2 * Copyright © 2010 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
26 * Convert abstract syntax to to high-level intermediate reprensentation (HIR).
28 * During the conversion to HIR, the majority of the symantic checking is
29 * preformed on the program. This includes:
31 * * Symbol table management
35 * The majority of this work could be done during parsing, and the parser could
36 * probably generate HIR directly. However, this results in frequent changes
37 * to the parser code. Since we do not assume that every system this complier
38 * is built on will have Flex and Bison installed, we have to store the code
39 * generated by these tools in our version control system. In other parts of
40 * the system we've seen problems where a parser was changed but the generated
41 * code was not committed, merge conflicts where created because two developers
42 * had slightly different versions of Bison installed, etc.
44 * I have also noticed that running Bison generated parsers in GDB is very
45 * irritating. When you get a segfault on '$$ = $1->foo', you can't very
46 * well 'print $1' in GDB.
48 * As a result, my preference is to put as little C code as possible in the
49 * parser (and lexer) sources.
52 #include "glsl_symbol_table.h"
53 #include "glsl_parser_extras.h"
55 #include "glsl_types.h"
56 #include "program/hash_table.h"
58 #include "ir_builder.h"
60 using namespace ir_builder
;
63 detect_conflicting_assignments(struct _mesa_glsl_parse_state
*state
,
64 exec_list
*instructions
);
66 remove_per_vertex_blocks(exec_list
*instructions
,
67 _mesa_glsl_parse_state
*state
, ir_variable_mode mode
);
71 _mesa_ast_to_hir(exec_list
*instructions
, struct _mesa_glsl_parse_state
*state
)
73 _mesa_glsl_initialize_variables(instructions
, state
);
75 state
->symbols
->separate_function_namespace
= state
->language_version
== 110;
77 state
->current_function
= NULL
;
79 state
->toplevel_ir
= instructions
;
81 state
->gs_input_prim_type_specified
= false;
82 state
->cs_input_local_size_specified
= false;
84 /* Section 4.2 of the GLSL 1.20 specification states:
85 * "The built-in functions are scoped in a scope outside the global scope
86 * users declare global variables in. That is, a shader's global scope,
87 * available for user-defined functions and global variables, is nested
88 * inside the scope containing the built-in functions."
90 * Since built-in functions like ftransform() access built-in variables,
91 * it follows that those must be in the outer scope as well.
93 * We push scope here to create this nesting effect...but don't pop.
94 * This way, a shader's globals are still in the symbol table for use
97 state
->symbols
->push_scope();
99 foreach_list_typed (ast_node
, ast
, link
, & state
->translation_unit
)
100 ast
->hir(instructions
, state
);
102 detect_recursion_unlinked(state
, instructions
);
103 detect_conflicting_assignments(state
, instructions
);
105 state
->toplevel_ir
= NULL
;
107 /* Move all of the variable declarations to the front of the IR list, and
108 * reverse the order. This has the (intended!) side effect that vertex
109 * shader inputs and fragment shader outputs will appear in the IR in the
110 * same order that they appeared in the shader code. This results in the
111 * locations being assigned in the declared order. Many (arguably buggy)
112 * applications depend on this behavior, and it matches what nearly all
115 foreach_list_safe(node
, instructions
) {
116 ir_variable
*const var
= ((ir_instruction
*) node
)->as_variable();
122 instructions
->push_head(var
);
125 /* Figure out if gl_FragCoord is actually used in fragment shader */
126 ir_variable
*const var
= state
->symbols
->get_variable("gl_FragCoord");
128 state
->fs_uses_gl_fragcoord
= var
->data
.used
;
130 /* From section 7.1 (Built-In Language Variables) of the GLSL 4.10 spec:
132 * If multiple shaders using members of a built-in block belonging to
133 * the same interface are linked together in the same program, they
134 * must all redeclare the built-in block in the same way, as described
135 * in section 4.3.7 "Interface Blocks" for interface block matching, or
136 * a link error will result.
138 * The phrase "using members of a built-in block" implies that if two
139 * shaders are linked together and one of them *does not use* any members
140 * of the built-in block, then that shader does not need to have a matching
141 * redeclaration of the built-in block.
143 * This appears to be a clarification to the behaviour established for
144 * gl_PerVertex by GLSL 1.50, therefore implement it regardless of GLSL
147 * The definition of "interface" in section 4.3.7 that applies here is as
150 * The boundary between adjacent programmable pipeline stages: This
151 * spans all the outputs in all compilation units of the first stage
152 * and all the inputs in all compilation units of the second stage.
154 * Therefore this rule applies to both inter- and intra-stage linking.
156 * The easiest way to implement this is to check whether the shader uses
157 * gl_PerVertex right after ast-to-ir conversion, and if it doesn't, simply
158 * remove all the relevant variable declaration from the IR, so that the
159 * linker won't see them and complain about mismatches.
161 remove_per_vertex_blocks(instructions
, state
, ir_var_shader_in
);
162 remove_per_vertex_blocks(instructions
, state
, ir_var_shader_out
);
166 static ir_expression_operation
167 get_conversion_operation(const glsl_type
*to
, const glsl_type
*from
,
168 struct _mesa_glsl_parse_state
*state
)
170 switch (to
->base_type
) {
171 case GLSL_TYPE_FLOAT
:
172 switch (from
->base_type
) {
173 case GLSL_TYPE_INT
: return ir_unop_i2f
;
174 case GLSL_TYPE_UINT
: return ir_unop_u2f
;
175 default: return (ir_expression_operation
)0;
179 if (!state
->is_version(400, 0) && !state
->ARB_gpu_shader5_enable
)
180 return (ir_expression_operation
)0;
181 switch (from
->base_type
) {
182 case GLSL_TYPE_INT
: return ir_unop_i2u
;
183 default: return (ir_expression_operation
)0;
186 default: return (ir_expression_operation
)0;
192 * If a conversion is available, convert one operand to a different type
194 * The \c from \c ir_rvalue is converted "in place".
196 * \param to Type that the operand it to be converted to
197 * \param from Operand that is being converted
198 * \param state GLSL compiler state
201 * If a conversion is possible (or unnecessary), \c true is returned.
202 * Otherwise \c false is returned.
205 apply_implicit_conversion(const glsl_type
*to
, ir_rvalue
* &from
,
206 struct _mesa_glsl_parse_state
*state
)
209 if (to
->base_type
== from
->type
->base_type
)
212 /* Prior to GLSL 1.20, there are no implicit conversions */
213 if (!state
->is_version(120, 0))
216 /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
218 * "There are no implicit array or structure conversions. For
219 * example, an array of int cannot be implicitly converted to an
222 if (!to
->is_numeric() || !from
->type
->is_numeric())
225 /* We don't actually want the specific type `to`, we want a type
226 * with the same base type as `to`, but the same vector width as
229 to
= glsl_type::get_instance(to
->base_type
, from
->type
->vector_elements
,
230 from
->type
->matrix_columns
);
232 ir_expression_operation op
= get_conversion_operation(to
, from
->type
, state
);
234 from
= new(ctx
) ir_expression(op
, to
, from
, NULL
);
242 static const struct glsl_type
*
243 arithmetic_result_type(ir_rvalue
* &value_a
, ir_rvalue
* &value_b
,
245 struct _mesa_glsl_parse_state
*state
, YYLTYPE
*loc
)
247 const glsl_type
*type_a
= value_a
->type
;
248 const glsl_type
*type_b
= value_b
->type
;
250 /* From GLSL 1.50 spec, page 56:
252 * "The arithmetic binary operators add (+), subtract (-),
253 * multiply (*), and divide (/) operate on integer and
254 * floating-point scalars, vectors, and matrices."
256 if (!type_a
->is_numeric() || !type_b
->is_numeric()) {
257 _mesa_glsl_error(loc
, state
,
258 "operands to arithmetic operators must be numeric");
259 return glsl_type::error_type
;
263 /* "If one operand is floating-point based and the other is
264 * not, then the conversions from Section 4.1.10 "Implicit
265 * Conversions" are applied to the non-floating-point-based operand."
267 if (!apply_implicit_conversion(type_a
, value_b
, state
)
268 && !apply_implicit_conversion(type_b
, value_a
, state
)) {
269 _mesa_glsl_error(loc
, state
,
270 "could not implicitly convert operands to "
271 "arithmetic operator");
272 return glsl_type::error_type
;
274 type_a
= value_a
->type
;
275 type_b
= value_b
->type
;
277 /* "If the operands are integer types, they must both be signed or
280 * From this rule and the preceeding conversion it can be inferred that
281 * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
282 * The is_numeric check above already filtered out the case where either
283 * type is not one of these, so now the base types need only be tested for
286 if (type_a
->base_type
!= type_b
->base_type
) {
287 _mesa_glsl_error(loc
, state
,
288 "base type mismatch for arithmetic operator");
289 return glsl_type::error_type
;
292 /* "All arithmetic binary operators result in the same fundamental type
293 * (signed integer, unsigned integer, or floating-point) as the
294 * operands they operate on, after operand type conversion. After
295 * conversion, the following cases are valid
297 * * The two operands are scalars. In this case the operation is
298 * applied, resulting in a scalar."
300 if (type_a
->is_scalar() && type_b
->is_scalar())
303 /* "* One operand is a scalar, and the other is a vector or matrix.
304 * In this case, the scalar operation is applied independently to each
305 * component of the vector or matrix, resulting in the same size
308 if (type_a
->is_scalar()) {
309 if (!type_b
->is_scalar())
311 } else if (type_b
->is_scalar()) {
315 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
316 * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
319 assert(!type_a
->is_scalar());
320 assert(!type_b
->is_scalar());
322 /* "* The two operands are vectors of the same size. In this case, the
323 * operation is done component-wise resulting in the same size
326 if (type_a
->is_vector() && type_b
->is_vector()) {
327 if (type_a
== type_b
) {
330 _mesa_glsl_error(loc
, state
,
331 "vector size mismatch for arithmetic operator");
332 return glsl_type::error_type
;
336 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
337 * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
338 * <vector, vector> have been handled. At least one of the operands must
339 * be matrix. Further, since there are no integer matrix types, the base
340 * type of both operands must be float.
342 assert(type_a
->is_matrix() || type_b
->is_matrix());
343 assert(type_a
->base_type
== GLSL_TYPE_FLOAT
);
344 assert(type_b
->base_type
== GLSL_TYPE_FLOAT
);
346 /* "* The operator is add (+), subtract (-), or divide (/), and the
347 * operands are matrices with the same number of rows and the same
348 * number of columns. In this case, the operation is done component-
349 * wise resulting in the same size matrix."
350 * * The operator is multiply (*), where both operands are matrices or
351 * one operand is a vector and the other a matrix. A right vector
352 * operand is treated as a column vector and a left vector operand as a
353 * row vector. In all these cases, it is required that the number of
354 * columns of the left operand is equal to the number of rows of the
355 * right operand. Then, the multiply (*) operation does a linear
356 * algebraic multiply, yielding an object that has the same number of
357 * rows as the left operand and the same number of columns as the right
358 * operand. Section 5.10 "Vector and Matrix Operations" explains in
359 * more detail how vectors and matrices are operated on."
362 if (type_a
== type_b
)
365 if (type_a
->is_matrix() && type_b
->is_matrix()) {
366 /* Matrix multiply. The columns of A must match the rows of B. Given
367 * the other previously tested constraints, this means the vector type
368 * of a row from A must be the same as the vector type of a column from
371 if (type_a
->row_type() == type_b
->column_type()) {
372 /* The resulting matrix has the number of columns of matrix B and
373 * the number of rows of matrix A. We get the row count of A by
374 * looking at the size of a vector that makes up a column. The
375 * transpose (size of a row) is done for B.
377 const glsl_type
*const type
=
378 glsl_type::get_instance(type_a
->base_type
,
379 type_a
->column_type()->vector_elements
,
380 type_b
->row_type()->vector_elements
);
381 assert(type
!= glsl_type::error_type
);
385 } else if (type_a
->is_matrix()) {
386 /* A is a matrix and B is a column vector. Columns of A must match
387 * rows of B. Given the other previously tested constraints, this
388 * means the vector type of a row from A must be the same as the
389 * vector the type of B.
391 if (type_a
->row_type() == type_b
) {
392 /* The resulting vector has a number of elements equal to
393 * the number of rows of matrix A. */
394 const glsl_type
*const type
=
395 glsl_type::get_instance(type_a
->base_type
,
396 type_a
->column_type()->vector_elements
,
398 assert(type
!= glsl_type::error_type
);
403 assert(type_b
->is_matrix());
405 /* A is a row vector and B is a matrix. Columns of A must match rows
406 * of B. Given the other previously tested constraints, this means
407 * the type of A must be the same as the vector type of a column from
410 if (type_a
== type_b
->column_type()) {
411 /* The resulting vector has a number of elements equal to
412 * the number of columns of matrix B. */
413 const glsl_type
*const type
=
414 glsl_type::get_instance(type_a
->base_type
,
415 type_b
->row_type()->vector_elements
,
417 assert(type
!= glsl_type::error_type
);
423 _mesa_glsl_error(loc
, state
, "size mismatch for matrix multiplication");
424 return glsl_type::error_type
;
428 /* "All other cases are illegal."
430 _mesa_glsl_error(loc
, state
, "type mismatch");
431 return glsl_type::error_type
;
435 static const struct glsl_type
*
436 unary_arithmetic_result_type(const struct glsl_type
*type
,
437 struct _mesa_glsl_parse_state
*state
, YYLTYPE
*loc
)
439 /* From GLSL 1.50 spec, page 57:
441 * "The arithmetic unary operators negate (-), post- and pre-increment
442 * and decrement (-- and ++) operate on integer or floating-point
443 * values (including vectors and matrices). All unary operators work
444 * component-wise on their operands. These result with the same type
447 if (!type
->is_numeric()) {
448 _mesa_glsl_error(loc
, state
,
449 "operands to arithmetic operators must be numeric");
450 return glsl_type::error_type
;
457 * \brief Return the result type of a bit-logic operation.
459 * If the given types to the bit-logic operator are invalid, return
460 * glsl_type::error_type.
462 * \param type_a Type of LHS of bit-logic op
463 * \param type_b Type of RHS of bit-logic op
465 static const struct glsl_type
*
466 bit_logic_result_type(const struct glsl_type
*type_a
,
467 const struct glsl_type
*type_b
,
469 struct _mesa_glsl_parse_state
*state
, YYLTYPE
*loc
)
471 if (!state
->check_bitwise_operations_allowed(loc
)) {
472 return glsl_type::error_type
;
475 /* From page 50 (page 56 of PDF) of GLSL 1.30 spec:
477 * "The bitwise operators and (&), exclusive-or (^), and inclusive-or
478 * (|). The operands must be of type signed or unsigned integers or
481 if (!type_a
->is_integer()) {
482 _mesa_glsl_error(loc
, state
, "LHS of `%s' must be an integer",
483 ast_expression::operator_string(op
));
484 return glsl_type::error_type
;
486 if (!type_b
->is_integer()) {
487 _mesa_glsl_error(loc
, state
, "RHS of `%s' must be an integer",
488 ast_expression::operator_string(op
));
489 return glsl_type::error_type
;
492 /* "The fundamental types of the operands (signed or unsigned) must
495 if (type_a
->base_type
!= type_b
->base_type
) {
496 _mesa_glsl_error(loc
, state
, "operands of `%s' must have the same "
497 "base type", ast_expression::operator_string(op
));
498 return glsl_type::error_type
;
501 /* "The operands cannot be vectors of differing size." */
502 if (type_a
->is_vector() &&
503 type_b
->is_vector() &&
504 type_a
->vector_elements
!= type_b
->vector_elements
) {
505 _mesa_glsl_error(loc
, state
, "operands of `%s' cannot be vectors of "
506 "different sizes", ast_expression::operator_string(op
));
507 return glsl_type::error_type
;
510 /* "If one operand is a scalar and the other a vector, the scalar is
511 * applied component-wise to the vector, resulting in the same type as
512 * the vector. The fundamental types of the operands [...] will be the
513 * resulting fundamental type."
515 if (type_a
->is_scalar())
521 static const struct glsl_type
*
522 modulus_result_type(const struct glsl_type
*type_a
,
523 const struct glsl_type
*type_b
,
524 struct _mesa_glsl_parse_state
*state
, YYLTYPE
*loc
)
526 if (!state
->check_version(130, 300, loc
, "operator '%%' is reserved")) {
527 return glsl_type::error_type
;
530 /* From GLSL 1.50 spec, page 56:
531 * "The operator modulus (%) operates on signed or unsigned integers or
532 * integer vectors. The operand types must both be signed or both be
535 if (!type_a
->is_integer()) {
536 _mesa_glsl_error(loc
, state
, "LHS of operator %% must be an integer");
537 return glsl_type::error_type
;
539 if (!type_b
->is_integer()) {
540 _mesa_glsl_error(loc
, state
, "RHS of operator %% must be an integer");
541 return glsl_type::error_type
;
543 if (type_a
->base_type
!= type_b
->base_type
) {
544 _mesa_glsl_error(loc
, state
,
545 "operands of %% must have the same base type");
546 return glsl_type::error_type
;
549 /* "The operands cannot be vectors of differing size. If one operand is
550 * a scalar and the other vector, then the scalar is applied component-
551 * wise to the vector, resulting in the same type as the vector. If both
552 * are vectors of the same size, the result is computed component-wise."
554 if (type_a
->is_vector()) {
555 if (!type_b
->is_vector()
556 || (type_a
->vector_elements
== type_b
->vector_elements
))
561 /* "The operator modulus (%) is not defined for any other data types
562 * (non-integer types)."
564 _mesa_glsl_error(loc
, state
, "type mismatch");
565 return glsl_type::error_type
;
569 static const struct glsl_type
*
570 relational_result_type(ir_rvalue
* &value_a
, ir_rvalue
* &value_b
,
571 struct _mesa_glsl_parse_state
*state
, YYLTYPE
*loc
)
573 const glsl_type
*type_a
= value_a
->type
;
574 const glsl_type
*type_b
= value_b
->type
;
576 /* From GLSL 1.50 spec, page 56:
577 * "The relational operators greater than (>), less than (<), greater
578 * than or equal (>=), and less than or equal (<=) operate only on
579 * scalar integer and scalar floating-point expressions."
581 if (!type_a
->is_numeric()
582 || !type_b
->is_numeric()
583 || !type_a
->is_scalar()
584 || !type_b
->is_scalar()) {
585 _mesa_glsl_error(loc
, state
,
586 "operands to relational operators must be scalar and "
588 return glsl_type::error_type
;
591 /* "Either the operands' types must match, or the conversions from
592 * Section 4.1.10 "Implicit Conversions" will be applied to the integer
593 * operand, after which the types must match."
595 if (!apply_implicit_conversion(type_a
, value_b
, state
)
596 && !apply_implicit_conversion(type_b
, value_a
, state
)) {
597 _mesa_glsl_error(loc
, state
,
598 "could not implicitly convert operands to "
599 "relational operator");
600 return glsl_type::error_type
;
602 type_a
= value_a
->type
;
603 type_b
= value_b
->type
;
605 if (type_a
->base_type
!= type_b
->base_type
) {
606 _mesa_glsl_error(loc
, state
, "base type mismatch");
607 return glsl_type::error_type
;
610 /* "The result is scalar Boolean."
612 return glsl_type::bool_type
;
616 * \brief Return the result type of a bit-shift operation.
618 * If the given types to the bit-shift operator are invalid, return
619 * glsl_type::error_type.
621 * \param type_a Type of LHS of bit-shift op
622 * \param type_b Type of RHS of bit-shift op
624 static const struct glsl_type
*
625 shift_result_type(const struct glsl_type
*type_a
,
626 const struct glsl_type
*type_b
,
628 struct _mesa_glsl_parse_state
*state
, YYLTYPE
*loc
)
630 if (!state
->check_bitwise_operations_allowed(loc
)) {
631 return glsl_type::error_type
;
634 /* From page 50 (page 56 of the PDF) of the GLSL 1.30 spec:
636 * "The shift operators (<<) and (>>). For both operators, the operands
637 * must be signed or unsigned integers or integer vectors. One operand
638 * can be signed while the other is unsigned."
640 if (!type_a
->is_integer()) {
641 _mesa_glsl_error(loc
, state
, "LHS of operator %s must be an integer or "
642 "integer vector", ast_expression::operator_string(op
));
643 return glsl_type::error_type
;
646 if (!type_b
->is_integer()) {
647 _mesa_glsl_error(loc
, state
, "RHS of operator %s must be an integer or "
648 "integer vector", ast_expression::operator_string(op
));
649 return glsl_type::error_type
;
652 /* "If the first operand is a scalar, the second operand has to be
655 if (type_a
->is_scalar() && !type_b
->is_scalar()) {
656 _mesa_glsl_error(loc
, state
, "if the first operand of %s is scalar, the "
657 "second must be scalar as well",
658 ast_expression::operator_string(op
));
659 return glsl_type::error_type
;
662 /* If both operands are vectors, check that they have same number of
665 if (type_a
->is_vector() &&
666 type_b
->is_vector() &&
667 type_a
->vector_elements
!= type_b
->vector_elements
) {
668 _mesa_glsl_error(loc
, state
, "vector operands to operator %s must "
669 "have same number of elements",
670 ast_expression::operator_string(op
));
671 return glsl_type::error_type
;
674 /* "In all cases, the resulting type will be the same type as the left
681 * Validates that a value can be assigned to a location with a specified type
683 * Validates that \c rhs can be assigned to some location. If the types are
684 * not an exact match but an automatic conversion is possible, \c rhs will be
688 * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
689 * Otherwise the actual RHS to be assigned will be returned. This may be
690 * \c rhs, or it may be \c rhs after some type conversion.
693 * In addition to being used for assignments, this function is used to
694 * type-check return values.
697 validate_assignment(struct _mesa_glsl_parse_state
*state
,
698 YYLTYPE loc
, const glsl_type
*lhs_type
,
699 ir_rvalue
*rhs
, bool is_initializer
)
701 /* If there is already some error in the RHS, just return it. Anything
702 * else will lead to an avalanche of error message back to the user.
704 if (rhs
->type
->is_error())
707 /* If the types are identical, the assignment can trivially proceed.
709 if (rhs
->type
== lhs_type
)
712 /* If the array element types are the same and the LHS is unsized,
713 * the assignment is okay for initializers embedded in variable
716 * Note: Whole-array assignments are not permitted in GLSL 1.10, but this
717 * is handled by ir_dereference::is_lvalue.
719 if (lhs_type
->is_unsized_array() && rhs
->type
->is_array()
720 && (lhs_type
->element_type() == rhs
->type
->element_type())) {
721 if (is_initializer
) {
724 _mesa_glsl_error(&loc
, state
,
725 "implicitly sized arrays cannot be assigned");
730 /* Check for implicit conversion in GLSL 1.20 */
731 if (apply_implicit_conversion(lhs_type
, rhs
, state
)) {
732 if (rhs
->type
== lhs_type
)
736 _mesa_glsl_error(&loc
, state
,
737 "%s of type %s cannot be assigned to "
738 "variable of type %s",
739 is_initializer
? "initializer" : "value",
740 rhs
->type
->name
, lhs_type
->name
);
746 mark_whole_array_access(ir_rvalue
*access
)
748 ir_dereference_variable
*deref
= access
->as_dereference_variable();
750 if (deref
&& deref
->var
) {
751 deref
->var
->data
.max_array_access
= deref
->type
->length
- 1;
756 do_assignment(exec_list
*instructions
, struct _mesa_glsl_parse_state
*state
,
757 const char *non_lvalue_description
,
758 ir_rvalue
*lhs
, ir_rvalue
*rhs
,
759 ir_rvalue
**out_rvalue
, bool needs_rvalue
,
764 bool error_emitted
= (lhs
->type
->is_error() || rhs
->type
->is_error());
765 ir_rvalue
*extract_channel
= NULL
;
767 /* If the assignment LHS comes back as an ir_binop_vector_extract
768 * expression, move it to the RHS as an ir_triop_vector_insert.
770 if (lhs
->ir_type
== ir_type_expression
) {
771 ir_expression
*const lhs_expr
= lhs
->as_expression();
773 if (unlikely(lhs_expr
->operation
== ir_binop_vector_extract
)) {
775 validate_assignment(state
, lhs_loc
, lhs
->type
,
776 rhs
, is_initializer
);
778 if (new_rhs
== NULL
) {
782 * - LHS: (expression float vector_extract <vec> <channel>)
786 * - RHS: (expression vec2 vector_insert <vec> <channel> <scalar>)
788 * The LHS type is now a vector instead of a scalar. Since GLSL
789 * allows assignments to be used as rvalues, we need to re-extract
790 * the channel from assignment_temp when returning the rvalue.
