glsl: Check that interpolation quals only apply to vertex ins and fragment outs
[mesa.git] / src / glsl / ast_to_hir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file ast_to_hir.c
26 * Convert abstract syntax to to high-level intermediate reprensentation (HIR).
27 *
28 * During the conversion to HIR, the majority of the symantic checking is
29 * preformed on the program. This includes:
30 *
31 * * Symbol table management
32 * * Type checking
33 * * Function binding
34 *
35 * The majority of this work could be done during parsing, and the parser could
36 * probably generate HIR directly. However, this results in frequent changes
37 * to the parser code. Since we do not assume that every system this complier
38 * is built on will have Flex and Bison installed, we have to store the code
39 * generated by these tools in our version control system. In other parts of
40 * the system we've seen problems where a parser was changed but the generated
41 * code was not committed, merge conflicts where created because two developers
42 * had slightly different versions of Bison installed, etc.
43 *
44 * I have also noticed that running Bison generated parsers in GDB is very
45 * irritating. When you get a segfault on '$$ = $1->foo', you can't very
46 * well 'print $1' in GDB.
47 *
48 * As a result, my preference is to put as little C code as possible in the
49 * parser (and lexer) sources.
50 */
51
52 #include "main/core.h" /* for struct gl_extensions */
53 #include "glsl_symbol_table.h"
54 #include "glsl_parser_extras.h"
55 #include "ast.h"
56 #include "glsl_types.h"
57 #include "ir.h"
58
59 void
60 _mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
61 {
62 _mesa_glsl_initialize_variables(instructions, state);
63 _mesa_glsl_initialize_functions(state);
64
65 state->symbols->language_version = state->language_version;
66
67 state->current_function = NULL;
68
69 /* Section 4.2 of the GLSL 1.20 specification states:
70 * "The built-in functions are scoped in a scope outside the global scope
71 * users declare global variables in. That is, a shader's global scope,
72 * available for user-defined functions and global variables, is nested
73 * inside the scope containing the built-in functions."
74 *
75 * Since built-in functions like ftransform() access built-in variables,
76 * it follows that those must be in the outer scope as well.
77 *
78 * We push scope here to create this nesting effect...but don't pop.
79 * This way, a shader's globals are still in the symbol table for use
80 * by the linker.
81 */
82 state->symbols->push_scope();
83
84 foreach_list_typed (ast_node, ast, link, & state->translation_unit)
85 ast->hir(instructions, state);
86 }
87
88
89 /**
90 * If a conversion is available, convert one operand to a different type
91 *
92 * The \c from \c ir_rvalue is converted "in place".
93 *
94 * \param to Type that the operand it to be converted to
95 * \param from Operand that is being converted
96 * \param state GLSL compiler state
97 *
98 * \return
99 * If a conversion is possible (or unnecessary), \c true is returned.
100 * Otherwise \c false is returned.
101 */
102 bool
103 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
104 struct _mesa_glsl_parse_state *state)
105 {
106 void *ctx = state;
107 if (to->base_type == from->type->base_type)
108 return true;
109
110 /* This conversion was added in GLSL 1.20. If the compilation mode is
111 * GLSL 1.10, the conversion is skipped.
112 */
113 if (state->language_version < 120)
114 return false;
115
116 /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
117 *
118 * "There are no implicit array or structure conversions. For
119 * example, an array of int cannot be implicitly converted to an
120 * array of float. There are no implicit conversions between
121 * signed and unsigned integers."
122 */
123 /* FINISHME: The above comment is partially a lie. There is int/uint
124 * FINISHME: conversion for immediate constants.
125 */
126 if (!to->is_float() || !from->type->is_numeric())
127 return false;
128
129 /* Convert to a floating point type with the same number of components
130 * as the original type - i.e. int to float, not int to vec4.
131 */
132 to = glsl_type::get_instance(GLSL_TYPE_FLOAT, from->type->vector_elements,
133 from->type->matrix_columns);
134
135 switch (from->type->base_type) {
136 case GLSL_TYPE_INT:
137 from = new(ctx) ir_expression(ir_unop_i2f, to, from, NULL);
138 break;
139 case GLSL_TYPE_UINT:
140 from = new(ctx) ir_expression(ir_unop_u2f, to, from, NULL);
141 break;
142 case GLSL_TYPE_BOOL:
143 from = new(ctx) ir_expression(ir_unop_b2f, to, from, NULL);
144 break;
145 default:
146 assert(0);
147 }
148
149 return true;
150 }
151
152
153 static const struct glsl_type *
154 arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
155 bool multiply,
156 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
157 {
158 const glsl_type *type_a = value_a->type;
159 const glsl_type *type_b = value_b->type;
160
161 /* From GLSL 1.50 spec, page 56:
162 *
163 * "The arithmetic binary operators add (+), subtract (-),
164 * multiply (*), and divide (/) operate on integer and
165 * floating-point scalars, vectors, and matrices."
166 */
167 if (!type_a->is_numeric() || !type_b->is_numeric()) {
168 _mesa_glsl_error(loc, state,
169 "Operands to arithmetic operators must be numeric");
170 return glsl_type::error_type;
171 }
172
173
174 /* "If one operand is floating-point based and the other is
175 * not, then the conversions from Section 4.1.10 "Implicit
176 * Conversions" are applied to the non-floating-point-based operand."
177 */
178 if (!apply_implicit_conversion(type_a, value_b, state)
179 && !apply_implicit_conversion(type_b, value_a, state)) {
180 _mesa_glsl_error(loc, state,
181 "Could not implicitly convert operands to "
182 "arithmetic operator");
183 return glsl_type::error_type;
184 }
185 type_a = value_a->type;
186 type_b = value_b->type;
187
188 /* "If the operands are integer types, they must both be signed or
189 * both be unsigned."
190 *
191 * From this rule and the preceeding conversion it can be inferred that
192 * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
193 * The is_numeric check above already filtered out the case where either
194 * type is not one of these, so now the base types need only be tested for
195 * equality.
196 */
197 if (type_a->base_type != type_b->base_type) {
198 _mesa_glsl_error(loc, state,
199 "base type mismatch for arithmetic operator");
200 return glsl_type::error_type;
201 }
202
203 /* "All arithmetic binary operators result in the same fundamental type
204 * (signed integer, unsigned integer, or floating-point) as the
205 * operands they operate on, after operand type conversion. After
206 * conversion, the following cases are valid
207 *
208 * * The two operands are scalars. In this case the operation is
209 * applied, resulting in a scalar."
210 */
211 if (type_a->is_scalar() && type_b->is_scalar())
212 return type_a;
213
214 /* "* One operand is a scalar, and the other is a vector or matrix.
215 * In this case, the scalar operation is applied independently to each
216 * component of the vector or matrix, resulting in the same size
217 * vector or matrix."
218 */
219 if (type_a->is_scalar()) {
220 if (!type_b->is_scalar())
221 return type_b;
222 } else if (type_b->is_scalar()) {
223 return type_a;
224 }
225
226 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
227 * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
228 * handled.
229 */
230 assert(!type_a->is_scalar());
231 assert(!type_b->is_scalar());
232
233 /* "* The two operands are vectors of the same size. In this case, the
234 * operation is done component-wise resulting in the same size
235 * vector."
236 */
237 if (type_a->is_vector() && type_b->is_vector()) {
238 if (type_a == type_b) {
239 return type_a;
240 } else {
241 _mesa_glsl_error(loc, state,
242 "vector size mismatch for arithmetic operator");
243 return glsl_type::error_type;
244 }
245 }
246
247 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
248 * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
249 * <vector, vector> have been handled. At least one of the operands must
250 * be matrix. Further, since there are no integer matrix types, the base
251 * type of both operands must be float.
252 */
253 assert(type_a->is_matrix() || type_b->is_matrix());
254 assert(type_a->base_type == GLSL_TYPE_FLOAT);
255 assert(type_b->base_type == GLSL_TYPE_FLOAT);
256
257 /* "* The operator is add (+), subtract (-), or divide (/), and the
258 * operands are matrices with the same number of rows and the same
259 * number of columns. In this case, the operation is done component-
260 * wise resulting in the same size matrix."
261 * * The operator is multiply (*), where both operands are matrices or
262 * one operand is a vector and the other a matrix. A right vector
263 * operand is treated as a column vector and a left vector operand as a
264 * row vector. In all these cases, it is required that the number of
265 * columns of the left operand is equal to the number of rows of the
266 * right operand. Then, the multiply (*) operation does a linear
267 * algebraic multiply, yielding an object that has the same number of
268 * rows as the left operand and the same number of columns as the right
269 * operand. Section 5.10 "Vector and Matrix Operations" explains in
270 * more detail how vectors and matrices are operated on."
271 */
272 if (! multiply) {
273 if (type_a == type_b)
274 return type_a;
275 } else {
276 if (type_a->is_matrix() && type_b->is_matrix()) {
277 /* Matrix multiply. The columns of A must match the rows of B. Given
278 * the other previously tested constraints, this means the vector type
279 * of a row from A must be the same as the vector type of a column from
280 * B.
281 */
282 if (type_a->row_type() == type_b->column_type()) {
283 /* The resulting matrix has the number of columns of matrix B and
284 * the number of rows of matrix A. We get the row count of A by
285 * looking at the size of a vector that makes up a column. The
286 * transpose (size of a row) is done for B.
287 */
288 const glsl_type *const type =
289 glsl_type::get_instance(type_a->base_type,
290 type_a->column_type()->vector_elements,
291 type_b->row_type()->vector_elements);
292 assert(type != glsl_type::error_type);
293
294 return type;
295 }
296 } else if (type_a->is_matrix()) {
297 /* A is a matrix and B is a column vector. Columns of A must match
298 * rows of B. Given the other previously tested constraints, this
299 * means the vector type of a row from A must be the same as the
300 * vector the type of B.
301 */
302 if (type_a->row_type() == type_b) {
303 /* The resulting vector has a number of elements equal to
304 * the number of rows of matrix A. */
305 const glsl_type *const type =
306 glsl_type::get_instance(type_a->base_type,
307 type_a->column_type()->vector_elements,
308 1);
309 assert(type != glsl_type::error_type);
310
311 return type;
312 }
313 } else {
314 assert(type_b->is_matrix());
315
316 /* A is a row vector and B is a matrix. Columns of A must match rows
317 * of B. Given the other previously tested constraints, this means
318 * the type of A must be the same as the vector type of a column from
319 * B.
320 */
321 if (type_a == type_b->column_type()) {
322 /* The resulting vector has a number of elements equal to
323 * the number of columns of matrix B. */
324 const glsl_type *const type =
325 glsl_type::get_instance(type_a->base_type,
326 type_b->row_type()->vector_elements,
327 1);
328 assert(type != glsl_type::error_type);
329
330 return type;
331 }
332 }
333
334 _mesa_glsl_error(loc, state, "size mismatch for matrix multiplication");
335 return glsl_type::error_type;
336 }
337
338
339 /* "All other cases are illegal."
340 */
341 _mesa_glsl_error(loc, state, "type mismatch");
342 return glsl_type::error_type;
343 }
344
345
346 static const struct glsl_type *
347 unary_arithmetic_result_type(const struct glsl_type *type,
348 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
349 {
350 /* From GLSL 1.50 spec, page 57:
351 *
352 * "The arithmetic unary operators negate (-), post- and pre-increment
353 * and decrement (-- and ++) operate on integer or floating-point
354 * values (including vectors and matrices). All unary operators work
355 * component-wise on their operands. These result with the same type
356 * they operated on."
357 */
358 if (!type->is_numeric()) {
359 _mesa_glsl_error(loc, state,
360 "Operands to arithmetic operators must be numeric");
361 return glsl_type::error_type;
362 }
363
364 return type;
365 }
366
367 /**
368 * \brief Return the result type of a bit-logic operation.
369 *
370 * If the given types to the bit-logic operator are invalid, return
371 * glsl_type::error_type.
372 *
373 * \param type_a Type of LHS of bit-logic op
374 * \param type_b Type of RHS of bit-logic op
375 */
376 static const struct glsl_type *
377 bit_logic_result_type(const struct glsl_type *type_a,
378 const struct glsl_type *type_b,
379 ast_operators op,
380 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
381 {
382 if (state->language_version < 130) {
383 _mesa_glsl_error(loc, state, "bit operations require GLSL 1.30");
384 return glsl_type::error_type;
385 }
386
387 /* From page 50 (page 56 of PDF) of GLSL 1.30 spec:
388 *
389 * "The bitwise operators and (&), exclusive-or (^), and inclusive-or
390 * (|). The operands must be of type signed or unsigned integers or
391 * integer vectors."
392 */
393 if (!type_a->is_integer()) {
394 _mesa_glsl_error(loc, state, "LHS of `%s' must be an integer",
395 ast_expression::operator_string(op));
396 return glsl_type::error_type;
397 }
398 if (!type_b->is_integer()) {
399 _mesa_glsl_error(loc, state, "RHS of `%s' must be an integer",
400 ast_expression::operator_string(op));
401 return glsl_type::error_type;
402 }
403
404 /* "The fundamental types of the operands (signed or unsigned) must
405 * match,"
406 */
407 if (type_a->base_type != type_b->base_type) {
408 _mesa_glsl_error(loc, state, "operands of `%s' must have the same "
409 "base type", ast_expression::operator_string(op));
410 return glsl_type::error_type;
411 }
412
413 /* "The operands cannot be vectors of differing size." */
414 if (type_a->is_vector() &&
415 type_b->is_vector() &&
416 type_a->vector_elements != type_b->vector_elements) {
417 _mesa_glsl_error(loc, state, "operands of `%s' cannot be vectors of "
418 "different sizes", ast_expression::operator_string(op));
419 return glsl_type::error_type;
420 }
421
422 /* "If one operand is a scalar and the other a vector, the scalar is
423 * applied component-wise to the vector, resulting in the same type as
424 * the vector. The fundamental types of the operands [...] will be the
425 * resulting fundamental type."
426 */
427 if (type_a->is_scalar())
428 return type_b;
429 else
430 return type_a;
431 }
432
433 static const struct glsl_type *
434 modulus_result_type(const struct glsl_type *type_a,
435 const struct glsl_type *type_b,
436 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
437 {
438 /* From GLSL 1.50 spec, page 56:
439 * "The operator modulus (%) operates on signed or unsigned integers or
440 * integer vectors. The operand types must both be signed or both be
441 * unsigned."
