glsl: Allow arrays of arrays as input to vertex shader
[mesa.git] / src / glsl / ast_to_hir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file ast_to_hir.c
26 * Convert abstract syntax to to high-level intermediate reprensentation (HIR).
27 *
28 * During the conversion to HIR, the majority of the symantic checking is
29 * preformed on the program. This includes:
30 *
31 * * Symbol table management
32 * * Type checking
33 * * Function binding
34 *
35 * The majority of this work could be done during parsing, and the parser could
36 * probably generate HIR directly. However, this results in frequent changes
37 * to the parser code. Since we do not assume that every system this complier
38 * is built on will have Flex and Bison installed, we have to store the code
39 * generated by these tools in our version control system. In other parts of
40 * the system we've seen problems where a parser was changed but the generated
41 * code was not committed, merge conflicts where created because two developers
42 * had slightly different versions of Bison installed, etc.
43 *
44 * I have also noticed that running Bison generated parsers in GDB is very
45 * irritating. When you get a segfault on '$$ = $1->foo', you can't very
46 * well 'print $1' in GDB.
47 *
48 * As a result, my preference is to put as little C code as possible in the
49 * parser (and lexer) sources.
50 */
51
52 #include "main/core.h" /* for struct gl_extensions */
53 #include "glsl_symbol_table.h"
54 #include "glsl_parser_extras.h"
55 #include "ast.h"
56 #include "glsl_types.h"
57 #include "program/hash_table.h"
58 #include "ir.h"
59
60 static void
61 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
62 exec_list *instructions);
63 static void
64 remove_per_vertex_blocks(exec_list *instructions,
65 _mesa_glsl_parse_state *state, ir_variable_mode mode);
66
67
68 void
69 _mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
70 {
71 _mesa_glsl_initialize_variables(instructions, state);
72
73 state->symbols->separate_function_namespace = state->language_version == 110;
74
75 state->current_function = NULL;
76
77 state->toplevel_ir = instructions;
78
79 state->gs_input_prim_type_specified = false;
80
81 /* Section 4.2 of the GLSL 1.20 specification states:
82 * "The built-in functions are scoped in a scope outside the global scope
83 * users declare global variables in. That is, a shader's global scope,
84 * available for user-defined functions and global variables, is nested
85 * inside the scope containing the built-in functions."
86 *
87 * Since built-in functions like ftransform() access built-in variables,
88 * it follows that those must be in the outer scope as well.
89 *
90 * We push scope here to create this nesting effect...but don't pop.
91 * This way, a shader's globals are still in the symbol table for use
92 * by the linker.
93 */
94 state->symbols->push_scope();
95
96 foreach_list_typed (ast_node, ast, link, & state->translation_unit)
97 ast->hir(instructions, state);
98
99 detect_recursion_unlinked(state, instructions);
100 detect_conflicting_assignments(state, instructions);
101
102 state->toplevel_ir = NULL;
103
104 /* Move all of the variable declarations to the front of the IR list, and
105 * reverse the order. This has the (intended!) side effect that vertex
106 * shader inputs and fragment shader outputs will appear in the IR in the
107 * same order that they appeared in the shader code. This results in the
108 * locations being assigned in the declared order. Many (arguably buggy)
109 * applications depend on this behavior, and it matches what nearly all
110 * other drivers do.
111 */
112 foreach_list_safe(node, instructions) {
113 ir_variable *const var = ((ir_instruction *) node)->as_variable();
114
115 if (var == NULL)
116 continue;
117
118 var->remove();
119 instructions->push_head(var);
120 }
121
122 /* From section 7.1 (Built-In Language Variables) of the GLSL 4.10 spec:
123 *
124 * If multiple shaders using members of a built-in block belonging to
125 * the same interface are linked together in the same program, they
126 * must all redeclare the built-in block in the same way, as described
127 * in section 4.3.7 "Interface Blocks" for interface block matching, or
128 * a link error will result.
129 *
130 * The phrase "using members of a built-in block" implies that if two
131 * shaders are linked together and one of them *does not use* any members
132 * of the built-in block, then that shader does not need to have a matching
133 * redeclaration of the built-in block.
134 *
135 * This appears to be a clarification to the behaviour established for
136 * gl_PerVertex by GLSL 1.50, therefore implement it regardless of GLSL
137 * version.
138 *
139 * The definition of "interface" in section 4.3.7 that applies here is as
140 * follows:
141 *
142 * The boundary between adjacent programmable pipeline stages: This
143 * spans all the outputs in all compilation units of the first stage
144 * and all the inputs in all compilation units of the second stage.
145 *
146 * Therefore this rule applies to both inter- and intra-stage linking.
147 *
148 * The easiest way to implement this is to check whether the shader uses
149 * gl_PerVertex right after ast-to-ir conversion, and if it doesn't, simply
150 * remove all the relevant variable declaration from the IR, so that the
151 * linker won't see them and complain about mismatches.
152 */
153 remove_per_vertex_blocks(instructions, state, ir_var_shader_in);
154 remove_per_vertex_blocks(instructions, state, ir_var_shader_out);
155 }
156
157
158 /**
159 * If a conversion is available, convert one operand to a different type
160 *
161 * The \c from \c ir_rvalue is converted "in place".
162 *
163 * \param to Type that the operand it to be converted to
164 * \param from Operand that is being converted
165 * \param state GLSL compiler state
166 *
167 * \return
168 * If a conversion is possible (or unnecessary), \c true is returned.
169 * Otherwise \c false is returned.
170 */
171 bool
172 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
173 struct _mesa_glsl_parse_state *state)
174 {
175 void *ctx = state;
176 if (to->base_type == from->type->base_type)
177 return true;
178
179 /* This conversion was added in GLSL 1.20. If the compilation mode is
180 * GLSL 1.10, the conversion is skipped.
181 */
182 if (!state->is_version(120, 0))
183 return false;
184
185 /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
186 *
187 * "There are no implicit array or structure conversions. For
188 * example, an array of int cannot be implicitly converted to an
189 * array of float. There are no implicit conversions between
190 * signed and unsigned integers."
191 */
192 /* FINISHME: The above comment is partially a lie. There is int/uint
193 * FINISHME: conversion for immediate constants.
194 */
195 if (!to->is_float() || !from->type->is_numeric())
196 return false;
197
198 /* Convert to a floating point type with the same number of components
199 * as the original type - i.e. int to float, not int to vec4.
200 */
201 to = glsl_type::get_instance(GLSL_TYPE_FLOAT, from->type->vector_elements,
202 from->type->matrix_columns);
203
204 switch (from->type->base_type) {
205 case GLSL_TYPE_INT:
206 from = new(ctx) ir_expression(ir_unop_i2f, to, from, NULL);
207 break;
208 case GLSL_TYPE_UINT:
209 from = new(ctx) ir_expression(ir_unop_u2f, to, from, NULL);
210 break;
211 case GLSL_TYPE_BOOL:
212 from = new(ctx) ir_expression(ir_unop_b2f, to, from, NULL);
213 break;
214 default:
215 assert(0);
216 }
217
218 return true;
219 }
220
221
222 static const struct glsl_type *
223 arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
224 bool multiply,
225 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
226 {
227 const glsl_type *type_a = value_a->type;
228 const glsl_type *type_b = value_b->type;
229
230 /* From GLSL 1.50 spec, page 56:
231 *
232 * "The arithmetic binary operators add (+), subtract (-),
233 * multiply (*), and divide (/) operate on integer and
234 * floating-point scalars, vectors, and matrices."
235 */
236 if (!type_a->is_numeric() || !type_b->is_numeric()) {
237 _mesa_glsl_error(loc, state,
238 "operands to arithmetic operators must be numeric");
239 return glsl_type::error_type;
240 }
241
242
243 /* "If one operand is floating-point based and the other is
244 * not, then the conversions from Section 4.1.10 "Implicit
245 * Conversions" are applied to the non-floating-point-based operand."
246 */
247 if (!apply_implicit_conversion(type_a, value_b, state)
248 && !apply_implicit_conversion(type_b, value_a, state)) {
249 _mesa_glsl_error(loc, state,
250 "could not implicitly convert operands to "
251 "arithmetic operator");
252 return glsl_type::error_type;
253 }
254 type_a = value_a->type;
255 type_b = value_b->type;
256
257 /* "If the operands are integer types, they must both be signed or
258 * both be unsigned."
259 *
260 * From this rule and the preceeding conversion it can be inferred that
261 * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
262 * The is_numeric check above already filtered out the case where either
263 * type is not one of these, so now the base types need only be tested for
264 * equality.
265 */
266 if (type_a->base_type != type_b->base_type) {
267 _mesa_glsl_error(loc, state,
268 "base type mismatch for arithmetic operator");
269 return glsl_type::error_type;
270 }
271
272 /* "All arithmetic binary operators result in the same fundamental type
273 * (signed integer, unsigned integer, or floating-point) as the
274 * operands they operate on, after operand type conversion. After
275 * conversion, the following cases are valid
276 *
277 * * The two operands are scalars. In this case the operation is
278 * applied, resulting in a scalar."
279 */
280 if (type_a->is_scalar() && type_b->is_scalar())
281 return type_a;
282
283 /* "* One operand is a scalar, and the other is a vector or matrix.
284 * In this case, the scalar operation is applied independently to each
285 * component of the vector or matrix, resulting in the same size
286 * vector or matrix."
287 */
288 if (type_a->is_scalar()) {
289 if (!type_b->is_scalar())
290 return type_b;
291 } else if (type_b->is_scalar()) {
292 return type_a;
293 }
294
295 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
296 * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
297 * handled.
298 */
299 assert(!type_a->is_scalar());
300 assert(!type_b->is_scalar());
301
302 /* "* The two operands are vectors of the same size. In this case, the
303 * operation is done component-wise resulting in the same size
304 * vector."
305 */
306 if (type_a->is_vector() && type_b->is_vector()) {
307 if (type_a == type_b) {
308 return type_a;
309 } else {
310 _mesa_glsl_error(loc, state,
311 "vector size mismatch for arithmetic operator");
312 return glsl_type::error_type;
313 }
314 }
315
316 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
317 * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
318 * <vector, vector> have been handled. At least one of the operands must
319 * be matrix. Further, since there are no integer matrix types, the base
320 * type of both operands must be float.
321 */
322 assert(type_a->is_matrix() || type_b->is_matrix());
323 assert(type_a->base_type == GLSL_TYPE_FLOAT);
324 assert(type_b->base_type == GLSL_TYPE_FLOAT);
325
326 /* "* The operator is add (+), subtract (-), or divide (/), and the
327 * operands are matrices with the same number of rows and the same
328 * number of columns. In this case, the operation is done component-
329 * wise resulting in the same size matrix."
330 * * The operator is multiply (*), where both operands are matrices or
331 * one operand is a vector and the other a matrix. A right vector
332 * operand is treated as a column vector and a left vector operand as a
333 * row vector. In all these cases, it is required that the number of
334 * columns of the left operand is equal to the number of rows of the
335 * right operand. Then, the multiply (*) operation does a linear
336 * algebraic multiply, yielding an object that has the same number of
337 * rows as the left operand and the same number of columns as the right
338 * operand. Section 5.10 "Vector and Matrix Operations" explains in
339 * more detail how vectors and matrices are operated on."
340 */
341 if (! multiply) {
342 if (type_a == type_b)
343 return type_a;
344 } else {
345 if (type_a->is_matrix() && type_b->is_matrix()) {
346 /* Matrix multiply. The columns of A must match the rows of B. Given
347 * the other previously tested constraints, this means the vector type
348 * of a row from A must be the same as the vector type of a column from
349 * B.
350 */
351 if (type_a->row_type() == type_b->column_type()) {
352 /* The resulting matrix has the number of columns of matrix B and
353 * the number of rows of matrix A. We get the row count of A by
354 * looking at the size of a vector that makes up a column. The
355 * transpose (size of a row) is done for B.
356 */
357 const glsl_type *const type =
358 glsl_type::get_instance(type_a->base_type,
359 type_a->column_type()->vector_elements,
360 type_b->row_type()->vector_elements);
361 assert(type != glsl_type::error_type);
362
363 return type;
364 }
365 } else if (type_a->is_matrix()) {
366 /* A is a matrix and B is a column vector. Columns of A must match
367 * rows of B. Given the other previously tested constraints, this
368 * means the vector type of a row from A must be the same as the
369 * vector the type of B.
370 */
371 if (type_a->row_type() == type_b) {
372 /* The resulting vector has a number of elements equal to
373 * the number of rows of matrix A. */
374 const glsl_type *const type =
375 glsl_type::get_instance(type_a->base_type,
376 type_a->column_type()->vector_elements,
377 1);
378 assert(type != glsl_type::error_type);
379
380 return type;
381 }
382 } else {
383 assert(type_b->is_matrix());
384
385 /* A is a row vector and B is a matrix. Columns of A must match rows
386 * of B. Given the other previously tested constraints, this means
387 * the type of A must be the same as the vector type of a column from
388 * B.
389 */
390 if (type_a == type_b->column_type()) {
391 /* The resulting vector has a number of elements equal to
392 * the number of columns of matrix B. */
393 const glsl_type *const type =
394 glsl_type::get_instance(type_a->base_type,
395 type_b->row_type()->vector_elements,
396 1);
397 assert(type != glsl_type::error_type);
398
399 return type;
400 }
401 }
402
403 _mesa_glsl_error(loc, state, "size mismatch for matrix multiplication");
404 return glsl_type::error_type;
405 }
406
407
408 /* "All other cases are illegal."
409 */
410 _mesa_glsl_error(loc, state, "type mismatch");
411 return glsl_type::error_type;
412 }
413
414
415 static const struct glsl_type *
416 unary_arithmetic_result_type(const struct glsl_type *type,
417 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
418 {
419 /* From GLSL 1.50 spec, page 57:
420 *
421 * "The arithmetic unary operators negate (-), post- and pre-increment
422 * and decrement (-- and ++) operate on integer or floating-point
423 * values (including vectors and matrices). All unary operators work
424 * component-wise on their operands. These result with the same type
425 * they operated on."
426 */
427 if (!type->is_numeric()) {
428 _mesa_glsl_error(loc, state,
429 "operands to arithmetic operators must be numeric");
430 return glsl_type::error_type;
431 }
432
433 return type;
434 }
435
436 /**
437 * \brief Return the result type of a bit-logic operation.
438 *
439 * If the given types to the bit-logic operator are invalid, return
440 * glsl_type::error_type.
441 *
442 * \param type_a Type of LHS of bit-logic op
443 * \param type_b Type of RHS of bit-logic op
444 */
445 static const struct glsl_type *
446 bit_logic_result_type(const struct glsl_type *type_a,
447 const struct glsl_type *type_b,
448 ast_operators op,
449 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
450 {
451 if (!state->check_bitwise_operations_allowed(loc)) {
452 return glsl_type::error_type;
453 }
454
455 /* From page 50 (page 56 of PDF) of GLSL 1.30 spec:
456 *
457 * "The bitwise operators and (&), exclusive-or (^), and inclusive-or
458 * (|). The operands must be of type signed or unsigned integers or
459 * integer vectors."
460 */
461 if (!type_a->is_integer()) {
462 _mesa_glsl_error(loc, state, "LHS of `%s' must be an integer",
463 ast_expression::operator_string(op));
464 return glsl_type::error_type;
465 }
466 if (!type_b->is_integer()) {
467 _mesa_glsl_error(loc, state, "RHS of `%s' must be an integer",
468 ast_expression::operator_string(op));
469 return glsl_type::error_type;
470 }
471
472 /* "The fundamental types of the operands (signed or unsigned) must
473 * match,"
474 */
475 if (type_a->base_type != type_b->base_type) {
476 _mesa_glsl_error(loc, state, "operands of `%s' must have the same "
477 "base type", ast_expression::operator_string(op));
478 return glsl_type::error_type;
479 }
480
481 /* "The operands cannot be vectors of differing size." */
482 if (type_a->is_vector() &&
483 type_b->is_vector() &&
484 type_a->vector_elements != type_b->vector_elements) {
485 _mesa_glsl_error(loc, state, "operands of `%s' cannot be vectors of "
486 "different sizes", ast_expression::operator_string(op));
487 return glsl_type::error_type;
488 }
489
490 /* "If one operand is a scalar and the other a vector, the scalar is
491 * applied component-wise to the vector, resulting in the same type as
492 * the vector. The fundamental types of the operands [...] will be the
493 * resulting fundamental type."
494 */
495 if (type_a->is_scalar())
496 return type_b;
497 else
498 return type_a;
499 }
500
501 static const struct glsl_type *
502 modulus_result_type(const struct glsl_type *type_a,
503 const struct glsl_type *type_b,
504 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
505 {
506 if (!state->check_version(130, 300, loc, "operator '%%' is reserved")) {
507 return glsl_type::error_type;
508 }
509
510 /* From GLSL 1.50 spec, page 56:
511 * "The operator modulus (%) operates on signed or unsigned integers or
512 * integer vectors. The operand types must both be signed or both be
513 * unsigned."
514 */
515 if (!type_a->is_integer()) {
516 _mesa_glsl_error(loc, state, "LHS of operator %% must be an integer");
517 return glsl_type::error_type;
518 }
519 if (!type_b->is_integer()) {
520 _mesa_glsl_error(loc, state, "RHS of operator %% must be an integer");
521 return glsl_type::error_type;
522 }
523 if (type_a->base_type != type_b->base_type) {
524 _mesa_glsl_error(loc, state,
525 "operands of %% must have the same base type");
526 return glsl_type::error_type;
527 }
528
529 /* "The operands cannot be vectors of differing size. If one operand is
530 * a scalar and the other vector, then the scalar is applied component-
531 * wise to the vector, resulting in the same type as the vector. If both
532 * are vectors of the same size, the result is computed component-wise."
533 */
534 if (type_a->is_vector()) {
535 if (!type_b->is_vector()
536 || (type_a->vector_elements == type_b->vector_elements))
537 return type_a;
538 } else
539 return type_b;
540
541 /* "The operator modulus (%) is not defined for any other data types
542 * (non-integer types)."
543 */
544 _mesa_glsl_error(loc, state, "type mismatch");
545 return glsl_type::error_type;
546 }
547
548
549 static const struct glsl_type *
550 relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
551 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
552 {
553 const glsl_type *type_a = value_a->type;
554 const glsl_type *type_b = value_b->type;
555
556 /* From GLSL 1.50 spec, page 56:
557 * "The relational operators greater than (>), less than (<), greater
558 * than or equal (>=), and less than or equal (<=) operate only on
559 * scalar integer and scalar floating-point expressions."
560 */
561 if (!type_a->is_numeric()
562 || !type_b->is_numeric()
563 || !type_a->is_scalar()
564 || !type_b->is_scalar()) {
565 _mesa_glsl_error(loc, state,
566 "operands to relational operators must be scalar and "
567 "numeric");
568 return glsl_type::error_type;
569 }
570
571 /* "Either the operands' types must match, or the conversions from
572 * Section 4.1.10 "Implicit Conversions" will be applied to the integer
573 * operand, after which the types must match."
574 */
575 if (!apply_implicit_conversion(type_a, value_b, state)
576 && !apply_implicit_conversion(type_b, value_a, state)) {
577 _mesa_glsl_error(loc, state,
578 "could not implicitly convert operands to "
579 "relational operator");
580 return glsl_type::error_type;
581 }
582 type_a = value_a->type;
583 type_b = value_b->type;
584
585 if (type_a->base_type != type_b->base_type) {
586 _mesa_glsl_error(loc, state, "base type mismatch");
587 return glsl_type::error_type;
588 }
589
590 /* "The result is scalar Boolean."
591 */
592 return glsl_type::bool_type;
593 }
594
595 /**
596 * \brief Return the result type of a bit-shift operation.
597 *
598 * If the given types to the bit-shift operator are invalid, return
599 * glsl_type::error_type.
600 *
601 * \param type_a Type of LHS of bit-shift op
602 * \param type_b Type of RHS of bit-shift op
603 */
604 static const struct glsl_type *
605 shift_result_type(const struct glsl_type *type_a,
606 const struct glsl_type *type_b,
607 ast_operators op,
608 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
609 {
610 if (!state->check_bitwise_operations_allowed(loc)) {
611 return glsl_type::error_type;
612 }
613
614 /* From page 50 (page 56 of the PDF) of the GLSL 1.30 spec:
615 *
616 * "The shift operators (<<) and (>>). For both operators, the operands
617 * must be signed or unsigned integers or integer vectors. One operand
618 * can be signed while the other is unsigned."
619 */
620 if (!type_a->is_integer()) {
621 _mesa_glsl_error(loc, state, "LHS of operator %s must be an integer or "
622 "integer vector", ast_expression::operator_string(op));
623 return glsl_type::error_type;
624
625 }
626 if (!type_b->is_integer()) {
627 _mesa_glsl_error(loc, state, "RHS of operator %s must be an integer or "
628 "integer vector", ast_expression::operator_string(op));
629 return glsl_type::error_type;
630 }
631
632 /* "If the first operand is a scalar, the second operand has to be
633 * a scalar as well."
634 */
635 if (type_a->is_scalar() && !type_b->is_scalar()) {
636 _mesa_glsl_error(loc, state, "if the first operand of %s is scalar, the "
637 "second must be scalar as well",
638 ast_expression::operator_string(op));
639 return glsl_type::error_type;
640 }
641
642 /* If both operands are vectors, check that they have same number of
643 * elements.
644 */
645 if (type_a->is_vector() &&
646 type_b->is_vector() &&
647 type_a->vector_elements != type_b->vector_elements) {
648 _mesa_glsl_error(loc, state, "vector operands to operator %s must "
649 "have same number of elements",
650 ast_expression::operator_string(op));
651 return glsl_type::error_type;
652 }
653
654 /* "In all cases, the resulting type will be the same type as the left
655 * operand."
656 */
657 return type_a;
658 }
659
660 /**
661 * Validates that a value can be assigned to a location with a specified type
662 *
663 * Validates that \c rhs can be assigned to some location. If the types are
664 * not an exact match but an automatic conversion is possible, \c rhs will be
665 * converted.
666 *
667 * \return
668 * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
669 * Otherwise the actual RHS to be assigned will be returned. This may be
670 * \c rhs, or it may be \c rhs after some type conversion.
671 *
672 * \note
673 * In addition to being used for assignments, this function is used to
674 * type-check return values.
675 */
676 ir_rvalue *
677 validate_assignment(struct _mesa_glsl_parse_state *state,
678 YYLTYPE loc, const glsl_type *lhs_type,
679 ir_rvalue *rhs, bool is_initializer)
680 {
681 /* If there is already some error in the RHS, just return it. Anything
682 * else will lead to an avalanche of error message back to the user.
683 */
684 if (rhs->type->is_error())
685 return rhs;
686
687 /* If the types are identical, the assignment can trivially proceed.
688 */
689 if (rhs->type == lhs_type)
690 return rhs;
691
692 /* If the array element types are the same and the LHS is unsized,
693 * the assignment is okay for initializers embedded in variable
694 * declarations.
695 *
696 * Note: Whole-array assignments are not permitted in GLSL 1.10, but this
697 * is handled by ir_dereference::is_lvalue.
698 */
699 if (lhs_type->is_unsized_array() && rhs->type->is_array()
700 && (lhs_type->element_type() == rhs->type->element_type())) {
701 if (is_initializer) {
702 return rhs;
703 } else {
704 _mesa_glsl_error(&loc, state,
705 "implicitly sized arrays cannot be assigned");
706 return NULL;
707 }
708 }
709
710 /* Check for implicit conversion in GLSL 1.20 */
711 if (apply_implicit_conversion(lhs_type, rhs, state)) {
712 if (rhs->type == lhs_type)
713 return rhs;
714 }
715
716 _mesa_glsl_error(&loc, state,
717 "%s of type %s cannot be assigned to "
718 "variable of type %s",
719 is_initializer ? "initializer" : "value",
720 rhs->type->name, lhs_type->name);
721
722 return NULL;
723 }
724
725 static void
726 mark_whole_array_access(ir_rvalue *access)
727 {
728 ir_dereference_variable *deref = access->as_dereference_variable();
729
730 if (deref && deref->var) {
731 deref->var->data.max_array_access = deref->type->length - 1;
732 }
733 }
734
735 ir_rvalue *
736 do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state,
737 const char *non_lvalue_description,
738 ir_rvalue *lhs, ir_rvalue *rhs, bool is_initializer,
739 YYLTYPE lhs_loc)
740 {
741 void *ctx = state;
742 bool error_emitted = (lhs->type->is_error() || rhs->type->is_error());
743
744 /* If the assignment LHS comes back as an ir_binop_vector_extract
745 * expression, move it to the RHS as an ir_triop_vector_insert.
