glsl: Trim the size of uniform arrays to the maximum element used.
[mesa.git] / src / glsl / ast_to_hir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file ast_to_hir.c
26 * Convert abstract syntax to to high-level intermediate reprensentation (HIR).
27 *
28 * During the conversion to HIR, the majority of the symantic checking is
29 * preformed on the program. This includes:
30 *
31 * * Symbol table management
32 * * Type checking
33 * * Function binding
34 *
35 * The majority of this work could be done during parsing, and the parser could
36 * probably generate HIR directly. However, this results in frequent changes
37 * to the parser code. Since we do not assume that every system this complier
38 * is built on will have Flex and Bison installed, we have to store the code
39 * generated by these tools in our version control system. In other parts of
40 * the system we've seen problems where a parser was changed but the generated
41 * code was not committed, merge conflicts where created because two developers
42 * had slightly different versions of Bison installed, etc.
43 *
44 * I have also noticed that running Bison generated parsers in GDB is very
45 * irritating. When you get a segfault on '$$ = $1->foo', you can't very
46 * well 'print $1' in GDB.
47 *
48 * As a result, my preference is to put as little C code as possible in the
49 * parser (and lexer) sources.
50 */
51
52 #include "main/imports.h"
53 #include "main/extensions.h"
54 #include "glsl_symbol_table.h"
55 #include "glsl_parser_extras.h"
56 #include "ast.h"
57 #include "glsl_types.h"
58 #include "ir.h"
59
60 void
61 _mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
62 {
63 _mesa_glsl_initialize_variables(instructions, state);
64 _mesa_glsl_initialize_functions(instructions, state);
65
66 state->current_function = NULL;
67
68 foreach_list_typed (ast_node, ast, link, & state->translation_unit)
69 ast->hir(instructions, state);
70 }
71
72
73 /**
74 * If a conversion is available, convert one operand to a different type
75 *
76 * The \c from \c ir_rvalue is converted "in place".
77 *
78 * \param to Type that the operand it to be converted to
79 * \param from Operand that is being converted
80 * \param state GLSL compiler state
81 *
82 * \return
83 * If a conversion is possible (or unnecessary), \c true is returned.
84 * Otherwise \c false is returned.
85 */
86 static bool
87 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
88 struct _mesa_glsl_parse_state *state)
89 {
90 void *ctx = state;
91 if (to->base_type == from->type->base_type)
92 return true;
93
94 /* This conversion was added in GLSL 1.20. If the compilation mode is
95 * GLSL 1.10, the conversion is skipped.
96 */
97 if (state->language_version < 120)
98 return false;
99
100 /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
101 *
102 * "There are no implicit array or structure conversions. For
103 * example, an array of int cannot be implicitly converted to an
104 * array of float. There are no implicit conversions between
105 * signed and unsigned integers."
106 */
107 /* FINISHME: The above comment is partially a lie. There is int/uint
108 * FINISHME: conversion for immediate constants.
109 */
110 if (!to->is_float() || !from->type->is_numeric())
111 return false;
112
113 /* Convert to a floating point type with the same number of components
114 * as the original type - i.e. int to float, not int to vec4.
115 */
116 to = glsl_type::get_instance(GLSL_TYPE_FLOAT, from->type->vector_elements,
117 from->type->matrix_columns);
118
119 switch (from->type->base_type) {
120 case GLSL_TYPE_INT:
121 from = new(ctx) ir_expression(ir_unop_i2f, to, from, NULL);
122 break;
123 case GLSL_TYPE_UINT:
124 from = new(ctx) ir_expression(ir_unop_u2f, to, from, NULL);
125 break;
126 case GLSL_TYPE_BOOL:
127 from = new(ctx) ir_expression(ir_unop_b2f, to, from, NULL);
128 break;
129 default:
130 assert(0);
131 }
132
133 return true;
134 }
135
136
137 static const struct glsl_type *
138 arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
139 bool multiply,
140 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
141 {
142 const glsl_type *type_a = value_a->type;
143 const glsl_type *type_b = value_b->type;
144
145 /* From GLSL 1.50 spec, page 56:
146 *
147 * "The arithmetic binary operators add (+), subtract (-),
148 * multiply (*), and divide (/) operate on integer and
149 * floating-point scalars, vectors, and matrices."
150 */
151 if (!type_a->is_numeric() || !type_b->is_numeric()) {
152 _mesa_glsl_error(loc, state,
153 "Operands to arithmetic operators must be numeric");
154 return glsl_type::error_type;
155 }
156
157
158 /* "If one operand is floating-point based and the other is
159 * not, then the conversions from Section 4.1.10 "Implicit
160 * Conversions" are applied to the non-floating-point-based operand."
161 */
162 if (!apply_implicit_conversion(type_a, value_b, state)
163 && !apply_implicit_conversion(type_b, value_a, state)) {
164 _mesa_glsl_error(loc, state,
165 "Could not implicitly convert operands to "
166 "arithmetic operator");
167 return glsl_type::error_type;
168 }
169 type_a = value_a->type;
170 type_b = value_b->type;
171
172 /* "If the operands are integer types, they must both be signed or
173 * both be unsigned."
174 *
175 * From this rule and the preceeding conversion it can be inferred that
176 * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
177 * The is_numeric check above already filtered out the case where either
178 * type is not one of these, so now the base types need only be tested for
179 * equality.
180 */
181 if (type_a->base_type != type_b->base_type) {
182 _mesa_glsl_error(loc, state,
183 "base type mismatch for arithmetic operator");
184 return glsl_type::error_type;
185 }
186
187 /* "All arithmetic binary operators result in the same fundamental type
188 * (signed integer, unsigned integer, or floating-point) as the
189 * operands they operate on, after operand type conversion. After
190 * conversion, the following cases are valid
191 *
192 * * The two operands are scalars. In this case the operation is
193 * applied, resulting in a scalar."
194 */
195 if (type_a->is_scalar() && type_b->is_scalar())
196 return type_a;
197
198 /* "* One operand is a scalar, and the other is a vector or matrix.
199 * In this case, the scalar operation is applied independently to each
200 * component of the vector or matrix, resulting in the same size
201 * vector or matrix."
202 */
203 if (type_a->is_scalar()) {
204 if (!type_b->is_scalar())
205 return type_b;
206 } else if (type_b->is_scalar()) {
207 return type_a;
208 }
209
210 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
211 * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
212 * handled.
213 */
214 assert(!type_a->is_scalar());
215 assert(!type_b->is_scalar());
216
217 /* "* The two operands are vectors of the same size. In this case, the
218 * operation is done component-wise resulting in the same size
219 * vector."
220 */
221 if (type_a->is_vector() && type_b->is_vector()) {
222 if (type_a == type_b) {
223 return type_a;
224 } else {
225 _mesa_glsl_error(loc, state,
226 "vector size mismatch for arithmetic operator");
227 return glsl_type::error_type;
228 }
229 }
230
231 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
232 * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
233 * <vector, vector> have been handled. At least one of the operands must
234 * be matrix. Further, since there are no integer matrix types, the base
235 * type of both operands must be float.
236 */
237 assert(type_a->is_matrix() || type_b->is_matrix());
238 assert(type_a->base_type == GLSL_TYPE_FLOAT);
239 assert(type_b->base_type == GLSL_TYPE_FLOAT);
240
241 /* "* The operator is add (+), subtract (-), or divide (/), and the
242 * operands are matrices with the same number of rows and the same
243 * number of columns. In this case, the operation is done component-
244 * wise resulting in the same size matrix."
245 * * The operator is multiply (*), where both operands are matrices or
246 * one operand is a vector and the other a matrix. A right vector
247 * operand is treated as a column vector and a left vector operand as a
248 * row vector. In all these cases, it is required that the number of
249 * columns of the left operand is equal to the number of rows of the
250 * right operand. Then, the multiply (*) operation does a linear
251 * algebraic multiply, yielding an object that has the same number of
252 * rows as the left operand and the same number of columns as the right
253 * operand. Section 5.10 "Vector and Matrix Operations" explains in
254 * more detail how vectors and matrices are operated on."
255 */
256 if (! multiply) {
257 if (type_a == type_b)
258 return type_a;
259 } else {
260 if (type_a->is_matrix() && type_b->is_matrix()) {
261 /* Matrix multiply. The columns of A must match the rows of B. Given
262 * the other previously tested constraints, this means the vector type
263 * of a row from A must be the same as the vector type of a column from
264 * B.
265 */
266 if (type_a->row_type() == type_b->column_type()) {
267 /* The resulting matrix has the number of columns of matrix B and
268 * the number of rows of matrix A. We get the row count of A by
269 * looking at the size of a vector that makes up a column. The
270 * transpose (size of a row) is done for B.
271 */
272 const glsl_type *const type =
273 glsl_type::get_instance(type_a->base_type,
274 type_a->column_type()->vector_elements,
275 type_b->row_type()->vector_elements);
276 assert(type != glsl_type::error_type);
277
278 return type;
279 }
280 } else if (type_a->is_matrix()) {
281 /* A is a matrix and B is a column vector. Columns of A must match
282 * rows of B. Given the other previously tested constraints, this
283 * means the vector type of a row from A must be the same as the
284 * vector the type of B.
285 */
286 if (type_a->row_type() == type_b) {
287 /* The resulting vector has a number of elements equal to
288 * the number of rows of matrix A. */
289 const glsl_type *const type =
290 glsl_type::get_instance(type_a->base_type,
291 type_a->column_type()->vector_elements,
292 1);
293 assert(type != glsl_type::error_type);
294
295 return type;
296 }
297 } else {
298 assert(type_b->is_matrix());
299
300 /* A is a row vector and B is a matrix. Columns of A must match rows
301 * of B. Given the other previously tested constraints, this means
302 * the type of A must be the same as the vector type of a column from
303 * B.
304 */
305 if (type_a == type_b->column_type()) {
306 /* The resulting vector has a number of elements equal to
307 * the number of columns of matrix B. */
308 const glsl_type *const type =
309 glsl_type::get_instance(type_a->base_type,
310 type_b->row_type()->vector_elements,
311 1);
312 assert(type != glsl_type::error_type);
313
314 return type;
315 }
316 }
317
318 _mesa_glsl_error(loc, state, "size mismatch for matrix multiplication");
319 return glsl_type::error_type;
320 }
321
322
323 /* "All other cases are illegal."
324 */
325 _mesa_glsl_error(loc, state, "type mismatch");
326 return glsl_type::error_type;
327 }
328
329
330 static const struct glsl_type *
331 unary_arithmetic_result_type(const struct glsl_type *type,
332 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
333 {
334 /* From GLSL 1.50 spec, page 57:
335 *
336 * "The arithmetic unary operators negate (-), post- and pre-increment
337 * and decrement (-- and ++) operate on integer or floating-point
338 * values (including vectors and matrices). All unary operators work
339 * component-wise on their operands. These result with the same type
340 * they operated on."