442 */
443 if (!type_a->is_integer() || !type_b->is_integer()
444 || (type_a->base_type != type_b->base_type)) {
445 _mesa_glsl_error(loc, state, "type mismatch");
446 return glsl_type::error_type;
447 }
448
449 /* "The operands cannot be vectors of differing size. If one operand is
450 * a scalar and the other vector, then the scalar is applied component-
451 * wise to the vector, resulting in the same type as the vector. If both
452 * are vectors of the same size, the result is computed component-wise."
453 */
454 if (type_a->is_vector()) {
455 if (!type_b->is_vector()
456 || (type_a->vector_elements == type_b->vector_elements))
457 return type_a;
458 } else
459 return type_b;
460
461 /* "The operator modulus (%) is not defined for any other data types
462 * (non-integer types)."
463 */
464 _mesa_glsl_error(loc, state, "type mismatch");
465 return glsl_type::error_type;
466 }
467
468
469 static const struct glsl_type *
470 relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
471 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
472 {
473 const glsl_type *type_a = value_a->type;
474 const glsl_type *type_b = value_b->type;
475
476 /* From GLSL 1.50 spec, page 56:
477 * "The relational operators greater than (>), less than (<), greater
478 * than or equal (>=), and less than or equal (<=) operate only on
479 * scalar integer and scalar floating-point expressions."
480 */
481 if (!type_a->is_numeric()
482 || !type_b->is_numeric()
483 || !type_a->is_scalar()
484 || !type_b->is_scalar()) {
485 _mesa_glsl_error(loc, state,
486 "Operands to relational operators must be scalar and "
487 "numeric");
488 return glsl_type::error_type;
489 }
490
491 /* "Either the operands' types must match, or the conversions from
492 * Section 4.1.10 "Implicit Conversions" will be applied to the integer
493 * operand, after which the types must match."
494 */
495 if (!apply_implicit_conversion(type_a, value_b, state)
496 && !apply_implicit_conversion(type_b, value_a, state)) {
497 _mesa_glsl_error(loc, state,
498 "Could not implicitly convert operands to "
499 "relational operator");
500 return glsl_type::error_type;
501 }
502 type_a = value_a->type;
503 type_b = value_b->type;
504
505 if (type_a->base_type != type_b->base_type) {
506 _mesa_glsl_error(loc, state, "base type mismatch");
507 return glsl_type::error_type;
508 }
509
510 /* "The result is scalar Boolean."
511 */
512 return glsl_type::bool_type;
513 }
514
515 /**
516 * \brief Return the result type of a bit-shift operation.
517 *
518 * If the given types to the bit-shift operator are invalid, return
519 * glsl_type::error_type.
520 *
521 * \param type_a Type of LHS of bit-shift op
522 * \param type_b Type of RHS of bit-shift op
523 */
524 static const struct glsl_type *
525 shift_result_type(const struct glsl_type *type_a,
526 const struct glsl_type *type_b,
527 ast_operators op,
528 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
529 {
530 if (state->language_version < 130) {
531 _mesa_glsl_error(loc, state, "bit operations require GLSL 1.30");
532 return glsl_type::error_type;
533 }
534
535 /* From page 50 (page 56 of the PDF) of the GLSL 1.30 spec:
536 *
537 * "The shift operators (<<) and (>>). For both operators, the operands
538 * must be signed or unsigned integers or integer vectors. One operand
539 * can be signed while the other is unsigned."
540 */
541 if (!type_a->is_integer()) {
542 _mesa_glsl_error(loc, state, "LHS of operator %s must be an integer or "
543 "integer vector", ast_expression::operator_string(op));
544 return glsl_type::error_type;
545
546 }
547 if (!type_b->is_integer()) {
548 _mesa_glsl_error(loc, state, "RHS of operator %s must be an integer or "
549 "integer vector", ast_expression::operator_string(op));
550 return glsl_type::error_type;
551 }
552
553 /* "If the first operand is a scalar, the second operand has to be
554 * a scalar as well."
555 */
556 if (type_a->is_scalar() && !type_b->is_scalar()) {
557 _mesa_glsl_error(loc, state, "If the first operand of %s is scalar, the "
558 "second must be scalar as well",
559 ast_expression::operator_string(op));
560 return glsl_type::error_type;
561 }
562
563 /* If both operands are vectors, check that they have same number of
564 * elements.
565 */
566 if (type_a->is_vector() &&
567 type_b->is_vector() &&
568 type_a->vector_elements != type_b->vector_elements) {
569 _mesa_glsl_error(loc, state, "Vector operands to operator %s must "
570 "have same number of elements",
571 ast_expression::operator_string(op));
572 return glsl_type::error_type;
573 }
574
575 /* "In all cases, the resulting type will be the same type as the left
576 * operand."
577 */
578 return type_a;
579 }
580
581 /**
582 * Validates that a value can be assigned to a location with a specified type
583 *
584 * Validates that \c rhs can be assigned to some location. If the types are
585 * not an exact match but an automatic conversion is possible, \c rhs will be
586 * converted.
587 *
588 * \return
589 * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
590 * Otherwise the actual RHS to be assigned will be returned. This may be
591 * \c rhs, or it may be \c rhs after some type conversion.
592 *
593 * \note
594 * In addition to being used for assignments, this function is used to
595 * type-check return values.
596 */
597 ir_rvalue *
598 validate_assignment(struct _mesa_glsl_parse_state *state,
599 const glsl_type *lhs_type, ir_rvalue *rhs)
600 {
601 /* If there is already some error in the RHS, just return it. Anything
602 * else will lead to an avalanche of error message back to the user.
603 */
604 if (rhs->type->is_error())
605 return rhs;
606
607 /* If the types are identical, the assignment can trivially proceed.
608 */
609 if (rhs->type == lhs_type)
610 return rhs;
611
612 /* If the array element types are the same and the size of the LHS is zero,
613 * the assignment is okay.
614 *
615 * Note: Whole-array assignments are not permitted in GLSL 1.10, but this
616 * is handled by ir_dereference::is_lvalue.
617 */
618 if (lhs_type->is_array() && rhs->type->is_array()
619 && (lhs_type->element_type() == rhs->type->element_type())
620 && (lhs_type->array_size() == 0)) {
621 return rhs;
622 }
623
624 /* Check for implicit conversion in GLSL 1.20 */
625 if (apply_implicit_conversion(lhs_type, rhs, state)) {
626 if (rhs->type == lhs_type)
627 return rhs;
628 }
629
630 return NULL;
631 }
632
633 ir_rvalue *
634 do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state,
635 ir_rvalue *lhs, ir_rvalue *rhs,
636 YYLTYPE lhs_loc)
637 {
638 void *ctx = state;
639 bool error_emitted = (lhs->type->is_error() || rhs->type->is_error());
640
641 if (!error_emitted) {
642 if (!lhs->is_lvalue()) {
643 _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment");
644 error_emitted = true;
645 }
646
647 if (state->es_shader && lhs->type->is_array()) {
648 _mesa_glsl_error(&lhs_loc, state, "whole array assignment is not "
649 "allowed in GLSL ES 1.00.");
650 error_emitted = true;
651 }
652 }
653
654 ir_rvalue *new_rhs = validate_assignment(state, lhs->type, rhs);
655 if (new_rhs == NULL) {
656 _mesa_glsl_error(& lhs_loc, state, "type mismatch");
657 } else {
658 rhs = new_rhs;
659
660 /* If the LHS array was not declared with a size, it takes it size from
661 * the RHS. If the LHS is an l-value and a whole array, it must be a
662 * dereference of a variable. Any other case would require that the LHS
663 * is either not an l-value or not a whole array.
664 */
665 if (lhs->type->array_size() == 0) {
666 ir_dereference *const d = lhs->as_dereference();
667
668 assert(d != NULL);
669
670 ir_variable *const var = d->variable_referenced();
671
672 assert(var != NULL);
673
674 if (var->max_array_access >= unsigned(rhs->type->array_size())) {
675 /* FINISHME: This should actually log the location of the RHS. */
676 _mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to "
677 "previous access",
678 var->max_array_access);
679 }
680
681 var->type = glsl_type::get_array_instance(lhs->type->element_type(),
682 rhs->type->array_size());
683 d->type = var->type;
684 }
685 }
686
687 /* Most callers of do_assignment (assign, add_assign, pre_inc/dec,
688 * but not post_inc) need the converted assigned value as an rvalue
689 * to handle things like:
690 *
691 * i = j += 1;
692 *
693 * So we always just store the computed value being assigned to a
694 * temporary and return a deref of that temporary. If the rvalue
695 * ends up not being used, the temp will get copy-propagated out.
696 */
697 ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp",
698 ir_var_temporary);
699 ir_dereference_variable *deref_var = new(ctx) ir_dereference_variable(var);
700 instructions->push_tail(var);
701 instructions->push_tail(new(ctx) ir_assignment(deref_var,
702 rhs,
703 NULL));
704 deref_var = new(ctx) ir_dereference_variable(var);
705
706 if (!error_emitted)
707 instructions->push_tail(new(ctx) ir_assignment(lhs, deref_var, NULL));
708
709 return new(ctx) ir_dereference_variable(var);
710 }
711
712 static ir_rvalue *
713 get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue)
714 {
715 void *ctx = talloc_parent(lvalue);
716 ir_variable *var;
717
718 var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp",
719 ir_var_temporary);
720 instructions->push_tail(var);
721 var->mode = ir_var_auto;
722
723 instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
724 lvalue, NULL));
725
726 /* Once we've created this temporary, mark it read only so it's no
727 * longer considered an lvalue.
728 */
729 var->read_only = true;
730
731 return new(ctx) ir_dereference_variable(var);
732 }
733
734
735 ir_rvalue *
736 ast_node::hir(exec_list *instructions,
737 struct _mesa_glsl_parse_state *state)
738 {
739 (void) instructions;
740 (void) state;
741
742 return NULL;
743 }
744
745 static void
746 mark_whole_array_access(ir_rvalue *access)
747 {
748 ir_dereference_variable *deref = access->as_dereference_variable();
749
750 if (deref) {
751 deref->var->max_array_access = deref->type->length - 1;
752 }
753 }
754
755 static ir_rvalue *
756 do_comparison(void *mem_ctx, int operation, ir_rvalue *op0, ir_rvalue *op1)
757 {
758 int join_op;
759 ir_rvalue *cmp = NULL;
760
761 if (operation == ir_binop_all_equal)
762 join_op = ir_binop_logic_and;
763 else
764 join_op = ir_binop_logic_or;
765
766 switch (op0->type->base_type) {
767 case GLSL_TYPE_FLOAT:
768 case GLSL_TYPE_UINT:
769 case GLSL_TYPE_INT:
770 case GLSL_TYPE_BOOL:
771 return new(mem_ctx) ir_expression(operation, op0, op1);
772
773 case GLSL_TYPE_ARRAY: {
774 for (unsigned int i = 0; i < op0->type->length; i++) {
775 ir_rvalue *e0, *e1, *result;
776
777 e0 = new(mem_ctx) ir_dereference_array(op0->clone(mem_ctx, NULL),
778 new(mem_ctx) ir_constant(i));
779 e1 = new(mem_ctx) ir_dereference_array(op1->clone(mem_ctx, NULL),
780 new(mem_ctx) ir_constant(i));
781 result = do_comparison(mem_ctx, operation, e0, e1);
782
783 if (cmp) {
784 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
785 } else {
786 cmp = result;
787 }
788 }
789
790 mark_whole_array_access(op0);
791 mark_whole_array_access(op1);
792 break;
793 }
794
795 case GLSL_TYPE_STRUCT: {
796 for (unsigned int i = 0; i < op0->type->length; i++) {
797 ir_rvalue *e0, *e1, *result;
798 const char *field_name = op0->type->fields.structure[i].name;
799
800 e0 = new(mem_ctx) ir_dereference_record(op0->clone(mem_ctx, NULL),
801 field_name);
802 e1 = new(mem_ctx) ir_dereference_record(op1->clone(mem_ctx, NULL),
803 field_name);
804 result = do_comparison(mem_ctx, operation, e0, e1);
805
806 if (cmp) {
807 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
808 } else {
809 cmp = result;
810 }
811 }
812 break;
813 }
814
815 case GLSL_TYPE_ERROR:
816 case GLSL_TYPE_VOID:
817 case GLSL_TYPE_SAMPLER:
818 /* I assume a comparison of a struct containing a sampler just
819 * ignores the sampler present in the type.
820 */
821 break;
822
823 default:
824 assert(!"Should not get here.");
825 break;
826 }
827
828 if (cmp == NULL)
829 cmp = new(mem_ctx) ir_constant(true);
830
831 return cmp;
832 }
833
834 ir_rvalue *
835 ast_expression::hir(exec_list *instructions,
836 struct _mesa_glsl_parse_state *state)
837 {
838 void *ctx = state;
839 static const int operations[AST_NUM_OPERATORS] = {
840 -1, /* ast_assign doesn't convert to ir_expression. */
841 -1, /* ast_plus doesn't convert to ir_expression. */
842 ir_unop_neg,
843 ir_binop_add,
844 ir_binop_sub,
845 ir_binop_mul,
846 ir_binop_div,
847 ir_binop_mod,
848 ir_binop_lshift,
849 ir_binop_rshift,
850 ir_binop_less,
851 ir_binop_greater,
852 ir_binop_lequal,
853 ir_binop_gequal,
854 ir_binop_all_equal,
855 ir_binop_any_nequal,
856 ir_binop_bit_and,
857 ir_binop_bit_xor,
858 ir_binop_bit_or,
859 ir_unop_bit_not,
860 ir_binop_logic_and,
861 ir_binop_logic_xor,
862 ir_binop_logic_or,
863 ir_unop_logic_not,
864
865 /* Note: The following block of expression types actually convert
866 * to multiple IR instructions.
