glsl/sso: Add parser and AST-to-HIR support for separate shader object layouts
[mesa.git] / src / glsl / ast_to_hir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file ast_to_hir.c
26 * Convert abstract syntax to to high-level intermediate reprensentation (HIR).
27 *
28 * During the conversion to HIR, the majority of the symantic checking is
29 * preformed on the program. This includes:
30 *
31 * * Symbol table management
32 * * Type checking
33 * * Function binding
34 *
35 * The majority of this work could be done during parsing, and the parser could
36 * probably generate HIR directly. However, this results in frequent changes
37 * to the parser code. Since we do not assume that every system this complier
38 * is built on will have Flex and Bison installed, we have to store the code
39 * generated by these tools in our version control system. In other parts of
40 * the system we've seen problems where a parser was changed but the generated
41 * code was not committed, merge conflicts where created because two developers
42 * had slightly different versions of Bison installed, etc.
43 *
44 * I have also noticed that running Bison generated parsers in GDB is very
45 * irritating. When you get a segfault on '$$ = $1->foo', you can't very
46 * well 'print $1' in GDB.
47 *
48 * As a result, my preference is to put as little C code as possible in the
49 * parser (and lexer) sources.
50 */
51
52 #include "main/core.h" /* for struct gl_extensions */
53 #include "glsl_symbol_table.h"
54 #include "glsl_parser_extras.h"
55 #include "ast.h"
56 #include "glsl_types.h"
57 #include "program/hash_table.h"
58 #include "ir.h"
59
60 static void
61 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
62 exec_list *instructions);
63 static void
64 remove_per_vertex_blocks(exec_list *instructions,
65 _mesa_glsl_parse_state *state, ir_variable_mode mode);
66
67
68 void
69 _mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
70 {
71 _mesa_glsl_initialize_variables(instructions, state);
72
73 state->symbols->separate_function_namespace = state->language_version == 110;
74
75 state->current_function = NULL;
76
77 state->toplevel_ir = instructions;
78
79 state->gs_input_prim_type_specified = false;
80 state->cs_input_local_size_specified = false;
81
82 /* Section 4.2 of the GLSL 1.20 specification states:
83 * "The built-in functions are scoped in a scope outside the global scope
84 * users declare global variables in. That is, a shader's global scope,
85 * available for user-defined functions and global variables, is nested
86 * inside the scope containing the built-in functions."
87 *
88 * Since built-in functions like ftransform() access built-in variables,
89 * it follows that those must be in the outer scope as well.
90 *
91 * We push scope here to create this nesting effect...but don't pop.
92 * This way, a shader's globals are still in the symbol table for use
93 * by the linker.
94 */
95 state->symbols->push_scope();
96
97 foreach_list_typed (ast_node, ast, link, & state->translation_unit)
98 ast->hir(instructions, state);
99
100 detect_recursion_unlinked(state, instructions);
101 detect_conflicting_assignments(state, instructions);
102
103 state->toplevel_ir = NULL;
104
105 /* Move all of the variable declarations to the front of the IR list, and
106 * reverse the order. This has the (intended!) side effect that vertex
107 * shader inputs and fragment shader outputs will appear in the IR in the
108 * same order that they appeared in the shader code. This results in the
109 * locations being assigned in the declared order. Many (arguably buggy)
110 * applications depend on this behavior, and it matches what nearly all
111 * other drivers do.
112 */
113 foreach_list_safe(node, instructions) {
114 ir_variable *const var = ((ir_instruction *) node)->as_variable();
115
116 if (var == NULL)
117 continue;
118
119 var->remove();
120 instructions->push_head(var);
121 }
122
123 /* From section 7.1 (Built-In Language Variables) of the GLSL 4.10 spec:
124 *
125 * If multiple shaders using members of a built-in block belonging to
126 * the same interface are linked together in the same program, they
127 * must all redeclare the built-in block in the same way, as described
128 * in section 4.3.7 "Interface Blocks" for interface block matching, or
129 * a link error will result.
130 *
131 * The phrase "using members of a built-in block" implies that if two
132 * shaders are linked together and one of them *does not use* any members
133 * of the built-in block, then that shader does not need to have a matching
134 * redeclaration of the built-in block.
135 *
136 * This appears to be a clarification to the behaviour established for
137 * gl_PerVertex by GLSL 1.50, therefore implement it regardless of GLSL
138 * version.
139 *
140 * The definition of "interface" in section 4.3.7 that applies here is as
141 * follows:
142 *
143 * The boundary between adjacent programmable pipeline stages: This
144 * spans all the outputs in all compilation units of the first stage
145 * and all the inputs in all compilation units of the second stage.
146 *
147 * Therefore this rule applies to both inter- and intra-stage linking.
148 *
149 * The easiest way to implement this is to check whether the shader uses
150 * gl_PerVertex right after ast-to-ir conversion, and if it doesn't, simply
151 * remove all the relevant variable declaration from the IR, so that the
152 * linker won't see them and complain about mismatches.
153 */
154 remove_per_vertex_blocks(instructions, state, ir_var_shader_in);
155 remove_per_vertex_blocks(instructions, state, ir_var_shader_out);
156 }
157
158
159 /**
160 * If a conversion is available, convert one operand to a different type
161 *
162 * The \c from \c ir_rvalue is converted "in place".
163 *
164 * \param to Type that the operand it to be converted to
165 * \param from Operand that is being converted
166 * \param state GLSL compiler state
167 *
168 * \return
169 * If a conversion is possible (or unnecessary), \c true is returned.
170 * Otherwise \c false is returned.
171 */
172 bool
173 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
174 struct _mesa_glsl_parse_state *state)
175 {
176 void *ctx = state;
177 if (to->base_type == from->type->base_type)
178 return true;
179
180 /* This conversion was added in GLSL 1.20. If the compilation mode is
181 * GLSL 1.10, the conversion is skipped.
182 */
183 if (!state->is_version(120, 0))
184 return false;
185
186 /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
187 *
188 * "There are no implicit array or structure conversions. For
189 * example, an array of int cannot be implicitly converted to an
190 * array of float. There are no implicit conversions between
191 * signed and unsigned integers."
192 */
193 /* FINISHME: The above comment is partially a lie. There is int/uint
194 * FINISHME: conversion for immediate constants.
195 */
196 if (!to->is_float() || !from->type->is_numeric())
197 return false;
198
199 /* Convert to a floating point type with the same number of components
200 * as the original type - i.e. int to float, not int to vec4.
201 */
202 to = glsl_type::get_instance(GLSL_TYPE_FLOAT, from->type->vector_elements,
203 from->type->matrix_columns);
204
205 switch (from->type->base_type) {
206 case GLSL_TYPE_INT:
207 from = new(ctx) ir_expression(ir_unop_i2f, to, from, NULL);
208 break;
209 case GLSL_TYPE_UINT:
210 from = new(ctx) ir_expression(ir_unop_u2f, to, from, NULL);
211 break;
212 case GLSL_TYPE_BOOL:
213 from = new(ctx) ir_expression(ir_unop_b2f, to, from, NULL);
214 break;
215 default:
216 assert(0);
217 }
218
219 return true;
220 }
221
222
223 static const struct glsl_type *
224 arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
225 bool multiply,
226 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
227 {
228 const glsl_type *type_a = value_a->type;
229 const glsl_type *type_b = value_b->type;
230
231 /* From GLSL 1.50 spec, page 56:
232 *
233 * "The arithmetic binary operators add (+), subtract (-),
234 * multiply (*), and divide (/) operate on integer and
235 * floating-point scalars, vectors, and matrices."
236 */
237 if (!type_a->is_numeric() || !type_b->is_numeric()) {
238 _mesa_glsl_error(loc, state,
239 "operands to arithmetic operators must be numeric");
240 return glsl_type::error_type;
241 }
242
243
244 /* "If one operand is floating-point based and the other is
245 * not, then the conversions from Section 4.1.10 "Implicit
246 * Conversions" are applied to the non-floating-point-based operand."
247 */
248 if (!apply_implicit_conversion(type_a, value_b, state)
249 && !apply_implicit_conversion(type_b, value_a, state)) {
250 _mesa_glsl_error(loc, state,
251 "could not implicitly convert operands to "
252 "arithmetic operator");
253 return glsl_type::error_type;
254 }
255 type_a = value_a->type;
256 type_b = value_b->type;
257
258 /* "If the operands are integer types, they must both be signed or
259 * both be unsigned."
260 *
261 * From this rule and the preceeding conversion it can be inferred that
262 * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
263 * The is_numeric check above already filtered out the case where either
264 * type is not one of these, so now the base types need only be tested for
265 * equality.
266 */
267 if (type_a->base_type != type_b->base_type) {
268 _mesa_glsl_error(loc, state,
269 "base type mismatch for arithmetic operator");
270 return glsl_type::error_type;
271 }
272
273 /* "All arithmetic binary operators result in the same fundamental type
274 * (signed integer, unsigned integer, or floating-point) as the
275 * operands they operate on, after operand type conversion. After
276 * conversion, the following cases are valid
277 *
278 * * The two operands are scalars. In this case the operation is
279 * applied, resulting in a scalar."
280 */
281 if (type_a->is_scalar() && type_b->is_scalar())
282 return type_a;
283
284 /* "* One operand is a scalar, and the other is a vector or matrix.
285 * In this case, the scalar operation is applied independently to each
286 * component of the vector or matrix, resulting in the same size
287 * vector or matrix."
288 */
289 if (type_a->is_scalar()) {
290 if (!type_b->is_scalar())
291 return type_b;
292 } else if (type_b->is_scalar()) {
293 return type_a;
294 }
295
296 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
297 * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
298 * handled.
299 */
300 assert(!type_a->is_scalar());
301 assert(!type_b->is_scalar());
302
303 /* "* The two operands are vectors of the same size. In this case, the
304 * operation is done component-wise resulting in the same size
305 * vector."
306 */
307 if (type_a->is_vector() && type_b->is_vector()) {
308 if (type_a == type_b) {
309 return type_a;
310 } else {
311 _mesa_glsl_error(loc, state,
312 "vector size mismatch for arithmetic operator");
313 return glsl_type::error_type;
314 }
315 }
316
317 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
318 * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
319 * <vector, vector> have been handled. At least one of the operands must
320 * be matrix. Further, since there are no integer matrix types, the base
321 * type of both operands must be float.
322 */
323 assert(type_a->is_matrix() || type_b->is_matrix());
324 assert(type_a->base_type == GLSL_TYPE_FLOAT);
325 assert(type_b->base_type == GLSL_TYPE_FLOAT);
326
327 /* "* The operator is add (+), subtract (-), or divide (/), and the
328 * operands are matrices with the same number of rows and the same
329 * number of columns. In this case, the operation is done component-
330 * wise resulting in the same size matrix."
331 * * The operator is multiply (*), where both operands are matrices or
332 * one operand is a vector and the other a matrix. A right vector
333 * operand is treated as a column vector and a left vector operand as a
334 * row vector. In all these cases, it is required that the number of
335 * columns of the left operand is equal to the number of rows of the
336 * right operand. Then, the multiply (*) operation does a linear
337 * algebraic multiply, yielding an object that has the same number of
338 * rows as the left operand and the same number of columns as the right
339 * operand. Section 5.10 "Vector and Matrix Operations" explains in
340 * more detail how vectors and matrices are operated on."
341 */
342 if (! multiply) {
343 if (type_a == type_b)
344 return type_a;
345 } else {
346 if (type_a->is_matrix() && type_b->is_matrix()) {
347 /* Matrix multiply. The columns of A must match the rows of B. Given
348 * the other previously tested constraints, this means the vector type
349 * of a row from A must be the same as the vector type of a column from
350 * B.
351 */
352 if (type_a->row_type() == type_b->column_type()) {
353 /* The resulting matrix has the number of columns of matrix B and
354 * the number of rows of matrix A. We get the row count of A by
355 * looking at the size of a vector that makes up a column. The
356 * transpose (size of a row) is done for B.
357 */
358 const glsl_type *const type =
359 glsl_type::get_instance(type_a->base_type,
360 type_a->column_type()->vector_elements,
361 type_b->row_type()->vector_elements);
362 assert(type != glsl_type::error_type);
363
364 return type;
365 }
366 } else if (type_a->is_matrix()) {
367 /* A is a matrix and B is a column vector. Columns of A must match
368 * rows of B. Given the other previously tested constraints, this
369 * means the vector type of a row from A must be the same as the
370 * vector the type of B.
371 */
372 if (type_a->row_type() == type_b) {
373 /* The resulting vector has a number of elements equal to
374 * the number of rows of matrix A. */
375 const glsl_type *const type =
376 glsl_type::get_instance(type_a->base_type,
377 type_a->column_type()->vector_elements,
378 1);
379 assert(type != glsl_type::error_type);
380
381 return type;
382 }
383 } else {
384 assert(type_b->is_matrix());
385
386 /* A is a row vector and B is a matrix. Columns of A must match rows
387 * of B. Given the other previously tested constraints, this means
388 * the type of A must be the same as the vector type of a column from
389 * B.
390 */
391 if (type_a == type_b->column_type()) {
392 /* The resulting vector has a number of elements equal to
393 * the number of columns of matrix B. */
394 const glsl_type *const type =
395 glsl_type::get_instance(type_a->base_type,
396 type_b->row_type()->vector_elements,
397 1);
398 assert(type != glsl_type::error_type);
399
400 return type;
401 }
402 }
403
404 _mesa_glsl_error(loc, state, "size mismatch for matrix multiplication");
405 return glsl_type::error_type;
406 }
407
408
409 /* "All other cases are illegal."
410 */
411 _mesa_glsl_error(loc, state, "type mismatch");
412 return glsl_type::error_type;
413 }
414
415
416 static const struct glsl_type *
417 unary_arithmetic_result_type(const struct glsl_type *type,
418 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
419 {
420 /* From GLSL 1.50 spec, page 57:
421 *
422 * "The arithmetic unary operators negate (-), post- and pre-increment
423 * and decrement (-- and ++) operate on integer or floating-point
424 * values (including vectors and matrices). All unary operators work
425 * component-wise on their operands. These result with the same type
426 * they operated on."
427 */
428 if (!type->is_numeric()) {
429 _mesa_glsl_error(loc, state,
430 "operands to arithmetic operators must be numeric");
431 return glsl_type::error_type;
432 }
433
434 return type;
435 }
436
437 /**
438 * \brief Return the result type of a bit-logic operation.
439 *
440 * If the given types to the bit-logic operator are invalid, return
441 * glsl_type::error_type.
442 *
443 * \param type_a Type of LHS of bit-logic op
444 * \param type_b Type of RHS of bit-logic op
445 */
446 static const struct glsl_type *
447 bit_logic_result_type(const struct glsl_type *type_a,
448 const struct glsl_type *type_b,
449 ast_operators op,
450 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
451 {
452 if (!state->check_bitwise_operations_allowed(loc)) {
453 return glsl_type::error_type;
454 }
455
456 /* From page 50 (page 56 of PDF) of GLSL 1.30 spec:
457 *
458 * "The bitwise operators and (&), exclusive-or (^), and inclusive-or
459 * (|). The operands must be of type signed or unsigned integers or
460 * integer vectors."
461 */
462 if (!type_a->is_integer()) {
463 _mesa_glsl_error(loc, state, "LHS of `%s' must be an integer",
464 ast_expression::operator_string(op));
465 return glsl_type::error_type;
466 }
467 if (!type_b->is_integer()) {
468 _mesa_glsl_error(loc, state, "RHS of `%s' must be an integer",
469 ast_expression::operator_string(op));
470 return glsl_type::error_type;
471 }
472
473 /* "The fundamental types of the operands (signed or unsigned) must
474 * match,"
475 */
476 if (type_a->base_type != type_b->base_type) {
477 _mesa_glsl_error(loc, state, "operands of `%s' must have the same "
478 "base type", ast_expression::operator_string(op));
479 return glsl_type::error_type;
480 }
481
482 /* "The operands cannot be vectors of differing size." */
483 if (type_a->is_vector() &&
484 type_b->is_vector() &&
485 type_a->vector_elements != type_b->vector_elements) {
486 _mesa_glsl_error(loc, state, "operands of `%s' cannot be vectors of "
487 "different sizes", ast_expression::operator_string(op));
488 return glsl_type::error_type;
489 }
490
491 /* "If one operand is a scalar and the other a vector, the scalar is
492 * applied component-wise to the vector, resulting in the same type as
493 * the vector. The fundamental types of the operands [...] will be the
494 * resulting fundamental type."
495 */
496 if (type_a->is_scalar())
497 return type_b;
498 else
499 return type_a;
500 }
501
502 static const struct glsl_type *
503 modulus_result_type(const struct glsl_type *type_a,
504 const struct glsl_type *type_b,
505 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
506 {
507 if (!state->check_version(130, 300, loc, "operator '%%' is reserved")) {
508 return glsl_type::error_type;
509 }
510
511 /* From GLSL 1.50 spec, page 56:
512 * "The operator modulus (%) operates on signed or unsigned integers or
513 * integer vectors. The operand types must both be signed or both be
514 * unsigned."
515 */
516 if (!type_a->is_integer()) {
517 _mesa_glsl_error(loc, state, "LHS of operator %% must be an integer");
518 return glsl_type::error_type;
519 }
520 if (!type_b->is_integer()) {
521 _mesa_glsl_error(loc, state, "RHS of operator %% must be an integer");
522 return glsl_type::error_type;
523 }
524 if (type_a->base_type != type_b->base_type) {
525 _mesa_glsl_error(loc, state,
526 "operands of %% must have the same base type");
527 return glsl_type::error_type;
528 }
529
530 /* "The operands cannot be vectors of differing size. If one operand is
531 * a scalar and the other vector, then the scalar is applied component-
532 * wise to the vector, resulting in the same type as the vector. If both
533 * are vectors of the same size, the result is computed component-wise."
534 */
535 if (type_a->is_vector()) {
536 if (!type_b->is_vector()
537 || (type_a->vector_elements == type_b->vector_elements))
538 return type_a;
539 } else
540 return type_b;
541
542 /* "The operator modulus (%) is not defined for any other data types
543 * (non-integer types)."
544 */
545 _mesa_glsl_error(loc, state, "type mismatch");
546 return glsl_type::error_type;
547 }
548
549
550 static const struct glsl_type *
551 relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
552 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
553 {
554 const glsl_type *type_a = value_a->type;
555 const glsl_type *type_b = value_b->type;
556
557 /* From GLSL 1.50 spec, page 56:
558 * "The relational operators greater than (>), less than (<), greater
559 * than or equal (>=), and less than or equal (<=) operate only on
560 * scalar integer and scalar floating-point expressions."
561 */
562 if (!type_a->is_numeric()
563 || !type_b->is_numeric()
564 || !type_a->is_scalar()
565 || !type_b->is_scalar()) {
566 _mesa_glsl_error(loc, state,
567 "operands to relational operators must be scalar and "
568 "numeric");
569 return glsl_type::error_type;
570 }
571
572 /* "Either the operands' types must match, or the conversions from
573 * Section 4.1.10 "Implicit Conversions" will be applied to the integer
574 * operand, after which the types must match."
575 */
576 if (!apply_implicit_conversion(type_a, value_b, state)
577 && !apply_implicit_conversion(type_b, value_a, state)) {
578 _mesa_glsl_error(loc, state,
579 "could not implicitly convert operands to "
580 "relational operator");
581 return glsl_type::error_type;
582 }
583 type_a = value_a->type;
584 type_b = value_b->type;
585
586 if (type_a->base_type != type_b->base_type) {
587 _mesa_glsl_error(loc, state, "base type mismatch");
588 return glsl_type::error_type;
589 }
590
591 /* "The result is scalar Boolean."
592 */
593 return glsl_type::bool_type;
594 }
595
596 /**
597 * \brief Return the result type of a bit-shift operation.
598 *
599 * If the given types to the bit-shift operator are invalid, return
600 * glsl_type::error_type.
601 *
602 * \param type_a Type of LHS of bit-shift op
603 * \param type_b Type of RHS of bit-shift op
604 */
605 static const struct glsl_type *
606 shift_result_type(const struct glsl_type *type_a,
607 const struct glsl_type *type_b,
608 ast_operators op,
609 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
610 {
611 if (!state->check_bitwise_operations_allowed(loc)) {
612 return glsl_type::error_type;
613 }
614
615 /* From page 50 (page 56 of the PDF) of the GLSL 1.30 spec:
616 *
617 * "The shift operators (<<) and (>>). For both operators, the operands
618 * must be signed or unsigned integers or integer vectors. One operand
619 * can be signed while the other is unsigned."
620 */
621 if (!type_a->is_integer()) {
622 _mesa_glsl_error(loc, state, "LHS of operator %s must be an integer or "
623 "integer vector", ast_expression::operator_string(op));
624 return glsl_type::error_type;
625
626 }
627 if (!type_b->is_integer()) {
628 _mesa_glsl_error(loc, state, "RHS of operator %s must be an integer or "
629 "integer vector", ast_expression::operator_string(op));
630 return glsl_type::error_type;
631 }
632
633 /* "If the first operand is a scalar, the second operand has to be
634 * a scalar as well."
635 */
636 if (type_a->is_scalar() && !type_b->is_scalar()) {
637 _mesa_glsl_error(loc, state, "if the first operand of %s is scalar, the "
638 "second must be scalar as well",
639 ast_expression::operator_string(op));
640 return glsl_type::error_type;
641 }
642
643 /* If both operands are vectors, check that they have same number of
644 * elements.
645 */
646 if (type_a->is_vector() &&
647 type_b->is_vector() &&
648 type_a->vector_elements != type_b->vector_elements) {
649 _mesa_glsl_error(loc, state, "vector operands to operator %s must "
650 "have same number of elements",
651 ast_expression::operator_string(op));
652 return glsl_type::error_type;
653 }
654
655 /* "In all cases, the resulting type will be the same type as the left
656 * operand."
657 */
658 return type_a;
659 }
660
661 /**
662 * Validates that a value can be assigned to a location with a specified type
663 *
664 * Validates that \c rhs can be assigned to some location. If the types are
665 * not an exact match but an automatic conversion is possible, \c rhs will be
666 * converted.
667 *
668 * \return
669 * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
670 * Otherwise the actual RHS to be assigned will be returned. This may be
671 * \c rhs, or it may be \c rhs after some type conversion.
672 *
673 * \note
674 * In addition to being used for assignments, this function is used to
675 * type-check return values.
676 */
677 ir_rvalue *
678 validate_assignment(struct _mesa_glsl_parse_state *state,
679 YYLTYPE loc, const glsl_type *lhs_type,
680 ir_rvalue *rhs, bool is_initializer)
681 {
682 /* If there is already some error in the RHS, just return it. Anything
683 * else will lead to an avalanche of error message back to the user.
684 */
685 if (rhs->type->is_error())
686 return rhs;
687
688 /* If the types are identical, the assignment can trivially proceed.
689 */
690 if (rhs->type == lhs_type)
691 return rhs;
692
693 /* If the array element types are the same and the LHS is unsized,
694 * the assignment is okay for initializers embedded in variable
695 * declarations.
696 *
697 * Note: Whole-array assignments are not permitted in GLSL 1.10, but this
698 * is handled by ir_dereference::is_lvalue.
699 */
700 if (lhs_type->is_unsized_array() && rhs->type->is_array()
701 && (lhs_type->element_type() == rhs->type->element_type())) {
702 if (is_initializer) {
703 return rhs;
704 } else {
705 _mesa_glsl_error(&loc, state,
706 "implicitly sized arrays cannot be assigned");
707 return NULL;
708 }
709 }
710
711 /* Check for implicit conversion in GLSL 1.20 */
712 if (apply_implicit_conversion(lhs_type, rhs, state)) {
713 if (rhs->type == lhs_type)
714 return rhs;
715 }
716
717 _mesa_glsl_error(&loc, state,
718 "%s of type %s cannot be assigned to "
719 "variable of type %s",
720 is_initializer ? "initializer" : "value",
721 rhs->type->name, lhs_type->name);
722
723 return NULL;
724 }
725
726 static void
727 mark_whole_array_access(ir_rvalue *access)
728 {
729 ir_dereference_variable *deref = access->as_dereference_variable();
730
731 if (deref && deref->var) {
732 deref->var->data.max_array_access = deref->type->length - 1;
733 }
734 }
735
736 ir_rvalue *
737 do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state,
738 const char *non_lvalue_description,
739 ir_rvalue *lhs, ir_rvalue *rhs, bool is_initializer,
740 YYLTYPE lhs_loc)
741 {
742 void *ctx = state;
743 bool error_emitted = (lhs->type->is_error() || rhs->type->is_error());
744 ir_rvalue *extract_channel = NULL;
745
746 /* If the assignment LHS comes back as an ir_binop_vector_extract
747 * expression, move it to the RHS as an ir_triop_vector_insert.
748 */
749 if (lhs->ir_type == ir_type_expression) {
750 ir_expression *const lhs_expr = lhs->as_expression();
751
752 if (unlikely(lhs_expr->operation == ir_binop_vector_extract)) {
753 ir_rvalue *new_rhs =
754 validate_assignment(state, lhs_loc, lhs->type,
755 rhs, is_initializer);
756
757 if (new_rhs == NULL) {
758 return lhs;
759 } else {
760 /* This converts:
761 * - LHS: (expression float vector_extract <vec> <channel>)
762 * - RHS: <scalar>
763 * into:
764 * - LHS: <vec>
765 * - RHS: (expression vec2 vector_insert <vec> <channel> <scalar>)
766 *
767 * The LHS type is now a vector instead of a scalar. Since GLSL
768 * allows assignments to be used as rvalues, we need to re-extract
769 * the channel from assignment_temp when returning the rvalue.