746 */
747 if (lhs->ir_type == ir_type_expression) {
748 ir_expression *const expr = lhs->as_expression();
749
750 if (unlikely(expr->operation == ir_binop_vector_extract)) {
751 ir_rvalue *new_rhs =
752 validate_assignment(state, lhs_loc, lhs->type,
753 rhs, is_initializer);
754
755 if (new_rhs == NULL) {
756 return lhs;
757 } else {
758 rhs = new(ctx) ir_expression(ir_triop_vector_insert,
759 expr->operands[0]->type,
760 expr->operands[0],
761 new_rhs,
762 expr->operands[1]);
763 lhs = expr->operands[0]->clone(ctx, NULL);
764 }
765 }
766 }
767
768 ir_variable *lhs_var = lhs->variable_referenced();
769 if (lhs_var)
770 lhs_var->data.assigned = true;
771
772 if (!error_emitted) {
773 if (non_lvalue_description != NULL) {
774 _mesa_glsl_error(&lhs_loc, state,
775 "assignment to %s",
776 non_lvalue_description);
777 error_emitted = true;
778 } else if (lhs->variable_referenced() != NULL
779 && lhs->variable_referenced()->data.read_only) {
780 _mesa_glsl_error(&lhs_loc, state,
781 "assignment to read-only variable '%s'",
782 lhs->variable_referenced()->name);
783 error_emitted = true;
784
785 } else if (lhs->type->is_array() &&
786 !state->check_version(120, 300, &lhs_loc,
787 "whole array assignment forbidden")) {
788 /* From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
789 *
790 * "Other binary or unary expressions, non-dereferenced
791 * arrays, function names, swizzles with repeated fields,
792 * and constants cannot be l-values."
793 *
794 * The restriction on arrays is lifted in GLSL 1.20 and GLSL ES 3.00.
795 */
796 error_emitted = true;
797 } else if (!lhs->is_lvalue()) {
798 _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment");
799 error_emitted = true;
800 }
801 }
802
803 ir_rvalue *new_rhs =
804 validate_assignment(state, lhs_loc, lhs->type, rhs, is_initializer);
805 if (new_rhs != NULL) {
806 rhs = new_rhs;
807
808 /* If the LHS array was not declared with a size, it takes it size from
809 * the RHS. If the LHS is an l-value and a whole array, it must be a
810 * dereference of a variable. Any other case would require that the LHS
811 * is either not an l-value or not a whole array.
812 */
813 if (lhs->type->is_unsized_array()) {
814 ir_dereference *const d = lhs->as_dereference();
815
816 assert(d != NULL);
817
818 ir_variable *const var = d->variable_referenced();
819
820 assert(var != NULL);
821
822 if (var->data.max_array_access >= unsigned(rhs->type->array_size())) {
823 /* FINISHME: This should actually log the location of the RHS. */
824 _mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to "
825 "previous access",
826 var->data.max_array_access);
827 }
828
829 var->type = glsl_type::get_array_instance(lhs->type->element_type(),
830 rhs->type->array_size());
831 d->type = var->type;
832 }
833 if (lhs->type->is_array()) {
834 mark_whole_array_access(rhs);
835 mark_whole_array_access(lhs);
836 }
837 }
838
839 /* Most callers of do_assignment (assign, add_assign, pre_inc/dec,
840 * but not post_inc) need the converted assigned value as an rvalue
841 * to handle things like:
842 *
843 * i = j += 1;
844 *
845 * So we always just store the computed value being assigned to a
846 * temporary and return a deref of that temporary. If the rvalue
847 * ends up not being used, the temp will get copy-propagated out.
848 */
849 ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp",
850 ir_var_temporary);
851 ir_dereference_variable *deref_var = new(ctx) ir_dereference_variable(var);
852 instructions->push_tail(var);
853 instructions->push_tail(new(ctx) ir_assignment(deref_var, rhs));
854 deref_var = new(ctx) ir_dereference_variable(var);
855
856 if (!error_emitted)
857 instructions->push_tail(new(ctx) ir_assignment(lhs, deref_var));
858
859 return new(ctx) ir_dereference_variable(var);
860 }
861
862 static ir_rvalue *
863 get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue)
864 {
865 void *ctx = ralloc_parent(lvalue);
866 ir_variable *var;
867
868 var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp",
869 ir_var_temporary);
870 instructions->push_tail(var);
871 var->data.mode = ir_var_auto;
872
873 instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
874 lvalue));
875
876 return new(ctx) ir_dereference_variable(var);
877 }
878
879
880 ir_rvalue *
881 ast_node::hir(exec_list *instructions,
882 struct _mesa_glsl_parse_state *state)
883 {
884 (void) instructions;
885 (void) state;
886
887 return NULL;
888 }
889
890 static ir_rvalue *
891 do_comparison(void *mem_ctx, int operation, ir_rvalue *op0, ir_rvalue *op1)
892 {
893 int join_op;
894 ir_rvalue *cmp = NULL;
895
896 if (operation == ir_binop_all_equal)
897 join_op = ir_binop_logic_and;
898 else
899 join_op = ir_binop_logic_or;
900
901 switch (op0->type->base_type) {
902 case GLSL_TYPE_FLOAT:
903 case GLSL_TYPE_UINT:
904 case GLSL_TYPE_INT:
905 case GLSL_TYPE_BOOL:
906 return new(mem_ctx) ir_expression(operation, op0, op1);
907
908 case GLSL_TYPE_ARRAY: {
909 for (unsigned int i = 0; i < op0->type->length; i++) {
910 ir_rvalue *e0, *e1, *result;
911
912 e0 = new(mem_ctx) ir_dereference_array(op0->clone(mem_ctx, NULL),
913 new(mem_ctx) ir_constant(i));
914 e1 = new(mem_ctx) ir_dereference_array(op1->clone(mem_ctx, NULL),
915 new(mem_ctx) ir_constant(i));
916 result = do_comparison(mem_ctx, operation, e0, e1);
917
918 if (cmp) {
919 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
920 } else {
921 cmp = result;
922 }
923 }
924
925 mark_whole_array_access(op0);
926 mark_whole_array_access(op1);
927 break;
928 }
929
930 case GLSL_TYPE_STRUCT: {
931 for (unsigned int i = 0; i < op0->type->length; i++) {
932 ir_rvalue *e0, *e1, *result;
933 const char *field_name = op0->type->fields.structure[i].name;
934
935 e0 = new(mem_ctx) ir_dereference_record(op0->clone(mem_ctx, NULL),
936 field_name);
937 e1 = new(mem_ctx) ir_dereference_record(op1->clone(mem_ctx, NULL),
938 field_name);
939 result = do_comparison(mem_ctx, operation, e0, e1);
940
941 if (cmp) {
942 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
943 } else {
944 cmp = result;
945 }
946 }
947 break;
948 }
949
950 case GLSL_TYPE_ERROR:
951 case GLSL_TYPE_VOID:
952 case GLSL_TYPE_SAMPLER:
953 case GLSL_TYPE_INTERFACE:
954 case GLSL_TYPE_ATOMIC_UINT:
955 /* I assume a comparison of a struct containing a sampler just
956 * ignores the sampler present in the type.
957 */
958 break;
959 }
960
961 if (cmp == NULL)
962 cmp = new(mem_ctx) ir_constant(true);
963
964 return cmp;
965 }
966
967 /* For logical operations, we want to ensure that the operands are
968 * scalar booleans. If it isn't, emit an error and return a constant
969 * boolean to avoid triggering cascading error messages.
970 */
971 ir_rvalue *
972 get_scalar_boolean_operand(exec_list *instructions,
973 struct _mesa_glsl_parse_state *state,
974 ast_expression *parent_expr,
975 int operand,
976 const char *operand_name,
977 bool *error_emitted)
978 {
979 ast_expression *expr = parent_expr->subexpressions[operand];
980 void *ctx = state;
981 ir_rvalue *val = expr->hir(instructions, state);
982
983 if (val->type->is_boolean() && val->type->is_scalar())
984 return val;
985
986 if (!*error_emitted) {
987 YYLTYPE loc = expr->get_location();
988 _mesa_glsl_error(&loc, state, "%s of `%s' must be scalar boolean",
989 operand_name,
990 parent_expr->operator_string(parent_expr->oper));
991 *error_emitted = true;
992 }
993
994 return new(ctx) ir_constant(true);
995 }
996
997 /**
998 * If name refers to a builtin array whose maximum allowed size is less than
999 * size, report an error and return true. Otherwise return false.
1000 */
1001 void
1002 check_builtin_array_max_size(const char *name, unsigned size,
1003 YYLTYPE loc, struct _mesa_glsl_parse_state *state)
1004 {
1005 if ((strcmp("gl_TexCoord", name) == 0)
1006 && (size > state->Const.MaxTextureCoords)) {
1007 /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec:
1008 *
1009 * "The size [of gl_TexCoord] can be at most
1010 * gl_MaxTextureCoords."
1011 */
1012 _mesa_glsl_error(&loc, state, "`gl_TexCoord' array size cannot "
1013 "be larger than gl_MaxTextureCoords (%u)",
1014 state->Const.MaxTextureCoords);
1015 } else if (strcmp("gl_ClipDistance", name) == 0
1016 && size > state->Const.MaxClipPlanes) {
1017 /* From section 7.1 (Vertex Shader Special Variables) of the
1018 * GLSL 1.30 spec:
1019 *
1020 * "The gl_ClipDistance array is predeclared as unsized and
1021 * must be sized by the shader either redeclaring it with a
1022 * size or indexing it only with integral constant
1023 * expressions. ... The size can be at most
1024 * gl_MaxClipDistances."
1025 */
1026 _mesa_glsl_error(&loc, state, "`gl_ClipDistance' array size cannot "
1027 "be larger than gl_MaxClipDistances (%u)",
1028 state->Const.MaxClipPlanes);
1029 }
1030 }
1031
1032 /**
1033 * Create the constant 1, of a which is appropriate for incrementing and
1034 * decrementing values of the given GLSL type. For example, if type is vec4,
1035 * this creates a constant value of 1.0 having type float.
1036 *
1037 * If the given type is invalid for increment and decrement operators, return
1038 * a floating point 1--the error will be detected later.
1039 */
1040 static ir_rvalue *
1041 constant_one_for_inc_dec(void *ctx, const glsl_type *type)
1042 {
1043 switch (type->base_type) {
1044 case GLSL_TYPE_UINT:
1045 return new(ctx) ir_constant((unsigned) 1);
1046 case GLSL_TYPE_INT:
1047 return new(ctx) ir_constant(1);
1048 default:
1049 case GLSL_TYPE_FLOAT:
1050 return new(ctx) ir_constant(1.0f);
1051 }
1052 }
1053
1054 ir_rvalue *
1055 ast_expression::hir(exec_list *instructions,
1056 struct _mesa_glsl_parse_state *state)
1057 {
1058 void *ctx = state;
1059 static const int operations[AST_NUM_OPERATORS] = {
1060 -1, /* ast_assign doesn't convert to ir_expression. */
1061 -1, /* ast_plus doesn't convert to ir_expression. */
1062 ir_unop_neg,
1063 ir_binop_add,
1064 ir_binop_sub,
1065 ir_binop_mul,
1066 ir_binop_div,
1067 ir_binop_mod,
1068 ir_binop_lshift,
1069 ir_binop_rshift,
1070 ir_binop_less,
1071 ir_binop_greater,
1072 ir_binop_lequal,
1073 ir_binop_gequal,
1074 ir_binop_all_equal,
1075 ir_binop_any_nequal,
1076 ir_binop_bit_and,
1077 ir_binop_bit_xor,
1078 ir_binop_bit_or,
1079 ir_unop_bit_not,
1080 ir_binop_logic_and,
1081 ir_binop_logic_xor,
1082 ir_binop_logic_or,
1083 ir_unop_logic_not,
1084
1085 /* Note: The following block of expression types actually convert
1086 * to multiple IR instructions.
1087 */
1088 ir_binop_mul, /* ast_mul_assign */
1089 ir_binop_div, /* ast_div_assign */
1090 ir_binop_mod, /* ast_mod_assign */
1091 ir_binop_add, /* ast_add_assign */
1092 ir_binop_sub, /* ast_sub_assign */
1093 ir_binop_lshift, /* ast_ls_assign */
1094 ir_binop_rshift, /* ast_rs_assign */
1095 ir_binop_bit_and, /* ast_and_assign */
1096 ir_binop_bit_xor, /* ast_xor_assign */
1097 ir_binop_bit_or, /* ast_or_assign */
1098
1099 -1, /* ast_conditional doesn't convert to ir_expression. */
1100 ir_binop_add, /* ast_pre_inc. */
1101 ir_binop_sub, /* ast_pre_dec. */
1102 ir_binop_add, /* ast_post_inc. */
1103 ir_binop_sub, /* ast_post_dec. */
1104 -1, /* ast_field_selection doesn't conv to ir_expression. */
1105 -1, /* ast_array_index doesn't convert to ir_expression. */
1106 -1, /* ast_function_call doesn't conv to ir_expression. */
1107 -1, /* ast_identifier doesn't convert to ir_expression. */
1108 -1, /* ast_int_constant doesn't convert to ir_expression. */
1109 -1, /* ast_uint_constant doesn't conv to ir_expression. */
1110 -1, /* ast_float_constant doesn't conv to ir_expression. */
1111 -1, /* ast_bool_constant doesn't conv to ir_expression. */
1112 -1, /* ast_sequence doesn't convert to ir_expression. */
1113 };
1114 ir_rvalue *result = NULL;
1115 ir_rvalue *op[3];
1116 const struct glsl_type *type; /* a temporary variable for switch cases */
1117 bool error_emitted = false;
1118 YYLTYPE loc;
1119
1120 loc = this->get_location();
1121
1122 switch (this->oper) {
1123 case ast_aggregate:
1124 assert(!"ast_aggregate: Should never get here.");
1125 break;
1126
1127 case ast_assign: {
1128 op[0] = this->subexpressions[0]->hir(instructions, state);
1129 op[1] = this->subexpressions[1]->hir(instructions, state);
1130
1131 result = do_assignment(instructions, state,
1132 this->subexpressions[0]->non_lvalue_description,
1133 op[0], op[1], false,
1134 this->subexpressions[0]->get_location());
1135 error_emitted = result->type->is_error();
1136 break;
1137 }
1138
1139 case ast_plus:
1140 op[0] = this->subexpressions[0]->hir(instructions, state);
1141
1142 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1143
1144 error_emitted = type->is_error();
1145
1146 result = op[0];
1147 break;
1148
1149 case ast_neg:
1150 op[0] = this->subexpressions[0]->hir(instructions, state);
1151
1152 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1153
1154 error_emitted = type->is_error();
1155
1156 result = new(ctx) ir_expression(operations[this->oper], type,
1157 op[0], NULL);
1158 break;
1159
1160 case ast_add:
1161 case ast_sub:
1162 case ast_mul:
1163 case ast_div:
1164 op[0] = this->subexpressions[0]->hir(instructions, state);
1165 op[1] = this->subexpressions[1]->hir(instructions, state);
1166
1167 type = arithmetic_result_type(op[0], op[1],
1168 (this->oper == ast_mul),
1169 state, & loc);
1170 error_emitted = type->is_error();
1171
1172 result = new(ctx) ir_expression(operations[this->oper], type,
1173 op[0], op[1]);
1174 break;
1175
1176 case ast_mod:
1177 op[0] = this->subexpressions[0]->hir(instructions, state);
1178 op[1] = this->subexpressions[1]->hir(instructions, state);
1179
1180 type = modulus_result_type(op[0]->type, op[1]->type, state, & loc);
1181
1182 assert(operations[this->oper] == ir_binop_mod);
1183
1184 result = new(ctx) ir_expression(operations[this->oper], type,
1185 op[0], op[1]);
1186 error_emitted = type->is_error();
1187 break;
1188
1189 case ast_lshift:
1190 case ast_rshift:
1191 if (!state->check_bitwise_operations_allowed(&loc)) {
1192 error_emitted = true;
1193 }
1194
1195 op[0] = this->subexpressions[0]->hir(instructions, state);
1196 op[1] = this->subexpressions[1]->hir(instructions, state);
1197 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1198 &loc);
1199 result = new(ctx) ir_expression(operations[this->oper], type,
1200 op[0], op[1]);
1201 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1202 break;
1203
1204 case ast_less:
1205 case ast_greater:
1206 case ast_lequal:
1207 case ast_gequal:
1208 op[0] = this->subexpressions[0]->hir(instructions, state);
1209 op[1] = this->subexpressions[1]->hir(instructions, state);
1210
1211 type = relational_result_type(op[0], op[1], state, & loc);
1212
1213 /* The relational operators must either generate an error or result
1214 * in a scalar boolean. See page 57 of the GLSL 1.50 spec.
1215 */
1216 assert(type->is_error()
1217 || ((type->base_type == GLSL_TYPE_BOOL)
1218 && type->is_scalar()));
1219
1220 result = new(ctx) ir_expression(operations[this->oper], type,
1221 op[0], op[1]);
1222 error_emitted = type->is_error();
1223 break;
1224
1225 case ast_nequal:
1226 case ast_equal:
1227 op[0] = this->subexpressions[0]->hir(instructions, state);
1228 op[1] = this->subexpressions[1]->hir(instructions, state);
1229
1230 /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
1231 *
1232 * "The equality operators equal (==), and not equal (!=)
1233 * operate on all types. They result in a scalar Boolean. If
1234 * the operand types do not match, then there must be a
1235 * conversion from Section 4.1.10 "Implicit Conversions"
1236 * applied to one operand that can make them match, in which
1237 * case this conversion is done."
1238 */
1239 if ((!apply_implicit_conversion(op[0]->type, op[1], state)
1240 && !apply_implicit_conversion(op[1]->type, op[0], state))
1241 || (op[0]->type != op[1]->type)) {
1242 _mesa_glsl_error(& loc, state, "operands of `%s' must have the same "
1243 "type", (this->oper == ast_equal) ? "==" : "!=");
1244 error_emitted = true;
1245 } else if ((op[0]->type->is_array() || op[1]->type->is_array()) &&
1246 !state->check_version(120, 300, &loc,
1247 "array comparisons forbidden")) {
1248 error_emitted = true;
1249 } else if ((op[0]->type->contains_opaque() ||
1250 op[1]->type->contains_opaque())) {
1251 _mesa_glsl_error(&loc, state, "opaque type comparisons forbidden");
1252 error_emitted = true;
1253 }
1254
1255 if (error_emitted) {
1256 result = new(ctx) ir_constant(false);
1257 } else {
1258 result = do_comparison(ctx, operations[this->oper], op[0], op[1]);
1259 assert(result->type == glsl_type::bool_type);
1260 }
1261 break;
1262
1263 case ast_bit_and:
1264 case ast_bit_xor:
1265 case ast_bit_or:
1266 op[0] = this->subexpressions[0]->hir(instructions, state);
1267 op[1] = this->subexpressions[1]->hir(instructions, state);
1268 type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
1269 state, &loc);
1270 result = new(ctx) ir_expression(operations[this->oper], type,
1271 op[0], op[1]);
1272 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1273 break;
1274
1275 case ast_bit_not:
1276 op[0] = this->subexpressions[0]->hir(instructions, state);
1277
1278 if (!state->check_bitwise_operations_allowed(&loc)) {
1279 error_emitted = true;
1280 }
1281
1282 if (!op[0]->type->is_integer()) {
1283 _mesa_glsl_error(&loc, state, "operand of `~' must be an integer");
1284 error_emitted = true;
1285 }
1286
1287 type = error_emitted ? glsl_type::error_type : op[0]->type;
1288 result = new(ctx) ir_expression(ir_unop_bit_not, type, op[0], NULL);
1289 break;
1290
1291 case ast_logic_and: {
1292 exec_list rhs_instructions;
1293 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1294 "LHS", &error_emitted);
1295 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1296 "RHS", &error_emitted);
1297
1298 if (rhs_instructions.is_empty()) {
1299 result = new(ctx) ir_expression(ir_binop_logic_and, op[0], op[1]);
1300 type = result->type;
1301 } else {
1302 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1303 "and_tmp",
1304 ir_var_temporary);
1305 instructions->push_tail(tmp);
1306
1307 ir_if *const stmt = new(ctx) ir_if(op[0]);
1308 instructions->push_tail(stmt);
1309
1310 stmt->then_instructions.append_list(&rhs_instructions);
1311 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1312 ir_assignment *const then_assign =
1313 new(ctx) ir_assignment(then_deref, op[1]);
1314 stmt->then_instructions.push_tail(then_assign);
1315
1316 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1317 ir_assignment *const else_assign =
1318 new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false));
1319 stmt->else_instructions.push_tail(else_assign);
1320
1321 result = new(ctx) ir_dereference_variable(tmp);
1322 type = tmp->type;
1323 }
1324 break;
1325 }
1326
1327 case ast_logic_or: {
1328 exec_list rhs_instructions;
1329 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1330 "LHS", &error_emitted);
1331 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1332 "RHS", &error_emitted);
1333
1334 if (rhs_instructions.is_empty()) {
1335 result = new(ctx) ir_expression(ir_binop_logic_or, op[0], op[1]);
1336 type = result->type;
1337 } else {
1338 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1339 "or_tmp",
1340 ir_var_temporary);
1341 instructions->push_tail(tmp);
1342
1343 ir_if *const stmt = new(ctx) ir_if(op[0]);
1344 instructions->push_tail(stmt);
1345
1346 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1347 ir_assignment *const then_assign =
1348 new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true));
1349 stmt->then_instructions.push_tail(then_assign);
1350
1351 stmt->else_instructions.append_list(&rhs_instructions);
1352 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1353 ir_assignment *const else_assign =
1354 new(ctx) ir_assignment(else_deref, op[1]);
1355 stmt->else_instructions.push_tail(else_assign);
1356
1357 result = new(ctx) ir_dereference_variable(tmp);
1358 type = tmp->type;
1359 }
1360 break;
1361 }
1362
1363 case ast_logic_xor:
1364 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1365 *
1366 * "The logical binary operators and (&&), or ( | | ), and
1367 * exclusive or (^^). They operate only on two Boolean
1368 * expressions and result in a Boolean expression."
1369 */
1370 op[0] = get_scalar_boolean_operand(instructions, state, this, 0, "LHS",
1371 &error_emitted);
1372 op[1] = get_scalar_boolean_operand(instructions, state, this, 1, "RHS",
1373 &error_emitted);
1374
1375 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1376 op[0], op[1]);
1377 break;
1378
1379 case ast_logic_not:
1380 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1381 "operand", &error_emitted);
1382
1383 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1384 op[0], NULL);
1385 break;
1386
1387 case ast_mul_assign:
1388 case ast_div_assign:
1389 case ast_add_assign:
1390 case ast_sub_assign: {
1391 op[0] = this->subexpressions[0]->hir(instructions, state);
1392 op[1] = this->subexpressions[1]->hir(instructions, state);
1393
1394 type = arithmetic_result_type(op[0], op[1],
1395 (this->oper == ast_mul_assign),
1396 state, & loc);
1397
1398 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1399 op[0], op[1]);
1400
1401 result = do_assignment(instructions, state,
1402 this->subexpressions[0]->non_lvalue_description,
1403 op[0]->clone(ctx, NULL), temp_rhs, false,
1404 this->subexpressions[0]->get_location());
1405 error_emitted = (op[0]->type->is_error());
1406
1407 /* GLSL 1.10 does not allow array assignment. However, we don't have to
1408 * explicitly test for this because none of the binary expression
1409 * operators allow array operands either.
