2162 }
2163
2164
2165 YYLTYPE loc = decl->get_location();
2166
2167 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
2168 *
2169 * "It is legal to declare an array without a size and then
2170 * later re-declare the same name as an array of the same
2171 * type and specify a size."
2172 */
2173 if ((earlier->type->array_size() == 0)
2174 && var->type->is_array()
2175 && (var->type->element_type() == earlier->type->element_type())) {
2176 /* FINISHME: This doesn't match the qualifiers on the two
2177 * FINISHME: declarations. It's not 100% clear whether this is
2178 * FINISHME: required or not.
2179 */
2180
2181 const unsigned size = unsigned(var->type->array_size());
2182 check_builtin_array_max_size(var->name, size, loc, state);
2183 if ((size > 0) && (size <= earlier->max_array_access)) {
2184 _mesa_glsl_error(& loc, state, "array size must be > %u due to "
2185 "previous access",
2186 earlier->max_array_access);
2187 }
2188
2189 earlier->type = var->type;
2190 delete var;
2191 var = NULL;
2192 } else if (state->ARB_fragment_coord_conventions_enable
2193 && strcmp(var->name, "gl_FragCoord") == 0
2194 && earlier->type == var->type
2195 && earlier->mode == var->mode) {
2196 /* Allow redeclaration of gl_FragCoord for ARB_fcc layout
2197 * qualifiers.
2198 */
2199 earlier->origin_upper_left = var->origin_upper_left;
2200 earlier->pixel_center_integer = var->pixel_center_integer;
2201
2202 /* According to section 4.3.7 of the GLSL 1.30 spec,
2203 * the following built-in varaibles can be redeclared with an
2204 * interpolation qualifier:
2205 * * gl_FrontColor
2206 * * gl_BackColor
2207 * * gl_FrontSecondaryColor
2208 * * gl_BackSecondaryColor
2209 * * gl_Color
2210 * * gl_SecondaryColor
2211 */
2212 } else if (state->is_version(130, 0)
2213 && (strcmp(var->name, "gl_FrontColor") == 0
2214 || strcmp(var->name, "gl_BackColor") == 0
2215 || strcmp(var->name, "gl_FrontSecondaryColor") == 0
2216 || strcmp(var->name, "gl_BackSecondaryColor") == 0
2217 || strcmp(var->name, "gl_Color") == 0
2218 || strcmp(var->name, "gl_SecondaryColor") == 0)
2219 && earlier->type == var->type
2220 && earlier->mode == var->mode) {
2221 earlier->interpolation = var->interpolation;
2222
2223 /* Layout qualifiers for gl_FragDepth. */
2224 } else if ((state->AMD_conservative_depth_enable ||
2225 state->ARB_conservative_depth_enable)
2226 && strcmp(var->name, "gl_FragDepth") == 0
2227 && earlier->type == var->type
2228 && earlier->mode == var->mode) {
2229
2230 /** From the AMD_conservative_depth spec:
2231 * Within any shader, the first redeclarations of gl_FragDepth
2232 * must appear before any use of gl_FragDepth.
2233 */
2234 if (earlier->used) {
2235 _mesa_glsl_error(&loc, state,
2236 "the first redeclaration of gl_FragDepth "
2237 "must appear before any use of gl_FragDepth");
2238 }
2239
2240 /* Prevent inconsistent redeclaration of depth layout qualifier. */
2241 if (earlier->depth_layout != ir_depth_layout_none
2242 && earlier->depth_layout != var->depth_layout) {
2243 _mesa_glsl_error(&loc, state,
2244 "gl_FragDepth: depth layout is declared here "
2245 "as '%s, but it was previously declared as "
2246 "'%s'",
2247 depth_layout_string(var->depth_layout),
2248 depth_layout_string(earlier->depth_layout));
2249 }
2250
2251 earlier->depth_layout = var->depth_layout;
2252
2253 } else {
2254 _mesa_glsl_error(&loc, state, "`%s' redeclared", decl->identifier);
2255 }
2256
2257 return earlier;
2258 }
2259
2260 /**
2261 * Generate the IR for an initializer in a variable declaration
2262 */
2263 ir_rvalue *
2264 process_initializer(ir_variable *var, ast_declaration *decl,
2265 ast_fully_specified_type *type,
2266 exec_list *initializer_instructions,
2267 struct _mesa_glsl_parse_state *state)
2268 {
2269 ir_rvalue *result = NULL;
2270
2271 YYLTYPE initializer_loc = decl->initializer->get_location();
2272
2273 /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
2274 *
2275 * "All uniform variables are read-only and are initialized either
2276 * directly by an application via API commands, or indirectly by
2277 * OpenGL."
2278 */
2279 if (var->mode == ir_var_uniform) {
2280 state->check_version(120, 0, &initializer_loc,
2281 "cannot initialize uniforms");
2282 }
2283
2284 if (var->type->is_sampler()) {
2285 _mesa_glsl_error(& initializer_loc, state,
2286 "cannot initialize samplers");
2287 }
2288
2289 if ((var->mode == ir_var_shader_in) && (state->current_function == NULL)) {
2290 _mesa_glsl_error(& initializer_loc, state,
2291 "cannot initialize %s shader input / %s",
2292 _mesa_glsl_shader_target_name(state->target),
2293 (state->target == vertex_shader)
2294 ? "attribute" : "varying");
2295 }
2296
2297 ir_dereference *const lhs = new(state) ir_dereference_variable(var);
2298 ir_rvalue *rhs = decl->initializer->hir(initializer_instructions,
2299 state);
2300
2301 /* Calculate the constant value if this is a const or uniform
2302 * declaration.
2303 */
2304 if (type->qualifier.flags.q.constant
2305 || type->qualifier.flags.q.uniform) {
2306 ir_rvalue *new_rhs = validate_assignment(state, var->type, rhs, true);
2307 if (new_rhs != NULL) {
2308 rhs = new_rhs;
2309
2310 ir_constant *constant_value = rhs->constant_expression_value();
2311 if (!constant_value) {
2312 _mesa_glsl_error(& initializer_loc, state,
2313 "initializer of %s variable `%s' must be a "
2314 "constant expression",
2315 (type->qualifier.flags.q.constant)
2316 ? "const" : "uniform",
2317 decl->identifier);
2318 if (var->type->is_numeric()) {
2319 /* Reduce cascading errors. */
2320 var->constant_value = ir_constant::zero(state, var->type);
2321 }
2322 } else {
2323 rhs = constant_value;
2324 var->constant_value = constant_value;
2325 }
2326 } else {
2327 _mesa_glsl_error(&initializer_loc, state,
2328 "initializer of type %s cannot be assigned to "
2329 "variable of type %s",
2330 rhs->type->name, var->type->name);
2331 if (var->type->is_numeric()) {
2332 /* Reduce cascading errors. */
2333 var->constant_value = ir_constant::zero(state, var->type);
2334 }
2335 }
2336 }
2337
2338 if (rhs && !rhs->type->is_error()) {
2339 bool temp = var->read_only;
2340 if (type->qualifier.flags.q.constant)
2341 var->read_only = false;
2342
2343 /* Never emit code to initialize a uniform.
2344 */
2345 const glsl_type *initializer_type;
2346 if (!type->qualifier.flags.q.uniform) {
2347 result = do_assignment(initializer_instructions, state,
2348 NULL,
2349 lhs, rhs, true,
2350 type->get_location());
2351 initializer_type = result->type;
2352 } else
2353 initializer_type = rhs->type;
2354
2355 var->constant_initializer = rhs->constant_expression_value();
2356 var->has_initializer = true;
2357
2358 /* If the declared variable is an unsized array, it must inherrit
2359 * its full type from the initializer. A declaration such as
2360 *
2361 * uniform float a[] = float[](1.0, 2.0, 3.0, 3.0);
2362 *
2363 * becomes
2364 *
2365 * uniform float a[4] = float[](1.0, 2.0, 3.0, 3.0);
2366 *
2367 * The assignment generated in the if-statement (below) will also
2368 * automatically handle this case for non-uniforms.
2369 *
2370 * If the declared variable is not an array, the types must
2371 * already match exactly. As a result, the type assignment
2372 * here can be done unconditionally. For non-uniforms the call
2373 * to do_assignment can change the type of the initializer (via
2374 * the implicit conversion rules). For uniforms the initializer
2375 * must be a constant expression, and the type of that expression
2376 * was validated above.
2377 */
2378 var->type = initializer_type;
2379
2380 var->read_only = temp;
2381 }
2382
2383 return result;
2384 }
2385
2386 ir_rvalue *
2387 ast_declarator_list::hir(exec_list *instructions,
2388 struct _mesa_glsl_parse_state *state)
2389 {
2390 void *ctx = state;
2391 const struct glsl_type *decl_type;
2392 const char *type_name = NULL;
2393 ir_rvalue *result = NULL;
2394 YYLTYPE loc = this->get_location();
2395
2396 /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec:
2397 *
2398 * "To ensure that a particular output variable is invariant, it is
2399 * necessary to use the invariant qualifier. It can either be used to
2400 * qualify a previously declared variable as being invariant
2401 *
2402 * invariant gl_Position; // make existing gl_Position be invariant"
2403 *
2404 * In these cases the parser will set the 'invariant' flag in the declarator
2405 * list, and the type will be NULL.