770 */
771 extract_channel = lhs_expr->operands[1];
772 rhs = new(ctx) ir_expression(ir_triop_vector_insert,
773 lhs_expr->operands[0]->type,
774 lhs_expr->operands[0],
775 new_rhs,
776 extract_channel);
777 lhs = lhs_expr->operands[0]->clone(ctx, NULL);
778 }
779 }
780 }
781
782 ir_variable *lhs_var = lhs->variable_referenced();
783 if (lhs_var)
784 lhs_var->data.assigned = true;
785
786 if (!error_emitted) {
787 if (non_lvalue_description != NULL) {
788 _mesa_glsl_error(&lhs_loc, state,
789 "assignment to %s",
790 non_lvalue_description);
791 error_emitted = true;
792 } else if (lhs->variable_referenced() != NULL
793 && lhs->variable_referenced()->data.read_only) {
794 _mesa_glsl_error(&lhs_loc, state,
795 "assignment to read-only variable '%s'",
796 lhs->variable_referenced()->name);
797 error_emitted = true;
798
799 } else if (lhs->type->is_array() &&
800 !state->check_version(120, 300, &lhs_loc,
801 "whole array assignment forbidden")) {
802 /* From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
803 *
804 * "Other binary or unary expressions, non-dereferenced
805 * arrays, function names, swizzles with repeated fields,
806 * and constants cannot be l-values."
807 *
808 * The restriction on arrays is lifted in GLSL 1.20 and GLSL ES 3.00.
809 */
810 error_emitted = true;
811 } else if (!lhs->is_lvalue()) {
812 _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment");
813 error_emitted = true;
814 }
815 }
816
817 ir_rvalue *new_rhs =
818 validate_assignment(state, lhs_loc, lhs->type, rhs, is_initializer);
819 if (new_rhs != NULL) {
820 rhs = new_rhs;
821
822 /* If the LHS array was not declared with a size, it takes it size from
823 * the RHS. If the LHS is an l-value and a whole array, it must be a
824 * dereference of a variable. Any other case would require that the LHS
825 * is either not an l-value or not a whole array.
826 */
827 if (lhs->type->is_unsized_array()) {
828 ir_dereference *const d = lhs->as_dereference();
829
830 assert(d != NULL);
831
832 ir_variable *const var = d->variable_referenced();
833
834 assert(var != NULL);
835
836 if (var->data.max_array_access >= unsigned(rhs->type->array_size())) {
837 /* FINISHME: This should actually log the location of the RHS. */
838 _mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to "
839 "previous access",
840 var->data.max_array_access);
841 }
842
843 var->type = glsl_type::get_array_instance(lhs->type->element_type(),
844 rhs->type->array_size());
845 d->type = var->type;
846 }
847 if (lhs->type->is_array()) {
848 mark_whole_array_access(rhs);
849 mark_whole_array_access(lhs);
850 }
851 }
852
853 /* Most callers of do_assignment (assign, add_assign, pre_inc/dec,
854 * but not post_inc) need the converted assigned value as an rvalue
855 * to handle things like:
856 *
857 * i = j += 1;
858 *
859 * So we always just store the computed value being assigned to a
860 * temporary and return a deref of that temporary. If the rvalue
861 * ends up not being used, the temp will get copy-propagated out.
862 */
863 ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp",
864 ir_var_temporary);
865 ir_dereference_variable *deref_var = new(ctx) ir_dereference_variable(var);
866 instructions->push_tail(var);
867 instructions->push_tail(new(ctx) ir_assignment(deref_var, rhs));
868 deref_var = new(ctx) ir_dereference_variable(var);
869
870 if (!error_emitted)
871 instructions->push_tail(new(ctx) ir_assignment(lhs, deref_var));
872
873 if (extract_channel) {
874 return new(ctx) ir_expression(ir_binop_vector_extract,
875 new(ctx) ir_dereference_variable(var),
876 extract_channel->clone(ctx, NULL));
877 }
878 return new(ctx) ir_dereference_variable(var);
879 }
880
881 static ir_rvalue *
882 get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue)
883 {
884 void *ctx = ralloc_parent(lvalue);
885 ir_variable *var;
886
887 var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp",
888 ir_var_temporary);
889 instructions->push_tail(var);
890 var->data.mode = ir_var_auto;
891
892 instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
893 lvalue));
894
895 return new(ctx) ir_dereference_variable(var);
896 }
897
898
899 ir_rvalue *
900 ast_node::hir(exec_list *instructions,
901 struct _mesa_glsl_parse_state *state)
902 {
903 (void) instructions;
904 (void) state;
905
906 return NULL;
907 }
908
909 static ir_rvalue *
910 do_comparison(void *mem_ctx, int operation, ir_rvalue *op0, ir_rvalue *op1)
911 {
912 int join_op;
913 ir_rvalue *cmp = NULL;
914
915 if (operation == ir_binop_all_equal)
916 join_op = ir_binop_logic_and;
917 else
918 join_op = ir_binop_logic_or;
919
920 switch (op0->type->base_type) {
921 case GLSL_TYPE_FLOAT:
922 case GLSL_TYPE_UINT:
923 case GLSL_TYPE_INT:
924 case GLSL_TYPE_BOOL:
925 return new(mem_ctx) ir_expression(operation, op0, op1);
926
927 case GLSL_TYPE_ARRAY: {
928 for (unsigned int i = 0; i < op0->type->length; i++) {
929 ir_rvalue *e0, *e1, *result;
930
931 e0 = new(mem_ctx) ir_dereference_array(op0->clone(mem_ctx, NULL),
932 new(mem_ctx) ir_constant(i));
933 e1 = new(mem_ctx) ir_dereference_array(op1->clone(mem_ctx, NULL),
934 new(mem_ctx) ir_constant(i));
935 result = do_comparison(mem_ctx, operation, e0, e1);
936
937 if (cmp) {
938 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
939 } else {
940 cmp = result;
941 }
942 }
943
944 mark_whole_array_access(op0);
945 mark_whole_array_access(op1);
946 break;
947 }
948
949 case GLSL_TYPE_STRUCT: {
950 for (unsigned int i = 0; i < op0->type->length; i++) {
951 ir_rvalue *e0, *e1, *result;
952 const char *field_name = op0->type->fields.structure[i].name;
953
954 e0 = new(mem_ctx) ir_dereference_record(op0->clone(mem_ctx, NULL),
955 field_name);
956 e1 = new(mem_ctx) ir_dereference_record(op1->clone(mem_ctx, NULL),
957 field_name);
958 result = do_comparison(mem_ctx, operation, e0, e1);
959
960 if (cmp) {
961 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
962 } else {
963 cmp = result;
964 }
965 }
966 break;
967 }
968
969 case GLSL_TYPE_ERROR:
970 case GLSL_TYPE_VOID:
971 case GLSL_TYPE_SAMPLER:
972 case GLSL_TYPE_IMAGE:
973 case GLSL_TYPE_INTERFACE:
974 case GLSL_TYPE_ATOMIC_UINT:
975 /* I assume a comparison of a struct containing a sampler just
976 * ignores the sampler present in the type.
977 */
978 break;
979 }
980
981 if (cmp == NULL)
982 cmp = new(mem_ctx) ir_constant(true);
983
984 return cmp;
985 }
986
987 /* For logical operations, we want to ensure that the operands are
988 * scalar booleans. If it isn't, emit an error and return a constant
989 * boolean to avoid triggering cascading error messages.
990 */
991 ir_rvalue *
992 get_scalar_boolean_operand(exec_list *instructions,
993 struct _mesa_glsl_parse_state *state,
994 ast_expression *parent_expr,
995 int operand,
996 const char *operand_name,
997 bool *error_emitted)
998 {
999 ast_expression *expr = parent_expr->subexpressions[operand];
1000 void *ctx = state;
1001 ir_rvalue *val = expr->hir(instructions, state);
1002
1003 if (val->type->is_boolean() && val->type->is_scalar())
1004 return val;
1005
1006 if (!*error_emitted) {
1007 YYLTYPE loc = expr->get_location();
1008 _mesa_glsl_error(&loc, state, "%s of `%s' must be scalar boolean",
1009 operand_name,
1010 parent_expr->operator_string(parent_expr->oper));
1011 *error_emitted = true;
1012 }
1013
1014 return new(ctx) ir_constant(true);
1015 }
1016
1017 /**
1018 * If name refers to a builtin array whose maximum allowed size is less than
1019 * size, report an error and return true. Otherwise return false.
1020 */
1021 void
1022 check_builtin_array_max_size(const char *name, unsigned size,
1023 YYLTYPE loc, struct _mesa_glsl_parse_state *state)
1024 {
1025 if ((strcmp("gl_TexCoord", name) == 0)
1026 && (size > state->Const.MaxTextureCoords)) {
1027 /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec:
1028 *
1029 * "The size [of gl_TexCoord] can be at most
1030 * gl_MaxTextureCoords."
1031 */
1032 _mesa_glsl_error(&loc, state, "`gl_TexCoord' array size cannot "
1033 "be larger than gl_MaxTextureCoords (%u)",
1034 state->Const.MaxTextureCoords);
1035 } else if (strcmp("gl_ClipDistance", name) == 0
1036 && size > state->Const.MaxClipPlanes) {
1037 /* From section 7.1 (Vertex Shader Special Variables) of the
1038 * GLSL 1.30 spec:
1039 *
1040 * "The gl_ClipDistance array is predeclared as unsized and
1041 * must be sized by the shader either redeclaring it with a
1042 * size or indexing it only with integral constant
1043 * expressions. ... The size can be at most
1044 * gl_MaxClipDistances."
1045 */
1046 _mesa_glsl_error(&loc, state, "`gl_ClipDistance' array size cannot "
1047 "be larger than gl_MaxClipDistances (%u)",
1048 state->Const.MaxClipPlanes);
1049 }
1050 }
1051
1052 /**
1053 * Create the constant 1, of a which is appropriate for incrementing and
1054 * decrementing values of the given GLSL type. For example, if type is vec4,
1055 * this creates a constant value of 1.0 having type float.
1056 *
1057 * If the given type is invalid for increment and decrement operators, return
1058 * a floating point 1--the error will be detected later.
1059 */
1060 static ir_rvalue *
1061 constant_one_for_inc_dec(void *ctx, const glsl_type *type)
1062 {
1063 switch (type->base_type) {
1064 case GLSL_TYPE_UINT:
1065 return new(ctx) ir_constant((unsigned) 1);
1066 case GLSL_TYPE_INT:
1067 return new(ctx) ir_constant(1);
1068 default:
1069 case GLSL_TYPE_FLOAT:
1070 return new(ctx) ir_constant(1.0f);
1071 }
1072 }
1073
1074 ir_rvalue *
1075 ast_expression::hir(exec_list *instructions,
1076 struct _mesa_glsl_parse_state *state)
1077 {
1078 void *ctx = state;
1079 static const int operations[AST_NUM_OPERATORS] = {
1080 -1, /* ast_assign doesn't convert to ir_expression. */
1081 -1, /* ast_plus doesn't convert to ir_expression. */
1082 ir_unop_neg,
1083 ir_binop_add,
1084 ir_binop_sub,
1085 ir_binop_mul,
1086 ir_binop_div,
1087 ir_binop_mod,
1088 ir_binop_lshift,
1089 ir_binop_rshift,
1090 ir_binop_less,
1091 ir_binop_greater,
1092 ir_binop_lequal,
1093 ir_binop_gequal,
1094 ir_binop_all_equal,
1095 ir_binop_any_nequal,
1096 ir_binop_bit_and,
1097 ir_binop_bit_xor,
1098 ir_binop_bit_or,
1099 ir_unop_bit_not,
1100 ir_binop_logic_and,
1101 ir_binop_logic_xor,
1102 ir_binop_logic_or,
1103 ir_unop_logic_not,
1104
1105 /* Note: The following block of expression types actually convert
1106 * to multiple IR instructions.
1107 */
1108 ir_binop_mul, /* ast_mul_assign */
1109 ir_binop_div, /* ast_div_assign */
1110 ir_binop_mod, /* ast_mod_assign */
1111 ir_binop_add, /* ast_add_assign */
1112 ir_binop_sub, /* ast_sub_assign */
1113 ir_binop_lshift, /* ast_ls_assign */
1114 ir_binop_rshift, /* ast_rs_assign */
1115 ir_binop_bit_and, /* ast_and_assign */
1116 ir_binop_bit_xor, /* ast_xor_assign */
1117 ir_binop_bit_or, /* ast_or_assign */
1118
1119 -1, /* ast_conditional doesn't convert to ir_expression. */
1120 ir_binop_add, /* ast_pre_inc. */
1121 ir_binop_sub, /* ast_pre_dec. */
1122 ir_binop_add, /* ast_post_inc. */
1123 ir_binop_sub, /* ast_post_dec. */
1124 -1, /* ast_field_selection doesn't conv to ir_expression. */
1125 -1, /* ast_array_index doesn't convert to ir_expression. */
1126 -1, /* ast_function_call doesn't conv to ir_expression. */
1127 -1, /* ast_identifier doesn't convert to ir_expression. */
1128 -1, /* ast_int_constant doesn't convert to ir_expression. */
1129 -1, /* ast_uint_constant doesn't conv to ir_expression. */
1130 -1, /* ast_float_constant doesn't conv to ir_expression. */
1131 -1, /* ast_bool_constant doesn't conv to ir_expression. */
1132 -1, /* ast_sequence doesn't convert to ir_expression. */
1133 };
1134 ir_rvalue *result = NULL;
1135 ir_rvalue *op[3];
1136 const struct glsl_type *type; /* a temporary variable for switch cases */
1137 bool error_emitted = false;
1138 YYLTYPE loc;
1139
1140 loc = this->get_location();
1141
1142 switch (this->oper) {
1143 case ast_aggregate:
1144 assert(!"ast_aggregate: Should never get here.");
1145 break;
1146
1147 case ast_assign: {
1148 op[0] = this->subexpressions[0]->hir(instructions, state);
1149 op[1] = this->subexpressions[1]->hir(instructions, state);
1150
1151 result = do_assignment(instructions, state,
1152 this->subexpressions[0]->non_lvalue_description,
1153 op[0], op[1], false,
1154 this->subexpressions[0]->get_location());
1155 error_emitted = result->type->is_error();
1156 break;
1157 }
1158
1159 case ast_plus:
1160 op[0] = this->subexpressions[0]->hir(instructions, state);
1161
1162 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1163
1164 error_emitted = type->is_error();
1165
1166 result = op[0];
1167 break;
1168
1169 case ast_neg:
1170 op[0] = this->subexpressions[0]->hir(instructions, state);
1171
1172 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1173
1174 error_emitted = type->is_error();
1175
1176 result = new(ctx) ir_expression(operations[this->oper], type,
1177 op[0], NULL);
1178 break;
1179
1180 case ast_add:
1181 case ast_sub:
1182 case ast_mul:
1183 case ast_div:
1184 op[0] = this->subexpressions[0]->hir(instructions, state);
1185 op[1] = this->subexpressions[1]->hir(instructions, state);
1186
1187 type = arithmetic_result_type(op[0], op[1],
1188 (this->oper == ast_mul),
1189 state, & loc);
1190 error_emitted = type->is_error();
1191
1192 result = new(ctx) ir_expression(operations[this->oper], type,
1193 op[0], op[1]);
1194 break;
1195
1196 case ast_mod:
1197 op[0] = this->subexpressions[0]->hir(instructions, state);
1198 op[1] = this->subexpressions[1]->hir(instructions, state);
1199
1200 type = modulus_result_type(op[0]->type, op[1]->type, state, & loc);
1201
1202 assert(operations[this->oper] == ir_binop_mod);
1203
1204 result = new(ctx) ir_expression(operations[this->oper], type,
1205 op[0], op[1]);
1206 error_emitted = type->is_error();
1207 break;
1208
1209 case ast_lshift:
1210 case ast_rshift:
1211 if (!state->check_bitwise_operations_allowed(&loc)) {
1212 error_emitted = true;
1213 }
1214
1215 op[0] = this->subexpressions[0]->hir(instructions, state);
1216 op[1] = this->subexpressions[1]->hir(instructions, state);
1217 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1218 &loc);
1219 result = new(ctx) ir_expression(operations[this->oper], type,
1220 op[0], op[1]);
1221 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1222 break;
1223
1224 case ast_less:
1225 case ast_greater:
1226 case ast_lequal:
1227 case ast_gequal:
1228 op[0] = this->subexpressions[0]->hir(instructions, state);
1229 op[1] = this->subexpressions[1]->hir(instructions, state);
1230
1231 type = relational_result_type(op[0], op[1], state, & loc);
1232
1233 /* The relational operators must either generate an error or result
1234 * in a scalar boolean. See page 57 of the GLSL 1.50 spec.
1235 */
1236 assert(type->is_error()
1237 || ((type->base_type == GLSL_TYPE_BOOL)
1238 && type->is_scalar()));
1239
1240 result = new(ctx) ir_expression(operations[this->oper], type,
1241 op[0], op[1]);
1242 error_emitted = type->is_error();
1243 break;
1244
1245 case ast_nequal:
1246 case ast_equal:
1247 op[0] = this->subexpressions[0]->hir(instructions, state);
1248 op[1] = this->subexpressions[1]->hir(instructions, state);
1249
1250 /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
1251 *
1252 * "The equality operators equal (==), and not equal (!=)
1253 * operate on all types. They result in a scalar Boolean. If
1254 * the operand types do not match, then there must be a
1255 * conversion from Section 4.1.10 "Implicit Conversions"
1256 * applied to one operand that can make them match, in which
1257 * case this conversion is done."
1258 */
1259 if ((!apply_implicit_conversion(op[0]->type, op[1], state)
1260 && !apply_implicit_conversion(op[1]->type, op[0], state))
1261 || (op[0]->type != op[1]->type)) {
1262 _mesa_glsl_error(& loc, state, "operands of `%s' must have the same "
1263 "type", (this->oper == ast_equal) ? "==" : "!=");
1264 error_emitted = true;
1265 } else if ((op[0]->type->is_array() || op[1]->type->is_array()) &&
1266 !state->check_version(120, 300, &loc,
1267 "array comparisons forbidden")) {
1268 error_emitted = true;
1269 } else if ((op[0]->type->contains_opaque() ||
1270 op[1]->type->contains_opaque())) {
1271 _mesa_glsl_error(&loc, state, "opaque type comparisons forbidden");
1272 error_emitted = true;
1273 }
1274
1275 if (error_emitted) {
1276 result = new(ctx) ir_constant(false);
1277 } else {
1278 result = do_comparison(ctx, operations[this->oper], op[0], op[1]);
1279 assert(result->type == glsl_type::bool_type);
1280 }
1281 break;
1282
1283 case ast_bit_and:
1284 case ast_bit_xor:
1285 case ast_bit_or:
1286 op[0] = this->subexpressions[0]->hir(instructions, state);
1287 op[1] = this->subexpressions[1]->hir(instructions, state);
1288 type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
1289 state, &loc);
1290 result = new(ctx) ir_expression(operations[this->oper], type,
1291 op[0], op[1]);
1292 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1293 break;
1294
1295 case ast_bit_not:
1296 op[0] = this->subexpressions[0]->hir(instructions, state);
1297
1298 if (!state->check_bitwise_operations_allowed(&loc)) {
1299 error_emitted = true;
1300 }
1301
1302 if (!op[0]->type->is_integer()) {
1303 _mesa_glsl_error(&loc, state, "operand of `~' must be an integer");
1304 error_emitted = true;
1305 }
1306
1307 type = error_emitted ? glsl_type::error_type : op[0]->type;
1308 result = new(ctx) ir_expression(ir_unop_bit_not, type, op[0], NULL);
1309 break;
1310
1311 case ast_logic_and: {
1312 exec_list rhs_instructions;
1313 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1314 "LHS", &error_emitted);
1315 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1316 "RHS", &error_emitted);
1317
1318 if (rhs_instructions.is_empty()) {
1319 result = new(ctx) ir_expression(ir_binop_logic_and, op[0], op[1]);
1320 type = result->type;
1321 } else {
1322 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1323 "and_tmp",
1324 ir_var_temporary);
1325 instructions->push_tail(tmp);
1326
1327 ir_if *const stmt = new(ctx) ir_if(op[0]);
1328 instructions->push_tail(stmt);
1329
1330 stmt->then_instructions.append_list(&rhs_instructions);
1331 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1332 ir_assignment *const then_assign =
1333 new(ctx) ir_assignment(then_deref, op[1]);
1334 stmt->then_instructions.push_tail(then_assign);
1335
1336 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1337 ir_assignment *const else_assign =
1338 new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false));
1339 stmt->else_instructions.push_tail(else_assign);
1340
1341 result = new(ctx) ir_dereference_variable(tmp);
1342 type = tmp->type;
1343 }
1344 break;
1345 }
1346
1347 case ast_logic_or: {
1348 exec_list rhs_instructions;
1349 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1350 "LHS", &error_emitted);
1351 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1352 "RHS", &error_emitted);
1353
1354 if (rhs_instructions.is_empty()) {
1355 result = new(ctx) ir_expression(ir_binop_logic_or, op[0], op[1]);
1356 type = result->type;
1357 } else {
1358 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1359 "or_tmp",
1360 ir_var_temporary);
1361 instructions->push_tail(tmp);
1362
1363 ir_if *const stmt = new(ctx) ir_if(op[0]);
1364 instructions->push_tail(stmt);
1365
1366 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1367 ir_assignment *const then_assign =
1368 new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true));
1369 stmt->then_instructions.push_tail(then_assign);
1370
1371 stmt->else_instructions.append_list(&rhs_instructions);
1372 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1373 ir_assignment *const else_assign =
1374 new(ctx) ir_assignment(else_deref, op[1]);
1375 stmt->else_instructions.push_tail(else_assign);
1376
1377 result = new(ctx) ir_dereference_variable(tmp);
1378 type = tmp->type;
1379 }
1380 break;
1381 }
1382
1383 case ast_logic_xor:
1384 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1385 *
1386 * "The logical binary operators and (&&), or ( | | ), and
1387 * exclusive or (^^). They operate only on two Boolean
1388 * expressions and result in a Boolean expression."
1389 */
1390 op[0] = get_scalar_boolean_operand(instructions, state, this, 0, "LHS",
1391 &error_emitted);
1392 op[1] = get_scalar_boolean_operand(instructions, state, this, 1, "RHS",
1393 &error_emitted);
1394
1395 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1396 op[0], op[1]);
1397 break;
1398
1399 case ast_logic_not:
1400 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1401 "operand", &error_emitted);
1402
1403 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1404 op[0], NULL);
1405 break;
1406
1407 case ast_mul_assign:
1408 case ast_div_assign:
1409 case ast_add_assign:
1410 case ast_sub_assign: {
1411 op[0] = this->subexpressions[0]->hir(instructions, state);
1412 op[1] = this->subexpressions[1]->hir(instructions, state);
1413
1414 type = arithmetic_result_type(op[0], op[1],
1415 (this->oper == ast_mul_assign),
1416 state, & loc);
1417
1418 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1419 op[0], op[1]);
1420
1421 result = do_assignment(instructions, state,
1422 this->subexpressions[0]->non_lvalue_description,
1423 op[0]->clone(ctx, NULL), temp_rhs, false,
1424 this->subexpressions[0]->get_location());
1425 error_emitted = (op[0]->type->is_error());
1426
1427 /* GLSL 1.10 does not allow array assignment. However, we don't have to
1428 * explicitly test for this because none of the binary expression
1429 * operators allow array operands either.
1430 */
1431
1432 break;
1433 }
1434
1435 case ast_mod_assign: {
1436 op[0] = this->subexpressions[0]->hir(instructions, state);
1437 op[1] = this->subexpressions[1]->hir(instructions, state);
1438
1439 type = modulus_result_type(op[0]->type, op[1]->type, state, & loc);
1440
1441 assert(operations[this->oper] == ir_binop_mod);
1442
1443 ir_rvalue *temp_rhs;
1444 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1445 op[0], op[1]);
1446
1447 result = do_assignment(instructions, state,
1448 this->subexpressions[0]->non_lvalue_description,
1449 op[0]->clone(ctx, NULL), temp_rhs, false,
1450 this->subexpressions[0]->get_location());
1451 error_emitted = type->is_error();
1452 break;
1453 }
1454
1455 case ast_ls_assign:
1456 case ast_rs_assign: {
1457 op[0] = this->subexpressions[0]->hir(instructions, state);
1458 op[1] = this->subexpressions[1]->hir(instructions, state);
1459 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1460 &loc);
1461 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1462 type, op[0], op[1]);
1463 result = do_assignment(instructions, state,
1464 this->subexpressions[0]->non_lvalue_description,
1465 op[0]->clone(ctx, NULL), temp_rhs, false,
1466 this->subexpressions[0]->get_location());
1467 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1468 break;
1469 }
1470
1471 case ast_and_assign:
1472 case ast_xor_assign:
1473 case ast_or_assign: {
1474 op[0] = this->subexpressions[0]->hir(instructions, state);
1475 op[1] = this->subexpressions[1]->hir(instructions, state);
1476 type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
1477 state, &loc);
1478 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1479 type, op[0], op[1]);
1480 result = do_assignment(instructions, state,
1481 this->subexpressions[0]->non_lvalue_description,
1482 op[0]->clone(ctx, NULL), temp_rhs, false,
1483 this->subexpressions[0]->get_location());
1484 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1485 break;
1486 }
1487
1488 case ast_conditional: {
1489 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1490 *
1491 * "The ternary selection operator (?:). It operates on three
1492 * expressions (exp1 ? exp2 : exp3). This operator evaluates the
1493 * first expression, which must result in a scalar Boolean."
