glsl: Support the 'invariant(all)' pragma
[mesa.git] / src / glsl / ast_to_hir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file ast_to_hir.c
26 * Convert abstract syntax to to high-level intermediate reprensentation (HIR).
27 *
28 * During the conversion to HIR, the majority of the symantic checking is
29 * preformed on the program. This includes:
30 *
31 * * Symbol table management
32 * * Type checking
33 * * Function binding
34 *
35 * The majority of this work could be done during parsing, and the parser could
36 * probably generate HIR directly. However, this results in frequent changes
37 * to the parser code. Since we do not assume that every system this complier
38 * is built on will have Flex and Bison installed, we have to store the code
39 * generated by these tools in our version control system. In other parts of
40 * the system we've seen problems where a parser was changed but the generated
41 * code was not committed, merge conflicts where created because two developers
42 * had slightly different versions of Bison installed, etc.
43 *
44 * I have also noticed that running Bison generated parsers in GDB is very
45 * irritating. When you get a segfault on '$$ = $1->foo', you can't very
46 * well 'print $1' in GDB.
47 *
48 * As a result, my preference is to put as little C code as possible in the
49 * parser (and lexer) sources.
50 */
51
52 #include "main/core.h" /* for struct gl_extensions */
53 #include "glsl_symbol_table.h"
54 #include "glsl_parser_extras.h"
55 #include "ast.h"
56 #include "glsl_types.h"
57 #include "ir.h"
58
59 void
60 _mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
61 {
62 _mesa_glsl_initialize_variables(instructions, state);
63 _mesa_glsl_initialize_functions(state);
64
65 state->symbols->language_version = state->language_version;
66
67 state->current_function = NULL;
68
69 /* Section 4.2 of the GLSL 1.20 specification states:
70 * "The built-in functions are scoped in a scope outside the global scope
71 * users declare global variables in. That is, a shader's global scope,
72 * available for user-defined functions and global variables, is nested
73 * inside the scope containing the built-in functions."
74 *
75 * Since built-in functions like ftransform() access built-in variables,
76 * it follows that those must be in the outer scope as well.
77 *
78 * We push scope here to create this nesting effect...but don't pop.
79 * This way, a shader's globals are still in the symbol table for use
80 * by the linker.
81 */
82 state->symbols->push_scope();
83
84 foreach_list_typed (ast_node, ast, link, & state->translation_unit)
85 ast->hir(instructions, state);
86 }
87
88
89 /**
90 * If a conversion is available, convert one operand to a different type
91 *
92 * The \c from \c ir_rvalue is converted "in place".
93 *
94 * \param to Type that the operand it to be converted to
95 * \param from Operand that is being converted
96 * \param state GLSL compiler state
97 *
98 * \return
99 * If a conversion is possible (or unnecessary), \c true is returned.
100 * Otherwise \c false is returned.
101 */
102 bool
103 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
104 struct _mesa_glsl_parse_state *state)
105 {
106 void *ctx = state;
107 if (to->base_type == from->type->base_type)
108 return true;
109
110 /* This conversion was added in GLSL 1.20. If the compilation mode is
111 * GLSL 1.10, the conversion is skipped.
112 */
113 if (state->language_version < 120)
114 return false;
115
116 /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
117 *
118 * "There are no implicit array or structure conversions. For
119 * example, an array of int cannot be implicitly converted to an
120 * array of float. There are no implicit conversions between
121 * signed and unsigned integers."
122 */
123 /* FINISHME: The above comment is partially a lie. There is int/uint
124 * FINISHME: conversion for immediate constants.
125 */
126 if (!to->is_float() || !from->type->is_numeric())
127 return false;
128
129 /* Convert to a floating point type with the same number of components
130 * as the original type - i.e. int to float, not int to vec4.
131 */
132 to = glsl_type::get_instance(GLSL_TYPE_FLOAT, from->type->vector_elements,
133 from->type->matrix_columns);
134
135 switch (from->type->base_type) {
136 case GLSL_TYPE_INT:
137 from = new(ctx) ir_expression(ir_unop_i2f, to, from, NULL);
138 break;
139 case GLSL_TYPE_UINT:
140 from = new(ctx) ir_expression(ir_unop_u2f, to, from, NULL);
141 break;
142 case GLSL_TYPE_BOOL:
143 from = new(ctx) ir_expression(ir_unop_b2f, to, from, NULL);
144 break;
145 default:
146 assert(0);
147 }
148
149 return true;
150 }
151
152
153 static const struct glsl_type *
154 arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
155 bool multiply,
156 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
157 {
158 const glsl_type *type_a = value_a->type;
159 const glsl_type *type_b = value_b->type;
160
161 /* From GLSL 1.50 spec, page 56:
162 *
163 * "The arithmetic binary operators add (+), subtract (-),
164 * multiply (*), and divide (/) operate on integer and
165 * floating-point scalars, vectors, and matrices."
166 */
167 if (!type_a->is_numeric() || !type_b->is_numeric()) {
168 _mesa_glsl_error(loc, state,
169 "Operands to arithmetic operators must be numeric");
170 return glsl_type::error_type;
171 }
172
173
174 /* "If one operand is floating-point based and the other is
175 * not, then the conversions from Section 4.1.10 "Implicit
176 * Conversions" are applied to the non-floating-point-based operand."
177 */
178 if (!apply_implicit_conversion(type_a, value_b, state)
179 && !apply_implicit_conversion(type_b, value_a, state)) {
180 _mesa_glsl_error(loc, state,
181 "Could not implicitly convert operands to "
182 "arithmetic operator");
183 return glsl_type::error_type;
184 }
185 type_a = value_a->type;
186 type_b = value_b->type;
187
188 /* "If the operands are integer types, they must both be signed or
189 * both be unsigned."
190 *
191 * From this rule and the preceeding conversion it can be inferred that
192 * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
193 * The is_numeric check above already filtered out the case where either
194 * type is not one of these, so now the base types need only be tested for
195 * equality.
196 */
197 if (type_a->base_type != type_b->base_type) {
198 _mesa_glsl_error(loc, state,
199 "base type mismatch for arithmetic operator");
200 return glsl_type::error_type;
201 }
202
203 /* "All arithmetic binary operators result in the same fundamental type
204 * (signed integer, unsigned integer, or floating-point) as the
205 * operands they operate on, after operand type conversion. After
206 * conversion, the following cases are valid
207 *
208 * * The two operands are scalars. In this case the operation is
209 * applied, resulting in a scalar."
210 */
211 if (type_a->is_scalar() && type_b->is_scalar())
212 return type_a;
213
214 /* "* One operand is a scalar, and the other is a vector or matrix.
215 * In this case, the scalar operation is applied independently to each
216 * component of the vector or matrix, resulting in the same size
217 * vector or matrix."
218 */
219 if (type_a->is_scalar()) {
220 if (!type_b->is_scalar())
221 return type_b;
222 } else if (type_b->is_scalar()) {
223 return type_a;
224 }
225
226 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
227 * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
228 * handled.
229 */
230 assert(!type_a->is_scalar());
231 assert(!type_b->is_scalar());
232
233 /* "* The two operands are vectors of the same size. In this case, the
234 * operation is done component-wise resulting in the same size
235 * vector."
236 */
237 if (type_a->is_vector() && type_b->is_vector()) {
238 if (type_a == type_b) {
239 return type_a;
240 } else {
241 _mesa_glsl_error(loc, state,
242 "vector size mismatch for arithmetic operator");
243 return glsl_type::error_type;
244 }
245 }
246
247 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
248 * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
249 * <vector, vector> have been handled. At least one of the operands must
250 * be matrix. Further, since there are no integer matrix types, the base
251 * type of both operands must be float.
252 */
253 assert(type_a->is_matrix() || type_b->is_matrix());
254 assert(type_a->base_type == GLSL_TYPE_FLOAT);
255 assert(type_b->base_type == GLSL_TYPE_FLOAT);
256
257 /* "* The operator is add (+), subtract (-), or divide (/), and the
258 * operands are matrices with the same number of rows and the same
259 * number of columns. In this case, the operation is done component-
260 * wise resulting in the same size matrix."
261 * * The operator is multiply (*), where both operands are matrices or
262 * one operand is a vector and the other a matrix. A right vector
263 * operand is treated as a column vector and a left vector operand as a
264 * row vector. In all these cases, it is required that the number of
265 * columns of the left operand is equal to the number of rows of the
266 * right operand. Then, the multiply (*) operation does a linear
267 * algebraic multiply, yielding an object that has the same number of
268 * rows as the left operand and the same number of columns as the right
269 * operand. Section 5.10 "Vector and Matrix Operations" explains in
270 * more detail how vectors and matrices are operated on."
271 */
272 if (! multiply) {
273 if (type_a == type_b)
274 return type_a;
275 } else {
276 if (type_a->is_matrix() && type_b->is_matrix()) {
277 /* Matrix multiply. The columns of A must match the rows of B. Given
278 * the other previously tested constraints, this means the vector type
279 * of a row from A must be the same as the vector type of a column from
280 * B.
281 */
282 if (type_a->row_type() == type_b->column_type()) {
283 /* The resulting matrix has the number of columns of matrix B and
284 * the number of rows of matrix A. We get the row count of A by
285 * looking at the size of a vector that makes up a column. The
286 * transpose (size of a row) is done for B.
287 */
288 const glsl_type *const type =
289 glsl_type::get_instance(type_a->base_type,
290 type_a->column_type()->vector_elements,
291 type_b->row_type()->vector_elements);
292 assert(type != glsl_type::error_type);
293
294 return type;
295 }
296 } else if (type_a->is_matrix()) {
297 /* A is a matrix and B is a column vector. Columns of A must match
298 * rows of B. Given the other previously tested constraints, this
299 * means the vector type of a row from A must be the same as the
300 * vector the type of B.
301 */
302 if (type_a->row_type() == type_b) {
303 /* The resulting vector has a number of elements equal to
304 * the number of rows of matrix A. */
305 const glsl_type *const type =
306 glsl_type::get_instance(type_a->base_type,
307 type_a->column_type()->vector_elements,
308 1);
309 assert(type != glsl_type::error_type);
310
311 return type;
312 }
313 } else {
314 assert(type_b->is_matrix());
315
316 /* A is a row vector and B is a matrix. Columns of A must match rows
317 * of B. Given the other previously tested constraints, this means
318 * the type of A must be the same as the vector type of a column from
319 * B.
320 */
321 if (type_a == type_b->column_type()) {
322 /* The resulting vector has a number of elements equal to
323 * the number of columns of matrix B. */
324 const glsl_type *const type =
325 glsl_type::get_instance(type_a->base_type,
326 type_b->row_type()->vector_elements,
327 1);
328 assert(type != glsl_type::error_type);
329
330 return type;
331 }
332 }
333
334 _mesa_glsl_error(loc, state, "size mismatch for matrix multiplication");
335 return glsl_type::error_type;
336 }
337
338
339 /* "All other cases are illegal."
340 */
341 _mesa_glsl_error(loc, state, "type mismatch");
342 return glsl_type::error_type;
343 }
344
345
346 static const struct glsl_type *
347 unary_arithmetic_result_type(const struct glsl_type *type,
348 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
349 {
350 /* From GLSL 1.50 spec, page 57:
351 *
352 * "The arithmetic unary operators negate (-), post- and pre-increment
353 * and decrement (-- and ++) operate on integer or floating-point
354 * values (including vectors and matrices). All unary operators work
355 * component-wise on their operands. These result with the same type
356 * they operated on."
357 */
358 if (!type->is_numeric()) {
359 _mesa_glsl_error(loc, state,
360 "Operands to arithmetic operators must be numeric");
361 return glsl_type::error_type;
362 }
363
364 return type;
365 }
366
367 /**
368 * \brief Return the result type of a bit-logic operation.
369 *
370 * If the given types to the bit-logic operator are invalid, return
371 * glsl_type::error_type.
372 *
373 * \param type_a Type of LHS of bit-logic op
374 * \param type_b Type of RHS of bit-logic op
375 */
376 static const struct glsl_type *
377 bit_logic_result_type(const struct glsl_type *type_a,
378 const struct glsl_type *type_b,
379 ast_operators op,
380 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
381 {
382 if (state->language_version < 130) {
383 _mesa_glsl_error(loc, state, "bit operations require GLSL 1.30");
384 return glsl_type::error_type;
385 }
386
387 /* From page 50 (page 56 of PDF) of GLSL 1.30 spec:
388 *
389 * "The bitwise operators and (&), exclusive-or (^), and inclusive-or
390 * (|). The operands must be of type signed or unsigned integers or
391 * integer vectors."
392 */
393 if (!type_a->is_integer()) {
394 _mesa_glsl_error(loc, state, "LHS of `%s' must be an integer",
395 ast_expression::operator_string(op));
396 return glsl_type::error_type;
397 }
398 if (!type_b->is_integer()) {
399 _mesa_glsl_error(loc, state, "RHS of `%s' must be an integer",
400 ast_expression::operator_string(op));
401 return glsl_type::error_type;
402 }
403
404 /* "The fundamental types of the operands (signed or unsigned) must
405 * match,"
406 */
407 if (type_a->base_type != type_b->base_type) {
408 _mesa_glsl_error(loc, state, "operands of `%s' must have the same "
409 "base type", ast_expression::operator_string(op));
410 return glsl_type::error_type;
411 }
412
413 /* "The operands cannot be vectors of differing size." */
414 if (type_a->is_vector() &&
415 type_b->is_vector() &&
416 type_a->vector_elements != type_b->vector_elements) {
417 _mesa_glsl_error(loc, state, "operands of `%s' cannot be vectors of "
418 "different sizes", ast_expression::operator_string(op));
419 return glsl_type::error_type;
420 }
421
422 /* "If one operand is a scalar and the other a vector, the scalar is
423 * applied component-wise to the vector, resulting in the same type as
424 * the vector. The fundamental types of the operands [...] will be the
425 * resulting fundamental type."