2406 */
2407 if (this->invariant) {
2408 assert(this->type == NULL);
2409
2410 if (state->current_function != NULL) {
2411 _mesa_glsl_error(& loc, state,
2412 "All uses of `invariant' keyword must be at global "
2413 "scope\n");
2414 }
2415
2416 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
2417 assert(!decl->is_array);
2418 assert(decl->array_size == NULL);
2419 assert(decl->initializer == NULL);
2420
2421 ir_variable *const earlier =
2422 state->symbols->get_variable(decl->identifier);
2423 if (earlier == NULL) {
2424 _mesa_glsl_error(& loc, state,
2425 "Undeclared variable `%s' cannot be marked "
2426 "invariant\n", decl->identifier);
2427 } else if ((state->target == vertex_shader)
2428 && (earlier->mode != ir_var_shader_out)) {
2429 _mesa_glsl_error(& loc, state,
2430 "`%s' cannot be marked invariant, vertex shader "
2431 "outputs only\n", decl->identifier);
2432 } else if ((state->target == fragment_shader)
2433 && (earlier->mode != ir_var_shader_in)) {
2434 _mesa_glsl_error(& loc, state,
2435 "`%s' cannot be marked invariant, fragment shader "
2436 "inputs only\n", decl->identifier);
2437 } else if (earlier->used) {
2438 _mesa_glsl_error(& loc, state,
2439 "variable `%s' may not be redeclared "
2440 "`invariant' after being used",
2441 earlier->name);
2442 } else {
2443 earlier->invariant = true;
2444 }
2445 }
2446
2447 /* Invariant redeclarations do not have r-values.
2448 */
2449 return NULL;
2450 }
2451
2452 assert(this->type != NULL);
2453 assert(!this->invariant);
2454
2455 /* The type specifier may contain a structure definition. Process that
2456 * before any of the variable declarations.
2457 */
2458 (void) this->type->specifier->hir(instructions, state);
2459
2460 decl_type = this->type->specifier->glsl_type(& type_name, state);
2461 if (this->declarations.is_empty()) {
2462 /* If there is no structure involved in the program text, there are two
2463 * possible scenarios:
2464 *
2465 * - The program text contained something like 'vec4;'. This is an
2466 * empty declaration. It is valid but weird. Emit a warning.
2467 *
2468 * - The program text contained something like 'S;' and 'S' is not the
2469 * name of a known structure type. This is both invalid and weird.
2470 * Emit an error.
2471 *
2472 * Note that if decl_type is NULL and there is a structure involved,
2473 * there must have been some sort of error with the structure. In this
2474 * case we assume that an error was already generated on this line of
2475 * code for the structure. There is no need to generate an additional,
2476 * confusing error.
2477 */
2478 assert(this->type->specifier->structure == NULL || decl_type != NULL
2479 || state->error);
2480 if (this->type->specifier->structure == NULL) {
2481 if (decl_type != NULL) {
2482 _mesa_glsl_warning(&loc, state, "empty declaration");
2483 } else {
2484 _mesa_glsl_error(&loc, state,
2485 "invalid type `%s' in empty declaration",
2486 type_name);
2487 }
2488 }
2489 }
2490
2491 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
2492 const struct glsl_type *var_type;
2493 ir_variable *var;
2494
2495 /* FINISHME: Emit a warning if a variable declaration shadows a
2496 * FINISHME: declaration at a higher scope.
2497 */
2498
2499 if ((decl_type == NULL) || decl_type->is_void()) {
2500 if (type_name != NULL) {
2501 _mesa_glsl_error(& loc, state,
2502 "invalid type `%s' in declaration of `%s'",
2503 type_name, decl->identifier);
2504 } else {
2505 _mesa_glsl_error(& loc, state,
2506 "invalid type in declaration of `%s'",
2507 decl->identifier);
2508 }
2509 continue;
2510 }
2511
2512 if (decl->is_array) {
2513 var_type = process_array_type(&loc, decl_type, decl->array_size,
2514 state);
2515 if (var_type->is_error())
2516 continue;
2517 } else {
2518 var_type = decl_type;
2519 }
2520
2521 var = new(ctx) ir_variable(var_type, decl->identifier, ir_var_auto);
2522
2523 /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
2524 *
2525 * "Global variables can only use the qualifiers const,
2526 * attribute, uni form, or varying. Only one may be
2527 * specified.
2528 *
2529 * Local variables can only use the qualifier const."
2530 *
2531 * This is relaxed in GLSL 1.30 and GLSL ES 3.00. It is also relaxed by
2532 * any extension that adds the 'layout' keyword.
2533 */
2534 if (!state->is_version(130, 300)
2535 && !state->ARB_explicit_attrib_location_enable
2536 && !state->ARB_fragment_coord_conventions_enable) {
2537 if (this->type->qualifier.flags.q.out) {
2538 _mesa_glsl_error(& loc, state,
2539 "`out' qualifier in declaration of `%s' "
2540 "only valid for function parameters in %s.",
2541 decl->identifier, state->get_version_string());
2542 }
2543 if (this->type->qualifier.flags.q.in) {
2544 _mesa_glsl_error(& loc, state,
2545 "`in' qualifier in declaration of `%s' "
2546 "only valid for function parameters in %s.",
2547 decl->identifier, state->get_version_string());
2548 }
2549 /* FINISHME: Test for other invalid qualifiers. */
2550 }
2551
2552 apply_type_qualifier_to_variable(& this->type->qualifier, var, state,
2553 & loc, this->ubo_qualifiers_valid, false);
2554
2555 if (this->type->qualifier.flags.q.invariant) {
2556 if ((state->target == vertex_shader) &&
2557 var->mode != ir_var_shader_out) {
2558 _mesa_glsl_error(& loc, state,
2559 "`%s' cannot be marked invariant, vertex shader "
2560 "outputs only\n", var->name);
2561 } else if ((state->target == fragment_shader) &&
2562 var->mode != ir_var_shader_in) {
2563 /* FINISHME: Note that this doesn't work for invariant on
2564 * a function signature inval
2565 */
2566 _mesa_glsl_error(& loc, state,
2567 "`%s' cannot be marked invariant, fragment shader "
2568 "inputs only\n", var->name);
2569 }
2570 }
2571
2572 if (state->current_function != NULL) {
2573 const char *mode = NULL;
2574 const char *extra = "";
2575
2576 /* There is no need to check for 'inout' here because the parser will
2577 * only allow that in function parameter lists.
2578 */
2579 if (this->type->qualifier.flags.q.attribute) {
2580 mode = "attribute";
2581 } else if (this->type->qualifier.flags.q.uniform) {
2582 mode = "uniform";
2583 } else if (this->type->qualifier.flags.q.varying) {
2584 mode = "varying";
2585 } else if (this->type->qualifier.flags.q.in) {
2586 mode = "in";
2587 extra = " or in function parameter list";
2588 } else if (this->type->qualifier.flags.q.out) {
2589 mode = "out";
2590 extra = " or in function parameter list";
2591 }
2592
2593 if (mode) {
2594 _mesa_glsl_error(& loc, state,
2595 "%s variable `%s' must be declared at "
2596 "global scope%s",
2597 mode, var->name, extra);
2598 }
2599 } else if (var->mode == ir_var_shader_in) {
2600 var->read_only = true;
2601
2602 if (state->target == vertex_shader) {
2603 bool error_emitted = false;
2604
2605 /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
2606 *
2607 * "Vertex shader inputs can only be float, floating-point
2608 * vectors, matrices, signed and unsigned integers and integer
2609 * vectors. Vertex shader inputs can also form arrays of these
2610 * types, but not structures."
2611 *
2612 * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
2613 *
2614 * "Vertex shader inputs can only be float, floating-point
2615 * vectors, matrices, signed and unsigned integers and integer
2616 * vectors. They cannot be arrays or structures."
2617 *
2618 * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
2619 *
2620 * "The attribute qualifier can be used only with float,
2621 * floating-point vectors, and matrices. Attribute variables
2622 * cannot be declared as arrays or structures."
2623 *
2624 * From page 33 (page 39 of the PDF) of the GLSL ES 3.00 spec:
2625 *
2626 * "Vertex shader inputs can only be float, floating-point
2627 * vectors, matrices, signed and unsigned integers and integer
2628 * vectors. Vertex shader inputs cannot be arrays or
2629 * structures."
2630 */
2631 const glsl_type *check_type = var->type->is_array()
2632 ? var->type->fields.array : var->type;
2633
2634 switch (check_type->base_type) {
2635 case GLSL_TYPE_FLOAT:
2636 break;
2637 case GLSL_TYPE_UINT:
2638 case GLSL_TYPE_INT:
2639 if (state->is_version(120, 300))
2640 break;
2641 /* FALLTHROUGH */
2642 default:
2643 _mesa_glsl_error(& loc, state,
2644 "vertex shader input / attribute cannot have "
2645 "type %s`%s'",
2646 var->type->is_array() ? "array of " : "",
2647 check_type->name);
2648 error_emitted = true;
2649 }
2650
2651 if (!error_emitted && var->type->is_array() &&
2652 !state->check_version(140, 0, &loc,
2653 "vertex shader input / attribute "
2654 "cannot have array type")) {
2655 error_emitted = true;
2656 }
2657 }
2658 }
2659
2660 /* Integer fragment inputs must be qualified with 'flat'. In GLSL ES,
2661 * so must integer vertex outputs.
2662 *
2663 * From section 4.3.4 ("Inputs") of the GLSL 1.50 spec:
2664 * "Fragment shader inputs that are signed or unsigned integers or
2665 * integer vectors must be qualified with the interpolation qualifier
2666 * flat."
