glsl2: Move temp declaration to correct side of if-statement in IR
[mesa.git] / src / glsl / ast_to_hir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file ast_to_hir.c
26 * Convert abstract syntax to to high-level intermediate reprensentation (HIR).
27 *
28 * During the conversion to HIR, the majority of the symantic checking is
29 * preformed on the program. This includes:
30 *
31 * * Symbol table management
32 * * Type checking
33 * * Function binding
34 *
35 * The majority of this work could be done during parsing, and the parser could
36 * probably generate HIR directly. However, this results in frequent changes
37 * to the parser code. Since we do not assume that every system this complier
38 * is built on will have Flex and Bison installed, we have to store the code
39 * generated by these tools in our version control system. In other parts of
40 * the system we've seen problems where a parser was changed but the generated
41 * code was not committed, merge conflicts where created because two developers
42 * had slightly different versions of Bison installed, etc.
43 *
44 * I have also noticed that running Bison generated parsers in GDB is very
45 * irritating. When you get a segfault on '$$ = $1->foo', you can't very
46 * well 'print $1' in GDB.
47 *
48 * As a result, my preference is to put as little C code as possible in the
49 * parser (and lexer) sources.
50 */
51
52 #include "main/imports.h"
53 #include "glsl_symbol_table.h"
54 #include "glsl_parser_extras.h"
55 #include "ast.h"
56 #include "glsl_types.h"
57 #include "ir.h"
58
59 void
60 _mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
61 {
62 _mesa_glsl_initialize_variables(instructions, state);
63 _mesa_glsl_initialize_functions(instructions, state);
64
65 state->current_function = NULL;
66
67 foreach_list_typed (ast_node, ast, link, & state->translation_unit)
68 ast->hir(instructions, state);
69 }
70
71
72 /**
73 * If a conversion is available, convert one operand to a different type
74 *
75 * The \c from \c ir_rvalue is converted "in place".
76 *
77 * \param to Type that the operand it to be converted to
78 * \param from Operand that is being converted
79 * \param state GLSL compiler state
80 *
81 * \return
82 * If a conversion is possible (or unnecessary), \c true is returned.
83 * Otherwise \c false is returned.
84 */
85 static bool
86 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
87 struct _mesa_glsl_parse_state *state)
88 {
89 void *ctx = state;
90 if (to->base_type == from->type->base_type)
91 return true;
92
93 /* This conversion was added in GLSL 1.20. If the compilation mode is
94 * GLSL 1.10, the conversion is skipped.
95 */
96 if (state->language_version < 120)
97 return false;
98
99 /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
100 *
101 * "There are no implicit array or structure conversions. For
102 * example, an array of int cannot be implicitly converted to an
103 * array of float. There are no implicit conversions between
104 * signed and unsigned integers."
105 */
106 /* FINISHME: The above comment is partially a lie. There is int/uint
107 * FINISHME: conversion for immediate constants.
108 */
109 if (!to->is_float() || !from->type->is_numeric())
110 return false;
111
112 /* Convert to a floating point type with the same number of components
113 * as the original type - i.e. int to float, not int to vec4.
114 */
115 to = glsl_type::get_instance(GLSL_TYPE_FLOAT, from->type->vector_elements,
116 from->type->matrix_columns);
117
118 switch (from->type->base_type) {
119 case GLSL_TYPE_INT:
120 from = new(ctx) ir_expression(ir_unop_i2f, to, from, NULL);
121 break;
122 case GLSL_TYPE_UINT:
123 from = new(ctx) ir_expression(ir_unop_u2f, to, from, NULL);
124 break;
125 case GLSL_TYPE_BOOL:
126 from = new(ctx) ir_expression(ir_unop_b2f, to, from, NULL);
127 break;
128 default:
129 assert(0);
130 }
131
132 return true;
133 }
134
135
136 static const struct glsl_type *
137 arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
138 bool multiply,
139 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
140 {
141 const glsl_type *type_a = value_a->type;
142 const glsl_type *type_b = value_b->type;
143
144 /* From GLSL 1.50 spec, page 56:
145 *
146 * "The arithmetic binary operators add (+), subtract (-),
147 * multiply (*), and divide (/) operate on integer and
148 * floating-point scalars, vectors, and matrices."
149 */
150 if (!type_a->is_numeric() || !type_b->is_numeric()) {
151 _mesa_glsl_error(loc, state,
152 "Operands to arithmetic operators must be numeric");
153 return glsl_type::error_type;
154 }
155
156
157 /* "If one operand is floating-point based and the other is
158 * not, then the conversions from Section 4.1.10 "Implicit
159 * Conversions" are applied to the non-floating-point-based operand."
160 */
161 if (!apply_implicit_conversion(type_a, value_b, state)
162 && !apply_implicit_conversion(type_b, value_a, state)) {
163 _mesa_glsl_error(loc, state,
164 "Could not implicitly convert operands to "
165 "arithmetic operator");
166 return glsl_type::error_type;
167 }
168 type_a = value_a->type;
169 type_b = value_b->type;
170
171 /* "If the operands are integer types, they must both be signed or
172 * both be unsigned."
173 *
174 * From this rule and the preceeding conversion it can be inferred that
175 * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
176 * The is_numeric check above already filtered out the case where either
177 * type is not one of these, so now the base types need only be tested for
178 * equality.
179 */
180 if (type_a->base_type != type_b->base_type) {
181 _mesa_glsl_error(loc, state,
182 "base type mismatch for arithmetic operator");
183 return glsl_type::error_type;
184 }
185
186 /* "All arithmetic binary operators result in the same fundamental type
187 * (signed integer, unsigned integer, or floating-point) as the
188 * operands they operate on, after operand type conversion. After
189 * conversion, the following cases are valid
190 *
191 * * The two operands are scalars. In this case the operation is
192 * applied, resulting in a scalar."
193 */
194 if (type_a->is_scalar() && type_b->is_scalar())
195 return type_a;
196
197 /* "* One operand is a scalar, and the other is a vector or matrix.
198 * In this case, the scalar operation is applied independently to each
199 * component of the vector or matrix, resulting in the same size
200 * vector or matrix."
201 */
202 if (type_a->is_scalar()) {
203 if (!type_b->is_scalar())
204 return type_b;
205 } else if (type_b->is_scalar()) {
206 return type_a;
207 }
208
209 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
210 * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
211 * handled.
212 */
213 assert(!type_a->is_scalar());
214 assert(!type_b->is_scalar());
215
216 /* "* The two operands are vectors of the same size. In this case, the
217 * operation is done component-wise resulting in the same size
218 * vector."
219 */
220 if (type_a->is_vector() && type_b->is_vector()) {
221 if (type_a == type_b) {
222 return type_a;
223 } else {
224 _mesa_glsl_error(loc, state,
225 "vector size mismatch for arithmetic operator");
226 return glsl_type::error_type;
227 }
228 }
229
230 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
231 * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
232 * <vector, vector> have been handled. At least one of the operands must
233 * be matrix. Further, since there are no integer matrix types, the base
234 * type of both operands must be float.
235 */
236 assert(type_a->is_matrix() || type_b->is_matrix());
237 assert(type_a->base_type == GLSL_TYPE_FLOAT);
238 assert(type_b->base_type == GLSL_TYPE_FLOAT);
239
240 /* "* The operator is add (+), subtract (-), or divide (/), and the
241 * operands are matrices with the same number of rows and the same
242 * number of columns. In this case, the operation is done component-
243 * wise resulting in the same size matrix."
244 * * The operator is multiply (*), where both operands are matrices or
245 * one operand is a vector and the other a matrix. A right vector
246 * operand is treated as a column vector and a left vector operand as a
247 * row vector. In all these cases, it is required that the number of
248 * columns of the left operand is equal to the number of rows of the
249 * right operand. Then, the multiply (*) operation does a linear
250 * algebraic multiply, yielding an object that has the same number of
251 * rows as the left operand and the same number of columns as the right
252 * operand. Section 5.10 "Vector and Matrix Operations" explains in
253 * more detail how vectors and matrices are operated on."
254 */
255 if (! multiply) {
256 if (type_a == type_b)
257 return type_a;
258 } else {
259 if (type_a->is_matrix() && type_b->is_matrix()) {
260 /* Matrix multiply. The columns of A must match the rows of B. Given
261 * the other previously tested constraints, this means the vector type
262 * of a row from A must be the same as the vector type of a column from
263 * B.
264 */
265 if (type_a->row_type() == type_b->column_type()) {
266 /* The resulting matrix has the number of columns of matrix B and
267 * the number of rows of matrix A. We get the row count of A by
268 * looking at the size of a vector that makes up a column. The
269 * transpose (size of a row) is done for B.
270 */
271 const glsl_type *const type =
272 glsl_type::get_instance(type_a->base_type,
273 type_a->column_type()->vector_elements,
274 type_b->row_type()->vector_elements);
275 assert(type != glsl_type::error_type);
276
277 return type;
278 }
279 } else if (type_a->is_matrix()) {
280 /* A is a matrix and B is a column vector. Columns of A must match
281 * rows of B. Given the other previously tested constraints, this
282 * means the vector type of a row from A must be the same as the
283 * vector the type of B.
284 */
285 if (type_a->row_type() == type_b)
286 return type_b;
287 } else {
288 assert(type_b->is_matrix());
289
290 /* A is a row vector and B is a matrix. Columns of A must match rows
291 * of B. Given the other previously tested constraints, this means
292 * the type of A must be the same as the vector type of a column from
293 * B.
294 */
295 if (type_a == type_b->column_type())
296 return type_a;
297 }
298
299 _mesa_glsl_error(loc, state, "size mismatch for matrix multiplication");
300 return glsl_type::error_type;
301 }
302
303
304 /* "All other cases are illegal."
305 */
306 _mesa_glsl_error(loc, state, "type mismatch");
307 return glsl_type::error_type;
308 }
309
310
311 static const struct glsl_type *
312 unary_arithmetic_result_type(const struct glsl_type *type,
313 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
314 {
315 /* From GLSL 1.50 spec, page 57:
316 *
317 * "The arithmetic unary operators negate (-), post- and pre-increment
318 * and decrement (-- and ++) operate on integer or floating-point
319 * values (including vectors and matrices). All unary operators work
320 * component-wise on their operands. These result with the same type
321 * they operated on."
322 */
323 if (!type->is_numeric()) {
324 _mesa_glsl_error(loc, state,
325 "Operands to arithmetic operators must be numeric");
326 return glsl_type::error_type;
327 }
328
329 return type;
330 }
331
332
333 static const struct glsl_type *
334 modulus_result_type(const struct glsl_type *type_a,
335 const struct glsl_type *type_b,
336 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
337 {
338 /* From GLSL 1.50 spec, page 56:
339 * "The operator modulus (%) operates on signed or unsigned integers or
340 * integer vectors. The operand types must both be signed or both be
341 * unsigned."