426 */
427 if (type_a->is_scalar())
428 return type_b;
429 else
430 return type_a;
431 }
432
433 static const struct glsl_type *
434 modulus_result_type(const struct glsl_type *type_a,
435 const struct glsl_type *type_b,
436 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
437 {
438 /* From GLSL 1.50 spec, page 56:
439 * "The operator modulus (%) operates on signed or unsigned integers or
440 * integer vectors. The operand types must both be signed or both be
441 * unsigned."
442 */
443 if (!type_a->is_integer() || !type_b->is_integer()
444 || (type_a->base_type != type_b->base_type)) {
445 _mesa_glsl_error(loc, state, "type mismatch");
446 return glsl_type::error_type;
447 }
448
449 /* "The operands cannot be vectors of differing size. If one operand is
450 * a scalar and the other vector, then the scalar is applied component-
451 * wise to the vector, resulting in the same type as the vector. If both
452 * are vectors of the same size, the result is computed component-wise."
453 */
454 if (type_a->is_vector()) {
455 if (!type_b->is_vector()
456 || (type_a->vector_elements == type_b->vector_elements))
457 return type_a;
458 } else
459 return type_b;
460
461 /* "The operator modulus (%) is not defined for any other data types
462 * (non-integer types)."
463 */
464 _mesa_glsl_error(loc, state, "type mismatch");
465 return glsl_type::error_type;
466 }
467
468
469 static const struct glsl_type *
470 relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
471 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
472 {
473 const glsl_type *type_a = value_a->type;
474 const glsl_type *type_b = value_b->type;
475
476 /* From GLSL 1.50 spec, page 56:
477 * "The relational operators greater than (>), less than (<), greater
478 * than or equal (>=), and less than or equal (<=) operate only on
479 * scalar integer and scalar floating-point expressions."
480 */
481 if (!type_a->is_numeric()
482 || !type_b->is_numeric()
483 || !type_a->is_scalar()
484 || !type_b->is_scalar()) {
485 _mesa_glsl_error(loc, state,
486 "Operands to relational operators must be scalar and "
487 "numeric");
488 return glsl_type::error_type;
489 }
490
491 /* "Either the operands' types must match, or the conversions from
492 * Section 4.1.10 "Implicit Conversions" will be applied to the integer
493 * operand, after which the types must match."
494 */
495 if (!apply_implicit_conversion(type_a, value_b, state)
496 && !apply_implicit_conversion(type_b, value_a, state)) {
497 _mesa_glsl_error(loc, state,
498 "Could not implicitly convert operands to "
499 "relational operator");
500 return glsl_type::error_type;
501 }
502 type_a = value_a->type;
503 type_b = value_b->type;
504
505 if (type_a->base_type != type_b->base_type) {
506 _mesa_glsl_error(loc, state, "base type mismatch");
507 return glsl_type::error_type;
508 }
509
510 /* "The result is scalar Boolean."
511 */
512 return glsl_type::bool_type;
513 }
514
515 /**
516 * \brief Return the result type of a bit-shift operation.
517 *
518 * If the given types to the bit-shift operator are invalid, return
519 * glsl_type::error_type.
520 *
521 * \param type_a Type of LHS of bit-shift op
522 * \param type_b Type of RHS of bit-shift op
523 */
524 static const struct glsl_type *
525 shift_result_type(const struct glsl_type *type_a,
526 const struct glsl_type *type_b,
527 ast_operators op,
528 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
529 {
530 if (state->language_version < 130) {
531 _mesa_glsl_error(loc, state, "bit operations require GLSL 1.30");
532 return glsl_type::error_type;
533 }
534
535 /* From page 50 (page 56 of the PDF) of the GLSL 1.30 spec:
536 *
537 * "The shift operators (<<) and (>>). For both operators, the operands
538 * must be signed or unsigned integers or integer vectors. One operand
539 * can be signed while the other is unsigned."
540 */
541 if (!type_a->is_integer()) {
542 _mesa_glsl_error(loc, state, "LHS of operator %s must be an integer or "
543 "integer vector", ast_expression::operator_string(op));
544 return glsl_type::error_type;
545
546 }
547 if (!type_b->is_integer()) {
548 _mesa_glsl_error(loc, state, "RHS of operator %s must be an integer or "
549 "integer vector", ast_expression::operator_string(op));
550 return glsl_type::error_type;
551 }
552
553 /* "If the first operand is a scalar, the second operand has to be
554 * a scalar as well."
555 */
556 if (type_a->is_scalar() && !type_b->is_scalar()) {
557 _mesa_glsl_error(loc, state, "If the first operand of %s is scalar, the "
558 "second must be scalar as well",
559 ast_expression::operator_string(op));
560 return glsl_type::error_type;
561 }
562
563 /* If both operands are vectors, check that they have same number of
564 * elements.
565 */
566 if (type_a->is_vector() &&
567 type_b->is_vector() &&
568 type_a->vector_elements != type_b->vector_elements) {
569 _mesa_glsl_error(loc, state, "Vector operands to operator %s must "
570 "have same number of elements",
571 ast_expression::operator_string(op));
572 return glsl_type::error_type;
573 }
574
575 /* "In all cases, the resulting type will be the same type as the left
576 * operand."
577 */
578 return type_a;
579 }
580
581 /**
582 * Validates that a value can be assigned to a location with a specified type
583 *
584 * Validates that \c rhs can be assigned to some location. If the types are
585 * not an exact match but an automatic conversion is possible, \c rhs will be
586 * converted.
587 *
588 * \return
589 * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
590 * Otherwise the actual RHS to be assigned will be returned. This may be
591 * \c rhs, or it may be \c rhs after some type conversion.
592 *
593 * \note
594 * In addition to being used for assignments, this function is used to
595 * type-check return values.
596 */
597 ir_rvalue *
598 validate_assignment(struct _mesa_glsl_parse_state *state,
599 const glsl_type *lhs_type, ir_rvalue *rhs)
600 {
601 /* If there is already some error in the RHS, just return it. Anything
602 * else will lead to an avalanche of error message back to the user.
603 */
604 if (rhs->type->is_error())
605 return rhs;
606
607 /* If the types are identical, the assignment can trivially proceed.
608 */
609 if (rhs->type == lhs_type)
610 return rhs;
611
612 /* If the array element types are the same and the size of the LHS is zero,
613 * the assignment is okay.
614 *
615 * Note: Whole-array assignments are not permitted in GLSL 1.10, but this
616 * is handled by ir_dereference::is_lvalue.
617 */
618 if (lhs_type->is_array() && rhs->type->is_array()
619 && (lhs_type->element_type() == rhs->type->element_type())
620 && (lhs_type->array_size() == 0)) {
621 return rhs;
622 }
623
624 /* Check for implicit conversion in GLSL 1.20 */
625 if (apply_implicit_conversion(lhs_type, rhs, state)) {
626 if (rhs->type == lhs_type)
627 return rhs;
628 }
629
630 return NULL;
631 }
632
633 ir_rvalue *
634 do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state,
635 ir_rvalue *lhs, ir_rvalue *rhs,
636 YYLTYPE lhs_loc)
637 {
638 void *ctx = state;
639 bool error_emitted = (lhs->type->is_error() || rhs->type->is_error());
640
641 if (!error_emitted) {
642 if (!lhs->is_lvalue()) {
643 _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment");
644 error_emitted = true;
645 }
646
647 if (state->es_shader && lhs->type->is_array()) {
648 _mesa_glsl_error(&lhs_loc, state, "whole array assignment is not "
649 "allowed in GLSL ES 1.00.");
650 error_emitted = true;
651 }
652 }
653
654 ir_rvalue *new_rhs = validate_assignment(state, lhs->type, rhs);
655 if (new_rhs == NULL) {
656 _mesa_glsl_error(& lhs_loc, state, "type mismatch");
657 } else {
658 rhs = new_rhs;
659
660 /* If the LHS array was not declared with a size, it takes it size from
661 * the RHS. If the LHS is an l-value and a whole array, it must be a
662 * dereference of a variable. Any other case would require that the LHS
663 * is either not an l-value or not a whole array.
664 */
665 if (lhs->type->array_size() == 0) {
666 ir_dereference *const d = lhs->as_dereference();
667
668 assert(d != NULL);
669
670 ir_variable *const var = d->variable_referenced();
671
672 assert(var != NULL);
673
674 if (var->max_array_access >= unsigned(rhs->type->array_size())) {
675 /* FINISHME: This should actually log the location of the RHS. */
676 _mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to "
677 "previous access",
678 var->max_array_access);
679 }
680
681 var->type = glsl_type::get_array_instance(lhs->type->element_type(),
682 rhs->type->array_size());
683 d->type = var->type;
684 }
685 }
686
687 /* Most callers of do_assignment (assign, add_assign, pre_inc/dec,
688 * but not post_inc) need the converted assigned value as an rvalue
689 * to handle things like:
690 *
691 * i = j += 1;
692 *
693 * So we always just store the computed value being assigned to a
694 * temporary and return a deref of that temporary. If the rvalue
695 * ends up not being used, the temp will get copy-propagated out.
696 */
697 ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp",
698 ir_var_temporary);
699 ir_dereference_variable *deref_var = new(ctx) ir_dereference_variable(var);
700 instructions->push_tail(var);
701 instructions->push_tail(new(ctx) ir_assignment(deref_var,
702 rhs,
703 NULL));
704 deref_var = new(ctx) ir_dereference_variable(var);
705
706 if (!error_emitted)
707 instructions->push_tail(new(ctx) ir_assignment(lhs, deref_var, NULL));
708
709 return new(ctx) ir_dereference_variable(var);
710 }
711
712 static ir_rvalue *
713 get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue)
714 {
715 void *ctx = talloc_parent(lvalue);
716 ir_variable *var;
717
718 var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp",
719 ir_var_temporary);
720 instructions->push_tail(var);
721 var->mode = ir_var_auto;
722
723 instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
724 lvalue, NULL));
725
726 /* Once we've created this temporary, mark it read only so it's no
727 * longer considered an lvalue.
728 */
729 var->read_only = true;
730
731 return new(ctx) ir_dereference_variable(var);
732 }
733
734
735 ir_rvalue *
736 ast_node::hir(exec_list *instructions,
737 struct _mesa_glsl_parse_state *state)
738 {
739 (void) instructions;
740 (void) state;
741
742 return NULL;
743 }
744
745 static void
746 mark_whole_array_access(ir_rvalue *access)
747 {
748 ir_dereference_variable *deref = access->as_dereference_variable();
749
750 if (deref) {
751 deref->var->max_array_access = deref->type->length - 1;
752 }
753 }
754
755 static ir_rvalue *
756 do_comparison(void *mem_ctx, int operation, ir_rvalue *op0, ir_rvalue *op1)
757 {
758 int join_op;
759 ir_rvalue *cmp = NULL;
760
761 if (operation == ir_binop_all_equal)
762 join_op = ir_binop_logic_and;
763 else
764 join_op = ir_binop_logic_or;
765
766 switch (op0->type->base_type) {
767 case GLSL_TYPE_FLOAT:
768 case GLSL_TYPE_UINT:
769 case GLSL_TYPE_INT:
770 case GLSL_TYPE_BOOL:
771 return new(mem_ctx) ir_expression(operation, op0, op1);
772
773 case GLSL_TYPE_ARRAY: {
774 for (unsigned int i = 0; i < op0->type->length; i++) {
775 ir_rvalue *e0, *e1, *result;
776
777 e0 = new(mem_ctx) ir_dereference_array(op0->clone(mem_ctx, NULL),
778 new(mem_ctx) ir_constant(i));
779 e1 = new(mem_ctx) ir_dereference_array(op1->clone(mem_ctx, NULL),
780 new(mem_ctx) ir_constant(i));
781 result = do_comparison(mem_ctx, operation, e0, e1);
782
783 if (cmp) {
784 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
785 } else {
786 cmp = result;
787 }
788 }
789
790 mark_whole_array_access(op0);
791 mark_whole_array_access(op1);
792 break;
793 }
794
795 case GLSL_TYPE_STRUCT: {
796 for (unsigned int i = 0; i < op0->type->length; i++) {
797 ir_rvalue *e0, *e1, *result;
798 const char *field_name = op0->type->fields.structure[i].name;
799
800 e0 = new(mem_ctx) ir_dereference_record(op0->clone(mem_ctx, NULL),
801 field_name);
802 e1 = new(mem_ctx) ir_dereference_record(op1->clone(mem_ctx, NULL),
803 field_name);
804 result = do_comparison(mem_ctx, operation, e0, e1);
805
806 if (cmp) {
807 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
808 } else {
809 cmp = result;
810 }
811 }
812 break;
813 }
814
815 case GLSL_TYPE_ERROR:
816 case GLSL_TYPE_VOID:
817 case GLSL_TYPE_SAMPLER:
818 /* I assume a comparison of a struct containing a sampler just
819 * ignores the sampler present in the type.