792 extract_channel
= lhs_expr
->operands
[1];
793 rhs
= new(ctx
) ir_expression(ir_triop_vector_insert
,
794 lhs_expr
->operands
[0]->type
,
795 lhs_expr
->operands
[0],
798 lhs
= lhs_expr
->operands
[0]->clone(ctx
, NULL
);
803 ir_variable
*lhs_var
= lhs
->variable_referenced();
805 lhs_var
->data
.assigned
= true;
807 if (!error_emitted
) {
808 if (non_lvalue_description
!= NULL
) {
809 _mesa_glsl_error(&lhs_loc
, state
,
811 non_lvalue_description
);
812 error_emitted
= true;
813 } else if (lhs_var
!= NULL
&& lhs_var
->data
.read_only
) {
814 _mesa_glsl_error(&lhs_loc
, state
,
815 "assignment to read-only variable '%s'",
817 error_emitted
= true;
818 } else if (lhs
->type
->is_array() &&
819 !state
->check_version(120, 300, &lhs_loc
,
820 "whole array assignment forbidden")) {
821 /* From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
823 * "Other binary or unary expressions, non-dereferenced
824 * arrays, function names, swizzles with repeated fields,
825 * and constants cannot be l-values."
827 * The restriction on arrays is lifted in GLSL 1.20 and GLSL ES 3.00.
829 error_emitted
= true;
830 } else if (!lhs
->is_lvalue()) {
831 _mesa_glsl_error(& lhs_loc
, state
, "non-lvalue in assignment");
832 error_emitted
= true;
837 validate_assignment(state
, lhs_loc
, lhs
->type
, rhs
, is_initializer
);
838 if (new_rhs
!= NULL
) {
841 /* If the LHS array was not declared with a size, it takes it size from
842 * the RHS. If the LHS is an l-value and a whole array, it must be a
843 * dereference of a variable. Any other case would require that the LHS
844 * is either not an l-value or not a whole array.
846 if (lhs
->type
->is_unsized_array()) {
847 ir_dereference
*const d
= lhs
->as_dereference();
851 ir_variable
*const var
= d
->variable_referenced();
855 if (var
->data
.max_array_access
>= unsigned(rhs
->type
->array_size())) {
856 /* FINISHME: This should actually log the location of the RHS. */
857 _mesa_glsl_error(& lhs_loc
, state
, "array size must be > %u due to "
859 var
->data
.max_array_access
);
862 var
->type
= glsl_type::get_array_instance(lhs
->type
->element_type(),
863 rhs
->type
->array_size());
866 if (lhs
->type
->is_array()) {
867 mark_whole_array_access(rhs
);
868 mark_whole_array_access(lhs
);
872 /* Most callers of do_assignment (assign, add_assign, pre_inc/dec,
873 * but not post_inc) need the converted assigned value as an rvalue
874 * to handle things like:
879 ir_variable
*var
= new(ctx
) ir_variable(rhs
->type
, "assignment_tmp",
881 instructions
->push_tail(var
);
882 instructions
->push_tail(assign(var
, rhs
));
884 if (!error_emitted
) {
885 ir_dereference_variable
*deref_var
= new(ctx
) ir_dereference_variable(var
);
886 instructions
->push_tail(new(ctx
) ir_assignment(lhs
, deref_var
));
888 ir_rvalue
*rvalue
= new(ctx
) ir_dereference_variable(var
);
890 if (extract_channel
) {
891 rvalue
= new(ctx
) ir_expression(ir_binop_vector_extract
,
893 extract_channel
->clone(ctx
, NULL
));
896 *out_rvalue
= rvalue
;
899 instructions
->push_tail(new(ctx
) ir_assignment(lhs
, rhs
));
903 return error_emitted
;
907 get_lvalue_copy(exec_list
*instructions
, ir_rvalue
*lvalue
)
909 void *ctx
= ralloc_parent(lvalue
);
912 var
= new(ctx
) ir_variable(lvalue
->type
, "_post_incdec_tmp",
914 instructions
->push_tail(var
);
915 var
->data
.mode
= ir_var_auto
;
917 instructions
->push_tail(new(ctx
) ir_assignment(new(ctx
) ir_dereference_variable(var
),
920 return new(ctx
) ir_dereference_variable(var
);
925 ast_node::hir(exec_list
*instructions
, struct _mesa_glsl_parse_state
*state
)
934 ast_function_expression::hir_no_rvalue(exec_list
*instructions
,
935 struct _mesa_glsl_parse_state
*state
)
937 (void)hir(instructions
, state
);
941 ast_aggregate_initializer::hir_no_rvalue(exec_list
*instructions
,
942 struct _mesa_glsl_parse_state
*state
)
944 (void)hir(instructions
, state
);
948 do_comparison(void *mem_ctx
, int operation
, ir_rvalue
*op0
, ir_rvalue
*op1
)
951 ir_rvalue
*cmp
= NULL
;
953 if (operation
== ir_binop_all_equal
)
954 join_op
= ir_binop_logic_and
;
956 join_op
= ir_binop_logic_or
;
958 switch (op0
->type
->base_type
) {
959 case GLSL_TYPE_FLOAT
:
963 return new(mem_ctx
) ir_expression(operation
, op0
, op1
);
965 case GLSL_TYPE_ARRAY
: {
966 for (unsigned int i
= 0; i
< op0
->type
->length
; i
++) {
967 ir_rvalue
*e0
, *e1
, *result
;
969 e0
= new(mem_ctx
) ir_dereference_array(op0
->clone(mem_ctx
, NULL
),
970 new(mem_ctx
) ir_constant(i
));
971 e1
= new(mem_ctx
) ir_dereference_array(op1
->clone(mem_ctx
, NULL
),
972 new(mem_ctx
) ir_constant(i
));
973 result
= do_comparison(mem_ctx
, operation
, e0
, e1
);
976 cmp
= new(mem_ctx
) ir_expression(join_op
, cmp
, result
);
982 mark_whole_array_access(op0
);
983 mark_whole_array_access(op1
);
987 case GLSL_TYPE_STRUCT
: {
988 for (unsigned int i
= 0; i
< op0
->type
->length
; i
++) {
989 ir_rvalue
*e0
, *e1
, *result
;
990 const char *field_name
= op0
->type
->fields
.structure
[i
].name
;
992 e0
= new(mem_ctx
) ir_dereference_record(op0
->clone(mem_ctx
, NULL
),
994 e1
= new(mem_ctx
) ir_dereference_record(op1
->clone(mem_ctx
, NULL
),
996 result
= do_comparison(mem_ctx
, operation
, e0
, e1
);
999 cmp
= new(mem_ctx
) ir_expression(join_op
, cmp
, result
);
1007 case GLSL_TYPE_ERROR
:
1008 case GLSL_TYPE_VOID
:
1009 case GLSL_TYPE_SAMPLER
:
1010 case GLSL_TYPE_IMAGE
:
1011 case GLSL_TYPE_INTERFACE
:
1012 case GLSL_TYPE_ATOMIC_UINT
:
1013 /* I assume a comparison of a struct containing a sampler just
1014 * ignores the sampler present in the type.
1020 cmp
= new(mem_ctx
) ir_constant(true);
1025 /* For logical operations, we want to ensure that the operands are
1026 * scalar booleans. If it isn't, emit an error and return a constant
1027 * boolean to avoid triggering cascading error messages.
1030 get_scalar_boolean_operand(exec_list
*instructions
,
1031 struct _mesa_glsl_parse_state
*state
,
1032 ast_expression
*parent_expr
,
1034 const char *operand_name
,
1035 bool *error_emitted
)
1037 ast_expression
*expr
= parent_expr
->subexpressions
[operand
];
1039 ir_rvalue
*val
= expr
->hir(instructions
, state
);
1041 if (val
->type
->is_boolean() && val
->type
->is_scalar())
1044 if (!*error_emitted
) {
1045 YYLTYPE loc
= expr
->get_location();
1046 _mesa_glsl_error(&loc
, state
, "%s of `%s' must be scalar boolean",
1048 parent_expr
->operator_string(parent_expr
->oper
));
1049 *error_emitted
= true;
1052 return new(ctx
) ir_constant(true);
1056 * If name refers to a builtin array whose maximum allowed size is less than
1057 * size, report an error and return true. Otherwise return false.
1060 check_builtin_array_max_size(const char *name
, unsigned size
,
1061 YYLTYPE loc
, struct _mesa_glsl_parse_state
*state
)
1063 if ((strcmp("gl_TexCoord", name
) == 0)
1064 && (size
> state
->Const
.MaxTextureCoords
)) {
1065 /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec:
1067 * "The size [of gl_TexCoord] can be at most
1068 * gl_MaxTextureCoords."
1070 _mesa_glsl_error(&loc
, state
, "`gl_TexCoord' array size cannot "
1071 "be larger than gl_MaxTextureCoords (%u)",
1072 state
->Const
.MaxTextureCoords
);
1073 } else if (strcmp("gl_ClipDistance", name
) == 0
1074 && size
> state
->Const
.MaxClipPlanes
) {
1075 /* From section 7.1 (Vertex Shader Special Variables) of the
1078 * "The gl_ClipDistance array is predeclared as unsized and
1079 * must be sized by the shader either redeclaring it with a
1080 * size or indexing it only with integral constant
1081 * expressions. ... The size can be at most
1082 * gl_MaxClipDistances."
1084 _mesa_glsl_error(&loc
, state
, "`gl_ClipDistance' array size cannot "
1085 "be larger than gl_MaxClipDistances (%u)",
1086 state
->Const
.MaxClipPlanes
);
1091 * Create the constant 1, of a which is appropriate for incrementing and
1092 * decrementing values of the given GLSL type. For example, if type is vec4,
1093 * this creates a constant value of 1.0 having type float.
1095 * If the given type is invalid for increment and decrement operators, return
1096 * a floating point 1--the error will be detected later.
1099 constant_one_for_inc_dec(void *ctx
, const glsl_type
*type
)
1101 switch (type
->base_type
) {
1102 case GLSL_TYPE_UINT
:
1103 return new(ctx
) ir_constant((unsigned) 1);
1105 return new(ctx
) ir_constant(1);
1107 case GLSL_TYPE_FLOAT
:
1108 return new(ctx
) ir_constant(1.0f
);
1113 ast_expression::hir(exec_list
*instructions
,
1114 struct _mesa_glsl_parse_state
*state
)
1116 return do_hir(instructions
, state
, true);
1120 ast_expression::hir_no_rvalue(exec_list
*instructions
,
1121 struct _mesa_glsl_parse_state
*state
)
1123 do_hir(instructions
, state
, false);
1127 ast_expression::do_hir(exec_list
*instructions
,
1128 struct _mesa_glsl_parse_state
*state
,
1132 static const int operations
[AST_NUM_OPERATORS
] = {
1133 -1, /* ast_assign doesn't convert to ir_expression. */
1134 -1, /* ast_plus doesn't convert to ir_expression. */
1148 ir_binop_any_nequal
,
1158 /* Note: The following block of expression types actually convert
1159 * to multiple IR instructions.
1161 ir_binop_mul
, /* ast_mul_assign */
1162 ir_binop_div
, /* ast_div_assign */
1163 ir_binop_mod
, /* ast_mod_assign */
1164 ir_binop_add
, /* ast_add_assign */
1165 ir_binop_sub
, /* ast_sub_assign */
1166 ir_binop_lshift
, /* ast_ls_assign */
1167 ir_binop_rshift
, /* ast_rs_assign */
1168 ir_binop_bit_and
, /* ast_and_assign */
1169 ir_binop_bit_xor
, /* ast_xor_assign */
1170 ir_binop_bit_or
, /* ast_or_assign */
1172 -1, /* ast_conditional doesn't convert to ir_expression. */
1173 ir_binop_add
, /* ast_pre_inc. */
1174 ir_binop_sub
, /* ast_pre_dec. */
1175 ir_binop_add
, /* ast_post_inc. */
1176 ir_binop_sub
, /* ast_post_dec. */
1177 -1, /* ast_field_selection doesn't conv to ir_expression. */
1178 -1, /* ast_array_index doesn't convert to ir_expression. */
1179 -1, /* ast_function_call doesn't conv to ir_expression. */
1180 -1, /* ast_identifier doesn't convert to ir_expression. */
1181 -1, /* ast_int_constant doesn't convert to ir_expression. */
1182 -1, /* ast_uint_constant doesn't conv to ir_expression. */
1183 -1, /* ast_float_constant doesn't conv to ir_expression. */
1184 -1, /* ast_bool_constant doesn't conv to ir_expression. */
1185 -1, /* ast_sequence doesn't convert to ir_expression. */
1187 ir_rvalue
*result
= NULL
;
1189 const struct glsl_type
*type
; /* a temporary variable for switch cases */
1190 bool error_emitted
= false;
1193 loc
= this->get_location();
1195 switch (this->oper
) {
1197 assert(!"ast_aggregate: Should never get here.");
1201 op
[0] = this->subexpressions
[0]->hir(instructions
, state
);
1202 op
[1] = this->subexpressions
[1]->hir(instructions
, state
);
1205 do_assignment(instructions
, state
,
1206 this->subexpressions
[0]->non_lvalue_description
,
1207 op
[0], op
[1], &result
, needs_rvalue
, false,
1208 this->subexpressions
[0]->get_location());
1213 op
[0] = this->subexpressions
[0]->hir(instructions
, state
);
1215 type
= unary_arithmetic_result_type(op
[0]->type
, state
, & loc
);
1217 error_emitted
= type
->is_error();
1223 op
[0] = this->subexpressions
[0]->hir(instructions
, state
);
1225 type
= unary_arithmetic_result_type(op
[0]->type
, state
, & loc
);
1227 error_emitted
= type
->is_error();
1229 result
= new(ctx
) ir_expression(operations
[this->oper
], type
,
1237 op
[0] = this->subexpressions
[0]->hir(instructions
, state
);
1238 op
[1] = this->subexpressions
[1]->hir(instructions
, state
);
1240 type
= arithmetic_result_type(op
[0], op
[1],
1241 (this->oper
== ast_mul
),
1243 error_emitted
= type
->is_error();
1245 result
= new(ctx
) ir_expression(operations
[this->oper
], type
,
1250 op
[0] = this->subexpressions
[0]->hir(instructions
, state
);
1251 op
[1] = this->subexpressions
[1]->hir(instructions
, state
);
1253 type
= modulus_result_type(op
[0]->type
, op
[1]->type
, state
, & loc
);
1255 assert(operations
[this->oper
] == ir_binop_mod
);
1257 result
= new(ctx
) ir_expression(operations
[this->oper
], type
,
1259 error_emitted
= type
->is_error();
1264 if (!state
->check_bitwise_operations_allowed(&loc
)) {
1265 error_emitted
= true;
1268 op
[0] = this->subexpressions
[0]->hir(instructions
, state
);
1269 op
[1] = this->subexpressions
[1]->hir(instructions
, state
);
1270 type
= shift_result_type(op
[0]->type
, op
[1]->type
, this->oper
, state
,
1272 result
= new(ctx
) ir_expression(operations
[this->oper
], type
,
1274 error_emitted
= op
[0]->type
->is_error() || op
[1]->type
->is_error();
1281 op
[0] = this->subexpressions
[0]->hir(instructions
, state
);
1282 op
[1] = this->subexpressions
[1]->hir(instructions
, state
);
1284 type
= relational_result_type(op
[0], op
[1], state
, & loc
);
1286 /* The relational operators must either generate an error or result
1287 * in a scalar boolean. See page 57 of the GLSL 1.50 spec.
1289 assert(type
->is_error()
1290 || ((type
->base_type
== GLSL_TYPE_BOOL
)
1291 && type
->is_scalar()));
1293 result
= new(ctx
) ir_expression(operations
[this->oper
], type
,
1295 error_emitted
= type
->is_error();
1300 op
[0] = this->subexpressions
[0]->hir(instructions
, state
);
1301 op
[1] = this->subexpressions
[1]->hir(instructions
, state
);
1303 /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
1305 * "The equality operators equal (==), and not equal (!=)
1306 * operate on all types. They result in a scalar Boolean. If
1307 * the operand types do not match, then there must be a
1308 * conversion from Section 4.1.10 "Implicit Conversions"
1309 * applied to one operand that can make them match, in which
1310 * case this conversion is done."
1312 if ((!apply_implicit_conversion(op
[0]->type
, op
[1], state
)
1313 && !apply_implicit_conversion(op
[1]->type
, op
[0], state
))
1314 || (op
[0]->type
!= op
[1]->type
)) {
1315 _mesa_glsl_error(& loc
, state
, "operands of `%s' must have the same "
1316 "type", (this->oper
== ast_equal
) ? "==" : "!=");
1317 error_emitted
= true;
1318 } else if ((op
[0]->type
->is_array() || op
[1]->type
->is_array()) &&
1319 !state
->check_version(120, 300, &loc
,
1320 "array comparisons forbidden")) {
1321 error_emitted
= true;
1322 } else if ((op
[0]->type
->contains_opaque() ||
1323 op
[1]->type
->contains_opaque())) {
1324 _mesa_glsl_error(&loc
, state
, "opaque type comparisons forbidden");
1325 error_emitted
= true;
1328 if (error_emitted
) {
1329 result
= new(ctx
) ir_constant(false);
1331 result
= do_comparison(ctx
, operations
[this->oper
], op
[0], op
[1]);
1332 assert(result
->type
== glsl_type::bool_type
);
1339 op
[0] = this->subexpressions
[0]->hir(instructions
, state
);
1340 op
[1] = this->subexpressions
[1]->hir(instructions
, state
);
1341 type
= bit_logic_result_type(op
[0]->type
, op
[1]->type
, this->oper
,
1343 result
= new(ctx
) ir_expression(operations
[this->oper
], type
,
1345 error_emitted
= op
[0]->type
->is_error() || op
[1]->type
->is_error();
1349 op
[0] = this->subexpressions
[0]->hir(instructions
, state
);
1351 if (!state
->check_bitwise_operations_allowed(&loc
)) {
1352 error_emitted
= true;
1355 if (!op
[0]->type
->is_integer()) {
1356 _mesa_glsl_error(&loc
, state
, "operand of `~' must be an integer");
1357 error_emitted
= true;
1360 type
= error_emitted
? glsl_type::error_type
: op
[0]->type
;
1361 result
= new(ctx
) ir_expression(ir_unop_bit_not
, type
, op
[0], NULL
);
1364 case ast_logic_and
: {
1365 exec_list rhs_instructions
;
1366 op
[0] = get_scalar_boolean_operand(instructions
, state
, this, 0,
1367 "LHS", &error_emitted
);
1368 op
[1] = get_scalar_boolean_operand(&rhs_instructions
, state
, this, 1,
1369 "RHS", &error_emitted
);
1371 if (rhs_instructions
.is_empty()) {
1372 result
= new(ctx
) ir_expression(ir_binop_logic_and
, op
[0], op
[1]);
1373 type
= result
->type
;
1375 ir_variable
*const tmp
= new(ctx
) ir_variable(glsl_type::bool_type
,
1378 instructions
->push_tail(tmp
);
1380 ir_if
*const stmt
= new(ctx
) ir_if(op
[0]);
1381 instructions
->push_tail(stmt
);
1383 stmt
->then_instructions
.append_list(&rhs_instructions
);
1384 ir_dereference
*const then_deref
= new(ctx
) ir_dereference_variable(tmp
);
1385 ir_assignment
*const then_assign
=
1386 new(ctx
) ir_assignment(then_deref
, op
[1]);
1387 stmt
->then_instructions
.push_tail(then_assign
);
1389 ir_dereference
*const else_deref
= new(ctx
) ir_dereference_variable(tmp
);
1390 ir_assignment
*const else_assign
=
1391 new(ctx
) ir_assignment(else_deref
, new(ctx
) ir_constant(false));
1392 stmt
->else_instructions
.push_tail(else_assign
);
1394 result
= new(ctx
) ir_dereference_variable(tmp
);
1400 case ast_logic_or
: {
1401 exec_list rhs_instructions
;
1402 op
[0] = get_scalar_boolean_operand(instructions
, state
, this, 0,
1403 "LHS", &error_emitted
);
1404 op
[1] = get_scalar_boolean_operand(&rhs_instructions
, state
, this, 1,
1405 "RHS", &error_emitted
);
1407 if (rhs_instructions
.is_empty()) {
1408 result
= new(ctx
) ir_expression(ir_binop_logic_or
, op
[0], op
[1]);
1409 type
= result
->type
;
1411 ir_variable
*const tmp
= new(ctx
) ir_variable(glsl_type::bool_type
,
1414 instructions
->push_tail(tmp
);
1416 ir_if
*const stmt
= new(ctx
) ir_if(op
[0]);
1417 instructions
->push_tail(stmt
);
1419 ir_dereference
*const then_deref
= new(ctx
) ir_dereference_variable(tmp
);
1420 ir_assignment
*const then_assign
=
1421 new(ctx
) ir_assignment(then_deref
, new(ctx
) ir_constant(true));
1422 stmt
->then_instructions
.push_tail(then_assign
);
1424 stmt
->else_instructions
.append_list(&rhs_instructions
);
1425 ir_dereference
*const else_deref
= new(ctx
) ir_dereference_variable(tmp
);
1426 ir_assignment
*const else_assign
=
1427 new(ctx
) ir_assignment(else_deref
, op
[1]);
1428 stmt
->else_instructions
.push_tail(else_assign
);
1430 result
= new(ctx
) ir_dereference_variable(tmp
);
1437 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1439 * "The logical binary operators and (&&), or ( | | ), and
1440 * exclusive or (^^). They operate only on two Boolean
1441 * expressions and result in a Boolean expression."
1443 op
[0] = get_scalar_boolean_operand(instructions
, state
, this, 0, "LHS",
1445 op
[1] = get_scalar_boolean_operand(instructions
, state
, this, 1, "RHS",
1448 result
= new(ctx
) ir_expression(operations
[this->oper
], glsl_type::bool_type
,
1453 op
[0] = get_scalar_boolean_operand(instructions
, state
, this, 0,
1454 "operand", &error_emitted
);
1456 result
= new(ctx
) ir_expression(operations
[this->oper
], glsl_type::bool_type
,
1460 case ast_mul_assign
:
1461 case ast_div_assign
:
1462 case ast_add_assign
:
1463 case ast_sub_assign
: {
1464 op
[0] = this->subexpressions
[0]->hir(instructions
, state
);
1465 op
[1] = this->subexpressions
[1]->hir(instructions
, state
);
1467 type
= arithmetic_result_type(op
[0], op
[1],
1468 (this->oper
== ast_mul_assign
),
1471 ir_rvalue
*temp_rhs
= new(ctx
) ir_expression(operations
[this->oper
], type
,
1475 do_assignment(instructions
, state
,
1476 this->subexpressions
[0]->non_lvalue_description
,
1477 op
[0]->clone(ctx
, NULL
), temp_rhs
,
1478 &result
, needs_rvalue
, false,
1479 this->subexpressions
[0]->get_location());
1481 /* GLSL 1.10 does not allow array assignment. However, we don't have to
1482 * explicitly test for this because none of the binary expression
1483 * operators allow array operands either.
1489 case ast_mod_assign
: {
1490 op
[0] = this->subexpressions
[0]->hir(instructions
, state
);
1491 op
[1] = this->subexpressions
[1]->hir(instructions
, state
);
1493 type
= modulus_result_type(op
[0]->type
, op
[1]->type
, state
, & loc
);
1495 assert(operations
[this->oper
] == ir_binop_mod
);
1497 ir_rvalue
*temp_rhs
;
1498 temp_rhs
= new(ctx
) ir_expression(operations
[this->oper
], type
,
1502 do_assignment(instructions
, state
,
1503 this->subexpressions
[0]->non_lvalue_description
,
1504 op
[0]->clone(ctx
, NULL
), temp_rhs
,
1505 &result
, needs_rvalue
, false,
1506 this->subexpressions
[0]->get_location());
1511 case ast_rs_assign
: {
1512 op
[0] = this->subexpressions
[0]->hir(instructions
, state
);
1513 op
[1] = this->subexpressions
[1]->hir(instructions
, state
);
1514 type
= shift_result_type(op
[0]->type
, op
[1]->type
, this->oper
, state
,
1516 ir_rvalue
*temp_rhs
= new(ctx
) ir_expression(operations
[this->oper
],
1517 type
, op
[0], op
[1]);
1519 do_assignment(instructions
, state
,
1520 this->subexpressions
[0]->non_lvalue_description
,
1521 op
[0]->clone(ctx
, NULL
), temp_rhs
,
1522 &result
, needs_rvalue
, false,
1523 this->subexpressions
[0]->get_location());
1527 case ast_and_assign
:
1528 case ast_xor_assign
:
1529 case ast_or_assign
: {
1530 op
[0] = this->subexpressions
[0]->hir(instructions
, state
);
1531 op
[1] = this->subexpressions
[1]->hir(instructions
, state
);
1532 type
= bit_logic_result_type(op
[0]->type
, op
[1]->type
, this->oper
,
1534 ir_rvalue
*temp_rhs
= new(ctx
) ir_expression(operations
[this->oper
],
1535 type
, op
[0], op
[1]);
1537 do_assignment(instructions
, state
,
1538 this->subexpressions
[0]->non_lvalue_description
,
1539 op
[0]->clone(ctx
, NULL
), temp_rhs
,
1540 &result
, needs_rvalue
, false,
1541 this->subexpressions
[0]->get_location());
1545 case ast_conditional
: {
1546 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1548 * "The ternary selection operator (?:). It operates on three
1549 * expressions (exp1 ? exp2 : exp3). This operator evaluates the
1550 * first expression, which must result in a scalar Boolean."
