glsl: Factor out code which emits a new function into the IR stream.
[mesa.git] / src / glsl / ast_to_hir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file ast_to_hir.c
26 * Convert abstract syntax to to high-level intermediate reprensentation (HIR).
27 *
28 * During the conversion to HIR, the majority of the symantic checking is
29 * preformed on the program. This includes:
30 *
31 * * Symbol table management
32 * * Type checking
33 * * Function binding
34 *
35 * The majority of this work could be done during parsing, and the parser could
36 * probably generate HIR directly. However, this results in frequent changes
37 * to the parser code. Since we do not assume that every system this complier
38 * is built on will have Flex and Bison installed, we have to store the code
39 * generated by these tools in our version control system. In other parts of
40 * the system we've seen problems where a parser was changed but the generated
41 * code was not committed, merge conflicts where created because two developers
42 * had slightly different versions of Bison installed, etc.
43 *
44 * I have also noticed that running Bison generated parsers in GDB is very
45 * irritating. When you get a segfault on '$$ = $1->foo', you can't very
46 * well 'print $1' in GDB.
47 *
48 * As a result, my preference is to put as little C code as possible in the
49 * parser (and lexer) sources.
50 */
51
52 #include "main/core.h" /* for struct gl_extensions */
53 #include "glsl_symbol_table.h"
54 #include "glsl_parser_extras.h"
55 #include "ast.h"
56 #include "glsl_types.h"
57 #include "ir.h"
58
59 void
60 _mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
61 {
62 _mesa_glsl_initialize_variables(instructions, state);
63 _mesa_glsl_initialize_functions(instructions, state);
64
65 state->symbols->language_version = state->language_version;
66
67 state->current_function = NULL;
68
69 /* Section 4.2 of the GLSL 1.20 specification states:
70 * "The built-in functions are scoped in a scope outside the global scope
71 * users declare global variables in. That is, a shader's global scope,
72 * available for user-defined functions and global variables, is nested
73 * inside the scope containing the built-in functions."
74 *
75 * Since built-in functions like ftransform() access built-in variables,
76 * it follows that those must be in the outer scope as well.
77 *
78 * We push scope here to create this nesting effect...but don't pop.
79 * This way, a shader's globals are still in the symbol table for use
80 * by the linker.
81 */
82 state->symbols->push_scope();
83
84 foreach_list_typed (ast_node, ast, link, & state->translation_unit)
85 ast->hir(instructions, state);
86 }
87
88
89 /**
90 * If a conversion is available, convert one operand to a different type
91 *
92 * The \c from \c ir_rvalue is converted "in place".
93 *
94 * \param to Type that the operand it to be converted to
95 * \param from Operand that is being converted
96 * \param state GLSL compiler state
97 *
98 * \return
99 * If a conversion is possible (or unnecessary), \c true is returned.
100 * Otherwise \c false is returned.
101 */
102 bool
103 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
104 struct _mesa_glsl_parse_state *state)
105 {
106 void *ctx = state;
107 if (to->base_type == from->type->base_type)
108 return true;
109
110 /* This conversion was added in GLSL 1.20. If the compilation mode is
111 * GLSL 1.10, the conversion is skipped.
112 */
113 if (state->language_version < 120)
114 return false;
115
116 /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
117 *
118 * "There are no implicit array or structure conversions. For
119 * example, an array of int cannot be implicitly converted to an
120 * array of float. There are no implicit conversions between
121 * signed and unsigned integers."
122 */
123 /* FINISHME: The above comment is partially a lie. There is int/uint
124 * FINISHME: conversion for immediate constants.
125 */
126 if (!to->is_float() || !from->type->is_numeric())
127 return false;
128
129 /* Convert to a floating point type with the same number of components
130 * as the original type - i.e. int to float, not int to vec4.
131 */
132 to = glsl_type::get_instance(GLSL_TYPE_FLOAT, from->type->vector_elements,
133 from->type->matrix_columns);
134
135 switch (from->type->base_type) {
136 case GLSL_TYPE_INT:
137 from = new(ctx) ir_expression(ir_unop_i2f, to, from, NULL);
138 break;
139 case GLSL_TYPE_UINT:
140 from = new(ctx) ir_expression(ir_unop_u2f, to, from, NULL);
141 break;
142 case GLSL_TYPE_BOOL:
143 from = new(ctx) ir_expression(ir_unop_b2f, to, from, NULL);
144 break;
145 default:
146 assert(0);
147 }
148
149 return true;
150 }
151
152
153 static const struct glsl_type *
154 arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
155 bool multiply,
156 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
157 {
158 const glsl_type *type_a = value_a->type;
159 const glsl_type *type_b = value_b->type;
160
161 /* From GLSL 1.50 spec, page 56:
162 *
163 * "The arithmetic binary operators add (+), subtract (-),
164 * multiply (*), and divide (/) operate on integer and
165 * floating-point scalars, vectors, and matrices."
166 */
167 if (!type_a->is_numeric() || !type_b->is_numeric()) {
168 _mesa_glsl_error(loc, state,
169 "Operands to arithmetic operators must be numeric");
170 return glsl_type::error_type;
171 }
172
173
174 /* "If one operand is floating-point based and the other is
175 * not, then the conversions from Section 4.1.10 "Implicit
176 * Conversions" are applied to the non-floating-point-based operand."
177 */
178 if (!apply_implicit_conversion(type_a, value_b, state)
179 && !apply_implicit_conversion(type_b, value_a, state)) {
180 _mesa_glsl_error(loc, state,
181 "Could not implicitly convert operands to "
182 "arithmetic operator");
183 return glsl_type::error_type;
184 }
185 type_a = value_a->type;
186 type_b = value_b->type;
187
188 /* "If the operands are integer types, they must both be signed or
189 * both be unsigned."
190 *
191 * From this rule and the preceeding conversion it can be inferred that
192 * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
193 * The is_numeric check above already filtered out the case where either
194 * type is not one of these, so now the base types need only be tested for
195 * equality.
196 */
197 if (type_a->base_type != type_b->base_type) {
198 _mesa_glsl_error(loc, state,
199 "base type mismatch for arithmetic operator");
200 return glsl_type::error_type;
201 }
202
203 /* "All arithmetic binary operators result in the same fundamental type
204 * (signed integer, unsigned integer, or floating-point) as the
205 * operands they operate on, after operand type conversion. After
206 * conversion, the following cases are valid
207 *
208 * * The two operands are scalars. In this case the operation is
209 * applied, resulting in a scalar."
210 */
211 if (type_a->is_scalar() && type_b->is_scalar())
212 return type_a;
213
214 /* "* One operand is a scalar, and the other is a vector or matrix.
215 * In this case, the scalar operation is applied independently to each
216 * component of the vector or matrix, resulting in the same size
217 * vector or matrix."
218 */
219 if (type_a->is_scalar()) {
220 if (!type_b->is_scalar())
221 return type_b;
222 } else if (type_b->is_scalar()) {
223 return type_a;
224 }
225
226 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
227 * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
228 * handled.
229 */
230 assert(!type_a->is_scalar());
231 assert(!type_b->is_scalar());
232
233 /* "* The two operands are vectors of the same size. In this case, the
234 * operation is done component-wise resulting in the same size
235 * vector."
236 */
237 if (type_a->is_vector() && type_b->is_vector()) {
238 if (type_a == type_b) {
239 return type_a;
240 } else {
241 _mesa_glsl_error(loc, state,
242 "vector size mismatch for arithmetic operator");
243 return glsl_type::error_type;
244 }
245 }
246
247 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
248 * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
249 * <vector, vector> have been handled. At least one of the operands must
250 * be matrix. Further, since there are no integer matrix types, the base
251 * type of both operands must be float.
252 */
253 assert(type_a->is_matrix() || type_b->is_matrix());
254 assert(type_a->base_type == GLSL_TYPE_FLOAT);
255 assert(type_b->base_type == GLSL_TYPE_FLOAT);
256
257 /* "* The operator is add (+), subtract (-), or divide (/), and the
258 * operands are matrices with the same number of rows and the same
259 * number of columns. In this case, the operation is done component-
260 * wise resulting in the same size matrix."
261 * * The operator is multiply (*), where both operands are matrices or
262 * one operand is a vector and the other a matrix. A right vector
263 * operand is treated as a column vector and a left vector operand as a
264 * row vector. In all these cases, it is required that the number of
265 * columns of the left operand is equal to the number of rows of the
266 * right operand. Then, the multiply (*) operation does a linear
267 * algebraic multiply, yielding an object that has the same number of
268 * rows as the left operand and the same number of columns as the right
269 * operand. Section 5.10 "Vector and Matrix Operations" explains in
270 * more detail how vectors and matrices are operated on."
271 */
272 if (! multiply) {
273 if (type_a == type_b)
274 return type_a;
275 } else {
276 if (type_a->is_matrix() && type_b->is_matrix()) {
277 /* Matrix multiply. The columns of A must match the rows of B. Given
278 * the other previously tested constraints, this means the vector type
279 * of a row from A must be the same as the vector type of a column from
280 * B.
281 */
282 if (type_a->row_type() == type_b->column_type()) {
283 /* The resulting matrix has the number of columns of matrix B and
284 * the number of rows of matrix A. We get the row count of A by
285 * looking at the size of a vector that makes up a column. The
286 * transpose (size of a row) is done for B.
287 */
288 const glsl_type *const type =
289 glsl_type::get_instance(type_a->base_type,
290 type_a->column_type()->vector_elements,
291 type_b->row_type()->vector_elements);
292 assert(type != glsl_type::error_type);
293
294 return type;
295 }
296 } else if (type_a->is_matrix()) {
297 /* A is a matrix and B is a column vector. Columns of A must match
298 * rows of B. Given the other previously tested constraints, this
299 * means the vector type of a row from A must be the same as the
300 * vector the type of B.
301 */
302 if (type_a->row_type() == type_b) {
303 /* The resulting vector has a number of elements equal to
304 * the number of rows of matrix A. */
305 const glsl_type *const type =
306 glsl_type::get_instance(type_a->base_type,
307 type_a->column_type()->vector_elements,
308 1);
309 assert(type != glsl_type::error_type);
310
311 return type;
312 }
313 } else {
314 assert(type_b->is_matrix());
315
316 /* A is a row vector and B is a matrix. Columns of A must match rows
317 * of B. Given the other previously tested constraints, this means
318 * the type of A must be the same as the vector type of a column from
319 * B.
320 */
321 if (type_a == type_b->column_type()) {
322 /* The resulting vector has a number of elements equal to
323 * the number of columns of matrix B. */
324 const glsl_type *const type =
325 glsl_type::get_instance(type_a->base_type,
326 type_b->row_type()->vector_elements,
327 1);
328 assert(type != glsl_type::error_type);
329
330 return type;
331 }
332 }
333
334 _mesa_glsl_error(loc, state, "size mismatch for matrix multiplication");
335 return glsl_type::error_type;
336 }
337
338
339 /* "All other cases are illegal."
340 */
341 _mesa_glsl_error(loc, state, "type mismatch");
342 return glsl_type::error_type;
343 }
344
345
346 static const struct glsl_type *
347 unary_arithmetic_result_type(const struct glsl_type *type,
348 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
349 {
350 /* From GLSL 1.50 spec, page 57:
351 *
352 * "The arithmetic unary operators negate (-), post- and pre-increment
353 * and decrement (-- and ++) operate on integer or floating-point
354 * values (including vectors and matrices). All unary operators work
355 * component-wise on their operands. These result with the same type
356 * they operated on."
357 */
358 if (!type->is_numeric()) {
359 _mesa_glsl_error(loc, state,
360 "Operands to arithmetic operators must be numeric");
361 return glsl_type::error_type;
362 }
363
364 return type;
365 }
366
367 /**
368 * \brief Return the result type of a bit-logic operation.
369 *
370 * If the given types to the bit-logic operator are invalid, return
371 * glsl_type::error_type.
372 *
373 * \param type_a Type of LHS of bit-logic op
374 * \param type_b Type of RHS of bit-logic op
375 */
376 static const struct glsl_type *
377 bit_logic_result_type(const struct glsl_type *type_a,
378 const struct glsl_type *type_b,
379 ast_operators op,
380 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
381 {
382 if (state->language_version < 130) {
383 _mesa_glsl_error(loc, state, "bit operations require GLSL 1.30");
384 return glsl_type::error_type;
385 }
386
387 /* From page 50 (page 56 of PDF) of GLSL 1.30 spec:
388 *
389 * "The bitwise operators and (&), exclusive-or (^), and inclusive-or
390 * (|). The operands must be of type signed or unsigned integers or
391 * integer vectors."