1410 */
1411
1412 break;
1413 }
1414
1415 case ast_mod_assign: {
1416 op[0] = this->subexpressions[0]->hir(instructions, state);
1417 op[1] = this->subexpressions[1]->hir(instructions, state);
1418
1419 type = modulus_result_type(op[0]->type, op[1]->type, state, & loc);
1420
1421 assert(operations[this->oper] == ir_binop_mod);
1422
1423 ir_rvalue *temp_rhs;
1424 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1425 op[0], op[1]);
1426
1427 result = do_assignment(instructions, state,
1428 this->subexpressions[0]->non_lvalue_description,
1429 op[0]->clone(ctx, NULL), temp_rhs, false,
1430 this->subexpressions[0]->get_location());
1431 error_emitted = type->is_error();
1432 break;
1433 }
1434
1435 case ast_ls_assign:
1436 case ast_rs_assign: {
1437 op[0] = this->subexpressions[0]->hir(instructions, state);
1438 op[1] = this->subexpressions[1]->hir(instructions, state);
1439 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1440 &loc);
1441 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1442 type, op[0], op[1]);
1443 result = do_assignment(instructions, state,
1444 this->subexpressions[0]->non_lvalue_description,
1445 op[0]->clone(ctx, NULL), temp_rhs, false,
1446 this->subexpressions[0]->get_location());
1447 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1448 break;
1449 }
1450
1451 case ast_and_assign:
1452 case ast_xor_assign:
1453 case ast_or_assign: {
1454 op[0] = this->subexpressions[0]->hir(instructions, state);
1455 op[1] = this->subexpressions[1]->hir(instructions, state);
1456 type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
1457 state, &loc);
1458 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1459 type, op[0], op[1]);
1460 result = do_assignment(instructions, state,
1461 this->subexpressions[0]->non_lvalue_description,
1462 op[0]->clone(ctx, NULL), temp_rhs, false,
1463 this->subexpressions[0]->get_location());
1464 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1465 break;
1466 }
1467
1468 case ast_conditional: {
1469 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1470 *
1471 * "The ternary selection operator (?:). It operates on three
1472 * expressions (exp1 ? exp2 : exp3). This operator evaluates the
1473 * first expression, which must result in a scalar Boolean."
1474 */
1475 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1476 "condition", &error_emitted);
1477
1478 /* The :? operator is implemented by generating an anonymous temporary
1479 * followed by an if-statement. The last instruction in each branch of
1480 * the if-statement assigns a value to the anonymous temporary. This
1481 * temporary is the r-value of the expression.
1482 */
1483 exec_list then_instructions;
1484 exec_list else_instructions;
1485
1486 op[1] = this->subexpressions[1]->hir(&then_instructions, state);
1487 op[2] = this->subexpressions[2]->hir(&else_instructions, state);
1488
1489 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1490 *
1491 * "The second and third expressions can be any type, as
1492 * long their types match, or there is a conversion in
1493 * Section 4.1.10 "Implicit Conversions" that can be applied
1494 * to one of the expressions to make their types match. This
1495 * resulting matching type is the type of the entire
1496 * expression."
1497 */
1498 if ((!apply_implicit_conversion(op[1]->type, op[2], state)
1499 && !apply_implicit_conversion(op[2]->type, op[1], state))
1500 || (op[1]->type != op[2]->type)) {
1501 YYLTYPE loc = this->subexpressions[1]->get_location();
1502
1503 _mesa_glsl_error(& loc, state, "second and third operands of ?: "
1504 "operator must have matching types");
1505 error_emitted = true;
1506 type = glsl_type::error_type;
1507 } else {
1508 type = op[1]->type;
1509 }
1510
1511 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1512 *
1513 * "The second and third expressions must be the same type, but can
1514 * be of any type other than an array."
1515 */
1516 if (type->is_array() &&
1517 !state->check_version(120, 300, &loc,
1518 "second and third operands of ?: operator "
1519 "cannot be arrays")) {
1520 error_emitted = true;
1521 }
1522
1523 ir_constant *cond_val = op[0]->constant_expression_value();
1524 ir_constant *then_val = op[1]->constant_expression_value();
1525 ir_constant *else_val = op[2]->constant_expression_value();
1526
1527 if (then_instructions.is_empty()
1528 && else_instructions.is_empty()
1529 && (cond_val != NULL) && (then_val != NULL) && (else_val != NULL)) {
1530 result = (cond_val->value.b[0]) ? then_val : else_val;
1531 } else {
1532 ir_variable *const tmp =
1533 new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary);
1534 instructions->push_tail(tmp);
1535
1536 ir_if *const stmt = new(ctx) ir_if(op[0]);
1537 instructions->push_tail(stmt);
1538
1539 then_instructions.move_nodes_to(& stmt->then_instructions);
1540 ir_dereference *const then_deref =
1541 new(ctx) ir_dereference_variable(tmp);
1542 ir_assignment *const then_assign =
1543 new(ctx) ir_assignment(then_deref, op[1]);
1544 stmt->then_instructions.push_tail(then_assign);
1545
1546 else_instructions.move_nodes_to(& stmt->else_instructions);
1547 ir_dereference *const else_deref =
1548 new(ctx) ir_dereference_variable(tmp);
1549 ir_assignment *const else_assign =
1550 new(ctx) ir_assignment(else_deref, op[2]);
1551 stmt->else_instructions.push_tail(else_assign);
1552
1553 result = new(ctx) ir_dereference_variable(tmp);
1554 }
1555 break;
1556 }
1557
1558 case ast_pre_inc:
1559 case ast_pre_dec: {
1560 this->non_lvalue_description = (this->oper == ast_pre_inc)
1561 ? "pre-increment operation" : "pre-decrement operation";
1562
1563 op[0] = this->subexpressions[0]->hir(instructions, state);
1564 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1565
1566 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1567
1568 ir_rvalue *temp_rhs;
1569 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1570 op[0], op[1]);
1571
1572 result = do_assignment(instructions, state,
1573 this->subexpressions[0]->non_lvalue_description,
1574 op[0]->clone(ctx, NULL), temp_rhs, false,
1575 this->subexpressions[0]->get_location());
1576 error_emitted = op[0]->type->is_error();
1577 break;
1578 }
1579
1580 case ast_post_inc:
1581 case ast_post_dec: {
1582 this->non_lvalue_description = (this->oper == ast_post_inc)
1583 ? "post-increment operation" : "post-decrement operation";
1584 op[0] = this->subexpressions[0]->hir(instructions, state);
1585 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1586
1587 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1588
1589 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1590
1591 ir_rvalue *temp_rhs;
1592 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1593 op[0], op[1]);
1594
1595 /* Get a temporary of a copy of the lvalue before it's modified.
1596 * This may get thrown away later.
1597 */
1598 result = get_lvalue_copy(instructions, op[0]->clone(ctx, NULL));
1599
1600 (void)do_assignment(instructions, state,
1601 this->subexpressions[0]->non_lvalue_description,
1602 op[0]->clone(ctx, NULL), temp_rhs, false,
1603 this->subexpressions[0]->get_location());
1604
1605 error_emitted = op[0]->type->is_error();
1606 break;
1607 }
1608
1609 case ast_field_selection:
1610 result = _mesa_ast_field_selection_to_hir(this, instructions, state);
1611 break;
1612
1613 case ast_array_index: {
1614 YYLTYPE index_loc = subexpressions[1]->get_location();
1615
1616 op[0] = subexpressions[0]->hir(instructions, state);
1617 op[1] = subexpressions[1]->hir(instructions, state);
1618
1619 result = _mesa_ast_array_index_to_hir(ctx, state, op[0], op[1],
1620 loc, index_loc);
1621
1622 if (result->type->is_error())
1623 error_emitted = true;
1624
1625 break;
1626 }
1627
1628 case ast_function_call:
1629 /* Should *NEVER* get here. ast_function_call should always be handled
1630 * by ast_function_expression::hir.
1631 */
1632 assert(0);
1633 break;
1634
1635 case ast_identifier: {
1636 /* ast_identifier can appear several places in a full abstract syntax
1637 * tree. This particular use must be at location specified in the grammar
1638 * as 'variable_identifier'.
1639 */
1640 ir_variable *var =
1641 state->symbols->get_variable(this->primary_expression.identifier);
1642
1643 if (var != NULL) {
1644 var->data.used = true;
1645 result = new(ctx) ir_dereference_variable(var);
1646 } else {
1647 _mesa_glsl_error(& loc, state, "`%s' undeclared",
1648 this->primary_expression.identifier);
1649
1650 result = ir_rvalue::error_value(ctx);
1651 error_emitted = true;
1652 }
1653 break;
1654 }
1655
1656 case ast_int_constant:
1657 result = new(ctx) ir_constant(this->primary_expression.int_constant);
1658 break;
1659
1660 case ast_uint_constant:
1661 result = new(ctx) ir_constant(this->primary_expression.uint_constant);
1662 break;
1663
1664 case ast_float_constant:
1665 result = new(ctx) ir_constant(this->primary_expression.float_constant);
1666 break;
1667
1668 case ast_bool_constant:
1669 result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant));
1670 break;
1671
1672 case ast_sequence: {
1673 /* It should not be possible to generate a sequence in the AST without
1674 * any expressions in it.
1675 */
1676 assert(!this->expressions.is_empty());
1677
1678 /* The r-value of a sequence is the last expression in the sequence. If
1679 * the other expressions in the sequence do not have side-effects (and
1680 * therefore add instructions to the instruction list), they get dropped
1681 * on the floor.
1682 */
1683 exec_node *previous_tail_pred = NULL;
1684 YYLTYPE previous_operand_loc = loc;
1685
1686 foreach_list_typed (ast_node, ast, link, &this->expressions) {
1687 /* If one of the operands of comma operator does not generate any
1688 * code, we want to emit a warning. At each pass through the loop
1689 * previous_tail_pred will point to the last instruction in the
1690 * stream *before* processing the previous operand. Naturally,
1691 * instructions->tail_pred will point to the last instruction in the
1692 * stream *after* processing the previous operand. If the two
1693 * pointers match, then the previous operand had no effect.
1694 *
1695 * The warning behavior here differs slightly from GCC. GCC will
1696 * only emit a warning if none of the left-hand operands have an
1697 * effect. However, it will emit a warning for each. I believe that
1698 * there are some cases in C (especially with GCC extensions) where
1699 * it is useful to have an intermediate step in a sequence have no
1700 * effect, but I don't think these cases exist in GLSL. Either way,
1701 * it would be a giant hassle to replicate that behavior.
1702 */
1703 if (previous_tail_pred == instructions->tail_pred) {
1704 _mesa_glsl_warning(&previous_operand_loc, state,
1705 "left-hand operand of comma expression has "
1706 "no effect");
1707 }
1708
1709 /* tail_pred is directly accessed instead of using the get_tail()
1710 * method for performance reasons. get_tail() has extra code to
1711 * return NULL when the list is empty. We don't care about that
1712 * here, so using tail_pred directly is fine.
1713 */
1714 previous_tail_pred = instructions->tail_pred;
1715 previous_operand_loc = ast->get_location();
1716
1717 result = ast->hir(instructions, state);
1718 }
1719
1720 /* Any errors should have already been emitted in the loop above.
1721 */
1722 error_emitted = true;
1723 break;
1724 }
1725 }
1726 type = NULL; /* use result->type, not type. */
1727 assert(result != NULL);
1728
1729 if (result->type->is_error() && !error_emitted)
1730 _mesa_glsl_error(& loc, state, "type mismatch");
1731
1732 return result;
1733 }
1734
1735
1736 ir_rvalue *
1737 ast_expression_statement::hir(exec_list *instructions,
1738 struct _mesa_glsl_parse_state *state)
1739 {
1740 /* It is possible to have expression statements that don't have an
1741 * expression. This is the solitary semicolon:
1742 *
1743 * for (i = 0; i < 5; i++)
1744 * ;
1745 *
1746 * In this case the expression will be NULL. Test for NULL and don't do
1747 * anything in that case.
1748 */
1749 if (expression != NULL)
1750 expression->hir(instructions, state);
1751
1752 /* Statements do not have r-values.
1753 */
1754 return NULL;
1755 }
1756
1757
1758 ir_rvalue *
1759 ast_compound_statement::hir(exec_list *instructions,
1760 struct _mesa_glsl_parse_state *state)
1761 {
1762 if (new_scope)
1763 state->symbols->push_scope();
1764
1765 foreach_list_typed (ast_node, ast, link, &this->statements)
1766 ast->hir(instructions, state);
1767
1768 if (new_scope)
1769 state->symbols->pop_scope();
1770
1771 /* Compound statements do not have r-values.
1772 */
1773 return NULL;
1774 }
1775
1776 /**
1777 * Evaluate the given exec_node (which should be an ast_node representing
1778 * a single array dimension) and return its integer value.
1779 */
1780 static const unsigned
1781 process_array_size(exec_node *node,
1782 struct _mesa_glsl_parse_state *state)
1783 {
1784 exec_list dummy_instructions;
1785
1786 ast_node *array_size = exec_node_data(ast_node, node, link);
1787 ir_rvalue *const ir = array_size->hir(& dummy_instructions,
1788 state);
1789 YYLTYPE loc = array_size->get_location();
1790
1791 if (ir == NULL) {
1792 _mesa_glsl_error(& loc, state,
1793 "array size could not be resolved");
1794 return 0;
1795 }
1796
1797 if (!ir->type->is_integer()) {
1798 _mesa_glsl_error(& loc, state,
1799 "array size must be integer type");
1800 return 0;
1801 }
1802
1803 if (!ir->type->is_scalar()) {
1804 _mesa_glsl_error(& loc, state,
1805 "array size must be scalar type");
1806 return 0;
1807 }
1808
1809 ir_constant *const size = ir->constant_expression_value();
1810 if (size == NULL) {
1811 _mesa_glsl_error(& loc, state, "array size must be a "
1812 "constant valued expression");
1813 return 0;
1814 }
1815
1816 if (size->value.i[0] <= 0) {
1817 _mesa_glsl_error(& loc, state, "array size must be > 0");
1818 return 0;
1819 }
1820
1821 assert(size->type == ir->type);
1822
1823 /* If the array size is const (and we've verified that
1824 * it is) then no instructions should have been emitted
1825 * when we converted it to HIR. If they were emitted,
1826 * then either the array size isn't const after all, or
1827 * we are emitting unnecessary instructions.
1828 */
1829 assert(dummy_instructions.is_empty());
1830
1831 return size->value.u[0];
1832 }
1833
1834 static const glsl_type *
1835 process_array_type(YYLTYPE *loc, const glsl_type *base,
1836 ast_array_specifier *array_specifier,
1837 struct _mesa_glsl_parse_state *state)
1838 {
1839 const glsl_type *array_type = base;
1840
1841 if (array_specifier != NULL) {
1842 if (base->is_array()) {
1843
1844 /* From page 19 (page 25) of the GLSL 1.20 spec:
1845 *
1846 * "Only one-dimensional arrays may be declared."
1847 */
1848 if (!state->ARB_arrays_of_arrays_enable) {
1849 _mesa_glsl_error(loc, state,
1850 "invalid array of `%s'"
1851 "GL_ARB_arrays_of_arrays "
1852 "required for defining arrays of arrays",
1853 base->name);
1854 return glsl_type::error_type;
1855 }
1856
1857 if (base->length == 0) {
1858 _mesa_glsl_error(loc, state,
1859 "only the outermost array dimension can "
1860 "be unsized",
1861 base->name);
1862 return glsl_type::error_type;
1863 }
1864 }
1865
1866 for (exec_node *node = array_specifier->array_dimensions.tail_pred;
1867 !node->is_head_sentinel(); node = node->prev) {
1868 unsigned array_size = process_array_size(node, state);
1869 array_type = glsl_type::get_array_instance(array_type,
1870 array_size);
1871 }
1872
1873 if (array_specifier->is_unsized_array)
1874 array_type = glsl_type::get_array_instance(array_type, 0);
1875 }
1876
1877 return array_type;
1878 }
1879
1880
1881 const glsl_type *
1882 ast_type_specifier::glsl_type(const char **name,
1883 struct _mesa_glsl_parse_state *state) const
1884 {
1885 const struct glsl_type *type;
1886
1887 type = state->symbols->get_type(this->type_name);
1888 *name = this->type_name;
1889
1890 YYLTYPE loc = this->get_location();
1891 type = process_array_type(&loc, type, this->array_specifier, state);
1892
1893 return type;
1894 }
1895
1896 const glsl_type *
1897 ast_fully_specified_type::glsl_type(const char **name,
1898 struct _mesa_glsl_parse_state *state) const
1899 {
1900 const struct glsl_type *type = this->specifier->glsl_type(name, state);
1901
1902 if (type == NULL)
1903 return NULL;
1904
1905 if (type->base_type == GLSL_TYPE_FLOAT
1906 && state->es_shader
1907 && state->stage == MESA_SHADER_FRAGMENT
1908 && this->qualifier.precision == ast_precision_none
1909 && state->symbols->get_variable("#default precision") == NULL) {
1910 YYLTYPE loc = this->get_location();
1911 _mesa_glsl_error(&loc, state,
1912 "no precision specified this scope for type `%s'",
1913 type->name);
1914 }
1915
1916 return type;
1917 }
1918
1919 /**
1920 * Determine whether a toplevel variable declaration declares a varying. This
1921 * function operates by examining the variable's mode and the shader target,
1922 * so it correctly identifies linkage variables regardless of whether they are
1923 * declared using the deprecated "varying" syntax or the new "in/out" syntax.
1924 *
1925 * Passing a non-toplevel variable declaration (e.g. a function parameter) to
1926 * this function will produce undefined results.
1927 */
1928 static bool
1929 is_varying_var(ir_variable *var, gl_shader_stage target)
1930 {
1931 switch (target) {
1932 case MESA_SHADER_VERTEX:
1933 return var->data.mode == ir_var_shader_out;
1934 case MESA_SHADER_FRAGMENT:
1935 return var->data.mode == ir_var_shader_in;
1936 default:
1937 return var->data.mode == ir_var_shader_out || var->data.mode == ir_var_shader_in;
1938 }
1939 }
1940
1941
1942 /**
1943 * Matrix layout qualifiers are only allowed on certain types
1944 */
1945 static void
1946 validate_matrix_layout_for_type(struct _mesa_glsl_parse_state *state,
1947 YYLTYPE *loc,
1948 const glsl_type *type,
1949 ir_variable *var)
1950 {
1951 if (var && !var->is_in_uniform_block()) {
1952 /* Layout qualifiers may only apply to interface blocks and fields in
1953 * them.
1954 */
1955 _mesa_glsl_error(loc, state,
1956 "uniform block layout qualifiers row_major and "
1957 "column_major may not be applied to variables "
1958 "outside of uniform blocks");
1959 } else if (!type->is_matrix()) {
1960 /* The OpenGL ES 3.0 conformance tests did not originally allow
1961 * matrix layout qualifiers on non-matrices. However, the OpenGL
1962 * 4.4 and OpenGL ES 3.0 (revision TBD) specifications were
1963 * amended to specifically allow these layouts on all types. Emit
1964 * a warning so that people know their code may not be portable.
1965 */
1966 _mesa_glsl_warning(loc, state,
1967 "uniform block layout qualifiers row_major and "
1968 "column_major applied to non-matrix types may "
1969 "be rejected by older compilers");
1970 } else if (type->is_record()) {
1971 /* We allow 'layout(row_major)' on structure types because it's the only
1972 * way to get row-major layouts on matrices contained in structures.
1973 */
1974 _mesa_glsl_warning(loc, state,
1975 "uniform block layout qualifiers row_major and "
1976 "column_major applied to structure types is not "
1977 "strictly conformant and may be rejected by other "
1978 "compilers");
1979 }
1980 }
1981
1982 static bool
1983 validate_binding_qualifier(struct _mesa_glsl_parse_state *state,
1984 YYLTYPE *loc,
1985 ir_variable *var,
1986 const ast_type_qualifier *qual)
1987 {
1988 if (var->data.mode != ir_var_uniform) {
1989 _mesa_glsl_error(loc, state,
1990 "the \"binding\" qualifier only applies to uniforms");
1991 return false;
1992 }
1993
1994 if (qual->binding < 0) {
1995 _mesa_glsl_error(loc, state, "binding values must be >= 0");
1996 return false;
1997 }
1998
1999 const struct gl_context *const ctx = state->ctx;
2000 unsigned elements = var->type->is_array() ? var->type->length : 1;
2001 unsigned max_index = qual->binding + elements - 1;
2002
2003 if (var->type->is_interface()) {
2004 /* UBOs. From page 60 of the GLSL 4.20 specification:
2005 * "If the binding point for any uniform block instance is less than zero,
2006 * or greater than or equal to the implementation-dependent maximum
2007 * number of uniform buffer bindings, a compilation error will occur.
2008 * When the binding identifier is used with a uniform block instanced as
2009 * an array of size N, all elements of the array from binding through
2010 * binding + N – 1 must be within this range."
2011 *
2012 * The implementation-dependent maximum is GL_MAX_UNIFORM_BUFFER_BINDINGS.
2013 */
2014 if (max_index >= ctx->Const.MaxUniformBufferBindings) {
2015 _mesa_glsl_error(loc, state, "layout(binding = %d) for %d UBOs exceeds "
2016 "the maximum number of UBO binding points (%d)",
2017 qual->binding, elements,
2018 ctx->Const.MaxUniformBufferBindings);
2019 return false;
2020 }
2021 } else if (var->type->is_sampler() ||
2022 (var->type->is_array() && var->type->fields.array->is_sampler())) {
2023 /* Samplers. From page 63 of the GLSL 4.20 specification:
2024 * "If the binding is less than zero, or greater than or equal to the
2025 * implementation-dependent maximum supported number of units, a
2026 * compilation error will occur. When the binding identifier is used
2027 * with an array of size N, all elements of the array from binding
2028 * through binding + N - 1 must be within this range."
2029 */
2030 unsigned limit = ctx->Const.Program[state->stage].MaxTextureImageUnits;
2031
2032 if (max_index >= limit) {
2033 _mesa_glsl_error(loc, state, "layout(binding = %d) for %d samplers "
2034 "exceeds the maximum number of texture image units "
2035 "(%d)", qual->binding, elements, limit);
2036
2037 return false;
2038 }
2039 } else if (var->type->contains_atomic()) {
2040 assert(ctx->Const.MaxAtomicBufferBindings <= MAX_COMBINED_ATOMIC_BUFFERS);
2041 if (unsigned(qual->binding) >= ctx->Const.MaxAtomicBufferBindings) {
2042 _mesa_glsl_error(loc, state, "layout(binding = %d) exceeds the "
2043 " maximum number of atomic counter buffer bindings"
2044 "(%d)", qual->binding,
2045 ctx->Const.MaxAtomicBufferBindings);
2046
2047 return false;
2048 }
2049 } else {
2050 _mesa_glsl_error(loc, state,
2051 "the \"binding\" qualifier only applies to uniform "
2052 "blocks, samplers, atomic counters, or arrays thereof");
2053 return false;
2054 }
2055
2056 return true;
2057 }
2058
2059
2060 static glsl_interp_qualifier
2061 interpret_interpolation_qualifier(const struct ast_type_qualifier *qual,
2062 ir_variable_mode mode,
2063 struct _mesa_glsl_parse_state *state,
2064 YYLTYPE *loc)
2065 {
2066 glsl_interp_qualifier interpolation;
2067 if (qual->flags.q.flat)
2068 interpolation = INTERP_QUALIFIER_FLAT;
2069 else if (qual->flags.q.noperspective)
2070 interpolation = INTERP_QUALIFIER_NOPERSPECTIVE;
2071 else if (qual->flags.q.smooth)
2072 interpolation = INTERP_QUALIFIER_SMOOTH;
2073 else
2074 interpolation = INTERP_QUALIFIER_NONE;
2075
2076 if (interpolation != INTERP_QUALIFIER_NONE) {
2077 if (mode != ir_var_shader_in && mode != ir_var_shader_out) {
2078 _mesa_glsl_error(loc, state,
2079 "interpolation qualifier `%s' can only be applied to "
2080 "shader inputs or outputs.",
2081 interpolation_string(interpolation));
2082
2083 }
2084
2085 if ((state->stage == MESA_SHADER_VERTEX && mode == ir_var_shader_in) ||
2086 (state->stage == MESA_SHADER_FRAGMENT && mode == ir_var_shader_out)) {
2087 _mesa_glsl_error(loc, state,
2088 "interpolation qualifier `%s' cannot be applied to "
2089 "vertex shader inputs or fragment shader outputs",
2090 interpolation_string(interpolation));
2091 }
2092 }
2093
2094 return interpolation;
2095 }
2096
2097
2098 static void
2099 validate_explicit_location(const struct ast_type_qualifier *qual,
2100 ir_variable *var,
2101 struct _mesa_glsl_parse_state *state,
2102 YYLTYPE *loc)
2103 {
2104 bool fail = false;
2105
2106 /* In the vertex shader only shader inputs can be given explicit
2107 * locations.