1552 op
[0] = get_scalar_boolean_operand(instructions
, state
, this, 0,
1553 "condition", &error_emitted
);
1555 /* The :? operator is implemented by generating an anonymous temporary
1556 * followed by an if-statement. The last instruction in each branch of
1557 * the if-statement assigns a value to the anonymous temporary. This
1558 * temporary is the r-value of the expression.
1560 exec_list then_instructions
;
1561 exec_list else_instructions
;
1563 op
[1] = this->subexpressions
[1]->hir(&then_instructions
, state
);
1564 op
[2] = this->subexpressions
[2]->hir(&else_instructions
, state
);
1566 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1568 * "The second and third expressions can be any type, as
1569 * long their types match, or there is a conversion in
1570 * Section 4.1.10 "Implicit Conversions" that can be applied
1571 * to one of the expressions to make their types match. This
1572 * resulting matching type is the type of the entire
1575 if ((!apply_implicit_conversion(op
[1]->type
, op
[2], state
)
1576 && !apply_implicit_conversion(op
[2]->type
, op
[1], state
))
1577 || (op
[1]->type
!= op
[2]->type
)) {
1578 YYLTYPE loc
= this->subexpressions
[1]->get_location();
1580 _mesa_glsl_error(& loc
, state
, "second and third operands of ?: "
1581 "operator must have matching types");
1582 error_emitted
= true;
1583 type
= glsl_type::error_type
;
1588 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1590 * "The second and third expressions must be the same type, but can
1591 * be of any type other than an array."
1593 if (type
->is_array() &&
1594 !state
->check_version(120, 300, &loc
,
1595 "second and third operands of ?: operator "
1596 "cannot be arrays")) {
1597 error_emitted
= true;
1600 ir_constant
*cond_val
= op
[0]->constant_expression_value();
1601 ir_constant
*then_val
= op
[1]->constant_expression_value();
1602 ir_constant
*else_val
= op
[2]->constant_expression_value();
1604 if (then_instructions
.is_empty()
1605 && else_instructions
.is_empty()
1606 && (cond_val
!= NULL
) && (then_val
!= NULL
) && (else_val
!= NULL
)) {
1607 result
= (cond_val
->value
.b
[0]) ? then_val
: else_val
;
1609 ir_variable
*const tmp
=
1610 new(ctx
) ir_variable(type
, "conditional_tmp", ir_var_temporary
);
1611 instructions
->push_tail(tmp
);
1613 ir_if
*const stmt
= new(ctx
) ir_if(op
[0]);
1614 instructions
->push_tail(stmt
);
1616 then_instructions
.move_nodes_to(& stmt
->then_instructions
);
1617 ir_dereference
*const then_deref
=
1618 new(ctx
) ir_dereference_variable(tmp
);
1619 ir_assignment
*const then_assign
=
1620 new(ctx
) ir_assignment(then_deref
, op
[1]);
1621 stmt
->then_instructions
.push_tail(then_assign
);
1623 else_instructions
.move_nodes_to(& stmt
->else_instructions
);
1624 ir_dereference
*const else_deref
=
1625 new(ctx
) ir_dereference_variable(tmp
);
1626 ir_assignment
*const else_assign
=
1627 new(ctx
) ir_assignment(else_deref
, op
[2]);
1628 stmt
->else_instructions
.push_tail(else_assign
);
1630 result
= new(ctx
) ir_dereference_variable(tmp
);
1637 this->non_lvalue_description
= (this->oper
== ast_pre_inc
)
1638 ? "pre-increment operation" : "pre-decrement operation";
1640 op
[0] = this->subexpressions
[0]->hir(instructions
, state
);
1641 op
[1] = constant_one_for_inc_dec(ctx
, op
[0]->type
);
1643 type
= arithmetic_result_type(op
[0], op
[1], false, state
, & loc
);
1645 ir_rvalue
*temp_rhs
;
1646 temp_rhs
= new(ctx
) ir_expression(operations
[this->oper
], type
,
1650 do_assignment(instructions
, state
,
1651 this->subexpressions
[0]->non_lvalue_description
,
1652 op
[0]->clone(ctx
, NULL
), temp_rhs
,
1653 &result
, needs_rvalue
, false,
1654 this->subexpressions
[0]->get_location());
1659 case ast_post_dec
: {
1660 this->non_lvalue_description
= (this->oper
== ast_post_inc
)
1661 ? "post-increment operation" : "post-decrement operation";
1662 op
[0] = this->subexpressions
[0]->hir(instructions
, state
);
1663 op
[1] = constant_one_for_inc_dec(ctx
, op
[0]->type
);
1665 error_emitted
= op
[0]->type
->is_error() || op
[1]->type
->is_error();
1667 type
= arithmetic_result_type(op
[0], op
[1], false, state
, & loc
);
1669 ir_rvalue
*temp_rhs
;
1670 temp_rhs
= new(ctx
) ir_expression(operations
[this->oper
], type
,
1673 /* Get a temporary of a copy of the lvalue before it's modified.
1674 * This may get thrown away later.
1676 result
= get_lvalue_copy(instructions
, op
[0]->clone(ctx
, NULL
));
1678 ir_rvalue
*junk_rvalue
;
1680 do_assignment(instructions
, state
,
1681 this->subexpressions
[0]->non_lvalue_description
,
1682 op
[0]->clone(ctx
, NULL
), temp_rhs
,
1683 &junk_rvalue
, false, false,
1684 this->subexpressions
[0]->get_location());
1689 case ast_field_selection
:
1690 result
= _mesa_ast_field_selection_to_hir(this, instructions
, state
);
1693 case ast_array_index
: {
1694 YYLTYPE index_loc
= subexpressions
[1]->get_location();
1696 op
[0] = subexpressions
[0]->hir(instructions
, state
);
1697 op
[1] = subexpressions
[1]->hir(instructions
, state
);
1699 result
= _mesa_ast_array_index_to_hir(ctx
, state
, op
[0], op
[1],
1702 if (result
->type
->is_error())
1703 error_emitted
= true;
1708 case ast_function_call
:
1709 /* Should *NEVER* get here. ast_function_call should always be handled
1710 * by ast_function_expression::hir.
1715 case ast_identifier
: {
1716 /* ast_identifier can appear several places in a full abstract syntax
1717 * tree. This particular use must be at location specified in the grammar
1718 * as 'variable_identifier'.
1721 state
->symbols
->get_variable(this->primary_expression
.identifier
);
1724 var
->data
.used
= true;
1725 result
= new(ctx
) ir_dereference_variable(var
);
1727 _mesa_glsl_error(& loc
, state
, "`%s' undeclared",
1728 this->primary_expression
.identifier
);
1730 result
= ir_rvalue::error_value(ctx
);
1731 error_emitted
= true;
1736 case ast_int_constant
:
1737 result
= new(ctx
) ir_constant(this->primary_expression
.int_constant
);
1740 case ast_uint_constant
:
1741 result
= new(ctx
) ir_constant(this->primary_expression
.uint_constant
);
1744 case ast_float_constant
:
1745 result
= new(ctx
) ir_constant(this->primary_expression
.float_constant
);
1748 case ast_bool_constant
:
1749 result
= new(ctx
) ir_constant(bool(this->primary_expression
.bool_constant
));
1752 case ast_sequence
: {
1753 /* It should not be possible to generate a sequence in the AST without
1754 * any expressions in it.
1756 assert(!this->expressions
.is_empty());
1758 /* The r-value of a sequence is the last expression in the sequence. If
1759 * the other expressions in the sequence do not have side-effects (and
1760 * therefore add instructions to the instruction list), they get dropped
1763 exec_node
*previous_tail_pred
= NULL
;
1764 YYLTYPE previous_operand_loc
= loc
;
1766 foreach_list_typed (ast_node
, ast
, link
, &this->expressions
) {
1767 /* If one of the operands of comma operator does not generate any
1768 * code, we want to emit a warning. At each pass through the loop
1769 * previous_tail_pred will point to the last instruction in the
1770 * stream *before* processing the previous operand. Naturally,
1771 * instructions->tail_pred will point to the last instruction in the
1772 * stream *after* processing the previous operand. If the two
1773 * pointers match, then the previous operand had no effect.
1775 * The warning behavior here differs slightly from GCC. GCC will
1776 * only emit a warning if none of the left-hand operands have an
1777 * effect. However, it will emit a warning for each. I believe that
1778 * there are some cases in C (especially with GCC extensions) where
1779 * it is useful to have an intermediate step in a sequence have no
1780 * effect, but I don't think these cases exist in GLSL. Either way,
1781 * it would be a giant hassle to replicate that behavior.
1783 if (previous_tail_pred
== instructions
->tail_pred
) {
1784 _mesa_glsl_warning(&previous_operand_loc
, state
,
1785 "left-hand operand of comma expression has "
1789 /* tail_pred is directly accessed instead of using the get_tail()
1790 * method for performance reasons. get_tail() has extra code to
1791 * return NULL when the list is empty. We don't care about that
1792 * here, so using tail_pred directly is fine.
1794 previous_tail_pred
= instructions
->tail_pred
;
1795 previous_operand_loc
= ast
->get_location();
1797 result
= ast
->hir(instructions
, state
);
1800 /* Any errors should have already been emitted in the loop above.
1802 error_emitted
= true;
1806 type
= NULL
; /* use result->type, not type. */
1807 assert(result
!= NULL
|| !needs_rvalue
);
1809 if (result
&& result
->type
->is_error() && !error_emitted
)
1810 _mesa_glsl_error(& loc
, state
, "type mismatch");
1817 ast_expression_statement::hir(exec_list
*instructions
,
1818 struct _mesa_glsl_parse_state
*state
)
1820 /* It is possible to have expression statements that don't have an
1821 * expression. This is the solitary semicolon:
1823 * for (i = 0; i < 5; i++)
1826 * In this case the expression will be NULL. Test for NULL and don't do
1827 * anything in that case.
1829 if (expression
!= NULL
)
1830 expression
->hir_no_rvalue(instructions
, state
);
1832 /* Statements do not have r-values.
1839 ast_compound_statement::hir(exec_list
*instructions
,
1840 struct _mesa_glsl_parse_state
*state
)
1843 state
->symbols
->push_scope();
1845 foreach_list_typed (ast_node
, ast
, link
, &this->statements
)
1846 ast
->hir(instructions
, state
);
1849 state
->symbols
->pop_scope();
1851 /* Compound statements do not have r-values.
1857 * Evaluate the given exec_node (which should be an ast_node representing
1858 * a single array dimension) and return its integer value.
1861 process_array_size(exec_node
*node
,
1862 struct _mesa_glsl_parse_state
*state
)
1864 exec_list dummy_instructions
;
1866 ast_node
*array_size
= exec_node_data(ast_node
, node
, link
);
1867 ir_rvalue
*const ir
= array_size
->hir(& dummy_instructions
, state
);
1868 YYLTYPE loc
= array_size
->get_location();
1871 _mesa_glsl_error(& loc
, state
,
1872 "array size could not be resolved");
1876 if (!ir
->type
->is_integer()) {
1877 _mesa_glsl_error(& loc
, state
,
1878 "array size must be integer type");
1882 if (!ir
->type
->is_scalar()) {
1883 _mesa_glsl_error(& loc
, state
,
1884 "array size must be scalar type");
1888 ir_constant
*const size
= ir
->constant_expression_value();
1890 _mesa_glsl_error(& loc
, state
, "array size must be a "
1891 "constant valued expression");
1895 if (size
->value
.i
[0] <= 0) {
1896 _mesa_glsl_error(& loc
, state
, "array size must be > 0");
1900 assert(size
->type
== ir
->type
);
1902 /* If the array size is const (and we've verified that
1903 * it is) then no instructions should have been emitted
1904 * when we converted it to HIR. If they were emitted,
1905 * then either the array size isn't const after all, or
1906 * we are emitting unnecessary instructions.
1908 assert(dummy_instructions
.is_empty());
1910 return size
->value
.u
[0];
1913 static const glsl_type
*
1914 process_array_type(YYLTYPE
*loc
, const glsl_type
*base
,
1915 ast_array_specifier
*array_specifier
,
1916 struct _mesa_glsl_parse_state
*state
)
1918 const glsl_type
*array_type
= base
;
1920 if (array_specifier
!= NULL
) {
1921 if (base
->is_array()) {
1923 /* From page 19 (page 25) of the GLSL 1.20 spec:
1925 * "Only one-dimensional arrays may be declared."
1927 if (!state
->ARB_arrays_of_arrays_enable
) {
1928 _mesa_glsl_error(loc
, state
,
1929 "invalid array of `%s'"
1930 "GL_ARB_arrays_of_arrays "
1931 "required for defining arrays of arrays",
1933 return glsl_type::error_type
;
1936 if (base
->length
== 0) {
1937 _mesa_glsl_error(loc
, state
,
1938 "only the outermost array dimension can "
1941 return glsl_type::error_type
;
1945 for (exec_node
*node
= array_specifier
->array_dimensions
.tail_pred
;
1946 !node
->is_head_sentinel(); node
= node
->prev
) {
1947 unsigned array_size
= process_array_size(node
, state
);
1948 array_type
= glsl_type::get_array_instance(array_type
, array_size
);
1951 if (array_specifier
->is_unsized_array
)
1952 array_type
= glsl_type::get_array_instance(array_type
, 0);
1960 ast_type_specifier::glsl_type(const char **name
,
1961 struct _mesa_glsl_parse_state
*state
) const
1963 const struct glsl_type
*type
;
1965 type
= state
->symbols
->get_type(this->type_name
);
1966 *name
= this->type_name
;
1968 YYLTYPE loc
= this->get_location();
1969 type
= process_array_type(&loc
, type
, this->array_specifier
, state
);
1975 ast_fully_specified_type::glsl_type(const char **name
,
1976 struct _mesa_glsl_parse_state
*state
) const
1978 const struct glsl_type
*type
= this->specifier
->glsl_type(name
, state
);
1983 if (type
->base_type
== GLSL_TYPE_FLOAT
1985 && state
->stage
== MESA_SHADER_FRAGMENT
1986 && this->qualifier
.precision
== ast_precision_none
1987 && state
->symbols
->get_variable("#default precision") == NULL
) {
1988 YYLTYPE loc
= this->get_location();
1989 _mesa_glsl_error(&loc
, state
,
1990 "no precision specified this scope for type `%s'",
1998 * Determine whether a toplevel variable declaration declares a varying. This
1999 * function operates by examining the variable's mode and the shader target,
2000 * so it correctly identifies linkage variables regardless of whether they are
2001 * declared using the deprecated "varying" syntax or the new "in/out" syntax.
2003 * Passing a non-toplevel variable declaration (e.g. a function parameter) to
2004 * this function will produce undefined results.
2007 is_varying_var(ir_variable
*var
, gl_shader_stage target
)
2010 case MESA_SHADER_VERTEX
:
2011 return var
->data
.mode
== ir_var_shader_out
;
2012 case MESA_SHADER_FRAGMENT
:
2013 return var
->data
.mode
== ir_var_shader_in
;
2015 return var
->data
.mode
== ir_var_shader_out
|| var
->data
.mode
== ir_var_shader_in
;
2021 * Matrix layout qualifiers are only allowed on certain types
2024 validate_matrix_layout_for_type(struct _mesa_glsl_parse_state
*state
,
2026 const glsl_type
*type
,
2029 if (var
&& !var
->is_in_uniform_block()) {
2030 /* Layout qualifiers may only apply to interface blocks and fields in
2033 _mesa_glsl_error(loc
, state
,
2034 "uniform block layout qualifiers row_major and "
2035 "column_major may not be applied to variables "
2036 "outside of uniform blocks");
2037 } else if (!type
->is_matrix()) {
2038 /* The OpenGL ES 3.0 conformance tests did not originally allow
2039 * matrix layout qualifiers on non-matrices. However, the OpenGL
2040 * 4.4 and OpenGL ES 3.0 (revision TBD) specifications were
2041 * amended to specifically allow these layouts on all types. Emit
2042 * a warning so that people know their code may not be portable.
2044 _mesa_glsl_warning(loc
, state
,
2045 "uniform block layout qualifiers row_major and "
2046 "column_major applied to non-matrix types may "
2047 "be rejected by older compilers");
2048 } else if (type
->is_record()) {
2049 /* We allow 'layout(row_major)' on structure types because it's the only
2050 * way to get row-major layouts on matrices contained in structures.
2052 _mesa_glsl_warning(loc
, state
,
2053 "uniform block layout qualifiers row_major and "
2054 "column_major applied to structure types is not "
2055 "strictly conformant and may be rejected by other "
2061 validate_binding_qualifier(struct _mesa_glsl_parse_state
*state
,
2064 const ast_type_qualifier
*qual
)
2066 if (var
->data
.mode
!= ir_var_uniform
) {
2067 _mesa_glsl_error(loc
, state
,
2068 "the \"binding\" qualifier only applies to uniforms");
2072 if (qual
->binding
< 0) {
2073 _mesa_glsl_error(loc
, state
, "binding values must be >= 0");
2077 const struct gl_context
*const ctx
= state
->ctx
;
2078 unsigned elements
= var
->type
->is_array() ? var
->type
->length
: 1;
2079 unsigned max_index
= qual
->binding
+ elements
- 1;
2081 if (var
->type
->is_interface()) {
2082 /* UBOs. From page 60 of the GLSL 4.20 specification:
2083 * "If the binding point for any uniform block instance is less than zero,
2084 * or greater than or equal to the implementation-dependent maximum
2085 * number of uniform buffer bindings, a compilation error will occur.
2086 * When the binding identifier is used with a uniform block instanced as
2087 * an array of size N, all elements of the array from binding through
2088 * binding + N – 1 must be within this range."
2090 * The implementation-dependent maximum is GL_MAX_UNIFORM_BUFFER_BINDINGS.
2092 if (max_index
>= ctx
->Const
.MaxUniformBufferBindings
) {
2093 _mesa_glsl_error(loc
, state
, "layout(binding = %d) for %d UBOs exceeds "
2094 "the maximum number of UBO binding points (%d)",
2095 qual
->binding
, elements
,
2096 ctx
->Const
.MaxUniformBufferBindings
);
2099 } else if (var
->type
->is_sampler() ||
2100 (var
->type
->is_array() && var
->type
->fields
.array
->is_sampler())) {
2101 /* Samplers. From page 63 of the GLSL 4.20 specification:
2102 * "If the binding is less than zero, or greater than or equal to the
2103 * implementation-dependent maximum supported number of units, a
2104 * compilation error will occur. When the binding identifier is used
2105 * with an array of size N, all elements of the array from binding
2106 * through binding + N - 1 must be within this range."
2108 unsigned limit
= ctx
->Const
.Program
[state
->stage
].MaxTextureImageUnits
;
2110 if (max_index
>= limit
) {
2111 _mesa_glsl_error(loc
, state
, "layout(binding = %d) for %d samplers "
2112 "exceeds the maximum number of texture image units "
2113 "(%d)", qual
->binding
, elements
, limit
);
2117 } else if (var
->type
->contains_atomic()) {
2118 assert(ctx
->Const
.MaxAtomicBufferBindings
<= MAX_COMBINED_ATOMIC_BUFFERS
);
2119 if (unsigned(qual
->binding
) >= ctx
->Const
.MaxAtomicBufferBindings
) {
2120 _mesa_glsl_error(loc
, state
, "layout(binding = %d) exceeds the "
2121 " maximum number of atomic counter buffer bindings"
2122 "(%d)", qual
->binding
,
2123 ctx
->Const
.MaxAtomicBufferBindings
);
2128 _mesa_glsl_error(loc
, state
,
2129 "the \"binding\" qualifier only applies to uniform "
2130 "blocks, samplers, atomic counters, or arrays thereof");
2138 static glsl_interp_qualifier
2139 interpret_interpolation_qualifier(const struct ast_type_qualifier
*qual
,
2140 ir_variable_mode mode
,
2141 struct _mesa_glsl_parse_state
*state
,
2144 glsl_interp_qualifier interpolation
;
2145 if (qual
->flags
.q
.flat
)
2146 interpolation
= INTERP_QUALIFIER_FLAT
;
2147 else if (qual
->flags
.q
.noperspective
)
2148 interpolation
= INTERP_QUALIFIER_NOPERSPECTIVE
;
2149 else if (qual
->flags
.q
.smooth
)
2150 interpolation
= INTERP_QUALIFIER_SMOOTH
;
2152 interpolation
= INTERP_QUALIFIER_NONE
;
2154 if (interpolation
!= INTERP_QUALIFIER_NONE
) {
2155 if (mode
!= ir_var_shader_in
&& mode
!= ir_var_shader_out
) {
2156 _mesa_glsl_error(loc
, state
,
2157 "interpolation qualifier `%s' can only be applied to "
2158 "shader inputs or outputs.",
2159 interpolation_string(interpolation
));
2163 if ((state
->stage
== MESA_SHADER_VERTEX
&& mode
== ir_var_shader_in
) ||
2164 (state
->stage
== MESA_SHADER_FRAGMENT
&& mode
== ir_var_shader_out
)) {
2165 _mesa_glsl_error(loc
, state
,
2166 "interpolation qualifier `%s' cannot be applied to "
2167 "vertex shader inputs or fragment shader outputs",
2168 interpolation_string(interpolation
));
2172 return interpolation
;
2177 validate_explicit_location(const struct ast_type_qualifier
*qual
,
2179 struct _mesa_glsl_parse_state
*state
,
2184 /* Checks for GL_ARB_explicit_uniform_location. */
2185 if (qual
->flags
.q
.uniform
) {
2186 if (!state
->check_explicit_uniform_location_allowed(loc
, var
))
2189 const struct gl_context
*const ctx
= state
->ctx
;
2190 unsigned max_loc
= qual
->location
+ var
->type
->uniform_locations() - 1;
2192 /* ARB_explicit_uniform_location specification states:
2194 * "The explicitly defined locations and the generated locations
2195 * must be in the range of 0 to MAX_UNIFORM_LOCATIONS minus one."
2197 * "Valid locations for default-block uniform variable locations
2198 * are in the range of 0 to the implementation-defined maximum
2199 * number of uniform locations."
2201 if (qual
->location
< 0) {
2202 _mesa_glsl_error(loc
, state
,
2203 "explicit location < 0 for uniform %s", var
->name
);
2207 if (max_loc
>= ctx
->Const
.MaxUserAssignableUniformLocations
) {
2208 _mesa_glsl_error(loc
, state
, "location(s) consumed by uniform %s "
2209 ">= MAX_UNIFORM_LOCATIONS (%u)", var
->name
,
2210 ctx
->Const
.MaxUserAssignableUniformLocations
);
2214 var
->data
.explicit_location
= true;
2215 var
->data
.location
= qual
->location
;
2219 /* Between GL_ARB_explicit_attrib_location an
2220 * GL_ARB_separate_shader_objects, the inputs and outputs of any shader
2221 * stage can be assigned explicit locations. The checking here associates
2222 * the correct extension with the correct stage's input / output:
2226 * vertex explicit_loc sso
2228 * fragment sso explicit_loc
2230 switch (state
->stage
) {
2231 case MESA_SHADER_VERTEX
:
2232 if (var
->data
.mode
== ir_var_shader_in
) {
2233 if (!state
->check_explicit_attrib_location_allowed(loc
, var
))
2239 if (var
->data
.mode
== ir_var_shader_out
) {
2240 if (!state
->check_separate_shader_objects_allowed(loc
, var
))
2249 case MESA_SHADER_GEOMETRY
:
2250 if (var
->data
.mode
== ir_var_shader_in
|| var
->data
.mode
== ir_var_shader_out
) {
2251 if (!state
->check_separate_shader_objects_allowed(loc
, var
))
2260 case MESA_SHADER_FRAGMENT
:
2261 if (var
->data
.mode
== ir_var_shader_in
) {
2262 if (!state
->check_separate_shader_objects_allowed(loc
, var
))
2268 if (var
->data
.mode
== ir_var_shader_out
) {
2269 if (!state
->check_explicit_attrib_location_allowed(loc
, var
))
2278 case MESA_SHADER_COMPUTE
:
2279 _mesa_glsl_error(loc
, state
,
2280 "compute shader variables cannot be given "
2281 "explicit locations");
2286 _mesa_glsl_error(loc
, state
,
2287 "%s cannot be given an explicit location in %s shader",
2289 _mesa_shader_stage_to_string(state
->stage
));
2291 var
->data
.explicit_location
= true;
2293 /* This bit of silliness is needed because invalid explicit locations
2294 * are supposed to be flagged during linking. Small negative values
2295 * biased by VERT_ATTRIB_GENERIC0 or FRAG_RESULT_DATA0 could alias
2296 * built-in values (e.g., -16+VERT_ATTRIB_GENERIC0 = VERT_ATTRIB_POS).
