glsl/cs: Prohibit user-defined ins/outs in compute shaders.
[mesa.git] / src / glsl / ast_to_hir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file ast_to_hir.c
26 * Convert abstract syntax to to high-level intermediate reprensentation (HIR).
27 *
28 * During the conversion to HIR, the majority of the symantic checking is
29 * preformed on the program. This includes:
30 *
31 * * Symbol table management
32 * * Type checking
33 * * Function binding
34 *
35 * The majority of this work could be done during parsing, and the parser could
36 * probably generate HIR directly. However, this results in frequent changes
37 * to the parser code. Since we do not assume that every system this complier
38 * is built on will have Flex and Bison installed, we have to store the code
39 * generated by these tools in our version control system. In other parts of
40 * the system we've seen problems where a parser was changed but the generated
41 * code was not committed, merge conflicts where created because two developers
42 * had slightly different versions of Bison installed, etc.
43 *
44 * I have also noticed that running Bison generated parsers in GDB is very
45 * irritating. When you get a segfault on '$$ = $1->foo', you can't very
46 * well 'print $1' in GDB.
47 *
48 * As a result, my preference is to put as little C code as possible in the
49 * parser (and lexer) sources.
50 */
51
52 #include "main/core.h" /* for struct gl_extensions */
53 #include "glsl_symbol_table.h"
54 #include "glsl_parser_extras.h"
55 #include "ast.h"
56 #include "glsl_types.h"
57 #include "program/hash_table.h"
58 #include "ir.h"
59
60 static void
61 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
62 exec_list *instructions);
63 static void
64 remove_per_vertex_blocks(exec_list *instructions,
65 _mesa_glsl_parse_state *state, ir_variable_mode mode);
66
67
68 void
69 _mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
70 {
71 _mesa_glsl_initialize_variables(instructions, state);
72
73 state->symbols->separate_function_namespace = state->language_version == 110;
74
75 state->current_function = NULL;
76
77 state->toplevel_ir = instructions;
78
79 state->gs_input_prim_type_specified = false;
80 state->cs_input_local_size_specified = false;
81
82 /* Section 4.2 of the GLSL 1.20 specification states:
83 * "The built-in functions are scoped in a scope outside the global scope
84 * users declare global variables in. That is, a shader's global scope,
85 * available for user-defined functions and global variables, is nested
86 * inside the scope containing the built-in functions."
87 *
88 * Since built-in functions like ftransform() access built-in variables,
89 * it follows that those must be in the outer scope as well.
90 *
91 * We push scope here to create this nesting effect...but don't pop.
92 * This way, a shader's globals are still in the symbol table for use
93 * by the linker.
94 */
95 state->symbols->push_scope();
96
97 foreach_list_typed (ast_node, ast, link, & state->translation_unit)
98 ast->hir(instructions, state);
99
100 detect_recursion_unlinked(state, instructions);
101 detect_conflicting_assignments(state, instructions);
102
103 state->toplevel_ir = NULL;
104
105 /* Move all of the variable declarations to the front of the IR list, and
106 * reverse the order. This has the (intended!) side effect that vertex
107 * shader inputs and fragment shader outputs will appear in the IR in the
108 * same order that they appeared in the shader code. This results in the
109 * locations being assigned in the declared order. Many (arguably buggy)
110 * applications depend on this behavior, and it matches what nearly all
111 * other drivers do.
112 */
113 foreach_list_safe(node, instructions) {
114 ir_variable *const var = ((ir_instruction *) node)->as_variable();
115
116 if (var == NULL)
117 continue;
118
119 var->remove();
120 instructions->push_head(var);
121 }
122
123 /* From section 7.1 (Built-In Language Variables) of the GLSL 4.10 spec:
124 *
125 * If multiple shaders using members of a built-in block belonging to
126 * the same interface are linked together in the same program, they
127 * must all redeclare the built-in block in the same way, as described
128 * in section 4.3.7 "Interface Blocks" for interface block matching, or
129 * a link error will result.
130 *
131 * The phrase "using members of a built-in block" implies that if two
132 * shaders are linked together and one of them *does not use* any members
133 * of the built-in block, then that shader does not need to have a matching
134 * redeclaration of the built-in block.
135 *
136 * This appears to be a clarification to the behaviour established for
137 * gl_PerVertex by GLSL 1.50, therefore implement it regardless of GLSL
138 * version.
139 *
140 * The definition of "interface" in section 4.3.7 that applies here is as
141 * follows:
142 *
143 * The boundary between adjacent programmable pipeline stages: This
144 * spans all the outputs in all compilation units of the first stage
145 * and all the inputs in all compilation units of the second stage.
146 *
147 * Therefore this rule applies to both inter- and intra-stage linking.
148 *
149 * The easiest way to implement this is to check whether the shader uses
150 * gl_PerVertex right after ast-to-ir conversion, and if it doesn't, simply
151 * remove all the relevant variable declaration from the IR, so that the
152 * linker won't see them and complain about mismatches.
153 */
154 remove_per_vertex_blocks(instructions, state, ir_var_shader_in);
155 remove_per_vertex_blocks(instructions, state, ir_var_shader_out);
156 }
157
158
159 /**
160 * If a conversion is available, convert one operand to a different type
161 *
162 * The \c from \c ir_rvalue is converted "in place".
163 *
164 * \param to Type that the operand it to be converted to
165 * \param from Operand that is being converted
166 * \param state GLSL compiler state
167 *
168 * \return
169 * If a conversion is possible (or unnecessary), \c true is returned.
170 * Otherwise \c false is returned.
171 */
172 bool
173 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
174 struct _mesa_glsl_parse_state *state)
175 {
176 void *ctx = state;
177 if (to->base_type == from->type->base_type)
178 return true;
179
180 /* This conversion was added in GLSL 1.20. If the compilation mode is
181 * GLSL 1.10, the conversion is skipped.
182 */
183 if (!state->is_version(120, 0))
184 return false;
185
186 /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
187 *
188 * "There are no implicit array or structure conversions. For
189 * example, an array of int cannot be implicitly converted to an
190 * array of float. There are no implicit conversions between
191 * signed and unsigned integers."
192 */
193 /* FINISHME: The above comment is partially a lie. There is int/uint
194 * FINISHME: conversion for immediate constants.
195 */
196 if (!to->is_float() || !from->type->is_numeric())
197 return false;
198
199 /* Convert to a floating point type with the same number of components
200 * as the original type - i.e. int to float, not int to vec4.
201 */
202 to = glsl_type::get_instance(GLSL_TYPE_FLOAT, from->type->vector_elements,
203 from->type->matrix_columns);
204
205 switch (from->type->base_type) {
206 case GLSL_TYPE_INT:
207 from = new(ctx) ir_expression(ir_unop_i2f, to, from, NULL);
208 break;
209 case GLSL_TYPE_UINT:
210 from = new(ctx) ir_expression(ir_unop_u2f, to, from, NULL);
211 break;
212 case GLSL_TYPE_BOOL:
213 from = new(ctx) ir_expression(ir_unop_b2f, to, from, NULL);
214 break;
215 default:
216 assert(0);
217 }
218
219 return true;
220 }
221
222
223 static const struct glsl_type *
224 arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
225 bool multiply,
226 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
227 {
228 const glsl_type *type_a = value_a->type;
229 const glsl_type *type_b = value_b->type;
230
231 /* From GLSL 1.50 spec, page 56:
232 *
233 * "The arithmetic binary operators add (+), subtract (-),
234 * multiply (*), and divide (/) operate on integer and
235 * floating-point scalars, vectors, and matrices."
236 */
237 if (!type_a->is_numeric() || !type_b->is_numeric()) {
238 _mesa_glsl_error(loc, state,
239 "operands to arithmetic operators must be numeric");
240 return glsl_type::error_type;
241 }
242
243
244 /* "If one operand is floating-point based and the other is
245 * not, then the conversions from Section 4.1.10 "Implicit
246 * Conversions" are applied to the non-floating-point-based operand."
247 */
248 if (!apply_implicit_conversion(type_a, value_b, state)
249 && !apply_implicit_conversion(type_b, value_a, state)) {
250 _mesa_glsl_error(loc, state,
251 "could not implicitly convert operands to "
252 "arithmetic operator");
253 return glsl_type::error_type;
254 }
255 type_a = value_a->type;
256 type_b = value_b->type;
257
258 /* "If the operands are integer types, they must both be signed or
259 * both be unsigned."
260 *
261 * From this rule and the preceeding conversion it can be inferred that
262 * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
263 * The is_numeric check above already filtered out the case where either
264 * type is not one of these, so now the base types need only be tested for
265 * equality.
266 */
267 if (type_a->base_type != type_b->base_type) {
268 _mesa_glsl_error(loc, state,
269 "base type mismatch for arithmetic operator");
270 return glsl_type::error_type;
271 }
272
273 /* "All arithmetic binary operators result in the same fundamental type
274 * (signed integer, unsigned integer, or floating-point) as the
275 * operands they operate on, after operand type conversion. After
276 * conversion, the following cases are valid
277 *
278 * * The two operands are scalars. In this case the operation is
279 * applied, resulting in a scalar."
280 */
281 if (type_a->is_scalar() && type_b->is_scalar())
282 return type_a;
283
284 /* "* One operand is a scalar, and the other is a vector or matrix.
285 * In this case, the scalar operation is applied independently to each
286 * component of the vector or matrix, resulting in the same size
287 * vector or matrix."
288 */
289 if (type_a->is_scalar()) {
290 if (!type_b->is_scalar())
291 return type_b;
292 } else if (type_b->is_scalar()) {
293 return type_a;
294 }
295
296 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
297 * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
298 * handled.
299 */
300 assert(!type_a->is_scalar());
301 assert(!type_b->is_scalar());
302
303 /* "* The two operands are vectors of the same size. In this case, the
304 * operation is done component-wise resulting in the same size
305 * vector."
306 */
307 if (type_a->is_vector() && type_b->is_vector()) {
308 if (type_a == type_b) {
309 return type_a;
310 } else {
311 _mesa_glsl_error(loc, state,
312 "vector size mismatch for arithmetic operator");
313 return glsl_type::error_type;
314 }
315 }
316
317 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
318 * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
319 * <vector, vector> have been handled. At least one of the operands must
320 * be matrix. Further, since there are no integer matrix types, the base
321 * type of both operands must be float.
322 */
323 assert(type_a->is_matrix() || type_b->is_matrix());
324 assert(type_a->base_type == GLSL_TYPE_FLOAT);
325 assert(type_b->base_type == GLSL_TYPE_FLOAT);
326
327 /* "* The operator is add (+), subtract (-), or divide (/), and the
328 * operands are matrices with the same number of rows and the same
329 * number of columns. In this case, the operation is done component-
330 * wise resulting in the same size matrix."
331 * * The operator is multiply (*), where both operands are matrices or
332 * one operand is a vector and the other a matrix. A right vector
333 * operand is treated as a column vector and a left vector operand as a
334 * row vector. In all these cases, it is required that the number of
335 * columns of the left operand is equal to the number of rows of the
336 * right operand. Then, the multiply (*) operation does a linear
337 * algebraic multiply, yielding an object that has the same number of
338 * rows as the left operand and the same number of columns as the right
339 * operand. Section 5.10 "Vector and Matrix Operations" explains in
340 * more detail how vectors and matrices are operated on."
341 */
342 if (! multiply) {
343 if (type_a == type_b)
344 return type_a;
345 } else {
346 if (type_a->is_matrix() && type_b->is_matrix()) {
347 /* Matrix multiply. The columns of A must match the rows of B. Given
348 * the other previously tested constraints, this means the vector type
349 * of a row from A must be the same as the vector type of a column from
350 * B.
351 */
352 if (type_a->row_type() == type_b->column_type()) {
353 /* The resulting matrix has the number of columns of matrix B and
354 * the number of rows of matrix A. We get the row count of A by
355 * looking at the size of a vector that makes up a column. The
356 * transpose (size of a row) is done for B.
357 */
358 const glsl_type *const type =
359 glsl_type::get_instance(type_a->base_type,
360 type_a->column_type()->vector_elements,
361 type_b->row_type()->vector_elements);
362 assert(type != glsl_type::error_type);
363
364 return type;
365 }
366 } else if (type_a->is_matrix()) {
367 /* A is a matrix and B is a column vector. Columns of A must match
368 * rows of B. Given the other previously tested constraints, this
369 * means the vector type of a row from A must be the same as the
370 * vector the type of B.
371 */
372 if (type_a->row_type() == type_b) {
373 /* The resulting vector has a number of elements equal to
374 * the number of rows of matrix A. */
375 const glsl_type *const type =
376 glsl_type::get_instance(type_a->base_type,
377 type_a->column_type()->vector_elements,
378 1);
379 assert(type != glsl_type::error_type);
380
381 return type;
382 }
383 } else {
384 assert(type_b->is_matrix());
385
386 /* A is a row vector and B is a matrix. Columns of A must match rows
387 * of B. Given the other previously tested constraints, this means
388 * the type of A must be the same as the vector type of a column from
389 * B.
390 */
391 if (type_a == type_b->column_type()) {
392 /* The resulting vector has a number of elements equal to
393 * the number of columns of matrix B. */
394 const glsl_type *const type =
395 glsl_type::get_instance(type_a->base_type,
396 type_b->row_type()->vector_elements,
397 1);
398 assert(type != glsl_type::error_type);
399
400 return type;
401 }
402 }
403
404 _mesa_glsl_error(loc, state, "size mismatch for matrix multiplication");
405 return glsl_type::error_type;
406 }
407
408
409 /* "All other cases are illegal."
410 */
411 _mesa_glsl_error(loc, state, "type mismatch");
412 return glsl_type::error_type;
413 }
414
415
416 static const struct glsl_type *
417 unary_arithmetic_result_type(const struct glsl_type *type,
418 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
419 {
420 /* From GLSL 1.50 spec, page 57:
421 *
422 * "The arithmetic unary operators negate (-), post- and pre-increment
423 * and decrement (-- and ++) operate on integer or floating-point
424 * values (including vectors and matrices). All unary operators work
425 * component-wise on their operands. These result with the same type
426 * they operated on."
427 */
428 if (!type->is_numeric()) {
429 _mesa_glsl_error(loc, state,
430 "operands to arithmetic operators must be numeric");
431 return glsl_type::error_type;
432 }
433
434 return type;
435 }
436
437 /**
438 * \brief Return the result type of a bit-logic operation.
439 *
440 * If the given types to the bit-logic operator are invalid, return
441 * glsl_type::error_type.
442 *
443 * \param type_a Type of LHS of bit-logic op
444 * \param type_b Type of RHS of bit-logic op
445 */
446 static const struct glsl_type *
447 bit_logic_result_type(const struct glsl_type *type_a,
448 const struct glsl_type *type_b,
449 ast_operators op,
450 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
451 {
452 if (!state->check_bitwise_operations_allowed(loc)) {
453 return glsl_type::error_type;
454 }
455
456 /* From page 50 (page 56 of PDF) of GLSL 1.30 spec:
457 *
458 * "The bitwise operators and (&), exclusive-or (^), and inclusive-or
459 * (|). The operands must be of type signed or unsigned integers or
460 * integer vectors."
461 */
462 if (!type_a->is_integer()) {
463 _mesa_glsl_error(loc, state, "LHS of `%s' must be an integer",
464 ast_expression::operator_string(op));
465 return glsl_type::error_type;
466 }
467 if (!type_b->is_integer()) {
468 _mesa_glsl_error(loc, state, "RHS of `%s' must be an integer",
469 ast_expression::operator_string(op));
470 return glsl_type::error_type;
471 }
472
473 /* "The fundamental types of the operands (signed or unsigned) must
474 * match,"
475 */
476 if (type_a->base_type != type_b->base_type) {
477 _mesa_glsl_error(loc, state, "operands of `%s' must have the same "
478 "base type", ast_expression::operator_string(op));
479 return glsl_type::error_type;
480 }
481
482 /* "The operands cannot be vectors of differing size." */
483 if (type_a->is_vector() &&
484 type_b->is_vector() &&
485 type_a->vector_elements != type_b->vector_elements) {
486 _mesa_glsl_error(loc, state, "operands of `%s' cannot be vectors of "
487 "different sizes", ast_expression::operator_string(op));
488 return glsl_type::error_type;
489 }
490
491 /* "If one operand is a scalar and the other a vector, the scalar is
492 * applied component-wise to the vector, resulting in the same type as
493 * the vector. The fundamental types of the operands [...] will be the
494 * resulting fundamental type."
495 */
496 if (type_a->is_scalar())
497 return type_b;
498 else
499 return type_a;
500 }
501
502 static const struct glsl_type *
503 modulus_result_type(const struct glsl_type *type_a,
504 const struct glsl_type *type_b,
505 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
506 {
507 if (!state->check_version(130, 300, loc, "operator '%%' is reserved")) {
508 return glsl_type::error_type;
509 }
510
511 /* From GLSL 1.50 spec, page 56:
512 * "The operator modulus (%) operates on signed or unsigned integers or
513 * integer vectors. The operand types must both be signed or both be
514 * unsigned."
515 */
516 if (!type_a->is_integer()) {
517 _mesa_glsl_error(loc, state, "LHS of operator %% must be an integer");
518 return glsl_type::error_type;
519 }
520 if (!type_b->is_integer()) {
521 _mesa_glsl_error(loc, state, "RHS of operator %% must be an integer");
522 return glsl_type::error_type;
523 }
524 if (type_a->base_type != type_b->base_type) {
525 _mesa_glsl_error(loc, state,
526 "operands of %% must have the same base type");
527 return glsl_type::error_type;
528 }
529
530 /* "The operands cannot be vectors of differing size. If one operand is
531 * a scalar and the other vector, then the scalar is applied component-
532 * wise to the vector, resulting in the same type as the vector. If both
533 * are vectors of the same size, the result is computed component-wise."
534 */
535 if (type_a->is_vector()) {
536 if (!type_b->is_vector()
537 || (type_a->vector_elements == type_b->vector_elements))
538 return type_a;
539 } else
540 return type_b;
541
542 /* "The operator modulus (%) is not defined for any other data types
543 * (non-integer types)."
544 */
545 _mesa_glsl_error(loc, state, "type mismatch");
546 return glsl_type::error_type;
547 }
548
549
550 static const struct glsl_type *
551 relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
552 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
553 {
554 const glsl_type *type_a = value_a->type;
555 const glsl_type *type_b = value_b->type;
556
557 /* From GLSL 1.50 spec, page 56:
558 * "The relational operators greater than (>), less than (<), greater
559 * than or equal (>=), and less than or equal (<=) operate only on
560 * scalar integer and scalar floating-point expressions."
561 */
562 if (!type_a->is_numeric()
563 || !type_b->is_numeric()
564 || !type_a->is_scalar()
565 || !type_b->is_scalar()) {
566 _mesa_glsl_error(loc, state,
567 "operands to relational operators must be scalar and "
568 "numeric");
569 return glsl_type::error_type;
570 }
571
572 /* "Either the operands' types must match, or the conversions from
573 * Section 4.1.10 "Implicit Conversions" will be applied to the integer
574 * operand, after which the types must match."
575 */
576 if (!apply_implicit_conversion(type_a, value_b, state)
577 && !apply_implicit_conversion(type_b, value_a, state)) {
578 _mesa_glsl_error(loc, state,
579 "could not implicitly convert operands to "
580 "relational operator");
581 return glsl_type::error_type;
582 }
583 type_a = value_a->type;
584 type_b = value_b->type;
585
586 if (type_a->base_type != type_b->base_type) {
587 _mesa_glsl_error(loc, state, "base type mismatch");
588 return glsl_type::error_type;
589 }
590
591 /* "The result is scalar Boolean."
592 */
593 return glsl_type::bool_type;
594 }
595
596 /**
597 * \brief Return the result type of a bit-shift operation.
598 *
599 * If the given types to the bit-shift operator are invalid, return
600 * glsl_type::error_type.
601 *
602 * \param type_a Type of LHS of bit-shift op
603 * \param type_b Type of RHS of bit-shift op
604 */
605 static const struct glsl_type *
606 shift_result_type(const struct glsl_type *type_a,
607 const struct glsl_type *type_b,
608 ast_operators op,
609 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
610 {
611 if (!state->check_bitwise_operations_allowed(loc)) {
612 return glsl_type::error_type;
613 }
614
615 /* From page 50 (page 56 of the PDF) of the GLSL 1.30 spec:
616 *
617 * "The shift operators (<<) and (>>). For both operators, the operands
618 * must be signed or unsigned integers or integer vectors. One operand
619 * can be signed while the other is unsigned."
620 */
621 if (!type_a->is_integer()) {
622 _mesa_glsl_error(loc, state, "LHS of operator %s must be an integer or "
623 "integer vector", ast_expression::operator_string(op));
624 return glsl_type::error_type;
625
626 }
627 if (!type_b->is_integer()) {
628 _mesa_glsl_error(loc, state, "RHS of operator %s must be an integer or "
629 "integer vector", ast_expression::operator_string(op));
630 return glsl_type::error_type;
631 }
632
633 /* "If the first operand is a scalar, the second operand has to be
634 * a scalar as well."
635 */
636 if (type_a->is_scalar() && !type_b->is_scalar()) {
637 _mesa_glsl_error(loc, state, "if the first operand of %s is scalar, the "
638 "second must be scalar as well",
639 ast_expression::operator_string(op));
640 return glsl_type::error_type;
641 }
642
643 /* If both operands are vectors, check that they have same number of
644 * elements.
645 */
646 if (type_a->is_vector() &&
647 type_b->is_vector() &&
648 type_a->vector_elements != type_b->vector_elements) {
649 _mesa_glsl_error(loc, state, "vector operands to operator %s must "
650 "have same number of elements",
651 ast_expression::operator_string(op));
652 return glsl_type::error_type;
653 }
654
655 /* "In all cases, the resulting type will be the same type as the left
656 * operand."
657 */
658 return type_a;
659 }
660
661 /**
662 * Validates that a value can be assigned to a location with a specified type
663 *
664 * Validates that \c rhs can be assigned to some location. If the types are
665 * not an exact match but an automatic conversion is possible, \c rhs will be
666 * converted.
667 *
668 * \return
669 * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
670 * Otherwise the actual RHS to be assigned will be returned. This may be
671 * \c rhs, or it may be \c rhs after some type conversion.
672 *
673 * \note
674 * In addition to being used for assignments, this function is used to
675 * type-check return values.
676 */
677 ir_rvalue *
678 validate_assignment(struct _mesa_glsl_parse_state *state,
679 YYLTYPE loc, const glsl_type *lhs_type,
680 ir_rvalue *rhs, bool is_initializer)
681 {
682 /* If there is already some error in the RHS, just return it. Anything
683 * else will lead to an avalanche of error message back to the user.
684 */
685 if (rhs->type->is_error())
686 return rhs;
687
688 /* If the types are identical, the assignment can trivially proceed.
689 */
690 if (rhs->type == lhs_type)
691 return rhs;
692
693 /* If the array element types are the same and the LHS is unsized,
694 * the assignment is okay for initializers embedded in variable
695 * declarations.
696 *
697 * Note: Whole-array assignments are not permitted in GLSL 1.10, but this
698 * is handled by ir_dereference::is_lvalue.
699 */
700 if (lhs_type->is_unsized_array() && rhs->type->is_array()
701 && (lhs_type->element_type() == rhs->type->element_type())) {
702 if (is_initializer) {
703 return rhs;
704 } else {
705 _mesa_glsl_error(&loc, state,
706 "implicitly sized arrays cannot be assigned");
707 return NULL;
708 }
709 }
710
711 /* Check for implicit conversion in GLSL 1.20 */
712 if (apply_implicit_conversion(lhs_type, rhs, state)) {
713 if (rhs->type == lhs_type)
714 return rhs;
715 }
716
717 _mesa_glsl_error(&loc, state,
718 "%s of type %s cannot be assigned to "
719 "variable of type %s",
720 is_initializer ? "initializer" : "value",
721 rhs->type->name, lhs_type->name);
722
723 return NULL;
724 }
725
726 static void
727 mark_whole_array_access(ir_rvalue *access)
728 {
729 ir_dereference_variable *deref = access->as_dereference_variable();
730
731 if (deref && deref->var) {
732 deref->var->data.max_array_access = deref->type->length - 1;
733 }
734 }
735
736 ir_rvalue *
737 do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state,
738 const char *non_lvalue_description,
739 ir_rvalue *lhs, ir_rvalue *rhs, bool is_initializer,
740 YYLTYPE lhs_loc)
741 {
742 void *ctx = state;
743 bool error_emitted = (lhs->type->is_error() || rhs->type->is_error());
744 ir_rvalue *extract_channel = NULL;
745
746 /* If the assignment LHS comes back as an ir_binop_vector_extract
747 * expression, move it to the RHS as an ir_triop_vector_insert.
