glsl: Don't allow const on out or inout function parameters
[mesa.git] / src / glsl / ast_to_hir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file ast_to_hir.c
26 * Convert abstract syntax to to high-level intermediate reprensentation (HIR).
27 *
28 * During the conversion to HIR, the majority of the symantic checking is
29 * preformed on the program. This includes:
30 *
31 * * Symbol table management
32 * * Type checking
33 * * Function binding
34 *
35 * The majority of this work could be done during parsing, and the parser could
36 * probably generate HIR directly. However, this results in frequent changes
37 * to the parser code. Since we do not assume that every system this complier
38 * is built on will have Flex and Bison installed, we have to store the code
39 * generated by these tools in our version control system. In other parts of
40 * the system we've seen problems where a parser was changed but the generated
41 * code was not committed, merge conflicts where created because two developers
42 * had slightly different versions of Bison installed, etc.
43 *
44 * I have also noticed that running Bison generated parsers in GDB is very
45 * irritating. When you get a segfault on '$$ = $1->foo', you can't very
46 * well 'print $1' in GDB.
47 *
48 * As a result, my preference is to put as little C code as possible in the
49 * parser (and lexer) sources.
50 */
51
52 #include "main/core.h" /* for struct gl_extensions */
53 #include "glsl_symbol_table.h"
54 #include "glsl_parser_extras.h"
55 #include "ast.h"
56 #include "glsl_types.h"
57 #include "program/hash_table.h"
58 #include "ir.h"
59
60 static void
61 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
62 exec_list *instructions);
63
64 void
65 _mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
66 {
67 _mesa_glsl_initialize_variables(instructions, state);
68
69 state->symbols->separate_function_namespace = state->language_version == 110;
70
71 state->current_function = NULL;
72
73 state->toplevel_ir = instructions;
74
75 state->gs_input_prim_type_specified = false;
76
77 /* Section 4.2 of the GLSL 1.20 specification states:
78 * "The built-in functions are scoped in a scope outside the global scope
79 * users declare global variables in. That is, a shader's global scope,
80 * available for user-defined functions and global variables, is nested
81 * inside the scope containing the built-in functions."
82 *
83 * Since built-in functions like ftransform() access built-in variables,
84 * it follows that those must be in the outer scope as well.
85 *
86 * We push scope here to create this nesting effect...but don't pop.
87 * This way, a shader's globals are still in the symbol table for use
88 * by the linker.
89 */
90 state->symbols->push_scope();
91
92 foreach_list_typed (ast_node, ast, link, & state->translation_unit)
93 ast->hir(instructions, state);
94
95 detect_recursion_unlinked(state, instructions);
96 detect_conflicting_assignments(state, instructions);
97
98 state->toplevel_ir = NULL;
99
100 /* Move all of the variable declarations to the front of the IR list, and
101 * reverse the order. This has the (intended!) side effect that vertex
102 * shader inputs and fragment shader outputs will appear in the IR in the
103 * same order that they appeared in the shader code. This results in the
104 * locations being assigned in the declared order. Many (arguably buggy)
105 * applications depend on this behavior, and it matches what nearly all
106 * other drivers do.
107 */
108 foreach_list_safe(node, instructions) {
109 ir_variable *const var = ((ir_instruction *) node)->as_variable();
110
111 if (var == NULL)
112 continue;
113
114 var->remove();
115 instructions->push_head(var);
116 }
117 }
118
119
120 /**
121 * If a conversion is available, convert one operand to a different type
122 *
123 * The \c from \c ir_rvalue is converted "in place".
124 *
125 * \param to Type that the operand it to be converted to
126 * \param from Operand that is being converted
127 * \param state GLSL compiler state
128 *
129 * \return
130 * If a conversion is possible (or unnecessary), \c true is returned.
131 * Otherwise \c false is returned.
132 */
133 bool
134 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
135 struct _mesa_glsl_parse_state *state)
136 {
137 void *ctx = state;
138 if (to->base_type == from->type->base_type)
139 return true;
140
141 /* This conversion was added in GLSL 1.20. If the compilation mode is
142 * GLSL 1.10, the conversion is skipped.
143 */
144 if (!state->is_version(120, 0))
145 return false;
146
147 /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
148 *
149 * "There are no implicit array or structure conversions. For
150 * example, an array of int cannot be implicitly converted to an
151 * array of float. There are no implicit conversions between
152 * signed and unsigned integers."
153 */
154 /* FINISHME: The above comment is partially a lie. There is int/uint
155 * FINISHME: conversion for immediate constants.
156 */
157 if (!to->is_float() || !from->type->is_numeric())
158 return false;
159
160 /* Convert to a floating point type with the same number of components
161 * as the original type - i.e. int to float, not int to vec4.
162 */
163 to = glsl_type::get_instance(GLSL_TYPE_FLOAT, from->type->vector_elements,
164 from->type->matrix_columns);
165
166 switch (from->type->base_type) {
167 case GLSL_TYPE_INT:
168 from = new(ctx) ir_expression(ir_unop_i2f, to, from, NULL);
169 break;
170 case GLSL_TYPE_UINT:
171 from = new(ctx) ir_expression(ir_unop_u2f, to, from, NULL);
172 break;
173 case GLSL_TYPE_BOOL:
174 from = new(ctx) ir_expression(ir_unop_b2f, to, from, NULL);
175 break;
176 default:
177 assert(0);
178 }
179
180 return true;
181 }
182
183
184 static const struct glsl_type *
185 arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
186 bool multiply,
187 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
188 {
189 const glsl_type *type_a = value_a->type;
190 const glsl_type *type_b = value_b->type;
191
192 /* From GLSL 1.50 spec, page 56:
193 *
194 * "The arithmetic binary operators add (+), subtract (-),
195 * multiply (*), and divide (/) operate on integer and
196 * floating-point scalars, vectors, and matrices."
197 */
198 if (!type_a->is_numeric() || !type_b->is_numeric()) {
199 _mesa_glsl_error(loc, state,
200 "operands to arithmetic operators must be numeric");
201 return glsl_type::error_type;
202 }
203
204
205 /* "If one operand is floating-point based and the other is
206 * not, then the conversions from Section 4.1.10 "Implicit
207 * Conversions" are applied to the non-floating-point-based operand."
208 */
209 if (!apply_implicit_conversion(type_a, value_b, state)
210 && !apply_implicit_conversion(type_b, value_a, state)) {
211 _mesa_glsl_error(loc, state,
212 "could not implicitly convert operands to "
213 "arithmetic operator");
214 return glsl_type::error_type;
215 }
216 type_a = value_a->type;
217 type_b = value_b->type;
218
219 /* "If the operands are integer types, they must both be signed or
220 * both be unsigned."
221 *
222 * From this rule and the preceeding conversion it can be inferred that
223 * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
224 * The is_numeric check above already filtered out the case where either
225 * type is not one of these, so now the base types need only be tested for
226 * equality.
227 */
228 if (type_a->base_type != type_b->base_type) {
229 _mesa_glsl_error(loc, state,
230 "base type mismatch for arithmetic operator");
231 return glsl_type::error_type;
232 }
233
234 /* "All arithmetic binary operators result in the same fundamental type
235 * (signed integer, unsigned integer, or floating-point) as the
236 * operands they operate on, after operand type conversion. After
237 * conversion, the following cases are valid
238 *
239 * * The two operands are scalars. In this case the operation is
240 * applied, resulting in a scalar."
241 */
242 if (type_a->is_scalar() && type_b->is_scalar())
243 return type_a;
244
245 /* "* One operand is a scalar, and the other is a vector or matrix.
246 * In this case, the scalar operation is applied independently to each
247 * component of the vector or matrix, resulting in the same size
248 * vector or matrix."
249 */
250 if (type_a->is_scalar()) {
251 if (!type_b->is_scalar())
252 return type_b;
253 } else if (type_b->is_scalar()) {
254 return type_a;
255 }
256
257 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
258 * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
259 * handled.
260 */
261 assert(!type_a->is_scalar());
262 assert(!type_b->is_scalar());
263
264 /* "* The two operands are vectors of the same size. In this case, the
265 * operation is done component-wise resulting in the same size
266 * vector."
267 */
268 if (type_a->is_vector() && type_b->is_vector()) {
269 if (type_a == type_b) {
270 return type_a;
271 } else {
272 _mesa_glsl_error(loc, state,
273 "vector size mismatch for arithmetic operator");
274 return glsl_type::error_type;
275 }
276 }
277
278 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
279 * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
280 * <vector, vector> have been handled. At least one of the operands must
281 * be matrix. Further, since there are no integer matrix types, the base
282 * type of both operands must be float.
283 */
284 assert(type_a->is_matrix() || type_b->is_matrix());
285 assert(type_a->base_type == GLSL_TYPE_FLOAT);
286 assert(type_b->base_type == GLSL_TYPE_FLOAT);
287
288 /* "* The operator is add (+), subtract (-), or divide (/), and the
289 * operands are matrices with the same number of rows and the same
290 * number of columns. In this case, the operation is done component-
291 * wise resulting in the same size matrix."
292 * * The operator is multiply (*), where both operands are matrices or
293 * one operand is a vector and the other a matrix. A right vector
294 * operand is treated as a column vector and a left vector operand as a
295 * row vector. In all these cases, it is required that the number of
296 * columns of the left operand is equal to the number of rows of the
297 * right operand. Then, the multiply (*) operation does a linear
298 * algebraic multiply, yielding an object that has the same number of
299 * rows as the left operand and the same number of columns as the right
300 * operand. Section 5.10 "Vector and Matrix Operations" explains in
301 * more detail how vectors and matrices are operated on."
302 */
303 if (! multiply) {
304 if (type_a == type_b)
305 return type_a;
306 } else {
307 if (type_a->is_matrix() && type_b->is_matrix()) {
308 /* Matrix multiply. The columns of A must match the rows of B. Given
309 * the other previously tested constraints, this means the vector type
310 * of a row from A must be the same as the vector type of a column from
311 * B.
312 */
313 if (type_a->row_type() == type_b->column_type()) {
314 /* The resulting matrix has the number of columns of matrix B and
315 * the number of rows of matrix A. We get the row count of A by
316 * looking at the size of a vector that makes up a column. The
317 * transpose (size of a row) is done for B.
318 */
319 const glsl_type *const type =
320 glsl_type::get_instance(type_a->base_type,
321 type_a->column_type()->vector_elements,
322 type_b->row_type()->vector_elements);
323 assert(type != glsl_type::error_type);
324
325 return type;
326 }
327 } else if (type_a->is_matrix()) {
328 /* A is a matrix and B is a column vector. Columns of A must match
329 * rows of B. Given the other previously tested constraints, this
330 * means the vector type of a row from A must be the same as the
331 * vector the type of B.
332 */
333 if (type_a->row_type() == type_b) {
334 /* The resulting vector has a number of elements equal to
335 * the number of rows of matrix A. */
336 const glsl_type *const type =
337 glsl_type::get_instance(type_a->base_type,
338 type_a->column_type()->vector_elements,
339 1);
340 assert(type != glsl_type::error_type);
341
342 return type;
343 }
344 } else {
345 assert(type_b->is_matrix());
346
347 /* A is a row vector and B is a matrix. Columns of A must match rows
348 * of B. Given the other previously tested constraints, this means
349 * the type of A must be the same as the vector type of a column from
350 * B.
351 */
352 if (type_a == type_b->column_type()) {
353 /* The resulting vector has a number of elements equal to
354 * the number of columns of matrix B. */
355 const glsl_type *const type =
356 glsl_type::get_instance(type_a->base_type,
357 type_b->row_type()->vector_elements,
358 1);
359 assert(type != glsl_type::error_type);
360
361 return type;
362 }
363 }
364
365 _mesa_glsl_error(loc, state, "size mismatch for matrix multiplication");
366 return glsl_type::error_type;
367 }
368
369
370 /* "All other cases are illegal."
371 */
372 _mesa_glsl_error(loc, state, "type mismatch");
373 return glsl_type::error_type;
374 }
375
376
377 static const struct glsl_type *
378 unary_arithmetic_result_type(const struct glsl_type *type,
379 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
380 {
381 /* From GLSL 1.50 spec, page 57:
382 *
383 * "The arithmetic unary operators negate (-), post- and pre-increment
384 * and decrement (-- and ++) operate on integer or floating-point
385 * values (including vectors and matrices). All unary operators work
386 * component-wise on their operands. These result with the same type
387 * they operated on."
388 */
389 if (!type->is_numeric()) {
390 _mesa_glsl_error(loc, state,
391 "operands to arithmetic operators must be numeric");
392 return glsl_type::error_type;
393 }
394
395 return type;
396 }
397
398 /**
399 * \brief Return the result type of a bit-logic operation.
400 *
401 * If the given types to the bit-logic operator are invalid, return
402 * glsl_type::error_type.
403 *
404 * \param type_a Type of LHS of bit-logic op
405 * \param type_b Type of RHS of bit-logic op
406 */
407 static const struct glsl_type *
408 bit_logic_result_type(const struct glsl_type *type_a,
409 const struct glsl_type *type_b,
410 ast_operators op,
411 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
412 {
413 if (!state->check_bitwise_operations_allowed(loc)) {
414 return glsl_type::error_type;
415 }
416
417 /* From page 50 (page 56 of PDF) of GLSL 1.30 spec:
418 *
419 * "The bitwise operators and (&), exclusive-or (^), and inclusive-or
420 * (|). The operands must be of type signed or unsigned integers or
421 * integer vectors."
422 */
423 if (!type_a->is_integer()) {
424 _mesa_glsl_error(loc, state, "LHS of `%s' must be an integer",
425 ast_expression::operator_string(op));
426 return glsl_type::error_type;
427 }
428 if (!type_b->is_integer()) {
429 _mesa_glsl_error(loc, state, "RHS of `%s' must be an integer",
430 ast_expression::operator_string(op));
431 return glsl_type::error_type;
432 }
433
434 /* "The fundamental types of the operands (signed or unsigned) must
435 * match,"
436 */
437 if (type_a->base_type != type_b->base_type) {
438 _mesa_glsl_error(loc, state, "operands of `%s' must have the same "
439 "base type", ast_expression::operator_string(op));
440 return glsl_type::error_type;
441 }
442
443 /* "The operands cannot be vectors of differing size." */
444 if (type_a->is_vector() &&
445 type_b->is_vector() &&
446 type_a->vector_elements != type_b->vector_elements) {
447 _mesa_glsl_error(loc, state, "operands of `%s' cannot be vectors of "
448 "different sizes", ast_expression::operator_string(op));
449 return glsl_type::error_type;
450 }
451
452 /* "If one operand is a scalar and the other a vector, the scalar is
453 * applied component-wise to the vector, resulting in the same type as
454 * the vector. The fundamental types of the operands [...] will be the
455 * resulting fundamental type."
456 */
457 if (type_a->is_scalar())
458 return type_b;
459 else
460 return type_a;
461 }
462
463 static const struct glsl_type *
464 modulus_result_type(const struct glsl_type *type_a,
465 const struct glsl_type *type_b,
466 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
467 {
468 if (!state->check_version(130, 300, loc, "operator '%%' is reserved")) {
469 return glsl_type::error_type;
470 }
471
472 /* From GLSL 1.50 spec, page 56:
473 * "The operator modulus (%) operates on signed or unsigned integers or
474 * integer vectors. The operand types must both be signed or both be
475 * unsigned."
476 */
477 if (!type_a->is_integer()) {
478 _mesa_glsl_error(loc, state, "LHS of operator %% must be an integer");
479 return glsl_type::error_type;
480 }
481 if (!type_b->is_integer()) {
482 _mesa_glsl_error(loc, state, "RHS of operator %% must be an integer");
483 return glsl_type::error_type;
484 }
485 if (type_a->base_type != type_b->base_type) {
486 _mesa_glsl_error(loc, state,
487 "operands of %% must have the same base type");
488 return glsl_type::error_type;
489 }
490
491 /* "The operands cannot be vectors of differing size. If one operand is
492 * a scalar and the other vector, then the scalar is applied component-
493 * wise to the vector, resulting in the same type as the vector. If both
494 * are vectors of the same size, the result is computed component-wise."
495 */
496 if (type_a->is_vector()) {
497 if (!type_b->is_vector()
498 || (type_a->vector_elements == type_b->vector_elements))
499 return type_a;
500 } else
501 return type_b;
502
503 /* "The operator modulus (%) is not defined for any other data types
504 * (non-integer types)."
505 */
506 _mesa_glsl_error(loc, state, "type mismatch");
507 return glsl_type::error_type;
508 }
509
510
511 static const struct glsl_type *
512 relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
513 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
514 {
515 const glsl_type *type_a = value_a->type;
516 const glsl_type *type_b = value_b->type;
517
518 /* From GLSL 1.50 spec, page 56:
519 * "The relational operators greater than (>), less than (<), greater
520 * than or equal (>=), and less than or equal (<=) operate only on
521 * scalar integer and scalar floating-point expressions."
522 */
523 if (!type_a->is_numeric()
524 || !type_b->is_numeric()
525 || !type_a->is_scalar()
526 || !type_b->is_scalar()) {
527 _mesa_glsl_error(loc, state,
528 "operands to relational operators must be scalar and "
529 "numeric");
530 return glsl_type::error_type;
531 }
532
533 /* "Either the operands' types must match, or the conversions from
534 * Section 4.1.10 "Implicit Conversions" will be applied to the integer
535 * operand, after which the types must match."
536 */
537 if (!apply_implicit_conversion(type_a, value_b, state)
538 && !apply_implicit_conversion(type_b, value_a, state)) {
539 _mesa_glsl_error(loc, state,
540 "could not implicitly convert operands to "
541 "relational operator");
542 return glsl_type::error_type;
543 }
544 type_a = value_a->type;
545 type_b = value_b->type;
546
547 if (type_a->base_type != type_b->base_type) {
548 _mesa_glsl_error(loc, state, "base type mismatch");
549 return glsl_type::error_type;
550 }
551
552 /* "The result is scalar Boolean."
553 */
554 return glsl_type::bool_type;
555 }
556
557 /**
558 * \brief Return the result type of a bit-shift operation.
559 *
560 * If the given types to the bit-shift operator are invalid, return
561 * glsl_type::error_type.
562 *
563 * \param type_a Type of LHS of bit-shift op
564 * \param type_b Type of RHS of bit-shift op
565 */
566 static const struct glsl_type *
567 shift_result_type(const struct glsl_type *type_a,
568 const struct glsl_type *type_b,
569 ast_operators op,
570 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
571 {
572 if (!state->check_bitwise_operations_allowed(loc)) {
573 return glsl_type::error_type;
574 }
575
576 /* From page 50 (page 56 of the PDF) of the GLSL 1.30 spec:
577 *
578 * "The shift operators (<<) and (>>). For both operators, the operands
579 * must be signed or unsigned integers or integer vectors. One operand
580 * can be signed while the other is unsigned."
581 */
582 if (!type_a->is_integer()) {
583 _mesa_glsl_error(loc, state, "LHS of operator %s must be an integer or "
584 "integer vector", ast_expression::operator_string(op));
585 return glsl_type::error_type;
586
587 }
588 if (!type_b->is_integer()) {
589 _mesa_glsl_error(loc, state, "RHS of operator %s must be an integer or "
590 "integer vector", ast_expression::operator_string(op));
591 return glsl_type::error_type;
592 }
593
594 /* "If the first operand is a scalar, the second operand has to be
595 * a scalar as well."
596 */
597 if (type_a->is_scalar() && !type_b->is_scalar()) {
598 _mesa_glsl_error(loc, state, "if the first operand of %s is scalar, the "
599 "second must be scalar as well",
600 ast_expression::operator_string(op));
601 return glsl_type::error_type;
602 }
603
604 /* If both operands are vectors, check that they have same number of
605 * elements.
606 */
607 if (type_a->is_vector() &&
608 type_b->is_vector() &&
609 type_a->vector_elements != type_b->vector_elements) {
610 _mesa_glsl_error(loc, state, "vector operands to operator %s must "
611 "have same number of elements",
612 ast_expression::operator_string(op));
613 return glsl_type::error_type;
614 }
615
616 /* "In all cases, the resulting type will be the same type as the left
617 * operand."
618 */
619 return type_a;
620 }
621
622 /**
623 * Validates that a value can be assigned to a location with a specified type
624 *
625 * Validates that \c rhs can be assigned to some location. If the types are
626 * not an exact match but an automatic conversion is possible, \c rhs will be
627 * converted.
628 *
629 * \return
630 * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
631 * Otherwise the actual RHS to be assigned will be returned. This may be
632 * \c rhs, or it may be \c rhs after some type conversion.
633 *
634 * \note
635 * In addition to being used for assignments, this function is used to
636 * type-check return values.
637 */
638 ir_rvalue *
639 validate_assignment(struct _mesa_glsl_parse_state *state,
640 const glsl_type *lhs_type, ir_rvalue *rhs,
641 bool is_initializer)
642 {
643 /* If there is already some error in the RHS, just return it. Anything
644 * else will lead to an avalanche of error message back to the user.