2297 * The linker needs to be able to differentiate these cases. This
2298 * ensures that negative values stay negative.
2300 if (qual
->location
>= 0) {
2301 switch (state
->stage
) {
2302 case MESA_SHADER_VERTEX
:
2303 var
->data
.location
= (var
->data
.mode
== ir_var_shader_in
)
2304 ? (qual
->location
+ VERT_ATTRIB_GENERIC0
)
2305 : (qual
->location
+ VARYING_SLOT_VAR0
);
2308 case MESA_SHADER_GEOMETRY
:
2309 var
->data
.location
= qual
->location
+ VARYING_SLOT_VAR0
;
2312 case MESA_SHADER_FRAGMENT
:
2313 var
->data
.location
= (var
->data
.mode
== ir_var_shader_out
)
2314 ? (qual
->location
+ FRAG_RESULT_DATA0
)
2315 : (qual
->location
+ VARYING_SLOT_VAR0
);
2317 case MESA_SHADER_COMPUTE
:
2318 assert(!"Unexpected shader type");
2322 var
->data
.location
= qual
->location
;
2325 if (qual
->flags
.q
.explicit_index
) {
2326 /* From the GLSL 4.30 specification, section 4.4.2 (Output
2327 * Layout Qualifiers):
2329 * "It is also a compile-time error if a fragment shader
2330 * sets a layout index to less than 0 or greater than 1."
2332 * Older specifications don't mandate a behavior; we take
2333 * this as a clarification and always generate the error.
2335 if (qual
->index
< 0 || qual
->index
> 1) {
2336 _mesa_glsl_error(loc
, state
,
2337 "explicit index may only be 0 or 1");
2339 var
->data
.explicit_index
= true;
2340 var
->data
.index
= qual
->index
;
2347 apply_image_qualifier_to_variable(const struct ast_type_qualifier
*qual
,
2349 struct _mesa_glsl_parse_state
*state
,
2352 const glsl_type
*base_type
=
2353 (var
->type
->is_array() ? var
->type
->element_type() : var
->type
);
2355 if (base_type
->is_image()) {
2356 if (var
->data
.mode
!= ir_var_uniform
&&
2357 var
->data
.mode
!= ir_var_function_in
) {
2358 _mesa_glsl_error(loc
, state
, "image variables may only be declared as "
2359 "function parameters or uniform-qualified "
2360 "global variables");
2363 var
->data
.image
.read_only
|= qual
->flags
.q
.read_only
;
2364 var
->data
.image
.write_only
|= qual
->flags
.q
.write_only
;
2365 var
->data
.image
.coherent
|= qual
->flags
.q
.coherent
;
2366 var
->data
.image
._volatile
|= qual
->flags
.q
._volatile
;
2367 var
->data
.image
.restrict_flag
|= qual
->flags
.q
.restrict_flag
;
2368 var
->data
.read_only
= true;
2370 if (qual
->flags
.q
.explicit_image_format
) {
2371 if (var
->data
.mode
== ir_var_function_in
) {
2372 _mesa_glsl_error(loc
, state
, "format qualifiers cannot be "
2373 "used on image function parameters");
2376 if (qual
->image_base_type
!= base_type
->sampler_type
) {
2377 _mesa_glsl_error(loc
, state
, "format qualifier doesn't match the "
2378 "base data type of the image");
2381 var
->data
.image
.format
= qual
->image_format
;
2383 if (var
->data
.mode
== ir_var_uniform
&& !qual
->flags
.q
.write_only
) {
2384 _mesa_glsl_error(loc
, state
, "uniforms not qualified with "
2385 "`writeonly' must have a format layout "
2389 var
->data
.image
.format
= GL_NONE
;
2394 static inline const char*
2395 get_layout_qualifier_string(bool origin_upper_left
, bool pixel_center_integer
)
2397 if (origin_upper_left
&& pixel_center_integer
)
2398 return "origin_upper_left, pixel_center_integer";
2399 else if (origin_upper_left
)
2400 return "origin_upper_left";
2401 else if (pixel_center_integer
)
2402 return "pixel_center_integer";
2408 is_conflicting_fragcoord_redeclaration(struct _mesa_glsl_parse_state
*state
,
2409 const struct ast_type_qualifier
*qual
)
2411 /* If gl_FragCoord was previously declared, and the qualifiers were
2412 * different in any way, return true.
2414 if (state
->fs_redeclares_gl_fragcoord
) {
2415 return (state
->fs_pixel_center_integer
!= qual
->flags
.q
.pixel_center_integer
2416 || state
->fs_origin_upper_left
!= qual
->flags
.q
.origin_upper_left
);
2423 apply_type_qualifier_to_variable(const struct ast_type_qualifier
*qual
,
2425 struct _mesa_glsl_parse_state
*state
,
2429 STATIC_ASSERT(sizeof(qual
->flags
.q
) <= sizeof(qual
->flags
.i
));
2431 if (qual
->flags
.q
.invariant
) {
2432 if (var
->data
.used
) {
2433 _mesa_glsl_error(loc
, state
,
2434 "variable `%s' may not be redeclared "
2435 "`invariant' after being used",
2438 var
->data
.invariant
= 1;
2442 if (qual
->flags
.q
.precise
) {
2443 if (var
->data
.used
) {
2444 _mesa_glsl_error(loc
, state
,
2445 "variable `%s' may not be redeclared "
2446 "`precise' after being used",
2449 var
->data
.precise
= 1;
2453 if (qual
->flags
.q
.constant
|| qual
->flags
.q
.attribute
2454 || qual
->flags
.q
.uniform
2455 || (qual
->flags
.q
.varying
&& (state
->stage
== MESA_SHADER_FRAGMENT
)))
2456 var
->data
.read_only
= 1;
2458 if (qual
->flags
.q
.centroid
)
2459 var
->data
.centroid
= 1;
2461 if (qual
->flags
.q
.sample
)
2462 var
->data
.sample
= 1;
2464 if (state
->stage
== MESA_SHADER_GEOMETRY
&&
2465 qual
->flags
.q
.out
&& qual
->flags
.q
.stream
) {
2466 var
->data
.stream
= qual
->stream
;
2469 if (qual
->flags
.q
.attribute
&& state
->stage
!= MESA_SHADER_VERTEX
) {
2470 var
->type
= glsl_type::error_type
;
2471 _mesa_glsl_error(loc
, state
,
2472 "`attribute' variables may not be declared in the "
2474 _mesa_shader_stage_to_string(state
->stage
));
2477 /* Disallow layout qualifiers which may only appear on layout declarations. */
2478 if (qual
->flags
.q
.prim_type
) {
2479 _mesa_glsl_error(loc
, state
,
2480 "Primitive type may only be specified on GS input or output "
2481 "layout declaration, not on variables.");
2484 /* Section 6.1.1 (Function Calling Conventions) of the GLSL 1.10 spec says:
2486 * "However, the const qualifier cannot be used with out or inout."
2488 * The same section of the GLSL 4.40 spec further clarifies this saying:
2490 * "The const qualifier cannot be used with out or inout, or a
2491 * compile-time error results."
2493 if (is_parameter
&& qual
->flags
.q
.constant
&& qual
->flags
.q
.out
) {
2494 _mesa_glsl_error(loc
, state
,
2495 "`const' may not be applied to `out' or `inout' "
2496 "function parameters");
2499 /* If there is no qualifier that changes the mode of the variable, leave
2500 * the setting alone.
2502 if (qual
->flags
.q
.in
&& qual
->flags
.q
.out
)
2503 var
->data
.mode
= ir_var_function_inout
;
2504 else if (qual
->flags
.q
.in
)
2505 var
->data
.mode
= is_parameter
? ir_var_function_in
: ir_var_shader_in
;
2506 else if (qual
->flags
.q
.attribute
2507 || (qual
->flags
.q
.varying
&& (state
->stage
== MESA_SHADER_FRAGMENT
)))
2508 var
->data
.mode
= ir_var_shader_in
;
2509 else if (qual
->flags
.q
.out
)
2510 var
->data
.mode
= is_parameter
? ir_var_function_out
: ir_var_shader_out
;
2511 else if (qual
->flags
.q
.varying
&& (state
->stage
== MESA_SHADER_VERTEX
))
2512 var
->data
.mode
= ir_var_shader_out
;
2513 else if (qual
->flags
.q
.uniform
)
2514 var
->data
.mode
= ir_var_uniform
;
2516 if (!is_parameter
&& is_varying_var(var
, state
->stage
)) {
2517 /* User-defined ins/outs are not permitted in compute shaders. */
2518 if (state
->stage
== MESA_SHADER_COMPUTE
) {
2519 _mesa_glsl_error(loc
, state
,
2520 "user-defined input and output variables are not "
2521 "permitted in compute shaders");
2524 /* This variable is being used to link data between shader stages (in
2525 * pre-glsl-1.30 parlance, it's a "varying"). Check that it has a type
2526 * that is allowed for such purposes.
2528 * From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
2530 * "The varying qualifier can be used only with the data types
2531 * float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
2534 * This was relaxed in GLSL version 1.30 and GLSL ES version 3.00. From
2535 * page 31 (page 37 of the PDF) of the GLSL 1.30 spec:
2537 * "Fragment inputs can only be signed and unsigned integers and
2538 * integer vectors, float, floating-point vectors, matrices, or
2539 * arrays of these. Structures cannot be input.
2541 * Similar text exists in the section on vertex shader outputs.
2543 * Similar text exists in the GLSL ES 3.00 spec, except that the GLSL ES
2544 * 3.00 spec allows structs as well. Varying structs are also allowed
2547 switch (var
->type
->get_scalar_type()->base_type
) {
2548 case GLSL_TYPE_FLOAT
:
2549 /* Ok in all GLSL versions */
2551 case GLSL_TYPE_UINT
:
2553 if (state
->is_version(130, 300))
2555 _mesa_glsl_error(loc
, state
,
2556 "varying variables must be of base type float in %s",
2557 state
->get_version_string());
2559 case GLSL_TYPE_STRUCT
:
2560 if (state
->is_version(150, 300))
2562 _mesa_glsl_error(loc
, state
,
2563 "varying variables may not be of type struct");
2566 _mesa_glsl_error(loc
, state
, "illegal type for a varying variable");
2571 if (state
->all_invariant
&& (state
->current_function
== NULL
)) {
2572 switch (state
->stage
) {
2573 case MESA_SHADER_VERTEX
:
2574 if (var
->data
.mode
== ir_var_shader_out
)
2575 var
->data
.invariant
= true;
2577 case MESA_SHADER_GEOMETRY
:
2578 if ((var
->data
.mode
== ir_var_shader_in
)
2579 || (var
->data
.mode
== ir_var_shader_out
))
2580 var
->data
.invariant
= true;
2582 case MESA_SHADER_FRAGMENT
:
2583 if (var
->data
.mode
== ir_var_shader_in
)
2584 var
->data
.invariant
= true;
2586 case MESA_SHADER_COMPUTE
:
2587 /* Invariance isn't meaningful in compute shaders. */
2592 var
->data
.interpolation
=
2593 interpret_interpolation_qualifier(qual
, (ir_variable_mode
) var
->data
.mode
,
2596 var
->data
.pixel_center_integer
= qual
->flags
.q
.pixel_center_integer
;
2597 var
->data
.origin_upper_left
= qual
->flags
.q
.origin_upper_left
;
2598 if ((qual
->flags
.q
.origin_upper_left
|| qual
->flags
.q
.pixel_center_integer
)
2599 && (strcmp(var
->name
, "gl_FragCoord") != 0)) {
2600 const char *const qual_string
= (qual
->flags
.q
.origin_upper_left
)
2601 ? "origin_upper_left" : "pixel_center_integer";
2603 _mesa_glsl_error(loc
, state
,
2604 "layout qualifier `%s' can only be applied to "
2605 "fragment shader input `gl_FragCoord'",
2609 if (var
->name
!= NULL
&& strcmp(var
->name
, "gl_FragCoord") == 0) {
2611 /* Section 4.3.8.1, page 39 of GLSL 1.50 spec says:
2613 * "Within any shader, the first redeclarations of gl_FragCoord
2614 * must appear before any use of gl_FragCoord."
2616 * Generate a compiler error if above condition is not met by the
2619 ir_variable
*earlier
= state
->symbols
->get_variable("gl_FragCoord");
2620 if (earlier
!= NULL
&&
2621 earlier
->data
.used
&&
2622 !state
->fs_redeclares_gl_fragcoord
) {
2623 _mesa_glsl_error(loc
, state
,
2624 "gl_FragCoord used before its first redeclaration "
2625 "in fragment shader");
2628 /* Make sure all gl_FragCoord redeclarations specify the same layout
2631 if (is_conflicting_fragcoord_redeclaration(state
, qual
)) {
2632 const char *const qual_string
=
2633 get_layout_qualifier_string(qual
->flags
.q
.origin_upper_left
,
2634 qual
->flags
.q
.pixel_center_integer
);
2636 const char *const state_string
=
2637 get_layout_qualifier_string(state
->fs_origin_upper_left
,
2638 state
->fs_pixel_center_integer
);
2640 _mesa_glsl_error(loc
, state
,
2641 "gl_FragCoord redeclared with different layout "
2642 "qualifiers (%s) and (%s) ",
2646 state
->fs_origin_upper_left
= qual
->flags
.q
.origin_upper_left
;
2647 state
->fs_pixel_center_integer
= qual
->flags
.q
.pixel_center_integer
;
2648 state
->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers
=
2649 !qual
->flags
.q
.origin_upper_left
&& !qual
->flags
.q
.pixel_center_integer
;
2650 state
->fs_redeclares_gl_fragcoord
=
2651 state
->fs_origin_upper_left
||
2652 state
->fs_pixel_center_integer
||
2653 state
->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers
;
2656 if (qual
->flags
.q
.explicit_location
) {
2657 validate_explicit_location(qual
, var
, state
, loc
);
2658 } else if (qual
->flags
.q
.explicit_index
) {
2659 _mesa_glsl_error(loc
, state
, "explicit index requires explicit location");
2662 if (qual
->flags
.q
.explicit_binding
&&
2663 validate_binding_qualifier(state
, loc
, var
, qual
)) {
2664 var
->data
.explicit_binding
= true;
2665 var
->data
.binding
= qual
->binding
;
2668 if (var
->type
->contains_atomic()) {
2669 if (var
->data
.mode
== ir_var_uniform
) {
2670 if (var
->data
.explicit_binding
) {
2672 &state
->atomic_counter_offsets
[var
->data
.binding
];
2674 if (*offset
% ATOMIC_COUNTER_SIZE
)
2675 _mesa_glsl_error(loc
, state
,
2676 "misaligned atomic counter offset");
2678 var
->data
.atomic
.offset
= *offset
;
2679 *offset
+= var
->type
->atomic_size();
2682 _mesa_glsl_error(loc
, state
,
2683 "atomic counters require explicit binding point");
2685 } else if (var
->data
.mode
!= ir_var_function_in
) {
2686 _mesa_glsl_error(loc
, state
, "atomic counters may only be declared as "
2687 "function parameters or uniform-qualified "
2688 "global variables");
2692 /* Does the declaration use the deprecated 'attribute' or 'varying'
2695 const bool uses_deprecated_qualifier
= qual
->flags
.q
.attribute
2696 || qual
->flags
.q
.varying
;
2699 /* Validate auxiliary storage qualifiers */
2701 /* From section 4.3.4 of the GLSL 1.30 spec:
2702 * "It is an error to use centroid in in a vertex shader."
2704 * From section 4.3.4 of the GLSL ES 3.00 spec:
2705 * "It is an error to use centroid in or interpolation qualifiers in
2706 * a vertex shader input."
2709 /* Section 4.3.6 of the GLSL 1.30 specification states:
2710 * "It is an error to use centroid out in a fragment shader."
2712 * The GL_ARB_shading_language_420pack extension specification states:
2713 * "It is an error to use auxiliary storage qualifiers or interpolation
2714 * qualifiers on an output in a fragment shader."
2716 if (qual
->flags
.q
.sample
&& (!is_varying_var(var
, state
->stage
) || uses_deprecated_qualifier
)) {
2717 _mesa_glsl_error(loc
, state
,
2718 "sample qualifier may only be used on `in` or `out` "
2719 "variables between shader stages");
2721 if (qual
->flags
.q
.centroid
&& !is_varying_var(var
, state
->stage
)) {
2722 _mesa_glsl_error(loc
, state
,
2723 "centroid qualifier may only be used with `in', "
2724 "`out' or `varying' variables between shader stages");
2728 /* Is the 'layout' keyword used with parameters that allow relaxed checking.
2729 * Many implementations of GL_ARB_fragment_coord_conventions_enable and some
2730 * implementations (only Mesa?) GL_ARB_explicit_attrib_location_enable
2731 * allowed the layout qualifier to be used with 'varying' and 'attribute'.
2732 * These extensions and all following extensions that add the 'layout'
2733 * keyword have been modified to require the use of 'in' or 'out'.
2735 * The following extension do not allow the deprecated keywords:
2737 * GL_AMD_conservative_depth
2738 * GL_ARB_conservative_depth
2739 * GL_ARB_gpu_shader5
2740 * GL_ARB_separate_shader_objects
2741 * GL_ARB_tesselation_shader
2742 * GL_ARB_transform_feedback3
2743 * GL_ARB_uniform_buffer_object
2745 * It is unknown whether GL_EXT_shader_image_load_store or GL_NV_gpu_shader5
2746 * allow layout with the deprecated keywords.
2748 const bool relaxed_layout_qualifier_checking
=
2749 state
->ARB_fragment_coord_conventions_enable
;
2751 if (qual
->has_layout() && uses_deprecated_qualifier
) {
2752 if (relaxed_layout_qualifier_checking
) {
2753 _mesa_glsl_warning(loc
, state
,
2754 "`layout' qualifier may not be used with "
2755 "`attribute' or `varying'");
2757 _mesa_glsl_error(loc
, state
,
2758 "`layout' qualifier may not be used with "
2759 "`attribute' or `varying'");
2763 /* Layout qualifiers for gl_FragDepth, which are enabled by extension
2764 * AMD_conservative_depth.
2766 int depth_layout_count
= qual
->flags
.q
.depth_any
2767 + qual
->flags
.q
.depth_greater
2768 + qual
->flags
.q
.depth_less
2769 + qual
->flags
.q
.depth_unchanged
;
2770 if (depth_layout_count
> 0
2771 && !state
->AMD_conservative_depth_enable
2772 && !state
->ARB_conservative_depth_enable
) {
2773 _mesa_glsl_error(loc
, state
,
2774 "extension GL_AMD_conservative_depth or "
2775 "GL_ARB_conservative_depth must be enabled "
2776 "to use depth layout qualifiers");
2777 } else if (depth_layout_count
> 0
2778 && strcmp(var
->name
, "gl_FragDepth") != 0) {
2779 _mesa_glsl_error(loc
, state
,
2780 "depth layout qualifiers can be applied only to "
2782 } else if (depth_layout_count
> 1
2783 && strcmp(var
->name
, "gl_FragDepth") == 0) {
2784 _mesa_glsl_error(loc
, state
,
2785 "at most one depth layout qualifier can be applied to "
2788 if (qual
->flags
.q
.depth_any
)
2789 var
->data
.depth_layout
= ir_depth_layout_any
;
2790 else if (qual
->flags
.q
.depth_greater
)
2791 var
->data
.depth_layout
= ir_depth_layout_greater
;
2792 else if (qual
->flags
.q
.depth_less
)
2793 var
->data
.depth_layout
= ir_depth_layout_less
;
2794 else if (qual
->flags
.q
.depth_unchanged
)
2795 var
->data
.depth_layout
= ir_depth_layout_unchanged
;
2797 var
->data
.depth_layout
= ir_depth_layout_none
;
2799 if (qual
->flags
.q
.std140
||
2800 qual
->flags
.q
.packed
||
2801 qual
->flags
.q
.shared
) {
2802 _mesa_glsl_error(loc
, state
,
2803 "uniform block layout qualifiers std140, packed, and "
2804 "shared can only be applied to uniform blocks, not "
2808 if (qual
->flags
.q
.row_major
|| qual
->flags
.q
.column_major
) {
2809 validate_matrix_layout_for_type(state
, loc
, var
->type
, var
);
2812 if (var
->type
->contains_image())
2813 apply_image_qualifier_to_variable(qual
, var
, state
, loc
);
2817 * Get the variable that is being redeclared by this declaration
2819 * Semantic checks to verify the validity of the redeclaration are also
2820 * performed. If semantic checks fail, compilation error will be emitted via
2821 * \c _mesa_glsl_error, but a non-\c NULL pointer will still be returned.
2824 * A pointer to an existing variable in the current scope if the declaration
2825 * is a redeclaration, \c NULL otherwise.
2827 static ir_variable
*
2828 get_variable_being_redeclared(ir_variable
*var
, YYLTYPE loc
,
2829 struct _mesa_glsl_parse_state
*state
,
2830 bool allow_all_redeclarations
)
2832 /* Check if this declaration is actually a re-declaration, either to
2833 * resize an array or add qualifiers to an existing variable.
2835 * This is allowed for variables in the current scope, or when at
2836 * global scope (for built-ins in the implicit outer scope).
2838 ir_variable
*earlier
= state
->symbols
->get_variable(var
->name
);
2839 if (earlier
== NULL
||
2840 (state
->current_function
!= NULL
&&
2841 !state
->symbols
->name_declared_this_scope(var
->name
))) {
2846 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
2848 * "It is legal to declare an array without a size and then
2849 * later re-declare the same name as an array of the same
2850 * type and specify a size."
2852 if (earlier
->type
->is_unsized_array() && var
->type
->is_array()
2853 && (var
->type
->element_type() == earlier
->type
->element_type())) {
2854 /* FINISHME: This doesn't match the qualifiers on the two
2855 * FINISHME: declarations. It's not 100% clear whether this is
2856 * FINISHME: required or not.
2859 const unsigned size
= unsigned(var
->type
->array_size());
2860 check_builtin_array_max_size(var
->name
, size
, loc
, state
);
2861 if ((size
> 0) && (size
<= earlier
->data
.max_array_access
)) {
2862 _mesa_glsl_error(& loc
, state
, "array size must be > %u due to "
2864 earlier
->data
.max_array_access
);
2867 earlier
->type
= var
->type
;
2870 } else if ((state
->ARB_fragment_coord_conventions_enable
||
2871 state
->is_version(150, 0))
2872 && strcmp(var
->name
, "gl_FragCoord") == 0
2873 && earlier
->type
== var
->type
2874 && earlier
->data
.mode
== var
->data
.mode
) {
2875 /* Allow redeclaration of gl_FragCoord for ARB_fcc layout
2878 earlier
->data
.origin_upper_left
= var
->data
.origin_upper_left
;
2879 earlier
->data
.pixel_center_integer
= var
->data
.pixel_center_integer
;
2881 /* According to section 4.3.7 of the GLSL 1.30 spec,
2882 * the following built-in varaibles can be redeclared with an
2883 * interpolation qualifier:
2886 * * gl_FrontSecondaryColor
2887 * * gl_BackSecondaryColor
2889 * * gl_SecondaryColor
2891 } else if (state
->is_version(130, 0)
2892 && (strcmp(var
->name
, "gl_FrontColor") == 0
2893 || strcmp(var
->name
, "gl_BackColor") == 0
2894 || strcmp(var
->name
, "gl_FrontSecondaryColor") == 0
2895 || strcmp(var
->name
, "gl_BackSecondaryColor") == 0
2896 || strcmp(var
->name
, "gl_Color") == 0
2897 || strcmp(var
->name
, "gl_SecondaryColor") == 0)
2898 && earlier
->type
== var
->type
2899 && earlier
->data
.mode
== var
->data
.mode
) {
2900 earlier
->data
.interpolation
= var
->data
.interpolation
;
2902 /* Layout qualifiers for gl_FragDepth. */
2903 } else if ((state
->AMD_conservative_depth_enable
||
2904 state
->ARB_conservative_depth_enable
)
2905 && strcmp(var
->name
, "gl_FragDepth") == 0
2906 && earlier
->type
== var
->type
2907 && earlier
->data
.mode
== var
->data
.mode
) {
2909 /** From the AMD_conservative_depth spec:
2910 * Within any shader, the first redeclarations of gl_FragDepth
2911 * must appear before any use of gl_FragDepth.
