glsl: Extract explicit location code from apply_type_qualifier_to_variable
[mesa.git] / src / glsl / ast_to_hir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file ast_to_hir.c
26 * Convert abstract syntax to to high-level intermediate reprensentation (HIR).
27 *
28 * During the conversion to HIR, the majority of the symantic checking is
29 * preformed on the program. This includes:
30 *
31 * * Symbol table management
32 * * Type checking
33 * * Function binding
34 *
35 * The majority of this work could be done during parsing, and the parser could
36 * probably generate HIR directly. However, this results in frequent changes
37 * to the parser code. Since we do not assume that every system this complier
38 * is built on will have Flex and Bison installed, we have to store the code
39 * generated by these tools in our version control system. In other parts of
40 * the system we've seen problems where a parser was changed but the generated
41 * code was not committed, merge conflicts where created because two developers
42 * had slightly different versions of Bison installed, etc.
43 *
44 * I have also noticed that running Bison generated parsers in GDB is very
45 * irritating. When you get a segfault on '$$ = $1->foo', you can't very
46 * well 'print $1' in GDB.
47 *
48 * As a result, my preference is to put as little C code as possible in the
49 * parser (and lexer) sources.
50 */
51
52 #include "main/core.h" /* for struct gl_extensions */
53 #include "glsl_symbol_table.h"
54 #include "glsl_parser_extras.h"
55 #include "ast.h"
56 #include "glsl_types.h"
57 #include "program/hash_table.h"
58 #include "ir.h"
59
60 static void
61 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
62 exec_list *instructions);
63 static void
64 remove_per_vertex_blocks(exec_list *instructions,
65 _mesa_glsl_parse_state *state, ir_variable_mode mode);
66
67
68 void
69 _mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
70 {
71 _mesa_glsl_initialize_variables(instructions, state);
72
73 state->symbols->separate_function_namespace = state->language_version == 110;
74
75 state->current_function = NULL;
76
77 state->toplevel_ir = instructions;
78
79 state->gs_input_prim_type_specified = false;
80
81 /* Section 4.2 of the GLSL 1.20 specification states:
82 * "The built-in functions are scoped in a scope outside the global scope
83 * users declare global variables in. That is, a shader's global scope,
84 * available for user-defined functions and global variables, is nested
85 * inside the scope containing the built-in functions."
86 *
87 * Since built-in functions like ftransform() access built-in variables,
88 * it follows that those must be in the outer scope as well.
89 *
90 * We push scope here to create this nesting effect...but don't pop.
91 * This way, a shader's globals are still in the symbol table for use
92 * by the linker.
93 */
94 state->symbols->push_scope();
95
96 foreach_list_typed (ast_node, ast, link, & state->translation_unit)
97 ast->hir(instructions, state);
98
99 detect_recursion_unlinked(state, instructions);
100 detect_conflicting_assignments(state, instructions);
101
102 state->toplevel_ir = NULL;
103
104 /* Move all of the variable declarations to the front of the IR list, and
105 * reverse the order. This has the (intended!) side effect that vertex
106 * shader inputs and fragment shader outputs will appear in the IR in the
107 * same order that they appeared in the shader code. This results in the
108 * locations being assigned in the declared order. Many (arguably buggy)
109 * applications depend on this behavior, and it matches what nearly all
110 * other drivers do.
111 */
112 foreach_list_safe(node, instructions) {
113 ir_variable *const var = ((ir_instruction *) node)->as_variable();
114
115 if (var == NULL)
116 continue;
117
118 var->remove();
119 instructions->push_head(var);
120 }
121
122 /* From section 7.1 (Built-In Language Variables) of the GLSL 4.10 spec:
123 *
124 * If multiple shaders using members of a built-in block belonging to
125 * the same interface are linked together in the same program, they
126 * must all redeclare the built-in block in the same way, as described
127 * in section 4.3.7 "Interface Blocks" for interface block matching, or
128 * a link error will result.
129 *
130 * The phrase "using members of a built-in block" implies that if two
131 * shaders are linked together and one of them *does not use* any members
132 * of the built-in block, then that shader does not need to have a matching
133 * redeclaration of the built-in block.
134 *
135 * This appears to be a clarification to the behaviour established for
136 * gl_PerVertex by GLSL 1.50, therefore implement it regardless of GLSL
137 * version.
138 *
139 * The definition of "interface" in section 4.3.7 that applies here is as
140 * follows:
141 *
142 * The boundary between adjacent programmable pipeline stages: This
143 * spans all the outputs in all compilation units of the first stage
144 * and all the inputs in all compilation units of the second stage.
145 *
146 * Therefore this rule applies to both inter- and intra-stage linking.
147 *
148 * The easiest way to implement this is to check whether the shader uses
149 * gl_PerVertex right after ast-to-ir conversion, and if it doesn't, simply
150 * remove all the relevant variable declaration from the IR, so that the
151 * linker won't see them and complain about mismatches.
152 */
153 remove_per_vertex_blocks(instructions, state, ir_var_shader_in);
154 remove_per_vertex_blocks(instructions, state, ir_var_shader_out);
155 }
156
157
158 /**
159 * If a conversion is available, convert one operand to a different type
160 *
161 * The \c from \c ir_rvalue is converted "in place".
162 *
163 * \param to Type that the operand it to be converted to
164 * \param from Operand that is being converted
165 * \param state GLSL compiler state
166 *
167 * \return
168 * If a conversion is possible (or unnecessary), \c true is returned.
169 * Otherwise \c false is returned.
170 */
171 bool
172 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
173 struct _mesa_glsl_parse_state *state)
174 {
175 void *ctx = state;
176 if (to->base_type == from->type->base_type)
177 return true;
178
179 /* This conversion was added in GLSL 1.20. If the compilation mode is
180 * GLSL 1.10, the conversion is skipped.
181 */
182 if (!state->is_version(120, 0))
183 return false;
184
185 /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
186 *
187 * "There are no implicit array or structure conversions. For
188 * example, an array of int cannot be implicitly converted to an
189 * array of float. There are no implicit conversions between
190 * signed and unsigned integers."
191 */
192 /* FINISHME: The above comment is partially a lie. There is int/uint
193 * FINISHME: conversion for immediate constants.
194 */
195 if (!to->is_float() || !from->type->is_numeric())
196 return false;
197
198 /* Convert to a floating point type with the same number of components
199 * as the original type - i.e. int to float, not int to vec4.
200 */
201 to = glsl_type::get_instance(GLSL_TYPE_FLOAT, from->type->vector_elements,
202 from->type->matrix_columns);
203
204 switch (from->type->base_type) {
205 case GLSL_TYPE_INT:
206 from = new(ctx) ir_expression(ir_unop_i2f, to, from, NULL);
207 break;
208 case GLSL_TYPE_UINT:
209 from = new(ctx) ir_expression(ir_unop_u2f, to, from, NULL);
210 break;
211 case GLSL_TYPE_BOOL:
212 from = new(ctx) ir_expression(ir_unop_b2f, to, from, NULL);
213 break;
214 default:
215 assert(0);
216 }
217
218 return true;
219 }
220
221
222 static const struct glsl_type *
223 arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
224 bool multiply,
225 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
226 {
227 const glsl_type *type_a = value_a->type;
228 const glsl_type *type_b = value_b->type;
229
230 /* From GLSL 1.50 spec, page 56:
231 *
232 * "The arithmetic binary operators add (+), subtract (-),
233 * multiply (*), and divide (/) operate on integer and
234 * floating-point scalars, vectors, and matrices."
235 */
236 if (!type_a->is_numeric() || !type_b->is_numeric()) {
237 _mesa_glsl_error(loc, state,
238 "operands to arithmetic operators must be numeric");
239 return glsl_type::error_type;
240 }
241
242
243 /* "If one operand is floating-point based and the other is
244 * not, then the conversions from Section 4.1.10 "Implicit
245 * Conversions" are applied to the non-floating-point-based operand."
246 */
247 if (!apply_implicit_conversion(type_a, value_b, state)
248 && !apply_implicit_conversion(type_b, value_a, state)) {
249 _mesa_glsl_error(loc, state,
250 "could not implicitly convert operands to "
251 "arithmetic operator");
252 return glsl_type::error_type;
253 }
254 type_a = value_a->type;
255 type_b = value_b->type;
256
257 /* "If the operands are integer types, they must both be signed or
258 * both be unsigned."
259 *
260 * From this rule and the preceeding conversion it can be inferred that
261 * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
262 * The is_numeric check above already filtered out the case where either
263 * type is not one of these, so now the base types need only be tested for
264 * equality.
265 */
266 if (type_a->base_type != type_b->base_type) {
267 _mesa_glsl_error(loc, state,
268 "base type mismatch for arithmetic operator");
269 return glsl_type::error_type;
270 }
271
272 /* "All arithmetic binary operators result in the same fundamental type
273 * (signed integer, unsigned integer, or floating-point) as the
274 * operands they operate on, after operand type conversion. After
275 * conversion, the following cases are valid
276 *
277 * * The two operands are scalars. In this case the operation is
278 * applied, resulting in a scalar."
279 */
280 if (type_a->is_scalar() && type_b->is_scalar())
281 return type_a;
282
283 /* "* One operand is a scalar, and the other is a vector or matrix.
284 * In this case, the scalar operation is applied independently to each
285 * component of the vector or matrix, resulting in the same size
286 * vector or matrix."
287 */
288 if (type_a->is_scalar()) {
289 if (!type_b->is_scalar())
290 return type_b;
291 } else if (type_b->is_scalar()) {
292 return type_a;
293 }
294
295 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
296 * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
297 * handled.
298 */
299 assert(!type_a->is_scalar());
300 assert(!type_b->is_scalar());
301
302 /* "* The two operands are vectors of the same size. In this case, the
303 * operation is done component-wise resulting in the same size
304 * vector."
305 */
306 if (type_a->is_vector() && type_b->is_vector()) {
307 if (type_a == type_b) {
308 return type_a;
309 } else {
310 _mesa_glsl_error(loc, state,
311 "vector size mismatch for arithmetic operator");
312 return glsl_type::error_type;
313 }
314 }
315
316 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
317 * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
318 * <vector, vector> have been handled. At least one of the operands must
319 * be matrix. Further, since there are no integer matrix types, the base
320 * type of both operands must be float.
321 */
322 assert(type_a->is_matrix() || type_b->is_matrix());
323 assert(type_a->base_type == GLSL_TYPE_FLOAT);
324 assert(type_b->base_type == GLSL_TYPE_FLOAT);
325
326 /* "* The operator is add (+), subtract (-), or divide (/), and the
327 * operands are matrices with the same number of rows and the same
328 * number of columns. In this case, the operation is done component-
329 * wise resulting in the same size matrix."
330 * * The operator is multiply (*), where both operands are matrices or
331 * one operand is a vector and the other a matrix. A right vector
332 * operand is treated as a column vector and a left vector operand as a
333 * row vector. In all these cases, it is required that the number of
334 * columns of the left operand is equal to the number of rows of the
335 * right operand. Then, the multiply (*) operation does a linear
336 * algebraic multiply, yielding an object that has the same number of
337 * rows as the left operand and the same number of columns as the right
338 * operand. Section 5.10 "Vector and Matrix Operations" explains in
339 * more detail how vectors and matrices are operated on."
340 */
341 if (! multiply) {
342 if (type_a == type_b)
343 return type_a;
344 } else {
345 if (type_a->is_matrix() && type_b->is_matrix()) {
346 /* Matrix multiply. The columns of A must match the rows of B. Given
347 * the other previously tested constraints, this means the vector type
348 * of a row from A must be the same as the vector type of a column from
349 * B.
350 */
351 if (type_a->row_type() == type_b->column_type()) {
352 /* The resulting matrix has the number of columns of matrix B and
353 * the number of rows of matrix A. We get the row count of A by
354 * looking at the size of a vector that makes up a column. The
355 * transpose (size of a row) is done for B.
356 */
357 const glsl_type *const type =
358 glsl_type::get_instance(type_a->base_type,
359 type_a->column_type()->vector_elements,
360 type_b->row_type()->vector_elements);
361 assert(type != glsl_type::error_type);
362
363 return type;
364 }
365 } else if (type_a->is_matrix()) {
366 /* A is a matrix and B is a column vector. Columns of A must match
367 * rows of B. Given the other previously tested constraints, this
368 * means the vector type of a row from A must be the same as the
369 * vector the type of B.
370 */
371 if (type_a->row_type() == type_b) {
372 /* The resulting vector has a number of elements equal to
373 * the number of rows of matrix A. */
374 const glsl_type *const type =
375 glsl_type::get_instance(type_a->base_type,
376 type_a->column_type()->vector_elements,
377 1);
378 assert(type != glsl_type::error_type);
379
380 return type;
381 }
382 } else {
383 assert(type_b->is_matrix());
384
385 /* A is a row vector and B is a matrix. Columns of A must match rows
386 * of B. Given the other previously tested constraints, this means
387 * the type of A must be the same as the vector type of a column from
388 * B.
389 */
390 if (type_a == type_b->column_type()) {
391 /* The resulting vector has a number of elements equal to
392 * the number of columns of matrix B. */
393 const glsl_type *const type =
394 glsl_type::get_instance(type_a->base_type,
395 type_b->row_type()->vector_elements,
396 1);
397 assert(type != glsl_type::error_type);
398
399 return type;
400 }
401 }
402
403 _mesa_glsl_error(loc, state, "size mismatch for matrix multiplication");
404 return glsl_type::error_type;
405 }
406
407
408 /* "All other cases are illegal."
409 */
410 _mesa_glsl_error(loc, state, "type mismatch");
411 return glsl_type::error_type;
412 }
413
414
415 static const struct glsl_type *
416 unary_arithmetic_result_type(const struct glsl_type *type,
417 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
418 {
419 /* From GLSL 1.50 spec, page 57:
420 *
421 * "The arithmetic unary operators negate (-), post- and pre-increment
422 * and decrement (-- and ++) operate on integer or floating-point
423 * values (including vectors and matrices). All unary operators work
424 * component-wise on their operands. These result with the same type
425 * they operated on."
426 */
427 if (!type->is_numeric()) {
428 _mesa_glsl_error(loc, state,
429 "operands to arithmetic operators must be numeric");
430 return glsl_type::error_type;
431 }
432
433 return type;
434 }
435
436 /**
437 * \brief Return the result type of a bit-logic operation.
438 *
439 * If the given types to the bit-logic operator are invalid, return
440 * glsl_type::error_type.
441 *
442 * \param type_a Type of LHS of bit-logic op
443 * \param type_b Type of RHS of bit-logic op
444 */
445 static const struct glsl_type *
446 bit_logic_result_type(const struct glsl_type *type_a,
447 const struct glsl_type *type_b,
448 ast_operators op,
449 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
450 {
451 if (!state->check_bitwise_operations_allowed(loc)) {
452 return glsl_type::error_type;
453 }
454
455 /* From page 50 (page 56 of PDF) of GLSL 1.30 spec:
456 *
457 * "The bitwise operators and (&), exclusive-or (^), and inclusive-or
458 * (|). The operands must be of type signed or unsigned integers or
459 * integer vectors."
460 */
461 if (!type_a->is_integer()) {
462 _mesa_glsl_error(loc, state, "LHS of `%s' must be an integer",
463 ast_expression::operator_string(op));
464 return glsl_type::error_type;
465 }
466 if (!type_b->is_integer()) {
467 _mesa_glsl_error(loc, state, "RHS of `%s' must be an integer",
468 ast_expression::operator_string(op));
469 return glsl_type::error_type;
470 }
471
472 /* "The fundamental types of the operands (signed or unsigned) must
473 * match,"
474 */
475 if (type_a->base_type != type_b->base_type) {
476 _mesa_glsl_error(loc, state, "operands of `%s' must have the same "
477 "base type", ast_expression::operator_string(op));
478 return glsl_type::error_type;
479 }
480
481 /* "The operands cannot be vectors of differing size." */
482 if (type_a->is_vector() &&
483 type_b->is_vector() &&
484 type_a->vector_elements != type_b->vector_elements) {
485 _mesa_glsl_error(loc, state, "operands of `%s' cannot be vectors of "
486 "different sizes", ast_expression::operator_string(op));
487 return glsl_type::error_type;
488 }
489
490 /* "If one operand is a scalar and the other a vector, the scalar is
491 * applied component-wise to the vector, resulting in the same type as
492 * the vector. The fundamental types of the operands [...] will be the
493 * resulting fundamental type."
494 */
495 if (type_a->is_scalar())
496 return type_b;
497 else
498 return type_a;
499 }
500
501 static const struct glsl_type *
502 modulus_result_type(const struct glsl_type *type_a,
503 const struct glsl_type *type_b,
504 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
505 {
506 if (!state->check_version(130, 300, loc, "operator '%%' is reserved")) {
507 return glsl_type::error_type;
508 }
509
510 /* From GLSL 1.50 spec, page 56:
511 * "The operator modulus (%) operates on signed or unsigned integers or
512 * integer vectors. The operand types must both be signed or both be
513 * unsigned."
514 */
515 if (!type_a->is_integer()) {
516 _mesa_glsl_error(loc, state, "LHS of operator %% must be an integer");
517 return glsl_type::error_type;
518 }
519 if (!type_b->is_integer()) {
520 _mesa_glsl_error(loc, state, "RHS of operator %% must be an integer");
521 return glsl_type::error_type;
522 }
523 if (type_a->base_type != type_b->base_type) {
524 _mesa_glsl_error(loc, state,
525 "operands of %% must have the same base type");
526 return glsl_type::error_type;
527 }
528
529 /* "The operands cannot be vectors of differing size. If one operand is
530 * a scalar and the other vector, then the scalar is applied component-
531 * wise to the vector, resulting in the same type as the vector. If both
532 * are vectors of the same size, the result is computed component-wise."
533 */
534 if (type_a->is_vector()) {
535 if (!type_b->is_vector()
536 || (type_a->vector_elements == type_b->vector_elements))
537 return type_a;
538 } else
539 return type_b;
540
541 /* "The operator modulus (%) is not defined for any other data types
542 * (non-integer types)."
543 */
544 _mesa_glsl_error(loc, state, "type mismatch");
545 return glsl_type::error_type;
546 }
547
548
549 static const struct glsl_type *
550 relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
551 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
552 {
553 const glsl_type *type_a = value_a->type;
554 const glsl_type *type_b = value_b->type;
555
556 /* From GLSL 1.50 spec, page 56:
557 * "The relational operators greater than (>), less than (<), greater
558 * than or equal (>=), and less than or equal (<=) operate only on
559 * scalar integer and scalar floating-point expressions."
560 */
561 if (!type_a->is_numeric()
562 || !type_b->is_numeric()
563 || !type_a->is_scalar()
564 || !type_b->is_scalar()) {
565 _mesa_glsl_error(loc, state,
566 "operands to relational operators must be scalar and "
567 "numeric");
568 return glsl_type::error_type;
569 }
570
571 /* "Either the operands' types must match, or the conversions from
572 * Section 4.1.10 "Implicit Conversions" will be applied to the integer
573 * operand, after which the types must match."
574 */
575 if (!apply_implicit_conversion(type_a, value_b, state)
576 && !apply_implicit_conversion(type_b, value_a, state)) {
577 _mesa_glsl_error(loc, state,
578 "could not implicitly convert operands to "
579 "relational operator");
580 return glsl_type::error_type;
581 }
582 type_a = value_a->type;
583 type_b = value_b->type;
584
585 if (type_a->base_type != type_b->base_type) {
586 _mesa_glsl_error(loc, state, "base type mismatch");
587 return glsl_type::error_type;
588 }
589
590 /* "The result is scalar Boolean."
591 */
592 return glsl_type::bool_type;
593 }
594
595 /**
596 * \brief Return the result type of a bit-shift operation.
597 *
598 * If the given types to the bit-shift operator are invalid, return
599 * glsl_type::error_type.
600 *
601 * \param type_a Type of LHS of bit-shift op
602 * \param type_b Type of RHS of bit-shift op
603 */
604 static const struct glsl_type *
605 shift_result_type(const struct glsl_type *type_a,
606 const struct glsl_type *type_b,
607 ast_operators op,
608 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
609 {
610 if (!state->check_bitwise_operations_allowed(loc)) {
611 return glsl_type::error_type;
612 }
613
614 /* From page 50 (page 56 of the PDF) of the GLSL 1.30 spec:
615 *
616 * "The shift operators (<<) and (>>). For both operators, the operands
617 * must be signed or unsigned integers or integer vectors. One operand
618 * can be signed while the other is unsigned."
619 */
620 if (!type_a->is_integer()) {
621 _mesa_glsl_error(loc, state, "LHS of operator %s must be an integer or "
622 "integer vector", ast_expression::operator_string(op));
623 return glsl_type::error_type;
624
625 }
626 if (!type_b->is_integer()) {
627 _mesa_glsl_error(loc, state, "RHS of operator %s must be an integer or "
628 "integer vector", ast_expression::operator_string(op));
629 return glsl_type::error_type;
630 }
631
632 /* "If the first operand is a scalar, the second operand has to be
633 * a scalar as well."
634 */
635 if (type_a->is_scalar() && !type_b->is_scalar()) {
636 _mesa_glsl_error(loc, state, "if the first operand of %s is scalar, the "
637 "second must be scalar as well",
638 ast_expression::operator_string(op));
639 return glsl_type::error_type;
640 }
641
642 /* If both operands are vectors, check that they have same number of
643 * elements.
644 */
645 if (type_a->is_vector() &&
646 type_b->is_vector() &&
647 type_a->vector_elements != type_b->vector_elements) {
648 _mesa_glsl_error(loc, state, "vector operands to operator %s must "
649 "have same number of elements",
650 ast_expression::operator_string(op));
651 return glsl_type::error_type;
652 }
653
654 /* "In all cases, the resulting type will be the same type as the left
655 * operand."
656 */
657 return type_a;
658 }
659
660 /**
661 * Validates that a value can be assigned to a location with a specified type
662 *
663 * Validates that \c rhs can be assigned to some location. If the types are
664 * not an exact match but an automatic conversion is possible, \c rhs will be
665 * converted.
666 *
667 * \return
668 * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
669 * Otherwise the actual RHS to be assigned will be returned. This may be
670 * \c rhs, or it may be \c rhs after some type conversion.
671 *
672 * \note
673 * In addition to being used for assignments, this function is used to
674 * type-check return values.
675 */
676 ir_rvalue *
677 validate_assignment(struct _mesa_glsl_parse_state *state,
678 YYLTYPE loc, const glsl_type *lhs_type,
679 ir_rvalue *rhs, bool is_initializer)
680 {
681 /* If there is already some error in the RHS, just return it. Anything
682 * else will lead to an avalanche of error message back to the user.
683 */
684 if (rhs->type->is_error())
685 return rhs;
686
687 /* If the types are identical, the assignment can trivially proceed.
688 */
689 if (rhs->type == lhs_type)
690 return rhs;
691
692 /* If the array element types are the same and the LHS is unsized,
693 * the assignment is okay for initializers embedded in variable
694 * declarations.
695 *
696 * Note: Whole-array assignments are not permitted in GLSL 1.10, but this
697 * is handled by ir_dereference::is_lvalue.