748 */
749 if (lhs->ir_type == ir_type_expression) {
750 ir_expression *const lhs_expr = lhs->as_expression();
751
752 if (unlikely(lhs_expr->operation == ir_binop_vector_extract)) {
753 ir_rvalue *new_rhs =
754 validate_assignment(state, lhs_loc, lhs->type,
755 rhs, is_initializer);
756
757 if (new_rhs == NULL) {
758 return lhs;
759 } else {
760 /* This converts:
761 * - LHS: (expression float vector_extract <vec> <channel>)
762 * - RHS: <scalar>
763 * into:
764 * - LHS: <vec>
765 * - RHS: (expression vec2 vector_insert <vec> <channel> <scalar>)
766 *
767 * The LHS type is now a vector instead of a scalar. Since GLSL
768 * allows assignments to be used as rvalues, we need to re-extract
769 * the channel from assignment_temp when returning the rvalue.
770 */
771 extract_channel = lhs_expr->operands[1];
772 rhs = new(ctx) ir_expression(ir_triop_vector_insert,
773 lhs_expr->operands[0]->type,
774 lhs_expr->operands[0],
775 new_rhs,
776 extract_channel);
777 lhs = lhs_expr->operands[0]->clone(ctx, NULL);
778 }
779 }
780 }
781
782 ir_variable *lhs_var = lhs->variable_referenced();
783 if (lhs_var)
784 lhs_var->data.assigned = true;
785
786 if (!error_emitted) {
787 if (non_lvalue_description != NULL) {
788 _mesa_glsl_error(&lhs_loc, state,
789 "assignment to %s",
790 non_lvalue_description);
791 error_emitted = true;
792 } else if (lhs->variable_referenced() != NULL
793 && lhs->variable_referenced()->data.read_only) {
794 _mesa_glsl_error(&lhs_loc, state,
795 "assignment to read-only variable '%s'",
796 lhs->variable_referenced()->name);
797 error_emitted = true;
798
799 } else if (lhs->type->is_array() &&
800 !state->check_version(120, 300, &lhs_loc,
801 "whole array assignment forbidden")) {
802 /* From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
803 *
804 * "Other binary or unary expressions, non-dereferenced
805 * arrays, function names, swizzles with repeated fields,
806 * and constants cannot be l-values."
807 *
808 * The restriction on arrays is lifted in GLSL 1.20 and GLSL ES 3.00.
809 */
810 error_emitted = true;
811 } else if (!lhs->is_lvalue()) {
812 _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment");
813 error_emitted = true;
814 }
815 }
816
817 ir_rvalue *new_rhs =
818 validate_assignment(state, lhs_loc, lhs->type, rhs, is_initializer);
819 if (new_rhs != NULL) {
820 rhs = new_rhs;
821
822 /* If the LHS array was not declared with a size, it takes it size from
823 * the RHS. If the LHS is an l-value and a whole array, it must be a
824 * dereference of a variable. Any other case would require that the LHS
825 * is either not an l-value or not a whole array.
826 */
827 if (lhs->type->is_unsized_array()) {
828 ir_dereference *const d = lhs->as_dereference();
829
830 assert(d != NULL);
831
832 ir_variable *const var = d->variable_referenced();
833
834 assert(var != NULL);
835
836 if (var->data.max_array_access >= unsigned(rhs->type->array_size())) {
837 /* FINISHME: This should actually log the location of the RHS. */
838 _mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to "
839 "previous access",
840 var->data.max_array_access);
841 }
842
843 var->type = glsl_type::get_array_instance(lhs->type->element_type(),
844 rhs->type->array_size());
845 d->type = var->type;
846 }
847 if (lhs->type->is_array()) {
848 mark_whole_array_access(rhs);
849 mark_whole_array_access(lhs);
850 }
851 }
852
853 /* Most callers of do_assignment (assign, add_assign, pre_inc/dec,
854 * but not post_inc) need the converted assigned value as an rvalue
855 * to handle things like:
856 *
857 * i = j += 1;
858 *
859 * So we always just store the computed value being assigned to a
860 * temporary and return a deref of that temporary. If the rvalue
861 * ends up not being used, the temp will get copy-propagated out.
862 */
863 ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp",
864 ir_var_temporary);
865 ir_dereference_variable *deref_var = new(ctx) ir_dereference_variable(var);
866 instructions->push_tail(var);
867 instructions->push_tail(new(ctx) ir_assignment(deref_var, rhs));
868 deref_var = new(ctx) ir_dereference_variable(var);
869
870 if (!error_emitted)
871 instructions->push_tail(new(ctx) ir_assignment(lhs, deref_var));
872
873 if (extract_channel) {
874 return new(ctx) ir_expression(ir_binop_vector_extract,
875 new(ctx) ir_dereference_variable(var),
876 extract_channel->clone(ctx, NULL));
877 }
878 return new(ctx) ir_dereference_variable(var);
879 }
880
881 static ir_rvalue *
882 get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue)
883 {
884 void *ctx = ralloc_parent(lvalue);
885 ir_variable *var;
886
887 var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp",
888 ir_var_temporary);
889 instructions->push_tail(var);
890 var->data.mode = ir_var_auto;
891
892 instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
893 lvalue));
894
895 return new(ctx) ir_dereference_variable(var);
896 }
897
898
899 ir_rvalue *
900 ast_node::hir(exec_list *instructions,
901 struct _mesa_glsl_parse_state *state)
902 {
903 (void) instructions;
904 (void) state;
905
906 return NULL;
907 }
908
909 static ir_rvalue *
910 do_comparison(void *mem_ctx, int operation, ir_rvalue *op0, ir_rvalue *op1)
911 {
912 int join_op;
913 ir_rvalue *cmp = NULL;
914
915 if (operation == ir_binop_all_equal)
916 join_op = ir_binop_logic_and;
917 else
918 join_op = ir_binop_logic_or;
919
920 switch (op0->type->base_type) {
921 case GLSL_TYPE_FLOAT:
922 case GLSL_TYPE_UINT:
923 case GLSL_TYPE_INT:
924 case GLSL_TYPE_BOOL:
925 return new(mem_ctx) ir_expression(operation, op0, op1);
926
927 case GLSL_TYPE_ARRAY: {
928 for (unsigned int i = 0; i < op0->type->length; i++) {
929 ir_rvalue *e0, *e1, *result;
930
931 e0 = new(mem_ctx) ir_dereference_array(op0->clone(mem_ctx, NULL),
932 new(mem_ctx) ir_constant(i));
933 e1 = new(mem_ctx) ir_dereference_array(op1->clone(mem_ctx, NULL),
934 new(mem_ctx) ir_constant(i));
935 result = do_comparison(mem_ctx, operation, e0, e1);
936
937 if (cmp) {
938 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
939 } else {
940 cmp = result;
941 }
942 }
943
944 mark_whole_array_access(op0);
945 mark_whole_array_access(op1);
946 break;
947 }
948
949 case GLSL_TYPE_STRUCT: {
950 for (unsigned int i = 0; i < op0->type->length; i++) {
951 ir_rvalue *e0, *e1, *result;
952 const char *field_name = op0->type->fields.structure[i].name;
953
954 e0 = new(mem_ctx) ir_dereference_record(op0->clone(mem_ctx, NULL),
955 field_name);
956 e1 = new(mem_ctx) ir_dereference_record(op1->clone(mem_ctx, NULL),
957 field_name);
958 result = do_comparison(mem_ctx, operation, e0, e1);
959
960 if (cmp) {
961 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
962 } else {
963 cmp = result;
964 }
965 }
966 break;
967 }
968
969 case GLSL_TYPE_ERROR:
970 case GLSL_TYPE_VOID:
971 case GLSL_TYPE_SAMPLER:
972 case GLSL_TYPE_INTERFACE:
973 case GLSL_TYPE_ATOMIC_UINT:
974 /* I assume a comparison of a struct containing a sampler just
975 * ignores the sampler present in the type.
976 */
977 break;
978 }
979
980 if (cmp == NULL)
981 cmp = new(mem_ctx) ir_constant(true);
982
983 return cmp;
984 }
985
986 /* For logical operations, we want to ensure that the operands are
987 * scalar booleans. If it isn't, emit an error and return a constant
988 * boolean to avoid triggering cascading error messages.
989 */
990 ir_rvalue *
991 get_scalar_boolean_operand(exec_list *instructions,
992 struct _mesa_glsl_parse_state *state,
993 ast_expression *parent_expr,
994 int operand,
995 const char *operand_name,
996 bool *error_emitted)
997 {
998 ast_expression *expr = parent_expr->subexpressions[operand];
999 void *ctx = state;
1000 ir_rvalue *val = expr->hir(instructions, state);
1001
1002 if (val->type->is_boolean() && val->type->is_scalar())
1003 return val;
1004
1005 if (!*error_emitted) {
1006 YYLTYPE loc = expr->get_location();
1007 _mesa_glsl_error(&loc, state, "%s of `%s' must be scalar boolean",
1008 operand_name,
1009 parent_expr->operator_string(parent_expr->oper));
1010 *error_emitted = true;
1011 }
1012
1013 return new(ctx) ir_constant(true);
1014 }
1015
1016 /**
1017 * If name refers to a builtin array whose maximum allowed size is less than
1018 * size, report an error and return true. Otherwise return false.
1019 */
1020 void
1021 check_builtin_array_max_size(const char *name, unsigned size,
1022 YYLTYPE loc, struct _mesa_glsl_parse_state *state)
1023 {
1024 if ((strcmp("gl_TexCoord", name) == 0)
1025 && (size > state->Const.MaxTextureCoords)) {
1026 /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec:
1027 *
1028 * "The size [of gl_TexCoord] can be at most
1029 * gl_MaxTextureCoords."
1030 */
1031 _mesa_glsl_error(&loc, state, "`gl_TexCoord' array size cannot "
1032 "be larger than gl_MaxTextureCoords (%u)",
1033 state->Const.MaxTextureCoords);
1034 } else if (strcmp("gl_ClipDistance", name) == 0
1035 && size > state->Const.MaxClipPlanes) {
1036 /* From section 7.1 (Vertex Shader Special Variables) of the
1037 * GLSL 1.30 spec:
1038 *
1039 * "The gl_ClipDistance array is predeclared as unsized and
1040 * must be sized by the shader either redeclaring it with a
1041 * size or indexing it only with integral constant
1042 * expressions. ... The size can be at most
1043 * gl_MaxClipDistances."
1044 */
1045 _mesa_glsl_error(&loc, state, "`gl_ClipDistance' array size cannot "
1046 "be larger than gl_MaxClipDistances (%u)",
1047 state->Const.MaxClipPlanes);
1048 }
1049 }
1050
1051 /**
1052 * Create the constant 1, of a which is appropriate for incrementing and
1053 * decrementing values of the given GLSL type. For example, if type is vec4,
1054 * this creates a constant value of 1.0 having type float.
1055 *
1056 * If the given type is invalid for increment and decrement operators, return
1057 * a floating point 1--the error will be detected later.
1058 */
1059 static ir_rvalue *
1060 constant_one_for_inc_dec(void *ctx, const glsl_type *type)
1061 {
1062 switch (type->base_type) {
1063 case GLSL_TYPE_UINT:
1064 return new(ctx) ir_constant((unsigned) 1);
1065 case GLSL_TYPE_INT:
1066 return new(ctx) ir_constant(1);
1067 default:
1068 case GLSL_TYPE_FLOAT:
1069 return new(ctx) ir_constant(1.0f);
1070 }
1071 }
1072
1073 ir_rvalue *
1074 ast_expression::hir(exec_list *instructions,
1075 struct _mesa_glsl_parse_state *state)
1076 {
1077 void *ctx = state;
1078 static const int operations[AST_NUM_OPERATORS] = {
1079 -1, /* ast_assign doesn't convert to ir_expression. */
1080 -1, /* ast_plus doesn't convert to ir_expression. */
1081 ir_unop_neg,
1082 ir_binop_add,
1083 ir_binop_sub,
1084 ir_binop_mul,
1085 ir_binop_div,
1086 ir_binop_mod,
1087 ir_binop_lshift,
1088 ir_binop_rshift,
1089 ir_binop_less,
1090 ir_binop_greater,
1091 ir_binop_lequal,
1092 ir_binop_gequal,
1093 ir_binop_all_equal,
1094 ir_binop_any_nequal,
1095 ir_binop_bit_and,
1096 ir_binop_bit_xor,
1097 ir_binop_bit_or,
1098 ir_unop_bit_not,
1099 ir_binop_logic_and,
1100 ir_binop_logic_xor,
1101 ir_binop_logic_or,
1102 ir_unop_logic_not,
1103
1104 /* Note: The following block of expression types actually convert
1105 * to multiple IR instructions.
1106 */
1107 ir_binop_mul, /* ast_mul_assign */
1108 ir_binop_div, /* ast_div_assign */
1109 ir_binop_mod, /* ast_mod_assign */
1110 ir_binop_add, /* ast_add_assign */
1111 ir_binop_sub, /* ast_sub_assign */
1112 ir_binop_lshift, /* ast_ls_assign */
1113 ir_binop_rshift, /* ast_rs_assign */
1114 ir_binop_bit_and, /* ast_and_assign */
1115 ir_binop_bit_xor, /* ast_xor_assign */
1116 ir_binop_bit_or, /* ast_or_assign */
1117
1118 -1, /* ast_conditional doesn't convert to ir_expression. */
1119 ir_binop_add, /* ast_pre_inc. */
1120 ir_binop_sub, /* ast_pre_dec. */
1121 ir_binop_add, /* ast_post_inc. */
1122 ir_binop_sub, /* ast_post_dec. */
1123 -1, /* ast_field_selection doesn't conv to ir_expression. */
1124 -1, /* ast_array_index doesn't convert to ir_expression. */
1125 -1, /* ast_function_call doesn't conv to ir_expression. */
1126 -1, /* ast_identifier doesn't convert to ir_expression. */
1127 -1, /* ast_int_constant doesn't convert to ir_expression. */
1128 -1, /* ast_uint_constant doesn't conv to ir_expression. */
1129 -1, /* ast_float_constant doesn't conv to ir_expression. */
1130 -1, /* ast_bool_constant doesn't conv to ir_expression. */
1131 -1, /* ast_sequence doesn't convert to ir_expression. */
1132 };
1133 ir_rvalue *result = NULL;
1134 ir_rvalue *op[3];
1135 const struct glsl_type *type; /* a temporary variable for switch cases */
1136 bool error_emitted = false;
1137 YYLTYPE loc;
1138
1139 loc = this->get_location();
1140
1141 switch (this->oper) {
1142 case ast_aggregate:
1143 assert(!"ast_aggregate: Should never get here.");
1144 break;
1145
1146 case ast_assign: {
1147 op[0] = this->subexpressions[0]->hir(instructions, state);
1148 op[1] = this->subexpressions[1]->hir(instructions, state);
1149
1150 result = do_assignment(instructions, state,
1151 this->subexpressions[0]->non_lvalue_description,
1152 op[0], op[1], false,
1153 this->subexpressions[0]->get_location());
1154 error_emitted = result->type->is_error();
1155 break;
1156 }
1157
1158 case ast_plus:
1159 op[0] = this->subexpressions[0]->hir(instructions, state);
1160
1161 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1162
1163 error_emitted = type->is_error();
1164
1165 result = op[0];
1166 break;
1167
1168 case ast_neg:
1169 op[0] = this->subexpressions[0]->hir(instructions, state);
1170
1171 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1172
1173 error_emitted = type->is_error();
1174
1175 result = new(ctx) ir_expression(operations[this->oper], type,
1176 op[0], NULL);
1177 break;
1178
1179 case ast_add:
1180 case ast_sub:
1181 case ast_mul:
1182 case ast_div:
1183 op[0] = this->subexpressions[0]->hir(instructions, state);
1184 op[1] = this->subexpressions[1]->hir(instructions, state);
1185
1186 type = arithmetic_result_type(op[0], op[1],
1187 (this->oper == ast_mul),
1188 state, & loc);
1189 error_emitted = type->is_error();
1190
1191 result = new(ctx) ir_expression(operations[this->oper], type,
1192 op[0], op[1]);
1193 break;
1194
1195 case ast_mod:
1196 op[0] = this->subexpressions[0]->hir(instructions, state);
1197 op[1] = this->subexpressions[1]->hir(instructions, state);
1198
1199 type = modulus_result_type(op[0]->type, op[1]->type, state, & loc);
1200
1201 assert(operations[this->oper] == ir_binop_mod);
1202
1203 result = new(ctx) ir_expression(operations[this->oper], type,
1204 op[0], op[1]);
1205 error_emitted = type->is_error();
1206 break;
1207
1208 case ast_lshift:
1209 case ast_rshift:
1210 if (!state->check_bitwise_operations_allowed(&loc)) {
1211 error_emitted = true;
1212 }
1213
1214 op[0] = this->subexpressions[0]->hir(instructions, state);
1215 op[1] = this->subexpressions[1]->hir(instructions, state);
1216 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1217 &loc);
1218 result = new(ctx) ir_expression(operations[this->oper], type,
1219 op[0], op[1]);
1220 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1221 break;
1222
1223 case ast_less:
1224 case ast_greater:
1225 case ast_lequal:
1226 case ast_gequal:
1227 op[0] = this->subexpressions[0]->hir(instructions, state);
1228 op[1] = this->subexpressions[1]->hir(instructions, state);
1229
1230 type = relational_result_type(op[0], op[1], state, & loc);
1231
1232 /* The relational operators must either generate an error or result
1233 * in a scalar boolean. See page 57 of the GLSL 1.50 spec.
1234 */
1235 assert(type->is_error()
1236 || ((type->base_type == GLSL_TYPE_BOOL)
1237 && type->is_scalar()));
1238
1239 result = new(ctx) ir_expression(operations[this->oper], type,
1240 op[0], op[1]);
1241 error_emitted = type->is_error();
1242 break;
1243
1244 case ast_nequal:
1245 case ast_equal:
1246 op[0] = this->subexpressions[0]->hir(instructions, state);
1247 op[1] = this->subexpressions[1]->hir(instructions, state);
1248
1249 /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
1250 *
1251 * "The equality operators equal (==), and not equal (!=)
1252 * operate on all types. They result in a scalar Boolean. If
1253 * the operand types do not match, then there must be a
1254 * conversion from Section 4.1.10 "Implicit Conversions"
1255 * applied to one operand that can make them match, in which
1256 * case this conversion is done."
1257 */
1258 if ((!apply_implicit_conversion(op[0]->type, op[1], state)
1259 && !apply_implicit_conversion(op[1]->type, op[0], state))
1260 || (op[0]->type != op[1]->type)) {
1261 _mesa_glsl_error(& loc, state, "operands of `%s' must have the same "
1262 "type", (this->oper == ast_equal) ? "==" : "!=");
1263 error_emitted = true;
1264 } else if ((op[0]->type->is_array() || op[1]->type->is_array()) &&
1265 !state->check_version(120, 300, &loc,
1266 "array comparisons forbidden")) {
1267 error_emitted = true;
1268 } else if ((op[0]->type->contains_opaque() ||
1269 op[1]->type->contains_opaque())) {
1270 _mesa_glsl_error(&loc, state, "opaque type comparisons forbidden");
1271 error_emitted = true;
1272 }
1273
1274 if (error_emitted) {
1275 result = new(ctx) ir_constant(false);
1276 } else {
1277 result = do_comparison(ctx, operations[this->oper], op[0], op[1]);
1278 assert(result->type == glsl_type::bool_type);
1279 }
1280 break;
1281
1282 case ast_bit_and:
1283 case ast_bit_xor:
1284 case ast_bit_or:
1285 op[0] = this->subexpressions[0]->hir(instructions, state);
1286 op[1] = this->subexpressions[1]->hir(instructions, state);
1287 type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
1288 state, &loc);
1289 result = new(ctx) ir_expression(operations[this->oper], type,
1290 op[0], op[1]);
1291 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1292 break;
1293
1294 case ast_bit_not:
1295 op[0] = this->subexpressions[0]->hir(instructions, state);
1296
1297 if (!state->check_bitwise_operations_allowed(&loc)) {
1298 error_emitted = true;
1299 }
1300
1301 if (!op[0]->type->is_integer()) {
1302 _mesa_glsl_error(&loc, state, "operand of `~' must be an integer");
1303 error_emitted = true;
1304 }
1305
1306 type = error_emitted ? glsl_type::error_type : op[0]->type;
1307 result = new(ctx) ir_expression(ir_unop_bit_not, type, op[0], NULL);
1308 break;
1309
1310 case ast_logic_and: {
1311 exec_list rhs_instructions;
1312 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1313 "LHS", &error_emitted);
1314 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1315 "RHS", &error_emitted);
1316
1317 if (rhs_instructions.is_empty()) {
1318 result = new(ctx) ir_expression(ir_binop_logic_and, op[0], op[1]);
1319 type = result->type;
1320 } else {
1321 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1322 "and_tmp",
1323 ir_var_temporary);
1324 instructions->push_tail(tmp);
1325
1326 ir_if *const stmt = new(ctx) ir_if(op[0]);
1327 instructions->push_tail(stmt);
1328
1329 stmt->then_instructions.append_list(&rhs_instructions);
1330 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1331 ir_assignment *const then_assign =
1332 new(ctx) ir_assignment(then_deref, op[1]);
1333 stmt->then_instructions.push_tail(then_assign);
1334
1335 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1336 ir_assignment *const else_assign =
1337 new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false));
1338 stmt->else_instructions.push_tail(else_assign);
1339
1340 result = new(ctx) ir_dereference_variable(tmp);
1341 type = tmp->type;
1342 }
1343 break;
1344 }
1345
1346 case ast_logic_or: {
1347 exec_list rhs_instructions;
1348 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1349 "LHS", &error_emitted);
1350 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1351 "RHS", &error_emitted);
1352
1353 if (rhs_instructions.is_empty()) {
1354 result = new(ctx) ir_expression(ir_binop_logic_or, op[0], op[1]);
1355 type = result->type;
1356 } else {
1357 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1358 "or_tmp",
1359 ir_var_temporary);
1360 instructions->push_tail(tmp);
1361
1362 ir_if *const stmt = new(ctx) ir_if(op[0]);
1363 instructions->push_tail(stmt);
1364
1365 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1366 ir_assignment *const then_assign =
1367 new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true));
1368 stmt->then_instructions.push_tail(then_assign);
1369
1370 stmt->else_instructions.append_list(&rhs_instructions);
1371 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1372 ir_assignment *const else_assign =
1373 new(ctx) ir_assignment(else_deref, op[1]);
1374 stmt->else_instructions.push_tail(else_assign);
1375
1376 result = new(ctx) ir_dereference_variable(tmp);
1377 type = tmp->type;
1378 }
1379 break;
1380 }
1381
1382 case ast_logic_xor:
1383 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1384 *
1385 * "The logical binary operators and (&&), or ( | | ), and
1386 * exclusive or (^^). They operate only on two Boolean
1387 * expressions and result in a Boolean expression."
1388 */
1389 op[0] = get_scalar_boolean_operand(instructions, state, this, 0, "LHS",
1390 &error_emitted);
1391 op[1] = get_scalar_boolean_operand(instructions, state, this, 1, "RHS",
1392 &error_emitted);
1393
1394 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1395 op[0], op[1]);
1396 break;
1397
1398 case ast_logic_not:
1399 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1400 "operand", &error_emitted);
1401
1402 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1403 op[0], NULL);
1404 break;
1405
1406 case ast_mul_assign:
1407 case ast_div_assign:
1408 case ast_add_assign:
1409 case ast_sub_assign: {
1410 op[0] = this->subexpressions[0]->hir(instructions, state);
1411 op[1] = this->subexpressions[1]->hir(instructions, state);
1412
1413 type = arithmetic_result_type(op[0], op[1],
1414 (this->oper == ast_mul_assign),
1415 state, & loc);
1416
1417 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1418 op[0], op[1]);
1419
1420 result = do_assignment(instructions, state,
1421 this->subexpressions[0]->non_lvalue_description,
1422 op[0]->clone(ctx, NULL), temp_rhs, false,
1423 this->subexpressions[0]->get_location());
1424 error_emitted = (op[0]->type->is_error());
1425
1426 /* GLSL 1.10 does not allow array assignment. However, we don't have to
1427 * explicitly test for this because none of the binary expression
1428 * operators allow array operands either.