2913 if (earlier
->data
.used
) {
2914 _mesa_glsl_error(&loc
, state
,
2915 "the first redeclaration of gl_FragDepth "
2916 "must appear before any use of gl_FragDepth");
2919 /* Prevent inconsistent redeclaration of depth layout qualifier. */
2920 if (earlier
->data
.depth_layout
!= ir_depth_layout_none
2921 && earlier
->data
.depth_layout
!= var
->data
.depth_layout
) {
2922 _mesa_glsl_error(&loc
, state
,
2923 "gl_FragDepth: depth layout is declared here "
2924 "as '%s, but it was previously declared as "
2926 depth_layout_string(var
->data
.depth_layout
),
2927 depth_layout_string(earlier
->data
.depth_layout
));
2930 earlier
->data
.depth_layout
= var
->data
.depth_layout
;
2932 } else if (allow_all_redeclarations
) {
2933 if (earlier
->data
.mode
!= var
->data
.mode
) {
2934 _mesa_glsl_error(&loc
, state
,
2935 "redeclaration of `%s' with incorrect qualifiers",
2937 } else if (earlier
->type
!= var
->type
) {
2938 _mesa_glsl_error(&loc
, state
,
2939 "redeclaration of `%s' has incorrect type",
2943 _mesa_glsl_error(&loc
, state
, "`%s' redeclared", var
->name
);
2950 * Generate the IR for an initializer in a variable declaration
2953 process_initializer(ir_variable
*var
, ast_declaration
*decl
,
2954 ast_fully_specified_type
*type
,
2955 exec_list
*initializer_instructions
,
2956 struct _mesa_glsl_parse_state
*state
)
2958 ir_rvalue
*result
= NULL
;
2960 YYLTYPE initializer_loc
= decl
->initializer
->get_location();
2962 /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
2964 * "All uniform variables are read-only and are initialized either
2965 * directly by an application via API commands, or indirectly by
2968 if (var
->data
.mode
== ir_var_uniform
) {
2969 state
->check_version(120, 0, &initializer_loc
,
2970 "cannot initialize uniforms");
2973 /* From section 4.1.7 of the GLSL 4.40 spec:
2975 * "Opaque variables [...] are initialized only through the
2976 * OpenGL API; they cannot be declared with an initializer in a
2979 if (var
->type
->contains_opaque()) {
2980 _mesa_glsl_error(& initializer_loc
, state
,
2981 "cannot initialize opaque variable");
2984 if ((var
->data
.mode
== ir_var_shader_in
) && (state
->current_function
== NULL
)) {
2985 _mesa_glsl_error(& initializer_loc
, state
,
2986 "cannot initialize %s shader input / %s",
2987 _mesa_shader_stage_to_string(state
->stage
),
2988 (state
->stage
== MESA_SHADER_VERTEX
)
2989 ? "attribute" : "varying");
2992 /* If the initializer is an ast_aggregate_initializer, recursively store
2993 * type information from the LHS into it, so that its hir() function can do
2996 if (decl
->initializer
->oper
== ast_aggregate
)
2997 _mesa_ast_set_aggregate_type(var
->type
, decl
->initializer
);
2999 ir_dereference
*const lhs
= new(state
) ir_dereference_variable(var
);
3000 ir_rvalue
*rhs
= decl
->initializer
->hir(initializer_instructions
, state
);
3002 /* Calculate the constant value if this is a const or uniform
3005 if (type
->qualifier
.flags
.q
.constant
3006 || type
->qualifier
.flags
.q
.uniform
) {
3007 ir_rvalue
*new_rhs
= validate_assignment(state
, initializer_loc
,
3008 var
->type
, rhs
, true);
3009 if (new_rhs
!= NULL
) {
3012 ir_constant
*constant_value
= rhs
->constant_expression_value();
3013 if (!constant_value
) {
3014 /* If ARB_shading_language_420pack is enabled, initializers of
3015 * const-qualified local variables do not have to be constant
3016 * expressions. Const-qualified global variables must still be
3017 * initialized with constant expressions.
3019 if (!state
->ARB_shading_language_420pack_enable
3020 || state
->current_function
== NULL
) {
3021 _mesa_glsl_error(& initializer_loc
, state
,
3022 "initializer of %s variable `%s' must be a "
3023 "constant expression",
3024 (type
->qualifier
.flags
.q
.constant
)
3025 ? "const" : "uniform",
3027 if (var
->type
->is_numeric()) {
3028 /* Reduce cascading errors. */
3029 var
->constant_value
= ir_constant::zero(state
, var
->type
);
3033 rhs
= constant_value
;
3034 var
->constant_value
= constant_value
;
3037 if (var
->type
->is_numeric()) {
3038 /* Reduce cascading errors. */
3039 var
->constant_value
= ir_constant::zero(state
, var
->type
);
3044 if (rhs
&& !rhs
->type
->is_error()) {
3045 bool temp
= var
->data
.read_only
;
3046 if (type
->qualifier
.flags
.q
.constant
)
3047 var
->data
.read_only
= false;
3049 /* Never emit code to initialize a uniform.
3051 const glsl_type
*initializer_type
;
3052 if (!type
->qualifier
.flags
.q
.uniform
) {
3053 do_assignment(initializer_instructions
, state
,
3058 type
->get_location());
3059 initializer_type
= result
->type
;
3061 initializer_type
= rhs
->type
;
3063 var
->constant_initializer
= rhs
->constant_expression_value();
3064 var
->data
.has_initializer
= true;
3066 /* If the declared variable is an unsized array, it must inherrit
3067 * its full type from the initializer. A declaration such as
3069 * uniform float a[] = float[](1.0, 2.0, 3.0, 3.0);
3073 * uniform float a[4] = float[](1.0, 2.0, 3.0, 3.0);
3075 * The assignment generated in the if-statement (below) will also
3076 * automatically handle this case for non-uniforms.
3078 * If the declared variable is not an array, the types must
3079 * already match exactly. As a result, the type assignment
3080 * here can be done unconditionally. For non-uniforms the call
3081 * to do_assignment can change the type of the initializer (via
3082 * the implicit conversion rules). For uniforms the initializer
3083 * must be a constant expression, and the type of that expression
3084 * was validated above.
3086 var
->type
= initializer_type
;
3088 var
->data
.read_only
= temp
;
3096 * Do additional processing necessary for geometry shader input declarations
3097 * (this covers both interface blocks arrays and bare input variables).
3100 handle_geometry_shader_input_decl(struct _mesa_glsl_parse_state
*state
,
3101 YYLTYPE loc
, ir_variable
*var
)
3103 unsigned num_vertices
= 0;
3104 if (state
->gs_input_prim_type_specified
) {
3105 num_vertices
= vertices_per_prim(state
->in_qualifier
->prim_type
);
3108 /* Geometry shader input variables must be arrays. Caller should have
3109 * reported an error for this.
3111 if (!var
->type
->is_array()) {
3112 assert(state
->error
);
3114 /* To avoid cascading failures, short circuit the checks below. */
3118 if (var
->type
->is_unsized_array()) {
3119 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec says:
3121 * All geometry shader input unsized array declarations will be
3122 * sized by an earlier input layout qualifier, when present, as per
3123 * the following table.
3125 * Followed by a table mapping each allowed input layout qualifier to
3126 * the corresponding input length.
3128 if (num_vertices
!= 0)
3129 var
->type
= glsl_type::get_array_instance(var
->type
->fields
.array
,
3132 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec
3133 * includes the following examples of compile-time errors:
3135 * // code sequence within one shader...
3136 * in vec4 Color1[]; // size unknown
3137 * ...Color1.length()...// illegal, length() unknown
3138 * in vec4 Color2[2]; // size is 2
3139 * ...Color1.length()...// illegal, Color1 still has no size
3140 * in vec4 Color3[3]; // illegal, input sizes are inconsistent
3141 * layout(lines) in; // legal, input size is 2, matching
3142 * in vec4 Color4[3]; // illegal, contradicts layout
3145 * To detect the case illustrated by Color3, we verify that the size of
3146 * an explicitly-sized array matches the size of any previously declared
3147 * explicitly-sized array. To detect the case illustrated by Color4, we
3148 * verify that the size of an explicitly-sized array is consistent with
3149 * any previously declared input layout.
3151 if (num_vertices
!= 0 && var
->type
->length
!= num_vertices
) {
3152 _mesa_glsl_error(&loc
, state
,
3153 "geometry shader input size contradicts previously"
3154 " declared layout (size is %u, but layout requires a"
3155 " size of %u)", var
->type
->length
, num_vertices
);
3156 } else if (state
->gs_input_size
!= 0 &&
3157 var
->type
->length
!= state
->gs_input_size
) {
3158 _mesa_glsl_error(&loc
, state
,
3159 "geometry shader input sizes are "
3160 "inconsistent (size is %u, but a previous "
3161 "declaration has size %u)",
3162 var
->type
->length
, state
->gs_input_size
);
3164 state
->gs_input_size
= var
->type
->length
;
3171 validate_identifier(const char *identifier
, YYLTYPE loc
,
3172 struct _mesa_glsl_parse_state
*state
)
3174 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
3176 * "Identifiers starting with "gl_" are reserved for use by
3177 * OpenGL, and may not be declared in a shader as either a
3178 * variable or a function."
3180 if (is_gl_identifier(identifier
)) {
3181 _mesa_glsl_error(&loc
, state
,
3182 "identifier `%s' uses reserved `gl_' prefix",
3184 } else if (strstr(identifier
, "__")) {
3185 /* From page 14 (page 20 of the PDF) of the GLSL 1.10
3188 * "In addition, all identifiers containing two
3189 * consecutive underscores (__) are reserved as
3190 * possible future keywords."
3192 * The intention is that names containing __ are reserved for internal
3193 * use by the implementation, and names prefixed with GL_ are reserved
3194 * for use by Khronos. Names simply containing __ are dangerous to use,
3195 * but should be allowed.
3197 * A future version of the GLSL specification will clarify this.
3199 _mesa_glsl_warning(&loc
, state
,
3200 "identifier `%s' uses reserved `__' string",
3207 ast_declarator_list::hir(exec_list
*instructions
,
3208 struct _mesa_glsl_parse_state
*state
)
3211 const struct glsl_type
*decl_type
;
3212 const char *type_name
= NULL
;
3213 ir_rvalue
*result
= NULL
;
3214 YYLTYPE loc
= this->get_location();
3216 /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec:
3218 * "To ensure that a particular output variable is invariant, it is
3219 * necessary to use the invariant qualifier. It can either be used to
3220 * qualify a previously declared variable as being invariant
3222 * invariant gl_Position; // make existing gl_Position be invariant"
3224 * In these cases the parser will set the 'invariant' flag in the declarator
3225 * list, and the type will be NULL.
3227 if (this->invariant
) {
3228 assert(this->type
== NULL
);
3230 if (state
->current_function
!= NULL
) {
3231 _mesa_glsl_error(& loc
, state
,
3232 "all uses of `invariant' keyword must be at global "
3236 foreach_list_typed (ast_declaration
, decl
, link
, &this->declarations
) {
3237 assert(decl
->array_specifier
== NULL
);
3238 assert(decl
->initializer
== NULL
);
3240 ir_variable
*const earlier
=
3241 state
->symbols
->get_variable(decl
->identifier
);
3242 if (earlier
== NULL
) {
3243 _mesa_glsl_error(& loc
, state
,
3244 "undeclared variable `%s' cannot be marked "
3245 "invariant", decl
->identifier
);
3246 } else if (!is_varying_var(earlier
, state
->stage
)) {
3247 _mesa_glsl_error(&loc
, state
,
3248 "`%s' cannot be marked invariant; interfaces between "
3249 "shader stages only.", decl
->identifier
);
3250 } else if (earlier
->data
.used
) {
3251 _mesa_glsl_error(& loc
, state
,
3252 "variable `%s' may not be redeclared "
3253 "`invariant' after being used",
3256 earlier
->data
.invariant
= true;
3260 /* Invariant redeclarations do not have r-values.
3265 if (this->precise
) {
3266 assert(this->type
== NULL
);
3268 foreach_list_typed (ast_declaration
, decl
, link
, &this->declarations
) {
3269 assert(decl
->array_specifier
== NULL
);
3270 assert(decl
->initializer
== NULL
);
3272 ir_variable
*const earlier
=
3273 state
->symbols
->get_variable(decl
->identifier
);
3274 if (earlier
== NULL
) {
3275 _mesa_glsl_error(& loc
, state
,
3276 "undeclared variable `%s' cannot be marked "
3277 "precise", decl
->identifier
);
3278 } else if (state
->current_function
!= NULL
&&
3279 !state
->symbols
->name_declared_this_scope(decl
->identifier
)) {
3280 /* Note: we have to check if we're in a function, since
3281 * builtins are treated as having come from another scope.
3283 _mesa_glsl_error(& loc
, state
,
3284 "variable `%s' from an outer scope may not be "
3285 "redeclared `precise' in this scope",
3287 } else if (earlier
->data
.used
) {
3288 _mesa_glsl_error(& loc
, state
,
3289 "variable `%s' may not be redeclared "
3290 "`precise' after being used",
3293 earlier
->data
.precise
= true;
3297 /* Precise redeclarations do not have r-values either. */
3301 assert(this->type
!= NULL
);
3302 assert(!this->invariant
);
3303 assert(!this->precise
);
3305 /* The type specifier may contain a structure definition. Process that
3306 * before any of the variable declarations.
3308 (void) this->type
->specifier
->hir(instructions
, state
);
3310 decl_type
= this->type
->glsl_type(& type_name
, state
);
3312 /* An offset-qualified atomic counter declaration sets the default
3313 * offset for the next declaration within the same atomic counter
3316 if (decl_type
&& decl_type
->contains_atomic()) {
3317 if (type
->qualifier
.flags
.q
.explicit_binding
&&
3318 type
->qualifier
.flags
.q
.explicit_offset
)
3319 state
->atomic_counter_offsets
[type
->qualifier
.binding
] =
3320 type
->qualifier
.offset
;
3323 if (this->declarations
.is_empty()) {
3324 /* If there is no structure involved in the program text, there are two
3325 * possible scenarios:
3327 * - The program text contained something like 'vec4;'. This is an
3328 * empty declaration. It is valid but weird. Emit a warning.
3330 * - The program text contained something like 'S;' and 'S' is not the
3331 * name of a known structure type. This is both invalid and weird.
3334 * - The program text contained something like 'mediump float;'
3335 * when the programmer probably meant 'precision mediump
3336 * float;' Emit a warning with a description of what they
3337 * probably meant to do.
3339 * Note that if decl_type is NULL and there is a structure involved,
3340 * there must have been some sort of error with the structure. In this
3341 * case we assume that an error was already generated on this line of
3342 * code for the structure. There is no need to generate an additional,
3345 assert(this->type
->specifier
->structure
== NULL
|| decl_type
!= NULL
3348 if (decl_type
== NULL
) {
3349 _mesa_glsl_error(&loc
, state
,
3350 "invalid type `%s' in empty declaration",
3352 } else if (decl_type
->base_type
== GLSL_TYPE_ATOMIC_UINT
) {
3353 /* Empty atomic counter declarations are allowed and useful
3354 * to set the default offset qualifier.
3357 } else if (this->type
->qualifier
.precision
!= ast_precision_none
) {
3358 if (this->type
->specifier
->structure
!= NULL
) {
3359 _mesa_glsl_error(&loc
, state
,
3360 "precision qualifiers can't be applied "
3363 static const char *const precision_names
[] = {
3370 _mesa_glsl_warning(&loc
, state
,
3371 "empty declaration with precision qualifier, "
3372 "to set the default precision, use "
3373 "`precision %s %s;'",
3374 precision_names
[this->type
->qualifier
.precision
],
3377 } else if (this->type
->specifier
->structure
== NULL
) {
3378 _mesa_glsl_warning(&loc
, state
, "empty declaration");
3382 foreach_list_typed (ast_declaration
, decl
, link
, &this->declarations
) {
3383 const struct glsl_type
*var_type
;
3386 /* FINISHME: Emit a warning if a variable declaration shadows a
3387 * FINISHME: declaration at a higher scope.
3390 if ((decl_type
== NULL
) || decl_type
->is_void()) {
3391 if (type_name
!= NULL
) {
3392 _mesa_glsl_error(& loc
, state
,
3393 "invalid type `%s' in declaration of `%s'",
3394 type_name
, decl
->identifier
);
3396 _mesa_glsl_error(& loc
, state
,
3397 "invalid type in declaration of `%s'",
3403 var_type
= process_array_type(&loc
, decl_type
, decl
->array_specifier
,
3406 var
= new(ctx
) ir_variable(var_type
, decl
->identifier
, ir_var_auto
);
3408 /* The 'varying in' and 'varying out' qualifiers can only be used with
3409 * ARB_geometry_shader4 and EXT_geometry_shader4, which we don't support
3412 if (this->type
->qualifier
.flags
.q
.varying
) {
3413 if (this->type
->qualifier
.flags
.q
.in
) {
3414 _mesa_glsl_error(& loc
, state
,
3415 "`varying in' qualifier in declaration of "
3416 "`%s' only valid for geometry shaders using "
3417 "ARB_geometry_shader4 or EXT_geometry_shader4",
3419 } else if (this->type
->qualifier
.flags
.q
.out
) {
3420 _mesa_glsl_error(& loc
, state
,
3421 "`varying out' qualifier in declaration of "
3422 "`%s' only valid for geometry shaders using "
3423 "ARB_geometry_shader4 or EXT_geometry_shader4",
3428 /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
3430 * "Global variables can only use the qualifiers const,
3431 * attribute, uniform, or varying. Only one may be
3434 * Local variables can only use the qualifier const."
3436 * This is relaxed in GLSL 1.30 and GLSL ES 3.00. It is also relaxed by
3437 * any extension that adds the 'layout' keyword.
3439 if (!state
->is_version(130, 300)
3440 && !state
->has_explicit_attrib_location()
3441 && !state
->has_separate_shader_objects()
3442 && !state
->ARB_fragment_coord_conventions_enable
) {
3443 if (this->type
->qualifier
.flags
.q
.out
) {
3444 _mesa_glsl_error(& loc
, state
,
3445 "`out' qualifier in declaration of `%s' "
3446 "only valid for function parameters in %s",
3447 decl
->identifier
, state
->get_version_string());
3449 if (this->type
->qualifier
.flags
.q
.in
) {
3450 _mesa_glsl_error(& loc
, state
,
3451 "`in' qualifier in declaration of `%s' "
3452 "only valid for function parameters in %s",
3453 decl
->identifier
, state
->get_version_string());
3455 /* FINISHME: Test for other invalid qualifiers. */
3458 apply_type_qualifier_to_variable(& this->type
->qualifier
, var
, state
,
3461 if (this->type
->qualifier
.flags
.q
.invariant
) {
3462 if (!is_varying_var(var
, state
->stage
)) {
3463 _mesa_glsl_error(&loc
, state
,
3464 "`%s' cannot be marked invariant; interfaces between "
3465 "shader stages only", var
->name
);
3469 if (state
->current_function
!= NULL
) {
3470 const char *mode
= NULL
;
3471 const char *extra
= "";
3473 /* There is no need to check for 'inout' here because the parser will
3474 * only allow that in function parameter lists.
3476 if (this->type
->qualifier
.flags
.q
.attribute
) {
3478 } else if (this->type
->qualifier
.flags
.q
.uniform
) {
3480 } else if (this->type
->qualifier
.flags
.q
.varying
) {
3482 } else if (this->type
->qualifier
.flags
.q
.in
) {
3484 extra
= " or in function parameter list";
3485 } else if (this->type
->qualifier
.flags
.q
.out
) {
3487 extra
= " or in function parameter list";
3491 _mesa_glsl_error(& loc
, state
,
3492 "%s variable `%s' must be declared at "
3494 mode
, var
->name
, extra
);
3496 } else if (var
->data
.mode
== ir_var_shader_in
) {
3497 var
->data
.read_only
= true;
3499 if (state
->stage
== MESA_SHADER_VERTEX
) {
3500 bool error_emitted
= false;
3502 /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
3504 * "Vertex shader inputs can only be float, floating-point
3505 * vectors, matrices, signed and unsigned integers and integer
3506 * vectors. Vertex shader inputs can also form arrays of these
3507 * types, but not structures."
3509 * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
3511 * "Vertex shader inputs can only be float, floating-point
3512 * vectors, matrices, signed and unsigned integers and integer
3513 * vectors. They cannot be arrays or structures."
3515 * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
3517 * "The attribute qualifier can be used only with float,
3518 * floating-point vectors, and matrices. Attribute variables
3519 * cannot be declared as arrays or structures."
3521 * From page 33 (page 39 of the PDF) of the GLSL ES 3.00 spec:
3523 * "Vertex shader inputs can only be float, floating-point
3524 * vectors, matrices, signed and unsigned integers and integer
3525 * vectors. Vertex shader inputs cannot be arrays or
3528 const glsl_type
*check_type
= var
->type
;
3529 while (check_type
->is_array())
3530 check_type
= check_type
->element_type();
3532 switch (check_type
->base_type
) {
3533 case GLSL_TYPE_FLOAT
:
3535 case GLSL_TYPE_UINT
:
3537 if (state
->is_version(120, 300))
3541 _mesa_glsl_error(& loc
, state
,
3542 "vertex shader input / attribute cannot have "
3544 var
->type
->is_array() ? "array of " : "",
3546 error_emitted
= true;
3549 if (!error_emitted
&& var
->type
->is_array() &&
3550 !state
->check_version(150, 0, &loc
,
3551 "vertex shader input / attribute "
3552 "cannot have array type")) {
3553 error_emitted
= true;
3555 } else if (state
->stage
== MESA_SHADER_GEOMETRY
) {
3556 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
3558 * Geometry shader input variables get the per-vertex values
3559 * written out by vertex shader output variables of the same
3560 * names. Since a geometry shader operates on a set of
3561 * vertices, each input varying variable (or input block, see
3562 * interface blocks below) needs to be declared as an array.
3564 if (!var
->type
->is_array()) {
3565 _mesa_glsl_error(&loc
, state
,
3566 "geometry shader inputs must be arrays");
3569 handle_geometry_shader_input_decl(state
, loc
, var
);
3573 /* Integer fragment inputs must be qualified with 'flat'. In GLSL ES,
3574 * so must integer vertex outputs.
3576 * From section 4.3.4 ("Inputs") of the GLSL 1.50 spec:
3577 * "Fragment shader inputs that are signed or unsigned integers or
3578 * integer vectors must be qualified with the interpolation qualifier
3581 * From section 4.3.4 ("Input Variables") of the GLSL 3.00 ES spec:
3582 * "Fragment shader inputs that are, or contain, signed or unsigned
3583 * integers or integer vectors must be qualified with the
3584 * interpolation qualifier flat."
3586 * From section 4.3.6 ("Output Variables") of the GLSL 3.00 ES spec:
3587 * "Vertex shader outputs that are, or contain, signed or unsigned
3588 * integers or integer vectors must be qualified with the
3589 * interpolation qualifier flat."
3591 * Note that prior to GLSL 1.50, this requirement applied to vertex
3592 * outputs rather than fragment inputs. That creates problems in the
3593 * presence of geometry shaders, so we adopt the GLSL 1.50 rule for all
3594 * desktop GL shaders. For GLSL ES shaders, we follow the spec and
3595 * apply the restriction to both vertex outputs and fragment inputs.
3597 * Note also that the desktop GLSL specs are missing the text "or
3598 * contain"; this is presumably an oversight, since there is no
3599 * reasonable way to interpolate a fragment shader input that contains
3602 if (state
->is_version(130, 300) &&
3603 var
->type
->contains_integer() &&
3604 var
->data
.interpolation
!= INTERP_QUALIFIER_FLAT
&&
3605 ((state
->stage
== MESA_SHADER_FRAGMENT
&& var
->data
.mode
== ir_var_shader_in
)
3606 || (state
->stage
== MESA_SHADER_VERTEX
&& var
->data
.mode
== ir_var_shader_out
3607 && state
->es_shader
))) {
3608 const char *var_type
= (state
->stage
== MESA_SHADER_VERTEX
) ?
3609 "vertex output" : "fragment input";
3610 _mesa_glsl_error(&loc
, state
, "if a %s is (or contains) "
3611 "an integer, then it must be qualified with 'flat'",
3616 /* Interpolation qualifiers cannot be applied to 'centroid' and
3617 * 'centroid varying'.
3619 * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
3620 * "interpolation qualifiers may only precede the qualifiers in,
3621 * centroid in, out, or centroid out in a declaration. They do not apply
3622 * to the deprecated storage qualifiers varying or centroid varying."
3624 * These deprecated storage qualifiers do not exist in GLSL ES 3.00.
3626 if (state
->is_version(130, 0)
3627 && this->type
->qualifier
.has_interpolation()
3628 && this->type
->qualifier
.flags
.q
.varying
) {
3630 const char *i
= this->type
->qualifier
.interpolation_string();
3633 if (this->type
->qualifier
.flags
.q
.centroid
)
3634 s
= "centroid varying";
3638 _mesa_glsl_error(&loc
, state
,
3639 "qualifier '%s' cannot be applied to the "
3640 "deprecated storage qualifier '%s'", i
, s
);
3644 /* Interpolation qualifiers can only apply to vertex shader outputs and
3645 * fragment shader inputs.