820 */
821 break;
822
823 default:
824 assert(!"Should not get here.");
825 break;
826 }
827
828 if (cmp == NULL)
829 cmp = new(mem_ctx) ir_constant(true);
830
831 return cmp;
832 }
833
834 ir_rvalue *
835 ast_expression::hir(exec_list *instructions,
836 struct _mesa_glsl_parse_state *state)
837 {
838 void *ctx = state;
839 static const int operations[AST_NUM_OPERATORS] = {
840 -1, /* ast_assign doesn't convert to ir_expression. */
841 -1, /* ast_plus doesn't convert to ir_expression. */
842 ir_unop_neg,
843 ir_binop_add,
844 ir_binop_sub,
845 ir_binop_mul,
846 ir_binop_div,
847 ir_binop_mod,
848 ir_binop_lshift,
849 ir_binop_rshift,
850 ir_binop_less,
851 ir_binop_greater,
852 ir_binop_lequal,
853 ir_binop_gequal,
854 ir_binop_all_equal,
855 ir_binop_any_nequal,
856 ir_binop_bit_and,
857 ir_binop_bit_xor,
858 ir_binop_bit_or,
859 ir_unop_bit_not,
860 ir_binop_logic_and,
861 ir_binop_logic_xor,
862 ir_binop_logic_or,
863 ir_unop_logic_not,
864
865 /* Note: The following block of expression types actually convert
866 * to multiple IR instructions.
867 */
868 ir_binop_mul, /* ast_mul_assign */
869 ir_binop_div, /* ast_div_assign */
870 ir_binop_mod, /* ast_mod_assign */
871 ir_binop_add, /* ast_add_assign */
872 ir_binop_sub, /* ast_sub_assign */
873 ir_binop_lshift, /* ast_ls_assign */
874 ir_binop_rshift, /* ast_rs_assign */
875 ir_binop_bit_and, /* ast_and_assign */
876 ir_binop_bit_xor, /* ast_xor_assign */
877 ir_binop_bit_or, /* ast_or_assign */
878
879 -1, /* ast_conditional doesn't convert to ir_expression. */
880 ir_binop_add, /* ast_pre_inc. */
881 ir_binop_sub, /* ast_pre_dec. */
882 ir_binop_add, /* ast_post_inc. */
883 ir_binop_sub, /* ast_post_dec. */
884 -1, /* ast_field_selection doesn't conv to ir_expression. */
885 -1, /* ast_array_index doesn't convert to ir_expression. */
886 -1, /* ast_function_call doesn't conv to ir_expression. */
887 -1, /* ast_identifier doesn't convert to ir_expression. */
888 -1, /* ast_int_constant doesn't convert to ir_expression. */
889 -1, /* ast_uint_constant doesn't conv to ir_expression. */
890 -1, /* ast_float_constant doesn't conv to ir_expression. */
891 -1, /* ast_bool_constant doesn't conv to ir_expression. */
892 -1, /* ast_sequence doesn't convert to ir_expression. */
893 };
894 ir_rvalue *result = NULL;
895 ir_rvalue *op[3];
896 const struct glsl_type *type = glsl_type::error_type;
897 bool error_emitted = false;
898 YYLTYPE loc;
899
900 loc = this->get_location();
901
902 switch (this->oper) {
903 case ast_assign: {
904 op[0] = this->subexpressions[0]->hir(instructions, state);
905 op[1] = this->subexpressions[1]->hir(instructions, state);
906
907 result = do_assignment(instructions, state, op[0], op[1],
908 this->subexpressions[0]->get_location());
909 error_emitted = result->type->is_error();
910 type = result->type;
911 break;
912 }
913
914 case ast_plus:
915 op[0] = this->subexpressions[0]->hir(instructions, state);
916
917 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
918
919 error_emitted = type->is_error();
920
921 result = op[0];
922 break;
923
924 case ast_neg:
925 op[0] = this->subexpressions[0]->hir(instructions, state);
926
927 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
928
929 error_emitted = type->is_error();
930
931 result = new(ctx) ir_expression(operations[this->oper], type,
932 op[0], NULL);
933 break;
934
935 case ast_add:
936 case ast_sub:
937 case ast_mul:
938 case ast_div:
939 op[0] = this->subexpressions[0]->hir(instructions, state);
940 op[1] = this->subexpressions[1]->hir(instructions, state);
941
942 type = arithmetic_result_type(op[0], op[1],
943 (this->oper == ast_mul),
944 state, & loc);
945 error_emitted = type->is_error();
946
947 result = new(ctx) ir_expression(operations[this->oper], type,
948 op[0], op[1]);
949 break;
950
951 case ast_mod:
952 op[0] = this->subexpressions[0]->hir(instructions, state);
953 op[1] = this->subexpressions[1]->hir(instructions, state);
954
955 type = modulus_result_type(op[0]->type, op[1]->type, state, & loc);
956
957 assert(operations[this->oper] == ir_binop_mod);
958
959 result = new(ctx) ir_expression(operations[this->oper], type,
960 op[0], op[1]);
961 error_emitted = type->is_error();
962 break;
963
964 case ast_lshift:
965 case ast_rshift:
966 if (state->language_version < 130) {
967 _mesa_glsl_error(&loc, state, "operator %s requires GLSL 1.30",
968 operator_string(this->oper));
969 error_emitted = true;
970 }
971
972 op[0] = this->subexpressions[0]->hir(instructions, state);
973 op[1] = this->subexpressions[1]->hir(instructions, state);
974 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
975 &loc);
976 result = new(ctx) ir_expression(operations[this->oper], type,
977 op[0], op[1]);
978 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
979 break;
980
981 case ast_less:
982 case ast_greater:
983 case ast_lequal:
984 case ast_gequal:
985 op[0] = this->subexpressions[0]->hir(instructions, state);
986 op[1] = this->subexpressions[1]->hir(instructions, state);
987
988 type = relational_result_type(op[0], op[1], state, & loc);
989
990 /* The relational operators must either generate an error or result
991 * in a scalar boolean. See page 57 of the GLSL 1.50 spec.
992 */
993 assert(type->is_error()
994 || ((type->base_type == GLSL_TYPE_BOOL)
995 && type->is_scalar()));
996
997 result = new(ctx) ir_expression(operations[this->oper], type,
998 op[0], op[1]);
999 error_emitted = type->is_error();
1000 break;
1001
1002 case ast_nequal:
1003 case ast_equal:
1004 op[0] = this->subexpressions[0]->hir(instructions, state);
1005 op[1] = this->subexpressions[1]->hir(instructions, state);
1006
1007 /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
1008 *
1009 * "The equality operators equal (==), and not equal (!=)
1010 * operate on all types. They result in a scalar Boolean. If
1011 * the operand types do not match, then there must be a
1012 * conversion from Section 4.1.10 "Implicit Conversions"
1013 * applied to one operand that can make them match, in which
1014 * case this conversion is done."
1015 */
1016 if ((!apply_implicit_conversion(op[0]->type, op[1], state)
1017 && !apply_implicit_conversion(op[1]->type, op[0], state))
1018 || (op[0]->type != op[1]->type)) {
1019 _mesa_glsl_error(& loc, state, "operands of `%s' must have the same "
1020 "type", (this->oper == ast_equal) ? "==" : "!=");
1021 error_emitted = true;
1022 } else if ((state->language_version <= 110)
1023 && (op[0]->type->is_array() || op[1]->type->is_array())) {
1024 _mesa_glsl_error(& loc, state, "array comparisons forbidden in "
1025 "GLSL 1.10");
1026 error_emitted = true;
1027 }
1028
1029 result = do_comparison(ctx, operations[this->oper], op[0], op[1]);
1030 type = glsl_type::bool_type;
1031
1032 assert(error_emitted || (result->type == glsl_type::bool_type));
1033 break;
1034
1035 case ast_bit_and:
1036 case ast_bit_xor:
1037 case ast_bit_or:
1038 op[0] = this->subexpressions[0]->hir(instructions, state);
1039 op[1] = this->subexpressions[1]->hir(instructions, state);
1040 type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
1041 state, &loc);
1042 result = new(ctx) ir_expression(operations[this->oper], type,
1043 op[0], op[1]);
1044 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1045 break;
1046
1047 case ast_bit_not:
1048 op[0] = this->subexpressions[0]->hir(instructions, state);
1049
1050 if (state->language_version < 130) {
1051 _mesa_glsl_error(&loc, state, "bit-wise operations require GLSL 1.30");
1052 error_emitted = true;
1053 }
1054
1055 if (!op[0]->type->is_integer()) {
1056 _mesa_glsl_error(&loc, state, "operand of `~' must be an integer");
1057 error_emitted = true;
1058 }
1059
1060 type = op[0]->type;
1061 result = new(ctx) ir_expression(ir_unop_bit_not, type, op[0], NULL);
1062 break;
1063
1064 case ast_logic_and: {
1065 op[0] = this->subexpressions[0]->hir(instructions, state);
1066
1067 if (!op[0]->type->is_boolean() || !op[0]->type->is_scalar()) {
1068 YYLTYPE loc = this->subexpressions[0]->get_location();
1069
1070 _mesa_glsl_error(& loc, state, "LHS of `%s' must be scalar boolean",
1071 operator_string(this->oper));
1072 error_emitted = true;
1073 }
1074
1075 ir_constant *op0_const = op[0]->constant_expression_value();
1076 if (op0_const) {
1077 if (op0_const->value.b[0]) {
1078 op[1] = this->subexpressions[1]->hir(instructions, state);
1079
1080 if (!op[1]->type->is_boolean() || !op[1]->type->is_scalar()) {
1081 YYLTYPE loc = this->subexpressions[1]->get_location();
1082
1083 _mesa_glsl_error(& loc, state,
1084 "RHS of `%s' must be scalar boolean",
1085 operator_string(this->oper));
1086 error_emitted = true;
1087 }
1088 result = op[1];
1089 } else {
1090 result = op0_const;
1091 }
1092 type = glsl_type::bool_type;
1093 } else {
1094 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1095 "and_tmp",
1096 ir_var_temporary);
1097 instructions->push_tail(tmp);
1098
1099 ir_if *const stmt = new(ctx) ir_if(op[0]);
1100 instructions->push_tail(stmt);
1101
1102 op[1] = this->subexpressions[1]->hir(&stmt->then_instructions, state);
1103
1104 if (!op[1]->type->is_boolean() || !op[1]->type->is_scalar()) {
1105 YYLTYPE loc = this->subexpressions[1]->get_location();
1106
1107 _mesa_glsl_error(& loc, state,
1108 "RHS of `%s' must be scalar boolean",
1109 operator_string(this->oper));
1110 error_emitted = true;
1111 }
1112
1113 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1114 ir_assignment *const then_assign =
1115 new(ctx) ir_assignment(then_deref, op[1], NULL);
1116 stmt->then_instructions.push_tail(then_assign);
1117
1118 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1119 ir_assignment *const else_assign =
1120 new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false), NULL);
1121 stmt->else_instructions.push_tail(else_assign);
1122
1123 result = new(ctx) ir_dereference_variable(tmp);
1124 type = tmp->type;
1125 }
1126 break;
1127 }
1128
1129 case ast_logic_or: {
1130 op[0] = this->subexpressions[0]->hir(instructions, state);
1131
1132 if (!op[0]->type->is_boolean() || !op[0]->type->is_scalar()) {
1133 YYLTYPE loc = this->subexpressions[0]->get_location();
1134
1135 _mesa_glsl_error(& loc, state, "LHS of `%s' must be scalar boolean",
1136 operator_string(this->oper));
1137 error_emitted = true;
1138 }
1139
1140 ir_constant *op0_const = op[0]->constant_expression_value();
1141 if (op0_const) {
1142 if (op0_const->value.b[0]) {
1143 result = op0_const;
1144 } else {
1145 op[1] = this->subexpressions[1]->hir(instructions, state);
1146
1147 if (!op[1]->type->is_boolean() || !op[1]->type->is_scalar()) {
1148 YYLTYPE loc = this->subexpressions[1]->get_location();
1149
1150 _mesa_glsl_error(& loc, state,
1151 "RHS of `%s' must be scalar boolean",
1152 operator_string(this->oper));
1153 error_emitted = true;
1154 }
1155 result = op[1];
1156 }
1157 type = glsl_type::bool_type;
1158 } else {
1159 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1160 "or_tmp",
1161 ir_var_temporary);
1162 instructions->push_tail(tmp);
1163
1164 ir_if *const stmt = new(ctx) ir_if(op[0]);
1165 instructions->push_tail(stmt);
1166
1167 op[1] = this->subexpressions[1]->hir(&stmt->else_instructions, state);
1168
1169 if (!op[1]->type->is_boolean() || !op[1]->type->is_scalar()) {
1170 YYLTYPE loc = this->subexpressions[1]->get_location();
1171
1172 _mesa_glsl_error(& loc, state, "RHS of `%s' must be scalar boolean",
1173 operator_string(this->oper));
1174 error_emitted = true;
1175 }
1176
1177 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1178 ir_assignment *const then_assign =
1179 new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true), NULL);
1180 stmt->then_instructions.push_tail(then_assign);
1181
1182 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1183 ir_assignment *const else_assign =
1184 new(ctx) ir_assignment(else_deref, op[1], NULL);
1185 stmt->else_instructions.push_tail(else_assign);
1186
1187 result = new(ctx) ir_dereference_variable(tmp);
1188 type = tmp->type;
1189 }
1190 break;
1191 }
1192
1193 case ast_logic_xor:
1194 op[0] = this->subexpressions[0]->hir(instructions, state);
1195 op[1] = this->subexpressions[1]->hir(instructions, state);
1196
1197
1198 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1199 op[0], op[1]);
1200 type = glsl_type::bool_type;
1201 break;
1202
1203 case ast_logic_not:
1204 op[0] = this->subexpressions[0]->hir(instructions, state);
1205
1206 if (!op[0]->type->is_boolean() || !op[0]->type->is_scalar()) {
1207 YYLTYPE loc = this->subexpressions[0]->get_location();
1208
1209 _mesa_glsl_error(& loc, state,
1210 "operand of `!' must be scalar boolean");
1211 error_emitted = true;
1212 }
1213
1214 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1215 op[0], NULL);
1216 type = glsl_type::bool_type;
1217 break;
1218
1219 case ast_mul_assign:
1220 case ast_div_assign:
1221 case ast_add_assign:
1222 case ast_sub_assign: {
1223 op[0] = this->subexpressions[0]->hir(instructions, state);
1224 op[1] = this->subexpressions[1]->hir(instructions, state);
1225
1226 type = arithmetic_result_type(op[0], op[1],
1227 (this->oper == ast_mul_assign),
1228 state, & loc);
1229
1230 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1231 op[0], op[1]);
1232
1233 result = do_assignment(instructions, state,
1234 op[0]->clone(ctx, NULL), temp_rhs,
1235 this->subexpressions[0]->get_location());
1236 type = result->type;
1237 error_emitted = (op[0]->type->is_error());
1238
1239 /* GLSL 1.10 does not allow array assignment. However, we don't have to
1240 * explicitly test for this because none of the binary expression
1241 * operators allow array operands either.