867 */
868 ir_binop_mul, /* ast_mul_assign */
869 ir_binop_div, /* ast_div_assign */
870 ir_binop_mod, /* ast_mod_assign */
871 ir_binop_add, /* ast_add_assign */
872 ir_binop_sub, /* ast_sub_assign */
873 ir_binop_lshift, /* ast_ls_assign */
874 ir_binop_rshift, /* ast_rs_assign */
875 ir_binop_bit_and, /* ast_and_assign */
876 ir_binop_bit_xor, /* ast_xor_assign */
877 ir_binop_bit_or, /* ast_or_assign */
878
879 -1, /* ast_conditional doesn't convert to ir_expression. */
880 ir_binop_add, /* ast_pre_inc. */
881 ir_binop_sub, /* ast_pre_dec. */
882 ir_binop_add, /* ast_post_inc. */
883 ir_binop_sub, /* ast_post_dec. */
884 -1, /* ast_field_selection doesn't conv to ir_expression. */
885 -1, /* ast_array_index doesn't convert to ir_expression. */
886 -1, /* ast_function_call doesn't conv to ir_expression. */
887 -1, /* ast_identifier doesn't convert to ir_expression. */
888 -1, /* ast_int_constant doesn't convert to ir_expression. */
889 -1, /* ast_uint_constant doesn't conv to ir_expression. */
890 -1, /* ast_float_constant doesn't conv to ir_expression. */
891 -1, /* ast_bool_constant doesn't conv to ir_expression. */
892 -1, /* ast_sequence doesn't convert to ir_expression. */
893 };
894 ir_rvalue *result = NULL;
895 ir_rvalue *op[3];
896 const struct glsl_type *type = glsl_type::error_type;
897 bool error_emitted = false;
898 YYLTYPE loc;
899
900 loc = this->get_location();
901
902 switch (this->oper) {
903 case ast_assign: {
904 op[0] = this->subexpressions[0]->hir(instructions, state);
905 op[1] = this->subexpressions[1]->hir(instructions, state);
906
907 result = do_assignment(instructions, state, op[0], op[1],
908 this->subexpressions[0]->get_location());
909 error_emitted = result->type->is_error();
910 type = result->type;
911 break;
912 }
913
914 case ast_plus:
915 op[0] = this->subexpressions[0]->hir(instructions, state);
916
917 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
918
919 error_emitted = type->is_error();
920
921 result = op[0];
922 break;
923
924 case ast_neg:
925 op[0] = this->subexpressions[0]->hir(instructions, state);
926
927 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
928
929 error_emitted = type->is_error();
930
931 result = new(ctx) ir_expression(operations[this->oper], type,
932 op[0], NULL);
933 break;
934
935 case ast_add:
936 case ast_sub:
937 case ast_mul:
938 case ast_div:
939 op[0] = this->subexpressions[0]->hir(instructions, state);
940 op[1] = this->subexpressions[1]->hir(instructions, state);
941
942 type = arithmetic_result_type(op[0], op[1],
943 (this->oper == ast_mul),
944 state, & loc);
945 error_emitted = type->is_error();
946
947 result = new(ctx) ir_expression(operations[this->oper], type,
948 op[0], op[1]);
949 break;
950
951 case ast_mod:
952 op[0] = this->subexpressions[0]->hir(instructions, state);
953 op[1] = this->subexpressions[1]->hir(instructions, state);
954
955 type = modulus_result_type(op[0]->type, op[1]->type, state, & loc);
956
957 assert(operations[this->oper] == ir_binop_mod);
958
959 result = new(ctx) ir_expression(operations[this->oper], type,
960 op[0], op[1]);
961 error_emitted = type->is_error();
962 break;
963
964 case ast_lshift:
965 case ast_rshift:
966 if (state->language_version < 130) {
967 _mesa_glsl_error(&loc, state, "operator %s requires GLSL 1.30",
968 operator_string(this->oper));
969 error_emitted = true;
970 }
971
972 op[0] = this->subexpressions[0]->hir(instructions, state);
973 op[1] = this->subexpressions[1]->hir(instructions, state);
974 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
975 &loc);
976 result = new(ctx) ir_expression(operations[this->oper], type,
977 op[0], op[1]);
978 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
979 break;
980
981 case ast_less:
982 case ast_greater:
983 case ast_lequal:
984 case ast_gequal:
985 op[0] = this->subexpressions[0]->hir(instructions, state);
986 op[1] = this->subexpressions[1]->hir(instructions, state);
987
988 type = relational_result_type(op[0], op[1], state, & loc);
989
990 /* The relational operators must either generate an error or result
991 * in a scalar boolean. See page 57 of the GLSL 1.50 spec.
992 */
993 assert(type->is_error()
994 || ((type->base_type == GLSL_TYPE_BOOL)
995 && type->is_scalar()));
996
997 result = new(ctx) ir_expression(operations[this->oper], type,
998 op[0], op[1]);
999 error_emitted = type->is_error();
1000 break;
1001
1002 case ast_nequal:
1003 case ast_equal:
1004 op[0] = this->subexpressions[0]->hir(instructions, state);
1005 op[1] = this->subexpressions[1]->hir(instructions, state);
1006
1007 /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
1008 *
1009 * "The equality operators equal (==), and not equal (!=)
1010 * operate on all types. They result in a scalar Boolean. If
1011 * the operand types do not match, then there must be a
1012 * conversion from Section 4.1.10 "Implicit Conversions"
1013 * applied to one operand that can make them match, in which
1014 * case this conversion is done."
1015 */
1016 if ((!apply_implicit_conversion(op[0]->type, op[1], state)
1017 && !apply_implicit_conversion(op[1]->type, op[0], state))
1018 || (op[0]->type != op[1]->type)) {
1019 _mesa_glsl_error(& loc, state, "operands of `%s' must have the same "
1020 "type", (this->oper == ast_equal) ? "==" : "!=");
1021 error_emitted = true;
1022 } else if ((state->language_version <= 110)
1023 && (op[0]->type->is_array() || op[1]->type->is_array())) {
1024 _mesa_glsl_error(& loc, state, "array comparisons forbidden in "
1025 "GLSL 1.10");
1026 error_emitted = true;
1027 }
1028
1029 result = do_comparison(ctx, operations[this->oper], op[0], op[1]);
1030 type = glsl_type::bool_type;
1031
1032 assert(error_emitted || (result->type == glsl_type::bool_type));
1033 break;
1034
1035 case ast_bit_and:
1036 case ast_bit_xor:
1037 case ast_bit_or:
1038 op[0] = this->subexpressions[0]->hir(instructions, state);
1039 op[1] = this->subexpressions[1]->hir(instructions, state);
1040 type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
1041 state, &loc);
1042 result = new(ctx) ir_expression(operations[this->oper], type,
1043 op[0], op[1]);
1044 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1045 break;
1046
1047 case ast_bit_not:
1048 op[0] = this->subexpressions[0]->hir(instructions, state);
1049
1050 if (state->language_version < 130) {
1051 _mesa_glsl_error(&loc, state, "bit-wise operations require GLSL 1.30");
1052 error_emitted = true;
1053 }
1054
1055 if (!op[0]->type->is_integer()) {
1056 _mesa_glsl_error(&loc, state, "operand of `~' must be an integer");
1057 error_emitted = true;
1058 }
1059
1060 type = op[0]->type;
1061 result = new(ctx) ir_expression(ir_unop_bit_not, type, op[0], NULL);
1062 break;
1063
1064 case ast_logic_and: {
1065 op[0] = this->subexpressions[0]->hir(instructions, state);
1066
1067 if (!op[0]->type->is_boolean() || !op[0]->type->is_scalar()) {
1068 YYLTYPE loc = this->subexpressions[0]->get_location();
1069
1070 _mesa_glsl_error(& loc, state, "LHS of `%s' must be scalar boolean",
1071 operator_string(this->oper));
1072 error_emitted = true;
1073 }
1074
1075 ir_constant *op0_const = op[0]->constant_expression_value();
1076 if (op0_const) {
1077 if (op0_const->value.b[0]) {
1078 op[1] = this->subexpressions[1]->hir(instructions, state);
1079
1080 if (!op[1]->type->is_boolean() || !op[1]->type->is_scalar()) {
1081 YYLTYPE loc = this->subexpressions[1]->get_location();
1082
1083 _mesa_glsl_error(& loc, state,
1084 "RHS of `%s' must be scalar boolean",
1085 operator_string(this->oper));
1086 error_emitted = true;
1087 }
1088 result = op[1];
1089 } else {
1090 result = op0_const;
1091 }
1092 type = glsl_type::bool_type;
1093 } else {
1094 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1095 "and_tmp",
1096 ir_var_temporary);
1097 instructions->push_tail(tmp);
1098
1099 ir_if *const stmt = new(ctx) ir_if(op[0]);
1100 instructions->push_tail(stmt);
1101
1102 op[1] = this->subexpressions[1]->hir(&stmt->then_instructions, state);
1103
1104 if (!op[1]->type->is_boolean() || !op[1]->type->is_scalar()) {
1105 YYLTYPE loc = this->subexpressions[1]->get_location();
1106
1107 _mesa_glsl_error(& loc, state,
1108 "RHS of `%s' must be scalar boolean",
1109 operator_string(this->oper));
1110 error_emitted = true;
1111 }
1112
1113 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1114 ir_assignment *const then_assign =
1115 new(ctx) ir_assignment(then_deref, op[1], NULL);
1116 stmt->then_instructions.push_tail(then_assign);
1117
1118 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1119 ir_assignment *const else_assign =
1120 new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false), NULL);
1121 stmt->else_instructions.push_tail(else_assign);
1122
1123 result = new(ctx) ir_dereference_variable(tmp);
1124 type = tmp->type;
1125 }
1126 break;
1127 }
1128
1129 case ast_logic_or: {
1130 op[0] = this->subexpressions[0]->hir(instructions, state);
1131
1132 if (!op[0]->type->is_boolean() || !op[0]->type->is_scalar()) {
1133 YYLTYPE loc = this->subexpressions[0]->get_location();
1134
1135 _mesa_glsl_error(& loc, state, "LHS of `%s' must be scalar boolean",
1136 operator_string(this->oper));
1137 error_emitted = true;
1138 }
1139
1140 ir_constant *op0_const = op[0]->constant_expression_value();
1141 if (op0_const) {
1142 if (op0_const->value.b[0]) {
1143 result = op0_const;
1144 } else {
1145 op[1] = this->subexpressions[1]->hir(instructions, state);
1146
1147 if (!op[1]->type->is_boolean() || !op[1]->type->is_scalar()) {
1148 YYLTYPE loc = this->subexpressions[1]->get_location();
1149
1150 _mesa_glsl_error(& loc, state,
1151 "RHS of `%s' must be scalar boolean",
1152 operator_string(this->oper));
1153 error_emitted = true;
1154 }
1155 result = op[1];
1156 }
1157 type = glsl_type::bool_type;
1158 } else {
1159 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1160 "or_tmp",
1161 ir_var_temporary);
1162 instructions->push_tail(tmp);
1163
1164 ir_if *const stmt = new(ctx) ir_if(op[0]);
1165 instructions->push_tail(stmt);
1166
1167 op[1] = this->subexpressions[1]->hir(&stmt->else_instructions, state);
1168
1169 if (!op[1]->type->is_boolean() || !op[1]->type->is_scalar()) {
1170 YYLTYPE loc = this->subexpressions[1]->get_location();
1171
1172 _mesa_glsl_error(& loc, state, "RHS of `%s' must be scalar boolean",
1173 operator_string(this->oper));
1174 error_emitted = true;
1175 }
1176
1177 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1178 ir_assignment *const then_assign =
1179 new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true), NULL);
1180 stmt->then_instructions.push_tail(then_assign);
1181
1182 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1183 ir_assignment *const else_assign =
1184 new(ctx) ir_assignment(else_deref, op[1], NULL);
1185 stmt->else_instructions.push_tail(else_assign);
1186
1187 result = new(ctx) ir_dereference_variable(tmp);
1188 type = tmp->type;
1189 }
1190 break;
1191 }
1192
1193 case ast_logic_xor:
1194 op[0] = this->subexpressions[0]->hir(instructions, state);
1195 op[1] = this->subexpressions[1]->hir(instructions, state);
1196
1197
1198 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1199 op[0], op[1]);
1200 type = glsl_type::bool_type;
1201 break;
1202
1203 case ast_logic_not:
1204 op[0] = this->subexpressions[0]->hir(instructions, state);
1205
1206 if (!op[0]->type->is_boolean() || !op[0]->type->is_scalar()) {
1207 YYLTYPE loc = this->subexpressions[0]->get_location();
1208
1209 _mesa_glsl_error(& loc, state,
1210 "operand of `!' must be scalar boolean");
1211 error_emitted = true;
1212 }
1213
1214 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1215 op[0], NULL);
1216 type = glsl_type::bool_type;
1217 break;
1218
1219 case ast_mul_assign:
1220 case ast_div_assign:
1221 case ast_add_assign:
1222 case ast_sub_assign: {
1223 op[0] = this->subexpressions[0]->hir(instructions, state);
1224 op[1] = this->subexpressions[1]->hir(instructions, state);
1225
1226 type = arithmetic_result_type(op[0], op[1],
1227 (this->oper == ast_mul_assign),
1228 state, & loc);
1229
1230 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1231 op[0], op[1]);
1232
1233 result = do_assignment(instructions, state,
1234 op[0]->clone(ctx, NULL), temp_rhs,
1235 this->subexpressions[0]->get_location());
1236 type = result->type;
1237 error_emitted = (op[0]->type->is_error());
1238
1239 /* GLSL 1.10 does not allow array assignment. However, we don't have to
1240 * explicitly test for this because none of the binary expression
1241 * operators allow array operands either.