1494 */
1495 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1496 "condition", &error_emitted);
1497
1498 /* The :? operator is implemented by generating an anonymous temporary
1499 * followed by an if-statement. The last instruction in each branch of
1500 * the if-statement assigns a value to the anonymous temporary. This
1501 * temporary is the r-value of the expression.
1502 */
1503 exec_list then_instructions;
1504 exec_list else_instructions;
1505
1506 op[1] = this->subexpressions[1]->hir(&then_instructions, state);
1507 op[2] = this->subexpressions[2]->hir(&else_instructions, state);
1508
1509 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1510 *
1511 * "The second and third expressions can be any type, as
1512 * long their types match, or there is a conversion in
1513 * Section 4.1.10 "Implicit Conversions" that can be applied
1514 * to one of the expressions to make their types match. This
1515 * resulting matching type is the type of the entire
1516 * expression."
1517 */
1518 if ((!apply_implicit_conversion(op[1]->type, op[2], state)
1519 && !apply_implicit_conversion(op[2]->type, op[1], state))
1520 || (op[1]->type != op[2]->type)) {
1521 YYLTYPE loc = this->subexpressions[1]->get_location();
1522
1523 _mesa_glsl_error(& loc, state, "second and third operands of ?: "
1524 "operator must have matching types");
1525 error_emitted = true;
1526 type = glsl_type::error_type;
1527 } else {
1528 type = op[1]->type;
1529 }
1530
1531 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1532 *
1533 * "The second and third expressions must be the same type, but can
1534 * be of any type other than an array."
1535 */
1536 if (type->is_array() &&
1537 !state->check_version(120, 300, &loc,
1538 "second and third operands of ?: operator "
1539 "cannot be arrays")) {
1540 error_emitted = true;
1541 }
1542
1543 ir_constant *cond_val = op[0]->constant_expression_value();
1544 ir_constant *then_val = op[1]->constant_expression_value();
1545 ir_constant *else_val = op[2]->constant_expression_value();
1546
1547 if (then_instructions.is_empty()
1548 && else_instructions.is_empty()
1549 && (cond_val != NULL) && (then_val != NULL) && (else_val != NULL)) {
1550 result = (cond_val->value.b[0]) ? then_val : else_val;
1551 } else {
1552 ir_variable *const tmp =
1553 new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary);
1554 instructions->push_tail(tmp);
1555
1556 ir_if *const stmt = new(ctx) ir_if(op[0]);
1557 instructions->push_tail(stmt);
1558
1559 then_instructions.move_nodes_to(& stmt->then_instructions);
1560 ir_dereference *const then_deref =
1561 new(ctx) ir_dereference_variable(tmp);
1562 ir_assignment *const then_assign =
1563 new(ctx) ir_assignment(then_deref, op[1]);
1564 stmt->then_instructions.push_tail(then_assign);
1565
1566 else_instructions.move_nodes_to(& stmt->else_instructions);
1567 ir_dereference *const else_deref =
1568 new(ctx) ir_dereference_variable(tmp);
1569 ir_assignment *const else_assign =
1570 new(ctx) ir_assignment(else_deref, op[2]);
1571 stmt->else_instructions.push_tail(else_assign);
1572
1573 result = new(ctx) ir_dereference_variable(tmp);
1574 }
1575 break;
1576 }
1577
1578 case ast_pre_inc:
1579 case ast_pre_dec: {
1580 this->non_lvalue_description = (this->oper == ast_pre_inc)
1581 ? "pre-increment operation" : "pre-decrement operation";
1582
1583 op[0] = this->subexpressions[0]->hir(instructions, state);
1584 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1585
1586 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1587
1588 ir_rvalue *temp_rhs;
1589 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1590 op[0], op[1]);
1591
1592 result = do_assignment(instructions, state,
1593 this->subexpressions[0]->non_lvalue_description,
1594 op[0]->clone(ctx, NULL), temp_rhs, false,
1595 this->subexpressions[0]->get_location());
1596 error_emitted = op[0]->type->is_error();
1597 break;
1598 }
1599
1600 case ast_post_inc:
1601 case ast_post_dec: {
1602 this->non_lvalue_description = (this->oper == ast_post_inc)
1603 ? "post-increment operation" : "post-decrement operation";
1604 op[0] = this->subexpressions[0]->hir(instructions, state);
1605 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1606
1607 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1608
1609 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1610
1611 ir_rvalue *temp_rhs;
1612 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1613 op[0], op[1]);
1614
1615 /* Get a temporary of a copy of the lvalue before it's modified.
1616 * This may get thrown away later.
1617 */
1618 result = get_lvalue_copy(instructions, op[0]->clone(ctx, NULL));
1619
1620 (void)do_assignment(instructions, state,
1621 this->subexpressions[0]->non_lvalue_description,
1622 op[0]->clone(ctx, NULL), temp_rhs, false,
1623 this->subexpressions[0]->get_location());
1624
1625 error_emitted = op[0]->type->is_error();
1626 break;
1627 }
1628
1629 case ast_field_selection:
1630 result = _mesa_ast_field_selection_to_hir(this, instructions, state);
1631 break;
1632
1633 case ast_array_index: {
1634 YYLTYPE index_loc = subexpressions[1]->get_location();
1635
1636 op[0] = subexpressions[0]->hir(instructions, state);
1637 op[1] = subexpressions[1]->hir(instructions, state);
1638
1639 result = _mesa_ast_array_index_to_hir(ctx, state, op[0], op[1],
1640 loc, index_loc);
1641
1642 if (result->type->is_error())
1643 error_emitted = true;
1644
1645 break;
1646 }
1647
1648 case ast_function_call:
1649 /* Should *NEVER* get here. ast_function_call should always be handled
1650 * by ast_function_expression::hir.
1651 */
1652 assert(0);
1653 break;
1654
1655 case ast_identifier: {
1656 /* ast_identifier can appear several places in a full abstract syntax
1657 * tree. This particular use must be at location specified in the grammar
1658 * as 'variable_identifier'.
1659 */
1660 ir_variable *var =
1661 state->symbols->get_variable(this->primary_expression.identifier);
1662
1663 if (var != NULL) {
1664 var->data.used = true;
1665 result = new(ctx) ir_dereference_variable(var);
1666 } else {
1667 _mesa_glsl_error(& loc, state, "`%s' undeclared",
1668 this->primary_expression.identifier);
1669
1670 result = ir_rvalue::error_value(ctx);
1671 error_emitted = true;
1672 }
1673 break;
1674 }
1675
1676 case ast_int_constant:
1677 result = new(ctx) ir_constant(this->primary_expression.int_constant);
1678 break;
1679
1680 case ast_uint_constant:
1681 result = new(ctx) ir_constant(this->primary_expression.uint_constant);
1682 break;
1683
1684 case ast_float_constant:
1685 result = new(ctx) ir_constant(this->primary_expression.float_constant);
1686 break;
1687
1688 case ast_bool_constant:
1689 result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant));
1690 break;
1691
1692 case ast_sequence: {
1693 /* It should not be possible to generate a sequence in the AST without
1694 * any expressions in it.
1695 */
1696 assert(!this->expressions.is_empty());
1697
1698 /* The r-value of a sequence is the last expression in the sequence. If
1699 * the other expressions in the sequence do not have side-effects (and
1700 * therefore add instructions to the instruction list), they get dropped
1701 * on the floor.
1702 */
1703 exec_node *previous_tail_pred = NULL;
1704 YYLTYPE previous_operand_loc = loc;
1705
1706 foreach_list_typed (ast_node, ast, link, &this->expressions) {
1707 /* If one of the operands of comma operator does not generate any
1708 * code, we want to emit a warning. At each pass through the loop
1709 * previous_tail_pred will point to the last instruction in the
1710 * stream *before* processing the previous operand. Naturally,
1711 * instructions->tail_pred will point to the last instruction in the
1712 * stream *after* processing the previous operand. If the two
1713 * pointers match, then the previous operand had no effect.
1714 *
1715 * The warning behavior here differs slightly from GCC. GCC will
1716 * only emit a warning if none of the left-hand operands have an
1717 * effect. However, it will emit a warning for each. I believe that
1718 * there are some cases in C (especially with GCC extensions) where
1719 * it is useful to have an intermediate step in a sequence have no
1720 * effect, but I don't think these cases exist in GLSL. Either way,
1721 * it would be a giant hassle to replicate that behavior.
1722 */
1723 if (previous_tail_pred == instructions->tail_pred) {
1724 _mesa_glsl_warning(&previous_operand_loc, state,
1725 "left-hand operand of comma expression has "
1726 "no effect");
1727 }
1728
1729 /* tail_pred is directly accessed instead of using the get_tail()
1730 * method for performance reasons. get_tail() has extra code to
1731 * return NULL when the list is empty. We don't care about that
1732 * here, so using tail_pred directly is fine.
1733 */
1734 previous_tail_pred = instructions->tail_pred;
1735 previous_operand_loc = ast->get_location();
1736
1737 result = ast->hir(instructions, state);
1738 }
1739
1740 /* Any errors should have already been emitted in the loop above.
1741 */
1742 error_emitted = true;
1743 break;
1744 }
1745 }
1746 type = NULL; /* use result->type, not type. */
1747 assert(result != NULL);
1748
1749 if (result->type->is_error() && !error_emitted)
1750 _mesa_glsl_error(& loc, state, "type mismatch");
1751
1752 return result;
1753 }
1754
1755
1756 ir_rvalue *
1757 ast_expression_statement::hir(exec_list *instructions,
1758 struct _mesa_glsl_parse_state *state)
1759 {
1760 /* It is possible to have expression statements that don't have an
1761 * expression. This is the solitary semicolon:
1762 *
1763 * for (i = 0; i < 5; i++)
1764 * ;
1765 *
1766 * In this case the expression will be NULL. Test for NULL and don't do
1767 * anything in that case.
1768 */
1769 if (expression != NULL)
1770 expression->hir(instructions, state);
1771
1772 /* Statements do not have r-values.
1773 */
1774 return NULL;
1775 }
1776
1777
1778 ir_rvalue *
1779 ast_compound_statement::hir(exec_list *instructions,
1780 struct _mesa_glsl_parse_state *state)
1781 {
1782 if (new_scope)
1783 state->symbols->push_scope();
1784
1785 foreach_list_typed (ast_node, ast, link, &this->statements)
1786 ast->hir(instructions, state);
1787
1788 if (new_scope)
1789 state->symbols->pop_scope();
1790
1791 /* Compound statements do not have r-values.
1792 */
1793 return NULL;
1794 }
1795
1796 /**
1797 * Evaluate the given exec_node (which should be an ast_node representing
1798 * a single array dimension) and return its integer value.
1799 */
1800 static unsigned
1801 process_array_size(exec_node *node,
1802 struct _mesa_glsl_parse_state *state)
1803 {
1804 exec_list dummy_instructions;
1805
1806 ast_node *array_size = exec_node_data(ast_node, node, link);
1807 ir_rvalue *const ir = array_size->hir(& dummy_instructions,
1808 state);
1809 YYLTYPE loc = array_size->get_location();
1810
1811 if (ir == NULL) {
1812 _mesa_glsl_error(& loc, state,
1813 "array size could not be resolved");
1814 return 0;
1815 }
1816
1817 if (!ir->type->is_integer()) {
1818 _mesa_glsl_error(& loc, state,
1819 "array size must be integer type");
1820 return 0;
1821 }
1822
1823 if (!ir->type->is_scalar()) {
1824 _mesa_glsl_error(& loc, state,
1825 "array size must be scalar type");
1826 return 0;
1827 }
1828
1829 ir_constant *const size = ir->constant_expression_value();
1830 if (size == NULL) {
1831 _mesa_glsl_error(& loc, state, "array size must be a "
1832 "constant valued expression");
1833 return 0;
1834 }
1835
1836 if (size->value.i[0] <= 0) {
1837 _mesa_glsl_error(& loc, state, "array size must be > 0");
1838 return 0;
1839 }
1840
1841 assert(size->type == ir->type);
1842
1843 /* If the array size is const (and we've verified that
1844 * it is) then no instructions should have been emitted
1845 * when we converted it to HIR. If they were emitted,
1846 * then either the array size isn't const after all, or
1847 * we are emitting unnecessary instructions.
1848 */
1849 assert(dummy_instructions.is_empty());
1850
1851 return size->value.u[0];
1852 }
1853
1854 static const glsl_type *
1855 process_array_type(YYLTYPE *loc, const glsl_type *base,
1856 ast_array_specifier *array_specifier,
1857 struct _mesa_glsl_parse_state *state)
1858 {
1859 const glsl_type *array_type = base;
1860
1861 if (array_specifier != NULL) {
1862 if (base->is_array()) {
1863
1864 /* From page 19 (page 25) of the GLSL 1.20 spec:
1865 *
1866 * "Only one-dimensional arrays may be declared."
1867 */
1868 if (!state->ARB_arrays_of_arrays_enable) {
1869 _mesa_glsl_error(loc, state,
1870 "invalid array of `%s'"
1871 "GL_ARB_arrays_of_arrays "
1872 "required for defining arrays of arrays",
1873 base->name);
1874 return glsl_type::error_type;
1875 }
1876
1877 if (base->length == 0) {
1878 _mesa_glsl_error(loc, state,
1879 "only the outermost array dimension can "
1880 "be unsized",
1881 base->name);
1882 return glsl_type::error_type;
1883 }
1884 }
1885
1886 for (exec_node *node = array_specifier->array_dimensions.tail_pred;
1887 !node->is_head_sentinel(); node = node->prev) {
1888 unsigned array_size = process_array_size(node, state);
1889 array_type = glsl_type::get_array_instance(array_type,
1890 array_size);
1891 }
1892
1893 if (array_specifier->is_unsized_array)
1894 array_type = glsl_type::get_array_instance(array_type, 0);
1895 }
1896
1897 return array_type;
1898 }
1899
1900
1901 const glsl_type *
1902 ast_type_specifier::glsl_type(const char **name,
1903 struct _mesa_glsl_parse_state *state) const
1904 {
1905 const struct glsl_type *type;
1906
1907 type = state->symbols->get_type(this->type_name);
1908 *name = this->type_name;
1909
1910 YYLTYPE loc = this->get_location();
1911 type = process_array_type(&loc, type, this->array_specifier, state);
1912
1913 return type;
1914 }
1915
1916 const glsl_type *
1917 ast_fully_specified_type::glsl_type(const char **name,
1918 struct _mesa_glsl_parse_state *state) const
1919 {
1920 const struct glsl_type *type = this->specifier->glsl_type(name, state);
1921
1922 if (type == NULL)
1923 return NULL;
1924
1925 if (type->base_type == GLSL_TYPE_FLOAT
1926 && state->es_shader
1927 && state->stage == MESA_SHADER_FRAGMENT
1928 && this->qualifier.precision == ast_precision_none
1929 && state->symbols->get_variable("#default precision") == NULL) {
1930 YYLTYPE loc = this->get_location();
1931 _mesa_glsl_error(&loc, state,
1932 "no precision specified this scope for type `%s'",
1933 type->name);
1934 }
1935
1936 return type;
1937 }
1938
1939 /**
1940 * Determine whether a toplevel variable declaration declares a varying. This
1941 * function operates by examining the variable's mode and the shader target,
1942 * so it correctly identifies linkage variables regardless of whether they are
1943 * declared using the deprecated "varying" syntax or the new "in/out" syntax.
1944 *
1945 * Passing a non-toplevel variable declaration (e.g. a function parameter) to
1946 * this function will produce undefined results.
1947 */
1948 static bool
1949 is_varying_var(ir_variable *var, gl_shader_stage target)
1950 {
1951 switch (target) {
1952 case MESA_SHADER_VERTEX:
1953 return var->data.mode == ir_var_shader_out;
1954 case MESA_SHADER_FRAGMENT:
1955 return var->data.mode == ir_var_shader_in;
1956 default:
1957 return var->data.mode == ir_var_shader_out || var->data.mode == ir_var_shader_in;
1958 }
1959 }
1960
1961
1962 /**
1963 * Matrix layout qualifiers are only allowed on certain types
1964 */
1965 static void
1966 validate_matrix_layout_for_type(struct _mesa_glsl_parse_state *state,
1967 YYLTYPE *loc,
1968 const glsl_type *type,
1969 ir_variable *var)
1970 {
1971 if (var && !var->is_in_uniform_block()) {
1972 /* Layout qualifiers may only apply to interface blocks and fields in
1973 * them.
1974 */
1975 _mesa_glsl_error(loc, state,
1976 "uniform block layout qualifiers row_major and "
1977 "column_major may not be applied to variables "
1978 "outside of uniform blocks");
1979 } else if (!type->is_matrix()) {
1980 /* The OpenGL ES 3.0 conformance tests did not originally allow
1981 * matrix layout qualifiers on non-matrices. However, the OpenGL
1982 * 4.4 and OpenGL ES 3.0 (revision TBD) specifications were
1983 * amended to specifically allow these layouts on all types. Emit
1984 * a warning so that people know their code may not be portable.
1985 */
1986 _mesa_glsl_warning(loc, state,
1987 "uniform block layout qualifiers row_major and "
1988 "column_major applied to non-matrix types may "
1989 "be rejected by older compilers");
1990 } else if (type->is_record()) {
1991 /* We allow 'layout(row_major)' on structure types because it's the only
1992 * way to get row-major layouts on matrices contained in structures.
1993 */
1994 _mesa_glsl_warning(loc, state,
1995 "uniform block layout qualifiers row_major and "
1996 "column_major applied to structure types is not "
1997 "strictly conformant and may be rejected by other "
1998 "compilers");
1999 }
2000 }
2001
2002 static bool
2003 validate_binding_qualifier(struct _mesa_glsl_parse_state *state,
2004 YYLTYPE *loc,
2005 ir_variable *var,
2006 const ast_type_qualifier *qual)
2007 {
2008 if (var->data.mode != ir_var_uniform) {
2009 _mesa_glsl_error(loc, state,
2010 "the \"binding\" qualifier only applies to uniforms");
2011 return false;
2012 }
2013
2014 if (qual->binding < 0) {
2015 _mesa_glsl_error(loc, state, "binding values must be >= 0");
2016 return false;
2017 }
2018
2019 const struct gl_context *const ctx = state->ctx;
2020 unsigned elements = var->type->is_array() ? var->type->length : 1;
2021 unsigned max_index = qual->binding + elements - 1;
2022
2023 if (var->type->is_interface()) {
2024 /* UBOs. From page 60 of the GLSL 4.20 specification:
2025 * "If the binding point for any uniform block instance is less than zero,
2026 * or greater than or equal to the implementation-dependent maximum
2027 * number of uniform buffer bindings, a compilation error will occur.
2028 * When the binding identifier is used with a uniform block instanced as
2029 * an array of size N, all elements of the array from binding through
2030 * binding + N – 1 must be within this range."
2031 *
2032 * The implementation-dependent maximum is GL_MAX_UNIFORM_BUFFER_BINDINGS.
2033 */
2034 if (max_index >= ctx->Const.MaxUniformBufferBindings) {
2035 _mesa_glsl_error(loc, state, "layout(binding = %d) for %d UBOs exceeds "
2036 "the maximum number of UBO binding points (%d)",
2037 qual->binding, elements,
2038 ctx->Const.MaxUniformBufferBindings);
2039 return false;
2040 }
2041 } else if (var->type->is_sampler() ||
2042 (var->type->is_array() && var->type->fields.array->is_sampler())) {
2043 /* Samplers. From page 63 of the GLSL 4.20 specification:
2044 * "If the binding is less than zero, or greater than or equal to the
2045 * implementation-dependent maximum supported number of units, a
2046 * compilation error will occur. When the binding identifier is used
2047 * with an array of size N, all elements of the array from binding
2048 * through binding + N - 1 must be within this range."
2049 */
2050 unsigned limit = ctx->Const.Program[state->stage].MaxTextureImageUnits;
2051
2052 if (max_index >= limit) {
2053 _mesa_glsl_error(loc, state, "layout(binding = %d) for %d samplers "
2054 "exceeds the maximum number of texture image units "
2055 "(%d)", qual->binding, elements, limit);
2056
2057 return false;
2058 }
2059 } else if (var->type->contains_atomic()) {
2060 assert(ctx->Const.MaxAtomicBufferBindings <= MAX_COMBINED_ATOMIC_BUFFERS);
2061 if (unsigned(qual->binding) >= ctx->Const.MaxAtomicBufferBindings) {
2062 _mesa_glsl_error(loc, state, "layout(binding = %d) exceeds the "
2063 " maximum number of atomic counter buffer bindings"
2064 "(%d)", qual->binding,
2065 ctx->Const.MaxAtomicBufferBindings);
2066
2067 return false;
2068 }
2069 } else {
2070 _mesa_glsl_error(loc, state,
2071 "the \"binding\" qualifier only applies to uniform "
2072 "blocks, samplers, atomic counters, or arrays thereof");
2073 return false;
2074 }
2075
2076 return true;
2077 }
2078
2079
2080 static glsl_interp_qualifier
2081 interpret_interpolation_qualifier(const struct ast_type_qualifier *qual,
2082 ir_variable_mode mode,
2083 struct _mesa_glsl_parse_state *state,
2084 YYLTYPE *loc)
2085 {
2086 glsl_interp_qualifier interpolation;
2087 if (qual->flags.q.flat)
2088 interpolation = INTERP_QUALIFIER_FLAT;
2089 else if (qual->flags.q.noperspective)
2090 interpolation = INTERP_QUALIFIER_NOPERSPECTIVE;
2091 else if (qual->flags.q.smooth)
2092 interpolation = INTERP_QUALIFIER_SMOOTH;
2093 else
2094 interpolation = INTERP_QUALIFIER_NONE;
2095
2096 if (interpolation != INTERP_QUALIFIER_NONE) {
2097 if (mode != ir_var_shader_in && mode != ir_var_shader_out) {
2098 _mesa_glsl_error(loc, state,
2099 "interpolation qualifier `%s' can only be applied to "
2100 "shader inputs or outputs.",
2101 interpolation_string(interpolation));
2102
2103 }
2104
2105 if ((state->stage == MESA_SHADER_VERTEX && mode == ir_var_shader_in) ||
2106 (state->stage == MESA_SHADER_FRAGMENT && mode == ir_var_shader_out)) {
2107 _mesa_glsl_error(loc, state,
2108 "interpolation qualifier `%s' cannot be applied to "
2109 "vertex shader inputs or fragment shader outputs",
2110 interpolation_string(interpolation));
2111 }
2112 }
2113
2114 return interpolation;
2115 }
2116
2117
2118 static void
2119 validate_explicit_location(const struct ast_type_qualifier *qual,
2120 ir_variable *var,
2121 struct _mesa_glsl_parse_state *state,
2122 YYLTYPE *loc)
2123 {
2124 bool fail = false;
2125
2126 /* Between GL_ARB_explicit_attrib_location an
2127 * GL_ARB_separate_shader_objects, the inputs and outputs of any shader
2128 * stage can be assigned explicit locations. The checking here associates
2129 * the correct extension with the correct stage's input / output:
2130 *
2131 * input output
2132 * ----- ------
2133 * vertex explicit_loc sso
2134 * geometry sso sso
2135 * fragment sso explicit_loc
2136 */
2137 switch (state->stage) {
2138 case MESA_SHADER_VERTEX:
2139 if (var->data.mode == ir_var_shader_in) {
2140 if (!state->check_explicit_attrib_location_allowed(loc, var))
2141 return;
2142
2143 break;
2144 }
2145
2146 if (var->data.mode == ir_var_shader_out) {
2147 if (!state->check_separate_shader_objects_allowed(loc, var))
2148 return;
2149
2150 break;
2151 }
2152
2153 fail = true;
2154 break;
2155
2156 case MESA_SHADER_GEOMETRY:
2157 if (var->data.mode == ir_var_shader_in || var->data.mode == ir_var_shader_out) {
2158 if (!state->check_separate_shader_objects_allowed(loc, var))
2159 return;
2160
2161 break;
2162 }
2163
2164 fail = true;
2165 break;
2166
2167 case MESA_SHADER_FRAGMENT:
2168 if (var->data.mode == ir_var_shader_in) {
2169 if (!state->check_separate_shader_objects_allowed(loc, var))
2170 return;
2171
2172 break;
2173 }
2174
2175 if (var->data.mode == ir_var_shader_out) {
2176 if (!state->check_explicit_attrib_location_allowed(loc, var))
2177 return;
2178
2179 break;
2180 }
2181
2182 fail = true;
2183 break;
2184
2185 case MESA_SHADER_COMPUTE:
2186 _mesa_glsl_error(loc, state,
2187 "compute shader variables cannot be given "
2188 "explicit locations");
2189 return;
2190 };
2191
2192 if (fail) {
2193 _mesa_glsl_error(loc, state,
2194 "%s cannot be given an explicit location in %s shader",
2195 mode_string(var),
2196 _mesa_shader_stage_to_string(state->stage));
2197 } else {
2198 var->data.explicit_location = true;
2199
2200 /* This bit of silliness is needed because invalid explicit locations
2201 * are supposed to be flagged during linking. Small negative values
2202 * biased by VERT_ATTRIB_GENERIC0 or FRAG_RESULT_DATA0 could alias
2203 * built-in values (e.g., -16+VERT_ATTRIB_GENERIC0 = VERT_ATTRIB_POS).