1242 */
1243
1244 break;
1245 }
1246
1247 case ast_mod_assign: {
1248 op[0] = this->subexpressions[0]->hir(instructions, state);
1249 op[1] = this->subexpressions[1]->hir(instructions, state);
1250
1251 type = modulus_result_type(op[0]->type, op[1]->type, state, & loc);
1252
1253 assert(operations[this->oper] == ir_binop_mod);
1254
1255 ir_rvalue *temp_rhs;
1256 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1257 op[0], op[1]);
1258
1259 result = do_assignment(instructions, state,
1260 op[0]->clone(ctx, NULL), temp_rhs,
1261 this->subexpressions[0]->get_location());
1262 type = result->type;
1263 error_emitted = type->is_error();
1264 break;
1265 }
1266
1267 case ast_ls_assign:
1268 case ast_rs_assign: {
1269 op[0] = this->subexpressions[0]->hir(instructions, state);
1270 op[1] = this->subexpressions[1]->hir(instructions, state);
1271 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1272 &loc);
1273 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1274 type, op[0], op[1]);
1275 result = do_assignment(instructions, state, op[0]->clone(ctx, NULL),
1276 temp_rhs,
1277 this->subexpressions[0]->get_location());
1278 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1279 break;
1280 }
1281
1282 case ast_and_assign:
1283 case ast_xor_assign:
1284 case ast_or_assign: {
1285 op[0] = this->subexpressions[0]->hir(instructions, state);
1286 op[1] = this->subexpressions[1]->hir(instructions, state);
1287 type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
1288 state, &loc);
1289 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1290 type, op[0], op[1]);
1291 result = do_assignment(instructions, state, op[0]->clone(ctx, NULL),
1292 temp_rhs,
1293 this->subexpressions[0]->get_location());
1294 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1295 break;
1296 }
1297
1298 case ast_conditional: {
1299 op[0] = this->subexpressions[0]->hir(instructions, state);
1300
1301 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1302 *
1303 * "The ternary selection operator (?:). It operates on three
1304 * expressions (exp1 ? exp2 : exp3). This operator evaluates the
1305 * first expression, which must result in a scalar Boolean."
1306 */
1307 if (!op[0]->type->is_boolean() || !op[0]->type->is_scalar()) {
1308 YYLTYPE loc = this->subexpressions[0]->get_location();
1309
1310 _mesa_glsl_error(& loc, state, "?: condition must be scalar boolean");
1311 error_emitted = true;
1312 }
1313
1314 /* The :? operator is implemented by generating an anonymous temporary
1315 * followed by an if-statement. The last instruction in each branch of
1316 * the if-statement assigns a value to the anonymous temporary. This
1317 * temporary is the r-value of the expression.
1318 */
1319 exec_list then_instructions;
1320 exec_list else_instructions;
1321
1322 op[1] = this->subexpressions[1]->hir(&then_instructions, state);
1323 op[2] = this->subexpressions[2]->hir(&else_instructions, state);
1324
1325 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1326 *
1327 * "The second and third expressions can be any type, as
1328 * long their types match, or there is a conversion in
1329 * Section 4.1.10 "Implicit Conversions" that can be applied
1330 * to one of the expressions to make their types match. This
1331 * resulting matching type is the type of the entire
1332 * expression."
1333 */
1334 if ((!apply_implicit_conversion(op[1]->type, op[2], state)
1335 && !apply_implicit_conversion(op[2]->type, op[1], state))
1336 || (op[1]->type != op[2]->type)) {
1337 YYLTYPE loc = this->subexpressions[1]->get_location();
1338
1339 _mesa_glsl_error(& loc, state, "Second and third operands of ?: "
1340 "operator must have matching types.");
1341 error_emitted = true;
1342 type = glsl_type::error_type;
1343 } else {
1344 type = op[1]->type;
1345 }
1346
1347 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1348 *
1349 * "The second and third expressions must be the same type, but can
1350 * be of any type other than an array."
1351 */
1352 if ((state->language_version <= 110) && type->is_array()) {
1353 _mesa_glsl_error(& loc, state, "Second and third operands of ?: "
1354 "operator must not be arrays.");
1355 error_emitted = true;
1356 }
1357
1358 ir_constant *cond_val = op[0]->constant_expression_value();
1359 ir_constant *then_val = op[1]->constant_expression_value();
1360 ir_constant *else_val = op[2]->constant_expression_value();
1361
1362 if (then_instructions.is_empty()
1363 && else_instructions.is_empty()
1364 && (cond_val != NULL) && (then_val != NULL) && (else_val != NULL)) {
1365 result = (cond_val->value.b[0]) ? then_val : else_val;
1366 } else {
1367 ir_variable *const tmp =
1368 new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary);
1369 instructions->push_tail(tmp);
1370
1371 ir_if *const stmt = new(ctx) ir_if(op[0]);
1372 instructions->push_tail(stmt);
1373
1374 then_instructions.move_nodes_to(& stmt->then_instructions);
1375 ir_dereference *const then_deref =
1376 new(ctx) ir_dereference_variable(tmp);
1377 ir_assignment *const then_assign =
1378 new(ctx) ir_assignment(then_deref, op[1], NULL);
1379 stmt->then_instructions.push_tail(then_assign);
1380
1381 else_instructions.move_nodes_to(& stmt->else_instructions);
1382 ir_dereference *const else_deref =
1383 new(ctx) ir_dereference_variable(tmp);
1384 ir_assignment *const else_assign =
1385 new(ctx) ir_assignment(else_deref, op[2], NULL);
1386 stmt->else_instructions.push_tail(else_assign);
1387
1388 result = new(ctx) ir_dereference_variable(tmp);
1389 }
1390 break;
1391 }
1392
1393 case ast_pre_inc:
1394 case ast_pre_dec: {
1395 op[0] = this->subexpressions[0]->hir(instructions, state);
1396 if (op[0]->type->base_type == GLSL_TYPE_FLOAT)
1397 op[1] = new(ctx) ir_constant(1.0f);
1398 else
1399 op[1] = new(ctx) ir_constant(1);
1400
1401 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1402
1403 ir_rvalue *temp_rhs;
1404 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1405 op[0], op[1]);
1406
1407 result = do_assignment(instructions, state,
1408 op[0]->clone(ctx, NULL), temp_rhs,
1409 this->subexpressions[0]->get_location());
1410 type = result->type;
1411 error_emitted = op[0]->type->is_error();
1412 break;
1413 }
1414
1415 case ast_post_inc:
1416 case ast_post_dec: {
1417 op[0] = this->subexpressions[0]->hir(instructions, state);
1418 if (op[0]->type->base_type == GLSL_TYPE_FLOAT)
1419 op[1] = new(ctx) ir_constant(1.0f);
1420 else
1421 op[1] = new(ctx) ir_constant(1);
1422
1423 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1424
1425 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1426
1427 ir_rvalue *temp_rhs;
1428 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1429 op[0], op[1]);
1430
1431 /* Get a temporary of a copy of the lvalue before it's modified.
1432 * This may get thrown away later.
1433 */
1434 result = get_lvalue_copy(instructions, op[0]->clone(ctx, NULL));
1435
1436 (void)do_assignment(instructions, state,
1437 op[0]->clone(ctx, NULL), temp_rhs,
1438 this->subexpressions[0]->get_location());
1439
1440 type = result->type;
1441 error_emitted = op[0]->type->is_error();
1442 break;
1443 }
1444
1445 case ast_field_selection:
1446 result = _mesa_ast_field_selection_to_hir(this, instructions, state);
1447 type = result->type;
1448 break;
1449
1450 case ast_array_index: {
1451 YYLTYPE index_loc = subexpressions[1]->get_location();
1452
1453 op[0] = subexpressions[0]->hir(instructions, state);
1454 op[1] = subexpressions[1]->hir(instructions, state);
1455
1456 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1457
1458 ir_rvalue *const array = op[0];
1459
1460 result = new(ctx) ir_dereference_array(op[0], op[1]);
1461
1462 /* Do not use op[0] after this point. Use array.
1463 */
1464 op[0] = NULL;
1465
1466
1467 if (error_emitted)
1468 break;
1469
1470 if (!array->type->is_array()
1471 && !array->type->is_matrix()
1472 && !array->type->is_vector()) {
1473 _mesa_glsl_error(& index_loc, state,
1474 "cannot dereference non-array / non-matrix / "
1475 "non-vector");
1476 error_emitted = true;
1477 }
1478
1479 if (!op[1]->type->is_integer()) {
1480 _mesa_glsl_error(& index_loc, state,
1481 "array index must be integer type");
1482 error_emitted = true;
1483 } else if (!op[1]->type->is_scalar()) {
1484 _mesa_glsl_error(& index_loc, state,
1485 "array index must be scalar");
1486 error_emitted = true;
1487 }
1488
1489 /* If the array index is a constant expression and the array has a
1490 * declared size, ensure that the access is in-bounds. If the array
1491 * index is not a constant expression, ensure that the array has a
1492 * declared size.
1493 */
1494 ir_constant *const const_index = op[1]->constant_expression_value();
1495 if (const_index != NULL) {
1496 const int idx = const_index->value.i[0];
1497 const char *type_name;
1498 unsigned bound = 0;
1499
1500 if (array->type->is_matrix()) {
1501 type_name = "matrix";
1502 } else if (array->type->is_vector()) {
1503 type_name = "vector";
1504 } else {
1505 type_name = "array";
1506 }
1507
1508 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec:
1509 *
1510 * "It is illegal to declare an array with a size, and then
1511 * later (in the same shader) index the same array with an
1512 * integral constant expression greater than or equal to the
1513 * declared size. It is also illegal to index an array with a
1514 * negative constant expression."
1515 */
1516 if (array->type->is_matrix()) {
1517 if (array->type->row_type()->vector_elements <= idx) {
1518 bound = array->type->row_type()->vector_elements;
1519 }
1520 } else if (array->type->is_vector()) {
1521 if (array->type->vector_elements <= idx) {
1522 bound = array->type->vector_elements;
1523 }
1524 } else {
1525 if ((array->type->array_size() > 0)
1526 && (array->type->array_size() <= idx)) {
1527 bound = array->type->array_size();
1528 }
1529 }
1530
1531 if (bound > 0) {
1532 _mesa_glsl_error(& loc, state, "%s index must be < %u",
1533 type_name, bound);
1534 error_emitted = true;
1535 } else if (idx < 0) {
1536 _mesa_glsl_error(& loc, state, "%s index must be >= 0",
1537 type_name);
1538 error_emitted = true;
1539 }
1540
1541 if (array->type->is_array()) {
1542 /* If the array is a variable dereference, it dereferences the
1543 * whole array, by definition. Use this to get the variable.
1544 *
1545 * FINISHME: Should some methods for getting / setting / testing
1546 * FINISHME: array access limits be added to ir_dereference?
1547 */
1548 ir_variable *const v = array->whole_variable_referenced();
1549 if ((v != NULL) && (unsigned(idx) > v->max_array_access))
1550 v->max_array_access = idx;
1551 }
1552 } else if (array->type->array_size() == 0) {
1553 _mesa_glsl_error(&loc, state, "unsized array index must be constant");
1554 } else {
1555 if (array->type->is_array()) {
1556 /* whole_variable_referenced can return NULL if the array is a
1557 * member of a structure. In this case it is safe to not update
1558 * the max_array_access field because it is never used for fields
1559 * of structures.
1560 */
1561 ir_variable *v = array->whole_variable_referenced();
1562 if (v != NULL)
1563 v->max_array_access = array->type->array_size();
1564 }
1565 }
1566
1567 /* From page 23 (29 of the PDF) of the GLSL 1.30 spec:
1568 *
1569 * "Samplers aggregated into arrays within a shader (using square
1570 * brackets [ ]) can only be indexed with integral constant
1571 * expressions [...]."
1572 *
1573 * This restriction was added in GLSL 1.30. Shaders using earlier version
1574 * of the language should not be rejected by the compiler front-end for
1575 * using this construct. This allows useful things such as using a loop
1576 * counter as the index to an array of samplers. If the loop in unrolled,
1577 * the code should compile correctly. Instead, emit a warning.