1429 */
1430
1431 break;
1432 }
1433
1434 case ast_mod_assign: {
1435 op[0] = this->subexpressions[0]->hir(instructions, state);
1436 op[1] = this->subexpressions[1]->hir(instructions, state);
1437
1438 type = modulus_result_type(op[0]->type, op[1]->type, state, & loc);
1439
1440 assert(operations[this->oper] == ir_binop_mod);
1441
1442 ir_rvalue *temp_rhs;
1443 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1444 op[0], op[1]);
1445
1446 result = do_assignment(instructions, state,
1447 this->subexpressions[0]->non_lvalue_description,
1448 op[0]->clone(ctx, NULL), temp_rhs, false,
1449 this->subexpressions[0]->get_location());
1450 error_emitted = type->is_error();
1451 break;
1452 }
1453
1454 case ast_ls_assign:
1455 case ast_rs_assign: {
1456 op[0] = this->subexpressions[0]->hir(instructions, state);
1457 op[1] = this->subexpressions[1]->hir(instructions, state);
1458 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1459 &loc);
1460 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1461 type, op[0], op[1]);
1462 result = do_assignment(instructions, state,
1463 this->subexpressions[0]->non_lvalue_description,
1464 op[0]->clone(ctx, NULL), temp_rhs, false,
1465 this->subexpressions[0]->get_location());
1466 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1467 break;
1468 }
1469
1470 case ast_and_assign:
1471 case ast_xor_assign:
1472 case ast_or_assign: {
1473 op[0] = this->subexpressions[0]->hir(instructions, state);
1474 op[1] = this->subexpressions[1]->hir(instructions, state);
1475 type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
1476 state, &loc);
1477 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1478 type, op[0], op[1]);
1479 result = do_assignment(instructions, state,
1480 this->subexpressions[0]->non_lvalue_description,
1481 op[0]->clone(ctx, NULL), temp_rhs, false,
1482 this->subexpressions[0]->get_location());
1483 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1484 break;
1485 }
1486
1487 case ast_conditional: {
1488 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1489 *
1490 * "The ternary selection operator (?:). It operates on three
1491 * expressions (exp1 ? exp2 : exp3). This operator evaluates the
1492 * first expression, which must result in a scalar Boolean."
1493 */
1494 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1495 "condition", &error_emitted);
1496
1497 /* The :? operator is implemented by generating an anonymous temporary
1498 * followed by an if-statement. The last instruction in each branch of
1499 * the if-statement assigns a value to the anonymous temporary. This
1500 * temporary is the r-value of the expression.
1501 */
1502 exec_list then_instructions;
1503 exec_list else_instructions;
1504
1505 op[1] = this->subexpressions[1]->hir(&then_instructions, state);
1506 op[2] = this->subexpressions[2]->hir(&else_instructions, state);
1507
1508 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1509 *
1510 * "The second and third expressions can be any type, as
1511 * long their types match, or there is a conversion in
1512 * Section 4.1.10 "Implicit Conversions" that can be applied
1513 * to one of the expressions to make their types match. This
1514 * resulting matching type is the type of the entire
1515 * expression."
1516 */
1517 if ((!apply_implicit_conversion(op[1]->type, op[2], state)
1518 && !apply_implicit_conversion(op[2]->type, op[1], state))
1519 || (op[1]->type != op[2]->type)) {
1520 YYLTYPE loc = this->subexpressions[1]->get_location();
1521
1522 _mesa_glsl_error(& loc, state, "second and third operands of ?: "
1523 "operator must have matching types");
1524 error_emitted = true;
1525 type = glsl_type::error_type;
1526 } else {
1527 type = op[1]->type;
1528 }
1529
1530 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1531 *
1532 * "The second and third expressions must be the same type, but can
1533 * be of any type other than an array."
1534 */
1535 if (type->is_array() &&
1536 !state->check_version(120, 300, &loc,
1537 "second and third operands of ?: operator "
1538 "cannot be arrays")) {
1539 error_emitted = true;
1540 }
1541
1542 ir_constant *cond_val = op[0]->constant_expression_value();
1543 ir_constant *then_val = op[1]->constant_expression_value();
1544 ir_constant *else_val = op[2]->constant_expression_value();
1545
1546 if (then_instructions.is_empty()
1547 && else_instructions.is_empty()
1548 && (cond_val != NULL) && (then_val != NULL) && (else_val != NULL)) {
1549 result = (cond_val->value.b[0]) ? then_val : else_val;
1550 } else {
1551 ir_variable *const tmp =
1552 new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary);
1553 instructions->push_tail(tmp);
1554
1555 ir_if *const stmt = new(ctx) ir_if(op[0]);
1556 instructions->push_tail(stmt);
1557
1558 then_instructions.move_nodes_to(& stmt->then_instructions);
1559 ir_dereference *const then_deref =
1560 new(ctx) ir_dereference_variable(tmp);
1561 ir_assignment *const then_assign =
1562 new(ctx) ir_assignment(then_deref, op[1]);
1563 stmt->then_instructions.push_tail(then_assign);
1564
1565 else_instructions.move_nodes_to(& stmt->else_instructions);
1566 ir_dereference *const else_deref =
1567 new(ctx) ir_dereference_variable(tmp);
1568 ir_assignment *const else_assign =
1569 new(ctx) ir_assignment(else_deref, op[2]);
1570 stmt->else_instructions.push_tail(else_assign);
1571
1572 result = new(ctx) ir_dereference_variable(tmp);
1573 }
1574 break;
1575 }
1576
1577 case ast_pre_inc:
1578 case ast_pre_dec: {
1579 this->non_lvalue_description = (this->oper == ast_pre_inc)
1580 ? "pre-increment operation" : "pre-decrement operation";
1581
1582 op[0] = this->subexpressions[0]->hir(instructions, state);
1583 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1584
1585 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1586
1587 ir_rvalue *temp_rhs;
1588 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1589 op[0], op[1]);
1590
1591 result = do_assignment(instructions, state,
1592 this->subexpressions[0]->non_lvalue_description,
1593 op[0]->clone(ctx, NULL), temp_rhs, false,
1594 this->subexpressions[0]->get_location());
1595 error_emitted = op[0]->type->is_error();
1596 break;
1597 }
1598
1599 case ast_post_inc:
1600 case ast_post_dec: {
1601 this->non_lvalue_description = (this->oper == ast_post_inc)
1602 ? "post-increment operation" : "post-decrement operation";
1603 op[0] = this->subexpressions[0]->hir(instructions, state);
1604 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1605
1606 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1607
1608 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1609
1610 ir_rvalue *temp_rhs;
1611 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1612 op[0], op[1]);
1613
1614 /* Get a temporary of a copy of the lvalue before it's modified.
1615 * This may get thrown away later.
1616 */
1617 result = get_lvalue_copy(instructions, op[0]->clone(ctx, NULL));
1618
1619 (void)do_assignment(instructions, state,
1620 this->subexpressions[0]->non_lvalue_description,
1621 op[0]->clone(ctx, NULL), temp_rhs, false,
1622 this->subexpressions[0]->get_location());
1623
1624 error_emitted = op[0]->type->is_error();
1625 break;
1626 }
1627
1628 case ast_field_selection:
1629 result = _mesa_ast_field_selection_to_hir(this, instructions, state);
1630 break;
1631
1632 case ast_array_index: {
1633 YYLTYPE index_loc = subexpressions[1]->get_location();
1634
1635 op[0] = subexpressions[0]->hir(instructions, state);
1636 op[1] = subexpressions[1]->hir(instructions, state);
1637
1638 result = _mesa_ast_array_index_to_hir(ctx, state, op[0], op[1],
1639 loc, index_loc);
1640
1641 if (result->type->is_error())
1642 error_emitted = true;
1643
1644 break;
1645 }
1646
1647 case ast_function_call:
1648 /* Should *NEVER* get here. ast_function_call should always be handled
1649 * by ast_function_expression::hir.
1650 */
1651 assert(0);
1652 break;
1653
1654 case ast_identifier: {
1655 /* ast_identifier can appear several places in a full abstract syntax
1656 * tree. This particular use must be at location specified in the grammar
1657 * as 'variable_identifier'.
1658 */
1659 ir_variable *var =
1660 state->symbols->get_variable(this->primary_expression.identifier);
1661
1662 if (var != NULL) {
1663 var->data.used = true;
1664 result = new(ctx) ir_dereference_variable(var);
1665 } else {
1666 _mesa_glsl_error(& loc, state, "`%s' undeclared",
1667 this->primary_expression.identifier);
1668
1669 result = ir_rvalue::error_value(ctx);
1670 error_emitted = true;
1671 }
1672 break;
1673 }
1674
1675 case ast_int_constant:
1676 result = new(ctx) ir_constant(this->primary_expression.int_constant);
1677 break;
1678
1679 case ast_uint_constant:
1680 result = new(ctx) ir_constant(this->primary_expression.uint_constant);
1681 break;
1682
1683 case ast_float_constant:
1684 result = new(ctx) ir_constant(this->primary_expression.float_constant);
1685 break;
1686
1687 case ast_bool_constant:
1688 result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant));
1689 break;
1690
1691 case ast_sequence: {
1692 /* It should not be possible to generate a sequence in the AST without
1693 * any expressions in it.
1694 */
1695 assert(!this->expressions.is_empty());
1696
1697 /* The r-value of a sequence is the last expression in the sequence. If
1698 * the other expressions in the sequence do not have side-effects (and
1699 * therefore add instructions to the instruction list), they get dropped
1700 * on the floor.
1701 */
1702 exec_node *previous_tail_pred = NULL;
1703 YYLTYPE previous_operand_loc = loc;
1704
1705 foreach_list_typed (ast_node, ast, link, &this->expressions) {
1706 /* If one of the operands of comma operator does not generate any
1707 * code, we want to emit a warning. At each pass through the loop
1708 * previous_tail_pred will point to the last instruction in the
1709 * stream *before* processing the previous operand. Naturally,
1710 * instructions->tail_pred will point to the last instruction in the
1711 * stream *after* processing the previous operand. If the two
1712 * pointers match, then the previous operand had no effect.
1713 *
1714 * The warning behavior here differs slightly from GCC. GCC will
1715 * only emit a warning if none of the left-hand operands have an
1716 * effect. However, it will emit a warning for each. I believe that
1717 * there are some cases in C (especially with GCC extensions) where
1718 * it is useful to have an intermediate step in a sequence have no
1719 * effect, but I don't think these cases exist in GLSL. Either way,
1720 * it would be a giant hassle to replicate that behavior.
1721 */
1722 if (previous_tail_pred == instructions->tail_pred) {
1723 _mesa_glsl_warning(&previous_operand_loc, state,
1724 "left-hand operand of comma expression has "
1725 "no effect");
1726 }
1727
1728 /* tail_pred is directly accessed instead of using the get_tail()
1729 * method for performance reasons. get_tail() has extra code to
1730 * return NULL when the list is empty. We don't care about that
1731 * here, so using tail_pred directly is fine.
1732 */
1733 previous_tail_pred = instructions->tail_pred;
1734 previous_operand_loc = ast->get_location();
1735
1736 result = ast->hir(instructions, state);
1737 }
1738
1739 /* Any errors should have already been emitted in the loop above.
1740 */
1741 error_emitted = true;
1742 break;
1743 }
1744 }
1745 type = NULL; /* use result->type, not type. */
1746 assert(result != NULL);
1747
1748 if (result->type->is_error() && !error_emitted)
1749 _mesa_glsl_error(& loc, state, "type mismatch");
1750
1751 return result;
1752 }
1753
1754
1755 ir_rvalue *
1756 ast_expression_statement::hir(exec_list *instructions,
1757 struct _mesa_glsl_parse_state *state)
1758 {
1759 /* It is possible to have expression statements that don't have an
1760 * expression. This is the solitary semicolon:
1761 *
1762 * for (i = 0; i < 5; i++)
1763 * ;
1764 *
1765 * In this case the expression will be NULL. Test for NULL and don't do
1766 * anything in that case.
1767 */
1768 if (expression != NULL)
1769 expression->hir(instructions, state);
1770
1771 /* Statements do not have r-values.
1772 */
1773 return NULL;
1774 }
1775
1776
1777 ir_rvalue *
1778 ast_compound_statement::hir(exec_list *instructions,
1779 struct _mesa_glsl_parse_state *state)
1780 {
1781 if (new_scope)
1782 state->symbols->push_scope();
1783
1784 foreach_list_typed (ast_node, ast, link, &this->statements)
1785 ast->hir(instructions, state);
1786
1787 if (new_scope)
1788 state->symbols->pop_scope();
1789
1790 /* Compound statements do not have r-values.
1791 */
1792 return NULL;
1793 }
1794
1795 /**
1796 * Evaluate the given exec_node (which should be an ast_node representing
1797 * a single array dimension) and return its integer value.
1798 */
1799 static const unsigned
1800 process_array_size(exec_node *node,
1801 struct _mesa_glsl_parse_state *state)
1802 {
1803 exec_list dummy_instructions;
1804
1805 ast_node *array_size = exec_node_data(ast_node, node, link);
1806 ir_rvalue *const ir = array_size->hir(& dummy_instructions,
1807 state);
1808 YYLTYPE loc = array_size->get_location();
1809
1810 if (ir == NULL) {
1811 _mesa_glsl_error(& loc, state,
1812 "array size could not be resolved");
1813 return 0;
1814 }
1815
1816 if (!ir->type->is_integer()) {
1817 _mesa_glsl_error(& loc, state,
1818 "array size must be integer type");
1819 return 0;
1820 }
1821
1822 if (!ir->type->is_scalar()) {
1823 _mesa_glsl_error(& loc, state,
1824 "array size must be scalar type");
1825 return 0;
1826 }
1827
1828 ir_constant *const size = ir->constant_expression_value();
1829 if (size == NULL) {
1830 _mesa_glsl_error(& loc, state, "array size must be a "
1831 "constant valued expression");
1832 return 0;
1833 }
1834
1835 if (size->value.i[0] <= 0) {
1836 _mesa_glsl_error(& loc, state, "array size must be > 0");
1837 return 0;
1838 }
1839
1840 assert(size->type == ir->type);
1841
1842 /* If the array size is const (and we've verified that
1843 * it is) then no instructions should have been emitted
1844 * when we converted it to HIR. If they were emitted,
1845 * then either the array size isn't const after all, or
1846 * we are emitting unnecessary instructions.
1847 */
1848 assert(dummy_instructions.is_empty());
1849
1850 return size->value.u[0];
1851 }
1852
1853 static const glsl_type *
1854 process_array_type(YYLTYPE *loc, const glsl_type *base,
1855 ast_array_specifier *array_specifier,
1856 struct _mesa_glsl_parse_state *state)
1857 {
1858 const glsl_type *array_type = base;
1859
1860 if (array_specifier != NULL) {
1861 if (base->is_array()) {
1862
1863 /* From page 19 (page 25) of the GLSL 1.20 spec:
1864 *
1865 * "Only one-dimensional arrays may be declared."
1866 */
1867 if (!state->ARB_arrays_of_arrays_enable) {
1868 _mesa_glsl_error(loc, state,
1869 "invalid array of `%s'"
1870 "GL_ARB_arrays_of_arrays "
1871 "required for defining arrays of arrays",
1872 base->name);
1873 return glsl_type::error_type;
1874 }
1875
1876 if (base->length == 0) {
1877 _mesa_glsl_error(loc, state,
1878 "only the outermost array dimension can "
1879 "be unsized",
1880 base->name);
1881 return glsl_type::error_type;
1882 }
1883 }
1884
1885 for (exec_node *node = array_specifier->array_dimensions.tail_pred;
1886 !node->is_head_sentinel(); node = node->prev) {
1887 unsigned array_size = process_array_size(node, state);
1888 array_type = glsl_type::get_array_instance(array_type,
1889 array_size);
1890 }
1891
1892 if (array_specifier->is_unsized_array)
1893 array_type = glsl_type::get_array_instance(array_type, 0);
1894 }
1895
1896 return array_type;
1897 }
1898
1899
1900 const glsl_type *
1901 ast_type_specifier::glsl_type(const char **name,
1902 struct _mesa_glsl_parse_state *state) const
1903 {
1904 const struct glsl_type *type;
1905
1906 type = state->symbols->get_type(this->type_name);
1907 *name = this->type_name;
1908
1909 YYLTYPE loc = this->get_location();
1910 type = process_array_type(&loc, type, this->array_specifier, state);
1911
1912 return type;
1913 }
1914
1915 const glsl_type *
1916 ast_fully_specified_type::glsl_type(const char **name,
1917 struct _mesa_glsl_parse_state *state) const
1918 {
1919 const struct glsl_type *type = this->specifier->glsl_type(name, state);
1920
1921 if (type == NULL)
1922 return NULL;
1923
1924 if (type->base_type == GLSL_TYPE_FLOAT
1925 && state->es_shader
1926 && state->stage == MESA_SHADER_FRAGMENT
1927 && this->qualifier.precision == ast_precision_none
1928 && state->symbols->get_variable("#default precision") == NULL) {
1929 YYLTYPE loc = this->get_location();
1930 _mesa_glsl_error(&loc, state,
1931 "no precision specified this scope for type `%s'",
1932 type->name);
1933 }
1934
1935 return type;
1936 }
1937
1938 /**
1939 * Determine whether a toplevel variable declaration declares a varying. This
1940 * function operates by examining the variable's mode and the shader target,
1941 * so it correctly identifies linkage variables regardless of whether they are
1942 * declared using the deprecated "varying" syntax or the new "in/out" syntax.
1943 *
1944 * Passing a non-toplevel variable declaration (e.g. a function parameter) to
1945 * this function will produce undefined results.
1946 */
1947 static bool
1948 is_varying_var(ir_variable *var, gl_shader_stage target)
1949 {
1950 switch (target) {
1951 case MESA_SHADER_VERTEX:
1952 return var->data.mode == ir_var_shader_out;
1953 case MESA_SHADER_FRAGMENT:
1954 return var->data.mode == ir_var_shader_in;
1955 default:
1956 return var->data.mode == ir_var_shader_out || var->data.mode == ir_var_shader_in;
1957 }
1958 }
1959
1960
1961 /**
1962 * Matrix layout qualifiers are only allowed on certain types
1963 */
1964 static void
1965 validate_matrix_layout_for_type(struct _mesa_glsl_parse_state *state,
1966 YYLTYPE *loc,
1967 const glsl_type *type,
1968 ir_variable *var)
1969 {
1970 if (var && !var->is_in_uniform_block()) {
1971 /* Layout qualifiers may only apply to interface blocks and fields in
1972 * them.
1973 */
1974 _mesa_glsl_error(loc, state,
1975 "uniform block layout qualifiers row_major and "
1976 "column_major may not be applied to variables "
1977 "outside of uniform blocks");
1978 } else if (!type->is_matrix()) {
1979 /* The OpenGL ES 3.0 conformance tests did not originally allow
1980 * matrix layout qualifiers on non-matrices. However, the OpenGL
1981 * 4.4 and OpenGL ES 3.0 (revision TBD) specifications were
1982 * amended to specifically allow these layouts on all types. Emit
1983 * a warning so that people know their code may not be portable.
1984 */
1985 _mesa_glsl_warning(loc, state,
1986 "uniform block layout qualifiers row_major and "
1987 "column_major applied to non-matrix types may "
1988 "be rejected by older compilers");
1989 } else if (type->is_record()) {
1990 /* We allow 'layout(row_major)' on structure types because it's the only
1991 * way to get row-major layouts on matrices contained in structures.
1992 */
1993 _mesa_glsl_warning(loc, state,
1994 "uniform block layout qualifiers row_major and "
1995 "column_major applied to structure types is not "
1996 "strictly conformant and may be rejected by other "
1997 "compilers");
1998 }
1999 }
2000
2001 static bool
2002 validate_binding_qualifier(struct _mesa_glsl_parse_state *state,
2003 YYLTYPE *loc,
2004 ir_variable *var,
2005 const ast_type_qualifier *qual)
2006 {
2007 if (var->data.mode != ir_var_uniform) {
2008 _mesa_glsl_error(loc, state,
2009 "the \"binding\" qualifier only applies to uniforms");
2010 return false;
2011 }
2012
2013 if (qual->binding < 0) {
2014 _mesa_glsl_error(loc, state, "binding values must be >= 0");
2015 return false;
2016 }
2017
2018 const struct gl_context *const ctx = state->ctx;
2019 unsigned elements = var->type->is_array() ? var->type->length : 1;
2020 unsigned max_index = qual->binding + elements - 1;
2021
2022 if (var->type->is_interface()) {
2023 /* UBOs. From page 60 of the GLSL 4.20 specification:
2024 * "If the binding point for any uniform block instance is less than zero,
2025 * or greater than or equal to the implementation-dependent maximum
2026 * number of uniform buffer bindings, a compilation error will occur.
2027 * When the binding identifier is used with a uniform block instanced as
2028 * an array of size N, all elements of the array from binding through
2029 * binding + N – 1 must be within this range."
2030 *
2031 * The implementation-dependent maximum is GL_MAX_UNIFORM_BUFFER_BINDINGS.
2032 */
2033 if (max_index >= ctx->Const.MaxUniformBufferBindings) {
2034 _mesa_glsl_error(loc, state, "layout(binding = %d) for %d UBOs exceeds "
2035 "the maximum number of UBO binding points (%d)",
2036 qual->binding, elements,
2037 ctx->Const.MaxUniformBufferBindings);
2038 return false;
2039 }
2040 } else if (var->type->is_sampler() ||
2041 (var->type->is_array() && var->type->fields.array->is_sampler())) {
2042 /* Samplers. From page 63 of the GLSL 4.20 specification:
2043 * "If the binding is less than zero, or greater than or equal to the
2044 * implementation-dependent maximum supported number of units, a
2045 * compilation error will occur. When the binding identifier is used
2046 * with an array of size N, all elements of the array from binding
2047 * through binding + N - 1 must be within this range."
2048 */
2049 unsigned limit = ctx->Const.Program[state->stage].MaxTextureImageUnits;
2050
2051 if (max_index >= limit) {
2052 _mesa_glsl_error(loc, state, "layout(binding = %d) for %d samplers "
2053 "exceeds the maximum number of texture image units "
2054 "(%d)", qual->binding, elements, limit);
2055
2056 return false;
2057 }
2058 } else if (var->type->contains_atomic()) {
2059 assert(ctx->Const.MaxAtomicBufferBindings <= MAX_COMBINED_ATOMIC_BUFFERS);
2060 if (unsigned(qual->binding) >= ctx->Const.MaxAtomicBufferBindings) {
2061 _mesa_glsl_error(loc, state, "layout(binding = %d) exceeds the "
2062 " maximum number of atomic counter buffer bindings"
2063 "(%d)", qual->binding,
2064 ctx->Const.MaxAtomicBufferBindings);
2065
2066 return false;
2067 }
2068 } else {
2069 _mesa_glsl_error(loc, state,
2070 "the \"binding\" qualifier only applies to uniform "
2071 "blocks, samplers, atomic counters, or arrays thereof");
2072 return false;
2073 }
2074
2075 return true;
2076 }
2077
2078
2079 static glsl_interp_qualifier
2080 interpret_interpolation_qualifier(const struct ast_type_qualifier *qual,
2081 ir_variable_mode mode,
2082 struct _mesa_glsl_parse_state *state,
2083 YYLTYPE *loc)
2084 {
2085 glsl_interp_qualifier interpolation;
2086 if (qual->flags.q.flat)
2087 interpolation = INTERP_QUALIFIER_FLAT;
2088 else if (qual->flags.q.noperspective)
2089 interpolation = INTERP_QUALIFIER_NOPERSPECTIVE;
2090 else if (qual->flags.q.smooth)
2091 interpolation = INTERP_QUALIFIER_SMOOTH;
2092 else
2093 interpolation = INTERP_QUALIFIER_NONE;
2094
2095 if (interpolation != INTERP_QUALIFIER_NONE) {
2096 if (mode != ir_var_shader_in && mode != ir_var_shader_out) {
2097 _mesa_glsl_error(loc, state,
2098 "interpolation qualifier `%s' can only be applied to "
2099 "shader inputs or outputs.",
2100 interpolation_string(interpolation));
2101
2102 }
2103
2104 if ((state->stage == MESA_SHADER_VERTEX && mode == ir_var_shader_in) ||
2105 (state->stage == MESA_SHADER_FRAGMENT && mode == ir_var_shader_out)) {
2106 _mesa_glsl_error(loc, state,
2107 "interpolation qualifier `%s' cannot be applied to "
2108 "vertex shader inputs or fragment shader outputs",
2109 interpolation_string(interpolation));
2110 }
2111 }
2112
2113 return interpolation;
2114 }
2115
2116
2117 static void
2118 validate_explicit_location(const struct ast_type_qualifier *qual,
2119 ir_variable *var,
2120 struct _mesa_glsl_parse_state *state,
2121 YYLTYPE *loc)
2122 {
2123 bool fail = false;
2124
2125 /* In the vertex shader only shader inputs can be given explicit
2126 * locations.
2127 *
2128 * In the fragment shader only shader outputs can be given explicit
2129 * locations.