2108 *
2109 * In the fragment shader only shader outputs can be given explicit
2110 * locations.
2111 */
2112 switch (state->stage) {
2113 case MESA_SHADER_VERTEX:
2114 if (var->data.mode == ir_var_shader_in) {
2115 if (!state->check_explicit_attrib_location_allowed(loc, var))
2116 return;
2117
2118 break;
2119 }
2120
2121 fail = true;
2122 break;
2123
2124 case MESA_SHADER_GEOMETRY:
2125 _mesa_glsl_error(loc, state,
2126 "geometry shader variables cannot be given "
2127 "explicit locations");
2128 return;
2129
2130 case MESA_SHADER_FRAGMENT:
2131 if (var->data.mode == ir_var_shader_out) {
2132 if (!state->check_explicit_attrib_location_allowed(loc, var))
2133 return;
2134
2135 break;
2136 }
2137
2138 fail = true;
2139 break;
2140 };
2141
2142 if (fail) {
2143 _mesa_glsl_error(loc, state,
2144 "%s cannot be given an explicit location in %s shader",
2145 mode_string(var),
2146 _mesa_shader_stage_to_string(state->stage));
2147 } else {
2148 var->data.explicit_location = true;
2149
2150 /* This bit of silliness is needed because invalid explicit locations
2151 * are supposed to be flagged during linking. Small negative values
2152 * biased by VERT_ATTRIB_GENERIC0 or FRAG_RESULT_DATA0 could alias
2153 * built-in values (e.g., -16+VERT_ATTRIB_GENERIC0 = VERT_ATTRIB_POS).
2154 * The linker needs to be able to differentiate these cases. This
2155 * ensures that negative values stay negative.
2156 */
2157 if (qual->location >= 0) {
2158 var->data.location = (state->stage == MESA_SHADER_VERTEX)
2159 ? (qual->location + VERT_ATTRIB_GENERIC0)
2160 : (qual->location + FRAG_RESULT_DATA0);
2161 } else {
2162 var->data.location = qual->location;
2163 }
2164
2165 if (qual->flags.q.explicit_index) {
2166 /* From the GLSL 4.30 specification, section 4.4.2 (Output
2167 * Layout Qualifiers):
2168 *
2169 * "It is also a compile-time error if a fragment shader
2170 * sets a layout index to less than 0 or greater than 1."
2171 *
2172 * Older specifications don't mandate a behavior; we take
2173 * this as a clarification and always generate the error.
2174 */
2175 if (qual->index < 0 || qual->index > 1) {
2176 _mesa_glsl_error(loc, state,
2177 "explicit index may only be 0 or 1");
2178 } else {
2179 var->data.explicit_index = true;
2180 var->data.index = qual->index;
2181 }
2182 }
2183 }
2184
2185 return;
2186 }
2187
2188 static void
2189 apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
2190 ir_variable *var,
2191 struct _mesa_glsl_parse_state *state,
2192 YYLTYPE *loc,
2193 bool is_parameter)
2194 {
2195 STATIC_ASSERT(sizeof(qual->flags.q) <= sizeof(qual->flags.i));
2196
2197 if (qual->flags.q.invariant) {
2198 if (var->data.used) {
2199 _mesa_glsl_error(loc, state,
2200 "variable `%s' may not be redeclared "
2201 "`invariant' after being used",
2202 var->name);
2203 } else {
2204 var->data.invariant = 1;
2205 }
2206 }
2207
2208 if (qual->flags.q.constant || qual->flags.q.attribute
2209 || qual->flags.q.uniform
2210 || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
2211 var->data.read_only = 1;
2212
2213 if (qual->flags.q.centroid)
2214 var->data.centroid = 1;
2215
2216 if (qual->flags.q.sample)
2217 var->data.sample = 1;
2218
2219 if (qual->flags.q.attribute && state->stage != MESA_SHADER_VERTEX) {
2220 var->type = glsl_type::error_type;
2221 _mesa_glsl_error(loc, state,
2222 "`attribute' variables may not be declared in the "
2223 "%s shader",
2224 _mesa_shader_stage_to_string(state->stage));
2225 }
2226
2227 /* Section 6.1.1 (Function Calling Conventions) of the GLSL 1.10 spec says:
2228 *
2229 * "However, the const qualifier cannot be used with out or inout."
2230 *
2231 * The same section of the GLSL 4.40 spec further clarifies this saying:
2232 *
2233 * "The const qualifier cannot be used with out or inout, or a
2234 * compile-time error results."
2235 */
2236 if (is_parameter && qual->flags.q.constant && qual->flags.q.out) {
2237 _mesa_glsl_error(loc, state,
2238 "`const' may not be applied to `out' or `inout' "
2239 "function parameters");
2240 }
2241
2242 /* If there is no qualifier that changes the mode of the variable, leave
2243 * the setting alone.
2244 */
2245 if (qual->flags.q.in && qual->flags.q.out)
2246 var->data.mode = ir_var_function_inout;
2247 else if (qual->flags.q.in)
2248 var->data.mode = is_parameter ? ir_var_function_in : ir_var_shader_in;
2249 else if (qual->flags.q.attribute
2250 || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
2251 var->data.mode = ir_var_shader_in;
2252 else if (qual->flags.q.out)
2253 var->data.mode = is_parameter ? ir_var_function_out : ir_var_shader_out;
2254 else if (qual->flags.q.varying && (state->stage == MESA_SHADER_VERTEX))
2255 var->data.mode = ir_var_shader_out;
2256 else if (qual->flags.q.uniform)
2257 var->data.mode = ir_var_uniform;
2258
2259 if (!is_parameter && is_varying_var(var, state->stage)) {
2260 /* This variable is being used to link data between shader stages (in
2261 * pre-glsl-1.30 parlance, it's a "varying"). Check that it has a type
2262 * that is allowed for such purposes.
2263 *
2264 * From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
2265 *
2266 * "The varying qualifier can be used only with the data types
2267 * float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
2268 * these."
2269 *
2270 * This was relaxed in GLSL version 1.30 and GLSL ES version 3.00. From
2271 * page 31 (page 37 of the PDF) of the GLSL 1.30 spec:
2272 *
2273 * "Fragment inputs can only be signed and unsigned integers and
2274 * integer vectors, float, floating-point vectors, matrices, or
2275 * arrays of these. Structures cannot be input.
2276 *
2277 * Similar text exists in the section on vertex shader outputs.
2278 *
2279 * Similar text exists in the GLSL ES 3.00 spec, except that the GLSL ES
2280 * 3.00 spec allows structs as well. Varying structs are also allowed
2281 * in GLSL 1.50.
2282 */
2283 switch (var->type->get_scalar_type()->base_type) {
2284 case GLSL_TYPE_FLOAT:
2285 /* Ok in all GLSL versions */
2286 break;
2287 case GLSL_TYPE_UINT:
2288 case GLSL_TYPE_INT:
2289 if (state->is_version(130, 300))
2290 break;
2291 _mesa_glsl_error(loc, state,
2292 "varying variables must be of base type float in %s",
2293 state->get_version_string());
2294 break;
2295 case GLSL_TYPE_STRUCT:
2296 if (state->is_version(150, 300))
2297 break;
2298 _mesa_glsl_error(loc, state,
2299 "varying variables may not be of type struct");
2300 break;
2301 default:
2302 _mesa_glsl_error(loc, state, "illegal type for a varying variable");
2303 break;
2304 }
2305 }
2306
2307 if (state->all_invariant && (state->current_function == NULL)) {
2308 switch (state->stage) {
2309 case MESA_SHADER_VERTEX:
2310 if (var->data.mode == ir_var_shader_out)
2311 var->data.invariant = true;
2312 break;
2313 case MESA_SHADER_GEOMETRY:
2314 if ((var->data.mode == ir_var_shader_in)
2315 || (var->data.mode == ir_var_shader_out))
2316 var->data.invariant = true;
2317 break;
2318 case MESA_SHADER_FRAGMENT:
2319 if (var->data.mode == ir_var_shader_in)
2320 var->data.invariant = true;
2321 break;
2322 }
2323 }
2324
2325 var->data.interpolation =
2326 interpret_interpolation_qualifier(qual, (ir_variable_mode) var->data.mode,
2327 state, loc);
2328
2329 var->data.pixel_center_integer = qual->flags.q.pixel_center_integer;
2330 var->data.origin_upper_left = qual->flags.q.origin_upper_left;
2331 if ((qual->flags.q.origin_upper_left || qual->flags.q.pixel_center_integer)
2332 && (strcmp(var->name, "gl_FragCoord") != 0)) {
2333 const char *const qual_string = (qual->flags.q.origin_upper_left)
2334 ? "origin_upper_left" : "pixel_center_integer";
2335
2336 _mesa_glsl_error(loc, state,
2337 "layout qualifier `%s' can only be applied to "
2338 "fragment shader input `gl_FragCoord'",
2339 qual_string);
2340 }
2341
2342 if (qual->flags.q.explicit_location) {
2343 validate_explicit_location(qual, var, state, loc);
2344 } else if (qual->flags.q.explicit_index) {
2345 _mesa_glsl_error(loc, state,
2346 "explicit index requires explicit location");
2347 }
2348
2349 if (qual->flags.q.explicit_binding &&
2350 validate_binding_qualifier(state, loc, var, qual)) {
2351 var->data.explicit_binding = true;
2352 var->data.binding = qual->binding;
2353 }
2354
2355 if (var->type->contains_atomic()) {
2356 if (var->data.mode == ir_var_uniform) {
2357 if (var->data.explicit_binding) {
2358 unsigned *offset =
2359 &state->atomic_counter_offsets[var->data.binding];
2360
2361 if (*offset % ATOMIC_COUNTER_SIZE)
2362 _mesa_glsl_error(loc, state,
2363 "misaligned atomic counter offset");
2364
2365 var->data.atomic.offset = *offset;
2366 *offset += var->type->atomic_size();
2367
2368 } else {
2369 _mesa_glsl_error(loc, state,
2370 "atomic counters require explicit binding point");
2371 }
2372 } else if (var->data.mode != ir_var_function_in) {
2373 _mesa_glsl_error(loc, state, "atomic counters may only be declared as "
2374 "function parameters or uniform-qualified "
2375 "global variables");
2376 }
2377 }
2378
2379 /* Does the declaration use the deprecated 'attribute' or 'varying'
2380 * keywords?
2381 */
2382 const bool uses_deprecated_qualifier = qual->flags.q.attribute
2383 || qual->flags.q.varying;
2384
2385 /* Is the 'layout' keyword used with parameters that allow relaxed checking.
2386 * Many implementations of GL_ARB_fragment_coord_conventions_enable and some
2387 * implementations (only Mesa?) GL_ARB_explicit_attrib_location_enable
2388 * allowed the layout qualifier to be used with 'varying' and 'attribute'.
2389 * These extensions and all following extensions that add the 'layout'
2390 * keyword have been modified to require the use of 'in' or 'out'.
2391 *
2392 * The following extension do not allow the deprecated keywords:
2393 *
2394 * GL_AMD_conservative_depth
2395 * GL_ARB_conservative_depth
2396 * GL_ARB_gpu_shader5
2397 * GL_ARB_separate_shader_objects
2398 * GL_ARB_tesselation_shader
2399 * GL_ARB_transform_feedback3
2400 * GL_ARB_uniform_buffer_object
2401 *
2402 * It is unknown whether GL_EXT_shader_image_load_store or GL_NV_gpu_shader5
2403 * allow layout with the deprecated keywords.
2404 */
2405 const bool relaxed_layout_qualifier_checking =
2406 state->ARB_fragment_coord_conventions_enable;
2407
2408 if (qual->has_layout() && uses_deprecated_qualifier) {
2409 if (relaxed_layout_qualifier_checking) {
2410 _mesa_glsl_warning(loc, state,
2411 "`layout' qualifier may not be used with "
2412 "`attribute' or `varying'");
2413 } else {
2414 _mesa_glsl_error(loc, state,
2415 "`layout' qualifier may not be used with "
2416 "`attribute' or `varying'");
2417 }
2418 }
2419
2420 /* Layout qualifiers for gl_FragDepth, which are enabled by extension
2421 * AMD_conservative_depth.
2422 */
2423 int depth_layout_count = qual->flags.q.depth_any
2424 + qual->flags.q.depth_greater
2425 + qual->flags.q.depth_less
2426 + qual->flags.q.depth_unchanged;
2427 if (depth_layout_count > 0
2428 && !state->AMD_conservative_depth_enable
2429 && !state->ARB_conservative_depth_enable) {
2430 _mesa_glsl_error(loc, state,
2431 "extension GL_AMD_conservative_depth or "
2432 "GL_ARB_conservative_depth must be enabled "
2433 "to use depth layout qualifiers");
2434 } else if (depth_layout_count > 0
2435 && strcmp(var->name, "gl_FragDepth") != 0) {
2436 _mesa_glsl_error(loc, state,
2437 "depth layout qualifiers can be applied only to "
2438 "gl_FragDepth");
2439 } else if (depth_layout_count > 1
2440 && strcmp(var->name, "gl_FragDepth") == 0) {
2441 _mesa_glsl_error(loc, state,
2442 "at most one depth layout qualifier can be applied to "
2443 "gl_FragDepth");
2444 }
2445 if (qual->flags.q.depth_any)
2446 var->data.depth_layout = ir_depth_layout_any;
2447 else if (qual->flags.q.depth_greater)
2448 var->data.depth_layout = ir_depth_layout_greater;
2449 else if (qual->flags.q.depth_less)
2450 var->data.depth_layout = ir_depth_layout_less;
2451 else if (qual->flags.q.depth_unchanged)
2452 var->data.depth_layout = ir_depth_layout_unchanged;
2453 else
2454 var->data.depth_layout = ir_depth_layout_none;
2455
2456 if (qual->flags.q.std140 ||
2457 qual->flags.q.packed ||
2458 qual->flags.q.shared) {
2459 _mesa_glsl_error(loc, state,
2460 "uniform block layout qualifiers std140, packed, and "
2461 "shared can only be applied to uniform blocks, not "
2462 "members");
2463 }
2464
2465 if (qual->flags.q.row_major || qual->flags.q.column_major) {
2466 validate_matrix_layout_for_type(state, loc, var->type, var);
2467 }
2468 }
2469
2470 /**
2471 * Get the variable that is being redeclared by this declaration
2472 *
2473 * Semantic checks to verify the validity of the redeclaration are also
2474 * performed. If semantic checks fail, compilation error will be emitted via
2475 * \c _mesa_glsl_error, but a non-\c NULL pointer will still be returned.
2476 *
2477 * \returns
2478 * A pointer to an existing variable in the current scope if the declaration
2479 * is a redeclaration, \c NULL otherwise.
2480 */
2481 static ir_variable *
2482 get_variable_being_redeclared(ir_variable *var, YYLTYPE loc,
2483 struct _mesa_glsl_parse_state *state,
2484 bool allow_all_redeclarations)
2485 {
2486 /* Check if this declaration is actually a re-declaration, either to
2487 * resize an array or add qualifiers to an existing variable.
2488 *
2489 * This is allowed for variables in the current scope, or when at
2490 * global scope (for built-ins in the implicit outer scope).
2491 */
2492 ir_variable *earlier = state->symbols->get_variable(var->name);
2493 if (earlier == NULL ||
2494 (state->current_function != NULL &&
2495 !state->symbols->name_declared_this_scope(var->name))) {
2496 return NULL;
2497 }
2498
2499
2500 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
2501 *
2502 * "It is legal to declare an array without a size and then
2503 * later re-declare the same name as an array of the same
2504 * type and specify a size."
2505 */
2506 if (earlier->type->is_unsized_array() && var->type->is_array()
2507 && (var->type->element_type() == earlier->type->element_type())) {
2508 /* FINISHME: This doesn't match the qualifiers on the two
2509 * FINISHME: declarations. It's not 100% clear whether this is
2510 * FINISHME: required or not.
2511 */
2512
2513 const unsigned size = unsigned(var->type->array_size());
2514 check_builtin_array_max_size(var->name, size, loc, state);
2515 if ((size > 0) && (size <= earlier->data.max_array_access)) {
2516 _mesa_glsl_error(& loc, state, "array size must be > %u due to "
2517 "previous access",
2518 earlier->data.max_array_access);
2519 }
2520
2521 earlier->type = var->type;
2522 delete var;
2523 var = NULL;
2524 } else if ((state->ARB_fragment_coord_conventions_enable ||
2525 state->is_version(150, 0))
2526 && strcmp(var->name, "gl_FragCoord") == 0
2527 && earlier->type == var->type
2528 && earlier->data.mode == var->data.mode) {
2529 /* Allow redeclaration of gl_FragCoord for ARB_fcc layout
2530 * qualifiers.
2531 */
2532 earlier->data.origin_upper_left = var->data.origin_upper_left;
2533 earlier->data.pixel_center_integer = var->data.pixel_center_integer;
2534
2535 /* According to section 4.3.7 of the GLSL 1.30 spec,
2536 * the following built-in varaibles can be redeclared with an
2537 * interpolation qualifier:
2538 * * gl_FrontColor
2539 * * gl_BackColor
2540 * * gl_FrontSecondaryColor
2541 * * gl_BackSecondaryColor
2542 * * gl_Color
2543 * * gl_SecondaryColor
2544 */
2545 } else if (state->is_version(130, 0)
2546 && (strcmp(var->name, "gl_FrontColor") == 0
2547 || strcmp(var->name, "gl_BackColor") == 0
2548 || strcmp(var->name, "gl_FrontSecondaryColor") == 0
2549 || strcmp(var->name, "gl_BackSecondaryColor") == 0
2550 || strcmp(var->name, "gl_Color") == 0
2551 || strcmp(var->name, "gl_SecondaryColor") == 0)
2552 && earlier->type == var->type
2553 && earlier->data.mode == var->data.mode) {
2554 earlier->data.interpolation = var->data.interpolation;
2555
2556 /* Layout qualifiers for gl_FragDepth. */
2557 } else if ((state->AMD_conservative_depth_enable ||
2558 state->ARB_conservative_depth_enable)
2559 && strcmp(var->name, "gl_FragDepth") == 0
2560 && earlier->type == var->type
2561 && earlier->data.mode == var->data.mode) {
2562
2563 /** From the AMD_conservative_depth spec:
2564 * Within any shader, the first redeclarations of gl_FragDepth
2565 * must appear before any use of gl_FragDepth.
2566 */
2567 if (earlier->data.used) {
2568 _mesa_glsl_error(&loc, state,
2569 "the first redeclaration of gl_FragDepth "
2570 "must appear before any use of gl_FragDepth");
2571 }
2572
2573 /* Prevent inconsistent redeclaration of depth layout qualifier. */
2574 if (earlier->data.depth_layout != ir_depth_layout_none
2575 && earlier->data.depth_layout != var->data.depth_layout) {
2576 _mesa_glsl_error(&loc, state,
2577 "gl_FragDepth: depth layout is declared here "
2578 "as '%s, but it was previously declared as "
2579 "'%s'",
2580 depth_layout_string(var->data.depth_layout),
2581 depth_layout_string(earlier->data.depth_layout));
2582 }
2583
2584 earlier->data.depth_layout = var->data.depth_layout;
2585
2586 } else if (allow_all_redeclarations) {
2587 if (earlier->data.mode != var->data.mode) {
2588 _mesa_glsl_error(&loc, state,
2589 "redeclaration of `%s' with incorrect qualifiers",
2590 var->name);
2591 } else if (earlier->type != var->type) {
2592 _mesa_glsl_error(&loc, state,
2593 "redeclaration of `%s' has incorrect type",
2594 var->name);
2595 }
2596 } else {
2597 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
2598 }
2599
2600 return earlier;
2601 }
2602
2603 /**
2604 * Generate the IR for an initializer in a variable declaration
2605 */
2606 ir_rvalue *
2607 process_initializer(ir_variable *var, ast_declaration *decl,
2608 ast_fully_specified_type *type,
2609 exec_list *initializer_instructions,
2610 struct _mesa_glsl_parse_state *state)
2611 {
2612 ir_rvalue *result = NULL;
2613
2614 YYLTYPE initializer_loc = decl->initializer->get_location();
2615
2616 /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
2617 *
2618 * "All uniform variables are read-only and are initialized either
2619 * directly by an application via API commands, or indirectly by
2620 * OpenGL."
2621 */
2622 if (var->data.mode == ir_var_uniform) {
2623 state->check_version(120, 0, &initializer_loc,
2624 "cannot initialize uniforms");
2625 }
2626
2627 if (var->type->is_sampler()) {
2628 _mesa_glsl_error(& initializer_loc, state,
2629 "cannot initialize samplers");
2630 }
2631
2632 if ((var->data.mode == ir_var_shader_in) && (state->current_function == NULL)) {
2633 _mesa_glsl_error(& initializer_loc, state,
2634 "cannot initialize %s shader input / %s",
2635 _mesa_shader_stage_to_string(state->stage),
2636 (state->stage == MESA_SHADER_VERTEX)
2637 ? "attribute" : "varying");
2638 }
2639
2640 /* If the initializer is an ast_aggregate_initializer, recursively store
2641 * type information from the LHS into it, so that its hir() function can do
2642 * type checking.
2643 */
2644 if (decl->initializer->oper == ast_aggregate)
2645 _mesa_ast_set_aggregate_type(var->type, decl->initializer);
2646
2647 ir_dereference *const lhs = new(state) ir_dereference_variable(var);
2648 ir_rvalue *rhs = decl->initializer->hir(initializer_instructions,
2649 state);
2650
2651 /* Calculate the constant value if this is a const or uniform
2652 * declaration.
2653 */
2654 if (type->qualifier.flags.q.constant
2655 || type->qualifier.flags.q.uniform) {
2656 ir_rvalue *new_rhs = validate_assignment(state, initializer_loc,
2657 var->type, rhs, true);
2658 if (new_rhs != NULL) {
2659 rhs = new_rhs;
2660
2661 ir_constant *constant_value = rhs->constant_expression_value();
2662 if (!constant_value) {
2663 /* If ARB_shading_language_420pack is enabled, initializers of
2664 * const-qualified local variables do not have to be constant
2665 * expressions. Const-qualified global variables must still be
2666 * initialized with constant expressions.
2667 */
2668 if (!state->ARB_shading_language_420pack_enable
2669 || state->current_function == NULL) {
2670 _mesa_glsl_error(& initializer_loc, state,
2671 "initializer of %s variable `%s' must be a "
2672 "constant expression",
2673 (type->qualifier.flags.q.constant)
2674 ? "const" : "uniform",
2675 decl->identifier);
2676 if (var->type->is_numeric()) {
2677 /* Reduce cascading errors. */
2678 var->constant_value = ir_constant::zero(state, var->type);
2679 }
2680 }
2681 } else {
2682 rhs = constant_value;
2683 var->constant_value = constant_value;
2684 }
2685 } else {
2686 if (var->type->is_numeric()) {
2687 /* Reduce cascading errors. */
2688 var->constant_value = ir_constant::zero(state, var->type);
2689 }
2690 }
2691 }
2692
2693 if (rhs && !rhs->type->is_error()) {
2694 bool temp = var->data.read_only;
2695 if (type->qualifier.flags.q.constant)
2696 var->data.read_only = false;
2697
2698 /* Never emit code to initialize a uniform.
2699 */
2700 const glsl_type *initializer_type;
2701 if (!type->qualifier.flags.q.uniform) {
2702 result = do_assignment(initializer_instructions, state,
2703 NULL,
2704 lhs, rhs, true,
2705 type->get_location());
2706 initializer_type = result->type;
2707 } else
2708 initializer_type = rhs->type;
2709
2710 var->constant_initializer = rhs->constant_expression_value();
2711 var->data.has_initializer = true;
2712
2713 /* If the declared variable is an unsized array, it must inherrit
2714 * its full type from the initializer. A declaration such as
2715 *
2716 * uniform float a[] = float[](1.0, 2.0, 3.0, 3.0);
2717 *
2718 * becomes
2719 *
2720 * uniform float a[4] = float[](1.0, 2.0, 3.0, 3.0);
2721 *
2722 * The assignment generated in the if-statement (below) will also
2723 * automatically handle this case for non-uniforms.