341 */
342 if (!type->is_numeric()) {
343 _mesa_glsl_error(loc, state,
344 "Operands to arithmetic operators must be numeric");
345 return glsl_type::error_type;
346 }
347
348 return type;
349 }
350
351
352 static const struct glsl_type *
353 modulus_result_type(const struct glsl_type *type_a,
354 const struct glsl_type *type_b,
355 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
356 {
357 /* From GLSL 1.50 spec, page 56:
358 * "The operator modulus (%) operates on signed or unsigned integers or
359 * integer vectors. The operand types must both be signed or both be
360 * unsigned."
361 */
362 if (!type_a->is_integer() || !type_b->is_integer()
363 || (type_a->base_type != type_b->base_type)) {
364 _mesa_glsl_error(loc, state, "type mismatch");
365 return glsl_type::error_type;
366 }
367
368 /* "The operands cannot be vectors of differing size. If one operand is
369 * a scalar and the other vector, then the scalar is applied component-
370 * wise to the vector, resulting in the same type as the vector. If both
371 * are vectors of the same size, the result is computed component-wise."
372 */
373 if (type_a->is_vector()) {
374 if (!type_b->is_vector()
375 || (type_a->vector_elements == type_b->vector_elements))
376 return type_a;
377 } else
378 return type_b;
379
380 /* "The operator modulus (%) is not defined for any other data types
381 * (non-integer types)."
382 */
383 _mesa_glsl_error(loc, state, "type mismatch");
384 return glsl_type::error_type;
385 }
386
387
388 static const struct glsl_type *
389 relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
390 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
391 {
392 const glsl_type *type_a = value_a->type;
393 const glsl_type *type_b = value_b->type;
394
395 /* From GLSL 1.50 spec, page 56:
396 * "The relational operators greater than (>), less than (<), greater
397 * than or equal (>=), and less than or equal (<=) operate only on
398 * scalar integer and scalar floating-point expressions."
399 */
400 if (!type_a->is_numeric()
401 || !type_b->is_numeric()
402 || !type_a->is_scalar()
403 || !type_b->is_scalar()) {
404 _mesa_glsl_error(loc, state,
405 "Operands to relational operators must be scalar and "
406 "numeric");
407 return glsl_type::error_type;
408 }
409
410 /* "Either the operands' types must match, or the conversions from
411 * Section 4.1.10 "Implicit Conversions" will be applied to the integer
412 * operand, after which the types must match."
413 */
414 if (!apply_implicit_conversion(type_a, value_b, state)
415 && !apply_implicit_conversion(type_b, value_a, state)) {
416 _mesa_glsl_error(loc, state,
417 "Could not implicitly convert operands to "
418 "relational operator");
419 return glsl_type::error_type;
420 }
421 type_a = value_a->type;
422 type_b = value_b->type;
423
424 if (type_a->base_type != type_b->base_type) {
425 _mesa_glsl_error(loc, state, "base type mismatch");
426 return glsl_type::error_type;
427 }
428
429 /* "The result is scalar Boolean."
430 */
431 return glsl_type::bool_type;
432 }
433
434
435 /**
436 * Validates that a value can be assigned to a location with a specified type
437 *
438 * Validates that \c rhs can be assigned to some location. If the types are
439 * not an exact match but an automatic conversion is possible, \c rhs will be
440 * converted.
441 *
442 * \return
443 * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
444 * Otherwise the actual RHS to be assigned will be returned. This may be
445 * \c rhs, or it may be \c rhs after some type conversion.
446 *
447 * \note
448 * In addition to being used for assignments, this function is used to
449 * type-check return values.
450 */
451 ir_rvalue *
452 validate_assignment(struct _mesa_glsl_parse_state *state,
453 const glsl_type *lhs_type, ir_rvalue *rhs)
454 {
455 const glsl_type *rhs_type = rhs->type;
456
457 /* If there is already some error in the RHS, just return it. Anything
458 * else will lead to an avalanche of error message back to the user.
459 */
460 if (rhs_type->is_error())
461 return rhs;
462
463 /* If the types are identical, the assignment can trivially proceed.
464 */
465 if (rhs_type == lhs_type)
466 return rhs;
467
468 /* If the array element types are the same and the size of the LHS is zero,
469 * the assignment is okay.
470 *
471 * Note: Whole-array assignments are not permitted in GLSL 1.10, but this
472 * is handled by ir_dereference::is_lvalue.
473 */
474 if (lhs_type->is_array() && rhs->type->is_array()
475 && (lhs_type->element_type() == rhs->type->element_type())
476 && (lhs_type->array_size() == 0)) {
477 return rhs;
478 }
479
480 /* Check for implicit conversion in GLSL 1.20 */
481 if (apply_implicit_conversion(lhs_type, rhs, state)) {
482 rhs_type = rhs->type;
483 if (rhs_type == lhs_type)
484 return rhs;
485 }
486
487 return NULL;
488 }
489
490 ir_rvalue *
491 do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state,
492 ir_rvalue *lhs, ir_rvalue *rhs,
493 YYLTYPE lhs_loc)
494 {
495 void *ctx = state;
496 bool error_emitted = (lhs->type->is_error() || rhs->type->is_error());
497
498 if (!error_emitted) {
499 /* FINISHME: This does not handle 'foo.bar.a.b.c[5].d = 5' */
500 if (!lhs->is_lvalue()) {
501 _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment");
502 error_emitted = true;
503 }
504 }
505
506 ir_rvalue *new_rhs = validate_assignment(state, lhs->type, rhs);
507 if (new_rhs == NULL) {
508 _mesa_glsl_error(& lhs_loc, state, "type mismatch");
509 } else {
510 rhs = new_rhs;
511
512 /* If the LHS array was not declared with a size, it takes it size from
513 * the RHS. If the LHS is an l-value and a whole array, it must be a
514 * dereference of a variable. Any other case would require that the LHS
515 * is either not an l-value or not a whole array.
516 */
517 if (lhs->type->array_size() == 0) {
518 ir_dereference *const d = lhs->as_dereference();
519
520 assert(d != NULL);
521
522 ir_variable *const var = d->variable_referenced();
523
524 assert(var != NULL);
525
526 if (var->max_array_access >= unsigned(rhs->type->array_size())) {
527 /* FINISHME: This should actually log the location of the RHS. */
528 _mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to "
529 "previous access",
530 var->max_array_access);
531 }
532
533 var->type = glsl_type::get_array_instance(lhs->type->element_type(),
534 rhs->type->array_size());
535 d->type = var->type;
536 }
537 }
538
539 /* Most callers of do_assignment (assign, add_assign, pre_inc/dec,
540 * but not post_inc) need the converted assigned value as an rvalue
541 * to handle things like:
542 *
543 * i = j += 1;
544 *
545 * So we always just store the computed value being assigned to a
546 * temporary and return a deref of that temporary. If the rvalue
547 * ends up not being used, the temp will get copy-propagated out.
548 */
549 ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp",
550 ir_var_temporary);
551 ir_dereference_variable *deref_var = new(ctx) ir_dereference_variable(var);
552 instructions->push_tail(var);
553 instructions->push_tail(new(ctx) ir_assignment(deref_var,
554 rhs,
555 NULL));
556 deref_var = new(ctx) ir_dereference_variable(var);
557
558 if (!error_emitted)
559 instructions->push_tail(new(ctx) ir_assignment(lhs, deref_var, NULL));
560
561 return new(ctx) ir_dereference_variable(var);
562 }
563
564 static ir_rvalue *
565 get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue)
566 {
567 void *ctx = talloc_parent(lvalue);
568 ir_variable *var;
569
570 /* FINISHME: Give unique names to the temporaries. */
571 var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp",
572 ir_var_temporary);
573 instructions->push_tail(var);
574 var->mode = ir_var_auto;
575
576 instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
577 lvalue, NULL));
578
579 /* Once we've created this temporary, mark it read only so it's no
580 * longer considered an lvalue.
581 */
582 var->read_only = true;
583
584 return new(ctx) ir_dereference_variable(var);
585 }
586
587
588 ir_rvalue *
589 ast_node::hir(exec_list *instructions,
590 struct _mesa_glsl_parse_state *state)
591 {
592 (void) instructions;
593 (void) state;
594
595 return NULL;
596 }
597
598
599 ir_rvalue *
600 ast_expression::hir(exec_list *instructions,
601 struct _mesa_glsl_parse_state *state)
602 {
603 void *ctx = state;
604 static const int operations[AST_NUM_OPERATORS] = {
605 -1, /* ast_assign doesn't convert to ir_expression. */
606 -1, /* ast_plus doesn't convert to ir_expression. */
607 ir_unop_neg,
608 ir_binop_add,
609 ir_binop_sub,
610 ir_binop_mul,
611 ir_binop_div,
612 ir_binop_mod,
613 ir_binop_lshift,
614 ir_binop_rshift,
615 ir_binop_less,
616 ir_binop_greater,
617 ir_binop_lequal,
618 ir_binop_gequal,
619 ir_binop_equal,
620 ir_binop_nequal,
621 ir_binop_bit_and,
622 ir_binop_bit_xor,
623 ir_binop_bit_or,
624 ir_unop_bit_not,
625 ir_binop_logic_and,
626 ir_binop_logic_xor,
627 ir_binop_logic_or,
628 ir_unop_logic_not,
629
630 /* Note: The following block of expression types actually convert
631 * to multiple IR instructions.