1242 */
1243
1244 break;
1245 }
1246
1247 case ast_mod_assign: {
1248 op[0] = this->subexpressions[0]->hir(instructions, state);
1249 op[1] = this->subexpressions[1]->hir(instructions, state);
1250
1251 type = modulus_result_type(op[0]->type, op[1]->type, state, & loc);
1252
1253 assert(operations[this->oper] == ir_binop_mod);
1254
1255 ir_rvalue *temp_rhs;
1256 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1257 op[0], op[1]);
1258
1259 result = do_assignment(instructions, state,
1260 op[0]->clone(ctx, NULL), temp_rhs,
1261 this->subexpressions[0]->get_location());
1262 type = result->type;
1263 error_emitted = type->is_error();
1264 break;
1265 }
1266
1267 case ast_ls_assign:
1268 case ast_rs_assign: {
1269 op[0] = this->subexpressions[0]->hir(instructions, state);
1270 op[1] = this->subexpressions[1]->hir(instructions, state);
1271 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1272 &loc);
1273 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1274 type, op[0], op[1]);
1275 result = do_assignment(instructions, state, op[0]->clone(ctx, NULL),
1276 temp_rhs,
1277 this->subexpressions[0]->get_location());
1278 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1279 break;
1280 }
1281
1282 case ast_and_assign:
1283 case ast_xor_assign:
1284 case ast_or_assign: {
1285 op[0] = this->subexpressions[0]->hir(instructions, state);
1286 op[1] = this->subexpressions[1]->hir(instructions, state);
1287 type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
1288 state, &loc);
1289 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1290 type, op[0], op[1]);
1291 result = do_assignment(instructions, state, op[0]->clone(ctx, NULL),
1292 temp_rhs,
1293 this->subexpressions[0]->get_location());
1294 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1295 break;
1296 }
1297
1298 case ast_conditional: {
1299 op[0] = this->subexpressions[0]->hir(instructions, state);
1300
1301 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1302 *
1303 * "The ternary selection operator (?:). It operates on three
1304 * expressions (exp1 ? exp2 : exp3). This operator evaluates the
1305 * first expression, which must result in a scalar Boolean."
1306 */
1307 if (!op[0]->type->is_boolean() || !op[0]->type->is_scalar()) {
1308 YYLTYPE loc = this->subexpressions[0]->get_location();
1309
1310 _mesa_glsl_error(& loc, state, "?: condition must be scalar boolean");
1311 error_emitted = true;
1312 }
1313
1314 /* The :? operator is implemented by generating an anonymous temporary
1315 * followed by an if-statement. The last instruction in each branch of
1316 * the if-statement assigns a value to the anonymous temporary. This
1317 * temporary is the r-value of the expression.
1318 */
1319 exec_list then_instructions;
1320 exec_list else_instructions;
1321
1322 op[1] = this->subexpressions[1]->hir(&then_instructions, state);
1323 op[2] = this->subexpressions[2]->hir(&else_instructions, state);
1324
1325 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1326 *
1327 * "The second and third expressions can be any type, as
1328 * long their types match, or there is a conversion in
1329 * Section 4.1.10 "Implicit Conversions" that can be applied
1330 * to one of the expressions to make their types match. This
1331 * resulting matching type is the type of the entire
1332 * expression."
1333 */
1334 if ((!apply_implicit_conversion(op[1]->type, op[2], state)
1335 && !apply_implicit_conversion(op[2]->type, op[1], state))
1336 || (op[1]->type != op[2]->type)) {
1337 YYLTYPE loc = this->subexpressions[1]->get_location();
1338
1339 _mesa_glsl_error(& loc, state, "Second and third operands of ?: "
1340 "operator must have matching types.");
1341 error_emitted = true;
1342 type = glsl_type::error_type;
1343 } else {
1344 type = op[1]->type;
1345 }
1346
1347 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1348 *
1349 * "The second and third expressions must be the same type, but can
1350 * be of any type other than an array."
1351 */
1352 if ((state->language_version <= 110) && type->is_array()) {
1353 _mesa_glsl_error(& loc, state, "Second and third operands of ?: "
1354 "operator must not be arrays.");
1355 error_emitted = true;
1356 }
1357
1358 ir_constant *cond_val = op[0]->constant_expression_value();
1359 ir_constant *then_val = op[1]->constant_expression_value();
1360 ir_constant *else_val = op[2]->constant_expression_value();
1361
1362 if (then_instructions.is_empty()
1363 && else_instructions.is_empty()
1364 && (cond_val != NULL) && (then_val != NULL) && (else_val != NULL)) {
1365 result = (cond_val->value.b[0]) ? then_val : else_val;
1366 } else {
1367 ir_variable *const tmp =
1368 new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary);
1369 instructions->push_tail(tmp);
1370
1371 ir_if *const stmt = new(ctx) ir_if(op[0]);
1372 instructions->push_tail(stmt);
1373
1374 then_instructions.move_nodes_to(& stmt->then_instructions);
1375 ir_dereference *const then_deref =
1376 new(ctx) ir_dereference_variable(tmp);
1377 ir_assignment *const then_assign =
1378 new(ctx) ir_assignment(then_deref, op[1], NULL);
1379 stmt->then_instructions.push_tail(then_assign);
1380
1381 else_instructions.move_nodes_to(& stmt->else_instructions);
1382 ir_dereference *const else_deref =
1383 new(ctx) ir_dereference_variable(tmp);
1384 ir_assignment *const else_assign =
1385 new(ctx) ir_assignment(else_deref, op[2], NULL);
1386 stmt->else_instructions.push_tail(else_assign);
1387
1388 result = new(ctx) ir_dereference_variable(tmp);
1389 }
1390 break;
1391 }
1392
1393 case ast_pre_inc:
1394 case ast_pre_dec: {
1395 op[0] = this->subexpressions[0]->hir(instructions, state);
1396 if (op[0]->type->base_type == GLSL_TYPE_FLOAT)
1397 op[1] = new(ctx) ir_constant(1.0f);
1398 else
1399 op[1] = new(ctx) ir_constant(1);
1400
1401 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1402
1403 ir_rvalue *temp_rhs;
1404 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1405 op[0], op[1]);
1406
1407 result = do_assignment(instructions, state,
1408 op[0]->clone(ctx, NULL), temp_rhs,
1409 this->subexpressions[0]->get_location());
1410 type = result->type;
1411 error_emitted = op[0]->type->is_error();
1412 break;
1413 }
1414
1415 case ast_post_inc:
1416 case ast_post_dec: {
1417 op[0] = this->subexpressions[0]->hir(instructions, state);
1418 if (op[0]->type->base_type == GLSL_TYPE_FLOAT)
1419 op[1] = new(ctx) ir_constant(1.0f);
1420 else
1421 op[1] = new(ctx) ir_constant(1);
1422
1423 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1424
1425 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1426
1427 ir_rvalue *temp_rhs;
1428 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1429 op[0], op[1]);
1430
1431 /* Get a temporary of a copy of the lvalue before it's modified.
1432 * This may get thrown away later.
1433 */
1434 result = get_lvalue_copy(instructions, op[0]->clone(ctx, NULL));
1435
1436 (void)do_assignment(instructions, state,
1437 op[0]->clone(ctx, NULL), temp_rhs,
1438 this->subexpressions[0]->get_location());
1439
1440 type = result->type;
1441 error_emitted = op[0]->type->is_error();
1442 break;
1443 }
1444
1445 case ast_field_selection:
1446 result = _mesa_ast_field_selection_to_hir(this, instructions, state);
1447 type = result->type;
1448 break;
1449
1450 case ast_array_index: {
1451 YYLTYPE index_loc = subexpressions[1]->get_location();
1452
1453 op[0] = subexpressions[0]->hir(instructions, state);
1454 op[1] = subexpressions[1]->hir(instructions, state);
1455
1456 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1457
1458 ir_rvalue *const array = op[0];
1459
1460 result = new(ctx) ir_dereference_array(op[0], op[1]);
1461
1462 /* Do not use op[0] after this point. Use array.
1463 */
1464 op[0] = NULL;
1465
1466
1467 if (error_emitted)
1468 break;
1469
1470 if (!array->type->is_array()
1471 && !array->type->is_matrix()
1472 && !array->type->is_vector()) {
1473 _mesa_glsl_error(& index_loc, state,
1474 "cannot dereference non-array / non-matrix / "
1475 "non-vector");
1476 error_emitted = true;
1477 }
1478
1479 if (!op[1]->type->is_integer()) {
1480 _mesa_glsl_error(& index_loc, state,
1481 "array index must be integer type");
1482 error_emitted = true;
1483 } else if (!op[1]->type->is_scalar()) {
1484 _mesa_glsl_error(& index_loc, state,
1485 "array index must be scalar");
1486 error_emitted = true;
1487 }
1488
1489 /* If the array index is a constant expression and the array has a
1490 * declared size, ensure that the access is in-bounds. If the array
1491 * index is not a constant expression, ensure that the array has a
1492 * declared size.
1493 */
1494 ir_constant *const const_index = op[1]->constant_expression_value();
1495 if (const_index != NULL) {
1496 const int idx = const_index->value.i[0];
1497 const char *type_name;
1498 unsigned bound = 0;
1499
1500 if (array->type->is_matrix()) {
1501 type_name = "matrix";
1502 } else if (array->type->is_vector()) {
1503 type_name = "vector";
1504 } else {
1505 type_name = "array";
1506 }
1507
1508 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec:
1509 *
1510 * "It is illegal to declare an array with a size, and then
1511 * later (in the same shader) index the same array with an
1512 * integral constant expression greater than or equal to the
1513 * declared size. It is also illegal to index an array with a
1514 * negative constant expression."
1515 */
1516 if (array->type->is_matrix()) {
1517 if (array->type->row_type()->vector_elements <= idx) {
1518 bound = array->type->row_type()->vector_elements;
1519 }
1520 } else if (array->type->is_vector()) {
1521 if (array->type->vector_elements <= idx) {
1522 bound = array->type->vector_elements;
1523 }
1524 } else {
1525 if ((array->type->array_size() > 0)
1526 && (array->type->array_size() <= idx)) {
1527 bound = array->type->array_size();
1528 }
1529 }
1530
1531 if (bound > 0) {
1532 _mesa_glsl_error(& loc, state, "%s index must be < %u",
1533 type_name, bound);
1534 error_emitted = true;
1535 } else if (idx < 0) {
1536 _mesa_glsl_error(& loc, state, "%s index must be >= 0",
1537 type_name);
1538 error_emitted = true;
1539 }
1540
1541 if (array->type->is_array()) {
1542 /* If the array is a variable dereference, it dereferences the
1543 * whole array, by definition. Use this to get the variable.
1544 *
1545 * FINISHME: Should some methods for getting / setting / testing
1546 * FINISHME: array access limits be added to ir_dereference?
1547 */
1548 ir_variable *const v = array->whole_variable_referenced();
1549 if ((v != NULL) && (unsigned(idx) > v->max_array_access))
1550 v->max_array_access = idx;
1551 }
1552 } else if (array->type->array_size() == 0) {
1553 _mesa_glsl_error(&loc, state, "unsized array index must be constant");
1554 } else {
1555 if (array->type->is_array()) {
1556 /* whole_variable_referenced can return NULL if the array is a
1557 * member of a structure. In this case it is safe to not update
1558 * the max_array_access field because it is never used for fields
1559 * of structures.
1560 */
1561 ir_variable *v = array->whole_variable_referenced();
1562 if (v != NULL)
1563 v->max_array_access = array->type->array_size();
1564 }
1565 }
1566
1567 /* From page 23 (29 of the PDF) of the GLSL 1.30 spec:
1568 *
1569 * "Samplers aggregated into arrays within a shader (using square
1570 * brackets [ ]) can only be indexed with integral constant
1571 * expressions [...]."
1572 *
1573 * This restriction was added in GLSL 1.30. Shaders using earlier version
1574 * of the language should not be rejected by the compiler front-end for
1575 * using this construct. This allows useful things such as using a loop
1576 * counter as the index to an array of samplers. If the loop in unrolled,
1577 * the code should compile correctly. Instead, emit a warning.
1578 */
1579 if (array->type->is_array() &&
1580 array->type->element_type()->is_sampler() &&
1581 const_index == NULL) {
1582
1583 if (state->language_version == 100) {
1584 _mesa_glsl_warning(&loc, state,
1585 "sampler arrays indexed with non-constant "
1586 "expressions is optional in GLSL ES 1.00");
1587 } else if (state->language_version < 130) {
1588 _mesa_glsl_warning(&loc, state,
1589 "sampler arrays indexed with non-constant "
1590 "expressions is forbidden in GLSL 1.30 and "
1591 "later");
1592 } else {
1593 _mesa_glsl_error(&loc, state,
1594 "sampler arrays indexed with non-constant "
1595 "expressions is forbidden in GLSL 1.30 and "
1596 "later");
1597 error_emitted = true;
1598 }
1599 }
1600
1601 if (error_emitted)
1602 result->type = glsl_type::error_type;
1603
1604 type = result->type;
1605 break;
1606 }
1607
1608 case ast_function_call:
1609 /* Should *NEVER* get here. ast_function_call should always be handled
1610 * by ast_function_expression::hir.
1611 */
1612 assert(0);
1613 break;
1614
1615 case ast_identifier: {
1616 /* ast_identifier can appear several places in a full abstract syntax
1617 * tree. This particular use must be at location specified in the grammar
1618 * as 'variable_identifier'.
1619 */
1620 ir_variable *var =
1621 state->symbols->get_variable(this->primary_expression.identifier);
1622
1623 result = new(ctx) ir_dereference_variable(var);
1624
1625 if (var != NULL) {
1626 var->used = true;
1627 type = result->type;
1628 } else {
1629 _mesa_glsl_error(& loc, state, "`%s' undeclared",
1630 this->primary_expression.identifier);
1631
1632 error_emitted = true;
1633 }
1634 break;
1635 }
1636
1637 case ast_int_constant:
1638 type = glsl_type::int_type;
1639 result = new(ctx) ir_constant(this->primary_expression.int_constant);
1640 break;
1641
1642 case ast_uint_constant:
1643 type = glsl_type::uint_type;
1644 result = new(ctx) ir_constant(this->primary_expression.uint_constant);
1645 break;
1646
1647 case ast_float_constant:
1648 type = glsl_type::float_type;
1649 result = new(ctx) ir_constant(this->primary_expression.float_constant);
1650 break;
1651
1652 case ast_bool_constant:
1653 type = glsl_type::bool_type;
1654 result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant));
1655 break;
1656
1657 case ast_sequence: {
1658 /* It should not be possible to generate a sequence in the AST without
1659 * any expressions in it.