3647 * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
3648 * "Outputs from a vertex shader (out) and inputs to a fragment
3649 * shader (in) can be further qualified with one or more of these
3650 * interpolation qualifiers"
3652 * From page 31 (page 37 of the PDF) of the GLSL ES 3.00 spec:
3653 * "These interpolation qualifiers may only precede the qualifiers
3654 * in, centroid in, out, or centroid out in a declaration. They do
3655 * not apply to inputs into a vertex shader or outputs from a
3658 if (state
->is_version(130, 300)
3659 && this->type
->qualifier
.has_interpolation()) {
3661 const char *i
= this->type
->qualifier
.interpolation_string();
3664 switch (state
->stage
) {
3665 case MESA_SHADER_VERTEX
:
3666 if (this->type
->qualifier
.flags
.q
.in
) {
3667 _mesa_glsl_error(&loc
, state
,
3668 "qualifier '%s' cannot be applied to vertex "
3669 "shader inputs", i
);
3672 case MESA_SHADER_FRAGMENT
:
3673 if (this->type
->qualifier
.flags
.q
.out
) {
3674 _mesa_glsl_error(&loc
, state
,
3675 "qualifier '%s' cannot be applied to fragment "
3676 "shader outputs", i
);
3685 /* Precision qualifiers exists only in GLSL versions 1.00 and >= 1.30.
3687 if (this->type
->qualifier
.precision
!= ast_precision_none
) {
3688 state
->check_precision_qualifiers_allowed(&loc
);
3692 /* Precision qualifiers apply to floating point, integer and sampler
3695 * Section 4.5.2 (Precision Qualifiers) of the GLSL 1.30 spec says:
3696 * "Any floating point or any integer declaration can have the type
3697 * preceded by one of these precision qualifiers [...] Literal
3698 * constants do not have precision qualifiers. Neither do Boolean
3701 * Section 4.5 (Precision and Precision Qualifiers) of the GLSL 1.30
3704 * "Precision qualifiers are added for code portability with OpenGL
3705 * ES, not for functionality. They have the same syntax as in OpenGL
3708 * Section 8 (Built-In Functions) of the GLSL ES 1.00 spec says:
3710 * "uniform lowp sampler2D sampler;
3713 * lowp vec4 col = texture2D (sampler, coord);
3714 * // texture2D returns lowp"
3716 * From this, we infer that GLSL 1.30 (and later) should allow precision
3717 * qualifiers on sampler types just like float and integer types.
3719 if (this->type
->qualifier
.precision
!= ast_precision_none
3720 && !var
->type
->is_float()
3721 && !var
->type
->is_integer()
3722 && !var
->type
->is_record()
3723 && !var
->type
->is_sampler()
3724 && !(var
->type
->is_array()
3725 && (var
->type
->fields
.array
->is_float()
3726 || var
->type
->fields
.array
->is_integer()))) {
3728 _mesa_glsl_error(&loc
, state
,
3729 "precision qualifiers apply only to floating point"
3730 ", integer and sampler types");
3733 /* From section 4.1.7 of the GLSL 4.40 spec:
3735 * "[Opaque types] can only be declared as function
3736 * parameters or uniform-qualified variables."
3738 if (var_type
->contains_opaque() &&
3739 !this->type
->qualifier
.flags
.q
.uniform
) {
3740 _mesa_glsl_error(&loc
, state
,
3741 "opaque variables must be declared uniform");
3744 /* Process the initializer and add its instructions to a temporary
3745 * list. This list will be added to the instruction stream (below) after
3746 * the declaration is added. This is done because in some cases (such as
3747 * redeclarations) the declaration may not actually be added to the
3748 * instruction stream.
3750 exec_list initializer_instructions
;
3752 /* Examine var name here since var may get deleted in the next call */
3753 bool var_is_gl_id
= is_gl_identifier(var
->name
);
3755 ir_variable
*earlier
=
3756 get_variable_being_redeclared(var
, decl
->get_location(), state
,
3757 false /* allow_all_redeclarations */);
3758 if (earlier
!= NULL
) {
3760 earlier
->data
.how_declared
== ir_var_declared_in_block
) {
3761 _mesa_glsl_error(&loc
, state
,
3762 "`%s' has already been redeclared using "
3763 "gl_PerVertex", var
->name
);
3765 earlier
->data
.how_declared
= ir_var_declared_normally
;
3768 if (decl
->initializer
!= NULL
) {
3769 result
= process_initializer((earlier
== NULL
) ? var
: earlier
,
3771 &initializer_instructions
, state
);
3774 /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
3776 * "It is an error to write to a const variable outside of
3777 * its declaration, so they must be initialized when
3780 if (this->type
->qualifier
.flags
.q
.constant
&& decl
->initializer
== NULL
) {
3781 _mesa_glsl_error(& loc
, state
,
3782 "const declaration of `%s' must be initialized",
3786 if (state
->es_shader
) {
3787 const glsl_type
*const t
= (earlier
== NULL
)
3788 ? var
->type
: earlier
->type
;
3790 if (t
->is_unsized_array())
3791 /* Section 10.17 of the GLSL ES 1.00 specification states that
3792 * unsized array declarations have been removed from the language.
3793 * Arrays that are sized using an initializer are still explicitly
3794 * sized. However, GLSL ES 1.00 does not allow array
3795 * initializers. That is only allowed in GLSL ES 3.00.
3797 * Section 4.1.9 (Arrays) of the GLSL ES 3.00 spec says:
3799 * "An array type can also be formed without specifying a size
3800 * if the definition includes an initializer:
3802 * float x[] = float[2] (1.0, 2.0); // declares an array of size 2
3803 * float y[] = float[] (1.0, 2.0, 3.0); // declares an array of size 3
3808 _mesa_glsl_error(& loc
, state
,
3809 "unsized array declarations are not allowed in "
3813 /* If the declaration is not a redeclaration, there are a few additional
3814 * semantic checks that must be applied. In addition, variable that was
3815 * created for the declaration should be added to the IR stream.
3817 if (earlier
== NULL
) {
3818 validate_identifier(decl
->identifier
, loc
, state
);
3820 /* Add the variable to the symbol table. Note that the initializer's
3821 * IR was already processed earlier (though it hasn't been emitted
3822 * yet), without the variable in scope.
3824 * This differs from most C-like languages, but it follows the GLSL
3825 * specification. From page 28 (page 34 of the PDF) of the GLSL 1.50
3828 * "Within a declaration, the scope of a name starts immediately
3829 * after the initializer if present or immediately after the name
3830 * being declared if not."
3832 if (!state
->symbols
->add_variable(var
)) {
3833 YYLTYPE loc
= this->get_location();
3834 _mesa_glsl_error(&loc
, state
, "name `%s' already taken in the "
3835 "current scope", decl
->identifier
);
3839 /* Push the variable declaration to the top. It means that all the
3840 * variable declarations will appear in a funny last-to-first order,
3841 * but otherwise we run into trouble if a function is prototyped, a
3842 * global var is decled, then the function is defined with usage of
3843 * the global var. See glslparsertest's CorrectModule.frag.
3845 instructions
->push_head(var
);
3848 instructions
->append_list(&initializer_instructions
);
3852 /* Generally, variable declarations do not have r-values. However,
3853 * one is used for the declaration in
3855 * while (bool b = some_condition()) {
3859 * so we return the rvalue from the last seen declaration here.
3866 ast_parameter_declarator::hir(exec_list
*instructions
,
3867 struct _mesa_glsl_parse_state
*state
)
3870 const struct glsl_type
*type
;
3871 const char *name
= NULL
;
3872 YYLTYPE loc
= this->get_location();
3874 type
= this->type
->glsl_type(& name
, state
);
3878 _mesa_glsl_error(& loc
, state
,
3879 "invalid type `%s' in declaration of `%s'",
3880 name
, this->identifier
);
3882 _mesa_glsl_error(& loc
, state
,
3883 "invalid type in declaration of `%s'",
3887 type
= glsl_type::error_type
;
3890 /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
3892 * "Functions that accept no input arguments need not use void in the
3893 * argument list because prototypes (or definitions) are required and
3894 * therefore there is no ambiguity when an empty argument list "( )" is
3895 * declared. The idiom "(void)" as a parameter list is provided for
3898 * Placing this check here prevents a void parameter being set up
3899 * for a function, which avoids tripping up checks for main taking
3900 * parameters and lookups of an unnamed symbol.
3902 if (type
->is_void()) {
3903 if (this->identifier
!= NULL
)
3904 _mesa_glsl_error(& loc
, state
,
3905 "named parameter cannot have type `void'");
3911 if (formal_parameter
&& (this->identifier
== NULL
)) {
3912 _mesa_glsl_error(& loc
, state
, "formal parameter lacks a name");
3916 /* This only handles "vec4 foo[..]". The earlier specifier->glsl_type(...)
3917 * call already handled the "vec4[..] foo" case.
3919 type
= process_array_type(&loc
, type
, this->array_specifier
, state
);
3921 if (!type
->is_error() && type
->is_unsized_array()) {
3922 _mesa_glsl_error(&loc
, state
, "arrays passed as parameters must have "
3924 type
= glsl_type::error_type
;
3928 ir_variable
*var
= new(ctx
)
3929 ir_variable(type
, this->identifier
, ir_var_function_in
);
3931 /* Apply any specified qualifiers to the parameter declaration. Note that
3932 * for function parameters the default mode is 'in'.
3934 apply_type_qualifier_to_variable(& this->type
->qualifier
, var
, state
, & loc
,
3937 /* From section 4.1.7 of the GLSL 4.40 spec:
3939 * "Opaque variables cannot be treated as l-values; hence cannot
3940 * be used as out or inout function parameters, nor can they be
3943 if ((var
->data
.mode
== ir_var_function_inout
|| var
->data
.mode
== ir_var_function_out
)
3944 && type
->contains_opaque()) {
3945 _mesa_glsl_error(&loc
, state
, "out and inout parameters cannot "
3946 "contain opaque variables");
3947 type
= glsl_type::error_type
;
3950 /* From page 39 (page 45 of the PDF) of the GLSL 1.10 spec:
3952 * "When calling a function, expressions that do not evaluate to
3953 * l-values cannot be passed to parameters declared as out or inout."
3955 * From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
3957 * "Other binary or unary expressions, non-dereferenced arrays,
3958 * function names, swizzles with repeated fields, and constants
3959 * cannot be l-values."
3961 * So for GLSL 1.10, passing an array as an out or inout parameter is not
3962 * allowed. This restriction is removed in GLSL 1.20, and in GLSL ES.
3964 if ((var
->data
.mode
== ir_var_function_inout
|| var
->data
.mode
== ir_var_function_out
)
3966 && !state
->check_version(120, 100, &loc
,
3967 "arrays cannot be out or inout parameters")) {
3968 type
= glsl_type::error_type
;
3971 instructions
->push_tail(var
);
3973 /* Parameter declarations do not have r-values.
3980 ast_parameter_declarator::parameters_to_hir(exec_list
*ast_parameters
,
3982 exec_list
*ir_parameters
,
3983 _mesa_glsl_parse_state
*state
)
3985 ast_parameter_declarator
*void_param
= NULL
;
3988 foreach_list_typed (ast_parameter_declarator
, param
, link
, ast_parameters
) {
3989 param
->formal_parameter
= formal
;
3990 param
->hir(ir_parameters
, state
);
3998 if ((void_param
!= NULL
) && (count
> 1)) {
3999 YYLTYPE loc
= void_param
->get_location();
4001 _mesa_glsl_error(& loc
, state
,
4002 "`void' parameter must be only parameter");
4008 emit_function(_mesa_glsl_parse_state
*state
, ir_function
*f
)
4010 /* IR invariants disallow function declarations or definitions
4011 * nested within other function definitions. But there is no
4012 * requirement about the relative order of function declarations
4013 * and definitions with respect to one another. So simply insert
4014 * the new ir_function block at the end of the toplevel instruction
4017 state
->toplevel_ir
->push_tail(f
);
4022 ast_function::hir(exec_list
*instructions
,
4023 struct _mesa_glsl_parse_state
*state
)
4026 ir_function
*f
= NULL
;
4027 ir_function_signature
*sig
= NULL
;
4028 exec_list hir_parameters
;
4030 const char *const name
= identifier
;
4032 /* New functions are always added to the top-level IR instruction stream,
4033 * so this instruction list pointer is ignored. See also emit_function
4036 (void) instructions
;
4038 /* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec,
4040 * "Function declarations (prototypes) cannot occur inside of functions;
4041 * they must be at global scope, or for the built-in functions, outside
4042 * the global scope."
4044 * From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec,
4046 * "User defined functions may only be defined within the global scope."
4048 * Note that this language does not appear in GLSL 1.10.
4050 if ((state
->current_function
!= NULL
) &&
4051 state
->is_version(120, 100)) {
4052 YYLTYPE loc
= this->get_location();
4053 _mesa_glsl_error(&loc
, state
,
4054 "declaration of function `%s' not allowed within "
4055 "function body", name
);
4058 validate_identifier(name
, this->get_location(), state
);
4060 /* Convert the list of function parameters to HIR now so that they can be
4061 * used below to compare this function's signature with previously seen
4062 * signatures for functions with the same name.
4064 ast_parameter_declarator::parameters_to_hir(& this->parameters
,
4066 & hir_parameters
, state
);
4068 const char *return_type_name
;
4069 const glsl_type
*return_type
=
4070 this->return_type
->glsl_type(& return_type_name
, state
);
4073 YYLTYPE loc
= this->get_location();
4074 _mesa_glsl_error(&loc
, state
,
4075 "function `%s' has undeclared return type `%s'",
4076 name
, return_type_name
);
4077 return_type
= glsl_type::error_type
;
4080 /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec:
4081 * "No qualifier is allowed on the return type of a function."
4083 if (this->return_type
->has_qualifiers()) {
4084 YYLTYPE loc
= this->get_location();
4085 _mesa_glsl_error(& loc
, state
,
4086 "function `%s' return type has qualifiers", name
);
4089 /* Section 6.1 (Function Definitions) of the GLSL 1.20 spec says:
4091 * "Arrays are allowed as arguments and as the return type. In both
4092 * cases, the array must be explicitly sized."
4094 if (return_type
->is_unsized_array()) {
4095 YYLTYPE loc
= this->get_location();
4096 _mesa_glsl_error(& loc
, state
,
4097 "function `%s' return type array must be explicitly "
4101 /* From section 4.1.7 of the GLSL 4.40 spec:
4103 * "[Opaque types] can only be declared as function parameters
4104 * or uniform-qualified variables."
4106 if (return_type
->contains_opaque()) {
4107 YYLTYPE loc
= this->get_location();
4108 _mesa_glsl_error(&loc
, state
,
4109 "function `%s' return type can't contain an opaque type",
4113 /* Verify that this function's signature either doesn't match a previously
4114 * seen signature for a function with the same name, or, if a match is found,
4115 * that the previously seen signature does not have an associated definition.
4117 f
= state
->symbols
->get_function(name
);
4118 if (f
!= NULL
&& (state
->es_shader
|| f
->has_user_signature())) {
4119 sig
= f
->exact_matching_signature(state
, &hir_parameters
);
4121 const char *badvar
= sig
->qualifiers_match(&hir_parameters
);
4122 if (badvar
!= NULL
) {
4123 YYLTYPE loc
= this->get_location();
4125 _mesa_glsl_error(&loc
, state
, "function `%s' parameter `%s' "
4126 "qualifiers don't match prototype", name
, badvar
);
4129 if (sig
->return_type
!= return_type
) {
4130 YYLTYPE loc
= this->get_location();
4132 _mesa_glsl_error(&loc
, state
, "function `%s' return type doesn't "
4133 "match prototype", name
);
4136 if (sig
->is_defined
) {
4137 if (is_definition
) {
4138 YYLTYPE loc
= this->get_location();
4139 _mesa_glsl_error(& loc
, state
, "function `%s' redefined", name
);
4141 /* We just encountered a prototype that exactly matches a
4142 * function that's already been defined. This is redundant,
4143 * and we should ignore it.
4150 f
= new(ctx
) ir_function(name
);
4151 if (!state
->symbols
->add_function(f
)) {
4152 /* This function name shadows a non-function use of the same name. */
4153 YYLTYPE loc
= this->get_location();
4155 _mesa_glsl_error(&loc
, state
, "function name `%s' conflicts with "
4156 "non-function", name
);
4160 emit_function(state
, f
);
4163 /* Verify the return type of main() */
4164 if (strcmp(name
, "main") == 0) {
4165 if (! return_type
->is_void()) {
4166 YYLTYPE loc
= this->get_location();
4168 _mesa_glsl_error(& loc
, state
, "main() must return void");
4171 if (!hir_parameters
.is_empty()) {
4172 YYLTYPE loc
= this->get_location();
4174 _mesa_glsl_error(& loc
, state
, "main() must not take any parameters");
4178 /* Finish storing the information about this new function in its signature.
4181 sig
= new(ctx
) ir_function_signature(return_type
);
4182 f
->add_signature(sig
);
4185 sig
->replace_parameters(&hir_parameters
);
4188 /* Function declarations (prototypes) do not have r-values.
4195 ast_function_definition::hir(exec_list
*instructions
,
4196 struct _mesa_glsl_parse_state
*state
)
4198 prototype
->is_definition
= true;
4199 prototype
->hir(instructions
, state
);
4201 ir_function_signature
*signature
= prototype
->signature
;
4202 if (signature
== NULL
)
4205 assert(state
->current_function
== NULL
);
4206 state
->current_function
= signature
;
4207 state
->found_return
= false;
4209 /* Duplicate parameters declared in the prototype as concrete variables.
4210 * Add these to the symbol table.
4212 state
->symbols
->push_scope();
4213 foreach_list(n
, &signature
->parameters
) {
4214 ir_variable
*const var
= ((ir_instruction
*) n
)->as_variable();
4216 assert(var
!= NULL
);
4218 /* The only way a parameter would "exist" is if two parameters have
4221 if (state
->symbols
->name_declared_this_scope(var
->name
)) {
4222 YYLTYPE loc
= this->get_location();
4224 _mesa_glsl_error(& loc
, state
, "parameter `%s' redeclared", var
->name
);
4226 state
->symbols
->add_variable(var
);
4230 /* Convert the body of the function to HIR. */
4231 this->body
->hir(&signature
->body
, state
);
4232 signature
->is_defined
= true;
4234 state
->symbols
->pop_scope();
4236 assert(state
->current_function
== signature
);
4237 state
->current_function
= NULL
;
4239 if (!signature
->return_type
->is_void() && !state
->found_return
) {
4240 YYLTYPE loc
= this->get_location();
4241 _mesa_glsl_error(& loc
, state
, "function `%s' has non-void return type "
4242 "%s, but no return statement",
4243 signature
->function_name(),
4244 signature
->return_type
->name
);
4247 /* Function definitions do not have r-values.
4254 ast_jump_statement::hir(exec_list
*instructions
,
4255 struct _mesa_glsl_parse_state
*state
)
4262 assert(state
->current_function
);
4264 if (opt_return_value
) {
4265 ir_rvalue
*ret
= opt_return_value
->hir(instructions
, state
);
4267 /* The value of the return type can be NULL if the shader says
4268 * 'return foo();' and foo() is a function that returns void.
4270 * NOTE: The GLSL spec doesn't say that this is an error. The type
4271 * of the return value is void. If the return type of the function is
4272 * also void, then this should compile without error. Seriously.
4274 const glsl_type
*const ret_type
=
4275 (ret
== NULL
) ? glsl_type::void_type
: ret
->type
;
4277 /* Implicit conversions are not allowed for return values prior to
4278 * ARB_shading_language_420pack.
4280 if (state
->current_function
->return_type
!= ret_type
) {
4281 YYLTYPE loc
= this->get_location();
4283 if (state
->ARB_shading_language_420pack_enable
) {
4284 if (!apply_implicit_conversion(state
->current_function
->return_type
,
4286 _mesa_glsl_error(& loc
, state
,
4287 "could not implicitly convert return value "
4288 "to %s, in function `%s'",
4289 state
->current_function
->return_type
->name
,
4290 state
->current_function
->function_name());
4293 _mesa_glsl_error(& loc
, state
,
4294 "`return' with wrong type %s, in function `%s' "
4297 state
->current_function
->function_name(),
4298 state
->current_function
->return_type
->name
);
4300 } else if (state
->current_function
->return_type
->base_type
==
4302 YYLTYPE loc
= this->get_location();
4304 /* The ARB_shading_language_420pack, GLSL ES 3.0, and GLSL 4.20
4305 * specs add a clarification:
4307 * "A void function can only use return without a return argument, even if
4308 * the return argument has void type. Return statements only accept values:
4311 * void func2() { return func1(); } // illegal return statement"
4313 _mesa_glsl_error(& loc
, state
,
4314 "void functions can only use `return' without a "
4318 inst
= new(ctx
) ir_return(ret
);
4320 if (state
->current_function
->return_type
->base_type
!=
4322 YYLTYPE loc
= this->get_location();
4324 _mesa_glsl_error(& loc
, state
,
4325 "`return' with no value, in function %s returning "
4327 state
->current_function
->function_name());
4329 inst
= new(ctx
) ir_return
;
4332 state
->found_return
= true;
4333 instructions
->push_tail(inst
);
4338 if (state
->stage
!= MESA_SHADER_FRAGMENT
) {
4339 YYLTYPE loc
= this->get_location();
4341 _mesa_glsl_error(& loc
, state
,
4342 "`discard' may only appear in a fragment shader");
4344 instructions
->push_tail(new(ctx
) ir_discard
);
4349 if (mode
== ast_continue
&&
4350 state
->loop_nesting_ast
== NULL
) {
4351 YYLTYPE loc
= this->get_location();
4353 _mesa_glsl_error(& loc
, state
, "continue may only appear in a loop");
4354 } else if (mode
== ast_break
&&
4355 state
->loop_nesting_ast
== NULL
&&
4356 state
->switch_state
.switch_nesting_ast
== NULL
) {
4357 YYLTYPE loc
= this->get_location();
4359 _mesa_glsl_error(& loc
, state
,
4360 "break may only appear in a loop or a switch");
4362 /* For a loop, inline the for loop expression again, since we don't
4363 * know where near the end of the loop body the normal copy of it is
4364 * going to be placed. Same goes for the condition for a do-while
4367 if (state
->loop_nesting_ast
!= NULL
&&
4368 mode
== ast_continue
) {
4369 if (state
->loop_nesting_ast
->rest_expression
) {
4370 state
->loop_nesting_ast
->rest_expression
->hir(instructions
,
4373 if (state
->loop_nesting_ast
->mode
==
4374 ast_iteration_statement::ast_do_while
) {
4375 state
->loop_nesting_ast
->condition_to_hir(instructions
, state
);
4379 if (state
->switch_state
.is_switch_innermost
&&
4380 mode
== ast_break
) {
4381 /* Force break out of switch by setting is_break switch state.
4383 ir_variable
*const is_break_var
= state
->switch_state
.is_break_var
;
4384 ir_dereference_variable
*const deref_is_break_var
=
4385 new(ctx
) ir_dereference_variable(is_break_var
);
4386 ir_constant
*const true_val
= new(ctx
) ir_constant(true);
4387 ir_assignment
*const set_break_var
=
4388 new(ctx
) ir_assignment(deref_is_break_var
, true_val
);
4390 instructions
->push_tail(set_break_var
);
4393 ir_loop_jump
*const jump
=
4394 new(ctx
) ir_loop_jump((mode
== ast_break
)
4395 ? ir_loop_jump::jump_break
4396 : ir_loop_jump::jump_continue
);
4397 instructions
->push_tail(jump
);
4404 /* Jump instructions do not have r-values.
4411 ast_selection_statement::hir(exec_list
*instructions
,
4412 struct _mesa_glsl_parse_state
*state
)
4416 ir_rvalue
*const condition
= this->condition
->hir(instructions
, state
);
4418 /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
4420 * "Any expression whose type evaluates to a Boolean can be used as the
4421 * conditional expression bool-expression. Vector types are not accepted
4422 * as the expression to if."
4424 * The checks are separated so that higher quality diagnostics can be
4425 * generated for cases where both rules are violated.
4427 if (!condition
->type
->is_boolean() || !condition
->type
->is_scalar()) {
4428 YYLTYPE loc
= this->condition
->get_location();
4430 _mesa_glsl_error(& loc
, state
, "if-statement condition must be scalar "
4434 ir_if
*const stmt
= new(ctx
) ir_if(condition
);
4436 if (then_statement
!= NULL
) {
4437 state
->symbols
->push_scope();
4438 then_statement
->hir(& stmt
->then_instructions
, state
);
4439 state
->symbols
->pop_scope();
4442 if (else_statement
!= NULL
) {
4443 state
->symbols
->push_scope();
4444 else_statement
->hir(& stmt
->else_instructions
, state
);
4445 state
->symbols
->pop_scope();
4448 instructions
->push_tail(stmt
);
4450 /* if-statements do not have r-values.