2667 *
2668 * From section 4.3.4 ("Input Variables") of the GLSL 3.00 ES spec:
2669 * "Fragment shader inputs that are, or contain, signed or unsigned
2670 * integers or integer vectors must be qualified with the
2671 * interpolation qualifier flat."
2672 *
2673 * From section 4.3.6 ("Output Variables") of the GLSL 3.00 ES spec:
2674 * "Vertex shader outputs that are, or contain, signed or unsigned
2675 * integers or integer vectors must be qualified with the
2676 * interpolation qualifier flat."
2677 *
2678 * Note that prior to GLSL 1.50, this requirement applied to vertex
2679 * outputs rather than fragment inputs. That creates problems in the
2680 * presence of geometry shaders, so we adopt the GLSL 1.50 rule for all
2681 * desktop GL shaders. For GLSL ES shaders, we follow the spec and
2682 * apply the restriction to both vertex outputs and fragment inputs.
2683 *
2684 * Note also that the desktop GLSL specs are missing the text "or
2685 * contain"; this is presumably an oversight, since there is no
2686 * reasonable way to interpolate a fragment shader input that contains
2687 * an integer.
2688 */
2689 if (state->is_version(130, 300) &&
2690 var->type->contains_integer() &&
2691 var->interpolation != INTERP_QUALIFIER_FLAT &&
2692 ((state->target == fragment_shader && var->mode == ir_var_shader_in)
2693 || (state->target == vertex_shader && var->mode == ir_var_shader_out
2694 && state->es_shader))) {
2695 const char *var_type = (state->target == vertex_shader) ?
2696 "vertex output" : "fragment input";
2697 _mesa_glsl_error(&loc, state, "If a %s is (or contains) "
2698 "an integer, then it must be qualified with 'flat'",
2699 var_type);
2700 }
2701
2702
2703 /* Interpolation qualifiers cannot be applied to 'centroid' and
2704 * 'centroid varying'.
2705 *
2706 * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
2707 * "interpolation qualifiers may only precede the qualifiers in,
2708 * centroid in, out, or centroid out in a declaration. They do not apply
2709 * to the deprecated storage qualifiers varying or centroid varying."
2710 *
2711 * These deprecated storage qualifiers do not exist in GLSL ES 3.00.
2712 */
2713 if (state->is_version(130, 0)
2714 && this->type->qualifier.has_interpolation()
2715 && this->type->qualifier.flags.q.varying) {
2716
2717 const char *i = this->type->qualifier.interpolation_string();
2718 assert(i != NULL);
2719 const char *s;
2720 if (this->type->qualifier.flags.q.centroid)
2721 s = "centroid varying";
2722 else
2723 s = "varying";
2724
2725 _mesa_glsl_error(&loc, state,
2726 "qualifier '%s' cannot be applied to the "
2727 "deprecated storage qualifier '%s'", i, s);
2728 }
2729
2730
2731 /* Interpolation qualifiers can only apply to vertex shader outputs and
2732 * fragment shader inputs.
2733 *
2734 * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
2735 * "Outputs from a vertex shader (out) and inputs to a fragment
2736 * shader (in) can be further qualified with one or more of these
2737 * interpolation qualifiers"
2738 *
2739 * From page 31 (page 37 of the PDF) of the GLSL ES 3.00 spec:
2740 * "These interpolation qualifiers may only precede the qualifiers
2741 * in, centroid in, out, or centroid out in a declaration. They do
2742 * not apply to inputs into a vertex shader or outputs from a
2743 * fragment shader."
2744 */
2745 if (state->is_version(130, 300)
2746 && this->type->qualifier.has_interpolation()) {
2747
2748 const char *i = this->type->qualifier.interpolation_string();
2749 assert(i != NULL);
2750
2751 switch (state->target) {
2752 case vertex_shader:
2753 if (this->type->qualifier.flags.q.in) {
2754 _mesa_glsl_error(&loc, state,
2755 "qualifier '%s' cannot be applied to vertex "
2756 "shader inputs", i);
2757 }
2758 break;
2759 case fragment_shader:
2760 if (this->type->qualifier.flags.q.out) {
2761 _mesa_glsl_error(&loc, state,
2762 "qualifier '%s' cannot be applied to fragment "
2763 "shader outputs", i);
2764 }
2765 break;
2766 default:
2767 assert(0);
2768 }
2769 }
2770
2771
2772 /* From section 4.3.4 of the GLSL 1.30 spec:
2773 * "It is an error to use centroid in in a vertex shader."
2774 *
2775 * From section 4.3.4 of the GLSL ES 3.00 spec:
2776 * "It is an error to use centroid in or interpolation qualifiers in
2777 * a vertex shader input."
2778 */
2779 if (state->is_version(130, 300)
2780 && this->type->qualifier.flags.q.centroid
2781 && this->type->qualifier.flags.q.in
2782 && state->target == vertex_shader) {
2783
2784 _mesa_glsl_error(&loc, state,
2785 "'centroid in' cannot be used in a vertex shader");
2786 }
2787
2788
2789 /* Precision qualifiers exists only in GLSL versions 1.00 and >= 1.30.
2790 */
2791 if (this->type->specifier->precision != ast_precision_none) {
2792 state->check_precision_qualifiers_allowed(&loc);
2793 }
2794
2795
2796 /* Precision qualifiers only apply to floating point and integer types.
2797 *
2798 * From section 4.5.2 of the GLSL 1.30 spec:
2799 * "Any floating point or any integer declaration can have the type
2800 * preceded by one of these precision qualifiers [...] Literal
2801 * constants do not have precision qualifiers. Neither do Boolean
2802 * variables.
2803 *
2804 * In GLSL ES, sampler types are also allowed.
2805 *
2806 * From page 87 of the GLSL ES spec:
2807 * "RESOLUTION: Allow sampler types to take a precision qualifier."
2808 */
2809 if (this->type->specifier->precision != ast_precision_none
2810 && !var->type->is_float()
2811 && !var->type->is_integer()
2812 && !(var->type->is_sampler() && state->es_shader)
2813 && !(var->type->is_array()
2814 && (var->type->fields.array->is_float()
2815 || var->type->fields.array->is_integer()))) {
2816
2817 _mesa_glsl_error(&loc, state,
2818 "precision qualifiers apply only to floating point"
2819 "%s types", state->es_shader ? ", integer, and sampler"
2820 : "and integer");
2821 }
2822
2823 /* From page 17 (page 23 of the PDF) of the GLSL 1.20 spec:
2824 *
2825 * "[Sampler types] can only be declared as function
2826 * parameters or uniform variables (see Section 4.3.5
2827 * "Uniform")".
2828 */
2829 if (var_type->contains_sampler() &&
2830 !this->type->qualifier.flags.q.uniform) {
2831 _mesa_glsl_error(&loc, state, "samplers must be declared uniform");
2832 }
2833
2834 /* Process the initializer and add its instructions to a temporary
2835 * list. This list will be added to the instruction stream (below) after
2836 * the declaration is added. This is done because in some cases (such as
2837 * redeclarations) the declaration may not actually be added to the
2838 * instruction stream.
2839 */
2840 exec_list initializer_instructions;
2841 ir_variable *earlier = get_variable_being_redeclared(var, decl, state);
2842
2843 if (decl->initializer != NULL) {
2844 result = process_initializer((earlier == NULL) ? var : earlier,
2845 decl, this->type,
2846 &initializer_instructions, state);
2847 }
2848
2849 /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
2850 *
2851 * "It is an error to write to a const variable outside of
2852 * its declaration, so they must be initialized when
2853 * declared."
2854 */
2855 if (this->type->qualifier.flags.q.constant && decl->initializer == NULL) {
2856 _mesa_glsl_error(& loc, state,
2857 "const declaration of `%s' must be initialized",
2858 decl->identifier);
2859 }
2860
2861 /* If the declaration is not a redeclaration, there are a few additional
2862 * semantic checks that must be applied. In addition, variable that was
2863 * created for the declaration should be added to the IR stream.
2864 */
2865 if (earlier == NULL) {
2866 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
2867 *
2868 * "Identifiers starting with "gl_" are reserved for use by
2869 * OpenGL, and may not be declared in a shader as either a
2870 * variable or a function."
2871 */
2872 if (strncmp(decl->identifier, "gl_", 3) == 0)
2873 _mesa_glsl_error(& loc, state,
2874 "identifier `%s' uses reserved `gl_' prefix",
2875 decl->identifier);
2876 else if (strstr(decl->identifier, "__")) {
2877 /* From page 14 (page 20 of the PDF) of the GLSL 1.10
2878 * spec:
2879 *
2880 * "In addition, all identifiers containing two
2881 * consecutive underscores (__) are reserved as
2882 * possible future keywords."
2883 */
2884 _mesa_glsl_error(& loc, state,
2885 "identifier `%s' uses reserved `__' string",
2886 decl->identifier);
2887 }
2888
2889 /* Add the variable to the symbol table. Note that the initializer's
2890 * IR was already processed earlier (though it hasn't been emitted
2891 * yet), without the variable in scope.
2892 *
2893 * This differs from most C-like languages, but it follows the GLSL
2894 * specification. From page 28 (page 34 of the PDF) of the GLSL 1.50
2895 * spec:
2896 *
2897 * "Within a declaration, the scope of a name starts immediately
2898 * after the initializer if present or immediately after the name
2899 * being declared if not."