632 */
633 ir_binop_mul, /* ast_mul_assign */
634 ir_binop_div, /* ast_div_assign */
635 ir_binop_mod, /* ast_mod_assign */
636 ir_binop_add, /* ast_add_assign */
637 ir_binop_sub, /* ast_sub_assign */
638 ir_binop_lshift, /* ast_ls_assign */
639 ir_binop_rshift, /* ast_rs_assign */
640 ir_binop_bit_and, /* ast_and_assign */
641 ir_binop_bit_xor, /* ast_xor_assign */
642 ir_binop_bit_or, /* ast_or_assign */
643
644 -1, /* ast_conditional doesn't convert to ir_expression. */
645 ir_binop_add, /* ast_pre_inc. */
646 ir_binop_sub, /* ast_pre_dec. */
647 ir_binop_add, /* ast_post_inc. */
648 ir_binop_sub, /* ast_post_dec. */
649 -1, /* ast_field_selection doesn't conv to ir_expression. */
650 -1, /* ast_array_index doesn't convert to ir_expression. */
651 -1, /* ast_function_call doesn't conv to ir_expression. */
652 -1, /* ast_identifier doesn't convert to ir_expression. */
653 -1, /* ast_int_constant doesn't convert to ir_expression. */
654 -1, /* ast_uint_constant doesn't conv to ir_expression. */
655 -1, /* ast_float_constant doesn't conv to ir_expression. */
656 -1, /* ast_bool_constant doesn't conv to ir_expression. */
657 -1, /* ast_sequence doesn't convert to ir_expression. */
658 };
659 ir_rvalue *result = NULL;
660 ir_rvalue *op[3];
661 const struct glsl_type *type = glsl_type::error_type;
662 bool error_emitted = false;
663 YYLTYPE loc;
664
665 loc = this->get_location();
666
667 switch (this->oper) {
668 case ast_assign: {
669 op[0] = this->subexpressions[0]->hir(instructions, state);
670 op[1] = this->subexpressions[1]->hir(instructions, state);
671
672 result = do_assignment(instructions, state, op[0], op[1],
673 this->subexpressions[0]->get_location());
674 error_emitted = result->type->is_error();
675 type = result->type;
676 break;
677 }
678
679 case ast_plus:
680 op[0] = this->subexpressions[0]->hir(instructions, state);
681
682 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
683
684 error_emitted = type->is_error();
685
686 result = op[0];
687 break;
688
689 case ast_neg:
690 op[0] = this->subexpressions[0]->hir(instructions, state);
691
692 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
693
694 error_emitted = type->is_error();
695
696 result = new(ctx) ir_expression(operations[this->oper], type,
697 op[0], NULL);
698 break;
699
700 case ast_add:
701 case ast_sub:
702 case ast_mul:
703 case ast_div:
704 op[0] = this->subexpressions[0]->hir(instructions, state);
705 op[1] = this->subexpressions[1]->hir(instructions, state);
706
707 type = arithmetic_result_type(op[0], op[1],
708 (this->oper == ast_mul),
709 state, & loc);
710 error_emitted = type->is_error();
711
712 result = new(ctx) ir_expression(operations[this->oper], type,
713 op[0], op[1]);
714 break;
715
716 case ast_mod:
717 op[0] = this->subexpressions[0]->hir(instructions, state);
718 op[1] = this->subexpressions[1]->hir(instructions, state);
719
720 type = modulus_result_type(op[0]->type, op[1]->type, state, & loc);
721
722 assert(operations[this->oper] == ir_binop_mod);
723
724 result = new(ctx) ir_expression(operations[this->oper], type,
725 op[0], op[1]);
726 error_emitted = type->is_error();
727 break;
728
729 case ast_lshift:
730 case ast_rshift:
731 _mesa_glsl_error(& loc, state, "FINISHME: implement bit-shift operators");
732 error_emitted = true;
733 break;
734
735 case ast_less:
736 case ast_greater:
737 case ast_lequal:
738 case ast_gequal:
739 op[0] = this->subexpressions[0]->hir(instructions, state);
740 op[1] = this->subexpressions[1]->hir(instructions, state);
741
742 type = relational_result_type(op[0], op[1], state, & loc);
743
744 /* The relational operators must either generate an error or result
745 * in a scalar boolean. See page 57 of the GLSL 1.50 spec.
746 */
747 assert(type->is_error()
748 || ((type->base_type == GLSL_TYPE_BOOL)
749 && type->is_scalar()));
750
751 result = new(ctx) ir_expression(operations[this->oper], type,
752 op[0], op[1]);
753 error_emitted = type->is_error();
754 break;
755
756 case ast_nequal:
757 case ast_equal:
758 op[0] = this->subexpressions[0]->hir(instructions, state);
759 op[1] = this->subexpressions[1]->hir(instructions, state);
760
761 /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
762 *
763 * "The equality operators equal (==), and not equal (!=)
764 * operate on all types. They result in a scalar Boolean. If
765 * the operand types do not match, then there must be a
766 * conversion from Section 4.1.10 "Implicit Conversions"
767 * applied to one operand that can make them match, in which
768 * case this conversion is done."
769 */
770 if ((!apply_implicit_conversion(op[0]->type, op[1], state)
771 && !apply_implicit_conversion(op[1]->type, op[0], state))
772 || (op[0]->type != op[1]->type)) {
773 _mesa_glsl_error(& loc, state, "operands of `%s' must have the same "
774 "type", (this->oper == ast_equal) ? "==" : "!=");
775 error_emitted = true;
776 } else if ((state->language_version <= 110)
777 && (op[0]->type->is_array() || op[1]->type->is_array())) {
778 _mesa_glsl_error(& loc, state, "array comparisons forbidden in "
779 "GLSL 1.10");
780 error_emitted = true;
781 }
782
783 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
784 op[0], op[1]);
785 type = glsl_type::bool_type;
786
787 assert(result->type == glsl_type::bool_type);
788 break;
789
790 case ast_bit_and:
791 case ast_bit_xor:
792 case ast_bit_or:
793 case ast_bit_not:
794 _mesa_glsl_error(& loc, state, "FINISHME: implement bit-wise operators");
795 error_emitted = true;
796 break;
797
798 case ast_logic_and: {
799 op[0] = this->subexpressions[0]->hir(instructions, state);
800
801 if (!op[0]->type->is_boolean() || !op[0]->type->is_scalar()) {
802 YYLTYPE loc = this->subexpressions[0]->get_location();
803
804 _mesa_glsl_error(& loc, state, "LHS of `%s' must be scalar boolean",
805 operator_string(this->oper));
806 error_emitted = true;
807 }
808
809 ir_constant *op0_const = op[0]->constant_expression_value();
810 if (op0_const) {
811 if (op0_const->value.b[0]) {
812 op[1] = this->subexpressions[1]->hir(instructions, state);
813
814 if (!op[1]->type->is_boolean() || !op[1]->type->is_scalar()) {
815 YYLTYPE loc = this->subexpressions[1]->get_location();
816
817 _mesa_glsl_error(& loc, state,
818 "RHS of `%s' must be scalar boolean",
819 operator_string(this->oper));
820 error_emitted = true;
821 }
822 result = op[1];
823 } else {
824 result = op0_const;
825 }
826 type = glsl_type::bool_type;
827 } else {
828 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
829 "and_tmp",
830 ir_var_temporary);
831 instructions->push_tail(tmp);
832
833 ir_if *const stmt = new(ctx) ir_if(op[0]);
834 instructions->push_tail(stmt);
835
836 op[1] = this->subexpressions[1]->hir(&stmt->then_instructions, state);
837
838 if (!op[1]->type->is_boolean() || !op[1]->type->is_scalar()) {
839 YYLTYPE loc = this->subexpressions[1]->get_location();
840
841 _mesa_glsl_error(& loc, state,
842 "RHS of `%s' must be scalar boolean",
843 operator_string(this->oper));
844 error_emitted = true;
845 }
846
847 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
848 ir_assignment *const then_assign =
849 new(ctx) ir_assignment(then_deref, op[1], NULL);
850 stmt->then_instructions.push_tail(then_assign);
851
852 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
853 ir_assignment *const else_assign =
854 new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false), NULL);
855 stmt->else_instructions.push_tail(else_assign);
856
857 result = new(ctx) ir_dereference_variable(tmp);
858 type = tmp->type;
859 }
860 break;
861 }
862
863 case ast_logic_or: {
864 op[0] = this->subexpressions[0]->hir(instructions, state);
865
866 if (!op[0]->type->is_boolean() || !op[0]->type->is_scalar()) {
867 YYLTYPE loc = this->subexpressions[0]->get_location();
868
869 _mesa_glsl_error(& loc, state, "LHS of `%s' must be scalar boolean",
870 operator_string(this->oper));
871 error_emitted = true;
872 }
873
874 ir_constant *op0_const = op[0]->constant_expression_value();
875 if (op0_const) {
876 if (op0_const->value.b[0]) {
877 result = op0_const;
878 } else {
879 op[1] = this->subexpressions[1]->hir(instructions, state);
880
881 if (!op[1]->type->is_boolean() || !op[1]->type->is_scalar()) {
882 YYLTYPE loc = this->subexpressions[1]->get_location();
883
884 _mesa_glsl_error(& loc, state,
885 "RHS of `%s' must be scalar boolean",
886 operator_string(this->oper));
887 error_emitted = true;
888 }
889 result = op[1];
890 }
891 type = glsl_type::bool_type;
892 } else {
893 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
894 "or_tmp",
895 ir_var_temporary);
896 instructions->push_tail(tmp);
897
898 ir_if *const stmt = new(ctx) ir_if(op[0]);
899 instructions->push_tail(stmt);
900
901 op[1] = this->subexpressions[1]->hir(&stmt->else_instructions, state);
902
903 if (!op[1]->type->is_boolean() || !op[1]->type->is_scalar()) {
904 YYLTYPE loc = this->subexpressions[1]->get_location();
905
906 _mesa_glsl_error(& loc, state, "RHS of `%s' must be scalar boolean",
907 operator_string(this->oper));
908 error_emitted = true;
909 }
910
911 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
912 ir_assignment *const then_assign =
913 new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true), NULL);
914 stmt->then_instructions.push_tail(then_assign);
915
916 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
917 ir_assignment *const else_assign =
918 new(ctx) ir_assignment(else_deref, op[1], NULL);
919 stmt->else_instructions.push_tail(else_assign);
920
921 result = new(ctx) ir_dereference_variable(tmp);
922 type = tmp->type;
923 }
924 break;
925 }
926
927 case ast_logic_xor:
928 op[0] = this->subexpressions[0]->hir(instructions, state);
929 op[1] = this->subexpressions[1]->hir(instructions, state);
930
931
932 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
933 op[0], op[1]);
934 type = glsl_type::bool_type;
935 break;
936
937 case ast_logic_not:
938 op[0] = this->subexpressions[0]->hir(instructions, state);
939
940 if (!op[0]->type->is_boolean() || !op[0]->type->is_scalar()) {
941 YYLTYPE loc = this->subexpressions[0]->get_location();
942
943 _mesa_glsl_error(& loc, state,
944 "operand of `!' must be scalar boolean");
945 error_emitted = true;
946 }
947
948 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
949 op[0], NULL);
950 type = glsl_type::bool_type;
951 break;
952
953 case ast_mul_assign:
954 case ast_div_assign:
955 case ast_add_assign:
956 case ast_sub_assign: {
957 op[0] = this->subexpressions[0]->hir(instructions, state);
958 op[1] = this->subexpressions[1]->hir(instructions, state);
959
960 type = arithmetic_result_type(op[0], op[1],
961 (this->oper == ast_mul_assign),
962 state, & loc);
963
964 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
965 op[0], op[1]);
966
967 result = do_assignment(instructions, state,
968 op[0]->clone(ctx, NULL), temp_rhs,
969 this->subexpressions[0]->get_location());
970 type = result->type;
971 error_emitted = (op[0]->type->is_error());
972
973 /* GLSL 1.10 does not allow array assignment. However, we don't have to
974 * explicitly test for this because none of the binary expression
975 * operators allow array operands either.
976 */
977
978 break;
979 }
980
981 case ast_mod_assign: {
982 op[0] = this->subexpressions[0]->hir(instructions, state);
983 op[1] = this->subexpressions[1]->hir(instructions, state);
984
985 type = modulus_result_type(op[0]->type, op[1]->type, state, & loc);
986
987 assert(operations[this->oper] == ir_binop_mod);
988
989 ir_rvalue *temp_rhs;
990 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
991 op[0], op[1]);
992
993 result = do_assignment(instructions, state,
994 op[0]->clone(ctx, NULL), temp_rhs,
995 this->subexpressions[0]->get_location());
996 type = result->type;
997 error_emitted = type->is_error();
998 break;
999 }
1000
1001 case ast_ls_assign:
1002 case ast_rs_assign:
1003 _mesa_glsl_error(& loc, state,
1004 "FINISHME: implement bit-shift assignment operators");
1005 error_emitted = true;
1006 break;
1007
1008 case ast_and_assign:
1009 case ast_xor_assign:
1010 case ast_or_assign:
1011 _mesa_glsl_error(& loc, state,
1012 "FINISHME: implement logic assignment operators");
1013 error_emitted = true;
1014 break;
1015
1016 case ast_conditional: {
1017 op[0] = this->subexpressions[0]->hir(instructions, state);
1018
1019 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1020 *
1021 * "The ternary selection operator (?:). It operates on three
1022 * expressions (exp1 ? exp2 : exp3). This operator evaluates the
1023 * first expression, which must result in a scalar Boolean."