2204 * The linker needs to be able to differentiate these cases. This
2205 * ensures that negative values stay negative.
2206 */
2207 if (qual->location >= 0) {
2208 switch (state->stage) {
2209 case MESA_SHADER_VERTEX:
2210 var->data.location = (var->data.mode == ir_var_shader_in)
2211 ? (qual->location + VERT_ATTRIB_GENERIC0)
2212 : (qual->location + VARYING_SLOT_VAR0);
2213 break;
2214
2215 case MESA_SHADER_GEOMETRY:
2216 var->data.location = qual->location + VARYING_SLOT_VAR0;
2217 break;
2218
2219 case MESA_SHADER_FRAGMENT:
2220 var->data.location = (var->data.mode == ir_var_shader_out)
2221 ? (qual->location + FRAG_RESULT_DATA0)
2222 : (qual->location + VARYING_SLOT_VAR0);
2223 break;
2224 }
2225 } else {
2226 var->data.location = qual->location;
2227 }
2228
2229 if (qual->flags.q.explicit_index) {
2230 /* From the GLSL 4.30 specification, section 4.4.2 (Output
2231 * Layout Qualifiers):
2232 *
2233 * "It is also a compile-time error if a fragment shader
2234 * sets a layout index to less than 0 or greater than 1."
2235 *
2236 * Older specifications don't mandate a behavior; we take
2237 * this as a clarification and always generate the error.
2238 */
2239 if (qual->index < 0 || qual->index > 1) {
2240 _mesa_glsl_error(loc, state,
2241 "explicit index may only be 0 or 1");
2242 } else {
2243 var->data.explicit_index = true;
2244 var->data.index = qual->index;
2245 }
2246 }
2247 }
2248 }
2249
2250 static void
2251 apply_image_qualifier_to_variable(const struct ast_type_qualifier *qual,
2252 ir_variable *var,
2253 struct _mesa_glsl_parse_state *state,
2254 YYLTYPE *loc)
2255 {
2256 const glsl_type *base_type =
2257 (var->type->is_array() ? var->type->element_type() : var->type);
2258
2259 if (base_type->is_image()) {
2260 if (var->data.mode != ir_var_uniform &&
2261 var->data.mode != ir_var_function_in) {
2262 _mesa_glsl_error(loc, state, "image variables may only be declared as "
2263 "function parameters or uniform-qualified "
2264 "global variables");
2265 }
2266
2267 var->data.image.read_only |= qual->flags.q.read_only;
2268 var->data.image.write_only |= qual->flags.q.write_only;
2269 var->data.image.coherent |= qual->flags.q.coherent;
2270 var->data.image._volatile |= qual->flags.q._volatile;
2271 var->data.image.restrict_flag |= qual->flags.q.restrict_flag;
2272 var->data.read_only = true;
2273
2274 if (qual->flags.q.explicit_image_format) {
2275 if (var->data.mode == ir_var_function_in) {
2276 _mesa_glsl_error(loc, state, "format qualifiers cannot be "
2277 "used on image function parameters");
2278 }
2279
2280 if (qual->image_base_type != base_type->sampler_type) {
2281 _mesa_glsl_error(loc, state, "format qualifier doesn't match the "
2282 "base data type of the image");
2283 }
2284
2285 var->data.image.format = qual->image_format;
2286 } else {
2287 if (var->data.mode == ir_var_uniform && !qual->flags.q.write_only) {
2288 _mesa_glsl_error(loc, state, "uniforms not qualified with "
2289 "`writeonly' must have a format layout "
2290 "qualifier");
2291 }
2292
2293 var->data.image.format = GL_NONE;
2294 }
2295 }
2296 }
2297
2298 static void
2299 apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
2300 ir_variable *var,
2301 struct _mesa_glsl_parse_state *state,
2302 YYLTYPE *loc,
2303 bool is_parameter)
2304 {
2305 STATIC_ASSERT(sizeof(qual->flags.q) <= sizeof(qual->flags.i));
2306
2307 if (qual->flags.q.invariant) {
2308 if (var->data.used) {
2309 _mesa_glsl_error(loc, state,
2310 "variable `%s' may not be redeclared "
2311 "`invariant' after being used",
2312 var->name);
2313 } else {
2314 var->data.invariant = 1;
2315 }
2316 }
2317
2318 if (qual->flags.q.constant || qual->flags.q.attribute
2319 || qual->flags.q.uniform
2320 || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
2321 var->data.read_only = 1;
2322
2323 if (qual->flags.q.centroid)
2324 var->data.centroid = 1;
2325
2326 if (qual->flags.q.sample)
2327 var->data.sample = 1;
2328
2329 if (qual->flags.q.attribute && state->stage != MESA_SHADER_VERTEX) {
2330 var->type = glsl_type::error_type;
2331 _mesa_glsl_error(loc, state,
2332 "`attribute' variables may not be declared in the "
2333 "%s shader",
2334 _mesa_shader_stage_to_string(state->stage));
2335 }
2336
2337 /* Section 6.1.1 (Function Calling Conventions) of the GLSL 1.10 spec says:
2338 *
2339 * "However, the const qualifier cannot be used with out or inout."
2340 *
2341 * The same section of the GLSL 4.40 spec further clarifies this saying:
2342 *
2343 * "The const qualifier cannot be used with out or inout, or a
2344 * compile-time error results."
2345 */
2346 if (is_parameter && qual->flags.q.constant && qual->flags.q.out) {
2347 _mesa_glsl_error(loc, state,
2348 "`const' may not be applied to `out' or `inout' "
2349 "function parameters");
2350 }
2351
2352 /* If there is no qualifier that changes the mode of the variable, leave
2353 * the setting alone.
2354 */
2355 if (qual->flags.q.in && qual->flags.q.out)
2356 var->data.mode = ir_var_function_inout;
2357 else if (qual->flags.q.in)
2358 var->data.mode = is_parameter ? ir_var_function_in : ir_var_shader_in;
2359 else if (qual->flags.q.attribute
2360 || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
2361 var->data.mode = ir_var_shader_in;
2362 else if (qual->flags.q.out)
2363 var->data.mode = is_parameter ? ir_var_function_out : ir_var_shader_out;
2364 else if (qual->flags.q.varying && (state->stage == MESA_SHADER_VERTEX))
2365 var->data.mode = ir_var_shader_out;
2366 else if (qual->flags.q.uniform)
2367 var->data.mode = ir_var_uniform;
2368
2369 if (!is_parameter && is_varying_var(var, state->stage)) {
2370 /* User-defined ins/outs are not permitted in compute shaders. */
2371 if (state->stage == MESA_SHADER_COMPUTE) {
2372 _mesa_glsl_error(loc, state,
2373 "user-defined input and output variables are not "
2374 "permitted in compute shaders");
2375 }
2376
2377 /* This variable is being used to link data between shader stages (in
2378 * pre-glsl-1.30 parlance, it's a "varying"). Check that it has a type
2379 * that is allowed for such purposes.
2380 *
2381 * From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
2382 *
2383 * "The varying qualifier can be used only with the data types
2384 * float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
2385 * these."
2386 *
2387 * This was relaxed in GLSL version 1.30 and GLSL ES version 3.00. From
2388 * page 31 (page 37 of the PDF) of the GLSL 1.30 spec:
2389 *
2390 * "Fragment inputs can only be signed and unsigned integers and
2391 * integer vectors, float, floating-point vectors, matrices, or
2392 * arrays of these. Structures cannot be input.
2393 *
2394 * Similar text exists in the section on vertex shader outputs.
2395 *
2396 * Similar text exists in the GLSL ES 3.00 spec, except that the GLSL ES
2397 * 3.00 spec allows structs as well. Varying structs are also allowed
2398 * in GLSL 1.50.
2399 */
2400 switch (var->type->get_scalar_type()->base_type) {
2401 case GLSL_TYPE_FLOAT:
2402 /* Ok in all GLSL versions */
2403 break;
2404 case GLSL_TYPE_UINT:
2405 case GLSL_TYPE_INT:
2406 if (state->is_version(130, 300))
2407 break;
2408 _mesa_glsl_error(loc, state,
2409 "varying variables must be of base type float in %s",
2410 state->get_version_string());
2411 break;
2412 case GLSL_TYPE_STRUCT:
2413 if (state->is_version(150, 300))
2414 break;
2415 _mesa_glsl_error(loc, state,
2416 "varying variables may not be of type struct");
2417 break;
2418 default:
2419 _mesa_glsl_error(loc, state, "illegal type for a varying variable");
2420 break;
2421 }
2422 }
2423
2424 if (state->all_invariant && (state->current_function == NULL)) {
2425 switch (state->stage) {
2426 case MESA_SHADER_VERTEX:
2427 if (var->data.mode == ir_var_shader_out)
2428 var->data.invariant = true;
2429 break;
2430 case MESA_SHADER_GEOMETRY:
2431 if ((var->data.mode == ir_var_shader_in)
2432 || (var->data.mode == ir_var_shader_out))
2433 var->data.invariant = true;
2434 break;
2435 case MESA_SHADER_FRAGMENT:
2436 if (var->data.mode == ir_var_shader_in)
2437 var->data.invariant = true;
2438 break;
2439 case MESA_SHADER_COMPUTE:
2440 /* Invariance isn't meaningful in compute shaders. */
2441 break;
2442 }
2443 }
2444
2445 var->data.interpolation =
2446 interpret_interpolation_qualifier(qual, (ir_variable_mode) var->data.mode,
2447 state, loc);
2448
2449 var->data.pixel_center_integer = qual->flags.q.pixel_center_integer;
2450 var->data.origin_upper_left = qual->flags.q.origin_upper_left;
2451 if ((qual->flags.q.origin_upper_left || qual->flags.q.pixel_center_integer)
2452 && (strcmp(var->name, "gl_FragCoord") != 0)) {
2453 const char *const qual_string = (qual->flags.q.origin_upper_left)
2454 ? "origin_upper_left" : "pixel_center_integer";
2455
2456 _mesa_glsl_error(loc, state,
2457 "layout qualifier `%s' can only be applied to "
2458 "fragment shader input `gl_FragCoord'",
2459 qual_string);
2460 }
2461
2462 if (qual->flags.q.explicit_location) {
2463 validate_explicit_location(qual, var, state, loc);
2464 } else if (qual->flags.q.explicit_index) {
2465 _mesa_glsl_error(loc, state,
2466 "explicit index requires explicit location");
2467 }
2468
2469 if (qual->flags.q.explicit_binding &&
2470 validate_binding_qualifier(state, loc, var, qual)) {
2471 var->data.explicit_binding = true;
2472 var->data.binding = qual->binding;
2473 }
2474
2475 if (var->type->contains_atomic()) {
2476 if (var->data.mode == ir_var_uniform) {
2477 if (var->data.explicit_binding) {
2478 unsigned *offset =
2479 &state->atomic_counter_offsets[var->data.binding];
2480
2481 if (*offset % ATOMIC_COUNTER_SIZE)
2482 _mesa_glsl_error(loc, state,
2483 "misaligned atomic counter offset");
2484
2485 var->data.atomic.offset = *offset;
2486 *offset += var->type->atomic_size();
2487
2488 } else {
2489 _mesa_glsl_error(loc, state,
2490 "atomic counters require explicit binding point");
2491 }
2492 } else if (var->data.mode != ir_var_function_in) {
2493 _mesa_glsl_error(loc, state, "atomic counters may only be declared as "
2494 "function parameters or uniform-qualified "
2495 "global variables");
2496 }
2497 }
2498
2499 /* Does the declaration use the deprecated 'attribute' or 'varying'
2500 * keywords?
2501 */
2502 const bool uses_deprecated_qualifier = qual->flags.q.attribute
2503 || qual->flags.q.varying;
2504
2505 /* Is the 'layout' keyword used with parameters that allow relaxed checking.
2506 * Many implementations of GL_ARB_fragment_coord_conventions_enable and some
2507 * implementations (only Mesa?) GL_ARB_explicit_attrib_location_enable
2508 * allowed the layout qualifier to be used with 'varying' and 'attribute'.
2509 * These extensions and all following extensions that add the 'layout'
2510 * keyword have been modified to require the use of 'in' or 'out'.
2511 *
2512 * The following extension do not allow the deprecated keywords:
2513 *
2514 * GL_AMD_conservative_depth
2515 * GL_ARB_conservative_depth
2516 * GL_ARB_gpu_shader5
2517 * GL_ARB_separate_shader_objects
2518 * GL_ARB_tesselation_shader
2519 * GL_ARB_transform_feedback3
2520 * GL_ARB_uniform_buffer_object
2521 *
2522 * It is unknown whether GL_EXT_shader_image_load_store or GL_NV_gpu_shader5
2523 * allow layout with the deprecated keywords.
2524 */
2525 const bool relaxed_layout_qualifier_checking =
2526 state->ARB_fragment_coord_conventions_enable;
2527
2528 if (qual->has_layout() && uses_deprecated_qualifier) {
2529 if (relaxed_layout_qualifier_checking) {
2530 _mesa_glsl_warning(loc, state,
2531 "`layout' qualifier may not be used with "
2532 "`attribute' or `varying'");
2533 } else {
2534 _mesa_glsl_error(loc, state,
2535 "`layout' qualifier may not be used with "
2536 "`attribute' or `varying'");
2537 }
2538 }
2539
2540 /* Layout qualifiers for gl_FragDepth, which are enabled by extension
2541 * AMD_conservative_depth.
2542 */
2543 int depth_layout_count = qual->flags.q.depth_any
2544 + qual->flags.q.depth_greater
2545 + qual->flags.q.depth_less
2546 + qual->flags.q.depth_unchanged;
2547 if (depth_layout_count > 0
2548 && !state->AMD_conservative_depth_enable
2549 && !state->ARB_conservative_depth_enable) {
2550 _mesa_glsl_error(loc, state,
2551 "extension GL_AMD_conservative_depth or "
2552 "GL_ARB_conservative_depth must be enabled "
2553 "to use depth layout qualifiers");
2554 } else if (depth_layout_count > 0
2555 && strcmp(var->name, "gl_FragDepth") != 0) {
2556 _mesa_glsl_error(loc, state,
2557 "depth layout qualifiers can be applied only to "
2558 "gl_FragDepth");
2559 } else if (depth_layout_count > 1
2560 && strcmp(var->name, "gl_FragDepth") == 0) {
2561 _mesa_glsl_error(loc, state,
2562 "at most one depth layout qualifier can be applied to "
2563 "gl_FragDepth");
2564 }
2565 if (qual->flags.q.depth_any)
2566 var->data.depth_layout = ir_depth_layout_any;
2567 else if (qual->flags.q.depth_greater)
2568 var->data.depth_layout = ir_depth_layout_greater;
2569 else if (qual->flags.q.depth_less)
2570 var->data.depth_layout = ir_depth_layout_less;
2571 else if (qual->flags.q.depth_unchanged)
2572 var->data.depth_layout = ir_depth_layout_unchanged;
2573 else
2574 var->data.depth_layout = ir_depth_layout_none;
2575
2576 if (qual->flags.q.std140 ||
2577 qual->flags.q.packed ||
2578 qual->flags.q.shared) {
2579 _mesa_glsl_error(loc, state,
2580 "uniform block layout qualifiers std140, packed, and "
2581 "shared can only be applied to uniform blocks, not "
2582 "members");
2583 }
2584
2585 if (qual->flags.q.row_major || qual->flags.q.column_major) {
2586 validate_matrix_layout_for_type(state, loc, var->type, var);
2587 }
2588
2589 if (var->type->contains_image())
2590 apply_image_qualifier_to_variable(qual, var, state, loc);
2591 }
2592
2593 /**
2594 * Get the variable that is being redeclared by this declaration
2595 *
2596 * Semantic checks to verify the validity of the redeclaration are also
2597 * performed. If semantic checks fail, compilation error will be emitted via
2598 * \c _mesa_glsl_error, but a non-\c NULL pointer will still be returned.
2599 *
2600 * \returns
2601 * A pointer to an existing variable in the current scope if the declaration
2602 * is a redeclaration, \c NULL otherwise.
2603 */
2604 static ir_variable *
2605 get_variable_being_redeclared(ir_variable *var, YYLTYPE loc,
2606 struct _mesa_glsl_parse_state *state,
2607 bool allow_all_redeclarations)
2608 {
2609 /* Check if this declaration is actually a re-declaration, either to
2610 * resize an array or add qualifiers to an existing variable.
2611 *
2612 * This is allowed for variables in the current scope, or when at
2613 * global scope (for built-ins in the implicit outer scope).
2614 */
2615 ir_variable *earlier = state->symbols->get_variable(var->name);
2616 if (earlier == NULL ||
2617 (state->current_function != NULL &&
2618 !state->symbols->name_declared_this_scope(var->name))) {
2619 return NULL;
2620 }
2621
2622
2623 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
2624 *
2625 * "It is legal to declare an array without a size and then
2626 * later re-declare the same name as an array of the same
2627 * type and specify a size."
2628 */
2629 if (earlier->type->is_unsized_array() && var->type->is_array()
2630 && (var->type->element_type() == earlier->type->element_type())) {
2631 /* FINISHME: This doesn't match the qualifiers on the two
2632 * FINISHME: declarations. It's not 100% clear whether this is
2633 * FINISHME: required or not.
2634 */
2635
2636 const unsigned size = unsigned(var->type->array_size());
2637 check_builtin_array_max_size(var->name, size, loc, state);
2638 if ((size > 0) && (size <= earlier->data.max_array_access)) {
2639 _mesa_glsl_error(& loc, state, "array size must be > %u due to "
2640 "previous access",
2641 earlier->data.max_array_access);
2642 }
2643
2644 earlier->type = var->type;
2645 delete var;
2646 var = NULL;
2647 } else if ((state->ARB_fragment_coord_conventions_enable ||
2648 state->is_version(150, 0))
2649 && strcmp(var->name, "gl_FragCoord") == 0
2650 && earlier->type == var->type
2651 && earlier->data.mode == var->data.mode) {
2652 /* Allow redeclaration of gl_FragCoord for ARB_fcc layout
2653 * qualifiers.
2654 */
2655 earlier->data.origin_upper_left = var->data.origin_upper_left;
2656 earlier->data.pixel_center_integer = var->data.pixel_center_integer;
2657
2658 /* According to section 4.3.7 of the GLSL 1.30 spec,
2659 * the following built-in varaibles can be redeclared with an
2660 * interpolation qualifier:
2661 * * gl_FrontColor
2662 * * gl_BackColor
2663 * * gl_FrontSecondaryColor
2664 * * gl_BackSecondaryColor
2665 * * gl_Color
2666 * * gl_SecondaryColor
2667 */
2668 } else if (state->is_version(130, 0)
2669 && (strcmp(var->name, "gl_FrontColor") == 0
2670 || strcmp(var->name, "gl_BackColor") == 0
2671 || strcmp(var->name, "gl_FrontSecondaryColor") == 0
2672 || strcmp(var->name, "gl_BackSecondaryColor") == 0
2673 || strcmp(var->name, "gl_Color") == 0
2674 || strcmp(var->name, "gl_SecondaryColor") == 0)
2675 && earlier->type == var->type
2676 && earlier->data.mode == var->data.mode) {
2677 earlier->data.interpolation = var->data.interpolation;
2678
2679 /* Layout qualifiers for gl_FragDepth. */
2680 } else if ((state->AMD_conservative_depth_enable ||
2681 state->ARB_conservative_depth_enable)
2682 && strcmp(var->name, "gl_FragDepth") == 0
2683 && earlier->type == var->type
2684 && earlier->data.mode == var->data.mode) {
2685
2686 /** From the AMD_conservative_depth spec:
2687 * Within any shader, the first redeclarations of gl_FragDepth
2688 * must appear before any use of gl_FragDepth.
2689 */
2690 if (earlier->data.used) {
2691 _mesa_glsl_error(&loc, state,
2692 "the first redeclaration of gl_FragDepth "
2693 "must appear before any use of gl_FragDepth");
2694 }
2695
2696 /* Prevent inconsistent redeclaration of depth layout qualifier. */
2697 if (earlier->data.depth_layout != ir_depth_layout_none
2698 && earlier->data.depth_layout != var->data.depth_layout) {
2699 _mesa_glsl_error(&loc, state,
2700 "gl_FragDepth: depth layout is declared here "
2701 "as '%s, but it was previously declared as "
2702 "'%s'",
2703 depth_layout_string(var->data.depth_layout),
2704 depth_layout_string(earlier->data.depth_layout));
2705 }
2706
2707 earlier->data.depth_layout = var->data.depth_layout;
2708
2709 } else if (allow_all_redeclarations) {
2710 if (earlier->data.mode != var->data.mode) {
2711 _mesa_glsl_error(&loc, state,
2712 "redeclaration of `%s' with incorrect qualifiers",
2713 var->name);
2714 } else if (earlier->type != var->type) {
2715 _mesa_glsl_error(&loc, state,
2716 "redeclaration of `%s' has incorrect type",
2717 var->name);
2718 }
2719 } else {
2720 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
2721 }
2722
2723 return earlier;
2724 }
2725
2726 /**
2727 * Generate the IR for an initializer in a variable declaration
2728 */
2729 ir_rvalue *
2730 process_initializer(ir_variable *var, ast_declaration *decl,
2731 ast_fully_specified_type *type,
2732 exec_list *initializer_instructions,
2733 struct _mesa_glsl_parse_state *state)
2734 {
2735 ir_rvalue *result = NULL;
2736
2737 YYLTYPE initializer_loc = decl->initializer->get_location();
2738
2739 /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
2740 *
2741 * "All uniform variables are read-only and are initialized either
2742 * directly by an application via API commands, or indirectly by
2743 * OpenGL."
2744 */
2745 if (var->data.mode == ir_var_uniform) {
2746 state->check_version(120, 0, &initializer_loc,
2747 "cannot initialize uniforms");
2748 }
2749
2750 /* From section 4.1.7 of the GLSL 4.40 spec:
2751 *
2752 * "Opaque variables [...] are initialized only through the
2753 * OpenGL API; they cannot be declared with an initializer in a
2754 * shader."
2755 */
2756 if (var->type->contains_opaque()) {
2757 _mesa_glsl_error(& initializer_loc, state,
2758 "cannot initialize opaque variable");
2759 }
2760
2761 if ((var->data.mode == ir_var_shader_in) && (state->current_function == NULL)) {
2762 _mesa_glsl_error(& initializer_loc, state,
2763 "cannot initialize %s shader input / %s",
2764 _mesa_shader_stage_to_string(state->stage),
2765 (state->stage == MESA_SHADER_VERTEX)
2766 ? "attribute" : "varying");
2767 }
2768
2769 /* If the initializer is an ast_aggregate_initializer, recursively store
2770 * type information from the LHS into it, so that its hir() function can do
2771 * type checking.
2772 */
2773 if (decl->initializer->oper == ast_aggregate)
2774 _mesa_ast_set_aggregate_type(var->type, decl->initializer);
2775
2776 ir_dereference *const lhs = new(state) ir_dereference_variable(var);
2777 ir_rvalue *rhs = decl->initializer->hir(initializer_instructions,
2778 state);
2779
2780 /* Calculate the constant value if this is a const or uniform
2781 * declaration.
2782 */
2783 if (type->qualifier.flags.q.constant
2784 || type->qualifier.flags.q.uniform) {
2785 ir_rvalue *new_rhs = validate_assignment(state, initializer_loc,
2786 var->type, rhs, true);
2787 if (new_rhs != NULL) {
2788 rhs = new_rhs;
2789
2790 ir_constant *constant_value = rhs->constant_expression_value();
2791 if (!constant_value) {
2792 /* If ARB_shading_language_420pack is enabled, initializers of
2793 * const-qualified local variables do not have to be constant
2794 * expressions. Const-qualified global variables must still be
2795 * initialized with constant expressions.
2796 */
2797 if (!state->ARB_shading_language_420pack_enable
2798 || state->current_function == NULL) {
2799 _mesa_glsl_error(& initializer_loc, state,
2800 "initializer of %s variable `%s' must be a "
2801 "constant expression",
2802 (type->qualifier.flags.q.constant)
2803 ? "const" : "uniform",
2804 decl->identifier);
2805 if (var->type->is_numeric()) {
2806 /* Reduce cascading errors. */
2807 var->constant_value = ir_constant::zero(state, var->type);
2808 }
2809 }
2810 } else {
2811 rhs = constant_value;
2812 var->constant_value = constant_value;
2813 }
2814 } else {
2815 if (var->type->is_numeric()) {
2816 /* Reduce cascading errors. */
2817 var->constant_value = ir_constant::zero(state, var->type);
2818 }
2819 }
2820 }
2821
2822 if (rhs && !rhs->type->is_error()) {
2823 bool temp = var->data.read_only;
2824 if (type->qualifier.flags.q.constant)
2825 var->data.read_only = false;
2826
2827 /* Never emit code to initialize a uniform.