2900 */
2901 if (!state->symbols->add_variable(var)) {
2902 YYLTYPE loc = this->get_location();
2903 _mesa_glsl_error(&loc, state, "name `%s' already taken in the "
2904 "current scope", decl->identifier);
2905 continue;
2906 }
2907
2908 /* Push the variable declaration to the top. It means that all the
2909 * variable declarations will appear in a funny last-to-first order,
2910 * but otherwise we run into trouble if a function is prototyped, a
2911 * global var is decled, then the function is defined with usage of
2912 * the global var. See glslparsertest's CorrectModule.frag.
2913 */
2914 instructions->push_head(var);
2915 }
2916
2917 instructions->append_list(&initializer_instructions);
2918 }
2919
2920
2921 /* Generally, variable declarations do not have r-values. However,
2922 * one is used for the declaration in
2923 *
2924 * while (bool b = some_condition()) {
2925 * ...
2926 * }
2927 *
2928 * so we return the rvalue from the last seen declaration here.
2929 */
2930 return result;
2931 }
2932
2933
2934 ir_rvalue *
2935 ast_parameter_declarator::hir(exec_list *instructions,
2936 struct _mesa_glsl_parse_state *state)
2937 {
2938 void *ctx = state;
2939 const struct glsl_type *type;
2940 const char *name = NULL;
2941 YYLTYPE loc = this->get_location();
2942
2943 type = this->type->specifier->glsl_type(& name, state);
2944
2945 if (type == NULL) {
2946 if (name != NULL) {
2947 _mesa_glsl_error(& loc, state,
2948 "invalid type `%s' in declaration of `%s'",
2949 name, this->identifier);
2950 } else {
2951 _mesa_glsl_error(& loc, state,
2952 "invalid type in declaration of `%s'",
2953 this->identifier);
2954 }
2955
2956 type = glsl_type::error_type;
2957 }
2958
2959 /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
2960 *
2961 * "Functions that accept no input arguments need not use void in the
2962 * argument list because prototypes (or definitions) are required and
2963 * therefore there is no ambiguity when an empty argument list "( )" is
2964 * declared. The idiom "(void)" as a parameter list is provided for
2965 * convenience."
2966 *
2967 * Placing this check here prevents a void parameter being set up
2968 * for a function, which avoids tripping up checks for main taking
2969 * parameters and lookups of an unnamed symbol.
2970 */
2971 if (type->is_void()) {
2972 if (this->identifier != NULL)
2973 _mesa_glsl_error(& loc, state,
2974 "named parameter cannot have type `void'");
2975
2976 is_void = true;
2977 return NULL;
2978 }
2979
2980 if (formal_parameter && (this->identifier == NULL)) {
2981 _mesa_glsl_error(& loc, state, "formal parameter lacks a name");
2982 return NULL;
2983 }
2984
2985 /* This only handles "vec4 foo[..]". The earlier specifier->glsl_type(...)
2986 * call already handled the "vec4[..] foo" case.
2987 */
2988 if (this->is_array) {
2989 type = process_array_type(&loc, type, this->array_size, state);
2990 }
2991
2992 if (!type->is_error() && type->array_size() == 0) {
2993 _mesa_glsl_error(&loc, state, "arrays passed as parameters must have "
2994 "a declared size.");
2995 type = glsl_type::error_type;
2996 }
2997
2998 is_void = false;
2999 ir_variable *var = new(ctx)
3000 ir_variable(type, this->identifier, ir_var_function_in);
3001
3002 /* Apply any specified qualifiers to the parameter declaration. Note that
3003 * for function parameters the default mode is 'in'.
3004 */
3005 apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc,
3006 false, true);
3007
3008 /* From page 17 (page 23 of the PDF) of the GLSL 1.20 spec:
3009 *
3010 * "Samplers cannot be treated as l-values; hence cannot be used
3011 * as out or inout function parameters, nor can they be assigned
3012 * into."
3013 */
3014 if ((var->mode == ir_var_function_inout || var->mode == ir_var_function_out)
3015 && type->contains_sampler()) {
3016 _mesa_glsl_error(&loc, state, "out and inout parameters cannot contain samplers");
3017 type = glsl_type::error_type;
3018 }
3019
3020 /* From page 39 (page 45 of the PDF) of the GLSL 1.10 spec:
3021 *
3022 * "When calling a function, expressions that do not evaluate to
3023 * l-values cannot be passed to parameters declared as out or inout."
3024 *
3025 * From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
3026 *
3027 * "Other binary or unary expressions, non-dereferenced arrays,
3028 * function names, swizzles with repeated fields, and constants
3029 * cannot be l-values."
3030 *
3031 * So for GLSL 1.10, passing an array as an out or inout parameter is not
3032 * allowed. This restriction is removed in GLSL 1.20, and in GLSL ES.
3033 */
3034 if ((var->mode == ir_var_function_inout || var->mode == ir_var_function_out)
3035 && type->is_array()
3036 && !state->check_version(120, 100, &loc,
3037 "Arrays cannot be out or inout parameters")) {
3038 type = glsl_type::error_type;
3039 }
3040
3041 instructions->push_tail(var);
3042
3043 /* Parameter declarations do not have r-values.
3044 */
3045 return NULL;
3046 }
3047
3048
3049 void
3050 ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters,
3051 bool formal,
3052 exec_list *ir_parameters,
3053 _mesa_glsl_parse_state *state)
3054 {
3055 ast_parameter_declarator *void_param = NULL;
3056 unsigned count = 0;
3057
3058 foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) {
3059 param->formal_parameter = formal;
3060 param->hir(ir_parameters, state);
3061
3062 if (param->is_void)
3063 void_param = param;
3064
3065 count++;
3066 }
3067
3068 if ((void_param != NULL) && (count > 1)) {
3069 YYLTYPE loc = void_param->get_location();
3070
3071 _mesa_glsl_error(& loc, state,
3072 "`void' parameter must be only parameter");
3073 }
3074 }
3075
3076
3077 void
3078 emit_function(_mesa_glsl_parse_state *state, ir_function *f)
3079 {
3080 /* IR invariants disallow function declarations or definitions
3081 * nested within other function definitions. But there is no
3082 * requirement about the relative order of function declarations
3083 * and definitions with respect to one another. So simply insert
3084 * the new ir_function block at the end of the toplevel instruction
3085 * list.
3086 */
3087 state->toplevel_ir->push_tail(f);
3088 }
3089
3090
3091 ir_rvalue *
3092 ast_function::hir(exec_list *instructions,
3093 struct _mesa_glsl_parse_state *state)
3094 {
3095 void *ctx = state;
3096 ir_function *f = NULL;
3097 ir_function_signature *sig = NULL;
3098 exec_list hir_parameters;
3099
3100 const char *const name = identifier;
3101
3102 /* New functions are always added to the top-level IR instruction stream,
3103 * so this instruction list pointer is ignored. See also emit_function
3104 * (called below).
3105 */
3106 (void) instructions;
3107
3108 /* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec,
3109 *
3110 * "Function declarations (prototypes) cannot occur inside of functions;
3111 * they must be at global scope, or for the built-in functions, outside
3112 * the global scope."
3113 *
3114 * From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec,
3115 *
3116 * "User defined functions may only be defined within the global scope."
3117 *
3118 * Note that this language does not appear in GLSL 1.10.
3119 */
3120 if ((state->current_function != NULL) &&
3121 state->is_version(120, 100)) {
3122 YYLTYPE loc = this->get_location();
3123 _mesa_glsl_error(&loc, state,
3124 "declaration of function `%s' not allowed within "
3125 "function body", name);
3126 }
3127
3128 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
3129 *
3130 * "Identifiers starting with "gl_" are reserved for use by
3131 * OpenGL, and may not be declared in a shader as either a
3132 * variable or a function."
3133 */
3134 if (strncmp(name, "gl_", 3) == 0) {
3135 YYLTYPE loc = this->get_location();
3136 _mesa_glsl_error(&loc, state,
3137 "identifier `%s' uses reserved `gl_' prefix", name);
3138 }
3139
3140 /* Convert the list of function parameters to HIR now so that they can be
3141 * used below to compare this function's signature with previously seen
3142 * signatures for functions with the same name.
3143 */
3144 ast_parameter_declarator::parameters_to_hir(& this->parameters,
3145 is_definition,
3146 & hir_parameters, state);
3147
3148 const char *return_type_name;
3149 const glsl_type *return_type =
3150 this->return_type->specifier->glsl_type(& return_type_name, state);
3151
3152 if (!return_type) {
3153 YYLTYPE loc = this->get_location();
3154 _mesa_glsl_error(&loc, state,
3155 "function `%s' has undeclared return type `%s'",
3156 name, return_type_name);
3157 return_type = glsl_type::error_type;
3158 }
3159
3160 /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec:
3161 * "No qualifier is allowed on the return type of a function."
3162 */
3163 if (this->return_type->has_qualifiers()) {
3164 YYLTYPE loc = this->get_location();
3165 _mesa_glsl_error(& loc, state,
3166 "function `%s' return type has qualifiers", name);
3167 }
3168
3169 /* From page 17 (page 23 of the PDF) of the GLSL 1.20 spec:
3170 *
3171 * "[Sampler types] can only be declared as function parameters
3172 * or uniform variables (see Section 4.3.5 "Uniform")".