1660 */
1661 assert(!this->expressions.is_empty());
1662
1663 /* The r-value of a sequence is the last expression in the sequence. If
1664 * the other expressions in the sequence do not have side-effects (and
1665 * therefore add instructions to the instruction list), they get dropped
1666 * on the floor.
1667 */
1668 foreach_list_typed (ast_node, ast, link, &this->expressions)
1669 result = ast->hir(instructions, state);
1670
1671 type = result->type;
1672
1673 /* Any errors should have already been emitted in the loop above.
1674 */
1675 error_emitted = true;
1676 break;
1677 }
1678 }
1679
1680 if (type->is_error() && !error_emitted)
1681 _mesa_glsl_error(& loc, state, "type mismatch");
1682
1683 return result;
1684 }
1685
1686
1687 ir_rvalue *
1688 ast_expression_statement::hir(exec_list *instructions,
1689 struct _mesa_glsl_parse_state *state)
1690 {
1691 /* It is possible to have expression statements that don't have an
1692 * expression. This is the solitary semicolon:
1693 *
1694 * for (i = 0; i < 5; i++)
1695 * ;
1696 *
1697 * In this case the expression will be NULL. Test for NULL and don't do
1698 * anything in that case.
1699 */
1700 if (expression != NULL)
1701 expression->hir(instructions, state);
1702
1703 /* Statements do not have r-values.
1704 */
1705 return NULL;
1706 }
1707
1708
1709 ir_rvalue *
1710 ast_compound_statement::hir(exec_list *instructions,
1711 struct _mesa_glsl_parse_state *state)
1712 {
1713 if (new_scope)
1714 state->symbols->push_scope();
1715
1716 foreach_list_typed (ast_node, ast, link, &this->statements)
1717 ast->hir(instructions, state);
1718
1719 if (new_scope)
1720 state->symbols->pop_scope();
1721
1722 /* Compound statements do not have r-values.
1723 */
1724 return NULL;
1725 }
1726
1727
1728 static const glsl_type *
1729 process_array_type(YYLTYPE *loc, const glsl_type *base, ast_node *array_size,
1730 struct _mesa_glsl_parse_state *state)
1731 {
1732 unsigned length = 0;
1733
1734 /* FINISHME: Reject delcarations of multidimensional arrays. */
1735
1736 if (array_size != NULL) {
1737 exec_list dummy_instructions;
1738 ir_rvalue *const ir = array_size->hir(& dummy_instructions, state);
1739 YYLTYPE loc = array_size->get_location();
1740
1741 /* FINISHME: Verify that the grammar forbids side-effects in array
1742 * FINISHME: sizes. i.e., 'vec4 [x = 12] data'
1743 */
1744 assert(dummy_instructions.is_empty());
1745
1746 if (ir != NULL) {
1747 if (!ir->type->is_integer()) {
1748 _mesa_glsl_error(& loc, state, "array size must be integer type");
1749 } else if (!ir->type->is_scalar()) {
1750 _mesa_glsl_error(& loc, state, "array size must be scalar type");
1751 } else {
1752 ir_constant *const size = ir->constant_expression_value();
1753
1754 if (size == NULL) {
1755 _mesa_glsl_error(& loc, state, "array size must be a "
1756 "constant valued expression");
1757 } else if (size->value.i[0] <= 0) {
1758 _mesa_glsl_error(& loc, state, "array size must be > 0");
1759 } else {
1760 assert(size->type == ir->type);
1761 length = size->value.u[0];
1762 }
1763 }
1764 }
1765 } else if (state->es_shader) {
1766 /* Section 10.17 of the GLSL ES 1.00 specification states that unsized
1767 * array declarations have been removed from the language.
1768 */
1769 _mesa_glsl_error(loc, state, "unsized array declarations are not "
1770 "allowed in GLSL ES 1.00.");
1771 }
1772
1773 return glsl_type::get_array_instance(base, length);
1774 }
1775
1776
1777 const glsl_type *
1778 ast_type_specifier::glsl_type(const char **name,
1779 struct _mesa_glsl_parse_state *state) const
1780 {
1781 const struct glsl_type *type;
1782
1783 type = state->symbols->get_type(this->type_name);
1784 *name = this->type_name;
1785
1786 if (this->is_array) {
1787 YYLTYPE loc = this->get_location();
1788 type = process_array_type(&loc, type, this->array_size, state);
1789 }
1790
1791 return type;
1792 }
1793
1794
1795 static void
1796 apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
1797 ir_variable *var,
1798 struct _mesa_glsl_parse_state *state,
1799 YYLTYPE *loc)
1800 {
1801 if (qual->flags.q.invariant) {
1802 if (var->used) {
1803 _mesa_glsl_error(loc, state,
1804 "variable `%s' may not be redeclared "
1805 "`invariant' after being used",
1806 var->name);
1807 } else {
1808 var->invariant = 1;
1809 }
1810 }
1811
1812 /* FINISHME: Mark 'in' variables at global scope as read-only. */
1813 if (qual->flags.q.constant || qual->flags.q.attribute
1814 || qual->flags.q.uniform
1815 || (qual->flags.q.varying && (state->target == fragment_shader)))
1816 var->read_only = 1;
1817
1818 if (qual->flags.q.centroid)
1819 var->centroid = 1;
1820
1821 if (qual->flags.q.attribute && state->target != vertex_shader) {
1822 var->type = glsl_type::error_type;
1823 _mesa_glsl_error(loc, state,
1824 "`attribute' variables may not be declared in the "
1825 "%s shader",
1826 _mesa_glsl_shader_target_name(state->target));
1827 }
1828
1829 /* From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
1830 *
1831 * "The varying qualifier can be used only with the data types
1832 * float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
1833 * these."
1834 */
1835 if (qual->flags.q.varying) {
1836 const glsl_type *non_array_type;
1837
1838 if (var->type && var->type->is_array())
1839 non_array_type = var->type->fields.array;
1840 else
1841 non_array_type = var->type;
1842
1843 if (non_array_type && non_array_type->base_type != GLSL_TYPE_FLOAT) {
1844 var->type = glsl_type::error_type;
1845 _mesa_glsl_error(loc, state,
1846 "varying variables must be of base type float");
1847 }
1848 }
1849
1850 /* If there is no qualifier that changes the mode of the variable, leave
1851 * the setting alone.
1852 */
1853 if (qual->flags.q.in && qual->flags.q.out)
1854 var->mode = ir_var_inout;
1855 else if (qual->flags.q.attribute || qual->flags.q.in
1856 || (qual->flags.q.varying && (state->target == fragment_shader)))
1857 var->mode = ir_var_in;
1858 else if (qual->flags.q.out
1859 || (qual->flags.q.varying && (state->target == vertex_shader)))
1860 var->mode = ir_var_out;
1861 else if (qual->flags.q.uniform)
1862 var->mode = ir_var_uniform;
1863
1864 if (state->all_invariant && (state->current_function == NULL)) {
1865 switch (state->target) {
1866 case vertex_shader:
1867 if (var->mode == ir_var_out)
1868 var->invariant = true;
1869 break;
1870 case geometry_shader:
1871 if ((var->mode == ir_var_in) || (var->mode == ir_var_out))
1872 var->invariant = true;
1873 break;
1874 case fragment_shader:
1875 if (var->mode == ir_var_in)
1876 var->invariant = true;
1877 break;
1878 }
1879 }
1880
1881 if (qual->flags.q.flat)
1882 var->interpolation = ir_var_flat;
1883 else if (qual->flags.q.noperspective)
1884 var->interpolation = ir_var_noperspective;
1885 else
1886 var->interpolation = ir_var_smooth;
1887
1888 var->pixel_center_integer = qual->flags.q.pixel_center_integer;
1889 var->origin_upper_left = qual->flags.q.origin_upper_left;
1890 if ((qual->flags.q.origin_upper_left || qual->flags.q.pixel_center_integer)
1891 && (strcmp(var->name, "gl_FragCoord") != 0)) {
1892 const char *const qual_string = (qual->flags.q.origin_upper_left)
1893 ? "origin_upper_left" : "pixel_center_integer";
1894
1895 _mesa_glsl_error(loc, state,
1896 "layout qualifier `%s' can only be applied to "
1897 "fragment shader input `gl_FragCoord'",
1898 qual_string);
1899 }
1900
1901 if (qual->flags.q.explicit_location) {
1902 const bool global_scope = (state->current_function == NULL);
1903 bool fail = false;
1904 const char *string = "";
1905
1906 /* In the vertex shader only shader inputs can be given explicit
1907 * locations.
1908 *
1909 * In the fragment shader only shader outputs can be given explicit
1910 * locations.
1911 */
1912 switch (state->target) {
1913 case vertex_shader:
1914 if (!global_scope || (var->mode != ir_var_in)) {
1915 fail = true;
1916 string = "input";
1917 }
1918 break;
1919
1920 case geometry_shader:
1921 _mesa_glsl_error(loc, state,
1922 "geometry shader variables cannot be given "
1923 "explicit locations\n");
1924 break;
1925
1926 case fragment_shader:
1927 if (!global_scope || (var->mode != ir_var_in)) {
1928 fail = true;
1929 string = "output";
1930 }
1931 break;
1932 };
1933
1934 if (fail) {
1935 _mesa_glsl_error(loc, state,
1936 "only %s shader %s variables can be given an "
1937 "explicit location\n",
1938 _mesa_glsl_shader_target_name(state->target),
1939 string);
1940 } else {
1941 var->explicit_location = true;
1942
1943 /* This bit of silliness is needed because invalid explicit locations
1944 * are supposed to be flagged during linking. Small negative values
1945 * biased by VERT_ATTRIB_GENERIC0 or FRAG_RESULT_DATA0 could alias
1946 * built-in values (e.g., -16+VERT_ATTRIB_GENERIC0 = VERT_ATTRIB_POS).
1947 * The linker needs to be able to differentiate these cases. This
1948 * ensures that negative values stay negative.
1949 */
1950 if (qual->location >= 0) {
1951 var->location = (state->target == vertex_shader)
1952 ? (qual->location + VERT_ATTRIB_GENERIC0)
1953 : (qual->location + FRAG_RESULT_DATA0);
1954 } else {
1955 var->location = qual->location;
1956 }
1957 }
1958 }
1959
1960 /* Does the declaration use the 'layout' keyword?
1961 */
1962 const bool uses_layout = qual->flags.q.pixel_center_integer
1963 || qual->flags.q.origin_upper_left
1964 || qual->flags.q.explicit_location;
1965
1966 /* Does the declaration use the deprecated 'attribute' or 'varying'
1967 * keywords?
1968 */
1969 const bool uses_deprecated_qualifier = qual->flags.q.attribute
1970 || qual->flags.q.varying;
1971
1972 /* Is the 'layout' keyword used with parameters that allow relaxed checking.
1973 * Many implementations of GL_ARB_fragment_coord_conventions_enable and some
1974 * implementations (only Mesa?) GL_ARB_explicit_attrib_location_enable
1975 * allowed the layout qualifier to be used with 'varying' and 'attribute'.
1976 * These extensions and all following extensions that add the 'layout'
1977 * keyword have been modified to require the use of 'in' or 'out'.
1978 *
1979 * The following extension do not allow the deprecated keywords:
1980 *
1981 * GL_AMD_conservative_depth
1982 * GL_ARB_gpu_shader5
1983 * GL_ARB_separate_shader_objects
1984 * GL_ARB_tesselation_shader
1985 * GL_ARB_transform_feedback3
1986 * GL_ARB_uniform_buffer_object
1987 *
1988 * It is unknown whether GL_EXT_shader_image_load_store or GL_NV_gpu_shader5
1989 * allow layout with the deprecated keywords.
1990 */
1991 const bool relaxed_layout_qualifier_checking =
1992 state->ARB_fragment_coord_conventions_enable;
1993
1994 if (uses_layout && uses_deprecated_qualifier) {
1995 if (relaxed_layout_qualifier_checking) {
1996 _mesa_glsl_warning(loc, state,
1997 "`layout' qualifier may not be used with "
1998 "`attribute' or `varying'");
1999 } else {
2000 _mesa_glsl_error(loc, state,
2001 "`layout' qualifier may not be used with "
2002 "`attribute' or `varying'");
2003 }
2004 }
2005
2006 if (var->type->is_array() && state->language_version != 110) {
2007 var->array_lvalue = true;
2008 }
2009 }
2010
2011
2012 ir_rvalue *
2013 ast_declarator_list::hir(exec_list *instructions,
2014 struct _mesa_glsl_parse_state *state)
2015 {
2016 void *ctx = state;
2017 const struct glsl_type *decl_type;
2018 const char *type_name = NULL;
2019 ir_rvalue *result = NULL;
2020 YYLTYPE loc = this->get_location();
2021
2022 /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec:
2023 *
2024 * "To ensure that a particular output variable is invariant, it is
2025 * necessary to use the invariant qualifier. It can either be used to
2026 * qualify a previously declared variable as being invariant
2027 *
2028 * invariant gl_Position; // make existing gl_Position be invariant"
2029 *
2030 * In these cases the parser will set the 'invariant' flag in the declarator
2031 * list, and the type will be NULL.
2032 */
2033 if (this->invariant) {
2034 assert(this->type == NULL);
2035
2036 if (state->current_function != NULL) {
2037 _mesa_glsl_error(& loc, state,
2038 "All uses of `invariant' keyword must be at global "
2039 "scope\n");
2040 }
2041
2042 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
2043 assert(!decl->is_array);
2044 assert(decl->array_size == NULL);
2045 assert(decl->initializer == NULL);
2046
2047 ir_variable *const earlier =
2048 state->symbols->get_variable(decl->identifier);
2049 if (earlier == NULL) {
2050 _mesa_glsl_error(& loc, state,
2051 "Undeclared variable `%s' cannot be marked "
2052 "invariant\n", decl->identifier);
2053 } else if ((state->target == vertex_shader)
2054 && (earlier->mode != ir_var_out)) {
2055 _mesa_glsl_error(& loc, state,
2056 "`%s' cannot be marked invariant, vertex shader "
2057 "outputs only\n", decl->identifier);
2058 } else if ((state->target == fragment_shader)
2059 && (earlier->mode != ir_var_in)) {
2060 _mesa_glsl_error(& loc, state,
2061 "`%s' cannot be marked invariant, fragment shader "
2062 "inputs only\n", decl->identifier);
2063 } else if (earlier->used) {
2064 _mesa_glsl_error(& loc, state,
2065 "variable `%s' may not be redeclared "
2066 "`invariant' after being used",
2067 earlier->name);
2068 } else {
2069 earlier->invariant = true;
2070 }
2071 }
2072
2073 /* Invariant redeclarations do not have r-values.