1024 */
1025 if (!op[0]->type->is_boolean() || !op[0]->type->is_scalar()) {
1026 YYLTYPE loc = this->subexpressions[0]->get_location();
1027
1028 _mesa_glsl_error(& loc, state, "?: condition must be scalar boolean");
1029 error_emitted = true;
1030 }
1031
1032 /* The :? operator is implemented by generating an anonymous temporary
1033 * followed by an if-statement. The last instruction in each branch of
1034 * the if-statement assigns a value to the anonymous temporary. This
1035 * temporary is the r-value of the expression.
1036 */
1037 exec_list then_instructions;
1038 exec_list else_instructions;
1039
1040 op[1] = this->subexpressions[1]->hir(&then_instructions, state);
1041 op[2] = this->subexpressions[2]->hir(&else_instructions, state);
1042
1043 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1044 *
1045 * "The second and third expressions can be any type, as
1046 * long their types match, or there is a conversion in
1047 * Section 4.1.10 "Implicit Conversions" that can be applied
1048 * to one of the expressions to make their types match. This
1049 * resulting matching type is the type of the entire
1050 * expression."
1051 */
1052 if ((!apply_implicit_conversion(op[1]->type, op[2], state)
1053 && !apply_implicit_conversion(op[2]->type, op[1], state))
1054 || (op[1]->type != op[2]->type)) {
1055 YYLTYPE loc = this->subexpressions[1]->get_location();
1056
1057 _mesa_glsl_error(& loc, state, "Second and third operands of ?: "
1058 "operator must have matching types.");
1059 error_emitted = true;
1060 type = glsl_type::error_type;
1061 } else {
1062 type = op[1]->type;
1063 }
1064
1065 ir_constant *cond_val = op[0]->constant_expression_value();
1066 ir_constant *then_val = op[1]->constant_expression_value();
1067 ir_constant *else_val = op[2]->constant_expression_value();
1068
1069 if (then_instructions.is_empty()
1070 && else_instructions.is_empty()
1071 && (cond_val != NULL) && (then_val != NULL) && (else_val != NULL)) {
1072 result = (cond_val->value.b[0]) ? then_val : else_val;
1073 } else {
1074 ir_variable *const tmp =
1075 new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary);
1076 instructions->push_tail(tmp);
1077
1078 ir_if *const stmt = new(ctx) ir_if(op[0]);
1079 instructions->push_tail(stmt);
1080
1081 then_instructions.move_nodes_to(& stmt->then_instructions);
1082 ir_dereference *const then_deref =
1083 new(ctx) ir_dereference_variable(tmp);
1084 ir_assignment *const then_assign =
1085 new(ctx) ir_assignment(then_deref, op[1], NULL);
1086 stmt->then_instructions.push_tail(then_assign);
1087
1088 else_instructions.move_nodes_to(& stmt->else_instructions);
1089 ir_dereference *const else_deref =
1090 new(ctx) ir_dereference_variable(tmp);
1091 ir_assignment *const else_assign =
1092 new(ctx) ir_assignment(else_deref, op[2], NULL);
1093 stmt->else_instructions.push_tail(else_assign);
1094
1095 result = new(ctx) ir_dereference_variable(tmp);
1096 }
1097 break;
1098 }
1099
1100 case ast_pre_inc:
1101 case ast_pre_dec: {
1102 op[0] = this->subexpressions[0]->hir(instructions, state);
1103 if (op[0]->type->base_type == GLSL_TYPE_FLOAT)
1104 op[1] = new(ctx) ir_constant(1.0f);
1105 else
1106 op[1] = new(ctx) ir_constant(1);
1107
1108 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1109
1110 ir_rvalue *temp_rhs;
1111 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1112 op[0], op[1]);
1113
1114 result = do_assignment(instructions, state,
1115 op[0]->clone(ctx, NULL), temp_rhs,
1116 this->subexpressions[0]->get_location());
1117 type = result->type;
1118 error_emitted = op[0]->type->is_error();
1119 break;
1120 }
1121
1122 case ast_post_inc:
1123 case ast_post_dec: {
1124 op[0] = this->subexpressions[0]->hir(instructions, state);
1125 if (op[0]->type->base_type == GLSL_TYPE_FLOAT)
1126 op[1] = new(ctx) ir_constant(1.0f);
1127 else
1128 op[1] = new(ctx) ir_constant(1);
1129
1130 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1131
1132 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1133
1134 ir_rvalue *temp_rhs;
1135 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1136 op[0], op[1]);
1137
1138 /* Get a temporary of a copy of the lvalue before it's modified.
1139 * This may get thrown away later.
1140 */
1141 result = get_lvalue_copy(instructions, op[0]->clone(ctx, NULL));
1142
1143 (void)do_assignment(instructions, state,
1144 op[0]->clone(ctx, NULL), temp_rhs,
1145 this->subexpressions[0]->get_location());
1146
1147 type = result->type;
1148 error_emitted = op[0]->type->is_error();
1149 break;
1150 }
1151
1152 case ast_field_selection:
1153 result = _mesa_ast_field_selection_to_hir(this, instructions, state);
1154 type = result->type;
1155 break;
1156
1157 case ast_array_index: {
1158 YYLTYPE index_loc = subexpressions[1]->get_location();
1159
1160 op[0] = subexpressions[0]->hir(instructions, state);
1161 op[1] = subexpressions[1]->hir(instructions, state);
1162
1163 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1164
1165 ir_rvalue *const array = op[0];
1166
1167 result = new(ctx) ir_dereference_array(op[0], op[1]);
1168
1169 /* Do not use op[0] after this point. Use array.
1170 */
1171 op[0] = NULL;
1172
1173
1174 if (error_emitted)
1175 break;
1176
1177 if (!array->type->is_array()
1178 && !array->type->is_matrix()
1179 && !array->type->is_vector()) {
1180 _mesa_glsl_error(& index_loc, state,
1181 "cannot dereference non-array / non-matrix / "
1182 "non-vector");
1183 error_emitted = true;
1184 }
1185
1186 if (!op[1]->type->is_integer()) {
1187 _mesa_glsl_error(& index_loc, state,
1188 "array index must be integer type");
1189 error_emitted = true;
1190 } else if (!op[1]->type->is_scalar()) {
1191 _mesa_glsl_error(& index_loc, state,
1192 "array index must be scalar");
1193 error_emitted = true;
1194 }
1195
1196 /* If the array index is a constant expression and the array has a
1197 * declared size, ensure that the access is in-bounds. If the array
1198 * index is not a constant expression, ensure that the array has a
1199 * declared size.
1200 */
1201 ir_constant *const const_index = op[1]->constant_expression_value();
1202 if (const_index != NULL) {
1203 const int idx = const_index->value.i[0];
1204 const char *type_name;
1205 unsigned bound = 0;
1206
1207 if (array->type->is_matrix()) {
1208 type_name = "matrix";
1209 } else if (array->type->is_vector()) {
1210 type_name = "vector";
1211 } else {
1212 type_name = "array";
1213 }
1214
1215 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec:
1216 *
1217 * "It is illegal to declare an array with a size, and then
1218 * later (in the same shader) index the same array with an
1219 * integral constant expression greater than or equal to the
1220 * declared size. It is also illegal to index an array with a
1221 * negative constant expression."
1222 */
1223 if (array->type->is_matrix()) {
1224 if (array->type->row_type()->vector_elements <= idx) {
1225 bound = array->type->row_type()->vector_elements;
1226 }
1227 } else if (array->type->is_vector()) {
1228 if (array->type->vector_elements <= idx) {
1229 bound = array->type->vector_elements;
1230 }
1231 } else {
1232 if ((array->type->array_size() > 0)
1233 && (array->type->array_size() <= idx)) {
1234 bound = array->type->array_size();
1235 }
1236 }
1237
1238 if (bound > 0) {
1239 _mesa_glsl_error(& loc, state, "%s index must be < %u",
1240 type_name, bound);
1241 error_emitted = true;
1242 } else if (idx < 0) {
1243 _mesa_glsl_error(& loc, state, "%s index must be >= 0",
1244 type_name);
1245 error_emitted = true;
1246 }
1247
1248 if (array->type->is_array()) {
1249 /* If the array is a variable dereference, it dereferences the
1250 * whole array, by definition. Use this to get the variable.
1251 *
1252 * FINISHME: Should some methods for getting / setting / testing
1253 * FINISHME: array access limits be added to ir_dereference?
1254 */
1255 ir_variable *const v = array->whole_variable_referenced();
1256 if ((v != NULL) && (unsigned(idx) > v->max_array_access))
1257 v->max_array_access = idx;
1258 }
1259 } else if (array->type->array_size() == 0) {
1260 _mesa_glsl_error(&loc, state, "unsized array index must be constant");
1261 } else {
1262 if (array->type->is_array()) {
1263 ir_variable *v = array->whole_variable_referenced();
1264 v->max_array_access = array->type->array_size();
1265 }
1266 }
1267
1268 if (error_emitted)
1269 result->type = glsl_type::error_type;
1270
1271 type = result->type;
1272 break;
1273 }
1274
1275 case ast_function_call:
1276 /* Should *NEVER* get here. ast_function_call should always be handled
1277 * by ast_function_expression::hir.
1278 */
1279 assert(0);
1280 break;
1281
1282 case ast_identifier: {
1283 /* ast_identifier can appear several places in a full abstract syntax
1284 * tree. This particular use must be at location specified in the grammar
1285 * as 'variable_identifier'.
1286 */
1287 ir_variable *var =
1288 state->symbols->get_variable(this->primary_expression.identifier);
1289
1290 result = new(ctx) ir_dereference_variable(var);
1291
1292 if (var != NULL) {
1293 type = result->type;
1294 } else {
1295 _mesa_glsl_error(& loc, state, "`%s' undeclared",
1296 this->primary_expression.identifier);
1297
1298 error_emitted = true;
1299 }
1300 break;
1301 }
1302
1303 case ast_int_constant:
1304 type = glsl_type::int_type;
1305 result = new(ctx) ir_constant(this->primary_expression.int_constant);
1306 break;
1307
1308 case ast_uint_constant:
1309 type = glsl_type::uint_type;
1310 result = new(ctx) ir_constant(this->primary_expression.uint_constant);
1311 break;
1312
1313 case ast_float_constant:
1314 type = glsl_type::float_type;
1315 result = new(ctx) ir_constant(this->primary_expression.float_constant);
1316 break;
1317
1318 case ast_bool_constant:
1319 type = glsl_type::bool_type;
1320 result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant));
1321 break;
1322
1323 case ast_sequence: {
1324 /* It should not be possible to generate a sequence in the AST without
1325 * any expressions in it.