392 */
393 if (!type_a->is_integer()) {
394 _mesa_glsl_error(loc, state, "LHS of `%s' must be an integer",
395 ast_expression::operator_string(op));
396 return glsl_type::error_type;
397 }
398 if (!type_b->is_integer()) {
399 _mesa_glsl_error(loc, state, "RHS of `%s' must be an integer",
400 ast_expression::operator_string(op));
401 return glsl_type::error_type;
402 }
403
404 /* "The fundamental types of the operands (signed or unsigned) must
405 * match,"
406 */
407 if (type_a->base_type != type_b->base_type) {
408 _mesa_glsl_error(loc, state, "operands of `%s' must have the same "
409 "base type", ast_expression::operator_string(op));
410 return glsl_type::error_type;
411 }
412
413 /* "The operands cannot be vectors of differing size." */
414 if (type_a->is_vector() &&
415 type_b->is_vector() &&
416 type_a->vector_elements != type_b->vector_elements) {
417 _mesa_glsl_error(loc, state, "operands of `%s' cannot be vectors of "
418 "different sizes", ast_expression::operator_string(op));
419 return glsl_type::error_type;
420 }
421
422 /* "If one operand is a scalar and the other a vector, the scalar is
423 * applied component-wise to the vector, resulting in the same type as
424 * the vector. The fundamental types of the operands [...] will be the
425 * resulting fundamental type."
426 */
427 if (type_a->is_scalar())
428 return type_b;
429 else
430 return type_a;
431 }
432
433 static const struct glsl_type *
434 modulus_result_type(const struct glsl_type *type_a,
435 const struct glsl_type *type_b,
436 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
437 {
438 /* From GLSL 1.50 spec, page 56:
439 * "The operator modulus (%) operates on signed or unsigned integers or
440 * integer vectors. The operand types must both be signed or both be
441 * unsigned."
442 */
443 if (!type_a->is_integer() || !type_b->is_integer()
444 || (type_a->base_type != type_b->base_type)) {
445 _mesa_glsl_error(loc, state, "type mismatch");
446 return glsl_type::error_type;
447 }
448
449 /* "The operands cannot be vectors of differing size. If one operand is
450 * a scalar and the other vector, then the scalar is applied component-
451 * wise to the vector, resulting in the same type as the vector. If both
452 * are vectors of the same size, the result is computed component-wise."
453 */
454 if (type_a->is_vector()) {
455 if (!type_b->is_vector()
456 || (type_a->vector_elements == type_b->vector_elements))
457 return type_a;
458 } else
459 return type_b;
460
461 /* "The operator modulus (%) is not defined for any other data types
462 * (non-integer types)."
463 */
464 _mesa_glsl_error(loc, state, "type mismatch");
465 return glsl_type::error_type;
466 }
467
468
469 static const struct glsl_type *
470 relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
471 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
472 {
473 const glsl_type *type_a = value_a->type;
474 const glsl_type *type_b = value_b->type;
475
476 /* From GLSL 1.50 spec, page 56:
477 * "The relational operators greater than (>), less than (<), greater
478 * than or equal (>=), and less than or equal (<=) operate only on
479 * scalar integer and scalar floating-point expressions."
480 */
481 if (!type_a->is_numeric()
482 || !type_b->is_numeric()
483 || !type_a->is_scalar()
484 || !type_b->is_scalar()) {
485 _mesa_glsl_error(loc, state,
486 "Operands to relational operators must be scalar and "
487 "numeric");
488 return glsl_type::error_type;
489 }
490
491 /* "Either the operands' types must match, or the conversions from
492 * Section 4.1.10 "Implicit Conversions" will be applied to the integer
493 * operand, after which the types must match."
494 */
495 if (!apply_implicit_conversion(type_a, value_b, state)
496 && !apply_implicit_conversion(type_b, value_a, state)) {
497 _mesa_glsl_error(loc, state,
498 "Could not implicitly convert operands to "
499 "relational operator");
500 return glsl_type::error_type;
501 }
502 type_a = value_a->type;
503 type_b = value_b->type;
504
505 if (type_a->base_type != type_b->base_type) {
506 _mesa_glsl_error(loc, state, "base type mismatch");
507 return glsl_type::error_type;
508 }
509
510 /* "The result is scalar Boolean."
511 */
512 return glsl_type::bool_type;
513 }
514
515 /**
516 * \brief Return the result type of a bit-shift operation.
517 *
518 * If the given types to the bit-shift operator are invalid, return
519 * glsl_type::error_type.
520 *
521 * \param type_a Type of LHS of bit-shift op
522 * \param type_b Type of RHS of bit-shift op
523 */
524 static const struct glsl_type *
525 shift_result_type(const struct glsl_type *type_a,
526 const struct glsl_type *type_b,
527 ast_operators op,
528 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
529 {
530 if (state->language_version < 130) {
531 _mesa_glsl_error(loc, state, "bit operations require GLSL 1.30");
532 return glsl_type::error_type;
533 }
534
535 /* From page 50 (page 56 of the PDF) of the GLSL 1.30 spec:
536 *
537 * "The shift operators (<<) and (>>). For both operators, the operands
538 * must be signed or unsigned integers or integer vectors. One operand
539 * can be signed while the other is unsigned."
540 */
541 if (!type_a->is_integer()) {
542 _mesa_glsl_error(loc, state, "LHS of operator %s must be an integer or "
543 "integer vector", ast_expression::operator_string(op));
544 return glsl_type::error_type;
545
546 }
547 if (!type_b->is_integer()) {
548 _mesa_glsl_error(loc, state, "RHS of operator %s must be an integer or "
549 "integer vector", ast_expression::operator_string(op));
550 return glsl_type::error_type;
551 }
552
553 /* "If the first operand is a scalar, the second operand has to be
554 * a scalar as well."
555 */
556 if (type_a->is_scalar() && !type_b->is_scalar()) {
557 _mesa_glsl_error(loc, state, "If the first operand of %s is scalar, the "
558 "second must be scalar as well",
559 ast_expression::operator_string(op));
560 return glsl_type::error_type;
561 }
562
563 /* If both operands are vectors, check that they have same number of
564 * elements.
565 */
566 if (type_a->is_vector() &&
567 type_b->is_vector() &&
568 type_a->vector_elements != type_b->vector_elements) {
569 _mesa_glsl_error(loc, state, "Vector operands to operator %s must "
570 "have same number of elements",
571 ast_expression::operator_string(op));
572 return glsl_type::error_type;
573 }
574
575 /* "In all cases, the resulting type will be the same type as the left
576 * operand."
577 */
578 return type_a;
579 }
580
581 /**
582 * Validates that a value can be assigned to a location with a specified type
583 *
584 * Validates that \c rhs can be assigned to some location. If the types are
585 * not an exact match but an automatic conversion is possible, \c rhs will be
586 * converted.
587 *
588 * \return
589 * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
590 * Otherwise the actual RHS to be assigned will be returned. This may be
591 * \c rhs, or it may be \c rhs after some type conversion.
592 *
593 * \note
594 * In addition to being used for assignments, this function is used to
595 * type-check return values.
596 */
597 ir_rvalue *
598 validate_assignment(struct _mesa_glsl_parse_state *state,
599 const glsl_type *lhs_type, ir_rvalue *rhs)
600 {
601 const glsl_type *rhs_type = rhs->type;
602
603 /* If there is already some error in the RHS, just return it. Anything
604 * else will lead to an avalanche of error message back to the user.
605 */
606 if (rhs_type->is_error())
607 return rhs;
608
609 /* If the types are identical, the assignment can trivially proceed.
610 */
611 if (rhs_type == lhs_type)
612 return rhs;
613
614 /* If the array element types are the same and the size of the LHS is zero,
615 * the assignment is okay.
616 *
617 * Note: Whole-array assignments are not permitted in GLSL 1.10, but this
618 * is handled by ir_dereference::is_lvalue.
619 */
620 if (lhs_type->is_array() && rhs->type->is_array()
621 && (lhs_type->element_type() == rhs->type->element_type())
622 && (lhs_type->array_size() == 0)) {
623 return rhs;
624 }
625
626 /* Check for implicit conversion in GLSL 1.20 */
627 if (apply_implicit_conversion(lhs_type, rhs, state)) {
628 rhs_type = rhs->type;
629 if (rhs_type == lhs_type)
630 return rhs;
631 }
632
633 return NULL;
634 }
635
636 ir_rvalue *
637 do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state,
638 ir_rvalue *lhs, ir_rvalue *rhs,
639 YYLTYPE lhs_loc)
640 {
641 void *ctx = state;
642 bool error_emitted = (lhs->type->is_error() || rhs->type->is_error());
643
644 if (!error_emitted) {
645 if (!lhs->is_lvalue()) {
646 _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment");
647 error_emitted = true;
648 }
649
650 if (state->es_shader && lhs->type->is_array()) {
651 _mesa_glsl_error(&lhs_loc, state, "whole array assignment is not "
652 "allowed in GLSL ES 1.00.");
653 error_emitted = true;
654 }
655 }
656
657 ir_rvalue *new_rhs = validate_assignment(state, lhs->type, rhs);
658 if (new_rhs == NULL) {
659 _mesa_glsl_error(& lhs_loc, state, "type mismatch");
660 } else {
661 rhs = new_rhs;
662
663 /* If the LHS array was not declared with a size, it takes it size from
664 * the RHS. If the LHS is an l-value and a whole array, it must be a
665 * dereference of a variable. Any other case would require that the LHS
666 * is either not an l-value or not a whole array.
667 */
668 if (lhs->type->array_size() == 0) {
669 ir_dereference *const d = lhs->as_dereference();
670
671 assert(d != NULL);
672
673 ir_variable *const var = d->variable_referenced();
674
675 assert(var != NULL);
676
677 if (var->max_array_access >= unsigned(rhs->type->array_size())) {
678 /* FINISHME: This should actually log the location of the RHS. */
679 _mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to "
680 "previous access",
681 var->max_array_access);
682 }
683
684 var->type = glsl_type::get_array_instance(lhs->type->element_type(),
685 rhs->type->array_size());
686 d->type = var->type;
687 }
688 }
689
690 /* Most callers of do_assignment (assign, add_assign, pre_inc/dec,
691 * but not post_inc) need the converted assigned value as an rvalue
692 * to handle things like:
693 *
694 * i = j += 1;
695 *
696 * So we always just store the computed value being assigned to a
697 * temporary and return a deref of that temporary. If the rvalue
698 * ends up not being used, the temp will get copy-propagated out.
699 */
700 ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp",
701 ir_var_temporary);
702 ir_dereference_variable *deref_var = new(ctx) ir_dereference_variable(var);
703 instructions->push_tail(var);
704 instructions->push_tail(new(ctx) ir_assignment(deref_var,
705 rhs,
706 NULL));
707 deref_var = new(ctx) ir_dereference_variable(var);
708
709 if (!error_emitted)
710 instructions->push_tail(new(ctx) ir_assignment(lhs, deref_var, NULL));
711
712 return new(ctx) ir_dereference_variable(var);
713 }
714
715 static ir_rvalue *
716 get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue)
717 {
718 void *ctx = talloc_parent(lvalue);
719 ir_variable *var;
720
721 var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp",
722 ir_var_temporary);
723 instructions->push_tail(var);
724 var->mode = ir_var_auto;
725
726 instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
727 lvalue, NULL));
728
729 /* Once we've created this temporary, mark it read only so it's no
730 * longer considered an lvalue.
731 */
732 var->read_only = true;
733
734 return new(ctx) ir_dereference_variable(var);
735 }
736
737
738 ir_rvalue *
739 ast_node::hir(exec_list *instructions,
740 struct _mesa_glsl_parse_state *state)
741 {
742 (void) instructions;
743 (void) state;
744
745 return NULL;
746 }
747
748 static void
749 mark_whole_array_access(ir_rvalue *access)
750 {
751 ir_dereference_variable *deref = access->as_dereference_variable();
752
753 if (deref) {
754 deref->var->max_array_access = deref->type->length - 1;
755 }
756 }
757
758 static ir_rvalue *
759 do_comparison(void *mem_ctx, int operation, ir_rvalue *op0, ir_rvalue *op1)
760 {
761 int join_op;
762
763 if (operation == ir_binop_all_equal)
764 join_op = ir_binop_logic_and;
765 else
766 join_op = ir_binop_logic_or;
767
768 switch (op0->type->base_type) {
769 case GLSL_TYPE_FLOAT:
770 case GLSL_TYPE_UINT:
771 case GLSL_TYPE_INT:
772 case GLSL_TYPE_BOOL:
773 return new(mem_ctx) ir_expression(operation, op0, op1);
774
775 case GLSL_TYPE_ARRAY: {
776 ir_rvalue *last = NULL;
777
778 for (unsigned int i = 0; i < op0->type->length; i++) {
779 ir_rvalue *e0, *e1, *result;
780
781 e0 = new(mem_ctx) ir_dereference_array(op0->clone(mem_ctx, NULL),
782 new(mem_ctx) ir_constant(i));
783 e1 = new(mem_ctx) ir_dereference_array(op1->clone(mem_ctx, NULL),
784 new(mem_ctx) ir_constant(i));
785 result = do_comparison(mem_ctx, operation, e0, e1);
786
787 if (last) {
788 last = new(mem_ctx) ir_expression(join_op, last, result);
789 } else {
790 last = result;
791 }
792 }
793
794 mark_whole_array_access(op0);
795 mark_whole_array_access(op1);
796
797 return last;
798 }
799
800 case GLSL_TYPE_STRUCT: {
801 ir_rvalue *last = NULL;
802
803 for (unsigned int i = 0; i < op0->type->length; i++) {
804 ir_rvalue *e0, *e1, *result;
805 const char *field_name = op0->type->fields.structure[i].name;
806
807 e0 = new(mem_ctx) ir_dereference_record(op0->clone(mem_ctx, NULL),
808 field_name);
809 e1 = new(mem_ctx) ir_dereference_record(op1->clone(mem_ctx, NULL),
810 field_name);
811 result = do_comparison(mem_ctx, operation, e0, e1);
812
813 if (last) {
814 last = new(mem_ctx) ir_expression(join_op, last, result);
815 } else {
816 last = result;
817 }
818 }
819 return last;
820 }
821
822 case GLSL_TYPE_ERROR:
823 case GLSL_TYPE_VOID:
824 case GLSL_TYPE_SAMPLER:
825 /* I assume a comparison of a struct containing a sampler just
826 * ignores the sampler present in the type.