1578 */
1579 if (array->type->is_array() &&
1580 array->type->element_type()->is_sampler() &&
1581 const_index == NULL) {
1582
1583 if (state->language_version == 100) {
1584 _mesa_glsl_warning(&loc, state,
1585 "sampler arrays indexed with non-constant "
1586 "expressions is optional in GLSL ES 1.00");
1587 } else if (state->language_version < 130) {
1588 _mesa_glsl_warning(&loc, state,
1589 "sampler arrays indexed with non-constant "
1590 "expressions is forbidden in GLSL 1.30 and "
1591 "later");
1592 } else {
1593 _mesa_glsl_error(&loc, state,
1594 "sampler arrays indexed with non-constant "
1595 "expressions is forbidden in GLSL 1.30 and "
1596 "later");
1597 error_emitted = true;
1598 }
1599 }
1600
1601 if (error_emitted)
1602 result->type = glsl_type::error_type;
1603
1604 type = result->type;
1605 break;
1606 }
1607
1608 case ast_function_call:
1609 /* Should *NEVER* get here. ast_function_call should always be handled
1610 * by ast_function_expression::hir.
1611 */
1612 assert(0);
1613 break;
1614
1615 case ast_identifier: {
1616 /* ast_identifier can appear several places in a full abstract syntax
1617 * tree. This particular use must be at location specified in the grammar
1618 * as 'variable_identifier'.
1619 */
1620 ir_variable *var =
1621 state->symbols->get_variable(this->primary_expression.identifier);
1622
1623 result = new(ctx) ir_dereference_variable(var);
1624
1625 if (var != NULL) {
1626 type = result->type;
1627 } else {
1628 _mesa_glsl_error(& loc, state, "`%s' undeclared",
1629 this->primary_expression.identifier);
1630
1631 error_emitted = true;
1632 }
1633 break;
1634 }
1635
1636 case ast_int_constant:
1637 type = glsl_type::int_type;
1638 result = new(ctx) ir_constant(this->primary_expression.int_constant);
1639 break;
1640
1641 case ast_uint_constant:
1642 type = glsl_type::uint_type;
1643 result = new(ctx) ir_constant(this->primary_expression.uint_constant);
1644 break;
1645
1646 case ast_float_constant:
1647 type = glsl_type::float_type;
1648 result = new(ctx) ir_constant(this->primary_expression.float_constant);
1649 break;
1650
1651 case ast_bool_constant:
1652 type = glsl_type::bool_type;
1653 result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant));
1654 break;
1655
1656 case ast_sequence: {
1657 /* It should not be possible to generate a sequence in the AST without
1658 * any expressions in it.
1659 */
1660 assert(!this->expressions.is_empty());
1661
1662 /* The r-value of a sequence is the last expression in the sequence. If
1663 * the other expressions in the sequence do not have side-effects (and
1664 * therefore add instructions to the instruction list), they get dropped
1665 * on the floor.
1666 */
1667 foreach_list_typed (ast_node, ast, link, &this->expressions)
1668 result = ast->hir(instructions, state);
1669
1670 type = result->type;
1671
1672 /* Any errors should have already been emitted in the loop above.
1673 */
1674 error_emitted = true;
1675 break;
1676 }
1677 }
1678
1679 if (type->is_error() && !error_emitted)
1680 _mesa_glsl_error(& loc, state, "type mismatch");
1681
1682 return result;
1683 }
1684
1685
1686 ir_rvalue *
1687 ast_expression_statement::hir(exec_list *instructions,
1688 struct _mesa_glsl_parse_state *state)
1689 {
1690 /* It is possible to have expression statements that don't have an
1691 * expression. This is the solitary semicolon:
1692 *
1693 * for (i = 0; i < 5; i++)
1694 * ;
1695 *
1696 * In this case the expression will be NULL. Test for NULL and don't do
1697 * anything in that case.
1698 */
1699 if (expression != NULL)
1700 expression->hir(instructions, state);
1701
1702 /* Statements do not have r-values.
1703 */
1704 return NULL;
1705 }
1706
1707
1708 ir_rvalue *
1709 ast_compound_statement::hir(exec_list *instructions,
1710 struct _mesa_glsl_parse_state *state)
1711 {
1712 if (new_scope)
1713 state->symbols->push_scope();
1714
1715 foreach_list_typed (ast_node, ast, link, &this->statements)
1716 ast->hir(instructions, state);
1717
1718 if (new_scope)
1719 state->symbols->pop_scope();
1720
1721 /* Compound statements do not have r-values.
1722 */
1723 return NULL;
1724 }
1725
1726
1727 static const glsl_type *
1728 process_array_type(YYLTYPE *loc, const glsl_type *base, ast_node *array_size,
1729 struct _mesa_glsl_parse_state *state)
1730 {
1731 unsigned length = 0;
1732
1733 /* FINISHME: Reject delcarations of multidimensional arrays. */
1734
1735 if (array_size != NULL) {
1736 exec_list dummy_instructions;
1737 ir_rvalue *const ir = array_size->hir(& dummy_instructions, state);
1738 YYLTYPE loc = array_size->get_location();
1739
1740 /* FINISHME: Verify that the grammar forbids side-effects in array
1741 * FINISHME: sizes. i.e., 'vec4 [x = 12] data'
1742 */
1743 assert(dummy_instructions.is_empty());
1744
1745 if (ir != NULL) {
1746 if (!ir->type->is_integer()) {
1747 _mesa_glsl_error(& loc, state, "array size must be integer type");
1748 } else if (!ir->type->is_scalar()) {
1749 _mesa_glsl_error(& loc, state, "array size must be scalar type");
1750 } else {
1751 ir_constant *const size = ir->constant_expression_value();
1752
1753 if (size == NULL) {
1754 _mesa_glsl_error(& loc, state, "array size must be a "
1755 "constant valued expression");
1756 } else if (size->value.i[0] <= 0) {
1757 _mesa_glsl_error(& loc, state, "array size must be > 0");
1758 } else {
1759 assert(size->type == ir->type);
1760 length = size->value.u[0];
1761 }
1762 }
1763 }
1764 } else if (state->es_shader) {
1765 /* Section 10.17 of the GLSL ES 1.00 specification states that unsized
1766 * array declarations have been removed from the language.
1767 */
1768 _mesa_glsl_error(loc, state, "unsized array declarations are not "
1769 "allowed in GLSL ES 1.00.");
1770 }
1771
1772 return glsl_type::get_array_instance(base, length);
1773 }
1774
1775
1776 const glsl_type *
1777 ast_type_specifier::glsl_type(const char **name,
1778 struct _mesa_glsl_parse_state *state) const
1779 {
1780 const struct glsl_type *type;
1781
1782 type = state->symbols->get_type(this->type_name);
1783 *name = this->type_name;
1784
1785 if (this->is_array) {
1786 YYLTYPE loc = this->get_location();
1787 type = process_array_type(&loc, type, this->array_size, state);
1788 }
1789
1790 return type;
1791 }
1792
1793
1794 static void
1795 apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
1796 ir_variable *var,
1797 struct _mesa_glsl_parse_state *state,
1798 YYLTYPE *loc)
1799 {
1800 if (qual->flags.q.invariant)
1801 var->invariant = 1;
1802
1803 /* FINISHME: Mark 'in' variables at global scope as read-only. */
1804 if (qual->flags.q.constant || qual->flags.q.attribute
1805 || qual->flags.q.uniform
1806 || (qual->flags.q.varying && (state->target == fragment_shader)))
1807 var->read_only = 1;
1808
1809 if (qual->flags.q.centroid)
1810 var->centroid = 1;
1811
1812 if (qual->flags.q.attribute && state->target != vertex_shader) {
1813 var->type = glsl_type::error_type;
1814 _mesa_glsl_error(loc, state,
1815 "`attribute' variables may not be declared in the "
1816 "%s shader",
1817 _mesa_glsl_shader_target_name(state->target));
1818 }
1819
1820 /* From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
1821 *
1822 * "The varying qualifier can be used only with the data types
1823 * float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
1824 * these."
1825 */
1826 if (qual->flags.q.varying) {
1827 const glsl_type *non_array_type;
1828
1829 if (var->type && var->type->is_array())
1830 non_array_type = var->type->fields.array;
1831 else
1832 non_array_type = var->type;
1833
1834 if (non_array_type && non_array_type->base_type != GLSL_TYPE_FLOAT) {
1835 var->type = glsl_type::error_type;
1836 _mesa_glsl_error(loc, state,
1837 "varying variables must be of base type float");
1838 }
1839 }
1840
1841 /* If there is no qualifier that changes the mode of the variable, leave
1842 * the setting alone.
1843 */
1844 if (qual->flags.q.in && qual->flags.q.out)
1845 var->mode = ir_var_inout;
1846 else if (qual->flags.q.attribute || qual->flags.q.in
1847 || (qual->flags.q.varying && (state->target == fragment_shader)))
1848 var->mode = ir_var_in;
1849 else if (qual->flags.q.out
1850 || (qual->flags.q.varying && (state->target == vertex_shader)))
1851 var->mode = ir_var_out;
1852 else if (qual->flags.q.uniform)
1853 var->mode = ir_var_uniform;
1854
1855 if (state->all_invariant && (state->current_function == NULL)) {
1856 switch (state->target) {
1857 case vertex_shader:
1858 if (var->mode == ir_var_out)
1859 var->invariant = true;
1860 break;
1861 case geometry_shader:
1862 if ((var->mode == ir_var_in) || (var->mode == ir_var_out))
1863 var->invariant = true;
1864 break;
1865 case fragment_shader:
1866 if (var->mode == ir_var_in)
1867 var->invariant = true;
1868 break;
1869 }
1870 }
1871
1872 if (qual->flags.q.flat)
1873 var->interpolation = ir_var_flat;
1874 else if (qual->flags.q.noperspective)
1875 var->interpolation = ir_var_noperspective;
1876 else
1877 var->interpolation = ir_var_smooth;
1878
1879 var->pixel_center_integer = qual->flags.q.pixel_center_integer;
1880 var->origin_upper_left = qual->flags.q.origin_upper_left;
1881 if ((qual->flags.q.origin_upper_left || qual->flags.q.pixel_center_integer)
1882 && (strcmp(var->name, "gl_FragCoord") != 0)) {
1883 const char *const qual_string = (qual->flags.q.origin_upper_left)
1884 ? "origin_upper_left" : "pixel_center_integer";
1885
1886 _mesa_glsl_error(loc, state,
1887 "layout qualifier `%s' can only be applied to "
1888 "fragment shader input `gl_FragCoord'",
1889 qual_string);
1890 }
1891
1892 if (qual->flags.q.explicit_location) {
1893 const bool global_scope = (state->current_function == NULL);
1894 bool fail = false;
1895 const char *string = "";
1896
1897 /* In the vertex shader only shader inputs can be given explicit
1898 * locations.
1899 *
1900 * In the fragment shader only shader outputs can be given explicit
1901 * locations.
1902 */
1903 switch (state->target) {
1904 case vertex_shader:
1905 if (!global_scope || (var->mode != ir_var_in)) {
1906 fail = true;
1907 string = "input";
1908 }
1909 break;
1910
1911 case geometry_shader:
1912 _mesa_glsl_error(loc, state,
1913 "geometry shader variables cannot be given "
1914 "explicit locations\n");
1915 break;
1916
1917 case fragment_shader:
1918 if (!global_scope || (var->mode != ir_var_in)) {
1919 fail = true;
1920 string = "output";
1921 }
1922 break;
1923 };
1924
1925 if (fail) {
1926 _mesa_glsl_error(loc, state,
1927 "only %s shader %s variables can be given an "
1928 "explicit location\n",
1929 _mesa_glsl_shader_target_name(state->target),
1930 string);
1931 } else {
1932 var->explicit_location = true;
1933
1934 /* This bit of silliness is needed because invalid explicit locations
1935 * are supposed to be flagged during linking. Small negative values
1936 * biased by VERT_ATTRIB_GENERIC0 or FRAG_RESULT_DATA0 could alias
1937 * built-in values (e.g., -16+VERT_ATTRIB_GENERIC0 = VERT_ATTRIB_POS).
1938 * The linker needs to be able to differentiate these cases. This
1939 * ensures that negative values stay negative.
1940 */
1941 if (qual->location >= 0) {
1942 var->location = (state->target == vertex_shader)
1943 ? (qual->location + VERT_ATTRIB_GENERIC0)
1944 : (qual->location + FRAG_RESULT_DATA0);
1945 } else {
1946 var->location = qual->location;
1947 }
1948 }
1949 }
1950
1951 if (var->type->is_array() && state->language_version != 110) {
1952 var->array_lvalue = true;
1953 }
1954 }
1955
1956
1957 ir_rvalue *
1958 ast_declarator_list::hir(exec_list *instructions,
1959 struct _mesa_glsl_parse_state *state)
1960 {
1961 void *ctx = state;
1962 const struct glsl_type *decl_type;
1963 const char *type_name = NULL;
1964 ir_rvalue *result = NULL;
1965 YYLTYPE loc = this->get_location();
1966
1967 /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec:
1968 *
1969 * "To ensure that a particular output variable is invariant, it is
1970 * necessary to use the invariant qualifier. It can either be used to
1971 * qualify a previously declared variable as being invariant
1972 *
1973 * invariant gl_Position; // make existing gl_Position be invariant"
1974 *
1975 * In these cases the parser will set the 'invariant' flag in the declarator
1976 * list, and the type will be NULL.