645 */
646 if (rhs->type->is_error())
647 return rhs;
648
649 /* If the types are identical, the assignment can trivially proceed.
650 */
651 if (rhs->type == lhs_type)
652 return rhs;
653
654 /* If the array element types are the same and the size of the LHS is zero,
655 * the assignment is okay for initializers embedded in variable
656 * declarations.
657 *
658 * Note: Whole-array assignments are not permitted in GLSL 1.10, but this
659 * is handled by ir_dereference::is_lvalue.
660 */
661 if (is_initializer && lhs_type->is_array() && rhs->type->is_array()
662 && (lhs_type->element_type() == rhs->type->element_type())
663 && (lhs_type->array_size() == 0)) {
664 return rhs;
665 }
666
667 /* Check for implicit conversion in GLSL 1.20 */
668 if (apply_implicit_conversion(lhs_type, rhs, state)) {
669 if (rhs->type == lhs_type)
670 return rhs;
671 }
672
673 return NULL;
674 }
675
676 static void
677 mark_whole_array_access(ir_rvalue *access)
678 {
679 ir_dereference_variable *deref = access->as_dereference_variable();
680
681 if (deref && deref->var) {
682 deref->var->max_array_access = deref->type->length - 1;
683 }
684 }
685
686 ir_rvalue *
687 do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state,
688 const char *non_lvalue_description,
689 ir_rvalue *lhs, ir_rvalue *rhs, bool is_initializer,
690 YYLTYPE lhs_loc)
691 {
692 void *ctx = state;
693 bool error_emitted = (lhs->type->is_error() || rhs->type->is_error());
694
695 /* If the assignment LHS comes back as an ir_binop_vector_extract
696 * expression, move it to the RHS as an ir_triop_vector_insert.
697 */
698 if (lhs->ir_type == ir_type_expression) {
699 ir_expression *const expr = lhs->as_expression();
700
701 if (unlikely(expr->operation == ir_binop_vector_extract)) {
702 ir_rvalue *new_rhs =
703 validate_assignment(state, lhs->type, rhs, is_initializer);
704
705 if (new_rhs == NULL) {
706 _mesa_glsl_error(& lhs_loc, state, "type mismatch");
707 return lhs;
708 } else {
709 rhs = new(ctx) ir_expression(ir_triop_vector_insert,
710 expr->operands[0]->type,
711 expr->operands[0],
712 new_rhs,
713 expr->operands[1]);
714 lhs = expr->operands[0]->clone(ctx, NULL);
715 }
716 }
717 }
718
719 ir_variable *lhs_var = lhs->variable_referenced();
720 if (lhs_var)
721 lhs_var->assigned = true;
722
723 if (!error_emitted) {
724 if (non_lvalue_description != NULL) {
725 _mesa_glsl_error(&lhs_loc, state,
726 "assignment to %s",
727 non_lvalue_description);
728 error_emitted = true;
729 } else if (lhs->variable_referenced() != NULL
730 && lhs->variable_referenced()->read_only) {
731 _mesa_glsl_error(&lhs_loc, state,
732 "assignment to read-only variable '%s'",
733 lhs->variable_referenced()->name);
734 error_emitted = true;
735
736 } else if (lhs->type->is_array() &&
737 !state->check_version(120, 300, &lhs_loc,
738 "whole array assignment forbidden")) {
739 /* From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
740 *
741 * "Other binary or unary expressions, non-dereferenced
742 * arrays, function names, swizzles with repeated fields,
743 * and constants cannot be l-values."
744 *
745 * The restriction on arrays is lifted in GLSL 1.20 and GLSL ES 3.00.
746 */
747 error_emitted = true;
748 } else if (!lhs->is_lvalue()) {
749 _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment");
750 error_emitted = true;
751 }
752 }
753
754 ir_rvalue *new_rhs =
755 validate_assignment(state, lhs->type, rhs, is_initializer);
756 if (new_rhs == NULL) {
757 _mesa_glsl_error(& lhs_loc, state, "type mismatch");
758 } else {
759 rhs = new_rhs;
760
761 /* If the LHS array was not declared with a size, it takes it size from
762 * the RHS. If the LHS is an l-value and a whole array, it must be a
763 * dereference of a variable. Any other case would require that the LHS
764 * is either not an l-value or not a whole array.
765 */
766 if (lhs->type->array_size() == 0) {
767 ir_dereference *const d = lhs->as_dereference();
768
769 assert(d != NULL);
770
771 ir_variable *const var = d->variable_referenced();
772
773 assert(var != NULL);
774
775 if (var->max_array_access >= unsigned(rhs->type->array_size())) {
776 /* FINISHME: This should actually log the location of the RHS. */
777 _mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to "
778 "previous access",
779 var->max_array_access);
780 }
781
782 var->type = glsl_type::get_array_instance(lhs->type->element_type(),
783 rhs->type->array_size());
784 d->type = var->type;
785 }
786 mark_whole_array_access(rhs);
787 mark_whole_array_access(lhs);
788 }
789
790 /* Most callers of do_assignment (assign, add_assign, pre_inc/dec,
791 * but not post_inc) need the converted assigned value as an rvalue
792 * to handle things like:
793 *
794 * i = j += 1;
795 *
796 * So we always just store the computed value being assigned to a
797 * temporary and return a deref of that temporary. If the rvalue
798 * ends up not being used, the temp will get copy-propagated out.
799 */
800 ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp",
801 ir_var_temporary);
802 ir_dereference_variable *deref_var = new(ctx) ir_dereference_variable(var);
803 instructions->push_tail(var);
804 instructions->push_tail(new(ctx) ir_assignment(deref_var, rhs));
805 deref_var = new(ctx) ir_dereference_variable(var);
806
807 if (!error_emitted)
808 instructions->push_tail(new(ctx) ir_assignment(lhs, deref_var));
809
810 return new(ctx) ir_dereference_variable(var);
811 }
812
813 static ir_rvalue *
814 get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue)
815 {
816 void *ctx = ralloc_parent(lvalue);
817 ir_variable *var;
818
819 var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp",
820 ir_var_temporary);
821 instructions->push_tail(var);
822 var->mode = ir_var_auto;
823
824 instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
825 lvalue));
826
827 return new(ctx) ir_dereference_variable(var);
828 }
829
830
831 ir_rvalue *
832 ast_node::hir(exec_list *instructions,
833 struct _mesa_glsl_parse_state *state)
834 {
835 (void) instructions;
836 (void) state;
837
838 return NULL;
839 }
840
841 static ir_rvalue *
842 do_comparison(void *mem_ctx, int operation, ir_rvalue *op0, ir_rvalue *op1)
843 {
844 int join_op;
845 ir_rvalue *cmp = NULL;
846
847 if (operation == ir_binop_all_equal)
848 join_op = ir_binop_logic_and;
849 else
850 join_op = ir_binop_logic_or;
851
852 switch (op0->type->base_type) {
853 case GLSL_TYPE_FLOAT:
854 case GLSL_TYPE_UINT:
855 case GLSL_TYPE_INT:
856 case GLSL_TYPE_BOOL:
857 return new(mem_ctx) ir_expression(operation, op0, op1);
858
859 case GLSL_TYPE_ARRAY: {
860 for (unsigned int i = 0; i < op0->type->length; i++) {
861 ir_rvalue *e0, *e1, *result;
862
863 e0 = new(mem_ctx) ir_dereference_array(op0->clone(mem_ctx, NULL),
864 new(mem_ctx) ir_constant(i));
865 e1 = new(mem_ctx) ir_dereference_array(op1->clone(mem_ctx, NULL),
866 new(mem_ctx) ir_constant(i));
867 result = do_comparison(mem_ctx, operation, e0, e1);
868
869 if (cmp) {
870 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
871 } else {
872 cmp = result;
873 }
874 }
875
876 mark_whole_array_access(op0);
877 mark_whole_array_access(op1);
878 break;
879 }
880
881 case GLSL_TYPE_STRUCT: {
882 for (unsigned int i = 0; i < op0->type->length; i++) {
883 ir_rvalue *e0, *e1, *result;
884 const char *field_name = op0->type->fields.structure[i].name;
885
886 e0 = new(mem_ctx) ir_dereference_record(op0->clone(mem_ctx, NULL),
887 field_name);
888 e1 = new(mem_ctx) ir_dereference_record(op1->clone(mem_ctx, NULL),
889 field_name);
890 result = do_comparison(mem_ctx, operation, e0, e1);
891
892 if (cmp) {
893 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
894 } else {
895 cmp = result;
896 }
897 }
898 break;
899 }
900
901 case GLSL_TYPE_ERROR:
902 case GLSL_TYPE_VOID:
903 case GLSL_TYPE_SAMPLER:
904 case GLSL_TYPE_INTERFACE:
905 /* I assume a comparison of a struct containing a sampler just
906 * ignores the sampler present in the type.
907 */
908 break;
909 }
910
911 if (cmp == NULL)
912 cmp = new(mem_ctx) ir_constant(true);
913
914 return cmp;
915 }
916
917 /* For logical operations, we want to ensure that the operands are
918 * scalar booleans. If it isn't, emit an error and return a constant
919 * boolean to avoid triggering cascading error messages.
920 */
921 ir_rvalue *
922 get_scalar_boolean_operand(exec_list *instructions,
923 struct _mesa_glsl_parse_state *state,
924 ast_expression *parent_expr,
925 int operand,
926 const char *operand_name,
927 bool *error_emitted)
928 {
929 ast_expression *expr = parent_expr->subexpressions[operand];
930 void *ctx = state;
931 ir_rvalue *val = expr->hir(instructions, state);
932
933 if (val->type->is_boolean() && val->type->is_scalar())
934 return val;
935
936 if (!*error_emitted) {
937 YYLTYPE loc = expr->get_location();
938 _mesa_glsl_error(&loc, state, "%s of `%s' must be scalar boolean",
939 operand_name,
940 parent_expr->operator_string(parent_expr->oper));
941 *error_emitted = true;
942 }
943
944 return new(ctx) ir_constant(true);
945 }
946
947 /**
948 * If name refers to a builtin array whose maximum allowed size is less than
949 * size, report an error and return true. Otherwise return false.
950 */
951 void
952 check_builtin_array_max_size(const char *name, unsigned size,
953 YYLTYPE loc, struct _mesa_glsl_parse_state *state)
954 {
955 if ((strcmp("gl_TexCoord", name) == 0)
956 && (size > state->Const.MaxTextureCoords)) {
957 /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec:
958 *
959 * "The size [of gl_TexCoord] can be at most
960 * gl_MaxTextureCoords."
961 */
962 _mesa_glsl_error(&loc, state, "`gl_TexCoord' array size cannot "
963 "be larger than gl_MaxTextureCoords (%u)",
964 state->Const.MaxTextureCoords);
965 } else if (strcmp("gl_ClipDistance", name) == 0
966 && size > state->Const.MaxClipPlanes) {
967 /* From section 7.1 (Vertex Shader Special Variables) of the
968 * GLSL 1.30 spec:
969 *
970 * "The gl_ClipDistance array is predeclared as unsized and
971 * must be sized by the shader either redeclaring it with a
972 * size or indexing it only with integral constant
973 * expressions. ... The size can be at most
974 * gl_MaxClipDistances."
975 */
976 _mesa_glsl_error(&loc, state, "`gl_ClipDistance' array size cannot "
977 "be larger than gl_MaxClipDistances (%u)",
978 state->Const.MaxClipPlanes);
979 }
980 }
981
982 /**
983 * Create the constant 1, of a which is appropriate for incrementing and
984 * decrementing values of the given GLSL type. For example, if type is vec4,
985 * this creates a constant value of 1.0 having type float.
986 *
987 * If the given type is invalid for increment and decrement operators, return
988 * a floating point 1--the error will be detected later.
989 */
990 static ir_rvalue *
991 constant_one_for_inc_dec(void *ctx, const glsl_type *type)
992 {
993 switch (type->base_type) {
994 case GLSL_TYPE_UINT:
995 return new(ctx) ir_constant((unsigned) 1);
996 case GLSL_TYPE_INT:
997 return new(ctx) ir_constant(1);
998 default:
999 case GLSL_TYPE_FLOAT:
1000 return new(ctx) ir_constant(1.0f);
1001 }
1002 }
1003
1004 ir_rvalue *
1005 ast_expression::hir(exec_list *instructions,
1006 struct _mesa_glsl_parse_state *state)
1007 {
1008 void *ctx = state;
1009 static const int operations[AST_NUM_OPERATORS] = {
1010 -1, /* ast_assign doesn't convert to ir_expression. */
1011 -1, /* ast_plus doesn't convert to ir_expression. */
1012 ir_unop_neg,
1013 ir_binop_add,
1014 ir_binop_sub,
1015 ir_binop_mul,
1016 ir_binop_div,
1017 ir_binop_mod,
1018 ir_binop_lshift,
1019 ir_binop_rshift,
1020 ir_binop_less,
1021 ir_binop_greater,
1022 ir_binop_lequal,
1023 ir_binop_gequal,
1024 ir_binop_all_equal,
1025 ir_binop_any_nequal,
1026 ir_binop_bit_and,
1027 ir_binop_bit_xor,
1028 ir_binop_bit_or,
1029 ir_unop_bit_not,
1030 ir_binop_logic_and,
1031 ir_binop_logic_xor,
1032 ir_binop_logic_or,
1033 ir_unop_logic_not,
1034
1035 /* Note: The following block of expression types actually convert
1036 * to multiple IR instructions.
1037 */
1038 ir_binop_mul, /* ast_mul_assign */
1039 ir_binop_div, /* ast_div_assign */
1040 ir_binop_mod, /* ast_mod_assign */
1041 ir_binop_add, /* ast_add_assign */
1042 ir_binop_sub, /* ast_sub_assign */
1043 ir_binop_lshift, /* ast_ls_assign */
1044 ir_binop_rshift, /* ast_rs_assign */
1045 ir_binop_bit_and, /* ast_and_assign */
1046 ir_binop_bit_xor, /* ast_xor_assign */
1047 ir_binop_bit_or, /* ast_or_assign */
1048
1049 -1, /* ast_conditional doesn't convert to ir_expression. */
1050 ir_binop_add, /* ast_pre_inc. */
1051 ir_binop_sub, /* ast_pre_dec. */
1052 ir_binop_add, /* ast_post_inc. */
1053 ir_binop_sub, /* ast_post_dec. */
1054 -1, /* ast_field_selection doesn't conv to ir_expression. */
1055 -1, /* ast_array_index doesn't convert to ir_expression. */
1056 -1, /* ast_function_call doesn't conv to ir_expression. */
1057 -1, /* ast_identifier doesn't convert to ir_expression. */
1058 -1, /* ast_int_constant doesn't convert to ir_expression. */
1059 -1, /* ast_uint_constant doesn't conv to ir_expression. */
1060 -1, /* ast_float_constant doesn't conv to ir_expression. */
1061 -1, /* ast_bool_constant doesn't conv to ir_expression. */
1062 -1, /* ast_sequence doesn't convert to ir_expression. */
1063 };
1064 ir_rvalue *result = NULL;
1065 ir_rvalue *op[3];
1066 const struct glsl_type *type; /* a temporary variable for switch cases */
1067 bool error_emitted = false;
1068 YYLTYPE loc;
1069
1070 loc = this->get_location();
1071
1072 switch (this->oper) {
1073 case ast_aggregate:
1074 assert(!"ast_aggregate: Should never get here.");
1075 break;
1076
1077 case ast_assign: {
1078 op[0] = this->subexpressions[0]->hir(instructions, state);
1079 op[1] = this->subexpressions[1]->hir(instructions, state);
1080
1081 result = do_assignment(instructions, state,
1082 this->subexpressions[0]->non_lvalue_description,
1083 op[0], op[1], false,
1084 this->subexpressions[0]->get_location());
1085 error_emitted = result->type->is_error();
1086 break;
1087 }
1088
1089 case ast_plus:
1090 op[0] = this->subexpressions[0]->hir(instructions, state);
1091
1092 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1093
1094 error_emitted = type->is_error();
1095
1096 result = op[0];
1097 break;
1098
1099 case ast_neg:
1100 op[0] = this->subexpressions[0]->hir(instructions, state);
1101
1102 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1103
1104 error_emitted = type->is_error();
1105
1106 result = new(ctx) ir_expression(operations[this->oper], type,
1107 op[0], NULL);
1108 break;
1109
1110 case ast_add:
1111 case ast_sub:
1112 case ast_mul:
1113 case ast_div:
1114 op[0] = this->subexpressions[0]->hir(instructions, state);
1115 op[1] = this->subexpressions[1]->hir(instructions, state);
1116
1117 type = arithmetic_result_type(op[0], op[1],
1118 (this->oper == ast_mul),
1119 state, & loc);
1120 error_emitted = type->is_error();
1121
1122 result = new(ctx) ir_expression(operations[this->oper], type,
1123 op[0], op[1]);
1124 break;
1125
1126 case ast_mod:
1127 op[0] = this->subexpressions[0]->hir(instructions, state);
1128 op[1] = this->subexpressions[1]->hir(instructions, state);
1129
1130 type = modulus_result_type(op[0]->type, op[1]->type, state, & loc);
1131
1132 assert(operations[this->oper] == ir_binop_mod);
1133
1134 result = new(ctx) ir_expression(operations[this->oper], type,
1135 op[0], op[1]);
1136 error_emitted = type->is_error();
1137 break;
1138
1139 case ast_lshift:
1140 case ast_rshift:
1141 if (!state->check_bitwise_operations_allowed(&loc)) {
1142 error_emitted = true;
1143 }
1144
1145 op[0] = this->subexpressions[0]->hir(instructions, state);
1146 op[1] = this->subexpressions[1]->hir(instructions, state);
1147 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1148 &loc);
1149 result = new(ctx) ir_expression(operations[this->oper], type,
1150 op[0], op[1]);
1151 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1152 break;
1153
1154 case ast_less:
1155 case ast_greater:
1156 case ast_lequal:
1157 case ast_gequal:
1158 op[0] = this->subexpressions[0]->hir(instructions, state);
1159 op[1] = this->subexpressions[1]->hir(instructions, state);
1160
1161 type = relational_result_type(op[0], op[1], state, & loc);
1162
1163 /* The relational operators must either generate an error or result
1164 * in a scalar boolean. See page 57 of the GLSL 1.50 spec.
1165 */
1166 assert(type->is_error()
1167 || ((type->base_type == GLSL_TYPE_BOOL)
1168 && type->is_scalar()));
1169
1170 result = new(ctx) ir_expression(operations[this->oper], type,
1171 op[0], op[1]);
1172 error_emitted = type->is_error();
1173 break;
1174
1175 case ast_nequal:
1176 case ast_equal:
1177 op[0] = this->subexpressions[0]->hir(instructions, state);
1178 op[1] = this->subexpressions[1]->hir(instructions, state);
1179
1180 /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
1181 *
1182 * "The equality operators equal (==), and not equal (!=)
1183 * operate on all types. They result in a scalar Boolean. If
1184 * the operand types do not match, then there must be a
1185 * conversion from Section 4.1.10 "Implicit Conversions"
1186 * applied to one operand that can make them match, in which
1187 * case this conversion is done."