1326 */
1327 assert(!this->expressions.is_empty());
1328
1329 /* The r-value of a sequence is the last expression in the sequence. If
1330 * the other expressions in the sequence do not have side-effects (and
1331 * therefore add instructions to the instruction list), they get dropped
1332 * on the floor.
1333 */
1334 foreach_list_typed (ast_node, ast, link, &this->expressions)
1335 result = ast->hir(instructions, state);
1336
1337 type = result->type;
1338
1339 /* Any errors should have already been emitted in the loop above.
1340 */
1341 error_emitted = true;
1342 break;
1343 }
1344 }
1345
1346 if (type->is_error() && !error_emitted)
1347 _mesa_glsl_error(& loc, state, "type mismatch");
1348
1349 return result;
1350 }
1351
1352
1353 ir_rvalue *
1354 ast_expression_statement::hir(exec_list *instructions,
1355 struct _mesa_glsl_parse_state *state)
1356 {
1357 /* It is possible to have expression statements that don't have an
1358 * expression. This is the solitary semicolon:
1359 *
1360 * for (i = 0; i < 5; i++)
1361 * ;
1362 *
1363 * In this case the expression will be NULL. Test for NULL and don't do
1364 * anything in that case.
1365 */
1366 if (expression != NULL)
1367 expression->hir(instructions, state);
1368
1369 /* Statements do not have r-values.
1370 */
1371 return NULL;
1372 }
1373
1374
1375 ir_rvalue *
1376 ast_compound_statement::hir(exec_list *instructions,
1377 struct _mesa_glsl_parse_state *state)
1378 {
1379 if (new_scope)
1380 state->symbols->push_scope();
1381
1382 foreach_list_typed (ast_node, ast, link, &this->statements)
1383 ast->hir(instructions, state);
1384
1385 if (new_scope)
1386 state->symbols->pop_scope();
1387
1388 /* Compound statements do not have r-values.
1389 */
1390 return NULL;
1391 }
1392
1393
1394 static const glsl_type *
1395 process_array_type(const glsl_type *base, ast_node *array_size,
1396 struct _mesa_glsl_parse_state *state)
1397 {
1398 unsigned length = 0;
1399
1400 /* FINISHME: Reject delcarations of multidimensional arrays. */
1401
1402 if (array_size != NULL) {
1403 exec_list dummy_instructions;
1404 ir_rvalue *const ir = array_size->hir(& dummy_instructions, state);
1405 YYLTYPE loc = array_size->get_location();
1406
1407 /* FINISHME: Verify that the grammar forbids side-effects in array
1408 * FINISHME: sizes. i.e., 'vec4 [x = 12] data'
1409 */
1410 assert(dummy_instructions.is_empty());
1411
1412 if (ir != NULL) {
1413 if (!ir->type->is_integer()) {
1414 _mesa_glsl_error(& loc, state, "array size must be integer type");
1415 } else if (!ir->type->is_scalar()) {
1416 _mesa_glsl_error(& loc, state, "array size must be scalar type");
1417 } else {
1418 ir_constant *const size = ir->constant_expression_value();
1419
1420 if (size == NULL) {
1421 _mesa_glsl_error(& loc, state, "array size must be a "
1422 "constant valued expression");
1423 } else if (size->value.i[0] <= 0) {
1424 _mesa_glsl_error(& loc, state, "array size must be > 0");
1425 } else {
1426 assert(size->type == ir->type);
1427 length = size->value.u[0];
1428 }
1429 }
1430 }
1431 }
1432
1433 return glsl_type::get_array_instance(base, length);
1434 }
1435
1436
1437 const glsl_type *
1438 ast_type_specifier::glsl_type(const char **name,
1439 struct _mesa_glsl_parse_state *state) const
1440 {
1441 const struct glsl_type *type;
1442
1443 if ((this->type_specifier == ast_struct) && (this->type_name == NULL)) {
1444 /* FINISHME: Handle annonymous structures. */
1445 type = NULL;
1446 } else {
1447 type = state->symbols->get_type(this->type_name);
1448 *name = this->type_name;
1449
1450 if (this->is_array) {
1451 type = process_array_type(type, this->array_size, state);
1452 }
1453 }
1454
1455 return type;
1456 }
1457
1458
1459 static void
1460 apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
1461 ir_variable *var,
1462 struct _mesa_glsl_parse_state *state,
1463 YYLTYPE *loc)
1464 {
1465 if (qual->invariant)
1466 var->invariant = 1;
1467
1468 /* FINISHME: Mark 'in' variables at global scope as read-only. */
1469 if (qual->constant || qual->attribute || qual->uniform
1470 || (qual->varying && (state->target == fragment_shader)))
1471 var->read_only = 1;
1472
1473 if (qual->centroid)
1474 var->centroid = 1;
1475
1476 if (qual->attribute && state->target != vertex_shader) {
1477 var->type = glsl_type::error_type;
1478 _mesa_glsl_error(loc, state,
1479 "`attribute' variables may not be declared in the "
1480 "%s shader",
1481 _mesa_glsl_shader_target_name(state->target));
1482 }
1483
1484 /* From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
1485 *
1486 * "The varying qualifier can be used only with the data types
1487 * float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
1488 * these."
1489 */
1490 if (qual->varying) {
1491 const glsl_type *non_array_type;
1492
1493 if (var->type && var->type->is_array())
1494 non_array_type = var->type->fields.array;
1495 else
1496 non_array_type = var->type;
1497
1498 if (non_array_type && non_array_type->base_type != GLSL_TYPE_FLOAT) {
1499 var->type = glsl_type::error_type;
1500 _mesa_glsl_error(loc, state,
1501 "varying variables must be of base type float");
1502 }
1503 }
1504
1505 /* If there is no qualifier that changes the mode of the variable, leave
1506 * the setting alone.
1507 */
1508 if (qual->in && qual->out)
1509 var->mode = ir_var_inout;
1510 else if (qual->attribute || qual->in
1511 || (qual->varying && (state->target == fragment_shader)))
1512 var->mode = ir_var_in;
1513 else if (qual->out || (qual->varying && (state->target == vertex_shader)))
1514 var->mode = ir_var_out;
1515 else if (qual->uniform)
1516 var->mode = ir_var_uniform;
1517
1518 if (qual->flat)
1519 var->interpolation = ir_var_flat;
1520 else if (qual->noperspective)
1521 var->interpolation = ir_var_noperspective;
1522 else
1523 var->interpolation = ir_var_smooth;
1524
1525 var->pixel_center_integer = qual->pixel_center_integer;
1526 var->origin_upper_left = qual->origin_upper_left;
1527 if ((qual->origin_upper_left || qual->pixel_center_integer)
1528 && (strcmp(var->name, "gl_FragCoord") != 0)) {
1529 const char *const qual_string = (qual->origin_upper_left)
1530 ? "origin_upper_left" : "pixel_center_integer";
1531
1532 _mesa_glsl_error(loc, state,
1533 "layout qualifier `%s' can only be applied to "
1534 "fragment shader input `gl_FragCoord'",
1535 qual_string);
1536 }
1537
1538 if (var->type->is_array() && (state->language_version >= 120)) {
1539 var->array_lvalue = true;
1540 }
1541 }
1542
1543
1544 ir_rvalue *
1545 ast_declarator_list::hir(exec_list *instructions,
1546 struct _mesa_glsl_parse_state *state)
1547 {
1548 void *ctx = state;
1549 const struct glsl_type *decl_type;
1550 const char *type_name = NULL;
1551 ir_rvalue *result = NULL;
1552 YYLTYPE loc = this->get_location();
1553
1554 /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec:
1555 *
1556 * "To ensure that a particular output variable is invariant, it is
1557 * necessary to use the invariant qualifier. It can either be used to
1558 * qualify a previously declared variable as being invariant
1559 *
1560 * invariant gl_Position; // make existing gl_Position be invariant"
1561 *
1562 * In these cases the parser will set the 'invariant' flag in the declarator
1563 * list, and the type will be NULL.
1564 */
1565 if (this->invariant) {
1566 assert(this->type == NULL);
1567
1568 if (state->current_function != NULL) {
1569 _mesa_glsl_error(& loc, state,
1570 "All uses of `invariant' keyword must be at global "
1571 "scope\n");
1572 }
1573
1574 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
1575 assert(!decl->is_array);
1576 assert(decl->array_size == NULL);
1577 assert(decl->initializer == NULL);
1578
1579 ir_variable *const earlier =
1580 state->symbols->get_variable(decl->identifier);
1581 if (earlier == NULL) {
1582 _mesa_glsl_error(& loc, state,
1583 "Undeclared variable `%s' cannot be marked "
1584 "invariant\n", decl->identifier);
1585 } else if ((state->target == vertex_shader)
1586 && (earlier->mode != ir_var_out)) {
1587 _mesa_glsl_error(& loc, state,
1588 "`%s' cannot be marked invariant, vertex shader "
1589 "outputs only\n", decl->identifier);
1590 } else if ((state->target == fragment_shader)
1591 && (earlier->mode != ir_var_in)) {
1592 _mesa_glsl_error(& loc, state,
1593 "`%s' cannot be marked invariant, fragment shader "
1594 "inputs only\n", decl->identifier);
1595 } else {
1596 earlier->invariant = true;
1597 }
1598 }
1599
1600 /* Invariant redeclarations do not have r-values.
1601 */
1602 return NULL;
1603 }
1604
1605 assert(this->type != NULL);
1606 assert(!this->invariant);
1607
1608 /* The type specifier may contain a structure definition. Process that
1609 * before any of the variable declarations.
1610 */
1611 (void) this->type->specifier->hir(instructions, state);
1612
1613 decl_type = this->type->specifier->glsl_type(& type_name, state);
1614 if (this->declarations.is_empty()) {
1615 /* The only valid case where the declaration list can be empty is when
1616 * the declaration is setting the default precision of a built-in type
1617 * (e.g., 'precision highp vec4;').
1618 */
1619
1620 if (decl_type != NULL) {
1621 } else {
1622 _mesa_glsl_error(& loc, state, "incomplete declaration");
1623 }
1624 }
1625
1626 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
1627 const struct glsl_type *var_type;
1628 ir_variable *var;
1629
1630 /* FINISHME: Emit a warning if a variable declaration shadows a
1631 * FINISHME: declaration at a higher scope.
1632 */
1633
1634 if ((decl_type == NULL) || decl_type->is_void()) {
1635 if (type_name != NULL) {
1636 _mesa_glsl_error(& loc, state,
1637 "invalid type `%s' in declaration of `%s'",
1638 type_name, decl->identifier);
1639 } else {
1640 _mesa_glsl_error(& loc, state,
1641 "invalid type in declaration of `%s'",
1642 decl->identifier);
1643 }
1644 continue;
1645 }
1646
1647 if (decl->is_array) {
1648 var_type = process_array_type(decl_type, decl->array_size, state);
1649 } else {
1650 var_type = decl_type;
1651 }
1652
1653 var = new(ctx) ir_variable(var_type, decl->identifier, ir_var_auto);
1654
1655 /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
1656 *
1657 * "Global variables can only use the qualifiers const,
1658 * attribute, uni form, or varying. Only one may be
1659 * specified.
1660 *
1661 * Local variables can only use the qualifier const."
1662 *
1663 * This is relaxed in GLSL 1.30.
