glsl: Never put ir_var_temporary variables in the symbol table
[mesa.git] / src / glsl / ast_to_hir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file ast_to_hir.c
26 * Convert abstract syntax to to high-level intermediate reprensentation (HIR).
27 *
28 * During the conversion to HIR, the majority of the symantic checking is
29 * preformed on the program. This includes:
30 *
31 * * Symbol table management
32 * * Type checking
33 * * Function binding
34 *
35 * The majority of this work could be done during parsing, and the parser could
36 * probably generate HIR directly. However, this results in frequent changes
37 * to the parser code. Since we do not assume that every system this complier
38 * is built on will have Flex and Bison installed, we have to store the code
39 * generated by these tools in our version control system. In other parts of
40 * the system we've seen problems where a parser was changed but the generated
41 * code was not committed, merge conflicts where created because two developers
42 * had slightly different versions of Bison installed, etc.
43 *
44 * I have also noticed that running Bison generated parsers in GDB is very
45 * irritating. When you get a segfault on '$$ = $1->foo', you can't very
46 * well 'print $1' in GDB.
47 *
48 * As a result, my preference is to put as little C code as possible in the
49 * parser (and lexer) sources.
50 */
51
52 #include "glsl_symbol_table.h"
53 #include "glsl_parser_extras.h"
54 #include "ast.h"
55 #include "glsl_types.h"
56 #include "program/hash_table.h"
57 #include "ir.h"
58 #include "ir_builder.h"
59
60 using namespace ir_builder;
61
62 static void
63 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
64 exec_list *instructions);
65 static void
66 remove_per_vertex_blocks(exec_list *instructions,
67 _mesa_glsl_parse_state *state, ir_variable_mode mode);
68
69
70 void
71 _mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
72 {
73 _mesa_glsl_initialize_variables(instructions, state);
74
75 state->symbols->separate_function_namespace = state->language_version == 110;
76
77 state->current_function = NULL;
78
79 state->toplevel_ir = instructions;
80
81 state->gs_input_prim_type_specified = false;
82 state->cs_input_local_size_specified = false;
83
84 /* Section 4.2 of the GLSL 1.20 specification states:
85 * "The built-in functions are scoped in a scope outside the global scope
86 * users declare global variables in. That is, a shader's global scope,
87 * available for user-defined functions and global variables, is nested
88 * inside the scope containing the built-in functions."
89 *
90 * Since built-in functions like ftransform() access built-in variables,
91 * it follows that those must be in the outer scope as well.
92 *
93 * We push scope here to create this nesting effect...but don't pop.
94 * This way, a shader's globals are still in the symbol table for use
95 * by the linker.
96 */
97 state->symbols->push_scope();
98
99 foreach_list_typed (ast_node, ast, link, & state->translation_unit)
100 ast->hir(instructions, state);
101
102 detect_recursion_unlinked(state, instructions);
103 detect_conflicting_assignments(state, instructions);
104
105 state->toplevel_ir = NULL;
106
107 /* Move all of the variable declarations to the front of the IR list, and
108 * reverse the order. This has the (intended!) side effect that vertex
109 * shader inputs and fragment shader outputs will appear in the IR in the
110 * same order that they appeared in the shader code. This results in the
111 * locations being assigned in the declared order. Many (arguably buggy)
112 * applications depend on this behavior, and it matches what nearly all
113 * other drivers do.
114 */
115 foreach_in_list_safe(ir_instruction, node, instructions) {
116 ir_variable *const var = node->as_variable();
117
118 if (var == NULL)
119 continue;
120
121 var->remove();
122 instructions->push_head(var);
123 }
124
125 /* Figure out if gl_FragCoord is actually used in fragment shader */
126 ir_variable *const var = state->symbols->get_variable("gl_FragCoord");
127 if (var != NULL)
128 state->fs_uses_gl_fragcoord = var->data.used;
129
130 /* From section 7.1 (Built-In Language Variables) of the GLSL 4.10 spec:
131 *
132 * If multiple shaders using members of a built-in block belonging to
133 * the same interface are linked together in the same program, they
134 * must all redeclare the built-in block in the same way, as described
135 * in section 4.3.7 "Interface Blocks" for interface block matching, or
136 * a link error will result.
137 *
138 * The phrase "using members of a built-in block" implies that if two
139 * shaders are linked together and one of them *does not use* any members
140 * of the built-in block, then that shader does not need to have a matching
141 * redeclaration of the built-in block.