342 */
343 if (!type_a->is_integer() || !type_b->is_integer()
344 || (type_a->base_type != type_b->base_type)) {
345 _mesa_glsl_error(loc, state, "type mismatch");
346 return glsl_type::error_type;
347 }
348
349 /* "The operands cannot be vectors of differing size. If one operand is
350 * a scalar and the other vector, then the scalar is applied component-
351 * wise to the vector, resulting in the same type as the vector. If both
352 * are vectors of the same size, the result is computed component-wise."
353 */
354 if (type_a->is_vector()) {
355 if (!type_b->is_vector()
356 || (type_a->vector_elements == type_b->vector_elements))
357 return type_a;
358 } else
359 return type_b;
360
361 /* "The operator modulus (%) is not defined for any other data types
362 * (non-integer types)."
363 */
364 _mesa_glsl_error(loc, state, "type mismatch");
365 return glsl_type::error_type;
366 }
367
368
369 static const struct glsl_type *
370 relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
371 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
372 {
373 const glsl_type *type_a = value_a->type;
374 const glsl_type *type_b = value_b->type;
375
376 /* From GLSL 1.50 spec, page 56:
377 * "The relational operators greater than (>), less than (<), greater
378 * than or equal (>=), and less than or equal (<=) operate only on
379 * scalar integer and scalar floating-point expressions."
380 */
381 if (!type_a->is_numeric()
382 || !type_b->is_numeric()
383 || !type_a->is_scalar()
384 || !type_b->is_scalar()) {
385 _mesa_glsl_error(loc, state,
386 "Operands to relational operators must be scalar and "
387 "numeric");
388 return glsl_type::error_type;
389 }
390
391 /* "Either the operands' types must match, or the conversions from
392 * Section 4.1.10 "Implicit Conversions" will be applied to the integer
393 * operand, after which the types must match."
394 */
395 if (!apply_implicit_conversion(type_a, value_b, state)
396 && !apply_implicit_conversion(type_b, value_a, state)) {
397 _mesa_glsl_error(loc, state,
398 "Could not implicitly convert operands to "
399 "relational operator");
400 return glsl_type::error_type;
401 }
402 type_a = value_a->type;
403 type_b = value_b->type;
404
405 if (type_a->base_type != type_b->base_type) {
406 _mesa_glsl_error(loc, state, "base type mismatch");
407 return glsl_type::error_type;
408 }
409
410 /* "The result is scalar Boolean."
411 */
412 return glsl_type::bool_type;
413 }
414
415
416 /**
417 * Validates that a value can be assigned to a location with a specified type
418 *
419 * Validates that \c rhs can be assigned to some location. If the types are
420 * not an exact match but an automatic conversion is possible, \c rhs will be
421 * converted.
422 *
423 * \return
424 * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
425 * Otherwise the actual RHS to be assigned will be returned. This may be
426 * \c rhs, or it may be \c rhs after some type conversion.
427 *
428 * \note
429 * In addition to being used for assignments, this function is used to
430 * type-check return values.
431 */
432 ir_rvalue *
433 validate_assignment(struct _mesa_glsl_parse_state *state,
434 const glsl_type *lhs_type, ir_rvalue *rhs)
435 {
436 const glsl_type *rhs_type = rhs->type;
437
438 /* If there is already some error in the RHS, just return it. Anything
439 * else will lead to an avalanche of error message back to the user.
440 */
441 if (rhs_type->is_error())
442 return rhs;
443
444 /* If the types are identical, the assignment can trivially proceed.
445 */
446 if (rhs_type == lhs_type)
447 return rhs;
448
449 /* If the array element types are the same and the size of the LHS is zero,
450 * the assignment is okay.
451 *
452 * Note: Whole-array assignments are not permitted in GLSL 1.10, but this
453 * is handled by ir_dereference::is_lvalue.
454 */
455 if (lhs_type->is_array() && rhs->type->is_array()
456 && (lhs_type->element_type() == rhs->type->element_type())
457 && (lhs_type->array_size() == 0)) {
458 return rhs;
459 }
460
461 /* Check for implicit conversion in GLSL 1.20 */
462 if (apply_implicit_conversion(lhs_type, rhs, state)) {
463 rhs_type = rhs->type;
464 if (rhs_type == lhs_type)
465 return rhs;
466 }
467
468 return NULL;
469 }
470
471 ir_rvalue *
472 do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state,
473 ir_rvalue *lhs, ir_rvalue *rhs,
474 YYLTYPE lhs_loc)
475 {
476 void *ctx = state;
477 bool error_emitted = (lhs->type->is_error() || rhs->type->is_error());
478
479 if (!error_emitted) {
480 /* FINISHME: This does not handle 'foo.bar.a.b.c[5].d = 5' */
481 if (!lhs->is_lvalue()) {
482 _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment");
483 error_emitted = true;
484 }
485 }
486
487 ir_rvalue *new_rhs = validate_assignment(state, lhs->type, rhs);
488 if (new_rhs == NULL) {
489 _mesa_glsl_error(& lhs_loc, state, "type mismatch");
490 } else {
491 rhs = new_rhs;
492
493 /* If the LHS array was not declared with a size, it takes it size from
494 * the RHS. If the LHS is an l-value and a whole array, it must be a
495 * dereference of a variable. Any other case would require that the LHS
496 * is either not an l-value or not a whole array.
497 */
498 if (lhs->type->array_size() == 0) {
499 ir_dereference *const d = lhs->as_dereference();
500
501 assert(d != NULL);
502
503 ir_variable *const var = d->variable_referenced();
504
505 assert(var != NULL);
506
507 if (var->max_array_access >= unsigned(rhs->type->array_size())) {
508 /* FINISHME: This should actually log the location of the RHS. */
509 _mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to "
510 "previous access",
511 var->max_array_access);
512 }
513
514 var->type = glsl_type::get_array_instance(state,
515 lhs->type->element_type(),
516 rhs->type->array_size());
517 }
518 }
519
520 /* Most callers of do_assignment (assign, add_assign, pre_inc/dec,
521 * but not post_inc) need the converted assigned value as an rvalue
522 * to handle things like:
523 *
524 * i = j += 1;
525 *
526 * So we always just store the computed value being assigned to a
527 * temporary and return a deref of that temporary. If the rvalue
528 * ends up not being used, the temp will get copy-propagated out.
529 */
530 ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp");
531 ir_dereference_variable *deref_var = new(ctx) ir_dereference_variable(var);
532 instructions->push_tail(var);
533 instructions->push_tail(new(ctx) ir_assignment(deref_var,
534 rhs,
535 NULL));
536 deref_var = new(ctx) ir_dereference_variable(var);
537
538 instructions->push_tail(new(ctx) ir_assignment(lhs,
539 deref_var,
540 NULL));
541
542 return new(ctx) ir_dereference_variable(var);
543 }
544
545 static ir_rvalue *
546 get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue)
547 {
548 void *ctx = talloc_parent(lvalue);
549 ir_variable *var;
550
551 /* FINISHME: Give unique names to the temporaries. */
552 var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp");
553 instructions->push_tail(var);
554 var->mode = ir_var_auto;
555
556 instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
557 lvalue, NULL));
558
559 /* Once we've created this temporary, mark it read only so it's no
560 * longer considered an lvalue.
561 */
562 var->read_only = true;
563
564 return new(ctx) ir_dereference_variable(var);
565 }
566
567
568 ir_rvalue *
569 ast_node::hir(exec_list *instructions,
570 struct _mesa_glsl_parse_state *state)
571 {
572 (void) instructions;
573 (void) state;
574
575 return NULL;
576 }
577
578
579 ir_rvalue *
580 ast_expression::hir(exec_list *instructions,
581 struct _mesa_glsl_parse_state *state)
582 {
583 void *ctx = state;
584 static const int operations[AST_NUM_OPERATORS] = {
585 -1, /* ast_assign doesn't convert to ir_expression. */
586 -1, /* ast_plus doesn't convert to ir_expression. */
587 ir_unop_neg,
588 ir_binop_add,
589 ir_binop_sub,
590 ir_binop_mul,
591 ir_binop_div,
592 ir_binop_mod,
593 ir_binop_lshift,
594 ir_binop_rshift,
595 ir_binop_less,
596 ir_binop_greater,
597 ir_binop_lequal,
598 ir_binop_gequal,
599 ir_binop_equal,
600 ir_binop_nequal,
601 ir_binop_bit_and,
602 ir_binop_bit_xor,
603 ir_binop_bit_or,
604 ir_unop_bit_not,
605 ir_binop_logic_and,
606 ir_binop_logic_xor,
607 ir_binop_logic_or,
608 ir_unop_logic_not,
609
610 /* Note: The following block of expression types actually convert
611 * to multiple IR instructions.