698 */
699 if (is_initializer && lhs_type->is_unsized_array() && rhs->type->is_array()
700 && (lhs_type->element_type() == rhs->type->element_type())) {
701 return rhs;
702 }
703
704 /* Check for implicit conversion in GLSL 1.20 */
705 if (apply_implicit_conversion(lhs_type, rhs, state)) {
706 if (rhs->type == lhs_type)
707 return rhs;
708 }
709
710 _mesa_glsl_error(&loc, state,
711 "%s of type %s cannot be assigned to "
712 "variable of type %s",
713 is_initializer ? "initializer" : "value",
714 rhs->type->name, lhs_type->name);
715
716 return NULL;
717 }
718
719 static void
720 mark_whole_array_access(ir_rvalue *access)
721 {
722 ir_dereference_variable *deref = access->as_dereference_variable();
723
724 if (deref && deref->var) {
725 deref->var->max_array_access = deref->type->length - 1;
726 }
727 }
728
729 ir_rvalue *
730 do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state,
731 const char *non_lvalue_description,
732 ir_rvalue *lhs, ir_rvalue *rhs, bool is_initializer,
733 YYLTYPE lhs_loc)
734 {
735 void *ctx = state;
736 bool error_emitted = (lhs->type->is_error() || rhs->type->is_error());
737
738 /* If the assignment LHS comes back as an ir_binop_vector_extract
739 * expression, move it to the RHS as an ir_triop_vector_insert.
740 */
741 if (lhs->ir_type == ir_type_expression) {
742 ir_expression *const expr = lhs->as_expression();
743
744 if (unlikely(expr->operation == ir_binop_vector_extract)) {
745 ir_rvalue *new_rhs =
746 validate_assignment(state, lhs_loc, lhs->type,
747 rhs, is_initializer);
748
749 if (new_rhs == NULL) {
750 return lhs;
751 } else {
752 rhs = new(ctx) ir_expression(ir_triop_vector_insert,
753 expr->operands[0]->type,
754 expr->operands[0],
755 new_rhs,
756 expr->operands[1]);
757 lhs = expr->operands[0]->clone(ctx, NULL);
758 }
759 }
760 }
761
762 ir_variable *lhs_var = lhs->variable_referenced();
763 if (lhs_var)
764 lhs_var->assigned = true;
765
766 if (!error_emitted) {
767 if (non_lvalue_description != NULL) {
768 _mesa_glsl_error(&lhs_loc, state,
769 "assignment to %s",
770 non_lvalue_description);
771 error_emitted = true;
772 } else if (lhs->variable_referenced() != NULL
773 && lhs->variable_referenced()->read_only) {
774 _mesa_glsl_error(&lhs_loc, state,
775 "assignment to read-only variable '%s'",
776 lhs->variable_referenced()->name);
777 error_emitted = true;
778
779 } else if (lhs->type->is_array() &&
780 !state->check_version(120, 300, &lhs_loc,
781 "whole array assignment forbidden")) {
782 /* From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
783 *
784 * "Other binary or unary expressions, non-dereferenced
785 * arrays, function names, swizzles with repeated fields,
786 * and constants cannot be l-values."
787 *
788 * The restriction on arrays is lifted in GLSL 1.20 and GLSL ES 3.00.
789 */
790 error_emitted = true;
791 } else if (!lhs->is_lvalue()) {
792 _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment");
793 error_emitted = true;
794 }
795 }
796
797 ir_rvalue *new_rhs =
798 validate_assignment(state, lhs_loc, lhs->type, rhs, is_initializer);
799 if (new_rhs != NULL) {
800 rhs = new_rhs;
801
802 /* If the LHS array was not declared with a size, it takes it size from
803 * the RHS. If the LHS is an l-value and a whole array, it must be a
804 * dereference of a variable. Any other case would require that the LHS
805 * is either not an l-value or not a whole array.
806 */
807 if (lhs->type->is_unsized_array()) {
808 ir_dereference *const d = lhs->as_dereference();
809
810 assert(d != NULL);
811
812 ir_variable *const var = d->variable_referenced();
813
814 assert(var != NULL);
815
816 if (var->max_array_access >= unsigned(rhs->type->array_size())) {
817 /* FINISHME: This should actually log the location of the RHS. */
818 _mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to "
819 "previous access",
820 var->max_array_access);
821 }
822
823 var->type = glsl_type::get_array_instance(lhs->type->element_type(),
824 rhs->type->array_size());
825 d->type = var->type;
826 }
827 mark_whole_array_access(rhs);
828 mark_whole_array_access(lhs);
829 }
830
831 /* Most callers of do_assignment (assign, add_assign, pre_inc/dec,
832 * but not post_inc) need the converted assigned value as an rvalue
833 * to handle things like:
834 *
835 * i = j += 1;
836 *
837 * So we always just store the computed value being assigned to a
838 * temporary and return a deref of that temporary. If the rvalue
839 * ends up not being used, the temp will get copy-propagated out.
840 */
841 ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp",
842 ir_var_temporary);
843 ir_dereference_variable *deref_var = new(ctx) ir_dereference_variable(var);
844 instructions->push_tail(var);
845 instructions->push_tail(new(ctx) ir_assignment(deref_var, rhs));
846 deref_var = new(ctx) ir_dereference_variable(var);
847
848 if (!error_emitted)
849 instructions->push_tail(new(ctx) ir_assignment(lhs, deref_var));
850
851 return new(ctx) ir_dereference_variable(var);
852 }
853
854 static ir_rvalue *
855 get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue)
856 {
857 void *ctx = ralloc_parent(lvalue);
858 ir_variable *var;
859
860 var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp",
861 ir_var_temporary);
862 instructions->push_tail(var);
863 var->mode = ir_var_auto;
864
865 instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
866 lvalue));
867
868 return new(ctx) ir_dereference_variable(var);
869 }
870
871
872 ir_rvalue *
873 ast_node::hir(exec_list *instructions,
874 struct _mesa_glsl_parse_state *state)
875 {
876 (void) instructions;
877 (void) state;
878
879 return NULL;
880 }
881
882 static ir_rvalue *
883 do_comparison(void *mem_ctx, int operation, ir_rvalue *op0, ir_rvalue *op1)
884 {
885 int join_op;
886 ir_rvalue *cmp = NULL;
887
888 if (operation == ir_binop_all_equal)
889 join_op = ir_binop_logic_and;
890 else
891 join_op = ir_binop_logic_or;
892
893 switch (op0->type->base_type) {
894 case GLSL_TYPE_FLOAT:
895 case GLSL_TYPE_UINT:
896 case GLSL_TYPE_INT:
897 case GLSL_TYPE_BOOL:
898 return new(mem_ctx) ir_expression(operation, op0, op1);
899
900 case GLSL_TYPE_ARRAY: {
901 for (unsigned int i = 0; i < op0->type->length; i++) {
902 ir_rvalue *e0, *e1, *result;
903
904 e0 = new(mem_ctx) ir_dereference_array(op0->clone(mem_ctx, NULL),
905 new(mem_ctx) ir_constant(i));
906 e1 = new(mem_ctx) ir_dereference_array(op1->clone(mem_ctx, NULL),
907 new(mem_ctx) ir_constant(i));
908 result = do_comparison(mem_ctx, operation, e0, e1);
909
910 if (cmp) {
911 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
912 } else {
913 cmp = result;
914 }
915 }
916
917 mark_whole_array_access(op0);
918 mark_whole_array_access(op1);
919 break;
920 }
921
922 case GLSL_TYPE_STRUCT: {
923 for (unsigned int i = 0; i < op0->type->length; i++) {
924 ir_rvalue *e0, *e1, *result;
925 const char *field_name = op0->type->fields.structure[i].name;
926
927 e0 = new(mem_ctx) ir_dereference_record(op0->clone(mem_ctx, NULL),
928 field_name);
929 e1 = new(mem_ctx) ir_dereference_record(op1->clone(mem_ctx, NULL),
930 field_name);
931 result = do_comparison(mem_ctx, operation, e0, e1);
932
933 if (cmp) {
934 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
935 } else {
936 cmp = result;
937 }
938 }
939 break;
940 }
941
942 case GLSL_TYPE_ERROR:
943 case GLSL_TYPE_VOID:
944 case GLSL_TYPE_SAMPLER:
945 case GLSL_TYPE_INTERFACE:
946 case GLSL_TYPE_ATOMIC_UINT:
947 /* I assume a comparison of a struct containing a sampler just
948 * ignores the sampler present in the type.
949 */
950 break;
951 }
952
953 if (cmp == NULL)
954 cmp = new(mem_ctx) ir_constant(true);
955
956 return cmp;
957 }
958
959 /* For logical operations, we want to ensure that the operands are
960 * scalar booleans. If it isn't, emit an error and return a constant
961 * boolean to avoid triggering cascading error messages.
962 */
963 ir_rvalue *
964 get_scalar_boolean_operand(exec_list *instructions,
965 struct _mesa_glsl_parse_state *state,
966 ast_expression *parent_expr,
967 int operand,
968 const char *operand_name,
969 bool *error_emitted)
970 {
971 ast_expression *expr = parent_expr->subexpressions[operand];
972 void *ctx = state;
973 ir_rvalue *val = expr->hir(instructions, state);
974
975 if (val->type->is_boolean() && val->type->is_scalar())
976 return val;
977
978 if (!*error_emitted) {
979 YYLTYPE loc = expr->get_location();
980 _mesa_glsl_error(&loc, state, "%s of `%s' must be scalar boolean",
981 operand_name,
982 parent_expr->operator_string(parent_expr->oper));
983 *error_emitted = true;
984 }
985
986 return new(ctx) ir_constant(true);
987 }
988
989 /**
990 * If name refers to a builtin array whose maximum allowed size is less than
991 * size, report an error and return true. Otherwise return false.
992 */
993 void
994 check_builtin_array_max_size(const char *name, unsigned size,
995 YYLTYPE loc, struct _mesa_glsl_parse_state *state)
996 {
997 if ((strcmp("gl_TexCoord", name) == 0)
998 && (size > state->Const.MaxTextureCoords)) {
999 /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec:
1000 *
1001 * "The size [of gl_TexCoord] can be at most
1002 * gl_MaxTextureCoords."
1003 */
1004 _mesa_glsl_error(&loc, state, "`gl_TexCoord' array size cannot "
1005 "be larger than gl_MaxTextureCoords (%u)",
1006 state->Const.MaxTextureCoords);
1007 } else if (strcmp("gl_ClipDistance", name) == 0
1008 && size > state->Const.MaxClipPlanes) {
1009 /* From section 7.1 (Vertex Shader Special Variables) of the
1010 * GLSL 1.30 spec:
1011 *
1012 * "The gl_ClipDistance array is predeclared as unsized and
1013 * must be sized by the shader either redeclaring it with a
1014 * size or indexing it only with integral constant
1015 * expressions. ... The size can be at most
1016 * gl_MaxClipDistances."
1017 */
1018 _mesa_glsl_error(&loc, state, "`gl_ClipDistance' array size cannot "
1019 "be larger than gl_MaxClipDistances (%u)",
1020 state->Const.MaxClipPlanes);
1021 }
1022 }
1023
1024 /**
1025 * Create the constant 1, of a which is appropriate for incrementing and
1026 * decrementing values of the given GLSL type. For example, if type is vec4,
1027 * this creates a constant value of 1.0 having type float.
1028 *
1029 * If the given type is invalid for increment and decrement operators, return
1030 * a floating point 1--the error will be detected later.
1031 */
1032 static ir_rvalue *
1033 constant_one_for_inc_dec(void *ctx, const glsl_type *type)
1034 {
1035 switch (type->base_type) {
1036 case GLSL_TYPE_UINT:
1037 return new(ctx) ir_constant((unsigned) 1);
1038 case GLSL_TYPE_INT:
1039 return new(ctx) ir_constant(1);
1040 default:
1041 case GLSL_TYPE_FLOAT:
1042 return new(ctx) ir_constant(1.0f);
1043 }
1044 }
1045
1046 ir_rvalue *
1047 ast_expression::hir(exec_list *instructions,
1048 struct _mesa_glsl_parse_state *state)
1049 {
1050 void *ctx = state;
1051 static const int operations[AST_NUM_OPERATORS] = {
1052 -1, /* ast_assign doesn't convert to ir_expression. */
1053 -1, /* ast_plus doesn't convert to ir_expression. */
1054 ir_unop_neg,
1055 ir_binop_add,
1056 ir_binop_sub,
1057 ir_binop_mul,
1058 ir_binop_div,
1059 ir_binop_mod,
1060 ir_binop_lshift,
1061 ir_binop_rshift,
1062 ir_binop_less,
1063 ir_binop_greater,
1064 ir_binop_lequal,
1065 ir_binop_gequal,
1066 ir_binop_all_equal,
1067 ir_binop_any_nequal,
1068 ir_binop_bit_and,
1069 ir_binop_bit_xor,
1070 ir_binop_bit_or,
1071 ir_unop_bit_not,
1072 ir_binop_logic_and,
1073 ir_binop_logic_xor,
1074 ir_binop_logic_or,
1075 ir_unop_logic_not,
1076
1077 /* Note: The following block of expression types actually convert
1078 * to multiple IR instructions.
1079 */
1080 ir_binop_mul, /* ast_mul_assign */
1081 ir_binop_div, /* ast_div_assign */
1082 ir_binop_mod, /* ast_mod_assign */
1083 ir_binop_add, /* ast_add_assign */
1084 ir_binop_sub, /* ast_sub_assign */
1085 ir_binop_lshift, /* ast_ls_assign */
1086 ir_binop_rshift, /* ast_rs_assign */
1087 ir_binop_bit_and, /* ast_and_assign */
1088 ir_binop_bit_xor, /* ast_xor_assign */
1089 ir_binop_bit_or, /* ast_or_assign */
1090
1091 -1, /* ast_conditional doesn't convert to ir_expression. */
1092 ir_binop_add, /* ast_pre_inc. */
1093 ir_binop_sub, /* ast_pre_dec. */
1094 ir_binop_add, /* ast_post_inc. */
1095 ir_binop_sub, /* ast_post_dec. */
1096 -1, /* ast_field_selection doesn't conv to ir_expression. */
1097 -1, /* ast_array_index doesn't convert to ir_expression. */
1098 -1, /* ast_function_call doesn't conv to ir_expression. */
1099 -1, /* ast_identifier doesn't convert to ir_expression. */
1100 -1, /* ast_int_constant doesn't convert to ir_expression. */
1101 -1, /* ast_uint_constant doesn't conv to ir_expression. */
1102 -1, /* ast_float_constant doesn't conv to ir_expression. */
1103 -1, /* ast_bool_constant doesn't conv to ir_expression. */
1104 -1, /* ast_sequence doesn't convert to ir_expression. */
1105 };
1106 ir_rvalue *result = NULL;
1107 ir_rvalue *op[3];
1108 const struct glsl_type *type; /* a temporary variable for switch cases */
1109 bool error_emitted = false;
1110 YYLTYPE loc;
1111
1112 loc = this->get_location();
1113
1114 switch (this->oper) {
1115 case ast_aggregate:
1116 assert(!"ast_aggregate: Should never get here.");
1117 break;
1118
1119 case ast_assign: {
1120 op[0] = this->subexpressions[0]->hir(instructions, state);
1121 op[1] = this->subexpressions[1]->hir(instructions, state);
1122
1123 result = do_assignment(instructions, state,
1124 this->subexpressions[0]->non_lvalue_description,
1125 op[0], op[1], false,
1126 this->subexpressions[0]->get_location());
1127 error_emitted = result->type->is_error();
1128 break;
1129 }
1130
1131 case ast_plus:
1132 op[0] = this->subexpressions[0]->hir(instructions, state);
1133
1134 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1135
1136 error_emitted = type->is_error();
1137
1138 result = op[0];
1139 break;
1140
1141 case ast_neg:
1142 op[0] = this->subexpressions[0]->hir(instructions, state);
1143
1144 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1145
1146 error_emitted = type->is_error();
1147
1148 result = new(ctx) ir_expression(operations[this->oper], type,
1149 op[0], NULL);
1150 break;
1151
1152 case ast_add:
1153 case ast_sub:
1154 case ast_mul:
1155 case ast_div:
1156 op[0] = this->subexpressions[0]->hir(instructions, state);
1157 op[1] = this->subexpressions[1]->hir(instructions, state);
1158
1159 type = arithmetic_result_type(op[0], op[1],
1160 (this->oper == ast_mul),
1161 state, & loc);
1162 error_emitted = type->is_error();
1163
1164 result = new(ctx) ir_expression(operations[this->oper], type,
1165 op[0], op[1]);
1166 break;
1167
1168 case ast_mod:
1169 op[0] = this->subexpressions[0]->hir(instructions, state);
1170 op[1] = this->subexpressions[1]->hir(instructions, state);
1171
1172 type = modulus_result_type(op[0]->type, op[1]->type, state, & loc);
1173
1174 assert(operations[this->oper] == ir_binop_mod);
1175
1176 result = new(ctx) ir_expression(operations[this->oper], type,
1177 op[0], op[1]);
1178 error_emitted = type->is_error();
1179 break;
1180
1181 case ast_lshift:
1182 case ast_rshift:
1183 if (!state->check_bitwise_operations_allowed(&loc)) {
1184 error_emitted = true;
1185 }
1186
1187 op[0] = this->subexpressions[0]->hir(instructions, state);
1188 op[1] = this->subexpressions[1]->hir(instructions, state);
1189 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1190 &loc);
1191 result = new(ctx) ir_expression(operations[this->oper], type,
1192 op[0], op[1]);
1193 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1194 break;
1195
1196 case ast_less:
1197 case ast_greater:
1198 case ast_lequal:
1199 case ast_gequal:
1200 op[0] = this->subexpressions[0]->hir(instructions, state);
1201 op[1] = this->subexpressions[1]->hir(instructions, state);
1202
1203 type = relational_result_type(op[0], op[1], state, & loc);
1204
1205 /* The relational operators must either generate an error or result
1206 * in a scalar boolean. See page 57 of the GLSL 1.50 spec.
1207 */
1208 assert(type->is_error()
1209 || ((type->base_type == GLSL_TYPE_BOOL)
1210 && type->is_scalar()));
1211
1212 result = new(ctx) ir_expression(operations[this->oper], type,
1213 op[0], op[1]);
1214 error_emitted = type->is_error();
1215 break;
1216
1217 case ast_nequal:
1218 case ast_equal:
1219 op[0] = this->subexpressions[0]->hir(instructions, state);
1220 op[1] = this->subexpressions[1]->hir(instructions, state);
1221
1222 /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
1223 *
1224 * "The equality operators equal (==), and not equal (!=)
1225 * operate on all types. They result in a scalar Boolean. If
1226 * the operand types do not match, then there must be a
1227 * conversion from Section 4.1.10 "Implicit Conversions"
1228 * applied to one operand that can make them match, in which
1229 * case this conversion is done."
1230 */
1231 if ((!apply_implicit_conversion(op[0]->type, op[1], state)
1232 && !apply_implicit_conversion(op[1]->type, op[0], state))
1233 || (op[0]->type != op[1]->type)) {
1234 _mesa_glsl_error(& loc, state, "operands of `%s' must have the same "
1235 "type", (this->oper == ast_equal) ? "==" : "!=");
1236 error_emitted = true;
1237 } else if ((op[0]->type->is_array() || op[1]->type->is_array()) &&
1238 !state->check_version(120, 300, &loc,
1239 "array comparisons forbidden")) {
1240 error_emitted = true;
1241 } else if ((op[0]->type->contains_opaque() ||
1242 op[1]->type->contains_opaque())) {
1243 _mesa_glsl_error(&loc, state, "opaque type comparisons forbidden");
1244 error_emitted = true;
1245 }
1246
1247 if (error_emitted) {
1248 result = new(ctx) ir_constant(false);
1249 } else {
1250 result = do_comparison(ctx, operations[this->oper], op[0], op[1]);
1251 assert(result->type == glsl_type::bool_type);
1252 }
1253 break;
1254
1255 case ast_bit_and:
1256 case ast_bit_xor:
1257 case ast_bit_or:
1258 op[0] = this->subexpressions[0]->hir(instructions, state);
1259 op[1] = this->subexpressions[1]->hir(instructions, state);
1260 type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
1261 state, &loc);
1262 result = new(ctx) ir_expression(operations[this->oper], type,
1263 op[0], op[1]);
1264 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1265 break;
1266
1267 case ast_bit_not:
1268 op[0] = this->subexpressions[0]->hir(instructions, state);
1269
1270 if (!state->check_bitwise_operations_allowed(&loc)) {
1271 error_emitted = true;
1272 }
1273
1274 if (!op[0]->type->is_integer()) {
1275 _mesa_glsl_error(&loc, state, "operand of `~' must be an integer");
1276 error_emitted = true;
1277 }
1278
1279 type = error_emitted ? glsl_type::error_type : op[0]->type;
1280 result = new(ctx) ir_expression(ir_unop_bit_not, type, op[0], NULL);
1281 break;
1282
1283 case ast_logic_and: {
1284 exec_list rhs_instructions;
1285 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1286 "LHS", &error_emitted);
1287 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1288 "RHS", &error_emitted);
1289
1290 if (rhs_instructions.is_empty()) {
1291 result = new(ctx) ir_expression(ir_binop_logic_and, op[0], op[1]);
1292 type = result->type;
1293 } else {
1294 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1295 "and_tmp",
1296 ir_var_temporary);
1297 instructions->push_tail(tmp);
1298
1299 ir_if *const stmt = new(ctx) ir_if(op[0]);
1300 instructions->push_tail(stmt);
1301
1302 stmt->then_instructions.append_list(&rhs_instructions);
1303 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1304 ir_assignment *const then_assign =
1305 new(ctx) ir_assignment(then_deref, op[1]);
1306 stmt->then_instructions.push_tail(then_assign);
1307
1308 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1309 ir_assignment *const else_assign =
1310 new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false));
1311 stmt->else_instructions.push_tail(else_assign);
1312
1313 result = new(ctx) ir_dereference_variable(tmp);
1314 type = tmp->type;
1315 }
1316 break;
1317 }
1318
1319 case ast_logic_or: {
1320 exec_list rhs_instructions;
1321 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1322 "LHS", &error_emitted);
1323 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1324 "RHS", &error_emitted);
1325
1326 if (rhs_instructions.is_empty()) {
1327 result = new(ctx) ir_expression(ir_binop_logic_or, op[0], op[1]);
1328 type = result->type;
1329 } else {
1330 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1331 "or_tmp",
1332 ir_var_temporary);
1333 instructions->push_tail(tmp);
1334
1335 ir_if *const stmt = new(ctx) ir_if(op[0]);
1336 instructions->push_tail(stmt);
1337
1338 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1339 ir_assignment *const then_assign =
1340 new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true));
1341 stmt->then_instructions.push_tail(then_assign);
1342
1343 stmt->else_instructions.append_list(&rhs_instructions);
1344 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1345 ir_assignment *const else_assign =
1346 new(ctx) ir_assignment(else_deref, op[1]);
1347 stmt->else_instructions.push_tail(else_assign);
1348
1349 result = new(ctx) ir_dereference_variable(tmp);
1350 type = tmp->type;
1351 }
1352 break;
1353 }
1354
1355 case ast_logic_xor:
1356 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1357 *
1358 * "The logical binary operators and (&&), or ( | | ), and
1359 * exclusive or (^^). They operate only on two Boolean
1360 * expressions and result in a Boolean expression."