2130 */
2131 switch (state->stage) {
2132 case MESA_SHADER_VERTEX:
2133 if (var->data.mode == ir_var_shader_in) {
2134 if (!state->check_explicit_attrib_location_allowed(loc, var))
2135 return;
2136
2137 break;
2138 }
2139
2140 fail = true;
2141 break;
2142
2143 case MESA_SHADER_GEOMETRY:
2144 _mesa_glsl_error(loc, state,
2145 "geometry shader variables cannot be given "
2146 "explicit locations");
2147 return;
2148
2149 case MESA_SHADER_FRAGMENT:
2150 if (var->data.mode == ir_var_shader_out) {
2151 if (!state->check_explicit_attrib_location_allowed(loc, var))
2152 return;
2153
2154 break;
2155 }
2156
2157 fail = true;
2158 break;
2159
2160 case MESA_SHADER_COMPUTE:
2161 _mesa_glsl_error(loc, state,
2162 "compute shader variables cannot be given "
2163 "explicit locations");
2164 return;
2165 };
2166
2167 if (fail) {
2168 _mesa_glsl_error(loc, state,
2169 "%s cannot be given an explicit location in %s shader",
2170 mode_string(var),
2171 _mesa_shader_stage_to_string(state->stage));
2172 } else {
2173 var->data.explicit_location = true;
2174
2175 /* This bit of silliness is needed because invalid explicit locations
2176 * are supposed to be flagged during linking. Small negative values
2177 * biased by VERT_ATTRIB_GENERIC0 or FRAG_RESULT_DATA0 could alias
2178 * built-in values (e.g., -16+VERT_ATTRIB_GENERIC0 = VERT_ATTRIB_POS).
2179 * The linker needs to be able to differentiate these cases. This
2180 * ensures that negative values stay negative.
2181 */
2182 if (qual->location >= 0) {
2183 var->data.location = (state->stage == MESA_SHADER_VERTEX)
2184 ? (qual->location + VERT_ATTRIB_GENERIC0)
2185 : (qual->location + FRAG_RESULT_DATA0);
2186 } else {
2187 var->data.location = qual->location;
2188 }
2189
2190 if (qual->flags.q.explicit_index) {
2191 /* From the GLSL 4.30 specification, section 4.4.2 (Output
2192 * Layout Qualifiers):
2193 *
2194 * "It is also a compile-time error if a fragment shader
2195 * sets a layout index to less than 0 or greater than 1."
2196 *
2197 * Older specifications don't mandate a behavior; we take
2198 * this as a clarification and always generate the error.
2199 */
2200 if (qual->index < 0 || qual->index > 1) {
2201 _mesa_glsl_error(loc, state,
2202 "explicit index may only be 0 or 1");
2203 } else {
2204 var->data.explicit_index = true;
2205 var->data.index = qual->index;
2206 }
2207 }
2208 }
2209
2210 return;
2211 }
2212
2213 static void
2214 apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
2215 ir_variable *var,
2216 struct _mesa_glsl_parse_state *state,
2217 YYLTYPE *loc,
2218 bool is_parameter)
2219 {
2220 STATIC_ASSERT(sizeof(qual->flags.q) <= sizeof(qual->flags.i));
2221
2222 if (qual->flags.q.invariant) {
2223 if (var->data.used) {
2224 _mesa_glsl_error(loc, state,
2225 "variable `%s' may not be redeclared "
2226 "`invariant' after being used",
2227 var->name);
2228 } else {
2229 var->data.invariant = 1;
2230 }
2231 }
2232
2233 if (qual->flags.q.constant || qual->flags.q.attribute
2234 || qual->flags.q.uniform
2235 || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
2236 var->data.read_only = 1;
2237
2238 if (qual->flags.q.centroid)
2239 var->data.centroid = 1;
2240
2241 if (qual->flags.q.sample)
2242 var->data.sample = 1;
2243
2244 if (qual->flags.q.attribute && state->stage != MESA_SHADER_VERTEX) {
2245 var->type = glsl_type::error_type;
2246 _mesa_glsl_error(loc, state,
2247 "`attribute' variables may not be declared in the "
2248 "%s shader",
2249 _mesa_shader_stage_to_string(state->stage));
2250 }
2251
2252 /* Section 6.1.1 (Function Calling Conventions) of the GLSL 1.10 spec says:
2253 *
2254 * "However, the const qualifier cannot be used with out or inout."
2255 *
2256 * The same section of the GLSL 4.40 spec further clarifies this saying:
2257 *
2258 * "The const qualifier cannot be used with out or inout, or a
2259 * compile-time error results."
2260 */
2261 if (is_parameter && qual->flags.q.constant && qual->flags.q.out) {
2262 _mesa_glsl_error(loc, state,
2263 "`const' may not be applied to `out' or `inout' "
2264 "function parameters");
2265 }
2266
2267 /* If there is no qualifier that changes the mode of the variable, leave
2268 * the setting alone.
2269 */
2270 if (qual->flags.q.in && qual->flags.q.out)
2271 var->data.mode = ir_var_function_inout;
2272 else if (qual->flags.q.in)
2273 var->data.mode = is_parameter ? ir_var_function_in : ir_var_shader_in;
2274 else if (qual->flags.q.attribute
2275 || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
2276 var->data.mode = ir_var_shader_in;
2277 else if (qual->flags.q.out)
2278 var->data.mode = is_parameter ? ir_var_function_out : ir_var_shader_out;
2279 else if (qual->flags.q.varying && (state->stage == MESA_SHADER_VERTEX))
2280 var->data.mode = ir_var_shader_out;
2281 else if (qual->flags.q.uniform)
2282 var->data.mode = ir_var_uniform;
2283
2284 if (!is_parameter && is_varying_var(var, state->stage)) {
2285 /* User-defined ins/outs are not permitted in compute shaders. */
2286 if (state->stage == MESA_SHADER_COMPUTE) {
2287 _mesa_glsl_error(loc, state,
2288 "user-defined input and output variables are not "
2289 "permitted in compute shaders");
2290 }
2291
2292 /* This variable is being used to link data between shader stages (in
2293 * pre-glsl-1.30 parlance, it's a "varying"). Check that it has a type
2294 * that is allowed for such purposes.
2295 *
2296 * From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
2297 *
2298 * "The varying qualifier can be used only with the data types
2299 * float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
2300 * these."
2301 *
2302 * This was relaxed in GLSL version 1.30 and GLSL ES version 3.00. From
2303 * page 31 (page 37 of the PDF) of the GLSL 1.30 spec:
2304 *
2305 * "Fragment inputs can only be signed and unsigned integers and
2306 * integer vectors, float, floating-point vectors, matrices, or
2307 * arrays of these. Structures cannot be input.
2308 *
2309 * Similar text exists in the section on vertex shader outputs.
2310 *
2311 * Similar text exists in the GLSL ES 3.00 spec, except that the GLSL ES
2312 * 3.00 spec allows structs as well. Varying structs are also allowed
2313 * in GLSL 1.50.
2314 */
2315 switch (var->type->get_scalar_type()->base_type) {
2316 case GLSL_TYPE_FLOAT:
2317 /* Ok in all GLSL versions */
2318 break;
2319 case GLSL_TYPE_UINT:
2320 case GLSL_TYPE_INT:
2321 if (state->is_version(130, 300))
2322 break;
2323 _mesa_glsl_error(loc, state,
2324 "varying variables must be of base type float in %s",
2325 state->get_version_string());
2326 break;
2327 case GLSL_TYPE_STRUCT:
2328 if (state->is_version(150, 300))
2329 break;
2330 _mesa_glsl_error(loc, state,
2331 "varying variables may not be of type struct");
2332 break;
2333 default:
2334 _mesa_glsl_error(loc, state, "illegal type for a varying variable");
2335 break;
2336 }
2337 }
2338
2339 if (state->all_invariant && (state->current_function == NULL)) {
2340 switch (state->stage) {
2341 case MESA_SHADER_VERTEX:
2342 if (var->data.mode == ir_var_shader_out)
2343 var->data.invariant = true;
2344 break;
2345 case MESA_SHADER_GEOMETRY:
2346 if ((var->data.mode == ir_var_shader_in)
2347 || (var->data.mode == ir_var_shader_out))
2348 var->data.invariant = true;
2349 break;
2350 case MESA_SHADER_FRAGMENT:
2351 if (var->data.mode == ir_var_shader_in)
2352 var->data.invariant = true;
2353 break;
2354 case MESA_SHADER_COMPUTE:
2355 /* Invariance isn't meaningful in compute shaders. */
2356 break;
2357 }
2358 }
2359
2360 var->data.interpolation =
2361 interpret_interpolation_qualifier(qual, (ir_variable_mode) var->data.mode,
2362 state, loc);
2363
2364 var->data.pixel_center_integer = qual->flags.q.pixel_center_integer;
2365 var->data.origin_upper_left = qual->flags.q.origin_upper_left;
2366 if ((qual->flags.q.origin_upper_left || qual->flags.q.pixel_center_integer)
2367 && (strcmp(var->name, "gl_FragCoord") != 0)) {
2368 const char *const qual_string = (qual->flags.q.origin_upper_left)
2369 ? "origin_upper_left" : "pixel_center_integer";
2370
2371 _mesa_glsl_error(loc, state,
2372 "layout qualifier `%s' can only be applied to "
2373 "fragment shader input `gl_FragCoord'",
2374 qual_string);
2375 }
2376
2377 if (qual->flags.q.explicit_location) {
2378 validate_explicit_location(qual, var, state, loc);
2379 } else if (qual->flags.q.explicit_index) {
2380 _mesa_glsl_error(loc, state,
2381 "explicit index requires explicit location");
2382 }
2383
2384 if (qual->flags.q.explicit_binding &&
2385 validate_binding_qualifier(state, loc, var, qual)) {
2386 var->data.explicit_binding = true;
2387 var->data.binding = qual->binding;
2388 }
2389
2390 if (var->type->contains_atomic()) {
2391 if (var->data.mode == ir_var_uniform) {
2392 if (var->data.explicit_binding) {
2393 unsigned *offset =
2394 &state->atomic_counter_offsets[var->data.binding];
2395
2396 if (*offset % ATOMIC_COUNTER_SIZE)
2397 _mesa_glsl_error(loc, state,
2398 "misaligned atomic counter offset");
2399
2400 var->data.atomic.offset = *offset;
2401 *offset += var->type->atomic_size();
2402
2403 } else {
2404 _mesa_glsl_error(loc, state,
2405 "atomic counters require explicit binding point");
2406 }
2407 } else if (var->data.mode != ir_var_function_in) {
2408 _mesa_glsl_error(loc, state, "atomic counters may only be declared as "
2409 "function parameters or uniform-qualified "
2410 "global variables");
2411 }
2412 }
2413
2414 /* Does the declaration use the deprecated 'attribute' or 'varying'
2415 * keywords?
2416 */
2417 const bool uses_deprecated_qualifier = qual->flags.q.attribute
2418 || qual->flags.q.varying;
2419
2420 /* Is the 'layout' keyword used with parameters that allow relaxed checking.
2421 * Many implementations of GL_ARB_fragment_coord_conventions_enable and some
2422 * implementations (only Mesa?) GL_ARB_explicit_attrib_location_enable
2423 * allowed the layout qualifier to be used with 'varying' and 'attribute'.
2424 * These extensions and all following extensions that add the 'layout'
2425 * keyword have been modified to require the use of 'in' or 'out'.
2426 *
2427 * The following extension do not allow the deprecated keywords:
2428 *
2429 * GL_AMD_conservative_depth
2430 * GL_ARB_conservative_depth
2431 * GL_ARB_gpu_shader5
2432 * GL_ARB_separate_shader_objects
2433 * GL_ARB_tesselation_shader
2434 * GL_ARB_transform_feedback3
2435 * GL_ARB_uniform_buffer_object
2436 *
2437 * It is unknown whether GL_EXT_shader_image_load_store or GL_NV_gpu_shader5
2438 * allow layout with the deprecated keywords.
2439 */
2440 const bool relaxed_layout_qualifier_checking =
2441 state->ARB_fragment_coord_conventions_enable;
2442
2443 if (qual->has_layout() && uses_deprecated_qualifier) {
2444 if (relaxed_layout_qualifier_checking) {
2445 _mesa_glsl_warning(loc, state,
2446 "`layout' qualifier may not be used with "
2447 "`attribute' or `varying'");
2448 } else {
2449 _mesa_glsl_error(loc, state,
2450 "`layout' qualifier may not be used with "
2451 "`attribute' or `varying'");
2452 }
2453 }
2454
2455 /* Layout qualifiers for gl_FragDepth, which are enabled by extension
2456 * AMD_conservative_depth.
2457 */
2458 int depth_layout_count = qual->flags.q.depth_any
2459 + qual->flags.q.depth_greater
2460 + qual->flags.q.depth_less
2461 + qual->flags.q.depth_unchanged;
2462 if (depth_layout_count > 0
2463 && !state->AMD_conservative_depth_enable
2464 && !state->ARB_conservative_depth_enable) {
2465 _mesa_glsl_error(loc, state,
2466 "extension GL_AMD_conservative_depth or "
2467 "GL_ARB_conservative_depth must be enabled "
2468 "to use depth layout qualifiers");
2469 } else if (depth_layout_count > 0
2470 && strcmp(var->name, "gl_FragDepth") != 0) {
2471 _mesa_glsl_error(loc, state,
2472 "depth layout qualifiers can be applied only to "
2473 "gl_FragDepth");
2474 } else if (depth_layout_count > 1
2475 && strcmp(var->name, "gl_FragDepth") == 0) {
2476 _mesa_glsl_error(loc, state,
2477 "at most one depth layout qualifier can be applied to "
2478 "gl_FragDepth");
2479 }
2480 if (qual->flags.q.depth_any)
2481 var->data.depth_layout = ir_depth_layout_any;
2482 else if (qual->flags.q.depth_greater)
2483 var->data.depth_layout = ir_depth_layout_greater;
2484 else if (qual->flags.q.depth_less)
2485 var->data.depth_layout = ir_depth_layout_less;
2486 else if (qual->flags.q.depth_unchanged)
2487 var->data.depth_layout = ir_depth_layout_unchanged;
2488 else
2489 var->data.depth_layout = ir_depth_layout_none;
2490
2491 if (qual->flags.q.std140 ||
2492 qual->flags.q.packed ||
2493 qual->flags.q.shared) {
2494 _mesa_glsl_error(loc, state,
2495 "uniform block layout qualifiers std140, packed, and "
2496 "shared can only be applied to uniform blocks, not "
2497 "members");
2498 }
2499
2500 if (qual->flags.q.row_major || qual->flags.q.column_major) {
2501 validate_matrix_layout_for_type(state, loc, var->type, var);
2502 }
2503 }
2504
2505 /**
2506 * Get the variable that is being redeclared by this declaration
2507 *
2508 * Semantic checks to verify the validity of the redeclaration are also
2509 * performed. If semantic checks fail, compilation error will be emitted via
2510 * \c _mesa_glsl_error, but a non-\c NULL pointer will still be returned.
2511 *
2512 * \returns
2513 * A pointer to an existing variable in the current scope if the declaration
2514 * is a redeclaration, \c NULL otherwise.
2515 */
2516 static ir_variable *
2517 get_variable_being_redeclared(ir_variable *var, YYLTYPE loc,
2518 struct _mesa_glsl_parse_state *state,
2519 bool allow_all_redeclarations)
2520 {
2521 /* Check if this declaration is actually a re-declaration, either to
2522 * resize an array or add qualifiers to an existing variable.
2523 *
2524 * This is allowed for variables in the current scope, or when at
2525 * global scope (for built-ins in the implicit outer scope).
2526 */
2527 ir_variable *earlier = state->symbols->get_variable(var->name);
2528 if (earlier == NULL ||
2529 (state->current_function != NULL &&
2530 !state->symbols->name_declared_this_scope(var->name))) {
2531 return NULL;
2532 }
2533
2534
2535 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
2536 *
2537 * "It is legal to declare an array without a size and then
2538 * later re-declare the same name as an array of the same
2539 * type and specify a size."
2540 */
2541 if (earlier->type->is_unsized_array() && var->type->is_array()
2542 && (var->type->element_type() == earlier->type->element_type())) {
2543 /* FINISHME: This doesn't match the qualifiers on the two
2544 * FINISHME: declarations. It's not 100% clear whether this is
2545 * FINISHME: required or not.
2546 */
2547
2548 const unsigned size = unsigned(var->type->array_size());
2549 check_builtin_array_max_size(var->name, size, loc, state);
2550 if ((size > 0) && (size <= earlier->data.max_array_access)) {
2551 _mesa_glsl_error(& loc, state, "array size must be > %u due to "
2552 "previous access",
2553 earlier->data.max_array_access);
2554 }
2555
2556 earlier->type = var->type;
2557 delete var;
2558 var = NULL;
2559 } else if ((state->ARB_fragment_coord_conventions_enable ||
2560 state->is_version(150, 0))
2561 && strcmp(var->name, "gl_FragCoord") == 0
2562 && earlier->type == var->type
2563 && earlier->data.mode == var->data.mode) {
2564 /* Allow redeclaration of gl_FragCoord for ARB_fcc layout
2565 * qualifiers.
2566 */
2567 earlier->data.origin_upper_left = var->data.origin_upper_left;
2568 earlier->data.pixel_center_integer = var->data.pixel_center_integer;
2569
2570 /* According to section 4.3.7 of the GLSL 1.30 spec,
2571 * the following built-in varaibles can be redeclared with an
2572 * interpolation qualifier:
2573 * * gl_FrontColor
2574 * * gl_BackColor
2575 * * gl_FrontSecondaryColor
2576 * * gl_BackSecondaryColor
2577 * * gl_Color
2578 * * gl_SecondaryColor
2579 */
2580 } else if (state->is_version(130, 0)
2581 && (strcmp(var->name, "gl_FrontColor") == 0
2582 || strcmp(var->name, "gl_BackColor") == 0
2583 || strcmp(var->name, "gl_FrontSecondaryColor") == 0
2584 || strcmp(var->name, "gl_BackSecondaryColor") == 0
2585 || strcmp(var->name, "gl_Color") == 0
2586 || strcmp(var->name, "gl_SecondaryColor") == 0)
2587 && earlier->type == var->type
2588 && earlier->data.mode == var->data.mode) {
2589 earlier->data.interpolation = var->data.interpolation;
2590
2591 /* Layout qualifiers for gl_FragDepth. */
2592 } else if ((state->AMD_conservative_depth_enable ||
2593 state->ARB_conservative_depth_enable)
2594 && strcmp(var->name, "gl_FragDepth") == 0
2595 && earlier->type == var->type
2596 && earlier->data.mode == var->data.mode) {
2597
2598 /** From the AMD_conservative_depth spec:
2599 * Within any shader, the first redeclarations of gl_FragDepth
2600 * must appear before any use of gl_FragDepth.
2601 */
2602 if (earlier->data.used) {
2603 _mesa_glsl_error(&loc, state,
2604 "the first redeclaration of gl_FragDepth "
2605 "must appear before any use of gl_FragDepth");
2606 }
2607
2608 /* Prevent inconsistent redeclaration of depth layout qualifier. */
2609 if (earlier->data.depth_layout != ir_depth_layout_none
2610 && earlier->data.depth_layout != var->data.depth_layout) {
2611 _mesa_glsl_error(&loc, state,
2612 "gl_FragDepth: depth layout is declared here "
2613 "as '%s, but it was previously declared as "
2614 "'%s'",
2615 depth_layout_string(var->data.depth_layout),
2616 depth_layout_string(earlier->data.depth_layout));
2617 }
2618
2619 earlier->data.depth_layout = var->data.depth_layout;
2620
2621 } else if (allow_all_redeclarations) {
2622 if (earlier->data.mode != var->data.mode) {
2623 _mesa_glsl_error(&loc, state,
2624 "redeclaration of `%s' with incorrect qualifiers",
2625 var->name);
2626 } else if (earlier->type != var->type) {
2627 _mesa_glsl_error(&loc, state,
2628 "redeclaration of `%s' has incorrect type",
2629 var->name);
2630 }
2631 } else {
2632 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
2633 }
2634
2635 return earlier;
2636 }
2637
2638 /**
2639 * Generate the IR for an initializer in a variable declaration
2640 */
2641 ir_rvalue *
2642 process_initializer(ir_variable *var, ast_declaration *decl,
2643 ast_fully_specified_type *type,
2644 exec_list *initializer_instructions,
2645 struct _mesa_glsl_parse_state *state)
2646 {
2647 ir_rvalue *result = NULL;
2648
2649 YYLTYPE initializer_loc = decl->initializer->get_location();
2650
2651 /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
2652 *
2653 * "All uniform variables are read-only and are initialized either
2654 * directly by an application via API commands, or indirectly by
2655 * OpenGL."
2656 */
2657 if (var->data.mode == ir_var_uniform) {
2658 state->check_version(120, 0, &initializer_loc,
2659 "cannot initialize uniforms");
2660 }
2661
2662 if (var->type->is_sampler()) {
2663 _mesa_glsl_error(& initializer_loc, state,
2664 "cannot initialize samplers");
2665 }
2666
2667 if ((var->data.mode == ir_var_shader_in) && (state->current_function == NULL)) {
2668 _mesa_glsl_error(& initializer_loc, state,
2669 "cannot initialize %s shader input / %s",
2670 _mesa_shader_stage_to_string(state->stage),
2671 (state->stage == MESA_SHADER_VERTEX)
2672 ? "attribute" : "varying");
2673 }
2674
2675 /* If the initializer is an ast_aggregate_initializer, recursively store
2676 * type information from the LHS into it, so that its hir() function can do
2677 * type checking.
2678 */
2679 if (decl->initializer->oper == ast_aggregate)
2680 _mesa_ast_set_aggregate_type(var->type, decl->initializer);
2681
2682 ir_dereference *const lhs = new(state) ir_dereference_variable(var);
2683 ir_rvalue *rhs = decl->initializer->hir(initializer_instructions,
2684 state);
2685
2686 /* Calculate the constant value if this is a const or uniform
2687 * declaration.
2688 */
2689 if (type->qualifier.flags.q.constant
2690 || type->qualifier.flags.q.uniform) {
2691 ir_rvalue *new_rhs = validate_assignment(state, initializer_loc,
2692 var->type, rhs, true);
2693 if (new_rhs != NULL) {
2694 rhs = new_rhs;
2695
2696 ir_constant *constant_value = rhs->constant_expression_value();
2697 if (!constant_value) {
2698 /* If ARB_shading_language_420pack is enabled, initializers of
2699 * const-qualified local variables do not have to be constant
2700 * expressions. Const-qualified global variables must still be
2701 * initialized with constant expressions.
2702 */
2703 if (!state->ARB_shading_language_420pack_enable
2704 || state->current_function == NULL) {
2705 _mesa_glsl_error(& initializer_loc, state,
2706 "initializer of %s variable `%s' must be a "
2707 "constant expression",
2708 (type->qualifier.flags.q.constant)
2709 ? "const" : "uniform",
2710 decl->identifier);
2711 if (var->type->is_numeric()) {
2712 /* Reduce cascading errors. */
2713 var->constant_value = ir_constant::zero(state, var->type);
2714 }
2715 }
2716 } else {
2717 rhs = constant_value;
2718 var->constant_value = constant_value;
2719 }
2720 } else {
2721 if (var->type->is_numeric()) {
2722 /* Reduce cascading errors. */
2723 var->constant_value = ir_constant::zero(state, var->type);
2724 }
2725 }
2726 }
2727
2728 if (rhs && !rhs->type->is_error()) {
2729 bool temp = var->data.read_only;
2730 if (type->qualifier.flags.q.constant)
2731 var->data.read_only = false;
2732
2733 /* Never emit code to initialize a uniform.
2734 */
2735 const glsl_type *initializer_type;
2736 if (!type->qualifier.flags.q.uniform) {
2737 result = do_assignment(initializer_instructions, state,
2738 NULL,
2739 lhs, rhs, true,
2740 type->get_location());
2741 initializer_type = result->type;
2742 } else
2743 initializer_type = rhs->type;
2744
2745 var->constant_initializer = rhs->constant_expression_value();
2746 var->data.has_initializer = true;
2747
2748 /* If the declared variable is an unsized array, it must inherrit
2749 * its full type from the initializer. A declaration such as
2750 *
2751 * uniform float a[] = float[](1.0, 2.0, 3.0, 3.0);
2752 *
2753 * becomes
2754 *
2755 * uniform float a[4] = float[](1.0, 2.0, 3.0, 3.0);
2756 *
2757 * The assignment generated in the if-statement (below) will also
2758 * automatically handle this case for non-uniforms.
2759 *
2760 * If the declared variable is not an array, the types must
2761 * already match exactly. As a result, the type assignment
2762 * here can be done unconditionally. For non-uniforms the call
2763 * to do_assignment can change the type of the initializer (via
2764 * the implicit conversion rules). For uniforms the initializer
2765 * must be a constant expression, and the type of that expression
2766 * was validated above.
2767 */
2768 var->type = initializer_type;
2769
2770 var->data.read_only = temp;
2771 }
2772
2773 return result;
2774 }
2775
2776
2777 /**
2778 * Do additional processing necessary for geometry shader input declarations
2779 * (this covers both interface blocks arrays and bare input variables).