827 */
828 return new(mem_ctx) ir_constant(true);
829 }
830
831 return NULL;
832 }
833
834 ir_rvalue *
835 ast_expression::hir(exec_list *instructions,
836 struct _mesa_glsl_parse_state *state)
837 {
838 void *ctx = state;
839 static const int operations[AST_NUM_OPERATORS] = {
840 -1, /* ast_assign doesn't convert to ir_expression. */
841 -1, /* ast_plus doesn't convert to ir_expression. */
842 ir_unop_neg,
843 ir_binop_add,
844 ir_binop_sub,
845 ir_binop_mul,
846 ir_binop_div,
847 ir_binop_mod,
848 ir_binop_lshift,
849 ir_binop_rshift,
850 ir_binop_less,
851 ir_binop_greater,
852 ir_binop_lequal,
853 ir_binop_gequal,
854 ir_binop_all_equal,
855 ir_binop_any_nequal,
856 ir_binop_bit_and,
857 ir_binop_bit_xor,
858 ir_binop_bit_or,
859 ir_unop_bit_not,
860 ir_binop_logic_and,
861 ir_binop_logic_xor,
862 ir_binop_logic_or,
863 ir_unop_logic_not,
864
865 /* Note: The following block of expression types actually convert
866 * to multiple IR instructions.
867 */
868 ir_binop_mul, /* ast_mul_assign */
869 ir_binop_div, /* ast_div_assign */
870 ir_binop_mod, /* ast_mod_assign */
871 ir_binop_add, /* ast_add_assign */
872 ir_binop_sub, /* ast_sub_assign */
873 ir_binop_lshift, /* ast_ls_assign */
874 ir_binop_rshift, /* ast_rs_assign */
875 ir_binop_bit_and, /* ast_and_assign */
876 ir_binop_bit_xor, /* ast_xor_assign */
877 ir_binop_bit_or, /* ast_or_assign */
878
879 -1, /* ast_conditional doesn't convert to ir_expression. */
880 ir_binop_add, /* ast_pre_inc. */
881 ir_binop_sub, /* ast_pre_dec. */
882 ir_binop_add, /* ast_post_inc. */
883 ir_binop_sub, /* ast_post_dec. */
884 -1, /* ast_field_selection doesn't conv to ir_expression. */
885 -1, /* ast_array_index doesn't convert to ir_expression. */
886 -1, /* ast_function_call doesn't conv to ir_expression. */
887 -1, /* ast_identifier doesn't convert to ir_expression. */
888 -1, /* ast_int_constant doesn't convert to ir_expression. */
889 -1, /* ast_uint_constant doesn't conv to ir_expression. */
890 -1, /* ast_float_constant doesn't conv to ir_expression. */
891 -1, /* ast_bool_constant doesn't conv to ir_expression. */
892 -1, /* ast_sequence doesn't convert to ir_expression. */
893 };
894 ir_rvalue *result = NULL;
895 ir_rvalue *op[3];
896 const struct glsl_type *type = glsl_type::error_type;
897 bool error_emitted = false;
898 YYLTYPE loc;
899
900 loc = this->get_location();
901
902 switch (this->oper) {
903 case ast_assign: {
904 op[0] = this->subexpressions[0]->hir(instructions, state);
905 op[1] = this->subexpressions[1]->hir(instructions, state);
906
907 result = do_assignment(instructions, state, op[0], op[1],
908 this->subexpressions[0]->get_location());
909 error_emitted = result->type->is_error();
910 type = result->type;
911 break;
912 }
913
914 case ast_plus:
915 op[0] = this->subexpressions[0]->hir(instructions, state);
916
917 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
918
919 error_emitted = type->is_error();
920
921 result = op[0];
922 break;
923
924 case ast_neg:
925 op[0] = this->subexpressions[0]->hir(instructions, state);
926
927 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
928
929 error_emitted = type->is_error();
930
931 result = new(ctx) ir_expression(operations[this->oper], type,
932 op[0], NULL);
933 break;
934
935 case ast_add:
936 case ast_sub:
937 case ast_mul:
938 case ast_div:
939 op[0] = this->subexpressions[0]->hir(instructions, state);
940 op[1] = this->subexpressions[1]->hir(instructions, state);
941
942 type = arithmetic_result_type(op[0], op[1],
943 (this->oper == ast_mul),
944 state, & loc);
945 error_emitted = type->is_error();
946
947 result = new(ctx) ir_expression(operations[this->oper], type,
948 op[0], op[1]);
949 break;
950
951 case ast_mod:
952 op[0] = this->subexpressions[0]->hir(instructions, state);
953 op[1] = this->subexpressions[1]->hir(instructions, state);
954
955 type = modulus_result_type(op[0]->type, op[1]->type, state, & loc);
956
957 assert(operations[this->oper] == ir_binop_mod);
958
959 result = new(ctx) ir_expression(operations[this->oper], type,
960 op[0], op[1]);
961 error_emitted = type->is_error();
962 break;
963
964 case ast_lshift:
965 case ast_rshift:
966 if (state->language_version < 130) {
967 _mesa_glsl_error(&loc, state, "operator %s requires GLSL 1.30",
968 operator_string(this->oper));
969 error_emitted = true;
970 }
971
972 op[0] = this->subexpressions[0]->hir(instructions, state);
973 op[1] = this->subexpressions[1]->hir(instructions, state);
974 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
975 &loc);
976 result = new(ctx) ir_expression(operations[this->oper], type,
977 op[0], op[1]);
978 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
979 break;
980
981 case ast_less:
982 case ast_greater:
983 case ast_lequal:
984 case ast_gequal:
985 op[0] = this->subexpressions[0]->hir(instructions, state);
986 op[1] = this->subexpressions[1]->hir(instructions, state);
987
988 type = relational_result_type(op[0], op[1], state, & loc);
989
990 /* The relational operators must either generate an error or result
991 * in a scalar boolean. See page 57 of the GLSL 1.50 spec.
992 */
993 assert(type->is_error()
994 || ((type->base_type == GLSL_TYPE_BOOL)
995 && type->is_scalar()));
996
997 result = new(ctx) ir_expression(operations[this->oper], type,
998 op[0], op[1]);
999 error_emitted = type->is_error();
1000 break;
1001
1002 case ast_nequal:
1003 case ast_equal:
1004 op[0] = this->subexpressions[0]->hir(instructions, state);
1005 op[1] = this->subexpressions[1]->hir(instructions, state);
1006
1007 /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
1008 *
1009 * "The equality operators equal (==), and not equal (!=)
1010 * operate on all types. They result in a scalar Boolean. If
1011 * the operand types do not match, then there must be a
1012 * conversion from Section 4.1.10 "Implicit Conversions"
1013 * applied to one operand that can make them match, in which
1014 * case this conversion is done."
1015 */
1016 if ((!apply_implicit_conversion(op[0]->type, op[1], state)
1017 && !apply_implicit_conversion(op[1]->type, op[0], state))
1018 || (op[0]->type != op[1]->type)) {
1019 _mesa_glsl_error(& loc, state, "operands of `%s' must have the same "
1020 "type", (this->oper == ast_equal) ? "==" : "!=");
1021 error_emitted = true;
1022 } else if ((state->language_version <= 110)
1023 && (op[0]->type->is_array() || op[1]->type->is_array())) {
1024 _mesa_glsl_error(& loc, state, "array comparisons forbidden in "
1025 "GLSL 1.10");
1026 error_emitted = true;
1027 }
1028
1029 result = do_comparison(ctx, operations[this->oper], op[0], op[1]);
1030 type = glsl_type::bool_type;
1031
1032 assert(result->type == glsl_type::bool_type);
1033 break;
1034
1035 case ast_bit_and:
1036 case ast_bit_xor:
1037 case ast_bit_or:
1038 op[0] = this->subexpressions[0]->hir(instructions, state);
1039 op[1] = this->subexpressions[1]->hir(instructions, state);
1040 type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
1041 state, &loc);
1042 result = new(ctx) ir_expression(operations[this->oper], type,
1043 op[0], op[1]);
1044 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1045 break;
1046
1047 case ast_bit_not:
1048 op[0] = this->subexpressions[0]->hir(instructions, state);
1049
1050 if (state->language_version < 130) {
1051 _mesa_glsl_error(&loc, state, "bit-wise operations require GLSL 1.30");
1052 error_emitted = true;
1053 }
1054
1055 if (!op[0]->type->is_integer()) {
1056 _mesa_glsl_error(&loc, state, "operand of `~' must be an integer");
1057 error_emitted = true;
1058 }
1059
1060 type = op[0]->type;
1061 result = new(ctx) ir_expression(ir_unop_bit_not, type, op[0], NULL);
1062 break;
1063
1064 case ast_logic_and: {
1065 op[0] = this->subexpressions[0]->hir(instructions, state);
1066
1067 if (!op[0]->type->is_boolean() || !op[0]->type->is_scalar()) {
1068 YYLTYPE loc = this->subexpressions[0]->get_location();
1069
1070 _mesa_glsl_error(& loc, state, "LHS of `%s' must be scalar boolean",
1071 operator_string(this->oper));
1072 error_emitted = true;
1073 }
1074
1075 ir_constant *op0_const = op[0]->constant_expression_value();
1076 if (op0_const) {
1077 if (op0_const->value.b[0]) {
1078 op[1] = this->subexpressions[1]->hir(instructions, state);
1079
1080 if (!op[1]->type->is_boolean() || !op[1]->type->is_scalar()) {
1081 YYLTYPE loc = this->subexpressions[1]->get_location();
1082
1083 _mesa_glsl_error(& loc, state,
1084 "RHS of `%s' must be scalar boolean",
1085 operator_string(this->oper));
1086 error_emitted = true;
1087 }
1088 result = op[1];
1089 } else {
1090 result = op0_const;
1091 }
1092 type = glsl_type::bool_type;
1093 } else {
1094 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1095 "and_tmp",
1096 ir_var_temporary);
1097 instructions->push_tail(tmp);
1098
1099 ir_if *const stmt = new(ctx) ir_if(op[0]);
1100 instructions->push_tail(stmt);
1101
1102 op[1] = this->subexpressions[1]->hir(&stmt->then_instructions, state);
1103
1104 if (!op[1]->type->is_boolean() || !op[1]->type->is_scalar()) {
1105 YYLTYPE loc = this->subexpressions[1]->get_location();
1106
1107 _mesa_glsl_error(& loc, state,
1108 "RHS of `%s' must be scalar boolean",
1109 operator_string(this->oper));
1110 error_emitted = true;
1111 }
1112
1113 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1114 ir_assignment *const then_assign =
1115 new(ctx) ir_assignment(then_deref, op[1], NULL);
1116 stmt->then_instructions.push_tail(then_assign);
1117
1118 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1119 ir_assignment *const else_assign =
1120 new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false), NULL);
1121 stmt->else_instructions.push_tail(else_assign);
1122
1123 result = new(ctx) ir_dereference_variable(tmp);
1124 type = tmp->type;
1125 }
1126 break;
1127 }
1128
1129 case ast_logic_or: {
1130 op[0] = this->subexpressions[0]->hir(instructions, state);
1131
1132 if (!op[0]->type->is_boolean() || !op[0]->type->is_scalar()) {
1133 YYLTYPE loc = this->subexpressions[0]->get_location();
1134
1135 _mesa_glsl_error(& loc, state, "LHS of `%s' must be scalar boolean",
1136 operator_string(this->oper));
1137 error_emitted = true;
1138 }
1139
1140 ir_constant *op0_const = op[0]->constant_expression_value();
1141 if (op0_const) {
1142 if (op0_const->value.b[0]) {
1143 result = op0_const;
1144 } else {
1145 op[1] = this->subexpressions[1]->hir(instructions, state);
1146
1147 if (!op[1]->type->is_boolean() || !op[1]->type->is_scalar()) {
1148 YYLTYPE loc = this->subexpressions[1]->get_location();
1149
1150 _mesa_glsl_error(& loc, state,
1151 "RHS of `%s' must be scalar boolean",
1152 operator_string(this->oper));
1153 error_emitted = true;
1154 }
1155 result = op[1];
1156 }
1157 type = glsl_type::bool_type;
1158 } else {
1159 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1160 "or_tmp",
1161 ir_var_temporary);
1162 instructions->push_tail(tmp);
1163
1164 ir_if *const stmt = new(ctx) ir_if(op[0]);
1165 instructions->push_tail(stmt);
1166
1167 op[1] = this->subexpressions[1]->hir(&stmt->else_instructions, state);
1168
1169 if (!op[1]->type->is_boolean() || !op[1]->type->is_scalar()) {
1170 YYLTYPE loc = this->subexpressions[1]->get_location();
1171
1172 _mesa_glsl_error(& loc, state, "RHS of `%s' must be scalar boolean",
1173 operator_string(this->oper));
1174 error_emitted = true;
1175 }
1176
1177 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1178 ir_assignment *const then_assign =
1179 new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true), NULL);
1180 stmt->then_instructions.push_tail(then_assign);
1181
1182 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1183 ir_assignment *const else_assign =
1184 new(ctx) ir_assignment(else_deref, op[1], NULL);
1185 stmt->else_instructions.push_tail(else_assign);
1186
1187 result = new(ctx) ir_dereference_variable(tmp);
1188 type = tmp->type;
1189 }
1190 break;
1191 }
1192
1193 case ast_logic_xor:
1194 op[0] = this->subexpressions[0]->hir(instructions, state);
1195 op[1] = this->subexpressions[1]->hir(instructions, state);
1196
1197
1198 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1199 op[0], op[1]);
1200 type = glsl_type::bool_type;
1201 break;
1202
1203 case ast_logic_not:
1204 op[0] = this->subexpressions[0]->hir(instructions, state);
1205
1206 if (!op[0]->type->is_boolean() || !op[0]->type->is_scalar()) {
1207 YYLTYPE loc = this->subexpressions[0]->get_location();
1208
1209 _mesa_glsl_error(& loc, state,
1210 "operand of `!' must be scalar boolean");
1211 error_emitted = true;
1212 }
1213
1214 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1215 op[0], NULL);
1216 type = glsl_type::bool_type;
1217 break;
1218
1219 case ast_mul_assign:
1220 case ast_div_assign:
1221 case ast_add_assign:
1222 case ast_sub_assign: {
1223 op[0] = this->subexpressions[0]->hir(instructions, state);
1224 op[1] = this->subexpressions[1]->hir(instructions, state);
1225
1226 type = arithmetic_result_type(op[0], op[1],
1227 (this->oper == ast_mul_assign),
1228 state, & loc);
1229
1230 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1231 op[0], op[1]);
1232
1233 result = do_assignment(instructions, state,
1234 op[0]->clone(ctx, NULL), temp_rhs,
1235 this->subexpressions[0]->get_location());
1236 type = result->type;
1237 error_emitted = (op[0]->type->is_error());
1238
1239 /* GLSL 1.10 does not allow array assignment. However, we don't have to
1240 * explicitly test for this because none of the binary expression
1241 * operators allow array operands either.