1361 */
1362 op[0] = get_scalar_boolean_operand(instructions, state, this, 0, "LHS",
1363 &error_emitted);
1364 op[1] = get_scalar_boolean_operand(instructions, state, this, 1, "RHS",
1365 &error_emitted);
1366
1367 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1368 op[0], op[1]);
1369 break;
1370
1371 case ast_logic_not:
1372 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1373 "operand", &error_emitted);
1374
1375 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1376 op[0], NULL);
1377 break;
1378
1379 case ast_mul_assign:
1380 case ast_div_assign:
1381 case ast_add_assign:
1382 case ast_sub_assign: {
1383 op[0] = this->subexpressions[0]->hir(instructions, state);
1384 op[1] = this->subexpressions[1]->hir(instructions, state);
1385
1386 type = arithmetic_result_type(op[0], op[1],
1387 (this->oper == ast_mul_assign),
1388 state, & loc);
1389
1390 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1391 op[0], op[1]);
1392
1393 result = do_assignment(instructions, state,
1394 this->subexpressions[0]->non_lvalue_description,
1395 op[0]->clone(ctx, NULL), temp_rhs, false,
1396 this->subexpressions[0]->get_location());
1397 error_emitted = (op[0]->type->is_error());
1398
1399 /* GLSL 1.10 does not allow array assignment. However, we don't have to
1400 * explicitly test for this because none of the binary expression
1401 * operators allow array operands either.
1402 */
1403
1404 break;
1405 }
1406
1407 case ast_mod_assign: {
1408 op[0] = this->subexpressions[0]->hir(instructions, state);
1409 op[1] = this->subexpressions[1]->hir(instructions, state);
1410
1411 type = modulus_result_type(op[0]->type, op[1]->type, state, & loc);
1412
1413 assert(operations[this->oper] == ir_binop_mod);
1414
1415 ir_rvalue *temp_rhs;
1416 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1417 op[0], op[1]);
1418
1419 result = do_assignment(instructions, state,
1420 this->subexpressions[0]->non_lvalue_description,
1421 op[0]->clone(ctx, NULL), temp_rhs, false,
1422 this->subexpressions[0]->get_location());
1423 error_emitted = type->is_error();
1424 break;
1425 }
1426
1427 case ast_ls_assign:
1428 case ast_rs_assign: {
1429 op[0] = this->subexpressions[0]->hir(instructions, state);
1430 op[1] = this->subexpressions[1]->hir(instructions, state);
1431 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1432 &loc);
1433 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1434 type, op[0], op[1]);
1435 result = do_assignment(instructions, state,
1436 this->subexpressions[0]->non_lvalue_description,
1437 op[0]->clone(ctx, NULL), temp_rhs, false,
1438 this->subexpressions[0]->get_location());
1439 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1440 break;
1441 }
1442
1443 case ast_and_assign:
1444 case ast_xor_assign:
1445 case ast_or_assign: {
1446 op[0] = this->subexpressions[0]->hir(instructions, state);
1447 op[1] = this->subexpressions[1]->hir(instructions, state);
1448 type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
1449 state, &loc);
1450 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1451 type, op[0], op[1]);
1452 result = do_assignment(instructions, state,
1453 this->subexpressions[0]->non_lvalue_description,
1454 op[0]->clone(ctx, NULL), temp_rhs, false,
1455 this->subexpressions[0]->get_location());
1456 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1457 break;
1458 }
1459
1460 case ast_conditional: {
1461 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1462 *
1463 * "The ternary selection operator (?:). It operates on three
1464 * expressions (exp1 ? exp2 : exp3). This operator evaluates the
1465 * first expression, which must result in a scalar Boolean."
1466 */
1467 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1468 "condition", &error_emitted);
1469
1470 /* The :? operator is implemented by generating an anonymous temporary
1471 * followed by an if-statement. The last instruction in each branch of
1472 * the if-statement assigns a value to the anonymous temporary. This
1473 * temporary is the r-value of the expression.
1474 */
1475 exec_list then_instructions;
1476 exec_list else_instructions;
1477
1478 op[1] = this->subexpressions[1]->hir(&then_instructions, state);
1479 op[2] = this->subexpressions[2]->hir(&else_instructions, state);
1480
1481 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1482 *
1483 * "The second and third expressions can be any type, as
1484 * long their types match, or there is a conversion in
1485 * Section 4.1.10 "Implicit Conversions" that can be applied
1486 * to one of the expressions to make their types match. This
1487 * resulting matching type is the type of the entire
1488 * expression."
1489 */
1490 if ((!apply_implicit_conversion(op[1]->type, op[2], state)
1491 && !apply_implicit_conversion(op[2]->type, op[1], state))
1492 || (op[1]->type != op[2]->type)) {
1493 YYLTYPE loc = this->subexpressions[1]->get_location();
1494
1495 _mesa_glsl_error(& loc, state, "second and third operands of ?: "
1496 "operator must have matching types");
1497 error_emitted = true;
1498 type = glsl_type::error_type;
1499 } else {
1500 type = op[1]->type;
1501 }
1502
1503 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1504 *
1505 * "The second and third expressions must be the same type, but can
1506 * be of any type other than an array."
1507 */
1508 if (type->is_array() &&
1509 !state->check_version(120, 300, &loc,
1510 "second and third operands of ?: operator "
1511 "cannot be arrays")) {
1512 error_emitted = true;
1513 }
1514
1515 ir_constant *cond_val = op[0]->constant_expression_value();
1516 ir_constant *then_val = op[1]->constant_expression_value();
1517 ir_constant *else_val = op[2]->constant_expression_value();
1518
1519 if (then_instructions.is_empty()
1520 && else_instructions.is_empty()
1521 && (cond_val != NULL) && (then_val != NULL) && (else_val != NULL)) {
1522 result = (cond_val->value.b[0]) ? then_val : else_val;
1523 } else {
1524 ir_variable *const tmp =
1525 new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary);
1526 instructions->push_tail(tmp);
1527
1528 ir_if *const stmt = new(ctx) ir_if(op[0]);
1529 instructions->push_tail(stmt);
1530
1531 then_instructions.move_nodes_to(& stmt->then_instructions);
1532 ir_dereference *const then_deref =
1533 new(ctx) ir_dereference_variable(tmp);
1534 ir_assignment *const then_assign =
1535 new(ctx) ir_assignment(then_deref, op[1]);
1536 stmt->then_instructions.push_tail(then_assign);
1537
1538 else_instructions.move_nodes_to(& stmt->else_instructions);
1539 ir_dereference *const else_deref =
1540 new(ctx) ir_dereference_variable(tmp);
1541 ir_assignment *const else_assign =
1542 new(ctx) ir_assignment(else_deref, op[2]);
1543 stmt->else_instructions.push_tail(else_assign);
1544
1545 result = new(ctx) ir_dereference_variable(tmp);
1546 }
1547 break;
1548 }
1549
1550 case ast_pre_inc:
1551 case ast_pre_dec: {
1552 this->non_lvalue_description = (this->oper == ast_pre_inc)
1553 ? "pre-increment operation" : "pre-decrement operation";
1554
1555 op[0] = this->subexpressions[0]->hir(instructions, state);
1556 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1557
1558 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1559
1560 ir_rvalue *temp_rhs;
1561 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1562 op[0], op[1]);
1563
1564 result = do_assignment(instructions, state,
1565 this->subexpressions[0]->non_lvalue_description,
1566 op[0]->clone(ctx, NULL), temp_rhs, false,
1567 this->subexpressions[0]->get_location());
1568 error_emitted = op[0]->type->is_error();
1569 break;
1570 }
1571
1572 case ast_post_inc:
1573 case ast_post_dec: {
1574 this->non_lvalue_description = (this->oper == ast_post_inc)
1575 ? "post-increment operation" : "post-decrement operation";
1576 op[0] = this->subexpressions[0]->hir(instructions, state);
1577 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1578
1579 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1580
1581 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1582
1583 ir_rvalue *temp_rhs;
1584 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1585 op[0], op[1]);
1586
1587 /* Get a temporary of a copy of the lvalue before it's modified.
1588 * This may get thrown away later.
1589 */
1590 result = get_lvalue_copy(instructions, op[0]->clone(ctx, NULL));
1591
1592 (void)do_assignment(instructions, state,
1593 this->subexpressions[0]->non_lvalue_description,
1594 op[0]->clone(ctx, NULL), temp_rhs, false,
1595 this->subexpressions[0]->get_location());
1596
1597 error_emitted = op[0]->type->is_error();
1598 break;
1599 }
1600
1601 case ast_field_selection:
1602 result = _mesa_ast_field_selection_to_hir(this, instructions, state);
1603 break;
1604
1605 case ast_array_index: {
1606 YYLTYPE index_loc = subexpressions[1]->get_location();
1607
1608 op[0] = subexpressions[0]->hir(instructions, state);
1609 op[1] = subexpressions[1]->hir(instructions, state);
1610
1611 result = _mesa_ast_array_index_to_hir(ctx, state, op[0], op[1],
1612 loc, index_loc);
1613
1614 if (result->type->is_error())
1615 error_emitted = true;
1616
1617 break;
1618 }
1619
1620 case ast_function_call:
1621 /* Should *NEVER* get here. ast_function_call should always be handled
1622 * by ast_function_expression::hir.
1623 */
1624 assert(0);
1625 break;
1626
1627 case ast_identifier: {
1628 /* ast_identifier can appear several places in a full abstract syntax
1629 * tree. This particular use must be at location specified in the grammar
1630 * as 'variable_identifier'.
1631 */
1632 ir_variable *var =
1633 state->symbols->get_variable(this->primary_expression.identifier);
1634
1635 if (var != NULL) {
1636 var->used = true;
1637 result = new(ctx) ir_dereference_variable(var);
1638 } else {
1639 _mesa_glsl_error(& loc, state, "`%s' undeclared",
1640 this->primary_expression.identifier);
1641
1642 result = ir_rvalue::error_value(ctx);
1643 error_emitted = true;
1644 }
1645 break;
1646 }
1647
1648 case ast_int_constant:
1649 result = new(ctx) ir_constant(this->primary_expression.int_constant);
1650 break;
1651
1652 case ast_uint_constant:
1653 result = new(ctx) ir_constant(this->primary_expression.uint_constant);
1654 break;
1655
1656 case ast_float_constant:
1657 result = new(ctx) ir_constant(this->primary_expression.float_constant);
1658 break;
1659
1660 case ast_bool_constant:
1661 result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant));
1662 break;
1663
1664 case ast_sequence: {
1665 /* It should not be possible to generate a sequence in the AST without
1666 * any expressions in it.
1667 */
1668 assert(!this->expressions.is_empty());
1669
1670 /* The r-value of a sequence is the last expression in the sequence. If
1671 * the other expressions in the sequence do not have side-effects (and
1672 * therefore add instructions to the instruction list), they get dropped
1673 * on the floor.
1674 */
1675 exec_node *previous_tail_pred = NULL;
1676 YYLTYPE previous_operand_loc = loc;
1677
1678 foreach_list_typed (ast_node, ast, link, &this->expressions) {
1679 /* If one of the operands of comma operator does not generate any
1680 * code, we want to emit a warning. At each pass through the loop
1681 * previous_tail_pred will point to the last instruction in the
1682 * stream *before* processing the previous operand. Naturally,
1683 * instructions->tail_pred will point to the last instruction in the
1684 * stream *after* processing the previous operand. If the two
1685 * pointers match, then the previous operand had no effect.
1686 *
1687 * The warning behavior here differs slightly from GCC. GCC will
1688 * only emit a warning if none of the left-hand operands have an
1689 * effect. However, it will emit a warning for each. I believe that
1690 * there are some cases in C (especially with GCC extensions) where
1691 * it is useful to have an intermediate step in a sequence have no
1692 * effect, but I don't think these cases exist in GLSL. Either way,
1693 * it would be a giant hassle to replicate that behavior.
1694 */
1695 if (previous_tail_pred == instructions->tail_pred) {
1696 _mesa_glsl_warning(&previous_operand_loc, state,
1697 "left-hand operand of comma expression has "
1698 "no effect");
1699 }
1700
1701 /* tail_pred is directly accessed instead of using the get_tail()
1702 * method for performance reasons. get_tail() has extra code to
1703 * return NULL when the list is empty. We don't care about that
1704 * here, so using tail_pred directly is fine.
1705 */
1706 previous_tail_pred = instructions->tail_pred;
1707 previous_operand_loc = ast->get_location();
1708
1709 result = ast->hir(instructions, state);
1710 }
1711
1712 /* Any errors should have already been emitted in the loop above.
1713 */
1714 error_emitted = true;
1715 break;
1716 }
1717 }
1718 type = NULL; /* use result->type, not type. */
1719 assert(result != NULL);
1720
1721 if (result->type->is_error() && !error_emitted)
1722 _mesa_glsl_error(& loc, state, "type mismatch");
1723
1724 return result;
1725 }
1726
1727
1728 ir_rvalue *
1729 ast_expression_statement::hir(exec_list *instructions,
1730 struct _mesa_glsl_parse_state *state)
1731 {
1732 /* It is possible to have expression statements that don't have an
1733 * expression. This is the solitary semicolon:
1734 *
1735 * for (i = 0; i < 5; i++)
1736 * ;
1737 *
1738 * In this case the expression will be NULL. Test for NULL and don't do
1739 * anything in that case.
1740 */
1741 if (expression != NULL)
1742 expression->hir(instructions, state);
1743
1744 /* Statements do not have r-values.
1745 */
1746 return NULL;
1747 }
1748
1749
1750 ir_rvalue *
1751 ast_compound_statement::hir(exec_list *instructions,
1752 struct _mesa_glsl_parse_state *state)
1753 {
1754 if (new_scope)
1755 state->symbols->push_scope();
1756
1757 foreach_list_typed (ast_node, ast, link, &this->statements)
1758 ast->hir(instructions, state);
1759
1760 if (new_scope)
1761 state->symbols->pop_scope();
1762
1763 /* Compound statements do not have r-values.
1764 */
1765 return NULL;
1766 }
1767
1768
1769 static const glsl_type *
1770 process_array_type(YYLTYPE *loc, const glsl_type *base, ast_node *array_size,
1771 struct _mesa_glsl_parse_state *state)
1772 {
1773 unsigned length = 0;
1774
1775 if (base == NULL)
1776 return glsl_type::error_type;
1777
1778 /* From page 19 (page 25) of the GLSL 1.20 spec:
1779 *
1780 * "Only one-dimensional arrays may be declared."
1781 */
1782 if (base->is_array()) {
1783 _mesa_glsl_error(loc, state,
1784 "invalid array of `%s' (only one-dimensional arrays "
1785 "may be declared)",
1786 base->name);
1787 return glsl_type::error_type;
1788 }
1789
1790 if (array_size != NULL) {
1791 exec_list dummy_instructions;
1792 ir_rvalue *const ir = array_size->hir(& dummy_instructions, state);
1793 YYLTYPE loc = array_size->get_location();
1794
1795 if (ir != NULL) {
1796 if (!ir->type->is_integer()) {
1797 _mesa_glsl_error(& loc, state, "array size must be integer type");
1798 } else if (!ir->type->is_scalar()) {
1799 _mesa_glsl_error(& loc, state, "array size must be scalar type");
1800 } else {
1801 ir_constant *const size = ir->constant_expression_value();
1802
1803 if (size == NULL) {
1804 _mesa_glsl_error(& loc, state, "array size must be a "
1805 "constant valued expression");
1806 } else if (size->value.i[0] <= 0) {
1807 _mesa_glsl_error(& loc, state, "array size must be > 0");
1808 } else {
1809 assert(size->type == ir->type);
1810 length = size->value.u[0];
1811
1812 /* If the array size is const (and we've verified that
1813 * it is) then no instructions should have been emitted
1814 * when we converted it to HIR. If they were emitted,
1815 * then either the array size isn't const after all, or
1816 * we are emitting unnecessary instructions.
1817 */
1818 assert(dummy_instructions.is_empty());
1819 }
1820 }
1821 }
1822 }
1823
1824 const glsl_type *array_type = glsl_type::get_array_instance(base, length);
1825 return array_type != NULL ? array_type : glsl_type::error_type;
1826 }
1827
1828
1829 const glsl_type *
1830 ast_type_specifier::glsl_type(const char **name,
1831 struct _mesa_glsl_parse_state *state) const
1832 {
1833 const struct glsl_type *type;
1834
1835 type = state->symbols->get_type(this->type_name);
1836 *name = this->type_name;
1837
1838 if (this->is_array) {
1839 YYLTYPE loc = this->get_location();
1840 type = process_array_type(&loc, type, this->array_size, state);
1841 }
1842
1843 return type;
1844 }
1845
1846 const glsl_type *
1847 ast_fully_specified_type::glsl_type(const char **name,
1848 struct _mesa_glsl_parse_state *state) const
1849 {
1850 const struct glsl_type *type = this->specifier->glsl_type(name, state);
1851
1852 if (type == NULL)
1853 return NULL;
1854
1855 if (type->base_type == GLSL_TYPE_FLOAT
1856 && state->es_shader
1857 && state->target == fragment_shader
1858 && this->qualifier.precision == ast_precision_none
1859 && state->symbols->get_variable("#default precision") == NULL) {
1860 YYLTYPE loc = this->get_location();
1861 _mesa_glsl_error(&loc, state,
1862 "no precision specified this scope for type `%s'",
1863 type->name);
1864 }
1865
1866 return type;
1867 }
1868
1869 /**
1870 * Determine whether a toplevel variable declaration declares a varying. This
1871 * function operates by examining the variable's mode and the shader target,
1872 * so it correctly identifies linkage variables regardless of whether they are
1873 * declared using the deprecated "varying" syntax or the new "in/out" syntax.
1874 *
1875 * Passing a non-toplevel variable declaration (e.g. a function parameter) to
1876 * this function will produce undefined results.
1877 */
1878 static bool
1879 is_varying_var(ir_variable *var, _mesa_glsl_parser_targets target)
1880 {
1881 switch (target) {
1882 case vertex_shader:
1883 return var->mode == ir_var_shader_out;
1884 case fragment_shader:
1885 return var->mode == ir_var_shader_in;
1886 default:
1887 return var->mode == ir_var_shader_out || var->mode == ir_var_shader_in;
1888 }
1889 }
1890
1891
1892 /**
1893 * Matrix layout qualifiers are only allowed on certain types
1894 */
1895 static void
1896 validate_matrix_layout_for_type(struct _mesa_glsl_parse_state *state,
1897 YYLTYPE *loc,
1898 const glsl_type *type,
1899 ir_variable *var)
1900 {
1901 if (var && !var->is_in_uniform_block()) {
1902 /* Layout qualifiers may only apply to interface blocks and fields in
1903 * them.
1904 */
1905 _mesa_glsl_error(loc, state,
1906 "uniform block layout qualifiers row_major and "
1907 "column_major may not be applied to variables "
1908 "outside of uniform blocks");
1909 } else if (!type->is_matrix()) {
1910 /* The OpenGL ES 3.0 conformance tests did not originally allow
1911 * matrix layout qualifiers on non-matrices. However, the OpenGL
1912 * 4.4 and OpenGL ES 3.0 (revision TBD) specifications were
1913 * amended to specifically allow these layouts on all types. Emit
1914 * a warning so that people know their code may not be portable.
1915 */
1916 _mesa_glsl_warning(loc, state,
1917 "uniform block layout qualifiers row_major and "
1918 "column_major applied to non-matrix types may "
1919 "be rejected by older compilers");
1920 } else if (type->is_record()) {
1921 /* We allow 'layout(row_major)' on structure types because it's the only
1922 * way to get row-major layouts on matrices contained in structures.
1923 */
1924 _mesa_glsl_warning(loc, state,
1925 "uniform block layout qualifiers row_major and "
1926 "column_major applied to structure types is not "
1927 "strictly conformant and may be rejected by other "
1928 "compilers");
1929 }
1930 }
1931
1932 static bool
1933 validate_binding_qualifier(struct _mesa_glsl_parse_state *state,
1934 YYLTYPE *loc,
1935 ir_variable *var,
1936 const ast_type_qualifier *qual)
1937 {
1938 if (var->mode != ir_var_uniform) {
1939 _mesa_glsl_error(loc, state,
1940 "the \"binding\" qualifier only applies to uniforms");
1941 return false;
1942 }
1943
1944 if (qual->binding < 0) {
1945 _mesa_glsl_error(loc, state, "binding values must be >= 0");
1946 return false;
1947 }
1948
1949 const struct gl_context *const ctx = state->ctx;
1950 unsigned elements = var->type->is_array() ? var->type->length : 1;
1951 unsigned max_index = qual->binding + elements - 1;
1952
1953 if (var->type->is_interface()) {
1954 /* UBOs. From page 60 of the GLSL 4.20 specification:
1955 * "If the binding point for any uniform block instance is less than zero,
1956 * or greater than or equal to the implementation-dependent maximum
1957 * number of uniform buffer bindings, a compilation error will occur.
1958 * When the binding identifier is used with a uniform block instanced as
1959 * an array of size N, all elements of the array from binding through
1960 * binding + N – 1 must be within this range."
1961 *
1962 * The implementation-dependent maximum is GL_MAX_UNIFORM_BUFFER_BINDINGS.
1963 */
1964 if (max_index >= ctx->Const.MaxUniformBufferBindings) {
1965 _mesa_glsl_error(loc, state, "layout(binding = %d) for %d UBOs exceeds "
1966 "the maximum number of UBO binding points (%d)",
1967 qual->binding, elements,
1968 ctx->Const.MaxUniformBufferBindings);
1969 return false;
1970 }
1971 } else if (var->type->is_sampler() ||
1972 (var->type->is_array() && var->type->fields.array->is_sampler())) {
1973 /* Samplers. From page 63 of the GLSL 4.20 specification:
1974 * "If the binding is less than zero, or greater than or equal to the
1975 * implementation-dependent maximum supported number of units, a
1976 * compilation error will occur. When the binding identifier is used
1977 * with an array of size N, all elements of the array from binding
1978 * through binding + N - 1 must be within this range."
1979 */
1980 unsigned limit = 0;
1981 switch (state->target) {
1982 case vertex_shader:
1983 limit = ctx->Const.VertexProgram.MaxTextureImageUnits;
1984 break;
1985 case geometry_shader:
1986 limit = ctx->Const.GeometryProgram.MaxTextureImageUnits;
1987 break;
1988 case fragment_shader:
1989 limit = ctx->Const.FragmentProgram.MaxTextureImageUnits;
1990 break;
1991 }
1992
1993 if (max_index >= limit) {
1994 _mesa_glsl_error(loc, state, "layout(binding = %d) for %d samplers "
1995 "exceeds the maximum number of texture image units "
1996 "(%d)", qual->binding, elements, limit);
1997
1998 return false;
1999 }
2000 } else {
2001 _mesa_glsl_error(loc, state,
2002 "the \"binding\" qualifier only applies to uniform "
2003 "blocks, samplers, or arrays of samplers");
2004 return false;
2005 }
2006
2007 return true;
2008 }
2009
2010
2011 static glsl_interp_qualifier
2012 interpret_interpolation_qualifier(const struct ast_type_qualifier *qual,
2013 ir_variable_mode mode,
2014 struct _mesa_glsl_parse_state *state,
2015 YYLTYPE *loc)
2016 {
2017 glsl_interp_qualifier interpolation;
2018 if (qual->flags.q.flat)
2019 interpolation = INTERP_QUALIFIER_FLAT;
2020 else if (qual->flags.q.noperspective)
2021 interpolation = INTERP_QUALIFIER_NOPERSPECTIVE;
2022 else if (qual->flags.q.smooth)
2023 interpolation = INTERP_QUALIFIER_SMOOTH;
2024 else
2025 interpolation = INTERP_QUALIFIER_NONE;
2026
2027 if (interpolation != INTERP_QUALIFIER_NONE) {
2028 if (mode != ir_var_shader_in && mode != ir_var_shader_out) {
2029 _mesa_glsl_error(loc, state,
2030 "interpolation qualifier `%s' can only be applied to "
2031 "shader inputs or outputs.",
2032 interpolation_string(interpolation));
2033
2034 }
2035
2036 if ((state->target == vertex_shader && mode == ir_var_shader_in) ||
2037 (state->target == fragment_shader && mode == ir_var_shader_out)) {
2038 _mesa_glsl_error(loc, state,
2039 "interpolation qualifier `%s' cannot be applied to "
2040 "vertex shader inputs or fragment shader outputs",
2041 interpolation_string(interpolation));
2042 }
2043 }
2044
2045 return interpolation;
2046 }
2047
2048
2049 static void
2050 validate_explicit_location(const struct ast_type_qualifier *qual,
2051 ir_variable *var,
2052 struct _mesa_glsl_parse_state *state,
2053 YYLTYPE *loc)
2054 {
2055 const bool global_scope = (state->current_function == NULL);
2056 bool fail = false;
2057 const char *string = "";
2058
2059 /* In the vertex shader only shader inputs can be given explicit
2060 * locations.