2780 */
2781 static void
2782 handle_geometry_shader_input_decl(struct _mesa_glsl_parse_state *state,
2783 YYLTYPE loc, ir_variable *var)
2784 {
2785 unsigned num_vertices = 0;
2786 if (state->gs_input_prim_type_specified) {
2787 num_vertices = vertices_per_prim(state->gs_input_prim_type);
2788 }
2789
2790 /* Geometry shader input variables must be arrays. Caller should have
2791 * reported an error for this.
2792 */
2793 if (!var->type->is_array()) {
2794 assert(state->error);
2795
2796 /* To avoid cascading failures, short circuit the checks below. */
2797 return;
2798 }
2799
2800 if (var->type->is_unsized_array()) {
2801 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec says:
2802 *
2803 * All geometry shader input unsized array declarations will be
2804 * sized by an earlier input layout qualifier, when present, as per
2805 * the following table.
2806 *
2807 * Followed by a table mapping each allowed input layout qualifier to
2808 * the corresponding input length.
2809 */
2810 if (num_vertices != 0)
2811 var->type = glsl_type::get_array_instance(var->type->fields.array,
2812 num_vertices);
2813 } else {
2814 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec
2815 * includes the following examples of compile-time errors:
2816 *
2817 * // code sequence within one shader...
2818 * in vec4 Color1[]; // size unknown
2819 * ...Color1.length()...// illegal, length() unknown
2820 * in vec4 Color2[2]; // size is 2
2821 * ...Color1.length()...// illegal, Color1 still has no size
2822 * in vec4 Color3[3]; // illegal, input sizes are inconsistent
2823 * layout(lines) in; // legal, input size is 2, matching
2824 * in vec4 Color4[3]; // illegal, contradicts layout
2825 * ...
2826 *
2827 * To detect the case illustrated by Color3, we verify that the size of
2828 * an explicitly-sized array matches the size of any previously declared
2829 * explicitly-sized array. To detect the case illustrated by Color4, we
2830 * verify that the size of an explicitly-sized array is consistent with
2831 * any previously declared input layout.
2832 */
2833 if (num_vertices != 0 && var->type->length != num_vertices) {
2834 _mesa_glsl_error(&loc, state,
2835 "geometry shader input size contradicts previously"
2836 " declared layout (size is %u, but layout requires a"
2837 " size of %u)", var->type->length, num_vertices);
2838 } else if (state->gs_input_size != 0 &&
2839 var->type->length != state->gs_input_size) {
2840 _mesa_glsl_error(&loc, state,
2841 "geometry shader input sizes are "
2842 "inconsistent (size is %u, but a previous "
2843 "declaration has size %u)",
2844 var->type->length, state->gs_input_size);
2845 } else {
2846 state->gs_input_size = var->type->length;
2847 }
2848 }
2849 }
2850
2851
2852 void
2853 validate_identifier(const char *identifier, YYLTYPE loc,
2854 struct _mesa_glsl_parse_state *state)
2855 {
2856 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
2857 *
2858 * "Identifiers starting with "gl_" are reserved for use by
2859 * OpenGL, and may not be declared in a shader as either a
2860 * variable or a function."
2861 */
2862 if (strncmp(identifier, "gl_", 3) == 0) {
2863 _mesa_glsl_error(&loc, state,
2864 "identifier `%s' uses reserved `gl_' prefix",
2865 identifier);
2866 } else if (strstr(identifier, "__")) {
2867 /* From page 14 (page 20 of the PDF) of the GLSL 1.10
2868 * spec:
2869 *
2870 * "In addition, all identifiers containing two
2871 * consecutive underscores (__) are reserved as
2872 * possible future keywords."
2873 */
2874 _mesa_glsl_error(&loc, state,
2875 "identifier `%s' uses reserved `__' string",
2876 identifier);
2877 }
2878 }
2879
2880
2881 ir_rvalue *
2882 ast_declarator_list::hir(exec_list *instructions,
2883 struct _mesa_glsl_parse_state *state)
2884 {
2885 void *ctx = state;
2886 const struct glsl_type *decl_type;
2887 const char *type_name = NULL;
2888 ir_rvalue *result = NULL;
2889 YYLTYPE loc = this->get_location();
2890
2891 /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec:
2892 *
2893 * "To ensure that a particular output variable is invariant, it is
2894 * necessary to use the invariant qualifier. It can either be used to
2895 * qualify a previously declared variable as being invariant
2896 *
2897 * invariant gl_Position; // make existing gl_Position be invariant"
2898 *
2899 * In these cases the parser will set the 'invariant' flag in the declarator
2900 * list, and the type will be NULL.
2901 */
2902 if (this->invariant) {
2903 assert(this->type == NULL);
2904
2905 if (state->current_function != NULL) {
2906 _mesa_glsl_error(& loc, state,
2907 "all uses of `invariant' keyword must be at global "
2908 "scope");
2909 }
2910
2911 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
2912 assert(decl->array_specifier == NULL);
2913 assert(decl->initializer == NULL);
2914
2915 ir_variable *const earlier =
2916 state->symbols->get_variable(decl->identifier);
2917 if (earlier == NULL) {
2918 _mesa_glsl_error(& loc, state,
2919 "undeclared variable `%s' cannot be marked "
2920 "invariant", decl->identifier);
2921 } else if ((state->stage == MESA_SHADER_VERTEX)
2922 && (earlier->data.mode != ir_var_shader_out)) {
2923 _mesa_glsl_error(& loc, state,
2924 "`%s' cannot be marked invariant, vertex shader "
2925 "outputs only", decl->identifier);
2926 } else if ((state->stage == MESA_SHADER_FRAGMENT)
2927 && (earlier->data.mode != ir_var_shader_in)) {
2928 _mesa_glsl_error(& loc, state,
2929 "`%s' cannot be marked invariant, fragment shader "
2930 "inputs only", decl->identifier);
2931 } else if (earlier->data.used) {
2932 _mesa_glsl_error(& loc, state,
2933 "variable `%s' may not be redeclared "
2934 "`invariant' after being used",
2935 earlier->name);
2936 } else {
2937 earlier->data.invariant = true;
2938 }
2939 }
2940
2941 /* Invariant redeclarations do not have r-values.
2942 */
2943 return NULL;
2944 }
2945
2946 assert(this->type != NULL);
2947 assert(!this->invariant);
2948
2949 /* The type specifier may contain a structure definition. Process that
2950 * before any of the variable declarations.
2951 */
2952 (void) this->type->specifier->hir(instructions, state);
2953
2954 decl_type = this->type->glsl_type(& type_name, state);
2955
2956 /* An offset-qualified atomic counter declaration sets the default
2957 * offset for the next declaration within the same atomic counter
2958 * buffer.
2959 */
2960 if (decl_type && decl_type->contains_atomic()) {
2961 if (type->qualifier.flags.q.explicit_binding &&
2962 type->qualifier.flags.q.explicit_offset)
2963 state->atomic_counter_offsets[type->qualifier.binding] =
2964 type->qualifier.offset;
2965 }
2966
2967 if (this->declarations.is_empty()) {
2968 /* If there is no structure involved in the program text, there are two
2969 * possible scenarios:
2970 *
2971 * - The program text contained something like 'vec4;'. This is an
2972 * empty declaration. It is valid but weird. Emit a warning.
2973 *
2974 * - The program text contained something like 'S;' and 'S' is not the
2975 * name of a known structure type. This is both invalid and weird.
2976 * Emit an error.
2977 *
2978 * - The program text contained something like 'mediump float;'
2979 * when the programmer probably meant 'precision mediump
2980 * float;' Emit a warning with a description of what they
2981 * probably meant to do.
2982 *
2983 * Note that if decl_type is NULL and there is a structure involved,
2984 * there must have been some sort of error with the structure. In this
2985 * case we assume that an error was already generated on this line of
2986 * code for the structure. There is no need to generate an additional,
2987 * confusing error.
2988 */
2989 assert(this->type->specifier->structure == NULL || decl_type != NULL
2990 || state->error);
2991
2992 if (decl_type == NULL) {
2993 _mesa_glsl_error(&loc, state,
2994 "invalid type `%s' in empty declaration",
2995 type_name);
2996 } else if (decl_type->base_type == GLSL_TYPE_ATOMIC_UINT) {
2997 /* Empty atomic counter declarations are allowed and useful
2998 * to set the default offset qualifier.
2999 */
3000 return NULL;
3001 } else if (this->type->qualifier.precision != ast_precision_none) {
3002 if (this->type->specifier->structure != NULL) {
3003 _mesa_glsl_error(&loc, state,
3004 "precision qualifiers can't be applied "
3005 "to structures");
3006 } else {
3007 static const char *const precision_names[] = {
3008 "highp",
3009 "highp",
3010 "mediump",
3011 "lowp"
3012 };
3013
3014 _mesa_glsl_warning(&loc, state,
3015 "empty declaration with precision qualifier, "
3016 "to set the default precision, use "
3017 "`precision %s %s;'",
3018 precision_names[this->type->qualifier.precision],
3019 type_name);
3020 }
3021 } else if (this->type->specifier->structure == NULL) {
3022 _mesa_glsl_warning(&loc, state, "empty declaration");
3023 }
3024 }
3025
3026 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
3027 const struct glsl_type *var_type;
3028 ir_variable *var;
3029
3030 /* FINISHME: Emit a warning if a variable declaration shadows a
3031 * FINISHME: declaration at a higher scope.
3032 */
3033
3034 if ((decl_type == NULL) || decl_type->is_void()) {
3035 if (type_name != NULL) {
3036 _mesa_glsl_error(& loc, state,
3037 "invalid type `%s' in declaration of `%s'",
3038 type_name, decl->identifier);
3039 } else {
3040 _mesa_glsl_error(& loc, state,
3041 "invalid type in declaration of `%s'",
3042 decl->identifier);
3043 }
3044 continue;
3045 }
3046
3047 var_type = process_array_type(&loc, decl_type, decl->array_specifier,
3048 state);
3049
3050 var = new(ctx) ir_variable(var_type, decl->identifier, ir_var_auto);
3051
3052 /* The 'varying in' and 'varying out' qualifiers can only be used with
3053 * ARB_geometry_shader4 and EXT_geometry_shader4, which we don't support
3054 * yet.
3055 */
3056 if (this->type->qualifier.flags.q.varying) {
3057 if (this->type->qualifier.flags.q.in) {
3058 _mesa_glsl_error(& loc, state,
3059 "`varying in' qualifier in declaration of "
3060 "`%s' only valid for geometry shaders using "
3061 "ARB_geometry_shader4 or EXT_geometry_shader4",
3062 decl->identifier);
3063 } else if (this->type->qualifier.flags.q.out) {
3064 _mesa_glsl_error(& loc, state,
3065 "`varying out' qualifier in declaration of "
3066 "`%s' only valid for geometry shaders using "
3067 "ARB_geometry_shader4 or EXT_geometry_shader4",
3068 decl->identifier);
3069 }
3070 }
3071
3072 /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
3073 *
3074 * "Global variables can only use the qualifiers const,
3075 * attribute, uni form, or varying. Only one may be
3076 * specified.
3077 *
3078 * Local variables can only use the qualifier const."
3079 *
3080 * This is relaxed in GLSL 1.30 and GLSL ES 3.00. It is also relaxed by
3081 * any extension that adds the 'layout' keyword.
3082 */
3083 if (!state->is_version(130, 300)
3084 && !state->has_explicit_attrib_location()
3085 && !state->ARB_fragment_coord_conventions_enable) {
3086 if (this->type->qualifier.flags.q.out) {
3087 _mesa_glsl_error(& loc, state,
3088 "`out' qualifier in declaration of `%s' "
3089 "only valid for function parameters in %s",
3090 decl->identifier, state->get_version_string());
3091 }
3092 if (this->type->qualifier.flags.q.in) {
3093 _mesa_glsl_error(& loc, state,
3094 "`in' qualifier in declaration of `%s' "
3095 "only valid for function parameters in %s",
3096 decl->identifier, state->get_version_string());
3097 }
3098 /* FINISHME: Test for other invalid qualifiers. */
3099 }
3100
3101 apply_type_qualifier_to_variable(& this->type->qualifier, var, state,
3102 & loc, false);
3103
3104 if (this->type->qualifier.flags.q.invariant) {
3105 if ((state->stage == MESA_SHADER_VERTEX) &&
3106 var->data.mode != ir_var_shader_out) {
3107 _mesa_glsl_error(& loc, state,
3108 "`%s' cannot be marked invariant, vertex shader "
3109 "outputs only", var->name);
3110 } else if ((state->stage == MESA_SHADER_FRAGMENT) &&
3111 var->data.mode != ir_var_shader_in) {
3112 /* FINISHME: Note that this doesn't work for invariant on
3113 * a function signature inval
3114 */
3115 _mesa_glsl_error(& loc, state,
3116 "`%s' cannot be marked invariant, fragment shader "
3117 "inputs only", var->name);
3118 }
3119 }
3120
3121 if (state->current_function != NULL) {
3122 const char *mode = NULL;
3123 const char *extra = "";
3124
3125 /* There is no need to check for 'inout' here because the parser will
3126 * only allow that in function parameter lists.
3127 */
3128 if (this->type->qualifier.flags.q.attribute) {
3129 mode = "attribute";
3130 } else if (this->type->qualifier.flags.q.uniform) {
3131 mode = "uniform";
3132 } else if (this->type->qualifier.flags.q.varying) {
3133 mode = "varying";
3134 } else if (this->type->qualifier.flags.q.in) {
3135 mode = "in";
3136 extra = " or in function parameter list";
3137 } else if (this->type->qualifier.flags.q.out) {
3138 mode = "out";
3139 extra = " or in function parameter list";
3140 }
3141
3142 if (mode) {
3143 _mesa_glsl_error(& loc, state,
3144 "%s variable `%s' must be declared at "
3145 "global scope%s",
3146 mode, var->name, extra);
3147 }
3148 } else if (var->data.mode == ir_var_shader_in) {
3149 var->data.read_only = true;
3150
3151 if (state->stage == MESA_SHADER_VERTEX) {
3152 bool error_emitted = false;
3153
3154 /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
3155 *
3156 * "Vertex shader inputs can only be float, floating-point
3157 * vectors, matrices, signed and unsigned integers and integer
3158 * vectors. Vertex shader inputs can also form arrays of these
3159 * types, but not structures."
3160 *
3161 * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
3162 *
3163 * "Vertex shader inputs can only be float, floating-point
3164 * vectors, matrices, signed and unsigned integers and integer
3165 * vectors. They cannot be arrays or structures."
3166 *
3167 * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
3168 *
3169 * "The attribute qualifier can be used only with float,
3170 * floating-point vectors, and matrices. Attribute variables
3171 * cannot be declared as arrays or structures."
3172 *
3173 * From page 33 (page 39 of the PDF) of the GLSL ES 3.00 spec:
3174 *
3175 * "Vertex shader inputs can only be float, floating-point
3176 * vectors, matrices, signed and unsigned integers and integer
3177 * vectors. Vertex shader inputs cannot be arrays or
3178 * structures."
3179 */
3180 const glsl_type *check_type = var->type;
3181 while (check_type->is_array())
3182 check_type = check_type->element_type();
3183
3184 switch (check_type->base_type) {
3185 case GLSL_TYPE_FLOAT:
3186 break;
3187 case GLSL_TYPE_UINT:
3188 case GLSL_TYPE_INT:
3189 if (state->is_version(120, 300))
3190 break;
3191 /* FALLTHROUGH */
3192 default:
3193 _mesa_glsl_error(& loc, state,
3194 "vertex shader input / attribute cannot have "
3195 "type %s`%s'",
3196 var->type->is_array() ? "array of " : "",
3197 check_type->name);
3198 error_emitted = true;
3199 }
3200
3201 if (!error_emitted && var->type->is_array() &&
3202 !state->check_version(150, 0, &loc,
3203 "vertex shader input / attribute "
3204 "cannot have array type")) {
3205 error_emitted = true;
3206 }
3207 } else if (state->stage == MESA_SHADER_GEOMETRY) {
3208 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
3209 *
3210 * Geometry shader input variables get the per-vertex values
3211 * written out by vertex shader output variables of the same
3212 * names. Since a geometry shader operates on a set of
3213 * vertices, each input varying variable (or input block, see
3214 * interface blocks below) needs to be declared as an array.
3215 */
3216 if (!var->type->is_array()) {
3217 _mesa_glsl_error(&loc, state,
3218 "geometry shader inputs must be arrays");
3219 }
3220
3221 handle_geometry_shader_input_decl(state, loc, var);
3222 }
3223 }
3224
3225 /* Integer fragment inputs must be qualified with 'flat'. In GLSL ES,
3226 * so must integer vertex outputs.
3227 *
3228 * From section 4.3.4 ("Inputs") of the GLSL 1.50 spec:
3229 * "Fragment shader inputs that are signed or unsigned integers or
3230 * integer vectors must be qualified with the interpolation qualifier
3231 * flat."
3232 *
3233 * From section 4.3.4 ("Input Variables") of the GLSL 3.00 ES spec:
3234 * "Fragment shader inputs that are, or contain, signed or unsigned
3235 * integers or integer vectors must be qualified with the
3236 * interpolation qualifier flat."
3237 *
3238 * From section 4.3.6 ("Output Variables") of the GLSL 3.00 ES spec:
3239 * "Vertex shader outputs that are, or contain, signed or unsigned
3240 * integers or integer vectors must be qualified with the
3241 * interpolation qualifier flat."
3242 *
3243 * Note that prior to GLSL 1.50, this requirement applied to vertex
3244 * outputs rather than fragment inputs. That creates problems in the
3245 * presence of geometry shaders, so we adopt the GLSL 1.50 rule for all
3246 * desktop GL shaders. For GLSL ES shaders, we follow the spec and
3247 * apply the restriction to both vertex outputs and fragment inputs.
3248 *
3249 * Note also that the desktop GLSL specs are missing the text "or
3250 * contain"; this is presumably an oversight, since there is no
3251 * reasonable way to interpolate a fragment shader input that contains
3252 * an integer.
3253 */
3254 if (state->is_version(130, 300) &&
3255 var->type->contains_integer() &&
3256 var->data.interpolation != INTERP_QUALIFIER_FLAT &&
3257 ((state->stage == MESA_SHADER_FRAGMENT && var->data.mode == ir_var_shader_in)
3258 || (state->stage == MESA_SHADER_VERTEX && var->data.mode == ir_var_shader_out
3259 && state->es_shader))) {
3260 const char *var_type = (state->stage == MESA_SHADER_VERTEX) ?
3261 "vertex output" : "fragment input";
3262 _mesa_glsl_error(&loc, state, "if a %s is (or contains) "
3263 "an integer, then it must be qualified with 'flat'",
3264 var_type);
3265 }
3266
3267
3268 /* Interpolation qualifiers cannot be applied to 'centroid' and
3269 * 'centroid varying'.
3270 *
3271 * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
3272 * "interpolation qualifiers may only precede the qualifiers in,
3273 * centroid in, out, or centroid out in a declaration. They do not apply
3274 * to the deprecated storage qualifiers varying or centroid varying."
3275 *
3276 * These deprecated storage qualifiers do not exist in GLSL ES 3.00.
3277 */
3278 if (state->is_version(130, 0)
3279 && this->type->qualifier.has_interpolation()
3280 && this->type->qualifier.flags.q.varying) {
3281
3282 const char *i = this->type->qualifier.interpolation_string();
3283 assert(i != NULL);
3284 const char *s;
3285 if (this->type->qualifier.flags.q.centroid)
3286 s = "centroid varying";
3287 else
3288 s = "varying";
3289
3290 _mesa_glsl_error(&loc, state,
3291 "qualifier '%s' cannot be applied to the "
3292 "deprecated storage qualifier '%s'", i, s);
3293 }
3294
3295
3296 /* Interpolation qualifiers can only apply to vertex shader outputs and
3297 * fragment shader inputs.
3298 *
3299 * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
3300 * "Outputs from a vertex shader (out) and inputs to a fragment
3301 * shader (in) can be further qualified with one or more of these
3302 * interpolation qualifiers"
3303 *
3304 * From page 31 (page 37 of the PDF) of the GLSL ES 3.00 spec:
3305 * "These interpolation qualifiers may only precede the qualifiers
3306 * in, centroid in, out, or centroid out in a declaration. They do
3307 * not apply to inputs into a vertex shader or outputs from a
3308 * fragment shader."
3309 */
3310 if (state->is_version(130, 300)
3311 && this->type->qualifier.has_interpolation()) {
3312
3313 const char *i = this->type->qualifier.interpolation_string();
3314 assert(i != NULL);
3315
3316 switch (state->stage) {
3317 case MESA_SHADER_VERTEX:
3318 if (this->type->qualifier.flags.q.in) {
3319 _mesa_glsl_error(&loc, state,
3320 "qualifier '%s' cannot be applied to vertex "
3321 "shader inputs", i);
3322 }
3323 break;
3324 case MESA_SHADER_FRAGMENT:
3325 if (this->type->qualifier.flags.q.out) {
3326 _mesa_glsl_error(&loc, state,
3327 "qualifier '%s' cannot be applied to fragment "
3328 "shader outputs", i);
3329 }
3330 break;
3331 default:
3332 break;
3333 }
3334 }
3335
3336
3337 /* From section 4.3.4 of the GLSL 1.30 spec:
3338 * "It is an error to use centroid in in a vertex shader."
3339 *
3340 * From section 4.3.4 of the GLSL ES 3.00 spec:
3341 * "It is an error to use centroid in or interpolation qualifiers in
3342 * a vertex shader input."
3343 */
3344 if (state->is_version(130, 300)
3345 && this->type->qualifier.flags.q.centroid
3346 && this->type->qualifier.flags.q.in
3347 && state->stage == MESA_SHADER_VERTEX) {
3348
3349 _mesa_glsl_error(&loc, state,
3350 "'centroid in' cannot be used in a vertex shader");
3351 }
3352
3353 if (state->stage == MESA_SHADER_VERTEX
3354 && this->type->qualifier.flags.q.sample
3355 && this->type->qualifier.flags.q.in) {
3356
3357 _mesa_glsl_error(&loc, state,
3358 "'sample in' cannot be used in a vertex shader");
3359 }
3360
3361 /* Section 4.3.6 of the GLSL 1.30 specification states:
3362 * "It is an error to use centroid out in a fragment shader."
3363 *
3364 * The GL_ARB_shading_language_420pack extension specification states:
3365 * "It is an error to use auxiliary storage qualifiers or interpolation
3366 * qualifiers on an output in a fragment shader."
3367 */
3368 if (state->stage == MESA_SHADER_FRAGMENT &&
3369 this->type->qualifier.flags.q.out &&
3370 this->type->qualifier.has_auxiliary_storage()) {
3371 _mesa_glsl_error(&loc, state,
3372 "auxiliary storage qualifiers cannot be used on "
3373 "fragment shader outputs");
3374 }
3375
3376 /* Precision qualifiers exists only in GLSL versions 1.00 and >= 1.30.
3377 */
3378 if (this->type->qualifier.precision != ast_precision_none) {
3379 state->check_precision_qualifiers_allowed(&loc);
3380 }
3381
3382
3383 /* Precision qualifiers apply to floating point, integer and sampler
3384 * types.
3385 *
3386 * Section 4.5.2 (Precision Qualifiers) of the GLSL 1.30 spec says:
3387 * "Any floating point or any integer declaration can have the type
3388 * preceded by one of these precision qualifiers [...] Literal
3389 * constants do not have precision qualifiers. Neither do Boolean
3390 * variables.
3391 *
3392 * Section 4.5 (Precision and Precision Qualifiers) of the GLSL 1.30
3393 * spec also says:
3394 *
3395 * "Precision qualifiers are added for code portability with OpenGL
3396 * ES, not for functionality. They have the same syntax as in OpenGL
3397 * ES."
3398 *
3399 * Section 8 (Built-In Functions) of the GLSL ES 1.00 spec says:
3400 *
3401 * "uniform lowp sampler2D sampler;
3402 * highp vec2 coord;
3403 * ...
3404 * lowp vec4 col = texture2D (sampler, coord);
3405 * // texture2D returns lowp"
3406 *
3407 * From this, we infer that GLSL 1.30 (and later) should allow precision
3408 * qualifiers on sampler types just like float and integer types.
3409 */
3410 if (this->type->qualifier.precision != ast_precision_none
3411 && !var->type->is_float()
3412 && !var->type->is_integer()
3413 && !var->type->is_record()
3414 && !var->type->is_sampler()
3415 && !(var->type->is_array()
3416 && (var->type->fields.array->is_float()
3417 || var->type->fields.array->is_integer()))) {
3418
3419 _mesa_glsl_error(&loc, state,
3420 "precision qualifiers apply only to floating point"
3421 ", integer and sampler types");
3422 }
3423
3424 /* From page 17 (page 23 of the PDF) of the GLSL 1.20 spec:
3425 *
3426 * "[Sampler types] can only be declared as function
3427 * parameters or uniform variables (see Section 4.3.5
3428 * "Uniform")".