2828 */
2829 const glsl_type *initializer_type;
2830 if (!type->qualifier.flags.q.uniform) {
2831 result = do_assignment(initializer_instructions, state,
2832 NULL,
2833 lhs, rhs, true,
2834 type->get_location());
2835 initializer_type = result->type;
2836 } else
2837 initializer_type = rhs->type;
2838
2839 var->constant_initializer = rhs->constant_expression_value();
2840 var->data.has_initializer = true;
2841
2842 /* If the declared variable is an unsized array, it must inherrit
2843 * its full type from the initializer. A declaration such as
2844 *
2845 * uniform float a[] = float[](1.0, 2.0, 3.0, 3.0);
2846 *
2847 * becomes
2848 *
2849 * uniform float a[4] = float[](1.0, 2.0, 3.0, 3.0);
2850 *
2851 * The assignment generated in the if-statement (below) will also
2852 * automatically handle this case for non-uniforms.
2853 *
2854 * If the declared variable is not an array, the types must
2855 * already match exactly. As a result, the type assignment
2856 * here can be done unconditionally. For non-uniforms the call
2857 * to do_assignment can change the type of the initializer (via
2858 * the implicit conversion rules). For uniforms the initializer
2859 * must be a constant expression, and the type of that expression
2860 * was validated above.
2861 */
2862 var->type = initializer_type;
2863
2864 var->data.read_only = temp;
2865 }
2866
2867 return result;
2868 }
2869
2870
2871 /**
2872 * Do additional processing necessary for geometry shader input declarations
2873 * (this covers both interface blocks arrays and bare input variables).
2874 */
2875 static void
2876 handle_geometry_shader_input_decl(struct _mesa_glsl_parse_state *state,
2877 YYLTYPE loc, ir_variable *var)
2878 {
2879 unsigned num_vertices = 0;
2880 if (state->gs_input_prim_type_specified) {
2881 num_vertices = vertices_per_prim(state->in_qualifier->prim_type);
2882 }
2883
2884 /* Geometry shader input variables must be arrays. Caller should have
2885 * reported an error for this.
2886 */
2887 if (!var->type->is_array()) {
2888 assert(state->error);
2889
2890 /* To avoid cascading failures, short circuit the checks below. */
2891 return;
2892 }
2893
2894 if (var->type->is_unsized_array()) {
2895 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec says:
2896 *
2897 * All geometry shader input unsized array declarations will be
2898 * sized by an earlier input layout qualifier, when present, as per
2899 * the following table.
2900 *
2901 * Followed by a table mapping each allowed input layout qualifier to
2902 * the corresponding input length.
2903 */
2904 if (num_vertices != 0)
2905 var->type = glsl_type::get_array_instance(var->type->fields.array,
2906 num_vertices);
2907 } else {
2908 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec
2909 * includes the following examples of compile-time errors:
2910 *
2911 * // code sequence within one shader...
2912 * in vec4 Color1[]; // size unknown
2913 * ...Color1.length()...// illegal, length() unknown
2914 * in vec4 Color2[2]; // size is 2
2915 * ...Color1.length()...// illegal, Color1 still has no size
2916 * in vec4 Color3[3]; // illegal, input sizes are inconsistent
2917 * layout(lines) in; // legal, input size is 2, matching
2918 * in vec4 Color4[3]; // illegal, contradicts layout
2919 * ...
2920 *
2921 * To detect the case illustrated by Color3, we verify that the size of
2922 * an explicitly-sized array matches the size of any previously declared
2923 * explicitly-sized array. To detect the case illustrated by Color4, we
2924 * verify that the size of an explicitly-sized array is consistent with
2925 * any previously declared input layout.
2926 */
2927 if (num_vertices != 0 && var->type->length != num_vertices) {
2928 _mesa_glsl_error(&loc, state,
2929 "geometry shader input size contradicts previously"
2930 " declared layout (size is %u, but layout requires a"
2931 " size of %u)", var->type->length, num_vertices);
2932 } else if (state->gs_input_size != 0 &&
2933 var->type->length != state->gs_input_size) {
2934 _mesa_glsl_error(&loc, state,
2935 "geometry shader input sizes are "
2936 "inconsistent (size is %u, but a previous "
2937 "declaration has size %u)",
2938 var->type->length, state->gs_input_size);
2939 } else {
2940 state->gs_input_size = var->type->length;
2941 }
2942 }
2943 }
2944
2945
2946 void
2947 validate_identifier(const char *identifier, YYLTYPE loc,
2948 struct _mesa_glsl_parse_state *state)
2949 {
2950 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
2951 *
2952 * "Identifiers starting with "gl_" are reserved for use by
2953 * OpenGL, and may not be declared in a shader as either a
2954 * variable or a function."
2955 */
2956 if (strncmp(identifier, "gl_", 3) == 0) {
2957 _mesa_glsl_error(&loc, state,
2958 "identifier `%s' uses reserved `gl_' prefix",
2959 identifier);
2960 } else if (strstr(identifier, "__")) {
2961 /* From page 14 (page 20 of the PDF) of the GLSL 1.10
2962 * spec:
2963 *
2964 * "In addition, all identifiers containing two
2965 * consecutive underscores (__) are reserved as
2966 * possible future keywords."
2967 *
2968 * The intention is that names containing __ are reserved for internal
2969 * use by the implementation, and names prefixed with GL_ are reserved
2970 * for use by Khronos. Names simply containing __ are dangerous to use,
2971 * but should be allowed.
2972 *
2973 * A future version of the GLSL specification will clarify this.
2974 */
2975 _mesa_glsl_warning(&loc, state,
2976 "identifier `%s' uses reserved `__' string",
2977 identifier);
2978 }
2979 }
2980
2981
2982 ir_rvalue *
2983 ast_declarator_list::hir(exec_list *instructions,
2984 struct _mesa_glsl_parse_state *state)
2985 {
2986 void *ctx = state;
2987 const struct glsl_type *decl_type;
2988 const char *type_name = NULL;
2989 ir_rvalue *result = NULL;
2990 YYLTYPE loc = this->get_location();
2991
2992 /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec:
2993 *
2994 * "To ensure that a particular output variable is invariant, it is
2995 * necessary to use the invariant qualifier. It can either be used to
2996 * qualify a previously declared variable as being invariant
2997 *
2998 * invariant gl_Position; // make existing gl_Position be invariant"
2999 *
3000 * In these cases the parser will set the 'invariant' flag in the declarator
3001 * list, and the type will be NULL.
3002 */
3003 if (this->invariant) {
3004 assert(this->type == NULL);
3005
3006 if (state->current_function != NULL) {
3007 _mesa_glsl_error(& loc, state,
3008 "all uses of `invariant' keyword must be at global "
3009 "scope");
3010 }
3011
3012 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
3013 assert(decl->array_specifier == NULL);
3014 assert(decl->initializer == NULL);
3015
3016 ir_variable *const earlier =
3017 state->symbols->get_variable(decl->identifier);
3018 if (earlier == NULL) {
3019 _mesa_glsl_error(& loc, state,
3020 "undeclared variable `%s' cannot be marked "
3021 "invariant", decl->identifier);
3022 } else if ((state->stage == MESA_SHADER_VERTEX)
3023 && (earlier->data.mode != ir_var_shader_out)) {
3024 _mesa_glsl_error(& loc, state,
3025 "`%s' cannot be marked invariant, vertex shader "
3026 "outputs only", decl->identifier);
3027 } else if ((state->stage == MESA_SHADER_FRAGMENT)
3028 && (earlier->data.mode != ir_var_shader_in)) {
3029 _mesa_glsl_error(& loc, state,
3030 "`%s' cannot be marked invariant, fragment shader "
3031 "inputs only", decl->identifier);
3032 } else if (earlier->data.used) {
3033 _mesa_glsl_error(& loc, state,
3034 "variable `%s' may not be redeclared "
3035 "`invariant' after being used",
3036 earlier->name);
3037 } else {
3038 earlier->data.invariant = true;
3039 }
3040 }
3041
3042 /* Invariant redeclarations do not have r-values.
3043 */
3044 return NULL;
3045 }
3046
3047 assert(this->type != NULL);
3048 assert(!this->invariant);
3049
3050 /* The type specifier may contain a structure definition. Process that
3051 * before any of the variable declarations.
3052 */
3053 (void) this->type->specifier->hir(instructions, state);
3054
3055 decl_type = this->type->glsl_type(& type_name, state);
3056
3057 /* An offset-qualified atomic counter declaration sets the default
3058 * offset for the next declaration within the same atomic counter
3059 * buffer.
3060 */
3061 if (decl_type && decl_type->contains_atomic()) {
3062 if (type->qualifier.flags.q.explicit_binding &&
3063 type->qualifier.flags.q.explicit_offset)
3064 state->atomic_counter_offsets[type->qualifier.binding] =
3065 type->qualifier.offset;
3066 }
3067
3068 if (this->declarations.is_empty()) {
3069 /* If there is no structure involved in the program text, there are two
3070 * possible scenarios:
3071 *
3072 * - The program text contained something like 'vec4;'. This is an
3073 * empty declaration. It is valid but weird. Emit a warning.
3074 *
3075 * - The program text contained something like 'S;' and 'S' is not the
3076 * name of a known structure type. This is both invalid and weird.
3077 * Emit an error.
3078 *
3079 * - The program text contained something like 'mediump float;'
3080 * when the programmer probably meant 'precision mediump
3081 * float;' Emit a warning with a description of what they
3082 * probably meant to do.
3083 *
3084 * Note that if decl_type is NULL and there is a structure involved,
3085 * there must have been some sort of error with the structure. In this
3086 * case we assume that an error was already generated on this line of
3087 * code for the structure. There is no need to generate an additional,
3088 * confusing error.
3089 */
3090 assert(this->type->specifier->structure == NULL || decl_type != NULL
3091 || state->error);
3092
3093 if (decl_type == NULL) {
3094 _mesa_glsl_error(&loc, state,
3095 "invalid type `%s' in empty declaration",
3096 type_name);
3097 } else if (decl_type->base_type == GLSL_TYPE_ATOMIC_UINT) {
3098 /* Empty atomic counter declarations are allowed and useful
3099 * to set the default offset qualifier.
3100 */
3101 return NULL;
3102 } else if (this->type->qualifier.precision != ast_precision_none) {
3103 if (this->type->specifier->structure != NULL) {
3104 _mesa_glsl_error(&loc, state,
3105 "precision qualifiers can't be applied "
3106 "to structures");
3107 } else {
3108 static const char *const precision_names[] = {
3109 "highp",
3110 "highp",
3111 "mediump",
3112 "lowp"
3113 };
3114
3115 _mesa_glsl_warning(&loc, state,
3116 "empty declaration with precision qualifier, "
3117 "to set the default precision, use "
3118 "`precision %s %s;'",
3119 precision_names[this->type->qualifier.precision],
3120 type_name);
3121 }
3122 } else if (this->type->specifier->structure == NULL) {
3123 _mesa_glsl_warning(&loc, state, "empty declaration");
3124 }
3125 }
3126
3127 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
3128 const struct glsl_type *var_type;
3129 ir_variable *var;
3130
3131 /* FINISHME: Emit a warning if a variable declaration shadows a
3132 * FINISHME: declaration at a higher scope.
3133 */
3134
3135 if ((decl_type == NULL) || decl_type->is_void()) {
3136 if (type_name != NULL) {
3137 _mesa_glsl_error(& loc, state,
3138 "invalid type `%s' in declaration of `%s'",
3139 type_name, decl->identifier);
3140 } else {
3141 _mesa_glsl_error(& loc, state,
3142 "invalid type in declaration of `%s'",
3143 decl->identifier);
3144 }
3145 continue;
3146 }
3147
3148 var_type = process_array_type(&loc, decl_type, decl->array_specifier,
3149 state);
3150
3151 var = new(ctx) ir_variable(var_type, decl->identifier, ir_var_auto);
3152
3153 /* The 'varying in' and 'varying out' qualifiers can only be used with
3154 * ARB_geometry_shader4 and EXT_geometry_shader4, which we don't support
3155 * yet.
3156 */
3157 if (this->type->qualifier.flags.q.varying) {
3158 if (this->type->qualifier.flags.q.in) {
3159 _mesa_glsl_error(& loc, state,
3160 "`varying in' qualifier in declaration of "
3161 "`%s' only valid for geometry shaders using "
3162 "ARB_geometry_shader4 or EXT_geometry_shader4",
3163 decl->identifier);
3164 } else if (this->type->qualifier.flags.q.out) {
3165 _mesa_glsl_error(& loc, state,
3166 "`varying out' qualifier in declaration of "
3167 "`%s' only valid for geometry shaders using "
3168 "ARB_geometry_shader4 or EXT_geometry_shader4",
3169 decl->identifier);
3170 }
3171 }
3172
3173 /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
3174 *
3175 * "Global variables can only use the qualifiers const,
3176 * attribute, uni form, or varying. Only one may be
3177 * specified.
3178 *
3179 * Local variables can only use the qualifier const."
3180 *
3181 * This is relaxed in GLSL 1.30 and GLSL ES 3.00. It is also relaxed by
3182 * any extension that adds the 'layout' keyword.
3183 */
3184 if (!state->is_version(130, 300)
3185 && !state->has_explicit_attrib_location()
3186 && !state->has_separate_shader_objects()
3187 && !state->ARB_fragment_coord_conventions_enable) {
3188 if (this->type->qualifier.flags.q.out) {
3189 _mesa_glsl_error(& loc, state,
3190 "`out' qualifier in declaration of `%s' "
3191 "only valid for function parameters in %s",
3192 decl->identifier, state->get_version_string());
3193 }
3194 if (this->type->qualifier.flags.q.in) {
3195 _mesa_glsl_error(& loc, state,
3196 "`in' qualifier in declaration of `%s' "
3197 "only valid for function parameters in %s",
3198 decl->identifier, state->get_version_string());
3199 }
3200 /* FINISHME: Test for other invalid qualifiers. */
3201 }
3202
3203 apply_type_qualifier_to_variable(& this->type->qualifier, var, state,
3204 & loc, false);
3205
3206 if (this->type->qualifier.flags.q.invariant) {
3207 if ((state->stage == MESA_SHADER_VERTEX) &&
3208 var->data.mode != ir_var_shader_out) {
3209 _mesa_glsl_error(& loc, state,
3210 "`%s' cannot be marked invariant, vertex shader "
3211 "outputs only", var->name);
3212 } else if ((state->stage == MESA_SHADER_FRAGMENT) &&
3213 var->data.mode != ir_var_shader_in) {
3214 /* FINISHME: Note that this doesn't work for invariant on
3215 * a function signature inval
3216 */
3217 _mesa_glsl_error(& loc, state,
3218 "`%s' cannot be marked invariant, fragment shader "
3219 "inputs only", var->name);
3220 }
3221 }
3222
3223 if (state->current_function != NULL) {
3224 const char *mode = NULL;
3225 const char *extra = "";
3226
3227 /* There is no need to check for 'inout' here because the parser will
3228 * only allow that in function parameter lists.
3229 */
3230 if (this->type->qualifier.flags.q.attribute) {
3231 mode = "attribute";
3232 } else if (this->type->qualifier.flags.q.uniform) {
3233 mode = "uniform";
3234 } else if (this->type->qualifier.flags.q.varying) {
3235 mode = "varying";
3236 } else if (this->type->qualifier.flags.q.in) {
3237 mode = "in";
3238 extra = " or in function parameter list";
3239 } else if (this->type->qualifier.flags.q.out) {
3240 mode = "out";
3241 extra = " or in function parameter list";
3242 }
3243
3244 if (mode) {
3245 _mesa_glsl_error(& loc, state,
3246 "%s variable `%s' must be declared at "
3247 "global scope%s",
3248 mode, var->name, extra);
3249 }
3250 } else if (var->data.mode == ir_var_shader_in) {
3251 var->data.read_only = true;
3252
3253 if (state->stage == MESA_SHADER_VERTEX) {
3254 bool error_emitted = false;
3255
3256 /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
3257 *
3258 * "Vertex shader inputs can only be float, floating-point
3259 * vectors, matrices, signed and unsigned integers and integer
3260 * vectors. Vertex shader inputs can also form arrays of these
3261 * types, but not structures."
3262 *
3263 * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
3264 *
3265 * "Vertex shader inputs can only be float, floating-point
3266 * vectors, matrices, signed and unsigned integers and integer
3267 * vectors. They cannot be arrays or structures."
3268 *
3269 * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
3270 *
3271 * "The attribute qualifier can be used only with float,
3272 * floating-point vectors, and matrices. Attribute variables
3273 * cannot be declared as arrays or structures."
3274 *
3275 * From page 33 (page 39 of the PDF) of the GLSL ES 3.00 spec:
3276 *
3277 * "Vertex shader inputs can only be float, floating-point
3278 * vectors, matrices, signed and unsigned integers and integer
3279 * vectors. Vertex shader inputs cannot be arrays or
3280 * structures."
3281 */
3282 const glsl_type *check_type = var->type;
3283 while (check_type->is_array())
3284 check_type = check_type->element_type();
3285
3286 switch (check_type->base_type) {
3287 case GLSL_TYPE_FLOAT:
3288 break;
3289 case GLSL_TYPE_UINT:
3290 case GLSL_TYPE_INT:
3291 if (state->is_version(120, 300))
3292 break;
3293 /* FALLTHROUGH */
3294 default:
3295 _mesa_glsl_error(& loc, state,
3296 "vertex shader input / attribute cannot have "
3297 "type %s`%s'",
3298 var->type->is_array() ? "array of " : "",
3299 check_type->name);
3300 error_emitted = true;
3301 }
3302
3303 if (!error_emitted && var->type->is_array() &&
3304 !state->check_version(150, 0, &loc,
3305 "vertex shader input / attribute "
3306 "cannot have array type")) {
3307 error_emitted = true;
3308 }
3309 } else if (state->stage == MESA_SHADER_GEOMETRY) {
3310 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
3311 *
3312 * Geometry shader input variables get the per-vertex values
3313 * written out by vertex shader output variables of the same
3314 * names. Since a geometry shader operates on a set of
3315 * vertices, each input varying variable (or input block, see
3316 * interface blocks below) needs to be declared as an array.
3317 */
3318 if (!var->type->is_array()) {
3319 _mesa_glsl_error(&loc, state,
3320 "geometry shader inputs must be arrays");
3321 }
3322
3323 handle_geometry_shader_input_decl(state, loc, var);
3324 }
3325 }
3326
3327 /* Integer fragment inputs must be qualified with 'flat'. In GLSL ES,
3328 * so must integer vertex outputs.
3329 *
3330 * From section 4.3.4 ("Inputs") of the GLSL 1.50 spec:
3331 * "Fragment shader inputs that are signed or unsigned integers or
3332 * integer vectors must be qualified with the interpolation qualifier
3333 * flat."
3334 *
3335 * From section 4.3.4 ("Input Variables") of the GLSL 3.00 ES spec:
3336 * "Fragment shader inputs that are, or contain, signed or unsigned
3337 * integers or integer vectors must be qualified with the
3338 * interpolation qualifier flat."
3339 *
3340 * From section 4.3.6 ("Output Variables") of the GLSL 3.00 ES spec:
3341 * "Vertex shader outputs that are, or contain, signed or unsigned
3342 * integers or integer vectors must be qualified with the
3343 * interpolation qualifier flat."
3344 *
3345 * Note that prior to GLSL 1.50, this requirement applied to vertex
3346 * outputs rather than fragment inputs. That creates problems in the
3347 * presence of geometry shaders, so we adopt the GLSL 1.50 rule for all
3348 * desktop GL shaders. For GLSL ES shaders, we follow the spec and
3349 * apply the restriction to both vertex outputs and fragment inputs.
3350 *
3351 * Note also that the desktop GLSL specs are missing the text "or
3352 * contain"; this is presumably an oversight, since there is no
3353 * reasonable way to interpolate a fragment shader input that contains
3354 * an integer.
3355 */
3356 if (state->is_version(130, 300) &&
3357 var->type->contains_integer() &&
3358 var->data.interpolation != INTERP_QUALIFIER_FLAT &&
3359 ((state->stage == MESA_SHADER_FRAGMENT && var->data.mode == ir_var_shader_in)
3360 || (state->stage == MESA_SHADER_VERTEX && var->data.mode == ir_var_shader_out
3361 && state->es_shader))) {
3362 const char *var_type = (state->stage == MESA_SHADER_VERTEX) ?
3363 "vertex output" : "fragment input";
3364 _mesa_glsl_error(&loc, state, "if a %s is (or contains) "
3365 "an integer, then it must be qualified with 'flat'",
3366 var_type);
3367 }
3368
3369
3370 /* Interpolation qualifiers cannot be applied to 'centroid' and
3371 * 'centroid varying'.
3372 *
3373 * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
3374 * "interpolation qualifiers may only precede the qualifiers in,
3375 * centroid in, out, or centroid out in a declaration. They do not apply
3376 * to the deprecated storage qualifiers varying or centroid varying."
3377 *
3378 * These deprecated storage qualifiers do not exist in GLSL ES 3.00.
3379 */
3380 if (state->is_version(130, 0)
3381 && this->type->qualifier.has_interpolation()
3382 && this->type->qualifier.flags.q.varying) {
3383
3384 const char *i = this->type->qualifier.interpolation_string();
3385 assert(i != NULL);
3386 const char *s;
3387 if (this->type->qualifier.flags.q.centroid)
3388 s = "centroid varying";
3389 else
3390 s = "varying";
3391
3392 _mesa_glsl_error(&loc, state,
3393 "qualifier '%s' cannot be applied to the "
3394 "deprecated storage qualifier '%s'", i, s);
3395 }
3396
3397
3398 /* Interpolation qualifiers can only apply to vertex shader outputs and
3399 * fragment shader inputs.
3400 *
3401 * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
3402 * "Outputs from a vertex shader (out) and inputs to a fragment
3403 * shader (in) can be further qualified with one or more of these
3404 * interpolation qualifiers"
3405 *
3406 * From page 31 (page 37 of the PDF) of the GLSL ES 3.00 spec:
3407 * "These interpolation qualifiers may only precede the qualifiers
3408 * in, centroid in, out, or centroid out in a declaration. They do
3409 * not apply to inputs into a vertex shader or outputs from a
3410 * fragment shader."
3411 */
3412 if (state->is_version(130, 300)
3413 && this->type->qualifier.has_interpolation()) {
3414
3415 const char *i = this->type->qualifier.interpolation_string();
3416 assert(i != NULL);
3417
3418 switch (state->stage) {
3419 case MESA_SHADER_VERTEX:
3420 if (this->type->qualifier.flags.q.in) {
3421 _mesa_glsl_error(&loc, state,
3422 "qualifier '%s' cannot be applied to vertex "
3423 "shader inputs", i);
3424 }
3425 break;
3426 case MESA_SHADER_FRAGMENT:
3427 if (this->type->qualifier.flags.q.out) {
3428 _mesa_glsl_error(&loc, state,
3429 "qualifier '%s' cannot be applied to fragment "
3430 "shader outputs", i);
3431 }
3432 break;
3433 default:
3434 break;
3435 }
3436 }
3437
3438
3439 /* From section 4.3.4 of the GLSL 1.30 spec:
3440 * "It is an error to use centroid in in a vertex shader."
3441 *
3442 * From section 4.3.4 of the GLSL ES 3.00 spec:
3443 * "It is an error to use centroid in or interpolation qualifiers in
3444 * a vertex shader input."
3445 */
3446 if (state->is_version(130, 300)
3447 && this->type->qualifier.flags.q.centroid
3448 && this->type->qualifier.flags.q.in
3449 && state->stage == MESA_SHADER_VERTEX) {
3450
3451 _mesa_glsl_error(&loc, state,
3452 "'centroid in' cannot be used in a vertex shader");
3453 }
3454
3455 if (state->stage == MESA_SHADER_VERTEX
3456 && this->type->qualifier.flags.q.sample
3457 && this->type->qualifier.flags.q.in) {
3458
3459 _mesa_glsl_error(&loc, state,
3460 "'sample in' cannot be used in a vertex shader");
3461 }
3462
3463 /* Section 4.3.6 of the GLSL 1.30 specification states:
3464 * "It is an error to use centroid out in a fragment shader."
3465 *
3466 * The GL_ARB_shading_language_420pack extension specification states:
3467 * "It is an error to use auxiliary storage qualifiers or interpolation
3468 * qualifiers on an output in a fragment shader."
3469 */
3470 if (state->stage == MESA_SHADER_FRAGMENT &&
3471 this->type->qualifier.flags.q.out &&
3472 this->type->qualifier.has_auxiliary_storage()) {
3473 _mesa_glsl_error(&loc, state,
3474 "auxiliary storage qualifiers cannot be used on "
3475 "fragment shader outputs");
3476 }
3477
3478 /* Precision qualifiers exists only in GLSL versions 1.00 and >= 1.30.
3479 */
3480 if (this->type->qualifier.precision != ast_precision_none) {
3481 state->check_precision_qualifiers_allowed(&loc);
3482 }
3483
3484
3485 /* Precision qualifiers apply to floating point, integer and sampler
3486 * types.
3487 *
3488 * Section 4.5.2 (Precision Qualifiers) of the GLSL 1.30 spec says:
3489 * "Any floating point or any integer declaration can have the type
3490 * preceded by one of these precision qualifiers [...] Literal
3491 * constants do not have precision qualifiers. Neither do Boolean
3492 * variables.