1664 */
1665 if (state->language_version < 120) {
1666 if (this->type->qualifier.out) {
1667 _mesa_glsl_error(& loc, state,
1668 "`out' qualifier in declaration of `%s' "
1669 "only valid for function parameters in GLSL 1.10.",
1670 decl->identifier);
1671 }
1672 if (this->type->qualifier.in) {
1673 _mesa_glsl_error(& loc, state,
1674 "`in' qualifier in declaration of `%s' "
1675 "only valid for function parameters in GLSL 1.10.",
1676 decl->identifier);
1677 }
1678 /* FINISHME: Test for other invalid qualifiers. */
1679 }
1680
1681 apply_type_qualifier_to_variable(& this->type->qualifier, var, state,
1682 & loc);
1683
1684 if (this->type->qualifier.invariant) {
1685 if ((state->target == vertex_shader) && !(var->mode == ir_var_out ||
1686 var->mode == ir_var_inout)) {
1687 /* FINISHME: Note that this doesn't work for invariant on
1688 * a function signature outval
1689 */
1690 _mesa_glsl_error(& loc, state,
1691 "`%s' cannot be marked invariant, vertex shader "
1692 "outputs only\n", var->name);
1693 } else if ((state->target == fragment_shader) &&
1694 !(var->mode == ir_var_in || var->mode == ir_var_inout)) {
1695 /* FINISHME: Note that this doesn't work for invariant on
1696 * a function signature inval
1697 */
1698 _mesa_glsl_error(& loc, state,
1699 "`%s' cannot be marked invariant, fragment shader "
1700 "inputs only\n", var->name);
1701 }
1702 }
1703
1704 if (state->current_function != NULL) {
1705 const char *mode = NULL;
1706 const char *extra = "";
1707
1708 /* There is no need to check for 'inout' here because the parser will
1709 * only allow that in function parameter lists.
1710 */
1711 if (this->type->qualifier.attribute) {
1712 mode = "attribute";
1713 } else if (this->type->qualifier.uniform) {
1714 mode = "uniform";
1715 } else if (this->type->qualifier.varying) {
1716 mode = "varying";
1717 } else if (this->type->qualifier.in) {
1718 mode = "in";
1719 extra = " or in function parameter list";
1720 } else if (this->type->qualifier.out) {
1721 mode = "out";
1722 extra = " or in function parameter list";
1723 }
1724
1725 if (mode) {
1726 _mesa_glsl_error(& loc, state,
1727 "%s variable `%s' must be declared at "
1728 "global scope%s",
1729 mode, var->name, extra);
1730 }
1731 } else if (var->mode == ir_var_in) {
1732 if (state->target == vertex_shader) {
1733 bool error_emitted = false;
1734
1735 /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
1736 *
1737 * "Vertex shader inputs can only be float, floating-point
1738 * vectors, matrices, signed and unsigned integers and integer
1739 * vectors. Vertex shader inputs can also form arrays of these
1740 * types, but not structures."
1741 *
1742 * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
1743 *
1744 * "Vertex shader inputs can only be float, floating-point
1745 * vectors, matrices, signed and unsigned integers and integer
1746 * vectors. They cannot be arrays or structures."
1747 *
1748 * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
1749 *
1750 * "The attribute qualifier can be used only with float,
1751 * floating-point vectors, and matrices. Attribute variables
1752 * cannot be declared as arrays or structures."
1753 */
1754 const glsl_type *check_type = var->type->is_array()
1755 ? var->type->fields.array : var->type;
1756
1757 switch (check_type->base_type) {
1758 case GLSL_TYPE_FLOAT:
1759 break;
1760 case GLSL_TYPE_UINT:
1761 case GLSL_TYPE_INT:
1762 if (state->language_version > 120)
1763 break;
1764 /* FALLTHROUGH */
1765 default:
1766 _mesa_glsl_error(& loc, state,
1767 "vertex shader input / attribute cannot have "
1768 "type %s`%s'",
1769 var->type->is_array() ? "array of " : "",
1770 check_type->name);
1771 error_emitted = true;
1772 }
1773
1774 if (!error_emitted && (state->language_version <= 130)
1775 && var->type->is_array()) {
1776 _mesa_glsl_error(& loc, state,
1777 "vertex shader input / attribute cannot have "
1778 "array type");
1779 error_emitted = true;
1780 }
1781 }
1782 }
1783
1784 /* Process the initializer and add its instructions to a temporary
1785 * list. This list will be added to the instruction stream (below) after
1786 * the declaration is added. This is done because in some cases (such as
1787 * redeclarations) the declaration may not actually be added to the
1788 * instruction stream.
1789 */
1790 exec_list initializer_instructions;
1791 if (decl->initializer != NULL) {
1792 YYLTYPE initializer_loc = decl->initializer->get_location();
1793
1794 /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
1795 *
1796 * "All uniform variables are read-only and are initialized either
1797 * directly by an application via API commands, or indirectly by
1798 * OpenGL."
1799 */
1800 if ((state->language_version <= 110)
1801 && (var->mode == ir_var_uniform)) {
1802 _mesa_glsl_error(& initializer_loc, state,
1803 "cannot initialize uniforms in GLSL 1.10");
1804 }
1805
1806 if (var->type->is_sampler()) {
1807 _mesa_glsl_error(& initializer_loc, state,
1808 "cannot initialize samplers");
1809 }
1810
1811 if ((var->mode == ir_var_in) && (state->current_function == NULL)) {
1812 _mesa_glsl_error(& initializer_loc, state,
1813 "cannot initialize %s shader input / %s",
1814 _mesa_glsl_shader_target_name(state->target),
1815 (state->target == vertex_shader)
1816 ? "attribute" : "varying");
1817 }
1818
1819 ir_dereference *const lhs = new(ctx) ir_dereference_variable(var);
1820 ir_rvalue *rhs = decl->initializer->hir(&initializer_instructions,
1821 state);
1822
1823 /* Calculate the constant value if this is a const or uniform
1824 * declaration.
1825 */
1826 if (this->type->qualifier.constant || this->type->qualifier.uniform) {
1827 ir_rvalue *new_rhs = validate_assignment(state, var->type, rhs);
1828 if (new_rhs != NULL) {
1829 rhs = new_rhs;
1830 } else {
1831 _mesa_glsl_error(&initializer_loc, state,
1832 "initializer of type %s cannot be assigned to "
1833 "variable of type %s",
1834 rhs->type->name, var->type->name);
1835 }
1836
1837 ir_constant *constant_value = rhs->constant_expression_value();
1838 if (!constant_value) {
1839 _mesa_glsl_error(& initializer_loc, state,
1840 "initializer of %s variable `%s' must be a "
1841 "constant expression",
1842 (this->type->qualifier.constant)
1843 ? "const" : "uniform",
1844 decl->identifier);
1845 } else {
1846 rhs = constant_value;
1847 var->constant_value = constant_value;
1848 }
1849 }
1850
1851 if (rhs && !rhs->type->is_error()) {
1852 bool temp = var->read_only;
1853 if (this->type->qualifier.constant)
1854 var->read_only = false;
1855
1856 /* Never emit code to initialize a uniform.
1857 */
1858 if (!this->type->qualifier.uniform)
1859 result = do_assignment(&initializer_instructions, state,
1860 lhs, rhs,
1861 this->get_location());
1862 var->read_only = temp;
1863 }
1864 }
1865
1866 /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
1867 *
1868 * "It is an error to write to a const variable outside of
1869 * its declaration, so they must be initialized when
1870 * declared."
1871 */
1872 if (this->type->qualifier.constant && decl->initializer == NULL) {
1873 _mesa_glsl_error(& loc, state,
1874 "const declaration of `%s' must be initialized");
1875 }
1876
1877 /* Attempt to add the variable to the symbol table. If this fails, it
1878 * means the variable has already been declared at this scope. Arrays
1879 * fudge this rule a little bit.
1880 *
1881 * From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
1882 *
1883 * "It is legal to declare an array without a size and then
1884 * later re-declare the same name as an array of the same
1885 * type and specify a size."
1886 */
1887 if (state->symbols->name_declared_this_scope(decl->identifier)) {
1888 ir_variable *const earlier =
1889 state->symbols->get_variable(decl->identifier);
1890
1891 if ((earlier != NULL)
1892 && (earlier->type->array_size() == 0)
1893 && var->type->is_array()
1894 && (var->type->element_type() == earlier->type->element_type())) {
1895 /* FINISHME: This doesn't match the qualifiers on the two
1896 * FINISHME: declarations. It's not 100% clear whether this is
1897 * FINISHME: required or not.
1898 */
1899
1900 /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec:
1901 *
1902 * "The size [of gl_TexCoord] can be at most
1903 * gl_MaxTextureCoords."
1904 */
1905 const unsigned size = unsigned(var->type->array_size());
1906 if ((strcmp("gl_TexCoord", var->name) == 0)
1907 && (size > state->Const.MaxTextureCoords)) {
1908 YYLTYPE loc = this->get_location();
1909
1910 _mesa_glsl_error(& loc, state, "`gl_TexCoord' array size cannot "
1911 "be larger than gl_MaxTextureCoords (%u)\n",
1912 state->Const.MaxTextureCoords);
1913 } else if ((size > 0) && (size <= earlier->max_array_access)) {
1914 YYLTYPE loc = this->get_location();
1915
1916 _mesa_glsl_error(& loc, state, "array size must be > %u due to "
1917 "previous access",
1918 earlier->max_array_access);
1919 }
1920
1921 earlier->type = var->type;
1922 delete var;
1923 var = NULL;
1924 } else if (state->extensions->ARB_fragment_coord_conventions &&
1925 (earlier != NULL) &&
1926 (strcmp(var->name, "gl_FragCoord") == 0) &&
1927 earlier->type == var->type &&
1928 earlier->mode == var->mode) {
1929 /* Allow redeclaration of gl_FragCoord for ARB_fcc layout
1930 * qualifiers.
1931 */
1932 earlier->origin_upper_left = var->origin_upper_left;
1933 earlier->pixel_center_integer = var->pixel_center_integer;
1934 } else {
1935 YYLTYPE loc = this->get_location();
1936
1937 _mesa_glsl_error(& loc, state, "`%s' redeclared",
1938 decl->identifier);
1939 }
1940
1941 continue;
1942 }
1943
1944 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
1945 *
1946 * "Identifiers starting with "gl_" are reserved for use by
1947 * OpenGL, and may not be declared in a shader as either a
1948 * variable or a function."
1949 */
1950 if (strncmp(decl->identifier, "gl_", 3) == 0) {
1951 /* FINISHME: This should only trigger if we're not redefining
1952 * FINISHME: a builtin (to add a qualifier, for example).
1953 */
1954 _mesa_glsl_error(& loc, state,
1955 "identifier `%s' uses reserved `gl_' prefix",
1956 decl->identifier);
1957 }
1958
1959 /* Push the variable declaration to the top. It means that all
1960 * the variable declarations will appear in a funny
1961 * last-to-first order, but otherwise we run into trouble if a
1962 * function is prototyped, a global var is decled, then the
1963 * function is defined with usage of the global var. See
1964 * glslparsertest's CorrectModule.frag.