3173 */
3174 if (return_type->contains_sampler()) {
3175 YYLTYPE loc = this->get_location();
3176 _mesa_glsl_error(&loc, state,
3177 "function `%s' return type can't contain a sampler",
3178 name);
3179 }
3180
3181 /* Verify that this function's signature either doesn't match a previously
3182 * seen signature for a function with the same name, or, if a match is found,
3183 * that the previously seen signature does not have an associated definition.
3184 */
3185 f = state->symbols->get_function(name);
3186 if (f != NULL && (state->es_shader || f->has_user_signature())) {
3187 sig = f->exact_matching_signature(&hir_parameters);
3188 if (sig != NULL) {
3189 const char *badvar = sig->qualifiers_match(&hir_parameters);
3190 if (badvar != NULL) {
3191 YYLTYPE loc = this->get_location();
3192
3193 _mesa_glsl_error(&loc, state, "function `%s' parameter `%s' "
3194 "qualifiers don't match prototype", name, badvar);
3195 }
3196
3197 if (sig->return_type != return_type) {
3198 YYLTYPE loc = this->get_location();
3199
3200 _mesa_glsl_error(&loc, state, "function `%s' return type doesn't "
3201 "match prototype", name);
3202 }
3203
3204 if (is_definition && sig->is_defined) {
3205 YYLTYPE loc = this->get_location();
3206
3207 _mesa_glsl_error(& loc, state, "function `%s' redefined", name);
3208 }
3209 }
3210 } else {
3211 f = new(ctx) ir_function(name);
3212 if (!state->symbols->add_function(f)) {
3213 /* This function name shadows a non-function use of the same name. */
3214 YYLTYPE loc = this->get_location();
3215
3216 _mesa_glsl_error(&loc, state, "function name `%s' conflicts with "
3217 "non-function", name);
3218 return NULL;
3219 }
3220
3221 emit_function(state, f);
3222 }
3223
3224 /* Verify the return type of main() */
3225 if (strcmp(name, "main") == 0) {
3226 if (! return_type->is_void()) {
3227 YYLTYPE loc = this->get_location();
3228
3229 _mesa_glsl_error(& loc, state, "main() must return void");
3230 }
3231
3232 if (!hir_parameters.is_empty()) {
3233 YYLTYPE loc = this->get_location();
3234
3235 _mesa_glsl_error(& loc, state, "main() must not take any parameters");
3236 }
3237 }
3238
3239 /* Finish storing the information about this new function in its signature.
3240 */
3241 if (sig == NULL) {
3242 sig = new(ctx) ir_function_signature(return_type);
3243 f->add_signature(sig);
3244 }
3245
3246 sig->replace_parameters(&hir_parameters);
3247 signature = sig;
3248
3249 /* Function declarations (prototypes) do not have r-values.
3250 */
3251 return NULL;
3252 }
3253
3254
3255 ir_rvalue *
3256 ast_function_definition::hir(exec_list *instructions,
3257 struct _mesa_glsl_parse_state *state)
3258 {
3259 prototype->is_definition = true;
3260 prototype->hir(instructions, state);
3261
3262 ir_function_signature *signature = prototype->signature;
3263 if (signature == NULL)
3264 return NULL;
3265
3266 assert(state->current_function == NULL);
3267 state->current_function = signature;
3268 state->found_return = false;
3269
3270 /* Duplicate parameters declared in the prototype as concrete variables.
3271 * Add these to the symbol table.
3272 */
3273 state->symbols->push_scope();
3274 foreach_iter(exec_list_iterator, iter, signature->parameters) {
3275 ir_variable *const var = ((ir_instruction *) iter.get())->as_variable();
3276
3277 assert(var != NULL);
3278
3279 /* The only way a parameter would "exist" is if two parameters have
3280 * the same name.
3281 */
3282 if (state->symbols->name_declared_this_scope(var->name)) {
3283 YYLTYPE loc = this->get_location();
3284
3285 _mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name);
3286 } else {
3287 state->symbols->add_variable(var);
3288 }
3289 }
3290
3291 /* Convert the body of the function to HIR. */
3292 this->body->hir(&signature->body, state);
3293 signature->is_defined = true;
3294
3295 state->symbols->pop_scope();
3296
3297 assert(state->current_function == signature);
3298 state->current_function = NULL;
3299
3300 if (!signature->return_type->is_void() && !state->found_return) {
3301 YYLTYPE loc = this->get_location();
3302 _mesa_glsl_error(& loc, state, "function `%s' has non-void return type "
3303 "%s, but no return statement",
3304 signature->function_name(),
3305 signature->return_type->name);
3306 }
3307
3308 /* Function definitions do not have r-values.
3309 */
3310 return NULL;
3311 }
3312
3313
3314 ir_rvalue *
3315 ast_jump_statement::hir(exec_list *instructions,
3316 struct _mesa_glsl_parse_state *state)
3317 {
3318 void *ctx = state;
3319
3320 switch (mode) {
3321 case ast_return: {
3322 ir_return *inst;
3323 assert(state->current_function);
3324
3325 if (opt_return_value) {
3326 ir_rvalue *const ret = opt_return_value->hir(instructions, state);
3327
3328 /* The value of the return type can be NULL if the shader says
3329 * 'return foo();' and foo() is a function that returns void.
3330 *
3331 * NOTE: The GLSL spec doesn't say that this is an error. The type
3332 * of the return value is void. If the return type of the function is
3333 * also void, then this should compile without error. Seriously.
3334 */
3335 const glsl_type *const ret_type =
3336 (ret == NULL) ? glsl_type::void_type : ret->type;
3337
3338 /* Implicit conversions are not allowed for return values. */
3339 if (state->current_function->return_type != ret_type) {
3340 YYLTYPE loc = this->get_location();
3341
3342 _mesa_glsl_error(& loc, state,
3343 "`return' with wrong type %s, in function `%s' "
3344 "returning %s",
3345 ret_type->name,
3346 state->current_function->function_name(),
3347 state->current_function->return_type->name);
3348 }
3349
3350 inst = new(ctx) ir_return(ret);
3351 } else {
3352 if (state->current_function->return_type->base_type !=
3353 GLSL_TYPE_VOID) {
3354 YYLTYPE loc = this->get_location();
3355
3356 _mesa_glsl_error(& loc, state,
3357 "`return' with no value, in function %s returning "
3358 "non-void",
3359 state->current_function->function_name());
3360 }
3361 inst = new(ctx) ir_return;
3362 }
3363
3364 state->found_return = true;
3365 instructions->push_tail(inst);
3366 break;
3367 }
3368
3369 case ast_discard:
3370 if (state->target != fragment_shader) {
3371 YYLTYPE loc = this->get_location();
3372
3373 _mesa_glsl_error(& loc, state,
3374 "`discard' may only appear in a fragment shader");
3375 }
3376 instructions->push_tail(new(ctx) ir_discard);
3377 break;
3378
3379 case ast_break:
3380 case ast_continue:
3381 if (mode == ast_continue &&
3382 state->loop_nesting_ast == NULL) {
3383 YYLTYPE loc = this->get_location();
3384
3385 _mesa_glsl_error(& loc, state,
3386 "continue may only appear in a loop");
3387 } else if (mode == ast_break &&
3388 state->loop_nesting_ast == NULL &&
3389 state->switch_state.switch_nesting_ast == NULL) {
3390 YYLTYPE loc = this->get_location();
3391
3392 _mesa_glsl_error(& loc, state,
3393 "break may only appear in a loop or a switch");
3394 } else {
3395 /* For a loop, inline the for loop expression again,
3396 * since we don't know where near the end of
3397 * the loop body the normal copy of it
3398 * is going to be placed.
3399 */
3400 if (state->loop_nesting_ast != NULL &&
3401 mode == ast_continue &&
3402 state->loop_nesting_ast->rest_expression) {
3403 state->loop_nesting_ast->rest_expression->hir(instructions,
3404 state);
3405 }
3406
3407 if (state->switch_state.is_switch_innermost &&
3408 mode == ast_break) {
3409 /* Force break out of switch by setting is_break switch state.
3410 */
3411 ir_variable *const is_break_var = state->switch_state.is_break_var;
3412 ir_dereference_variable *const deref_is_break_var =
3413 new(ctx) ir_dereference_variable(is_break_var);
3414 ir_constant *const true_val = new(ctx) ir_constant(true);
3415 ir_assignment *const set_break_var =
3416 new(ctx) ir_assignment(deref_is_break_var, true_val);
3417
3418 instructions->push_tail(set_break_var);
3419 }
3420 else {
3421 ir_loop_jump *const jump =
3422 new(ctx) ir_loop_jump((mode == ast_break)
3423 ? ir_loop_jump::jump_break
3424 : ir_loop_jump::jump_continue);
3425 instructions->push_tail(jump);
3426 }
3427 }
3428
3429 break;
3430 }
3431
3432 /* Jump instructions do not have r-values.
3433 */
3434 return NULL;
3435 }
3436
3437
3438 ir_rvalue *
3439 ast_selection_statement::hir(exec_list *instructions,
3440 struct _mesa_glsl_parse_state *state)
3441 {
3442 void *ctx = state;
3443
3444 ir_rvalue *const condition = this->condition->hir(instructions, state);
3445
3446 /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
3447 *
3448 * "Any expression whose type evaluates to a Boolean can be used as the
3449 * conditional expression bool-expression. Vector types are not accepted
3450 * as the expression to if."
3451 *
3452 * The checks are separated so that higher quality diagnostics can be
3453 * generated for cases where both rules are violated.