3429 */
3430 if (var_type->contains_sampler() &&
3431 !this->type->qualifier.flags.q.uniform) {
3432 _mesa_glsl_error(&loc, state, "samplers must be declared uniform");
3433 }
3434
3435 /* Process the initializer and add its instructions to a temporary
3436 * list. This list will be added to the instruction stream (below) after
3437 * the declaration is added. This is done because in some cases (such as
3438 * redeclarations) the declaration may not actually be added to the
3439 * instruction stream.
3440 */
3441 exec_list initializer_instructions;
3442 ir_variable *earlier =
3443 get_variable_being_redeclared(var, decl->get_location(), state,
3444 false /* allow_all_redeclarations */);
3445 if (earlier != NULL) {
3446 if (strncmp(var->name, "gl_", 3) == 0 &&
3447 earlier->data.how_declared == ir_var_declared_in_block) {
3448 _mesa_glsl_error(&loc, state,
3449 "`%s' has already been redeclared using "
3450 "gl_PerVertex", var->name);
3451 }
3452 earlier->data.how_declared = ir_var_declared_normally;
3453 }
3454
3455 if (decl->initializer != NULL) {
3456 result = process_initializer((earlier == NULL) ? var : earlier,
3457 decl, this->type,
3458 &initializer_instructions, state);
3459 }
3460
3461 /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
3462 *
3463 * "It is an error to write to a const variable outside of
3464 * its declaration, so they must be initialized when
3465 * declared."
3466 */
3467 if (this->type->qualifier.flags.q.constant && decl->initializer == NULL) {
3468 _mesa_glsl_error(& loc, state,
3469 "const declaration of `%s' must be initialized",
3470 decl->identifier);
3471 }
3472
3473 if (state->es_shader) {
3474 const glsl_type *const t = (earlier == NULL)
3475 ? var->type : earlier->type;
3476
3477 if (t->is_unsized_array())
3478 /* Section 10.17 of the GLSL ES 1.00 specification states that
3479 * unsized array declarations have been removed from the language.
3480 * Arrays that are sized using an initializer are still explicitly
3481 * sized. However, GLSL ES 1.00 does not allow array
3482 * initializers. That is only allowed in GLSL ES 3.00.
3483 *
3484 * Section 4.1.9 (Arrays) of the GLSL ES 3.00 spec says:
3485 *
3486 * "An array type can also be formed without specifying a size
3487 * if the definition includes an initializer:
3488 *
3489 * float x[] = float[2] (1.0, 2.0); // declares an array of size 2
3490 * float y[] = float[] (1.0, 2.0, 3.0); // declares an array of size 3
3491 *
3492 * float a[5];
3493 * float b[] = a;"
3494 */
3495 _mesa_glsl_error(& loc, state,
3496 "unsized array declarations are not allowed in "
3497 "GLSL ES");
3498 }
3499
3500 /* If the declaration is not a redeclaration, there are a few additional
3501 * semantic checks that must be applied. In addition, variable that was
3502 * created for the declaration should be added to the IR stream.
3503 */
3504 if (earlier == NULL) {
3505 validate_identifier(decl->identifier, loc, state);
3506
3507 /* Add the variable to the symbol table. Note that the initializer's
3508 * IR was already processed earlier (though it hasn't been emitted
3509 * yet), without the variable in scope.
3510 *
3511 * This differs from most C-like languages, but it follows the GLSL
3512 * specification. From page 28 (page 34 of the PDF) of the GLSL 1.50
3513 * spec:
3514 *
3515 * "Within a declaration, the scope of a name starts immediately
3516 * after the initializer if present or immediately after the name
3517 * being declared if not."
3518 */
3519 if (!state->symbols->add_variable(var)) {
3520 YYLTYPE loc = this->get_location();
3521 _mesa_glsl_error(&loc, state, "name `%s' already taken in the "
3522 "current scope", decl->identifier);
3523 continue;
3524 }
3525
3526 /* Push the variable declaration to the top. It means that all the
3527 * variable declarations will appear in a funny last-to-first order,
3528 * but otherwise we run into trouble if a function is prototyped, a
3529 * global var is decled, then the function is defined with usage of
3530 * the global var. See glslparsertest's CorrectModule.frag.
3531 */
3532 instructions->push_head(var);
3533 }
3534
3535 instructions->append_list(&initializer_instructions);
3536 }
3537
3538
3539 /* Generally, variable declarations do not have r-values. However,
3540 * one is used for the declaration in
3541 *
3542 * while (bool b = some_condition()) {
3543 * ...
3544 * }
3545 *
3546 * so we return the rvalue from the last seen declaration here.
3547 */
3548 return result;
3549 }
3550
3551
3552 ir_rvalue *
3553 ast_parameter_declarator::hir(exec_list *instructions,
3554 struct _mesa_glsl_parse_state *state)
3555 {
3556 void *ctx = state;
3557 const struct glsl_type *type;
3558 const char *name = NULL;
3559 YYLTYPE loc = this->get_location();
3560
3561 type = this->type->glsl_type(& name, state);
3562
3563 if (type == NULL) {
3564 if (name != NULL) {
3565 _mesa_glsl_error(& loc, state,
3566 "invalid type `%s' in declaration of `%s'",
3567 name, this->identifier);
3568 } else {
3569 _mesa_glsl_error(& loc, state,
3570 "invalid type in declaration of `%s'",
3571 this->identifier);
3572 }
3573
3574 type = glsl_type::error_type;
3575 }
3576
3577 /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
3578 *
3579 * "Functions that accept no input arguments need not use void in the
3580 * argument list because prototypes (or definitions) are required and
3581 * therefore there is no ambiguity when an empty argument list "( )" is
3582 * declared. The idiom "(void)" as a parameter list is provided for
3583 * convenience."
3584 *
3585 * Placing this check here prevents a void parameter being set up
3586 * for a function, which avoids tripping up checks for main taking
3587 * parameters and lookups of an unnamed symbol.
3588 */
3589 if (type->is_void()) {
3590 if (this->identifier != NULL)
3591 _mesa_glsl_error(& loc, state,
3592 "named parameter cannot have type `void'");
3593
3594 is_void = true;
3595 return NULL;
3596 }
3597
3598 if (formal_parameter && (this->identifier == NULL)) {
3599 _mesa_glsl_error(& loc, state, "formal parameter lacks a name");
3600 return NULL;
3601 }
3602
3603 /* This only handles "vec4 foo[..]". The earlier specifier->glsl_type(...)
3604 * call already handled the "vec4[..] foo" case.
3605 */
3606 type = process_array_type(&loc, type, this->array_specifier, state);
3607
3608 if (!type->is_error() && type->is_unsized_array()) {
3609 _mesa_glsl_error(&loc, state, "arrays passed as parameters must have "
3610 "a declared size");
3611 type = glsl_type::error_type;
3612 }
3613
3614 is_void = false;
3615 ir_variable *var = new(ctx)
3616 ir_variable(type, this->identifier, ir_var_function_in);
3617
3618 /* Apply any specified qualifiers to the parameter declaration. Note that
3619 * for function parameters the default mode is 'in'.
3620 */
3621 apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc,
3622 true);
3623
3624 /* From page 17 (page 23 of the PDF) of the GLSL 1.20 spec:
3625 *
3626 * "Samplers cannot be treated as l-values; hence cannot be used
3627 * as out or inout function parameters, nor can they be assigned
3628 * into."
3629 */
3630 if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
3631 && type->contains_sampler()) {
3632 _mesa_glsl_error(&loc, state, "out and inout parameters cannot contain samplers");
3633 type = glsl_type::error_type;
3634 }
3635
3636 /* From page 39 (page 45 of the PDF) of the GLSL 1.10 spec:
3637 *
3638 * "When calling a function, expressions that do not evaluate to
3639 * l-values cannot be passed to parameters declared as out or inout."
3640 *
3641 * From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
3642 *
3643 * "Other binary or unary expressions, non-dereferenced arrays,
3644 * function names, swizzles with repeated fields, and constants
3645 * cannot be l-values."
3646 *
3647 * So for GLSL 1.10, passing an array as an out or inout parameter is not
3648 * allowed. This restriction is removed in GLSL 1.20, and in GLSL ES.
3649 */
3650 if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
3651 && type->is_array()
3652 && !state->check_version(120, 100, &loc,
3653 "arrays cannot be out or inout parameters")) {
3654 type = glsl_type::error_type;
3655 }
3656
3657 instructions->push_tail(var);
3658
3659 /* Parameter declarations do not have r-values.
3660 */
3661 return NULL;
3662 }
3663
3664
3665 void
3666 ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters,
3667 bool formal,
3668 exec_list *ir_parameters,
3669 _mesa_glsl_parse_state *state)
3670 {
3671 ast_parameter_declarator *void_param = NULL;
3672 unsigned count = 0;
3673
3674 foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) {
3675 param->formal_parameter = formal;
3676 param->hir(ir_parameters, state);
3677
3678 if (param->is_void)
3679 void_param = param;
3680
3681 count++;
3682 }
3683
3684 if ((void_param != NULL) && (count > 1)) {
3685 YYLTYPE loc = void_param->get_location();
3686
3687 _mesa_glsl_error(& loc, state,
3688 "`void' parameter must be only parameter");
3689 }
3690 }
3691
3692
3693 void
3694 emit_function(_mesa_glsl_parse_state *state, ir_function *f)
3695 {
3696 /* IR invariants disallow function declarations or definitions
3697 * nested within other function definitions. But there is no
3698 * requirement about the relative order of function declarations
3699 * and definitions with respect to one another. So simply insert
3700 * the new ir_function block at the end of the toplevel instruction
3701 * list.
3702 */
3703 state->toplevel_ir->push_tail(f);
3704 }
3705
3706
3707 ir_rvalue *
3708 ast_function::hir(exec_list *instructions,
3709 struct _mesa_glsl_parse_state *state)
3710 {
3711 void *ctx = state;
3712 ir_function *f = NULL;
3713 ir_function_signature *sig = NULL;
3714 exec_list hir_parameters;
3715
3716 const char *const name = identifier;
3717
3718 /* New functions are always added to the top-level IR instruction stream,
3719 * so this instruction list pointer is ignored. See also emit_function
3720 * (called below).
3721 */
3722 (void) instructions;
3723
3724 /* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec,
3725 *
3726 * "Function declarations (prototypes) cannot occur inside of functions;
3727 * they must be at global scope, or for the built-in functions, outside
3728 * the global scope."
3729 *
3730 * From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec,
3731 *
3732 * "User defined functions may only be defined within the global scope."
3733 *
3734 * Note that this language does not appear in GLSL 1.10.
3735 */
3736 if ((state->current_function != NULL) &&
3737 state->is_version(120, 100)) {
3738 YYLTYPE loc = this->get_location();
3739 _mesa_glsl_error(&loc, state,
3740 "declaration of function `%s' not allowed within "
3741 "function body", name);
3742 }
3743
3744 validate_identifier(name, this->get_location(), state);
3745
3746 /* Convert the list of function parameters to HIR now so that they can be
3747 * used below to compare this function's signature with previously seen
3748 * signatures for functions with the same name.
3749 */
3750 ast_parameter_declarator::parameters_to_hir(& this->parameters,
3751 is_definition,
3752 & hir_parameters, state);
3753
3754 const char *return_type_name;
3755 const glsl_type *return_type =
3756 this->return_type->glsl_type(& return_type_name, state);
3757
3758 if (!return_type) {
3759 YYLTYPE loc = this->get_location();
3760 _mesa_glsl_error(&loc, state,
3761 "function `%s' has undeclared return type `%s'",
3762 name, return_type_name);
3763 return_type = glsl_type::error_type;
3764 }
3765
3766 /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec:
3767 * "No qualifier is allowed on the return type of a function."
3768 */
3769 if (this->return_type->has_qualifiers()) {
3770 YYLTYPE loc = this->get_location();
3771 _mesa_glsl_error(& loc, state,
3772 "function `%s' return type has qualifiers", name);
3773 }
3774
3775 /* Section 6.1 (Function Definitions) of the GLSL 1.20 spec says:
3776 *
3777 * "Arrays are allowed as arguments and as the return type. In both
3778 * cases, the array must be explicitly sized."
3779 */
3780 if (return_type->is_unsized_array()) {
3781 YYLTYPE loc = this->get_location();
3782 _mesa_glsl_error(& loc, state,
3783 "function `%s' return type array must be explicitly "
3784 "sized", name);
3785 }
3786
3787 /* From page 17 (page 23 of the PDF) of the GLSL 1.20 spec:
3788 *
3789 * "[Sampler types] can only be declared as function parameters
3790 * or uniform variables (see Section 4.3.5 "Uniform")".
3791 */
3792 if (return_type->contains_sampler()) {
3793 YYLTYPE loc = this->get_location();
3794 _mesa_glsl_error(&loc, state,
3795 "function `%s' return type can't contain a sampler",
3796 name);
3797 }
3798
3799 /* Verify that this function's signature either doesn't match a previously
3800 * seen signature for a function with the same name, or, if a match is found,
3801 * that the previously seen signature does not have an associated definition.
3802 */
3803 f = state->symbols->get_function(name);
3804 if (f != NULL && (state->es_shader || f->has_user_signature())) {
3805 sig = f->exact_matching_signature(state, &hir_parameters);
3806 if (sig != NULL) {
3807 const char *badvar = sig->qualifiers_match(&hir_parameters);
3808 if (badvar != NULL) {
3809 YYLTYPE loc = this->get_location();
3810
3811 _mesa_glsl_error(&loc, state, "function `%s' parameter `%s' "
3812 "qualifiers don't match prototype", name, badvar);
3813 }
3814
3815 if (sig->return_type != return_type) {
3816 YYLTYPE loc = this->get_location();
3817
3818 _mesa_glsl_error(&loc, state, "function `%s' return type doesn't "
3819 "match prototype", name);
3820 }
3821
3822 if (sig->is_defined) {
3823 if (is_definition) {
3824 YYLTYPE loc = this->get_location();
3825 _mesa_glsl_error(& loc, state, "function `%s' redefined", name);
3826 } else {
3827 /* We just encountered a prototype that exactly matches a
3828 * function that's already been defined. This is redundant,
3829 * and we should ignore it.
3830 */
3831 return NULL;
3832 }
3833 }
3834 }
3835 } else {
3836 f = new(ctx) ir_function(name);
3837 if (!state->symbols->add_function(f)) {
3838 /* This function name shadows a non-function use of the same name. */
3839 YYLTYPE loc = this->get_location();
3840
3841 _mesa_glsl_error(&loc, state, "function name `%s' conflicts with "
3842 "non-function", name);
3843 return NULL;
3844 }
3845
3846 emit_function(state, f);
3847 }
3848
3849 /* Verify the return type of main() */
3850 if (strcmp(name, "main") == 0) {
3851 if (! return_type->is_void()) {
3852 YYLTYPE loc = this->get_location();
3853
3854 _mesa_glsl_error(& loc, state, "main() must return void");
3855 }
3856
3857 if (!hir_parameters.is_empty()) {
3858 YYLTYPE loc = this->get_location();
3859
3860 _mesa_glsl_error(& loc, state, "main() must not take any parameters");
3861 }
3862 }
3863
3864 /* Finish storing the information about this new function in its signature.
3865 */
3866 if (sig == NULL) {
3867 sig = new(ctx) ir_function_signature(return_type);
3868 f->add_signature(sig);
3869 }
3870
3871 sig->replace_parameters(&hir_parameters);
3872 signature = sig;
3873
3874 /* Function declarations (prototypes) do not have r-values.
3875 */
3876 return NULL;
3877 }
3878
3879
3880 ir_rvalue *
3881 ast_function_definition::hir(exec_list *instructions,
3882 struct _mesa_glsl_parse_state *state)
3883 {
3884 prototype->is_definition = true;
3885 prototype->hir(instructions, state);
3886
3887 ir_function_signature *signature = prototype->signature;
3888 if (signature == NULL)
3889 return NULL;
3890
3891 assert(state->current_function == NULL);
3892 state->current_function = signature;
3893 state->found_return = false;
3894
3895 /* Duplicate parameters declared in the prototype as concrete variables.
3896 * Add these to the symbol table.
3897 */
3898 state->symbols->push_scope();
3899 foreach_list(n, &signature->parameters) {
3900 ir_variable *const var = ((ir_instruction *) n)->as_variable();
3901
3902 assert(var != NULL);
3903
3904 /* The only way a parameter would "exist" is if two parameters have
3905 * the same name.
3906 */
3907 if (state->symbols->name_declared_this_scope(var->name)) {
3908 YYLTYPE loc = this->get_location();
3909
3910 _mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name);
3911 } else {
3912 state->symbols->add_variable(var);
3913 }
3914 }
3915
3916 /* Convert the body of the function to HIR. */
3917 this->body->hir(&signature->body, state);
3918 signature->is_defined = true;
3919
3920 state->symbols->pop_scope();
3921
3922 assert(state->current_function == signature);
3923 state->current_function = NULL;
3924
3925 if (!signature->return_type->is_void() && !state->found_return) {
3926 YYLTYPE loc = this->get_location();
3927 _mesa_glsl_error(& loc, state, "function `%s' has non-void return type "
3928 "%s, but no return statement",
3929 signature->function_name(),
3930 signature->return_type->name);
3931 }
3932
3933 /* Function definitions do not have r-values.
3934 */
3935 return NULL;
3936 }
3937
3938
3939 ir_rvalue *
3940 ast_jump_statement::hir(exec_list *instructions,
3941 struct _mesa_glsl_parse_state *state)
3942 {
3943 void *ctx = state;
3944
3945 switch (mode) {
3946 case ast_return: {
3947 ir_return *inst;
3948 assert(state->current_function);
3949
3950 if (opt_return_value) {
3951 ir_rvalue *ret = opt_return_value->hir(instructions, state);
3952
3953 /* The value of the return type can be NULL if the shader says
3954 * 'return foo();' and foo() is a function that returns void.
3955 *
3956 * NOTE: The GLSL spec doesn't say that this is an error. The type
3957 * of the return value is void. If the return type of the function is
3958 * also void, then this should compile without error. Seriously.
3959 */
3960 const glsl_type *const ret_type =
3961 (ret == NULL) ? glsl_type::void_type : ret->type;
3962
3963 /* Implicit conversions are not allowed for return values prior to
3964 * ARB_shading_language_420pack.
3965 */
3966 if (state->current_function->return_type != ret_type) {
3967 YYLTYPE loc = this->get_location();
3968
3969 if (state->ARB_shading_language_420pack_enable) {
3970 if (!apply_implicit_conversion(state->current_function->return_type,
3971 ret, state)) {
3972 _mesa_glsl_error(& loc, state,
3973 "could not implicitly convert return value "
3974 "to %s, in function `%s'",
3975 state->current_function->return_type->name,
3976 state->current_function->function_name());
3977 }
3978 } else {
3979 _mesa_glsl_error(& loc, state,
3980 "`return' with wrong type %s, in function `%s' "
3981 "returning %s",
3982 ret_type->name,
3983 state->current_function->function_name(),
3984 state->current_function->return_type->name);
3985 }
3986 } else if (state->current_function->return_type->base_type ==
3987 GLSL_TYPE_VOID) {
3988 YYLTYPE loc = this->get_location();
3989
3990 /* The ARB_shading_language_420pack, GLSL ES 3.0, and GLSL 4.20
3991 * specs add a clarification:
3992 *
3993 * "A void function can only use return without a return argument, even if
3994 * the return argument has void type. Return statements only accept values:
3995 *
3996 * void func1() { }
3997 * void func2() { return func1(); } // illegal return statement"
3998 */
3999 _mesa_glsl_error(& loc, state,
4000 "void functions can only use `return' without a "
4001 "return argument");
4002 }
4003
4004 inst = new(ctx) ir_return(ret);
4005 } else {
4006 if (state->current_function->return_type->base_type !=
4007 GLSL_TYPE_VOID) {
4008 YYLTYPE loc = this->get_location();
4009
4010 _mesa_glsl_error(& loc, state,
4011 "`return' with no value, in function %s returning "
4012 "non-void",
4013 state->current_function->function_name());
4014 }
4015 inst = new(ctx) ir_return;
4016 }
4017
4018 state->found_return = true;
4019 instructions->push_tail(inst);
4020 break;
4021 }
4022
4023 case ast_discard:
4024 if (state->stage != MESA_SHADER_FRAGMENT) {
4025 YYLTYPE loc = this->get_location();
4026
4027 _mesa_glsl_error(& loc, state,
4028 "`discard' may only appear in a fragment shader");
4029 }
4030 instructions->push_tail(new(ctx) ir_discard);
4031 break;
4032
4033 case ast_break:
4034 case ast_continue:
4035 if (mode == ast_continue &&
4036 state->loop_nesting_ast == NULL) {
4037 YYLTYPE loc = this->get_location();
4038
4039 _mesa_glsl_error(& loc, state,
4040 "continue may only appear in a loop");
4041 } else if (mode == ast_break &&
4042 state->loop_nesting_ast == NULL &&
4043 state->switch_state.switch_nesting_ast == NULL) {
4044 YYLTYPE loc = this->get_location();
4045
4046 _mesa_glsl_error(& loc, state,
4047 "break may only appear in a loop or a switch");
4048 } else {
4049 /* For a loop, inline the for loop expression again, since we don't
4050 * know where near the end of the loop body the normal copy of it is
4051 * going to be placed. Same goes for the condition for a do-while
4052 * loop.
4053 */
4054 if (state->loop_nesting_ast != NULL &&
4055 mode == ast_continue) {
4056 if (state->loop_nesting_ast->rest_expression) {
4057 state->loop_nesting_ast->rest_expression->hir(instructions,
4058 state);
4059 }
4060 if (state->loop_nesting_ast->mode ==
4061 ast_iteration_statement::ast_do_while) {
4062 state->loop_nesting_ast->condition_to_hir(instructions, state);
4063 }
4064 }
4065
4066 if (state->switch_state.is_switch_innermost &&
4067 mode == ast_break) {
4068 /* Force break out of switch by setting is_break switch state.
4069 */
4070 ir_variable *const is_break_var = state->switch_state.is_break_var;
4071 ir_dereference_variable *const deref_is_break_var =
4072 new(ctx) ir_dereference_variable(is_break_var);
4073 ir_constant *const true_val = new(ctx) ir_constant(true);
4074 ir_assignment *const set_break_var =
4075 new(ctx) ir_assignment(deref_is_break_var, true_val);
4076
4077 instructions->push_tail(set_break_var);
4078 }
4079 else {
4080 ir_loop_jump *const jump =
4081 new(ctx) ir_loop_jump((mode == ast_break)
4082 ? ir_loop_jump::jump_break
4083 : ir_loop_jump::jump_continue);
4084 instructions->push_tail(jump);
4085 }
4086 }
4087
4088 break;
4089 }
4090
4091 /* Jump instructions do not have r-values.
4092 */
4093 return NULL;
4094 }
4095
4096
4097 ir_rvalue *
4098 ast_selection_statement::hir(exec_list *instructions,
4099 struct _mesa_glsl_parse_state *state)
4100 {
4101 void *ctx = state;
4102
4103 ir_rvalue *const condition = this->condition->hir(instructions, state);
4104
4105 /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
4106 *
4107 * "Any expression whose type evaluates to a Boolean can be used as the
4108 * conditional expression bool-expression. Vector types are not accepted
4109 * as the expression to if."
4110 *
4111 * The checks are separated so that higher quality diagnostics can be
4112 * generated for cases where both rules are violated.
4113 */
4114 if (!condition->type->is_boolean() || !condition->type->is_scalar()) {
4115 YYLTYPE loc = this->condition->get_location();
4116
4117 _mesa_glsl_error(& loc, state, "if-statement condition must be scalar "
4118 "boolean");
4119 }
4120
4121 ir_if *const stmt = new(ctx) ir_if(condition);
4122
4123 if (then_statement != NULL) {
4124 state->symbols->push_scope();
4125 then_statement->hir(& stmt->then_instructions, state);
4126 state->symbols->pop_scope();
4127 }
4128
4129 if (else_statement != NULL) {
4130 state->symbols->push_scope();
4131 else_statement->hir(& stmt->else_instructions, state);
4132 state->symbols->pop_scope();
4133 }
4134
4135 instructions->push_tail(stmt);
4136
4137 /* if-statements do not have r-values.
4138 */
4139 return NULL;
4140 }
4141
4142
4143 ir_rvalue *
4144 ast_switch_statement::hir(exec_list *instructions,
4145 struct _mesa_glsl_parse_state *state)
4146 {
4147 void *ctx = state;
4148
4149 ir_rvalue *const test_expression =
4150 this->test_expression->hir(instructions, state);
4151
4152 /* From page 66 (page 55 of the PDF) of the GLSL 1.50 spec:
4153 *
4154 * "The type of init-expression in a switch statement must be a
4155 * scalar integer."