2074 */
2075 return NULL;
2076 }
2077
2078 assert(this->type != NULL);
2079 assert(!this->invariant);
2080
2081 /* The type specifier may contain a structure definition. Process that
2082 * before any of the variable declarations.
2083 */
2084 (void) this->type->specifier->hir(instructions, state);
2085
2086 decl_type = this->type->specifier->glsl_type(& type_name, state);
2087 if (this->declarations.is_empty()) {
2088 /* The only valid case where the declaration list can be empty is when
2089 * the declaration is setting the default precision of a built-in type
2090 * (e.g., 'precision highp vec4;').
2091 */
2092
2093 if (decl_type != NULL) {
2094 } else {
2095 _mesa_glsl_error(& loc, state, "incomplete declaration");
2096 }
2097 }
2098
2099 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
2100 const struct glsl_type *var_type;
2101 ir_variable *var;
2102
2103 /* FINISHME: Emit a warning if a variable declaration shadows a
2104 * FINISHME: declaration at a higher scope.
2105 */
2106
2107 if ((decl_type == NULL) || decl_type->is_void()) {
2108 if (type_name != NULL) {
2109 _mesa_glsl_error(& loc, state,
2110 "invalid type `%s' in declaration of `%s'",
2111 type_name, decl->identifier);
2112 } else {
2113 _mesa_glsl_error(& loc, state,
2114 "invalid type in declaration of `%s'",
2115 decl->identifier);
2116 }
2117 continue;
2118 }
2119
2120 if (decl->is_array) {
2121 var_type = process_array_type(&loc, decl_type, decl->array_size,
2122 state);
2123 } else {
2124 var_type = decl_type;
2125 }
2126
2127 var = new(ctx) ir_variable(var_type, decl->identifier, ir_var_auto);
2128
2129 /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
2130 *
2131 * "Global variables can only use the qualifiers const,
2132 * attribute, uni form, or varying. Only one may be
2133 * specified.
2134 *
2135 * Local variables can only use the qualifier const."
2136 *
2137 * This is relaxed in GLSL 1.30. It is also relaxed by any extension
2138 * that adds the 'layout' keyword.
2139 */
2140 if ((state->language_version < 130)
2141 && !state->ARB_explicit_attrib_location_enable
2142 && !state->ARB_fragment_coord_conventions_enable) {
2143 if (this->type->qualifier.flags.q.out) {
2144 _mesa_glsl_error(& loc, state,
2145 "`out' qualifier in declaration of `%s' "
2146 "only valid for function parameters in %s.",
2147 decl->identifier, state->version_string);
2148 }
2149 if (this->type->qualifier.flags.q.in) {
2150 _mesa_glsl_error(& loc, state,
2151 "`in' qualifier in declaration of `%s' "
2152 "only valid for function parameters in %s.",
2153 decl->identifier, state->version_string);
2154 }
2155 /* FINISHME: Test for other invalid qualifiers. */
2156 }
2157
2158 apply_type_qualifier_to_variable(& this->type->qualifier, var, state,
2159 & loc);
2160
2161 if (this->type->qualifier.flags.q.invariant) {
2162 if ((state->target == vertex_shader) && !(var->mode == ir_var_out ||
2163 var->mode == ir_var_inout)) {
2164 /* FINISHME: Note that this doesn't work for invariant on
2165 * a function signature outval
2166 */
2167 _mesa_glsl_error(& loc, state,
2168 "`%s' cannot be marked invariant, vertex shader "
2169 "outputs only\n", var->name);
2170 } else if ((state->target == fragment_shader) &&
2171 !(var->mode == ir_var_in || var->mode == ir_var_inout)) {
2172 /* FINISHME: Note that this doesn't work for invariant on
2173 * a function signature inval
2174 */
2175 _mesa_glsl_error(& loc, state,
2176 "`%s' cannot be marked invariant, fragment shader "
2177 "inputs only\n", var->name);
2178 }
2179 }
2180
2181 if (state->current_function != NULL) {
2182 const char *mode = NULL;
2183 const char *extra = "";
2184
2185 /* There is no need to check for 'inout' here because the parser will
2186 * only allow that in function parameter lists.
2187 */
2188 if (this->type->qualifier.flags.q.attribute) {
2189 mode = "attribute";
2190 } else if (this->type->qualifier.flags.q.uniform) {
2191 mode = "uniform";
2192 } else if (this->type->qualifier.flags.q.varying) {
2193 mode = "varying";
2194 } else if (this->type->qualifier.flags.q.in) {
2195 mode = "in";
2196 extra = " or in function parameter list";
2197 } else if (this->type->qualifier.flags.q.out) {
2198 mode = "out";
2199 extra = " or in function parameter list";
2200 }
2201
2202 if (mode) {
2203 _mesa_glsl_error(& loc, state,
2204 "%s variable `%s' must be declared at "
2205 "global scope%s",
2206 mode, var->name, extra);
2207 }
2208 } else if (var->mode == ir_var_in) {
2209 if (state->target == vertex_shader) {
2210 bool error_emitted = false;
2211
2212 /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
2213 *
2214 * "Vertex shader inputs can only be float, floating-point
2215 * vectors, matrices, signed and unsigned integers and integer
2216 * vectors. Vertex shader inputs can also form arrays of these
2217 * types, but not structures."
2218 *
2219 * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
2220 *
2221 * "Vertex shader inputs can only be float, floating-point
2222 * vectors, matrices, signed and unsigned integers and integer
2223 * vectors. They cannot be arrays or structures."
2224 *
2225 * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
2226 *
2227 * "The attribute qualifier can be used only with float,
2228 * floating-point vectors, and matrices. Attribute variables
2229 * cannot be declared as arrays or structures."
2230 */
2231 const glsl_type *check_type = var->type->is_array()
2232 ? var->type->fields.array : var->type;
2233
2234 switch (check_type->base_type) {
2235 case GLSL_TYPE_FLOAT:
2236 break;
2237 case GLSL_TYPE_UINT:
2238 case GLSL_TYPE_INT:
2239 if (state->language_version > 120)
2240 break;
2241 /* FALLTHROUGH */
2242 default:
2243 _mesa_glsl_error(& loc, state,
2244 "vertex shader input / attribute cannot have "
2245 "type %s`%s'",
2246 var->type->is_array() ? "array of " : "",
2247 check_type->name);
2248 error_emitted = true;
2249 }
2250
2251 if (!error_emitted && (state->language_version <= 130)
2252 && var->type->is_array()) {
2253 _mesa_glsl_error(& loc, state,
2254 "vertex shader input / attribute cannot have "
2255 "array type");
2256 error_emitted = true;
2257 }
2258 }
2259 }
2260
2261 /* Integer vertex outputs must be qualified with 'flat'.
2262 *
2263 * From section 4.3.6 of the GLSL 1.30 spec:
2264 * "If a vertex output is a signed or unsigned integer or integer
2265 * vector, then it must be qualified with the interpolation qualifier
2266 * flat."
2267 */
2268 if (state->language_version >= 130
2269 && state->target == vertex_shader
2270 && state->current_function == NULL
2271 && var->type->is_integer()
2272 && var->mode == ir_var_out
2273 && var->interpolation != ir_var_flat) {
2274
2275 _mesa_glsl_error(&loc, state, "If a vertex output is an integer, "
2276 "then it must be qualified with 'flat'");
2277 }
2278
2279
2280 /* Interpolation qualifiers cannot be applied to 'centroid' and
2281 * 'centroid varying'.
2282 *
2283 * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
2284 * "interpolation qualifiers may only precede the qualifiers in,
2285 * centroid in, out, or centroid out in a declaration. They do not apply
2286 * to the deprecated storage qualifiers varying or centroid varying."
2287 */
2288 if (state->language_version >= 130
2289 && this->type->qualifier.has_interpolation()
2290 && this->type->qualifier.flags.q.varying) {
2291
2292 const char *i = this->type->qualifier.interpolation_string();
2293 assert(i != NULL);
2294 const char *s;
2295 if (this->type->qualifier.flags.q.centroid)
2296 s = "centroid varying";
2297 else
2298 s = "varying";
2299
2300 _mesa_glsl_error(&loc, state,
2301 "qualifier '%s' cannot be applied to the "
2302 "deprecated storage qualifier '%s'", i, s);
2303 }
2304
2305
2306 /* Interpolation qualifiers can only apply to vertex shader outputs and
2307 * fragment shader inputs.
2308 *
2309 * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
2310 * "Outputs from a vertex shader (out) and inputs to a fragment
2311 * shader (in) can be further qualified with one or more of these
2312 * interpolation qualifiers"
2313 */
2314 if (state->language_version >= 130
2315 && this->type->qualifier.has_interpolation()) {
2316
2317 const char *i = this->type->qualifier.interpolation_string();
2318 assert(i != NULL);
2319
2320 switch (state->target) {
2321 case vertex_shader:
2322 if (this->type->qualifier.flags.q.in) {
2323 _mesa_glsl_error(&loc, state,
2324 "qualifier '%s' cannot be applied to vertex "
2325 "shader inputs", i);
2326 }
2327 break;
2328 case fragment_shader:
2329 if (this->type->qualifier.flags.q.out) {
2330 _mesa_glsl_error(&loc, state,
2331 "qualifier '%s' cannot be applied to fragment "
2332 "shader outputs", i);
2333 }
2334 break;
2335 default:
2336 assert(0);
2337 }
2338 }
2339
2340
2341 /* Process the initializer and add its instructions to a temporary
2342 * list. This list will be added to the instruction stream (below) after
2343 * the declaration is added. This is done because in some cases (such as
2344 * redeclarations) the declaration may not actually be added to the
2345 * instruction stream.
2346 */
2347 exec_list initializer_instructions;
2348 if (decl->initializer != NULL) {
2349 YYLTYPE initializer_loc = decl->initializer->get_location();
2350
2351 /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
2352 *
2353 * "All uniform variables are read-only and are initialized either
2354 * directly by an application via API commands, or indirectly by
2355 * OpenGL."
2356 */
2357 if ((state->language_version <= 110)
2358 && (var->mode == ir_var_uniform)) {
2359 _mesa_glsl_error(& initializer_loc, state,
2360 "cannot initialize uniforms in GLSL 1.10");
2361 }
2362
2363 if (var->type->is_sampler()) {
2364 _mesa_glsl_error(& initializer_loc, state,
2365 "cannot initialize samplers");
2366 }
2367
2368 if ((var->mode == ir_var_in) && (state->current_function == NULL)) {
2369 _mesa_glsl_error(& initializer_loc, state,
2370 "cannot initialize %s shader input / %s",
2371 _mesa_glsl_shader_target_name(state->target),
2372 (state->target == vertex_shader)
2373 ? "attribute" : "varying");
2374 }
2375
2376 ir_dereference *const lhs = new(ctx) ir_dereference_variable(var);
2377 ir_rvalue *rhs = decl->initializer->hir(&initializer_instructions,
2378 state);
2379
2380 /* Calculate the constant value if this is a const or uniform
2381 * declaration.
2382 */
2383 if (this->type->qualifier.flags.q.constant
2384 || this->type->qualifier.flags.q.uniform) {
2385 ir_rvalue *new_rhs = validate_assignment(state, var->type, rhs);
2386 if (new_rhs != NULL) {
2387 rhs = new_rhs;
2388
2389 ir_constant *constant_value = rhs->constant_expression_value();
2390 if (!constant_value) {
2391 _mesa_glsl_error(& initializer_loc, state,
2392 "initializer of %s variable `%s' must be a "
2393 "constant expression",
2394 (this->type->qualifier.flags.q.constant)
2395 ? "const" : "uniform",
2396 decl->identifier);
2397 if (var->type->is_numeric()) {
2398 /* Reduce cascading errors. */
2399 var->constant_value = ir_constant::zero(ctx, var->type);
2400 }
2401 } else {
2402 rhs = constant_value;
2403 var->constant_value = constant_value;
2404 }
2405 } else {
2406 _mesa_glsl_error(&initializer_loc, state,
2407 "initializer of type %s cannot be assigned to "
2408 "variable of type %s",
2409 rhs->type->name, var->type->name);
2410 if (var->type->is_numeric()) {
2411 /* Reduce cascading errors. */
2412 var->constant_value = ir_constant::zero(ctx, var->type);
2413 }
2414 }
2415 }
2416
2417 if (rhs && !rhs->type->is_error()) {
2418 bool temp = var->read_only;
2419 if (this->type->qualifier.flags.q.constant)
2420 var->read_only = false;
2421
2422 /* Never emit code to initialize a uniform.
2423 */
2424 const glsl_type *initializer_type;
2425 if (!this->type->qualifier.flags.q.uniform) {
2426 result = do_assignment(&initializer_instructions, state,
2427 lhs, rhs,
2428 this->get_location());
2429 initializer_type = result->type;
2430 } else
2431 initializer_type = rhs->type;
2432
2433 /* If the declared variable is an unsized array, it must inherrit
2434 * its full type from the initializer. A declaration such as
2435 *
2436 * uniform float a[] = float[](1.0, 2.0, 3.0, 3.0);
2437 *
2438 * becomes
2439 *
2440 * uniform float a[4] = float[](1.0, 2.0, 3.0, 3.0);
2441 *
2442 * The assignment generated in the if-statement (below) will also
2443 * automatically handle this case for non-uniforms.
2444 *
2445 * If the declared variable is not an array, the types must
2446 * already match exactly. As a result, the type assignment
2447 * here can be done unconditionally. For non-uniforms the call
2448 * to do_assignment can change the type of the initializer (via
2449 * the implicit conversion rules). For uniforms the initializer
2450 * must be a constant expression, and the type of that expression
2451 * was validated above.
2452 */
2453 var->type = initializer_type;
2454
2455 var->read_only = temp;
2456 }
2457 }
2458
2459 /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
2460 *
2461 * "It is an error to write to a const variable outside of
2462 * its declaration, so they must be initialized when
2463 * declared."