612 */
613 ir_binop_mul, /* ast_mul_assign */
614 ir_binop_div, /* ast_div_assign */
615 ir_binop_mod, /* ast_mod_assign */
616 ir_binop_add, /* ast_add_assign */
617 ir_binop_sub, /* ast_sub_assign */
618 ir_binop_lshift, /* ast_ls_assign */
619 ir_binop_rshift, /* ast_rs_assign */
620 ir_binop_bit_and, /* ast_and_assign */
621 ir_binop_bit_xor, /* ast_xor_assign */
622 ir_binop_bit_or, /* ast_or_assign */
623
624 -1, /* ast_conditional doesn't convert to ir_expression. */
625 ir_binop_add, /* ast_pre_inc. */
626 ir_binop_sub, /* ast_pre_dec. */
627 ir_binop_add, /* ast_post_inc. */
628 ir_binop_sub, /* ast_post_dec. */
629 -1, /* ast_field_selection doesn't conv to ir_expression. */
630 -1, /* ast_array_index doesn't convert to ir_expression. */
631 -1, /* ast_function_call doesn't conv to ir_expression. */
632 -1, /* ast_identifier doesn't convert to ir_expression. */
633 -1, /* ast_int_constant doesn't convert to ir_expression. */
634 -1, /* ast_uint_constant doesn't conv to ir_expression. */
635 -1, /* ast_float_constant doesn't conv to ir_expression. */
636 -1, /* ast_bool_constant doesn't conv to ir_expression. */
637 -1, /* ast_sequence doesn't convert to ir_expression. */
638 };
639 ir_rvalue *result = NULL;
640 ir_rvalue *op[2];
641 const struct glsl_type *type = glsl_type::error_type;
642 bool error_emitted = false;
643 YYLTYPE loc;
644
645 loc = this->get_location();
646
647 switch (this->oper) {
648 case ast_assign: {
649 op[0] = this->subexpressions[0]->hir(instructions, state);
650 op[1] = this->subexpressions[1]->hir(instructions, state);
651
652 result = do_assignment(instructions, state, op[0], op[1],
653 this->subexpressions[0]->get_location());
654 error_emitted = result->type->is_error();
655 type = result->type;
656 break;
657 }
658
659 case ast_plus:
660 op[0] = this->subexpressions[0]->hir(instructions, state);
661
662 error_emitted = op[0]->type->is_error();
663 if (type->is_error())
664 op[0]->type = type;
665
666 result = op[0];
667 break;
668
669 case ast_neg:
670 op[0] = this->subexpressions[0]->hir(instructions, state);
671
672 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
673
674 error_emitted = type->is_error();
675
676 result = new(ctx) ir_expression(operations[this->oper], type,
677 op[0], NULL);
678 break;
679
680 case ast_add:
681 case ast_sub:
682 case ast_mul:
683 case ast_div:
684 op[0] = this->subexpressions[0]->hir(instructions, state);
685 op[1] = this->subexpressions[1]->hir(instructions, state);
686
687 type = arithmetic_result_type(op[0], op[1],
688 (this->oper == ast_mul),
689 state, & loc);
690 error_emitted = type->is_error();
691
692 result = new(ctx) ir_expression(operations[this->oper], type,
693 op[0], op[1]);
694 break;
695
696 case ast_mod:
697 op[0] = this->subexpressions[0]->hir(instructions, state);
698 op[1] = this->subexpressions[1]->hir(instructions, state);
699
700 type = modulus_result_type(op[0]->type, op[1]->type, state, & loc);
701
702 assert(operations[this->oper] == ir_binop_mod);
703
704 result = new(ctx) ir_expression(operations[this->oper], type,
705 op[0], op[1]);
706 error_emitted = type->is_error();
707 break;
708
709 case ast_lshift:
710 case ast_rshift:
711 _mesa_glsl_error(& loc, state, "FINISHME: implement bit-shift operators");
712 error_emitted = true;
713 break;
714
715 case ast_less:
716 case ast_greater:
717 case ast_lequal:
718 case ast_gequal:
719 op[0] = this->subexpressions[0]->hir(instructions, state);
720 op[1] = this->subexpressions[1]->hir(instructions, state);
721
722 type = relational_result_type(op[0], op[1], state, & loc);
723
724 /* The relational operators must either generate an error or result
725 * in a scalar boolean. See page 57 of the GLSL 1.50 spec.
726 */
727 assert(type->is_error()
728 || ((type->base_type == GLSL_TYPE_BOOL)
729 && type->is_scalar()));
730
731 result = new(ctx) ir_expression(operations[this->oper], type,
732 op[0], op[1]);
733 error_emitted = type->is_error();
734 break;
735
736 case ast_nequal:
737 case ast_equal:
738 op[0] = this->subexpressions[0]->hir(instructions, state);
739 op[1] = this->subexpressions[1]->hir(instructions, state);
740
741 /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
742 *
743 * "The equality operators equal (==), and not equal (!=)
744 * operate on all types. They result in a scalar Boolean. If
745 * the operand types do not match, then there must be a
746 * conversion from Section 4.1.10 "Implicit Conversions"
747 * applied to one operand that can make them match, in which
748 * case this conversion is done."
749 */
750 if ((!apply_implicit_conversion(op[0]->type, op[1], state)
751 && !apply_implicit_conversion(op[1]->type, op[0], state))
752 || (op[0]->type != op[1]->type)) {
753 _mesa_glsl_error(& loc, state, "operands of `%s' must have the same "
754 "type", (this->oper == ast_equal) ? "==" : "!=");
755 error_emitted = true;
756 } else if ((state->language_version <= 110)
757 && (op[0]->type->is_array() || op[1]->type->is_array())) {
758 _mesa_glsl_error(& loc, state, "array comparisons forbidden in "
759 "GLSL 1.10");
760 error_emitted = true;
761 }
762
763 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
764 op[0], op[1]);
765 type = glsl_type::bool_type;
766
767 assert(result->type == glsl_type::bool_type);
768 break;
769
770 case ast_bit_and:
771 case ast_bit_xor:
772 case ast_bit_or:
773 case ast_bit_not:
774 _mesa_glsl_error(& loc, state, "FINISHME: implement bit-wise operators");
775 error_emitted = true;
776 break;
777
778 case ast_logic_and: {
779 op[0] = this->subexpressions[0]->hir(instructions, state);
780
781 if (!op[0]->type->is_boolean() || !op[0]->type->is_scalar()) {
782 YYLTYPE loc = this->subexpressions[0]->get_location();
783
784 _mesa_glsl_error(& loc, state, "LHS of `%s' must be scalar boolean",
785 operator_string(this->oper));
786 error_emitted = true;
787 }
788
789 ir_constant *op0_const = op[0]->constant_expression_value();
790 if (op0_const) {
791 if (op0_const->value.b[0]) {
792 op[1] = this->subexpressions[1]->hir(instructions, state);
793
794 if (!op[1]->type->is_boolean() || !op[1]->type->is_scalar()) {
795 YYLTYPE loc = this->subexpressions[1]->get_location();
796
797 _mesa_glsl_error(& loc, state,
798 "RHS of `%s' must be scalar boolean",
799 operator_string(this->oper));
800 error_emitted = true;
801 }
802 result = op[1];
803 } else {
804 result = op0_const;
805 }
806 type = glsl_type::bool_type;
807 } else {
808 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
809 "and_tmp");
810 instructions->push_tail(tmp);
811
812 ir_if *const stmt = new(ctx) ir_if(op[0]);
813 instructions->push_tail(stmt);
814
815 op[1] = this->subexpressions[1]->hir(&stmt->then_instructions, state);
816
817 if (!op[1]->type->is_boolean() || !op[1]->type->is_scalar()) {
818 YYLTYPE loc = this->subexpressions[1]->get_location();
819
820 _mesa_glsl_error(& loc, state,
821 "RHS of `%s' must be scalar boolean",
822 operator_string(this->oper));
823 error_emitted = true;
824 }
825
826 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
827 ir_assignment *const then_assign =
828 new(ctx) ir_assignment(then_deref, op[1], NULL);
829 stmt->then_instructions.push_tail(then_assign);
830
831 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
832 ir_assignment *const else_assign =
833 new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false), NULL);
834 stmt->else_instructions.push_tail(else_assign);
835
836 result = new(ctx) ir_dereference_variable(tmp);
837 type = tmp->type;
838 }
839 break;
840 }
841
842 case ast_logic_or: {
843 op[0] = this->subexpressions[0]->hir(instructions, state);
844
845 if (!op[0]->type->is_boolean() || !op[0]->type->is_scalar()) {
846 YYLTYPE loc = this->subexpressions[0]->get_location();
847
848 _mesa_glsl_error(& loc, state, "LHS of `%s' must be scalar boolean",
849 operator_string(this->oper));
850 error_emitted = true;
851 }
852
853 ir_constant *op0_const = op[0]->constant_expression_value();
854 if (op0_const) {
855 if (op0_const->value.b[0]) {
856 result = op0_const;
857 } else {
858 op[1] = this->subexpressions[1]->hir(instructions, state);
859
860 if (!op[1]->type->is_boolean() || !op[1]->type->is_scalar()) {
861 YYLTYPE loc = this->subexpressions[1]->get_location();
862
863 _mesa_glsl_error(& loc, state,
864 "RHS of `%s' must be scalar boolean",
865 operator_string(this->oper));
866 error_emitted = true;
867 }
868 result = op[1];
869 }
870 type = glsl_type::bool_type;
871 } else {
872 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
873 "or_tmp");
874 instructions->push_tail(tmp);
875
876 ir_if *const stmt = new(ctx) ir_if(op[0]);
877 instructions->push_tail(stmt);
878
879 op[1] = this->subexpressions[1]->hir(&stmt->then_instructions, state);
880
881 if (!op[1]->type->is_boolean() || !op[1]->type->is_scalar()) {
882 YYLTYPE loc = this->subexpressions[1]->get_location();
883
884 _mesa_glsl_error(& loc, state, "RHS of `%s' must be scalar boolean",
885 operator_string(this->oper));
886 error_emitted = true;
887 }
888
889 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
890 ir_assignment *const then_assign =
891 new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true), NULL);
892 stmt->then_instructions.push_tail(then_assign);
893
894 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
895 ir_assignment *const else_assign =
896 new(ctx) ir_assignment(else_deref, op[1], NULL);
897 stmt->else_instructions.push_tail(else_assign);
898
899 result = new(ctx) ir_dereference_variable(tmp);
900 type = tmp->type;
901 }
902 break;
903 }
904
905 case ast_logic_xor:
906 op[0] = this->subexpressions[0]->hir(instructions, state);
907 op[1] = this->subexpressions[1]->hir(instructions, state);
908
909
910 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
911 op[0], op[1]);
912 type = glsl_type::bool_type;
913 break;
914
915 case ast_logic_not:
916 op[0] = this->subexpressions[0]->hir(instructions, state);
917
918 if (!op[0]->type->is_boolean() || !op[0]->type->is_scalar()) {
919 YYLTYPE loc = this->subexpressions[0]->get_location();
920
921 _mesa_glsl_error(& loc, state,
922 "operand of `!' must be scalar boolean");
923 error_emitted = true;
924 }
925
926 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
927 op[0], NULL);
928 type = glsl_type::bool_type;
929 break;
930
931 case ast_mul_assign:
932 case ast_div_assign:
933 case ast_add_assign:
934 case ast_sub_assign: {
935 op[0] = this->subexpressions[0]->hir(instructions, state);
936 op[1] = this->subexpressions[1]->hir(instructions, state);
937
938 type = arithmetic_result_type(op[0], op[1],
939 (this->oper == ast_mul_assign),
940 state, & loc);
941
942 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
943 op[0], op[1]);
944
945 result = do_assignment(instructions, state,
946 op[0]->clone(NULL), temp_rhs,
947 this->subexpressions[0]->get_location());
948 type = result->type;
949 error_emitted = (op[0]->type->is_error());
950
951 /* GLSL 1.10 does not allow array assignment. However, we don't have to
952 * explicitly test for this because none of the binary expression
953 * operators allow array operands either.