142 *
143 * This appears to be a clarification to the behaviour established for
144 * gl_PerVertex by GLSL 1.50, therefore implement it regardless of GLSL
145 * version.
146 *
147 * The definition of "interface" in section 4.3.7 that applies here is as
148 * follows:
149 *
150 * The boundary between adjacent programmable pipeline stages: This
151 * spans all the outputs in all compilation units of the first stage
152 * and all the inputs in all compilation units of the second stage.
153 *
154 * Therefore this rule applies to both inter- and intra-stage linking.
155 *
156 * The easiest way to implement this is to check whether the shader uses
157 * gl_PerVertex right after ast-to-ir conversion, and if it doesn't, simply
158 * remove all the relevant variable declaration from the IR, so that the
159 * linker won't see them and complain about mismatches.
160 */
161 remove_per_vertex_blocks(instructions, state, ir_var_shader_in);
162 remove_per_vertex_blocks(instructions, state, ir_var_shader_out);
163 }
164
165
166 static ir_expression_operation
167 get_conversion_operation(const glsl_type *to, const glsl_type *from,
168 struct _mesa_glsl_parse_state *state)
169 {
170 switch (to->base_type) {
171 case GLSL_TYPE_FLOAT:
172 switch (from->base_type) {
173 case GLSL_TYPE_INT: return ir_unop_i2f;
174 case GLSL_TYPE_UINT: return ir_unop_u2f;
175 default: return (ir_expression_operation)0;
176 }
177
178 case GLSL_TYPE_UINT:
179 if (!state->is_version(400, 0) && !state->ARB_gpu_shader5_enable)
180 return (ir_expression_operation)0;
181 switch (from->base_type) {
182 case GLSL_TYPE_INT: return ir_unop_i2u;
183 default: return (ir_expression_operation)0;
184 }
185
186 default: return (ir_expression_operation)0;
187 }
188 }
189
190
191 /**
192 * If a conversion is available, convert one operand to a different type
193 *
194 * The \c from \c ir_rvalue is converted "in place".
195 *
196 * \param to Type that the operand it to be converted to
197 * \param from Operand that is being converted
198 * \param state GLSL compiler state
199 *
200 * \return
201 * If a conversion is possible (or unnecessary), \c true is returned.
202 * Otherwise \c false is returned.
203 */
204 bool
205 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
206 struct _mesa_glsl_parse_state *state)
207 {
208 void *ctx = state;
209 if (to->base_type == from->type->base_type)
210 return true;
211
212 /* Prior to GLSL 1.20, there are no implicit conversions */
213 if (!state->is_version(120, 0))
214 return false;
215
216 /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
217 *
218 * "There are no implicit array or structure conversions. For
219 * example, an array of int cannot be implicitly converted to an
220 * array of float.
221 */
222 if (!to->is_numeric() || !from->type->is_numeric())
223 return false;
224
225 /* We don't actually want the specific type `to`, we want a type
226 * with the same base type as `to`, but the same vector width as
227 * `from`.
228 */
229 to = glsl_type::get_instance(to->base_type, from->type->vector_elements,
230 from->type->matrix_columns);
231
232 ir_expression_operation op = get_conversion_operation(to, from->type, state);
233 if (op) {
234 from = new(ctx) ir_expression(op, to, from, NULL);
235 return true;
236 } else {
237 return false;
238 }
239 }
240
241
242 static const struct glsl_type *
243 arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
244 bool multiply,
245 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
246 {
247 const glsl_type *type_a = value_a->type;
248 const glsl_type *type_b = value_b->type;
249
250 /* From GLSL 1.50 spec, page 56:
251 *
252 * "The arithmetic binary operators add (+), subtract (-),
253 * multiply (*), and divide (/) operate on integer and
254 * floating-point scalars, vectors, and matrices."
255 */
256 if (!type_a->is_numeric() || !type_b->is_numeric()) {
257 _mesa_glsl_error(loc, state,
258 "operands to arithmetic operators must be numeric");
259 return glsl_type::error_type;
260 }
261
262
263 /* "If one operand is floating-point based and the other is
264 * not, then the conversions from Section 4.1.10 "Implicit
265 * Conversions" are applied to the non-floating-point-based operand."
266 */
267 if (!apply_implicit_conversion(type_a, value_b, state)
268 && !apply_implicit_conversion(type_b, value_a, state)) {
269 _mesa_glsl_error(loc, state,
270 "could not implicitly convert operands to "
271 "arithmetic operator");
272 return glsl_type::error_type;
273 }
274 type_a = value_a->type;
275 type_b = value_b->type;
276
277 /* "If the operands are integer types, they must both be signed or
278 * both be unsigned."