1188 */
1189 if ((!apply_implicit_conversion(op[0]->type, op[1], state)
1190 && !apply_implicit_conversion(op[1]->type, op[0], state))
1191 || (op[0]->type != op[1]->type)) {
1192 _mesa_glsl_error(& loc, state, "operands of `%s' must have the same "
1193 "type", (this->oper == ast_equal) ? "==" : "!=");
1194 error_emitted = true;
1195 } else if ((op[0]->type->is_array() || op[1]->type->is_array()) &&
1196 !state->check_version(120, 300, &loc,
1197 "array comparisons forbidden")) {
1198 error_emitted = true;
1199 }
1200
1201 if (error_emitted) {
1202 result = new(ctx) ir_constant(false);
1203 } else {
1204 result = do_comparison(ctx, operations[this->oper], op[0], op[1]);
1205 assert(result->type == glsl_type::bool_type);
1206 }
1207 break;
1208
1209 case ast_bit_and:
1210 case ast_bit_xor:
1211 case ast_bit_or:
1212 op[0] = this->subexpressions[0]->hir(instructions, state);
1213 op[1] = this->subexpressions[1]->hir(instructions, state);
1214 type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
1215 state, &loc);
1216 result = new(ctx) ir_expression(operations[this->oper], type,
1217 op[0], op[1]);
1218 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1219 break;
1220
1221 case ast_bit_not:
1222 op[0] = this->subexpressions[0]->hir(instructions, state);
1223
1224 if (!state->check_bitwise_operations_allowed(&loc)) {
1225 error_emitted = true;
1226 }
1227
1228 if (!op[0]->type->is_integer()) {
1229 _mesa_glsl_error(&loc, state, "operand of `~' must be an integer");
1230 error_emitted = true;
1231 }
1232
1233 type = error_emitted ? glsl_type::error_type : op[0]->type;
1234 result = new(ctx) ir_expression(ir_unop_bit_not, type, op[0], NULL);
1235 break;
1236
1237 case ast_logic_and: {
1238 exec_list rhs_instructions;
1239 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1240 "LHS", &error_emitted);
1241 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1242 "RHS", &error_emitted);
1243
1244 if (rhs_instructions.is_empty()) {
1245 result = new(ctx) ir_expression(ir_binop_logic_and, op[0], op[1]);
1246 type = result->type;
1247 } else {
1248 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1249 "and_tmp",
1250 ir_var_temporary);
1251 instructions->push_tail(tmp);
1252
1253 ir_if *const stmt = new(ctx) ir_if(op[0]);
1254 instructions->push_tail(stmt);
1255
1256 stmt->then_instructions.append_list(&rhs_instructions);
1257 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1258 ir_assignment *const then_assign =
1259 new(ctx) ir_assignment(then_deref, op[1]);
1260 stmt->then_instructions.push_tail(then_assign);
1261
1262 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1263 ir_assignment *const else_assign =
1264 new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false));
1265 stmt->else_instructions.push_tail(else_assign);
1266
1267 result = new(ctx) ir_dereference_variable(tmp);
1268 type = tmp->type;
1269 }
1270 break;
1271 }
1272
1273 case ast_logic_or: {
1274 exec_list rhs_instructions;
1275 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1276 "LHS", &error_emitted);
1277 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1278 "RHS", &error_emitted);
1279
1280 if (rhs_instructions.is_empty()) {
1281 result = new(ctx) ir_expression(ir_binop_logic_or, op[0], op[1]);
1282 type = result->type;
1283 } else {
1284 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1285 "or_tmp",
1286 ir_var_temporary);
1287 instructions->push_tail(tmp);
1288
1289 ir_if *const stmt = new(ctx) ir_if(op[0]);
1290 instructions->push_tail(stmt);
1291
1292 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1293 ir_assignment *const then_assign =
1294 new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true));
1295 stmt->then_instructions.push_tail(then_assign);
1296
1297 stmt->else_instructions.append_list(&rhs_instructions);
1298 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1299 ir_assignment *const else_assign =
1300 new(ctx) ir_assignment(else_deref, op[1]);
1301 stmt->else_instructions.push_tail(else_assign);
1302
1303 result = new(ctx) ir_dereference_variable(tmp);
1304 type = tmp->type;
1305 }
1306 break;
1307 }
1308
1309 case ast_logic_xor:
1310 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1311 *
1312 * "The logical binary operators and (&&), or ( | | ), and
1313 * exclusive or (^^). They operate only on two Boolean
1314 * expressions and result in a Boolean expression."
1315 */
1316 op[0] = get_scalar_boolean_operand(instructions, state, this, 0, "LHS",
1317 &error_emitted);
1318 op[1] = get_scalar_boolean_operand(instructions, state, this, 1, "RHS",
1319 &error_emitted);
1320
1321 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1322 op[0], op[1]);
1323 break;
1324
1325 case ast_logic_not:
1326 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1327 "operand", &error_emitted);
1328
1329 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1330 op[0], NULL);
1331 break;
1332
1333 case ast_mul_assign:
1334 case ast_div_assign:
1335 case ast_add_assign:
1336 case ast_sub_assign: {
1337 op[0] = this->subexpressions[0]->hir(instructions, state);
1338 op[1] = this->subexpressions[1]->hir(instructions, state);
1339
1340 type = arithmetic_result_type(op[0], op[1],
1341 (this->oper == ast_mul_assign),
1342 state, & loc);
1343
1344 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1345 op[0], op[1]);
1346
1347 result = do_assignment(instructions, state,
1348 this->subexpressions[0]->non_lvalue_description,
1349 op[0]->clone(ctx, NULL), temp_rhs, false,
1350 this->subexpressions[0]->get_location());
1351 error_emitted = (op[0]->type->is_error());
1352
1353 /* GLSL 1.10 does not allow array assignment. However, we don't have to
1354 * explicitly test for this because none of the binary expression
1355 * operators allow array operands either.
1356 */
1357
1358 break;
1359 }
1360
1361 case ast_mod_assign: {
1362 op[0] = this->subexpressions[0]->hir(instructions, state);
1363 op[1] = this->subexpressions[1]->hir(instructions, state);
1364
1365 type = modulus_result_type(op[0]->type, op[1]->type, state, & loc);
1366
1367 assert(operations[this->oper] == ir_binop_mod);
1368
1369 ir_rvalue *temp_rhs;
1370 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1371 op[0], op[1]);
1372
1373 result = do_assignment(instructions, state,
1374 this->subexpressions[0]->non_lvalue_description,
1375 op[0]->clone(ctx, NULL), temp_rhs, false,
1376 this->subexpressions[0]->get_location());
1377 error_emitted = type->is_error();
1378 break;
1379 }
1380
1381 case ast_ls_assign:
1382 case ast_rs_assign: {
1383 op[0] = this->subexpressions[0]->hir(instructions, state);
1384 op[1] = this->subexpressions[1]->hir(instructions, state);
1385 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1386 &loc);
1387 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1388 type, op[0], op[1]);
1389 result = do_assignment(instructions, state,
1390 this->subexpressions[0]->non_lvalue_description,
1391 op[0]->clone(ctx, NULL), temp_rhs, false,
1392 this->subexpressions[0]->get_location());
1393 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1394 break;
1395 }
1396
1397 case ast_and_assign:
1398 case ast_xor_assign:
1399 case ast_or_assign: {
1400 op[0] = this->subexpressions[0]->hir(instructions, state);
1401 op[1] = this->subexpressions[1]->hir(instructions, state);
1402 type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
1403 state, &loc);
1404 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1405 type, op[0], op[1]);
1406 result = do_assignment(instructions, state,
1407 this->subexpressions[0]->non_lvalue_description,
1408 op[0]->clone(ctx, NULL), temp_rhs, false,
1409 this->subexpressions[0]->get_location());
1410 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1411 break;
1412 }
1413
1414 case ast_conditional: {
1415 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1416 *
1417 * "The ternary selection operator (?:). It operates on three
1418 * expressions (exp1 ? exp2 : exp3). This operator evaluates the
1419 * first expression, which must result in a scalar Boolean."
1420 */
1421 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1422 "condition", &error_emitted);
1423
1424 /* The :? operator is implemented by generating an anonymous temporary
1425 * followed by an if-statement. The last instruction in each branch of
1426 * the if-statement assigns a value to the anonymous temporary. This
1427 * temporary is the r-value of the expression.
1428 */
1429 exec_list then_instructions;
1430 exec_list else_instructions;
1431
1432 op[1] = this->subexpressions[1]->hir(&then_instructions, state);
1433 op[2] = this->subexpressions[2]->hir(&else_instructions, state);
1434
1435 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1436 *
1437 * "The second and third expressions can be any type, as
1438 * long their types match, or there is a conversion in
1439 * Section 4.1.10 "Implicit Conversions" that can be applied
1440 * to one of the expressions to make their types match. This
1441 * resulting matching type is the type of the entire
1442 * expression."
1443 */
1444 if ((!apply_implicit_conversion(op[1]->type, op[2], state)
1445 && !apply_implicit_conversion(op[2]->type, op[1], state))
1446 || (op[1]->type != op[2]->type)) {
1447 YYLTYPE loc = this->subexpressions[1]->get_location();
1448
1449 _mesa_glsl_error(& loc, state, "second and third operands of ?: "
1450 "operator must have matching types");
1451 error_emitted = true;
1452 type = glsl_type::error_type;
1453 } else {
1454 type = op[1]->type;
1455 }
1456
1457 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1458 *
1459 * "The second and third expressions must be the same type, but can
1460 * be of any type other than an array."
1461 */
1462 if (type->is_array() &&
1463 !state->check_version(120, 300, &loc,
1464 "second and third operands of ?: operator "
1465 "cannot be arrays")) {
1466 error_emitted = true;
1467 }
1468
1469 ir_constant *cond_val = op[0]->constant_expression_value();
1470 ir_constant *then_val = op[1]->constant_expression_value();
1471 ir_constant *else_val = op[2]->constant_expression_value();
1472
1473 if (then_instructions.is_empty()
1474 && else_instructions.is_empty()
1475 && (cond_val != NULL) && (then_val != NULL) && (else_val != NULL)) {
1476 result = (cond_val->value.b[0]) ? then_val : else_val;
1477 } else {
1478 ir_variable *const tmp =
1479 new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary);
1480 instructions->push_tail(tmp);
1481
1482 ir_if *const stmt = new(ctx) ir_if(op[0]);
1483 instructions->push_tail(stmt);
1484
1485 then_instructions.move_nodes_to(& stmt->then_instructions);
1486 ir_dereference *const then_deref =
1487 new(ctx) ir_dereference_variable(tmp);
1488 ir_assignment *const then_assign =
1489 new(ctx) ir_assignment(then_deref, op[1]);
1490 stmt->then_instructions.push_tail(then_assign);
1491
1492 else_instructions.move_nodes_to(& stmt->else_instructions);
1493 ir_dereference *const else_deref =
1494 new(ctx) ir_dereference_variable(tmp);
1495 ir_assignment *const else_assign =
1496 new(ctx) ir_assignment(else_deref, op[2]);
1497 stmt->else_instructions.push_tail(else_assign);
1498
1499 result = new(ctx) ir_dereference_variable(tmp);
1500 }
1501 break;
1502 }
1503
1504 case ast_pre_inc:
1505 case ast_pre_dec: {
1506 this->non_lvalue_description = (this->oper == ast_pre_inc)
1507 ? "pre-increment operation" : "pre-decrement operation";
1508
1509 op[0] = this->subexpressions[0]->hir(instructions, state);
1510 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1511
1512 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1513
1514 ir_rvalue *temp_rhs;
1515 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1516 op[0], op[1]);
1517
1518 result = do_assignment(instructions, state,
1519 this->subexpressions[0]->non_lvalue_description,
1520 op[0]->clone(ctx, NULL), temp_rhs, false,
1521 this->subexpressions[0]->get_location());
1522 error_emitted = op[0]->type->is_error();
1523 break;
1524 }
1525
1526 case ast_post_inc:
1527 case ast_post_dec: {
1528 this->non_lvalue_description = (this->oper == ast_post_inc)
1529 ? "post-increment operation" : "post-decrement operation";
1530 op[0] = this->subexpressions[0]->hir(instructions, state);
1531 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1532
1533 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1534
1535 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1536
1537 ir_rvalue *temp_rhs;
1538 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1539 op[0], op[1]);
1540
1541 /* Get a temporary of a copy of the lvalue before it's modified.
1542 * This may get thrown away later.
1543 */
1544 result = get_lvalue_copy(instructions, op[0]->clone(ctx, NULL));
1545
1546 (void)do_assignment(instructions, state,
1547 this->subexpressions[0]->non_lvalue_description,
1548 op[0]->clone(ctx, NULL), temp_rhs, false,
1549 this->subexpressions[0]->get_location());
1550
1551 error_emitted = op[0]->type->is_error();
1552 break;
1553 }
1554
1555 case ast_field_selection:
1556 result = _mesa_ast_field_selection_to_hir(this, instructions, state);
1557 break;
1558
1559 case ast_array_index: {
1560 YYLTYPE index_loc = subexpressions[1]->get_location();
1561
1562 op[0] = subexpressions[0]->hir(instructions, state);
1563 op[1] = subexpressions[1]->hir(instructions, state);
1564
1565 result = _mesa_ast_array_index_to_hir(ctx, state, op[0], op[1],
1566 loc, index_loc);
1567
1568 if (result->type->is_error())
1569 error_emitted = true;
1570
1571 break;
1572 }
1573
1574 case ast_function_call:
1575 /* Should *NEVER* get here. ast_function_call should always be handled
1576 * by ast_function_expression::hir.
1577 */
1578 assert(0);
1579 break;
1580
1581 case ast_identifier: {
1582 /* ast_identifier can appear several places in a full abstract syntax
1583 * tree. This particular use must be at location specified in the grammar
1584 * as 'variable_identifier'.
1585 */
1586 ir_variable *var =
1587 state->symbols->get_variable(this->primary_expression.identifier);
1588
1589 if (var != NULL) {
1590 var->used = true;
1591 result = new(ctx) ir_dereference_variable(var);
1592 } else {
1593 _mesa_glsl_error(& loc, state, "`%s' undeclared",
1594 this->primary_expression.identifier);
1595
1596 result = ir_rvalue::error_value(ctx);
1597 error_emitted = true;
1598 }
1599 break;
1600 }
1601
1602 case ast_int_constant:
1603 result = new(ctx) ir_constant(this->primary_expression.int_constant);
1604 break;
1605
1606 case ast_uint_constant:
1607 result = new(ctx) ir_constant(this->primary_expression.uint_constant);
1608 break;
1609
1610 case ast_float_constant:
1611 result = new(ctx) ir_constant(this->primary_expression.float_constant);
1612 break;
1613
1614 case ast_bool_constant:
1615 result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant));
1616 break;
1617
1618 case ast_sequence: {
1619 /* It should not be possible to generate a sequence in the AST without
1620 * any expressions in it.
1621 */
1622 assert(!this->expressions.is_empty());
1623
1624 /* The r-value of a sequence is the last expression in the sequence. If
1625 * the other expressions in the sequence do not have side-effects (and
1626 * therefore add instructions to the instruction list), they get dropped
1627 * on the floor.
1628 */
1629 exec_node *previous_tail_pred = NULL;
1630 YYLTYPE previous_operand_loc = loc;
1631
1632 foreach_list_typed (ast_node, ast, link, &this->expressions) {
1633 /* If one of the operands of comma operator does not generate any
1634 * code, we want to emit a warning. At each pass through the loop
1635 * previous_tail_pred will point to the last instruction in the
1636 * stream *before* processing the previous operand. Naturally,
1637 * instructions->tail_pred will point to the last instruction in the
1638 * stream *after* processing the previous operand. If the two
1639 * pointers match, then the previous operand had no effect.
1640 *
1641 * The warning behavior here differs slightly from GCC. GCC will
1642 * only emit a warning if none of the left-hand operands have an
1643 * effect. However, it will emit a warning for each. I believe that
1644 * there are some cases in C (especially with GCC extensions) where
1645 * it is useful to have an intermediate step in a sequence have no
1646 * effect, but I don't think these cases exist in GLSL. Either way,
1647 * it would be a giant hassle to replicate that behavior.
1648 */
1649 if (previous_tail_pred == instructions->tail_pred) {
1650 _mesa_glsl_warning(&previous_operand_loc, state,
1651 "left-hand operand of comma expression has "
1652 "no effect");
1653 }
1654
1655 /* tail_pred is directly accessed instead of using the get_tail()
1656 * method for performance reasons. get_tail() has extra code to
1657 * return NULL when the list is empty. We don't care about that
1658 * here, so using tail_pred directly is fine.
1659 */
1660 previous_tail_pred = instructions->tail_pred;
1661 previous_operand_loc = ast->get_location();
1662
1663 result = ast->hir(instructions, state);
1664 }
1665
1666 /* Any errors should have already been emitted in the loop above.
1667 */
1668 error_emitted = true;
1669 break;
1670 }
1671 }
1672 type = NULL; /* use result->type, not type. */
1673 assert(result != NULL);
1674
1675 if (result->type->is_error() && !error_emitted)
1676 _mesa_glsl_error(& loc, state, "type mismatch");
1677
1678 return result;
1679 }
1680
1681
1682 ir_rvalue *
1683 ast_expression_statement::hir(exec_list *instructions,
1684 struct _mesa_glsl_parse_state *state)
1685 {
1686 /* It is possible to have expression statements that don't have an
1687 * expression. This is the solitary semicolon:
1688 *
1689 * for (i = 0; i < 5; i++)
1690 * ;
1691 *
1692 * In this case the expression will be NULL. Test for NULL and don't do
1693 * anything in that case.
1694 */
1695 if (expression != NULL)
1696 expression->hir(instructions, state);
1697
1698 /* Statements do not have r-values.
1699 */
1700 return NULL;
1701 }
1702
1703
1704 ir_rvalue *
1705 ast_compound_statement::hir(exec_list *instructions,
1706 struct _mesa_glsl_parse_state *state)
1707 {
1708 if (new_scope)
1709 state->symbols->push_scope();
1710
1711 foreach_list_typed (ast_node, ast, link, &this->statements)
1712 ast->hir(instructions, state);
1713
1714 if (new_scope)
1715 state->symbols->pop_scope();
1716
1717 /* Compound statements do not have r-values.
1718 */
1719 return NULL;
1720 }
1721
1722
1723 static const glsl_type *
1724 process_array_type(YYLTYPE *loc, const glsl_type *base, ast_node *array_size,
1725 struct _mesa_glsl_parse_state *state)
1726 {
1727 unsigned length = 0;
1728
1729 if (base == NULL)
1730 return glsl_type::error_type;
1731
1732 /* From page 19 (page 25) of the GLSL 1.20 spec:
1733 *
1734 * "Only one-dimensional arrays may be declared."
1735 */
1736 if (base->is_array()) {
1737 _mesa_glsl_error(loc, state,
1738 "invalid array of `%s' (only one-dimensional arrays "
1739 "may be declared)",
1740 base->name);
1741 return glsl_type::error_type;
1742 }
1743
1744 if (array_size != NULL) {
1745 exec_list dummy_instructions;
1746 ir_rvalue *const ir = array_size->hir(& dummy_instructions, state);
1747 YYLTYPE loc = array_size->get_location();
1748
1749 if (ir != NULL) {
1750 if (!ir->type->is_integer()) {
1751 _mesa_glsl_error(& loc, state, "array size must be integer type");
1752 } else if (!ir->type->is_scalar()) {
1753 _mesa_glsl_error(& loc, state, "array size must be scalar type");
1754 } else {
1755 ir_constant *const size = ir->constant_expression_value();
1756
1757 if (size == NULL) {
1758 _mesa_glsl_error(& loc, state, "array size must be a "
1759 "constant valued expression");
1760 } else if (size->value.i[0] <= 0) {
1761 _mesa_glsl_error(& loc, state, "array size must be > 0");
1762 } else {
1763 assert(size->type == ir->type);
1764 length = size->value.u[0];
1765
1766 /* If the array size is const (and we've verified that
1767 * it is) then no instructions should have been emitted
1768 * when we converted it to HIR. If they were emitted,
1769 * then either the array size isn't const after all, or
1770 * we are emitting unnecessary instructions.
1771 */
1772 assert(dummy_instructions.is_empty());
1773 }
1774 }
1775 }
1776 } else if (state->es_shader) {
1777 /* Section 10.17 of the GLSL ES 1.00 specification states that unsized
1778 * array declarations have been removed from the language.
1779 */
1780 _mesa_glsl_error(loc, state, "unsized array declarations are not "
1781 "allowed in GLSL ES 1.00");
1782 }
1783
1784 const glsl_type *array_type = glsl_type::get_array_instance(base, length);
1785 return array_type != NULL ? array_type : glsl_type::error_type;
1786 }
1787
1788
1789 const glsl_type *
1790 ast_type_specifier::glsl_type(const char **name,
1791 struct _mesa_glsl_parse_state *state) const
1792 {
1793 const struct glsl_type *type;
1794
1795 type = state->symbols->get_type(this->type_name);
1796 *name = this->type_name;
1797
1798 if (this->is_array) {
1799 YYLTYPE loc = this->get_location();
1800 type = process_array_type(&loc, type, this->array_size, state);
1801 }
1802
1803 return type;
1804 }
1805
1806
1807 /**
1808 * Determine whether a toplevel variable declaration declares a varying. This
1809 * function operates by examining the variable's mode and the shader target,
1810 * so it correctly identifies linkage variables regardless of whether they are
1811 * declared using the deprecated "varying" syntax or the new "in/out" syntax.
1812 *
1813 * Passing a non-toplevel variable declaration (e.g. a function parameter) to
1814 * this function will produce undefined results.
1815 */
1816 static bool
1817 is_varying_var(ir_variable *var, _mesa_glsl_parser_targets target)
1818 {
1819 switch (target) {
1820 case vertex_shader:
1821 return var->mode == ir_var_shader_out;
1822 case fragment_shader:
1823 return var->mode == ir_var_shader_in;
1824 default:
1825 return var->mode == ir_var_shader_out || var->mode == ir_var_shader_in;
1826 }
1827 }
1828
1829
1830 /**
1831 * Matrix layout qualifiers are only allowed on certain types
1832 */
1833 static void
1834 validate_matrix_layout_for_type(struct _mesa_glsl_parse_state *state,
1835 YYLTYPE *loc,
1836 const glsl_type *type)
1837 {
1838 if (!type->is_matrix() && !type->is_record()) {
1839 _mesa_glsl_error(loc, state,
1840 "uniform block layout qualifiers row_major and "
1841 "column_major can only be applied to matrix and "
1842 "structure types");
1843 } else if (type->is_record()) {
1844 /* We allow 'layout(row_major)' on structure types because it's the only
1845 * way to get row-major layouts on matrices contained in structures.