954 */
955
956 break;
957 }
958
959 case ast_mod_assign: {
960 op[0] = this->subexpressions[0]->hir(instructions, state);
961 op[1] = this->subexpressions[1]->hir(instructions, state);
962
963 type = modulus_result_type(op[0]->type, op[1]->type, state, & loc);
964
965 assert(operations[this->oper] == ir_binop_mod);
966
967 struct ir_rvalue *temp_rhs;
968 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
969 op[0], op[1]);
970
971 result = do_assignment(instructions, state,
972 op[0]->clone(NULL), temp_rhs,
973 this->subexpressions[0]->get_location());
974 type = result->type;
975 error_emitted = type->is_error();
976 break;
977 }
978
979 case ast_ls_assign:
980 case ast_rs_assign:
981 _mesa_glsl_error(& loc, state,
982 "FINISHME: implement bit-shift assignment operators");
983 error_emitted = true;
984 break;
985
986 case ast_and_assign:
987 case ast_xor_assign:
988 case ast_or_assign:
989 _mesa_glsl_error(& loc, state,
990 "FINISHME: implement logic assignment operators");
991 error_emitted = true;
992 break;
993
994 case ast_conditional: {
995 op[0] = this->subexpressions[0]->hir(instructions, state);
996
997 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
998 *
999 * "The ternary selection operator (?:). It operates on three
1000 * expressions (exp1 ? exp2 : exp3). This operator evaluates the
1001 * first expression, which must result in a scalar Boolean."
1002 */
1003 if (!op[0]->type->is_boolean() || !op[0]->type->is_scalar()) {
1004 YYLTYPE loc = this->subexpressions[0]->get_location();
1005
1006 _mesa_glsl_error(& loc, state, "?: condition must be scalar boolean");
1007 error_emitted = true;
1008 }
1009
1010 /* The :? operator is implemented by generating an anonymous temporary
1011 * followed by an if-statement. The last instruction in each branch of
1012 * the if-statement assigns a value to the anonymous temporary. This
1013 * temporary is the r-value of the expression.
1014 */
1015 exec_list then_instructions;
1016 exec_list else_instructions;
1017
1018 op[1] = this->subexpressions[1]->hir(&then_instructions, state);
1019 op[2] = this->subexpressions[2]->hir(&else_instructions, state);
1020
1021 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1022 *
1023 * "The second and third expressions can be any type, as
1024 * long their types match, or there is a conversion in
1025 * Section 4.1.10 "Implicit Conversions" that can be applied
1026 * to one of the expressions to make their types match. This
1027 * resulting matching type is the type of the entire
1028 * expression."
1029 */
1030 if ((!apply_implicit_conversion(op[1]->type, op[2], state)
1031 && !apply_implicit_conversion(op[2]->type, op[1], state))
1032 || (op[1]->type != op[2]->type)) {
1033 YYLTYPE loc = this->subexpressions[1]->get_location();
1034
1035 _mesa_glsl_error(& loc, state, "Second and third operands of ?: "
1036 "operator must have matching types.");
1037 error_emitted = true;
1038 type = glsl_type::error_type;
1039 } else {
1040 type = op[1]->type;
1041 }
1042
1043 ir_constant *cond_val = op[0]->constant_expression_value();
1044 ir_constant *then_val = op[1]->constant_expression_value();
1045 ir_constant *else_val = op[2]->constant_expression_value();
1046
1047 if (then_instructions.is_empty()
1048 && else_instructions.is_empty()
1049 && (cond_val != NULL) && (then_val != NULL) && (else_val != NULL)) {
1050 result = (cond_val->value.b[0]) ? then_val : else_val;
1051 } else {
1052 ir_variable *const tmp = new(ctx) ir_variable(type, "conditional_tmp");
1053 instructions->push_tail(tmp);
1054
1055 ir_if *const stmt = new(ctx) ir_if(op[0]);
1056 instructions->push_tail(stmt);
1057
1058 then_instructions.move_nodes_to(& stmt->then_instructions);
1059 ir_dereference *const then_deref =
1060 new(ctx) ir_dereference_variable(tmp);
1061 ir_assignment *const then_assign =
1062 new(ctx) ir_assignment(then_deref, op[1], NULL);
1063 stmt->then_instructions.push_tail(then_assign);
1064
1065 else_instructions.move_nodes_to(& stmt->else_instructions);
1066 ir_dereference *const else_deref =
1067 new(ctx) ir_dereference_variable(tmp);
1068 ir_assignment *const else_assign =
1069 new(ctx) ir_assignment(else_deref, op[2], NULL);
1070 stmt->else_instructions.push_tail(else_assign);
1071
1072 result = new(ctx) ir_dereference_variable(tmp);
1073 }
1074 break;
1075 }
1076
1077 case ast_pre_inc:
1078 case ast_pre_dec: {
1079 op[0] = this->subexpressions[0]->hir(instructions, state);
1080 if (op[0]->type->base_type == GLSL_TYPE_FLOAT)
1081 op[1] = new(ctx) ir_constant(1.0f);
1082 else
1083 op[1] = new(ctx) ir_constant(1);
1084
1085 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1086
1087 struct ir_rvalue *temp_rhs;
1088 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1089 op[0], op[1]);
1090
1091 result = do_assignment(instructions, state,
1092 op[0]->clone(NULL), temp_rhs,
1093 this->subexpressions[0]->get_location());
1094 type = result->type;
1095 error_emitted = op[0]->type->is_error();
1096 break;
1097 }
1098
1099 case ast_post_inc:
1100 case ast_post_dec: {
1101 op[0] = this->subexpressions[0]->hir(instructions, state);
1102 if (op[0]->type->base_type == GLSL_TYPE_FLOAT)
1103 op[1] = new(ctx) ir_constant(1.0f);
1104 else
1105 op[1] = new(ctx) ir_constant(1);
1106
1107 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1108
1109 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1110
1111 struct ir_rvalue *temp_rhs;
1112 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1113 op[0], op[1]);
1114
1115 /* Get a temporary of a copy of the lvalue before it's modified.
1116 * This may get thrown away later.
1117 */
1118 result = get_lvalue_copy(instructions, op[0]->clone(NULL));
1119
1120 (void)do_assignment(instructions, state,
1121 op[0]->clone(NULL), temp_rhs,
1122 this->subexpressions[0]->get_location());
1123
1124 type = result->type;
1125 error_emitted = op[0]->type->is_error();
1126 break;
1127 }
1128
1129 case ast_field_selection:
1130 result = _mesa_ast_field_selection_to_hir(this, instructions, state);
1131 type = result->type;
1132 break;
1133
1134 case ast_array_index: {
1135 YYLTYPE index_loc = subexpressions[1]->get_location();
1136
1137 op[0] = subexpressions[0]->hir(instructions, state);
1138 op[1] = subexpressions[1]->hir(instructions, state);
1139
1140 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1141
1142 ir_rvalue *const array = op[0];
1143
1144 result = new(ctx) ir_dereference_array(op[0], op[1]);
1145
1146 /* Do not use op[0] after this point. Use array.
1147 */
1148 op[0] = NULL;
1149
1150
1151 if (error_emitted)
1152 break;
1153
1154 if (!array->type->is_array()
1155 && !array->type->is_matrix()
1156 && !array->type->is_vector()) {
1157 _mesa_glsl_error(& index_loc, state,
1158 "cannot dereference non-array / non-matrix / "
1159 "non-vector");
1160 error_emitted = true;
1161 }
1162
1163 if (!op[1]->type->is_integer()) {
1164 _mesa_glsl_error(& index_loc, state,
1165 "array index must be integer type");
1166 error_emitted = true;
1167 } else if (!op[1]->type->is_scalar()) {
1168 _mesa_glsl_error(& index_loc, state,
1169 "array index must be scalar");
1170 error_emitted = true;
1171 }
1172
1173 /* If the array index is a constant expression and the array has a
1174 * declared size, ensure that the access is in-bounds. If the array
1175 * index is not a constant expression, ensure that the array has a
1176 * declared size.
1177 */
1178 ir_constant *const const_index = op[1]->constant_expression_value();
1179 if (const_index != NULL) {
1180 const int idx = const_index->value.i[0];
1181 const char *type_name;
1182 unsigned bound = 0;
1183
1184 if (array->type->is_matrix()) {
1185 type_name = "matrix";
1186 } else if (array->type->is_vector()) {
1187 type_name = "vector";
1188 } else {
1189 type_name = "array";
1190 }
1191
1192 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec:
1193 *
1194 * "It is illegal to declare an array with a size, and then
1195 * later (in the same shader) index the same array with an
1196 * integral constant expression greater than or equal to the
1197 * declared size. It is also illegal to index an array with a
1198 * negative constant expression."
1199 */
1200 if (array->type->is_matrix()) {
1201 if (array->type->row_type()->vector_elements <= idx) {
1202 bound = array->type->row_type()->vector_elements;
1203 }
1204 } else if (array->type->is_vector()) {
1205 if (array->type->vector_elements <= idx) {
1206 bound = array->type->vector_elements;
1207 }
1208 } else {
1209 if ((array->type->array_size() > 0)
1210 && (array->type->array_size() <= idx)) {
1211 bound = array->type->array_size();
1212 }
1213 }
1214
1215 if (bound > 0) {
1216 _mesa_glsl_error(& loc, state, "%s index must be < %u",
1217 type_name, bound);
1218 error_emitted = true;
1219 } else if (idx < 0) {
1220 _mesa_glsl_error(& loc, state, "%s index must be >= 0",
1221 type_name);
1222 error_emitted = true;
1223 }
1224
1225 if (array->type->is_array()) {
1226 /* If the array is a variable dereference, it dereferences the
1227 * whole array, by definition. Use this to get the variable.
1228 *
1229 * FINISHME: Should some methods for getting / setting / testing
1230 * FINISHME: array access limits be added to ir_dereference?
1231 */
1232 ir_variable *const v = array->whole_variable_referenced();
1233 if ((v != NULL) && (unsigned(idx) > v->max_array_access))
1234 v->max_array_access = idx;
1235 }
1236 }
1237
1238 if (error_emitted)
1239 result->type = glsl_type::error_type;
1240
1241 type = result->type;
1242 break;
1243 }
1244
1245 case ast_function_call:
1246 /* Should *NEVER* get here. ast_function_call should always be handled
1247 * by ast_function_expression::hir.
1248 */
1249 assert(0);
1250 break;
1251
1252 case ast_identifier: {
1253 /* ast_identifier can appear several places in a full abstract syntax
1254 * tree. This particular use must be at location specified in the grammar
1255 * as 'variable_identifier'.