2061 *
2062 * In the fragment shader only shader outputs can be given explicit
2063 * locations.
2064 */
2065 switch (state->target) {
2066 case vertex_shader:
2067 if (!global_scope || (var->mode != ir_var_shader_in)) {
2068 fail = true;
2069 string = "input";
2070 }
2071 break;
2072
2073 case geometry_shader:
2074 _mesa_glsl_error(loc, state,
2075 "geometry shader variables cannot be given "
2076 "explicit locations");
2077 return;
2078
2079 case fragment_shader:
2080 if (!global_scope || (var->mode != ir_var_shader_out)) {
2081 fail = true;
2082 string = "output";
2083 }
2084 break;
2085 };
2086
2087 if (fail) {
2088 _mesa_glsl_error(loc, state,
2089 "only %s shader %s variables can be given an "
2090 "explicit location",
2091 _mesa_glsl_shader_target_name(state->target),
2092 string);
2093 } else {
2094 var->explicit_location = true;
2095
2096 /* This bit of silliness is needed because invalid explicit locations
2097 * are supposed to be flagged during linking. Small negative values
2098 * biased by VERT_ATTRIB_GENERIC0 or FRAG_RESULT_DATA0 could alias
2099 * built-in values (e.g., -16+VERT_ATTRIB_GENERIC0 = VERT_ATTRIB_POS).
2100 * The linker needs to be able to differentiate these cases. This
2101 * ensures that negative values stay negative.
2102 */
2103 if (qual->location >= 0) {
2104 var->location = (state->target == vertex_shader)
2105 ? (qual->location + VERT_ATTRIB_GENERIC0)
2106 : (qual->location + FRAG_RESULT_DATA0);
2107 } else {
2108 var->location = qual->location;
2109 }
2110
2111 if (qual->flags.q.explicit_index) {
2112 /* From the GLSL 4.30 specification, section 4.4.2 (Output
2113 * Layout Qualifiers):
2114 *
2115 * "It is also a compile-time error if a fragment shader
2116 * sets a layout index to less than 0 or greater than 1."
2117 *
2118 * Older specifications don't mandate a behavior; we take
2119 * this as a clarification and always generate the error.
2120 */
2121 if (qual->index < 0 || qual->index > 1) {
2122 _mesa_glsl_error(loc, state,
2123 "explicit index may only be 0 or 1");
2124 } else {
2125 var->explicit_index = true;
2126 var->index = qual->index;
2127 }
2128 }
2129 }
2130 }
2131
2132 static void
2133 apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
2134 ir_variable *var,
2135 struct _mesa_glsl_parse_state *state,
2136 YYLTYPE *loc,
2137 bool is_parameter)
2138 {
2139 STATIC_ASSERT(sizeof(qual->flags.q) <= sizeof(qual->flags.i));
2140
2141 if (qual->flags.q.invariant) {
2142 if (var->used) {
2143 _mesa_glsl_error(loc, state,
2144 "variable `%s' may not be redeclared "
2145 "`invariant' after being used",
2146 var->name);
2147 } else {
2148 var->invariant = 1;
2149 }
2150 }
2151
2152 if (qual->flags.q.constant || qual->flags.q.attribute
2153 || qual->flags.q.uniform
2154 || (qual->flags.q.varying && (state->target == fragment_shader)))
2155 var->read_only = 1;
2156
2157 if (qual->flags.q.centroid)
2158 var->centroid = 1;
2159
2160 if (qual->flags.q.attribute && state->target != vertex_shader) {
2161 var->type = glsl_type::error_type;
2162 _mesa_glsl_error(loc, state,
2163 "`attribute' variables may not be declared in the "
2164 "%s shader",
2165 _mesa_glsl_shader_target_name(state->target));
2166 }
2167
2168 /* Section 6.1.1 (Function Calling Conventions) of the GLSL 1.10 spec says:
2169 *
2170 * "However, the const qualifier cannot be used with out or inout."
2171 *
2172 * The same section of the GLSL 4.40 spec further clarifies this saying:
2173 *
2174 * "The const qualifier cannot be used with out or inout, or a
2175 * compile-time error results."
2176 */
2177 if (is_parameter && qual->flags.q.constant && qual->flags.q.out) {
2178 _mesa_glsl_error(loc, state,
2179 "`const' may not be applied to `out' or `inout' "
2180 "function parameters");
2181 }
2182
2183 /* If there is no qualifier that changes the mode of the variable, leave
2184 * the setting alone.
2185 */
2186 if (qual->flags.q.in && qual->flags.q.out)
2187 var->mode = ir_var_function_inout;
2188 else if (qual->flags.q.in)
2189 var->mode = is_parameter ? ir_var_function_in : ir_var_shader_in;
2190 else if (qual->flags.q.attribute
2191 || (qual->flags.q.varying && (state->target == fragment_shader)))
2192 var->mode = ir_var_shader_in;
2193 else if (qual->flags.q.out)
2194 var->mode = is_parameter ? ir_var_function_out : ir_var_shader_out;
2195 else if (qual->flags.q.varying && (state->target == vertex_shader))
2196 var->mode = ir_var_shader_out;
2197 else if (qual->flags.q.uniform)
2198 var->mode = ir_var_uniform;
2199
2200 if (!is_parameter && is_varying_var(var, state->target)) {
2201 /* This variable is being used to link data between shader stages (in
2202 * pre-glsl-1.30 parlance, it's a "varying"). Check that it has a type
2203 * that is allowed for such purposes.
2204 *
2205 * From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
2206 *
2207 * "The varying qualifier can be used only with the data types
2208 * float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
2209 * these."
2210 *
2211 * This was relaxed in GLSL version 1.30 and GLSL ES version 3.00. From
2212 * page 31 (page 37 of the PDF) of the GLSL 1.30 spec:
2213 *
2214 * "Fragment inputs can only be signed and unsigned integers and
2215 * integer vectors, float, floating-point vectors, matrices, or
2216 * arrays of these. Structures cannot be input.
2217 *
2218 * Similar text exists in the section on vertex shader outputs.
2219 *
2220 * Similar text exists in the GLSL ES 3.00 spec, except that the GLSL ES
2221 * 3.00 spec allows structs as well. Varying structs are also allowed
2222 * in GLSL 1.50.
2223 */
2224 switch (var->type->get_scalar_type()->base_type) {
2225 case GLSL_TYPE_FLOAT:
2226 /* Ok in all GLSL versions */
2227 break;
2228 case GLSL_TYPE_UINT:
2229 case GLSL_TYPE_INT:
2230 if (state->is_version(130, 300))
2231 break;
2232 _mesa_glsl_error(loc, state,
2233 "varying variables must be of base type float in %s",
2234 state->get_version_string());
2235 break;
2236 case GLSL_TYPE_STRUCT:
2237 if (state->is_version(150, 300))
2238 break;
2239 _mesa_glsl_error(loc, state,
2240 "varying variables may not be of type struct");
2241 break;
2242 default:
2243 _mesa_glsl_error(loc, state, "illegal type for a varying variable");
2244 break;
2245 }
2246 }
2247
2248 if (state->all_invariant && (state->current_function == NULL)) {
2249 switch (state->target) {
2250 case vertex_shader:
2251 if (var->mode == ir_var_shader_out)
2252 var->invariant = true;
2253 break;
2254 case geometry_shader:
2255 if ((var->mode == ir_var_shader_in)
2256 || (var->mode == ir_var_shader_out))
2257 var->invariant = true;
2258 break;
2259 case fragment_shader:
2260 if (var->mode == ir_var_shader_in)
2261 var->invariant = true;
2262 break;
2263 }
2264 }
2265
2266 var->interpolation =
2267 interpret_interpolation_qualifier(qual, (ir_variable_mode) var->mode,
2268 state, loc);
2269
2270 var->pixel_center_integer = qual->flags.q.pixel_center_integer;
2271 var->origin_upper_left = qual->flags.q.origin_upper_left;
2272 if ((qual->flags.q.origin_upper_left || qual->flags.q.pixel_center_integer)
2273 && (strcmp(var->name, "gl_FragCoord") != 0)) {
2274 const char *const qual_string = (qual->flags.q.origin_upper_left)
2275 ? "origin_upper_left" : "pixel_center_integer";
2276
2277 _mesa_glsl_error(loc, state,
2278 "layout qualifier `%s' can only be applied to "
2279 "fragment shader input `gl_FragCoord'",
2280 qual_string);
2281 }
2282
2283 if (qual->flags.q.explicit_location) {
2284 validate_explicit_location(qual, var, state, loc);
2285 } else if (qual->flags.q.explicit_index) {
2286 _mesa_glsl_error(loc, state,
2287 "explicit index requires explicit location");
2288 }
2289
2290 if (qual->flags.q.explicit_binding &&
2291 validate_binding_qualifier(state, loc, var, qual)) {
2292 var->explicit_binding = true;
2293 var->binding = qual->binding;
2294 }
2295
2296 /* Does the declaration use the deprecated 'attribute' or 'varying'
2297 * keywords?
2298 */
2299 const bool uses_deprecated_qualifier = qual->flags.q.attribute
2300 || qual->flags.q.varying;
2301
2302 /* Is the 'layout' keyword used with parameters that allow relaxed checking.
2303 * Many implementations of GL_ARB_fragment_coord_conventions_enable and some
2304 * implementations (only Mesa?) GL_ARB_explicit_attrib_location_enable
2305 * allowed the layout qualifier to be used with 'varying' and 'attribute'.
2306 * These extensions and all following extensions that add the 'layout'
2307 * keyword have been modified to require the use of 'in' or 'out'.
2308 *
2309 * The following extension do not allow the deprecated keywords:
2310 *
2311 * GL_AMD_conservative_depth
2312 * GL_ARB_conservative_depth
2313 * GL_ARB_gpu_shader5
2314 * GL_ARB_separate_shader_objects
2315 * GL_ARB_tesselation_shader
2316 * GL_ARB_transform_feedback3
2317 * GL_ARB_uniform_buffer_object
2318 *
2319 * It is unknown whether GL_EXT_shader_image_load_store or GL_NV_gpu_shader5
2320 * allow layout with the deprecated keywords.
2321 */
2322 const bool relaxed_layout_qualifier_checking =
2323 state->ARB_fragment_coord_conventions_enable;
2324
2325 if (qual->has_layout() && uses_deprecated_qualifier) {
2326 if (relaxed_layout_qualifier_checking) {
2327 _mesa_glsl_warning(loc, state,
2328 "`layout' qualifier may not be used with "
2329 "`attribute' or `varying'");
2330 } else {
2331 _mesa_glsl_error(loc, state,
2332 "`layout' qualifier may not be used with "
2333 "`attribute' or `varying'");
2334 }
2335 }
2336
2337 /* Layout qualifiers for gl_FragDepth, which are enabled by extension
2338 * AMD_conservative_depth.
2339 */
2340 int depth_layout_count = qual->flags.q.depth_any
2341 + qual->flags.q.depth_greater
2342 + qual->flags.q.depth_less
2343 + qual->flags.q.depth_unchanged;
2344 if (depth_layout_count > 0
2345 && !state->AMD_conservative_depth_enable
2346 && !state->ARB_conservative_depth_enable) {
2347 _mesa_glsl_error(loc, state,
2348 "extension GL_AMD_conservative_depth or "
2349 "GL_ARB_conservative_depth must be enabled "
2350 "to use depth layout qualifiers");
2351 } else if (depth_layout_count > 0
2352 && strcmp(var->name, "gl_FragDepth") != 0) {
2353 _mesa_glsl_error(loc, state,
2354 "depth layout qualifiers can be applied only to "
2355 "gl_FragDepth");
2356 } else if (depth_layout_count > 1
2357 && strcmp(var->name, "gl_FragDepth") == 0) {
2358 _mesa_glsl_error(loc, state,
2359 "at most one depth layout qualifier can be applied to "
2360 "gl_FragDepth");
2361 }
2362 if (qual->flags.q.depth_any)
2363 var->depth_layout = ir_depth_layout_any;
2364 else if (qual->flags.q.depth_greater)
2365 var->depth_layout = ir_depth_layout_greater;
2366 else if (qual->flags.q.depth_less)
2367 var->depth_layout = ir_depth_layout_less;
2368 else if (qual->flags.q.depth_unchanged)
2369 var->depth_layout = ir_depth_layout_unchanged;
2370 else
2371 var->depth_layout = ir_depth_layout_none;
2372
2373 if (qual->flags.q.std140 ||
2374 qual->flags.q.packed ||
2375 qual->flags.q.shared) {
2376 _mesa_glsl_error(loc, state,
2377 "uniform block layout qualifiers std140, packed, and "
2378 "shared can only be applied to uniform blocks, not "
2379 "members");
2380 }
2381
2382 if (qual->flags.q.row_major || qual->flags.q.column_major) {
2383 validate_matrix_layout_for_type(state, loc, var->type, var);
2384 }
2385 }
2386
2387 /**
2388 * Get the variable that is being redeclared by this declaration
2389 *
2390 * Semantic checks to verify the validity of the redeclaration are also
2391 * performed. If semantic checks fail, compilation error will be emitted via
2392 * \c _mesa_glsl_error, but a non-\c NULL pointer will still be returned.
2393 *
2394 * \returns
2395 * A pointer to an existing variable in the current scope if the declaration
2396 * is a redeclaration, \c NULL otherwise.
2397 */
2398 static ir_variable *
2399 get_variable_being_redeclared(ir_variable *var, YYLTYPE loc,
2400 struct _mesa_glsl_parse_state *state,
2401 bool allow_all_redeclarations)
2402 {
2403 /* Check if this declaration is actually a re-declaration, either to
2404 * resize an array or add qualifiers to an existing variable.
2405 *
2406 * This is allowed for variables in the current scope, or when at
2407 * global scope (for built-ins in the implicit outer scope).
2408 */
2409 ir_variable *earlier = state->symbols->get_variable(var->name);
2410 if (earlier == NULL ||
2411 (state->current_function != NULL &&
2412 !state->symbols->name_declared_this_scope(var->name))) {
2413 return NULL;
2414 }
2415
2416
2417 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
2418 *
2419 * "It is legal to declare an array without a size and then
2420 * later re-declare the same name as an array of the same
2421 * type and specify a size."
2422 */
2423 if (earlier->type->is_unsized_array() && var->type->is_array()
2424 && (var->type->element_type() == earlier->type->element_type())) {
2425 /* FINISHME: This doesn't match the qualifiers on the two
2426 * FINISHME: declarations. It's not 100% clear whether this is
2427 * FINISHME: required or not.
2428 */
2429
2430 const unsigned size = unsigned(var->type->array_size());
2431 check_builtin_array_max_size(var->name, size, loc, state);
2432 if ((size > 0) && (size <= earlier->max_array_access)) {
2433 _mesa_glsl_error(& loc, state, "array size must be > %u due to "
2434 "previous access",
2435 earlier->max_array_access);
2436 }
2437
2438 earlier->type = var->type;
2439 delete var;
2440 var = NULL;
2441 } else if ((state->ARB_fragment_coord_conventions_enable ||
2442 state->is_version(150, 0))
2443 && strcmp(var->name, "gl_FragCoord") == 0
2444 && earlier->type == var->type
2445 && earlier->mode == var->mode) {
2446 /* Allow redeclaration of gl_FragCoord for ARB_fcc layout
2447 * qualifiers.
2448 */
2449 earlier->origin_upper_left = var->origin_upper_left;
2450 earlier->pixel_center_integer = var->pixel_center_integer;
2451
2452 /* According to section 4.3.7 of the GLSL 1.30 spec,
2453 * the following built-in varaibles can be redeclared with an
2454 * interpolation qualifier:
2455 * * gl_FrontColor
2456 * * gl_BackColor
2457 * * gl_FrontSecondaryColor
2458 * * gl_BackSecondaryColor
2459 * * gl_Color
2460 * * gl_SecondaryColor
2461 */
2462 } else if (state->is_version(130, 0)
2463 && (strcmp(var->name, "gl_FrontColor") == 0
2464 || strcmp(var->name, "gl_BackColor") == 0
2465 || strcmp(var->name, "gl_FrontSecondaryColor") == 0
2466 || strcmp(var->name, "gl_BackSecondaryColor") == 0
2467 || strcmp(var->name, "gl_Color") == 0
2468 || strcmp(var->name, "gl_SecondaryColor") == 0)
2469 && earlier->type == var->type
2470 && earlier->mode == var->mode) {
2471 earlier->interpolation = var->interpolation;
2472
2473 /* Layout qualifiers for gl_FragDepth. */
2474 } else if ((state->AMD_conservative_depth_enable ||
2475 state->ARB_conservative_depth_enable)
2476 && strcmp(var->name, "gl_FragDepth") == 0
2477 && earlier->type == var->type
2478 && earlier->mode == var->mode) {
2479
2480 /** From the AMD_conservative_depth spec:
2481 * Within any shader, the first redeclarations of gl_FragDepth
2482 * must appear before any use of gl_FragDepth.
2483 */
2484 if (earlier->used) {
2485 _mesa_glsl_error(&loc, state,
2486 "the first redeclaration of gl_FragDepth "
2487 "must appear before any use of gl_FragDepth");
2488 }
2489
2490 /* Prevent inconsistent redeclaration of depth layout qualifier. */
2491 if (earlier->depth_layout != ir_depth_layout_none
2492 && earlier->depth_layout != var->depth_layout) {
2493 _mesa_glsl_error(&loc, state,
2494 "gl_FragDepth: depth layout is declared here "
2495 "as '%s, but it was previously declared as "
2496 "'%s'",
2497 depth_layout_string(var->depth_layout),
2498 depth_layout_string(earlier->depth_layout));
2499 }
2500
2501 earlier->depth_layout = var->depth_layout;
2502
2503 } else if (allow_all_redeclarations) {
2504 if (earlier->mode != var->mode) {
2505 _mesa_glsl_error(&loc, state,
2506 "redeclaration of `%s' with incorrect qualifiers",
2507 var->name);
2508 } else if (earlier->type != var->type) {
2509 _mesa_glsl_error(&loc, state,
2510 "redeclaration of `%s' has incorrect type",
2511 var->name);
2512 }
2513 } else {
2514 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
2515 }
2516
2517 return earlier;
2518 }
2519
2520 /**
2521 * Generate the IR for an initializer in a variable declaration
2522 */
2523 ir_rvalue *
2524 process_initializer(ir_variable *var, ast_declaration *decl,
2525 ast_fully_specified_type *type,
2526 exec_list *initializer_instructions,
2527 struct _mesa_glsl_parse_state *state)
2528 {
2529 ir_rvalue *result = NULL;
2530
2531 YYLTYPE initializer_loc = decl->initializer->get_location();
2532
2533 /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
2534 *
2535 * "All uniform variables are read-only and are initialized either
2536 * directly by an application via API commands, or indirectly by
2537 * OpenGL."
2538 */
2539 if (var->mode == ir_var_uniform) {
2540 state->check_version(120, 0, &initializer_loc,
2541 "cannot initialize uniforms");
2542 }
2543
2544 if (var->type->is_sampler()) {
2545 _mesa_glsl_error(& initializer_loc, state,
2546 "cannot initialize samplers");
2547 }
2548
2549 if ((var->mode == ir_var_shader_in) && (state->current_function == NULL)) {
2550 _mesa_glsl_error(& initializer_loc, state,
2551 "cannot initialize %s shader input / %s",
2552 _mesa_glsl_shader_target_name(state->target),
2553 (state->target == vertex_shader)
2554 ? "attribute" : "varying");
2555 }
2556
2557 ir_dereference *const lhs = new(state) ir_dereference_variable(var);
2558 ir_rvalue *rhs = decl->initializer->hir(initializer_instructions,
2559 state);
2560
2561 /* Calculate the constant value if this is a const or uniform
2562 * declaration.
2563 */
2564 if (type->qualifier.flags.q.constant
2565 || type->qualifier.flags.q.uniform) {
2566 ir_rvalue *new_rhs = validate_assignment(state, initializer_loc,
2567 var->type, rhs, true);
2568 if (new_rhs != NULL) {
2569 rhs = new_rhs;
2570
2571 ir_constant *constant_value = rhs->constant_expression_value();
2572 if (!constant_value) {
2573 /* If ARB_shading_language_420pack is enabled, initializers of
2574 * const-qualified local variables do not have to be constant
2575 * expressions. Const-qualified global variables must still be
2576 * initialized with constant expressions.
2577 */
2578 if (!state->ARB_shading_language_420pack_enable
2579 || state->current_function == NULL) {
2580 _mesa_glsl_error(& initializer_loc, state,
2581 "initializer of %s variable `%s' must be a "
2582 "constant expression",
2583 (type->qualifier.flags.q.constant)
2584 ? "const" : "uniform",
2585 decl->identifier);
2586 if (var->type->is_numeric()) {
2587 /* Reduce cascading errors. */
2588 var->constant_value = ir_constant::zero(state, var->type);
2589 }
2590 }
2591 } else {
2592 rhs = constant_value;
2593 var->constant_value = constant_value;
2594 }
2595 } else {
2596 if (var->type->is_numeric()) {
2597 /* Reduce cascading errors. */
2598 var->constant_value = ir_constant::zero(state, var->type);
2599 }
2600 }
2601 }
2602
2603 if (rhs && !rhs->type->is_error()) {
2604 bool temp = var->read_only;
2605 if (type->qualifier.flags.q.constant)
2606 var->read_only = false;
2607
2608 /* Never emit code to initialize a uniform.
2609 */
2610 const glsl_type *initializer_type;
2611 if (!type->qualifier.flags.q.uniform) {
2612 result = do_assignment(initializer_instructions, state,
2613 NULL,
2614 lhs, rhs, true,
2615 type->get_location());
2616 initializer_type = result->type;
2617 } else
2618 initializer_type = rhs->type;
2619
2620 var->constant_initializer = rhs->constant_expression_value();
2621 var->has_initializer = true;
2622
2623 /* If the declared variable is an unsized array, it must inherrit
2624 * its full type from the initializer. A declaration such as
2625 *
2626 * uniform float a[] = float[](1.0, 2.0, 3.0, 3.0);
2627 *
2628 * becomes
2629 *
2630 * uniform float a[4] = float[](1.0, 2.0, 3.0, 3.0);
2631 *
2632 * The assignment generated in the if-statement (below) will also
2633 * automatically handle this case for non-uniforms.