1846 */
1847 _mesa_glsl_warning(loc, state,
1848 "uniform block layout qualifiers row_major and "
1849 "column_major applied to structure types is not "
1850 "strictly conformant and my be rejected by other "
1851 "compilers");
1852 }
1853 }
1854
1855 static bool
1856 validate_binding_qualifier(struct _mesa_glsl_parse_state *state,
1857 YYLTYPE *loc,
1858 ir_variable *var,
1859 const ast_type_qualifier *qual)
1860 {
1861 if (var->mode != ir_var_uniform) {
1862 _mesa_glsl_error(loc, state,
1863 "the \"binding\" qualifier only applies to uniforms");
1864 return false;
1865 }
1866
1867 if (qual->binding < 0) {
1868 _mesa_glsl_error(loc, state, "binding values must be >= 0");
1869 return false;
1870 }
1871
1872 const struct gl_context *const ctx = state->ctx;
1873 unsigned elements = var->type->is_array() ? var->type->length : 1;
1874 unsigned max_index = qual->binding + elements - 1;
1875
1876 if (var->type->is_interface()) {
1877 /* UBOs. From page 60 of the GLSL 4.20 specification:
1878 * "If the binding point for any uniform block instance is less than zero,
1879 * or greater than or equal to the implementation-dependent maximum
1880 * number of uniform buffer bindings, a compilation error will occur.
1881 * When the binding identifier is used with a uniform block instanced as
1882 * an array of size N, all elements of the array from binding through
1883 * binding + N – 1 must be within this range."
1884 *
1885 * The implementation-dependent maximum is GL_MAX_UNIFORM_BUFFER_BINDINGS.
1886 */
1887 if (max_index >= ctx->Const.MaxUniformBufferBindings) {
1888 _mesa_glsl_error(loc, state, "layout(binding = %d) for %d UBOs exceeds "
1889 "the maximum number of UBO binding points (%d)",
1890 qual->binding, elements,
1891 ctx->Const.MaxUniformBufferBindings);
1892 return false;
1893 }
1894 } else if (var->type->is_sampler() ||
1895 (var->type->is_array() && var->type->fields.array->is_sampler())) {
1896 /* Samplers. From page 63 of the GLSL 4.20 specification:
1897 * "If the binding is less than zero, or greater than or equal to the
1898 * implementation-dependent maximum supported number of units, a
1899 * compilation error will occur. When the binding identifier is used
1900 * with an array of size N, all elements of the array from binding
1901 * through binding + N - 1 must be within this range."
1902 */
1903 unsigned limit;
1904 switch (state->target) {
1905 case vertex_shader:
1906 limit = ctx->Const.VertexProgram.MaxTextureImageUnits;
1907 break;
1908 case geometry_shader:
1909 limit = ctx->Const.GeometryProgram.MaxTextureImageUnits;
1910 break;
1911 case fragment_shader:
1912 limit = ctx->Const.FragmentProgram.MaxTextureImageUnits;
1913 break;
1914 }
1915
1916 if (max_index >= limit) {
1917 _mesa_glsl_error(loc, state, "layout(binding = %d) for %d samplers "
1918 "exceeds the maximum number of texture image units "
1919 "(%d)", qual->binding, elements, limit);
1920
1921 return false;
1922 }
1923 } else {
1924 _mesa_glsl_error(loc, state,
1925 "the \"binding\" qualifier only applies to uniform "
1926 "blocks, samplers, or arrays of samplers");
1927 return false;
1928 }
1929
1930 return true;
1931 }
1932
1933 static void
1934 apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
1935 ir_variable *var,
1936 struct _mesa_glsl_parse_state *state,
1937 YYLTYPE *loc,
1938 bool ubo_qualifiers_valid,
1939 bool is_parameter)
1940 {
1941 STATIC_ASSERT(sizeof(qual->flags.q) <= sizeof(qual->flags.i));
1942
1943 if (qual->flags.q.invariant) {
1944 if (var->used) {
1945 _mesa_glsl_error(loc, state,
1946 "variable `%s' may not be redeclared "
1947 "`invariant' after being used",
1948 var->name);
1949 } else {
1950 var->invariant = 1;
1951 }
1952 }
1953
1954 if (qual->flags.q.constant || qual->flags.q.attribute
1955 || qual->flags.q.uniform
1956 || (qual->flags.q.varying && (state->target == fragment_shader)))
1957 var->read_only = 1;
1958
1959 if (qual->flags.q.centroid)
1960 var->centroid = 1;
1961
1962 if (qual->flags.q.attribute && state->target != vertex_shader) {
1963 var->type = glsl_type::error_type;
1964 _mesa_glsl_error(loc, state,
1965 "`attribute' variables may not be declared in the "
1966 "%s shader",
1967 _mesa_glsl_shader_target_name(state->target));
1968 }
1969
1970 /* Section 6.1.1 (Function Calling Conventions) of the GLSL 1.10 spec says:
1971 *
1972 * "However, the const qualifier cannot be used with out or inout."
1973 *
1974 * The same section of the GLSL 4.40 spec further clarifies this saying:
1975 *
1976 * "The const qualifier cannot be used with out or inout, or a
1977 * compile-time error results."
1978 */
1979 if (is_parameter && qual->flags.q.constant && qual->flags.q.out) {
1980 _mesa_glsl_error(loc, state,
1981 "`const' may not be applied to `out' or `inout' "
1982 "function parameters");
1983 }
1984
1985 /* If there is no qualifier that changes the mode of the variable, leave
1986 * the setting alone.
1987 */
1988 if (qual->flags.q.in && qual->flags.q.out)
1989 var->mode = ir_var_function_inout;
1990 else if (qual->flags.q.in)
1991 var->mode = is_parameter ? ir_var_function_in : ir_var_shader_in;
1992 else if (qual->flags.q.attribute
1993 || (qual->flags.q.varying && (state->target == fragment_shader)))
1994 var->mode = ir_var_shader_in;
1995 else if (qual->flags.q.out)
1996 var->mode = is_parameter ? ir_var_function_out : ir_var_shader_out;
1997 else if (qual->flags.q.varying && (state->target == vertex_shader))
1998 var->mode = ir_var_shader_out;
1999 else if (qual->flags.q.uniform)
2000 var->mode = ir_var_uniform;
2001
2002 if (!is_parameter && is_varying_var(var, state->target)) {
2003 /* This variable is being used to link data between shader stages (in
2004 * pre-glsl-1.30 parlance, it's a "varying"). Check that it has a type
2005 * that is allowed for such purposes.
2006 *
2007 * From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
2008 *
2009 * "The varying qualifier can be used only with the data types
2010 * float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
2011 * these."
2012 *
2013 * This was relaxed in GLSL version 1.30 and GLSL ES version 3.00. From
2014 * page 31 (page 37 of the PDF) of the GLSL 1.30 spec:
2015 *
2016 * "Fragment inputs can only be signed and unsigned integers and
2017 * integer vectors, float, floating-point vectors, matrices, or
2018 * arrays of these. Structures cannot be input.
2019 *
2020 * Similar text exists in the section on vertex shader outputs.
2021 *
2022 * Similar text exists in the GLSL ES 3.00 spec, except that the GLSL ES
2023 * 3.00 spec allows structs as well. Varying structs are also allowed
2024 * in GLSL 1.50.
2025 */
2026 switch (var->type->get_scalar_type()->base_type) {
2027 case GLSL_TYPE_FLOAT:
2028 /* Ok in all GLSL versions */
2029 break;
2030 case GLSL_TYPE_UINT:
2031 case GLSL_TYPE_INT:
2032 if (state->is_version(130, 300))
2033 break;
2034 _mesa_glsl_error(loc, state,
2035 "varying variables must be of base type float in %s",
2036 state->get_version_string());
2037 break;
2038 case GLSL_TYPE_STRUCT:
2039 if (state->is_version(150, 300))
2040 break;
2041 _mesa_glsl_error(loc, state,
2042 "varying variables may not be of type struct");
2043 break;
2044 default:
2045 _mesa_glsl_error(loc, state, "illegal type for a varying variable");
2046 break;
2047 }
2048 }
2049
2050 if (state->all_invariant && (state->current_function == NULL)) {
2051 switch (state->target) {
2052 case vertex_shader:
2053 if (var->mode == ir_var_shader_out)
2054 var->invariant = true;
2055 break;
2056 case geometry_shader:
2057 if ((var->mode == ir_var_shader_in)
2058 || (var->mode == ir_var_shader_out))
2059 var->invariant = true;
2060 break;
2061 case fragment_shader:
2062 if (var->mode == ir_var_shader_in)
2063 var->invariant = true;
2064 break;
2065 }
2066 }
2067
2068 if (qual->flags.q.flat)
2069 var->interpolation = INTERP_QUALIFIER_FLAT;
2070 else if (qual->flags.q.noperspective)
2071 var->interpolation = INTERP_QUALIFIER_NOPERSPECTIVE;
2072 else if (qual->flags.q.smooth)
2073 var->interpolation = INTERP_QUALIFIER_SMOOTH;
2074 else
2075 var->interpolation = INTERP_QUALIFIER_NONE;
2076
2077 if (var->interpolation != INTERP_QUALIFIER_NONE) {
2078 ir_variable_mode mode = (ir_variable_mode) var->mode;
2079
2080 if (mode != ir_var_shader_in && mode != ir_var_shader_out) {
2081 _mesa_glsl_error(loc, state,
2082 "interpolation qualifier `%s' can only be applied to "
2083 "shader inputs or outputs.",
2084 var->interpolation_string());
2085
2086 }
2087
2088 if ((state->target == vertex_shader && mode == ir_var_shader_in) ||
2089 (state->target == fragment_shader && mode == ir_var_shader_out)) {
2090 _mesa_glsl_error(loc, state,
2091 "interpolation qualifier `%s' cannot be applied to "
2092 "vertex shader inputs or fragment shader outputs",
2093 var->interpolation_string());
2094 }
2095 }
2096
2097 var->pixel_center_integer = qual->flags.q.pixel_center_integer;
2098 var->origin_upper_left = qual->flags.q.origin_upper_left;
2099 if ((qual->flags.q.origin_upper_left || qual->flags.q.pixel_center_integer)
2100 && (strcmp(var->name, "gl_FragCoord") != 0)) {
2101 const char *const qual_string = (qual->flags.q.origin_upper_left)
2102 ? "origin_upper_left" : "pixel_center_integer";
2103
2104 _mesa_glsl_error(loc, state,
2105 "layout qualifier `%s' can only be applied to "
2106 "fragment shader input `gl_FragCoord'",
2107 qual_string);
2108 }
2109
2110 if (qual->flags.q.explicit_location) {
2111 const bool global_scope = (state->current_function == NULL);
2112 bool fail = false;
2113 const char *string = "";
2114
2115 /* In the vertex shader only shader inputs can be given explicit
2116 * locations.
2117 *
2118 * In the fragment shader only shader outputs can be given explicit
2119 * locations.
2120 */
2121 switch (state->target) {
2122 case vertex_shader:
2123 if (!global_scope || (var->mode != ir_var_shader_in)) {
2124 fail = true;
2125 string = "input";
2126 }
2127 break;
2128
2129 case geometry_shader:
2130 _mesa_glsl_error(loc, state,
2131 "geometry shader variables cannot be given "
2132 "explicit locations");
2133 break;
2134
2135 case fragment_shader:
2136 if (!global_scope || (var->mode != ir_var_shader_out)) {
2137 fail = true;
2138 string = "output";
2139 }
2140 break;
2141 };
2142
2143 if (fail) {
2144 _mesa_glsl_error(loc, state,
2145 "only %s shader %s variables can be given an "
2146 "explicit location",
2147 _mesa_glsl_shader_target_name(state->target),
2148 string);
2149 } else {
2150 var->explicit_location = true;
2151
2152 /* This bit of silliness is needed because invalid explicit locations
2153 * are supposed to be flagged during linking. Small negative values
2154 * biased by VERT_ATTRIB_GENERIC0 or FRAG_RESULT_DATA0 could alias
2155 * built-in values (e.g., -16+VERT_ATTRIB_GENERIC0 = VERT_ATTRIB_POS).
2156 * The linker needs to be able to differentiate these cases. This
2157 * ensures that negative values stay negative.
2158 */
2159 if (qual->location >= 0) {
2160 var->location = (state->target == vertex_shader)
2161 ? (qual->location + VERT_ATTRIB_GENERIC0)
2162 : (qual->location + FRAG_RESULT_DATA0);
2163 } else {
2164 var->location = qual->location;
2165 }
2166
2167 if (qual->flags.q.explicit_index) {
2168 /* From the GLSL 4.30 specification, section 4.4.2 (Output
2169 * Layout Qualifiers):
2170 *
2171 * "It is also a compile-time error if a fragment shader
2172 * sets a layout index to less than 0 or greater than 1."
2173 *
2174 * Older specifications don't mandate a behavior; we take
2175 * this as a clarification and always generate the error.
2176 */
2177 if (qual->index < 0 || qual->index > 1) {
2178 _mesa_glsl_error(loc, state,
2179 "explicit index may only be 0 or 1");
2180 } else {
2181 var->explicit_index = true;
2182 var->index = qual->index;
2183 }
2184 }
2185 }
2186 } else if (qual->flags.q.explicit_index) {
2187 _mesa_glsl_error(loc, state,
2188 "explicit index requires explicit location");
2189 }
2190
2191 if (qual->flags.q.explicit_binding &&
2192 validate_binding_qualifier(state, loc, var, qual)) {
2193 var->explicit_binding = true;
2194 var->binding = qual->binding;
2195 }
2196
2197 /* Does the declaration use the deprecated 'attribute' or 'varying'
2198 * keywords?
2199 */
2200 const bool uses_deprecated_qualifier = qual->flags.q.attribute
2201 || qual->flags.q.varying;
2202
2203 /* Is the 'layout' keyword used with parameters that allow relaxed checking.
2204 * Many implementations of GL_ARB_fragment_coord_conventions_enable and some
2205 * implementations (only Mesa?) GL_ARB_explicit_attrib_location_enable
2206 * allowed the layout qualifier to be used with 'varying' and 'attribute'.
2207 * These extensions and all following extensions that add the 'layout'
2208 * keyword have been modified to require the use of 'in' or 'out'.
2209 *
2210 * The following extension do not allow the deprecated keywords:
2211 *
2212 * GL_AMD_conservative_depth
2213 * GL_ARB_conservative_depth
2214 * GL_ARB_gpu_shader5
2215 * GL_ARB_separate_shader_objects
2216 * GL_ARB_tesselation_shader
2217 * GL_ARB_transform_feedback3
2218 * GL_ARB_uniform_buffer_object
2219 *
2220 * It is unknown whether GL_EXT_shader_image_load_store or GL_NV_gpu_shader5
2221 * allow layout with the deprecated keywords.
2222 */
2223 const bool relaxed_layout_qualifier_checking =
2224 state->ARB_fragment_coord_conventions_enable;
2225
2226 if (qual->has_layout() && uses_deprecated_qualifier) {
2227 if (relaxed_layout_qualifier_checking) {
2228 _mesa_glsl_warning(loc, state,
2229 "`layout' qualifier may not be used with "
2230 "`attribute' or `varying'");
2231 } else {
2232 _mesa_glsl_error(loc, state,
2233 "`layout' qualifier may not be used with "
2234 "`attribute' or `varying'");
2235 }
2236 }
2237
2238 /* Layout qualifiers for gl_FragDepth, which are enabled by extension
2239 * AMD_conservative_depth.
2240 */
2241 int depth_layout_count = qual->flags.q.depth_any
2242 + qual->flags.q.depth_greater
2243 + qual->flags.q.depth_less
2244 + qual->flags.q.depth_unchanged;
2245 if (depth_layout_count > 0
2246 && !state->AMD_conservative_depth_enable
2247 && !state->ARB_conservative_depth_enable) {
2248 _mesa_glsl_error(loc, state,
2249 "extension GL_AMD_conservative_depth or "
2250 "GL_ARB_conservative_depth must be enabled "
2251 "to use depth layout qualifiers");
2252 } else if (depth_layout_count > 0
2253 && strcmp(var->name, "gl_FragDepth") != 0) {
2254 _mesa_glsl_error(loc, state,
2255 "depth layout qualifiers can be applied only to "
2256 "gl_FragDepth");
2257 } else if (depth_layout_count > 1
2258 && strcmp(var->name, "gl_FragDepth") == 0) {
2259 _mesa_glsl_error(loc, state,
2260 "at most one depth layout qualifier can be applied to "
2261 "gl_FragDepth");
2262 }
2263 if (qual->flags.q.depth_any)
2264 var->depth_layout = ir_depth_layout_any;
2265 else if (qual->flags.q.depth_greater)
2266 var->depth_layout = ir_depth_layout_greater;
2267 else if (qual->flags.q.depth_less)
2268 var->depth_layout = ir_depth_layout_less;
2269 else if (qual->flags.q.depth_unchanged)
2270 var->depth_layout = ir_depth_layout_unchanged;
2271 else
2272 var->depth_layout = ir_depth_layout_none;
2273
2274 if (qual->flags.q.std140 ||
2275 qual->flags.q.packed ||
2276 qual->flags.q.shared) {
2277 _mesa_glsl_error(loc, state,
2278 "uniform block layout qualifiers std140, packed, and "
2279 "shared can only be applied to uniform blocks, not "
2280 "members");
2281 }
2282
2283 if (qual->flags.q.row_major || qual->flags.q.column_major) {
2284 if (!ubo_qualifiers_valid) {
2285 _mesa_glsl_error(loc, state,
2286 "uniform block layout qualifiers row_major and "
2287 "column_major can only be applied to uniform block "
2288 "members");
2289 } else
2290 validate_matrix_layout_for_type(state, loc, var->type);
2291 }
2292 }
2293
2294 /**
2295 * Get the variable that is being redeclared by this declaration
2296 *
2297 * Semantic checks to verify the validity of the redeclaration are also
2298 * performed. If semantic checks fail, compilation error will be emitted via
2299 * \c _mesa_glsl_error, but a non-\c NULL pointer will still be returned.
2300 *
2301 * \returns
2302 * A pointer to an existing variable in the current scope if the declaration
2303 * is a redeclaration, \c NULL otherwise.
2304 */
2305 ir_variable *
2306 get_variable_being_redeclared(ir_variable *var, ast_declaration *decl,
2307 struct _mesa_glsl_parse_state *state)
2308 {
2309 /* Check if this declaration is actually a re-declaration, either to
2310 * resize an array or add qualifiers to an existing variable.
2311 *
2312 * This is allowed for variables in the current scope, or when at
2313 * global scope (for built-ins in the implicit outer scope).
2314 */
2315 ir_variable *earlier = state->symbols->get_variable(decl->identifier);
2316 if (earlier == NULL ||
2317 (state->current_function != NULL &&
2318 !state->symbols->name_declared_this_scope(decl->identifier))) {
2319 return NULL;
2320 }
2321
2322
2323 YYLTYPE loc = decl->get_location();
2324
2325 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
2326 *
2327 * "It is legal to declare an array without a size and then
2328 * later re-declare the same name as an array of the same
2329 * type and specify a size."
2330 */
2331 if ((earlier->type->array_size() == 0)
2332 && var->type->is_array()
2333 && (var->type->element_type() == earlier->type->element_type())) {
2334 /* FINISHME: This doesn't match the qualifiers on the two
2335 * FINISHME: declarations. It's not 100% clear whether this is
2336 * FINISHME: required or not.
2337 */
2338
2339 const unsigned size = unsigned(var->type->array_size());
2340 check_builtin_array_max_size(var->name, size, loc, state);
2341 if ((size > 0) && (size <= earlier->max_array_access)) {
2342 _mesa_glsl_error(& loc, state, "array size must be > %u due to "
2343 "previous access",
2344 earlier->max_array_access);
2345 }
2346
2347 earlier->type = var->type;
2348 delete var;
2349 var = NULL;
2350 } else if ((state->ARB_fragment_coord_conventions_enable ||
2351 state->is_version(150, 0))
2352 && strcmp(var->name, "gl_FragCoord") == 0
2353 && earlier->type == var->type
2354 && earlier->mode == var->mode) {
2355 /* Allow redeclaration of gl_FragCoord for ARB_fcc layout
2356 * qualifiers.