1256 */
1257 ir_variable *var =
1258 state->symbols->get_variable(this->primary_expression.identifier);
1259
1260 result = new(ctx) ir_dereference_variable(var);
1261
1262 if (var != NULL) {
1263 type = result->type;
1264 } else {
1265 _mesa_glsl_error(& loc, state, "`%s' undeclared",
1266 this->primary_expression.identifier);
1267
1268 error_emitted = true;
1269 }
1270 break;
1271 }
1272
1273 case ast_int_constant:
1274 type = glsl_type::int_type;
1275 result = new(ctx) ir_constant(this->primary_expression.int_constant);
1276 break;
1277
1278 case ast_uint_constant:
1279 type = glsl_type::uint_type;
1280 result = new(ctx) ir_constant(this->primary_expression.uint_constant);
1281 break;
1282
1283 case ast_float_constant:
1284 type = glsl_type::float_type;
1285 result = new(ctx) ir_constant(this->primary_expression.float_constant);
1286 break;
1287
1288 case ast_bool_constant:
1289 type = glsl_type::bool_type;
1290 result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant));
1291 break;
1292
1293 case ast_sequence: {
1294 /* It should not be possible to generate a sequence in the AST without
1295 * any expressions in it.
1296 */
1297 assert(!this->expressions.is_empty());
1298
1299 /* The r-value of a sequence is the last expression in the sequence. If
1300 * the other expressions in the sequence do not have side-effects (and
1301 * therefore add instructions to the instruction list), they get dropped
1302 * on the floor.
1303 */
1304 foreach_list_typed (ast_node, ast, link, &this->expressions)
1305 result = ast->hir(instructions, state);
1306
1307 type = result->type;
1308
1309 /* Any errors should have already been emitted in the loop above.
1310 */
1311 error_emitted = true;
1312 break;
1313 }
1314 }
1315
1316 if (type->is_error() && !error_emitted)
1317 _mesa_glsl_error(& loc, state, "type mismatch");
1318
1319 return result;
1320 }
1321
1322
1323 ir_rvalue *
1324 ast_expression_statement::hir(exec_list *instructions,
1325 struct _mesa_glsl_parse_state *state)
1326 {
1327 /* It is possible to have expression statements that don't have an
1328 * expression. This is the solitary semicolon:
1329 *
1330 * for (i = 0; i < 5; i++)
1331 * ;
1332 *
1333 * In this case the expression will be NULL. Test for NULL and don't do
1334 * anything in that case.
1335 */
1336 if (expression != NULL)
1337 expression->hir(instructions, state);
1338
1339 /* Statements do not have r-values.
1340 */
1341 return NULL;
1342 }
1343
1344
1345 ir_rvalue *
1346 ast_compound_statement::hir(exec_list *instructions,
1347 struct _mesa_glsl_parse_state *state)
1348 {
1349 if (new_scope)
1350 state->symbols->push_scope();
1351
1352 foreach_list_typed (ast_node, ast, link, &this->statements)
1353 ast->hir(instructions, state);
1354
1355 if (new_scope)
1356 state->symbols->pop_scope();
1357
1358 /* Compound statements do not have r-values.
1359 */
1360 return NULL;
1361 }
1362
1363
1364 static const glsl_type *
1365 process_array_type(const glsl_type *base, ast_node *array_size,
1366 struct _mesa_glsl_parse_state *state)
1367 {
1368 unsigned length = 0;
1369
1370 /* FINISHME: Reject delcarations of multidimensional arrays. */
1371
1372 if (array_size != NULL) {
1373 exec_list dummy_instructions;
1374 ir_rvalue *const ir = array_size->hir(& dummy_instructions, state);
1375 YYLTYPE loc = array_size->get_location();
1376
1377 /* FINISHME: Verify that the grammar forbids side-effects in array
1378 * FINISHME: sizes. i.e., 'vec4 [x = 12] data'
1379 */
1380 assert(dummy_instructions.is_empty());
1381
1382 if (ir != NULL) {
1383 if (!ir->type->is_integer()) {
1384 _mesa_glsl_error(& loc, state, "array size must be integer type");
1385 } else if (!ir->type->is_scalar()) {
1386 _mesa_glsl_error(& loc, state, "array size must be scalar type");
1387 } else {
1388 ir_constant *const size = ir->constant_expression_value();
1389
1390 if (size == NULL) {
1391 _mesa_glsl_error(& loc, state, "array size must be a "
1392 "constant valued expression");
1393 } else if (size->value.i[0] <= 0) {
1394 _mesa_glsl_error(& loc, state, "array size must be > 0");
1395 } else {
1396 assert(size->type == ir->type);
1397 length = size->value.u[0];
1398 }
1399 }
1400 }
1401 }
1402
1403 return glsl_type::get_array_instance(state, base, length);
1404 }
1405
1406
1407 const glsl_type *
1408 ast_type_specifier::glsl_type(const char **name,
1409 struct _mesa_glsl_parse_state *state) const
1410 {
1411 const struct glsl_type *type;
1412
1413 if ((this->type_specifier == ast_struct) && (this->type_name == NULL)) {
1414 /* FINISHME: Handle annonymous structures. */
1415 type = NULL;
1416 } else {
1417 type = state->symbols->get_type(this->type_name);
1418 *name = this->type_name;
1419
1420 if (this->is_array) {
1421 type = process_array_type(type, this->array_size, state);
1422 }
1423 }
1424
1425 return type;
1426 }
1427
1428
1429 static void
1430 apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
1431 struct ir_variable *var,
1432 struct _mesa_glsl_parse_state *state,
1433 YYLTYPE *loc)
1434 {
1435 if (qual->invariant)
1436 var->invariant = 1;
1437
1438 /* FINISHME: Mark 'in' variables at global scope as read-only. */
1439 if (qual->constant || qual->attribute || qual->uniform
1440 || (qual->varying && (state->target == fragment_shader)))
1441 var->read_only = 1;
1442
1443 if (qual->centroid)
1444 var->centroid = 1;
1445
1446 if (qual->attribute && state->target != vertex_shader) {
1447 var->type = glsl_type::error_type;
1448 _mesa_glsl_error(loc, state,
1449 "`attribute' variables may not be declared in the "
1450 "%s shader",
1451 _mesa_glsl_shader_target_name(state->target));
1452 }
1453
1454 /* From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
1455 *
1456 * "The varying qualifier can be used only with the data types
1457 * float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
1458 * these."
1459 */
1460 if (qual->varying) {
1461 const glsl_type *non_array_type;
1462
1463 if (var->type && var->type->is_array())
1464 non_array_type = var->type->fields.array;
1465 else
1466 non_array_type = var->type;
1467
1468 if (non_array_type && non_array_type->base_type != GLSL_TYPE_FLOAT) {
1469 var->type = glsl_type::error_type;
1470 _mesa_glsl_error(loc, state,
1471 "varying variables must be of base type float");
1472 }
1473 }
1474
1475 if (qual->in && qual->out)
1476 var->mode = ir_var_inout;
1477 else if (qual->attribute || qual->in
1478 || (qual->varying && (state->target == fragment_shader)))
1479 var->mode = ir_var_in;
1480 else if (qual->out || (qual->varying && (state->target == vertex_shader)))
1481 var->mode = ir_var_out;
1482 else if (qual->uniform)
1483 var->mode = ir_var_uniform;
1484 else
1485 var->mode = ir_var_auto;
1486
1487 if (qual->uniform)
1488 var->shader_in = true;
1489
1490 /* Any 'in' or 'inout' variables at global scope must be marked as being
1491 * shader inputs. Likewise, any 'out' or 'inout' variables at global scope
1492 * must be marked as being shader outputs.
1493 */
1494 if (state->current_function == NULL) {
1495 switch (var->mode) {
1496 case ir_var_in:
1497 case ir_var_uniform:
1498 var->shader_in = true;
1499 break;
1500 case ir_var_out:
1501 var->shader_out = true;
1502 break;
1503 case ir_var_inout:
1504 var->shader_in = true;
1505 var->shader_out = true;
1506 break;
1507 default:
1508 break;
1509 }
1510 }
1511
1512 if (qual->flat)
1513 var->interpolation = ir_var_flat;
1514 else if (qual->noperspective)
1515 var->interpolation = ir_var_noperspective;
1516 else
1517 var->interpolation = ir_var_smooth;
1518
1519 if (var->type->is_array() && (state->language_version >= 120)) {
1520 var->array_lvalue = true;
1521 }
1522 }
1523
1524
1525 ir_rvalue *
1526 ast_declarator_list::hir(exec_list *instructions,
1527 struct _mesa_glsl_parse_state *state)
1528 {
1529 void *ctx = state;
1530 const struct glsl_type *decl_type;
1531 const char *type_name = NULL;
1532 ir_rvalue *result = NULL;
1533 YYLTYPE loc = this->get_location();
1534
1535 /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec:
1536 *
1537 * "To ensure that a particular output variable is invariant, it is
1538 * necessary to use the invariant qualifier. It can either be used to
1539 * qualify a previously declared variable as being invariant
1540 *
1541 * invariant gl_Position; // make existing gl_Position be invariant"
1542 *
1543 * In these cases the parser will set the 'invariant' flag in the declarator
1544 * list, and the type will be NULL.
1545 */
1546 if (this->invariant) {
1547 assert(this->type == NULL);
1548
1549 if (state->current_function != NULL) {
1550 _mesa_glsl_error(& loc, state,
1551 "All uses of `invariant' keyword must be at global "
1552 "scope\n");
1553 }
1554
1555 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
1556 assert(!decl->is_array);
1557 assert(decl->array_size == NULL);
1558 assert(decl->initializer == NULL);
1559
1560 ir_variable *const earlier =
1561 state->symbols->get_variable(decl->identifier);
1562 if (earlier == NULL) {
1563 _mesa_glsl_error(& loc, state,
1564 "Undeclared variable `%s' cannot be marked "
1565 "invariant\n", decl->identifier);
1566 } else if ((state->target == vertex_shader)
1567 && (earlier->mode != ir_var_out)) {
1568 _mesa_glsl_error(& loc, state,
1569 "`%s' cannot be marked invariant, vertex shader "
1570 "outputs only\n", decl->identifier);
1571 } else if ((state->target == fragment_shader)
1572 && (earlier->mode != ir_var_in)) {
1573 _mesa_glsl_error(& loc, state,
1574 "`%s' cannot be marked invariant, fragment shader "
1575 "inputs only\n", decl->identifier);
1576 } else {
1577 earlier->invariant = true;
1578 }
1579 }
1580
1581 /* Invariant redeclarations do not have r-values.
1582 */
1583 return NULL;
1584 }
1585
1586 assert(this->type != NULL);
1587 assert(!this->invariant);
1588
1589 /* The type specifier may contain a structure definition. Process that
1590 * before any of the variable declarations.
1591 */
1592 (void) this->type->specifier->hir(instructions, state);
1593
1594 decl_type = this->type->specifier->glsl_type(& type_name, state);
1595 if (this->declarations.is_empty()) {
1596 /* The only valid case where the declaration list can be empty is when
1597 * the declaration is setting the default precision of a built-in type
1598 * (e.g., 'precision highp vec4;').