4457 ast_switch_statement::hir(exec_list
*instructions
,
4458 struct _mesa_glsl_parse_state
*state
)
4462 ir_rvalue
*const test_expression
=
4463 this->test_expression
->hir(instructions
, state
);
4465 /* From page 66 (page 55 of the PDF) of the GLSL 1.50 spec:
4467 * "The type of init-expression in a switch statement must be a
4470 if (!test_expression
->type
->is_scalar() ||
4471 !test_expression
->type
->is_integer()) {
4472 YYLTYPE loc
= this->test_expression
->get_location();
4474 _mesa_glsl_error(& loc
,
4476 "switch-statement expression must be scalar "
4480 /* Track the switch-statement nesting in a stack-like manner.
4482 struct glsl_switch_state saved
= state
->switch_state
;
4484 state
->switch_state
.is_switch_innermost
= true;
4485 state
->switch_state
.switch_nesting_ast
= this;
4486 state
->switch_state
.labels_ht
= hash_table_ctor(0, hash_table_pointer_hash
,
4487 hash_table_pointer_compare
);
4488 state
->switch_state
.previous_default
= NULL
;
4490 /* Initalize is_fallthru state to false.
4492 ir_rvalue
*const is_fallthru_val
= new (ctx
) ir_constant(false);
4493 state
->switch_state
.is_fallthru_var
=
4494 new(ctx
) ir_variable(glsl_type::bool_type
,
4495 "switch_is_fallthru_tmp",
4497 instructions
->push_tail(state
->switch_state
.is_fallthru_var
);
4499 ir_dereference_variable
*deref_is_fallthru_var
=
4500 new(ctx
) ir_dereference_variable(state
->switch_state
.is_fallthru_var
);
4501 instructions
->push_tail(new(ctx
) ir_assignment(deref_is_fallthru_var
,
4504 /* Initalize is_break state to false.
4506 ir_rvalue
*const is_break_val
= new (ctx
) ir_constant(false);
4507 state
->switch_state
.is_break_var
=
4508 new(ctx
) ir_variable(glsl_type::bool_type
,
4509 "switch_is_break_tmp",
4511 instructions
->push_tail(state
->switch_state
.is_break_var
);
4513 ir_dereference_variable
*deref_is_break_var
=
4514 new(ctx
) ir_dereference_variable(state
->switch_state
.is_break_var
);
4515 instructions
->push_tail(new(ctx
) ir_assignment(deref_is_break_var
,
4518 /* Cache test expression.
4520 test_to_hir(instructions
, state
);
4522 /* Emit code for body of switch stmt.
4524 body
->hir(instructions
, state
);
4526 hash_table_dtor(state
->switch_state
.labels_ht
);
4528 state
->switch_state
= saved
;
4530 /* Switch statements do not have r-values. */
4536 ast_switch_statement::test_to_hir(exec_list
*instructions
,
4537 struct _mesa_glsl_parse_state
*state
)
4541 /* Cache value of test expression. */
4542 ir_rvalue
*const test_val
=
4543 test_expression
->hir(instructions
,
4546 state
->switch_state
.test_var
= new(ctx
) ir_variable(test_val
->type
,
4549 ir_dereference_variable
*deref_test_var
=
4550 new(ctx
) ir_dereference_variable(state
->switch_state
.test_var
);
4552 instructions
->push_tail(state
->switch_state
.test_var
);
4553 instructions
->push_tail(new(ctx
) ir_assignment(deref_test_var
, test_val
));
4558 ast_switch_body::hir(exec_list
*instructions
,
4559 struct _mesa_glsl_parse_state
*state
)
4562 stmts
->hir(instructions
, state
);
4564 /* Switch bodies do not have r-values. */
4569 ast_case_statement_list::hir(exec_list
*instructions
,
4570 struct _mesa_glsl_parse_state
*state
)
4572 foreach_list_typed (ast_case_statement
, case_stmt
, link
, & this->cases
)
4573 case_stmt
->hir(instructions
, state
);
4575 /* Case statements do not have r-values. */
4580 ast_case_statement::hir(exec_list
*instructions
,
4581 struct _mesa_glsl_parse_state
*state
)
4583 labels
->hir(instructions
, state
);
4585 /* Conditionally set fallthru state based on break state. */
4586 ir_constant
*const false_val
= new(state
) ir_constant(false);
4587 ir_dereference_variable
*const deref_is_fallthru_var
=
4588 new(state
) ir_dereference_variable(state
->switch_state
.is_fallthru_var
);
4589 ir_dereference_variable
*const deref_is_break_var
=
4590 new(state
) ir_dereference_variable(state
->switch_state
.is_break_var
);
4591 ir_assignment
*const reset_fallthru_on_break
=
4592 new(state
) ir_assignment(deref_is_fallthru_var
,
4594 deref_is_break_var
);
4595 instructions
->push_tail(reset_fallthru_on_break
);
4597 /* Guard case statements depending on fallthru state. */
4598 ir_dereference_variable
*const deref_fallthru_guard
=
4599 new(state
) ir_dereference_variable(state
->switch_state
.is_fallthru_var
);
4600 ir_if
*const test_fallthru
= new(state
) ir_if(deref_fallthru_guard
);
4602 foreach_list_typed (ast_node
, stmt
, link
, & this->stmts
)
4603 stmt
->hir(& test_fallthru
->then_instructions
, state
);
4605 instructions
->push_tail(test_fallthru
);
4607 /* Case statements do not have r-values. */
4613 ast_case_label_list::hir(exec_list
*instructions
,
4614 struct _mesa_glsl_parse_state
*state
)
4616 foreach_list_typed (ast_case_label
, label
, link
, & this->labels
)
4617 label
->hir(instructions
, state
);
4619 /* Case labels do not have r-values. */
4624 ast_case_label::hir(exec_list
*instructions
,
4625 struct _mesa_glsl_parse_state
*state
)
4629 ir_dereference_variable
*deref_fallthru_var
=
4630 new(ctx
) ir_dereference_variable(state
->switch_state
.is_fallthru_var
);
4632 ir_rvalue
*const true_val
= new(ctx
) ir_constant(true);
4634 /* If not default case, ... */
4635 if (this->test_value
!= NULL
) {
4636 /* Conditionally set fallthru state based on
4637 * comparison of cached test expression value to case label.
4639 ir_rvalue
*const label_rval
= this->test_value
->hir(instructions
, state
);
4640 ir_constant
*label_const
= label_rval
->constant_expression_value();
4643 YYLTYPE loc
= this->test_value
->get_location();
4645 _mesa_glsl_error(& loc
, state
,
4646 "switch statement case label must be a "
4647 "constant expression");
4649 /* Stuff a dummy value in to allow processing to continue. */
4650 label_const
= new(ctx
) ir_constant(0);
4652 ast_expression
*previous_label
= (ast_expression
*)
4653 hash_table_find(state
->switch_state
.labels_ht
,
4654 (void *)(uintptr_t)label_const
->value
.u
[0]);
4656 if (previous_label
) {
4657 YYLTYPE loc
= this->test_value
->get_location();
4658 _mesa_glsl_error(& loc
, state
, "duplicate case value");
4660 loc
= previous_label
->get_location();
4661 _mesa_glsl_error(& loc
, state
, "this is the previous case label");
4663 hash_table_insert(state
->switch_state
.labels_ht
,
4665 (void *)(uintptr_t)label_const
->value
.u
[0]);
4669 ir_dereference_variable
*deref_test_var
=
4670 new(ctx
) ir_dereference_variable(state
->switch_state
.test_var
);
4672 ir_expression
*test_cond
= new(ctx
) ir_expression(ir_binop_all_equal
,
4677 * From GLSL 4.40 specification section 6.2 ("Selection"):
4679 * "The type of the init-expression value in a switch statement must
4680 * be a scalar int or uint. The type of the constant-expression value
4681 * in a case label also must be a scalar int or uint. When any pair
4682 * of these values is tested for "equal value" and the types do not
4683 * match, an implicit conversion will be done to convert the int to a
4684 * uint (see section 4.1.10 “Implicit Conversions”) before the compare
4687 if (label_const
->type
!= state
->switch_state
.test_var
->type
) {
4688 YYLTYPE loc
= this->test_value
->get_location();
4690 const glsl_type
*type_a
= label_const
->type
;
4691 const glsl_type
*type_b
= state
->switch_state
.test_var
->type
;
4693 /* Check if int->uint implicit conversion is supported. */
4694 bool integer_conversion_supported
=
4695 glsl_type::int_type
->can_implicitly_convert_to(glsl_type::uint_type
,
4698 if ((!type_a
->is_integer() || !type_b
->is_integer()) ||
4699 !integer_conversion_supported
) {
4700 _mesa_glsl_error(&loc
, state
, "type mismatch with switch "
4701 "init-expression and case label (%s != %s)",
4702 type_a
->name
, type_b
->name
);
4704 /* Conversion of the case label. */
4705 if (type_a
->base_type
== GLSL_TYPE_INT
) {
4706 if (!apply_implicit_conversion(glsl_type::uint_type
,
4707 test_cond
->operands
[0], state
))
4708 _mesa_glsl_error(&loc
, state
, "implicit type conversion error");
4710 /* Conversion of the init-expression value. */
4711 if (!apply_implicit_conversion(glsl_type::uint_type
,
4712 test_cond
->operands
[1], state
))
4713 _mesa_glsl_error(&loc
, state
, "implicit type conversion error");
4718 ir_assignment
*set_fallthru_on_test
=
4719 new(ctx
) ir_assignment(deref_fallthru_var
, true_val
, test_cond
);
4721 instructions
->push_tail(set_fallthru_on_test
);
4722 } else { /* default case */
4723 if (state
->switch_state
.previous_default
) {
4724 YYLTYPE loc
= this->get_location();
4725 _mesa_glsl_error(& loc
, state
,
4726 "multiple default labels in one switch");
4728 loc
= state
->switch_state
.previous_default
->get_location();
4729 _mesa_glsl_error(& loc
, state
, "this is the first default label");
4731 state
->switch_state
.previous_default
= this;
4733 /* Set falltrhu state. */
4734 ir_assignment
*set_fallthru
=
4735 new(ctx
) ir_assignment(deref_fallthru_var
, true_val
);
4737 instructions
->push_tail(set_fallthru
);
4740 /* Case statements do not have r-values. */
4745 ast_iteration_statement::condition_to_hir(exec_list
*instructions
,
4746 struct _mesa_glsl_parse_state
*state
)
4750 if (condition
!= NULL
) {
4751 ir_rvalue
*const cond
=
4752 condition
->hir(instructions
, state
);
4755 || !cond
->type
->is_boolean() || !cond
->type
->is_scalar()) {
4756 YYLTYPE loc
= condition
->get_location();
4758 _mesa_glsl_error(& loc
, state
,
4759 "loop condition must be scalar boolean");
4761 /* As the first code in the loop body, generate a block that looks
4762 * like 'if (!condition) break;' as the loop termination condition.
4764 ir_rvalue
*const not_cond
=
4765 new(ctx
) ir_expression(ir_unop_logic_not
, cond
);
4767 ir_if
*const if_stmt
= new(ctx
) ir_if(not_cond
);
4769 ir_jump
*const break_stmt
=
4770 new(ctx
) ir_loop_jump(ir_loop_jump::jump_break
);
4772 if_stmt
->then_instructions
.push_tail(break_stmt
);
4773 instructions
->push_tail(if_stmt
);
4780 ast_iteration_statement::hir(exec_list
*instructions
,
4781 struct _mesa_glsl_parse_state
*state
)
4785 /* For-loops and while-loops start a new scope, but do-while loops do not.
4787 if (mode
!= ast_do_while
)
4788 state
->symbols
->push_scope();
4790 if (init_statement
!= NULL
)
4791 init_statement
->hir(instructions
, state
);
4793 ir_loop
*const stmt
= new(ctx
) ir_loop();
4794 instructions
->push_tail(stmt
);
4796 /* Track the current loop nesting. */
4797 ast_iteration_statement
*nesting_ast
= state
->loop_nesting_ast
;
4799 state
->loop_nesting_ast
= this;
4801 /* Likewise, indicate that following code is closest to a loop,
4802 * NOT closest to a switch.
4804 bool saved_is_switch_innermost
= state
->switch_state
.is_switch_innermost
;
4805 state
->switch_state
.is_switch_innermost
= false;
4807 if (mode
!= ast_do_while
)
4808 condition_to_hir(&stmt
->body_instructions
, state
);
4811 body
->hir(& stmt
->body_instructions
, state
);
4813 if (rest_expression
!= NULL
)
4814 rest_expression
->hir(& stmt
->body_instructions
, state
);
4816 if (mode
== ast_do_while
)
4817 condition_to_hir(&stmt
->body_instructions
, state
);
4819 if (mode
!= ast_do_while
)
4820 state
->symbols
->pop_scope();
4822 /* Restore previous nesting before returning. */
4823 state
->loop_nesting_ast
= nesting_ast
;
4824 state
->switch_state
.is_switch_innermost
= saved_is_switch_innermost
;
4826 /* Loops do not have r-values.
4833 * Determine if the given type is valid for establishing a default precision
4836 * From GLSL ES 3.00 section 4.5.4 ("Default Precision Qualifiers"):
4838 * "The precision statement
4840 * precision precision-qualifier type;
4842 * can be used to establish a default precision qualifier. The type field
4843 * can be either int or float or any of the sampler types, and the
4844 * precision-qualifier can be lowp, mediump, or highp."
4846 * GLSL ES 1.00 has similar language. GLSL 1.30 doesn't allow precision
4847 * qualifiers on sampler types, but this seems like an oversight (since the
4848 * intention of including these in GLSL 1.30 is to allow compatibility with ES
4849 * shaders). So we allow int, float, and all sampler types regardless of GLSL
4853 is_valid_default_precision_type(const struct glsl_type
*const type
)
4858 switch (type
->base_type
) {
4860 case GLSL_TYPE_FLOAT
:
4861 /* "int" and "float" are valid, but vectors and matrices are not. */
4862 return type
->vector_elements
== 1 && type
->matrix_columns
== 1;
4863 case GLSL_TYPE_SAMPLER
:
4872 ast_type_specifier::hir(exec_list
*instructions
,
4873 struct _mesa_glsl_parse_state
*state
)
4875 if (this->default_precision
== ast_precision_none
&& this->structure
== NULL
)
4878 YYLTYPE loc
= this->get_location();
4880 /* If this is a precision statement, check that the type to which it is
4881 * applied is either float or int.
4883 * From section 4.5.3 of the GLSL 1.30 spec:
4884 * "The precision statement
4885 * precision precision-qualifier type;
4886 * can be used to establish a default precision qualifier. The type
4887 * field can be either int or float [...]. Any other types or
4888 * qualifiers will result in an error.
4890 if (this->default_precision
!= ast_precision_none
) {
4891 if (!state
->check_precision_qualifiers_allowed(&loc
))
4894 if (this->structure
!= NULL
) {
4895 _mesa_glsl_error(&loc
, state
,
4896 "precision qualifiers do not apply to structures");
4900 if (this->array_specifier
!= NULL
) {
4901 _mesa_glsl_error(&loc
, state
,
4902 "default precision statements do not apply to "
4907 const struct glsl_type
*const type
=
4908 state
->symbols
->get_type(this->type_name
);
4909 if (!is_valid_default_precision_type(type
)) {
4910 _mesa_glsl_error(&loc
, state
,
4911 "default precision statements apply only to "
4912 "float, int, and sampler types");
4916 if (type
->base_type
== GLSL_TYPE_FLOAT
4918 && state
->stage
== MESA_SHADER_FRAGMENT
) {
4919 /* Section 4.5.3 (Default Precision Qualifiers) of the GLSL ES 1.00
4922 * "The fragment language has no default precision qualifier for
4923 * floating point types."
4925 * As a result, we have to track whether or not default precision has
4926 * been specified for float in GLSL ES fragment shaders.
4928 * Earlier in that same section, the spec says:
4930 * "Non-precision qualified declarations will use the precision
4931 * qualifier specified in the most recent precision statement
4932 * that is still in scope. The precision statement has the same
4933 * scoping rules as variable declarations. If it is declared
4934 * inside a compound statement, its effect stops at the end of
4935 * the innermost statement it was declared in. Precision
4936 * statements in nested scopes override precision statements in
4937 * outer scopes. Multiple precision statements for the same basic
4938 * type can appear inside the same scope, with later statements
4939 * overriding earlier statements within that scope."
4941 * Default precision specifications follow the same scope rules as
4942 * variables. So, we can track the state of the default float
4943 * precision in the symbol table, and the rules will just work. This
4944 * is a slight abuse of the symbol table, but it has the semantics
4947 ir_variable
*const junk
=
4948 new(state
) ir_variable(type
, "#default precision",
4951 state
->symbols
->add_variable(junk
);
4954 /* FINISHME: Translate precision statements into IR. */
4958 /* _mesa_ast_set_aggregate_type() sets the <structure> field so that
4959 * process_record_constructor() can do type-checking on C-style initializer
4960 * expressions of structs, but ast_struct_specifier should only be translated
4961 * to HIR if it is declaring the type of a structure.
4963 * The ->is_declaration field is false for initializers of variables
4964 * declared separately from the struct's type definition.
4966 * struct S { ... }; (is_declaration = true)
4967 * struct T { ... } t = { ... }; (is_declaration = true)
4968 * S s = { ... }; (is_declaration = false)
4970 if (this->structure
!= NULL
&& this->structure
->is_declaration
)
4971 return this->structure
->hir(instructions
, state
);
4978 * Process a structure or interface block tree into an array of structure fields
4980 * After parsing, where there are some syntax differnces, structures and
4981 * interface blocks are almost identical. They are similar enough that the
4982 * AST for each can be processed the same way into a set of
4983 * \c glsl_struct_field to describe the members.
4985 * If we're processing an interface block, var_mode should be the type of the
4986 * interface block (ir_var_shader_in, ir_var_shader_out, or ir_var_uniform).
4987 * If we're processing a structure, var_mode should be ir_var_auto.
4990 * The number of fields processed. A pointer to the array structure fields is
4991 * stored in \c *fields_ret.
4994 ast_process_structure_or_interface_block(exec_list
*instructions
,
4995 struct _mesa_glsl_parse_state
*state
,
4996 exec_list
*declarations
,
4998 glsl_struct_field
**fields_ret
,
5000 bool block_row_major
,
5001 bool allow_reserved_names
,
5002 ir_variable_mode var_mode
)
5004 unsigned decl_count
= 0;
5006 /* Make an initial pass over the list of fields to determine how
5007 * many there are. Each element in this list is an ast_declarator_list.
5008 * This means that we actually need to count the number of elements in the
5009 * 'declarations' list in each of the elements.
5011 foreach_list_typed (ast_declarator_list
, decl_list
, link
, declarations
) {
5012 foreach_list_const (decl_ptr
, & decl_list
->declarations
) {
5017 /* Allocate storage for the fields and process the field
5018 * declarations. As the declarations are processed, try to also convert
5019 * the types to HIR. This ensures that structure definitions embedded in
5020 * other structure definitions or in interface blocks are processed.
5022 glsl_struct_field
*const fields
= ralloc_array(state
, glsl_struct_field
,
5026 foreach_list_typed (ast_declarator_list
, decl_list
, link
, declarations
) {
5027 const char *type_name
;
5029 decl_list
->type
->specifier
->hir(instructions
, state
);
5031 /* Section 10.9 of the GLSL ES 1.00 specification states that
5032 * embedded structure definitions have been removed from the language.
5034 if (state
->es_shader
&& decl_list
->type
->specifier
->structure
!= NULL
) {
5035 _mesa_glsl_error(&loc
, state
, "embedded structure definitions are "
5036 "not allowed in GLSL ES 1.00");
5039 const glsl_type
*decl_type
=
5040 decl_list
->type
->glsl_type(& type_name
, state
);
5042 foreach_list_typed (ast_declaration
, decl
, link
,
5043 &decl_list
->declarations
) {
5044 if (!allow_reserved_names
)
5045 validate_identifier(decl
->identifier
, loc
, state
);
5047 /* From section 4.3.9 of the GLSL 4.40 spec:
5049 * "[In interface blocks] opaque types are not allowed."
5051 * It should be impossible for decl_type to be NULL here. Cases that
5052 * might naturally lead to decl_type being NULL, especially for the
5053 * is_interface case, will have resulted in compilation having
5054 * already halted due to a syntax error.
5056 const struct glsl_type
*field_type
=
5057 decl_type
!= NULL
? decl_type
: glsl_type::error_type
;
5059 if (is_interface
&& field_type
->contains_opaque()) {
5060 YYLTYPE loc
= decl_list
->get_location();
5061 _mesa_glsl_error(&loc
, state
,
5062 "uniform in non-default uniform block contains "
5066 if (field_type
->contains_atomic()) {
5067 /* FINISHME: Add a spec quotation here once updated spec
5068 * FINISHME: language is available. See Khronos bug #10903
5069 * FINISHME: on whether atomic counters are allowed in
5070 * FINISHME: structures.
5072 YYLTYPE loc
= decl_list
->get_location();
5073 _mesa_glsl_error(&loc
, state
, "atomic counter in structure or "
5077 if (field_type
->contains_image()) {
5078 /* FINISHME: Same problem as with atomic counters.
5079 * FINISHME: Request clarification from Khronos and add
5080 * FINISHME: spec quotation here.
5082 YYLTYPE loc
= decl_list
->get_location();
5083 _mesa_glsl_error(&loc
, state
,
5084 "image in structure or uniform block");
5087 const struct ast_type_qualifier
*const qual
=
5088 & decl_list
->type
->qualifier
;
5089 if (qual
->flags
.q
.std140
||
5090 qual
->flags
.q
.packed
||
5091 qual
->flags
.q
.shared
) {
5092 _mesa_glsl_error(&loc
, state
,
5093 "uniform block layout qualifiers std140, packed, and "
5094 "shared can only be applied to uniform blocks, not "
5098 field_type
= process_array_type(&loc
, decl_type
,
5099 decl
->array_specifier
, state
);
5100 fields
[i
].type
= field_type
;
5101 fields
[i
].name
= decl
->identifier
;
5102 fields
[i
].location
= -1;
5103 fields
[i
].interpolation
=
5104 interpret_interpolation_qualifier(qual
, var_mode
, state
, &loc
);
5105 fields
[i
].centroid
= qual
->flags
.q
.centroid
? 1 : 0;
5106 fields
[i
].sample
= qual
->flags
.q
.sample
? 1 : 0;
5108 /* Only save explicitly defined streams in block's field */
5109 fields
[i
].stream
= qual
->flags
.q
.explicit_stream
? qual
->stream
: -1;
5111 if (qual
->flags
.q
.row_major
|| qual
->flags
.q
.column_major
) {
5112 if (!qual
->flags
.q
.uniform
) {
5113 _mesa_glsl_error(&loc
, state
,
5114 "row_major and column_major can only be "
5115 "applied to uniform interface blocks");
5117 validate_matrix_layout_for_type(state
, &loc
, field_type
, NULL
);
5120 if (qual
->flags
.q
.uniform
&& qual
->has_interpolation()) {
5121 _mesa_glsl_error(&loc
, state
,
5122 "interpolation qualifiers cannot be used "
5123 "with uniform interface blocks");
5126 if ((qual
->flags
.q
.uniform
|| !is_interface
) &&
5127 qual
->has_auxiliary_storage()) {
5128 _mesa_glsl_error(&loc
, state
,
5129 "auxiliary storage qualifiers cannot be used "
5130 "in uniform blocks or structures.");
5133 if (field_type
->is_matrix() ||
5134 (field_type
->is_array() && field_type
->fields
.array
->is_matrix())) {
5135 fields
[i
].row_major
= block_row_major
;
5136 if (qual
->flags
.q
.row_major
)
5137 fields
[i
].row_major
= true;
5138 else if (qual
->flags
.q
.column_major
)
5139 fields
[i
].row_major
= false;
5146 assert(i
== decl_count
);
5148 *fields_ret
= fields
;
5154 ast_struct_specifier::hir(exec_list
*instructions
,
5155 struct _mesa_glsl_parse_state
*state
)
5157 YYLTYPE loc
= this->get_location();
5159 /* Section 4.1.8 (Structures) of the GLSL 1.10 spec says:
5161 * "Anonymous structures are not supported; so embedded structures must
5162 * have a declarator. A name given to an embedded struct is scoped at
5163 * the same level as the struct it is embedded in."
5165 * The same section of the GLSL 1.20 spec says:
5167 * "Anonymous structures are not supported. Embedded structures are not
5170 * struct S { float f; };
5172 * S; // Error: anonymous structures disallowed
5173 * struct { ... }; // Error: embedded structures disallowed
5174 * S s; // Okay: nested structures with name are allowed
5177 * The GLSL ES 1.00 and 3.00 specs have similar langauge and examples. So,
5178 * we allow embedded structures in 1.10 only.