3454 */
3455 if (!condition->type->is_boolean() || !condition->type->is_scalar()) {
3456 YYLTYPE loc = this->condition->get_location();
3457
3458 _mesa_glsl_error(& loc, state, "if-statement condition must be scalar "
3459 "boolean");
3460 }
3461
3462 ir_if *const stmt = new(ctx) ir_if(condition);
3463
3464 if (then_statement != NULL) {
3465 state->symbols->push_scope();
3466 then_statement->hir(& stmt->then_instructions, state);
3467 state->symbols->pop_scope();
3468 }
3469
3470 if (else_statement != NULL) {
3471 state->symbols->push_scope();
3472 else_statement->hir(& stmt->else_instructions, state);
3473 state->symbols->pop_scope();
3474 }
3475
3476 instructions->push_tail(stmt);
3477
3478 /* if-statements do not have r-values.
3479 */
3480 return NULL;
3481 }
3482
3483
3484 ir_rvalue *
3485 ast_switch_statement::hir(exec_list *instructions,
3486 struct _mesa_glsl_parse_state *state)
3487 {
3488 void *ctx = state;
3489
3490 ir_rvalue *const test_expression =
3491 this->test_expression->hir(instructions, state);
3492
3493 /* From page 66 (page 55 of the PDF) of the GLSL 1.50 spec:
3494 *
3495 * "The type of init-expression in a switch statement must be a
3496 * scalar integer."
3497 */
3498 if (!test_expression->type->is_scalar() ||
3499 !test_expression->type->is_integer()) {
3500 YYLTYPE loc = this->test_expression->get_location();
3501
3502 _mesa_glsl_error(& loc,
3503 state,
3504 "switch-statement expression must be scalar "
3505 "integer");
3506 }
3507
3508 /* Track the switch-statement nesting in a stack-like manner.
3509 */
3510 struct glsl_switch_state saved = state->switch_state;
3511
3512 state->switch_state.is_switch_innermost = true;
3513 state->switch_state.switch_nesting_ast = this;
3514 state->switch_state.labels_ht = hash_table_ctor(0, hash_table_pointer_hash,
3515 hash_table_pointer_compare);
3516 state->switch_state.previous_default = NULL;
3517
3518 /* Initalize is_fallthru state to false.
3519 */
3520 ir_rvalue *const is_fallthru_val = new (ctx) ir_constant(false);
3521 state->switch_state.is_fallthru_var =
3522 new(ctx) ir_variable(glsl_type::bool_type,
3523 "switch_is_fallthru_tmp",
3524 ir_var_temporary);
3525 instructions->push_tail(state->switch_state.is_fallthru_var);
3526
3527 ir_dereference_variable *deref_is_fallthru_var =
3528 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
3529 instructions->push_tail(new(ctx) ir_assignment(deref_is_fallthru_var,
3530 is_fallthru_val));
3531
3532 /* Initalize is_break state to false.
3533 */
3534 ir_rvalue *const is_break_val = new (ctx) ir_constant(false);
3535 state->switch_state.is_break_var = new(ctx) ir_variable(glsl_type::bool_type,
3536 "switch_is_break_tmp",
3537 ir_var_temporary);
3538 instructions->push_tail(state->switch_state.is_break_var);
3539
3540 ir_dereference_variable *deref_is_break_var =
3541 new(ctx) ir_dereference_variable(state->switch_state.is_break_var);
3542 instructions->push_tail(new(ctx) ir_assignment(deref_is_break_var,
3543 is_break_val));
3544
3545 /* Cache test expression.
3546 */
3547 test_to_hir(instructions, state);
3548
3549 /* Emit code for body of switch stmt.
3550 */
3551 body->hir(instructions, state);
3552
3553 hash_table_dtor(state->switch_state.labels_ht);
3554
3555 state->switch_state = saved;
3556
3557 /* Switch statements do not have r-values. */
3558 return NULL;
3559 }
3560
3561
3562 void
3563 ast_switch_statement::test_to_hir(exec_list *instructions,
3564 struct _mesa_glsl_parse_state *state)
3565 {
3566 void *ctx = state;
3567
3568 /* Cache value of test expression. */
3569 ir_rvalue *const test_val =
3570 test_expression->hir(instructions,
3571 state);
3572
3573 state->switch_state.test_var = new(ctx) ir_variable(test_val->type,
3574 "switch_test_tmp",
3575 ir_var_temporary);
3576 ir_dereference_variable *deref_test_var =
3577 new(ctx) ir_dereference_variable(state->switch_state.test_var);
3578
3579 instructions->push_tail(state->switch_state.test_var);
3580 instructions->push_tail(new(ctx) ir_assignment(deref_test_var, test_val));
3581 }
3582
3583
3584 ir_rvalue *
3585 ast_switch_body::hir(exec_list *instructions,
3586 struct _mesa_glsl_parse_state *state)
3587 {
3588 if (stmts != NULL)
3589 stmts->hir(instructions, state);
3590
3591 /* Switch bodies do not have r-values. */
3592 return NULL;
3593 }
3594
3595 ir_rvalue *
3596 ast_case_statement_list::hir(exec_list *instructions,
3597 struct _mesa_glsl_parse_state *state)
3598 {
3599 foreach_list_typed (ast_case_statement, case_stmt, link, & this->cases)
3600 case_stmt->hir(instructions, state);
3601
3602 /* Case statements do not have r-values. */
3603 return NULL;
3604 }
3605
3606 ir_rvalue *
3607 ast_case_statement::hir(exec_list *instructions,
3608 struct _mesa_glsl_parse_state *state)
3609 {
3610 labels->hir(instructions, state);
3611
3612 /* Conditionally set fallthru state based on break state. */
3613 ir_constant *const false_val = new(state) ir_constant(false);
3614 ir_dereference_variable *const deref_is_fallthru_var =
3615 new(state) ir_dereference_variable(state->switch_state.is_fallthru_var);
3616 ir_dereference_variable *const deref_is_break_var =
3617 new(state) ir_dereference_variable(state->switch_state.is_break_var);
3618 ir_assignment *const reset_fallthru_on_break =
3619 new(state) ir_assignment(deref_is_fallthru_var,
3620 false_val,
3621 deref_is_break_var);
3622 instructions->push_tail(reset_fallthru_on_break);
3623
3624 /* Guard case statements depending on fallthru state. */
3625 ir_dereference_variable *const deref_fallthru_guard =
3626 new(state) ir_dereference_variable(state->switch_state.is_fallthru_var);
3627 ir_if *const test_fallthru = new(state) ir_if(deref_fallthru_guard);
3628
3629 foreach_list_typed (ast_node, stmt, link, & this->stmts)
3630 stmt->hir(& test_fallthru->then_instructions, state);
3631
3632 instructions->push_tail(test_fallthru);
3633
3634 /* Case statements do not have r-values. */
3635 return NULL;
3636 }
3637
3638
3639 ir_rvalue *
3640 ast_case_label_list::hir(exec_list *instructions,
3641 struct _mesa_glsl_parse_state *state)
3642 {
3643 foreach_list_typed (ast_case_label, label, link, & this->labels)
3644 label->hir(instructions, state);
3645
3646 /* Case labels do not have r-values. */
3647 return NULL;
3648 }
3649
3650 ir_rvalue *
3651 ast_case_label::hir(exec_list *instructions,
3652 struct _mesa_glsl_parse_state *state)
3653 {
3654 void *ctx = state;
3655
3656 ir_dereference_variable *deref_fallthru_var =
3657 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
3658
3659 ir_rvalue *const true_val = new(ctx) ir_constant(true);
3660
3661 /* If not default case, ... */
3662 if (this->test_value != NULL) {
3663 /* Conditionally set fallthru state based on
3664 * comparison of cached test expression value to case label.
3665 */
3666 ir_rvalue *const label_rval = this->test_value->hir(instructions, state);
3667 ir_constant *label_const = label_rval->constant_expression_value();
3668
3669 if (!label_const) {
3670 YYLTYPE loc = this->test_value->get_location();
3671
3672 _mesa_glsl_error(& loc, state,
3673 "switch statement case label must be a "
3674 "constant expression");
3675
3676 /* Stuff a dummy value in to allow processing to continue. */
3677 label_const = new(ctx) ir_constant(0);
3678 } else {
3679 ast_expression *previous_label = (ast_expression *)
3680 hash_table_find(state->switch_state.labels_ht,
3681 (void *)(uintptr_t)label_const->value.u[0]);
3682
3683 if (previous_label) {
3684 YYLTYPE loc = this->test_value->get_location();
3685 _mesa_glsl_error(& loc, state,
3686 "duplicate case value");
3687
3688 loc = previous_label->get_location();
3689 _mesa_glsl_error(& loc, state,
3690 "this is the previous case label");
3691 } else {
3692 hash_table_insert(state->switch_state.labels_ht,
3693 this->test_value,
3694 (void *)(uintptr_t)label_const->value.u[0]);
3695 }
3696 }
3697
3698 ir_dereference_variable *deref_test_var =
3699 new(ctx) ir_dereference_variable(state->switch_state.test_var);
3700
3701 ir_rvalue *const test_cond = new(ctx) ir_expression(ir_binop_all_equal,
3702 label_const,
3703 deref_test_var);
3704
3705 ir_assignment *set_fallthru_on_test =
3706 new(ctx) ir_assignment(deref_fallthru_var,
3707 true_val,
3708 test_cond);
3709
3710 instructions->push_tail(set_fallthru_on_test);
3711 } else { /* default case */
3712 if (state->switch_state.previous_default) {
3713 YYLTYPE loc = this->get_location();
3714 _mesa_glsl_error(& loc, state,
3715 "multiple default labels in one switch");
3716
3717 loc = state->switch_state.previous_default->get_location();
3718 _mesa_glsl_error(& loc, state,
3719 "this is the first default label");
3720 }
3721 state->switch_state.previous_default = this;
3722
3723 /* Set falltrhu state. */
3724 ir_assignment *set_fallthru =
3725 new(ctx) ir_assignment(deref_fallthru_var, true_val);
3726
3727 instructions->push_tail(set_fallthru);
3728 }
3729
3730 /* Case statements do not have r-values. */
3731 return NULL;
3732 }
3733
3734 void
3735 ast_iteration_statement::condition_to_hir(ir_loop *stmt,
3736 struct _mesa_glsl_parse_state *state)
3737 {
3738 void *ctx = state;
3739
3740 if (condition != NULL) {
3741 ir_rvalue *const cond =
3742 condition->hir(& stmt->body_instructions, state);
3743
3744 if ((cond == NULL)
3745 || !cond->type->is_boolean() || !cond->type->is_scalar()) {
3746 YYLTYPE loc = condition->get_location();
3747
3748 _mesa_glsl_error(& loc, state,
3749 "loop condition must be scalar boolean");
3750 } else {
3751 /* As the first code in the loop body, generate a block that looks
3752 * like 'if (!condition) break;' as the loop termination condition.