2357 */
2358 earlier->origin_upper_left = var->origin_upper_left;
2359 earlier->pixel_center_integer = var->pixel_center_integer;
2360
2361 /* According to section 4.3.7 of the GLSL 1.30 spec,
2362 * the following built-in varaibles can be redeclared with an
2363 * interpolation qualifier:
2364 * * gl_FrontColor
2365 * * gl_BackColor
2366 * * gl_FrontSecondaryColor
2367 * * gl_BackSecondaryColor
2368 * * gl_Color
2369 * * gl_SecondaryColor
2370 */
2371 } else if (state->is_version(130, 0)
2372 && (strcmp(var->name, "gl_FrontColor") == 0
2373 || strcmp(var->name, "gl_BackColor") == 0
2374 || strcmp(var->name, "gl_FrontSecondaryColor") == 0
2375 || strcmp(var->name, "gl_BackSecondaryColor") == 0
2376 || strcmp(var->name, "gl_Color") == 0
2377 || strcmp(var->name, "gl_SecondaryColor") == 0)
2378 && earlier->type == var->type
2379 && earlier->mode == var->mode) {
2380 earlier->interpolation = var->interpolation;
2381
2382 /* Layout qualifiers for gl_FragDepth. */
2383 } else if ((state->AMD_conservative_depth_enable ||
2384 state->ARB_conservative_depth_enable)
2385 && strcmp(var->name, "gl_FragDepth") == 0
2386 && earlier->type == var->type
2387 && earlier->mode == var->mode) {
2388
2389 /** From the AMD_conservative_depth spec:
2390 * Within any shader, the first redeclarations of gl_FragDepth
2391 * must appear before any use of gl_FragDepth.
2392 */
2393 if (earlier->used) {
2394 _mesa_glsl_error(&loc, state,
2395 "the first redeclaration of gl_FragDepth "
2396 "must appear before any use of gl_FragDepth");
2397 }
2398
2399 /* Prevent inconsistent redeclaration of depth layout qualifier. */
2400 if (earlier->depth_layout != ir_depth_layout_none
2401 && earlier->depth_layout != var->depth_layout) {
2402 _mesa_glsl_error(&loc, state,
2403 "gl_FragDepth: depth layout is declared here "
2404 "as '%s, but it was previously declared as "
2405 "'%s'",
2406 depth_layout_string(var->depth_layout),
2407 depth_layout_string(earlier->depth_layout));
2408 }
2409
2410 earlier->depth_layout = var->depth_layout;
2411
2412 } else {
2413 _mesa_glsl_error(&loc, state, "`%s' redeclared", decl->identifier);
2414 }
2415
2416 return earlier;
2417 }
2418
2419 /**
2420 * Generate the IR for an initializer in a variable declaration
2421 */
2422 ir_rvalue *
2423 process_initializer(ir_variable *var, ast_declaration *decl,
2424 ast_fully_specified_type *type,
2425 exec_list *initializer_instructions,
2426 struct _mesa_glsl_parse_state *state)
2427 {
2428 ir_rvalue *result = NULL;
2429
2430 YYLTYPE initializer_loc = decl->initializer->get_location();
2431
2432 /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
2433 *
2434 * "All uniform variables are read-only and are initialized either
2435 * directly by an application via API commands, or indirectly by
2436 * OpenGL."
2437 */
2438 if (var->mode == ir_var_uniform) {
2439 state->check_version(120, 0, &initializer_loc,
2440 "cannot initialize uniforms");
2441 }
2442
2443 if (var->type->is_sampler()) {
2444 _mesa_glsl_error(& initializer_loc, state,
2445 "cannot initialize samplers");
2446 }
2447
2448 if ((var->mode == ir_var_shader_in) && (state->current_function == NULL)) {
2449 _mesa_glsl_error(& initializer_loc, state,
2450 "cannot initialize %s shader input / %s",
2451 _mesa_glsl_shader_target_name(state->target),
2452 (state->target == vertex_shader)
2453 ? "attribute" : "varying");
2454 }
2455
2456 ir_dereference *const lhs = new(state) ir_dereference_variable(var);
2457 ir_rvalue *rhs = decl->initializer->hir(initializer_instructions,
2458 state);
2459
2460 /* Calculate the constant value if this is a const or uniform
2461 * declaration.
2462 */
2463 if (type->qualifier.flags.q.constant
2464 || type->qualifier.flags.q.uniform) {
2465 ir_rvalue *new_rhs = validate_assignment(state, var->type, rhs, true);
2466 if (new_rhs != NULL) {
2467 rhs = new_rhs;
2468
2469 ir_constant *constant_value = rhs->constant_expression_value();
2470 if (!constant_value) {
2471 /* If ARB_shading_language_420pack is enabled, initializers of
2472 * const-qualified local variables do not have to be constant
2473 * expressions. Const-qualified global variables must still be
2474 * initialized with constant expressions.
2475 */
2476 if (!state->ARB_shading_language_420pack_enable
2477 || state->current_function == NULL) {
2478 _mesa_glsl_error(& initializer_loc, state,
2479 "initializer of %s variable `%s' must be a "
2480 "constant expression",
2481 (type->qualifier.flags.q.constant)
2482 ? "const" : "uniform",
2483 decl->identifier);
2484 if (var->type->is_numeric()) {
2485 /* Reduce cascading errors. */
2486 var->constant_value = ir_constant::zero(state, var->type);
2487 }
2488 }
2489 } else {
2490 rhs = constant_value;
2491 var->constant_value = constant_value;
2492 }
2493 } else {
2494 _mesa_glsl_error(&initializer_loc, state,
2495 "initializer of type %s cannot be assigned to "
2496 "variable of type %s",
2497 rhs->type->name, var->type->name);
2498 if (var->type->is_numeric()) {
2499 /* Reduce cascading errors. */
2500 var->constant_value = ir_constant::zero(state, var->type);
2501 }
2502 }
2503 }
2504
2505 if (rhs && !rhs->type->is_error()) {
2506 bool temp = var->read_only;
2507 if (type->qualifier.flags.q.constant)
2508 var->read_only = false;
2509
2510 /* Never emit code to initialize a uniform.
2511 */
2512 const glsl_type *initializer_type;
2513 if (!type->qualifier.flags.q.uniform) {
2514 result = do_assignment(initializer_instructions, state,
2515 NULL,
2516 lhs, rhs, true,
2517 type->get_location());
2518 initializer_type = result->type;
2519 } else
2520 initializer_type = rhs->type;
2521
2522 var->constant_initializer = rhs->constant_expression_value();
2523 var->has_initializer = true;
2524
2525 /* If the declared variable is an unsized array, it must inherrit
2526 * its full type from the initializer. A declaration such as
2527 *
2528 * uniform float a[] = float[](1.0, 2.0, 3.0, 3.0);
2529 *
2530 * becomes
2531 *
2532 * uniform float a[4] = float[](1.0, 2.0, 3.0, 3.0);
2533 *
2534 * The assignment generated in the if-statement (below) will also
2535 * automatically handle this case for non-uniforms.
2536 *
2537 * If the declared variable is not an array, the types must
2538 * already match exactly. As a result, the type assignment
2539 * here can be done unconditionally. For non-uniforms the call
2540 * to do_assignment can change the type of the initializer (via
2541 * the implicit conversion rules). For uniforms the initializer
2542 * must be a constant expression, and the type of that expression
2543 * was validated above.
2544 */
2545 var->type = initializer_type;
2546
2547 var->read_only = temp;
2548 }
2549
2550 return result;
2551 }
2552
2553
2554 /**
2555 * Do additional processing necessary for geometry shader input array
2556 * declarations (this covers both interface blocks arrays and input variable
2557 * arrays).
2558 */
2559 static void
2560 handle_geometry_shader_input_decl(struct _mesa_glsl_parse_state *state,
2561 YYLTYPE loc, ir_variable *var)
2562 {
2563 unsigned num_vertices = 0;
2564 if (state->gs_input_prim_type_specified) {
2565 num_vertices = vertices_per_prim(state->gs_input_prim_type);
2566 }
2567
2568 assert(var->type->is_array());
2569 if (var->type->length == 0) {
2570 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec says:
2571 *
2572 * All geometry shader input unsized array declarations will be
2573 * sized by an earlier input layout qualifier, when present, as per
2574 * the following table.
2575 *
2576 * Followed by a table mapping each allowed input layout qualifier to
2577 * the corresponding input length.
2578 */
2579 if (num_vertices != 0)
2580 var->type = glsl_type::get_array_instance(var->type->fields.array,
2581 num_vertices);
2582 } else {
2583 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec
2584 * includes the following examples of compile-time errors:
2585 *
2586 * // code sequence within one shader...
2587 * in vec4 Color1[]; // size unknown
2588 * ...Color1.length()...// illegal, length() unknown
2589 * in vec4 Color2[2]; // size is 2
2590 * ...Color1.length()...// illegal, Color1 still has no size
2591 * in vec4 Color3[3]; // illegal, input sizes are inconsistent
2592 * layout(lines) in; // legal, input size is 2, matching
2593 * in vec4 Color4[3]; // illegal, contradicts layout
2594 * ...
2595 *
2596 * To detect the case illustrated by Color3, we verify that the size of
2597 * an explicitly-sized array matches the size of any previously declared
2598 * explicitly-sized array. To detect the case illustrated by Color4, we
2599 * verify that the size of an explicitly-sized array is consistent with
2600 * any previously declared input layout.
2601 */
2602 if (num_vertices != 0 && var->type->length != num_vertices) {
2603 _mesa_glsl_error(&loc, state,
2604 "geometry shader input size contradicts previously"
2605 " declared layout (size is %u, but layout requires a"
2606 " size of %u)", var->type->length, num_vertices);
2607 } else if (state->gs_input_size != 0 &&
2608 var->type->length != state->gs_input_size) {
2609 _mesa_glsl_error(&loc, state,
2610 "geometry shader input sizes are "
2611 "inconsistent (size is %u, but a previous "
2612 "declaration has size %u)",
2613 var->type->length, state->gs_input_size);
2614 } else {
2615 state->gs_input_size = var->type->length;
2616 }
2617 }
2618 }
2619
2620 ir_rvalue *
2621 ast_declarator_list::hir(exec_list *instructions,
2622 struct _mesa_glsl_parse_state *state)
2623 {
2624 void *ctx = state;
2625 const struct glsl_type *decl_type;
2626 const char *type_name = NULL;
2627 ir_rvalue *result = NULL;
2628 YYLTYPE loc = this->get_location();
2629
2630 /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec:
2631 *
2632 * "To ensure that a particular output variable is invariant, it is
2633 * necessary to use the invariant qualifier. It can either be used to
2634 * qualify a previously declared variable as being invariant
2635 *
2636 * invariant gl_Position; // make existing gl_Position be invariant"
2637 *
2638 * In these cases the parser will set the 'invariant' flag in the declarator
2639 * list, and the type will be NULL.
2640 */
2641 if (this->invariant) {
2642 assert(this->type == NULL);
2643
2644 if (state->current_function != NULL) {
2645 _mesa_glsl_error(& loc, state,
2646 "all uses of `invariant' keyword must be at global "
2647 "scope");
2648 }
2649
2650 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
2651 assert(!decl->is_array);
2652 assert(decl->array_size == NULL);
2653 assert(decl->initializer == NULL);
2654
2655 ir_variable *const earlier =
2656 state->symbols->get_variable(decl->identifier);
2657 if (earlier == NULL) {
2658 _mesa_glsl_error(& loc, state,
2659 "undeclared variable `%s' cannot be marked "
2660 "invariant", decl->identifier);
2661 } else if ((state->target == vertex_shader)
2662 && (earlier->mode != ir_var_shader_out)) {
2663 _mesa_glsl_error(& loc, state,
2664 "`%s' cannot be marked invariant, vertex shader "
2665 "outputs only", decl->identifier);
2666 } else if ((state->target == fragment_shader)
2667 && (earlier->mode != ir_var_shader_in)) {
2668 _mesa_glsl_error(& loc, state,
2669 "`%s' cannot be marked invariant, fragment shader "
2670 "inputs only", decl->identifier);
2671 } else if (earlier->used) {
2672 _mesa_glsl_error(& loc, state,
2673 "variable `%s' may not be redeclared "
2674 "`invariant' after being used",
2675 earlier->name);
2676 } else {
2677 earlier->invariant = true;
2678 }
2679 }
2680
2681 /* Invariant redeclarations do not have r-values.
2682 */
2683 return NULL;
2684 }
2685
2686 assert(this->type != NULL);
2687 assert(!this->invariant);
2688
2689 /* The type specifier may contain a structure definition. Process that
2690 * before any of the variable declarations.
2691 */
2692 (void) this->type->specifier->hir(instructions, state);
2693
2694 decl_type = this->type->specifier->glsl_type(& type_name, state);
2695 if (this->declarations.is_empty()) {
2696 /* If there is no structure involved in the program text, there are two
2697 * possible scenarios:
2698 *
2699 * - The program text contained something like 'vec4;'. This is an
2700 * empty declaration. It is valid but weird. Emit a warning.
2701 *
2702 * - The program text contained something like 'S;' and 'S' is not the
2703 * name of a known structure type. This is both invalid and weird.
2704 * Emit an error.
2705 *
2706 * Note that if decl_type is NULL and there is a structure involved,
2707 * there must have been some sort of error with the structure. In this
2708 * case we assume that an error was already generated on this line of
2709 * code for the structure. There is no need to generate an additional,
2710 * confusing error.
2711 */
2712 assert(this->type->specifier->structure == NULL || decl_type != NULL
2713 || state->error);
2714 if (this->type->specifier->structure == NULL) {
2715 if (decl_type != NULL) {
2716 _mesa_glsl_warning(&loc, state, "empty declaration");
2717 } else {
2718 _mesa_glsl_error(&loc, state,
2719 "invalid type `%s' in empty declaration",
2720 type_name);
2721 }
2722 }
2723
2724 if (this->type->qualifier.precision != ast_precision_none &&
2725 this->type->specifier->structure != NULL) {
2726 _mesa_glsl_error(&loc, state, "precision qualifiers can't be applied "
2727 "to structures");
2728 }
2729 }
2730
2731 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
2732 const struct glsl_type *var_type;
2733 ir_variable *var;
2734
2735 /* FINISHME: Emit a warning if a variable declaration shadows a
2736 * FINISHME: declaration at a higher scope.
2737 */
2738
2739 if ((decl_type == NULL) || decl_type->is_void()) {
2740 if (type_name != NULL) {
2741 _mesa_glsl_error(& loc, state,
2742 "invalid type `%s' in declaration of `%s'",
2743 type_name, decl->identifier);
2744 } else {
2745 _mesa_glsl_error(& loc, state,
2746 "invalid type in declaration of `%s'",
2747 decl->identifier);
2748 }
2749 continue;
2750 }
2751
2752 if (decl->is_array) {
2753 var_type = process_array_type(&loc, decl_type, decl->array_size,
2754 state);
2755 if (var_type->is_error())
2756 continue;
2757 } else {
2758 var_type = decl_type;
2759 }
2760
2761 var = new(ctx) ir_variable(var_type, decl->identifier, ir_var_auto);
2762
2763 /* The 'varying in' and 'varying out' qualifiers can only be used with
2764 * ARB_geometry_shader4 and EXT_geometry_shader4, which we don't support
2765 * yet.
2766 */
2767 if (this->type->qualifier.flags.q.varying) {
2768 if (this->type->qualifier.flags.q.in) {
2769 _mesa_glsl_error(& loc, state,
2770 "`varying in' qualifier in declaration of "
2771 "`%s' only valid for geometry shaders using "
2772 "ARB_geometry_shader4 or EXT_geometry_shader4",
2773 decl->identifier);
2774 } else if (this->type->qualifier.flags.q.out) {
2775 _mesa_glsl_error(& loc, state,
2776 "`varying out' qualifier in declaration of "
2777 "`%s' only valid for geometry shaders using "
2778 "ARB_geometry_shader4 or EXT_geometry_shader4",
2779 decl->identifier);
2780 }
2781 }
2782
2783 /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
2784 *
2785 * "Global variables can only use the qualifiers const,
2786 * attribute, uni form, or varying. Only one may be
2787 * specified.
2788 *
2789 * Local variables can only use the qualifier const."
2790 *
2791 * This is relaxed in GLSL 1.30 and GLSL ES 3.00. It is also relaxed by
2792 * any extension that adds the 'layout' keyword.
2793 */
2794 if (!state->is_version(130, 300)
2795 && !state->ARB_explicit_attrib_location_enable
2796 && !state->ARB_fragment_coord_conventions_enable) {
2797 if (this->type->qualifier.flags.q.out) {
2798 _mesa_glsl_error(& loc, state,
2799 "`out' qualifier in declaration of `%s' "
2800 "only valid for function parameters in %s",
2801 decl->identifier, state->get_version_string());
2802 }
2803 if (this->type->qualifier.flags.q.in) {
2804 _mesa_glsl_error(& loc, state,
2805 "`in' qualifier in declaration of `%s' "
2806 "only valid for function parameters in %s",
2807 decl->identifier, state->get_version_string());
2808 }
2809 /* FINISHME: Test for other invalid qualifiers. */
2810 }
2811
2812 apply_type_qualifier_to_variable(& this->type->qualifier, var, state,
2813 & loc, this->ubo_qualifiers_valid, false);
2814
2815 if (this->type->qualifier.flags.q.invariant) {
2816 if ((state->target == vertex_shader) &&
2817 var->mode != ir_var_shader_out) {
2818 _mesa_glsl_error(& loc, state,
2819 "`%s' cannot be marked invariant, vertex shader "
2820 "outputs only", var->name);
2821 } else if ((state->target == fragment_shader) &&
2822 var->mode != ir_var_shader_in) {
2823 /* FINISHME: Note that this doesn't work for invariant on
2824 * a function signature inval
2825 */
2826 _mesa_glsl_error(& loc, state,
2827 "`%s' cannot be marked invariant, fragment shader "
2828 "inputs only", var->name);
2829 }
2830 }
2831
2832 if (state->current_function != NULL) {
2833 const char *mode = NULL;
2834 const char *extra = "";
2835
2836 /* There is no need to check for 'inout' here because the parser will
2837 * only allow that in function parameter lists.
2838 */
2839 if (this->type->qualifier.flags.q.attribute) {
2840 mode = "attribute";
2841 } else if (this->type->qualifier.flags.q.uniform) {
2842 mode = "uniform";
2843 } else if (this->type->qualifier.flags.q.varying) {
2844 mode = "varying";
2845 } else if (this->type->qualifier.flags.q.in) {
2846 mode = "in";
2847 extra = " or in function parameter list";
2848 } else if (this->type->qualifier.flags.q.out) {
2849 mode = "out";
2850 extra = " or in function parameter list";
2851 }
2852
2853 if (mode) {
2854 _mesa_glsl_error(& loc, state,
2855 "%s variable `%s' must be declared at "
2856 "global scope%s",
2857 mode, var->name, extra);
2858 }
2859 } else if (var->mode == ir_var_shader_in) {
2860 var->read_only = true;
2861
2862 if (state->target == vertex_shader) {
2863 bool error_emitted = false;
2864
2865 /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
2866 *
2867 * "Vertex shader inputs can only be float, floating-point
2868 * vectors, matrices, signed and unsigned integers and integer
2869 * vectors. Vertex shader inputs can also form arrays of these
2870 * types, but not structures."
2871 *
2872 * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
2873 *
2874 * "Vertex shader inputs can only be float, floating-point
2875 * vectors, matrices, signed and unsigned integers and integer
2876 * vectors. They cannot be arrays or structures."
2877 *
2878 * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
2879 *
2880 * "The attribute qualifier can be used only with float,
2881 * floating-point vectors, and matrices. Attribute variables
2882 * cannot be declared as arrays or structures."
2883 *
2884 * From page 33 (page 39 of the PDF) of the GLSL ES 3.00 spec:
2885 *
2886 * "Vertex shader inputs can only be float, floating-point
2887 * vectors, matrices, signed and unsigned integers and integer
2888 * vectors. Vertex shader inputs cannot be arrays or
2889 * structures."
2890 */
2891 const glsl_type *check_type = var->type->is_array()
2892 ? var->type->fields.array : var->type;
2893
2894 switch (check_type->base_type) {
2895 case GLSL_TYPE_FLOAT:
2896 break;
2897 case GLSL_TYPE_UINT:
2898 case GLSL_TYPE_INT:
2899 if (state->is_version(120, 300))
2900 break;
2901 /* FALLTHROUGH */
2902 default:
2903 _mesa_glsl_error(& loc, state,
2904 "vertex shader input / attribute cannot have "
2905 "type %s`%s'",
2906 var->type->is_array() ? "array of " : "",
2907 check_type->name);
2908 error_emitted = true;
2909 }
2910
2911 if (!error_emitted && var->type->is_array() &&
2912 !state->check_version(150, 0, &loc,
2913 "vertex shader input / attribute "
2914 "cannot have array type")) {
2915 error_emitted = true;
2916 }
2917 } else if (state->target == geometry_shader) {
2918 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
2919 *
2920 * Geometry shader input variables get the per-vertex values
2921 * written out by vertex shader output variables of the same
2922 * names. Since a geometry shader operates on a set of
2923 * vertices, each input varying variable (or input block, see
2924 * interface blocks below) needs to be declared as an array.
2925 */
2926 if (!var->type->is_array()) {
2927 _mesa_glsl_error(&loc, state,
2928 "geometry shader inputs must be arrays");
2929 }
2930
2931 handle_geometry_shader_input_decl(state, loc, var);
2932 }
2933 }
2934
2935 /* Integer fragment inputs must be qualified with 'flat'. In GLSL ES,
2936 * so must integer vertex outputs.