1977 */
1978 if (this->invariant) {
1979 assert(this->type == NULL);
1980
1981 if (state->current_function != NULL) {
1982 _mesa_glsl_error(& loc, state,
1983 "All uses of `invariant' keyword must be at global "
1984 "scope\n");
1985 }
1986
1987 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
1988 assert(!decl->is_array);
1989 assert(decl->array_size == NULL);
1990 assert(decl->initializer == NULL);
1991
1992 ir_variable *const earlier =
1993 state->symbols->get_variable(decl->identifier);
1994 if (earlier == NULL) {
1995 _mesa_glsl_error(& loc, state,
1996 "Undeclared variable `%s' cannot be marked "
1997 "invariant\n", decl->identifier);
1998 } else if ((state->target == vertex_shader)
1999 && (earlier->mode != ir_var_out)) {
2000 _mesa_glsl_error(& loc, state,
2001 "`%s' cannot be marked invariant, vertex shader "
2002 "outputs only\n", decl->identifier);
2003 } else if ((state->target == fragment_shader)
2004 && (earlier->mode != ir_var_in)) {
2005 _mesa_glsl_error(& loc, state,
2006 "`%s' cannot be marked invariant, fragment shader "
2007 "inputs only\n", decl->identifier);
2008 } else {
2009 earlier->invariant = true;
2010 }
2011 }
2012
2013 /* Invariant redeclarations do not have r-values.
2014 */
2015 return NULL;
2016 }
2017
2018 assert(this->type != NULL);
2019 assert(!this->invariant);
2020
2021 /* The type specifier may contain a structure definition. Process that
2022 * before any of the variable declarations.
2023 */
2024 (void) this->type->specifier->hir(instructions, state);
2025
2026 decl_type = this->type->specifier->glsl_type(& type_name, state);
2027 if (this->declarations.is_empty()) {
2028 /* The only valid case where the declaration list can be empty is when
2029 * the declaration is setting the default precision of a built-in type
2030 * (e.g., 'precision highp vec4;').
2031 */
2032
2033 if (decl_type != NULL) {
2034 } else {
2035 _mesa_glsl_error(& loc, state, "incomplete declaration");
2036 }
2037 }
2038
2039 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
2040 const struct glsl_type *var_type;
2041 ir_variable *var;
2042
2043 /* FINISHME: Emit a warning if a variable declaration shadows a
2044 * FINISHME: declaration at a higher scope.
2045 */
2046
2047 if ((decl_type == NULL) || decl_type->is_void()) {
2048 if (type_name != NULL) {
2049 _mesa_glsl_error(& loc, state,
2050 "invalid type `%s' in declaration of `%s'",
2051 type_name, decl->identifier);
2052 } else {
2053 _mesa_glsl_error(& loc, state,
2054 "invalid type in declaration of `%s'",
2055 decl->identifier);
2056 }
2057 continue;
2058 }
2059
2060 if (decl->is_array) {
2061 var_type = process_array_type(&loc, decl_type, decl->array_size,
2062 state);
2063 } else {
2064 var_type = decl_type;
2065 }
2066
2067 var = new(ctx) ir_variable(var_type, decl->identifier, ir_var_auto);
2068
2069 /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
2070 *
2071 * "Global variables can only use the qualifiers const,
2072 * attribute, uni form, or varying. Only one may be
2073 * specified.
2074 *
2075 * Local variables can only use the qualifier const."
2076 *
2077 * This is relaxed in GLSL 1.30.
2078 */
2079 if (state->language_version < 120) {
2080 if (this->type->qualifier.flags.q.out) {
2081 _mesa_glsl_error(& loc, state,
2082 "`out' qualifier in declaration of `%s' "
2083 "only valid for function parameters in GLSL 1.10.",
2084 decl->identifier);
2085 }
2086 if (this->type->qualifier.flags.q.in) {
2087 _mesa_glsl_error(& loc, state,
2088 "`in' qualifier in declaration of `%s' "
2089 "only valid for function parameters in GLSL 1.10.",
2090 decl->identifier);
2091 }
2092 /* FINISHME: Test for other invalid qualifiers. */
2093 }
2094
2095 apply_type_qualifier_to_variable(& this->type->qualifier, var, state,
2096 & loc);
2097
2098 if (this->type->qualifier.flags.q.invariant) {
2099 if ((state->target == vertex_shader) && !(var->mode == ir_var_out ||
2100 var->mode == ir_var_inout)) {
2101 /* FINISHME: Note that this doesn't work for invariant on
2102 * a function signature outval
2103 */
2104 _mesa_glsl_error(& loc, state,
2105 "`%s' cannot be marked invariant, vertex shader "
2106 "outputs only\n", var->name);
2107 } else if ((state->target == fragment_shader) &&
2108 !(var->mode == ir_var_in || var->mode == ir_var_inout)) {
2109 /* FINISHME: Note that this doesn't work for invariant on
2110 * a function signature inval
2111 */
2112 _mesa_glsl_error(& loc, state,
2113 "`%s' cannot be marked invariant, fragment shader "
2114 "inputs only\n", var->name);
2115 }
2116 }
2117
2118 if (state->current_function != NULL) {
2119 const char *mode = NULL;
2120 const char *extra = "";
2121
2122 /* There is no need to check for 'inout' here because the parser will
2123 * only allow that in function parameter lists.
2124 */
2125 if (this->type->qualifier.flags.q.attribute) {
2126 mode = "attribute";
2127 } else if (this->type->qualifier.flags.q.uniform) {
2128 mode = "uniform";
2129 } else if (this->type->qualifier.flags.q.varying) {
2130 mode = "varying";
2131 } else if (this->type->qualifier.flags.q.in) {
2132 mode = "in";
2133 extra = " or in function parameter list";
2134 } else if (this->type->qualifier.flags.q.out) {
2135 mode = "out";
2136 extra = " or in function parameter list";
2137 }
2138
2139 if (mode) {
2140 _mesa_glsl_error(& loc, state,
2141 "%s variable `%s' must be declared at "
2142 "global scope%s",
2143 mode, var->name, extra);
2144 }
2145 } else if (var->mode == ir_var_in) {
2146 if (state->target == vertex_shader) {
2147 bool error_emitted = false;
2148
2149 /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
2150 *
2151 * "Vertex shader inputs can only be float, floating-point
2152 * vectors, matrices, signed and unsigned integers and integer
2153 * vectors. Vertex shader inputs can also form arrays of these
2154 * types, but not structures."
2155 *
2156 * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
2157 *
2158 * "Vertex shader inputs can only be float, floating-point
2159 * vectors, matrices, signed and unsigned integers and integer
2160 * vectors. They cannot be arrays or structures."
2161 *
2162 * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
2163 *
2164 * "The attribute qualifier can be used only with float,
2165 * floating-point vectors, and matrices. Attribute variables
2166 * cannot be declared as arrays or structures."
2167 */
2168 const glsl_type *check_type = var->type->is_array()
2169 ? var->type->fields.array : var->type;
2170
2171 switch (check_type->base_type) {
2172 case GLSL_TYPE_FLOAT:
2173 break;
2174 case GLSL_TYPE_UINT:
2175 case GLSL_TYPE_INT:
2176 if (state->language_version > 120)
2177 break;
2178 /* FALLTHROUGH */
2179 default:
2180 _mesa_glsl_error(& loc, state,
2181 "vertex shader input / attribute cannot have "
2182 "type %s`%s'",
2183 var->type->is_array() ? "array of " : "",
2184 check_type->name);
2185 error_emitted = true;
2186 }
2187
2188 if (!error_emitted && (state->language_version <= 130)
2189 && var->type->is_array()) {
2190 _mesa_glsl_error(& loc, state,
2191 "vertex shader input / attribute cannot have "
2192 "array type");
2193 error_emitted = true;
2194 }
2195 }
2196 }
2197
2198 /* Integer vertex outputs must be qualified with 'flat'.
2199 *
2200 * From section 4.3.6 of the GLSL 1.30 spec:
2201 * "If a vertex output is a signed or unsigned integer or integer
2202 * vector, then it must be qualified with the interpolation qualifier
2203 * flat."
2204 */
2205 if (state->language_version >= 130
2206 && state->target == vertex_shader
2207 && state->current_function == NULL
2208 && var->type->is_integer()
2209 && var->mode == ir_var_out
2210 && var->interpolation != ir_var_flat) {
2211
2212 _mesa_glsl_error(&loc, state, "If a vertex output is an integer, "
2213 "then it must be qualified with 'flat'");
2214 }
2215
2216
2217 /* Process the initializer and add its instructions to a temporary
2218 * list. This list will be added to the instruction stream (below) after
2219 * the declaration is added. This is done because in some cases (such as
2220 * redeclarations) the declaration may not actually be added to the
2221 * instruction stream.
2222 */
2223 exec_list initializer_instructions;
2224 if (decl->initializer != NULL) {
2225 YYLTYPE initializer_loc = decl->initializer->get_location();
2226
2227 /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
2228 *
2229 * "All uniform variables are read-only and are initialized either
2230 * directly by an application via API commands, or indirectly by
2231 * OpenGL."
2232 */
2233 if ((state->language_version <= 110)
2234 && (var->mode == ir_var_uniform)) {
2235 _mesa_glsl_error(& initializer_loc, state,
2236 "cannot initialize uniforms in GLSL 1.10");
2237 }
2238
2239 if (var->type->is_sampler()) {
2240 _mesa_glsl_error(& initializer_loc, state,
2241 "cannot initialize samplers");
2242 }
2243
2244 if ((var->mode == ir_var_in) && (state->current_function == NULL)) {
2245 _mesa_glsl_error(& initializer_loc, state,
2246 "cannot initialize %s shader input / %s",
2247 _mesa_glsl_shader_target_name(state->target),
2248 (state->target == vertex_shader)
2249 ? "attribute" : "varying");
2250 }
2251
2252 ir_dereference *const lhs = new(ctx) ir_dereference_variable(var);
2253 ir_rvalue *rhs = decl->initializer->hir(&initializer_instructions,
2254 state);
2255
2256 /* Calculate the constant value if this is a const or uniform
2257 * declaration.
2258 */
2259 if (this->type->qualifier.flags.q.constant
2260 || this->type->qualifier.flags.q.uniform) {
2261 ir_rvalue *new_rhs = validate_assignment(state, var->type, rhs);
2262 if (new_rhs != NULL) {
2263 rhs = new_rhs;
2264
2265 ir_constant *constant_value = rhs->constant_expression_value();
2266 if (!constant_value) {
2267 _mesa_glsl_error(& initializer_loc, state,
2268 "initializer of %s variable `%s' must be a "
2269 "constant expression",
2270 (this->type->qualifier.flags.q.constant)
2271 ? "const" : "uniform",
2272 decl->identifier);
2273 if (var->type->is_numeric()) {
2274 /* Reduce cascading errors. */
2275 var->constant_value = ir_constant::zero(ctx, var->type);
2276 }
2277 } else {
2278 rhs = constant_value;
2279 var->constant_value = constant_value;
2280 }
2281 } else {
2282 _mesa_glsl_error(&initializer_loc, state,
2283 "initializer of type %s cannot be assigned to "
2284 "variable of type %s",
2285 rhs->type->name, var->type->name);
2286 if (var->type->is_numeric()) {
2287 /* Reduce cascading errors. */
2288 var->constant_value = ir_constant::zero(ctx, var->type);
2289 }
2290 }
2291 }
2292
2293 if (rhs && !rhs->type->is_error()) {
2294 bool temp = var->read_only;
2295 if (this->type->qualifier.flags.q.constant)
2296 var->read_only = false;
2297
2298 /* Never emit code to initialize a uniform.
2299 */
2300 const glsl_type *initializer_type;
2301 if (!this->type->qualifier.flags.q.uniform) {
2302 result = do_assignment(&initializer_instructions, state,
2303 lhs, rhs,
2304 this->get_location());
2305 initializer_type = result->type;
2306 } else
2307 initializer_type = rhs->type;
2308
2309 /* If the declared variable is an unsized array, it must inherrit
2310 * its full type from the initializer. A declaration such as
2311 *
2312 * uniform float a[] = float[](1.0, 2.0, 3.0, 3.0);
2313 *
2314 * becomes
2315 *
2316 * uniform float a[4] = float[](1.0, 2.0, 3.0, 3.0);
2317 *
2318 * The assignment generated in the if-statement (below) will also
2319 * automatically handle this case for non-uniforms.
2320 *
2321 * If the declared variable is not an array, the types must
2322 * already match exactly. As a result, the type assignment
2323 * here can be done unconditionally. For non-uniforms the call
2324 * to do_assignment can change the type of the initializer (via
2325 * the implicit conversion rules). For uniforms the initializer
2326 * must be a constant expression, and the type of that expression
2327 * was validated above.
2328 */
2329 var->type = initializer_type;
2330
2331 var->read_only = temp;
2332 }
2333 }
2334
2335 /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
2336 *
2337 * "It is an error to write to a const variable outside of
2338 * its declaration, so they must be initialized when
2339 * declared."
2340 */
2341 if (this->type->qualifier.flags.q.constant && decl->initializer == NULL) {
2342 _mesa_glsl_error(& loc, state,
2343 "const declaration of `%s' must be initialized");
2344 }
2345
2346 /* Check if this declaration is actually a re-declaration, either to
2347 * resize an array or add qualifiers to an existing variable.
2348 *
2349 * This is allowed for variables in the current scope, or when at
2350 * global scope (for built-ins in the implicit outer scope).
2351 */
2352 ir_variable *earlier = state->symbols->get_variable(decl->identifier);
2353 if (earlier != NULL && (state->current_function == NULL ||
2354 state->symbols->name_declared_this_scope(decl->identifier))) {
2355
2356 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
2357 *
2358 * "It is legal to declare an array without a size and then
2359 * later re-declare the same name as an array of the same
2360 * type and specify a size."
2361 */
2362 if ((earlier->type->array_size() == 0)
2363 && var->type->is_array()
2364 && (var->type->element_type() == earlier->type->element_type())) {
2365 /* FINISHME: This doesn't match the qualifiers on the two
2366 * FINISHME: declarations. It's not 100% clear whether this is
2367 * FINISHME: required or not.