1242 */
1243
1244 break;
1245 }
1246
1247 case ast_mod_assign: {
1248 op[0] = this->subexpressions[0]->hir(instructions, state);
1249 op[1] = this->subexpressions[1]->hir(instructions, state);
1250
1251 type = modulus_result_type(op[0]->type, op[1]->type, state, & loc);
1252
1253 assert(operations[this->oper] == ir_binop_mod);
1254
1255 ir_rvalue *temp_rhs;
1256 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1257 op[0], op[1]);
1258
1259 result = do_assignment(instructions, state,
1260 op[0]->clone(ctx, NULL), temp_rhs,
1261 this->subexpressions[0]->get_location());
1262 type = result->type;
1263 error_emitted = type->is_error();
1264 break;
1265 }
1266
1267 case ast_ls_assign:
1268 case ast_rs_assign: {
1269 op[0] = this->subexpressions[0]->hir(instructions, state);
1270 op[1] = this->subexpressions[1]->hir(instructions, state);
1271 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1272 &loc);
1273 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1274 type, op[0], op[1]);
1275 result = do_assignment(instructions, state, op[0]->clone(ctx, NULL),
1276 temp_rhs,
1277 this->subexpressions[0]->get_location());
1278 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1279 break;
1280 }
1281
1282 case ast_and_assign:
1283 case ast_xor_assign:
1284 case ast_or_assign: {
1285 op[0] = this->subexpressions[0]->hir(instructions, state);
1286 op[1] = this->subexpressions[1]->hir(instructions, state);
1287 type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
1288 state, &loc);
1289 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1290 type, op[0], op[1]);
1291 result = do_assignment(instructions, state, op[0]->clone(ctx, NULL),
1292 temp_rhs,
1293 this->subexpressions[0]->get_location());
1294 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1295 break;
1296 }
1297
1298 case ast_conditional: {
1299 op[0] = this->subexpressions[0]->hir(instructions, state);
1300
1301 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1302 *
1303 * "The ternary selection operator (?:). It operates on three
1304 * expressions (exp1 ? exp2 : exp3). This operator evaluates the
1305 * first expression, which must result in a scalar Boolean."
1306 */
1307 if (!op[0]->type->is_boolean() || !op[0]->type->is_scalar()) {
1308 YYLTYPE loc = this->subexpressions[0]->get_location();
1309
1310 _mesa_glsl_error(& loc, state, "?: condition must be scalar boolean");
1311 error_emitted = true;
1312 }
1313
1314 /* The :? operator is implemented by generating an anonymous temporary
1315 * followed by an if-statement. The last instruction in each branch of
1316 * the if-statement assigns a value to the anonymous temporary. This
1317 * temporary is the r-value of the expression.
1318 */
1319 exec_list then_instructions;
1320 exec_list else_instructions;
1321
1322 op[1] = this->subexpressions[1]->hir(&then_instructions, state);
1323 op[2] = this->subexpressions[2]->hir(&else_instructions, state);
1324
1325 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1326 *
1327 * "The second and third expressions can be any type, as
1328 * long their types match, or there is a conversion in
1329 * Section 4.1.10 "Implicit Conversions" that can be applied
1330 * to one of the expressions to make their types match. This
1331 * resulting matching type is the type of the entire
1332 * expression."
1333 */
1334 if ((!apply_implicit_conversion(op[1]->type, op[2], state)
1335 && !apply_implicit_conversion(op[2]->type, op[1], state))
1336 || (op[1]->type != op[2]->type)) {
1337 YYLTYPE loc = this->subexpressions[1]->get_location();
1338
1339 _mesa_glsl_error(& loc, state, "Second and third operands of ?: "
1340 "operator must have matching types.");
1341 error_emitted = true;
1342 type = glsl_type::error_type;
1343 } else {
1344 type = op[1]->type;
1345 }
1346
1347 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1348 *
1349 * "The second and third expressions must be the same type, but can
1350 * be of any type other than an array."
1351 */
1352 if ((state->language_version <= 110) && type->is_array()) {
1353 _mesa_glsl_error(& loc, state, "Second and third operands of ?: "
1354 "operator must not be arrays.");
1355 error_emitted = true;
1356 }
1357
1358 ir_constant *cond_val = op[0]->constant_expression_value();
1359 ir_constant *then_val = op[1]->constant_expression_value();
1360 ir_constant *else_val = op[2]->constant_expression_value();
1361
1362 if (then_instructions.is_empty()
1363 && else_instructions.is_empty()
1364 && (cond_val != NULL) && (then_val != NULL) && (else_val != NULL)) {
1365 result = (cond_val->value.b[0]) ? then_val : else_val;
1366 } else {
1367 ir_variable *const tmp =
1368 new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary);
1369 instructions->push_tail(tmp);
1370
1371 ir_if *const stmt = new(ctx) ir_if(op[0]);
1372 instructions->push_tail(stmt);
1373
1374 then_instructions.move_nodes_to(& stmt->then_instructions);
1375 ir_dereference *const then_deref =
1376 new(ctx) ir_dereference_variable(tmp);
1377 ir_assignment *const then_assign =
1378 new(ctx) ir_assignment(then_deref, op[1], NULL);
1379 stmt->then_instructions.push_tail(then_assign);
1380
1381 else_instructions.move_nodes_to(& stmt->else_instructions);
1382 ir_dereference *const else_deref =
1383 new(ctx) ir_dereference_variable(tmp);
1384 ir_assignment *const else_assign =
1385 new(ctx) ir_assignment(else_deref, op[2], NULL);
1386 stmt->else_instructions.push_tail(else_assign);
1387
1388 result = new(ctx) ir_dereference_variable(tmp);
1389 }
1390 break;
1391 }
1392
1393 case ast_pre_inc:
1394 case ast_pre_dec: {
1395 op[0] = this->subexpressions[0]->hir(instructions, state);
1396 if (op[0]->type->base_type == GLSL_TYPE_FLOAT)
1397 op[1] = new(ctx) ir_constant(1.0f);
1398 else
1399 op[1] = new(ctx) ir_constant(1);
1400
1401 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1402
1403 ir_rvalue *temp_rhs;
1404 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1405 op[0], op[1]);
1406
1407 result = do_assignment(instructions, state,
1408 op[0]->clone(ctx, NULL), temp_rhs,
1409 this->subexpressions[0]->get_location());
1410 type = result->type;
1411 error_emitted = op[0]->type->is_error();
1412 break;
1413 }
1414
1415 case ast_post_inc:
1416 case ast_post_dec: {
1417 op[0] = this->subexpressions[0]->hir(instructions, state);
1418 if (op[0]->type->base_type == GLSL_TYPE_FLOAT)
1419 op[1] = new(ctx) ir_constant(1.0f);
1420 else
1421 op[1] = new(ctx) ir_constant(1);
1422
1423 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1424
1425 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1426
1427 ir_rvalue *temp_rhs;
1428 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1429 op[0], op[1]);
1430
1431 /* Get a temporary of a copy of the lvalue before it's modified.
1432 * This may get thrown away later.
1433 */
1434 result = get_lvalue_copy(instructions, op[0]->clone(ctx, NULL));
1435
1436 (void)do_assignment(instructions, state,
1437 op[0]->clone(ctx, NULL), temp_rhs,
1438 this->subexpressions[0]->get_location());
1439
1440 type = result->type;
1441 error_emitted = op[0]->type->is_error();
1442 break;
1443 }
1444
1445 case ast_field_selection:
1446 result = _mesa_ast_field_selection_to_hir(this, instructions, state);
1447 type = result->type;
1448 break;
1449
1450 case ast_array_index: {
1451 YYLTYPE index_loc = subexpressions[1]->get_location();
1452
1453 op[0] = subexpressions[0]->hir(instructions, state);
1454 op[1] = subexpressions[1]->hir(instructions, state);
1455
1456 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1457
1458 ir_rvalue *const array = op[0];
1459
1460 result = new(ctx) ir_dereference_array(op[0], op[1]);
1461
1462 /* Do not use op[0] after this point. Use array.
1463 */
1464 op[0] = NULL;
1465
1466
1467 if (error_emitted)
1468 break;
1469
1470 if (!array->type->is_array()
1471 && !array->type->is_matrix()
1472 && !array->type->is_vector()) {
1473 _mesa_glsl_error(& index_loc, state,
1474 "cannot dereference non-array / non-matrix / "
1475 "non-vector");
1476 error_emitted = true;
1477 }
1478
1479 if (!op[1]->type->is_integer()) {
1480 _mesa_glsl_error(& index_loc, state,
1481 "array index must be integer type");
1482 error_emitted = true;
1483 } else if (!op[1]->type->is_scalar()) {
1484 _mesa_glsl_error(& index_loc, state,
1485 "array index must be scalar");
1486 error_emitted = true;
1487 }
1488
1489 /* If the array index is a constant expression and the array has a
1490 * declared size, ensure that the access is in-bounds. If the array
1491 * index is not a constant expression, ensure that the array has a
1492 * declared size.
1493 */
1494 ir_constant *const const_index = op[1]->constant_expression_value();
1495 if (const_index != NULL) {
1496 const int idx = const_index->value.i[0];
1497 const char *type_name;
1498 unsigned bound = 0;
1499
1500 if (array->type->is_matrix()) {
1501 type_name = "matrix";
1502 } else if (array->type->is_vector()) {
1503 type_name = "vector";
1504 } else {
1505 type_name = "array";
1506 }
1507
1508 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec:
1509 *
1510 * "It is illegal to declare an array with a size, and then
1511 * later (in the same shader) index the same array with an
1512 * integral constant expression greater than or equal to the
1513 * declared size. It is also illegal to index an array with a
1514 * negative constant expression."