1599 */
1600
1601 if (decl_type != NULL) {
1602 } else {
1603 _mesa_glsl_error(& loc, state, "incomplete declaration");
1604 }
1605 }
1606
1607 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
1608 const struct glsl_type *var_type;
1609 struct ir_variable *var;
1610
1611 /* FINISHME: Emit a warning if a variable declaration shadows a
1612 * FINISHME: declaration at a higher scope.
1613 */
1614
1615 if ((decl_type == NULL) || decl_type->is_void()) {
1616 if (type_name != NULL) {
1617 _mesa_glsl_error(& loc, state,
1618 "invalid type `%s' in declaration of `%s'",
1619 type_name, decl->identifier);
1620 } else {
1621 _mesa_glsl_error(& loc, state,
1622 "invalid type in declaration of `%s'",
1623 decl->identifier);
1624 }
1625 continue;
1626 }
1627
1628 if (decl->is_array) {
1629 var_type = process_array_type(decl_type, decl->array_size, state);
1630 } else {
1631 var_type = decl_type;
1632 }
1633
1634 var = new(ctx) ir_variable(var_type, decl->identifier);
1635
1636 /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
1637 *
1638 * "Global variables can only use the qualifiers const,
1639 * attribute, uni form, or varying. Only one may be
1640 * specified.
1641 *
1642 * Local variables can only use the qualifier const."
1643 *
1644 * This is relaxed in GLSL 1.30.
1645 */
1646 if (state->language_version < 120) {
1647 if (this->type->qualifier.out) {
1648 _mesa_glsl_error(& loc, state,
1649 "`out' qualifier in declaration of `%s' "
1650 "only valid for function parameters in GLSL 1.10.",
1651 decl->identifier);
1652 }
1653 if (this->type->qualifier.in) {
1654 _mesa_glsl_error(& loc, state,
1655 "`in' qualifier in declaration of `%s' "
1656 "only valid for function parameters in GLSL 1.10.",
1657 decl->identifier);
1658 }
1659 /* FINISHME: Test for other invalid qualifiers. */
1660 }
1661
1662 apply_type_qualifier_to_variable(& this->type->qualifier, var, state,
1663 & loc);
1664
1665 if (this->type->qualifier.invariant) {
1666 if ((state->target == vertex_shader) && !var->shader_out) {
1667 _mesa_glsl_error(& loc, state,
1668 "`%s' cannot be marked invariant, vertex shader "
1669 "outputs only\n", var->name);
1670 } else if ((state->target == fragment_shader) && !var->shader_in) {
1671 _mesa_glsl_error(& loc, state,
1672 "`%s' cannot be marked invariant, fragment shader "
1673 "inputs only\n", var->name);
1674 }
1675 }
1676
1677 if (state->current_function != NULL) {
1678 const char *mode = NULL;
1679 const char *extra = "";
1680
1681 /* There is no need to check for 'inout' here because the parser will
1682 * only allow that in function parameter lists.
1683 */
1684 if (this->type->qualifier.attribute) {
1685 mode = "attribute";
1686 } else if (this->type->qualifier.uniform) {
1687 mode = "uniform";
1688 } else if (this->type->qualifier.varying) {
1689 mode = "varying";
1690 } else if (this->type->qualifier.in) {
1691 mode = "in";
1692 extra = " or in function parameter list";
1693 } else if (this->type->qualifier.out) {
1694 mode = "out";
1695 extra = " or in function parameter list";
1696 }
1697
1698 if (mode) {
1699 _mesa_glsl_error(& loc, state,
1700 "%s variable `%s' must be declared at "
1701 "global scope%s",
1702 mode, var->name, extra);
1703 }
1704 } else if (var->mode == ir_var_in) {
1705 if (state->target == vertex_shader) {
1706 bool error_emitted = false;
1707
1708 /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
1709 *
1710 * "Vertex shader inputs can only be float, floating-point
1711 * vectors, matrices, signed and unsigned integers and integer
1712 * vectors. Vertex shader inputs can also form arrays of these
1713 * types, but not structures."
1714 *
1715 * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
1716 *
1717 * "Vertex shader inputs can only be float, floating-point
1718 * vectors, matrices, signed and unsigned integers and integer
1719 * vectors. They cannot be arrays or structures."
1720 *
1721 * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
1722 *
1723 * "The attribute qualifier can be used only with float,
1724 * floating-point vectors, and matrices. Attribute variables
1725 * cannot be declared as arrays or structures."
1726 */
1727 const glsl_type *check_type = var->type->is_array()
1728 ? var->type->fields.array : var->type;
1729
1730 switch (check_type->base_type) {
1731 case GLSL_TYPE_FLOAT:
1732 break;
1733 case GLSL_TYPE_UINT:
1734 case GLSL_TYPE_INT:
1735 if (state->language_version > 120)
1736 break;
1737 /* FALLTHROUGH */
1738 default:
1739 _mesa_glsl_error(& loc, state,
1740 "vertex shader input / attribute cannot have "
1741 "type %s`%s'",
1742 var->type->is_array() ? "array of " : "",
1743 check_type->name);
1744 error_emitted = true;
1745 }
1746
1747 if (!error_emitted && (state->language_version <= 130)
1748 && var->type->is_array()) {
1749 _mesa_glsl_error(& loc, state,
1750 "vertex shader input / attribute cannot have "
1751 "array type");
1752 error_emitted = true;
1753 }
1754 }
1755 }
1756
1757 /* Process the initializer and add its instructions to a temporary
1758 * list. This list will be added to the instruction stream (below) after
1759 * the declaration is added. This is done because in some cases (such as
1760 * redeclarations) the declaration may not actually be added to the
1761 * instruction stream.
1762 */
1763 exec_list intializer_instructions;
1764 if (decl->initializer != NULL) {
1765 YYLTYPE initializer_loc = decl->initializer->get_location();
1766
1767 /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
1768 *
1769 * "All uniform variables are read-only and are initialized either
1770 * directly by an application via API commands, or indirectly by
1771 * OpenGL."
1772 */
1773 if ((state->language_version <= 110)
1774 && (var->mode == ir_var_uniform)) {
1775 _mesa_glsl_error(& initializer_loc, state,
1776 "cannot initialize uniforms in GLSL 1.10");
1777 }
1778
1779 if (var->type->is_sampler()) {
1780 _mesa_glsl_error(& initializer_loc, state,
1781 "cannot initialize samplers");
1782 }
1783
1784 if ((var->mode == ir_var_in) && (state->current_function == NULL)) {
1785 _mesa_glsl_error(& initializer_loc, state,
1786 "cannot initialize %s shader input / %s",
1787 _mesa_glsl_shader_target_name(state->target),
1788 (state->target == vertex_shader)
1789 ? "attribute" : "varying");
1790 }
1791
1792 ir_dereference *const lhs = new(ctx) ir_dereference_variable(var);
1793 ir_rvalue *rhs = decl->initializer->hir(&intializer_instructions,
1794 state);
1795
1796 /* Calculate the constant value if this is a const or uniform
1797 * declaration.
1798 */
1799 if (this->type->qualifier.constant || this->type->qualifier.uniform) {
1800 ir_constant *constant_value = rhs->constant_expression_value();
1801 if (!constant_value) {
1802 _mesa_glsl_error(& initializer_loc, state,
1803 "initializer of %s variable `%s' must be a "
1804 "constant expression",
1805 (this->type->qualifier.constant)
1806 ? "const" : "uniform",
1807 decl->identifier);
1808 } else {
1809 rhs = constant_value;
1810 var->constant_value = constant_value;
1811 }
1812 }
1813
1814 if (rhs && !rhs->type->is_error()) {
1815 bool temp = var->read_only;
1816 if (this->type->qualifier.constant)
1817 var->read_only = false;
1818
1819 /* Never emit code to initialize a uniform.
1820 */
1821 if (!this->type->qualifier.uniform)
1822 result = do_assignment(&intializer_instructions, state, lhs, rhs,
1823 this->get_location());
1824 var->read_only = temp;
1825 }
1826 }
1827
1828 /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
1829 *
1830 * "It is an error to write to a const variable outside of
1831 * its declaration, so they must be initialized when
1832 * declared."
1833 */
1834 if (this->type->qualifier.constant && decl->initializer == NULL) {
1835 _mesa_glsl_error(& loc, state,
1836 "const declaration of `%s' must be initialized");
1837 }
1838
1839 /* Attempt to add the variable to the symbol table. If this fails, it
1840 * means the variable has already been declared at this scope. Arrays
1841 * fudge this rule a little bit.
1842 *
1843 * From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
1844 *
1845 * "It is legal to declare an array without a size and then
1846 * later re-declare the same name as an array of the same
1847 * type and specify a size."
1848 */
1849 if (state->symbols->name_declared_this_scope(decl->identifier)) {
1850 ir_variable *const earlier =
1851 state->symbols->get_variable(decl->identifier);
1852
1853 if ((earlier != NULL)
1854 && (earlier->type->array_size() == 0)
1855 && var->type->is_array()
1856 && (var->type->element_type() == earlier->type->element_type())) {
1857 /* FINISHME: This doesn't match the qualifiers on the two
1858 * FINISHME: declarations. It's not 100% clear whether this is
1859 * FINISHME: required or not.
1860 */
1861
1862 /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec:
1863 *
1864 * "The size [of gl_TexCoord] can be at most
1865 * gl_MaxTextureCoords."
1866 */
1867 const unsigned size = unsigned(var->type->array_size());
1868 if ((strcmp("gl_TexCoord", var->name) == 0)
1869 && (size > state->Const.MaxTextureCoords)) {
1870 YYLTYPE loc = this->get_location();
1871
1872 _mesa_glsl_error(& loc, state, "`gl_TexCoord' array size cannot "
1873 "be larger than gl_MaxTextureCoords (%u)\n",
1874 state->Const.MaxTextureCoords);
1875 } else if ((size > 0) && (size <= earlier->max_array_access)) {
1876 YYLTYPE loc = this->get_location();
1877
1878 _mesa_glsl_error(& loc, state, "array size must be > %u due to "
1879 "previous access",
1880 earlier->max_array_access);
1881 }
1882
1883 earlier->type = var->type;
1884 delete var;
1885 var = NULL;
1886 } else {
1887 YYLTYPE loc = this->get_location();
1888
1889 _mesa_glsl_error(& loc, state, "`%s' redeclared",
1890 decl->identifier);
1891 }
1892
1893 continue;
1894 }
1895
1896 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
1897 *
1898 * "Identifiers starting with "gl_" are reserved for use by
1899 * OpenGL, and may not be declared in a shader as either a
1900 * variable or a function."