2368 */
2369
2370 /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec:
2371 *
2372 * "The size [of gl_TexCoord] can be at most
2373 * gl_MaxTextureCoords."
2374 */
2375 const unsigned size = unsigned(var->type->array_size());
2376 if ((strcmp("gl_TexCoord", var->name) == 0)
2377 && (size > state->Const.MaxTextureCoords)) {
2378 YYLTYPE loc = this->get_location();
2379
2380 _mesa_glsl_error(& loc, state, "`gl_TexCoord' array size cannot "
2381 "be larger than gl_MaxTextureCoords (%u)\n",
2382 state->Const.MaxTextureCoords);
2383 } else if ((size > 0) && (size <= earlier->max_array_access)) {
2384 YYLTYPE loc = this->get_location();
2385
2386 _mesa_glsl_error(& loc, state, "array size must be > %u due to "
2387 "previous access",
2388 earlier->max_array_access);
2389 }
2390
2391 earlier->type = var->type;
2392 delete var;
2393 var = NULL;
2394 } else if (state->ARB_fragment_coord_conventions_enable
2395 && strcmp(var->name, "gl_FragCoord") == 0
2396 && earlier->type == var->type
2397 && earlier->mode == var->mode) {
2398 /* Allow redeclaration of gl_FragCoord for ARB_fcc layout
2399 * qualifiers.
2400 */
2401 earlier->origin_upper_left = var->origin_upper_left;
2402 earlier->pixel_center_integer = var->pixel_center_integer;
2403
2404 /* According to section 4.3.7 of the GLSL 1.30 spec,
2405 * the following built-in varaibles can be redeclared with an
2406 * interpolation qualifier:
2407 * * gl_FrontColor
2408 * * gl_BackColor
2409 * * gl_FrontSecondaryColor
2410 * * gl_BackSecondaryColor
2411 * * gl_Color
2412 * * gl_SecondaryColor
2413 */
2414 } else if (state->language_version >= 130
2415 && (strcmp(var->name, "gl_FrontColor") == 0
2416 || strcmp(var->name, "gl_BackColor") == 0
2417 || strcmp(var->name, "gl_FrontSecondaryColor") == 0
2418 || strcmp(var->name, "gl_BackSecondaryColor") == 0
2419 || strcmp(var->name, "gl_Color") == 0
2420 || strcmp(var->name, "gl_SecondaryColor") == 0)
2421 && earlier->type == var->type
2422 && earlier->mode == var->mode) {
2423 earlier->interpolation = var->interpolation;
2424 } else {
2425 YYLTYPE loc = this->get_location();
2426 _mesa_glsl_error(&loc, state, "`%s' redeclared", decl->identifier);
2427 }
2428
2429 continue;
2430 }
2431
2432 /* By now, we know it's a new variable declaration (we didn't hit the
2433 * above "continue").
2434 *
2435 * From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
2436 *
2437 * "Identifiers starting with "gl_" are reserved for use by
2438 * OpenGL, and may not be declared in a shader as either a
2439 * variable or a function."
2440 */
2441 if (strncmp(decl->identifier, "gl_", 3) == 0)
2442 _mesa_glsl_error(& loc, state,
2443 "identifier `%s' uses reserved `gl_' prefix",
2444 decl->identifier);
2445
2446 /* Add the variable to the symbol table. Note that the initializer's
2447 * IR was already processed earlier (though it hasn't been emitted yet),
2448 * without the variable in scope.
2449 *
2450 * This differs from most C-like languages, but it follows the GLSL
2451 * specification. From page 28 (page 34 of the PDF) of the GLSL 1.50
2452 * spec:
2453 *
2454 * "Within a declaration, the scope of a name starts immediately
2455 * after the initializer if present or immediately after the name
2456 * being declared if not."
2457 */
2458 if (!state->symbols->add_variable(var)) {
2459 YYLTYPE loc = this->get_location();
2460 _mesa_glsl_error(&loc, state, "name `%s' already taken in the "
2461 "current scope", decl->identifier);
2462 continue;
2463 }
2464
2465 /* Push the variable declaration to the top. It means that all
2466 * the variable declarations will appear in a funny
2467 * last-to-first order, but otherwise we run into trouble if a
2468 * function is prototyped, a global var is decled, then the
2469 * function is defined with usage of the global var. See
2470 * glslparsertest's CorrectModule.frag.
2471 */
2472 instructions->push_head(var);
2473 instructions->append_list(&initializer_instructions);
2474 }
2475
2476
2477 /* Generally, variable declarations do not have r-values. However,
2478 * one is used for the declaration in
2479 *
2480 * while (bool b = some_condition()) {
2481 * ...
2482 * }
2483 *
2484 * so we return the rvalue from the last seen declaration here.
2485 */
2486 return result;
2487 }
2488
2489
2490 ir_rvalue *
2491 ast_parameter_declarator::hir(exec_list *instructions,
2492 struct _mesa_glsl_parse_state *state)
2493 {
2494 void *ctx = state;
2495 const struct glsl_type *type;
2496 const char *name = NULL;
2497 YYLTYPE loc = this->get_location();
2498
2499 type = this->type->specifier->glsl_type(& name, state);
2500
2501 if (type == NULL) {
2502 if (name != NULL) {
2503 _mesa_glsl_error(& loc, state,
2504 "invalid type `%s' in declaration of `%s'",
2505 name, this->identifier);
2506 } else {
2507 _mesa_glsl_error(& loc, state,
2508 "invalid type in declaration of `%s'",
2509 this->identifier);
2510 }
2511
2512 type = glsl_type::error_type;
2513 }
2514
2515 /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
2516 *
2517 * "Functions that accept no input arguments need not use void in the
2518 * argument list because prototypes (or definitions) are required and
2519 * therefore there is no ambiguity when an empty argument list "( )" is
2520 * declared. The idiom "(void)" as a parameter list is provided for
2521 * convenience."
2522 *
2523 * Placing this check here prevents a void parameter being set up
2524 * for a function, which avoids tripping up checks for main taking
2525 * parameters and lookups of an unnamed symbol.
2526 */
2527 if (type->is_void()) {
2528 if (this->identifier != NULL)
2529 _mesa_glsl_error(& loc, state,
2530 "named parameter cannot have type `void'");
2531
2532 is_void = true;
2533 return NULL;
2534 }
2535
2536 if (formal_parameter && (this->identifier == NULL)) {
2537 _mesa_glsl_error(& loc, state, "formal parameter lacks a name");
2538 return NULL;
2539 }
2540
2541 /* This only handles "vec4 foo[..]". The earlier specifier->glsl_type(...)
2542 * call already handled the "vec4[..] foo" case.
2543 */
2544 if (this->is_array) {
2545 type = process_array_type(&loc, type, this->array_size, state);
2546 }
2547
2548 if (type->array_size() == 0) {
2549 _mesa_glsl_error(&loc, state, "arrays passed as parameters must have "
2550 "a declared size.");
2551 type = glsl_type::error_type;
2552 }
2553
2554 is_void = false;
2555 ir_variable *var = new(ctx) ir_variable(type, this->identifier, ir_var_in);
2556
2557 /* Apply any specified qualifiers to the parameter declaration. Note that
2558 * for function parameters the default mode is 'in'.
2559 */
2560 apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc);
2561
2562 instructions->push_tail(var);
2563
2564 /* Parameter declarations do not have r-values.
2565 */
2566 return NULL;
2567 }
2568
2569
2570 void
2571 ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters,
2572 bool formal,
2573 exec_list *ir_parameters,
2574 _mesa_glsl_parse_state *state)
2575 {
2576 ast_parameter_declarator *void_param = NULL;
2577 unsigned count = 0;
2578
2579 foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) {
2580 param->formal_parameter = formal;
2581 param->hir(ir_parameters, state);
2582
2583 if (param->is_void)
2584 void_param = param;
2585
2586 count++;
2587 }
2588
2589 if ((void_param != NULL) && (count > 1)) {
2590 YYLTYPE loc = void_param->get_location();
2591
2592 _mesa_glsl_error(& loc, state,
2593 "`void' parameter must be only parameter");
2594 }
2595 }
2596
2597
2598 void
2599 emit_function(_mesa_glsl_parse_state *state, exec_list *instructions,
2600 ir_function *f)
2601 {
2602 /* Emit the new function header */
2603 if (state->current_function == NULL) {
2604 instructions->push_tail(f);
2605 } else {
2606 /* IR invariants disallow function declarations or definitions nested
2607 * within other function definitions. Insert the new ir_function
2608 * block in the instruction sequence before the ir_function block
2609 * containing the current ir_function_signature.
2610 */
2611 ir_function *const curr =
2612 const_cast<ir_function *>(state->current_function->function());
2613
2614 curr->insert_before(f);
2615 }
2616 }
2617
2618
2619 ir_rvalue *
2620 ast_function::hir(exec_list *instructions,
2621 struct _mesa_glsl_parse_state *state)
2622 {
2623 void *ctx = state;
2624 ir_function *f = NULL;
2625 ir_function_signature *sig = NULL;
2626 exec_list hir_parameters;
2627
2628 const char *const name = identifier;
2629
2630 /* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec,
2631 *
2632 * "Function declarations (prototypes) cannot occur inside of functions;
2633 * they must be at global scope, or for the built-in functions, outside
2634 * the global scope."
2635 *
2636 * From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec,
2637 *
2638 * "User defined functions may only be defined within the global scope."
2639 *
2640 * Note that this language does not appear in GLSL 1.10.
2641 */
2642 if ((state->current_function != NULL) && (state->language_version != 110)) {
2643 YYLTYPE loc = this->get_location();
2644 _mesa_glsl_error(&loc, state,
2645 "declaration of function `%s' not allowed within "
2646 "function body", name);
2647 }
2648
2649 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
2650 *
2651 * "Identifiers starting with "gl_" are reserved for use by
2652 * OpenGL, and may not be declared in a shader as either a
2653 * variable or a function."
2654 */
2655 if (strncmp(name, "gl_", 3) == 0) {
2656 YYLTYPE loc = this->get_location();
2657 _mesa_glsl_error(&loc, state,
2658 "identifier `%s' uses reserved `gl_' prefix", name);
2659 }
2660
2661 /* Convert the list of function parameters to HIR now so that they can be
2662 * used below to compare this function's signature with previously seen
2663 * signatures for functions with the same name.
2664 */
2665 ast_parameter_declarator::parameters_to_hir(& this->parameters,
2666 is_definition,
2667 & hir_parameters, state);
2668
2669 const char *return_type_name;
2670 const glsl_type *return_type =
2671 this->return_type->specifier->glsl_type(& return_type_name, state);
2672
2673 if (!return_type) {
2674 YYLTYPE loc = this->get_location();
2675 _mesa_glsl_error(&loc, state,
2676 "function `%s' has undeclared return type `%s'",
2677 name, return_type_name);
2678 return_type = glsl_type::error_type;
2679 }
2680
2681 /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec:
2682 * "No qualifier is allowed on the return type of a function."
2683 */
2684 if (this->return_type->has_qualifiers()) {
2685 YYLTYPE loc = this->get_location();
2686 _mesa_glsl_error(& loc, state,
2687 "function `%s' return type has qualifiers", name);
2688 }
2689
2690 /* Verify that this function's signature either doesn't match a previously
2691 * seen signature for a function with the same name, or, if a match is found,
2692 * that the previously seen signature does not have an associated definition.
2693 */
2694 f = state->symbols->get_function(name);
2695 if (f != NULL && (state->es_shader || f->has_user_signature())) {
2696 sig = f->exact_matching_signature(&hir_parameters);
2697 if (sig != NULL) {
2698 const char *badvar = sig->qualifiers_match(&hir_parameters);
2699 if (badvar != NULL) {
2700 YYLTYPE loc = this->get_location();
2701
2702 _mesa_glsl_error(&loc, state, "function `%s' parameter `%s' "
2703 "qualifiers don't match prototype", name, badvar);
2704 }
2705
2706 if (sig->return_type != return_type) {
2707 YYLTYPE loc = this->get_location();
2708
2709 _mesa_glsl_error(&loc, state, "function `%s' return type doesn't "
2710 "match prototype", name);
2711 }
2712
2713 if (is_definition && sig->is_defined) {
2714 YYLTYPE loc = this->get_location();
2715
2716 _mesa_glsl_error(& loc, state, "function `%s' redefined", name);
2717 }
2718 }
2719 } else {
2720 f = new(ctx) ir_function(name);
2721 if (!state->symbols->add_function(f)) {
2722 /* This function name shadows a non-function use of the same name. */
2723 YYLTYPE loc = this->get_location();
2724
2725 _mesa_glsl_error(&loc, state, "function name `%s' conflicts with "
2726 "non-function", name);
2727 return NULL;
2728 }
2729
2730 emit_function(state, instructions, f);
2731 }
2732
2733 /* Verify the return type of main() */
2734 if (strcmp(name, "main") == 0) {
2735 if (! return_type->is_void()) {
2736 YYLTYPE loc = this->get_location();
2737
2738 _mesa_glsl_error(& loc, state, "main() must return void");
2739 }
2740
2741 if (!hir_parameters.is_empty()) {
2742 YYLTYPE loc = this->get_location();
2743
2744 _mesa_glsl_error(& loc, state, "main() must not take any parameters");
2745 }
2746 }
2747
2748 /* Finish storing the information about this new function in its signature.
2749 */
2750 if (sig == NULL) {
2751 sig = new(ctx) ir_function_signature(return_type);
2752 f->add_signature(sig);
2753 }
2754
2755 sig->replace_parameters(&hir_parameters);
2756 signature = sig;
2757
2758 /* Function declarations (prototypes) do not have r-values.