2724 *
2725 * If the declared variable is not an array, the types must
2726 * already match exactly. As a result, the type assignment
2727 * here can be done unconditionally. For non-uniforms the call
2728 * to do_assignment can change the type of the initializer (via
2729 * the implicit conversion rules). For uniforms the initializer
2730 * must be a constant expression, and the type of that expression
2731 * was validated above.
2732 */
2733 var->type = initializer_type;
2734
2735 var->data.read_only = temp;
2736 }
2737
2738 return result;
2739 }
2740
2741
2742 /**
2743 * Do additional processing necessary for geometry shader input declarations
2744 * (this covers both interface blocks arrays and bare input variables).
2745 */
2746 static void
2747 handle_geometry_shader_input_decl(struct _mesa_glsl_parse_state *state,
2748 YYLTYPE loc, ir_variable *var)
2749 {
2750 unsigned num_vertices = 0;
2751 if (state->gs_input_prim_type_specified) {
2752 num_vertices = vertices_per_prim(state->gs_input_prim_type);
2753 }
2754
2755 /* Geometry shader input variables must be arrays. Caller should have
2756 * reported an error for this.
2757 */
2758 if (!var->type->is_array()) {
2759 assert(state->error);
2760
2761 /* To avoid cascading failures, short circuit the checks below. */
2762 return;
2763 }
2764
2765 if (var->type->is_unsized_array()) {
2766 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec says:
2767 *
2768 * All geometry shader input unsized array declarations will be
2769 * sized by an earlier input layout qualifier, when present, as per
2770 * the following table.
2771 *
2772 * Followed by a table mapping each allowed input layout qualifier to
2773 * the corresponding input length.
2774 */
2775 if (num_vertices != 0)
2776 var->type = glsl_type::get_array_instance(var->type->fields.array,
2777 num_vertices);
2778 } else {
2779 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec
2780 * includes the following examples of compile-time errors:
2781 *
2782 * // code sequence within one shader...
2783 * in vec4 Color1[]; // size unknown
2784 * ...Color1.length()...// illegal, length() unknown
2785 * in vec4 Color2[2]; // size is 2
2786 * ...Color1.length()...// illegal, Color1 still has no size
2787 * in vec4 Color3[3]; // illegal, input sizes are inconsistent
2788 * layout(lines) in; // legal, input size is 2, matching
2789 * in vec4 Color4[3]; // illegal, contradicts layout
2790 * ...
2791 *
2792 * To detect the case illustrated by Color3, we verify that the size of
2793 * an explicitly-sized array matches the size of any previously declared
2794 * explicitly-sized array. To detect the case illustrated by Color4, we
2795 * verify that the size of an explicitly-sized array is consistent with
2796 * any previously declared input layout.
2797 */
2798 if (num_vertices != 0 && var->type->length != num_vertices) {
2799 _mesa_glsl_error(&loc, state,
2800 "geometry shader input size contradicts previously"
2801 " declared layout (size is %u, but layout requires a"
2802 " size of %u)", var->type->length, num_vertices);
2803 } else if (state->gs_input_size != 0 &&
2804 var->type->length != state->gs_input_size) {
2805 _mesa_glsl_error(&loc, state,
2806 "geometry shader input sizes are "
2807 "inconsistent (size is %u, but a previous "
2808 "declaration has size %u)",
2809 var->type->length, state->gs_input_size);
2810 } else {
2811 state->gs_input_size = var->type->length;
2812 }
2813 }
2814 }
2815
2816
2817 void
2818 validate_identifier(const char *identifier, YYLTYPE loc,
2819 struct _mesa_glsl_parse_state *state)
2820 {
2821 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
2822 *
2823 * "Identifiers starting with "gl_" are reserved for use by
2824 * OpenGL, and may not be declared in a shader as either a
2825 * variable or a function."
2826 */
2827 if (strncmp(identifier, "gl_", 3) == 0) {
2828 _mesa_glsl_error(&loc, state,
2829 "identifier `%s' uses reserved `gl_' prefix",
2830 identifier);
2831 } else if (strstr(identifier, "__")) {
2832 /* From page 14 (page 20 of the PDF) of the GLSL 1.10
2833 * spec:
2834 *
2835 * "In addition, all identifiers containing two
2836 * consecutive underscores (__) are reserved as
2837 * possible future keywords."
2838 */
2839 _mesa_glsl_error(&loc, state,
2840 "identifier `%s' uses reserved `__' string",
2841 identifier);
2842 }
2843 }
2844
2845
2846 ir_rvalue *
2847 ast_declarator_list::hir(exec_list *instructions,
2848 struct _mesa_glsl_parse_state *state)
2849 {
2850 void *ctx = state;
2851 const struct glsl_type *decl_type;
2852 const char *type_name = NULL;
2853 ir_rvalue *result = NULL;
2854 YYLTYPE loc = this->get_location();
2855
2856 /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec:
2857 *
2858 * "To ensure that a particular output variable is invariant, it is
2859 * necessary to use the invariant qualifier. It can either be used to
2860 * qualify a previously declared variable as being invariant
2861 *
2862 * invariant gl_Position; // make existing gl_Position be invariant"
2863 *
2864 * In these cases the parser will set the 'invariant' flag in the declarator
2865 * list, and the type will be NULL.
2866 */
2867 if (this->invariant) {
2868 assert(this->type == NULL);
2869
2870 if (state->current_function != NULL) {
2871 _mesa_glsl_error(& loc, state,
2872 "all uses of `invariant' keyword must be at global "
2873 "scope");
2874 }
2875
2876 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
2877 assert(!decl->is_array);
2878 assert(decl->array_specifier == NULL);
2879 assert(decl->initializer == NULL);
2880
2881 ir_variable *const earlier =
2882 state->symbols->get_variable(decl->identifier);
2883 if (earlier == NULL) {
2884 _mesa_glsl_error(& loc, state,
2885 "undeclared variable `%s' cannot be marked "
2886 "invariant", decl->identifier);
2887 } else if ((state->stage == MESA_SHADER_VERTEX)
2888 && (earlier->data.mode != ir_var_shader_out)) {
2889 _mesa_glsl_error(& loc, state,
2890 "`%s' cannot be marked invariant, vertex shader "
2891 "outputs only", decl->identifier);
2892 } else if ((state->stage == MESA_SHADER_FRAGMENT)
2893 && (earlier->data.mode != ir_var_shader_in)) {
2894 _mesa_glsl_error(& loc, state,
2895 "`%s' cannot be marked invariant, fragment shader "
2896 "inputs only", decl->identifier);
2897 } else if (earlier->data.used) {
2898 _mesa_glsl_error(& loc, state,
2899 "variable `%s' may not be redeclared "
2900 "`invariant' after being used",
2901 earlier->name);
2902 } else {
2903 earlier->data.invariant = true;
2904 }
2905 }
2906
2907 /* Invariant redeclarations do not have r-values.
2908 */
2909 return NULL;
2910 }
2911
2912 assert(this->type != NULL);
2913 assert(!this->invariant);
2914
2915 /* The type specifier may contain a structure definition. Process that
2916 * before any of the variable declarations.
2917 */
2918 (void) this->type->specifier->hir(instructions, state);
2919
2920 decl_type = this->type->glsl_type(& type_name, state);
2921
2922 /* An offset-qualified atomic counter declaration sets the default
2923 * offset for the next declaration within the same atomic counter
2924 * buffer.
2925 */
2926 if (decl_type && decl_type->contains_atomic()) {
2927 if (type->qualifier.flags.q.explicit_binding &&
2928 type->qualifier.flags.q.explicit_offset)
2929 state->atomic_counter_offsets[type->qualifier.binding] =
2930 type->qualifier.offset;
2931 }
2932
2933 if (this->declarations.is_empty()) {
2934 /* If there is no structure involved in the program text, there are two
2935 * possible scenarios:
2936 *
2937 * - The program text contained something like 'vec4;'. This is an
2938 * empty declaration. It is valid but weird. Emit a warning.
2939 *
2940 * - The program text contained something like 'S;' and 'S' is not the
2941 * name of a known structure type. This is both invalid and weird.
2942 * Emit an error.
2943 *
2944 * - The program text contained something like 'mediump float;'
2945 * when the programmer probably meant 'precision mediump
2946 * float;' Emit a warning with a description of what they
2947 * probably meant to do.
2948 *
2949 * Note that if decl_type is NULL and there is a structure involved,
2950 * there must have been some sort of error with the structure. In this
2951 * case we assume that an error was already generated on this line of
2952 * code for the structure. There is no need to generate an additional,
2953 * confusing error.
2954 */
2955 assert(this->type->specifier->structure == NULL || decl_type != NULL
2956 || state->error);
2957
2958 if (decl_type == NULL) {
2959 _mesa_glsl_error(&loc, state,
2960 "invalid type `%s' in empty declaration",
2961 type_name);
2962 } else if (decl_type->base_type == GLSL_TYPE_ATOMIC_UINT) {
2963 /* Empty atomic counter declarations are allowed and useful
2964 * to set the default offset qualifier.
2965 */
2966 return NULL;
2967 } else if (this->type->qualifier.precision != ast_precision_none) {
2968 if (this->type->specifier->structure != NULL) {
2969 _mesa_glsl_error(&loc, state,
2970 "precision qualifiers can't be applied "
2971 "to structures");
2972 } else {
2973 static const char *const precision_names[] = {
2974 "highp",
2975 "highp",
2976 "mediump",
2977 "lowp"
2978 };
2979
2980 _mesa_glsl_warning(&loc, state,
2981 "empty declaration with precision qualifier, "
2982 "to set the default precision, use "
2983 "`precision %s %s;'",
2984 precision_names[this->type->qualifier.precision],
2985 type_name);
2986 }
2987 } else if (this->type->specifier->structure == NULL) {
2988 _mesa_glsl_warning(&loc, state, "empty declaration");
2989 }
2990 }
2991
2992 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
2993 const struct glsl_type *var_type;
2994 ir_variable *var;
2995
2996 /* FINISHME: Emit a warning if a variable declaration shadows a
2997 * FINISHME: declaration at a higher scope.
2998 */
2999
3000 if ((decl_type == NULL) || decl_type->is_void()) {
3001 if (type_name != NULL) {
3002 _mesa_glsl_error(& loc, state,
3003 "invalid type `%s' in declaration of `%s'",
3004 type_name, decl->identifier);
3005 } else {
3006 _mesa_glsl_error(& loc, state,
3007 "invalid type in declaration of `%s'",
3008 decl->identifier);
3009 }
3010 continue;
3011 }
3012
3013 var_type = process_array_type(&loc, decl_type, decl->array_specifier,
3014 state);
3015
3016 var = new(ctx) ir_variable(var_type, decl->identifier, ir_var_auto);
3017
3018 /* The 'varying in' and 'varying out' qualifiers can only be used with
3019 * ARB_geometry_shader4 and EXT_geometry_shader4, which we don't support
3020 * yet.
3021 */
3022 if (this->type->qualifier.flags.q.varying) {
3023 if (this->type->qualifier.flags.q.in) {
3024 _mesa_glsl_error(& loc, state,
3025 "`varying in' qualifier in declaration of "
3026 "`%s' only valid for geometry shaders using "
3027 "ARB_geometry_shader4 or EXT_geometry_shader4",
3028 decl->identifier);
3029 } else if (this->type->qualifier.flags.q.out) {
3030 _mesa_glsl_error(& loc, state,
3031 "`varying out' qualifier in declaration of "
3032 "`%s' only valid for geometry shaders using "
3033 "ARB_geometry_shader4 or EXT_geometry_shader4",
3034 decl->identifier);
3035 }
3036 }
3037
3038 /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
3039 *
3040 * "Global variables can only use the qualifiers const,
3041 * attribute, uni form, or varying. Only one may be
3042 * specified.
3043 *
3044 * Local variables can only use the qualifier const."
3045 *
3046 * This is relaxed in GLSL 1.30 and GLSL ES 3.00. It is also relaxed by
3047 * any extension that adds the 'layout' keyword.
3048 */
3049 if (!state->is_version(130, 300)
3050 && !state->has_explicit_attrib_location()
3051 && !state->ARB_fragment_coord_conventions_enable) {
3052 if (this->type->qualifier.flags.q.out) {
3053 _mesa_glsl_error(& loc, state,
3054 "`out' qualifier in declaration of `%s' "
3055 "only valid for function parameters in %s",
3056 decl->identifier, state->get_version_string());
3057 }
3058 if (this->type->qualifier.flags.q.in) {
3059 _mesa_glsl_error(& loc, state,
3060 "`in' qualifier in declaration of `%s' "
3061 "only valid for function parameters in %s",
3062 decl->identifier, state->get_version_string());
3063 }
3064 /* FINISHME: Test for other invalid qualifiers. */
3065 }
3066
3067 apply_type_qualifier_to_variable(& this->type->qualifier, var, state,
3068 & loc, false);
3069
3070 if (this->type->qualifier.flags.q.invariant) {
3071 if ((state->stage == MESA_SHADER_VERTEX) &&
3072 var->data.mode != ir_var_shader_out) {
3073 _mesa_glsl_error(& loc, state,
3074 "`%s' cannot be marked invariant, vertex shader "
3075 "outputs only", var->name);
3076 } else if ((state->stage == MESA_SHADER_FRAGMENT) &&
3077 var->data.mode != ir_var_shader_in) {
3078 /* FINISHME: Note that this doesn't work for invariant on
3079 * a function signature inval
3080 */
3081 _mesa_glsl_error(& loc, state,
3082 "`%s' cannot be marked invariant, fragment shader "
3083 "inputs only", var->name);
3084 }
3085 }
3086
3087 if (state->current_function != NULL) {
3088 const char *mode = NULL;
3089 const char *extra = "";
3090
3091 /* There is no need to check for 'inout' here because the parser will
3092 * only allow that in function parameter lists.
3093 */
3094 if (this->type->qualifier.flags.q.attribute) {
3095 mode = "attribute";
3096 } else if (this->type->qualifier.flags.q.uniform) {
3097 mode = "uniform";
3098 } else if (this->type->qualifier.flags.q.varying) {
3099 mode = "varying";
3100 } else if (this->type->qualifier.flags.q.in) {
3101 mode = "in";
3102 extra = " or in function parameter list";
3103 } else if (this->type->qualifier.flags.q.out) {
3104 mode = "out";
3105 extra = " or in function parameter list";
3106 }
3107
3108 if (mode) {
3109 _mesa_glsl_error(& loc, state,
3110 "%s variable `%s' must be declared at "
3111 "global scope%s",
3112 mode, var->name, extra);
3113 }
3114 } else if (var->data.mode == ir_var_shader_in) {
3115 var->data.read_only = true;
3116
3117 if (state->stage == MESA_SHADER_VERTEX) {
3118 bool error_emitted = false;
3119
3120 /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
3121 *
3122 * "Vertex shader inputs can only be float, floating-point
3123 * vectors, matrices, signed and unsigned integers and integer
3124 * vectors. Vertex shader inputs can also form arrays of these
3125 * types, but not structures."
3126 *
3127 * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
3128 *
3129 * "Vertex shader inputs can only be float, floating-point
3130 * vectors, matrices, signed and unsigned integers and integer
3131 * vectors. They cannot be arrays or structures."
3132 *
3133 * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
3134 *
3135 * "The attribute qualifier can be used only with float,
3136 * floating-point vectors, and matrices. Attribute variables
3137 * cannot be declared as arrays or structures."
3138 *
3139 * From page 33 (page 39 of the PDF) of the GLSL ES 3.00 spec:
3140 *
3141 * "Vertex shader inputs can only be float, floating-point
3142 * vectors, matrices, signed and unsigned integers and integer
3143 * vectors. Vertex shader inputs cannot be arrays or
3144 * structures."
3145 */
3146 const glsl_type *check_type = var->type;
3147 while (check_type->is_array())
3148 check_type = check_type->element_type();
3149
3150 switch (check_type->base_type) {
3151 case GLSL_TYPE_FLOAT:
3152 break;
3153 case GLSL_TYPE_UINT:
3154 case GLSL_TYPE_INT:
3155 if (state->is_version(120, 300))
3156 break;
3157 /* FALLTHROUGH */
3158 default:
3159 _mesa_glsl_error(& loc, state,
3160 "vertex shader input / attribute cannot have "
3161 "type %s`%s'",
3162 var->type->is_array() ? "array of " : "",
3163 check_type->name);
3164 error_emitted = true;
3165 }
3166
3167 if (!error_emitted && var->type->is_array() &&
3168 !state->check_version(150, 0, &loc,
3169 "vertex shader input / attribute "
3170 "cannot have array type")) {
3171 error_emitted = true;
3172 }
3173 } else if (state->stage == MESA_SHADER_GEOMETRY) {
3174 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
3175 *
3176 * Geometry shader input variables get the per-vertex values
3177 * written out by vertex shader output variables of the same
3178 * names. Since a geometry shader operates on a set of
3179 * vertices, each input varying variable (or input block, see
3180 * interface blocks below) needs to be declared as an array.
3181 */
3182 if (!var->type->is_array()) {
3183 _mesa_glsl_error(&loc, state,
3184 "geometry shader inputs must be arrays");
3185 }
3186
3187 handle_geometry_shader_input_decl(state, loc, var);
3188 }
3189 }
3190
3191 /* Integer fragment inputs must be qualified with 'flat'. In GLSL ES,
3192 * so must integer vertex outputs.
3193 *
3194 * From section 4.3.4 ("Inputs") of the GLSL 1.50 spec:
3195 * "Fragment shader inputs that are signed or unsigned integers or
3196 * integer vectors must be qualified with the interpolation qualifier
3197 * flat."
3198 *
3199 * From section 4.3.4 ("Input Variables") of the GLSL 3.00 ES spec:
3200 * "Fragment shader inputs that are, or contain, signed or unsigned
3201 * integers or integer vectors must be qualified with the
3202 * interpolation qualifier flat."
3203 *
3204 * From section 4.3.6 ("Output Variables") of the GLSL 3.00 ES spec:
3205 * "Vertex shader outputs that are, or contain, signed or unsigned
3206 * integers or integer vectors must be qualified with the
3207 * interpolation qualifier flat."
3208 *
3209 * Note that prior to GLSL 1.50, this requirement applied to vertex
3210 * outputs rather than fragment inputs. That creates problems in the
3211 * presence of geometry shaders, so we adopt the GLSL 1.50 rule for all
3212 * desktop GL shaders. For GLSL ES shaders, we follow the spec and
3213 * apply the restriction to both vertex outputs and fragment inputs.
3214 *
3215 * Note also that the desktop GLSL specs are missing the text "or
3216 * contain"; this is presumably an oversight, since there is no
3217 * reasonable way to interpolate a fragment shader input that contains
3218 * an integer.
3219 */
3220 if (state->is_version(130, 300) &&
3221 var->type->contains_integer() &&
3222 var->data.interpolation != INTERP_QUALIFIER_FLAT &&
3223 ((state->stage == MESA_SHADER_FRAGMENT && var->data.mode == ir_var_shader_in)
3224 || (state->stage == MESA_SHADER_VERTEX && var->data.mode == ir_var_shader_out
3225 && state->es_shader))) {
3226 const char *var_type = (state->stage == MESA_SHADER_VERTEX) ?
3227 "vertex output" : "fragment input";
3228 _mesa_glsl_error(&loc, state, "if a %s is (or contains) "
3229 "an integer, then it must be qualified with 'flat'",
3230 var_type);
3231 }
3232
3233
3234 /* Interpolation qualifiers cannot be applied to 'centroid' and
3235 * 'centroid varying'.
3236 *
3237 * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
3238 * "interpolation qualifiers may only precede the qualifiers in,
3239 * centroid in, out, or centroid out in a declaration. They do not apply
3240 * to the deprecated storage qualifiers varying or centroid varying."
3241 *
3242 * These deprecated storage qualifiers do not exist in GLSL ES 3.00.
3243 */
3244 if (state->is_version(130, 0)
3245 && this->type->qualifier.has_interpolation()
3246 && this->type->qualifier.flags.q.varying) {
3247
3248 const char *i = this->type->qualifier.interpolation_string();
3249 assert(i != NULL);
3250 const char *s;
3251 if (this->type->qualifier.flags.q.centroid)
3252 s = "centroid varying";
3253 else
3254 s = "varying";
3255
3256 _mesa_glsl_error(&loc, state,
3257 "qualifier '%s' cannot be applied to the "
3258 "deprecated storage qualifier '%s'", i, s);
3259 }
3260
3261
3262 /* Interpolation qualifiers can only apply to vertex shader outputs and
3263 * fragment shader inputs.
3264 *
3265 * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
3266 * "Outputs from a vertex shader (out) and inputs to a fragment
3267 * shader (in) can be further qualified with one or more of these
3268 * interpolation qualifiers"
3269 *
3270 * From page 31 (page 37 of the PDF) of the GLSL ES 3.00 spec:
3271 * "These interpolation qualifiers may only precede the qualifiers
3272 * in, centroid in, out, or centroid out in a declaration. They do
3273 * not apply to inputs into a vertex shader or outputs from a
3274 * fragment shader."
3275 */
3276 if (state->is_version(130, 300)
3277 && this->type->qualifier.has_interpolation()) {
3278
3279 const char *i = this->type->qualifier.interpolation_string();
3280 assert(i != NULL);
3281
3282 switch (state->stage) {
3283 case MESA_SHADER_VERTEX:
3284 if (this->type->qualifier.flags.q.in) {
3285 _mesa_glsl_error(&loc, state,
3286 "qualifier '%s' cannot be applied to vertex "
3287 "shader inputs", i);
3288 }
3289 break;
3290 case MESA_SHADER_FRAGMENT:
3291 if (this->type->qualifier.flags.q.out) {
3292 _mesa_glsl_error(&loc, state,
3293 "qualifier '%s' cannot be applied to fragment "
3294 "shader outputs", i);
3295 }
3296 break;
3297 default:
3298 break;
3299 }
3300 }
3301
3302
3303 /* From section 4.3.4 of the GLSL 1.30 spec:
3304 * "It is an error to use centroid in in a vertex shader."
3305 *
3306 * From section 4.3.4 of the GLSL ES 3.00 spec:
3307 * "It is an error to use centroid in or interpolation qualifiers in
3308 * a vertex shader input."
3309 */
3310 if (state->is_version(130, 300)
3311 && this->type->qualifier.flags.q.centroid
3312 && this->type->qualifier.flags.q.in
3313 && state->stage == MESA_SHADER_VERTEX) {
3314
3315 _mesa_glsl_error(&loc, state,
3316 "'centroid in' cannot be used in a vertex shader");
3317 }
3318
3319 if (state->stage == MESA_SHADER_VERTEX
3320 && this->type->qualifier.flags.q.sample
3321 && this->type->qualifier.flags.q.in) {
3322
3323 _mesa_glsl_error(&loc, state,
3324 "'sample in' cannot be used in a vertex shader");
3325 }
3326
3327 /* Section 4.3.6 of the GLSL 1.30 specification states:
3328 * "It is an error to use centroid out in a fragment shader."
3329 *
3330 * The GL_ARB_shading_language_420pack extension specification states:
3331 * "It is an error to use auxiliary storage qualifiers or interpolation
3332 * qualifiers on an output in a fragment shader."
3333 */
3334 if (state->stage == MESA_SHADER_FRAGMENT &&
3335 this->type->qualifier.flags.q.out &&
3336 this->type->qualifier.has_auxiliary_storage()) {
3337 _mesa_glsl_error(&loc, state,
3338 "auxiliary storage qualifiers cannot be used on "
3339 "fragment shader outputs");
3340 }
3341
3342 /* Precision qualifiers exists only in GLSL versions 1.00 and >= 1.30.
3343 */
3344 if (this->type->qualifier.precision != ast_precision_none) {
3345 state->check_precision_qualifiers_allowed(&loc);
3346 }
3347
3348
3349 /* Precision qualifiers apply to floating point, integer and sampler
3350 * types.