2634 *
2635 * If the declared variable is not an array, the types must
2636 * already match exactly. As a result, the type assignment
2637 * here can be done unconditionally. For non-uniforms the call
2638 * to do_assignment can change the type of the initializer (via
2639 * the implicit conversion rules). For uniforms the initializer
2640 * must be a constant expression, and the type of that expression
2641 * was validated above.
2642 */
2643 var->type = initializer_type;
2644
2645 var->read_only = temp;
2646 }
2647
2648 return result;
2649 }
2650
2651
2652 /**
2653 * Do additional processing necessary for geometry shader input declarations
2654 * (this covers both interface blocks arrays and bare input variables).
2655 */
2656 static void
2657 handle_geometry_shader_input_decl(struct _mesa_glsl_parse_state *state,
2658 YYLTYPE loc, ir_variable *var)
2659 {
2660 unsigned num_vertices = 0;
2661 if (state->gs_input_prim_type_specified) {
2662 num_vertices = vertices_per_prim(state->gs_input_prim_type);
2663 }
2664
2665 /* Geometry shader input variables must be arrays. Caller should have
2666 * reported an error for this.
2667 */
2668 if (!var->type->is_array()) {
2669 assert(state->error);
2670
2671 /* To avoid cascading failures, short circuit the checks below. */
2672 return;
2673 }
2674
2675 if (var->type->is_unsized_array()) {
2676 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec says:
2677 *
2678 * All geometry shader input unsized array declarations will be
2679 * sized by an earlier input layout qualifier, when present, as per
2680 * the following table.
2681 *
2682 * Followed by a table mapping each allowed input layout qualifier to
2683 * the corresponding input length.
2684 */
2685 if (num_vertices != 0)
2686 var->type = glsl_type::get_array_instance(var->type->fields.array,
2687 num_vertices);
2688 } else {
2689 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec
2690 * includes the following examples of compile-time errors:
2691 *
2692 * // code sequence within one shader...
2693 * in vec4 Color1[]; // size unknown
2694 * ...Color1.length()...// illegal, length() unknown
2695 * in vec4 Color2[2]; // size is 2
2696 * ...Color1.length()...// illegal, Color1 still has no size
2697 * in vec4 Color3[3]; // illegal, input sizes are inconsistent
2698 * layout(lines) in; // legal, input size is 2, matching
2699 * in vec4 Color4[3]; // illegal, contradicts layout
2700 * ...
2701 *
2702 * To detect the case illustrated by Color3, we verify that the size of
2703 * an explicitly-sized array matches the size of any previously declared
2704 * explicitly-sized array. To detect the case illustrated by Color4, we
2705 * verify that the size of an explicitly-sized array is consistent with
2706 * any previously declared input layout.
2707 */
2708 if (num_vertices != 0 && var->type->length != num_vertices) {
2709 _mesa_glsl_error(&loc, state,
2710 "geometry shader input size contradicts previously"
2711 " declared layout (size is %u, but layout requires a"
2712 " size of %u)", var->type->length, num_vertices);
2713 } else if (state->gs_input_size != 0 &&
2714 var->type->length != state->gs_input_size) {
2715 _mesa_glsl_error(&loc, state,
2716 "geometry shader input sizes are "
2717 "inconsistent (size is %u, but a previous "
2718 "declaration has size %u)",
2719 var->type->length, state->gs_input_size);
2720 } else {
2721 state->gs_input_size = var->type->length;
2722 }
2723 }
2724 }
2725
2726
2727 void
2728 validate_identifier(const char *identifier, YYLTYPE loc,
2729 struct _mesa_glsl_parse_state *state)
2730 {
2731 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
2732 *
2733 * "Identifiers starting with "gl_" are reserved for use by
2734 * OpenGL, and may not be declared in a shader as either a
2735 * variable or a function."
2736 */
2737 if (strncmp(identifier, "gl_", 3) == 0) {
2738 _mesa_glsl_error(&loc, state,
2739 "identifier `%s' uses reserved `gl_' prefix",
2740 identifier);
2741 } else if (strstr(identifier, "__")) {
2742 /* From page 14 (page 20 of the PDF) of the GLSL 1.10
2743 * spec:
2744 *
2745 * "In addition, all identifiers containing two
2746 * consecutive underscores (__) are reserved as
2747 * possible future keywords."
2748 */
2749 _mesa_glsl_error(&loc, state,
2750 "identifier `%s' uses reserved `__' string",
2751 identifier);
2752 }
2753 }
2754
2755
2756 ir_rvalue *
2757 ast_declarator_list::hir(exec_list *instructions,
2758 struct _mesa_glsl_parse_state *state)
2759 {
2760 void *ctx = state;
2761 const struct glsl_type *decl_type;
2762 const char *type_name = NULL;
2763 ir_rvalue *result = NULL;
2764 YYLTYPE loc = this->get_location();
2765
2766 /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec:
2767 *
2768 * "To ensure that a particular output variable is invariant, it is
2769 * necessary to use the invariant qualifier. It can either be used to
2770 * qualify a previously declared variable as being invariant
2771 *
2772 * invariant gl_Position; // make existing gl_Position be invariant"
2773 *
2774 * In these cases the parser will set the 'invariant' flag in the declarator
2775 * list, and the type will be NULL.
2776 */
2777 if (this->invariant) {
2778 assert(this->type == NULL);
2779
2780 if (state->current_function != NULL) {
2781 _mesa_glsl_error(& loc, state,
2782 "all uses of `invariant' keyword must be at global "
2783 "scope");
2784 }
2785
2786 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
2787 assert(!decl->is_array);
2788 assert(decl->array_size == NULL);
2789 assert(decl->initializer == NULL);
2790
2791 ir_variable *const earlier =
2792 state->symbols->get_variable(decl->identifier);
2793 if (earlier == NULL) {
2794 _mesa_glsl_error(& loc, state,
2795 "undeclared variable `%s' cannot be marked "
2796 "invariant", decl->identifier);
2797 } else if ((state->target == vertex_shader)
2798 && (earlier->mode != ir_var_shader_out)) {
2799 _mesa_glsl_error(& loc, state,
2800 "`%s' cannot be marked invariant, vertex shader "
2801 "outputs only", decl->identifier);
2802 } else if ((state->target == fragment_shader)
2803 && (earlier->mode != ir_var_shader_in)) {
2804 _mesa_glsl_error(& loc, state,
2805 "`%s' cannot be marked invariant, fragment shader "
2806 "inputs only", decl->identifier);
2807 } else if (earlier->used) {
2808 _mesa_glsl_error(& loc, state,
2809 "variable `%s' may not be redeclared "
2810 "`invariant' after being used",
2811 earlier->name);
2812 } else {
2813 earlier->invariant = true;
2814 }
2815 }
2816
2817 /* Invariant redeclarations do not have r-values.
2818 */
2819 return NULL;
2820 }
2821
2822 assert(this->type != NULL);
2823 assert(!this->invariant);
2824
2825 /* The type specifier may contain a structure definition. Process that
2826 * before any of the variable declarations.
2827 */
2828 (void) this->type->specifier->hir(instructions, state);
2829
2830 decl_type = this->type->glsl_type(& type_name, state);
2831 if (this->declarations.is_empty()) {
2832 /* If there is no structure involved in the program text, there are two
2833 * possible scenarios:
2834 *
2835 * - The program text contained something like 'vec4;'. This is an
2836 * empty declaration. It is valid but weird. Emit a warning.
2837 *
2838 * - The program text contained something like 'S;' and 'S' is not the
2839 * name of a known structure type. This is both invalid and weird.
2840 * Emit an error.
2841 *
2842 * - The program text contained something like 'mediump float;'
2843 * when the programmer probably meant 'precision mediump
2844 * float;' Emit a warning with a description of what they
2845 * probably meant to do.
2846 *
2847 * Note that if decl_type is NULL and there is a structure involved,
2848 * there must have been some sort of error with the structure. In this
2849 * case we assume that an error was already generated on this line of
2850 * code for the structure. There is no need to generate an additional,
2851 * confusing error.
2852 */
2853 assert(this->type->specifier->structure == NULL || decl_type != NULL
2854 || state->error);
2855
2856 if (decl_type == NULL) {
2857 _mesa_glsl_error(&loc, state,
2858 "invalid type `%s' in empty declaration",
2859 type_name);
2860 } else if (this->type->qualifier.precision != ast_precision_none) {
2861 if (this->type->specifier->structure != NULL) {
2862 _mesa_glsl_error(&loc, state,
2863 "precision qualifiers can't be applied "
2864 "to structures");
2865 } else {
2866 static const char *const precision_names[] = {
2867 "highp",
2868 "highp",
2869 "mediump",
2870 "lowp"
2871 };
2872
2873 _mesa_glsl_warning(&loc, state,
2874 "empty declaration with precision qualifier, "
2875 "to set the default precision, use "
2876 "`precision %s %s;'",
2877 precision_names[this->type->qualifier.precision],
2878 type_name);
2879 }
2880 } else {
2881 _mesa_glsl_warning(&loc, state, "empty declaration");
2882 }
2883 }
2884
2885 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
2886 const struct glsl_type *var_type;
2887 ir_variable *var;
2888
2889 /* FINISHME: Emit a warning if a variable declaration shadows a
2890 * FINISHME: declaration at a higher scope.
2891 */
2892
2893 if ((decl_type == NULL) || decl_type->is_void()) {
2894 if (type_name != NULL) {
2895 _mesa_glsl_error(& loc, state,
2896 "invalid type `%s' in declaration of `%s'",
2897 type_name, decl->identifier);
2898 } else {
2899 _mesa_glsl_error(& loc, state,
2900 "invalid type in declaration of `%s'",
2901 decl->identifier);
2902 }
2903 continue;
2904 }
2905
2906 if (decl->is_array) {
2907 var_type = process_array_type(&loc, decl_type, decl->array_size,
2908 state);
2909 if (var_type->is_error())
2910 continue;
2911 } else {
2912 var_type = decl_type;
2913 }
2914
2915 var = new(ctx) ir_variable(var_type, decl->identifier, ir_var_auto);
2916
2917 /* The 'varying in' and 'varying out' qualifiers can only be used with
2918 * ARB_geometry_shader4 and EXT_geometry_shader4, which we don't support
2919 * yet.
2920 */
2921 if (this->type->qualifier.flags.q.varying) {
2922 if (this->type->qualifier.flags.q.in) {
2923 _mesa_glsl_error(& loc, state,
2924 "`varying in' qualifier in declaration of "
2925 "`%s' only valid for geometry shaders using "
2926 "ARB_geometry_shader4 or EXT_geometry_shader4",
2927 decl->identifier);
2928 } else if (this->type->qualifier.flags.q.out) {
2929 _mesa_glsl_error(& loc, state,
2930 "`varying out' qualifier in declaration of "
2931 "`%s' only valid for geometry shaders using "
2932 "ARB_geometry_shader4 or EXT_geometry_shader4",
2933 decl->identifier);
2934 }
2935 }
2936
2937 /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
2938 *
2939 * "Global variables can only use the qualifiers const,
2940 * attribute, uni form, or varying. Only one may be
2941 * specified.
2942 *
2943 * Local variables can only use the qualifier const."
2944 *
2945 * This is relaxed in GLSL 1.30 and GLSL ES 3.00. It is also relaxed by
2946 * any extension that adds the 'layout' keyword.
2947 */
2948 if (!state->is_version(130, 300)
2949 && !state->has_explicit_attrib_location()
2950 && !state->ARB_fragment_coord_conventions_enable) {
2951 if (this->type->qualifier.flags.q.out) {
2952 _mesa_glsl_error(& loc, state,
2953 "`out' qualifier in declaration of `%s' "
2954 "only valid for function parameters in %s",
2955 decl->identifier, state->get_version_string());
2956 }
2957 if (this->type->qualifier.flags.q.in) {
2958 _mesa_glsl_error(& loc, state,
2959 "`in' qualifier in declaration of `%s' "
2960 "only valid for function parameters in %s",
2961 decl->identifier, state->get_version_string());
2962 }
2963 /* FINISHME: Test for other invalid qualifiers. */
2964 }
2965
2966 apply_type_qualifier_to_variable(& this->type->qualifier, var, state,
2967 & loc, false);
2968
2969 if (this->type->qualifier.flags.q.invariant) {
2970 if ((state->target == vertex_shader) &&
2971 var->mode != ir_var_shader_out) {
2972 _mesa_glsl_error(& loc, state,
2973 "`%s' cannot be marked invariant, vertex shader "
2974 "outputs only", var->name);
2975 } else if ((state->target == fragment_shader) &&
2976 var->mode != ir_var_shader_in) {
2977 /* FINISHME: Note that this doesn't work for invariant on
2978 * a function signature inval
2979 */
2980 _mesa_glsl_error(& loc, state,
2981 "`%s' cannot be marked invariant, fragment shader "
2982 "inputs only", var->name);
2983 }
2984 }
2985
2986 if (state->current_function != NULL) {
2987 const char *mode = NULL;
2988 const char *extra = "";
2989
2990 /* There is no need to check for 'inout' here because the parser will
2991 * only allow that in function parameter lists.
2992 */
2993 if (this->type->qualifier.flags.q.attribute) {
2994 mode = "attribute";
2995 } else if (this->type->qualifier.flags.q.uniform) {
2996 mode = "uniform";
2997 } else if (this->type->qualifier.flags.q.varying) {
2998 mode = "varying";
2999 } else if (this->type->qualifier.flags.q.in) {
3000 mode = "in";
3001 extra = " or in function parameter list";
3002 } else if (this->type->qualifier.flags.q.out) {
3003 mode = "out";
3004 extra = " or in function parameter list";
3005 }
3006
3007 if (mode) {
3008 _mesa_glsl_error(& loc, state,
3009 "%s variable `%s' must be declared at "
3010 "global scope%s",
3011 mode, var->name, extra);
3012 }
3013 } else if (var->mode == ir_var_shader_in) {
3014 var->read_only = true;
3015
3016 if (state->target == vertex_shader) {
3017 bool error_emitted = false;
3018
3019 /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
3020 *
3021 * "Vertex shader inputs can only be float, floating-point
3022 * vectors, matrices, signed and unsigned integers and integer
3023 * vectors. Vertex shader inputs can also form arrays of these
3024 * types, but not structures."
3025 *
3026 * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
3027 *
3028 * "Vertex shader inputs can only be float, floating-point
3029 * vectors, matrices, signed and unsigned integers and integer
3030 * vectors. They cannot be arrays or structures."
3031 *
3032 * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
3033 *
3034 * "The attribute qualifier can be used only with float,
3035 * floating-point vectors, and matrices. Attribute variables
3036 * cannot be declared as arrays or structures."
3037 *
3038 * From page 33 (page 39 of the PDF) of the GLSL ES 3.00 spec:
3039 *
3040 * "Vertex shader inputs can only be float, floating-point
3041 * vectors, matrices, signed and unsigned integers and integer
3042 * vectors. Vertex shader inputs cannot be arrays or
3043 * structures."
3044 */
3045 const glsl_type *check_type = var->type->is_array()
3046 ? var->type->fields.array : var->type;
3047
3048 switch (check_type->base_type) {
3049 case GLSL_TYPE_FLOAT:
3050 break;
3051 case GLSL_TYPE_UINT:
3052 case GLSL_TYPE_INT:
3053 if (state->is_version(120, 300))
3054 break;
3055 /* FALLTHROUGH */
3056 default:
3057 _mesa_glsl_error(& loc, state,
3058 "vertex shader input / attribute cannot have "
3059 "type %s`%s'",
3060 var->type->is_array() ? "array of " : "",
3061 check_type->name);
3062 error_emitted = true;
3063 }
3064
3065 if (!error_emitted && var->type->is_array() &&
3066 !state->check_version(150, 0, &loc,
3067 "vertex shader input / attribute "
3068 "cannot have array type")) {
3069 error_emitted = true;
3070 }
3071 } else if (state->target == geometry_shader) {
3072 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
3073 *
3074 * Geometry shader input variables get the per-vertex values
3075 * written out by vertex shader output variables of the same
3076 * names. Since a geometry shader operates on a set of
3077 * vertices, each input varying variable (or input block, see
3078 * interface blocks below) needs to be declared as an array.
3079 */
3080 if (!var->type->is_array()) {
3081 _mesa_glsl_error(&loc, state,
3082 "geometry shader inputs must be arrays");
3083 }
3084
3085 handle_geometry_shader_input_decl(state, loc, var);
3086 }
3087 }
3088
3089 /* Integer fragment inputs must be qualified with 'flat'. In GLSL ES,
3090 * so must integer vertex outputs.
3091 *
3092 * From section 4.3.4 ("Inputs") of the GLSL 1.50 spec:
3093 * "Fragment shader inputs that are signed or unsigned integers or
3094 * integer vectors must be qualified with the interpolation qualifier
3095 * flat."
3096 *
3097 * From section 4.3.4 ("Input Variables") of the GLSL 3.00 ES spec:
3098 * "Fragment shader inputs that are, or contain, signed or unsigned
3099 * integers or integer vectors must be qualified with the
3100 * interpolation qualifier flat."
3101 *
3102 * From section 4.3.6 ("Output Variables") of the GLSL 3.00 ES spec:
3103 * "Vertex shader outputs that are, or contain, signed or unsigned
3104 * integers or integer vectors must be qualified with the
3105 * interpolation qualifier flat."
3106 *
3107 * Note that prior to GLSL 1.50, this requirement applied to vertex
3108 * outputs rather than fragment inputs. That creates problems in the
3109 * presence of geometry shaders, so we adopt the GLSL 1.50 rule for all
3110 * desktop GL shaders. For GLSL ES shaders, we follow the spec and
3111 * apply the restriction to both vertex outputs and fragment inputs.
3112 *
3113 * Note also that the desktop GLSL specs are missing the text "or
3114 * contain"; this is presumably an oversight, since there is no
3115 * reasonable way to interpolate a fragment shader input that contains
3116 * an integer.
3117 */
3118 if (state->is_version(130, 300) &&
3119 var->type->contains_integer() &&
3120 var->interpolation != INTERP_QUALIFIER_FLAT &&
3121 ((state->target == fragment_shader && var->mode == ir_var_shader_in)
3122 || (state->target == vertex_shader && var->mode == ir_var_shader_out
3123 && state->es_shader))) {
3124 const char *var_type = (state->target == vertex_shader) ?
3125 "vertex output" : "fragment input";
3126 _mesa_glsl_error(&loc, state, "if a %s is (or contains) "
3127 "an integer, then it must be qualified with 'flat'",
3128 var_type);
3129 }
3130
3131
3132 /* Interpolation qualifiers cannot be applied to 'centroid' and
3133 * 'centroid varying'.
3134 *
3135 * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
3136 * "interpolation qualifiers may only precede the qualifiers in,
3137 * centroid in, out, or centroid out in a declaration. They do not apply
3138 * to the deprecated storage qualifiers varying or centroid varying."
3139 *
3140 * These deprecated storage qualifiers do not exist in GLSL ES 3.00.
3141 */
3142 if (state->is_version(130, 0)
3143 && this->type->qualifier.has_interpolation()
3144 && this->type->qualifier.flags.q.varying) {
3145
3146 const char *i = this->type->qualifier.interpolation_string();
3147 assert(i != NULL);
3148 const char *s;
3149 if (this->type->qualifier.flags.q.centroid)
3150 s = "centroid varying";
3151 else
3152 s = "varying";
3153
3154 _mesa_glsl_error(&loc, state,
3155 "qualifier '%s' cannot be applied to the "
3156 "deprecated storage qualifier '%s'", i, s);
3157 }
3158
3159
3160 /* Interpolation qualifiers can only apply to vertex shader outputs and
3161 * fragment shader inputs.
3162 *
3163 * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
3164 * "Outputs from a vertex shader (out) and inputs to a fragment
3165 * shader (in) can be further qualified with one or more of these
3166 * interpolation qualifiers"
3167 *
3168 * From page 31 (page 37 of the PDF) of the GLSL ES 3.00 spec:
3169 * "These interpolation qualifiers may only precede the qualifiers
3170 * in, centroid in, out, or centroid out in a declaration. They do
3171 * not apply to inputs into a vertex shader or outputs from a
3172 * fragment shader."
3173 */
3174 if (state->is_version(130, 300)
3175 && this->type->qualifier.has_interpolation()) {
3176
3177 const char *i = this->type->qualifier.interpolation_string();
3178 assert(i != NULL);
3179
3180 switch (state->target) {
3181 case vertex_shader:
3182 if (this->type->qualifier.flags.q.in) {
3183 _mesa_glsl_error(&loc, state,
3184 "qualifier '%s' cannot be applied to vertex "
3185 "shader inputs", i);
3186 }
3187 break;
3188 case fragment_shader:
3189 if (this->type->qualifier.flags.q.out) {
3190 _mesa_glsl_error(&loc, state,
3191 "qualifier '%s' cannot be applied to fragment "
3192 "shader outputs", i);
3193 }
3194 break;
3195 default:
3196 break;
3197 }
3198 }
3199
3200
3201 /* From section 4.3.4 of the GLSL 1.30 spec:
3202 * "It is an error to use centroid in in a vertex shader."
3203 *
3204 * From section 4.3.4 of the GLSL ES 3.00 spec:
3205 * "It is an error to use centroid in or interpolation qualifiers in
3206 * a vertex shader input."
3207 */
3208 if (state->is_version(130, 300)
3209 && this->type->qualifier.flags.q.centroid
3210 && this->type->qualifier.flags.q.in
3211 && state->target == vertex_shader) {
3212
3213 _mesa_glsl_error(&loc, state,
3214 "'centroid in' cannot be used in a vertex shader");
3215 }
3216
3217 /* Section 4.3.6 of the GLSL 1.30 specification states:
3218 * "It is an error to use centroid out in a fragment shader."
3219 *
3220 * The GL_ARB_shading_language_420pack extension specification states:
3221 * "It is an error to use auxiliary storage qualifiers or interpolation
3222 * qualifiers on an output in a fragment shader."
3223 */
3224 if (state->target == fragment_shader &&
3225 this->type->qualifier.flags.q.out &&
3226 this->type->qualifier.has_auxiliary_storage()) {
3227 _mesa_glsl_error(&loc, state,
3228 "auxiliary storage qualifiers cannot be used on "
3229 "fragment shader outputs");
3230 }
3231
3232 /* Precision qualifiers exists only in GLSL versions 1.00 and >= 1.30.
3233 */
3234 if (this->type->qualifier.precision != ast_precision_none) {
3235 state->check_precision_qualifiers_allowed(&loc);
3236 }
3237
3238
3239 /* Precision qualifiers apply to floating point, integer and sampler
3240 * types.
3241 *
3242 * Section 4.5.2 (Precision Qualifiers) of the GLSL 1.30 spec says:
3243 * "Any floating point or any integer declaration can have the type
3244 * preceded by one of these precision qualifiers [...] Literal
3245 * constants do not have precision qualifiers. Neither do Boolean
3246 * variables.
3247 *
3248 * Section 4.5 (Precision and Precision Qualifiers) of the GLSL 1.30
3249 * spec also says:
3250 *
3251 * "Precision qualifiers are added for code portability with OpenGL
3252 * ES, not for functionality. They have the same syntax as in OpenGL
3253 * ES."
3254 *
3255 * Section 8 (Built-In Functions) of the GLSL ES 1.00 spec says:
3256 *
3257 * "uniform lowp sampler2D sampler;
3258 * highp vec2 coord;
3259 * ...