1965 */
1966 instructions->push_head(var);
1967 instructions->append_list(&initializer_instructions);
1968
1969 /* Add the variable to the symbol table after processing the initializer.
1970 * This differs from most C-like languages, but it follows the GLSL
1971 * specification. From page 28 (page 34 of the PDF) of the GLSL 1.50
1972 * spec:
1973 *
1974 * "Within a declaration, the scope of a name starts immediately
1975 * after the initializer if present or immediately after the name
1976 * being declared if not."
1977 */
1978 const bool added_variable =
1979 state->symbols->add_variable(var->name, var);
1980 assert(added_variable);
1981 (void) added_variable;
1982 }
1983
1984
1985 /* Generally, variable declarations do not have r-values. However,
1986 * one is used for the declaration in
1987 *
1988 * while (bool b = some_condition()) {
1989 * ...
1990 * }
1991 *
1992 * so we return the rvalue from the last seen declaration here.
1993 */
1994 return result;
1995 }
1996
1997
1998 ir_rvalue *
1999 ast_parameter_declarator::hir(exec_list *instructions,
2000 struct _mesa_glsl_parse_state *state)
2001 {
2002 void *ctx = state;
2003 const struct glsl_type *type;
2004 const char *name = NULL;
2005 YYLTYPE loc = this->get_location();
2006
2007 type = this->type->specifier->glsl_type(& name, state);
2008
2009 if (type == NULL) {
2010 if (name != NULL) {
2011 _mesa_glsl_error(& loc, state,
2012 "invalid type `%s' in declaration of `%s'",
2013 name, this->identifier);
2014 } else {
2015 _mesa_glsl_error(& loc, state,
2016 "invalid type in declaration of `%s'",
2017 this->identifier);
2018 }
2019
2020 type = glsl_type::error_type;
2021 }
2022
2023 /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
2024 *
2025 * "Functions that accept no input arguments need not use void in the
2026 * argument list because prototypes (or definitions) are required and
2027 * therefore there is no ambiguity when an empty argument list "( )" is
2028 * declared. The idiom "(void)" as a parameter list is provided for
2029 * convenience."
2030 *
2031 * Placing this check here prevents a void parameter being set up
2032 * for a function, which avoids tripping up checks for main taking
2033 * parameters and lookups of an unnamed symbol.
2034 */
2035 if (type->is_void()) {
2036 if (this->identifier != NULL)
2037 _mesa_glsl_error(& loc, state,
2038 "named parameter cannot have type `void'");
2039
2040 is_void = true;
2041 return NULL;
2042 }
2043
2044 if (formal_parameter && (this->identifier == NULL)) {
2045 _mesa_glsl_error(& loc, state, "formal parameter lacks a name");
2046 return NULL;
2047 }
2048
2049 /* This only handles "vec4 foo[..]". The earlier specifier->glsl_type(...)
2050 * call already handled the "vec4[..] foo" case.
2051 */
2052 if (this->is_array) {
2053 type = process_array_type(type, this->array_size, state);
2054 }
2055
2056 if (type->array_size() == 0) {
2057 _mesa_glsl_error(&loc, state, "arrays passed as parameters must have "
2058 "a declared size.");
2059 type = glsl_type::error_type;
2060 }
2061
2062 is_void = false;
2063 ir_variable *var = new(ctx) ir_variable(type, this->identifier, ir_var_in);
2064
2065 /* Apply any specified qualifiers to the parameter declaration. Note that
2066 * for function parameters the default mode is 'in'.
2067 */
2068 apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc);
2069
2070 instructions->push_tail(var);
2071
2072 /* Parameter declarations do not have r-values.
2073 */
2074 return NULL;
2075 }
2076
2077
2078 void
2079 ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters,
2080 bool formal,
2081 exec_list *ir_parameters,
2082 _mesa_glsl_parse_state *state)
2083 {
2084 ast_parameter_declarator *void_param = NULL;
2085 unsigned count = 0;
2086
2087 foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) {
2088 param->formal_parameter = formal;
2089 param->hir(ir_parameters, state);
2090
2091 if (param->is_void)
2092 void_param = param;
2093
2094 count++;
2095 }
2096
2097 if ((void_param != NULL) && (count > 1)) {
2098 YYLTYPE loc = void_param->get_location();
2099
2100 _mesa_glsl_error(& loc, state,
2101 "`void' parameter must be only parameter");
2102 }
2103 }
2104
2105
2106 ir_rvalue *
2107 ast_function::hir(exec_list *instructions,
2108 struct _mesa_glsl_parse_state *state)
2109 {
2110 void *ctx = state;
2111 ir_function *f = NULL;
2112 ir_function_signature *sig = NULL;
2113 exec_list hir_parameters;
2114
2115 const char *const name = identifier;
2116
2117 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
2118 *
2119 * "Identifiers starting with "gl_" are reserved for use by
2120 * OpenGL, and may not be declared in a shader as either a
2121 * variable or a function."
2122 */
2123 if (strncmp(name, "gl_", 3) == 0) {
2124 YYLTYPE loc = this->get_location();
2125 _mesa_glsl_error(&loc, state,
2126 "identifier `%s' uses reserved `gl_' prefix", name);
2127 }
2128
2129 /* Convert the list of function parameters to HIR now so that they can be
2130 * used below to compare this function's signature with previously seen
2131 * signatures for functions with the same name.
2132 */
2133 ast_parameter_declarator::parameters_to_hir(& this->parameters,
2134 is_definition,
2135 & hir_parameters, state);
2136
2137 const char *return_type_name;
2138 const glsl_type *return_type =
2139 this->return_type->specifier->glsl_type(& return_type_name, state);
2140
2141 assert(return_type != NULL);
2142
2143 /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec:
2144 * "No qualifier is allowed on the return type of a function."
2145 */
2146 if (this->return_type->has_qualifiers()) {
2147 YYLTYPE loc = this->get_location();
2148 _mesa_glsl_error(& loc, state,
2149 "function `%s' return type has qualifiers", name);
2150 }
2151
2152 /* Verify that this function's signature either doesn't match a previously
2153 * seen signature for a function with the same name, or, if a match is found,
2154 * that the previously seen signature does not have an associated definition.
2155 */
2156 f = state->symbols->get_function(name);
2157 if (f != NULL) {
2158 sig = f->exact_matching_signature(&hir_parameters);
2159 if (sig != NULL) {
2160 const char *badvar = sig->qualifiers_match(&hir_parameters);
2161 if (badvar != NULL) {
2162 YYLTYPE loc = this->get_location();
2163
2164 _mesa_glsl_error(&loc, state, "function `%s' parameter `%s' "
2165 "qualifiers don't match prototype", name, badvar);
2166 }
2167
2168 if (sig->return_type != return_type) {
2169 YYLTYPE loc = this->get_location();
2170
2171 _mesa_glsl_error(&loc, state, "function `%s' return type doesn't "
2172 "match prototype", name);
2173 }
2174
2175 if (is_definition && sig->is_defined) {
2176 YYLTYPE loc = this->get_location();
2177
2178 _mesa_glsl_error(& loc, state, "function `%s' redefined", name);
2179 }
2180 }
2181 } else if (state->symbols->name_declared_this_scope(name)) {
2182 /* This function name shadows a non-function use of the same name.
2183 */
2184 YYLTYPE loc = this->get_location();
2185
2186 _mesa_glsl_error(& loc, state, "function name `%s' conflicts with "
2187 "non-function", name);
2188 return NULL;
2189 } else {
2190 f = new(ctx) ir_function(name);
2191 state->symbols->add_function(f->name, f);
2192
2193 /* Emit the new function header */
2194 instructions->push_tail(f);
2195 }
2196
2197 /* Verify the return type of main() */
2198 if (strcmp(name, "main") == 0) {
2199 if (! return_type->is_void()) {
2200 YYLTYPE loc = this->get_location();
2201
2202 _mesa_glsl_error(& loc, state, "main() must return void");
2203 }
2204
2205 if (!hir_parameters.is_empty()) {
2206 YYLTYPE loc = this->get_location();
2207
2208 _mesa_glsl_error(& loc, state, "main() must not take any parameters");
2209 }
2210 }
2211
2212 /* Finish storing the information about this new function in its signature.
2213 */
2214 if (sig == NULL) {
2215 sig = new(ctx) ir_function_signature(return_type);
2216 f->add_signature(sig);
2217 }
2218
2219 sig->replace_parameters(&hir_parameters);
2220 signature = sig;
2221
2222 /* Function declarations (prototypes) do not have r-values.
2223 */
2224 return NULL;
2225 }
2226
2227
2228 ir_rvalue *
2229 ast_function_definition::hir(exec_list *instructions,
2230 struct _mesa_glsl_parse_state *state)
2231 {
2232 prototype->is_definition = true;
2233 prototype->hir(instructions, state);
2234
2235 ir_function_signature *signature = prototype->signature;
2236 if (signature == NULL)
2237 return NULL;
2238
2239 assert(state->current_function == NULL);
2240 state->current_function = signature;
2241 state->found_return = false;
2242
2243 /* Duplicate parameters declared in the prototype as concrete variables.
2244 * Add these to the symbol table.
2245 */
2246 state->symbols->push_scope();
2247 foreach_iter(exec_list_iterator, iter, signature->parameters) {
2248 ir_variable *const var = ((ir_instruction *) iter.get())->as_variable();
2249
2250 assert(var != NULL);
2251
2252 /* The only way a parameter would "exist" is if two parameters have
2253 * the same name.
2254 */
2255 if (state->symbols->name_declared_this_scope(var->name)) {
2256 YYLTYPE loc = this->get_location();
2257
2258 _mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name);
2259 } else {
2260 state->symbols->add_variable(var->name, var);
2261 }
2262 }
2263
2264 /* Convert the body of the function to HIR. */
2265 this->body->hir(&signature->body, state);
2266 signature->is_defined = true;
2267
2268 state->symbols->pop_scope();
2269
2270 assert(state->current_function == signature);
2271 state->current_function = NULL;
2272
2273 if (!signature->return_type->is_void() && !state->found_return) {
2274 YYLTYPE loc = this->get_location();
2275 _mesa_glsl_error(& loc, state, "function `%s' has non-void return type "
2276 "%s, but no return statement",
2277 signature->function_name(),
2278 signature->return_type->name);
2279 }
2280
2281 /* Function definitions do not have r-values.