1515 */
1516 if (array->type->is_matrix()) {
1517 if (array->type->row_type()->vector_elements <= idx) {
1518 bound = array->type->row_type()->vector_elements;
1519 }
1520 } else if (array->type->is_vector()) {
1521 if (array->type->vector_elements <= idx) {
1522 bound = array->type->vector_elements;
1523 }
1524 } else {
1525 if ((array->type->array_size() > 0)
1526 && (array->type->array_size() <= idx)) {
1527 bound = array->type->array_size();
1528 }
1529 }
1530
1531 if (bound > 0) {
1532 _mesa_glsl_error(& loc, state, "%s index must be < %u",
1533 type_name, bound);
1534 error_emitted = true;
1535 } else if (idx < 0) {
1536 _mesa_glsl_error(& loc, state, "%s index must be >= 0",
1537 type_name);
1538 error_emitted = true;
1539 }
1540
1541 if (array->type->is_array()) {
1542 /* If the array is a variable dereference, it dereferences the
1543 * whole array, by definition. Use this to get the variable.
1544 *
1545 * FINISHME: Should some methods for getting / setting / testing
1546 * FINISHME: array access limits be added to ir_dereference?
1547 */
1548 ir_variable *const v = array->whole_variable_referenced();
1549 if ((v != NULL) && (unsigned(idx) > v->max_array_access))
1550 v->max_array_access = idx;
1551 }
1552 } else if (array->type->array_size() == 0) {
1553 _mesa_glsl_error(&loc, state, "unsized array index must be constant");
1554 } else {
1555 if (array->type->is_array()) {
1556 /* whole_variable_referenced can return NULL if the array is a
1557 * member of a structure. In this case it is safe to not update
1558 * the max_array_access field because it is never used for fields
1559 * of structures.
1560 */
1561 ir_variable *v = array->whole_variable_referenced();
1562 if (v != NULL)
1563 v->max_array_access = array->type->array_size();
1564 }
1565 }
1566
1567 if (error_emitted)
1568 result->type = glsl_type::error_type;
1569
1570 type = result->type;
1571 break;
1572 }
1573
1574 case ast_function_call:
1575 /* Should *NEVER* get here. ast_function_call should always be handled
1576 * by ast_function_expression::hir.
1577 */
1578 assert(0);
1579 break;
1580
1581 case ast_identifier: {
1582 /* ast_identifier can appear several places in a full abstract syntax
1583 * tree. This particular use must be at location specified in the grammar
1584 * as 'variable_identifier'.
1585 */
1586 ir_variable *var =
1587 state->symbols->get_variable(this->primary_expression.identifier);
1588
1589 result = new(ctx) ir_dereference_variable(var);
1590
1591 if (var != NULL) {
1592 type = result->type;
1593 } else {
1594 _mesa_glsl_error(& loc, state, "`%s' undeclared",
1595 this->primary_expression.identifier);
1596
1597 error_emitted = true;
1598 }
1599 break;
1600 }
1601
1602 case ast_int_constant:
1603 type = glsl_type::int_type;
1604 result = new(ctx) ir_constant(this->primary_expression.int_constant);
1605 break;
1606
1607 case ast_uint_constant:
1608 type = glsl_type::uint_type;
1609 result = new(ctx) ir_constant(this->primary_expression.uint_constant);
1610 break;
1611
1612 case ast_float_constant:
1613 type = glsl_type::float_type;
1614 result = new(ctx) ir_constant(this->primary_expression.float_constant);
1615 break;
1616
1617 case ast_bool_constant:
1618 type = glsl_type::bool_type;
1619 result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant));
1620 break;
1621
1622 case ast_sequence: {
1623 /* It should not be possible to generate a sequence in the AST without
1624 * any expressions in it.
1625 */
1626 assert(!this->expressions.is_empty());
1627
1628 /* The r-value of a sequence is the last expression in the sequence. If
1629 * the other expressions in the sequence do not have side-effects (and
1630 * therefore add instructions to the instruction list), they get dropped
1631 * on the floor.
1632 */
1633 foreach_list_typed (ast_node, ast, link, &this->expressions)
1634 result = ast->hir(instructions, state);
1635
1636 type = result->type;
1637
1638 /* Any errors should have already been emitted in the loop above.
1639 */
1640 error_emitted = true;
1641 break;
1642 }
1643 }
1644
1645 if (type->is_error() && !error_emitted)
1646 _mesa_glsl_error(& loc, state, "type mismatch");
1647
1648 return result;
1649 }
1650
1651
1652 ir_rvalue *
1653 ast_expression_statement::hir(exec_list *instructions,
1654 struct _mesa_glsl_parse_state *state)
1655 {
1656 /* It is possible to have expression statements that don't have an
1657 * expression. This is the solitary semicolon:
1658 *
1659 * for (i = 0; i < 5; i++)
1660 * ;
1661 *
1662 * In this case the expression will be NULL. Test for NULL and don't do
1663 * anything in that case.
1664 */
1665 if (expression != NULL)
1666 expression->hir(instructions, state);
1667
1668 /* Statements do not have r-values.
1669 */
1670 return NULL;
1671 }
1672
1673
1674 ir_rvalue *
1675 ast_compound_statement::hir(exec_list *instructions,
1676 struct _mesa_glsl_parse_state *state)
1677 {
1678 if (new_scope)
1679 state->symbols->push_scope();
1680
1681 foreach_list_typed (ast_node, ast, link, &this->statements)
1682 ast->hir(instructions, state);
1683
1684 if (new_scope)
1685 state->symbols->pop_scope();
1686
1687 /* Compound statements do not have r-values.
1688 */
1689 return NULL;
1690 }
1691
1692
1693 static const glsl_type *
1694 process_array_type(YYLTYPE *loc, const glsl_type *base, ast_node *array_size,
1695 struct _mesa_glsl_parse_state *state)
1696 {
1697 unsigned length = 0;
1698
1699 /* FINISHME: Reject delcarations of multidimensional arrays. */
1700
1701 if (array_size != NULL) {
1702 exec_list dummy_instructions;
1703 ir_rvalue *const ir = array_size->hir(& dummy_instructions, state);
1704 YYLTYPE loc = array_size->get_location();
1705
1706 /* FINISHME: Verify that the grammar forbids side-effects in array
1707 * FINISHME: sizes. i.e., 'vec4 [x = 12] data'
1708 */
1709 assert(dummy_instructions.is_empty());
1710
1711 if (ir != NULL) {
1712 if (!ir->type->is_integer()) {
1713 _mesa_glsl_error(& loc, state, "array size must be integer type");
1714 } else if (!ir->type->is_scalar()) {
1715 _mesa_glsl_error(& loc, state, "array size must be scalar type");
1716 } else {
1717 ir_constant *const size = ir->constant_expression_value();
1718
1719 if (size == NULL) {
1720 _mesa_glsl_error(& loc, state, "array size must be a "
1721 "constant valued expression");
1722 } else if (size->value.i[0] <= 0) {
1723 _mesa_glsl_error(& loc, state, "array size must be > 0");
1724 } else {
1725 assert(size->type == ir->type);
1726 length = size->value.u[0];
1727 }
1728 }
1729 }
1730 } else if (state->es_shader) {
1731 /* Section 10.17 of the GLSL ES 1.00 specification states that unsized
1732 * array declarations have been removed from the language.
1733 */
1734 _mesa_glsl_error(loc, state, "unsized array declarations are not "
1735 "allowed in GLSL ES 1.00.");
1736 }
1737
1738 return glsl_type::get_array_instance(base, length);
1739 }
1740
1741
1742 const glsl_type *
1743 ast_type_specifier::glsl_type(const char **name,
1744 struct _mesa_glsl_parse_state *state) const
1745 {
1746 const struct glsl_type *type;
1747
1748 type = state->symbols->get_type(this->type_name);
1749 *name = this->type_name;
1750
1751 if (this->is_array) {
1752 YYLTYPE loc = this->get_location();
1753 type = process_array_type(&loc, type, this->array_size, state);
1754 }
1755
1756 return type;
1757 }
1758
1759
1760 static void
1761 apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
1762 ir_variable *var,
1763 struct _mesa_glsl_parse_state *state,
1764 YYLTYPE *loc)
1765 {
1766 if (qual->flags.q.invariant)
1767 var->invariant = 1;
1768
1769 /* FINISHME: Mark 'in' variables at global scope as read-only. */
1770 if (qual->flags.q.constant || qual->flags.q.attribute
1771 || qual->flags.q.uniform
1772 || (qual->flags.q.varying && (state->target == fragment_shader)))
1773 var->read_only = 1;
1774
1775 if (qual->flags.q.centroid)
1776 var->centroid = 1;
1777
1778 if (qual->flags.q.attribute && state->target != vertex_shader) {
1779 var->type = glsl_type::error_type;
1780 _mesa_glsl_error(loc, state,
1781 "`attribute' variables may not be declared in the "
1782 "%s shader",
1783 _mesa_glsl_shader_target_name(state->target));
1784 }
1785
1786 /* From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
1787 *
1788 * "The varying qualifier can be used only with the data types
1789 * float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
1790 * these."
1791 */
1792 if (qual->flags.q.varying) {
1793 const glsl_type *non_array_type;
1794
1795 if (var->type && var->type->is_array())
1796 non_array_type = var->type->fields.array;
1797 else
1798 non_array_type = var->type;
1799
1800 if (non_array_type && non_array_type->base_type != GLSL_TYPE_FLOAT) {
1801 var->type = glsl_type::error_type;
1802 _mesa_glsl_error(loc, state,
1803 "varying variables must be of base type float");
1804 }
1805 }
1806
1807 /* If there is no qualifier that changes the mode of the variable, leave
1808 * the setting alone.
1809 */
1810 if (qual->flags.q.in && qual->flags.q.out)
1811 var->mode = ir_var_inout;
1812 else if (qual->flags.q.attribute || qual->flags.q.in
1813 || (qual->flags.q.varying && (state->target == fragment_shader)))
1814 var->mode = ir_var_in;
1815 else if (qual->flags.q.out
1816 || (qual->flags.q.varying && (state->target == vertex_shader)))
1817 var->mode = ir_var_out;
1818 else if (qual->flags.q.uniform)
1819 var->mode = ir_var_uniform;
1820
1821 if (qual->flags.q.flat)
1822 var->interpolation = ir_var_flat;
1823 else if (qual->flags.q.noperspective)
1824 var->interpolation = ir_var_noperspective;
1825 else
1826 var->interpolation = ir_var_smooth;
1827
1828 var->pixel_center_integer = qual->flags.q.pixel_center_integer;
1829 var->origin_upper_left = qual->flags.q.origin_upper_left;
1830 if ((qual->flags.q.origin_upper_left || qual->flags.q.pixel_center_integer)
1831 && (strcmp(var->name, "gl_FragCoord") != 0)) {
1832 const char *const qual_string = (qual->flags.q.origin_upper_left)
1833 ? "origin_upper_left" : "pixel_center_integer";
1834
1835 _mesa_glsl_error(loc, state,
1836 "layout qualifier `%s' can only be applied to "
1837 "fragment shader input `gl_FragCoord'",
1838 qual_string);
1839 }
1840
1841 if (qual->flags.q.explicit_location) {
1842 const bool global_scope = (state->current_function == NULL);
1843 bool fail = false;
1844 const char *string = "";
1845
1846 /* In the vertex shader only shader inputs can be given explicit
1847 * locations.
1848 *
1849 * In the fragment shader only shader outputs can be given explicit
1850 * locations.
1851 */
1852 switch (state->target) {
1853 case vertex_shader:
1854 if (!global_scope || (var->mode != ir_var_in)) {
1855 fail = true;
1856 string = "input";
1857 }
1858 break;
1859
1860 case geometry_shader:
1861 _mesa_glsl_error(loc, state,
1862 "geometry shader variables cannot be given "
1863 "explicit locations\n");
1864 break;
1865
1866 case fragment_shader:
1867 if (!global_scope || (var->mode != ir_var_in)) {
1868 fail = true;
1869 string = "output";
1870 }
1871 break;
1872 };
1873
1874 if (fail) {
1875 _mesa_glsl_error(loc, state,
1876 "only %s shader %s variables can be given an "
1877 "explicit location\n",
1878 _mesa_glsl_shader_target_name(state->target),
1879 string);
1880 } else {
1881 var->explicit_location = true;
1882
1883 /* This bit of silliness is needed because invalid explicit locations
1884 * are supposed to be flagged during linking. Small negative values
1885 * biased by VERT_ATTRIB_GENERIC0 or FRAG_RESULT_DATA0 could alias
1886 * built-in values (e.g., -16+VERT_ATTRIB_GENERIC0 = VERT_ATTRIB_POS).
1887 * The linker needs to be able to differentiate these cases. This
1888 * ensures that negative values stay negative.
1889 */
1890 if (qual->location >= 0) {
1891 var->location = (state->target == vertex_shader)
1892 ? (qual->location + VERT_ATTRIB_GENERIC0)
1893 : (qual->location + FRAG_RESULT_DATA0);
1894 } else {
1895 var->location = qual->location;
1896 }
1897 }
1898 }
1899
1900 if (var->type->is_array() && state->language_version != 110) {
1901 var->array_lvalue = true;
1902 }
1903 }
1904
1905
1906 ir_rvalue *
1907 ast_declarator_list::hir(exec_list *instructions,
1908 struct _mesa_glsl_parse_state *state)
1909 {
1910 void *ctx = state;
1911 const struct glsl_type *decl_type;
1912 const char *type_name = NULL;
1913 ir_rvalue *result = NULL;
1914 YYLTYPE loc = this->get_location();
1915
1916 /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec:
1917 *
1918 * "To ensure that a particular output variable is invariant, it is
1919 * necessary to use the invariant qualifier. It can either be used to
1920 * qualify a previously declared variable as being invariant
1921 *
1922 * invariant gl_Position; // make existing gl_Position be invariant"
1923 *
1924 * In these cases the parser will set the 'invariant' flag in the declarator
1925 * list, and the type will be NULL.