2937 *
2938 * From section 4.3.4 ("Inputs") of the GLSL 1.50 spec:
2939 * "Fragment shader inputs that are signed or unsigned integers or
2940 * integer vectors must be qualified with the interpolation qualifier
2941 * flat."
2942 *
2943 * From section 4.3.4 ("Input Variables") of the GLSL 3.00 ES spec:
2944 * "Fragment shader inputs that are, or contain, signed or unsigned
2945 * integers or integer vectors must be qualified with the
2946 * interpolation qualifier flat."
2947 *
2948 * From section 4.3.6 ("Output Variables") of the GLSL 3.00 ES spec:
2949 * "Vertex shader outputs that are, or contain, signed or unsigned
2950 * integers or integer vectors must be qualified with the
2951 * interpolation qualifier flat."
2952 *
2953 * Note that prior to GLSL 1.50, this requirement applied to vertex
2954 * outputs rather than fragment inputs. That creates problems in the
2955 * presence of geometry shaders, so we adopt the GLSL 1.50 rule for all
2956 * desktop GL shaders. For GLSL ES shaders, we follow the spec and
2957 * apply the restriction to both vertex outputs and fragment inputs.
2958 *
2959 * Note also that the desktop GLSL specs are missing the text "or
2960 * contain"; this is presumably an oversight, since there is no
2961 * reasonable way to interpolate a fragment shader input that contains
2962 * an integer.
2963 */
2964 if (state->is_version(130, 300) &&
2965 var->type->contains_integer() &&
2966 var->interpolation != INTERP_QUALIFIER_FLAT &&
2967 ((state->target == fragment_shader && var->mode == ir_var_shader_in)
2968 || (state->target == vertex_shader && var->mode == ir_var_shader_out
2969 && state->es_shader))) {
2970 const char *var_type = (state->target == vertex_shader) ?
2971 "vertex output" : "fragment input";
2972 _mesa_glsl_error(&loc, state, "if a %s is (or contains) "
2973 "an integer, then it must be qualified with 'flat'",
2974 var_type);
2975 }
2976
2977
2978 /* Interpolation qualifiers cannot be applied to 'centroid' and
2979 * 'centroid varying'.
2980 *
2981 * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
2982 * "interpolation qualifiers may only precede the qualifiers in,
2983 * centroid in, out, or centroid out in a declaration. They do not apply
2984 * to the deprecated storage qualifiers varying or centroid varying."
2985 *
2986 * These deprecated storage qualifiers do not exist in GLSL ES 3.00.
2987 */
2988 if (state->is_version(130, 0)
2989 && this->type->qualifier.has_interpolation()
2990 && this->type->qualifier.flags.q.varying) {
2991
2992 const char *i = this->type->qualifier.interpolation_string();
2993 assert(i != NULL);
2994 const char *s;
2995 if (this->type->qualifier.flags.q.centroid)
2996 s = "centroid varying";
2997 else
2998 s = "varying";
2999
3000 _mesa_glsl_error(&loc, state,
3001 "qualifier '%s' cannot be applied to the "
3002 "deprecated storage qualifier '%s'", i, s);
3003 }
3004
3005
3006 /* Interpolation qualifiers can only apply to vertex shader outputs and
3007 * fragment shader inputs.
3008 *
3009 * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
3010 * "Outputs from a vertex shader (out) and inputs to a fragment
3011 * shader (in) can be further qualified with one or more of these
3012 * interpolation qualifiers"
3013 *
3014 * From page 31 (page 37 of the PDF) of the GLSL ES 3.00 spec:
3015 * "These interpolation qualifiers may only precede the qualifiers
3016 * in, centroid in, out, or centroid out in a declaration. They do
3017 * not apply to inputs into a vertex shader or outputs from a
3018 * fragment shader."
3019 */
3020 if (state->is_version(130, 300)
3021 && this->type->qualifier.has_interpolation()) {
3022
3023 const char *i = this->type->qualifier.interpolation_string();
3024 assert(i != NULL);
3025
3026 switch (state->target) {
3027 case vertex_shader:
3028 if (this->type->qualifier.flags.q.in) {
3029 _mesa_glsl_error(&loc, state,
3030 "qualifier '%s' cannot be applied to vertex "
3031 "shader inputs", i);
3032 }
3033 break;
3034 case fragment_shader:
3035 if (this->type->qualifier.flags.q.out) {
3036 _mesa_glsl_error(&loc, state,
3037 "qualifier '%s' cannot be applied to fragment "
3038 "shader outputs", i);
3039 }
3040 break;
3041 default:
3042 break;
3043 }
3044 }
3045
3046
3047 /* From section 4.3.4 of the GLSL 1.30 spec:
3048 * "It is an error to use centroid in in a vertex shader."
3049 *
3050 * From section 4.3.4 of the GLSL ES 3.00 spec:
3051 * "It is an error to use centroid in or interpolation qualifiers in
3052 * a vertex shader input."
3053 */
3054 if (state->is_version(130, 300)
3055 && this->type->qualifier.flags.q.centroid
3056 && this->type->qualifier.flags.q.in
3057 && state->target == vertex_shader) {
3058
3059 _mesa_glsl_error(&loc, state,
3060 "'centroid in' cannot be used in a vertex shader");
3061 }
3062
3063 /* Section 4.3.6 of the GLSL 1.30 specification states:
3064 * "It is an error to use centroid out in a fragment shader."
3065 *
3066 * The GL_ARB_shading_language_420pack extension specification states:
3067 * "It is an error to use auxiliary storage qualifiers or interpolation
3068 * qualifiers on an output in a fragment shader."
3069 */
3070 if (state->target == fragment_shader &&
3071 this->type->qualifier.flags.q.out &&
3072 this->type->qualifier.has_auxiliary_storage()) {
3073 _mesa_glsl_error(&loc, state,
3074 "auxiliary storage qualifiers cannot be used on "
3075 "fragment shader outputs");
3076 }
3077
3078 /* Precision qualifiers exists only in GLSL versions 1.00 and >= 1.30.
3079 */
3080 if (this->type->qualifier.precision != ast_precision_none) {
3081 state->check_precision_qualifiers_allowed(&loc);
3082 }
3083
3084
3085 /* Precision qualifiers only apply to floating point and integer types.
3086 *
3087 * From section 4.5.2 of the GLSL 1.30 spec:
3088 * "Any floating point or any integer declaration can have the type
3089 * preceded by one of these precision qualifiers [...] Literal
3090 * constants do not have precision qualifiers. Neither do Boolean
3091 * variables.
3092 *
3093 * In GLSL ES, sampler types are also allowed.
3094 *
3095 * From page 87 of the GLSL ES spec:
3096 * "RESOLUTION: Allow sampler types to take a precision qualifier."
3097 */
3098 if (this->type->qualifier.precision != ast_precision_none
3099 && !var->type->is_float()
3100 && !var->type->is_integer()
3101 && !var->type->is_record()
3102 && !(var->type->is_sampler() && state->es_shader)
3103 && !(var->type->is_array()
3104 && (var->type->fields.array->is_float()
3105 || var->type->fields.array->is_integer()))) {
3106
3107 _mesa_glsl_error(&loc, state,
3108 "precision qualifiers apply only to floating point"
3109 "%s types", state->es_shader ? ", integer, and sampler"
3110 : "and integer");
3111 }
3112
3113 /* From page 17 (page 23 of the PDF) of the GLSL 1.20 spec:
3114 *
3115 * "[Sampler types] can only be declared as function
3116 * parameters or uniform variables (see Section 4.3.5
3117 * "Uniform")".
3118 */
3119 if (var_type->contains_sampler() &&
3120 !this->type->qualifier.flags.q.uniform) {
3121 _mesa_glsl_error(&loc, state, "samplers must be declared uniform");
3122 }
3123
3124 /* Process the initializer and add its instructions to a temporary
3125 * list. This list will be added to the instruction stream (below) after
3126 * the declaration is added. This is done because in some cases (such as
3127 * redeclarations) the declaration may not actually be added to the
3128 * instruction stream.
3129 */
3130 exec_list initializer_instructions;
3131 ir_variable *earlier = get_variable_being_redeclared(var, decl, state);
3132
3133 if (decl->initializer != NULL) {
3134 result = process_initializer((earlier == NULL) ? var : earlier,
3135 decl, this->type,
3136 &initializer_instructions, state);
3137 }
3138
3139 /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
3140 *
3141 * "It is an error to write to a const variable outside of
3142 * its declaration, so they must be initialized when
3143 * declared."
3144 */
3145 if (this->type->qualifier.flags.q.constant && decl->initializer == NULL) {
3146 _mesa_glsl_error(& loc, state,
3147 "const declaration of `%s' must be initialized",
3148 decl->identifier);
3149 }
3150
3151 /* If the declaration is not a redeclaration, there are a few additional
3152 * semantic checks that must be applied. In addition, variable that was
3153 * created for the declaration should be added to the IR stream.
3154 */
3155 if (earlier == NULL) {
3156 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
3157 *
3158 * "Identifiers starting with "gl_" are reserved for use by
3159 * OpenGL, and may not be declared in a shader as either a
3160 * variable or a function."
3161 */
3162 if (strncmp(decl->identifier, "gl_", 3) == 0)
3163 _mesa_glsl_error(& loc, state,
3164 "identifier `%s' uses reserved `gl_' prefix",
3165 decl->identifier);
3166 else if (strstr(decl->identifier, "__")) {
3167 /* From page 14 (page 20 of the PDF) of the GLSL 1.10
3168 * spec:
3169 *
3170 * "In addition, all identifiers containing two
3171 * consecutive underscores (__) are reserved as
3172 * possible future keywords."
3173 */
3174 _mesa_glsl_error(& loc, state,
3175 "identifier `%s' uses reserved `__' string",
3176 decl->identifier);
3177 }
3178
3179 /* Add the variable to the symbol table. Note that the initializer's
3180 * IR was already processed earlier (though it hasn't been emitted
3181 * yet), without the variable in scope.
3182 *
3183 * This differs from most C-like languages, but it follows the GLSL
3184 * specification. From page 28 (page 34 of the PDF) of the GLSL 1.50
3185 * spec:
3186 *
3187 * "Within a declaration, the scope of a name starts immediately
3188 * after the initializer if present or immediately after the name
3189 * being declared if not."
3190 */
3191 if (!state->symbols->add_variable(var)) {
3192 YYLTYPE loc = this->get_location();
3193 _mesa_glsl_error(&loc, state, "name `%s' already taken in the "
3194 "current scope", decl->identifier);
3195 continue;
3196 }
3197
3198 /* Push the variable declaration to the top. It means that all the
3199 * variable declarations will appear in a funny last-to-first order,
3200 * but otherwise we run into trouble if a function is prototyped, a
3201 * global var is decled, then the function is defined with usage of
3202 * the global var. See glslparsertest's CorrectModule.frag.
3203 */
3204 instructions->push_head(var);
3205 }
3206
3207 instructions->append_list(&initializer_instructions);
3208 }
3209
3210
3211 /* Generally, variable declarations do not have r-values. However,
3212 * one is used for the declaration in
3213 *
3214 * while (bool b = some_condition()) {
3215 * ...
3216 * }
3217 *
3218 * so we return the rvalue from the last seen declaration here.
3219 */
3220 return result;
3221 }
3222
3223
3224 ir_rvalue *
3225 ast_parameter_declarator::hir(exec_list *instructions,
3226 struct _mesa_glsl_parse_state *state)
3227 {
3228 void *ctx = state;
3229 const struct glsl_type *type;
3230 const char *name = NULL;
3231 YYLTYPE loc = this->get_location();
3232
3233 type = this->type->specifier->glsl_type(& name, state);
3234
3235 if (type == NULL) {
3236 if (name != NULL) {
3237 _mesa_glsl_error(& loc, state,
3238 "invalid type `%s' in declaration of `%s'",
3239 name, this->identifier);
3240 } else {
3241 _mesa_glsl_error(& loc, state,
3242 "invalid type in declaration of `%s'",
3243 this->identifier);
3244 }
3245
3246 type = glsl_type::error_type;
3247 }
3248
3249 /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
3250 *
3251 * "Functions that accept no input arguments need not use void in the
3252 * argument list because prototypes (or definitions) are required and
3253 * therefore there is no ambiguity when an empty argument list "( )" is
3254 * declared. The idiom "(void)" as a parameter list is provided for
3255 * convenience."
3256 *
3257 * Placing this check here prevents a void parameter being set up
3258 * for a function, which avoids tripping up checks for main taking
3259 * parameters and lookups of an unnamed symbol.
3260 */
3261 if (type->is_void()) {
3262 if (this->identifier != NULL)
3263 _mesa_glsl_error(& loc, state,
3264 "named parameter cannot have type `void'");
3265
3266 is_void = true;
3267 return NULL;
3268 }
3269
3270 if (formal_parameter && (this->identifier == NULL)) {
3271 _mesa_glsl_error(& loc, state, "formal parameter lacks a name");
3272 return NULL;
3273 }
3274
3275 /* This only handles "vec4 foo[..]". The earlier specifier->glsl_type(...)
3276 * call already handled the "vec4[..] foo" case.
3277 */
3278 if (this->is_array) {
3279 type = process_array_type(&loc, type, this->array_size, state);
3280 }
3281
3282 if (!type->is_error() && type->array_size() == 0) {
3283 _mesa_glsl_error(&loc, state, "arrays passed as parameters must have "
3284 "a declared size");
3285 type = glsl_type::error_type;
3286 }
3287
3288 is_void = false;
3289 ir_variable *var = new(ctx)
3290 ir_variable(type, this->identifier, ir_var_function_in);
3291
3292 /* Apply any specified qualifiers to the parameter declaration. Note that
3293 * for function parameters the default mode is 'in'.
3294 */
3295 apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc,
3296 false, true);
3297
3298 /* From page 17 (page 23 of the PDF) of the GLSL 1.20 spec:
3299 *
3300 * "Samplers cannot be treated as l-values; hence cannot be used
3301 * as out or inout function parameters, nor can they be assigned
3302 * into."
3303 */
3304 if ((var->mode == ir_var_function_inout || var->mode == ir_var_function_out)
3305 && type->contains_sampler()) {
3306 _mesa_glsl_error(&loc, state, "out and inout parameters cannot contain samplers");
3307 type = glsl_type::error_type;
3308 }
3309
3310 /* From page 39 (page 45 of the PDF) of the GLSL 1.10 spec:
3311 *
3312 * "When calling a function, expressions that do not evaluate to
3313 * l-values cannot be passed to parameters declared as out or inout."
3314 *
3315 * From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
3316 *
3317 * "Other binary or unary expressions, non-dereferenced arrays,
3318 * function names, swizzles with repeated fields, and constants
3319 * cannot be l-values."
3320 *
3321 * So for GLSL 1.10, passing an array as an out or inout parameter is not
3322 * allowed. This restriction is removed in GLSL 1.20, and in GLSL ES.
3323 */
3324 if ((var->mode == ir_var_function_inout || var->mode == ir_var_function_out)
3325 && type->is_array()
3326 && !state->check_version(120, 100, &loc,
3327 "arrays cannot be out or inout parameters")) {
3328 type = glsl_type::error_type;
3329 }
3330
3331 instructions->push_tail(var);
3332
3333 /* Parameter declarations do not have r-values.
3334 */
3335 return NULL;
3336 }
3337
3338
3339 void
3340 ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters,
3341 bool formal,
3342 exec_list *ir_parameters,
3343 _mesa_glsl_parse_state *state)
3344 {
3345 ast_parameter_declarator *void_param = NULL;
3346 unsigned count = 0;
3347
3348 foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) {
3349 param->formal_parameter = formal;
3350 param->hir(ir_parameters, state);
3351
3352 if (param->is_void)
3353 void_param = param;
3354
3355 count++;
3356 }
3357
3358 if ((void_param != NULL) && (count > 1)) {
3359 YYLTYPE loc = void_param->get_location();
3360
3361 _mesa_glsl_error(& loc, state,
3362 "`void' parameter must be only parameter");
3363 }
3364 }
3365
3366
3367 void
3368 emit_function(_mesa_glsl_parse_state *state, ir_function *f)
3369 {
3370 /* IR invariants disallow function declarations or definitions
3371 * nested within other function definitions. But there is no
3372 * requirement about the relative order of function declarations
3373 * and definitions with respect to one another. So simply insert
3374 * the new ir_function block at the end of the toplevel instruction
3375 * list.
3376 */
3377 state->toplevel_ir->push_tail(f);
3378 }
3379
3380
3381 ir_rvalue *
3382 ast_function::hir(exec_list *instructions,
3383 struct _mesa_glsl_parse_state *state)
3384 {
3385 void *ctx = state;
3386 ir_function *f = NULL;
3387 ir_function_signature *sig = NULL;
3388 exec_list hir_parameters;
3389
3390 const char *const name = identifier;
3391
3392 /* New functions are always added to the top-level IR instruction stream,
3393 * so this instruction list pointer is ignored. See also emit_function
3394 * (called below).
3395 */
3396 (void) instructions;
3397
3398 /* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec,
3399 *
3400 * "Function declarations (prototypes) cannot occur inside of functions;
3401 * they must be at global scope, or for the built-in functions, outside
3402 * the global scope."
3403 *
3404 * From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec,
3405 *
3406 * "User defined functions may only be defined within the global scope."
3407 *
3408 * Note that this language does not appear in GLSL 1.10.
3409 */
3410 if ((state->current_function != NULL) &&
3411 state->is_version(120, 100)) {
3412 YYLTYPE loc = this->get_location();
3413 _mesa_glsl_error(&loc, state,
3414 "declaration of function `%s' not allowed within "
3415 "function body", name);
3416 }
3417
3418 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
3419 *
3420 * "Identifiers starting with "gl_" are reserved for use by
3421 * OpenGL, and may not be declared in a shader as either a
3422 * variable or a function."
3423 */
3424 if (strncmp(name, "gl_", 3) == 0) {
3425 YYLTYPE loc = this->get_location();
3426 _mesa_glsl_error(&loc, state,
3427 "identifier `%s' uses reserved `gl_' prefix", name);
3428 }
3429
3430 /* Convert the list of function parameters to HIR now so that they can be
3431 * used below to compare this function's signature with previously seen
3432 * signatures for functions with the same name.
3433 */
3434 ast_parameter_declarator::parameters_to_hir(& this->parameters,
3435 is_definition,
3436 & hir_parameters, state);
3437
3438 const char *return_type_name;
3439 const glsl_type *return_type =
3440 this->return_type->specifier->glsl_type(& return_type_name, state);
3441
3442 if (!return_type) {
3443 YYLTYPE loc = this->get_location();
3444 _mesa_glsl_error(&loc, state,
3445 "function `%s' has undeclared return type `%s'",
3446 name, return_type_name);
3447 return_type = glsl_type::error_type;
3448 }
3449
3450 /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec:
3451 * "No qualifier is allowed on the return type of a function."
3452 */
3453 if (this->return_type->has_qualifiers()) {
3454 YYLTYPE loc = this->get_location();
3455 _mesa_glsl_error(& loc, state,
3456 "function `%s' return type has qualifiers", name);
3457 }
3458
3459 /* From page 17 (page 23 of the PDF) of the GLSL 1.20 spec:
3460 *
3461 * "[Sampler types] can only be declared as function parameters
3462 * or uniform variables (see Section 4.3.5 "Uniform")".
3463 */
3464 if (return_type->contains_sampler()) {
3465 YYLTYPE loc = this->get_location();
3466 _mesa_glsl_error(&loc, state,
3467 "function `%s' return type can't contain a sampler",
3468 name);
3469 }
3470
3471 /* Verify that this function's signature either doesn't match a previously
3472 * seen signature for a function with the same name, or, if a match is found,
3473 * that the previously seen signature does not have an associated definition.
3474 */
3475 f = state->symbols->get_function(name);
3476 if (f != NULL && (state->es_shader || f->has_user_signature())) {
3477 sig = f->exact_matching_signature(&hir_parameters);
3478 if (sig != NULL) {
3479 const char *badvar = sig->qualifiers_match(&hir_parameters);
3480 if (badvar != NULL) {
3481 YYLTYPE loc = this->get_location();
3482
3483 _mesa_glsl_error(&loc, state, "function `%s' parameter `%s' "
3484 "qualifiers don't match prototype", name, badvar);
3485 }
3486
3487 if (sig->return_type != return_type) {
3488 YYLTYPE loc = this->get_location();
3489
3490 _mesa_glsl_error(&loc, state, "function `%s' return type doesn't "
3491 "match prototype", name);
3492 }
3493
3494 if (sig->is_defined) {
3495 if (is_definition) {
3496 YYLTYPE loc = this->get_location();
3497 _mesa_glsl_error(& loc, state, "function `%s' redefined", name);
3498 } else {
3499 /* We just encountered a prototype that exactly matches a
3500 * function that's already been defined. This is redundant,
3501 * and we should ignore it.