2759 */
2760 return NULL;
2761 }
2762
2763
2764 ir_rvalue *
2765 ast_function_definition::hir(exec_list *instructions,
2766 struct _mesa_glsl_parse_state *state)
2767 {
2768 prototype->is_definition = true;
2769 prototype->hir(instructions, state);
2770
2771 ir_function_signature *signature = prototype->signature;
2772 if (signature == NULL)
2773 return NULL;
2774
2775 assert(state->current_function == NULL);
2776 state->current_function = signature;
2777 state->found_return = false;
2778
2779 /* Duplicate parameters declared in the prototype as concrete variables.
2780 * Add these to the symbol table.
2781 */
2782 state->symbols->push_scope();
2783 foreach_iter(exec_list_iterator, iter, signature->parameters) {
2784 ir_variable *const var = ((ir_instruction *) iter.get())->as_variable();
2785
2786 assert(var != NULL);
2787
2788 /* The only way a parameter would "exist" is if two parameters have
2789 * the same name.
2790 */
2791 if (state->symbols->name_declared_this_scope(var->name)) {
2792 YYLTYPE loc = this->get_location();
2793
2794 _mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name);
2795 } else {
2796 state->symbols->add_variable(var);
2797 }
2798 }
2799
2800 /* Convert the body of the function to HIR. */
2801 this->body->hir(&signature->body, state);
2802 signature->is_defined = true;
2803
2804 state->symbols->pop_scope();
2805
2806 assert(state->current_function == signature);
2807 state->current_function = NULL;
2808
2809 if (!signature->return_type->is_void() && !state->found_return) {
2810 YYLTYPE loc = this->get_location();
2811 _mesa_glsl_error(& loc, state, "function `%s' has non-void return type "
2812 "%s, but no return statement",
2813 signature->function_name(),
2814 signature->return_type->name);
2815 }
2816
2817 /* Function definitions do not have r-values.
2818 */
2819 return NULL;
2820 }
2821
2822
2823 ir_rvalue *
2824 ast_jump_statement::hir(exec_list *instructions,
2825 struct _mesa_glsl_parse_state *state)
2826 {
2827 void *ctx = state;
2828
2829 switch (mode) {
2830 case ast_return: {
2831 ir_return *inst;
2832 assert(state->current_function);
2833
2834 if (opt_return_value) {
2835 if (state->current_function->return_type->base_type ==
2836 GLSL_TYPE_VOID) {
2837 YYLTYPE loc = this->get_location();
2838
2839 _mesa_glsl_error(& loc, state,
2840 "`return` with a value, in function `%s' "
2841 "returning void",
2842 state->current_function->function_name());
2843 }
2844
2845 ir_rvalue *const ret = opt_return_value->hir(instructions, state);
2846 assert(ret != NULL);
2847
2848 /* Implicit conversions are not allowed for return values. */
2849 if (state->current_function->return_type != ret->type) {
2850 YYLTYPE loc = this->get_location();
2851
2852 _mesa_glsl_error(& loc, state,
2853 "`return' with wrong type %s, in function `%s' "
2854 "returning %s",
2855 ret->type->name,
2856 state->current_function->function_name(),
2857 state->current_function->return_type->name);
2858 }
2859
2860 inst = new(ctx) ir_return(ret);
2861 } else {
2862 if (state->current_function->return_type->base_type !=
2863 GLSL_TYPE_VOID) {
2864 YYLTYPE loc = this->get_location();
2865
2866 _mesa_glsl_error(& loc, state,
2867 "`return' with no value, in function %s returning "
2868 "non-void",
2869 state->current_function->function_name());
2870 }
2871 inst = new(ctx) ir_return;
2872 }
2873
2874 state->found_return = true;
2875 instructions->push_tail(inst);
2876 break;
2877 }
2878
2879 case ast_discard:
2880 if (state->target != fragment_shader) {
2881 YYLTYPE loc = this->get_location();
2882
2883 _mesa_glsl_error(& loc, state,
2884 "`discard' may only appear in a fragment shader");
2885 }
2886 instructions->push_tail(new(ctx) ir_discard);
2887 break;
2888
2889 case ast_break:
2890 case ast_continue:
2891 /* FINISHME: Handle switch-statements. They cannot contain 'continue',
2892 * FINISHME: and they use a different IR instruction for 'break'.
2893 */
2894 /* FINISHME: Correctly handle the nesting. If a switch-statement is
2895 * FINISHME: inside a loop, a 'continue' is valid and will bind to the
2896 * FINISHME: loop.
2897 */
2898 if (state->loop_or_switch_nesting == NULL) {
2899 YYLTYPE loc = this->get_location();
2900
2901 _mesa_glsl_error(& loc, state,
2902 "`%s' may only appear in a loop",
2903 (mode == ast_break) ? "break" : "continue");
2904 } else {
2905 ir_loop *const loop = state->loop_or_switch_nesting->as_loop();
2906
2907 /* Inline the for loop expression again, since we don't know
2908 * where near the end of the loop body the normal copy of it
2909 * is going to be placed.
2910 */
2911 if (mode == ast_continue &&
2912 state->loop_or_switch_nesting_ast->rest_expression) {
2913 state->loop_or_switch_nesting_ast->rest_expression->hir(instructions,
2914 state);
2915 }
2916
2917 if (loop != NULL) {
2918 ir_loop_jump *const jump =
2919 new(ctx) ir_loop_jump((mode == ast_break)
2920 ? ir_loop_jump::jump_break
2921 : ir_loop_jump::jump_continue);
2922 instructions->push_tail(jump);
2923 }
2924 }
2925
2926 break;
2927 }
2928
2929 /* Jump instructions do not have r-values.
2930 */
2931 return NULL;
2932 }
2933
2934
2935 ir_rvalue *
2936 ast_selection_statement::hir(exec_list *instructions,
2937 struct _mesa_glsl_parse_state *state)
2938 {
2939 void *ctx = state;
2940
2941 ir_rvalue *const condition = this->condition->hir(instructions, state);
2942
2943 /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
2944 *
2945 * "Any expression whose type evaluates to a Boolean can be used as the
2946 * conditional expression bool-expression. Vector types are not accepted
2947 * as the expression to if."
2948 *
2949 * The checks are separated so that higher quality diagnostics can be
2950 * generated for cases where both rules are violated.
2951 */
2952 if (!condition->type->is_boolean() || !condition->type->is_scalar()) {
2953 YYLTYPE loc = this->condition->get_location();
2954
2955 _mesa_glsl_error(& loc, state, "if-statement condition must be scalar "
2956 "boolean");
2957 }
2958
2959 ir_if *const stmt = new(ctx) ir_if(condition);
2960
2961 if (then_statement != NULL) {
2962 state->symbols->push_scope();
2963 then_statement->hir(& stmt->then_instructions, state);
2964 state->symbols->pop_scope();
2965 }
2966
2967 if (else_statement != NULL) {
2968 state->symbols->push_scope();
2969 else_statement->hir(& stmt->else_instructions, state);
2970 state->symbols->pop_scope();
2971 }
2972
2973 instructions->push_tail(stmt);
2974
2975 /* if-statements do not have r-values.
2976 */
2977 return NULL;
2978 }
2979
2980
2981 void
2982 ast_iteration_statement::condition_to_hir(ir_loop *stmt,
2983 struct _mesa_glsl_parse_state *state)
2984 {
2985 void *ctx = state;
2986
2987 if (condition != NULL) {
2988 ir_rvalue *const cond =
2989 condition->hir(& stmt->body_instructions, state);
2990
2991 if ((cond == NULL)
2992 || !cond->type->is_boolean() || !cond->type->is_scalar()) {
2993 YYLTYPE loc = condition->get_location();
2994
2995 _mesa_glsl_error(& loc, state,
2996 "loop condition must be scalar boolean");
2997 } else {
2998 /* As the first code in the loop body, generate a block that looks
2999 * like 'if (!condition) break;' as the loop termination condition.
3000 */
3001 ir_rvalue *const not_cond =
3002 new(ctx) ir_expression(ir_unop_logic_not, glsl_type::bool_type, cond,
3003 NULL);
3004
3005 ir_if *const if_stmt = new(ctx) ir_if(not_cond);
3006
3007 ir_jump *const break_stmt =
3008 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
3009
3010 if_stmt->then_instructions.push_tail(break_stmt);
3011 stmt->body_instructions.push_tail(if_stmt);
3012 }
3013 }
3014 }
3015
3016
3017 ir_rvalue *
3018 ast_iteration_statement::hir(exec_list *instructions,
3019 struct _mesa_glsl_parse_state *state)
3020 {
3021 void *ctx = state;
3022
3023 /* For-loops and while-loops start a new scope, but do-while loops do not.
3024 */
3025 if (mode != ast_do_while)
3026 state->symbols->push_scope();
3027
3028 if (init_statement != NULL)
3029 init_statement->hir(instructions, state);
3030
3031 ir_loop *const stmt = new(ctx) ir_loop();
3032 instructions->push_tail(stmt);
3033
3034 /* Track the current loop and / or switch-statement nesting.
3035 */
3036 ir_instruction *const nesting = state->loop_or_switch_nesting;
3037 ast_iteration_statement *nesting_ast = state->loop_or_switch_nesting_ast;
3038
3039 state->loop_or_switch_nesting = stmt;
3040 state->loop_or_switch_nesting_ast = this;
3041
3042 if (mode != ast_do_while)
3043 condition_to_hir(stmt, state);
3044
3045 if (body != NULL)
3046 body->hir(& stmt->body_instructions, state);
3047
3048 if (rest_expression != NULL)
3049 rest_expression->hir(& stmt->body_instructions, state);
3050
3051 if (mode == ast_do_while)
3052 condition_to_hir(stmt, state);
3053
3054 if (mode != ast_do_while)
3055 state->symbols->pop_scope();
3056
3057 /* Restore previous nesting before returning.
3058 */
3059 state->loop_or_switch_nesting = nesting;
3060 state->loop_or_switch_nesting_ast = nesting_ast;
3061
3062 /* Loops do not have r-values.
3063 */
3064 return NULL;
3065 }
3066
3067
3068 ir_rvalue *
3069 ast_type_specifier::hir(exec_list *instructions,
3070 struct _mesa_glsl_parse_state *state)
3071 {
3072 if (this->structure != NULL)
3073 return this->structure->hir(instructions, state);
3074
3075 return NULL;
3076 }
3077
3078
3079 ir_rvalue *
3080 ast_struct_specifier::hir(exec_list *instructions,
3081 struct _mesa_glsl_parse_state *state)
3082 {
3083 unsigned decl_count = 0;
3084
3085 /* Make an initial pass over the list of structure fields to determine how
3086 * many there are. Each element in this list is an ast_declarator_list.
3087 * This means that we actually need to count the number of elements in the
3088 * 'declarations' list in each of the elements.
3089 */
3090 foreach_list_typed (ast_declarator_list, decl_list, link,
3091 &this->declarations) {
3092 foreach_list_const (decl_ptr, & decl_list->declarations) {
3093 decl_count++;
3094 }
3095 }
3096
3097 /* Allocate storage for the structure fields and process the field
3098 * declarations. As the declarations are processed, try to also convert
3099 * the types to HIR. This ensures that structure definitions embedded in
3100 * other structure definitions are processed.
3101 */
3102 glsl_struct_field *const fields = talloc_array(state, glsl_struct_field,
3103 decl_count);
3104
3105 unsigned i = 0;
3106 foreach_list_typed (ast_declarator_list, decl_list, link,
3107 &this->declarations) {
3108 const char *type_name;
3109
3110 decl_list->type->specifier->hir(instructions, state);
3111
3112 /* Section 10.9 of the GLSL ES 1.00 specification states that
3113 * embedded structure definitions have been removed from the language.
3114 */
3115 if (state->es_shader && decl_list->type->specifier->structure != NULL) {
3116 YYLTYPE loc = this->get_location();
3117 _mesa_glsl_error(&loc, state, "Embedded structure definitions are "
3118 "not allowed in GLSL ES 1.00.");
3119 }
3120
3121 const glsl_type *decl_type =
3122 decl_list->type->specifier->glsl_type(& type_name, state);
3123
3124 foreach_list_typed (ast_declaration, decl, link,
3125 &decl_list->declarations) {
3126 const struct glsl_type *field_type = decl_type;
3127 if (decl->is_array) {
3128 YYLTYPE loc = decl->get_location();
3129 field_type = process_array_type(&loc, decl_type, decl->array_size,
3130 state);
3131 }
3132 fields[i].type = (field_type != NULL)
3133 ? field_type : glsl_type::error_type;
3134 fields[i].name = decl->identifier;
3135 i++;
3136 }
3137 }
3138
3139 assert(i == decl_count);
3140
3141 const glsl_type *t =
3142 glsl_type::get_record_instance(fields, decl_count, this->name);
3143
3144 YYLTYPE loc = this->get_location();
3145 if (!state->symbols->add_type(name, t)) {
3146 _mesa_glsl_error(& loc, state, "struct `%s' previously defined", name);
3147 } else {
3148
3149 const glsl_type **s = (const glsl_type **)
3150 realloc(state->user_structures,
3151 sizeof(state->user_structures[0]) *
3152 (state->num_user_structures + 1));
3153 if (s != NULL) {
3154 s[state->num_user_structures] = t;
3155 state->user_structures = s;
3156 state->num_user_structures++;
3157 }
3158 }
3159
3160 /* Structure type definitions do not have r-values.
3161 */
3162 return NULL;
3163 }