1901 */
1902 if (strncmp(decl->identifier, "gl_", 3) == 0) {
1903 /* FINISHME: This should only trigger if we're not redefining
1904 * FINISHME: a builtin (to add a qualifier, for example).
1905 */
1906 _mesa_glsl_error(& loc, state,
1907 "identifier `%s' uses reserved `gl_' prefix",
1908 decl->identifier);
1909 }
1910
1911 instructions->push_tail(var);
1912 instructions->append_list(&intializer_instructions);
1913
1914 /* Add the variable to the symbol table after processing the initializer.
1915 * This differs from most C-like languages, but it follows the GLSL
1916 * specification. From page 28 (page 34 of the PDF) of the GLSL 1.50
1917 * spec:
1918 *
1919 * "Within a declaration, the scope of a name starts immediately
1920 * after the initializer if present or immediately after the name
1921 * being declared if not."
1922 */
1923 const bool added_variable =
1924 state->symbols->add_variable(var->name, var);
1925 assert(added_variable);
1926 }
1927
1928
1929 /* Generally, variable declarations do not have r-values. However,
1930 * one is used for the declaration in
1931 *
1932 * while (bool b = some_condition()) {
1933 * ...
1934 * }
1935 *
1936 * so we return the rvalue from the last seen declaration here.
1937 */
1938 return result;
1939 }
1940
1941
1942 ir_rvalue *
1943 ast_parameter_declarator::hir(exec_list *instructions,
1944 struct _mesa_glsl_parse_state *state)
1945 {
1946 void *ctx = state;
1947 const struct glsl_type *type;
1948 const char *name = NULL;
1949 YYLTYPE loc = this->get_location();
1950
1951 type = this->type->specifier->glsl_type(& name, state);
1952
1953 if (type == NULL) {
1954 if (name != NULL) {
1955 _mesa_glsl_error(& loc, state,
1956 "invalid type `%s' in declaration of `%s'",
1957 name, this->identifier);
1958 } else {
1959 _mesa_glsl_error(& loc, state,
1960 "invalid type in declaration of `%s'",
1961 this->identifier);
1962 }
1963
1964 type = glsl_type::error_type;
1965 }
1966
1967 /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
1968 *
1969 * "Functions that accept no input arguments need not use void in the
1970 * argument list because prototypes (or definitions) are required and
1971 * therefore there is no ambiguity when an empty argument list "( )" is
1972 * declared. The idiom "(void)" as a parameter list is provided for
1973 * convenience."
1974 *
1975 * Placing this check here prevents a void parameter being set up
1976 * for a function, which avoids tripping up checks for main taking
1977 * parameters and lookups of an unnamed symbol.
1978 */
1979 if (type->is_void()) {
1980 if (this->identifier != NULL)
1981 _mesa_glsl_error(& loc, state,
1982 "named parameter cannot have type `void'");
1983
1984 is_void = true;
1985 return NULL;
1986 }
1987
1988 if (formal_parameter && (this->identifier == NULL)) {
1989 _mesa_glsl_error(& loc, state, "formal parameter lacks a name");
1990 return NULL;
1991 }
1992
1993 is_void = false;
1994 ir_variable *var = new(ctx) ir_variable(type, this->identifier);
1995
1996 /* FINISHME: Handle array declarations. Note that this requires
1997 * FINISHME: complete handling of constant expressions.
1998 */
1999
2000 /* Apply any specified qualifiers to the parameter declaration. Note that
2001 * for function parameters the default mode is 'in'.
2002 */
2003 apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc);
2004 if (var->mode == ir_var_auto)
2005 var->mode = ir_var_in;
2006
2007 instructions->push_tail(var);
2008
2009 /* Parameter declarations do not have r-values.
2010 */
2011 return NULL;
2012 }
2013
2014
2015 void
2016 ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters,
2017 bool formal,
2018 exec_list *ir_parameters,
2019 _mesa_glsl_parse_state *state)
2020 {
2021 ast_parameter_declarator *void_param = NULL;
2022 unsigned count = 0;
2023
2024 foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) {
2025 param->formal_parameter = formal;
2026 param->hir(ir_parameters, state);
2027
2028 if (param->is_void)
2029 void_param = param;
2030
2031 count++;
2032 }
2033
2034 if ((void_param != NULL) && (count > 1)) {
2035 YYLTYPE loc = void_param->get_location();
2036
2037 _mesa_glsl_error(& loc, state,
2038 "`void' parameter must be only parameter");
2039 }
2040 }
2041
2042
2043 ir_rvalue *
2044 ast_function::hir(exec_list *instructions,
2045 struct _mesa_glsl_parse_state *state)
2046 {
2047 void *ctx = state;
2048 ir_function *f = NULL;
2049 ir_function_signature *sig = NULL;
2050 exec_list hir_parameters;
2051
2052 const char *const name = identifier;
2053
2054 /* Convert the list of function parameters to HIR now so that they can be
2055 * used below to compare this function's signature with previously seen
2056 * signatures for functions with the same name.
2057 */
2058 ast_parameter_declarator::parameters_to_hir(& this->parameters,
2059 is_definition,
2060 & hir_parameters, state);
2061
2062 const char *return_type_name;
2063 const glsl_type *return_type =
2064 this->return_type->specifier->glsl_type(& return_type_name, state);
2065
2066 assert(return_type != NULL);
2067
2068 /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec:
2069 * "No qualifier is allowed on the return type of a function."
2070 */
2071 if (this->return_type->has_qualifiers()) {
2072 YYLTYPE loc = this->get_location();
2073 _mesa_glsl_error(& loc, state,
2074 "function `%s' return type has qualifiers", name);
2075 }
2076
2077 /* Verify that this function's signature either doesn't match a previously
2078 * seen signature for a function with the same name, or, if a match is found,
2079 * that the previously seen signature does not have an associated definition.
2080 */
2081 f = state->symbols->get_function(name);
2082 if (f != NULL) {
2083 ir_function_signature *sig = f->exact_matching_signature(&hir_parameters);
2084 if (sig != NULL) {
2085 const char *badvar = sig->qualifiers_match(&hir_parameters);
2086 if (badvar != NULL) {
2087 YYLTYPE loc = this->get_location();
2088
2089 _mesa_glsl_error(&loc, state, "function `%s' parameter `%s' "
2090 "qualifiers don't match prototype", name, badvar);
2091 }
2092
2093 if (sig->return_type != return_type) {
2094 YYLTYPE loc = this->get_location();
2095
2096 _mesa_glsl_error(&loc, state, "function `%s' return type doesn't "
2097 "match prototype", name);
2098 }
2099
2100 if (is_definition && sig->is_defined) {
2101 YYLTYPE loc = this->get_location();
2102
2103 _mesa_glsl_error(& loc, state, "function `%s' redefined", name);
2104 sig = NULL;
2105 }
2106 }
2107 } else if (state->symbols->name_declared_this_scope(name)) {
2108 /* This function name shadows a non-function use of the same name.
2109 */
2110 YYLTYPE loc = this->get_location();
2111
2112 _mesa_glsl_error(& loc, state, "function name `%s' conflicts with "
2113 "non-function", name);
2114 sig = NULL;
2115 } else {
2116 f = new(ctx) ir_function(name);
2117 state->symbols->add_function(f->name, f);
2118
2119 /* Emit the new function header */
2120 instructions->push_tail(f);
2121 }
2122
2123 /* Verify the return type of main() */
2124 if (strcmp(name, "main") == 0) {
2125 if (! return_type->is_void()) {
2126 YYLTYPE loc = this->get_location();
2127
2128 _mesa_glsl_error(& loc, state, "main() must return void");
2129 }
2130
2131 if (!hir_parameters.is_empty()) {
2132 YYLTYPE loc = this->get_location();
2133
2134 _mesa_glsl_error(& loc, state, "main() must not take any parameters");
2135 }
2136 }
2137
2138 /* Finish storing the information about this new function in its signature.
2139 */
2140 if (sig == NULL) {
2141 sig = new(ctx) ir_function_signature(return_type);
2142 f->add_signature(sig);
2143 }
2144
2145 sig->replace_parameters(&hir_parameters);
2146 signature = sig;
2147
2148 /* Function declarations (prototypes) do not have r-values.
2149 */
2150 return NULL;
2151 }
2152
2153
2154 ir_rvalue *
2155 ast_function_definition::hir(exec_list *instructions,
2156 struct _mesa_glsl_parse_state *state)
2157 {
2158 prototype->is_definition = true;
2159 prototype->hir(instructions, state);
2160
2161 ir_function_signature *signature = prototype->signature;
2162
2163 assert(state->current_function == NULL);
2164 state->current_function = signature;
2165 state->found_return = false;
2166
2167 /* Duplicate parameters declared in the prototype as concrete variables.
2168 * Add these to the symbol table.
2169 */
2170 state->symbols->push_scope();
2171 foreach_iter(exec_list_iterator, iter, signature->parameters) {
2172 ir_variable *const var = ((ir_instruction *) iter.get())->as_variable();
2173
2174 assert(var != NULL);
2175
2176 /* The only way a parameter would "exist" is if two parameters have
2177 * the same name.
2178 */
2179 if (state->symbols->name_declared_this_scope(var->name)) {
2180 YYLTYPE loc = this->get_location();
2181
2182 _mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name);
2183 } else {
2184 state->symbols->add_variable(var->name, var);
2185 }
2186 }
2187
2188 /* Convert the body of the function to HIR. */
2189 this->body->hir(&signature->body, state);
2190 signature->is_defined = true;
2191
2192 state->symbols->pop_scope();
2193
2194 assert(state->current_function == signature);
2195 state->current_function = NULL;
2196
2197 if (!signature->return_type->is_void() && !state->found_return) {
2198 YYLTYPE loc = this->get_location();
2199 _mesa_glsl_error(& loc, state, "function `%s' has non-void return type "
2200 "%s, but no return statement",
2201 signature->function_name(),
2202 signature->return_type->name);
2203 }
2204
2205 /* Function definitions do not have r-values.