3260 * lowp vec4 col = texture2D (sampler, coord);
3261 * // texture2D returns lowp"
3262 *
3263 * From this, we infer that GLSL 1.30 (and later) should allow precision
3264 * qualifiers on sampler types just like float and integer types.
3265 */
3266 if (this->type->qualifier.precision != ast_precision_none
3267 && !var->type->is_float()
3268 && !var->type->is_integer()
3269 && !var->type->is_record()
3270 && !var->type->is_sampler()
3271 && !(var->type->is_array()
3272 && (var->type->fields.array->is_float()
3273 || var->type->fields.array->is_integer()))) {
3274
3275 _mesa_glsl_error(&loc, state,
3276 "precision qualifiers apply only to floating point"
3277 ", integer and sampler types");
3278 }
3279
3280 /* From page 17 (page 23 of the PDF) of the GLSL 1.20 spec:
3281 *
3282 * "[Sampler types] can only be declared as function
3283 * parameters or uniform variables (see Section 4.3.5
3284 * "Uniform")".
3285 */
3286 if (var_type->contains_sampler() &&
3287 !this->type->qualifier.flags.q.uniform) {
3288 _mesa_glsl_error(&loc, state, "samplers must be declared uniform");
3289 }
3290
3291 /* Process the initializer and add its instructions to a temporary
3292 * list. This list will be added to the instruction stream (below) after
3293 * the declaration is added. This is done because in some cases (such as
3294 * redeclarations) the declaration may not actually be added to the
3295 * instruction stream.
3296 */
3297 exec_list initializer_instructions;
3298 ir_variable *earlier =
3299 get_variable_being_redeclared(var, decl->get_location(), state,
3300 false /* allow_all_redeclarations */);
3301
3302 if (decl->initializer != NULL) {
3303 result = process_initializer((earlier == NULL) ? var : earlier,
3304 decl, this->type,
3305 &initializer_instructions, state);
3306 }
3307
3308 /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
3309 *
3310 * "It is an error to write to a const variable outside of
3311 * its declaration, so they must be initialized when
3312 * declared."
3313 */
3314 if (this->type->qualifier.flags.q.constant && decl->initializer == NULL) {
3315 _mesa_glsl_error(& loc, state,
3316 "const declaration of `%s' must be initialized",
3317 decl->identifier);
3318 }
3319
3320 if (state->es_shader) {
3321 const glsl_type *const t = (earlier == NULL)
3322 ? var->type : earlier->type;
3323
3324 if (t->is_unsized_array())
3325 /* Section 10.17 of the GLSL ES 1.00 specification states that
3326 * unsized array declarations have been removed from the language.
3327 * Arrays that are sized using an initializer are still explicitly
3328 * sized. However, GLSL ES 1.00 does not allow array
3329 * initializers. That is only allowed in GLSL ES 3.00.
3330 *
3331 * Section 4.1.9 (Arrays) of the GLSL ES 3.00 spec says:
3332 *
3333 * "An array type can also be formed without specifying a size
3334 * if the definition includes an initializer:
3335 *
3336 * float x[] = float[2] (1.0, 2.0); // declares an array of size 2
3337 * float y[] = float[] (1.0, 2.0, 3.0); // declares an array of size 3
3338 *
3339 * float a[5];
3340 * float b[] = a;"
3341 */
3342 _mesa_glsl_error(& loc, state,
3343 "unsized array declarations are not allowed in "
3344 "GLSL ES");
3345 }
3346
3347 /* If the declaration is not a redeclaration, there are a few additional
3348 * semantic checks that must be applied. In addition, variable that was
3349 * created for the declaration should be added to the IR stream.
3350 */
3351 if (earlier == NULL) {
3352 validate_identifier(decl->identifier, loc, state);
3353
3354 /* Add the variable to the symbol table. Note that the initializer's
3355 * IR was already processed earlier (though it hasn't been emitted
3356 * yet), without the variable in scope.
3357 *
3358 * This differs from most C-like languages, but it follows the GLSL
3359 * specification. From page 28 (page 34 of the PDF) of the GLSL 1.50
3360 * spec:
3361 *
3362 * "Within a declaration, the scope of a name starts immediately
3363 * after the initializer if present or immediately after the name
3364 * being declared if not."
3365 */
3366 if (!state->symbols->add_variable(var)) {
3367 YYLTYPE loc = this->get_location();
3368 _mesa_glsl_error(&loc, state, "name `%s' already taken in the "
3369 "current scope", decl->identifier);
3370 continue;
3371 }
3372
3373 /* Push the variable declaration to the top. It means that all the
3374 * variable declarations will appear in a funny last-to-first order,
3375 * but otherwise we run into trouble if a function is prototyped, a
3376 * global var is decled, then the function is defined with usage of
3377 * the global var. See glslparsertest's CorrectModule.frag.
3378 */
3379 instructions->push_head(var);
3380 }
3381
3382 instructions->append_list(&initializer_instructions);
3383 }
3384
3385
3386 /* Generally, variable declarations do not have r-values. However,
3387 * one is used for the declaration in
3388 *
3389 * while (bool b = some_condition()) {
3390 * ...
3391 * }
3392 *
3393 * so we return the rvalue from the last seen declaration here.
3394 */
3395 return result;
3396 }
3397
3398
3399 ir_rvalue *
3400 ast_parameter_declarator::hir(exec_list *instructions,
3401 struct _mesa_glsl_parse_state *state)
3402 {
3403 void *ctx = state;
3404 const struct glsl_type *type;
3405 const char *name = NULL;
3406 YYLTYPE loc = this->get_location();
3407
3408 type = this->type->glsl_type(& name, state);
3409
3410 if (type == NULL) {
3411 if (name != NULL) {
3412 _mesa_glsl_error(& loc, state,
3413 "invalid type `%s' in declaration of `%s'",
3414 name, this->identifier);
3415 } else {
3416 _mesa_glsl_error(& loc, state,
3417 "invalid type in declaration of `%s'",
3418 this->identifier);
3419 }
3420
3421 type = glsl_type::error_type;
3422 }
3423
3424 /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
3425 *
3426 * "Functions that accept no input arguments need not use void in the
3427 * argument list because prototypes (or definitions) are required and
3428 * therefore there is no ambiguity when an empty argument list "( )" is
3429 * declared. The idiom "(void)" as a parameter list is provided for
3430 * convenience."
3431 *
3432 * Placing this check here prevents a void parameter being set up
3433 * for a function, which avoids tripping up checks for main taking
3434 * parameters and lookups of an unnamed symbol.
3435 */
3436 if (type->is_void()) {
3437 if (this->identifier != NULL)
3438 _mesa_glsl_error(& loc, state,
3439 "named parameter cannot have type `void'");
3440
3441 is_void = true;
3442 return NULL;
3443 }
3444
3445 if (formal_parameter && (this->identifier == NULL)) {
3446 _mesa_glsl_error(& loc, state, "formal parameter lacks a name");
3447 return NULL;
3448 }
3449
3450 /* This only handles "vec4 foo[..]". The earlier specifier->glsl_type(...)
3451 * call already handled the "vec4[..] foo" case.
3452 */
3453 if (this->is_array) {
3454 type = process_array_type(&loc, type, this->array_size, state);
3455 }
3456
3457 if (!type->is_error() && type->is_unsized_array()) {
3458 _mesa_glsl_error(&loc, state, "arrays passed as parameters must have "
3459 "a declared size");
3460 type = glsl_type::error_type;
3461 }
3462
3463 is_void = false;
3464 ir_variable *var = new(ctx)
3465 ir_variable(type, this->identifier, ir_var_function_in);
3466
3467 /* Apply any specified qualifiers to the parameter declaration. Note that
3468 * for function parameters the default mode is 'in'.
3469 */
3470 apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc,
3471 true);
3472
3473 /* From page 17 (page 23 of the PDF) of the GLSL 1.20 spec:
3474 *
3475 * "Samplers cannot be treated as l-values; hence cannot be used
3476 * as out or inout function parameters, nor can they be assigned
3477 * into."
3478 */
3479 if ((var->mode == ir_var_function_inout || var->mode == ir_var_function_out)
3480 && type->contains_sampler()) {
3481 _mesa_glsl_error(&loc, state, "out and inout parameters cannot contain samplers");
3482 type = glsl_type::error_type;
3483 }
3484
3485 /* From page 39 (page 45 of the PDF) of the GLSL 1.10 spec:
3486 *
3487 * "When calling a function, expressions that do not evaluate to
3488 * l-values cannot be passed to parameters declared as out or inout."
3489 *
3490 * From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
3491 *
3492 * "Other binary or unary expressions, non-dereferenced arrays,
3493 * function names, swizzles with repeated fields, and constants
3494 * cannot be l-values."
3495 *
3496 * So for GLSL 1.10, passing an array as an out or inout parameter is not
3497 * allowed. This restriction is removed in GLSL 1.20, and in GLSL ES.
3498 */
3499 if ((var->mode == ir_var_function_inout || var->mode == ir_var_function_out)
3500 && type->is_array()
3501 && !state->check_version(120, 100, &loc,
3502 "arrays cannot be out or inout parameters")) {
3503 type = glsl_type::error_type;
3504 }
3505
3506 instructions->push_tail(var);
3507
3508 /* Parameter declarations do not have r-values.
3509 */
3510 return NULL;
3511 }
3512
3513
3514 void
3515 ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters,
3516 bool formal,
3517 exec_list *ir_parameters,
3518 _mesa_glsl_parse_state *state)
3519 {
3520 ast_parameter_declarator *void_param = NULL;
3521 unsigned count = 0;
3522
3523 foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) {
3524 param->formal_parameter = formal;
3525 param->hir(ir_parameters, state);
3526
3527 if (param->is_void)
3528 void_param = param;
3529
3530 count++;
3531 }
3532
3533 if ((void_param != NULL) && (count > 1)) {
3534 YYLTYPE loc = void_param->get_location();
3535
3536 _mesa_glsl_error(& loc, state,
3537 "`void' parameter must be only parameter");
3538 }
3539 }
3540
3541
3542 void
3543 emit_function(_mesa_glsl_parse_state *state, ir_function *f)
3544 {
3545 /* IR invariants disallow function declarations or definitions
3546 * nested within other function definitions. But there is no
3547 * requirement about the relative order of function declarations
3548 * and definitions with respect to one another. So simply insert
3549 * the new ir_function block at the end of the toplevel instruction
3550 * list.
3551 */
3552 state->toplevel_ir->push_tail(f);
3553 }
3554
3555
3556 ir_rvalue *
3557 ast_function::hir(exec_list *instructions,
3558 struct _mesa_glsl_parse_state *state)
3559 {
3560 void *ctx = state;
3561 ir_function *f = NULL;
3562 ir_function_signature *sig = NULL;
3563 exec_list hir_parameters;
3564
3565 const char *const name = identifier;
3566
3567 /* New functions are always added to the top-level IR instruction stream,
3568 * so this instruction list pointer is ignored. See also emit_function
3569 * (called below).
3570 */
3571 (void) instructions;
3572
3573 /* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec,
3574 *
3575 * "Function declarations (prototypes) cannot occur inside of functions;
3576 * they must be at global scope, or for the built-in functions, outside
3577 * the global scope."
3578 *
3579 * From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec,
3580 *
3581 * "User defined functions may only be defined within the global scope."
3582 *
3583 * Note that this language does not appear in GLSL 1.10.
3584 */
3585 if ((state->current_function != NULL) &&
3586 state->is_version(120, 100)) {
3587 YYLTYPE loc = this->get_location();
3588 _mesa_glsl_error(&loc, state,
3589 "declaration of function `%s' not allowed within "
3590 "function body", name);
3591 }
3592
3593 validate_identifier(name, this->get_location(), state);
3594
3595 /* Convert the list of function parameters to HIR now so that they can be
3596 * used below to compare this function's signature with previously seen
3597 * signatures for functions with the same name.
3598 */
3599 ast_parameter_declarator::parameters_to_hir(& this->parameters,
3600 is_definition,
3601 & hir_parameters, state);
3602
3603 const char *return_type_name;
3604 const glsl_type *return_type =
3605 this->return_type->glsl_type(& return_type_name, state);
3606
3607 if (!return_type) {
3608 YYLTYPE loc = this->get_location();
3609 _mesa_glsl_error(&loc, state,
3610 "function `%s' has undeclared return type `%s'",
3611 name, return_type_name);
3612 return_type = glsl_type::error_type;
3613 }
3614
3615 /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec:
3616 * "No qualifier is allowed on the return type of a function."
3617 */
3618 if (this->return_type->has_qualifiers()) {
3619 YYLTYPE loc = this->get_location();
3620 _mesa_glsl_error(& loc, state,
3621 "function `%s' return type has qualifiers", name);
3622 }
3623
3624 /* Section 6.1 (Function Definitions) of the GLSL 1.20 spec says:
3625 *
3626 * "Arrays are allowed as arguments and as the return type. In both
3627 * cases, the array must be explicitly sized."
3628 */
3629 if (return_type->is_unsized_array()) {
3630 YYLTYPE loc = this->get_location();
3631 _mesa_glsl_error(& loc, state,
3632 "function `%s' return type array must be explicitly "
3633 "sized", name);
3634 }
3635
3636 /* From page 17 (page 23 of the PDF) of the GLSL 1.20 spec:
3637 *
3638 * "[Sampler types] can only be declared as function parameters
3639 * or uniform variables (see Section 4.3.5 "Uniform")".
3640 */
3641 if (return_type->contains_sampler()) {
3642 YYLTYPE loc = this->get_location();
3643 _mesa_glsl_error(&loc, state,
3644 "function `%s' return type can't contain a sampler",
3645 name);
3646 }
3647
3648 /* Verify that this function's signature either doesn't match a previously
3649 * seen signature for a function with the same name, or, if a match is found,
3650 * that the previously seen signature does not have an associated definition.
3651 */
3652 f = state->symbols->get_function(name);
3653 if (f != NULL && (state->es_shader || f->has_user_signature())) {
3654 sig = f->exact_matching_signature(state, &hir_parameters);
3655 if (sig != NULL) {
3656 const char *badvar = sig->qualifiers_match(&hir_parameters);
3657 if (badvar != NULL) {
3658 YYLTYPE loc = this->get_location();
3659
3660 _mesa_glsl_error(&loc, state, "function `%s' parameter `%s' "
3661 "qualifiers don't match prototype", name, badvar);
3662 }
3663
3664 if (sig->return_type != return_type) {
3665 YYLTYPE loc = this->get_location();
3666
3667 _mesa_glsl_error(&loc, state, "function `%s' return type doesn't "
3668 "match prototype", name);
3669 }
3670
3671 if (sig->is_defined) {
3672 if (is_definition) {
3673 YYLTYPE loc = this->get_location();
3674 _mesa_glsl_error(& loc, state, "function `%s' redefined", name);
3675 } else {
3676 /* We just encountered a prototype that exactly matches a
3677 * function that's already been defined. This is redundant,
3678 * and we should ignore it.
3679 */
3680 return NULL;
3681 }
3682 }
3683 }
3684 } else {
3685 f = new(ctx) ir_function(name);
3686 if (!state->symbols->add_function(f)) {
3687 /* This function name shadows a non-function use of the same name. */
3688 YYLTYPE loc = this->get_location();
3689
3690 _mesa_glsl_error(&loc, state, "function name `%s' conflicts with "
3691 "non-function", name);
3692 return NULL;
3693 }
3694
3695 emit_function(state, f);
3696 }
3697
3698 /* Verify the return type of main() */
3699 if (strcmp(name, "main") == 0) {
3700 if (! return_type->is_void()) {
3701 YYLTYPE loc = this->get_location();
3702
3703 _mesa_glsl_error(& loc, state, "main() must return void");
3704 }
3705
3706 if (!hir_parameters.is_empty()) {
3707 YYLTYPE loc = this->get_location();
3708
3709 _mesa_glsl_error(& loc, state, "main() must not take any parameters");
3710 }
3711 }
3712
3713 /* Finish storing the information about this new function in its signature.
3714 */
3715 if (sig == NULL) {
3716 sig = new(ctx) ir_function_signature(return_type);
3717 f->add_signature(sig);
3718 }
3719
3720 sig->replace_parameters(&hir_parameters);
3721 signature = sig;
3722
3723 /* Function declarations (prototypes) do not have r-values.
3724 */
3725 return NULL;
3726 }
3727
3728
3729 ir_rvalue *
3730 ast_function_definition::hir(exec_list *instructions,
3731 struct _mesa_glsl_parse_state *state)
3732 {
3733 prototype->is_definition = true;
3734 prototype->hir(instructions, state);
3735
3736 ir_function_signature *signature = prototype->signature;
3737 if (signature == NULL)
3738 return NULL;
3739
3740 assert(state->current_function == NULL);
3741 state->current_function = signature;
3742 state->found_return = false;
3743
3744 /* Duplicate parameters declared in the prototype as concrete variables.
3745 * Add these to the symbol table.
3746 */
3747 state->symbols->push_scope();
3748 foreach_iter(exec_list_iterator, iter, signature->parameters) {
3749 ir_variable *const var = ((ir_instruction *) iter.get())->as_variable();
3750
3751 assert(var != NULL);
3752
3753 /* The only way a parameter would "exist" is if two parameters have
3754 * the same name.
3755 */
3756 if (state->symbols->name_declared_this_scope(var->name)) {
3757 YYLTYPE loc = this->get_location();
3758
3759 _mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name);
3760 } else {
3761 state->symbols->add_variable(var);
3762 }
3763 }
3764
3765 /* Convert the body of the function to HIR. */
3766 this->body->hir(&signature->body, state);
3767 signature->is_defined = true;
3768
3769 state->symbols->pop_scope();
3770
3771 assert(state->current_function == signature);
3772 state->current_function = NULL;
3773
3774 if (!signature->return_type->is_void() && !state->found_return) {
3775 YYLTYPE loc = this->get_location();
3776 _mesa_glsl_error(& loc, state, "function `%s' has non-void return type "
3777 "%s, but no return statement",
3778 signature->function_name(),
3779 signature->return_type->name);
3780 }
3781
3782 /* Function definitions do not have r-values.
3783 */
3784 return NULL;
3785 }
3786
3787
3788 ir_rvalue *
3789 ast_jump_statement::hir(exec_list *instructions,
3790 struct _mesa_glsl_parse_state *state)
3791 {
3792 void *ctx = state;
3793
3794 switch (mode) {
3795 case ast_return: {
3796 ir_return *inst;
3797 assert(state->current_function);
3798
3799 if (opt_return_value) {
3800 ir_rvalue *ret = opt_return_value->hir(instructions, state);
3801
3802 /* The value of the return type can be NULL if the shader says
3803 * 'return foo();' and foo() is a function that returns void.
3804 *
3805 * NOTE: The GLSL spec doesn't say that this is an error. The type
3806 * of the return value is void. If the return type of the function is
3807 * also void, then this should compile without error. Seriously.
3808 */
3809 const glsl_type *const ret_type =
3810 (ret == NULL) ? glsl_type::void_type : ret->type;
3811
3812 /* Implicit conversions are not allowed for return values prior to
3813 * ARB_shading_language_420pack.
3814 */
3815 if (state->current_function->return_type != ret_type) {
3816 YYLTYPE loc = this->get_location();
3817
3818 if (state->ARB_shading_language_420pack_enable) {
3819 if (!apply_implicit_conversion(state->current_function->return_type,
3820 ret, state)) {
3821 _mesa_glsl_error(& loc, state,
3822 "could not implicitly convert return value "
3823 "to %s, in function `%s'",
3824 state->current_function->return_type->name,
3825 state->current_function->function_name());
3826 }
3827 } else {
3828 _mesa_glsl_error(& loc, state,
3829 "`return' with wrong type %s, in function `%s' "
3830 "returning %s",
3831 ret_type->name,
3832 state->current_function->function_name(),
3833 state->current_function->return_type->name);
3834 }
3835 } else if (state->current_function->return_type->base_type ==
3836 GLSL_TYPE_VOID) {
3837 YYLTYPE loc = this->get_location();
3838
3839 /* The ARB_shading_language_420pack, GLSL ES 3.0, and GLSL 4.20
3840 * specs add a clarification:
3841 *
3842 * "A void function can only use return without a return argument, even if
3843 * the return argument has void type. Return statements only accept values:
3844 *
3845 * void func1() { }
3846 * void func2() { return func1(); } // illegal return statement"
3847 */
3848 _mesa_glsl_error(& loc, state,
3849 "void functions can only use `return' without a "
3850 "return argument");
3851 }
3852
3853 inst = new(ctx) ir_return(ret);
3854 } else {
3855 if (state->current_function->return_type->base_type !=
3856 GLSL_TYPE_VOID) {
3857 YYLTYPE loc = this->get_location();
3858
3859 _mesa_glsl_error(& loc, state,
3860 "`return' with no value, in function %s returning "
3861 "non-void",
3862 state->current_function->function_name());
3863 }
3864 inst = new(ctx) ir_return;
3865 }
3866
3867 state->found_return = true;
3868 instructions->push_tail(inst);
3869 break;
3870 }
3871
3872 case ast_discard:
3873 if (state->target != fragment_shader) {
3874 YYLTYPE loc = this->get_location();
3875
3876 _mesa_glsl_error(& loc, state,
3877 "`discard' may only appear in a fragment shader");
3878 }
3879 instructions->push_tail(new(ctx) ir_discard);
3880 break;
3881
3882 case ast_break:
3883 case ast_continue:
3884 if (mode == ast_continue &&
3885 state->loop_nesting_ast == NULL) {
3886 YYLTYPE loc = this->get_location();
3887
3888 _mesa_glsl_error(& loc, state,
3889 "continue may only appear in a loop");
3890 } else if (mode == ast_break &&
3891 state->loop_nesting_ast == NULL &&
3892 state->switch_state.switch_nesting_ast == NULL) {
3893 YYLTYPE loc = this->get_location();
3894
3895 _mesa_glsl_error(& loc, state,
3896 "break may only appear in a loop or a switch");
3897 } else {
3898 /* For a loop, inline the for loop expression again,
3899 * since we don't know where near the end of
3900 * the loop body the normal copy of it
3901 * is going to be placed.
3902 */
3903 if (state->loop_nesting_ast != NULL &&
3904 mode == ast_continue &&
3905 state->loop_nesting_ast->rest_expression) {
3906 state->loop_nesting_ast->rest_expression->hir(instructions,
3907 state);
3908 }
3909
3910 if (state->switch_state.is_switch_innermost &&
3911 mode == ast_break) {
3912 /* Force break out of switch by setting is_break switch state.
3913 */
3914 ir_variable *const is_break_var = state->switch_state.is_break_var;
3915 ir_dereference_variable *const deref_is_break_var =
3916 new(ctx) ir_dereference_variable(is_break_var);
3917 ir_constant *const true_val = new(ctx) ir_constant(true);
3918 ir_assignment *const set_break_var =
3919 new(ctx) ir_assignment(deref_is_break_var, true_val);
3920
3921 instructions->push_tail(set_break_var);
3922 }
3923 else {
3924 ir_loop_jump *const jump =
3925 new(ctx) ir_loop_jump((mode == ast_break)
3926 ? ir_loop_jump::jump_break
3927 : ir_loop_jump::jump_continue);
3928 instructions->push_tail(jump);
3929 }
3930 }
3931
3932 break;
3933 }
3934
3935 /* Jump instructions do not have r-values.