3502 */
3503 return NULL;
3504 }
3505 }
3506 }
3507 } else {
3508 f = new(ctx) ir_function(name);
3509 if (!state->symbols->add_function(f)) {
3510 /* This function name shadows a non-function use of the same name. */
3511 YYLTYPE loc = this->get_location();
3512
3513 _mesa_glsl_error(&loc, state, "function name `%s' conflicts with "
3514 "non-function", name);
3515 return NULL;
3516 }
3517
3518 emit_function(state, f);
3519 }
3520
3521 /* Verify the return type of main() */
3522 if (strcmp(name, "main") == 0) {
3523 if (! return_type->is_void()) {
3524 YYLTYPE loc = this->get_location();
3525
3526 _mesa_glsl_error(& loc, state, "main() must return void");
3527 }
3528
3529 if (!hir_parameters.is_empty()) {
3530 YYLTYPE loc = this->get_location();
3531
3532 _mesa_glsl_error(& loc, state, "main() must not take any parameters");
3533 }
3534 }
3535
3536 /* Finish storing the information about this new function in its signature.
3537 */
3538 if (sig == NULL) {
3539 sig = new(ctx) ir_function_signature(return_type);
3540 f->add_signature(sig);
3541 }
3542
3543 sig->replace_parameters(&hir_parameters);
3544 signature = sig;
3545
3546 /* Function declarations (prototypes) do not have r-values.
3547 */
3548 return NULL;
3549 }
3550
3551
3552 ir_rvalue *
3553 ast_function_definition::hir(exec_list *instructions,
3554 struct _mesa_glsl_parse_state *state)
3555 {
3556 prototype->is_definition = true;
3557 prototype->hir(instructions, state);
3558
3559 ir_function_signature *signature = prototype->signature;
3560 if (signature == NULL)
3561 return NULL;
3562
3563 assert(state->current_function == NULL);
3564 state->current_function = signature;
3565 state->found_return = false;
3566
3567 /* Duplicate parameters declared in the prototype as concrete variables.
3568 * Add these to the symbol table.
3569 */
3570 state->symbols->push_scope();
3571 foreach_iter(exec_list_iterator, iter, signature->parameters) {
3572 ir_variable *const var = ((ir_instruction *) iter.get())->as_variable();
3573
3574 assert(var != NULL);
3575
3576 /* The only way a parameter would "exist" is if two parameters have
3577 * the same name.
3578 */
3579 if (state->symbols->name_declared_this_scope(var->name)) {
3580 YYLTYPE loc = this->get_location();
3581
3582 _mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name);
3583 } else {
3584 state->symbols->add_variable(var);
3585 }
3586 }
3587
3588 /* Convert the body of the function to HIR. */
3589 this->body->hir(&signature->body, state);
3590 signature->is_defined = true;
3591
3592 state->symbols->pop_scope();
3593
3594 assert(state->current_function == signature);
3595 state->current_function = NULL;
3596
3597 if (!signature->return_type->is_void() && !state->found_return) {
3598 YYLTYPE loc = this->get_location();
3599 _mesa_glsl_error(& loc, state, "function `%s' has non-void return type "
3600 "%s, but no return statement",
3601 signature->function_name(),
3602 signature->return_type->name);
3603 }
3604
3605 /* Function definitions do not have r-values.
3606 */
3607 return NULL;
3608 }
3609
3610
3611 ir_rvalue *
3612 ast_jump_statement::hir(exec_list *instructions,
3613 struct _mesa_glsl_parse_state *state)
3614 {
3615 void *ctx = state;
3616
3617 switch (mode) {
3618 case ast_return: {
3619 ir_return *inst;
3620 assert(state->current_function);
3621
3622 if (opt_return_value) {
3623 ir_rvalue *ret = opt_return_value->hir(instructions, state);
3624
3625 /* The value of the return type can be NULL if the shader says
3626 * 'return foo();' and foo() is a function that returns void.
3627 *
3628 * NOTE: The GLSL spec doesn't say that this is an error. The type
3629 * of the return value is void. If the return type of the function is
3630 * also void, then this should compile without error. Seriously.
3631 */
3632 const glsl_type *const ret_type =
3633 (ret == NULL) ? glsl_type::void_type : ret->type;
3634
3635 /* Implicit conversions are not allowed for return values prior to
3636 * ARB_shading_language_420pack.
3637 */
3638 if (state->current_function->return_type != ret_type) {
3639 YYLTYPE loc = this->get_location();
3640
3641 if (state->ARB_shading_language_420pack_enable) {
3642 if (!apply_implicit_conversion(state->current_function->return_type,
3643 ret, state)) {
3644 _mesa_glsl_error(& loc, state,
3645 "could not implicitly convert return value "
3646 "to %s, in function `%s'",
3647 state->current_function->return_type->name,
3648 state->current_function->function_name());
3649 }
3650 } else {
3651 _mesa_glsl_error(& loc, state,
3652 "`return' with wrong type %s, in function `%s' "
3653 "returning %s",
3654 ret_type->name,
3655 state->current_function->function_name(),
3656 state->current_function->return_type->name);
3657 }
3658 } else if (state->current_function->return_type->base_type ==
3659 GLSL_TYPE_VOID) {
3660 YYLTYPE loc = this->get_location();
3661
3662 /* The ARB_shading_language_420pack, GLSL ES 3.0, and GLSL 4.20
3663 * specs add a clarification:
3664 *
3665 * "A void function can only use return without a return argument, even if
3666 * the return argument has void type. Return statements only accept values:
3667 *
3668 * void func1() { }
3669 * void func2() { return func1(); } // illegal return statement"
3670 */
3671 _mesa_glsl_error(& loc, state,
3672 "void functions can only use `return' without a "
3673 "return argument");
3674 }
3675
3676 inst = new(ctx) ir_return(ret);
3677 } else {
3678 if (state->current_function->return_type->base_type !=
3679 GLSL_TYPE_VOID) {
3680 YYLTYPE loc = this->get_location();
3681
3682 _mesa_glsl_error(& loc, state,
3683 "`return' with no value, in function %s returning "
3684 "non-void",
3685 state->current_function->function_name());
3686 }
3687 inst = new(ctx) ir_return;
3688 }
3689
3690 state->found_return = true;
3691 instructions->push_tail(inst);
3692 break;
3693 }
3694
3695 case ast_discard:
3696 if (state->target != fragment_shader) {
3697 YYLTYPE loc = this->get_location();
3698
3699 _mesa_glsl_error(& loc, state,
3700 "`discard' may only appear in a fragment shader");
3701 }
3702 instructions->push_tail(new(ctx) ir_discard);
3703 break;
3704
3705 case ast_break:
3706 case ast_continue:
3707 if (mode == ast_continue &&
3708 state->loop_nesting_ast == NULL) {
3709 YYLTYPE loc = this->get_location();
3710
3711 _mesa_glsl_error(& loc, state,
3712 "continue may only appear in a loop");
3713 } else if (mode == ast_break &&
3714 state->loop_nesting_ast == NULL &&
3715 state->switch_state.switch_nesting_ast == NULL) {
3716 YYLTYPE loc = this->get_location();
3717
3718 _mesa_glsl_error(& loc, state,
3719 "break may only appear in a loop or a switch");
3720 } else {
3721 /* For a loop, inline the for loop expression again,
3722 * since we don't know where near the end of
3723 * the loop body the normal copy of it
3724 * is going to be placed.
3725 */
3726 if (state->loop_nesting_ast != NULL &&
3727 mode == ast_continue &&
3728 state->loop_nesting_ast->rest_expression) {
3729 state->loop_nesting_ast->rest_expression->hir(instructions,
3730 state);
3731 }
3732
3733 if (state->switch_state.is_switch_innermost &&
3734 mode == ast_break) {
3735 /* Force break out of switch by setting is_break switch state.
3736 */
3737 ir_variable *const is_break_var = state->switch_state.is_break_var;
3738 ir_dereference_variable *const deref_is_break_var =
3739 new(ctx) ir_dereference_variable(is_break_var);
3740 ir_constant *const true_val = new(ctx) ir_constant(true);
3741 ir_assignment *const set_break_var =
3742 new(ctx) ir_assignment(deref_is_break_var, true_val);
3743
3744 instructions->push_tail(set_break_var);
3745 }
3746 else {
3747 ir_loop_jump *const jump =
3748 new(ctx) ir_loop_jump((mode == ast_break)
3749 ? ir_loop_jump::jump_break
3750 : ir_loop_jump::jump_continue);
3751 instructions->push_tail(jump);
3752 }
3753 }
3754
3755 break;
3756 }
3757
3758 /* Jump instructions do not have r-values.
3759 */
3760 return NULL;
3761 }
3762
3763
3764 ir_rvalue *
3765 ast_selection_statement::hir(exec_list *instructions,
3766 struct _mesa_glsl_parse_state *state)
3767 {
3768 void *ctx = state;
3769
3770 ir_rvalue *const condition = this->condition->hir(instructions, state);
3771
3772 /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
3773 *
3774 * "Any expression whose type evaluates to a Boolean can be used as the
3775 * conditional expression bool-expression. Vector types are not accepted
3776 * as the expression to if."
3777 *
3778 * The checks are separated so that higher quality diagnostics can be
3779 * generated for cases where both rules are violated.
3780 */
3781 if (!condition->type->is_boolean() || !condition->type->is_scalar()) {
3782 YYLTYPE loc = this->condition->get_location();
3783
3784 _mesa_glsl_error(& loc, state, "if-statement condition must be scalar "
3785 "boolean");
3786 }
3787
3788 ir_if *const stmt = new(ctx) ir_if(condition);
3789
3790 if (then_statement != NULL) {
3791 state->symbols->push_scope();
3792 then_statement->hir(& stmt->then_instructions, state);
3793 state->symbols->pop_scope();
3794 }
3795
3796 if (else_statement != NULL) {
3797 state->symbols->push_scope();
3798 else_statement->hir(& stmt->else_instructions, state);
3799 state->symbols->pop_scope();
3800 }
3801
3802 instructions->push_tail(stmt);
3803
3804 /* if-statements do not have r-values.
3805 */
3806 return NULL;
3807 }
3808
3809
3810 ir_rvalue *
3811 ast_switch_statement::hir(exec_list *instructions,
3812 struct _mesa_glsl_parse_state *state)
3813 {
3814 void *ctx = state;
3815
3816 ir_rvalue *const test_expression =
3817 this->test_expression->hir(instructions, state);
3818
3819 /* From page 66 (page 55 of the PDF) of the GLSL 1.50 spec:
3820 *
3821 * "The type of init-expression in a switch statement must be a
3822 * scalar integer."
3823 */
3824 if (!test_expression->type->is_scalar() ||
3825 !test_expression->type->is_integer()) {
3826 YYLTYPE loc = this->test_expression->get_location();
3827
3828 _mesa_glsl_error(& loc,
3829 state,
3830 "switch-statement expression must be scalar "
3831 "integer");
3832 }
3833
3834 /* Track the switch-statement nesting in a stack-like manner.
3835 */
3836 struct glsl_switch_state saved = state->switch_state;
3837
3838 state->switch_state.is_switch_innermost = true;
3839 state->switch_state.switch_nesting_ast = this;
3840 state->switch_state.labels_ht = hash_table_ctor(0, hash_table_pointer_hash,
3841 hash_table_pointer_compare);
3842 state->switch_state.previous_default = NULL;
3843
3844 /* Initalize is_fallthru state to false.
3845 */
3846 ir_rvalue *const is_fallthru_val = new (ctx) ir_constant(false);
3847 state->switch_state.is_fallthru_var =
3848 new(ctx) ir_variable(glsl_type::bool_type,
3849 "switch_is_fallthru_tmp",
3850 ir_var_temporary);
3851 instructions->push_tail(state->switch_state.is_fallthru_var);
3852
3853 ir_dereference_variable *deref_is_fallthru_var =
3854 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
3855 instructions->push_tail(new(ctx) ir_assignment(deref_is_fallthru_var,
3856 is_fallthru_val));
3857
3858 /* Initalize is_break state to false.
3859 */
3860 ir_rvalue *const is_break_val = new (ctx) ir_constant(false);
3861 state->switch_state.is_break_var = new(ctx) ir_variable(glsl_type::bool_type,
3862 "switch_is_break_tmp",
3863 ir_var_temporary);
3864 instructions->push_tail(state->switch_state.is_break_var);
3865
3866 ir_dereference_variable *deref_is_break_var =
3867 new(ctx) ir_dereference_variable(state->switch_state.is_break_var);
3868 instructions->push_tail(new(ctx) ir_assignment(deref_is_break_var,
3869 is_break_val));
3870
3871 /* Cache test expression.
3872 */
3873 test_to_hir(instructions, state);
3874
3875 /* Emit code for body of switch stmt.
3876 */
3877 body->hir(instructions, state);
3878
3879 hash_table_dtor(state->switch_state.labels_ht);
3880
3881 state->switch_state = saved;
3882
3883 /* Switch statements do not have r-values. */
3884 return NULL;
3885 }
3886
3887
3888 void
3889 ast_switch_statement::test_to_hir(exec_list *instructions,
3890 struct _mesa_glsl_parse_state *state)
3891 {
3892 void *ctx = state;
3893
3894 /* Cache value of test expression. */
3895 ir_rvalue *const test_val =
3896 test_expression->hir(instructions,
3897 state);
3898
3899 state->switch_state.test_var = new(ctx) ir_variable(test_val->type,
3900 "switch_test_tmp",
3901 ir_var_temporary);
3902 ir_dereference_variable *deref_test_var =
3903 new(ctx) ir_dereference_variable(state->switch_state.test_var);
3904
3905 instructions->push_tail(state->switch_state.test_var);
3906 instructions->push_tail(new(ctx) ir_assignment(deref_test_var, test_val));
3907 }
3908
3909
3910 ir_rvalue *
3911 ast_switch_body::hir(exec_list *instructions,
3912 struct _mesa_glsl_parse_state *state)
3913 {
3914 if (stmts != NULL)
3915 stmts->hir(instructions, state);
3916
3917 /* Switch bodies do not have r-values. */
3918 return NULL;
3919 }
3920
3921 ir_rvalue *
3922 ast_case_statement_list::hir(exec_list *instructions,
3923 struct _mesa_glsl_parse_state *state)
3924 {
3925 foreach_list_typed (ast_case_statement, case_stmt, link, & this->cases)
3926 case_stmt->hir(instructions, state);
3927
3928 /* Case statements do not have r-values. */
3929 return NULL;
3930 }
3931
3932 ir_rvalue *
3933 ast_case_statement::hir(exec_list *instructions,
3934 struct _mesa_glsl_parse_state *state)
3935 {
3936 labels->hir(instructions, state);
3937
3938 /* Conditionally set fallthru state based on break state. */
3939 ir_constant *const false_val = new(state) ir_constant(false);
3940 ir_dereference_variable *const deref_is_fallthru_var =
3941 new(state) ir_dereference_variable(state->switch_state.is_fallthru_var);
3942 ir_dereference_variable *const deref_is_break_var =
3943 new(state) ir_dereference_variable(state->switch_state.is_break_var);
3944 ir_assignment *const reset_fallthru_on_break =
3945 new(state) ir_assignment(deref_is_fallthru_var,
3946 false_val,
3947 deref_is_break_var);
3948 instructions->push_tail(reset_fallthru_on_break);
3949
3950 /* Guard case statements depending on fallthru state. */
3951 ir_dereference_variable *const deref_fallthru_guard =
3952 new(state) ir_dereference_variable(state->switch_state.is_fallthru_var);
3953 ir_if *const test_fallthru = new(state) ir_if(deref_fallthru_guard);
3954
3955 foreach_list_typed (ast_node, stmt, link, & this->stmts)
3956 stmt->hir(& test_fallthru->then_instructions, state);
3957
3958 instructions->push_tail(test_fallthru);
3959
3960 /* Case statements do not have r-values. */
3961 return NULL;
3962 }
3963
3964
3965 ir_rvalue *
3966 ast_case_label_list::hir(exec_list *instructions,
3967 struct _mesa_glsl_parse_state *state)
3968 {
3969 foreach_list_typed (ast_case_label, label, link, & this->labels)
3970 label->hir(instructions, state);
3971
3972 /* Case labels do not have r-values. */
3973 return NULL;
3974 }
3975
3976 ir_rvalue *
3977 ast_case_label::hir(exec_list *instructions,
3978 struct _mesa_glsl_parse_state *state)
3979 {
3980 void *ctx = state;
3981
3982 ir_dereference_variable *deref_fallthru_var =
3983 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
3984
3985 ir_rvalue *const true_val = new(ctx) ir_constant(true);
3986
3987 /* If not default case, ... */
3988 if (this->test_value != NULL) {
3989 /* Conditionally set fallthru state based on
3990 * comparison of cached test expression value to case label.
3991 */
3992 ir_rvalue *const label_rval = this->test_value->hir(instructions, state);
3993 ir_constant *label_const = label_rval->constant_expression_value();
3994
3995 if (!label_const) {
3996 YYLTYPE loc = this->test_value->get_location();
3997
3998 _mesa_glsl_error(& loc, state,
3999 "switch statement case label must be a "
4000 "constant expression");
4001
4002 /* Stuff a dummy value in to allow processing to continue. */
4003 label_const = new(ctx) ir_constant(0);
4004 } else {
4005 ast_expression *previous_label = (ast_expression *)
4006 hash_table_find(state->switch_state.labels_ht,
4007 (void *)(uintptr_t)label_const->value.u[0]);
4008
4009 if (previous_label) {
4010 YYLTYPE loc = this->test_value->get_location();
4011 _mesa_glsl_error(& loc, state,
4012 "duplicate case value");
4013
4014 loc = previous_label->get_location();
4015 _mesa_glsl_error(& loc, state,
4016 "this is the previous case label");
4017 } else {
4018 hash_table_insert(state->switch_state.labels_ht,
4019 this->test_value,
4020 (void *)(uintptr_t)label_const->value.u[0]);
4021 }
4022 }
4023
4024 ir_dereference_variable *deref_test_var =
4025 new(ctx) ir_dereference_variable(state->switch_state.test_var);
4026
4027 ir_rvalue *const test_cond = new(ctx) ir_expression(ir_binop_all_equal,
4028 label_const,
4029 deref_test_var);
4030
4031 ir_assignment *set_fallthru_on_test =
4032 new(ctx) ir_assignment(deref_fallthru_var,
4033 true_val,
4034 test_cond);
4035
4036 instructions->push_tail(set_fallthru_on_test);
4037 } else { /* default case */
4038 if (state->switch_state.previous_default) {
4039 YYLTYPE loc = this->get_location();
4040 _mesa_glsl_error(& loc, state,
4041 "multiple default labels in one switch");
4042
4043 loc = state->switch_state.previous_default->get_location();
4044 _mesa_glsl_error(& loc, state,
4045 "this is the first default label");
4046 }
4047 state->switch_state.previous_default = this;
4048
4049 /* Set falltrhu state. */
4050 ir_assignment *set_fallthru =
4051 new(ctx) ir_assignment(deref_fallthru_var, true_val);
4052
4053 instructions->push_tail(set_fallthru);
4054 }
4055
4056 /* Case statements do not have r-values. */
4057 return NULL;
4058 }
4059
4060 void
4061 ast_iteration_statement::condition_to_hir(ir_loop *stmt,
4062 struct _mesa_glsl_parse_state *state)
4063 {
4064 void *ctx = state;
4065
4066 if (condition != NULL) {
4067 ir_rvalue *const cond =
4068 condition->hir(& stmt->body_instructions, state);
4069
4070 if ((cond == NULL)
4071 || !cond->type->is_boolean() || !cond->type->is_scalar()) {
4072 YYLTYPE loc = condition->get_location();
4073
4074 _mesa_glsl_error(& loc, state,
4075 "loop condition must be scalar boolean");
4076 } else {
4077 /* As the first code in the loop body, generate a block that looks
4078 * like 'if (!condition) break;' as the loop termination condition.
4079 */
4080 ir_rvalue *const not_cond =
4081 new(ctx) ir_expression(ir_unop_logic_not, cond);
4082
4083 ir_if *const if_stmt = new(ctx) ir_if(not_cond);
4084
4085 ir_jump *const break_stmt =
4086 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
4087
4088 if_stmt->then_instructions.push_tail(break_stmt);
4089 stmt->body_instructions.push_tail(if_stmt);
4090 }
4091 }
4092 }
4093
4094
4095 ir_rvalue *
4096 ast_iteration_statement::hir(exec_list *instructions,
4097 struct _mesa_glsl_parse_state *state)
4098 {
4099 void *ctx = state;
4100
4101 /* For-loops and while-loops start a new scope, but do-while loops do not.
4102 */
4103 if (mode != ast_do_while)
4104 state->symbols->push_scope();
4105
4106 if (init_statement != NULL)
4107 init_statement->hir(instructions, state);
4108
4109 ir_loop *const stmt = new(ctx) ir_loop();
4110 instructions->push_tail(stmt);
4111
4112 /* Track the current loop nesting. */
4113 ast_iteration_statement *nesting_ast = state->loop_nesting_ast;
4114
4115 state->loop_nesting_ast = this;
4116
4117 /* Likewise, indicate that following code is closest to a loop,
4118 * NOT closest to a switch.