1926 */
1927 if (this->invariant) {
1928 assert(this->type == NULL);
1929
1930 if (state->current_function != NULL) {
1931 _mesa_glsl_error(& loc, state,
1932 "All uses of `invariant' keyword must be at global "
1933 "scope\n");
1934 }
1935
1936 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
1937 assert(!decl->is_array);
1938 assert(decl->array_size == NULL);
1939 assert(decl->initializer == NULL);
1940
1941 ir_variable *const earlier =
1942 state->symbols->get_variable(decl->identifier);
1943 if (earlier == NULL) {
1944 _mesa_glsl_error(& loc, state,
1945 "Undeclared variable `%s' cannot be marked "
1946 "invariant\n", decl->identifier);
1947 } else if ((state->target == vertex_shader)
1948 && (earlier->mode != ir_var_out)) {
1949 _mesa_glsl_error(& loc, state,
1950 "`%s' cannot be marked invariant, vertex shader "
1951 "outputs only\n", decl->identifier);
1952 } else if ((state->target == fragment_shader)
1953 && (earlier->mode != ir_var_in)) {
1954 _mesa_glsl_error(& loc, state,
1955 "`%s' cannot be marked invariant, fragment shader "
1956 "inputs only\n", decl->identifier);
1957 } else {
1958 earlier->invariant = true;
1959 }
1960 }
1961
1962 /* Invariant redeclarations do not have r-values.
1963 */
1964 return NULL;
1965 }
1966
1967 assert(this->type != NULL);
1968 assert(!this->invariant);
1969
1970 /* The type specifier may contain a structure definition. Process that
1971 * before any of the variable declarations.
1972 */
1973 (void) this->type->specifier->hir(instructions, state);
1974
1975 decl_type = this->type->specifier->glsl_type(& type_name, state);
1976 if (this->declarations.is_empty()) {
1977 /* The only valid case where the declaration list can be empty is when
1978 * the declaration is setting the default precision of a built-in type
1979 * (e.g., 'precision highp vec4;').
1980 */
1981
1982 if (decl_type != NULL) {
1983 } else {
1984 _mesa_glsl_error(& loc, state, "incomplete declaration");
1985 }
1986 }
1987
1988 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
1989 const struct glsl_type *var_type;
1990 ir_variable *var;
1991
1992 /* FINISHME: Emit a warning if a variable declaration shadows a
1993 * FINISHME: declaration at a higher scope.
1994 */
1995
1996 if ((decl_type == NULL) || decl_type->is_void()) {
1997 if (type_name != NULL) {
1998 _mesa_glsl_error(& loc, state,
1999 "invalid type `%s' in declaration of `%s'",
2000 type_name, decl->identifier);
2001 } else {
2002 _mesa_glsl_error(& loc, state,
2003 "invalid type in declaration of `%s'",
2004 decl->identifier);
2005 }
2006 continue;
2007 }
2008
2009 if (decl->is_array) {
2010 var_type = process_array_type(&loc, decl_type, decl->array_size,
2011 state);
2012 } else {
2013 var_type = decl_type;
2014 }
2015
2016 var = new(ctx) ir_variable(var_type, decl->identifier, ir_var_auto);
2017
2018 /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
2019 *
2020 * "Global variables can only use the qualifiers const,
2021 * attribute, uni form, or varying. Only one may be
2022 * specified.
2023 *
2024 * Local variables can only use the qualifier const."
2025 *
2026 * This is relaxed in GLSL 1.30.
2027 */
2028 if (state->language_version < 120) {
2029 if (this->type->qualifier.flags.q.out) {
2030 _mesa_glsl_error(& loc, state,
2031 "`out' qualifier in declaration of `%s' "
2032 "only valid for function parameters in GLSL 1.10.",
2033 decl->identifier);
2034 }
2035 if (this->type->qualifier.flags.q.in) {
2036 _mesa_glsl_error(& loc, state,
2037 "`in' qualifier in declaration of `%s' "
2038 "only valid for function parameters in GLSL 1.10.",
2039 decl->identifier);
2040 }
2041 /* FINISHME: Test for other invalid qualifiers. */
2042 }
2043
2044 apply_type_qualifier_to_variable(& this->type->qualifier, var, state,
2045 & loc);
2046
2047 if (this->type->qualifier.flags.q.invariant) {
2048 if ((state->target == vertex_shader) && !(var->mode == ir_var_out ||
2049 var->mode == ir_var_inout)) {
2050 /* FINISHME: Note that this doesn't work for invariant on
2051 * a function signature outval
2052 */
2053 _mesa_glsl_error(& loc, state,
2054 "`%s' cannot be marked invariant, vertex shader "
2055 "outputs only\n", var->name);
2056 } else if ((state->target == fragment_shader) &&
2057 !(var->mode == ir_var_in || var->mode == ir_var_inout)) {
2058 /* FINISHME: Note that this doesn't work for invariant on
2059 * a function signature inval
2060 */
2061 _mesa_glsl_error(& loc, state,
2062 "`%s' cannot be marked invariant, fragment shader "
2063 "inputs only\n", var->name);
2064 }
2065 }
2066
2067 if (state->current_function != NULL) {
2068 const char *mode = NULL;
2069 const char *extra = "";
2070
2071 /* There is no need to check for 'inout' here because the parser will
2072 * only allow that in function parameter lists.
2073 */
2074 if (this->type->qualifier.flags.q.attribute) {
2075 mode = "attribute";
2076 } else if (this->type->qualifier.flags.q.uniform) {
2077 mode = "uniform";
2078 } else if (this->type->qualifier.flags.q.varying) {
2079 mode = "varying";
2080 } else if (this->type->qualifier.flags.q.in) {
2081 mode = "in";
2082 extra = " or in function parameter list";
2083 } else if (this->type->qualifier.flags.q.out) {
2084 mode = "out";
2085 extra = " or in function parameter list";
2086 }
2087
2088 if (mode) {
2089 _mesa_glsl_error(& loc, state,
2090 "%s variable `%s' must be declared at "
2091 "global scope%s",
2092 mode, var->name, extra);
2093 }
2094 } else if (var->mode == ir_var_in) {
2095 if (state->target == vertex_shader) {
2096 bool error_emitted = false;
2097
2098 /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
2099 *
2100 * "Vertex shader inputs can only be float, floating-point
2101 * vectors, matrices, signed and unsigned integers and integer
2102 * vectors. Vertex shader inputs can also form arrays of these
2103 * types, but not structures."
2104 *
2105 * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
2106 *
2107 * "Vertex shader inputs can only be float, floating-point
2108 * vectors, matrices, signed and unsigned integers and integer
2109 * vectors. They cannot be arrays or structures."
2110 *
2111 * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
2112 *
2113 * "The attribute qualifier can be used only with float,
2114 * floating-point vectors, and matrices. Attribute variables
2115 * cannot be declared as arrays or structures."
2116 */
2117 const glsl_type *check_type = var->type->is_array()
2118 ? var->type->fields.array : var->type;
2119
2120 switch (check_type->base_type) {
2121 case GLSL_TYPE_FLOAT:
2122 break;
2123 case GLSL_TYPE_UINT:
2124 case GLSL_TYPE_INT:
2125 if (state->language_version > 120)
2126 break;
2127 /* FALLTHROUGH */
2128 default:
2129 _mesa_glsl_error(& loc, state,
2130 "vertex shader input / attribute cannot have "
2131 "type %s`%s'",
2132 var->type->is_array() ? "array of " : "",
2133 check_type->name);
2134 error_emitted = true;
2135 }
2136
2137 if (!error_emitted && (state->language_version <= 130)
2138 && var->type->is_array()) {
2139 _mesa_glsl_error(& loc, state,
2140 "vertex shader input / attribute cannot have "
2141 "array type");
2142 error_emitted = true;
2143 }
2144 }
2145 }
2146
2147 /* Process the initializer and add its instructions to a temporary
2148 * list. This list will be added to the instruction stream (below) after
2149 * the declaration is added. This is done because in some cases (such as
2150 * redeclarations) the declaration may not actually be added to the
2151 * instruction stream.
2152 */
2153 exec_list initializer_instructions;
2154 if (decl->initializer != NULL) {
2155 YYLTYPE initializer_loc = decl->initializer->get_location();
2156
2157 /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
2158 *
2159 * "All uniform variables are read-only and are initialized either
2160 * directly by an application via API commands, or indirectly by
2161 * OpenGL."
2162 */
2163 if ((state->language_version <= 110)
2164 && (var->mode == ir_var_uniform)) {
2165 _mesa_glsl_error(& initializer_loc, state,
2166 "cannot initialize uniforms in GLSL 1.10");
2167 }
2168
2169 if (var->type->is_sampler()) {
2170 _mesa_glsl_error(& initializer_loc, state,
2171 "cannot initialize samplers");
2172 }
2173
2174 if ((var->mode == ir_var_in) && (state->current_function == NULL)) {
2175 _mesa_glsl_error(& initializer_loc, state,
2176 "cannot initialize %s shader input / %s",
2177 _mesa_glsl_shader_target_name(state->target),
2178 (state->target == vertex_shader)
2179 ? "attribute" : "varying");
2180 }
2181
2182 ir_dereference *const lhs = new(ctx) ir_dereference_variable(var);
2183 ir_rvalue *rhs = decl->initializer->hir(&initializer_instructions,
2184 state);
2185
2186 /* Calculate the constant value if this is a const or uniform
2187 * declaration.
2188 */
2189 if (this->type->qualifier.flags.q.constant
2190 || this->type->qualifier.flags.q.uniform) {
2191 ir_rvalue *new_rhs = validate_assignment(state, var->type, rhs);
2192 if (new_rhs != NULL) {
2193 rhs = new_rhs;
2194
2195 ir_constant *constant_value = rhs->constant_expression_value();
2196 if (!constant_value) {
2197 _mesa_glsl_error(& initializer_loc, state,
2198 "initializer of %s variable `%s' must be a "
2199 "constant expression",
2200 (this->type->qualifier.flags.q.constant)
2201 ? "const" : "uniform",
2202 decl->identifier);
2203 if (var->type->is_numeric()) {
2204 /* Reduce cascading errors. */
2205 var->constant_value = ir_constant::zero(ctx, var->type);
2206 }
2207 } else {
2208 rhs = constant_value;
2209 var->constant_value = constant_value;
2210 }
2211 } else {
2212 _mesa_glsl_error(&initializer_loc, state,
2213 "initializer of type %s cannot be assigned to "
2214 "variable of type %s",
2215 rhs->type->name, var->type->name);
2216 if (var->type->is_numeric()) {
2217 /* Reduce cascading errors. */
2218 var->constant_value = ir_constant::zero(ctx, var->type);
2219 }
2220 }
2221 }
2222
2223 if (rhs && !rhs->type->is_error()) {
2224 bool temp = var->read_only;
2225 if (this->type->qualifier.flags.q.constant)
2226 var->read_only = false;
2227
2228 /* Never emit code to initialize a uniform.
2229 */
2230 if (!this->type->qualifier.flags.q.uniform)
2231 result = do_assignment(&initializer_instructions, state,
2232 lhs, rhs,
2233 this->get_location());
2234 var->read_only = temp;
2235 }
2236 }
2237
2238 /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
2239 *
2240 * "It is an error to write to a const variable outside of
2241 * its declaration, so they must be initialized when
2242 * declared."
2243 */
2244 if (this->type->qualifier.flags.q.constant && decl->initializer == NULL) {
2245 _mesa_glsl_error(& loc, state,
2246 "const declaration of `%s' must be initialized");
2247 }
2248
2249 /* Check if this declaration is actually a re-declaration, either to
2250 * resize an array or add qualifiers to an existing variable.
2251 *
2252 * This is allowed for variables in the current scope, or when at
2253 * global scope (for built-ins in the implicit outer scope).
2254 */
2255 ir_variable *earlier = state->symbols->get_variable(decl->identifier);
2256 if (earlier != NULL && (state->current_function == NULL ||
2257 state->symbols->name_declared_this_scope(decl->identifier))) {
2258
2259 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
2260 *
2261 * "It is legal to declare an array without a size and then
2262 * later re-declare the same name as an array of the same
2263 * type and specify a size."
2264 */
2265 if ((earlier->type->array_size() == 0)
2266 && var->type->is_array()
2267 && (var->type->element_type() == earlier->type->element_type())) {
2268 /* FINISHME: This doesn't match the qualifiers on the two
2269 * FINISHME: declarations. It's not 100% clear whether this is
2270 * FINISHME: required or not.