3493 *
3494 * Section 4.5 (Precision and Precision Qualifiers) of the GLSL 1.30
3495 * spec also says:
3496 *
3497 * "Precision qualifiers are added for code portability with OpenGL
3498 * ES, not for functionality. They have the same syntax as in OpenGL
3499 * ES."
3500 *
3501 * Section 8 (Built-In Functions) of the GLSL ES 1.00 spec says:
3502 *
3503 * "uniform lowp sampler2D sampler;
3504 * highp vec2 coord;
3505 * ...
3506 * lowp vec4 col = texture2D (sampler, coord);
3507 * // texture2D returns lowp"
3508 *
3509 * From this, we infer that GLSL 1.30 (and later) should allow precision
3510 * qualifiers on sampler types just like float and integer types.
3511 */
3512 if (this->type->qualifier.precision != ast_precision_none
3513 && !var->type->is_float()
3514 && !var->type->is_integer()
3515 && !var->type->is_record()
3516 && !var->type->is_sampler()
3517 && !(var->type->is_array()
3518 && (var->type->fields.array->is_float()
3519 || var->type->fields.array->is_integer()))) {
3520
3521 _mesa_glsl_error(&loc, state,
3522 "precision qualifiers apply only to floating point"
3523 ", integer and sampler types");
3524 }
3525
3526 /* From section 4.1.7 of the GLSL 4.40 spec:
3527 *
3528 * "[Opaque types] can only be declared as function
3529 * parameters or uniform-qualified variables."
3530 */
3531 if (var_type->contains_opaque() &&
3532 !this->type->qualifier.flags.q.uniform) {
3533 _mesa_glsl_error(&loc, state,
3534 "opaque variables must be declared uniform");
3535 }
3536
3537 /* Process the initializer and add its instructions to a temporary
3538 * list. This list will be added to the instruction stream (below) after
3539 * the declaration is added. This is done because in some cases (such as
3540 * redeclarations) the declaration may not actually be added to the
3541 * instruction stream.
3542 */
3543 exec_list initializer_instructions;
3544 ir_variable *earlier =
3545 get_variable_being_redeclared(var, decl->get_location(), state,
3546 false /* allow_all_redeclarations */);
3547 if (earlier != NULL) {
3548 if (strncmp(var->name, "gl_", 3) == 0 &&
3549 earlier->data.how_declared == ir_var_declared_in_block) {
3550 _mesa_glsl_error(&loc, state,
3551 "`%s' has already been redeclared using "
3552 "gl_PerVertex", var->name);
3553 }
3554 earlier->data.how_declared = ir_var_declared_normally;
3555 }
3556
3557 if (decl->initializer != NULL) {
3558 result = process_initializer((earlier == NULL) ? var : earlier,
3559 decl, this->type,
3560 &initializer_instructions, state);
3561 }
3562
3563 /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
3564 *
3565 * "It is an error to write to a const variable outside of
3566 * its declaration, so they must be initialized when
3567 * declared."
3568 */
3569 if (this->type->qualifier.flags.q.constant && decl->initializer == NULL) {
3570 _mesa_glsl_error(& loc, state,
3571 "const declaration of `%s' must be initialized",
3572 decl->identifier);
3573 }
3574
3575 if (state->es_shader) {
3576 const glsl_type *const t = (earlier == NULL)
3577 ? var->type : earlier->type;
3578
3579 if (t->is_unsized_array())
3580 /* Section 10.17 of the GLSL ES 1.00 specification states that
3581 * unsized array declarations have been removed from the language.
3582 * Arrays that are sized using an initializer are still explicitly
3583 * sized. However, GLSL ES 1.00 does not allow array
3584 * initializers. That is only allowed in GLSL ES 3.00.
3585 *
3586 * Section 4.1.9 (Arrays) of the GLSL ES 3.00 spec says:
3587 *
3588 * "An array type can also be formed without specifying a size
3589 * if the definition includes an initializer:
3590 *
3591 * float x[] = float[2] (1.0, 2.0); // declares an array of size 2
3592 * float y[] = float[] (1.0, 2.0, 3.0); // declares an array of size 3
3593 *
3594 * float a[5];
3595 * float b[] = a;"
3596 */
3597 _mesa_glsl_error(& loc, state,
3598 "unsized array declarations are not allowed in "
3599 "GLSL ES");
3600 }
3601
3602 /* If the declaration is not a redeclaration, there are a few additional
3603 * semantic checks that must be applied. In addition, variable that was
3604 * created for the declaration should be added to the IR stream.
3605 */
3606 if (earlier == NULL) {
3607 validate_identifier(decl->identifier, loc, state);
3608
3609 /* Add the variable to the symbol table. Note that the initializer's
3610 * IR was already processed earlier (though it hasn't been emitted
3611 * yet), without the variable in scope.
3612 *
3613 * This differs from most C-like languages, but it follows the GLSL
3614 * specification. From page 28 (page 34 of the PDF) of the GLSL 1.50
3615 * spec:
3616 *
3617 * "Within a declaration, the scope of a name starts immediately
3618 * after the initializer if present or immediately after the name
3619 * being declared if not."
3620 */
3621 if (!state->symbols->add_variable(var)) {
3622 YYLTYPE loc = this->get_location();
3623 _mesa_glsl_error(&loc, state, "name `%s' already taken in the "
3624 "current scope", decl->identifier);
3625 continue;
3626 }
3627
3628 /* Push the variable declaration to the top. It means that all the
3629 * variable declarations will appear in a funny last-to-first order,
3630 * but otherwise we run into trouble if a function is prototyped, a
3631 * global var is decled, then the function is defined with usage of
3632 * the global var. See glslparsertest's CorrectModule.frag.
3633 */
3634 instructions->push_head(var);
3635 }
3636
3637 instructions->append_list(&initializer_instructions);
3638 }
3639
3640
3641 /* Generally, variable declarations do not have r-values. However,
3642 * one is used for the declaration in
3643 *
3644 * while (bool b = some_condition()) {
3645 * ...
3646 * }
3647 *
3648 * so we return the rvalue from the last seen declaration here.
3649 */
3650 return result;
3651 }
3652
3653
3654 ir_rvalue *
3655 ast_parameter_declarator::hir(exec_list *instructions,
3656 struct _mesa_glsl_parse_state *state)
3657 {
3658 void *ctx = state;
3659 const struct glsl_type *type;
3660 const char *name = NULL;
3661 YYLTYPE loc = this->get_location();
3662
3663 type = this->type->glsl_type(& name, state);
3664
3665 if (type == NULL) {
3666 if (name != NULL) {
3667 _mesa_glsl_error(& loc, state,
3668 "invalid type `%s' in declaration of `%s'",
3669 name, this->identifier);
3670 } else {
3671 _mesa_glsl_error(& loc, state,
3672 "invalid type in declaration of `%s'",
3673 this->identifier);
3674 }
3675
3676 type = glsl_type::error_type;
3677 }
3678
3679 /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
3680 *
3681 * "Functions that accept no input arguments need not use void in the
3682 * argument list because prototypes (or definitions) are required and
3683 * therefore there is no ambiguity when an empty argument list "( )" is
3684 * declared. The idiom "(void)" as a parameter list is provided for
3685 * convenience."
3686 *
3687 * Placing this check here prevents a void parameter being set up
3688 * for a function, which avoids tripping up checks for main taking
3689 * parameters and lookups of an unnamed symbol.
3690 */
3691 if (type->is_void()) {
3692 if (this->identifier != NULL)
3693 _mesa_glsl_error(& loc, state,
3694 "named parameter cannot have type `void'");
3695
3696 is_void = true;
3697 return NULL;
3698 }
3699
3700 if (formal_parameter && (this->identifier == NULL)) {
3701 _mesa_glsl_error(& loc, state, "formal parameter lacks a name");
3702 return NULL;
3703 }
3704
3705 /* This only handles "vec4 foo[..]". The earlier specifier->glsl_type(...)
3706 * call already handled the "vec4[..] foo" case.
3707 */
3708 type = process_array_type(&loc, type, this->array_specifier, state);
3709
3710 if (!type->is_error() && type->is_unsized_array()) {
3711 _mesa_glsl_error(&loc, state, "arrays passed as parameters must have "
3712 "a declared size");
3713 type = glsl_type::error_type;
3714 }
3715
3716 is_void = false;
3717 ir_variable *var = new(ctx)
3718 ir_variable(type, this->identifier, ir_var_function_in);
3719
3720 /* Apply any specified qualifiers to the parameter declaration. Note that
3721 * for function parameters the default mode is 'in'.
3722 */
3723 apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc,
3724 true);
3725
3726 /* From section 4.1.7 of the GLSL 4.40 spec:
3727 *
3728 * "Opaque variables cannot be treated as l-values; hence cannot
3729 * be used as out or inout function parameters, nor can they be
3730 * assigned into."
3731 */
3732 if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
3733 && type->contains_opaque()) {
3734 _mesa_glsl_error(&loc, state, "out and inout parameters cannot "
3735 "contain opaque variables");
3736 type = glsl_type::error_type;
3737 }
3738
3739 /* From page 39 (page 45 of the PDF) of the GLSL 1.10 spec:
3740 *
3741 * "When calling a function, expressions that do not evaluate to
3742 * l-values cannot be passed to parameters declared as out or inout."
3743 *
3744 * From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
3745 *
3746 * "Other binary or unary expressions, non-dereferenced arrays,
3747 * function names, swizzles with repeated fields, and constants
3748 * cannot be l-values."
3749 *
3750 * So for GLSL 1.10, passing an array as an out or inout parameter is not
3751 * allowed. This restriction is removed in GLSL 1.20, and in GLSL ES.
3752 */
3753 if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
3754 && type->is_array()
3755 && !state->check_version(120, 100, &loc,
3756 "arrays cannot be out or inout parameters")) {
3757 type = glsl_type::error_type;
3758 }
3759
3760 instructions->push_tail(var);
3761
3762 /* Parameter declarations do not have r-values.
3763 */
3764 return NULL;
3765 }
3766
3767
3768 void
3769 ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters,
3770 bool formal,
3771 exec_list *ir_parameters,
3772 _mesa_glsl_parse_state *state)
3773 {
3774 ast_parameter_declarator *void_param = NULL;
3775 unsigned count = 0;
3776
3777 foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) {
3778 param->formal_parameter = formal;
3779 param->hir(ir_parameters, state);
3780
3781 if (param->is_void)
3782 void_param = param;
3783
3784 count++;
3785 }
3786
3787 if ((void_param != NULL) && (count > 1)) {
3788 YYLTYPE loc = void_param->get_location();
3789
3790 _mesa_glsl_error(& loc, state,
3791 "`void' parameter must be only parameter");
3792 }
3793 }
3794
3795
3796 void
3797 emit_function(_mesa_glsl_parse_state *state, ir_function *f)
3798 {
3799 /* IR invariants disallow function declarations or definitions
3800 * nested within other function definitions. But there is no
3801 * requirement about the relative order of function declarations
3802 * and definitions with respect to one another. So simply insert
3803 * the new ir_function block at the end of the toplevel instruction
3804 * list.
3805 */
3806 state->toplevel_ir->push_tail(f);
3807 }
3808
3809
3810 ir_rvalue *
3811 ast_function::hir(exec_list *instructions,
3812 struct _mesa_glsl_parse_state *state)
3813 {
3814 void *ctx = state;
3815 ir_function *f = NULL;
3816 ir_function_signature *sig = NULL;
3817 exec_list hir_parameters;
3818
3819 const char *const name = identifier;
3820
3821 /* New functions are always added to the top-level IR instruction stream,
3822 * so this instruction list pointer is ignored. See also emit_function
3823 * (called below).
3824 */
3825 (void) instructions;
3826
3827 /* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec,
3828 *
3829 * "Function declarations (prototypes) cannot occur inside of functions;
3830 * they must be at global scope, or for the built-in functions, outside
3831 * the global scope."
3832 *
3833 * From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec,
3834 *
3835 * "User defined functions may only be defined within the global scope."
3836 *
3837 * Note that this language does not appear in GLSL 1.10.
3838 */
3839 if ((state->current_function != NULL) &&
3840 state->is_version(120, 100)) {
3841 YYLTYPE loc = this->get_location();
3842 _mesa_glsl_error(&loc, state,
3843 "declaration of function `%s' not allowed within "
3844 "function body", name);
3845 }
3846
3847 validate_identifier(name, this->get_location(), state);
3848
3849 /* Convert the list of function parameters to HIR now so that they can be
3850 * used below to compare this function's signature with previously seen
3851 * signatures for functions with the same name.
3852 */
3853 ast_parameter_declarator::parameters_to_hir(& this->parameters,
3854 is_definition,
3855 & hir_parameters, state);
3856
3857 const char *return_type_name;
3858 const glsl_type *return_type =
3859 this->return_type->glsl_type(& return_type_name, state);
3860
3861 if (!return_type) {
3862 YYLTYPE loc = this->get_location();
3863 _mesa_glsl_error(&loc, state,
3864 "function `%s' has undeclared return type `%s'",
3865 name, return_type_name);
3866 return_type = glsl_type::error_type;
3867 }
3868
3869 /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec:
3870 * "No qualifier is allowed on the return type of a function."
3871 */
3872 if (this->return_type->has_qualifiers()) {
3873 YYLTYPE loc = this->get_location();
3874 _mesa_glsl_error(& loc, state,
3875 "function `%s' return type has qualifiers", name);
3876 }
3877
3878 /* Section 6.1 (Function Definitions) of the GLSL 1.20 spec says:
3879 *
3880 * "Arrays are allowed as arguments and as the return type. In both
3881 * cases, the array must be explicitly sized."
3882 */
3883 if (return_type->is_unsized_array()) {
3884 YYLTYPE loc = this->get_location();
3885 _mesa_glsl_error(& loc, state,
3886 "function `%s' return type array must be explicitly "
3887 "sized", name);
3888 }
3889
3890 /* From section 4.1.7 of the GLSL 4.40 spec:
3891 *
3892 * "[Opaque types] can only be declared as function parameters
3893 * or uniform-qualified variables."
3894 */
3895 if (return_type->contains_opaque()) {
3896 YYLTYPE loc = this->get_location();
3897 _mesa_glsl_error(&loc, state,
3898 "function `%s' return type can't contain an opaque type",
3899 name);
3900 }
3901
3902 /* Verify that this function's signature either doesn't match a previously
3903 * seen signature for a function with the same name, or, if a match is found,
3904 * that the previously seen signature does not have an associated definition.
3905 */
3906 f = state->symbols->get_function(name);
3907 if (f != NULL && (state->es_shader || f->has_user_signature())) {
3908 sig = f->exact_matching_signature(state, &hir_parameters);
3909 if (sig != NULL) {
3910 const char *badvar = sig->qualifiers_match(&hir_parameters);
3911 if (badvar != NULL) {
3912 YYLTYPE loc = this->get_location();
3913
3914 _mesa_glsl_error(&loc, state, "function `%s' parameter `%s' "
3915 "qualifiers don't match prototype", name, badvar);
3916 }
3917
3918 if (sig->return_type != return_type) {
3919 YYLTYPE loc = this->get_location();
3920
3921 _mesa_glsl_error(&loc, state, "function `%s' return type doesn't "
3922 "match prototype", name);
3923 }
3924
3925 if (sig->is_defined) {
3926 if (is_definition) {
3927 YYLTYPE loc = this->get_location();
3928 _mesa_glsl_error(& loc, state, "function `%s' redefined", name);
3929 } else {
3930 /* We just encountered a prototype that exactly matches a
3931 * function that's already been defined. This is redundant,
3932 * and we should ignore it.
3933 */
3934 return NULL;
3935 }
3936 }
3937 }
3938 } else {
3939 f = new(ctx) ir_function(name);
3940 if (!state->symbols->add_function(f)) {
3941 /* This function name shadows a non-function use of the same name. */
3942 YYLTYPE loc = this->get_location();
3943
3944 _mesa_glsl_error(&loc, state, "function name `%s' conflicts with "
3945 "non-function", name);
3946 return NULL;
3947 }
3948
3949 emit_function(state, f);
3950 }
3951
3952 /* Verify the return type of main() */
3953 if (strcmp(name, "main") == 0) {
3954 if (! return_type->is_void()) {
3955 YYLTYPE loc = this->get_location();
3956
3957 _mesa_glsl_error(& loc, state, "main() must return void");
3958 }
3959
3960 if (!hir_parameters.is_empty()) {
3961 YYLTYPE loc = this->get_location();
3962
3963 _mesa_glsl_error(& loc, state, "main() must not take any parameters");
3964 }
3965 }
3966
3967 /* Finish storing the information about this new function in its signature.
3968 */
3969 if (sig == NULL) {
3970 sig = new(ctx) ir_function_signature(return_type);
3971 f->add_signature(sig);
3972 }
3973
3974 sig->replace_parameters(&hir_parameters);
3975 signature = sig;
3976
3977 /* Function declarations (prototypes) do not have r-values.
3978 */
3979 return NULL;
3980 }
3981
3982
3983 ir_rvalue *
3984 ast_function_definition::hir(exec_list *instructions,
3985 struct _mesa_glsl_parse_state *state)
3986 {
3987 prototype->is_definition = true;
3988 prototype->hir(instructions, state);
3989
3990 ir_function_signature *signature = prototype->signature;
3991 if (signature == NULL)
3992 return NULL;
3993
3994 assert(state->current_function == NULL);
3995 state->current_function = signature;
3996 state->found_return = false;
3997
3998 /* Duplicate parameters declared in the prototype as concrete variables.
3999 * Add these to the symbol table.
4000 */
4001 state->symbols->push_scope();
4002 foreach_list(n, &signature->parameters) {
4003 ir_variable *const var = ((ir_instruction *) n)->as_variable();
4004
4005 assert(var != NULL);
4006
4007 /* The only way a parameter would "exist" is if two parameters have
4008 * the same name.
4009 */
4010 if (state->symbols->name_declared_this_scope(var->name)) {
4011 YYLTYPE loc = this->get_location();
4012
4013 _mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name);
4014 } else {
4015 state->symbols->add_variable(var);
4016 }
4017 }
4018
4019 /* Convert the body of the function to HIR. */
4020 this->body->hir(&signature->body, state);
4021 signature->is_defined = true;
4022
4023 state->symbols->pop_scope();
4024
4025 assert(state->current_function == signature);
4026 state->current_function = NULL;
4027
4028 if (!signature->return_type->is_void() && !state->found_return) {
4029 YYLTYPE loc = this->get_location();
4030 _mesa_glsl_error(& loc, state, "function `%s' has non-void return type "
4031 "%s, but no return statement",
4032 signature->function_name(),
4033 signature->return_type->name);
4034 }
4035
4036 /* Function definitions do not have r-values.
4037 */
4038 return NULL;
4039 }
4040
4041
4042 ir_rvalue *
4043 ast_jump_statement::hir(exec_list *instructions,
4044 struct _mesa_glsl_parse_state *state)
4045 {
4046 void *ctx = state;
4047
4048 switch (mode) {
4049 case ast_return: {
4050 ir_return *inst;
4051 assert(state->current_function);
4052
4053 if (opt_return_value) {
4054 ir_rvalue *ret = opt_return_value->hir(instructions, state);
4055
4056 /* The value of the return type can be NULL if the shader says
4057 * 'return foo();' and foo() is a function that returns void.
4058 *
4059 * NOTE: The GLSL spec doesn't say that this is an error. The type
4060 * of the return value is void. If the return type of the function is
4061 * also void, then this should compile without error. Seriously.
4062 */
4063 const glsl_type *const ret_type =
4064 (ret == NULL) ? glsl_type::void_type : ret->type;
4065
4066 /* Implicit conversions are not allowed for return values prior to
4067 * ARB_shading_language_420pack.
4068 */
4069 if (state->current_function->return_type != ret_type) {
4070 YYLTYPE loc = this->get_location();
4071
4072 if (state->ARB_shading_language_420pack_enable) {
4073 if (!apply_implicit_conversion(state->current_function->return_type,
4074 ret, state)) {
4075 _mesa_glsl_error(& loc, state,
4076 "could not implicitly convert return value "
4077 "to %s, in function `%s'",
4078 state->current_function->return_type->name,
4079 state->current_function->function_name());
4080 }
4081 } else {
4082 _mesa_glsl_error(& loc, state,
4083 "`return' with wrong type %s, in function `%s' "
4084 "returning %s",
4085 ret_type->name,
4086 state->current_function->function_name(),
4087 state->current_function->return_type->name);
4088 }
4089 } else if (state->current_function->return_type->base_type ==
4090 GLSL_TYPE_VOID) {
4091 YYLTYPE loc = this->get_location();
4092
4093 /* The ARB_shading_language_420pack, GLSL ES 3.0, and GLSL 4.20
4094 * specs add a clarification:
4095 *
4096 * "A void function can only use return without a return argument, even if
4097 * the return argument has void type. Return statements only accept values:
4098 *
4099 * void func1() { }
4100 * void func2() { return func1(); } // illegal return statement"
4101 */
4102 _mesa_glsl_error(& loc, state,
4103 "void functions can only use `return' without a "
4104 "return argument");
4105 }
4106
4107 inst = new(ctx) ir_return(ret);
4108 } else {
4109 if (state->current_function->return_type->base_type !=
4110 GLSL_TYPE_VOID) {
4111 YYLTYPE loc = this->get_location();
4112
4113 _mesa_glsl_error(& loc, state,
4114 "`return' with no value, in function %s returning "
4115 "non-void",
4116 state->current_function->function_name());
4117 }
4118 inst = new(ctx) ir_return;
4119 }
4120
4121 state->found_return = true;
4122 instructions->push_tail(inst);
4123 break;
4124 }
4125
4126 case ast_discard:
4127 if (state->stage != MESA_SHADER_FRAGMENT) {
4128 YYLTYPE loc = this->get_location();
4129
4130 _mesa_glsl_error(& loc, state,
4131 "`discard' may only appear in a fragment shader");
4132 }
4133 instructions->push_tail(new(ctx) ir_discard);
4134 break;
4135
4136 case ast_break:
4137 case ast_continue:
4138 if (mode == ast_continue &&
4139 state->loop_nesting_ast == NULL) {
4140 YYLTYPE loc = this->get_location();
4141
4142 _mesa_glsl_error(& loc, state,
4143 "continue may only appear in a loop");
4144 } else if (mode == ast_break &&
4145 state->loop_nesting_ast == NULL &&
4146 state->switch_state.switch_nesting_ast == NULL) {
4147 YYLTYPE loc = this->get_location();
4148
4149 _mesa_glsl_error(& loc, state,
4150 "break may only appear in a loop or a switch");
4151 } else {
4152 /* For a loop, inline the for loop expression again, since we don't
4153 * know where near the end of the loop body the normal copy of it is
4154 * going to be placed. Same goes for the condition for a do-while
4155 * loop.
4156 */
4157 if (state->loop_nesting_ast != NULL &&
4158 mode == ast_continue) {
4159 if (state->loop_nesting_ast->rest_expression) {
4160 state->loop_nesting_ast->rest_expression->hir(instructions,
4161 state);
4162 }
4163 if (state->loop_nesting_ast->mode ==
4164 ast_iteration_statement::ast_do_while) {
4165 state->loop_nesting_ast->condition_to_hir(instructions, state);
4166 }
4167 }
4168
4169 if (state->switch_state.is_switch_innermost &&
4170 mode == ast_break) {
4171 /* Force break out of switch by setting is_break switch state.
4172 */
4173 ir_variable *const is_break_var = state->switch_state.is_break_var;
4174 ir_dereference_variable *const deref_is_break_var =
4175 new(ctx) ir_dereference_variable(is_break_var);
4176 ir_constant *const true_val = new(ctx) ir_constant(true);
4177 ir_assignment *const set_break_var =
4178 new(ctx) ir_assignment(deref_is_break_var, true_val);
4179
4180 instructions->push_tail(set_break_var);
4181 }
4182 else {
4183 ir_loop_jump *const jump =
4184 new(ctx) ir_loop_jump((mode == ast_break)
4185 ? ir_loop_jump::jump_break
4186 : ir_loop_jump::jump_continue);
4187 instructions->push_tail(jump);
4188 }
4189 }
4190
4191 break;
4192 }
4193
4194 /* Jump instructions do not have r-values.
4195 */
4196 return NULL;
4197 }
4198
4199
4200 ir_rvalue *
4201 ast_selection_statement::hir(exec_list *instructions,
4202 struct _mesa_glsl_parse_state *state)
4203 {
4204 void *ctx = state;
4205
4206 ir_rvalue *const condition = this->condition->hir(instructions, state);
4207
4208 /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
4209 *
4210 * "Any expression whose type evaluates to a Boolean can be used as the
4211 * conditional expression bool-expression. Vector types are not accepted
4212 * as the expression to if."
4213 *
4214 * The checks are separated so that higher quality diagnostics can be
4215 * generated for cases where both rules are violated.
4216 */
4217 if (!condition->type->is_boolean() || !condition->type->is_scalar()) {
4218 YYLTYPE loc = this->condition->get_location();
4219
4220 _mesa_glsl_error(& loc, state, "if-statement condition must be scalar "
4221 "boolean");
4222 }
4223
4224 ir_if *const stmt = new(ctx) ir_if(condition);
4225
4226 if (then_statement != NULL) {
4227 state->symbols->push_scope();
4228 then_statement->hir(& stmt->then_instructions, state);
4229 state->symbols->pop_scope();
4230 }
4231
4232 if (else_statement != NULL) {
4233 state->symbols->push_scope();
4234 else_statement->hir(& stmt->else_instructions, state);
4235 state->symbols->pop_scope();
4236 }
4237
4238 instructions->push_tail(stmt);
4239
4240 /* if-statements do not have r-values.