3753 */
3754 ir_rvalue *const not_cond =
3755 new(ctx) ir_expression(ir_unop_logic_not, cond);
3756
3757 ir_if *const if_stmt = new(ctx) ir_if(not_cond);
3758
3759 ir_jump *const break_stmt =
3760 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
3761
3762 if_stmt->then_instructions.push_tail(break_stmt);
3763 stmt->body_instructions.push_tail(if_stmt);
3764 }
3765 }
3766 }
3767
3768
3769 ir_rvalue *
3770 ast_iteration_statement::hir(exec_list *instructions,
3771 struct _mesa_glsl_parse_state *state)
3772 {
3773 void *ctx = state;
3774
3775 /* For-loops and while-loops start a new scope, but do-while loops do not.
3776 */
3777 if (mode != ast_do_while)
3778 state->symbols->push_scope();
3779
3780 if (init_statement != NULL)
3781 init_statement->hir(instructions, state);
3782
3783 ir_loop *const stmt = new(ctx) ir_loop();
3784 instructions->push_tail(stmt);
3785
3786 /* Track the current loop nesting. */
3787 ast_iteration_statement *nesting_ast = state->loop_nesting_ast;
3788
3789 state->loop_nesting_ast = this;
3790
3791 /* Likewise, indicate that following code is closest to a loop,
3792 * NOT closest to a switch.
3793 */
3794 bool saved_is_switch_innermost = state->switch_state.is_switch_innermost;
3795 state->switch_state.is_switch_innermost = false;
3796
3797 if (mode != ast_do_while)
3798 condition_to_hir(stmt, state);
3799
3800 if (body != NULL)
3801 body->hir(& stmt->body_instructions, state);
3802
3803 if (rest_expression != NULL)
3804 rest_expression->hir(& stmt->body_instructions, state);
3805
3806 if (mode == ast_do_while)
3807 condition_to_hir(stmt, state);
3808
3809 if (mode != ast_do_while)
3810 state->symbols->pop_scope();
3811
3812 /* Restore previous nesting before returning. */
3813 state->loop_nesting_ast = nesting_ast;
3814 state->switch_state.is_switch_innermost = saved_is_switch_innermost;
3815
3816 /* Loops do not have r-values.
3817 */
3818 return NULL;
3819 }
3820
3821
3822 /**
3823 * Determine if the given type is valid for establishing a default precision
3824 * qualifier.
3825 *
3826 * From GLSL ES 3.00 section 4.5.4 ("Default Precision Qualifiers"):
3827 *
3828 * "The precision statement
3829 *
3830 * precision precision-qualifier type;
3831 *
3832 * can be used to establish a default precision qualifier. The type field
3833 * can be either int or float or any of the sampler types, and the
3834 * precision-qualifier can be lowp, mediump, or highp."
3835 *
3836 * GLSL ES 1.00 has similar language. GLSL 1.30 doesn't allow precision
3837 * qualifiers on sampler types, but this seems like an oversight (since the
3838 * intention of including these in GLSL 1.30 is to allow compatibility with ES
3839 * shaders). So we allow int, float, and all sampler types regardless of GLSL
3840 * version.
3841 */
3842 static bool
3843 is_valid_default_precision_type(const struct _mesa_glsl_parse_state *state,
3844 const char *type_name)
3845 {
3846 const struct glsl_type *type = state->symbols->get_type(type_name);
3847 if (type == NULL)
3848 return false;
3849
3850 switch (type->base_type) {
3851 case GLSL_TYPE_INT:
3852 case GLSL_TYPE_FLOAT:
3853 /* "int" and "float" are valid, but vectors and matrices are not. */
3854 return type->vector_elements == 1 && type->matrix_columns == 1;
3855 case GLSL_TYPE_SAMPLER:
3856 return true;
3857 default:
3858 return false;
3859 }
3860 }
3861
3862
3863 ir_rvalue *
3864 ast_type_specifier::hir(exec_list *instructions,
3865 struct _mesa_glsl_parse_state *state)
3866 {
3867 if (!this->is_precision_statement && this->structure == NULL)
3868 return NULL;
3869
3870 YYLTYPE loc = this->get_location();
3871
3872 if (this->precision != ast_precision_none
3873 && !state->check_precision_qualifiers_allowed(&loc)) {
3874 return NULL;
3875 }
3876 if (this->precision != ast_precision_none
3877 && this->structure != NULL) {
3878 _mesa_glsl_error(&loc, state,
3879 "precision qualifiers do not apply to structures");
3880 return NULL;
3881 }
3882
3883 /* If this is a precision statement, check that the type to which it is
3884 * applied is either float or int.
3885 *
3886 * From section 4.5.3 of the GLSL 1.30 spec:
3887 * "The precision statement
3888 * precision precision-qualifier type;
3889 * can be used to establish a default precision qualifier. The type
3890 * field can be either int or float [...]. Any other types or
3891 * qualifiers will result in an error.
3892 */
3893 if (this->is_precision_statement) {
3894 assert(this->precision != ast_precision_none);
3895 assert(this->structure == NULL); /* The check for structures was
3896 * performed above. */
3897 if (this->is_array) {
3898 _mesa_glsl_error(&loc, state,
3899 "default precision statements do not apply to "
3900 "arrays");
3901 return NULL;
3902 }
3903 if (!is_valid_default_precision_type(state, this->type_name)) {
3904 _mesa_glsl_error(&loc, state,
3905 "default precision statements apply only to types "
3906 "float, int, and sampler types");
3907 return NULL;
3908 }
3909
3910 /* FINISHME: Translate precision statements into IR. */
3911 return NULL;
3912 }
3913
3914 if (this->structure != NULL)
3915 return this->structure->hir(instructions, state);
3916
3917 return NULL;
3918 }
3919
3920
3921 /**
3922 * Process a structure or interface block tree into an array of structure fields
3923 *
3924 * After parsing, where there are some syntax differnces, structures and
3925 * interface blocks are almost identical. They are similar enough that the
3926 * AST for each can be processed the same way into a set of
3927 * \c glsl_struct_field to describe the members.
3928 *
3929 * \return
3930 * The number of fields processed. A pointer to the array structure fields is
3931 * stored in \c *fields_ret.
3932 */
3933 unsigned
3934 ast_process_structure_or_interface_block(exec_list *instructions,
3935 struct _mesa_glsl_parse_state *state,
3936 exec_list *declarations,
3937 YYLTYPE &loc,
3938 glsl_struct_field **fields_ret,
3939 bool is_interface,
3940 bool block_row_major)
3941 {
3942 unsigned decl_count = 0;
3943
3944 /* Make an initial pass over the list of fields to determine how
3945 * many there are. Each element in this list is an ast_declarator_list.
3946 * This means that we actually need to count the number of elements in the
3947 * 'declarations' list in each of the elements.
3948 */
3949 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
3950 foreach_list_const (decl_ptr, & decl_list->declarations) {
3951 decl_count++;
3952 }
3953 }
3954
3955 /* Allocate storage for the fields and process the field
3956 * declarations. As the declarations are processed, try to also convert
3957 * the types to HIR. This ensures that structure definitions embedded in
3958 * other structure definitions or in interface blocks are processed.
3959 */
3960 glsl_struct_field *const fields = ralloc_array(state, glsl_struct_field,
3961 decl_count);
3962
3963 unsigned i = 0;
3964 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
3965 const char *type_name;
3966
3967 decl_list->type->specifier->hir(instructions, state);
3968
3969 /* Section 10.9 of the GLSL ES 1.00 specification states that
3970 * embedded structure definitions have been removed from the language.
3971 */
3972 if (state->es_shader && decl_list->type->specifier->structure != NULL) {
3973 _mesa_glsl_error(&loc, state, "Embedded structure definitions are "
3974 "not allowed in GLSL ES 1.00.");
3975 }
3976
3977 const glsl_type *decl_type =
3978 decl_list->type->specifier->glsl_type(& type_name, state);
3979
3980 foreach_list_typed (ast_declaration, decl, link,
3981 &decl_list->declarations) {
3982 /* From the GL_ARB_uniform_buffer_object spec:
3983 *
3984 * "Sampler types are not allowed inside of uniform
3985 * blocks. All other types, arrays, and structures
3986 * allowed for uniforms are allowed within a uniform
3987 * block."