2271 */
2272
2273 /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec:
2274 *
2275 * "The size [of gl_TexCoord] can be at most
2276 * gl_MaxTextureCoords."
2277 */
2278 const unsigned size = unsigned(var->type->array_size());
2279 if ((strcmp("gl_TexCoord", var->name) == 0)
2280 && (size > state->Const.MaxTextureCoords)) {
2281 YYLTYPE loc = this->get_location();
2282
2283 _mesa_glsl_error(& loc, state, "`gl_TexCoord' array size cannot "
2284 "be larger than gl_MaxTextureCoords (%u)\n",
2285 state->Const.MaxTextureCoords);
2286 } else if ((size > 0) && (size <= earlier->max_array_access)) {
2287 YYLTYPE loc = this->get_location();
2288
2289 _mesa_glsl_error(& loc, state, "array size must be > %u due to "
2290 "previous access",
2291 earlier->max_array_access);
2292 }
2293
2294 earlier->type = var->type;
2295 delete var;
2296 var = NULL;
2297 } else if (state->ARB_fragment_coord_conventions_enable
2298 && strcmp(var->name, "gl_FragCoord") == 0
2299 && earlier->type == var->type
2300 && earlier->mode == var->mode) {
2301 /* Allow redeclaration of gl_FragCoord for ARB_fcc layout
2302 * qualifiers.
2303 */
2304 earlier->origin_upper_left = var->origin_upper_left;
2305 earlier->pixel_center_integer = var->pixel_center_integer;
2306 } else {
2307 YYLTYPE loc = this->get_location();
2308 _mesa_glsl_error(&loc, state, "`%s' redeclared", decl->identifier);
2309 }
2310
2311 continue;
2312 }
2313
2314 /* By now, we know it's a new variable declaration (we didn't hit the
2315 * above "continue").
2316 *
2317 * From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
2318 *
2319 * "Identifiers starting with "gl_" are reserved for use by
2320 * OpenGL, and may not be declared in a shader as either a
2321 * variable or a function."
2322 */
2323 if (strncmp(decl->identifier, "gl_", 3) == 0)
2324 _mesa_glsl_error(& loc, state,
2325 "identifier `%s' uses reserved `gl_' prefix",
2326 decl->identifier);
2327
2328 /* Add the variable to the symbol table. Note that the initializer's
2329 * IR was already processed earlier (though it hasn't been emitted yet),
2330 * without the variable in scope.
2331 *
2332 * This differs from most C-like languages, but it follows the GLSL
2333 * specification. From page 28 (page 34 of the PDF) of the GLSL 1.50
2334 * spec:
2335 *
2336 * "Within a declaration, the scope of a name starts immediately
2337 * after the initializer if present or immediately after the name
2338 * being declared if not."
2339 */
2340 if (!state->symbols->add_variable(var)) {
2341 YYLTYPE loc = this->get_location();
2342 _mesa_glsl_error(&loc, state, "name `%s' already taken in the "
2343 "current scope", decl->identifier);
2344 continue;
2345 }
2346
2347 /* Push the variable declaration to the top. It means that all
2348 * the variable declarations will appear in a funny
2349 * last-to-first order, but otherwise we run into trouble if a
2350 * function is prototyped, a global var is decled, then the
2351 * function is defined with usage of the global var. See
2352 * glslparsertest's CorrectModule.frag.
2353 */
2354 instructions->push_head(var);
2355 instructions->append_list(&initializer_instructions);
2356 }
2357
2358
2359 /* Generally, variable declarations do not have r-values. However,
2360 * one is used for the declaration in
2361 *
2362 * while (bool b = some_condition()) {
2363 * ...
2364 * }
2365 *
2366 * so we return the rvalue from the last seen declaration here.
2367 */
2368 return result;
2369 }
2370
2371
2372 ir_rvalue *
2373 ast_parameter_declarator::hir(exec_list *instructions,
2374 struct _mesa_glsl_parse_state *state)
2375 {
2376 void *ctx = state;
2377 const struct glsl_type *type;
2378 const char *name = NULL;
2379 YYLTYPE loc = this->get_location();
2380
2381 type = this->type->specifier->glsl_type(& name, state);
2382
2383 if (type == NULL) {
2384 if (name != NULL) {
2385 _mesa_glsl_error(& loc, state,
2386 "invalid type `%s' in declaration of `%s'",
2387 name, this->identifier);
2388 } else {
2389 _mesa_glsl_error(& loc, state,
2390 "invalid type in declaration of `%s'",
2391 this->identifier);
2392 }
2393
2394 type = glsl_type::error_type;
2395 }
2396
2397 /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
2398 *
2399 * "Functions that accept no input arguments need not use void in the
2400 * argument list because prototypes (or definitions) are required and
2401 * therefore there is no ambiguity when an empty argument list "( )" is
2402 * declared. The idiom "(void)" as a parameter list is provided for
2403 * convenience."
2404 *
2405 * Placing this check here prevents a void parameter being set up
2406 * for a function, which avoids tripping up checks for main taking
2407 * parameters and lookups of an unnamed symbol.
2408 */
2409 if (type->is_void()) {
2410 if (this->identifier != NULL)
2411 _mesa_glsl_error(& loc, state,
2412 "named parameter cannot have type `void'");
2413
2414 is_void = true;
2415 return NULL;
2416 }
2417
2418 if (formal_parameter && (this->identifier == NULL)) {
2419 _mesa_glsl_error(& loc, state, "formal parameter lacks a name");
2420 return NULL;
2421 }
2422
2423 /* This only handles "vec4 foo[..]". The earlier specifier->glsl_type(...)
2424 * call already handled the "vec4[..] foo" case.
2425 */
2426 if (this->is_array) {
2427 type = process_array_type(&loc, type, this->array_size, state);
2428 }
2429
2430 if (type->array_size() == 0) {
2431 _mesa_glsl_error(&loc, state, "arrays passed as parameters must have "
2432 "a declared size.");
2433 type = glsl_type::error_type;
2434 }
2435
2436 is_void = false;
2437 ir_variable *var = new(ctx) ir_variable(type, this->identifier, ir_var_in);
2438
2439 /* Apply any specified qualifiers to the parameter declaration. Note that
2440 * for function parameters the default mode is 'in'.
2441 */
2442 apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc);
2443
2444 instructions->push_tail(var);
2445
2446 /* Parameter declarations do not have r-values.
2447 */
2448 return NULL;
2449 }
2450
2451
2452 void
2453 ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters,
2454 bool formal,
2455 exec_list *ir_parameters,
2456 _mesa_glsl_parse_state *state)
2457 {
2458 ast_parameter_declarator *void_param = NULL;
2459 unsigned count = 0;
2460
2461 foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) {
2462 param->formal_parameter = formal;
2463 param->hir(ir_parameters, state);
2464
2465 if (param->is_void)
2466 void_param = param;
2467
2468 count++;
2469 }
2470
2471 if ((void_param != NULL) && (count > 1)) {
2472 YYLTYPE loc = void_param->get_location();
2473
2474 _mesa_glsl_error(& loc, state,
2475 "`void' parameter must be only parameter");
2476 }
2477 }
2478
2479
2480 void
2481 emit_function(_mesa_glsl_parse_state *state, exec_list *instructions,
2482 ir_function *f)
2483 {
2484 /* Emit the new function header */
2485 if (state->current_function == NULL) {
2486 instructions->push_tail(f);
2487 } else {
2488 /* IR invariants disallow function declarations or definitions nested
2489 * within other function definitions. Insert the new ir_function
2490 * block in the instruction sequence before the ir_function block
2491 * containing the current ir_function_signature.
2492 */
2493 ir_function *const curr =
2494 const_cast<ir_function *>(state->current_function->function());
2495
2496 curr->insert_before(f);
2497 }
2498 }
2499
2500
2501 ir_rvalue *
2502 ast_function::hir(exec_list *instructions,
2503 struct _mesa_glsl_parse_state *state)
2504 {
2505 void *ctx = state;
2506 ir_function *f = NULL;
2507 ir_function_signature *sig = NULL;
2508 exec_list hir_parameters;
2509
2510 const char *const name = identifier;
2511
2512 /* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec,
2513 *
2514 * "Function declarations (prototypes) cannot occur inside of functions;
2515 * they must be at global scope, or for the built-in functions, outside
2516 * the global scope."
2517 *
2518 * From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec,
2519 *
2520 * "User defined functions may only be defined within the global scope."
2521 *
2522 * Note that this language does not appear in GLSL 1.10.
2523 */
2524 if ((state->current_function != NULL) && (state->language_version != 110)) {
2525 YYLTYPE loc = this->get_location();
2526 _mesa_glsl_error(&loc, state,
2527 "declaration of function `%s' not allowed within "
2528 "function body", name);
2529 }
2530
2531 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
2532 *
2533 * "Identifiers starting with "gl_" are reserved for use by
2534 * OpenGL, and may not be declared in a shader as either a
2535 * variable or a function."
2536 */
2537 if (strncmp(name, "gl_", 3) == 0) {
2538 YYLTYPE loc = this->get_location();
2539 _mesa_glsl_error(&loc, state,
2540 "identifier `%s' uses reserved `gl_' prefix", name);
2541 }
2542
2543 /* Convert the list of function parameters to HIR now so that they can be
2544 * used below to compare this function's signature with previously seen
2545 * signatures for functions with the same name.
2546 */
2547 ast_parameter_declarator::parameters_to_hir(& this->parameters,
2548 is_definition,
2549 & hir_parameters, state);
2550
2551 const char *return_type_name;
2552 const glsl_type *return_type =
2553 this->return_type->specifier->glsl_type(& return_type_name, state);
2554
2555 if (!return_type) {
2556 YYLTYPE loc = this->get_location();
2557 _mesa_glsl_error(&loc, state,
2558 "function `%s' has undeclared return type `%s'",
2559 name, return_type_name);
2560 return_type = glsl_type::error_type;
2561 }
2562
2563 /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec:
2564 * "No qualifier is allowed on the return type of a function."
2565 */
2566 if (this->return_type->has_qualifiers()) {
2567 YYLTYPE loc = this->get_location();
2568 _mesa_glsl_error(& loc, state,
2569 "function `%s' return type has qualifiers", name);
2570 }
2571
2572 /* Verify that this function's signature either doesn't match a previously
2573 * seen signature for a function with the same name, or, if a match is found,
2574 * that the previously seen signature does not have an associated definition.
2575 */
2576 f = state->symbols->get_function(name);
2577 if (f != NULL && (state->es_shader || f->has_user_signature())) {
2578 sig = f->exact_matching_signature(&hir_parameters);
2579 if (sig != NULL) {
2580 const char *badvar = sig->qualifiers_match(&hir_parameters);
2581 if (badvar != NULL) {
2582 YYLTYPE loc = this->get_location();
2583
2584 _mesa_glsl_error(&loc, state, "function `%s' parameter `%s' "
2585 "qualifiers don't match prototype", name, badvar);
2586 }
2587
2588 if (sig->return_type != return_type) {
2589 YYLTYPE loc = this->get_location();
2590
2591 _mesa_glsl_error(&loc, state, "function `%s' return type doesn't "
2592 "match prototype", name);
2593 }
2594
2595 if (is_definition && sig->is_defined) {
2596 YYLTYPE loc = this->get_location();
2597
2598 _mesa_glsl_error(& loc, state, "function `%s' redefined", name);
2599 }
2600 }
2601 } else {
2602 f = new(ctx) ir_function(name);
2603 if (!state->symbols->add_function(f)) {
2604 /* This function name shadows a non-function use of the same name. */
2605 YYLTYPE loc = this->get_location();
2606
2607 _mesa_glsl_error(&loc, state, "function name `%s' conflicts with "
2608 "non-function", name);
2609 return NULL;
2610 }
2611
2612 emit_function(state, instructions, f);
2613 }
2614
2615 /* Verify the return type of main() */
2616 if (strcmp(name, "main") == 0) {
2617 if (! return_type->is_void()) {
2618 YYLTYPE loc = this->get_location();
2619
2620 _mesa_glsl_error(& loc, state, "main() must return void");
2621 }
2622
2623 if (!hir_parameters.is_empty()) {
2624 YYLTYPE loc = this->get_location();
2625
2626 _mesa_glsl_error(& loc, state, "main() must not take any parameters");
2627 }
2628 }
2629
2630 /* Finish storing the information about this new function in its signature.
2631 */
2632 if (sig == NULL) {
2633 sig = new(ctx) ir_function_signature(return_type);
2634 f->add_signature(sig);
2635 }
2636
2637 sig->replace_parameters(&hir_parameters);
2638 signature = sig;
2639
2640 /* Function declarations (prototypes) do not have r-values.
2641 */
2642 return NULL;
2643 }
2644
2645
2646 ir_rvalue *
2647 ast_function_definition::hir(exec_list *instructions,
2648 struct _mesa_glsl_parse_state *state)
2649 {
2650 prototype->is_definition = true;
2651 prototype->hir(instructions, state);
2652
2653 ir_function_signature *signature = prototype->signature;
2654 if (signature == NULL)
2655 return NULL;
2656
2657 assert(state->current_function == NULL);
2658 state->current_function = signature;
2659 state->found_return = false;
2660
2661 /* Duplicate parameters declared in the prototype as concrete variables.