279 *
280 * From this rule and the preceeding conversion it can be inferred that
281 * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
282 * The is_numeric check above already filtered out the case where either
283 * type is not one of these, so now the base types need only be tested for
284 * equality.
285 */
286 if (type_a->base_type != type_b->base_type) {
287 _mesa_glsl_error(loc, state,
288 "base type mismatch for arithmetic operator");
289 return glsl_type::error_type;
290 }
291
292 /* "All arithmetic binary operators result in the same fundamental type
293 * (signed integer, unsigned integer, or floating-point) as the
294 * operands they operate on, after operand type conversion. After
295 * conversion, the following cases are valid
296 *
297 * * The two operands are scalars. In this case the operation is
298 * applied, resulting in a scalar."
299 */
300 if (type_a->is_scalar() && type_b->is_scalar())
301 return type_a;
302
303 /* "* One operand is a scalar, and the other is a vector or matrix.
304 * In this case, the scalar operation is applied independently to each
305 * component of the vector or matrix, resulting in the same size
306 * vector or matrix."
307 */
308 if (type_a->is_scalar()) {
309 if (!type_b->is_scalar())
310 return type_b;
311 } else if (type_b->is_scalar()) {
312 return type_a;
313 }
314
315 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
316 * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
317 * handled.
318 */
319 assert(!type_a->is_scalar());
320 assert(!type_b->is_scalar());
321
322 /* "* The two operands are vectors of the same size. In this case, the
323 * operation is done component-wise resulting in the same size
324 * vector."
325 */
326 if (type_a->is_vector() && type_b->is_vector()) {
327 if (type_a == type_b) {
328 return type_a;
329 } else {
330 _mesa_glsl_error(loc, state,
331 "vector size mismatch for arithmetic operator");
332 return glsl_type::error_type;
333 }
334 }
335
336 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
337 * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
338 * <vector, vector> have been handled. At least one of the operands must
339 * be matrix. Further, since there are no integer matrix types, the base
340 * type of both operands must be float.
341 */
342 assert(type_a->is_matrix() || type_b->is_matrix());
343 assert(type_a->base_type == GLSL_TYPE_FLOAT);
344 assert(type_b->base_type == GLSL_TYPE_FLOAT);
345
346 /* "* The operator is add (+), subtract (-), or divide (/), and the
347 * operands are matrices with the same number of rows and the same
348 * number of columns. In this case, the operation is done component-
349 * wise resulting in the same size matrix."
350 * * The operator is multiply (*), where both operands are matrices or
351 * one operand is a vector and the other a matrix. A right vector
352 * operand is treated as a column vector and a left vector operand as a
353 * row vector. In all these cases, it is required that the number of
354 * columns of the left operand is equal to the number of rows of the
355 * right operand. Then, the multiply (*) operation does a linear
356 * algebraic multiply, yielding an object that has the same number of
357 * rows as the left operand and the same number of columns as the right
358 * operand. Section 5.10 "Vector and Matrix Operations" explains in
359 * more detail how vectors and matrices are operated on."
360 */
361 if (! multiply) {
362 if (type_a == type_b)
363 return type_a;
364 } else {
365 if (type_a->is_matrix() && type_b->is_matrix()) {
366 /* Matrix multiply. The columns of A must match the rows of B. Given
367 * the other previously tested constraints, this means the vector type
368 * of a row from A must be the same as the vector type of a column from
369 * B.
370 */
371 if (type_a->row_type() == type_b->column_type()) {
372 /* The resulting matrix has the number of columns of matrix B and
373 * the number of rows of matrix A. We get the row count of A by
374 * looking at the size of a vector that makes up a column. The
375 * transpose (size of a row) is done for B.
376 */
377 const glsl_type *const type =
378 glsl_type::get_instance(type_a->base_type,
379 type_a->column_type()->vector_elements,
380 type_b->row_type()->vector_elements);
381 assert(type != glsl_type::error_type);
382
383 return type;
384 }
385 } else if (type_a->is_matrix()) {
386 /* A is a matrix and B is a column vector. Columns of A must match
387 * rows of B. Given the other previously tested constraints, this
388 * means the vector type of a row from A must be the same as the
389 * vector the type of B.