4156 */
4157 if (!test_expression->type->is_scalar() ||
4158 !test_expression->type->is_integer()) {
4159 YYLTYPE loc = this->test_expression->get_location();
4160
4161 _mesa_glsl_error(& loc,
4162 state,
4163 "switch-statement expression must be scalar "
4164 "integer");
4165 }
4166
4167 /* Track the switch-statement nesting in a stack-like manner.
4168 */
4169 struct glsl_switch_state saved = state->switch_state;
4170
4171 state->switch_state.is_switch_innermost = true;
4172 state->switch_state.switch_nesting_ast = this;
4173 state->switch_state.labels_ht = hash_table_ctor(0, hash_table_pointer_hash,
4174 hash_table_pointer_compare);
4175 state->switch_state.previous_default = NULL;
4176
4177 /* Initalize is_fallthru state to false.
4178 */
4179 ir_rvalue *const is_fallthru_val = new (ctx) ir_constant(false);
4180 state->switch_state.is_fallthru_var =
4181 new(ctx) ir_variable(glsl_type::bool_type,
4182 "switch_is_fallthru_tmp",
4183 ir_var_temporary);
4184 instructions->push_tail(state->switch_state.is_fallthru_var);
4185
4186 ir_dereference_variable *deref_is_fallthru_var =
4187 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
4188 instructions->push_tail(new(ctx) ir_assignment(deref_is_fallthru_var,
4189 is_fallthru_val));
4190
4191 /* Initalize is_break state to false.
4192 */
4193 ir_rvalue *const is_break_val = new (ctx) ir_constant(false);
4194 state->switch_state.is_break_var = new(ctx) ir_variable(glsl_type::bool_type,
4195 "switch_is_break_tmp",
4196 ir_var_temporary);
4197 instructions->push_tail(state->switch_state.is_break_var);
4198
4199 ir_dereference_variable *deref_is_break_var =
4200 new(ctx) ir_dereference_variable(state->switch_state.is_break_var);
4201 instructions->push_tail(new(ctx) ir_assignment(deref_is_break_var,
4202 is_break_val));
4203
4204 /* Cache test expression.
4205 */
4206 test_to_hir(instructions, state);
4207
4208 /* Emit code for body of switch stmt.
4209 */
4210 body->hir(instructions, state);
4211
4212 hash_table_dtor(state->switch_state.labels_ht);
4213
4214 state->switch_state = saved;
4215
4216 /* Switch statements do not have r-values. */
4217 return NULL;
4218 }
4219
4220
4221 void
4222 ast_switch_statement::test_to_hir(exec_list *instructions,
4223 struct _mesa_glsl_parse_state *state)
4224 {
4225 void *ctx = state;
4226
4227 /* Cache value of test expression. */
4228 ir_rvalue *const test_val =
4229 test_expression->hir(instructions,
4230 state);
4231
4232 state->switch_state.test_var = new(ctx) ir_variable(test_val->type,
4233 "switch_test_tmp",
4234 ir_var_temporary);
4235 ir_dereference_variable *deref_test_var =
4236 new(ctx) ir_dereference_variable(state->switch_state.test_var);
4237
4238 instructions->push_tail(state->switch_state.test_var);
4239 instructions->push_tail(new(ctx) ir_assignment(deref_test_var, test_val));
4240 }
4241
4242
4243 ir_rvalue *
4244 ast_switch_body::hir(exec_list *instructions,
4245 struct _mesa_glsl_parse_state *state)
4246 {
4247 if (stmts != NULL)
4248 stmts->hir(instructions, state);
4249
4250 /* Switch bodies do not have r-values. */
4251 return NULL;
4252 }
4253
4254 ir_rvalue *
4255 ast_case_statement_list::hir(exec_list *instructions,
4256 struct _mesa_glsl_parse_state *state)
4257 {
4258 foreach_list_typed (ast_case_statement, case_stmt, link, & this->cases)
4259 case_stmt->hir(instructions, state);
4260
4261 /* Case statements do not have r-values. */
4262 return NULL;
4263 }
4264
4265 ir_rvalue *
4266 ast_case_statement::hir(exec_list *instructions,
4267 struct _mesa_glsl_parse_state *state)
4268 {
4269 labels->hir(instructions, state);
4270
4271 /* Conditionally set fallthru state based on break state. */
4272 ir_constant *const false_val = new(state) ir_constant(false);
4273 ir_dereference_variable *const deref_is_fallthru_var =
4274 new(state) ir_dereference_variable(state->switch_state.is_fallthru_var);
4275 ir_dereference_variable *const deref_is_break_var =
4276 new(state) ir_dereference_variable(state->switch_state.is_break_var);
4277 ir_assignment *const reset_fallthru_on_break =
4278 new(state) ir_assignment(deref_is_fallthru_var,
4279 false_val,
4280 deref_is_break_var);
4281 instructions->push_tail(reset_fallthru_on_break);
4282
4283 /* Guard case statements depending on fallthru state. */
4284 ir_dereference_variable *const deref_fallthru_guard =
4285 new(state) ir_dereference_variable(state->switch_state.is_fallthru_var);
4286 ir_if *const test_fallthru = new(state) ir_if(deref_fallthru_guard);
4287
4288 foreach_list_typed (ast_node, stmt, link, & this->stmts)
4289 stmt->hir(& test_fallthru->then_instructions, state);
4290
4291 instructions->push_tail(test_fallthru);
4292
4293 /* Case statements do not have r-values. */
4294 return NULL;
4295 }
4296
4297
4298 ir_rvalue *
4299 ast_case_label_list::hir(exec_list *instructions,
4300 struct _mesa_glsl_parse_state *state)
4301 {
4302 foreach_list_typed (ast_case_label, label, link, & this->labels)
4303 label->hir(instructions, state);
4304
4305 /* Case labels do not have r-values. */
4306 return NULL;
4307 }
4308
4309 ir_rvalue *
4310 ast_case_label::hir(exec_list *instructions,
4311 struct _mesa_glsl_parse_state *state)
4312 {
4313 void *ctx = state;
4314
4315 ir_dereference_variable *deref_fallthru_var =
4316 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
4317
4318 ir_rvalue *const true_val = new(ctx) ir_constant(true);
4319
4320 /* If not default case, ... */
4321 if (this->test_value != NULL) {
4322 /* Conditionally set fallthru state based on
4323 * comparison of cached test expression value to case label.
4324 */
4325 ir_rvalue *const label_rval = this->test_value->hir(instructions, state);
4326 ir_constant *label_const = label_rval->constant_expression_value();
4327
4328 if (!label_const) {
4329 YYLTYPE loc = this->test_value->get_location();
4330
4331 _mesa_glsl_error(& loc, state,
4332 "switch statement case label must be a "
4333 "constant expression");
4334
4335 /* Stuff a dummy value in to allow processing to continue. */
4336 label_const = new(ctx) ir_constant(0);
4337 } else {
4338 ast_expression *previous_label = (ast_expression *)
4339 hash_table_find(state->switch_state.labels_ht,
4340 (void *)(uintptr_t)label_const->value.u[0]);
4341
4342 if (previous_label) {
4343 YYLTYPE loc = this->test_value->get_location();
4344 _mesa_glsl_error(& loc, state,
4345 "duplicate case value");
4346
4347 loc = previous_label->get_location();
4348 _mesa_glsl_error(& loc, state,
4349 "this is the previous case label");
4350 } else {
4351 hash_table_insert(state->switch_state.labels_ht,
4352 this->test_value,
4353 (void *)(uintptr_t)label_const->value.u[0]);
4354 }
4355 }
4356
4357 ir_dereference_variable *deref_test_var =
4358 new(ctx) ir_dereference_variable(state->switch_state.test_var);
4359
4360 ir_rvalue *const test_cond = new(ctx) ir_expression(ir_binop_all_equal,
4361 label_const,
4362 deref_test_var);
4363
4364 ir_assignment *set_fallthru_on_test =
4365 new(ctx) ir_assignment(deref_fallthru_var,
4366 true_val,
4367 test_cond);
4368
4369 instructions->push_tail(set_fallthru_on_test);
4370 } else { /* default case */
4371 if (state->switch_state.previous_default) {
4372 YYLTYPE loc = this->get_location();
4373 _mesa_glsl_error(& loc, state,
4374 "multiple default labels in one switch");
4375
4376 loc = state->switch_state.previous_default->get_location();
4377 _mesa_glsl_error(& loc, state,
4378 "this is the first default label");
4379 }
4380 state->switch_state.previous_default = this;
4381
4382 /* Set falltrhu state. */
4383 ir_assignment *set_fallthru =
4384 new(ctx) ir_assignment(deref_fallthru_var, true_val);
4385
4386 instructions->push_tail(set_fallthru);
4387 }
4388
4389 /* Case statements do not have r-values. */
4390 return NULL;
4391 }
4392
4393 void
4394 ast_iteration_statement::condition_to_hir(exec_list *instructions,
4395 struct _mesa_glsl_parse_state *state)
4396 {
4397 void *ctx = state;
4398
4399 if (condition != NULL) {
4400 ir_rvalue *const cond =
4401 condition->hir(instructions, state);
4402
4403 if ((cond == NULL)
4404 || !cond->type->is_boolean() || !cond->type->is_scalar()) {
4405 YYLTYPE loc = condition->get_location();
4406
4407 _mesa_glsl_error(& loc, state,
4408 "loop condition must be scalar boolean");
4409 } else {
4410 /* As the first code in the loop body, generate a block that looks
4411 * like 'if (!condition) break;' as the loop termination condition.
4412 */
4413 ir_rvalue *const not_cond =
4414 new(ctx) ir_expression(ir_unop_logic_not, cond);
4415
4416 ir_if *const if_stmt = new(ctx) ir_if(not_cond);
4417
4418 ir_jump *const break_stmt =
4419 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
4420
4421 if_stmt->then_instructions.push_tail(break_stmt);
4422 instructions->push_tail(if_stmt);
4423 }
4424 }
4425 }
4426
4427
4428 ir_rvalue *
4429 ast_iteration_statement::hir(exec_list *instructions,
4430 struct _mesa_glsl_parse_state *state)
4431 {
4432 void *ctx = state;
4433
4434 /* For-loops and while-loops start a new scope, but do-while loops do not.
4435 */
4436 if (mode != ast_do_while)
4437 state->symbols->push_scope();
4438
4439 if (init_statement != NULL)
4440 init_statement->hir(instructions, state);
4441
4442 ir_loop *const stmt = new(ctx) ir_loop();
4443 instructions->push_tail(stmt);
4444
4445 /* Track the current loop nesting. */
4446 ast_iteration_statement *nesting_ast = state->loop_nesting_ast;
4447
4448 state->loop_nesting_ast = this;
4449
4450 /* Likewise, indicate that following code is closest to a loop,
4451 * NOT closest to a switch.
4452 */
4453 bool saved_is_switch_innermost = state->switch_state.is_switch_innermost;
4454 state->switch_state.is_switch_innermost = false;
4455
4456 if (mode != ast_do_while)
4457 condition_to_hir(&stmt->body_instructions, state);
4458
4459 if (body != NULL)
4460 body->hir(& stmt->body_instructions, state);
4461
4462 if (rest_expression != NULL)
4463 rest_expression->hir(& stmt->body_instructions, state);
4464
4465 if (mode == ast_do_while)
4466 condition_to_hir(&stmt->body_instructions, state);
4467
4468 if (mode != ast_do_while)
4469 state->symbols->pop_scope();
4470
4471 /* Restore previous nesting before returning. */
4472 state->loop_nesting_ast = nesting_ast;
4473 state->switch_state.is_switch_innermost = saved_is_switch_innermost;
4474
4475 /* Loops do not have r-values.
4476 */
4477 return NULL;
4478 }
4479
4480
4481 /**
4482 * Determine if the given type is valid for establishing a default precision
4483 * qualifier.
4484 *
4485 * From GLSL ES 3.00 section 4.5.4 ("Default Precision Qualifiers"):
4486 *
4487 * "The precision statement
4488 *
4489 * precision precision-qualifier type;
4490 *
4491 * can be used to establish a default precision qualifier. The type field
4492 * can be either int or float or any of the sampler types, and the
4493 * precision-qualifier can be lowp, mediump, or highp."
4494 *
4495 * GLSL ES 1.00 has similar language. GLSL 1.30 doesn't allow precision
4496 * qualifiers on sampler types, but this seems like an oversight (since the
4497 * intention of including these in GLSL 1.30 is to allow compatibility with ES
4498 * shaders). So we allow int, float, and all sampler types regardless of GLSL
4499 * version.
4500 */
4501 static bool
4502 is_valid_default_precision_type(const struct glsl_type *const type)
4503 {
4504 if (type == NULL)
4505 return false;
4506
4507 switch (type->base_type) {
4508 case GLSL_TYPE_INT:
4509 case GLSL_TYPE_FLOAT:
4510 /* "int" and "float" are valid, but vectors and matrices are not. */
4511 return type->vector_elements == 1 && type->matrix_columns == 1;
4512 case GLSL_TYPE_SAMPLER:
4513 return true;
4514 default:
4515 return false;
4516 }
4517 }
4518
4519
4520 ir_rvalue *
4521 ast_type_specifier::hir(exec_list *instructions,
4522 struct _mesa_glsl_parse_state *state)
4523 {
4524 if (this->default_precision == ast_precision_none && this->structure == NULL)
4525 return NULL;
4526
4527 YYLTYPE loc = this->get_location();
4528
4529 /* If this is a precision statement, check that the type to which it is
4530 * applied is either float or int.
4531 *
4532 * From section 4.5.3 of the GLSL 1.30 spec:
4533 * "The precision statement
4534 * precision precision-qualifier type;
4535 * can be used to establish a default precision qualifier. The type
4536 * field can be either int or float [...]. Any other types or
4537 * qualifiers will result in an error.
4538 */
4539 if (this->default_precision != ast_precision_none) {
4540 if (!state->check_precision_qualifiers_allowed(&loc))
4541 return NULL;
4542
4543 if (this->structure != NULL) {
4544 _mesa_glsl_error(&loc, state,
4545 "precision qualifiers do not apply to structures");
4546 return NULL;
4547 }
4548
4549 if (this->array_specifier != NULL) {
4550 _mesa_glsl_error(&loc, state,
4551 "default precision statements do not apply to "
4552 "arrays");
4553 return NULL;
4554 }
4555
4556 const struct glsl_type *const type =
4557 state->symbols->get_type(this->type_name);
4558 if (!is_valid_default_precision_type(type)) {
4559 _mesa_glsl_error(&loc, state,
4560 "default precision statements apply only to "
4561 "float, int, and sampler types");
4562 return NULL;
4563 }
4564
4565 if (type->base_type == GLSL_TYPE_FLOAT
4566 && state->es_shader
4567 && state->stage == MESA_SHADER_FRAGMENT) {
4568 /* Section 4.5.3 (Default Precision Qualifiers) of the GLSL ES 1.00
4569 * spec says:
4570 *
4571 * "The fragment language has no default precision qualifier for
4572 * floating point types."
4573 *
4574 * As a result, we have to track whether or not default precision has
4575 * been specified for float in GLSL ES fragment shaders.
4576 *
4577 * Earlier in that same section, the spec says:
4578 *
4579 * "Non-precision qualified declarations will use the precision
4580 * qualifier specified in the most recent precision statement
4581 * that is still in scope. The precision statement has the same
4582 * scoping rules as variable declarations. If it is declared
4583 * inside a compound statement, its effect stops at the end of
4584 * the innermost statement it was declared in. Precision
4585 * statements in nested scopes override precision statements in
4586 * outer scopes. Multiple precision statements for the same basic
4587 * type can appear inside the same scope, with later statements
4588 * overriding earlier statements within that scope."
4589 *
4590 * Default precision specifications follow the same scope rules as
4591 * variables. So, we can track the state of the default float
4592 * precision in the symbol table, and the rules will just work. This
4593 * is a slight abuse of the symbol table, but it has the semantics
4594 * that we want.
4595 */
4596 ir_variable *const junk =
4597 new(state) ir_variable(type, "#default precision",
4598 ir_var_temporary);
4599
4600 state->symbols->add_variable(junk);
4601 }
4602
4603 /* FINISHME: Translate precision statements into IR. */
4604 return NULL;
4605 }
4606
4607 /* _mesa_ast_set_aggregate_type() sets the <structure> field so that
4608 * process_record_constructor() can do type-checking on C-style initializer
4609 * expressions of structs, but ast_struct_specifier should only be translated
4610 * to HIR if it is declaring the type of a structure.
4611 *
4612 * The ->is_declaration field is false for initializers of variables
4613 * declared separately from the struct's type definition.
4614 *
4615 * struct S { ... }; (is_declaration = true)
4616 * struct T { ... } t = { ... }; (is_declaration = true)
4617 * S s = { ... }; (is_declaration = false)
4618 */
4619 if (this->structure != NULL && this->structure->is_declaration)
4620 return this->structure->hir(instructions, state);
4621
4622 return NULL;
4623 }
4624
4625
4626 /**
4627 * Process a structure or interface block tree into an array of structure fields
4628 *
4629 * After parsing, where there are some syntax differnces, structures and
4630 * interface blocks are almost identical. They are similar enough that the
4631 * AST for each can be processed the same way into a set of
4632 * \c glsl_struct_field to describe the members.
4633 *
4634 * If we're processing an interface block, var_mode should be the type of the
4635 * interface block (ir_var_shader_in, ir_var_shader_out, or ir_var_uniform).
4636 * If we're processing a structure, var_mode should be ir_var_auto.
4637 *
4638 * \return
4639 * The number of fields processed. A pointer to the array structure fields is
4640 * stored in \c *fields_ret.
4641 */
4642 unsigned
4643 ast_process_structure_or_interface_block(exec_list *instructions,
4644 struct _mesa_glsl_parse_state *state,
4645 exec_list *declarations,
4646 YYLTYPE &loc,
4647 glsl_struct_field **fields_ret,
4648 bool is_interface,
4649 bool block_row_major,
4650 bool allow_reserved_names,
4651 ir_variable_mode var_mode)
4652 {
4653 unsigned decl_count = 0;
4654
4655 /* Make an initial pass over the list of fields to determine how
4656 * many there are. Each element in this list is an ast_declarator_list.
4657 * This means that we actually need to count the number of elements in the
4658 * 'declarations' list in each of the elements.
4659 */
4660 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
4661 foreach_list_const (decl_ptr, & decl_list->declarations) {
4662 decl_count++;
4663 }
4664 }
4665
4666 /* Allocate storage for the fields and process the field
4667 * declarations. As the declarations are processed, try to also convert
4668 * the types to HIR. This ensures that structure definitions embedded in
4669 * other structure definitions or in interface blocks are processed.
4670 */
4671 glsl_struct_field *const fields = ralloc_array(state, glsl_struct_field,
4672 decl_count);
4673
4674 unsigned i = 0;
4675 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
4676 const char *type_name;
4677
4678 decl_list->type->specifier->hir(instructions, state);
4679
4680 /* Section 10.9 of the GLSL ES 1.00 specification states that
4681 * embedded structure definitions have been removed from the language.
4682 */
4683 if (state->es_shader && decl_list->type->specifier->structure != NULL) {
4684 _mesa_glsl_error(&loc, state, "embedded structure definitions are "
4685 "not allowed in GLSL ES 1.00");
4686 }
4687
4688 const glsl_type *decl_type =
4689 decl_list->type->glsl_type(& type_name, state);
4690
4691 foreach_list_typed (ast_declaration, decl, link,
4692 &decl_list->declarations) {
4693 if (!allow_reserved_names)
4694 validate_identifier(decl->identifier, loc, state);
4695
4696 /* From the GL_ARB_uniform_buffer_object spec:
4697 *
4698 * "Sampler types are not allowed inside of uniform
4699 * blocks. All other types, arrays, and structures
4700 * allowed for uniforms are allowed within a uniform
4701 * block."
4702 *
4703 * It should be impossible for decl_type to be NULL here. Cases that
4704 * might naturally lead to decl_type being NULL, especially for the
4705 * is_interface case, will have resulted in compilation having
4706 * already halted due to a syntax error.
4707 */
4708 const struct glsl_type *field_type =
4709 decl_type != NULL ? decl_type : glsl_type::error_type;
4710
4711 if (is_interface && field_type->contains_sampler()) {
4712 YYLTYPE loc = decl_list->get_location();
4713 _mesa_glsl_error(&loc, state,
4714 "uniform in non-default uniform block contains sampler");
4715 }
4716
4717 if (field_type->contains_atomic()) {
4718 /* FINISHME: Add a spec quotation here once updated spec
4719 * FINISHME: language is available. See Khronos bug #10903
4720 * FINISHME: on whether atomic counters are allowed in
4721 * FINISHME: structures.
4722 */
4723 YYLTYPE loc = decl_list->get_location();
4724 _mesa_glsl_error(&loc, state, "atomic counter in structure or "
4725 "uniform block");
4726 }
4727
4728 const struct ast_type_qualifier *const qual =
4729 & decl_list->type->qualifier;
4730 if (qual->flags.q.std140 ||
4731 qual->flags.q.packed ||
4732 qual->flags.q.shared) {
4733 _mesa_glsl_error(&loc, state,
4734 "uniform block layout qualifiers std140, packed, and "
4735 "shared can only be applied to uniform blocks, not "
4736 "members");
4737 }
4738
4739 field_type = process_array_type(&loc, decl_type,
4740 decl->array_specifier, state);
4741 fields[i].type = field_type;
4742 fields[i].name = decl->identifier;
4743 fields[i].location = -1;
4744 fields[i].interpolation =
4745 interpret_interpolation_qualifier(qual, var_mode, state, &loc);
4746 fields[i].centroid = qual->flags.q.centroid ? 1 : 0;
4747 fields[i].sample = qual->flags.q.sample ? 1 : 0;
4748
4749 if (qual->flags.q.row_major || qual->flags.q.column_major) {
4750 if (!qual->flags.q.uniform) {
4751 _mesa_glsl_error(&loc, state,
4752 "row_major and column_major can only be "
4753 "applied to uniform interface blocks");
4754 } else
4755 validate_matrix_layout_for_type(state, &loc, field_type, NULL);
4756 }
4757
4758 if (qual->flags.q.uniform && qual->has_interpolation()) {
4759 _mesa_glsl_error(&loc, state,
4760 "interpolation qualifiers cannot be used "
4761 "with uniform interface blocks");
4762 }
4763
4764 if (field_type->is_matrix() ||
4765 (field_type->is_array() && field_type->fields.array->is_matrix())) {
4766 fields[i].row_major = block_row_major;
4767 if (qual->flags.q.row_major)
4768 fields[i].row_major = true;
4769 else if (qual->flags.q.column_major)
4770 fields[i].row_major = false;
4771 }
4772
4773 i++;
4774 }
4775 }
4776
4777 assert(i == decl_count);
4778
4779 *fields_ret = fields;
4780 return decl_count;
4781 }
4782
4783
4784 ir_rvalue *
4785 ast_struct_specifier::hir(exec_list *instructions,
4786 struct _mesa_glsl_parse_state *state)
4787 {
4788 YYLTYPE loc = this->get_location();
4789
4790 /* Section 4.1.8 (Structures) of the GLSL 1.10 spec says:
4791 *
4792 * "Anonymous structures are not supported; so embedded structures must
4793 * have a declarator. A name given to an embedded struct is scoped at
4794 * the same level as the struct it is embedded in."
4795 *
4796 * The same section of the GLSL 1.20 spec says:
4797 *
4798 * "Anonymous structures are not supported. Embedded structures are not
4799 * supported.
4800 *
4801 * struct S { float f; };
4802 * struct T {
4803 * S; // Error: anonymous structures disallowed
4804 * struct { ... }; // Error: embedded structures disallowed
4805 * S s; // Okay: nested structures with name are allowed
4806 * };"
4807 *
4808 * The GLSL ES 1.00 and 3.00 specs have similar langauge and examples. So,
4809 * we allow embedded structures in 1.10 only.
4810 */
4811 if (state->language_version != 110 && state->struct_specifier_depth != 0)
4812 _mesa_glsl_error(&loc, state,
4813 "embedded structure declartions are not allowed");
4814
4815 state->struct_specifier_depth++;
4816
4817 glsl_struct_field *fields;
4818 unsigned decl_count =
4819 ast_process_structure_or_interface_block(instructions,
4820 state,
4821 &this->declarations,
4822 loc,
4823 &fields,
4824 false,
4825 false,
4826 false /* allow_reserved_names */,
4827 ir_var_auto);
4828
4829 validate_identifier(this->name, loc, state);
4830
4831 const glsl_type *t =
4832 glsl_type::get_record_instance(fields, decl_count, this->name);
4833
4834 if (!state->symbols->add_type(name, t)) {
4835 _mesa_glsl_error(& loc, state, "struct `%s' previously defined", name);
4836 } else {
4837 const glsl_type **s = reralloc(state, state->user_structures,
4838 const glsl_type *,
4839 state->num_user_structures + 1);
4840 if (s != NULL) {
4841 s[state->num_user_structures] = t;
4842 state->user_structures = s;
4843 state->num_user_structures++;
4844 }
4845 }
4846
4847 state->struct_specifier_depth--;
4848
4849 /* Structure type definitions do not have r-values.