2662 * Add these to the symbol table.
2663 */
2664 state->symbols->push_scope();
2665 foreach_iter(exec_list_iterator, iter, signature->parameters) {
2666 ir_variable *const var = ((ir_instruction *) iter.get())->as_variable();
2667
2668 assert(var != NULL);
2669
2670 /* The only way a parameter would "exist" is if two parameters have
2671 * the same name.
2672 */
2673 if (state->symbols->name_declared_this_scope(var->name)) {
2674 YYLTYPE loc = this->get_location();
2675
2676 _mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name);
2677 } else {
2678 state->symbols->add_variable(var);
2679 }
2680 }
2681
2682 /* Convert the body of the function to HIR. */
2683 this->body->hir(&signature->body, state);
2684 signature->is_defined = true;
2685
2686 state->symbols->pop_scope();
2687
2688 assert(state->current_function == signature);
2689 state->current_function = NULL;
2690
2691 if (!signature->return_type->is_void() && !state->found_return) {
2692 YYLTYPE loc = this->get_location();
2693 _mesa_glsl_error(& loc, state, "function `%s' has non-void return type "
2694 "%s, but no return statement",
2695 signature->function_name(),
2696 signature->return_type->name);
2697 }
2698
2699 /* Function definitions do not have r-values.
2700 */
2701 return NULL;
2702 }
2703
2704
2705 ir_rvalue *
2706 ast_jump_statement::hir(exec_list *instructions,
2707 struct _mesa_glsl_parse_state *state)
2708 {
2709 void *ctx = state;
2710
2711 switch (mode) {
2712 case ast_return: {
2713 ir_return *inst;
2714 assert(state->current_function);
2715
2716 if (opt_return_value) {
2717 if (state->current_function->return_type->base_type ==
2718 GLSL_TYPE_VOID) {
2719 YYLTYPE loc = this->get_location();
2720
2721 _mesa_glsl_error(& loc, state,
2722 "`return` with a value, in function `%s' "
2723 "returning void",
2724 state->current_function->function_name());
2725 }
2726
2727 ir_rvalue *const ret = opt_return_value->hir(instructions, state);
2728 assert(ret != NULL);
2729
2730 /* Implicit conversions are not allowed for return values. */
2731 if (state->current_function->return_type != ret->type) {
2732 YYLTYPE loc = this->get_location();
2733
2734 _mesa_glsl_error(& loc, state,
2735 "`return' with wrong type %s, in function `%s' "
2736 "returning %s",
2737 ret->type->name,
2738 state->current_function->function_name(),
2739 state->current_function->return_type->name);
2740 }
2741
2742 inst = new(ctx) ir_return(ret);
2743 } else {
2744 if (state->current_function->return_type->base_type !=
2745 GLSL_TYPE_VOID) {
2746 YYLTYPE loc = this->get_location();
2747
2748 _mesa_glsl_error(& loc, state,
2749 "`return' with no value, in function %s returning "
2750 "non-void",
2751 state->current_function->function_name());
2752 }
2753 inst = new(ctx) ir_return;
2754 }
2755
2756 state->found_return = true;
2757 instructions->push_tail(inst);
2758 break;
2759 }
2760
2761 case ast_discard:
2762 if (state->target != fragment_shader) {
2763 YYLTYPE loc = this->get_location();
2764
2765 _mesa_glsl_error(& loc, state,
2766 "`discard' may only appear in a fragment shader");
2767 }
2768 instructions->push_tail(new(ctx) ir_discard);
2769 break;
2770
2771 case ast_break:
2772 case ast_continue:
2773 /* FINISHME: Handle switch-statements. They cannot contain 'continue',
2774 * FINISHME: and they use a different IR instruction for 'break'.
2775 */
2776 /* FINISHME: Correctly handle the nesting. If a switch-statement is
2777 * FINISHME: inside a loop, a 'continue' is valid and will bind to the
2778 * FINISHME: loop.
2779 */
2780 if (state->loop_or_switch_nesting == NULL) {
2781 YYLTYPE loc = this->get_location();
2782
2783 _mesa_glsl_error(& loc, state,
2784 "`%s' may only appear in a loop",
2785 (mode == ast_break) ? "break" : "continue");
2786 } else {
2787 ir_loop *const loop = state->loop_or_switch_nesting->as_loop();
2788
2789 /* Inline the for loop expression again, since we don't know
2790 * where near the end of the loop body the normal copy of it
2791 * is going to be placed.
2792 */
2793 if (mode == ast_continue &&
2794 state->loop_or_switch_nesting_ast->rest_expression) {
2795 state->loop_or_switch_nesting_ast->rest_expression->hir(instructions,
2796 state);
2797 }
2798
2799 if (loop != NULL) {
2800 ir_loop_jump *const jump =
2801 new(ctx) ir_loop_jump((mode == ast_break)
2802 ? ir_loop_jump::jump_break
2803 : ir_loop_jump::jump_continue);
2804 instructions->push_tail(jump);
2805 }
2806 }
2807
2808 break;
2809 }
2810
2811 /* Jump instructions do not have r-values.
2812 */
2813 return NULL;
2814 }
2815
2816
2817 ir_rvalue *
2818 ast_selection_statement::hir(exec_list *instructions,
2819 struct _mesa_glsl_parse_state *state)
2820 {
2821 void *ctx = state;
2822
2823 ir_rvalue *const condition = this->condition->hir(instructions, state);
2824
2825 /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
2826 *
2827 * "Any expression whose type evaluates to a Boolean can be used as the
2828 * conditional expression bool-expression. Vector types are not accepted
2829 * as the expression to if."
2830 *
2831 * The checks are separated so that higher quality diagnostics can be
2832 * generated for cases where both rules are violated.
2833 */
2834 if (!condition->type->is_boolean() || !condition->type->is_scalar()) {
2835 YYLTYPE loc = this->condition->get_location();
2836
2837 _mesa_glsl_error(& loc, state, "if-statement condition must be scalar "
2838 "boolean");
2839 }
2840
2841 ir_if *const stmt = new(ctx) ir_if(condition);
2842
2843 if (then_statement != NULL) {
2844 state->symbols->push_scope();
2845 then_statement->hir(& stmt->then_instructions, state);
2846 state->symbols->pop_scope();
2847 }
2848
2849 if (else_statement != NULL) {
2850 state->symbols->push_scope();
2851 else_statement->hir(& stmt->else_instructions, state);
2852 state->symbols->pop_scope();
2853 }
2854
2855 instructions->push_tail(stmt);
2856
2857 /* if-statements do not have r-values.
2858 */
2859 return NULL;
2860 }
2861
2862
2863 void
2864 ast_iteration_statement::condition_to_hir(ir_loop *stmt,
2865 struct _mesa_glsl_parse_state *state)
2866 {
2867 void *ctx = state;
2868
2869 if (condition != NULL) {
2870 ir_rvalue *const cond =
2871 condition->hir(& stmt->body_instructions, state);
2872
2873 if ((cond == NULL)
2874 || !cond->type->is_boolean() || !cond->type->is_scalar()) {
2875 YYLTYPE loc = condition->get_location();
2876
2877 _mesa_glsl_error(& loc, state,
2878 "loop condition must be scalar boolean");
2879 } else {
2880 /* As the first code in the loop body, generate a block that looks
2881 * like 'if (!condition) break;' as the loop termination condition.
2882 */
2883 ir_rvalue *const not_cond =
2884 new(ctx) ir_expression(ir_unop_logic_not, glsl_type::bool_type, cond,
2885 NULL);
2886
2887 ir_if *const if_stmt = new(ctx) ir_if(not_cond);
2888
2889 ir_jump *const break_stmt =
2890 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
2891
2892 if_stmt->then_instructions.push_tail(break_stmt);
2893 stmt->body_instructions.push_tail(if_stmt);
2894 }
2895 }
2896 }
2897
2898
2899 ir_rvalue *
2900 ast_iteration_statement::hir(exec_list *instructions,
2901 struct _mesa_glsl_parse_state *state)
2902 {
2903 void *ctx = state;
2904
2905 /* For-loops and while-loops start a new scope, but do-while loops do not.
2906 */
2907 if (mode != ast_do_while)
2908 state->symbols->push_scope();
2909
2910 if (init_statement != NULL)
2911 init_statement->hir(instructions, state);
2912
2913 ir_loop *const stmt = new(ctx) ir_loop();
2914 instructions->push_tail(stmt);
2915
2916 /* Track the current loop and / or switch-statement nesting.
2917 */
2918 ir_instruction *const nesting = state->loop_or_switch_nesting;
2919 ast_iteration_statement *nesting_ast = state->loop_or_switch_nesting_ast;
2920
2921 state->loop_or_switch_nesting = stmt;
2922 state->loop_or_switch_nesting_ast = this;
2923
2924 if (mode != ast_do_while)
2925 condition_to_hir(stmt, state);
2926
2927 if (body != NULL)
2928 body->hir(& stmt->body_instructions, state);
2929
2930 if (rest_expression != NULL)
2931 rest_expression->hir(& stmt->body_instructions, state);
2932
2933 if (mode == ast_do_while)
2934 condition_to_hir(stmt, state);
2935
2936 if (mode != ast_do_while)
2937 state->symbols->pop_scope();
2938
2939 /* Restore previous nesting before returning.
2940 */
2941 state->loop_or_switch_nesting = nesting;
2942 state->loop_or_switch_nesting_ast = nesting_ast;
2943
2944 /* Loops do not have r-values.
2945 */
2946 return NULL;
2947 }
2948
2949
2950 ir_rvalue *
2951 ast_type_specifier::hir(exec_list *instructions,
2952 struct _mesa_glsl_parse_state *state)
2953 {
2954 if (this->structure != NULL)
2955 return this->structure->hir(instructions, state);
2956
2957 return NULL;
2958 }
2959
2960
2961 ir_rvalue *
2962 ast_struct_specifier::hir(exec_list *instructions,
2963 struct _mesa_glsl_parse_state *state)
2964 {
2965 unsigned decl_count = 0;
2966
2967 /* Make an initial pass over the list of structure fields to determine how
2968 * many there are. Each element in this list is an ast_declarator_list.
2969 * This means that we actually need to count the number of elements in the
2970 * 'declarations' list in each of the elements.
2971 */
2972 foreach_list_typed (ast_declarator_list, decl_list, link,
2973 &this->declarations) {
2974 foreach_list_const (decl_ptr, & decl_list->declarations) {
2975 decl_count++;
2976 }
2977 }
2978
2979 /* Allocate storage for the structure fields and process the field
2980 * declarations. As the declarations are processed, try to also convert
2981 * the types to HIR. This ensures that structure definitions embedded in
2982 * other structure definitions are processed.
2983 */
2984 glsl_struct_field *const fields = talloc_array(state, glsl_struct_field,
2985 decl_count);
2986
2987 unsigned i = 0;
2988 foreach_list_typed (ast_declarator_list, decl_list, link,
2989 &this->declarations) {
2990 const char *type_name;
2991
2992 decl_list->type->specifier->hir(instructions, state);
2993
2994 /* Section 10.9 of the GLSL ES 1.00 specification states that
2995 * embedded structure definitions have been removed from the language.
2996 */
2997 if (state->es_shader && decl_list->type->specifier->structure != NULL) {
2998 YYLTYPE loc = this->get_location();
2999 _mesa_glsl_error(&loc, state, "Embedded structure definitions are "
3000 "not allowed in GLSL ES 1.00.");
3001 }
3002
3003 const glsl_type *decl_type =
3004 decl_list->type->specifier->glsl_type(& type_name, state);
3005
3006 foreach_list_typed (ast_declaration, decl, link,
3007 &decl_list->declarations) {
3008 const struct glsl_type *field_type = decl_type;
3009 if (decl->is_array) {
3010 YYLTYPE loc = decl->get_location();
3011 field_type = process_array_type(&loc, decl_type, decl->array_size,
3012 state);
3013 }
3014 fields[i].type = (field_type != NULL)
3015 ? field_type : glsl_type::error_type;
3016 fields[i].name = decl->identifier;
3017 i++;
3018 }
3019 }
3020
3021 assert(i == decl_count);
3022
3023 const glsl_type *t =
3024 glsl_type::get_record_instance(fields, decl_count, this->name);
3025
3026 YYLTYPE loc = this->get_location();
3027 if (!state->symbols->add_type(name, t)) {
3028 _mesa_glsl_error(& loc, state, "struct `%s' previously defined", name);
3029 } else {
3030
3031 const glsl_type **s = (const glsl_type **)
3032 realloc(state->user_structures,
3033 sizeof(state->user_structures[0]) *
3034 (state->num_user_structures + 1));
3035 if (s != NULL) {
3036 s[state->num_user_structures] = t;
3037 state->user_structures = s;
3038 state->num_user_structures++;
3039 }
3040 }
3041
3042 /* Structure type definitions do not have r-values.
3043 */
3044 return NULL;
3045 }