4241 */
4242 return NULL;
4243 }
4244
4245
4246 ir_rvalue *
4247 ast_switch_statement::hir(exec_list *instructions,
4248 struct _mesa_glsl_parse_state *state)
4249 {
4250 void *ctx = state;
4251
4252 ir_rvalue *const test_expression =
4253 this->test_expression->hir(instructions, state);
4254
4255 /* From page 66 (page 55 of the PDF) of the GLSL 1.50 spec:
4256 *
4257 * "The type of init-expression in a switch statement must be a
4258 * scalar integer."
4259 */
4260 if (!test_expression->type->is_scalar() ||
4261 !test_expression->type->is_integer()) {
4262 YYLTYPE loc = this->test_expression->get_location();
4263
4264 _mesa_glsl_error(& loc,
4265 state,
4266 "switch-statement expression must be scalar "
4267 "integer");
4268 }
4269
4270 /* Track the switch-statement nesting in a stack-like manner.
4271 */
4272 struct glsl_switch_state saved = state->switch_state;
4273
4274 state->switch_state.is_switch_innermost = true;
4275 state->switch_state.switch_nesting_ast = this;
4276 state->switch_state.labels_ht = hash_table_ctor(0, hash_table_pointer_hash,
4277 hash_table_pointer_compare);
4278 state->switch_state.previous_default = NULL;
4279
4280 /* Initalize is_fallthru state to false.
4281 */
4282 ir_rvalue *const is_fallthru_val = new (ctx) ir_constant(false);
4283 state->switch_state.is_fallthru_var =
4284 new(ctx) ir_variable(glsl_type::bool_type,
4285 "switch_is_fallthru_tmp",
4286 ir_var_temporary);
4287 instructions->push_tail(state->switch_state.is_fallthru_var);
4288
4289 ir_dereference_variable *deref_is_fallthru_var =
4290 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
4291 instructions->push_tail(new(ctx) ir_assignment(deref_is_fallthru_var,
4292 is_fallthru_val));
4293
4294 /* Initalize is_break state to false.
4295 */
4296 ir_rvalue *const is_break_val = new (ctx) ir_constant(false);
4297 state->switch_state.is_break_var = new(ctx) ir_variable(glsl_type::bool_type,
4298 "switch_is_break_tmp",
4299 ir_var_temporary);
4300 instructions->push_tail(state->switch_state.is_break_var);
4301
4302 ir_dereference_variable *deref_is_break_var =
4303 new(ctx) ir_dereference_variable(state->switch_state.is_break_var);
4304 instructions->push_tail(new(ctx) ir_assignment(deref_is_break_var,
4305 is_break_val));
4306
4307 /* Cache test expression.
4308 */
4309 test_to_hir(instructions, state);
4310
4311 /* Emit code for body of switch stmt.
4312 */
4313 body->hir(instructions, state);
4314
4315 hash_table_dtor(state->switch_state.labels_ht);
4316
4317 state->switch_state = saved;
4318
4319 /* Switch statements do not have r-values. */
4320 return NULL;
4321 }
4322
4323
4324 void
4325 ast_switch_statement::test_to_hir(exec_list *instructions,
4326 struct _mesa_glsl_parse_state *state)
4327 {
4328 void *ctx = state;
4329
4330 /* Cache value of test expression. */
4331 ir_rvalue *const test_val =
4332 test_expression->hir(instructions,
4333 state);
4334
4335 state->switch_state.test_var = new(ctx) ir_variable(test_val->type,
4336 "switch_test_tmp",
4337 ir_var_temporary);
4338 ir_dereference_variable *deref_test_var =
4339 new(ctx) ir_dereference_variable(state->switch_state.test_var);
4340
4341 instructions->push_tail(state->switch_state.test_var);
4342 instructions->push_tail(new(ctx) ir_assignment(deref_test_var, test_val));
4343 }
4344
4345
4346 ir_rvalue *
4347 ast_switch_body::hir(exec_list *instructions,
4348 struct _mesa_glsl_parse_state *state)
4349 {
4350 if (stmts != NULL)
4351 stmts->hir(instructions, state);
4352
4353 /* Switch bodies do not have r-values. */
4354 return NULL;
4355 }
4356
4357 ir_rvalue *
4358 ast_case_statement_list::hir(exec_list *instructions,
4359 struct _mesa_glsl_parse_state *state)
4360 {
4361 foreach_list_typed (ast_case_statement, case_stmt, link, & this->cases)
4362 case_stmt->hir(instructions, state);
4363
4364 /* Case statements do not have r-values. */
4365 return NULL;
4366 }
4367
4368 ir_rvalue *
4369 ast_case_statement::hir(exec_list *instructions,
4370 struct _mesa_glsl_parse_state *state)
4371 {
4372 labels->hir(instructions, state);
4373
4374 /* Conditionally set fallthru state based on break state. */
4375 ir_constant *const false_val = new(state) ir_constant(false);
4376 ir_dereference_variable *const deref_is_fallthru_var =
4377 new(state) ir_dereference_variable(state->switch_state.is_fallthru_var);
4378 ir_dereference_variable *const deref_is_break_var =
4379 new(state) ir_dereference_variable(state->switch_state.is_break_var);
4380 ir_assignment *const reset_fallthru_on_break =
4381 new(state) ir_assignment(deref_is_fallthru_var,
4382 false_val,
4383 deref_is_break_var);
4384 instructions->push_tail(reset_fallthru_on_break);
4385
4386 /* Guard case statements depending on fallthru state. */
4387 ir_dereference_variable *const deref_fallthru_guard =
4388 new(state) ir_dereference_variable(state->switch_state.is_fallthru_var);
4389 ir_if *const test_fallthru = new(state) ir_if(deref_fallthru_guard);
4390
4391 foreach_list_typed (ast_node, stmt, link, & this->stmts)
4392 stmt->hir(& test_fallthru->then_instructions, state);
4393
4394 instructions->push_tail(test_fallthru);
4395
4396 /* Case statements do not have r-values. */
4397 return NULL;
4398 }
4399
4400
4401 ir_rvalue *
4402 ast_case_label_list::hir(exec_list *instructions,
4403 struct _mesa_glsl_parse_state *state)
4404 {
4405 foreach_list_typed (ast_case_label, label, link, & this->labels)
4406 label->hir(instructions, state);
4407
4408 /* Case labels do not have r-values. */
4409 return NULL;
4410 }
4411
4412 ir_rvalue *
4413 ast_case_label::hir(exec_list *instructions,
4414 struct _mesa_glsl_parse_state *state)
4415 {
4416 void *ctx = state;
4417
4418 ir_dereference_variable *deref_fallthru_var =
4419 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
4420
4421 ir_rvalue *const true_val = new(ctx) ir_constant(true);
4422
4423 /* If not default case, ... */
4424 if (this->test_value != NULL) {
4425 /* Conditionally set fallthru state based on
4426 * comparison of cached test expression value to case label.
4427 */
4428 ir_rvalue *const label_rval = this->test_value->hir(instructions, state);
4429 ir_constant *label_const = label_rval->constant_expression_value();
4430
4431 if (!label_const) {
4432 YYLTYPE loc = this->test_value->get_location();
4433
4434 _mesa_glsl_error(& loc, state,
4435 "switch statement case label must be a "
4436 "constant expression");
4437
4438 /* Stuff a dummy value in to allow processing to continue. */
4439 label_const = new(ctx) ir_constant(0);
4440 } else {
4441 ast_expression *previous_label = (ast_expression *)
4442 hash_table_find(state->switch_state.labels_ht,
4443 (void *)(uintptr_t)label_const->value.u[0]);
4444
4445 if (previous_label) {
4446 YYLTYPE loc = this->test_value->get_location();
4447 _mesa_glsl_error(& loc, state,
4448 "duplicate case value");
4449
4450 loc = previous_label->get_location();
4451 _mesa_glsl_error(& loc, state,
4452 "this is the previous case label");
4453 } else {
4454 hash_table_insert(state->switch_state.labels_ht,
4455 this->test_value,
4456 (void *)(uintptr_t)label_const->value.u[0]);
4457 }
4458 }
4459
4460 ir_dereference_variable *deref_test_var =
4461 new(ctx) ir_dereference_variable(state->switch_state.test_var);
4462
4463 ir_rvalue *const test_cond = new(ctx) ir_expression(ir_binop_all_equal,
4464 label_const,
4465 deref_test_var);
4466
4467 ir_assignment *set_fallthru_on_test =
4468 new(ctx) ir_assignment(deref_fallthru_var,
4469 true_val,
4470 test_cond);
4471
4472 instructions->push_tail(set_fallthru_on_test);
4473 } else { /* default case */
4474 if (state->switch_state.previous_default) {
4475 YYLTYPE loc = this->get_location();
4476 _mesa_glsl_error(& loc, state,
4477 "multiple default labels in one switch");
4478
4479 loc = state->switch_state.previous_default->get_location();
4480 _mesa_glsl_error(& loc, state,
4481 "this is the first default label");
4482 }
4483 state->switch_state.previous_default = this;
4484
4485 /* Set falltrhu state. */
4486 ir_assignment *set_fallthru =
4487 new(ctx) ir_assignment(deref_fallthru_var, true_val);
4488
4489 instructions->push_tail(set_fallthru);
4490 }
4491
4492 /* Case statements do not have r-values. */
4493 return NULL;
4494 }
4495
4496 void
4497 ast_iteration_statement::condition_to_hir(exec_list *instructions,
4498 struct _mesa_glsl_parse_state *state)
4499 {
4500 void *ctx = state;
4501
4502 if (condition != NULL) {
4503 ir_rvalue *const cond =
4504 condition->hir(instructions, state);
4505
4506 if ((cond == NULL)
4507 || !cond->type->is_boolean() || !cond->type->is_scalar()) {
4508 YYLTYPE loc = condition->get_location();
4509
4510 _mesa_glsl_error(& loc, state,
4511 "loop condition must be scalar boolean");
4512 } else {
4513 /* As the first code in the loop body, generate a block that looks
4514 * like 'if (!condition) break;' as the loop termination condition.
4515 */
4516 ir_rvalue *const not_cond =
4517 new(ctx) ir_expression(ir_unop_logic_not, cond);
4518
4519 ir_if *const if_stmt = new(ctx) ir_if(not_cond);
4520
4521 ir_jump *const break_stmt =
4522 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
4523
4524 if_stmt->then_instructions.push_tail(break_stmt);
4525 instructions->push_tail(if_stmt);
4526 }
4527 }
4528 }
4529
4530
4531 ir_rvalue *
4532 ast_iteration_statement::hir(exec_list *instructions,
4533 struct _mesa_glsl_parse_state *state)
4534 {
4535 void *ctx = state;
4536
4537 /* For-loops and while-loops start a new scope, but do-while loops do not.
4538 */
4539 if (mode != ast_do_while)
4540 state->symbols->push_scope();
4541
4542 if (init_statement != NULL)
4543 init_statement->hir(instructions, state);
4544
4545 ir_loop *const stmt = new(ctx) ir_loop();
4546 instructions->push_tail(stmt);
4547
4548 /* Track the current loop nesting. */
4549 ast_iteration_statement *nesting_ast = state->loop_nesting_ast;
4550
4551 state->loop_nesting_ast = this;
4552
4553 /* Likewise, indicate that following code is closest to a loop,
4554 * NOT closest to a switch.
4555 */
4556 bool saved_is_switch_innermost = state->switch_state.is_switch_innermost;
4557 state->switch_state.is_switch_innermost = false;
4558
4559 if (mode != ast_do_while)
4560 condition_to_hir(&stmt->body_instructions, state);
4561
4562 if (body != NULL)
4563 body->hir(& stmt->body_instructions, state);
4564
4565 if (rest_expression != NULL)
4566 rest_expression->hir(& stmt->body_instructions, state);
4567
4568 if (mode == ast_do_while)
4569 condition_to_hir(&stmt->body_instructions, state);
4570
4571 if (mode != ast_do_while)
4572 state->symbols->pop_scope();
4573
4574 /* Restore previous nesting before returning. */
4575 state->loop_nesting_ast = nesting_ast;
4576 state->switch_state.is_switch_innermost = saved_is_switch_innermost;
4577
4578 /* Loops do not have r-values.
4579 */
4580 return NULL;
4581 }
4582
4583
4584 /**
4585 * Determine if the given type is valid for establishing a default precision
4586 * qualifier.
4587 *
4588 * From GLSL ES 3.00 section 4.5.4 ("Default Precision Qualifiers"):
4589 *
4590 * "The precision statement
4591 *
4592 * precision precision-qualifier type;
4593 *
4594 * can be used to establish a default precision qualifier. The type field
4595 * can be either int or float or any of the sampler types, and the
4596 * precision-qualifier can be lowp, mediump, or highp."
4597 *
4598 * GLSL ES 1.00 has similar language. GLSL 1.30 doesn't allow precision
4599 * qualifiers on sampler types, but this seems like an oversight (since the
4600 * intention of including these in GLSL 1.30 is to allow compatibility with ES
4601 * shaders). So we allow int, float, and all sampler types regardless of GLSL
4602 * version.
4603 */
4604 static bool
4605 is_valid_default_precision_type(const struct glsl_type *const type)
4606 {
4607 if (type == NULL)
4608 return false;
4609
4610 switch (type->base_type) {
4611 case GLSL_TYPE_INT:
4612 case GLSL_TYPE_FLOAT:
4613 /* "int" and "float" are valid, but vectors and matrices are not. */
4614 return type->vector_elements == 1 && type->matrix_columns == 1;
4615 case GLSL_TYPE_SAMPLER:
4616 return true;
4617 default:
4618 return false;
4619 }
4620 }
4621
4622
4623 ir_rvalue *
4624 ast_type_specifier::hir(exec_list *instructions,
4625 struct _mesa_glsl_parse_state *state)
4626 {
4627 if (this->default_precision == ast_precision_none && this->structure == NULL)
4628 return NULL;
4629
4630 YYLTYPE loc = this->get_location();
4631
4632 /* If this is a precision statement, check that the type to which it is
4633 * applied is either float or int.
4634 *
4635 * From section 4.5.3 of the GLSL 1.30 spec:
4636 * "The precision statement
4637 * precision precision-qualifier type;
4638 * can be used to establish a default precision qualifier. The type
4639 * field can be either int or float [...]. Any other types or
4640 * qualifiers will result in an error.
4641 */
4642 if (this->default_precision != ast_precision_none) {
4643 if (!state->check_precision_qualifiers_allowed(&loc))
4644 return NULL;
4645
4646 if (this->structure != NULL) {
4647 _mesa_glsl_error(&loc, state,
4648 "precision qualifiers do not apply to structures");
4649 return NULL;
4650 }
4651
4652 if (this->array_specifier != NULL) {
4653 _mesa_glsl_error(&loc, state,
4654 "default precision statements do not apply to "
4655 "arrays");
4656 return NULL;
4657 }
4658
4659 const struct glsl_type *const type =
4660 state->symbols->get_type(this->type_name);
4661 if (!is_valid_default_precision_type(type)) {
4662 _mesa_glsl_error(&loc, state,
4663 "default precision statements apply only to "
4664 "float, int, and sampler types");
4665 return NULL;
4666 }
4667
4668 if (type->base_type == GLSL_TYPE_FLOAT
4669 && state->es_shader
4670 && state->stage == MESA_SHADER_FRAGMENT) {
4671 /* Section 4.5.3 (Default Precision Qualifiers) of the GLSL ES 1.00
4672 * spec says:
4673 *
4674 * "The fragment language has no default precision qualifier for
4675 * floating point types."
4676 *
4677 * As a result, we have to track whether or not default precision has
4678 * been specified for float in GLSL ES fragment shaders.
4679 *
4680 * Earlier in that same section, the spec says:
4681 *
4682 * "Non-precision qualified declarations will use the precision
4683 * qualifier specified in the most recent precision statement
4684 * that is still in scope. The precision statement has the same
4685 * scoping rules as variable declarations. If it is declared
4686 * inside a compound statement, its effect stops at the end of
4687 * the innermost statement it was declared in. Precision
4688 * statements in nested scopes override precision statements in
4689 * outer scopes. Multiple precision statements for the same basic
4690 * type can appear inside the same scope, with later statements
4691 * overriding earlier statements within that scope."
4692 *
4693 * Default precision specifications follow the same scope rules as
4694 * variables. So, we can track the state of the default float
4695 * precision in the symbol table, and the rules will just work. This
4696 * is a slight abuse of the symbol table, but it has the semantics
4697 * that we want.
4698 */
4699 ir_variable *const junk =
4700 new(state) ir_variable(type, "#default precision",
4701 ir_var_temporary);
4702
4703 state->symbols->add_variable(junk);
4704 }
4705
4706 /* FINISHME: Translate precision statements into IR. */
4707 return NULL;
4708 }
4709
4710 /* _mesa_ast_set_aggregate_type() sets the <structure> field so that
4711 * process_record_constructor() can do type-checking on C-style initializer
4712 * expressions of structs, but ast_struct_specifier should only be translated
4713 * to HIR if it is declaring the type of a structure.
4714 *
4715 * The ->is_declaration field is false for initializers of variables
4716 * declared separately from the struct's type definition.
4717 *
4718 * struct S { ... }; (is_declaration = true)
4719 * struct T { ... } t = { ... }; (is_declaration = true)
4720 * S s = { ... }; (is_declaration = false)
4721 */
4722 if (this->structure != NULL && this->structure->is_declaration)
4723 return this->structure->hir(instructions, state);
4724
4725 return NULL;
4726 }
4727
4728
4729 /**
4730 * Process a structure or interface block tree into an array of structure fields
4731 *
4732 * After parsing, where there are some syntax differnces, structures and
4733 * interface blocks are almost identical. They are similar enough that the
4734 * AST for each can be processed the same way into a set of
4735 * \c glsl_struct_field to describe the members.
4736 *
4737 * If we're processing an interface block, var_mode should be the type of the
4738 * interface block (ir_var_shader_in, ir_var_shader_out, or ir_var_uniform).
4739 * If we're processing a structure, var_mode should be ir_var_auto.
4740 *
4741 * \return
4742 * The number of fields processed. A pointer to the array structure fields is
4743 * stored in \c *fields_ret.
4744 */
4745 unsigned
4746 ast_process_structure_or_interface_block(exec_list *instructions,
4747 struct _mesa_glsl_parse_state *state,
4748 exec_list *declarations,
4749 YYLTYPE &loc,
4750 glsl_struct_field **fields_ret,
4751 bool is_interface,
4752 bool block_row_major,
4753 bool allow_reserved_names,
4754 ir_variable_mode var_mode)
4755 {
4756 unsigned decl_count = 0;
4757
4758 /* Make an initial pass over the list of fields to determine how
4759 * many there are. Each element in this list is an ast_declarator_list.
4760 * This means that we actually need to count the number of elements in the
4761 * 'declarations' list in each of the elements.
4762 */
4763 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
4764 foreach_list_const (decl_ptr, & decl_list->declarations) {
4765 decl_count++;
4766 }
4767 }
4768
4769 /* Allocate storage for the fields and process the field
4770 * declarations. As the declarations are processed, try to also convert
4771 * the types to HIR. This ensures that structure definitions embedded in
4772 * other structure definitions or in interface blocks are processed.
4773 */
4774 glsl_struct_field *const fields = ralloc_array(state, glsl_struct_field,
4775 decl_count);
4776
4777 unsigned i = 0;
4778 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
4779 const char *type_name;
4780
4781 decl_list->type->specifier->hir(instructions, state);
4782
4783 /* Section 10.9 of the GLSL ES 1.00 specification states that
4784 * embedded structure definitions have been removed from the language.
4785 */
4786 if (state->es_shader && decl_list->type->specifier->structure != NULL) {
4787 _mesa_glsl_error(&loc, state, "embedded structure definitions are "
4788 "not allowed in GLSL ES 1.00");
4789 }
4790
4791 const glsl_type *decl_type =
4792 decl_list->type->glsl_type(& type_name, state);
4793
4794 foreach_list_typed (ast_declaration, decl, link,
4795 &decl_list->declarations) {
4796 if (!allow_reserved_names)
4797 validate_identifier(decl->identifier, loc, state);
4798
4799 /* From section 4.3.9 of the GLSL 4.40 spec:
4800 *
4801 * "[In interface blocks] opaque types are not allowed."
4802 *
4803 * It should be impossible for decl_type to be NULL here. Cases that
4804 * might naturally lead to decl_type being NULL, especially for the
4805 * is_interface case, will have resulted in compilation having
4806 * already halted due to a syntax error.
4807 */
4808 const struct glsl_type *field_type =
4809 decl_type != NULL ? decl_type : glsl_type::error_type;
4810
4811 if (is_interface && field_type->contains_opaque()) {
4812 YYLTYPE loc = decl_list->get_location();
4813 _mesa_glsl_error(&loc, state,
4814 "uniform in non-default uniform block contains "
4815 "opaque variable");
4816 }
4817
4818 if (field_type->contains_atomic()) {
4819 /* FINISHME: Add a spec quotation here once updated spec
4820 * FINISHME: language is available. See Khronos bug #10903
4821 * FINISHME: on whether atomic counters are allowed in
4822 * FINISHME: structures.
4823 */
4824 YYLTYPE loc = decl_list->get_location();
4825 _mesa_glsl_error(&loc, state, "atomic counter in structure or "
4826 "uniform block");
4827 }
4828
4829 if (field_type->contains_image()) {
4830 /* FINISHME: Same problem as with atomic counters.
4831 * FINISHME: Request clarification from Khronos and add
4832 * FINISHME: spec quotation here.
4833 */
4834 YYLTYPE loc = decl_list->get_location();
4835 _mesa_glsl_error(&loc, state,
4836 "image in structure or uniform block");
4837 }
4838
4839 const struct ast_type_qualifier *const qual =
4840 & decl_list->type->qualifier;
4841 if (qual->flags.q.std140 ||
4842 qual->flags.q.packed ||
4843 qual->flags.q.shared) {
4844 _mesa_glsl_error(&loc, state,
4845 "uniform block layout qualifiers std140, packed, and "
4846 "shared can only be applied to uniform blocks, not "
4847 "members");
4848 }
4849
4850 field_type = process_array_type(&loc, decl_type,
4851 decl->array_specifier, state);
4852 fields[i].type = field_type;
4853 fields[i].name = decl->identifier;
4854 fields[i].location = -1;
4855 fields[i].interpolation =
4856 interpret_interpolation_qualifier(qual, var_mode, state, &loc);
4857 fields[i].centroid = qual->flags.q.centroid ? 1 : 0;
4858 fields[i].sample = qual->flags.q.sample ? 1 : 0;
4859
4860 if (qual->flags.q.row_major || qual->flags.q.column_major) {
4861 if (!qual->flags.q.uniform) {
4862 _mesa_glsl_error(&loc, state,
4863 "row_major and column_major can only be "
4864 "applied to uniform interface blocks");
4865 } else
4866 validate_matrix_layout_for_type(state, &loc, field_type, NULL);
4867 }
4868
4869 if (qual->flags.q.uniform && qual->has_interpolation()) {
4870 _mesa_glsl_error(&loc, state,
4871 "interpolation qualifiers cannot be used "
4872 "with uniform interface blocks");
4873 }
4874
4875 if (field_type->is_matrix() ||
4876 (field_type->is_array() && field_type->fields.array->is_matrix())) {
4877 fields[i].row_major = block_row_major;
4878 if (qual->flags.q.row_major)
4879 fields[i].row_major = true;
4880 else if (qual->flags.q.column_major)
4881 fields[i].row_major = false;
4882 }
4883
4884 i++;
4885 }
4886 }
4887
4888 assert(i == decl_count);
4889
4890 *fields_ret = fields;
4891 return decl_count;
4892 }
4893
4894
4895 ir_rvalue *
4896 ast_struct_specifier::hir(exec_list *instructions,
4897 struct _mesa_glsl_parse_state *state)
4898 {
4899 YYLTYPE loc = this->get_location();
4900
4901 /* Section 4.1.8 (Structures) of the GLSL 1.10 spec says:
4902 *
4903 * "Anonymous structures are not supported; so embedded structures must
4904 * have a declarator. A name given to an embedded struct is scoped at
4905 * the same level as the struct it is embedded in."
4906 *
4907 * The same section of the GLSL 1.20 spec says:
4908 *
4909 * "Anonymous structures are not supported. Embedded structures are not
4910 * supported.
4911 *
4912 * struct S { float f; };
4913 * struct T {
4914 * S; // Error: anonymous structures disallowed
4915 * struct { ... }; // Error: embedded structures disallowed
4916 * S s; // Okay: nested structures with name are allowed
4917 * };"
4918 *
4919 * The GLSL ES 1.00 and 3.00 specs have similar langauge and examples. So,
4920 * we allow embedded structures in 1.10 only.