5180 if (state
->language_version
!= 110 && state
->struct_specifier_depth
!= 0)
5181 _mesa_glsl_error(&loc
, state
,
5182 "embedded structure declarations are not allowed");
5184 state
->struct_specifier_depth
++;
5186 glsl_struct_field
*fields
;
5187 unsigned decl_count
=
5188 ast_process_structure_or_interface_block(instructions
,
5190 &this->declarations
,
5195 false /* allow_reserved_names */,
5198 validate_identifier(this->name
, loc
, state
);
5200 const glsl_type
*t
=
5201 glsl_type::get_record_instance(fields
, decl_count
, this->name
);
5203 if (!state
->symbols
->add_type(name
, t
)) {
5204 _mesa_glsl_error(& loc
, state
, "struct `%s' previously defined", name
);
5206 const glsl_type
**s
= reralloc(state
, state
->user_structures
,
5208 state
->num_user_structures
+ 1);
5210 s
[state
->num_user_structures
] = t
;
5211 state
->user_structures
= s
;
5212 state
->num_user_structures
++;
5216 state
->struct_specifier_depth
--;
5218 /* Structure type definitions do not have r-values.
5225 * Visitor class which detects whether a given interface block has been used.
5227 class interface_block_usage_visitor
: public ir_hierarchical_visitor
5230 interface_block_usage_visitor(ir_variable_mode mode
, const glsl_type
*block
)
5231 : mode(mode
), block(block
), found(false)
5235 virtual ir_visitor_status
visit(ir_dereference_variable
*ir
)
5237 if (ir
->var
->data
.mode
== mode
&& ir
->var
->get_interface_type() == block
) {
5241 return visit_continue
;
5244 bool usage_found() const
5250 ir_variable_mode mode
;
5251 const glsl_type
*block
;
5257 ast_interface_block::hir(exec_list
*instructions
,
5258 struct _mesa_glsl_parse_state
*state
)
5260 YYLTYPE loc
= this->get_location();
5262 /* The ast_interface_block has a list of ast_declarator_lists. We
5263 * need to turn those into ir_variables with an association
5264 * with this uniform block.
5266 enum glsl_interface_packing packing
;
5267 if (this->layout
.flags
.q
.shared
) {
5268 packing
= GLSL_INTERFACE_PACKING_SHARED
;
5269 } else if (this->layout
.flags
.q
.packed
) {
5270 packing
= GLSL_INTERFACE_PACKING_PACKED
;
5272 /* The default layout is std140.
5274 packing
= GLSL_INTERFACE_PACKING_STD140
;
5277 ir_variable_mode var_mode
;
5278 const char *iface_type_name
;
5279 if (this->layout
.flags
.q
.in
) {
5280 var_mode
= ir_var_shader_in
;
5281 iface_type_name
= "in";
5282 } else if (this->layout
.flags
.q
.out
) {
5283 var_mode
= ir_var_shader_out
;
5284 iface_type_name
= "out";
5285 } else if (this->layout
.flags
.q
.uniform
) {
5286 var_mode
= ir_var_uniform
;
5287 iface_type_name
= "uniform";
5289 var_mode
= ir_var_auto
;
5290 iface_type_name
= "UNKNOWN";
5291 assert(!"interface block layout qualifier not found!");
5294 bool redeclaring_per_vertex
= strcmp(this->block_name
, "gl_PerVertex") == 0;
5295 bool block_row_major
= this->layout
.flags
.q
.row_major
;
5296 exec_list declared_variables
;
5297 glsl_struct_field
*fields
;
5299 /* Treat an interface block as one level of nesting, so that embedded struct
5300 * specifiers will be disallowed.
5302 state
->struct_specifier_depth
++;
5304 unsigned int num_variables
=
5305 ast_process_structure_or_interface_block(&declared_variables
,
5307 &this->declarations
,
5312 redeclaring_per_vertex
,
5315 state
->struct_specifier_depth
--;
5317 if (!redeclaring_per_vertex
)
5318 validate_identifier(this->block_name
, loc
, state
);
5320 const glsl_type
*earlier_per_vertex
= NULL
;
5321 if (redeclaring_per_vertex
) {
5322 /* Find the previous declaration of gl_PerVertex. If we're redeclaring
5323 * the named interface block gl_in, we can find it by looking at the
5324 * previous declaration of gl_in. Otherwise we can find it by looking
5325 * at the previous decalartion of any of the built-in outputs,
5328 * Also check that the instance name and array-ness of the redeclaration
5332 case ir_var_shader_in
:
5333 if (ir_variable
*earlier_gl_in
=
5334 state
->symbols
->get_variable("gl_in")) {
5335 earlier_per_vertex
= earlier_gl_in
->get_interface_type();
5337 _mesa_glsl_error(&loc
, state
,
5338 "redeclaration of gl_PerVertex input not allowed "
5340 _mesa_shader_stage_to_string(state
->stage
));
5342 if (this->instance_name
== NULL
||
5343 strcmp(this->instance_name
, "gl_in") != 0 || this->array_specifier
== NULL
) {
5344 _mesa_glsl_error(&loc
, state
,
5345 "gl_PerVertex input must be redeclared as "
5349 case ir_var_shader_out
:
5350 if (ir_variable
*earlier_gl_Position
=
5351 state
->symbols
->get_variable("gl_Position")) {
5352 earlier_per_vertex
= earlier_gl_Position
->get_interface_type();
5354 _mesa_glsl_error(&loc
, state
,
5355 "redeclaration of gl_PerVertex output not "
5356 "allowed in the %s shader",
5357 _mesa_shader_stage_to_string(state
->stage
));
5359 if (this->instance_name
!= NULL
) {
5360 _mesa_glsl_error(&loc
, state
,
5361 "gl_PerVertex input may not be redeclared with "
5362 "an instance name");
5366 _mesa_glsl_error(&loc
, state
,
5367 "gl_PerVertex must be declared as an input or an "
5372 if (earlier_per_vertex
== NULL
) {
5373 /* An error has already been reported. Bail out to avoid null
5374 * dereferences later in this function.
5379 /* Copy locations from the old gl_PerVertex interface block. */
5380 for (unsigned i
= 0; i
< num_variables
; i
++) {
5381 int j
= earlier_per_vertex
->field_index(fields
[i
].name
);
5383 _mesa_glsl_error(&loc
, state
,
5384 "redeclaration of gl_PerVertex must be a subset "
5385 "of the built-in members of gl_PerVertex");
5387 fields
[i
].location
=
5388 earlier_per_vertex
->fields
.structure
[j
].location
;
5389 fields
[i
].interpolation
=
5390 earlier_per_vertex
->fields
.structure
[j
].interpolation
;
5391 fields
[i
].centroid
=
5392 earlier_per_vertex
->fields
.structure
[j
].centroid
;
5394 earlier_per_vertex
->fields
.structure
[j
].sample
;
5398 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10
5401 * If a built-in interface block is redeclared, it must appear in
5402 * the shader before any use of any member included in the built-in
5403 * declaration, or a compilation error will result.
5405 * This appears to be a clarification to the behaviour established for
5406 * gl_PerVertex by GLSL 1.50, therefore we implement this behaviour
5407 * regardless of GLSL version.
5409 interface_block_usage_visitor
v(var_mode
, earlier_per_vertex
);
5410 v
.run(instructions
);
5411 if (v
.usage_found()) {
5412 _mesa_glsl_error(&loc
, state
,
5413 "redeclaration of a built-in interface block must "
5414 "appear before any use of any member of the "
5419 const glsl_type
*block_type
=
5420 glsl_type::get_interface_instance(fields
,
5425 if (!state
->symbols
->add_interface(block_type
->name
, block_type
, var_mode
)) {
5426 YYLTYPE loc
= this->get_location();
5427 _mesa_glsl_error(&loc
, state
, "interface block `%s' with type `%s' "
5428 "already taken in the current scope",
5429 this->block_name
, iface_type_name
);
5432 /* Since interface blocks cannot contain statements, it should be
5433 * impossible for the block to generate any instructions.
5435 assert(declared_variables
.is_empty());
5437 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
5439 * Geometry shader input variables get the per-vertex values written
5440 * out by vertex shader output variables of the same names. Since a
5441 * geometry shader operates on a set of vertices, each input varying
5442 * variable (or input block, see interface blocks below) needs to be
5443 * declared as an array.
5445 if (state
->stage
== MESA_SHADER_GEOMETRY
&& this->array_specifier
== NULL
&&
5446 var_mode
== ir_var_shader_in
) {
5447 _mesa_glsl_error(&loc
, state
, "geometry shader inputs must be arrays");
5450 /* Page 39 (page 45 of the PDF) of section 4.3.7 in the GLSL ES 3.00 spec
5453 * "If an instance name (instance-name) is used, then it puts all the
5454 * members inside a scope within its own name space, accessed with the
5455 * field selector ( . ) operator (analogously to structures)."
5457 if (this->instance_name
) {
5458 if (redeclaring_per_vertex
) {
5459 /* When a built-in in an unnamed interface block is redeclared,
5460 * get_variable_being_redeclared() calls
5461 * check_builtin_array_max_size() to make sure that built-in array
5462 * variables aren't redeclared to illegal sizes. But we're looking
5463 * at a redeclaration of a named built-in interface block. So we
5464 * have to manually call check_builtin_array_max_size() for all parts
5465 * of the interface that are arrays.
5467 for (unsigned i
= 0; i
< num_variables
; i
++) {
5468 if (fields
[i
].type
->is_array()) {
5469 const unsigned size
= fields
[i
].type
->array_size();
5470 check_builtin_array_max_size(fields
[i
].name
, size
, loc
, state
);
5474 validate_identifier(this->instance_name
, loc
, state
);
5479 if (this->array_specifier
!= NULL
) {
5480 /* Section 4.3.7 (Interface Blocks) of the GLSL 1.50 spec says:
5482 * For uniform blocks declared an array, each individual array
5483 * element corresponds to a separate buffer object backing one
5484 * instance of the block. As the array size indicates the number
5485 * of buffer objects needed, uniform block array declarations
5486 * must specify an array size.
5488 * And a few paragraphs later:
5490 * Geometry shader input blocks must be declared as arrays and
5491 * follow the array declaration and linking rules for all
5492 * geometry shader inputs. All other input and output block
5493 * arrays must specify an array size.
5495 * The upshot of this is that the only circumstance where an
5496 * interface array size *doesn't* need to be specified is on a
5497 * geometry shader input.
5499 if (this->array_specifier
->is_unsized_array
&&
5500 (state
->stage
!= MESA_SHADER_GEOMETRY
|| !this->layout
.flags
.q
.in
)) {
5501 _mesa_glsl_error(&loc
, state
,
5502 "only geometry shader inputs may be unsized "
5503 "instance block arrays");
5507 const glsl_type
*block_array_type
=
5508 process_array_type(&loc
, block_type
, this->array_specifier
, state
);
5510 var
= new(state
) ir_variable(block_array_type
,
5511 this->instance_name
,
5514 var
= new(state
) ir_variable(block_type
,
5515 this->instance_name
,
5519 if (state
->stage
== MESA_SHADER_GEOMETRY
&& var_mode
== ir_var_shader_in
)
5520 handle_geometry_shader_input_decl(state
, loc
, var
);
5522 if (ir_variable
*earlier
=
5523 state
->symbols
->get_variable(this->instance_name
)) {
5524 if (!redeclaring_per_vertex
) {
5525 _mesa_glsl_error(&loc
, state
, "`%s' redeclared",
5526 this->instance_name
);
5528 earlier
->data
.how_declared
= ir_var_declared_normally
;
5529 earlier
->type
= var
->type
;
5530 earlier
->reinit_interface_type(block_type
);
5533 /* Propagate the "binding" keyword into this UBO's fields;
5534 * the UBO declaration itself doesn't get an ir_variable unless it
5535 * has an instance name. This is ugly.
5537 var
->data
.explicit_binding
= this->layout
.flags
.q
.explicit_binding
;
5538 var
->data
.binding
= this->layout
.binding
;
5540 state
->symbols
->add_variable(var
);
5541 instructions
->push_tail(var
);
5544 /* In order to have an array size, the block must also be declared with
5547 assert(this->array_specifier
== NULL
);
5549 for (unsigned i
= 0; i
< num_variables
; i
++) {
5551 new(state
) ir_variable(fields
[i
].type
,
5552 ralloc_strdup(state
, fields
[i
].name
),
5554 var
->data
.interpolation
= fields
[i
].interpolation
;
5555 var
->data
.centroid
= fields
[i
].centroid
;
5556 var
->data
.sample
= fields
[i
].sample
;
5557 var
->init_interface_type(block_type
);
5559 if (fields
[i
].stream
!= -1 &&
5560 ((unsigned)fields
[i
].stream
) != this->layout
.stream
) {
5561 _mesa_glsl_error(&loc
, state
,
5562 "stream layout qualifier on "
5563 "interface block member `%s' does not match "
5564 "the interface block (%d vs %d)",
5565 var
->name
, fields
[i
].stream
, this->layout
.stream
);
5568 var
->data
.stream
= this->layout
.stream
;
5570 if (redeclaring_per_vertex
) {
5571 ir_variable
*earlier
=
5572 get_variable_being_redeclared(var
, loc
, state
,
5573 true /* allow_all_redeclarations */);
5574 if (!is_gl_identifier(var
->name
) || earlier
== NULL
) {
5575 _mesa_glsl_error(&loc
, state
,
5576 "redeclaration of gl_PerVertex can only "
5577 "include built-in variables");
5578 } else if (earlier
->data
.how_declared
== ir_var_declared_normally
) {
5579 _mesa_glsl_error(&loc
, state
,
5580 "`%s' has already been redeclared", var
->name
);
5582 earlier
->data
.how_declared
= ir_var_declared_in_block
;
5583 earlier
->reinit_interface_type(block_type
);
5588 if (state
->symbols
->get_variable(var
->name
) != NULL
)
5589 _mesa_glsl_error(&loc
, state
, "`%s' redeclared", var
->name
);
5591 /* Propagate the "binding" keyword into this UBO's fields;
5592 * the UBO declaration itself doesn't get an ir_variable unless it
5593 * has an instance name. This is ugly.
5595 var
->data
.explicit_binding
= this->layout
.flags
.q
.explicit_binding
;
5596 var
->data
.binding
= this->layout
.binding
;
5598 state
->symbols
->add_variable(var
);
5599 instructions
->push_tail(var
);
5602 if (redeclaring_per_vertex
&& block_type
!= earlier_per_vertex
) {
5603 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10 spec:
5605 * It is also a compilation error ... to redeclare a built-in
5606 * block and then use a member from that built-in block that was
5607 * not included in the redeclaration.
5609 * This appears to be a clarification to the behaviour established
5610 * for gl_PerVertex by GLSL 1.50, therefore we implement this
5611 * behaviour regardless of GLSL version.
5613 * To prevent the shader from using a member that was not included in
5614 * the redeclaration, we disable any ir_variables that are still
5615 * associated with the old declaration of gl_PerVertex (since we've
5616 * already updated all of the variables contained in the new
5617 * gl_PerVertex to point to it).
5619 * As a side effect this will prevent
5620 * validate_intrastage_interface_blocks() from getting confused and
5621 * thinking there are conflicting definitions of gl_PerVertex in the
5624 foreach_list_safe(node
, instructions
) {
5625 ir_variable
*const var
= ((ir_instruction
*) node
)->as_variable();
5627 var
->get_interface_type() == earlier_per_vertex
&&
5628 var
->data
.mode
== var_mode
) {
5629 if (var
->data
.how_declared
== ir_var_declared_normally
) {
5630 _mesa_glsl_error(&loc
, state
,
5631 "redeclaration of gl_PerVertex cannot "
5632 "follow a redeclaration of `%s'",
5635 state
->symbols
->disable_variable(var
->name
);
5647 ast_gs_input_layout::hir(exec_list
*instructions
,
5648 struct _mesa_glsl_parse_state
*state
)
5650 YYLTYPE loc
= this->get_location();
5652 /* If any geometry input layout declaration preceded this one, make sure it
5653 * was consistent with this one.
5655 if (state
->gs_input_prim_type_specified
&&
5656 state
->in_qualifier
->prim_type
!= this->prim_type
) {
5657 _mesa_glsl_error(&loc
, state
,
5658 "geometry shader input layout does not match"
5659 " previous declaration");
5663 /* If any shader inputs occurred before this declaration and specified an
5664 * array size, make sure the size they specified is consistent with the
5667 unsigned num_vertices
= vertices_per_prim(this->prim_type
);
5668 if (state
->gs_input_size
!= 0 && state
->gs_input_size
!= num_vertices
) {
5669 _mesa_glsl_error(&loc
, state
,
5670 "this geometry shader input layout implies %u vertices"
5671 " per primitive, but a previous input is declared"
5672 " with size %u", num_vertices
, state
->gs_input_size
);
5676 state
->gs_input_prim_type_specified
= true;
5678 /* If any shader inputs occurred before this declaration and did not
5679 * specify an array size, their size is determined now.
5681 foreach_list (node
, instructions
) {
5682 ir_variable
*var
= ((ir_instruction
*) node
)->as_variable();
5683 if (var
== NULL
|| var
->data
.mode
!= ir_var_shader_in
)
5686 /* Note: gl_PrimitiveIDIn has mode ir_var_shader_in, but it's not an
5690 if (var
->type
->is_unsized_array()) {
5691 if (var
->data
.max_array_access
>= num_vertices
) {
5692 _mesa_glsl_error(&loc
, state
,
5693 "this geometry shader input layout implies %u"
5694 " vertices, but an access to element %u of input"
5695 " `%s' already exists", num_vertices
,
5696 var
->data
.max_array_access
, var
->name
);
5698 var
->type
= glsl_type::get_array_instance(var
->type
->fields
.array
,
5709 ast_cs_input_layout::hir(exec_list
*instructions
,
5710 struct _mesa_glsl_parse_state
*state
)
5712 YYLTYPE loc
= this->get_location();
5714 /* If any compute input layout declaration preceded this one, make sure it
5715 * was consistent with this one.
5717 if (state
->cs_input_local_size_specified
) {
5718 for (int i
= 0; i
< 3; i
++) {
5719 if (state
->cs_input_local_size
[i
] != this->local_size
[i
]) {
5720 _mesa_glsl_error(&loc
, state
,
5721 "compute shader input layout does not match"
5722 " previous declaration");
5728 /* From the ARB_compute_shader specification:
5730 * If the local size of the shader in any dimension is greater
5731 * than the maximum size supported by the implementation for that
5732 * dimension, a compile-time error results.
5734 * It is not clear from the spec how the error should be reported if
5735 * the total size of the work group exceeds
5736 * MAX_COMPUTE_WORK_GROUP_INVOCATIONS, but it seems reasonable to
5737 * report it at compile time as well.
5739 GLuint64 total_invocations
= 1;
5740 for (int i
= 0; i
< 3; i
++) {
5741 if (this->local_size
[i
] > state
->ctx
->Const
.MaxComputeWorkGroupSize
[i
]) {
5742 _mesa_glsl_error(&loc
, state
,
5743 "local_size_%c exceeds MAX_COMPUTE_WORK_GROUP_SIZE"
5745 state
->ctx
->Const
.MaxComputeWorkGroupSize
[i
]);
5748 total_invocations
*= this->local_size
[i
];
5749 if (total_invocations
>
5750 state
->ctx
->Const
.MaxComputeWorkGroupInvocations
) {
5751 _mesa_glsl_error(&loc
, state
,
5752 "product of local_sizes exceeds "
5753 "MAX_COMPUTE_WORK_GROUP_INVOCATIONS (%d)",
5754 state
->ctx
->Const
.MaxComputeWorkGroupInvocations
);
5759 state
->cs_input_local_size_specified
= true;
5760 for (int i
= 0; i
< 3; i
++)
5761 state
->cs_input_local_size
[i
] = this->local_size
[i
];
5763 /* We may now declare the built-in constant gl_WorkGroupSize (see
5764 * builtin_variable_generator::generate_constants() for why we didn't
5765 * declare it earlier).
5767 ir_variable
*var
= new(state
->symbols
)
5768 ir_variable(glsl_type::ivec3_type
, "gl_WorkGroupSize", ir_var_auto
);
5769 var
->data
.how_declared
= ir_var_declared_implicitly
;
5770 var
->data
.read_only
= true;
5771 instructions
->push_tail(var
);
5772 state
->symbols
->add_variable(var
);
5773 ir_constant_data data
;
5774 memset(&data
, 0, sizeof(data
));
5775 for (int i
= 0; i
< 3; i
++)
5776 data
.i
[i
] = this->local_size
[i
];
5777 var
->constant_value
= new(var
) ir_constant(glsl_type::ivec3_type
, &data
);
5778 var
->constant_initializer
=
5779 new(var
) ir_constant(glsl_type::ivec3_type
, &data
);
5780 var
->data
.has_initializer
= true;
5787 detect_conflicting_assignments(struct _mesa_glsl_parse_state
*state
,
5788 exec_list
*instructions
)
5790 bool gl_FragColor_assigned
= false;
5791 bool gl_FragData_assigned
= false;
5792 bool user_defined_fs_output_assigned
= false;
5793 ir_variable
*user_defined_fs_output
= NULL
;
5795 /* It would be nice to have proper location information. */
5797 memset(&loc
, 0, sizeof(loc
));
5799 foreach_list(node
, instructions
) {
5800 ir_variable
*var
= ((ir_instruction
*)node
)->as_variable();
5802 if (!var
|| !var
->data
.assigned
)
5805 if (strcmp(var
->name
, "gl_FragColor") == 0)
5806 gl_FragColor_assigned
= true;
5807 else if (strcmp(var
->name
, "gl_FragData") == 0)
5808 gl_FragData_assigned
= true;
5809 else if (!is_gl_identifier(var
->name
)) {
5810 if (state
->stage
== MESA_SHADER_FRAGMENT
&&
5811 var
->data
.mode
== ir_var_shader_out
) {
5812 user_defined_fs_output_assigned
= true;
5813 user_defined_fs_output
= var
;
5818 /* From the GLSL 1.30 spec:
5820 * "If a shader statically assigns a value to gl_FragColor, it
5821 * may not assign a value to any element of gl_FragData. If a
5822 * shader statically writes a value to any element of
5823 * gl_FragData, it may not assign a value to
5824 * gl_FragColor. That is, a shader may assign values to either
5825 * gl_FragColor or gl_FragData, but not both. Multiple shaders
5826 * linked together must also consistently write just one of
5827 * these variables. Similarly, if user declared output
5828 * variables are in use (statically assigned to), then the
5829 * built-in variables gl_FragColor and gl_FragData may not be
5830 * assigned to. These incorrect usages all generate compile
5833 if (gl_FragColor_assigned
&& gl_FragData_assigned
) {
5834 _mesa_glsl_error(&loc
, state
, "fragment shader writes to both "
5835 "`gl_FragColor' and `gl_FragData'");
5836 } else if (gl_FragColor_assigned
&& user_defined_fs_output_assigned
) {
5837 _mesa_glsl_error(&loc
, state
, "fragment shader writes to both "
5838 "`gl_FragColor' and `%s'",
5839 user_defined_fs_output
->name
);
5840 } else if (gl_FragData_assigned
&& user_defined_fs_output_assigned
) {
5841 _mesa_glsl_error(&loc
, state
, "fragment shader writes to both "
5842 "`gl_FragData' and `%s'",
5843 user_defined_fs_output
->name
);
5849 remove_per_vertex_blocks(exec_list
*instructions
,
5850 _mesa_glsl_parse_state
*state
, ir_variable_mode mode
)
5852 /* Find the gl_PerVertex interface block of the appropriate (in/out) mode,
5853 * if it exists in this shader type.
5855 const glsl_type
*per_vertex
= NULL
;
5857 case ir_var_shader_in
:
5858 if (ir_variable
*gl_in
= state
->symbols
->get_variable("gl_in"))
5859 per_vertex
= gl_in
->get_interface_type();
5861 case ir_var_shader_out
:
5862 if (ir_variable
*gl_Position
=
5863 state
->symbols
->get_variable("gl_Position")) {
5864 per_vertex
= gl_Position
->get_interface_type();
5868 assert(!"Unexpected mode");
5872 /* If we didn't find a built-in gl_PerVertex interface block, then we don't
5873 * need to do anything.
5875 if (per_vertex
== NULL
)
5878 /* If the interface block is used by the shader, then we don't need to do
5881 interface_block_usage_visitor
v(mode
, per_vertex
);
5882 v
.run(instructions
);
5883 if (v
.usage_found())
5886 /* Remove any ir_variable declarations that refer to the interface block
5889 foreach_list_safe(node
, instructions
) {
5890 ir_variable
*const var
= ((ir_instruction
*) node
)->as_variable();
5891 if (var
!= NULL
&& var
->get_interface_type() == per_vertex
&&
5892 var
->data
.mode
== mode
) {
5893 state
->symbols
->disable_variable(var
->name
);