3936 */
3937 return NULL;
3938 }
3939
3940
3941 ir_rvalue *
3942 ast_selection_statement::hir(exec_list *instructions,
3943 struct _mesa_glsl_parse_state *state)
3944 {
3945 void *ctx = state;
3946
3947 ir_rvalue *const condition = this->condition->hir(instructions, state);
3948
3949 /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
3950 *
3951 * "Any expression whose type evaluates to a Boolean can be used as the
3952 * conditional expression bool-expression. Vector types are not accepted
3953 * as the expression to if."
3954 *
3955 * The checks are separated so that higher quality diagnostics can be
3956 * generated for cases where both rules are violated.
3957 */
3958 if (!condition->type->is_boolean() || !condition->type->is_scalar()) {
3959 YYLTYPE loc = this->condition->get_location();
3960
3961 _mesa_glsl_error(& loc, state, "if-statement condition must be scalar "
3962 "boolean");
3963 }
3964
3965 ir_if *const stmt = new(ctx) ir_if(condition);
3966
3967 if (then_statement != NULL) {
3968 state->symbols->push_scope();
3969 then_statement->hir(& stmt->then_instructions, state);
3970 state->symbols->pop_scope();
3971 }
3972
3973 if (else_statement != NULL) {
3974 state->symbols->push_scope();
3975 else_statement->hir(& stmt->else_instructions, state);
3976 state->symbols->pop_scope();
3977 }
3978
3979 instructions->push_tail(stmt);
3980
3981 /* if-statements do not have r-values.
3982 */
3983 return NULL;
3984 }
3985
3986
3987 ir_rvalue *
3988 ast_switch_statement::hir(exec_list *instructions,
3989 struct _mesa_glsl_parse_state *state)
3990 {
3991 void *ctx = state;
3992
3993 ir_rvalue *const test_expression =
3994 this->test_expression->hir(instructions, state);
3995
3996 /* From page 66 (page 55 of the PDF) of the GLSL 1.50 spec:
3997 *
3998 * "The type of init-expression in a switch statement must be a
3999 * scalar integer."
4000 */
4001 if (!test_expression->type->is_scalar() ||
4002 !test_expression->type->is_integer()) {
4003 YYLTYPE loc = this->test_expression->get_location();
4004
4005 _mesa_glsl_error(& loc,
4006 state,
4007 "switch-statement expression must be scalar "
4008 "integer");
4009 }
4010
4011 /* Track the switch-statement nesting in a stack-like manner.
4012 */
4013 struct glsl_switch_state saved = state->switch_state;
4014
4015 state->switch_state.is_switch_innermost = true;
4016 state->switch_state.switch_nesting_ast = this;
4017 state->switch_state.labels_ht = hash_table_ctor(0, hash_table_pointer_hash,
4018 hash_table_pointer_compare);
4019 state->switch_state.previous_default = NULL;
4020
4021 /* Initalize is_fallthru state to false.
4022 */
4023 ir_rvalue *const is_fallthru_val = new (ctx) ir_constant(false);
4024 state->switch_state.is_fallthru_var =
4025 new(ctx) ir_variable(glsl_type::bool_type,
4026 "switch_is_fallthru_tmp",
4027 ir_var_temporary);
4028 instructions->push_tail(state->switch_state.is_fallthru_var);
4029
4030 ir_dereference_variable *deref_is_fallthru_var =
4031 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
4032 instructions->push_tail(new(ctx) ir_assignment(deref_is_fallthru_var,
4033 is_fallthru_val));
4034
4035 /* Initalize is_break state to false.
4036 */
4037 ir_rvalue *const is_break_val = new (ctx) ir_constant(false);
4038 state->switch_state.is_break_var = new(ctx) ir_variable(glsl_type::bool_type,
4039 "switch_is_break_tmp",
4040 ir_var_temporary);
4041 instructions->push_tail(state->switch_state.is_break_var);
4042
4043 ir_dereference_variable *deref_is_break_var =
4044 new(ctx) ir_dereference_variable(state->switch_state.is_break_var);
4045 instructions->push_tail(new(ctx) ir_assignment(deref_is_break_var,
4046 is_break_val));
4047
4048 /* Cache test expression.
4049 */
4050 test_to_hir(instructions, state);
4051
4052 /* Emit code for body of switch stmt.
4053 */
4054 body->hir(instructions, state);
4055
4056 hash_table_dtor(state->switch_state.labels_ht);
4057
4058 state->switch_state = saved;
4059
4060 /* Switch statements do not have r-values. */
4061 return NULL;
4062 }
4063
4064
4065 void
4066 ast_switch_statement::test_to_hir(exec_list *instructions,
4067 struct _mesa_glsl_parse_state *state)
4068 {
4069 void *ctx = state;
4070
4071 /* Cache value of test expression. */
4072 ir_rvalue *const test_val =
4073 test_expression->hir(instructions,
4074 state);
4075
4076 state->switch_state.test_var = new(ctx) ir_variable(test_val->type,
4077 "switch_test_tmp",
4078 ir_var_temporary);
4079 ir_dereference_variable *deref_test_var =
4080 new(ctx) ir_dereference_variable(state->switch_state.test_var);
4081
4082 instructions->push_tail(state->switch_state.test_var);
4083 instructions->push_tail(new(ctx) ir_assignment(deref_test_var, test_val));
4084 }
4085
4086
4087 ir_rvalue *
4088 ast_switch_body::hir(exec_list *instructions,
4089 struct _mesa_glsl_parse_state *state)
4090 {
4091 if (stmts != NULL)
4092 stmts->hir(instructions, state);
4093
4094 /* Switch bodies do not have r-values. */
4095 return NULL;
4096 }
4097
4098 ir_rvalue *
4099 ast_case_statement_list::hir(exec_list *instructions,
4100 struct _mesa_glsl_parse_state *state)
4101 {
4102 foreach_list_typed (ast_case_statement, case_stmt, link, & this->cases)
4103 case_stmt->hir(instructions, state);
4104
4105 /* Case statements do not have r-values. */
4106 return NULL;
4107 }
4108
4109 ir_rvalue *
4110 ast_case_statement::hir(exec_list *instructions,
4111 struct _mesa_glsl_parse_state *state)
4112 {
4113 labels->hir(instructions, state);
4114
4115 /* Conditionally set fallthru state based on break state. */
4116 ir_constant *const false_val = new(state) ir_constant(false);
4117 ir_dereference_variable *const deref_is_fallthru_var =
4118 new(state) ir_dereference_variable(state->switch_state.is_fallthru_var);
4119 ir_dereference_variable *const deref_is_break_var =
4120 new(state) ir_dereference_variable(state->switch_state.is_break_var);
4121 ir_assignment *const reset_fallthru_on_break =
4122 new(state) ir_assignment(deref_is_fallthru_var,
4123 false_val,
4124 deref_is_break_var);
4125 instructions->push_tail(reset_fallthru_on_break);
4126
4127 /* Guard case statements depending on fallthru state. */
4128 ir_dereference_variable *const deref_fallthru_guard =
4129 new(state) ir_dereference_variable(state->switch_state.is_fallthru_var);
4130 ir_if *const test_fallthru = new(state) ir_if(deref_fallthru_guard);
4131
4132 foreach_list_typed (ast_node, stmt, link, & this->stmts)
4133 stmt->hir(& test_fallthru->then_instructions, state);
4134
4135 instructions->push_tail(test_fallthru);
4136
4137 /* Case statements do not have r-values. */
4138 return NULL;
4139 }
4140
4141
4142 ir_rvalue *
4143 ast_case_label_list::hir(exec_list *instructions,
4144 struct _mesa_glsl_parse_state *state)
4145 {
4146 foreach_list_typed (ast_case_label, label, link, & this->labels)
4147 label->hir(instructions, state);
4148
4149 /* Case labels do not have r-values. */
4150 return NULL;
4151 }
4152
4153 ir_rvalue *
4154 ast_case_label::hir(exec_list *instructions,
4155 struct _mesa_glsl_parse_state *state)
4156 {
4157 void *ctx = state;
4158
4159 ir_dereference_variable *deref_fallthru_var =
4160 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
4161
4162 ir_rvalue *const true_val = new(ctx) ir_constant(true);
4163
4164 /* If not default case, ... */
4165 if (this->test_value != NULL) {
4166 /* Conditionally set fallthru state based on
4167 * comparison of cached test expression value to case label.
4168 */
4169 ir_rvalue *const label_rval = this->test_value->hir(instructions, state);
4170 ir_constant *label_const = label_rval->constant_expression_value();
4171
4172 if (!label_const) {
4173 YYLTYPE loc = this->test_value->get_location();
4174
4175 _mesa_glsl_error(& loc, state,
4176 "switch statement case label must be a "
4177 "constant expression");
4178
4179 /* Stuff a dummy value in to allow processing to continue. */
4180 label_const = new(ctx) ir_constant(0);
4181 } else {
4182 ast_expression *previous_label = (ast_expression *)
4183 hash_table_find(state->switch_state.labels_ht,
4184 (void *)(uintptr_t)label_const->value.u[0]);
4185
4186 if (previous_label) {
4187 YYLTYPE loc = this->test_value->get_location();
4188 _mesa_glsl_error(& loc, state,
4189 "duplicate case value");
4190
4191 loc = previous_label->get_location();
4192 _mesa_glsl_error(& loc, state,
4193 "this is the previous case label");
4194 } else {
4195 hash_table_insert(state->switch_state.labels_ht,
4196 this->test_value,
4197 (void *)(uintptr_t)label_const->value.u[0]);
4198 }
4199 }
4200
4201 ir_dereference_variable *deref_test_var =
4202 new(ctx) ir_dereference_variable(state->switch_state.test_var);
4203
4204 ir_rvalue *const test_cond = new(ctx) ir_expression(ir_binop_all_equal,
4205 label_const,
4206 deref_test_var);
4207
4208 ir_assignment *set_fallthru_on_test =
4209 new(ctx) ir_assignment(deref_fallthru_var,
4210 true_val,
4211 test_cond);
4212
4213 instructions->push_tail(set_fallthru_on_test);
4214 } else { /* default case */
4215 if (state->switch_state.previous_default) {
4216 YYLTYPE loc = this->get_location();
4217 _mesa_glsl_error(& loc, state,
4218 "multiple default labels in one switch");
4219
4220 loc = state->switch_state.previous_default->get_location();
4221 _mesa_glsl_error(& loc, state,
4222 "this is the first default label");
4223 }
4224 state->switch_state.previous_default = this;
4225
4226 /* Set falltrhu state. */
4227 ir_assignment *set_fallthru =
4228 new(ctx) ir_assignment(deref_fallthru_var, true_val);
4229
4230 instructions->push_tail(set_fallthru);
4231 }
4232
4233 /* Case statements do not have r-values. */
4234 return NULL;
4235 }
4236
4237 void
4238 ast_iteration_statement::condition_to_hir(ir_loop *stmt,
4239 struct _mesa_glsl_parse_state *state)
4240 {
4241 void *ctx = state;
4242
4243 if (condition != NULL) {
4244 ir_rvalue *const cond =
4245 condition->hir(& stmt->body_instructions, state);
4246
4247 if ((cond == NULL)
4248 || !cond->type->is_boolean() || !cond->type->is_scalar()) {
4249 YYLTYPE loc = condition->get_location();
4250
4251 _mesa_glsl_error(& loc, state,
4252 "loop condition must be scalar boolean");
4253 } else {
4254 /* As the first code in the loop body, generate a block that looks
4255 * like 'if (!condition) break;' as the loop termination condition.
4256 */
4257 ir_rvalue *const not_cond =
4258 new(ctx) ir_expression(ir_unop_logic_not, cond);
4259
4260 ir_if *const if_stmt = new(ctx) ir_if(not_cond);
4261
4262 ir_jump *const break_stmt =
4263 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
4264
4265 if_stmt->then_instructions.push_tail(break_stmt);
4266 stmt->body_instructions.push_tail(if_stmt);
4267 }
4268 }
4269 }
4270
4271
4272 ir_rvalue *
4273 ast_iteration_statement::hir(exec_list *instructions,
4274 struct _mesa_glsl_parse_state *state)
4275 {
4276 void *ctx = state;
4277
4278 /* For-loops and while-loops start a new scope, but do-while loops do not.
4279 */
4280 if (mode != ast_do_while)
4281 state->symbols->push_scope();
4282
4283 if (init_statement != NULL)
4284 init_statement->hir(instructions, state);
4285
4286 ir_loop *const stmt = new(ctx) ir_loop();
4287 instructions->push_tail(stmt);
4288
4289 /* Track the current loop nesting. */
4290 ast_iteration_statement *nesting_ast = state->loop_nesting_ast;
4291
4292 state->loop_nesting_ast = this;
4293
4294 /* Likewise, indicate that following code is closest to a loop,
4295 * NOT closest to a switch.
4296 */
4297 bool saved_is_switch_innermost = state->switch_state.is_switch_innermost;
4298 state->switch_state.is_switch_innermost = false;
4299
4300 if (mode != ast_do_while)
4301 condition_to_hir(stmt, state);
4302
4303 if (body != NULL)
4304 body->hir(& stmt->body_instructions, state);
4305
4306 if (rest_expression != NULL)
4307 rest_expression->hir(& stmt->body_instructions, state);
4308
4309 if (mode == ast_do_while)
4310 condition_to_hir(stmt, state);
4311
4312 if (mode != ast_do_while)
4313 state->symbols->pop_scope();
4314
4315 /* Restore previous nesting before returning. */
4316 state->loop_nesting_ast = nesting_ast;
4317 state->switch_state.is_switch_innermost = saved_is_switch_innermost;
4318
4319 /* Loops do not have r-values.
4320 */
4321 return NULL;
4322 }
4323
4324
4325 /**
4326 * Determine if the given type is valid for establishing a default precision
4327 * qualifier.
4328 *
4329 * From GLSL ES 3.00 section 4.5.4 ("Default Precision Qualifiers"):
4330 *
4331 * "The precision statement
4332 *
4333 * precision precision-qualifier type;
4334 *
4335 * can be used to establish a default precision qualifier. The type field
4336 * can be either int or float or any of the sampler types, and the
4337 * precision-qualifier can be lowp, mediump, or highp."
4338 *
4339 * GLSL ES 1.00 has similar language. GLSL 1.30 doesn't allow precision
4340 * qualifiers on sampler types, but this seems like an oversight (since the
4341 * intention of including these in GLSL 1.30 is to allow compatibility with ES
4342 * shaders). So we allow int, float, and all sampler types regardless of GLSL
4343 * version.
4344 */
4345 static bool
4346 is_valid_default_precision_type(const struct glsl_type *const type)
4347 {
4348 if (type == NULL)
4349 return false;
4350
4351 switch (type->base_type) {
4352 case GLSL_TYPE_INT:
4353 case GLSL_TYPE_FLOAT:
4354 /* "int" and "float" are valid, but vectors and matrices are not. */
4355 return type->vector_elements == 1 && type->matrix_columns == 1;
4356 case GLSL_TYPE_SAMPLER:
4357 return true;
4358 default:
4359 return false;
4360 }
4361 }
4362
4363
4364 ir_rvalue *
4365 ast_type_specifier::hir(exec_list *instructions,
4366 struct _mesa_glsl_parse_state *state)
4367 {
4368 if (this->default_precision == ast_precision_none && this->structure == NULL)
4369 return NULL;
4370
4371 YYLTYPE loc = this->get_location();
4372
4373 /* If this is a precision statement, check that the type to which it is
4374 * applied is either float or int.
4375 *
4376 * From section 4.5.3 of the GLSL 1.30 spec:
4377 * "The precision statement
4378 * precision precision-qualifier type;
4379 * can be used to establish a default precision qualifier. The type
4380 * field can be either int or float [...]. Any other types or
4381 * qualifiers will result in an error.
4382 */
4383 if (this->default_precision != ast_precision_none) {
4384 if (!state->check_precision_qualifiers_allowed(&loc))
4385 return NULL;
4386
4387 if (this->structure != NULL) {
4388 _mesa_glsl_error(&loc, state,
4389 "precision qualifiers do not apply to structures");
4390 return NULL;
4391 }
4392
4393 if (this->is_array) {
4394 _mesa_glsl_error(&loc, state,
4395 "default precision statements do not apply to "
4396 "arrays");
4397 return NULL;
4398 }
4399
4400 const struct glsl_type *const type =
4401 state->symbols->get_type(this->type_name);
4402 if (!is_valid_default_precision_type(type)) {
4403 _mesa_glsl_error(&loc, state,
4404 "default precision statements apply only to "
4405 "float, int, and sampler types");
4406 return NULL;
4407 }
4408
4409 if (type->base_type == GLSL_TYPE_FLOAT
4410 && state->es_shader
4411 && state->target == fragment_shader) {
4412 /* Section 4.5.3 (Default Precision Qualifiers) of the GLSL ES 1.00
4413 * spec says:
4414 *
4415 * "The fragment language has no default precision qualifier for
4416 * floating point types."
4417 *
4418 * As a result, we have to track whether or not default precision has
4419 * been specified for float in GLSL ES fragment shaders.
4420 *
4421 * Earlier in that same section, the spec says:
4422 *
4423 * "Non-precision qualified declarations will use the precision
4424 * qualifier specified in the most recent precision statement
4425 * that is still in scope. The precision statement has the same
4426 * scoping rules as variable declarations. If it is declared
4427 * inside a compound statement, its effect stops at the end of
4428 * the innermost statement it was declared in. Precision
4429 * statements in nested scopes override precision statements in
4430 * outer scopes. Multiple precision statements for the same basic
4431 * type can appear inside the same scope, with later statements
4432 * overriding earlier statements within that scope."
4433 *
4434 * Default precision specifications follow the same scope rules as
4435 * variables. So, we can track the state of the default float
4436 * precision in the symbol table, and the rules will just work. This
4437 * is a slight abuse of the symbol table, but it has the semantics
4438 * that we want.
4439 */
4440 ir_variable *const junk =
4441 new(state) ir_variable(type, "#default precision",
4442 ir_var_temporary);
4443
4444 state->symbols->add_variable(junk);
4445 }
4446
4447 /* FINISHME: Translate precision statements into IR. */
4448 return NULL;
4449 }
4450
4451 /* _mesa_ast_set_aggregate_type() sets the <structure> field so that
4452 * process_record_constructor() can do type-checking on C-style initializer
4453 * expressions of structs, but ast_struct_specifier should only be translated
4454 * to HIR if it is declaring the type of a structure.
4455 *
4456 * The ->is_declaration field is false for initializers of variables
4457 * declared separately from the struct's type definition.
4458 *
4459 * struct S { ... }; (is_declaration = true)
4460 * struct T { ... } t = { ... }; (is_declaration = true)
4461 * S s = { ... }; (is_declaration = false)
4462 */
4463 if (this->structure != NULL && this->structure->is_declaration)
4464 return this->structure->hir(instructions, state);
4465
4466 return NULL;
4467 }
4468
4469
4470 /**
4471 * Process a structure or interface block tree into an array of structure fields
4472 *
4473 * After parsing, where there are some syntax differnces, structures and
4474 * interface blocks are almost identical. They are similar enough that the
4475 * AST for each can be processed the same way into a set of
4476 * \c glsl_struct_field to describe the members.
4477 *
4478 * If we're processing an interface block, var_mode should be the type of the
4479 * interface block (ir_var_shader_in, ir_var_shader_out, or ir_var_uniform).
4480 * If we're processing a structure, var_mode should be ir_var_auto.
4481 *
4482 * \return
4483 * The number of fields processed. A pointer to the array structure fields is
4484 * stored in \c *fields_ret.
4485 */
4486 unsigned
4487 ast_process_structure_or_interface_block(exec_list *instructions,
4488 struct _mesa_glsl_parse_state *state,
4489 exec_list *declarations,
4490 YYLTYPE &loc,
4491 glsl_struct_field **fields_ret,
4492 bool is_interface,
4493 bool block_row_major,
4494 bool allow_reserved_names,
4495 ir_variable_mode var_mode)
4496 {
4497 unsigned decl_count = 0;
4498
4499 /* Make an initial pass over the list of fields to determine how
4500 * many there are. Each element in this list is an ast_declarator_list.
4501 * This means that we actually need to count the number of elements in the
4502 * 'declarations' list in each of the elements.
4503 */
4504 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
4505 foreach_list_const (decl_ptr, & decl_list->declarations) {
4506 decl_count++;
4507 }
4508 }
4509
4510 /* Allocate storage for the fields and process the field
4511 * declarations. As the declarations are processed, try to also convert
4512 * the types to HIR. This ensures that structure definitions embedded in
4513 * other structure definitions or in interface blocks are processed.
4514 */
4515 glsl_struct_field *const fields = ralloc_array(state, glsl_struct_field,
4516 decl_count);
4517
4518 unsigned i = 0;
4519 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
4520 const char *type_name;
4521
4522 decl_list->type->specifier->hir(instructions, state);
4523
4524 /* Section 10.9 of the GLSL ES 1.00 specification states that
4525 * embedded structure definitions have been removed from the language.
4526 */
4527 if (state->es_shader && decl_list->type->specifier->structure != NULL) {
4528 _mesa_glsl_error(&loc, state, "embedded structure definitions are "
4529 "not allowed in GLSL ES 1.00");
4530 }
4531
4532 const glsl_type *decl_type =
4533 decl_list->type->glsl_type(& type_name, state);
4534
4535 foreach_list_typed (ast_declaration, decl, link,
4536 &decl_list->declarations) {
4537 if (!allow_reserved_names)
4538 validate_identifier(decl->identifier, loc, state);
4539
4540 /* From the GL_ARB_uniform_buffer_object spec:
4541 *
4542 * "Sampler types are not allowed inside of uniform
4543 * blocks. All other types, arrays, and structures
4544 * allowed for uniforms are allowed within a uniform
4545 * block."
4546 *
4547 * It should be impossible for decl_type to be NULL here. Cases that
4548 * might naturally lead to decl_type being NULL, especially for the
4549 * is_interface case, will have resulted in compilation having
4550 * already halted due to a syntax error.
4551 */
4552 const struct glsl_type *field_type =
4553 decl_type != NULL ? decl_type : glsl_type::error_type;
4554
4555 if (is_interface && field_type->contains_sampler()) {
4556 YYLTYPE loc = decl_list->get_location();
4557 _mesa_glsl_error(&loc, state,
4558 "uniform in non-default uniform block contains sampler");
4559 }
4560
4561 const struct ast_type_qualifier *const qual =
4562 & decl_list->type->qualifier;
4563 if (qual->flags.q.std140 ||
4564 qual->flags.q.packed ||
4565 qual->flags.q.shared) {
4566 _mesa_glsl_error(&loc, state,
4567 "uniform block layout qualifiers std140, packed, and "
4568 "shared can only be applied to uniform blocks, not "
4569 "members");
4570 }
4571
4572 if (decl->is_array) {
4573 field_type = process_array_type(&loc, decl_type, decl->array_size,
4574 state);
4575 }
4576 fields[i].type = field_type;
4577 fields[i].name = decl->identifier;
4578 fields[i].location = -1;
4579 fields[i].interpolation =
4580 interpret_interpolation_qualifier(qual, var_mode, state, &loc);
4581 fields[i].centroid = qual->flags.q.centroid ? 1 : 0;
4582
4583 if (qual->flags.q.row_major || qual->flags.q.column_major) {
4584 if (!qual->flags.q.uniform) {
4585 _mesa_glsl_error(&loc, state,
4586 "row_major and column_major can only be "
4587 "applied to uniform interface blocks");
4588 } else
4589 validate_matrix_layout_for_type(state, &loc, field_type, NULL);
4590 }
4591
4592 if (qual->flags.q.uniform && qual->has_interpolation()) {
4593 _mesa_glsl_error(&loc, state,
4594 "interpolation qualifiers cannot be used "
4595 "with uniform interface blocks");
4596 }
4597
4598 if (field_type->is_matrix() ||
4599 (field_type->is_array() && field_type->fields.array->is_matrix())) {
4600 fields[i].row_major = block_row_major;
4601 if (qual->flags.q.row_major)
4602 fields[i].row_major = true;
4603 else if (qual->flags.q.column_major)
4604 fields[i].row_major = false;
4605 }
4606
4607 i++;
4608 }
4609 }
4610
4611 assert(i == decl_count);
4612
4613 *fields_ret = fields;
4614 return decl_count;
4615 }
4616
4617
4618 ir_rvalue *
4619 ast_struct_specifier::hir(exec_list *instructions,
4620 struct _mesa_glsl_parse_state *state)
4621 {
4622 YYLTYPE loc = this->get_location();
4623
4624 /* Section 4.1.8 (Structures) of the GLSL 1.10 spec says:
4625 *
4626 * "Anonymous structures are not supported; so embedded structures must
4627 * have a declarator. A name given to an embedded struct is scoped at
4628 * the same level as the struct it is embedded in."