4921 */
4922 if (state->language_version != 110 && state->struct_specifier_depth != 0)
4923 _mesa_glsl_error(&loc, state,
4924 "embedded structure declartions are not allowed");
4925
4926 state->struct_specifier_depth++;
4927
4928 glsl_struct_field *fields;
4929 unsigned decl_count =
4930 ast_process_structure_or_interface_block(instructions,
4931 state,
4932 &this->declarations,
4933 loc,
4934 &fields,
4935 false,
4936 false,
4937 false /* allow_reserved_names */,
4938 ir_var_auto);
4939
4940 validate_identifier(this->name, loc, state);
4941
4942 const glsl_type *t =
4943 glsl_type::get_record_instance(fields, decl_count, this->name);
4944
4945 if (!state->symbols->add_type(name, t)) {
4946 _mesa_glsl_error(& loc, state, "struct `%s' previously defined", name);
4947 } else {
4948 const glsl_type **s = reralloc(state, state->user_structures,
4949 const glsl_type *,
4950 state->num_user_structures + 1);
4951 if (s != NULL) {
4952 s[state->num_user_structures] = t;
4953 state->user_structures = s;
4954 state->num_user_structures++;
4955 }
4956 }
4957
4958 state->struct_specifier_depth--;
4959
4960 /* Structure type definitions do not have r-values.
4961 */
4962 return NULL;
4963 }
4964
4965
4966 /**
4967 * Visitor class which detects whether a given interface block has been used.
4968 */
4969 class interface_block_usage_visitor : public ir_hierarchical_visitor
4970 {
4971 public:
4972 interface_block_usage_visitor(ir_variable_mode mode, const glsl_type *block)
4973 : mode(mode), block(block), found(false)
4974 {
4975 }
4976
4977 virtual ir_visitor_status visit(ir_dereference_variable *ir)
4978 {
4979 if (ir->var->data.mode == mode && ir->var->get_interface_type() == block) {
4980 found = true;
4981 return visit_stop;
4982 }
4983 return visit_continue;
4984 }
4985
4986 bool usage_found() const
4987 {
4988 return this->found;
4989 }
4990
4991 private:
4992 ir_variable_mode mode;
4993 const glsl_type *block;
4994 bool found;
4995 };
4996
4997
4998 ir_rvalue *
4999 ast_interface_block::hir(exec_list *instructions,
5000 struct _mesa_glsl_parse_state *state)
5001 {
5002 YYLTYPE loc = this->get_location();
5003
5004 /* The ast_interface_block has a list of ast_declarator_lists. We
5005 * need to turn those into ir_variables with an association
5006 * with this uniform block.
5007 */
5008 enum glsl_interface_packing packing;
5009 if (this->layout.flags.q.shared) {
5010 packing = GLSL_INTERFACE_PACKING_SHARED;
5011 } else if (this->layout.flags.q.packed) {
5012 packing = GLSL_INTERFACE_PACKING_PACKED;
5013 } else {
5014 /* The default layout is std140.
5015 */
5016 packing = GLSL_INTERFACE_PACKING_STD140;
5017 }
5018
5019 ir_variable_mode var_mode;
5020 const char *iface_type_name;
5021 if (this->layout.flags.q.in) {
5022 var_mode = ir_var_shader_in;
5023 iface_type_name = "in";
5024 } else if (this->layout.flags.q.out) {
5025 var_mode = ir_var_shader_out;
5026 iface_type_name = "out";
5027 } else if (this->layout.flags.q.uniform) {
5028 var_mode = ir_var_uniform;
5029 iface_type_name = "uniform";
5030 } else {
5031 var_mode = ir_var_auto;
5032 iface_type_name = "UNKNOWN";
5033 assert(!"interface block layout qualifier not found!");
5034 }
5035
5036 bool redeclaring_per_vertex = strcmp(this->block_name, "gl_PerVertex") == 0;
5037 bool block_row_major = this->layout.flags.q.row_major;
5038 exec_list declared_variables;
5039 glsl_struct_field *fields;
5040 unsigned int num_variables =
5041 ast_process_structure_or_interface_block(&declared_variables,
5042 state,
5043 &this->declarations,
5044 loc,
5045 &fields,
5046 true,
5047 block_row_major,
5048 redeclaring_per_vertex,
5049 var_mode);
5050
5051 if (!redeclaring_per_vertex)
5052 validate_identifier(this->block_name, loc, state);
5053
5054 const glsl_type *earlier_per_vertex = NULL;
5055 if (redeclaring_per_vertex) {
5056 /* Find the previous declaration of gl_PerVertex. If we're redeclaring
5057 * the named interface block gl_in, we can find it by looking at the
5058 * previous declaration of gl_in. Otherwise we can find it by looking
5059 * at the previous decalartion of any of the built-in outputs,
5060 * e.g. gl_Position.
5061 *
5062 * Also check that the instance name and array-ness of the redeclaration
5063 * are correct.
5064 */
5065 switch (var_mode) {
5066 case ir_var_shader_in:
5067 if (ir_variable *earlier_gl_in =
5068 state->symbols->get_variable("gl_in")) {
5069 earlier_per_vertex = earlier_gl_in->get_interface_type();
5070 } else {
5071 _mesa_glsl_error(&loc, state,
5072 "redeclaration of gl_PerVertex input not allowed "
5073 "in the %s shader",
5074 _mesa_shader_stage_to_string(state->stage));
5075 }
5076 if (this->instance_name == NULL ||
5077 strcmp(this->instance_name, "gl_in") != 0 || this->array_specifier == NULL) {
5078 _mesa_glsl_error(&loc, state,
5079 "gl_PerVertex input must be redeclared as "
5080 "gl_in[]");
5081 }
5082 break;
5083 case ir_var_shader_out:
5084 if (ir_variable *earlier_gl_Position =
5085 state->symbols->get_variable("gl_Position")) {
5086 earlier_per_vertex = earlier_gl_Position->get_interface_type();
5087 } else {
5088 _mesa_glsl_error(&loc, state,
5089 "redeclaration of gl_PerVertex output not "
5090 "allowed in the %s shader",
5091 _mesa_shader_stage_to_string(state->stage));
5092 }
5093 if (this->instance_name != NULL) {
5094 _mesa_glsl_error(&loc, state,
5095 "gl_PerVertex input may not be redeclared with "
5096 "an instance name");
5097 }
5098 break;
5099 default:
5100 _mesa_glsl_error(&loc, state,
5101 "gl_PerVertex must be declared as an input or an "
5102 "output");
5103 break;
5104 }
5105
5106 if (earlier_per_vertex == NULL) {
5107 /* An error has already been reported. Bail out to avoid null
5108 * dereferences later in this function.
5109 */
5110 return NULL;
5111 }
5112
5113 /* Copy locations from the old gl_PerVertex interface block. */
5114 for (unsigned i = 0; i < num_variables; i++) {
5115 int j = earlier_per_vertex->field_index(fields[i].name);
5116 if (j == -1) {
5117 _mesa_glsl_error(&loc, state,
5118 "redeclaration of gl_PerVertex must be a subset "
5119 "of the built-in members of gl_PerVertex");
5120 } else {
5121 fields[i].location =
5122 earlier_per_vertex->fields.structure[j].location;
5123 fields[i].interpolation =
5124 earlier_per_vertex->fields.structure[j].interpolation;
5125 fields[i].centroid =
5126 earlier_per_vertex->fields.structure[j].centroid;
5127 fields[i].sample =
5128 earlier_per_vertex->fields.structure[j].sample;
5129 }
5130 }
5131
5132 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10
5133 * spec:
5134 *
5135 * If a built-in interface block is redeclared, it must appear in
5136 * the shader before any use of any member included in the built-in
5137 * declaration, or a compilation error will result.
5138 *
5139 * This appears to be a clarification to the behaviour established for
5140 * gl_PerVertex by GLSL 1.50, therefore we implement this behaviour
5141 * regardless of GLSL version.
5142 */
5143 interface_block_usage_visitor v(var_mode, earlier_per_vertex);
5144 v.run(instructions);
5145 if (v.usage_found()) {
5146 _mesa_glsl_error(&loc, state,
5147 "redeclaration of a built-in interface block must "
5148 "appear before any use of any member of the "
5149 "interface block");
5150 }
5151 }
5152
5153 const glsl_type *block_type =
5154 glsl_type::get_interface_instance(fields,
5155 num_variables,
5156 packing,
5157 this->block_name);
5158
5159 if (!state->symbols->add_interface(block_type->name, block_type, var_mode)) {
5160 YYLTYPE loc = this->get_location();
5161 _mesa_glsl_error(&loc, state, "interface block `%s' with type `%s' "
5162 "already taken in the current scope",
5163 this->block_name, iface_type_name);
5164 }
5165
5166 /* Since interface blocks cannot contain statements, it should be
5167 * impossible for the block to generate any instructions.
5168 */
5169 assert(declared_variables.is_empty());
5170
5171 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
5172 *
5173 * Geometry shader input variables get the per-vertex values written
5174 * out by vertex shader output variables of the same names. Since a
5175 * geometry shader operates on a set of vertices, each input varying
5176 * variable (or input block, see interface blocks below) needs to be
5177 * declared as an array.
5178 */
5179 if (state->stage == MESA_SHADER_GEOMETRY && this->array_specifier == NULL &&
5180 var_mode == ir_var_shader_in) {
5181 _mesa_glsl_error(&loc, state, "geometry shader inputs must be arrays");
5182 }
5183
5184 /* Page 39 (page 45 of the PDF) of section 4.3.7 in the GLSL ES 3.00 spec
5185 * says:
5186 *
5187 * "If an instance name (instance-name) is used, then it puts all the
5188 * members inside a scope within its own name space, accessed with the
5189 * field selector ( . ) operator (analogously to structures)."
5190 */
5191 if (this->instance_name) {
5192 if (redeclaring_per_vertex) {
5193 /* When a built-in in an unnamed interface block is redeclared,
5194 * get_variable_being_redeclared() calls
5195 * check_builtin_array_max_size() to make sure that built-in array
5196 * variables aren't redeclared to illegal sizes. But we're looking
5197 * at a redeclaration of a named built-in interface block. So we
5198 * have to manually call check_builtin_array_max_size() for all parts
5199 * of the interface that are arrays.
5200 */
5201 for (unsigned i = 0; i < num_variables; i++) {
5202 if (fields[i].type->is_array()) {
5203 const unsigned size = fields[i].type->array_size();
5204 check_builtin_array_max_size(fields[i].name, size, loc, state);
5205 }
5206 }
5207 } else {
5208 validate_identifier(this->instance_name, loc, state);
5209 }
5210
5211 ir_variable *var;
5212
5213 if (this->array_specifier != NULL) {
5214 /* Section 4.3.7 (Interface Blocks) of the GLSL 1.50 spec says:
5215 *
5216 * For uniform blocks declared an array, each individual array
5217 * element corresponds to a separate buffer object backing one
5218 * instance of the block. As the array size indicates the number
5219 * of buffer objects needed, uniform block array declarations
5220 * must specify an array size.
5221 *
5222 * And a few paragraphs later:
5223 *
5224 * Geometry shader input blocks must be declared as arrays and
5225 * follow the array declaration and linking rules for all
5226 * geometry shader inputs. All other input and output block
5227 * arrays must specify an array size.
5228 *
5229 * The upshot of this is that the only circumstance where an
5230 * interface array size *doesn't* need to be specified is on a
5231 * geometry shader input.
5232 */
5233 if (this->array_specifier->is_unsized_array &&
5234 (state->stage != MESA_SHADER_GEOMETRY || !this->layout.flags.q.in)) {
5235 _mesa_glsl_error(&loc, state,
5236 "only geometry shader inputs may be unsized "
5237 "instance block arrays");
5238
5239 }
5240
5241 const glsl_type *block_array_type =
5242 process_array_type(&loc, block_type, this->array_specifier, state);
5243
5244 var = new(state) ir_variable(block_array_type,
5245 this->instance_name,
5246 var_mode);
5247 } else {
5248 var = new(state) ir_variable(block_type,
5249 this->instance_name,
5250 var_mode);
5251 }
5252
5253 if (state->stage == MESA_SHADER_GEOMETRY && var_mode == ir_var_shader_in)
5254 handle_geometry_shader_input_decl(state, loc, var);
5255
5256 if (ir_variable *earlier =
5257 state->symbols->get_variable(this->instance_name)) {
5258 if (!redeclaring_per_vertex) {
5259 _mesa_glsl_error(&loc, state, "`%s' redeclared",
5260 this->instance_name);
5261 }
5262 earlier->data.how_declared = ir_var_declared_normally;
5263 earlier->type = var->type;
5264 earlier->reinit_interface_type(block_type);
5265 delete var;
5266 } else {
5267 state->symbols->add_variable(var);
5268 instructions->push_tail(var);
5269 }
5270 } else {
5271 /* In order to have an array size, the block must also be declared with
5272 * an instane name.
5273 */
5274 assert(this->array_specifier == NULL);
5275
5276 for (unsigned i = 0; i < num_variables; i++) {
5277 ir_variable *var =
5278 new(state) ir_variable(fields[i].type,
5279 ralloc_strdup(state, fields[i].name),
5280 var_mode);
5281 var->data.interpolation = fields[i].interpolation;
5282 var->data.centroid = fields[i].centroid;
5283 var->data.sample = fields[i].sample;
5284 var->init_interface_type(block_type);
5285
5286 if (redeclaring_per_vertex) {
5287 ir_variable *earlier =
5288 get_variable_being_redeclared(var, loc, state,
5289 true /* allow_all_redeclarations */);
5290 if (strncmp(var->name, "gl_", 3) != 0 || earlier == NULL) {
5291 _mesa_glsl_error(&loc, state,
5292 "redeclaration of gl_PerVertex can only "
5293 "include built-in variables");
5294 } else if (earlier->data.how_declared == ir_var_declared_normally) {
5295 _mesa_glsl_error(&loc, state,
5296 "`%s' has already been redeclared", var->name);
5297 } else {
5298 earlier->data.how_declared = ir_var_declared_in_block;
5299 earlier->reinit_interface_type(block_type);
5300 }
5301 continue;
5302 }
5303
5304 if (state->symbols->get_variable(var->name) != NULL)
5305 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
5306
5307 /* Propagate the "binding" keyword into this UBO's fields;
5308 * the UBO declaration itself doesn't get an ir_variable unless it
5309 * has an instance name. This is ugly.
5310 */
5311 var->data.explicit_binding = this->layout.flags.q.explicit_binding;
5312 var->data.binding = this->layout.binding;
5313
5314 state->symbols->add_variable(var);
5315 instructions->push_tail(var);
5316 }
5317
5318 if (redeclaring_per_vertex && block_type != earlier_per_vertex) {
5319 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10 spec:
5320 *
5321 * It is also a compilation error ... to redeclare a built-in
5322 * block and then use a member from that built-in block that was
5323 * not included in the redeclaration.
5324 *
5325 * This appears to be a clarification to the behaviour established
5326 * for gl_PerVertex by GLSL 1.50, therefore we implement this
5327 * behaviour regardless of GLSL version.
5328 *
5329 * To prevent the shader from using a member that was not included in
5330 * the redeclaration, we disable any ir_variables that are still
5331 * associated with the old declaration of gl_PerVertex (since we've
5332 * already updated all of the variables contained in the new
5333 * gl_PerVertex to point to it).
5334 *
5335 * As a side effect this will prevent
5336 * validate_intrastage_interface_blocks() from getting confused and
5337 * thinking there are conflicting definitions of gl_PerVertex in the
5338 * shader.
5339 */
5340 foreach_list_safe(node, instructions) {
5341 ir_variable *const var = ((ir_instruction *) node)->as_variable();
5342 if (var != NULL &&
5343 var->get_interface_type() == earlier_per_vertex &&
5344 var->data.mode == var_mode) {
5345 if (var->data.how_declared == ir_var_declared_normally) {
5346 _mesa_glsl_error(&loc, state,
5347 "redeclaration of gl_PerVertex cannot "
5348 "follow a redeclaration of `%s'",
5349 var->name);
5350 }
5351 state->symbols->disable_variable(var->name);
5352 var->remove();
5353 }
5354 }
5355 }
5356 }
5357
5358 return NULL;
5359 }
5360
5361
5362 ir_rvalue *
5363 ast_gs_input_layout::hir(exec_list *instructions,
5364 struct _mesa_glsl_parse_state *state)
5365 {
5366 YYLTYPE loc = this->get_location();
5367
5368 /* If any geometry input layout declaration preceded this one, make sure it
5369 * was consistent with this one.
5370 */
5371 if (state->gs_input_prim_type_specified &&
5372 state->in_qualifier->prim_type != this->prim_type) {
5373 _mesa_glsl_error(&loc, state,
5374 "geometry shader input layout does not match"
5375 " previous declaration");
5376 return NULL;
5377 }
5378
5379 /* If any shader inputs occurred before this declaration and specified an
5380 * array size, make sure the size they specified is consistent with the
5381 * primitive type.
5382 */
5383 unsigned num_vertices = vertices_per_prim(this->prim_type);
5384 if (state->gs_input_size != 0 && state->gs_input_size != num_vertices) {
5385 _mesa_glsl_error(&loc, state,
5386 "this geometry shader input layout implies %u vertices"
5387 " per primitive, but a previous input is declared"
5388 " with size %u", num_vertices, state->gs_input_size);
5389 return NULL;
5390 }
5391
5392 state->gs_input_prim_type_specified = true;
5393
5394 /* If any shader inputs occurred before this declaration and did not
5395 * specify an array size, their size is determined now.
5396 */
5397 foreach_list (node, instructions) {
5398 ir_variable *var = ((ir_instruction *) node)->as_variable();
5399 if (var == NULL || var->data.mode != ir_var_shader_in)
5400 continue;
5401
5402 /* Note: gl_PrimitiveIDIn has mode ir_var_shader_in, but it's not an
5403 * array; skip it.
5404 */
5405
5406 if (var->type->is_unsized_array()) {
5407 if (var->data.max_array_access >= num_vertices) {
5408 _mesa_glsl_error(&loc, state,
5409 "this geometry shader input layout implies %u"
5410 " vertices, but an access to element %u of input"
5411 " `%s' already exists", num_vertices,
5412 var->data.max_array_access, var->name);
5413 } else {
5414 var->type = glsl_type::get_array_instance(var->type->fields.array,
5415 num_vertices);
5416 }
5417 }
5418 }
5419
5420 return NULL;
5421 }
5422
5423
5424 ir_rvalue *
5425 ast_cs_input_layout::hir(exec_list *instructions,
5426 struct _mesa_glsl_parse_state *state)
5427 {
5428 YYLTYPE loc = this->get_location();
5429
5430 /* If any compute input layout declaration preceded this one, make sure it
5431 * was consistent with this one.
5432 */
5433 if (state->cs_input_local_size_specified) {
5434 for (int i = 0; i < 3; i++) {
5435 if (state->cs_input_local_size[i] != this->local_size[i]) {
5436 _mesa_glsl_error(&loc, state,
5437 "compute shader input layout does not match"
5438 " previous declaration");
5439 return NULL;
5440 }
5441 }
5442 }
5443
5444 /* From the ARB_compute_shader specification:
5445 *
5446 * If the local size of the shader in any dimension is greater
5447 * than the maximum size supported by the implementation for that
5448 * dimension, a compile-time error results.
5449 *
5450 * It is not clear from the spec how the error should be reported if
5451 * the total size of the work group exceeds
5452 * MAX_COMPUTE_WORK_GROUP_INVOCATIONS, but it seems reasonable to
5453 * report it at compile time as well.
5454 */
5455 GLuint64 total_invocations = 1;
5456 for (int i = 0; i < 3; i++) {
5457 if (this->local_size[i] > state->ctx->Const.MaxComputeWorkGroupSize[i]) {
5458 _mesa_glsl_error(&loc, state,
5459 "local_size_%c exceeds MAX_COMPUTE_WORK_GROUP_SIZE"
5460 " (%d)", 'x' + i,
5461 state->ctx->Const.MaxComputeWorkGroupSize[i]);
5462 break;
5463 }
5464 total_invocations *= this->local_size[i];
5465 if (total_invocations >
5466 state->ctx->Const.MaxComputeWorkGroupInvocations) {
5467 _mesa_glsl_error(&loc, state,
5468 "product of local_sizes exceeds "
5469 "MAX_COMPUTE_WORK_GROUP_INVOCATIONS (%d)",
5470 state->ctx->Const.MaxComputeWorkGroupInvocations);
5471 break;
5472 }
5473 }
5474
5475 state->cs_input_local_size_specified = true;
5476 for (int i = 0; i < 3; i++)
5477 state->cs_input_local_size[i] = this->local_size[i];
5478
5479 /* We may now declare the built-in constant gl_WorkGroupSize (see
5480 * builtin_variable_generator::generate_constants() for why we didn't
5481 * declare it earlier).
5482 */
5483 ir_variable *var = new(state->symbols)
5484 ir_variable(glsl_type::ivec3_type, "gl_WorkGroupSize", ir_var_auto);
5485 var->data.how_declared = ir_var_declared_implicitly;
5486 var->data.read_only = true;
5487 instructions->push_tail(var);
5488 state->symbols->add_variable(var);
5489 ir_constant_data data;
5490 memset(&data, 0, sizeof(data));
5491 for (int i = 0; i < 3; i++)
5492 data.i[i] = this->local_size[i];
5493 var->constant_value = new(var) ir_constant(glsl_type::ivec3_type, &data);
5494 var->constant_initializer =
5495 new(var) ir_constant(glsl_type::ivec3_type, &data);
5496 var->data.has_initializer = true;
5497
5498 return NULL;
5499 }
5500
5501
5502 static void
5503 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
5504 exec_list *instructions)
5505 {
5506 bool gl_FragColor_assigned = false;
5507 bool gl_FragData_assigned = false;
5508 bool user_defined_fs_output_assigned = false;
5509 ir_variable *user_defined_fs_output = NULL;
5510
5511 /* It would be nice to have proper location information. */
5512 YYLTYPE loc;
5513 memset(&loc, 0, sizeof(loc));
5514
5515 foreach_list(node, instructions) {
5516 ir_variable *var = ((ir_instruction *)node)->as_variable();
5517
5518 if (!var || !var->data.assigned)
5519 continue;
5520
5521 if (strcmp(var->name, "gl_FragColor") == 0)
5522 gl_FragColor_assigned = true;
5523 else if (strcmp(var->name, "gl_FragData") == 0)
5524 gl_FragData_assigned = true;
5525 else if (strncmp(var->name, "gl_", 3) != 0) {
5526 if (state->stage == MESA_SHADER_FRAGMENT &&
5527 var->data.mode == ir_var_shader_out) {
5528 user_defined_fs_output_assigned = true;
5529 user_defined_fs_output = var;
5530 }
5531 }
5532 }
5533
5534 /* From the GLSL 1.30 spec:
5535 *
5536 * "If a shader statically assigns a value to gl_FragColor, it
5537 * may not assign a value to any element of gl_FragData. If a
5538 * shader statically writes a value to any element of
5539 * gl_FragData, it may not assign a value to
5540 * gl_FragColor. That is, a shader may assign values to either
5541 * gl_FragColor or gl_FragData, but not both. Multiple shaders
5542 * linked together must also consistently write just one of
5543 * these variables. Similarly, if user declared output
5544 * variables are in use (statically assigned to), then the
5545 * built-in variables gl_FragColor and gl_FragData may not be
5546 * assigned to. These incorrect usages all generate compile
5547 * time errors."
5548 */
5549 if (gl_FragColor_assigned && gl_FragData_assigned) {
5550 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
5551 "`gl_FragColor' and `gl_FragData'");
5552 } else if (gl_FragColor_assigned && user_defined_fs_output_assigned) {
5553 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
5554 "`gl_FragColor' and `%s'",
5555 user_defined_fs_output->name);
5556 } else if (gl_FragData_assigned && user_defined_fs_output_assigned) {
5557 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
5558 "`gl_FragData' and `%s'",
5559 user_defined_fs_output->name);
5560 }
5561 }
5562
5563
5564 static void
5565 remove_per_vertex_blocks(exec_list *instructions,
5566 _mesa_glsl_parse_state *state, ir_variable_mode mode)
5567 {
5568 /* Find the gl_PerVertex interface block of the appropriate (in/out) mode,
5569 * if it exists in this shader type.
5570 */
5571 const glsl_type *per_vertex = NULL;
5572 switch (mode) {
5573 case ir_var_shader_in:
5574 if (ir_variable *gl_in = state->symbols->get_variable("gl_in"))
5575 per_vertex = gl_in->get_interface_type();
5576 break;
5577 case ir_var_shader_out:
5578 if (ir_variable *gl_Position =
5579 state->symbols->get_variable("gl_Position")) {
5580 per_vertex = gl_Position->get_interface_type();
5581 }
5582 break;
5583 default:
5584 assert(!"Unexpected mode");
5585 break;
5586 }
5587
5588 /* If we didn't find a built-in gl_PerVertex interface block, then we don't
5589 * need to do anything.
5590 */
5591 if (per_vertex == NULL)
5592 return;
5593
5594 /* If the interface block is used by the shader, then we don't need to do
5595 * anything.
5596 */
5597 interface_block_usage_visitor v(mode, per_vertex);
5598 v.run(instructions);
5599 if (v.usage_found())
5600 return;
5601
5602 /* Remove any ir_variable declarations that refer to the interface block
5603 * we're removing.
5604 */
5605 foreach_list_safe(node, instructions) {
5606 ir_variable *const var = ((ir_instruction *) node)->as_variable();
5607 if (var != NULL && var->get_interface_type() == per_vertex &&
5608 var->data.mode == mode) {
5609 state->symbols->disable_variable(var->name);
5610 var->remove();
5611 }
5612 }
5613 }