3351 *
3352 * Section 4.5.2 (Precision Qualifiers) of the GLSL 1.30 spec says:
3353 * "Any floating point or any integer declaration can have the type
3354 * preceded by one of these precision qualifiers [...] Literal
3355 * constants do not have precision qualifiers. Neither do Boolean
3356 * variables.
3357 *
3358 * Section 4.5 (Precision and Precision Qualifiers) of the GLSL 1.30
3359 * spec also says:
3360 *
3361 * "Precision qualifiers are added for code portability with OpenGL
3362 * ES, not for functionality. They have the same syntax as in OpenGL
3363 * ES."
3364 *
3365 * Section 8 (Built-In Functions) of the GLSL ES 1.00 spec says:
3366 *
3367 * "uniform lowp sampler2D sampler;
3368 * highp vec2 coord;
3369 * ...
3370 * lowp vec4 col = texture2D (sampler, coord);
3371 * // texture2D returns lowp"
3372 *
3373 * From this, we infer that GLSL 1.30 (and later) should allow precision
3374 * qualifiers on sampler types just like float and integer types.
3375 */
3376 if (this->type->qualifier.precision != ast_precision_none
3377 && !var->type->is_float()
3378 && !var->type->is_integer()
3379 && !var->type->is_record()
3380 && !var->type->is_sampler()
3381 && !(var->type->is_array()
3382 && (var->type->fields.array->is_float()
3383 || var->type->fields.array->is_integer()))) {
3384
3385 _mesa_glsl_error(&loc, state,
3386 "precision qualifiers apply only to floating point"
3387 ", integer and sampler types");
3388 }
3389
3390 /* From page 17 (page 23 of the PDF) of the GLSL 1.20 spec:
3391 *
3392 * "[Sampler types] can only be declared as function
3393 * parameters or uniform variables (see Section 4.3.5
3394 * "Uniform")".
3395 */
3396 if (var_type->contains_sampler() &&
3397 !this->type->qualifier.flags.q.uniform) {
3398 _mesa_glsl_error(&loc, state, "samplers must be declared uniform");
3399 }
3400
3401 /* Process the initializer and add its instructions to a temporary
3402 * list. This list will be added to the instruction stream (below) after
3403 * the declaration is added. This is done because in some cases (such as
3404 * redeclarations) the declaration may not actually be added to the
3405 * instruction stream.
3406 */
3407 exec_list initializer_instructions;
3408 ir_variable *earlier =
3409 get_variable_being_redeclared(var, decl->get_location(), state,
3410 false /* allow_all_redeclarations */);
3411 if (earlier != NULL) {
3412 if (strncmp(var->name, "gl_", 3) == 0 &&
3413 earlier->data.how_declared == ir_var_declared_in_block) {
3414 _mesa_glsl_error(&loc, state,
3415 "`%s' has already been redeclared using "
3416 "gl_PerVertex", var->name);
3417 }
3418 earlier->data.how_declared = ir_var_declared_normally;
3419 }
3420
3421 if (decl->initializer != NULL) {
3422 result = process_initializer((earlier == NULL) ? var : earlier,
3423 decl, this->type,
3424 &initializer_instructions, state);
3425 }
3426
3427 /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
3428 *
3429 * "It is an error to write to a const variable outside of
3430 * its declaration, so they must be initialized when
3431 * declared."
3432 */
3433 if (this->type->qualifier.flags.q.constant && decl->initializer == NULL) {
3434 _mesa_glsl_error(& loc, state,
3435 "const declaration of `%s' must be initialized",
3436 decl->identifier);
3437 }
3438
3439 if (state->es_shader) {
3440 const glsl_type *const t = (earlier == NULL)
3441 ? var->type : earlier->type;
3442
3443 if (t->is_unsized_array())
3444 /* Section 10.17 of the GLSL ES 1.00 specification states that
3445 * unsized array declarations have been removed from the language.
3446 * Arrays that are sized using an initializer are still explicitly
3447 * sized. However, GLSL ES 1.00 does not allow array
3448 * initializers. That is only allowed in GLSL ES 3.00.
3449 *
3450 * Section 4.1.9 (Arrays) of the GLSL ES 3.00 spec says:
3451 *
3452 * "An array type can also be formed without specifying a size
3453 * if the definition includes an initializer:
3454 *
3455 * float x[] = float[2] (1.0, 2.0); // declares an array of size 2
3456 * float y[] = float[] (1.0, 2.0, 3.0); // declares an array of size 3
3457 *
3458 * float a[5];
3459 * float b[] = a;"
3460 */
3461 _mesa_glsl_error(& loc, state,
3462 "unsized array declarations are not allowed in "
3463 "GLSL ES");
3464 }
3465
3466 /* If the declaration is not a redeclaration, there are a few additional
3467 * semantic checks that must be applied. In addition, variable that was
3468 * created for the declaration should be added to the IR stream.
3469 */
3470 if (earlier == NULL) {
3471 validate_identifier(decl->identifier, loc, state);
3472
3473 /* Add the variable to the symbol table. Note that the initializer's
3474 * IR was already processed earlier (though it hasn't been emitted
3475 * yet), without the variable in scope.
3476 *
3477 * This differs from most C-like languages, but it follows the GLSL
3478 * specification. From page 28 (page 34 of the PDF) of the GLSL 1.50
3479 * spec:
3480 *
3481 * "Within a declaration, the scope of a name starts immediately
3482 * after the initializer if present or immediately after the name
3483 * being declared if not."
3484 */
3485 if (!state->symbols->add_variable(var)) {
3486 YYLTYPE loc = this->get_location();
3487 _mesa_glsl_error(&loc, state, "name `%s' already taken in the "
3488 "current scope", decl->identifier);
3489 continue;
3490 }
3491
3492 /* Push the variable declaration to the top. It means that all the
3493 * variable declarations will appear in a funny last-to-first order,
3494 * but otherwise we run into trouble if a function is prototyped, a
3495 * global var is decled, then the function is defined with usage of
3496 * the global var. See glslparsertest's CorrectModule.frag.
3497 */
3498 instructions->push_head(var);
3499 }
3500
3501 instructions->append_list(&initializer_instructions);
3502 }
3503
3504
3505 /* Generally, variable declarations do not have r-values. However,
3506 * one is used for the declaration in
3507 *
3508 * while (bool b = some_condition()) {
3509 * ...
3510 * }
3511 *
3512 * so we return the rvalue from the last seen declaration here.
3513 */
3514 return result;
3515 }
3516
3517
3518 ir_rvalue *
3519 ast_parameter_declarator::hir(exec_list *instructions,
3520 struct _mesa_glsl_parse_state *state)
3521 {
3522 void *ctx = state;
3523 const struct glsl_type *type;
3524 const char *name = NULL;
3525 YYLTYPE loc = this->get_location();
3526
3527 type = this->type->glsl_type(& name, state);
3528
3529 if (type == NULL) {
3530 if (name != NULL) {
3531 _mesa_glsl_error(& loc, state,
3532 "invalid type `%s' in declaration of `%s'",
3533 name, this->identifier);
3534 } else {
3535 _mesa_glsl_error(& loc, state,
3536 "invalid type in declaration of `%s'",
3537 this->identifier);
3538 }
3539
3540 type = glsl_type::error_type;
3541 }
3542
3543 /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
3544 *
3545 * "Functions that accept no input arguments need not use void in the
3546 * argument list because prototypes (or definitions) are required and
3547 * therefore there is no ambiguity when an empty argument list "( )" is
3548 * declared. The idiom "(void)" as a parameter list is provided for
3549 * convenience."
3550 *
3551 * Placing this check here prevents a void parameter being set up
3552 * for a function, which avoids tripping up checks for main taking
3553 * parameters and lookups of an unnamed symbol.
3554 */
3555 if (type->is_void()) {
3556 if (this->identifier != NULL)
3557 _mesa_glsl_error(& loc, state,
3558 "named parameter cannot have type `void'");
3559
3560 is_void = true;
3561 return NULL;
3562 }
3563
3564 if (formal_parameter && (this->identifier == NULL)) {
3565 _mesa_glsl_error(& loc, state, "formal parameter lacks a name");
3566 return NULL;
3567 }
3568
3569 /* This only handles "vec4 foo[..]". The earlier specifier->glsl_type(...)
3570 * call already handled the "vec4[..] foo" case.
3571 */
3572 type = process_array_type(&loc, type, this->array_specifier, state);
3573
3574 if (!type->is_error() && type->is_unsized_array()) {
3575 _mesa_glsl_error(&loc, state, "arrays passed as parameters must have "
3576 "a declared size");
3577 type = glsl_type::error_type;
3578 }
3579
3580 is_void = false;
3581 ir_variable *var = new(ctx)
3582 ir_variable(type, this->identifier, ir_var_function_in);
3583
3584 /* Apply any specified qualifiers to the parameter declaration. Note that
3585 * for function parameters the default mode is 'in'.
3586 */
3587 apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc,
3588 true);
3589
3590 /* From page 17 (page 23 of the PDF) of the GLSL 1.20 spec:
3591 *
3592 * "Samplers cannot be treated as l-values; hence cannot be used
3593 * as out or inout function parameters, nor can they be assigned
3594 * into."
3595 */
3596 if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
3597 && type->contains_sampler()) {
3598 _mesa_glsl_error(&loc, state, "out and inout parameters cannot contain samplers");
3599 type = glsl_type::error_type;
3600 }
3601
3602 /* From page 39 (page 45 of the PDF) of the GLSL 1.10 spec:
3603 *
3604 * "When calling a function, expressions that do not evaluate to
3605 * l-values cannot be passed to parameters declared as out or inout."
3606 *
3607 * From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
3608 *
3609 * "Other binary or unary expressions, non-dereferenced arrays,
3610 * function names, swizzles with repeated fields, and constants
3611 * cannot be l-values."
3612 *
3613 * So for GLSL 1.10, passing an array as an out or inout parameter is not
3614 * allowed. This restriction is removed in GLSL 1.20, and in GLSL ES.
3615 */
3616 if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
3617 && type->is_array()
3618 && !state->check_version(120, 100, &loc,
3619 "arrays cannot be out or inout parameters")) {
3620 type = glsl_type::error_type;
3621 }
3622
3623 instructions->push_tail(var);
3624
3625 /* Parameter declarations do not have r-values.
3626 */
3627 return NULL;
3628 }
3629
3630
3631 void
3632 ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters,
3633 bool formal,
3634 exec_list *ir_parameters,
3635 _mesa_glsl_parse_state *state)
3636 {
3637 ast_parameter_declarator *void_param = NULL;
3638 unsigned count = 0;
3639
3640 foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) {
3641 param->formal_parameter = formal;
3642 param->hir(ir_parameters, state);
3643
3644 if (param->is_void)
3645 void_param = param;
3646
3647 count++;
3648 }
3649
3650 if ((void_param != NULL) && (count > 1)) {
3651 YYLTYPE loc = void_param->get_location();
3652
3653 _mesa_glsl_error(& loc, state,
3654 "`void' parameter must be only parameter");
3655 }
3656 }
3657
3658
3659 void
3660 emit_function(_mesa_glsl_parse_state *state, ir_function *f)
3661 {
3662 /* IR invariants disallow function declarations or definitions
3663 * nested within other function definitions. But there is no
3664 * requirement about the relative order of function declarations
3665 * and definitions with respect to one another. So simply insert
3666 * the new ir_function block at the end of the toplevel instruction
3667 * list.
3668 */
3669 state->toplevel_ir->push_tail(f);
3670 }
3671
3672
3673 ir_rvalue *
3674 ast_function::hir(exec_list *instructions,
3675 struct _mesa_glsl_parse_state *state)
3676 {
3677 void *ctx = state;
3678 ir_function *f = NULL;
3679 ir_function_signature *sig = NULL;
3680 exec_list hir_parameters;
3681
3682 const char *const name = identifier;
3683
3684 /* New functions are always added to the top-level IR instruction stream,
3685 * so this instruction list pointer is ignored. See also emit_function
3686 * (called below).
3687 */
3688 (void) instructions;
3689
3690 /* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec,
3691 *
3692 * "Function declarations (prototypes) cannot occur inside of functions;
3693 * they must be at global scope, or for the built-in functions, outside
3694 * the global scope."
3695 *
3696 * From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec,
3697 *
3698 * "User defined functions may only be defined within the global scope."
3699 *
3700 * Note that this language does not appear in GLSL 1.10.
3701 */
3702 if ((state->current_function != NULL) &&
3703 state->is_version(120, 100)) {
3704 YYLTYPE loc = this->get_location();
3705 _mesa_glsl_error(&loc, state,
3706 "declaration of function `%s' not allowed within "
3707 "function body", name);
3708 }
3709
3710 validate_identifier(name, this->get_location(), state);
3711
3712 /* Convert the list of function parameters to HIR now so that they can be
3713 * used below to compare this function's signature with previously seen
3714 * signatures for functions with the same name.
3715 */
3716 ast_parameter_declarator::parameters_to_hir(& this->parameters,
3717 is_definition,
3718 & hir_parameters, state);
3719
3720 const char *return_type_name;
3721 const glsl_type *return_type =
3722 this->return_type->glsl_type(& return_type_name, state);
3723
3724 if (!return_type) {
3725 YYLTYPE loc = this->get_location();
3726 _mesa_glsl_error(&loc, state,
3727 "function `%s' has undeclared return type `%s'",
3728 name, return_type_name);
3729 return_type = glsl_type::error_type;
3730 }
3731
3732 /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec:
3733 * "No qualifier is allowed on the return type of a function."
3734 */
3735 if (this->return_type->has_qualifiers()) {
3736 YYLTYPE loc = this->get_location();
3737 _mesa_glsl_error(& loc, state,
3738 "function `%s' return type has qualifiers", name);
3739 }
3740
3741 /* Section 6.1 (Function Definitions) of the GLSL 1.20 spec says:
3742 *
3743 * "Arrays are allowed as arguments and as the return type. In both
3744 * cases, the array must be explicitly sized."
3745 */
3746 if (return_type->is_unsized_array()) {
3747 YYLTYPE loc = this->get_location();
3748 _mesa_glsl_error(& loc, state,
3749 "function `%s' return type array must be explicitly "
3750 "sized", name);
3751 }
3752
3753 /* From page 17 (page 23 of the PDF) of the GLSL 1.20 spec:
3754 *
3755 * "[Sampler types] can only be declared as function parameters
3756 * or uniform variables (see Section 4.3.5 "Uniform")".
3757 */
3758 if (return_type->contains_sampler()) {
3759 YYLTYPE loc = this->get_location();
3760 _mesa_glsl_error(&loc, state,
3761 "function `%s' return type can't contain a sampler",
3762 name);
3763 }
3764
3765 /* Verify that this function's signature either doesn't match a previously
3766 * seen signature for a function with the same name, or, if a match is found,
3767 * that the previously seen signature does not have an associated definition.
3768 */
3769 f = state->symbols->get_function(name);
3770 if (f != NULL && (state->es_shader || f->has_user_signature())) {
3771 sig = f->exact_matching_signature(state, &hir_parameters);
3772 if (sig != NULL) {
3773 const char *badvar = sig->qualifiers_match(&hir_parameters);
3774 if (badvar != NULL) {
3775 YYLTYPE loc = this->get_location();
3776
3777 _mesa_glsl_error(&loc, state, "function `%s' parameter `%s' "
3778 "qualifiers don't match prototype", name, badvar);
3779 }
3780
3781 if (sig->return_type != return_type) {
3782 YYLTYPE loc = this->get_location();
3783
3784 _mesa_glsl_error(&loc, state, "function `%s' return type doesn't "
3785 "match prototype", name);
3786 }
3787
3788 if (sig->is_defined) {
3789 if (is_definition) {
3790 YYLTYPE loc = this->get_location();
3791 _mesa_glsl_error(& loc, state, "function `%s' redefined", name);
3792 } else {
3793 /* We just encountered a prototype that exactly matches a
3794 * function that's already been defined. This is redundant,
3795 * and we should ignore it.
3796 */
3797 return NULL;
3798 }
3799 }
3800 }
3801 } else {
3802 f = new(ctx) ir_function(name);
3803 if (!state->symbols->add_function(f)) {
3804 /* This function name shadows a non-function use of the same name. */
3805 YYLTYPE loc = this->get_location();
3806
3807 _mesa_glsl_error(&loc, state, "function name `%s' conflicts with "
3808 "non-function", name);
3809 return NULL;
3810 }
3811
3812 emit_function(state, f);
3813 }
3814
3815 /* Verify the return type of main() */
3816 if (strcmp(name, "main") == 0) {
3817 if (! return_type->is_void()) {
3818 YYLTYPE loc = this->get_location();
3819
3820 _mesa_glsl_error(& loc, state, "main() must return void");
3821 }
3822
3823 if (!hir_parameters.is_empty()) {
3824 YYLTYPE loc = this->get_location();
3825
3826 _mesa_glsl_error(& loc, state, "main() must not take any parameters");
3827 }
3828 }
3829
3830 /* Finish storing the information about this new function in its signature.
3831 */
3832 if (sig == NULL) {
3833 sig = new(ctx) ir_function_signature(return_type);
3834 f->add_signature(sig);
3835 }
3836
3837 sig->replace_parameters(&hir_parameters);
3838 signature = sig;
3839
3840 /* Function declarations (prototypes) do not have r-values.
3841 */
3842 return NULL;
3843 }
3844
3845
3846 ir_rvalue *
3847 ast_function_definition::hir(exec_list *instructions,
3848 struct _mesa_glsl_parse_state *state)
3849 {
3850 prototype->is_definition = true;
3851 prototype->hir(instructions, state);
3852
3853 ir_function_signature *signature = prototype->signature;
3854 if (signature == NULL)
3855 return NULL;
3856
3857 assert(state->current_function == NULL);
3858 state->current_function = signature;
3859 state->found_return = false;
3860
3861 /* Duplicate parameters declared in the prototype as concrete variables.
3862 * Add these to the symbol table.
3863 */
3864 state->symbols->push_scope();
3865 foreach_list(n, &signature->parameters) {
3866 ir_variable *const var = ((ir_instruction *) n)->as_variable();
3867
3868 assert(var != NULL);
3869
3870 /* The only way a parameter would "exist" is if two parameters have
3871 * the same name.
3872 */
3873 if (state->symbols->name_declared_this_scope(var->name)) {
3874 YYLTYPE loc = this->get_location();
3875
3876 _mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name);
3877 } else {
3878 state->symbols->add_variable(var);
3879 }
3880 }
3881
3882 /* Convert the body of the function to HIR. */
3883 this->body->hir(&signature->body, state);
3884 signature->is_defined = true;
3885
3886 state->symbols->pop_scope();
3887
3888 assert(state->current_function == signature);
3889 state->current_function = NULL;
3890
3891 if (!signature->return_type->is_void() && !state->found_return) {
3892 YYLTYPE loc = this->get_location();
3893 _mesa_glsl_error(& loc, state, "function `%s' has non-void return type "
3894 "%s, but no return statement",
3895 signature->function_name(),
3896 signature->return_type->name);
3897 }
3898
3899 /* Function definitions do not have r-values.
3900 */
3901 return NULL;
3902 }
3903
3904
3905 ir_rvalue *
3906 ast_jump_statement::hir(exec_list *instructions,
3907 struct _mesa_glsl_parse_state *state)
3908 {
3909 void *ctx = state;
3910
3911 switch (mode) {
3912 case ast_return: {
3913 ir_return *inst;
3914 assert(state->current_function);
3915
3916 if (opt_return_value) {
3917 ir_rvalue *ret = opt_return_value->hir(instructions, state);
3918
3919 /* The value of the return type can be NULL if the shader says
3920 * 'return foo();' and foo() is a function that returns void.
3921 *
3922 * NOTE: The GLSL spec doesn't say that this is an error. The type
3923 * of the return value is void. If the return type of the function is
3924 * also void, then this should compile without error. Seriously.
3925 */
3926 const glsl_type *const ret_type =
3927 (ret == NULL) ? glsl_type::void_type : ret->type;
3928
3929 /* Implicit conversions are not allowed for return values prior to
3930 * ARB_shading_language_420pack.
3931 */
3932 if (state->current_function->return_type != ret_type) {
3933 YYLTYPE loc = this->get_location();
3934
3935 if (state->ARB_shading_language_420pack_enable) {
3936 if (!apply_implicit_conversion(state->current_function->return_type,
3937 ret, state)) {
3938 _mesa_glsl_error(& loc, state,
3939 "could not implicitly convert return value "
3940 "to %s, in function `%s'",
3941 state->current_function->return_type->name,
3942 state->current_function->function_name());
3943 }
3944 } else {
3945 _mesa_glsl_error(& loc, state,
3946 "`return' with wrong type %s, in function `%s' "
3947 "returning %s",
3948 ret_type->name,
3949 state->current_function->function_name(),
3950 state->current_function->return_type->name);
3951 }
3952 } else if (state->current_function->return_type->base_type ==
3953 GLSL_TYPE_VOID) {
3954 YYLTYPE loc = this->get_location();
3955
3956 /* The ARB_shading_language_420pack, GLSL ES 3.0, and GLSL 4.20
3957 * specs add a clarification:
3958 *
3959 * "A void function can only use return without a return argument, even if
3960 * the return argument has void type. Return statements only accept values:
3961 *
3962 * void func1() { }
3963 * void func2() { return func1(); } // illegal return statement"
3964 */
3965 _mesa_glsl_error(& loc, state,
3966 "void functions can only use `return' without a "
3967 "return argument");
3968 }
3969
3970 inst = new(ctx) ir_return(ret);
3971 } else {
3972 if (state->current_function->return_type->base_type !=
3973 GLSL_TYPE_VOID) {
3974 YYLTYPE loc = this->get_location();
3975
3976 _mesa_glsl_error(& loc, state,
3977 "`return' with no value, in function %s returning "
3978 "non-void",
3979 state->current_function->function_name());
3980 }
3981 inst = new(ctx) ir_return;
3982 }
3983
3984 state->found_return = true;
3985 instructions->push_tail(inst);
3986 break;
3987 }
3988
3989 case ast_discard:
3990 if (state->stage != MESA_SHADER_FRAGMENT) {
3991 YYLTYPE loc = this->get_location();
3992
3993 _mesa_glsl_error(& loc, state,
3994 "`discard' may only appear in a fragment shader");
3995 }
3996 instructions->push_tail(new(ctx) ir_discard);
3997 break;
3998
3999 case ast_break:
4000 case ast_continue:
4001 if (mode == ast_continue &&
4002 state->loop_nesting_ast == NULL) {
4003 YYLTYPE loc = this->get_location();
4004
4005 _mesa_glsl_error(& loc, state,
4006 "continue may only appear in a loop");
4007 } else if (mode == ast_break &&
4008 state->loop_nesting_ast == NULL &&
4009 state->switch_state.switch_nesting_ast == NULL) {
4010 YYLTYPE loc = this->get_location();
4011
4012 _mesa_glsl_error(& loc, state,
4013 "break may only appear in a loop or a switch");
4014 } else {
4015 /* For a loop, inline the for loop expression again,
4016 * since we don't know where near the end of
4017 * the loop body the normal copy of it
4018 * is going to be placed.
4019 */
4020 if (state->loop_nesting_ast != NULL &&
4021 mode == ast_continue &&
4022 state->loop_nesting_ast->rest_expression) {
4023 state->loop_nesting_ast->rest_expression->hir(instructions,
4024 state);
4025 }
4026
4027 if (state->switch_state.is_switch_innermost &&
4028 mode == ast_break) {
4029 /* Force break out of switch by setting is_break switch state.
4030 */
4031 ir_variable *const is_break_var = state->switch_state.is_break_var;
4032 ir_dereference_variable *const deref_is_break_var =
4033 new(ctx) ir_dereference_variable(is_break_var);
4034 ir_constant *const true_val = new(ctx) ir_constant(true);
4035 ir_assignment *const set_break_var =
4036 new(ctx) ir_assignment(deref_is_break_var, true_val);
4037
4038 instructions->push_tail(set_break_var);
4039 }
4040 else {
4041 ir_loop_jump *const jump =
4042 new(ctx) ir_loop_jump((mode == ast_break)
4043 ? ir_loop_jump::jump_break
4044 : ir_loop_jump::jump_continue);
4045 instructions->push_tail(jump);
4046 }
4047 }
4048
4049 break;
4050 }
4051
4052 /* Jump instructions do not have r-values.