2206 */
2207 return NULL;
2208 }
2209
2210
2211 ir_rvalue *
2212 ast_jump_statement::hir(exec_list *instructions,
2213 struct _mesa_glsl_parse_state *state)
2214 {
2215 void *ctx = state;
2216
2217 switch (mode) {
2218 case ast_return: {
2219 ir_return *inst;
2220 assert(state->current_function);
2221
2222 if (opt_return_value) {
2223 if (state->current_function->return_type->base_type ==
2224 GLSL_TYPE_VOID) {
2225 YYLTYPE loc = this->get_location();
2226
2227 _mesa_glsl_error(& loc, state,
2228 "`return` with a value, in function `%s' "
2229 "returning void",
2230 state->current_function->function_name());
2231 }
2232
2233 ir_expression *const ret = (ir_expression *)
2234 opt_return_value->hir(instructions, state);
2235 assert(ret != NULL);
2236
2237 /* Implicit conversions are not allowed for return values. */
2238 if (state->current_function->return_type != ret->type) {
2239 YYLTYPE loc = this->get_location();
2240
2241 _mesa_glsl_error(& loc, state,
2242 "`return' with wrong type %s, in function `%s' "
2243 "returning %s",
2244 ret->type->name,
2245 state->current_function->function_name(),
2246 state->current_function->return_type->name);
2247 }
2248
2249 inst = new(ctx) ir_return(ret);
2250 } else {
2251 if (state->current_function->return_type->base_type !=
2252 GLSL_TYPE_VOID) {
2253 YYLTYPE loc = this->get_location();
2254
2255 _mesa_glsl_error(& loc, state,
2256 "`return' with no value, in function %s returning "
2257 "non-void",
2258 state->current_function->function_name());
2259 }
2260 inst = new(ctx) ir_return;
2261 }
2262
2263 state->found_return = true;
2264 instructions->push_tail(inst);
2265 break;
2266 }
2267
2268 case ast_discard:
2269 if (state->target != fragment_shader) {
2270 YYLTYPE loc = this->get_location();
2271
2272 _mesa_glsl_error(& loc, state,
2273 "`discard' may only appear in a fragment shader");
2274 }
2275 instructions->push_tail(new(ctx) ir_discard);
2276 break;
2277
2278 case ast_break:
2279 case ast_continue:
2280 /* FINISHME: Handle switch-statements. They cannot contain 'continue',
2281 * FINISHME: and they use a different IR instruction for 'break'.
2282 */
2283 /* FINISHME: Correctly handle the nesting. If a switch-statement is
2284 * FINISHME: inside a loop, a 'continue' is valid and will bind to the
2285 * FINISHME: loop.
2286 */
2287 if (state->loop_or_switch_nesting == NULL) {
2288 YYLTYPE loc = this->get_location();
2289
2290 _mesa_glsl_error(& loc, state,
2291 "`%s' may only appear in a loop",
2292 (mode == ast_break) ? "break" : "continue");
2293 } else {
2294 ir_loop *const loop = state->loop_or_switch_nesting->as_loop();
2295
2296 if (loop != NULL) {
2297 ir_loop_jump *const jump =
2298 new(ctx) ir_loop_jump((mode == ast_break)
2299 ? ir_loop_jump::jump_break
2300 : ir_loop_jump::jump_continue);
2301 instructions->push_tail(jump);
2302 }
2303 }
2304
2305 break;
2306 }
2307
2308 /* Jump instructions do not have r-values.
2309 */
2310 return NULL;
2311 }
2312
2313
2314 ir_rvalue *
2315 ast_selection_statement::hir(exec_list *instructions,
2316 struct _mesa_glsl_parse_state *state)
2317 {
2318 void *ctx = state;
2319
2320 ir_rvalue *const condition = this->condition->hir(instructions, state);
2321
2322 /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
2323 *
2324 * "Any expression whose type evaluates to a Boolean can be used as the
2325 * conditional expression bool-expression. Vector types are not accepted
2326 * as the expression to if."
2327 *
2328 * The checks are separated so that higher quality diagnostics can be
2329 * generated for cases where both rules are violated.
2330 */
2331 if (!condition->type->is_boolean() || !condition->type->is_scalar()) {
2332 YYLTYPE loc = this->condition->get_location();
2333
2334 _mesa_glsl_error(& loc, state, "if-statement condition must be scalar "
2335 "boolean");
2336 }
2337
2338 ir_if *const stmt = new(ctx) ir_if(condition);
2339
2340 if (then_statement != NULL)
2341 then_statement->hir(& stmt->then_instructions, state);
2342
2343 if (else_statement != NULL)
2344 else_statement->hir(& stmt->else_instructions, state);
2345
2346 instructions->push_tail(stmt);
2347
2348 /* if-statements do not have r-values.
2349 */
2350 return NULL;
2351 }
2352
2353
2354 void
2355 ast_iteration_statement::condition_to_hir(ir_loop *stmt,
2356 struct _mesa_glsl_parse_state *state)
2357 {
2358 void *ctx = state;
2359
2360 if (condition != NULL) {
2361 ir_rvalue *const cond =
2362 condition->hir(& stmt->body_instructions, state);
2363
2364 if ((cond == NULL)
2365 || !cond->type->is_boolean() || !cond->type->is_scalar()) {
2366 YYLTYPE loc = condition->get_location();
2367
2368 _mesa_glsl_error(& loc, state,
2369 "loop condition must be scalar boolean");
2370 } else {
2371 /* As the first code in the loop body, generate a block that looks
2372 * like 'if (!condition) break;' as the loop termination condition.
2373 */
2374 ir_rvalue *const not_cond =
2375 new(ctx) ir_expression(ir_unop_logic_not, glsl_type::bool_type, cond,
2376 NULL);
2377
2378 ir_if *const if_stmt = new(ctx) ir_if(not_cond);
2379
2380 ir_jump *const break_stmt =
2381 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
2382
2383 if_stmt->then_instructions.push_tail(break_stmt);
2384 stmt->body_instructions.push_tail(if_stmt);
2385 }
2386 }
2387 }
2388
2389
2390 ir_rvalue *
2391 ast_iteration_statement::hir(exec_list *instructions,
2392 struct _mesa_glsl_parse_state *state)
2393 {
2394 void *ctx = state;
2395
2396 /* For-loops and while-loops start a new scope, but do-while loops do not.
2397 */
2398 if (mode != ast_do_while)
2399 state->symbols->push_scope();
2400
2401 if (init_statement != NULL)
2402 init_statement->hir(instructions, state);
2403
2404 ir_loop *const stmt = new(ctx) ir_loop();
2405 instructions->push_tail(stmt);
2406
2407 /* Track the current loop and / or switch-statement nesting.
2408 */
2409 ir_instruction *const nesting = state->loop_or_switch_nesting;
2410 state->loop_or_switch_nesting = stmt;
2411
2412 if (mode != ast_do_while)
2413 condition_to_hir(stmt, state);
2414
2415 if (body != NULL)
2416 body->hir(& stmt->body_instructions, state);
2417
2418 if (rest_expression != NULL)
2419 rest_expression->hir(& stmt->body_instructions, state);
2420
2421 if (mode == ast_do_while)
2422 condition_to_hir(stmt, state);
2423
2424 if (mode != ast_do_while)
2425 state->symbols->pop_scope();
2426
2427 /* Restore previous nesting before returning.
2428 */
2429 state->loop_or_switch_nesting = nesting;
2430
2431 /* Loops do not have r-values.
2432 */
2433 return NULL;
2434 }
2435
2436
2437 ir_rvalue *
2438 ast_type_specifier::hir(exec_list *instructions,
2439 struct _mesa_glsl_parse_state *state)
2440 {
2441 if (this->structure != NULL)
2442 return this->structure->hir(instructions, state);
2443
2444 return NULL;
2445 }
2446
2447
2448 ir_rvalue *
2449 ast_struct_specifier::hir(exec_list *instructions,
2450 struct _mesa_glsl_parse_state *state)
2451 {
2452 unsigned decl_count = 0;
2453
2454 /* Make an initial pass over the list of structure fields to determine how
2455 * many there are. Each element in this list is an ast_declarator_list.
2456 * This means that we actually need to count the number of elements in the
2457 * 'declarations' list in each of the elements.
2458 */
2459 foreach_list_typed (ast_declarator_list, decl_list, link,
2460 &this->declarations) {
2461 foreach_list_const (decl_ptr, & decl_list->declarations) {
2462 decl_count++;
2463 }
2464 }
2465
2466
2467 /* Allocate storage for the structure fields and process the field
2468 * declarations. As the declarations are processed, try to also convert
2469 * the types to HIR. This ensures that structure definitions embedded in
2470 * other structure definitions are processed.
2471 */
2472 glsl_struct_field *const fields = (glsl_struct_field *)
2473 malloc(sizeof(*fields) * decl_count);
2474
2475 unsigned i = 0;
2476 foreach_list_typed (ast_declarator_list, decl_list, link,
2477 &this->declarations) {
2478 const char *type_name;
2479
2480 decl_list->type->specifier->hir(instructions, state);
2481
2482 const glsl_type *decl_type =
2483 decl_list->type->specifier->glsl_type(& type_name, state);
2484
2485 foreach_list_typed (ast_declaration, decl, link,
2486 &decl_list->declarations) {
2487 const struct glsl_type *const field_type =
2488 (decl->is_array)
2489 ? process_array_type(decl_type, decl->array_size, state)
2490 : decl_type;
2491
2492 fields[i].type = (field_type != NULL)
2493 ? field_type : glsl_type::error_type;
2494 fields[i].name = decl->identifier;
2495 i++;
2496 }
2497 }
2498
2499 assert(i == decl_count);
2500
2501 const char *name;
2502 if (this->name == NULL) {
2503 static unsigned anon_count = 1;
2504 char buf[32];
2505
2506 snprintf(buf, sizeof(buf), "#anon_struct_%04x", anon_count);
2507 anon_count++;
2508
2509 name = strdup(buf);
2510 } else {
2511 name = this->name;
2512 }
2513
2514 const glsl_type *t =
2515 glsl_type::get_record_instance(fields, decl_count, name);
2516
2517 YYLTYPE loc = this->get_location();
2518 if (!state->symbols->add_type(name, t)) {
2519 _mesa_glsl_error(& loc, state, "struct `%s' previously defined", name);
2520 } else {
2521 /* This logic is a bit tricky. It is an error to declare a structure at
2522 * global scope if there is also a function with the same name.
2523 */
2524 if ((state->current_function == NULL)
2525 && (state->symbols->get_function(name) != NULL)) {
2526 _mesa_glsl_error(& loc, state, "name `%s' previously defined", name);
2527 } else {
2528 t->generate_constructor(state->symbols);
2529 }
2530
2531 const glsl_type **s = (const glsl_type **)
2532 realloc(state->user_structures,
2533 sizeof(state->user_structures[0]) *
2534 (state->num_user_structures + 1));
2535 if (s != NULL) {
2536 s[state->num_user_structures] = t;
2537 state->user_structures = s;
2538 state->num_user_structures++;
2539 }
2540 }
2541
2542 /* Structure type definitions do not have r-values.
2543 */
2544 return NULL;
2545 }