2464 */
2465 if (this->type->qualifier.flags.q.constant && decl->initializer == NULL) {
2466 _mesa_glsl_error(& loc, state,
2467 "const declaration of `%s' must be initialized");
2468 }
2469
2470 /* Check if this declaration is actually a re-declaration, either to
2471 * resize an array or add qualifiers to an existing variable.
2472 *
2473 * This is allowed for variables in the current scope, or when at
2474 * global scope (for built-ins in the implicit outer scope).
2475 */
2476 ir_variable *earlier = state->symbols->get_variable(decl->identifier);
2477 if (earlier != NULL && (state->current_function == NULL ||
2478 state->symbols->name_declared_this_scope(decl->identifier))) {
2479
2480 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
2481 *
2482 * "It is legal to declare an array without a size and then
2483 * later re-declare the same name as an array of the same
2484 * type and specify a size."
2485 */
2486 if ((earlier->type->array_size() == 0)
2487 && var->type->is_array()
2488 && (var->type->element_type() == earlier->type->element_type())) {
2489 /* FINISHME: This doesn't match the qualifiers on the two
2490 * FINISHME: declarations. It's not 100% clear whether this is
2491 * FINISHME: required or not.
2492 */
2493
2494 /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec:
2495 *
2496 * "The size [of gl_TexCoord] can be at most
2497 * gl_MaxTextureCoords."
2498 */
2499 const unsigned size = unsigned(var->type->array_size());
2500 if ((strcmp("gl_TexCoord", var->name) == 0)
2501 && (size > state->Const.MaxTextureCoords)) {
2502 YYLTYPE loc = this->get_location();
2503
2504 _mesa_glsl_error(& loc, state, "`gl_TexCoord' array size cannot "
2505 "be larger than gl_MaxTextureCoords (%u)\n",
2506 state->Const.MaxTextureCoords);
2507 } else if ((size > 0) && (size <= earlier->max_array_access)) {
2508 YYLTYPE loc = this->get_location();
2509
2510 _mesa_glsl_error(& loc, state, "array size must be > %u due to "
2511 "previous access",
2512 earlier->max_array_access);
2513 }
2514
2515 earlier->type = var->type;
2516 delete var;
2517 var = NULL;
2518 } else if (state->ARB_fragment_coord_conventions_enable
2519 && strcmp(var->name, "gl_FragCoord") == 0
2520 && earlier->type == var->type
2521 && earlier->mode == var->mode) {
2522 /* Allow redeclaration of gl_FragCoord for ARB_fcc layout
2523 * qualifiers.
2524 */
2525 earlier->origin_upper_left = var->origin_upper_left;
2526 earlier->pixel_center_integer = var->pixel_center_integer;
2527
2528 /* According to section 4.3.7 of the GLSL 1.30 spec,
2529 * the following built-in varaibles can be redeclared with an
2530 * interpolation qualifier:
2531 * * gl_FrontColor
2532 * * gl_BackColor
2533 * * gl_FrontSecondaryColor
2534 * * gl_BackSecondaryColor
2535 * * gl_Color
2536 * * gl_SecondaryColor
2537 */
2538 } else if (state->language_version >= 130
2539 && (strcmp(var->name, "gl_FrontColor") == 0
2540 || strcmp(var->name, "gl_BackColor") == 0
2541 || strcmp(var->name, "gl_FrontSecondaryColor") == 0
2542 || strcmp(var->name, "gl_BackSecondaryColor") == 0
2543 || strcmp(var->name, "gl_Color") == 0
2544 || strcmp(var->name, "gl_SecondaryColor") == 0)
2545 && earlier->type == var->type
2546 && earlier->mode == var->mode) {
2547 earlier->interpolation = var->interpolation;
2548 } else {
2549 YYLTYPE loc = this->get_location();
2550 _mesa_glsl_error(&loc, state, "`%s' redeclared", decl->identifier);
2551 }
2552
2553 continue;
2554 }
2555
2556 /* By now, we know it's a new variable declaration (we didn't hit the
2557 * above "continue").
2558 *
2559 * From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
2560 *
2561 * "Identifiers starting with "gl_" are reserved for use by
2562 * OpenGL, and may not be declared in a shader as either a
2563 * variable or a function."
2564 */
2565 if (strncmp(decl->identifier, "gl_", 3) == 0)
2566 _mesa_glsl_error(& loc, state,
2567 "identifier `%s' uses reserved `gl_' prefix",
2568 decl->identifier);
2569
2570 /* Add the variable to the symbol table. Note that the initializer's
2571 * IR was already processed earlier (though it hasn't been emitted yet),
2572 * without the variable in scope.
2573 *
2574 * This differs from most C-like languages, but it follows the GLSL
2575 * specification. From page 28 (page 34 of the PDF) of the GLSL 1.50
2576 * spec:
2577 *
2578 * "Within a declaration, the scope of a name starts immediately
2579 * after the initializer if present or immediately after the name
2580 * being declared if not."
2581 */
2582 if (!state->symbols->add_variable(var)) {
2583 YYLTYPE loc = this->get_location();
2584 _mesa_glsl_error(&loc, state, "name `%s' already taken in the "
2585 "current scope", decl->identifier);
2586 continue;
2587 }
2588
2589 /* Push the variable declaration to the top. It means that all
2590 * the variable declarations will appear in a funny
2591 * last-to-first order, but otherwise we run into trouble if a
2592 * function is prototyped, a global var is decled, then the
2593 * function is defined with usage of the global var. See
2594 * glslparsertest's CorrectModule.frag.
2595 */
2596 instructions->push_head(var);
2597 instructions->append_list(&initializer_instructions);
2598 }
2599
2600
2601 /* Generally, variable declarations do not have r-values. However,
2602 * one is used for the declaration in
2603 *
2604 * while (bool b = some_condition()) {
2605 * ...
2606 * }
2607 *
2608 * so we return the rvalue from the last seen declaration here.
2609 */
2610 return result;
2611 }
2612
2613
2614 ir_rvalue *
2615 ast_parameter_declarator::hir(exec_list *instructions,
2616 struct _mesa_glsl_parse_state *state)
2617 {
2618 void *ctx = state;
2619 const struct glsl_type *type;
2620 const char *name = NULL;
2621 YYLTYPE loc = this->get_location();
2622
2623 type = this->type->specifier->glsl_type(& name, state);
2624
2625 if (type == NULL) {
2626 if (name != NULL) {
2627 _mesa_glsl_error(& loc, state,
2628 "invalid type `%s' in declaration of `%s'",
2629 name, this->identifier);
2630 } else {
2631 _mesa_glsl_error(& loc, state,
2632 "invalid type in declaration of `%s'",
2633 this->identifier);
2634 }
2635
2636 type = glsl_type::error_type;
2637 }
2638
2639 /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
2640 *
2641 * "Functions that accept no input arguments need not use void in the
2642 * argument list because prototypes (or definitions) are required and
2643 * therefore there is no ambiguity when an empty argument list "( )" is
2644 * declared. The idiom "(void)" as a parameter list is provided for
2645 * convenience."
2646 *
2647 * Placing this check here prevents a void parameter being set up
2648 * for a function, which avoids tripping up checks for main taking
2649 * parameters and lookups of an unnamed symbol.
2650 */
2651 if (type->is_void()) {
2652 if (this->identifier != NULL)
2653 _mesa_glsl_error(& loc, state,
2654 "named parameter cannot have type `void'");
2655
2656 is_void = true;
2657 return NULL;
2658 }
2659
2660 if (formal_parameter && (this->identifier == NULL)) {
2661 _mesa_glsl_error(& loc, state, "formal parameter lacks a name");
2662 return NULL;
2663 }
2664
2665 /* This only handles "vec4 foo[..]". The earlier specifier->glsl_type(...)
2666 * call already handled the "vec4[..] foo" case.
2667 */
2668 if (this->is_array) {
2669 type = process_array_type(&loc, type, this->array_size, state);
2670 }
2671
2672 if (type->array_size() == 0) {
2673 _mesa_glsl_error(&loc, state, "arrays passed as parameters must have "
2674 "a declared size.");
2675 type = glsl_type::error_type;
2676 }
2677
2678 is_void = false;
2679 ir_variable *var = new(ctx) ir_variable(type, this->identifier, ir_var_in);
2680
2681 /* Apply any specified qualifiers to the parameter declaration. Note that
2682 * for function parameters the default mode is 'in'.
2683 */
2684 apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc);
2685
2686 instructions->push_tail(var);
2687
2688 /* Parameter declarations do not have r-values.
2689 */
2690 return NULL;
2691 }
2692
2693
2694 void
2695 ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters,
2696 bool formal,
2697 exec_list *ir_parameters,
2698 _mesa_glsl_parse_state *state)
2699 {
2700 ast_parameter_declarator *void_param = NULL;
2701 unsigned count = 0;
2702
2703 foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) {
2704 param->formal_parameter = formal;
2705 param->hir(ir_parameters, state);
2706
2707 if (param->is_void)
2708 void_param = param;
2709
2710 count++;
2711 }
2712
2713 if ((void_param != NULL) && (count > 1)) {
2714 YYLTYPE loc = void_param->get_location();
2715
2716 _mesa_glsl_error(& loc, state,
2717 "`void' parameter must be only parameter");
2718 }
2719 }
2720
2721
2722 void
2723 emit_function(_mesa_glsl_parse_state *state, exec_list *instructions,
2724 ir_function *f)
2725 {
2726 /* Emit the new function header */
2727 if (state->current_function == NULL) {
2728 instructions->push_tail(f);
2729 } else {
2730 /* IR invariants disallow function declarations or definitions nested
2731 * within other function definitions. Insert the new ir_function
2732 * block in the instruction sequence before the ir_function block
2733 * containing the current ir_function_signature.
2734 */
2735 ir_function *const curr =
2736 const_cast<ir_function *>(state->current_function->function());
2737
2738 curr->insert_before(f);
2739 }
2740 }
2741
2742
2743 ir_rvalue *
2744 ast_function::hir(exec_list *instructions,
2745 struct _mesa_glsl_parse_state *state)
2746 {
2747 void *ctx = state;
2748 ir_function *f = NULL;
2749 ir_function_signature *sig = NULL;
2750 exec_list hir_parameters;
2751
2752 const char *const name = identifier;
2753
2754 /* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec,
2755 *
2756 * "Function declarations (prototypes) cannot occur inside of functions;
2757 * they must be at global scope, or for the built-in functions, outside
2758 * the global scope."
2759 *
2760 * From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec,
2761 *
2762 * "User defined functions may only be defined within the global scope."
2763 *
2764 * Note that this language does not appear in GLSL 1.10.
2765 */
2766 if ((state->current_function != NULL) && (state->language_version != 110)) {
2767 YYLTYPE loc = this->get_location();
2768 _mesa_glsl_error(&loc, state,
2769 "declaration of function `%s' not allowed within "
2770 "function body", name);
2771 }
2772
2773 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
2774 *
2775 * "Identifiers starting with "gl_" are reserved for use by
2776 * OpenGL, and may not be declared in a shader as either a
2777 * variable or a function."
2778 */
2779 if (strncmp(name, "gl_", 3) == 0) {
2780 YYLTYPE loc = this->get_location();
2781 _mesa_glsl_error(&loc, state,
2782 "identifier `%s' uses reserved `gl_' prefix", name);
2783 }
2784
2785 /* Convert the list of function parameters to HIR now so that they can be
2786 * used below to compare this function's signature with previously seen
2787 * signatures for functions with the same name.
2788 */
2789 ast_parameter_declarator::parameters_to_hir(& this->parameters,
2790 is_definition,
2791 & hir_parameters, state);
2792
2793 const char *return_type_name;
2794 const glsl_type *return_type =
2795 this->return_type->specifier->glsl_type(& return_type_name, state);
2796
2797 if (!return_type) {
2798 YYLTYPE loc = this->get_location();
2799 _mesa_glsl_error(&loc, state,
2800 "function `%s' has undeclared return type `%s'",
2801 name, return_type_name);
2802 return_type = glsl_type::error_type;
2803 }
2804
2805 /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec:
2806 * "No qualifier is allowed on the return type of a function."
2807 */
2808 if (this->return_type->has_qualifiers()) {
2809 YYLTYPE loc = this->get_location();
2810 _mesa_glsl_error(& loc, state,
2811 "function `%s' return type has qualifiers", name);
2812 }
2813
2814 /* Verify that this function's signature either doesn't match a previously
2815 * seen signature for a function with the same name, or, if a match is found,
2816 * that the previously seen signature does not have an associated definition.
2817 */
2818 f = state->symbols->get_function(name);
2819 if (f != NULL && (state->es_shader || f->has_user_signature())) {
2820 sig = f->exact_matching_signature(&hir_parameters);
2821 if (sig != NULL) {
2822 const char *badvar = sig->qualifiers_match(&hir_parameters);
2823 if (badvar != NULL) {
2824 YYLTYPE loc = this->get_location();
2825
2826 _mesa_glsl_error(&loc, state, "function `%s' parameter `%s' "
2827 "qualifiers don't match prototype", name, badvar);
2828 }
2829
2830 if (sig->return_type != return_type) {
2831 YYLTYPE loc = this->get_location();
2832
2833 _mesa_glsl_error(&loc, state, "function `%s' return type doesn't "
2834 "match prototype", name);
2835 }
2836
2837 if (is_definition && sig->is_defined) {
2838 YYLTYPE loc = this->get_location();
2839
2840 _mesa_glsl_error(& loc, state, "function `%s' redefined", name);
2841 }
2842 }
2843 } else {
2844 f = new(ctx) ir_function(name);
2845 if (!state->symbols->add_function(f)) {
2846 /* This function name shadows a non-function use of the same name. */
2847 YYLTYPE loc = this->get_location();
2848
2849 _mesa_glsl_error(&loc, state, "function name `%s' conflicts with "
2850 "non-function", name);
2851 return NULL;
2852 }
2853
2854 emit_function(state, instructions, f);
2855 }
2856
2857 /* Verify the return type of main() */
2858 if (strcmp(name, "main") == 0) {
2859 if (! return_type->is_void()) {
2860 YYLTYPE loc = this->get_location();
2861
2862 _mesa_glsl_error(& loc, state, "main() must return void");
2863 }
2864
2865 if (!hir_parameters.is_empty()) {
2866 YYLTYPE loc = this->get_location();
2867
2868 _mesa_glsl_error(& loc, state, "main() must not take any parameters");
2869 }
2870 }
2871
2872 /* Finish storing the information about this new function in its signature.