4850 */
4851 return NULL;
4852 }
4853
4854
4855 /**
4856 * Visitor class which detects whether a given interface block has been used.
4857 */
4858 class interface_block_usage_visitor : public ir_hierarchical_visitor
4859 {
4860 public:
4861 interface_block_usage_visitor(ir_variable_mode mode, const glsl_type *block)
4862 : mode(mode), block(block), found(false)
4863 {
4864 }
4865
4866 virtual ir_visitor_status visit(ir_dereference_variable *ir)
4867 {
4868 if (ir->var->data.mode == mode && ir->var->get_interface_type() == block) {
4869 found = true;
4870 return visit_stop;
4871 }
4872 return visit_continue;
4873 }
4874
4875 bool usage_found() const
4876 {
4877 return this->found;
4878 }
4879
4880 private:
4881 ir_variable_mode mode;
4882 const glsl_type *block;
4883 bool found;
4884 };
4885
4886
4887 ir_rvalue *
4888 ast_interface_block::hir(exec_list *instructions,
4889 struct _mesa_glsl_parse_state *state)
4890 {
4891 YYLTYPE loc = this->get_location();
4892
4893 /* The ast_interface_block has a list of ast_declarator_lists. We
4894 * need to turn those into ir_variables with an association
4895 * with this uniform block.
4896 */
4897 enum glsl_interface_packing packing;
4898 if (this->layout.flags.q.shared) {
4899 packing = GLSL_INTERFACE_PACKING_SHARED;
4900 } else if (this->layout.flags.q.packed) {
4901 packing = GLSL_INTERFACE_PACKING_PACKED;
4902 } else {
4903 /* The default layout is std140.
4904 */
4905 packing = GLSL_INTERFACE_PACKING_STD140;
4906 }
4907
4908 ir_variable_mode var_mode;
4909 const char *iface_type_name;
4910 if (this->layout.flags.q.in) {
4911 var_mode = ir_var_shader_in;
4912 iface_type_name = "in";
4913 } else if (this->layout.flags.q.out) {
4914 var_mode = ir_var_shader_out;
4915 iface_type_name = "out";
4916 } else if (this->layout.flags.q.uniform) {
4917 var_mode = ir_var_uniform;
4918 iface_type_name = "uniform";
4919 } else {
4920 var_mode = ir_var_auto;
4921 iface_type_name = "UNKNOWN";
4922 assert(!"interface block layout qualifier not found!");
4923 }
4924
4925 bool redeclaring_per_vertex = strcmp(this->block_name, "gl_PerVertex") == 0;
4926 bool block_row_major = this->layout.flags.q.row_major;
4927 exec_list declared_variables;
4928 glsl_struct_field *fields;
4929 unsigned int num_variables =
4930 ast_process_structure_or_interface_block(&declared_variables,
4931 state,
4932 &this->declarations,
4933 loc,
4934 &fields,
4935 true,
4936 block_row_major,
4937 redeclaring_per_vertex,
4938 var_mode);
4939
4940 if (!redeclaring_per_vertex)
4941 validate_identifier(this->block_name, loc, state);
4942
4943 const glsl_type *earlier_per_vertex = NULL;
4944 if (redeclaring_per_vertex) {
4945 /* Find the previous declaration of gl_PerVertex. If we're redeclaring
4946 * the named interface block gl_in, we can find it by looking at the
4947 * previous declaration of gl_in. Otherwise we can find it by looking
4948 * at the previous decalartion of any of the built-in outputs,
4949 * e.g. gl_Position.
4950 *
4951 * Also check that the instance name and array-ness of the redeclaration
4952 * are correct.
4953 */
4954 switch (var_mode) {
4955 case ir_var_shader_in:
4956 if (ir_variable *earlier_gl_in =
4957 state->symbols->get_variable("gl_in")) {
4958 earlier_per_vertex = earlier_gl_in->get_interface_type();
4959 } else {
4960 _mesa_glsl_error(&loc, state,
4961 "redeclaration of gl_PerVertex input not allowed "
4962 "in the %s shader",
4963 _mesa_shader_stage_to_string(state->stage));
4964 }
4965 if (this->instance_name == NULL ||
4966 strcmp(this->instance_name, "gl_in") != 0 || this->array_specifier == NULL) {
4967 _mesa_glsl_error(&loc, state,
4968 "gl_PerVertex input must be redeclared as "
4969 "gl_in[]");
4970 }
4971 break;
4972 case ir_var_shader_out:
4973 if (ir_variable *earlier_gl_Position =
4974 state->symbols->get_variable("gl_Position")) {
4975 earlier_per_vertex = earlier_gl_Position->get_interface_type();
4976 } else {
4977 _mesa_glsl_error(&loc, state,
4978 "redeclaration of gl_PerVertex output not "
4979 "allowed in the %s shader",
4980 _mesa_shader_stage_to_string(state->stage));
4981 }
4982 if (this->instance_name != NULL) {
4983 _mesa_glsl_error(&loc, state,
4984 "gl_PerVertex input may not be redeclared with "
4985 "an instance name");
4986 }
4987 break;
4988 default:
4989 _mesa_glsl_error(&loc, state,
4990 "gl_PerVertex must be declared as an input or an "
4991 "output");
4992 break;
4993 }
4994
4995 if (earlier_per_vertex == NULL) {
4996 /* An error has already been reported. Bail out to avoid null
4997 * dereferences later in this function.
4998 */
4999 return NULL;
5000 }
5001
5002 /* Copy locations from the old gl_PerVertex interface block. */
5003 for (unsigned i = 0; i < num_variables; i++) {
5004 int j = earlier_per_vertex->field_index(fields[i].name);
5005 if (j == -1) {
5006 _mesa_glsl_error(&loc, state,
5007 "redeclaration of gl_PerVertex must be a subset "
5008 "of the built-in members of gl_PerVertex");
5009 } else {
5010 fields[i].location =
5011 earlier_per_vertex->fields.structure[j].location;
5012 fields[i].interpolation =
5013 earlier_per_vertex->fields.structure[j].interpolation;
5014 fields[i].centroid =
5015 earlier_per_vertex->fields.structure[j].centroid;
5016 fields[i].sample =
5017 earlier_per_vertex->fields.structure[j].sample;
5018 }
5019 }
5020
5021 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10
5022 * spec:
5023 *
5024 * If a built-in interface block is redeclared, it must appear in
5025 * the shader before any use of any member included in the built-in
5026 * declaration, or a compilation error will result.
5027 *
5028 * This appears to be a clarification to the behaviour established for
5029 * gl_PerVertex by GLSL 1.50, therefore we implement this behaviour
5030 * regardless of GLSL version.
5031 */
5032 interface_block_usage_visitor v(var_mode, earlier_per_vertex);
5033 v.run(instructions);
5034 if (v.usage_found()) {
5035 _mesa_glsl_error(&loc, state,
5036 "redeclaration of a built-in interface block must "
5037 "appear before any use of any member of the "
5038 "interface block");
5039 }
5040 }
5041
5042 const glsl_type *block_type =
5043 glsl_type::get_interface_instance(fields,
5044 num_variables,
5045 packing,
5046 this->block_name);
5047
5048 if (!state->symbols->add_interface(block_type->name, block_type, var_mode)) {
5049 YYLTYPE loc = this->get_location();
5050 _mesa_glsl_error(&loc, state, "interface block `%s' with type `%s' "
5051 "already taken in the current scope",
5052 this->block_name, iface_type_name);
5053 }
5054
5055 /* Since interface blocks cannot contain statements, it should be
5056 * impossible for the block to generate any instructions.
5057 */
5058 assert(declared_variables.is_empty());
5059
5060 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
5061 *
5062 * Geometry shader input variables get the per-vertex values written
5063 * out by vertex shader output variables of the same names. Since a
5064 * geometry shader operates on a set of vertices, each input varying
5065 * variable (or input block, see interface blocks below) needs to be
5066 * declared as an array.
5067 */
5068 if (state->stage == MESA_SHADER_GEOMETRY && this->array_specifier == NULL &&
5069 var_mode == ir_var_shader_in) {
5070 _mesa_glsl_error(&loc, state, "geometry shader inputs must be arrays");
5071 }
5072
5073 /* Page 39 (page 45 of the PDF) of section 4.3.7 in the GLSL ES 3.00 spec
5074 * says:
5075 *
5076 * "If an instance name (instance-name) is used, then it puts all the
5077 * members inside a scope within its own name space, accessed with the
5078 * field selector ( . ) operator (analogously to structures)."
5079 */
5080 if (this->instance_name) {
5081 if (redeclaring_per_vertex) {
5082 /* When a built-in in an unnamed interface block is redeclared,
5083 * get_variable_being_redeclared() calls
5084 * check_builtin_array_max_size() to make sure that built-in array
5085 * variables aren't redeclared to illegal sizes. But we're looking
5086 * at a redeclaration of a named built-in interface block. So we
5087 * have to manually call check_builtin_array_max_size() for all parts
5088 * of the interface that are arrays.
5089 */
5090 for (unsigned i = 0; i < num_variables; i++) {
5091 if (fields[i].type->is_array()) {
5092 const unsigned size = fields[i].type->array_size();
5093 check_builtin_array_max_size(fields[i].name, size, loc, state);
5094 }
5095 }
5096 } else {
5097 validate_identifier(this->instance_name, loc, state);
5098 }
5099
5100 ir_variable *var;
5101
5102 if (this->array_specifier != NULL) {
5103 /* Section 4.3.7 (Interface Blocks) of the GLSL 1.50 spec says:
5104 *
5105 * For uniform blocks declared an array, each individual array
5106 * element corresponds to a separate buffer object backing one
5107 * instance of the block. As the array size indicates the number
5108 * of buffer objects needed, uniform block array declarations
5109 * must specify an array size.
5110 *
5111 * And a few paragraphs later:
5112 *
5113 * Geometry shader input blocks must be declared as arrays and
5114 * follow the array declaration and linking rules for all
5115 * geometry shader inputs. All other input and output block
5116 * arrays must specify an array size.
5117 *
5118 * The upshot of this is that the only circumstance where an
5119 * interface array size *doesn't* need to be specified is on a
5120 * geometry shader input.
5121 */
5122 if (this->array_specifier->is_unsized_array &&
5123 (state->stage != MESA_SHADER_GEOMETRY || !this->layout.flags.q.in)) {
5124 _mesa_glsl_error(&loc, state,
5125 "only geometry shader inputs may be unsized "
5126 "instance block arrays");
5127
5128 }
5129
5130 const glsl_type *block_array_type =
5131 process_array_type(&loc, block_type, this->array_specifier, state);
5132
5133 var = new(state) ir_variable(block_array_type,
5134 this->instance_name,
5135 var_mode);
5136 } else {
5137 var = new(state) ir_variable(block_type,
5138 this->instance_name,
5139 var_mode);
5140 }
5141
5142 if (state->stage == MESA_SHADER_GEOMETRY && var_mode == ir_var_shader_in)
5143 handle_geometry_shader_input_decl(state, loc, var);
5144
5145 if (ir_variable *earlier =
5146 state->symbols->get_variable(this->instance_name)) {
5147 if (!redeclaring_per_vertex) {
5148 _mesa_glsl_error(&loc, state, "`%s' redeclared",
5149 this->instance_name);
5150 }
5151 earlier->data.how_declared = ir_var_declared_normally;
5152 earlier->type = var->type;
5153 earlier->reinit_interface_type(block_type);
5154 delete var;
5155 } else {
5156 state->symbols->add_variable(var);
5157 instructions->push_tail(var);
5158 }
5159 } else {
5160 /* In order to have an array size, the block must also be declared with
5161 * an instane name.
5162 */
5163 assert(this->array_specifier == NULL);
5164
5165 for (unsigned i = 0; i < num_variables; i++) {
5166 ir_variable *var =
5167 new(state) ir_variable(fields[i].type,
5168 ralloc_strdup(state, fields[i].name),
5169 var_mode);
5170 var->data.interpolation = fields[i].interpolation;
5171 var->data.centroid = fields[i].centroid;
5172 var->data.sample = fields[i].sample;
5173 var->init_interface_type(block_type);
5174
5175 if (redeclaring_per_vertex) {
5176 ir_variable *earlier =
5177 get_variable_being_redeclared(var, loc, state,
5178 true /* allow_all_redeclarations */);
5179 if (strncmp(var->name, "gl_", 3) != 0 || earlier == NULL) {
5180 _mesa_glsl_error(&loc, state,
5181 "redeclaration of gl_PerVertex can only "
5182 "include built-in variables");
5183 } else if (earlier->data.how_declared == ir_var_declared_normally) {
5184 _mesa_glsl_error(&loc, state,
5185 "`%s' has already been redeclared", var->name);
5186 } else {
5187 earlier->data.how_declared = ir_var_declared_in_block;
5188 earlier->reinit_interface_type(block_type);
5189 }
5190 continue;
5191 }
5192
5193 if (state->symbols->get_variable(var->name) != NULL)
5194 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
5195
5196 /* Propagate the "binding" keyword into this UBO's fields;
5197 * the UBO declaration itself doesn't get an ir_variable unless it
5198 * has an instance name. This is ugly.
5199 */
5200 var->data.explicit_binding = this->layout.flags.q.explicit_binding;
5201 var->data.binding = this->layout.binding;
5202
5203 state->symbols->add_variable(var);
5204 instructions->push_tail(var);
5205 }
5206
5207 if (redeclaring_per_vertex && block_type != earlier_per_vertex) {
5208 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10 spec:
5209 *
5210 * It is also a compilation error ... to redeclare a built-in
5211 * block and then use a member from that built-in block that was
5212 * not included in the redeclaration.
5213 *
5214 * This appears to be a clarification to the behaviour established
5215 * for gl_PerVertex by GLSL 1.50, therefore we implement this
5216 * behaviour regardless of GLSL version.
5217 *
5218 * To prevent the shader from using a member that was not included in
5219 * the redeclaration, we disable any ir_variables that are still
5220 * associated with the old declaration of gl_PerVertex (since we've
5221 * already updated all of the variables contained in the new
5222 * gl_PerVertex to point to it).
5223 *
5224 * As a side effect this will prevent
5225 * validate_intrastage_interface_blocks() from getting confused and
5226 * thinking there are conflicting definitions of gl_PerVertex in the
5227 * shader.
5228 */
5229 foreach_list_safe(node, instructions) {
5230 ir_variable *const var = ((ir_instruction *) node)->as_variable();
5231 if (var != NULL &&
5232 var->get_interface_type() == earlier_per_vertex &&
5233 var->data.mode == var_mode) {
5234 if (var->data.how_declared == ir_var_declared_normally) {
5235 _mesa_glsl_error(&loc, state,
5236 "redeclaration of gl_PerVertex cannot "
5237 "follow a redeclaration of `%s'",
5238 var->name);
5239 }
5240 state->symbols->disable_variable(var->name);
5241 var->remove();
5242 }
5243 }
5244 }
5245 }
5246
5247 return NULL;
5248 }
5249
5250
5251 ir_rvalue *
5252 ast_gs_input_layout::hir(exec_list *instructions,
5253 struct _mesa_glsl_parse_state *state)
5254 {
5255 YYLTYPE loc = this->get_location();
5256
5257 /* If any geometry input layout declaration preceded this one, make sure it
5258 * was consistent with this one.
5259 */
5260 if (state->gs_input_prim_type_specified &&
5261 state->gs_input_prim_type != this->prim_type) {
5262 _mesa_glsl_error(&loc, state,
5263 "geometry shader input layout does not match"
5264 " previous declaration");
5265 return NULL;
5266 }
5267
5268 /* If any shader inputs occurred before this declaration and specified an
5269 * array size, make sure the size they specified is consistent with the
5270 * primitive type.
5271 */
5272 unsigned num_vertices = vertices_per_prim(this->prim_type);
5273 if (state->gs_input_size != 0 && state->gs_input_size != num_vertices) {
5274 _mesa_glsl_error(&loc, state,
5275 "this geometry shader input layout implies %u vertices"
5276 " per primitive, but a previous input is declared"
5277 " with size %u", num_vertices, state->gs_input_size);
5278 return NULL;
5279 }
5280
5281 state->gs_input_prim_type_specified = true;
5282 state->gs_input_prim_type = this->prim_type;
5283
5284 /* If any shader inputs occurred before this declaration and did not
5285 * specify an array size, their size is determined now.
5286 */
5287 foreach_list (node, instructions) {
5288 ir_variable *var = ((ir_instruction *) node)->as_variable();
5289 if (var == NULL || var->data.mode != ir_var_shader_in)
5290 continue;
5291
5292 /* Note: gl_PrimitiveIDIn has mode ir_var_shader_in, but it's not an
5293 * array; skip it.
5294 */
5295
5296 if (var->type->is_unsized_array()) {
5297 if (var->data.max_array_access >= num_vertices) {
5298 _mesa_glsl_error(&loc, state,
5299 "this geometry shader input layout implies %u"
5300 " vertices, but an access to element %u of input"
5301 " `%s' already exists", num_vertices,
5302 var->data.max_array_access, var->name);
5303 } else {
5304 var->type = glsl_type::get_array_instance(var->type->fields.array,
5305 num_vertices);
5306 }
5307 }
5308 }
5309
5310 return NULL;
5311 }
5312
5313
5314 ir_rvalue *
5315 ast_cs_input_layout::hir(exec_list *instructions,
5316 struct _mesa_glsl_parse_state *state)
5317 {
5318 YYLTYPE loc = this->get_location();
5319
5320 /* If any compute input layout declaration preceded this one, make sure it
5321 * was consistent with this one.
5322 */
5323 if (state->cs_input_local_size_specified) {
5324 for (int i = 0; i < 3; i++) {
5325 if (state->cs_input_local_size[i] != this->local_size[i]) {
5326 _mesa_glsl_error(&loc, state,
5327 "compute shader input layout does not match"
5328 " previous declaration");
5329 return NULL;
5330 }
5331 }
5332 }
5333
5334 /* From the ARB_compute_shader specification:
5335 *
5336 * If the local size of the shader in any dimension is greater
5337 * than the maximum size supported by the implementation for that
5338 * dimension, a compile-time error results.
5339 *
5340 * It is not clear from the spec how the error should be reported if
5341 * the total size of the work group exceeds
5342 * MAX_COMPUTE_WORK_GROUP_INVOCATIONS, but it seems reasonable to
5343 * report it at compile time as well.
5344 */
5345 GLuint64 total_invocations = 1;
5346 for (int i = 0; i < 3; i++) {
5347 if (this->local_size[i] > state->ctx->Const.MaxComputeWorkGroupSize[i]) {
5348 _mesa_glsl_error(&loc, state,
5349 "local_size_%c exceeds MAX_COMPUTE_WORK_GROUP_SIZE"
5350 " (%d)", 'x' + i,
5351 state->ctx->Const.MaxComputeWorkGroupSize[i]);
5352 break;
5353 }
5354 total_invocations *= this->local_size[i];
5355 if (total_invocations >
5356 state->ctx->Const.MaxComputeWorkGroupInvocations) {
5357 _mesa_glsl_error(&loc, state,
5358 "product of local_sizes exceeds "
5359 "MAX_COMPUTE_WORK_GROUP_INVOCATIONS (%d)",
5360 state->ctx->Const.MaxComputeWorkGroupInvocations);
5361 break;
5362 }
5363 }
5364
5365 state->cs_input_local_size_specified = true;
5366 for (int i = 0; i < 3; i++)
5367 state->cs_input_local_size[i] = this->local_size[i];
5368
5369 /* We may now declare the built-in constant gl_WorkGroupSize (see
5370 * builtin_variable_generator::generate_constants() for why we didn't
5371 * declare it earlier).
5372 */
5373 ir_variable *var = new(state->symbols)
5374 ir_variable(glsl_type::ivec3_type, "gl_WorkGroupSize", ir_var_auto);
5375 var->data.how_declared = ir_var_declared_implicitly;
5376 var->data.read_only = true;
5377 instructions->push_tail(var);
5378 state->symbols->add_variable(var);
5379 ir_constant_data data;
5380 memset(&data, 0, sizeof(data));
5381 for (int i = 0; i < 3; i++)
5382 data.i[i] = this->local_size[i];
5383 var->constant_value = new(var) ir_constant(glsl_type::ivec3_type, &data);
5384 var->constant_initializer =
5385 new(var) ir_constant(glsl_type::ivec3_type, &data);
5386 var->data.has_initializer = true;
5387
5388 return NULL;
5389 }
5390
5391
5392 static void
5393 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
5394 exec_list *instructions)
5395 {
5396 bool gl_FragColor_assigned = false;
5397 bool gl_FragData_assigned = false;
5398 bool user_defined_fs_output_assigned = false;
5399 ir_variable *user_defined_fs_output = NULL;
5400
5401 /* It would be nice to have proper location information. */
5402 YYLTYPE loc;
5403 memset(&loc, 0, sizeof(loc));
5404
5405 foreach_list(node, instructions) {
5406 ir_variable *var = ((ir_instruction *)node)->as_variable();
5407
5408 if (!var || !var->data.assigned)
5409 continue;
5410
5411 if (strcmp(var->name, "gl_FragColor") == 0)
5412 gl_FragColor_assigned = true;
5413 else if (strcmp(var->name, "gl_FragData") == 0)
5414 gl_FragData_assigned = true;
5415 else if (strncmp(var->name, "gl_", 3) != 0) {
5416 if (state->stage == MESA_SHADER_FRAGMENT &&
5417 var->data.mode == ir_var_shader_out) {
5418 user_defined_fs_output_assigned = true;
5419 user_defined_fs_output = var;
5420 }
5421 }
5422 }
5423
5424 /* From the GLSL 1.30 spec:
5425 *
5426 * "If a shader statically assigns a value to gl_FragColor, it
5427 * may not assign a value to any element of gl_FragData. If a
5428 * shader statically writes a value to any element of
5429 * gl_FragData, it may not assign a value to
5430 * gl_FragColor. That is, a shader may assign values to either
5431 * gl_FragColor or gl_FragData, but not both. Multiple shaders
5432 * linked together must also consistently write just one of
5433 * these variables. Similarly, if user declared output
5434 * variables are in use (statically assigned to), then the
5435 * built-in variables gl_FragColor and gl_FragData may not be
5436 * assigned to. These incorrect usages all generate compile
5437 * time errors."
5438 */
5439 if (gl_FragColor_assigned && gl_FragData_assigned) {
5440 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
5441 "`gl_FragColor' and `gl_FragData'");
5442 } else if (gl_FragColor_assigned && user_defined_fs_output_assigned) {
5443 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
5444 "`gl_FragColor' and `%s'",
5445 user_defined_fs_output->name);
5446 } else if (gl_FragData_assigned && user_defined_fs_output_assigned) {
5447 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
5448 "`gl_FragData' and `%s'",
5449 user_defined_fs_output->name);
5450 }
5451 }
5452
5453
5454 static void
5455 remove_per_vertex_blocks(exec_list *instructions,
5456 _mesa_glsl_parse_state *state, ir_variable_mode mode)
5457 {
5458 /* Find the gl_PerVertex interface block of the appropriate (in/out) mode,
5459 * if it exists in this shader type.
5460 */
5461 const glsl_type *per_vertex = NULL;
5462 switch (mode) {
5463 case ir_var_shader_in:
5464 if (ir_variable *gl_in = state->symbols->get_variable("gl_in"))
5465 per_vertex = gl_in->get_interface_type();
5466 break;
5467 case ir_var_shader_out:
5468 if (ir_variable *gl_Position =
5469 state->symbols->get_variable("gl_Position")) {
5470 per_vertex = gl_Position->get_interface_type();
5471 }
5472 break;
5473 default:
5474 assert(!"Unexpected mode");
5475 break;
5476 }
5477
5478 /* If we didn't find a built-in gl_PerVertex interface block, then we don't
5479 * need to do anything.
5480 */
5481 if (per_vertex == NULL)
5482 return;
5483
5484 /* If the interface block is used by the shader, then we don't need to do
5485 * anything.
5486 */
5487 interface_block_usage_visitor v(mode, per_vertex);
5488 v.run(instructions);
5489 if (v.usage_found())
5490 return;
5491
5492 /* Remove any ir_variable declarations that refer to the interface block
5493 * we're removing.
5494 */
5495 foreach_list_safe(node, instructions) {
5496 ir_variable *const var = ((ir_instruction *) node)->as_variable();
5497 if (var != NULL && var->get_interface_type() == per_vertex &&
5498 var->data.mode == mode) {
5499 state->symbols->disable_variable(var->name);
5500 var->remove();
5501 }
5502 }
5503 }