4629 *
4630 * The same section of the GLSL 1.20 spec says:
4631 *
4632 * "Anonymous structures are not supported. Embedded structures are not
4633 * supported.
4634 *
4635 * struct S { float f; };
4636 * struct T {
4637 * S; // Error: anonymous structures disallowed
4638 * struct { ... }; // Error: embedded structures disallowed
4639 * S s; // Okay: nested structures with name are allowed
4640 * };"
4641 *
4642 * The GLSL ES 1.00 and 3.00 specs have similar langauge and examples. So,
4643 * we allow embedded structures in 1.10 only.
4644 */
4645 if (state->language_version != 110 && state->struct_specifier_depth != 0)
4646 _mesa_glsl_error(&loc, state,
4647 "embedded structure declartions are not allowed");
4648
4649 state->struct_specifier_depth++;
4650
4651 glsl_struct_field *fields;
4652 unsigned decl_count =
4653 ast_process_structure_or_interface_block(instructions,
4654 state,
4655 &this->declarations,
4656 loc,
4657 &fields,
4658 false,
4659 false,
4660 false /* allow_reserved_names */,
4661 ir_var_auto);
4662
4663 validate_identifier(this->name, loc, state);
4664
4665 const glsl_type *t =
4666 glsl_type::get_record_instance(fields, decl_count, this->name);
4667
4668 if (!state->symbols->add_type(name, t)) {
4669 _mesa_glsl_error(& loc, state, "struct `%s' previously defined", name);
4670 } else {
4671 const glsl_type **s = reralloc(state, state->user_structures,
4672 const glsl_type *,
4673 state->num_user_structures + 1);
4674 if (s != NULL) {
4675 s[state->num_user_structures] = t;
4676 state->user_structures = s;
4677 state->num_user_structures++;
4678 }
4679 }
4680
4681 state->struct_specifier_depth--;
4682
4683 /* Structure type definitions do not have r-values.
4684 */
4685 return NULL;
4686 }
4687
4688
4689 /**
4690 * Visitor class which detects whether a given interface block has been used.
4691 */
4692 class interface_block_usage_visitor : public ir_hierarchical_visitor
4693 {
4694 public:
4695 interface_block_usage_visitor(ir_variable_mode mode, const glsl_type *block)
4696 : mode(mode), block(block), found(false)
4697 {
4698 }
4699
4700 virtual ir_visitor_status visit(ir_dereference_variable *ir)
4701 {
4702 if (ir->var->mode == mode && ir->var->get_interface_type() == block) {
4703 found = true;
4704 return visit_stop;
4705 }
4706 return visit_continue;
4707 }
4708
4709 bool usage_found() const
4710 {
4711 return this->found;
4712 }
4713
4714 private:
4715 ir_variable_mode mode;
4716 const glsl_type *block;
4717 bool found;
4718 };
4719
4720
4721 ir_rvalue *
4722 ast_interface_block::hir(exec_list *instructions,
4723 struct _mesa_glsl_parse_state *state)
4724 {
4725 YYLTYPE loc = this->get_location();
4726
4727 /* The ast_interface_block has a list of ast_declarator_lists. We
4728 * need to turn those into ir_variables with an association
4729 * with this uniform block.
4730 */
4731 enum glsl_interface_packing packing;
4732 if (this->layout.flags.q.shared) {
4733 packing = GLSL_INTERFACE_PACKING_SHARED;
4734 } else if (this->layout.flags.q.packed) {
4735 packing = GLSL_INTERFACE_PACKING_PACKED;
4736 } else {
4737 /* The default layout is std140.
4738 */
4739 packing = GLSL_INTERFACE_PACKING_STD140;
4740 }
4741
4742 ir_variable_mode var_mode;
4743 const char *iface_type_name;
4744 if (this->layout.flags.q.in) {
4745 var_mode = ir_var_shader_in;
4746 iface_type_name = "in";
4747 } else if (this->layout.flags.q.out) {
4748 var_mode = ir_var_shader_out;
4749 iface_type_name = "out";
4750 } else if (this->layout.flags.q.uniform) {
4751 var_mode = ir_var_uniform;
4752 iface_type_name = "uniform";
4753 } else {
4754 var_mode = ir_var_auto;
4755 iface_type_name = "UNKNOWN";
4756 assert(!"interface block layout qualifier not found!");
4757 }
4758
4759 bool redeclaring_per_vertex = strcmp(this->block_name, "gl_PerVertex") == 0;
4760 bool block_row_major = this->layout.flags.q.row_major;
4761 exec_list declared_variables;
4762 glsl_struct_field *fields;
4763 unsigned int num_variables =
4764 ast_process_structure_or_interface_block(&declared_variables,
4765 state,
4766 &this->declarations,
4767 loc,
4768 &fields,
4769 true,
4770 block_row_major,
4771 redeclaring_per_vertex,
4772 var_mode);
4773
4774 if (!redeclaring_per_vertex)
4775 validate_identifier(this->block_name, loc, state);
4776
4777 const glsl_type *earlier_per_vertex = NULL;
4778 if (redeclaring_per_vertex) {
4779 /* Find the previous declaration of gl_PerVertex. If we're redeclaring
4780 * the named interface block gl_in, we can find it by looking at the
4781 * previous declaration of gl_in. Otherwise we can find it by looking
4782 * at the previous decalartion of any of the built-in outputs,
4783 * e.g. gl_Position.
4784 *
4785 * Also check that the instance name and array-ness of the redeclaration
4786 * are correct.
4787 */
4788 switch (var_mode) {
4789 case ir_var_shader_in:
4790 if (ir_variable *earlier_gl_in =
4791 state->symbols->get_variable("gl_in")) {
4792 earlier_per_vertex = earlier_gl_in->get_interface_type();
4793 } else {
4794 _mesa_glsl_error(&loc, state,
4795 "redeclaration of gl_PerVertex input not allowed "
4796 "in the %s shader",
4797 _mesa_glsl_shader_target_name(state->target));
4798 }
4799 if (this->instance_name == NULL ||
4800 strcmp(this->instance_name, "gl_in") != 0 || !this->is_array) {
4801 _mesa_glsl_error(&loc, state,
4802 "gl_PerVertex input must be redeclared as "
4803 "gl_in[]");
4804 }
4805 break;
4806 case ir_var_shader_out:
4807 if (ir_variable *earlier_gl_Position =
4808 state->symbols->get_variable("gl_Position")) {
4809 earlier_per_vertex = earlier_gl_Position->get_interface_type();
4810 } else {
4811 _mesa_glsl_error(&loc, state,
4812 "redeclaration of gl_PerVertex output not "
4813 "allowed in the %s shader",
4814 _mesa_glsl_shader_target_name(state->target));
4815 }
4816 if (this->instance_name != NULL) {
4817 _mesa_glsl_error(&loc, state,
4818 "gl_PerVertex input may not be redeclared with "
4819 "an instance name");
4820 }
4821 break;
4822 default:
4823 _mesa_glsl_error(&loc, state,
4824 "gl_PerVertex must be declared as an input or an "
4825 "output");
4826 break;
4827 }
4828
4829 if (earlier_per_vertex == NULL) {
4830 /* An error has already been reported. Bail out to avoid null
4831 * dereferences later in this function.
4832 */
4833 return NULL;
4834 }
4835
4836 /* Copy locations from the old gl_PerVertex interface block. */
4837 for (unsigned i = 0; i < num_variables; i++) {
4838 int j = earlier_per_vertex->field_index(fields[i].name);
4839 if (j == -1) {
4840 _mesa_glsl_error(&loc, state,
4841 "redeclaration of gl_PerVertex must be a subset "
4842 "of the built-in members of gl_PerVertex");
4843 } else {
4844 fields[i].location =
4845 earlier_per_vertex->fields.structure[j].location;
4846 fields[i].interpolation =
4847 earlier_per_vertex->fields.structure[j].interpolation;
4848 fields[i].centroid =
4849 earlier_per_vertex->fields.structure[j].centroid;
4850 }
4851 }
4852
4853 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10
4854 * spec:
4855 *
4856 * If a built-in interface block is redeclared, it must appear in
4857 * the shader before any use of any member included in the built-in
4858 * declaration, or a compilation error will result.
4859 *
4860 * This appears to be a clarification to the behaviour established for
4861 * gl_PerVertex by GLSL 1.50, therefore we implement this behaviour
4862 * regardless of GLSL version.
4863 */
4864 interface_block_usage_visitor v(var_mode, earlier_per_vertex);
4865 v.run(instructions);
4866 if (v.usage_found()) {
4867 _mesa_glsl_error(&loc, state,
4868 "redeclaration of a built-in interface block must "
4869 "appear before any use of any member of the "
4870 "interface block");
4871 }
4872 }
4873
4874 const glsl_type *block_type =
4875 glsl_type::get_interface_instance(fields,
4876 num_variables,
4877 packing,
4878 this->block_name);
4879
4880 if (!state->symbols->add_interface(block_type->name, block_type, var_mode)) {
4881 YYLTYPE loc = this->get_location();
4882 _mesa_glsl_error(&loc, state, "interface block `%s' with type `%s' "
4883 "already taken in the current scope",
4884 this->block_name, iface_type_name);
4885 }
4886
4887 /* Since interface blocks cannot contain statements, it should be
4888 * impossible for the block to generate any instructions.
4889 */
4890 assert(declared_variables.is_empty());
4891
4892 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
4893 *
4894 * Geometry shader input variables get the per-vertex values written
4895 * out by vertex shader output variables of the same names. Since a
4896 * geometry shader operates on a set of vertices, each input varying
4897 * variable (or input block, see interface blocks below) needs to be
4898 * declared as an array.
4899 */
4900 if (state->target == geometry_shader && !this->is_array &&
4901 var_mode == ir_var_shader_in) {
4902 _mesa_glsl_error(&loc, state, "geometry shader inputs must be arrays");
4903 }
4904
4905 /* Page 39 (page 45 of the PDF) of section 4.3.7 in the GLSL ES 3.00 spec
4906 * says:
4907 *
4908 * "If an instance name (instance-name) is used, then it puts all the
4909 * members inside a scope within its own name space, accessed with the
4910 * field selector ( . ) operator (analogously to structures)."
4911 */
4912 if (this->instance_name) {
4913 if (redeclaring_per_vertex) {
4914 /* When a built-in in an unnamed interface block is redeclared,
4915 * get_variable_being_redeclared() calls
4916 * check_builtin_array_max_size() to make sure that built-in array
4917 * variables aren't redeclared to illegal sizes. But we're looking
4918 * at a redeclaration of a named built-in interface block. So we
4919 * have to manually call check_builtin_array_max_size() for all parts
4920 * of the interface that are arrays.
4921 */
4922 for (unsigned i = 0; i < num_variables; i++) {
4923 if (fields[i].type->is_array()) {
4924 const unsigned size = fields[i].type->array_size();
4925 check_builtin_array_max_size(fields[i].name, size, loc, state);
4926 }
4927 }
4928 } else {
4929 validate_identifier(this->instance_name, loc, state);
4930 }
4931
4932 ir_variable *var;
4933
4934 if (this->is_array) {
4935 /* Section 4.3.7 (Interface Blocks) of the GLSL 1.50 spec says:
4936 *
4937 * For uniform blocks declared an array, each individual array
4938 * element corresponds to a separate buffer object backing one
4939 * instance of the block. As the array size indicates the number
4940 * of buffer objects needed, uniform block array declarations
4941 * must specify an array size.
4942 *
4943 * And a few paragraphs later:
4944 *
4945 * Geometry shader input blocks must be declared as arrays and
4946 * follow the array declaration and linking rules for all
4947 * geometry shader inputs. All other input and output block
4948 * arrays must specify an array size.
4949 *
4950 * The upshot of this is that the only circumstance where an
4951 * interface array size *doesn't* need to be specified is on a
4952 * geometry shader input.
4953 */
4954 if (this->array_size == NULL &&
4955 (state->target != geometry_shader || !this->layout.flags.q.in)) {
4956 _mesa_glsl_error(&loc, state,
4957 "only geometry shader inputs may be unsized "
4958 "instance block arrays");
4959
4960 }
4961
4962 const glsl_type *block_array_type =
4963 process_array_type(&loc, block_type, this->array_size, state);
4964
4965 var = new(state) ir_variable(block_array_type,
4966 this->instance_name,
4967 var_mode);
4968 } else {
4969 var = new(state) ir_variable(block_type,
4970 this->instance_name,
4971 var_mode);
4972 }
4973
4974 if (state->target == geometry_shader && var_mode == ir_var_shader_in)
4975 handle_geometry_shader_input_decl(state, loc, var);
4976
4977 if (ir_variable *earlier =
4978 state->symbols->get_variable(this->instance_name)) {
4979 if (!redeclaring_per_vertex) {
4980 _mesa_glsl_error(&loc, state, "`%s' redeclared",
4981 this->instance_name);
4982 }
4983 earlier->type = var->type;
4984 earlier->reinit_interface_type(block_type);
4985 delete var;
4986 } else {
4987 state->symbols->add_variable(var);
4988 instructions->push_tail(var);
4989 }
4990 } else {
4991 /* In order to have an array size, the block must also be declared with
4992 * an instane name.
4993 */
4994 assert(!this->is_array);
4995
4996 for (unsigned i = 0; i < num_variables; i++) {
4997 ir_variable *var =
4998 new(state) ir_variable(fields[i].type,
4999 ralloc_strdup(state, fields[i].name),
5000 var_mode);
5001 var->interpolation = fields[i].interpolation;
5002 var->centroid = fields[i].centroid;
5003 var->init_interface_type(block_type);
5004
5005 if (redeclaring_per_vertex) {
5006 ir_variable *earlier =
5007 get_variable_being_redeclared(var, loc, state,
5008 true /* allow_all_redeclarations */);
5009 if (strncmp(var->name, "gl_", 3) != 0 || earlier == NULL) {
5010 _mesa_glsl_error(&loc, state,
5011 "redeclaration of gl_PerVertex can only "
5012 "include built-in variables");
5013 } else {
5014 earlier->reinit_interface_type(block_type);
5015 }
5016 continue;
5017 }
5018
5019 if (state->symbols->get_variable(var->name) != NULL)
5020 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
5021
5022 /* Propagate the "binding" keyword into this UBO's fields;
5023 * the UBO declaration itself doesn't get an ir_variable unless it
5024 * has an instance name. This is ugly.
5025 */
5026 var->explicit_binding = this->layout.flags.q.explicit_binding;
5027 var->binding = this->layout.binding;
5028
5029 state->symbols->add_variable(var);
5030 instructions->push_tail(var);
5031 }
5032
5033 if (redeclaring_per_vertex && block_type != earlier_per_vertex) {
5034 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10 spec:
5035 *
5036 * It is also a compilation error ... to redeclare a built-in
5037 * block and then use a member from that built-in block that was
5038 * not included in the redeclaration.
5039 *
5040 * This appears to be a clarification to the behaviour established
5041 * for gl_PerVertex by GLSL 1.50, therefore we implement this
5042 * behaviour regardless of GLSL version.
5043 *
5044 * To prevent the shader from using a member that was not included in
5045 * the redeclaration, we disable any ir_variables that are still
5046 * associated with the old declaration of gl_PerVertex (since we've
5047 * already updated all of the variables contained in the new
5048 * gl_PerVertex to point to it).
5049 *
5050 * As a side effect this will prevent
5051 * validate_intrastage_interface_blocks() from getting confused and
5052 * thinking there are conflicting definitions of gl_PerVertex in the
5053 * shader.
5054 */
5055 foreach_list_safe(node, instructions) {
5056 ir_variable *const var = ((ir_instruction *) node)->as_variable();
5057 if (var != NULL &&
5058 var->get_interface_type() == earlier_per_vertex &&
5059 var->mode == var_mode) {
5060 state->symbols->disable_variable(var->name);
5061 var->remove();
5062 }
5063 }
5064 }
5065 }
5066
5067 return NULL;
5068 }
5069
5070
5071 ir_rvalue *
5072 ast_gs_input_layout::hir(exec_list *instructions,
5073 struct _mesa_glsl_parse_state *state)
5074 {
5075 YYLTYPE loc = this->get_location();
5076
5077 /* If any geometry input layout declaration preceded this one, make sure it
5078 * was consistent with this one.
5079 */
5080 if (state->gs_input_prim_type_specified &&
5081 state->gs_input_prim_type != this->prim_type) {
5082 _mesa_glsl_error(&loc, state,
5083 "geometry shader input layout does not match"
5084 " previous declaration");
5085 return NULL;
5086 }
5087
5088 /* If any shader inputs occurred before this declaration and specified an
5089 * array size, make sure the size they specified is consistent with the
5090 * primitive type.
5091 */
5092 unsigned num_vertices = vertices_per_prim(this->prim_type);
5093 if (state->gs_input_size != 0 && state->gs_input_size != num_vertices) {
5094 _mesa_glsl_error(&loc, state,
5095 "this geometry shader input layout implies %u vertices"
5096 " per primitive, but a previous input is declared"
5097 " with size %u", num_vertices, state->gs_input_size);
5098 return NULL;
5099 }
5100
5101 state->gs_input_prim_type_specified = true;
5102 state->gs_input_prim_type = this->prim_type;
5103
5104 /* If any shader inputs occurred before this declaration and did not
5105 * specify an array size, their size is determined now.
5106 */
5107 foreach_list (node, instructions) {
5108 ir_variable *var = ((ir_instruction *) node)->as_variable();
5109 if (var == NULL || var->mode != ir_var_shader_in)
5110 continue;
5111
5112 /* Note: gl_PrimitiveIDIn has mode ir_var_shader_in, but it's not an
5113 * array; skip it.
5114 */
5115
5116 if (var->type->is_unsized_array()) {
5117 if (var->max_array_access >= num_vertices) {
5118 _mesa_glsl_error(&loc, state,
5119 "this geometry shader input layout implies %u"
5120 " vertices, but an access to element %u of input"
5121 " `%s' already exists", num_vertices,
5122 var->max_array_access, var->name);
5123 } else {
5124 var->type = glsl_type::get_array_instance(var->type->fields.array,
5125 num_vertices);
5126 }
5127 }
5128 }
5129
5130 return NULL;
5131 }
5132
5133
5134 static void
5135 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
5136 exec_list *instructions)
5137 {
5138 bool gl_FragColor_assigned = false;
5139 bool gl_FragData_assigned = false;
5140 bool user_defined_fs_output_assigned = false;
5141 ir_variable *user_defined_fs_output = NULL;
5142
5143 /* It would be nice to have proper location information. */
5144 YYLTYPE loc;
5145 memset(&loc, 0, sizeof(loc));
5146
5147 foreach_list(node, instructions) {
5148 ir_variable *var = ((ir_instruction *)node)->as_variable();
5149
5150 if (!var || !var->assigned)
5151 continue;
5152
5153 if (strcmp(var->name, "gl_FragColor") == 0)
5154 gl_FragColor_assigned = true;
5155 else if (strcmp(var->name, "gl_FragData") == 0)
5156 gl_FragData_assigned = true;
5157 else if (strncmp(var->name, "gl_", 3) != 0) {
5158 if (state->target == fragment_shader &&
5159 var->mode == ir_var_shader_out) {
5160 user_defined_fs_output_assigned = true;
5161 user_defined_fs_output = var;
5162 }
5163 }
5164 }
5165
5166 /* From the GLSL 1.30 spec:
5167 *
5168 * "If a shader statically assigns a value to gl_FragColor, it
5169 * may not assign a value to any element of gl_FragData. If a
5170 * shader statically writes a value to any element of
5171 * gl_FragData, it may not assign a value to
5172 * gl_FragColor. That is, a shader may assign values to either
5173 * gl_FragColor or gl_FragData, but not both. Multiple shaders
5174 * linked together must also consistently write just one of
5175 * these variables. Similarly, if user declared output
5176 * variables are in use (statically assigned to), then the
5177 * built-in variables gl_FragColor and gl_FragData may not be
5178 * assigned to. These incorrect usages all generate compile
5179 * time errors."
5180 */
5181 if (gl_FragColor_assigned && gl_FragData_assigned) {
5182 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
5183 "`gl_FragColor' and `gl_FragData'");
5184 } else if (gl_FragColor_assigned && user_defined_fs_output_assigned) {
5185 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
5186 "`gl_FragColor' and `%s'",
5187 user_defined_fs_output->name);
5188 } else if (gl_FragData_assigned && user_defined_fs_output_assigned) {
5189 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
5190 "`gl_FragData' and `%s'",
5191 user_defined_fs_output->name);
5192 }
5193 }
5194
5195
5196 static void
5197 remove_per_vertex_blocks(exec_list *instructions,
5198 _mesa_glsl_parse_state *state, ir_variable_mode mode)
5199 {
5200 /* Find the gl_PerVertex interface block of the appropriate (in/out) mode,
5201 * if it exists in this shader type.
5202 */
5203 const glsl_type *per_vertex = NULL;
5204 switch (mode) {
5205 case ir_var_shader_in:
5206 if (ir_variable *gl_in = state->symbols->get_variable("gl_in"))
5207 per_vertex = gl_in->get_interface_type();
5208 break;
5209 case ir_var_shader_out:
5210 if (ir_variable *gl_Position =
5211 state->symbols->get_variable("gl_Position")) {
5212 per_vertex = gl_Position->get_interface_type();
5213 }
5214 break;
5215 default:
5216 assert(!"Unexpected mode");
5217 break;
5218 }
5219
5220 /* If we didn't find a built-in gl_PerVertex interface block, then we don't
5221 * need to do anything.
5222 */
5223 if (per_vertex == NULL)
5224 return;
5225
5226 /* If the interface block is used by the shader, then we don't need to do
5227 * anything.
5228 */
5229 interface_block_usage_visitor v(mode, per_vertex);
5230 v.run(instructions);
5231 if (v.usage_found())
5232 return;
5233
5234 /* Remove any ir_variable declarations that refer to the interface block
5235 * we're removing.
5236 */
5237 foreach_list_safe(node, instructions) {
5238 ir_variable *const var = ((ir_instruction *) node)->as_variable();
5239 if (var != NULL && var->get_interface_type() == per_vertex &&
5240 var->mode == mode) {
5241 state->symbols->disable_variable(var->name);
5242 var->remove();
5243 }
5244 }
5245 }