3988 *
3989 * It should be impossible for decl_type to be NULL here. Cases that
3990 * might naturally lead to decl_type being NULL, especially for the
3991 * is_interface case, will have resulted in compilation having
3992 * already halted due to a syntax error.
3993 */
3994 const struct glsl_type *field_type =
3995 decl_type != NULL ? decl_type : glsl_type::error_type;
3996
3997 if (is_interface && field_type->contains_sampler()) {
3998 YYLTYPE loc = decl_list->get_location();
3999 _mesa_glsl_error(&loc, state,
4000 "Uniform in non-default uniform block contains sampler\n");
4001 }
4002
4003 const struct ast_type_qualifier *const qual =
4004 & decl_list->type->qualifier;
4005 if (qual->flags.q.std140 ||
4006 qual->flags.q.packed ||
4007 qual->flags.q.shared) {
4008 _mesa_glsl_error(&loc, state,
4009 "uniform block layout qualifiers std140, packed, and "
4010 "shared can only be applied to uniform blocks, not "
4011 "members");
4012 }
4013
4014 if (decl->is_array) {
4015 field_type = process_array_type(&loc, decl_type, decl->array_size,
4016 state);
4017 }
4018 fields[i].type = field_type;
4019 fields[i].name = decl->identifier;
4020
4021 if (qual->flags.q.row_major || qual->flags.q.column_major) {
4022 if (!field_type->is_matrix() && !field_type->is_record()) {
4023 _mesa_glsl_error(&loc, state,
4024 "uniform block layout qualifiers row_major and "
4025 "column_major can only be applied to matrix and "
4026 "structure types");
4027 } else
4028 validate_matrix_layout_for_type(state, &loc, field_type);
4029 }
4030
4031 if (field_type->is_matrix() ||
4032 (field_type->is_array() && field_type->fields.array->is_matrix())) {
4033 fields[i].row_major = block_row_major;
4034 if (qual->flags.q.row_major)
4035 fields[i].row_major = true;
4036 else if (qual->flags.q.column_major)
4037 fields[i].row_major = false;
4038 }
4039
4040 i++;
4041 }
4042 }
4043
4044 assert(i == decl_count);
4045
4046 *fields_ret = fields;
4047 return decl_count;
4048 }
4049
4050
4051 ir_rvalue *
4052 ast_struct_specifier::hir(exec_list *instructions,
4053 struct _mesa_glsl_parse_state *state)
4054 {
4055 YYLTYPE loc = this->get_location();
4056 glsl_struct_field *fields;
4057 unsigned decl_count =
4058 ast_process_structure_or_interface_block(instructions,
4059 state,
4060 &this->declarations,
4061 loc,
4062 &fields,
4063 false,
4064 false);
4065
4066 const glsl_type *t =
4067 glsl_type::get_record_instance(fields, decl_count, this->name);
4068
4069 if (!state->symbols->add_type(name, t)) {
4070 _mesa_glsl_error(& loc, state, "struct `%s' previously defined", name);
4071 } else {
4072 const glsl_type **s = reralloc(state, state->user_structures,
4073 const glsl_type *,
4074 state->num_user_structures + 1);
4075 if (s != NULL) {
4076 s[state->num_user_structures] = t;
4077 state->user_structures = s;
4078 state->num_user_structures++;
4079 }
4080 }
4081
4082 /* Structure type definitions do not have r-values.
4083 */
4084 return NULL;
4085 }
4086
4087 ir_rvalue *
4088 ast_uniform_block::hir(exec_list *instructions,
4089 struct _mesa_glsl_parse_state *state)
4090 {
4091 YYLTYPE loc = this->get_location();
4092
4093 /* The ast_uniform_block has a list of ast_declarator_lists. We
4094 * need to turn those into ir_variables with an association
4095 * with this uniform block.
4096 */
4097 enum glsl_interface_packing packing;
4098 if (this->layout.flags.q.shared) {
4099 packing = GLSL_INTERFACE_PACKING_SHARED;
4100 } else if (this->layout.flags.q.packed) {
4101 packing = GLSL_INTERFACE_PACKING_PACKED;
4102 } else {
4103 /* The default layout is std140.
4104 */
4105 packing = GLSL_INTERFACE_PACKING_STD140;
4106 }
4107
4108 bool block_row_major = this->layout.flags.q.row_major;
4109 exec_list declared_variables;
4110 glsl_struct_field *fields;
4111 unsigned int num_variables =
4112 ast_process_structure_or_interface_block(&declared_variables,
4113 state,
4114 &this->declarations,
4115 loc,
4116 &fields,
4117 true,
4118 block_row_major);
4119
4120 const glsl_type *block_type =
4121 glsl_type::get_interface_instance(fields,
4122 num_variables,
4123 packing,
4124 this->block_name);
4125
4126 if (!state->symbols->add_type(block_type->name, block_type)) {
4127 YYLTYPE loc = this->get_location();
4128 _mesa_glsl_error(&loc, state, "Uniform block name `%s' already taken in "
4129 "the current scope.\n", this->block_name);
4130 }
4131
4132 /* Since interface blocks cannot contain statements, it should be
4133 * impossible for the block to generate any instructions.
4134 */
4135 assert(declared_variables.is_empty());
4136
4137 /* Page 39 (page 45 of the PDF) of section 4.3.7 in the GLSL ES 3.00 spec
4138 * says:
4139 *
4140 * "If an instance name (instance-name) is used, then it puts all the
4141 * members inside a scope within its own name space, accessed with the
4142 * field selector ( . ) operator (analogously to structures)."
4143 */
4144 if (this->instance_name) {
4145 ir_variable *var;
4146
4147 if (this->array_size != NULL) {
4148 const glsl_type *block_array_type =
4149 process_array_type(&loc, block_type, this->array_size, state);
4150
4151 var = new(state) ir_variable(block_array_type,
4152 this->instance_name,
4153 ir_var_uniform);
4154 } else {
4155 var = new(state) ir_variable(block_type,
4156 this->instance_name,
4157 ir_var_uniform);
4158 }
4159
4160 var->interface_type = block_type;
4161 state->symbols->add_variable(var);
4162 instructions->push_tail(var);
4163 } else {
4164 /* In order to have an array size, the block must also be declared with
4165 * an instane name.
4166 */
4167 assert(this->array_size == NULL);
4168
4169 for (unsigned i = 0; i < num_variables; i++) {
4170 ir_variable *var =
4171 new(state) ir_variable(fields[i].type,
4172 ralloc_strdup(state, fields[i].name),
4173 ir_var_uniform);
4174 var->interface_type = block_type;
4175
4176 state->symbols->add_variable(var);
4177 instructions->push_tail(var);
4178 }
4179 }
4180
4181 return NULL;
4182 }
4183
4184 static void
4185 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
4186 exec_list *instructions)
4187 {
4188 bool gl_FragColor_assigned = false;
4189 bool gl_FragData_assigned = false;
4190 bool user_defined_fs_output_assigned = false;
4191 ir_variable *user_defined_fs_output = NULL;
4192
4193 /* It would be nice to have proper location information. */
4194 YYLTYPE loc;
4195 memset(&loc, 0, sizeof(loc));
4196
4197 foreach_list(node, instructions) {
4198 ir_variable *var = ((ir_instruction *)node)->as_variable();
4199
4200 if (!var || !var->assigned)
4201 continue;
4202
4203 if (strcmp(var->name, "gl_FragColor") == 0)
4204 gl_FragColor_assigned = true;
4205 else if (strcmp(var->name, "gl_FragData") == 0)
4206 gl_FragData_assigned = true;
4207 else if (strncmp(var->name, "gl_", 3) != 0) {
4208 if (state->target == fragment_shader &&
4209 var->mode == ir_var_shader_out) {
4210 user_defined_fs_output_assigned = true;
4211 user_defined_fs_output = var;
4212 }
4213 }
4214 }
4215
4216 /* From the GLSL 1.30 spec:
4217 *
4218 * "If a shader statically assigns a value to gl_FragColor, it
4219 * may not assign a value to any element of gl_FragData. If a
4220 * shader statically writes a value to any element of
4221 * gl_FragData, it may not assign a value to
4222 * gl_FragColor. That is, a shader may assign values to either
4223 * gl_FragColor or gl_FragData, but not both. Multiple shaders
4224 * linked together must also consistently write just one of
4225 * these variables. Similarly, if user declared output
4226 * variables are in use (statically assigned to), then the
4227 * built-in variables gl_FragColor and gl_FragData may not be
4228 * assigned to. These incorrect usages all generate compile
4229 * time errors."
4230 */
4231 if (gl_FragColor_assigned && gl_FragData_assigned) {
4232 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
4233 "`gl_FragColor' and `gl_FragData'\n");
4234 } else if (gl_FragColor_assigned && user_defined_fs_output_assigned) {
4235 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
4236 "`gl_FragColor' and `%s'\n",
4237 user_defined_fs_output->name);
4238 } else if (gl_FragData_assigned && user_defined_fs_output_assigned) {
4239 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
4240 "`gl_FragData' and `%s'\n",
4241 user_defined_fs_output->name);
4242 }
4243 }