4053 */
4054 return NULL;
4055 }
4056
4057
4058 ir_rvalue *
4059 ast_selection_statement::hir(exec_list *instructions,
4060 struct _mesa_glsl_parse_state *state)
4061 {
4062 void *ctx = state;
4063
4064 ir_rvalue *const condition = this->condition->hir(instructions, state);
4065
4066 /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
4067 *
4068 * "Any expression whose type evaluates to a Boolean can be used as the
4069 * conditional expression bool-expression. Vector types are not accepted
4070 * as the expression to if."
4071 *
4072 * The checks are separated so that higher quality diagnostics can be
4073 * generated for cases where both rules are violated.
4074 */
4075 if (!condition->type->is_boolean() || !condition->type->is_scalar()) {
4076 YYLTYPE loc = this->condition->get_location();
4077
4078 _mesa_glsl_error(& loc, state, "if-statement condition must be scalar "
4079 "boolean");
4080 }
4081
4082 ir_if *const stmt = new(ctx) ir_if(condition);
4083
4084 if (then_statement != NULL) {
4085 state->symbols->push_scope();
4086 then_statement->hir(& stmt->then_instructions, state);
4087 state->symbols->pop_scope();
4088 }
4089
4090 if (else_statement != NULL) {
4091 state->symbols->push_scope();
4092 else_statement->hir(& stmt->else_instructions, state);
4093 state->symbols->pop_scope();
4094 }
4095
4096 instructions->push_tail(stmt);
4097
4098 /* if-statements do not have r-values.
4099 */
4100 return NULL;
4101 }
4102
4103
4104 ir_rvalue *
4105 ast_switch_statement::hir(exec_list *instructions,
4106 struct _mesa_glsl_parse_state *state)
4107 {
4108 void *ctx = state;
4109
4110 ir_rvalue *const test_expression =
4111 this->test_expression->hir(instructions, state);
4112
4113 /* From page 66 (page 55 of the PDF) of the GLSL 1.50 spec:
4114 *
4115 * "The type of init-expression in a switch statement must be a
4116 * scalar integer."
4117 */
4118 if (!test_expression->type->is_scalar() ||
4119 !test_expression->type->is_integer()) {
4120 YYLTYPE loc = this->test_expression->get_location();
4121
4122 _mesa_glsl_error(& loc,
4123 state,
4124 "switch-statement expression must be scalar "
4125 "integer");
4126 }
4127
4128 /* Track the switch-statement nesting in a stack-like manner.
4129 */
4130 struct glsl_switch_state saved = state->switch_state;
4131
4132 state->switch_state.is_switch_innermost = true;
4133 state->switch_state.switch_nesting_ast = this;
4134 state->switch_state.labels_ht = hash_table_ctor(0, hash_table_pointer_hash,
4135 hash_table_pointer_compare);
4136 state->switch_state.previous_default = NULL;
4137
4138 /* Initalize is_fallthru state to false.
4139 */
4140 ir_rvalue *const is_fallthru_val = new (ctx) ir_constant(false);
4141 state->switch_state.is_fallthru_var =
4142 new(ctx) ir_variable(glsl_type::bool_type,
4143 "switch_is_fallthru_tmp",
4144 ir_var_temporary);
4145 instructions->push_tail(state->switch_state.is_fallthru_var);
4146
4147 ir_dereference_variable *deref_is_fallthru_var =
4148 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
4149 instructions->push_tail(new(ctx) ir_assignment(deref_is_fallthru_var,
4150 is_fallthru_val));
4151
4152 /* Initalize is_break state to false.
4153 */
4154 ir_rvalue *const is_break_val = new (ctx) ir_constant(false);
4155 state->switch_state.is_break_var = new(ctx) ir_variable(glsl_type::bool_type,
4156 "switch_is_break_tmp",
4157 ir_var_temporary);
4158 instructions->push_tail(state->switch_state.is_break_var);
4159
4160 ir_dereference_variable *deref_is_break_var =
4161 new(ctx) ir_dereference_variable(state->switch_state.is_break_var);
4162 instructions->push_tail(new(ctx) ir_assignment(deref_is_break_var,
4163 is_break_val));
4164
4165 /* Cache test expression.
4166 */
4167 test_to_hir(instructions, state);
4168
4169 /* Emit code for body of switch stmt.
4170 */
4171 body->hir(instructions, state);
4172
4173 hash_table_dtor(state->switch_state.labels_ht);
4174
4175 state->switch_state = saved;
4176
4177 /* Switch statements do not have r-values. */
4178 return NULL;
4179 }
4180
4181
4182 void
4183 ast_switch_statement::test_to_hir(exec_list *instructions,
4184 struct _mesa_glsl_parse_state *state)
4185 {
4186 void *ctx = state;
4187
4188 /* Cache value of test expression. */
4189 ir_rvalue *const test_val =
4190 test_expression->hir(instructions,
4191 state);
4192
4193 state->switch_state.test_var = new(ctx) ir_variable(test_val->type,
4194 "switch_test_tmp",
4195 ir_var_temporary);
4196 ir_dereference_variable *deref_test_var =
4197 new(ctx) ir_dereference_variable(state->switch_state.test_var);
4198
4199 instructions->push_tail(state->switch_state.test_var);
4200 instructions->push_tail(new(ctx) ir_assignment(deref_test_var, test_val));
4201 }
4202
4203
4204 ir_rvalue *
4205 ast_switch_body::hir(exec_list *instructions,
4206 struct _mesa_glsl_parse_state *state)
4207 {
4208 if (stmts != NULL)
4209 stmts->hir(instructions, state);
4210
4211 /* Switch bodies do not have r-values. */
4212 return NULL;
4213 }
4214
4215 ir_rvalue *
4216 ast_case_statement_list::hir(exec_list *instructions,
4217 struct _mesa_glsl_parse_state *state)
4218 {
4219 foreach_list_typed (ast_case_statement, case_stmt, link, & this->cases)
4220 case_stmt->hir(instructions, state);
4221
4222 /* Case statements do not have r-values. */
4223 return NULL;
4224 }
4225
4226 ir_rvalue *
4227 ast_case_statement::hir(exec_list *instructions,
4228 struct _mesa_glsl_parse_state *state)
4229 {
4230 labels->hir(instructions, state);
4231
4232 /* Conditionally set fallthru state based on break state. */
4233 ir_constant *const false_val = new(state) ir_constant(false);
4234 ir_dereference_variable *const deref_is_fallthru_var =
4235 new(state) ir_dereference_variable(state->switch_state.is_fallthru_var);
4236 ir_dereference_variable *const deref_is_break_var =
4237 new(state) ir_dereference_variable(state->switch_state.is_break_var);
4238 ir_assignment *const reset_fallthru_on_break =
4239 new(state) ir_assignment(deref_is_fallthru_var,
4240 false_val,
4241 deref_is_break_var);
4242 instructions->push_tail(reset_fallthru_on_break);
4243
4244 /* Guard case statements depending on fallthru state. */
4245 ir_dereference_variable *const deref_fallthru_guard =
4246 new(state) ir_dereference_variable(state->switch_state.is_fallthru_var);
4247 ir_if *const test_fallthru = new(state) ir_if(deref_fallthru_guard);
4248
4249 foreach_list_typed (ast_node, stmt, link, & this->stmts)
4250 stmt->hir(& test_fallthru->then_instructions, state);
4251
4252 instructions->push_tail(test_fallthru);
4253
4254 /* Case statements do not have r-values. */
4255 return NULL;
4256 }
4257
4258
4259 ir_rvalue *
4260 ast_case_label_list::hir(exec_list *instructions,
4261 struct _mesa_glsl_parse_state *state)
4262 {
4263 foreach_list_typed (ast_case_label, label, link, & this->labels)
4264 label->hir(instructions, state);
4265
4266 /* Case labels do not have r-values. */
4267 return NULL;
4268 }
4269
4270 ir_rvalue *
4271 ast_case_label::hir(exec_list *instructions,
4272 struct _mesa_glsl_parse_state *state)
4273 {
4274 void *ctx = state;
4275
4276 ir_dereference_variable *deref_fallthru_var =
4277 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
4278
4279 ir_rvalue *const true_val = new(ctx) ir_constant(true);
4280
4281 /* If not default case, ... */
4282 if (this->test_value != NULL) {
4283 /* Conditionally set fallthru state based on
4284 * comparison of cached test expression value to case label.
4285 */
4286 ir_rvalue *const label_rval = this->test_value->hir(instructions, state);
4287 ir_constant *label_const = label_rval->constant_expression_value();
4288
4289 if (!label_const) {
4290 YYLTYPE loc = this->test_value->get_location();
4291
4292 _mesa_glsl_error(& loc, state,
4293 "switch statement case label must be a "
4294 "constant expression");
4295
4296 /* Stuff a dummy value in to allow processing to continue. */
4297 label_const = new(ctx) ir_constant(0);
4298 } else {
4299 ast_expression *previous_label = (ast_expression *)
4300 hash_table_find(state->switch_state.labels_ht,
4301 (void *)(uintptr_t)label_const->value.u[0]);
4302
4303 if (previous_label) {
4304 YYLTYPE loc = this->test_value->get_location();
4305 _mesa_glsl_error(& loc, state,
4306 "duplicate case value");
4307
4308 loc = previous_label->get_location();
4309 _mesa_glsl_error(& loc, state,
4310 "this is the previous case label");
4311 } else {
4312 hash_table_insert(state->switch_state.labels_ht,
4313 this->test_value,
4314 (void *)(uintptr_t)label_const->value.u[0]);
4315 }
4316 }
4317
4318 ir_dereference_variable *deref_test_var =
4319 new(ctx) ir_dereference_variable(state->switch_state.test_var);
4320
4321 ir_rvalue *const test_cond = new(ctx) ir_expression(ir_binop_all_equal,
4322 label_const,
4323 deref_test_var);
4324
4325 ir_assignment *set_fallthru_on_test =
4326 new(ctx) ir_assignment(deref_fallthru_var,
4327 true_val,
4328 test_cond);
4329
4330 instructions->push_tail(set_fallthru_on_test);
4331 } else { /* default case */
4332 if (state->switch_state.previous_default) {
4333 YYLTYPE loc = this->get_location();
4334 _mesa_glsl_error(& loc, state,
4335 "multiple default labels in one switch");
4336
4337 loc = state->switch_state.previous_default->get_location();
4338 _mesa_glsl_error(& loc, state,
4339 "this is the first default label");
4340 }
4341 state->switch_state.previous_default = this;
4342
4343 /* Set falltrhu state. */
4344 ir_assignment *set_fallthru =
4345 new(ctx) ir_assignment(deref_fallthru_var, true_val);
4346
4347 instructions->push_tail(set_fallthru);
4348 }
4349
4350 /* Case statements do not have r-values. */
4351 return NULL;
4352 }
4353
4354 void
4355 ast_iteration_statement::condition_to_hir(ir_loop *stmt,
4356 struct _mesa_glsl_parse_state *state)
4357 {
4358 void *ctx = state;
4359
4360 if (condition != NULL) {
4361 ir_rvalue *const cond =
4362 condition->hir(& stmt->body_instructions, state);
4363
4364 if ((cond == NULL)
4365 || !cond->type->is_boolean() || !cond->type->is_scalar()) {
4366 YYLTYPE loc = condition->get_location();
4367
4368 _mesa_glsl_error(& loc, state,
4369 "loop condition must be scalar boolean");
4370 } else {
4371 /* As the first code in the loop body, generate a block that looks
4372 * like 'if (!condition) break;' as the loop termination condition.
4373 */
4374 ir_rvalue *const not_cond =
4375 new(ctx) ir_expression(ir_unop_logic_not, cond);
4376
4377 ir_if *const if_stmt = new(ctx) ir_if(not_cond);
4378
4379 ir_jump *const break_stmt =
4380 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
4381
4382 if_stmt->then_instructions.push_tail(break_stmt);
4383 stmt->body_instructions.push_tail(if_stmt);
4384 }
4385 }
4386 }
4387
4388
4389 ir_rvalue *
4390 ast_iteration_statement::hir(exec_list *instructions,
4391 struct _mesa_glsl_parse_state *state)
4392 {
4393 void *ctx = state;
4394
4395 /* For-loops and while-loops start a new scope, but do-while loops do not.
4396 */
4397 if (mode != ast_do_while)
4398 state->symbols->push_scope();
4399
4400 if (init_statement != NULL)
4401 init_statement->hir(instructions, state);
4402
4403 ir_loop *const stmt = new(ctx) ir_loop();
4404 instructions->push_tail(stmt);
4405
4406 /* Track the current loop nesting. */
4407 ast_iteration_statement *nesting_ast = state->loop_nesting_ast;
4408
4409 state->loop_nesting_ast = this;
4410
4411 /* Likewise, indicate that following code is closest to a loop,
4412 * NOT closest to a switch.
4413 */
4414 bool saved_is_switch_innermost = state->switch_state.is_switch_innermost;
4415 state->switch_state.is_switch_innermost = false;
4416
4417 if (mode != ast_do_while)
4418 condition_to_hir(stmt, state);
4419
4420 if (body != NULL)
4421 body->hir(& stmt->body_instructions, state);
4422
4423 if (rest_expression != NULL)
4424 rest_expression->hir(& stmt->body_instructions, state);
4425
4426 if (mode == ast_do_while)
4427 condition_to_hir(stmt, state);
4428
4429 if (mode != ast_do_while)
4430 state->symbols->pop_scope();
4431
4432 /* Restore previous nesting before returning. */
4433 state->loop_nesting_ast = nesting_ast;
4434 state->switch_state.is_switch_innermost = saved_is_switch_innermost;
4435
4436 /* Loops do not have r-values.
4437 */
4438 return NULL;
4439 }
4440
4441
4442 /**
4443 * Determine if the given type is valid for establishing a default precision
4444 * qualifier.
4445 *
4446 * From GLSL ES 3.00 section 4.5.4 ("Default Precision Qualifiers"):
4447 *
4448 * "The precision statement
4449 *
4450 * precision precision-qualifier type;
4451 *
4452 * can be used to establish a default precision qualifier. The type field
4453 * can be either int or float or any of the sampler types, and the
4454 * precision-qualifier can be lowp, mediump, or highp."
4455 *
4456 * GLSL ES 1.00 has similar language. GLSL 1.30 doesn't allow precision
4457 * qualifiers on sampler types, but this seems like an oversight (since the
4458 * intention of including these in GLSL 1.30 is to allow compatibility with ES
4459 * shaders). So we allow int, float, and all sampler types regardless of GLSL
4460 * version.
4461 */
4462 static bool
4463 is_valid_default_precision_type(const struct glsl_type *const type)
4464 {
4465 if (type == NULL)
4466 return false;
4467
4468 switch (type->base_type) {
4469 case GLSL_TYPE_INT:
4470 case GLSL_TYPE_FLOAT:
4471 /* "int" and "float" are valid, but vectors and matrices are not. */
4472 return type->vector_elements == 1 && type->matrix_columns == 1;
4473 case GLSL_TYPE_SAMPLER:
4474 return true;
4475 default:
4476 return false;
4477 }
4478 }
4479
4480
4481 ir_rvalue *
4482 ast_type_specifier::hir(exec_list *instructions,
4483 struct _mesa_glsl_parse_state *state)
4484 {
4485 if (this->default_precision == ast_precision_none && this->structure == NULL)
4486 return NULL;
4487
4488 YYLTYPE loc = this->get_location();
4489
4490 /* If this is a precision statement, check that the type to which it is
4491 * applied is either float or int.
4492 *
4493 * From section 4.5.3 of the GLSL 1.30 spec:
4494 * "The precision statement
4495 * precision precision-qualifier type;
4496 * can be used to establish a default precision qualifier. The type
4497 * field can be either int or float [...]. Any other types or
4498 * qualifiers will result in an error.
4499 */
4500 if (this->default_precision != ast_precision_none) {
4501 if (!state->check_precision_qualifiers_allowed(&loc))
4502 return NULL;
4503
4504 if (this->structure != NULL) {
4505 _mesa_glsl_error(&loc, state,
4506 "precision qualifiers do not apply to structures");
4507 return NULL;
4508 }
4509
4510 if (this->is_array) {
4511 _mesa_glsl_error(&loc, state,
4512 "default precision statements do not apply to "
4513 "arrays");
4514 return NULL;
4515 }
4516
4517 const struct glsl_type *const type =
4518 state->symbols->get_type(this->type_name);
4519 if (!is_valid_default_precision_type(type)) {
4520 _mesa_glsl_error(&loc, state,
4521 "default precision statements apply only to "
4522 "float, int, and sampler types");
4523 return NULL;
4524 }
4525
4526 if (type->base_type == GLSL_TYPE_FLOAT
4527 && state->es_shader
4528 && state->stage == MESA_SHADER_FRAGMENT) {
4529 /* Section 4.5.3 (Default Precision Qualifiers) of the GLSL ES 1.00
4530 * spec says:
4531 *
4532 * "The fragment language has no default precision qualifier for
4533 * floating point types."
4534 *
4535 * As a result, we have to track whether or not default precision has
4536 * been specified for float in GLSL ES fragment shaders.
4537 *
4538 * Earlier in that same section, the spec says:
4539 *
4540 * "Non-precision qualified declarations will use the precision
4541 * qualifier specified in the most recent precision statement
4542 * that is still in scope. The precision statement has the same
4543 * scoping rules as variable declarations. If it is declared
4544 * inside a compound statement, its effect stops at the end of
4545 * the innermost statement it was declared in. Precision
4546 * statements in nested scopes override precision statements in
4547 * outer scopes. Multiple precision statements for the same basic
4548 * type can appear inside the same scope, with later statements
4549 * overriding earlier statements within that scope."
4550 *
4551 * Default precision specifications follow the same scope rules as
4552 * variables. So, we can track the state of the default float
4553 * precision in the symbol table, and the rules will just work. This
4554 * is a slight abuse of the symbol table, but it has the semantics
4555 * that we want.
4556 */
4557 ir_variable *const junk =
4558 new(state) ir_variable(type, "#default precision",
4559 ir_var_temporary);
4560
4561 state->symbols->add_variable(junk);
4562 }
4563
4564 /* FINISHME: Translate precision statements into IR. */
4565 return NULL;
4566 }
4567
4568 /* _mesa_ast_set_aggregate_type() sets the <structure> field so that
4569 * process_record_constructor() can do type-checking on C-style initializer
4570 * expressions of structs, but ast_struct_specifier should only be translated
4571 * to HIR if it is declaring the type of a structure.
4572 *
4573 * The ->is_declaration field is false for initializers of variables
4574 * declared separately from the struct's type definition.
4575 *
4576 * struct S { ... }; (is_declaration = true)
4577 * struct T { ... } t = { ... }; (is_declaration = true)
4578 * S s = { ... }; (is_declaration = false)
4579 */
4580 if (this->structure != NULL && this->structure->is_declaration)
4581 return this->structure->hir(instructions, state);
4582
4583 return NULL;
4584 }
4585
4586
4587 /**
4588 * Process a structure or interface block tree into an array of structure fields
4589 *
4590 * After parsing, where there are some syntax differnces, structures and
4591 * interface blocks are almost identical. They are similar enough that the
4592 * AST for each can be processed the same way into a set of
4593 * \c glsl_struct_field to describe the members.
4594 *
4595 * If we're processing an interface block, var_mode should be the type of the
4596 * interface block (ir_var_shader_in, ir_var_shader_out, or ir_var_uniform).
4597 * If we're processing a structure, var_mode should be ir_var_auto.
4598 *
4599 * \return
4600 * The number of fields processed. A pointer to the array structure fields is
4601 * stored in \c *fields_ret.
4602 */
4603 unsigned
4604 ast_process_structure_or_interface_block(exec_list *instructions,
4605 struct _mesa_glsl_parse_state *state,
4606 exec_list *declarations,
4607 YYLTYPE &loc,
4608 glsl_struct_field **fields_ret,
4609 bool is_interface,
4610 bool block_row_major,
4611 bool allow_reserved_names,
4612 ir_variable_mode var_mode)
4613 {
4614 unsigned decl_count = 0;
4615
4616 /* Make an initial pass over the list of fields to determine how
4617 * many there are. Each element in this list is an ast_declarator_list.
4618 * This means that we actually need to count the number of elements in the
4619 * 'declarations' list in each of the elements.
4620 */
4621 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
4622 foreach_list_const (decl_ptr, & decl_list->declarations) {
4623 decl_count++;
4624 }
4625 }
4626
4627 /* Allocate storage for the fields and process the field
4628 * declarations. As the declarations are processed, try to also convert
4629 * the types to HIR. This ensures that structure definitions embedded in
4630 * other structure definitions or in interface blocks are processed.
4631 */
4632 glsl_struct_field *const fields = ralloc_array(state, glsl_struct_field,
4633 decl_count);
4634
4635 unsigned i = 0;
4636 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
4637 const char *type_name;
4638
4639 decl_list->type->specifier->hir(instructions, state);
4640
4641 /* Section 10.9 of the GLSL ES 1.00 specification states that
4642 * embedded structure definitions have been removed from the language.
4643 */
4644 if (state->es_shader && decl_list->type->specifier->structure != NULL) {
4645 _mesa_glsl_error(&loc, state, "embedded structure definitions are "
4646 "not allowed in GLSL ES 1.00");
4647 }
4648
4649 const glsl_type *decl_type =
4650 decl_list->type->glsl_type(& type_name, state);
4651
4652 foreach_list_typed (ast_declaration, decl, link,
4653 &decl_list->declarations) {
4654 if (!allow_reserved_names)
4655 validate_identifier(decl->identifier, loc, state);
4656
4657 /* From the GL_ARB_uniform_buffer_object spec:
4658 *
4659 * "Sampler types are not allowed inside of uniform
4660 * blocks. All other types, arrays, and structures
4661 * allowed for uniforms are allowed within a uniform
4662 * block."
4663 *
4664 * It should be impossible for decl_type to be NULL here. Cases that
4665 * might naturally lead to decl_type being NULL, especially for the
4666 * is_interface case, will have resulted in compilation having
4667 * already halted due to a syntax error.
4668 */
4669 const struct glsl_type *field_type =
4670 decl_type != NULL ? decl_type : glsl_type::error_type;
4671
4672 if (is_interface && field_type->contains_sampler()) {
4673 YYLTYPE loc = decl_list->get_location();
4674 _mesa_glsl_error(&loc, state,
4675 "uniform in non-default uniform block contains sampler");
4676 }
4677
4678 if (field_type->contains_atomic()) {
4679 /* FINISHME: Add a spec quotation here once updated spec
4680 * FINISHME: language is available. See Khronos bug #10903
4681 * FINISHME: on whether atomic counters are allowed in
4682 * FINISHME: structures.
4683 */
4684 YYLTYPE loc = decl_list->get_location();
4685 _mesa_glsl_error(&loc, state, "atomic counter in structure or "
4686 "uniform block");
4687 }
4688
4689 const struct ast_type_qualifier *const qual =
4690 & decl_list->type->qualifier;
4691 if (qual->flags.q.std140 ||
4692 qual->flags.q.packed ||
4693 qual->flags.q.shared) {
4694 _mesa_glsl_error(&loc, state,
4695 "uniform block layout qualifiers std140, packed, and "
4696 "shared can only be applied to uniform blocks, not "
4697 "members");
4698 }
4699
4700 field_type = process_array_type(&loc, decl_type,
4701 decl->array_specifier, state);
4702 fields[i].type = field_type;
4703 fields[i].name = decl->identifier;
4704 fields[i].location = -1;
4705 fields[i].interpolation =
4706 interpret_interpolation_qualifier(qual, var_mode, state, &loc);
4707 fields[i].centroid = qual->flags.q.centroid ? 1 : 0;
4708 fields[i].sample = qual->flags.q.sample ? 1 : 0;
4709
4710 if (qual->flags.q.row_major || qual->flags.q.column_major) {
4711 if (!qual->flags.q.uniform) {
4712 _mesa_glsl_error(&loc, state,
4713 "row_major and column_major can only be "
4714 "applied to uniform interface blocks");
4715 } else
4716 validate_matrix_layout_for_type(state, &loc, field_type, NULL);
4717 }
4718
4719 if (qual->flags.q.uniform && qual->has_interpolation()) {
4720 _mesa_glsl_error(&loc, state,
4721 "interpolation qualifiers cannot be used "
4722 "with uniform interface blocks");
4723 }
4724
4725 if (field_type->is_matrix() ||
4726 (field_type->is_array() && field_type->fields.array->is_matrix())) {
4727 fields[i].row_major = block_row_major;
4728 if (qual->flags.q.row_major)
4729 fields[i].row_major = true;
4730 else if (qual->flags.q.column_major)
4731 fields[i].row_major = false;
4732 }
4733
4734 i++;
4735 }
4736 }
4737
4738 assert(i == decl_count);
4739
4740 *fields_ret = fields;
4741 return decl_count;
4742 }
4743
4744
4745 ir_rvalue *
4746 ast_struct_specifier::hir(exec_list *instructions,
4747 struct _mesa_glsl_parse_state *state)
4748 {
4749 YYLTYPE loc = this->get_location();
4750
4751 /* Section 4.1.8 (Structures) of the GLSL 1.10 spec says:
4752 *
4753 * "Anonymous structures are not supported; so embedded structures must
4754 * have a declarator. A name given to an embedded struct is scoped at
4755 * the same level as the struct it is embedded in."