4119 */
4120 bool saved_is_switch_innermost = state->switch_state.is_switch_innermost;
4121 state->switch_state.is_switch_innermost = false;
4122
4123 if (mode != ast_do_while)
4124 condition_to_hir(stmt, state);
4125
4126 if (body != NULL)
4127 body->hir(& stmt->body_instructions, state);
4128
4129 if (rest_expression != NULL)
4130 rest_expression->hir(& stmt->body_instructions, state);
4131
4132 if (mode == ast_do_while)
4133 condition_to_hir(stmt, state);
4134
4135 if (mode != ast_do_while)
4136 state->symbols->pop_scope();
4137
4138 /* Restore previous nesting before returning. */
4139 state->loop_nesting_ast = nesting_ast;
4140 state->switch_state.is_switch_innermost = saved_is_switch_innermost;
4141
4142 /* Loops do not have r-values.
4143 */
4144 return NULL;
4145 }
4146
4147
4148 /**
4149 * Determine if the given type is valid for establishing a default precision
4150 * qualifier.
4151 *
4152 * From GLSL ES 3.00 section 4.5.4 ("Default Precision Qualifiers"):
4153 *
4154 * "The precision statement
4155 *
4156 * precision precision-qualifier type;
4157 *
4158 * can be used to establish a default precision qualifier. The type field
4159 * can be either int or float or any of the sampler types, and the
4160 * precision-qualifier can be lowp, mediump, or highp."
4161 *
4162 * GLSL ES 1.00 has similar language. GLSL 1.30 doesn't allow precision
4163 * qualifiers on sampler types, but this seems like an oversight (since the
4164 * intention of including these in GLSL 1.30 is to allow compatibility with ES
4165 * shaders). So we allow int, float, and all sampler types regardless of GLSL
4166 * version.
4167 */
4168 static bool
4169 is_valid_default_precision_type(const struct _mesa_glsl_parse_state *state,
4170 const char *type_name)
4171 {
4172 const struct glsl_type *type = state->symbols->get_type(type_name);
4173 if (type == NULL)
4174 return false;
4175
4176 switch (type->base_type) {
4177 case GLSL_TYPE_INT:
4178 case GLSL_TYPE_FLOAT:
4179 /* "int" and "float" are valid, but vectors and matrices are not. */
4180 return type->vector_elements == 1 && type->matrix_columns == 1;
4181 case GLSL_TYPE_SAMPLER:
4182 return true;
4183 default:
4184 return false;
4185 }
4186 }
4187
4188
4189 ir_rvalue *
4190 ast_type_specifier::hir(exec_list *instructions,
4191 struct _mesa_glsl_parse_state *state)
4192 {
4193 if (this->default_precision == ast_precision_none && this->structure == NULL)
4194 return NULL;
4195
4196 YYLTYPE loc = this->get_location();
4197
4198 /* If this is a precision statement, check that the type to which it is
4199 * applied is either float or int.
4200 *
4201 * From section 4.5.3 of the GLSL 1.30 spec:
4202 * "The precision statement
4203 * precision precision-qualifier type;
4204 * can be used to establish a default precision qualifier. The type
4205 * field can be either int or float [...]. Any other types or
4206 * qualifiers will result in an error.
4207 */
4208 if (this->default_precision != ast_precision_none) {
4209 if (!state->check_precision_qualifiers_allowed(&loc))
4210 return NULL;
4211
4212 if (this->structure != NULL) {
4213 _mesa_glsl_error(&loc, state,
4214 "precision qualifiers do not apply to structures");
4215 return NULL;
4216 }
4217
4218 if (this->is_array) {
4219 _mesa_glsl_error(&loc, state,
4220 "default precision statements do not apply to "
4221 "arrays");
4222 return NULL;
4223 }
4224 if (!is_valid_default_precision_type(state, this->type_name)) {
4225 _mesa_glsl_error(&loc, state,
4226 "default precision statements apply only to types "
4227 "float, int, and sampler types");
4228 return NULL;
4229 }
4230
4231 /* FINISHME: Translate precision statements into IR. */
4232 return NULL;
4233 }
4234
4235 /* _mesa_ast_set_aggregate_type() sets the <structure> field so that
4236 * process_record_constructor() can do type-checking on C-style initializer
4237 * expressions of structs, but ast_struct_specifier should only be translated
4238 * to HIR if it is declaring the type of a structure.
4239 *
4240 * The ->is_declaration field is false for initializers of variables
4241 * declared separately from the struct's type definition.
4242 *
4243 * struct S { ... }; (is_declaration = true)
4244 * struct T { ... } t = { ... }; (is_declaration = true)
4245 * S s = { ... }; (is_declaration = false)
4246 */
4247 if (this->structure != NULL && this->structure->is_declaration)
4248 return this->structure->hir(instructions, state);
4249
4250 return NULL;
4251 }
4252
4253
4254 /**
4255 * Process a structure or interface block tree into an array of structure fields
4256 *
4257 * After parsing, where there are some syntax differnces, structures and
4258 * interface blocks are almost identical. They are similar enough that the
4259 * AST for each can be processed the same way into a set of
4260 * \c glsl_struct_field to describe the members.
4261 *
4262 * \return
4263 * The number of fields processed. A pointer to the array structure fields is
4264 * stored in \c *fields_ret.
4265 */
4266 unsigned
4267 ast_process_structure_or_interface_block(exec_list *instructions,
4268 struct _mesa_glsl_parse_state *state,
4269 exec_list *declarations,
4270 YYLTYPE &loc,
4271 glsl_struct_field **fields_ret,
4272 bool is_interface,
4273 bool block_row_major)
4274 {
4275 unsigned decl_count = 0;
4276
4277 /* Make an initial pass over the list of fields to determine how
4278 * many there are. Each element in this list is an ast_declarator_list.
4279 * This means that we actually need to count the number of elements in the
4280 * 'declarations' list in each of the elements.
4281 */
4282 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
4283 foreach_list_const (decl_ptr, & decl_list->declarations) {
4284 decl_count++;
4285 }
4286 }
4287
4288 /* Allocate storage for the fields and process the field
4289 * declarations. As the declarations are processed, try to also convert
4290 * the types to HIR. This ensures that structure definitions embedded in
4291 * other structure definitions or in interface blocks are processed.
4292 */
4293 glsl_struct_field *const fields = ralloc_array(state, glsl_struct_field,
4294 decl_count);
4295
4296 unsigned i = 0;
4297 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
4298 const char *type_name;
4299
4300 decl_list->type->specifier->hir(instructions, state);
4301
4302 /* Section 10.9 of the GLSL ES 1.00 specification states that
4303 * embedded structure definitions have been removed from the language.
4304 */
4305 if (state->es_shader && decl_list->type->specifier->structure != NULL) {
4306 _mesa_glsl_error(&loc, state, "embedded structure definitions are "
4307 "not allowed in GLSL ES 1.00");
4308 }
4309
4310 const glsl_type *decl_type =
4311 decl_list->type->specifier->glsl_type(& type_name, state);
4312
4313 foreach_list_typed (ast_declaration, decl, link,
4314 &decl_list->declarations) {
4315 /* From the GL_ARB_uniform_buffer_object spec:
4316 *
4317 * "Sampler types are not allowed inside of uniform
4318 * blocks. All other types, arrays, and structures
4319 * allowed for uniforms are allowed within a uniform
4320 * block."
4321 *
4322 * It should be impossible for decl_type to be NULL here. Cases that
4323 * might naturally lead to decl_type being NULL, especially for the
4324 * is_interface case, will have resulted in compilation having
4325 * already halted due to a syntax error.
4326 */
4327 const struct glsl_type *field_type =
4328 decl_type != NULL ? decl_type : glsl_type::error_type;
4329
4330 if (is_interface && field_type->contains_sampler()) {
4331 YYLTYPE loc = decl_list->get_location();
4332 _mesa_glsl_error(&loc, state,
4333 "uniform in non-default uniform block contains sampler");
4334 }
4335
4336 const struct ast_type_qualifier *const qual =
4337 & decl_list->type->qualifier;
4338 if (qual->flags.q.std140 ||
4339 qual->flags.q.packed ||
4340 qual->flags.q.shared) {
4341 _mesa_glsl_error(&loc, state,
4342 "uniform block layout qualifiers std140, packed, and "
4343 "shared can only be applied to uniform blocks, not "
4344 "members");
4345 }
4346
4347 if (decl->is_array) {
4348 field_type = process_array_type(&loc, decl_type, decl->array_size,
4349 state);
4350 }
4351 fields[i].type = field_type;
4352 fields[i].name = decl->identifier;
4353
4354 if (qual->flags.q.row_major || qual->flags.q.column_major) {
4355 if (!qual->flags.q.uniform) {
4356 _mesa_glsl_error(&loc, state,
4357 "row_major and column_major can only be "
4358 "applied to uniform interface blocks");
4359 } else if (!field_type->is_matrix() && !field_type->is_record()) {
4360 _mesa_glsl_error(&loc, state,
4361 "uniform block layout qualifiers row_major and "
4362 "column_major can only be applied to matrix and "
4363 "structure types");
4364 } else
4365 validate_matrix_layout_for_type(state, &loc, field_type);
4366 }
4367
4368 if (qual->flags.q.uniform && qual->has_interpolation()) {
4369 _mesa_glsl_error(&loc, state,
4370 "interpolation qualifiers cannot be used "
4371 "with uniform interface blocks");
4372 }
4373
4374 if (field_type->is_matrix() ||
4375 (field_type->is_array() && field_type->fields.array->is_matrix())) {
4376 fields[i].row_major = block_row_major;
4377 if (qual->flags.q.row_major)
4378 fields[i].row_major = true;
4379 else if (qual->flags.q.column_major)
4380 fields[i].row_major = false;
4381 }
4382
4383 i++;
4384 }
4385 }
4386
4387 assert(i == decl_count);
4388
4389 *fields_ret = fields;
4390 return decl_count;
4391 }
4392
4393
4394 ir_rvalue *
4395 ast_struct_specifier::hir(exec_list *instructions,
4396 struct _mesa_glsl_parse_state *state)
4397 {
4398 YYLTYPE loc = this->get_location();
4399 glsl_struct_field *fields;
4400 unsigned decl_count =
4401 ast_process_structure_or_interface_block(instructions,
4402 state,
4403 &this->declarations,
4404 loc,
4405 &fields,
4406 false,
4407 false);
4408
4409 const glsl_type *t =
4410 glsl_type::get_record_instance(fields, decl_count, this->name);
4411
4412 if (!state->symbols->add_type(name, t)) {
4413 _mesa_glsl_error(& loc, state, "struct `%s' previously defined", name);
4414 } else {
4415 const glsl_type **s = reralloc(state, state->user_structures,
4416 const glsl_type *,
4417 state->num_user_structures + 1);
4418 if (s != NULL) {
4419 s[state->num_user_structures] = t;
4420 state->user_structures = s;
4421 state->num_user_structures++;
4422 }
4423 }
4424
4425 /* Structure type definitions do not have r-values.
4426 */
4427 return NULL;
4428 }
4429
4430 ir_rvalue *
4431 ast_interface_block::hir(exec_list *instructions,
4432 struct _mesa_glsl_parse_state *state)
4433 {
4434 YYLTYPE loc = this->get_location();
4435
4436 /* The ast_interface_block has a list of ast_declarator_lists. We
4437 * need to turn those into ir_variables with an association
4438 * with this uniform block.
4439 */
4440 enum glsl_interface_packing packing;
4441 if (this->layout.flags.q.shared) {
4442 packing = GLSL_INTERFACE_PACKING_SHARED;
4443 } else if (this->layout.flags.q.packed) {
4444 packing = GLSL_INTERFACE_PACKING_PACKED;
4445 } else {
4446 /* The default layout is std140.
4447 */
4448 packing = GLSL_INTERFACE_PACKING_STD140;
4449 }
4450
4451 bool block_row_major = this->layout.flags.q.row_major;
4452 exec_list declared_variables;
4453 glsl_struct_field *fields;
4454 unsigned int num_variables =
4455 ast_process_structure_or_interface_block(&declared_variables,
4456 state,
4457 &this->declarations,
4458 loc,
4459 &fields,
4460 true,
4461 block_row_major);
4462
4463 ir_variable_mode var_mode;
4464 const char *iface_type_name;
4465 if (this->layout.flags.q.in) {
4466 var_mode = ir_var_shader_in;
4467 iface_type_name = "in";
4468 } else if (this->layout.flags.q.out) {
4469 var_mode = ir_var_shader_out;
4470 iface_type_name = "out";
4471 } else if (this->layout.flags.q.uniform) {
4472 var_mode = ir_var_uniform;
4473 iface_type_name = "uniform";
4474 } else {
4475 var_mode = ir_var_auto;
4476 iface_type_name = "UNKNOWN";
4477 assert(!"interface block layout qualifier not found!");
4478 }
4479
4480 const glsl_type *block_type =
4481 glsl_type::get_interface_instance(fields,
4482 num_variables,
4483 packing,
4484 this->block_name);
4485
4486 if (!state->symbols->add_interface(block_type->name, block_type, var_mode)) {
4487 YYLTYPE loc = this->get_location();
4488 _mesa_glsl_error(&loc, state, "interface block `%s' with type `%s' "
4489 "already taken in the current scope",
4490 this->block_name, iface_type_name);
4491 }
4492
4493 /* Since interface blocks cannot contain statements, it should be
4494 * impossible for the block to generate any instructions.
4495 */
4496 assert(declared_variables.is_empty());
4497
4498 /* Page 39 (page 45 of the PDF) of section 4.3.7 in the GLSL ES 3.00 spec
4499 * says:
4500 *
4501 * "If an instance name (instance-name) is used, then it puts all the
4502 * members inside a scope within its own name space, accessed with the
4503 * field selector ( . ) operator (analogously to structures)."
4504 */
4505 if (this->instance_name) {
4506 ir_variable *var;
4507
4508 if (this->is_array) {
4509 /* Section 4.3.7 (Interface Blocks) of the GLSL 1.50 spec says:
4510 *
4511 * For uniform blocks declared an array, each individual array
4512 * element corresponds to a separate buffer object backing one
4513 * instance of the block. As the array size indicates the number
4514 * of buffer objects needed, uniform block array declarations
4515 * must specify an array size.
4516 *
4517 * And a few paragraphs later:
4518 *
4519 * Geometry shader input blocks must be declared as arrays and
4520 * follow the array declaration and linking rules for all
4521 * geometry shader inputs. All other input and output block
4522 * arrays must specify an array size.
4523 *
4524 * The upshot of this is that the only circumstance where an
4525 * interface array size *doesn't* need to be specified is on a
4526 * geometry shader input.
4527 */
4528 if (this->array_size == NULL &&
4529 (state->target != geometry_shader || !this->layout.flags.q.in)) {
4530 _mesa_glsl_error(&loc, state,
4531 "only geometry shader inputs may be unsized "
4532 "instance block arrays");
4533
4534 }
4535
4536 const glsl_type *block_array_type =
4537 process_array_type(&loc, block_type, this->array_size, state);
4538
4539 var = new(state) ir_variable(block_array_type,
4540 this->instance_name,
4541 var_mode);
4542 } else {
4543 var = new(state) ir_variable(block_type,
4544 this->instance_name,
4545 var_mode);
4546 }
4547
4548 var->interface_type = block_type;
4549 if (state->target == geometry_shader)
4550 handle_geometry_shader_input_decl(state, loc, var);
4551 state->symbols->add_variable(var);
4552 instructions->push_tail(var);
4553 } else {
4554 /* In order to have an array size, the block must also be declared with
4555 * an instane name.
4556 */
4557 assert(!this->is_array);
4558
4559 for (unsigned i = 0; i < num_variables; i++) {
4560 ir_variable *var =
4561 new(state) ir_variable(fields[i].type,
4562 ralloc_strdup(state, fields[i].name),
4563 var_mode);
4564 var->interface_type = block_type;
4565
4566 /* Propagate the "binding" keyword into this UBO's fields;
4567 * the UBO declaration itself doesn't get an ir_variable unless it
4568 * has an instance name. This is ugly.
4569 */
4570 var->explicit_binding = this->layout.flags.q.explicit_binding;
4571 var->binding = this->layout.binding;
4572
4573 state->symbols->add_variable(var);
4574 instructions->push_tail(var);
4575 }
4576 }
4577
4578 return NULL;
4579 }
4580
4581
4582 ir_rvalue *
4583 ast_gs_input_layout::hir(exec_list *instructions,
4584 struct _mesa_glsl_parse_state *state)
4585 {
4586 YYLTYPE loc = this->get_location();
4587
4588 /* If any geometry input layout declaration preceded this one, make sure it
4589 * was consistent with this one.
4590 */
4591 if (state->gs_input_prim_type_specified &&
4592 state->gs_input_prim_type != this->prim_type) {
4593 _mesa_glsl_error(&loc, state,
4594 "geometry shader input layout does not match"
4595 " previous declaration");
4596 return NULL;
4597 }
4598
4599 /* If any shader inputs occurred before this declaration and specified an
4600 * array size, make sure the size they specified is consistent with the
4601 * primitive type.
4602 */
4603 unsigned num_vertices = vertices_per_prim(this->prim_type);
4604 if (state->gs_input_size != 0 && state->gs_input_size != num_vertices) {
4605 _mesa_glsl_error(&loc, state,
4606 "this geometry shader input layout implies %u vertices"
4607 " per primitive, but a previous input is declared"
4608 " with size %u", num_vertices, state->gs_input_size);
4609 return NULL;
4610 }
4611
4612 state->gs_input_prim_type_specified = true;
4613 state->gs_input_prim_type = this->prim_type;
4614
4615 /* If any shader inputs occurred before this declaration and did not
4616 * specify an array size, their size is determined now.
4617 */
4618 foreach_list (node, instructions) {
4619 ir_variable *var = ((ir_instruction *) node)->as_variable();
4620 if (var == NULL || var->mode != ir_var_shader_in)
4621 continue;
4622
4623 /* Note: gl_PrimitiveIDIn has mode ir_var_shader_in, but it's not an
4624 * array; skip it.
4625 */
4626 if (!var->type->is_array())
4627 continue;
4628
4629 if (var->type->length == 0) {
4630 if (var->max_array_access >= num_vertices) {
4631 _mesa_glsl_error(&loc, state,
4632 "this geometry shader input layout implies %u"
4633 " vertices, but an access to element %u of input"
4634 " `%s' already exists", num_vertices,
4635 var->max_array_access, var->name);
4636 } else {
4637 var->type = glsl_type::get_array_instance(var->type->fields.array,
4638 num_vertices);
4639 }
4640 }
4641 }
4642
4643 return NULL;
4644 }
4645
4646
4647 static void
4648 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
4649 exec_list *instructions)
4650 {
4651 bool gl_FragColor_assigned = false;
4652 bool gl_FragData_assigned = false;
4653 bool user_defined_fs_output_assigned = false;
4654 ir_variable *user_defined_fs_output = NULL;
4655
4656 /* It would be nice to have proper location information. */
4657 YYLTYPE loc;
4658 memset(&loc, 0, sizeof(loc));
4659
4660 foreach_list(node, instructions) {
4661 ir_variable *var = ((ir_instruction *)node)->as_variable();
4662
4663 if (!var || !var->assigned)
4664 continue;
4665
4666 if (strcmp(var->name, "gl_FragColor") == 0)
4667 gl_FragColor_assigned = true;
4668 else if (strcmp(var->name, "gl_FragData") == 0)
4669 gl_FragData_assigned = true;
4670 else if (strncmp(var->name, "gl_", 3) != 0) {
4671 if (state->target == fragment_shader &&
4672 var->mode == ir_var_shader_out) {
4673 user_defined_fs_output_assigned = true;
4674 user_defined_fs_output = var;
4675 }
4676 }
4677 }
4678
4679 /* From the GLSL 1.30 spec:
4680 *
4681 * "If a shader statically assigns a value to gl_FragColor, it
4682 * may not assign a value to any element of gl_FragData. If a
4683 * shader statically writes a value to any element of
4684 * gl_FragData, it may not assign a value to
4685 * gl_FragColor. That is, a shader may assign values to either
4686 * gl_FragColor or gl_FragData, but not both. Multiple shaders
4687 * linked together must also consistently write just one of
4688 * these variables. Similarly, if user declared output
4689 * variables are in use (statically assigned to), then the
4690 * built-in variables gl_FragColor and gl_FragData may not be
4691 * assigned to. These incorrect usages all generate compile
4692 * time errors."
4693 */
4694 if (gl_FragColor_assigned && gl_FragData_assigned) {
4695 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
4696 "`gl_FragColor' and `gl_FragData'");
4697 } else if (gl_FragColor_assigned && user_defined_fs_output_assigned) {
4698 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
4699 "`gl_FragColor' and `%s'",
4700 user_defined_fs_output->name);
4701 } else if (gl_FragData_assigned && user_defined_fs_output_assigned) {
4702 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
4703 "`gl_FragData' and `%s'",
4704 user_defined_fs_output->name);
4705 }
4706 }