2282 */
2283 return NULL;
2284 }
2285
2286
2287 ir_rvalue *
2288 ast_jump_statement::hir(exec_list *instructions,
2289 struct _mesa_glsl_parse_state *state)
2290 {
2291 void *ctx = state;
2292
2293 switch (mode) {
2294 case ast_return: {
2295 ir_return *inst;
2296 assert(state->current_function);
2297
2298 if (opt_return_value) {
2299 if (state->current_function->return_type->base_type ==
2300 GLSL_TYPE_VOID) {
2301 YYLTYPE loc = this->get_location();
2302
2303 _mesa_glsl_error(& loc, state,
2304 "`return` with a value, in function `%s' "
2305 "returning void",
2306 state->current_function->function_name());
2307 }
2308
2309 ir_expression *const ret = (ir_expression *)
2310 opt_return_value->hir(instructions, state);
2311 assert(ret != NULL);
2312
2313 /* Implicit conversions are not allowed for return values. */
2314 if (state->current_function->return_type != ret->type) {
2315 YYLTYPE loc = this->get_location();
2316
2317 _mesa_glsl_error(& loc, state,
2318 "`return' with wrong type %s, in function `%s' "
2319 "returning %s",
2320 ret->type->name,
2321 state->current_function->function_name(),
2322 state->current_function->return_type->name);
2323 }
2324
2325 inst = new(ctx) ir_return(ret);
2326 } else {
2327 if (state->current_function->return_type->base_type !=
2328 GLSL_TYPE_VOID) {
2329 YYLTYPE loc = this->get_location();
2330
2331 _mesa_glsl_error(& loc, state,
2332 "`return' with no value, in function %s returning "
2333 "non-void",
2334 state->current_function->function_name());
2335 }
2336 inst = new(ctx) ir_return;
2337 }
2338
2339 state->found_return = true;
2340 instructions->push_tail(inst);
2341 break;
2342 }
2343
2344 case ast_discard:
2345 if (state->target != fragment_shader) {
2346 YYLTYPE loc = this->get_location();
2347
2348 _mesa_glsl_error(& loc, state,
2349 "`discard' may only appear in a fragment shader");
2350 }
2351 instructions->push_tail(new(ctx) ir_discard);
2352 break;
2353
2354 case ast_break:
2355 case ast_continue:
2356 /* FINISHME: Handle switch-statements. They cannot contain 'continue',
2357 * FINISHME: and they use a different IR instruction for 'break'.
2358 */
2359 /* FINISHME: Correctly handle the nesting. If a switch-statement is
2360 * FINISHME: inside a loop, a 'continue' is valid and will bind to the
2361 * FINISHME: loop.
2362 */
2363 if (state->loop_or_switch_nesting == NULL) {
2364 YYLTYPE loc = this->get_location();
2365
2366 _mesa_glsl_error(& loc, state,
2367 "`%s' may only appear in a loop",
2368 (mode == ast_break) ? "break" : "continue");
2369 } else {
2370 ir_loop *const loop = state->loop_or_switch_nesting->as_loop();
2371
2372 /* Inline the for loop expression again, since we don't know
2373 * where near the end of the loop body the normal copy of it
2374 * is going to be placed.
2375 */
2376 if (mode == ast_continue &&
2377 state->loop_or_switch_nesting_ast->rest_expression) {
2378 state->loop_or_switch_nesting_ast->rest_expression->hir(instructions,
2379 state);
2380 }
2381
2382 if (loop != NULL) {
2383 ir_loop_jump *const jump =
2384 new(ctx) ir_loop_jump((mode == ast_break)
2385 ? ir_loop_jump::jump_break
2386 : ir_loop_jump::jump_continue);
2387 instructions->push_tail(jump);
2388 }
2389 }
2390
2391 break;
2392 }
2393
2394 /* Jump instructions do not have r-values.
2395 */
2396 return NULL;
2397 }
2398
2399
2400 ir_rvalue *
2401 ast_selection_statement::hir(exec_list *instructions,
2402 struct _mesa_glsl_parse_state *state)
2403 {
2404 void *ctx = state;
2405
2406 ir_rvalue *const condition = this->condition->hir(instructions, state);
2407
2408 /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
2409 *
2410 * "Any expression whose type evaluates to a Boolean can be used as the
2411 * conditional expression bool-expression. Vector types are not accepted
2412 * as the expression to if."
2413 *
2414 * The checks are separated so that higher quality diagnostics can be
2415 * generated for cases where both rules are violated.
2416 */
2417 if (!condition->type->is_boolean() || !condition->type->is_scalar()) {
2418 YYLTYPE loc = this->condition->get_location();
2419
2420 _mesa_glsl_error(& loc, state, "if-statement condition must be scalar "
2421 "boolean");
2422 }
2423
2424 ir_if *const stmt = new(ctx) ir_if(condition);
2425
2426 if (then_statement != NULL) {
2427 state->symbols->push_scope();
2428 then_statement->hir(& stmt->then_instructions, state);
2429 state->symbols->pop_scope();
2430 }
2431
2432 if (else_statement != NULL) {
2433 state->symbols->push_scope();
2434 else_statement->hir(& stmt->else_instructions, state);
2435 state->symbols->pop_scope();
2436 }
2437
2438 instructions->push_tail(stmt);
2439
2440 /* if-statements do not have r-values.
2441 */
2442 return NULL;
2443 }
2444
2445
2446 void
2447 ast_iteration_statement::condition_to_hir(ir_loop *stmt,
2448 struct _mesa_glsl_parse_state *state)
2449 {
2450 void *ctx = state;
2451
2452 if (condition != NULL) {
2453 ir_rvalue *const cond =
2454 condition->hir(& stmt->body_instructions, state);
2455
2456 if ((cond == NULL)
2457 || !cond->type->is_boolean() || !cond->type->is_scalar()) {
2458 YYLTYPE loc = condition->get_location();
2459
2460 _mesa_glsl_error(& loc, state,
2461 "loop condition must be scalar boolean");
2462 } else {
2463 /* As the first code in the loop body, generate a block that looks
2464 * like 'if (!condition) break;' as the loop termination condition.
2465 */
2466 ir_rvalue *const not_cond =
2467 new(ctx) ir_expression(ir_unop_logic_not, glsl_type::bool_type, cond,
2468 NULL);
2469
2470 ir_if *const if_stmt = new(ctx) ir_if(not_cond);
2471
2472 ir_jump *const break_stmt =
2473 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
2474
2475 if_stmt->then_instructions.push_tail(break_stmt);
2476 stmt->body_instructions.push_tail(if_stmt);
2477 }
2478 }
2479 }
2480
2481
2482 ir_rvalue *
2483 ast_iteration_statement::hir(exec_list *instructions,
2484 struct _mesa_glsl_parse_state *state)
2485 {
2486 void *ctx = state;
2487
2488 /* For-loops and while-loops start a new scope, but do-while loops do not.
2489 */
2490 if (mode != ast_do_while)
2491 state->symbols->push_scope();
2492
2493 if (init_statement != NULL)
2494 init_statement->hir(instructions, state);
2495
2496 ir_loop *const stmt = new(ctx) ir_loop();
2497 instructions->push_tail(stmt);
2498
2499 /* Track the current loop and / or switch-statement nesting.
2500 */
2501 ir_instruction *const nesting = state->loop_or_switch_nesting;
2502 ast_iteration_statement *nesting_ast = state->loop_or_switch_nesting_ast;
2503
2504 state->loop_or_switch_nesting = stmt;
2505 state->loop_or_switch_nesting_ast = this;
2506
2507 if (mode != ast_do_while)
2508 condition_to_hir(stmt, state);
2509
2510 if (body != NULL)
2511 body->hir(& stmt->body_instructions, state);
2512
2513 if (rest_expression != NULL)
2514 rest_expression->hir(& stmt->body_instructions, state);
2515
2516 if (mode == ast_do_while)
2517 condition_to_hir(stmt, state);
2518
2519 if (mode != ast_do_while)
2520 state->symbols->pop_scope();
2521
2522 /* Restore previous nesting before returning.
2523 */
2524 state->loop_or_switch_nesting = nesting;
2525 state->loop_or_switch_nesting_ast = nesting_ast;
2526
2527 /* Loops do not have r-values.
2528 */
2529 return NULL;
2530 }
2531
2532
2533 ir_rvalue *
2534 ast_type_specifier::hir(exec_list *instructions,
2535 struct _mesa_glsl_parse_state *state)
2536 {
2537 if (this->structure != NULL)
2538 return this->structure->hir(instructions, state);
2539
2540 return NULL;
2541 }
2542
2543
2544 ir_rvalue *
2545 ast_struct_specifier::hir(exec_list *instructions,
2546 struct _mesa_glsl_parse_state *state)
2547 {
2548 unsigned decl_count = 0;
2549
2550 /* Make an initial pass over the list of structure fields to determine how
2551 * many there are. Each element in this list is an ast_declarator_list.
2552 * This means that we actually need to count the number of elements in the
2553 * 'declarations' list in each of the elements.
2554 */
2555 foreach_list_typed (ast_declarator_list, decl_list, link,
2556 &this->declarations) {
2557 foreach_list_const (decl_ptr, & decl_list->declarations) {
2558 decl_count++;
2559 }
2560 }
2561
2562
2563 /* Allocate storage for the structure fields and process the field
2564 * declarations. As the declarations are processed, try to also convert
2565 * the types to HIR. This ensures that structure definitions embedded in
2566 * other structure definitions are processed.
2567 */
2568 glsl_struct_field *const fields = talloc_array(state, glsl_struct_field,
2569 decl_count);
2570
2571 unsigned i = 0;
2572 foreach_list_typed (ast_declarator_list, decl_list, link,
2573 &this->declarations) {
2574 const char *type_name;
2575
2576 decl_list->type->specifier->hir(instructions, state);
2577
2578 const glsl_type *decl_type =
2579 decl_list->type->specifier->glsl_type(& type_name, state);
2580
2581 foreach_list_typed (ast_declaration, decl, link,
2582 &decl_list->declarations) {
2583 const struct glsl_type *const field_type =
2584 (decl->is_array)
2585 ? process_array_type(decl_type, decl->array_size, state)
2586 : decl_type;
2587
2588 fields[i].type = (field_type != NULL)
2589 ? field_type : glsl_type::error_type;
2590 fields[i].name = decl->identifier;
2591 i++;
2592 }
2593 }
2594
2595 assert(i == decl_count);
2596
2597 const char *name;
2598 if (this->name == NULL) {
2599 static unsigned anon_count = 1;
2600 char buf[32];
2601
2602 snprintf(buf, sizeof(buf), "#anon_struct_%04x", anon_count);
2603 anon_count++;
2604
2605 name = strdup(buf);
2606 } else {
2607 name = this->name;
2608 }
2609
2610 const glsl_type *t =
2611 glsl_type::get_record_instance(fields, decl_count, name);
2612
2613 YYLTYPE loc = this->get_location();
2614 if (!state->symbols->add_type(name, t)) {
2615 _mesa_glsl_error(& loc, state, "struct `%s' previously defined", name);
2616 } else {
2617 /* This logic is a bit tricky. It is an error to declare a structure at
2618 * global scope if there is also a function with the same name.
2619 */
2620 if ((state->current_function == NULL)
2621 && (state->symbols->get_function(name) != NULL)) {
2622 _mesa_glsl_error(& loc, state, "name `%s' previously defined", name);
2623 } else {
2624 t->generate_constructor(state->symbols);
2625 }
2626
2627 const glsl_type **s = (const glsl_type **)
2628 realloc(state->user_structures,
2629 sizeof(state->user_structures[0]) *
2630 (state->num_user_structures + 1));
2631 if (s != NULL) {
2632 s[state->num_user_structures] = t;
2633 state->user_structures = s;
2634 state->num_user_structures++;
2635 }
2636 }
2637
2638 /* Structure type definitions do not have r-values.
2639 */
2640 return NULL;
2641 }