4756 *
4757 * The same section of the GLSL 1.20 spec says:
4758 *
4759 * "Anonymous structures are not supported. Embedded structures are not
4760 * supported.
4761 *
4762 * struct S { float f; };
4763 * struct T {
4764 * S; // Error: anonymous structures disallowed
4765 * struct { ... }; // Error: embedded structures disallowed
4766 * S s; // Okay: nested structures with name are allowed
4767 * };"
4768 *
4769 * The GLSL ES 1.00 and 3.00 specs have similar langauge and examples. So,
4770 * we allow embedded structures in 1.10 only.
4771 */
4772 if (state->language_version != 110 && state->struct_specifier_depth != 0)
4773 _mesa_glsl_error(&loc, state,
4774 "embedded structure declartions are not allowed");
4775
4776 state->struct_specifier_depth++;
4777
4778 glsl_struct_field *fields;
4779 unsigned decl_count =
4780 ast_process_structure_or_interface_block(instructions,
4781 state,
4782 &this->declarations,
4783 loc,
4784 &fields,
4785 false,
4786 false,
4787 false /* allow_reserved_names */,
4788 ir_var_auto);
4789
4790 validate_identifier(this->name, loc, state);
4791
4792 const glsl_type *t =
4793 glsl_type::get_record_instance(fields, decl_count, this->name);
4794
4795 if (!state->symbols->add_type(name, t)) {
4796 _mesa_glsl_error(& loc, state, "struct `%s' previously defined", name);
4797 } else {
4798 const glsl_type **s = reralloc(state, state->user_structures,
4799 const glsl_type *,
4800 state->num_user_structures + 1);
4801 if (s != NULL) {
4802 s[state->num_user_structures] = t;
4803 state->user_structures = s;
4804 state->num_user_structures++;
4805 }
4806 }
4807
4808 state->struct_specifier_depth--;
4809
4810 /* Structure type definitions do not have r-values.
4811 */
4812 return NULL;
4813 }
4814
4815
4816 /**
4817 * Visitor class which detects whether a given interface block has been used.
4818 */
4819 class interface_block_usage_visitor : public ir_hierarchical_visitor
4820 {
4821 public:
4822 interface_block_usage_visitor(ir_variable_mode mode, const glsl_type *block)
4823 : mode(mode), block(block), found(false)
4824 {
4825 }
4826
4827 virtual ir_visitor_status visit(ir_dereference_variable *ir)
4828 {
4829 if (ir->var->data.mode == mode && ir->var->get_interface_type() == block) {
4830 found = true;
4831 return visit_stop;
4832 }
4833 return visit_continue;
4834 }
4835
4836 bool usage_found() const
4837 {
4838 return this->found;
4839 }
4840
4841 private:
4842 ir_variable_mode mode;
4843 const glsl_type *block;
4844 bool found;
4845 };
4846
4847
4848 ir_rvalue *
4849 ast_interface_block::hir(exec_list *instructions,
4850 struct _mesa_glsl_parse_state *state)
4851 {
4852 YYLTYPE loc = this->get_location();
4853
4854 /* The ast_interface_block has a list of ast_declarator_lists. We
4855 * need to turn those into ir_variables with an association
4856 * with this uniform block.
4857 */
4858 enum glsl_interface_packing packing;
4859 if (this->layout.flags.q.shared) {
4860 packing = GLSL_INTERFACE_PACKING_SHARED;
4861 } else if (this->layout.flags.q.packed) {
4862 packing = GLSL_INTERFACE_PACKING_PACKED;
4863 } else {
4864 /* The default layout is std140.
4865 */
4866 packing = GLSL_INTERFACE_PACKING_STD140;
4867 }
4868
4869 ir_variable_mode var_mode;
4870 const char *iface_type_name;
4871 if (this->layout.flags.q.in) {
4872 var_mode = ir_var_shader_in;
4873 iface_type_name = "in";
4874 } else if (this->layout.flags.q.out) {
4875 var_mode = ir_var_shader_out;
4876 iface_type_name = "out";
4877 } else if (this->layout.flags.q.uniform) {
4878 var_mode = ir_var_uniform;
4879 iface_type_name = "uniform";
4880 } else {
4881 var_mode = ir_var_auto;
4882 iface_type_name = "UNKNOWN";
4883 assert(!"interface block layout qualifier not found!");
4884 }
4885
4886 bool redeclaring_per_vertex = strcmp(this->block_name, "gl_PerVertex") == 0;
4887 bool block_row_major = this->layout.flags.q.row_major;
4888 exec_list declared_variables;
4889 glsl_struct_field *fields;
4890 unsigned int num_variables =
4891 ast_process_structure_or_interface_block(&declared_variables,
4892 state,
4893 &this->declarations,
4894 loc,
4895 &fields,
4896 true,
4897 block_row_major,
4898 redeclaring_per_vertex,
4899 var_mode);
4900
4901 if (!redeclaring_per_vertex)
4902 validate_identifier(this->block_name, loc, state);
4903
4904 const glsl_type *earlier_per_vertex = NULL;
4905 if (redeclaring_per_vertex) {
4906 /* Find the previous declaration of gl_PerVertex. If we're redeclaring
4907 * the named interface block gl_in, we can find it by looking at the
4908 * previous declaration of gl_in. Otherwise we can find it by looking
4909 * at the previous decalartion of any of the built-in outputs,
4910 * e.g. gl_Position.
4911 *
4912 * Also check that the instance name and array-ness of the redeclaration
4913 * are correct.
4914 */
4915 switch (var_mode) {
4916 case ir_var_shader_in:
4917 if (ir_variable *earlier_gl_in =
4918 state->symbols->get_variable("gl_in")) {
4919 earlier_per_vertex = earlier_gl_in->get_interface_type();
4920 } else {
4921 _mesa_glsl_error(&loc, state,
4922 "redeclaration of gl_PerVertex input not allowed "
4923 "in the %s shader",
4924 _mesa_shader_stage_to_string(state->stage));
4925 }
4926 if (this->instance_name == NULL ||
4927 strcmp(this->instance_name, "gl_in") != 0 || !this->is_array) {
4928 _mesa_glsl_error(&loc, state,
4929 "gl_PerVertex input must be redeclared as "
4930 "gl_in[]");
4931 }
4932 break;
4933 case ir_var_shader_out:
4934 if (ir_variable *earlier_gl_Position =
4935 state->symbols->get_variable("gl_Position")) {
4936 earlier_per_vertex = earlier_gl_Position->get_interface_type();
4937 } else {
4938 _mesa_glsl_error(&loc, state,
4939 "redeclaration of gl_PerVertex output not "
4940 "allowed in the %s shader",
4941 _mesa_shader_stage_to_string(state->stage));
4942 }
4943 if (this->instance_name != NULL) {
4944 _mesa_glsl_error(&loc, state,
4945 "gl_PerVertex input may not be redeclared with "
4946 "an instance name");
4947 }
4948 break;
4949 default:
4950 _mesa_glsl_error(&loc, state,
4951 "gl_PerVertex must be declared as an input or an "
4952 "output");
4953 break;
4954 }
4955
4956 if (earlier_per_vertex == NULL) {
4957 /* An error has already been reported. Bail out to avoid null
4958 * dereferences later in this function.
4959 */
4960 return NULL;
4961 }
4962
4963 /* Copy locations from the old gl_PerVertex interface block. */
4964 for (unsigned i = 0; i < num_variables; i++) {
4965 int j = earlier_per_vertex->field_index(fields[i].name);
4966 if (j == -1) {
4967 _mesa_glsl_error(&loc, state,
4968 "redeclaration of gl_PerVertex must be a subset "
4969 "of the built-in members of gl_PerVertex");
4970 } else {
4971 fields[i].location =
4972 earlier_per_vertex->fields.structure[j].location;
4973 fields[i].interpolation =
4974 earlier_per_vertex->fields.structure[j].interpolation;
4975 fields[i].centroid =
4976 earlier_per_vertex->fields.structure[j].centroid;
4977 fields[i].sample =
4978 earlier_per_vertex->fields.structure[j].sample;
4979 }
4980 }
4981
4982 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10
4983 * spec:
4984 *
4985 * If a built-in interface block is redeclared, it must appear in
4986 * the shader before any use of any member included in the built-in
4987 * declaration, or a compilation error will result.
4988 *
4989 * This appears to be a clarification to the behaviour established for
4990 * gl_PerVertex by GLSL 1.50, therefore we implement this behaviour
4991 * regardless of GLSL version.
4992 */
4993 interface_block_usage_visitor v(var_mode, earlier_per_vertex);
4994 v.run(instructions);
4995 if (v.usage_found()) {
4996 _mesa_glsl_error(&loc, state,
4997 "redeclaration of a built-in interface block must "
4998 "appear before any use of any member of the "
4999 "interface block");
5000 }
5001 }
5002
5003 const glsl_type *block_type =
5004 glsl_type::get_interface_instance(fields,
5005 num_variables,
5006 packing,
5007 this->block_name);
5008
5009 if (!state->symbols->add_interface(block_type->name, block_type, var_mode)) {
5010 YYLTYPE loc = this->get_location();
5011 _mesa_glsl_error(&loc, state, "interface block `%s' with type `%s' "
5012 "already taken in the current scope",
5013 this->block_name, iface_type_name);
5014 }
5015
5016 /* Since interface blocks cannot contain statements, it should be
5017 * impossible for the block to generate any instructions.
5018 */
5019 assert(declared_variables.is_empty());
5020
5021 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
5022 *
5023 * Geometry shader input variables get the per-vertex values written
5024 * out by vertex shader output variables of the same names. Since a
5025 * geometry shader operates on a set of vertices, each input varying
5026 * variable (or input block, see interface blocks below) needs to be
5027 * declared as an array.
5028 */
5029 if (state->stage == MESA_SHADER_GEOMETRY && !this->is_array &&
5030 var_mode == ir_var_shader_in) {
5031 _mesa_glsl_error(&loc, state, "geometry shader inputs must be arrays");
5032 }
5033
5034 /* Page 39 (page 45 of the PDF) of section 4.3.7 in the GLSL ES 3.00 spec
5035 * says:
5036 *
5037 * "If an instance name (instance-name) is used, then it puts all the
5038 * members inside a scope within its own name space, accessed with the
5039 * field selector ( . ) operator (analogously to structures)."
5040 */
5041 if (this->instance_name) {
5042 if (redeclaring_per_vertex) {
5043 /* When a built-in in an unnamed interface block is redeclared,
5044 * get_variable_being_redeclared() calls
5045 * check_builtin_array_max_size() to make sure that built-in array
5046 * variables aren't redeclared to illegal sizes. But we're looking
5047 * at a redeclaration of a named built-in interface block. So we
5048 * have to manually call check_builtin_array_max_size() for all parts
5049 * of the interface that are arrays.
5050 */
5051 for (unsigned i = 0; i < num_variables; i++) {
5052 if (fields[i].type->is_array()) {
5053 const unsigned size = fields[i].type->array_size();
5054 check_builtin_array_max_size(fields[i].name, size, loc, state);
5055 }
5056 }
5057 } else {
5058 validate_identifier(this->instance_name, loc, state);
5059 }
5060
5061 ir_variable *var;
5062
5063 if (this->is_array) {
5064 /* Section 4.3.7 (Interface Blocks) of the GLSL 1.50 spec says:
5065 *
5066 * For uniform blocks declared an array, each individual array
5067 * element corresponds to a separate buffer object backing one
5068 * instance of the block. As the array size indicates the number
5069 * of buffer objects needed, uniform block array declarations
5070 * must specify an array size.
5071 *
5072 * And a few paragraphs later:
5073 *
5074 * Geometry shader input blocks must be declared as arrays and
5075 * follow the array declaration and linking rules for all
5076 * geometry shader inputs. All other input and output block
5077 * arrays must specify an array size.
5078 *
5079 * The upshot of this is that the only circumstance where an
5080 * interface array size *doesn't* need to be specified is on a
5081 * geometry shader input.
5082 */
5083 if (this->array_specifier->is_unsized_array &&
5084 (state->stage != MESA_SHADER_GEOMETRY || !this->layout.flags.q.in)) {
5085 _mesa_glsl_error(&loc, state,
5086 "only geometry shader inputs may be unsized "
5087 "instance block arrays");
5088
5089 }
5090
5091 const glsl_type *block_array_type =
5092 process_array_type(&loc, block_type, this->array_specifier, state);
5093
5094 var = new(state) ir_variable(block_array_type,
5095 this->instance_name,
5096 var_mode);
5097 } else {
5098 var = new(state) ir_variable(block_type,
5099 this->instance_name,
5100 var_mode);
5101 }
5102
5103 if (state->stage == MESA_SHADER_GEOMETRY && var_mode == ir_var_shader_in)
5104 handle_geometry_shader_input_decl(state, loc, var);
5105
5106 if (ir_variable *earlier =
5107 state->symbols->get_variable(this->instance_name)) {
5108 if (!redeclaring_per_vertex) {
5109 _mesa_glsl_error(&loc, state, "`%s' redeclared",
5110 this->instance_name);
5111 }
5112 earlier->data.how_declared = ir_var_declared_normally;
5113 earlier->type = var->type;
5114 earlier->reinit_interface_type(block_type);
5115 delete var;
5116 } else {
5117 state->symbols->add_variable(var);
5118 instructions->push_tail(var);
5119 }
5120 } else {
5121 /* In order to have an array size, the block must also be declared with
5122 * an instane name.
5123 */
5124 assert(!this->is_array);
5125
5126 for (unsigned i = 0; i < num_variables; i++) {
5127 ir_variable *var =
5128 new(state) ir_variable(fields[i].type,
5129 ralloc_strdup(state, fields[i].name),
5130 var_mode);
5131 var->data.interpolation = fields[i].interpolation;
5132 var->data.centroid = fields[i].centroid;
5133 var->data.sample = fields[i].sample;
5134 var->init_interface_type(block_type);
5135
5136 if (redeclaring_per_vertex) {
5137 ir_variable *earlier =
5138 get_variable_being_redeclared(var, loc, state,
5139 true /* allow_all_redeclarations */);
5140 if (strncmp(var->name, "gl_", 3) != 0 || earlier == NULL) {
5141 _mesa_glsl_error(&loc, state,
5142 "redeclaration of gl_PerVertex can only "
5143 "include built-in variables");
5144 } else if (earlier->data.how_declared == ir_var_declared_normally) {
5145 _mesa_glsl_error(&loc, state,
5146 "`%s' has already been redeclared", var->name);
5147 } else {
5148 earlier->data.how_declared = ir_var_declared_in_block;
5149 earlier->reinit_interface_type(block_type);
5150 }
5151 continue;
5152 }
5153
5154 if (state->symbols->get_variable(var->name) != NULL)
5155 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
5156
5157 /* Propagate the "binding" keyword into this UBO's fields;
5158 * the UBO declaration itself doesn't get an ir_variable unless it
5159 * has an instance name. This is ugly.
5160 */
5161 var->data.explicit_binding = this->layout.flags.q.explicit_binding;
5162 var->data.binding = this->layout.binding;
5163
5164 state->symbols->add_variable(var);
5165 instructions->push_tail(var);
5166 }
5167
5168 if (redeclaring_per_vertex && block_type != earlier_per_vertex) {
5169 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10 spec:
5170 *
5171 * It is also a compilation error ... to redeclare a built-in
5172 * block and then use a member from that built-in block that was
5173 * not included in the redeclaration.
5174 *
5175 * This appears to be a clarification to the behaviour established
5176 * for gl_PerVertex by GLSL 1.50, therefore we implement this
5177 * behaviour regardless of GLSL version.
5178 *
5179 * To prevent the shader from using a member that was not included in
5180 * the redeclaration, we disable any ir_variables that are still
5181 * associated with the old declaration of gl_PerVertex (since we've
5182 * already updated all of the variables contained in the new
5183 * gl_PerVertex to point to it).
5184 *
5185 * As a side effect this will prevent
5186 * validate_intrastage_interface_blocks() from getting confused and
5187 * thinking there are conflicting definitions of gl_PerVertex in the
5188 * shader.
5189 */
5190 foreach_list_safe(node, instructions) {
5191 ir_variable *const var = ((ir_instruction *) node)->as_variable();
5192 if (var != NULL &&
5193 var->get_interface_type() == earlier_per_vertex &&
5194 var->data.mode == var_mode) {
5195 if (var->data.how_declared == ir_var_declared_normally) {
5196 _mesa_glsl_error(&loc, state,
5197 "redeclaration of gl_PerVertex cannot "
5198 "follow a redeclaration of `%s'",
5199 var->name);
5200 }
5201 state->symbols->disable_variable(var->name);
5202 var->remove();
5203 }
5204 }
5205 }
5206 }
5207
5208 return NULL;
5209 }
5210
5211
5212 ir_rvalue *
5213 ast_gs_input_layout::hir(exec_list *instructions,
5214 struct _mesa_glsl_parse_state *state)
5215 {
5216 YYLTYPE loc = this->get_location();
5217
5218 /* If any geometry input layout declaration preceded this one, make sure it
5219 * was consistent with this one.
5220 */
5221 if (state->gs_input_prim_type_specified &&
5222 state->gs_input_prim_type != this->prim_type) {
5223 _mesa_glsl_error(&loc, state,
5224 "geometry shader input layout does not match"
5225 " previous declaration");
5226 return NULL;
5227 }
5228
5229 /* If any shader inputs occurred before this declaration and specified an
5230 * array size, make sure the size they specified is consistent with the
5231 * primitive type.
5232 */
5233 unsigned num_vertices = vertices_per_prim(this->prim_type);
5234 if (state->gs_input_size != 0 && state->gs_input_size != num_vertices) {
5235 _mesa_glsl_error(&loc, state,
5236 "this geometry shader input layout implies %u vertices"
5237 " per primitive, but a previous input is declared"
5238 " with size %u", num_vertices, state->gs_input_size);
5239 return NULL;
5240 }
5241
5242 state->gs_input_prim_type_specified = true;
5243 state->gs_input_prim_type = this->prim_type;
5244
5245 /* If any shader inputs occurred before this declaration and did not
5246 * specify an array size, their size is determined now.
5247 */
5248 foreach_list (node, instructions) {
5249 ir_variable *var = ((ir_instruction *) node)->as_variable();
5250 if (var == NULL || var->data.mode != ir_var_shader_in)
5251 continue;
5252
5253 /* Note: gl_PrimitiveIDIn has mode ir_var_shader_in, but it's not an
5254 * array; skip it.
5255 */
5256
5257 if (var->type->is_unsized_array()) {
5258 if (var->data.max_array_access >= num_vertices) {
5259 _mesa_glsl_error(&loc, state,
5260 "this geometry shader input layout implies %u"
5261 " vertices, but an access to element %u of input"
5262 " `%s' already exists", num_vertices,
5263 var->data.max_array_access, var->name);
5264 } else {
5265 var->type = glsl_type::get_array_instance(var->type->fields.array,
5266 num_vertices);
5267 }
5268 }
5269 }
5270
5271 return NULL;
5272 }
5273
5274
5275 static void
5276 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
5277 exec_list *instructions)
5278 {
5279 bool gl_FragColor_assigned = false;
5280 bool gl_FragData_assigned = false;
5281 bool user_defined_fs_output_assigned = false;
5282 ir_variable *user_defined_fs_output = NULL;
5283
5284 /* It would be nice to have proper location information. */
5285 YYLTYPE loc;
5286 memset(&loc, 0, sizeof(loc));
5287
5288 foreach_list(node, instructions) {
5289 ir_variable *var = ((ir_instruction *)node)->as_variable();
5290
5291 if (!var || !var->data.assigned)
5292 continue;
5293
5294 if (strcmp(var->name, "gl_FragColor") == 0)
5295 gl_FragColor_assigned = true;
5296 else if (strcmp(var->name, "gl_FragData") == 0)
5297 gl_FragData_assigned = true;
5298 else if (strncmp(var->name, "gl_", 3) != 0) {
5299 if (state->stage == MESA_SHADER_FRAGMENT &&
5300 var->data.mode == ir_var_shader_out) {
5301 user_defined_fs_output_assigned = true;
5302 user_defined_fs_output = var;
5303 }
5304 }
5305 }
5306
5307 /* From the GLSL 1.30 spec:
5308 *
5309 * "If a shader statically assigns a value to gl_FragColor, it
5310 * may not assign a value to any element of gl_FragData. If a
5311 * shader statically writes a value to any element of
5312 * gl_FragData, it may not assign a value to
5313 * gl_FragColor. That is, a shader may assign values to either
5314 * gl_FragColor or gl_FragData, but not both. Multiple shaders
5315 * linked together must also consistently write just one of
5316 * these variables. Similarly, if user declared output
5317 * variables are in use (statically assigned to), then the
5318 * built-in variables gl_FragColor and gl_FragData may not be
5319 * assigned to. These incorrect usages all generate compile
5320 * time errors."
5321 */
5322 if (gl_FragColor_assigned && gl_FragData_assigned) {
5323 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
5324 "`gl_FragColor' and `gl_FragData'");
5325 } else if (gl_FragColor_assigned && user_defined_fs_output_assigned) {
5326 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
5327 "`gl_FragColor' and `%s'",
5328 user_defined_fs_output->name);
5329 } else if (gl_FragData_assigned && user_defined_fs_output_assigned) {
5330 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
5331 "`gl_FragData' and `%s'",
5332 user_defined_fs_output->name);
5333 }
5334 }
5335
5336
5337 static void
5338 remove_per_vertex_blocks(exec_list *instructions,
5339 _mesa_glsl_parse_state *state, ir_variable_mode mode)
5340 {
5341 /* Find the gl_PerVertex interface block of the appropriate (in/out) mode,
5342 * if it exists in this shader type.
5343 */
5344 const glsl_type *per_vertex = NULL;
5345 switch (mode) {
5346 case ir_var_shader_in:
5347 if (ir_variable *gl_in = state->symbols->get_variable("gl_in"))
5348 per_vertex = gl_in->get_interface_type();
5349 break;
5350 case ir_var_shader_out:
5351 if (ir_variable *gl_Position =
5352 state->symbols->get_variable("gl_Position")) {
5353 per_vertex = gl_Position->get_interface_type();
5354 }
5355 break;
5356 default:
5357 assert(!"Unexpected mode");
5358 break;
5359 }
5360
5361 /* If we didn't find a built-in gl_PerVertex interface block, then we don't
5362 * need to do anything.
5363 */
5364 if (per_vertex == NULL)
5365 return;
5366
5367 /* If the interface block is used by the shader, then we don't need to do
5368 * anything.
5369 */
5370 interface_block_usage_visitor v(mode, per_vertex);
5371 v.run(instructions);
5372 if (v.usage_found())
5373 return;
5374
5375 /* Remove any ir_variable declarations that refer to the interface block
5376 * we're removing.
5377 */
5378 foreach_list_safe(node, instructions) {
5379 ir_variable *const var = ((ir_instruction *) node)->as_variable();
5380 if (var != NULL && var->get_interface_type() == per_vertex &&
5381 var->data.mode == mode) {
5382 state->symbols->disable_variable(var->name);
5383 var->remove();
5384 }
5385 }
5386 }