2873 */
2874 if (sig == NULL) {
2875 sig = new(ctx) ir_function_signature(return_type);
2876 f->add_signature(sig);
2877 }
2878
2879 sig->replace_parameters(&hir_parameters);
2880 signature = sig;
2881
2882 /* Function declarations (prototypes) do not have r-values.
2883 */
2884 return NULL;
2885 }
2886
2887
2888 ir_rvalue *
2889 ast_function_definition::hir(exec_list *instructions,
2890 struct _mesa_glsl_parse_state *state)
2891 {
2892 prototype->is_definition = true;
2893 prototype->hir(instructions, state);
2894
2895 ir_function_signature *signature = prototype->signature;
2896 if (signature == NULL)
2897 return NULL;
2898
2899 assert(state->current_function == NULL);
2900 state->current_function = signature;
2901 state->found_return = false;
2902
2903 /* Duplicate parameters declared in the prototype as concrete variables.
2904 * Add these to the symbol table.
2905 */
2906 state->symbols->push_scope();
2907 foreach_iter(exec_list_iterator, iter, signature->parameters) {
2908 ir_variable *const var = ((ir_instruction *) iter.get())->as_variable();
2909
2910 assert(var != NULL);
2911
2912 /* The only way a parameter would "exist" is if two parameters have
2913 * the same name.
2914 */
2915 if (state->symbols->name_declared_this_scope(var->name)) {
2916 YYLTYPE loc = this->get_location();
2917
2918 _mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name);
2919 } else {
2920 state->symbols->add_variable(var);
2921 }
2922 }
2923
2924 /* Convert the body of the function to HIR. */
2925 this->body->hir(&signature->body, state);
2926 signature->is_defined = true;
2927
2928 state->symbols->pop_scope();
2929
2930 assert(state->current_function == signature);
2931 state->current_function = NULL;
2932
2933 if (!signature->return_type->is_void() && !state->found_return) {
2934 YYLTYPE loc = this->get_location();
2935 _mesa_glsl_error(& loc, state, "function `%s' has non-void return type "
2936 "%s, but no return statement",
2937 signature->function_name(),
2938 signature->return_type->name);
2939 }
2940
2941 /* Function definitions do not have r-values.
2942 */
2943 return NULL;
2944 }
2945
2946
2947 ir_rvalue *
2948 ast_jump_statement::hir(exec_list *instructions,
2949 struct _mesa_glsl_parse_state *state)
2950 {
2951 void *ctx = state;
2952
2953 switch (mode) {
2954 case ast_return: {
2955 ir_return *inst;
2956 assert(state->current_function);
2957
2958 if (opt_return_value) {
2959 if (state->current_function->return_type->base_type ==
2960 GLSL_TYPE_VOID) {
2961 YYLTYPE loc = this->get_location();
2962
2963 _mesa_glsl_error(& loc, state,
2964 "`return` with a value, in function `%s' "
2965 "returning void",
2966 state->current_function->function_name());
2967 }
2968
2969 ir_rvalue *const ret = opt_return_value->hir(instructions, state);
2970 assert(ret != NULL);
2971
2972 /* Implicit conversions are not allowed for return values. */
2973 if (state->current_function->return_type != ret->type) {
2974 YYLTYPE loc = this->get_location();
2975
2976 _mesa_glsl_error(& loc, state,
2977 "`return' with wrong type %s, in function `%s' "
2978 "returning %s",
2979 ret->type->name,
2980 state->current_function->function_name(),
2981 state->current_function->return_type->name);
2982 }
2983
2984 inst = new(ctx) ir_return(ret);
2985 } else {
2986 if (state->current_function->return_type->base_type !=
2987 GLSL_TYPE_VOID) {
2988 YYLTYPE loc = this->get_location();
2989
2990 _mesa_glsl_error(& loc, state,
2991 "`return' with no value, in function %s returning "
2992 "non-void",
2993 state->current_function->function_name());
2994 }
2995 inst = new(ctx) ir_return;
2996 }
2997
2998 state->found_return = true;
2999 instructions->push_tail(inst);
3000 break;
3001 }
3002
3003 case ast_discard:
3004 if (state->target != fragment_shader) {
3005 YYLTYPE loc = this->get_location();
3006
3007 _mesa_glsl_error(& loc, state,
3008 "`discard' may only appear in a fragment shader");
3009 }
3010 instructions->push_tail(new(ctx) ir_discard);
3011 break;
3012
3013 case ast_break:
3014 case ast_continue:
3015 /* FINISHME: Handle switch-statements. They cannot contain 'continue',
3016 * FINISHME: and they use a different IR instruction for 'break'.
3017 */
3018 /* FINISHME: Correctly handle the nesting. If a switch-statement is
3019 * FINISHME: inside a loop, a 'continue' is valid and will bind to the
3020 * FINISHME: loop.
3021 */
3022 if (state->loop_or_switch_nesting == NULL) {
3023 YYLTYPE loc = this->get_location();
3024
3025 _mesa_glsl_error(& loc, state,
3026 "`%s' may only appear in a loop",
3027 (mode == ast_break) ? "break" : "continue");
3028 } else {
3029 ir_loop *const loop = state->loop_or_switch_nesting->as_loop();
3030
3031 /* Inline the for loop expression again, since we don't know
3032 * where near the end of the loop body the normal copy of it
3033 * is going to be placed.
3034 */
3035 if (mode == ast_continue &&
3036 state->loop_or_switch_nesting_ast->rest_expression) {
3037 state->loop_or_switch_nesting_ast->rest_expression->hir(instructions,
3038 state);
3039 }
3040
3041 if (loop != NULL) {
3042 ir_loop_jump *const jump =
3043 new(ctx) ir_loop_jump((mode == ast_break)
3044 ? ir_loop_jump::jump_break
3045 : ir_loop_jump::jump_continue);
3046 instructions->push_tail(jump);
3047 }
3048 }
3049
3050 break;
3051 }
3052
3053 /* Jump instructions do not have r-values.
3054 */
3055 return NULL;
3056 }
3057
3058
3059 ir_rvalue *
3060 ast_selection_statement::hir(exec_list *instructions,
3061 struct _mesa_glsl_parse_state *state)
3062 {
3063 void *ctx = state;
3064
3065 ir_rvalue *const condition = this->condition->hir(instructions, state);
3066
3067 /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
3068 *
3069 * "Any expression whose type evaluates to a Boolean can be used as the
3070 * conditional expression bool-expression. Vector types are not accepted
3071 * as the expression to if."
3072 *
3073 * The checks are separated so that higher quality diagnostics can be
3074 * generated for cases where both rules are violated.
3075 */
3076 if (!condition->type->is_boolean() || !condition->type->is_scalar()) {
3077 YYLTYPE loc = this->condition->get_location();
3078
3079 _mesa_glsl_error(& loc, state, "if-statement condition must be scalar "
3080 "boolean");
3081 }
3082
3083 ir_if *const stmt = new(ctx) ir_if(condition);
3084
3085 if (then_statement != NULL) {
3086 state->symbols->push_scope();
3087 then_statement->hir(& stmt->then_instructions, state);
3088 state->symbols->pop_scope();
3089 }
3090
3091 if (else_statement != NULL) {
3092 state->symbols->push_scope();
3093 else_statement->hir(& stmt->else_instructions, state);
3094 state->symbols->pop_scope();
3095 }
3096
3097 instructions->push_tail(stmt);
3098
3099 /* if-statements do not have r-values.
3100 */
3101 return NULL;
3102 }
3103
3104
3105 void
3106 ast_iteration_statement::condition_to_hir(ir_loop *stmt,
3107 struct _mesa_glsl_parse_state *state)
3108 {
3109 void *ctx = state;
3110
3111 if (condition != NULL) {
3112 ir_rvalue *const cond =
3113 condition->hir(& stmt->body_instructions, state);
3114
3115 if ((cond == NULL)
3116 || !cond->type->is_boolean() || !cond->type->is_scalar()) {
3117 YYLTYPE loc = condition->get_location();
3118
3119 _mesa_glsl_error(& loc, state,
3120 "loop condition must be scalar boolean");
3121 } else {
3122 /* As the first code in the loop body, generate a block that looks
3123 * like 'if (!condition) break;' as the loop termination condition.
3124 */
3125 ir_rvalue *const not_cond =
3126 new(ctx) ir_expression(ir_unop_logic_not, glsl_type::bool_type, cond,
3127 NULL);
3128
3129 ir_if *const if_stmt = new(ctx) ir_if(not_cond);
3130
3131 ir_jump *const break_stmt =
3132 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
3133
3134 if_stmt->then_instructions.push_tail(break_stmt);
3135 stmt->body_instructions.push_tail(if_stmt);
3136 }
3137 }
3138 }
3139
3140
3141 ir_rvalue *
3142 ast_iteration_statement::hir(exec_list *instructions,
3143 struct _mesa_glsl_parse_state *state)
3144 {
3145 void *ctx = state;
3146
3147 /* For-loops and while-loops start a new scope, but do-while loops do not.
3148 */
3149 if (mode != ast_do_while)
3150 state->symbols->push_scope();
3151
3152 if (init_statement != NULL)
3153 init_statement->hir(instructions, state);
3154
3155 ir_loop *const stmt = new(ctx) ir_loop();
3156 instructions->push_tail(stmt);
3157
3158 /* Track the current loop and / or switch-statement nesting.
3159 */
3160 ir_instruction *const nesting = state->loop_or_switch_nesting;
3161 ast_iteration_statement *nesting_ast = state->loop_or_switch_nesting_ast;
3162
3163 state->loop_or_switch_nesting = stmt;
3164 state->loop_or_switch_nesting_ast = this;
3165
3166 if (mode != ast_do_while)
3167 condition_to_hir(stmt, state);
3168
3169 if (body != NULL)
3170 body->hir(& stmt->body_instructions, state);
3171
3172 if (rest_expression != NULL)
3173 rest_expression->hir(& stmt->body_instructions, state);
3174
3175 if (mode == ast_do_while)
3176 condition_to_hir(stmt, state);
3177
3178 if (mode != ast_do_while)
3179 state->symbols->pop_scope();
3180
3181 /* Restore previous nesting before returning.
3182 */
3183 state->loop_or_switch_nesting = nesting;
3184 state->loop_or_switch_nesting_ast = nesting_ast;
3185
3186 /* Loops do not have r-values.
3187 */
3188 return NULL;
3189 }
3190
3191
3192 ir_rvalue *
3193 ast_type_specifier::hir(exec_list *instructions,
3194 struct _mesa_glsl_parse_state *state)
3195 {
3196 if (this->structure != NULL)
3197 return this->structure->hir(instructions, state);
3198
3199 return NULL;
3200 }
3201
3202
3203 ir_rvalue *
3204 ast_struct_specifier::hir(exec_list *instructions,
3205 struct _mesa_glsl_parse_state *state)
3206 {
3207 unsigned decl_count = 0;
3208
3209 /* Make an initial pass over the list of structure fields to determine how
3210 * many there are. Each element in this list is an ast_declarator_list.
3211 * This means that we actually need to count the number of elements in the
3212 * 'declarations' list in each of the elements.
3213 */
3214 foreach_list_typed (ast_declarator_list, decl_list, link,
3215 &this->declarations) {
3216 foreach_list_const (decl_ptr, & decl_list->declarations) {
3217 decl_count++;
3218 }
3219 }
3220
3221 /* Allocate storage for the structure fields and process the field
3222 * declarations. As the declarations are processed, try to also convert
3223 * the types to HIR. This ensures that structure definitions embedded in
3224 * other structure definitions are processed.
3225 */
3226 glsl_struct_field *const fields = talloc_array(state, glsl_struct_field,
3227 decl_count);
3228
3229 unsigned i = 0;
3230 foreach_list_typed (ast_declarator_list, decl_list, link,
3231 &this->declarations) {
3232 const char *type_name;
3233
3234 decl_list->type->specifier->hir(instructions, state);
3235
3236 /* Section 10.9 of the GLSL ES 1.00 specification states that
3237 * embedded structure definitions have been removed from the language.
3238 */
3239 if (state->es_shader && decl_list->type->specifier->structure != NULL) {
3240 YYLTYPE loc = this->get_location();
3241 _mesa_glsl_error(&loc, state, "Embedded structure definitions are "
3242 "not allowed in GLSL ES 1.00.");
3243 }
3244
3245 const glsl_type *decl_type =
3246 decl_list->type->specifier->glsl_type(& type_name, state);
3247
3248 foreach_list_typed (ast_declaration, decl, link,
3249 &decl_list->declarations) {
3250 const struct glsl_type *field_type = decl_type;
3251 if (decl->is_array) {
3252 YYLTYPE loc = decl->get_location();
3253 field_type = process_array_type(&loc, decl_type, decl->array_size,
3254 state);
3255 }
3256 fields[i].type = (field_type != NULL)
3257 ? field_type : glsl_type::error_type;
3258 fields[i].name = decl->identifier;
3259 i++;
3260 }
3261 }
3262
3263 assert(i == decl_count);
3264
3265 const glsl_type *t =
3266 glsl_type::get_record_instance(fields, decl_count, this->name);
3267
3268 YYLTYPE loc = this->get_location();
3269 if (!state->symbols->add_type(name, t)) {
3270 _mesa_glsl_error(& loc, state, "struct `%s' previously defined", name);
3271 } else {
3272
3273 const glsl_type **s = (const glsl_type **)
3274 realloc(state->user_structures,
3275 sizeof(state->user_structures[0]) *
3276 (state->num_user_structures + 1));
3277 if (s != NULL) {
3278 s[state->num_user_structures] = t;
3279 state->user_structures = s;
3280 state->num_user_structures++;
3281 }
3282 }
3283
3284 /* Structure type definitions do not have r-values.
3285 */
3286 return NULL;
3287 }