390 */
391 if (type_a->row_type() == type_b) {
392 /* The resulting vector has a number of elements equal to
393 * the number of rows of matrix A. */
394 const glsl_type *const type =
395 glsl_type::get_instance(type_a->base_type,
396 type_a->column_type()->vector_elements,
397 1);
398 assert(type != glsl_type::error_type);
399
400 return type;
401 }
402 } else {
403 assert(type_b->is_matrix());
404
405 /* A is a row vector and B is a matrix. Columns of A must match rows
406 * of B. Given the other previously tested constraints, this means
407 * the type of A must be the same as the vector type of a column from
408 * B.
409 */
410 if (type_a == type_b->column_type()) {
411 /* The resulting vector has a number of elements equal to
412 * the number of columns of matrix B. */
413 const glsl_type *const type =
414 glsl_type::get_instance(type_a->base_type,
415 type_b->row_type()->vector_elements,
416 1);
417 assert(type != glsl_type::error_type);
418
419 return type;
420 }
421 }
422
423 _mesa_glsl_error(loc, state, "size mismatch for matrix multiplication");
424 return glsl_type::error_type;
425 }
426
427
428 /* "All other cases are illegal."
429 */
430 _mesa_glsl_error(loc, state, "type mismatch");
431 return glsl_type::error_type;
432 }
433
434
435 static const struct glsl_type *
436 unary_arithmetic_result_type(const struct glsl_type *type,
437 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
438 {
439 /* From GLSL 1.50 spec, page 57:
440 *
441 * "The arithmetic unary operators negate (-), post- and pre-increment
442 * and decrement (-- and ++) operate on integer or floating-point
443 * values (including vectors and matrices). All unary operators work
444 * component-wise on their operands. These result with the same type
445 * they operated on."
446 */
447 if (!type->is_numeric()) {
448 _mesa_glsl_error(loc, state,
449 "operands to arithmetic operators must be numeric");
450 return glsl_type::error_type;
451 }
452
453 return type;
454 }
455
456 /**
457 * \brief Return the result type of a bit-logic operation.
458 *
459 * If the given types to the bit-logic operator are invalid, return
460 * glsl_type::error_type.
461 *
462 * \param type_a Type of LHS of bit-logic op
463 * \param type_b Type of RHS of bit-logic op
464 */
465 static const struct glsl_type *
466 bit_logic_result_type(const struct glsl_type *type_a,
467 const struct glsl_type *type_b,
468 ast_operators op,
469 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
470 {
471 if (!state->check_bitwise_operations_allowed(loc)) {
472 return glsl_type::error_type;
473 }
474
475 /* From page 50 (page 56 of PDF) of GLSL 1.30 spec:
476 *
477 * "The bitwise operators and (&), exclusive-or (^), and inclusive-or
478 * (|). The operands must be of type signed or unsigned integers or
479 * integer vectors."
480 */
481 if (!type_a->is_integer()) {
482 _mesa_glsl_error(loc, state, "LHS of `%s' must be an integer",
483 ast_expression::operator_string(op));
484 return glsl_type::error_type;
485 }
486 if (!type_b->is_integer()) {
487 _mesa_glsl_error(loc, state, "RHS of `%s' must be an integer",
488 ast_expression::operator_string(op));
489 return glsl_type::error_type;
490 }
491
492 /* "The fundamental types of the operands (signed or unsigned) must
493 * match,"
494 */
495 if (type_a->base_type != type_b->base_type) {
496 _mesa_glsl_error(loc, state, "operands of `%s' must have the same "
497 "base type", ast_expression::operator_string(op));
498 return glsl_type::error_type;
499 }
500
501 /* "The operands cannot be vectors of differing size." */
502 if (type_a->is_vector() &&
503 type_b->is_vector() &&
504 type_a->vector_elements != type_b->vector_elements) {
505 _mesa_glsl_error(loc, state, "operands of `%s' cannot be vectors of "
506 "different sizes", ast_expression::operator_string(op));
507 return glsl_type::error_type;
508 }
509
510 /* "If one operand is a scalar and the other a vector, the scalar is
511 * applied component-wise to the vector, resulting in the same type as
512 * the vector. The fundamental types of the operands [...] will be the
513 * resulting fundamental type."
514 */
515 if (type_a->is_scalar())
516 return type_b;
517 else
518 return type_a;
519 }
520
521 static const struct glsl_type *
522 modulus_result_type(const struct glsl_type *type_a,
523 const struct glsl_type *type_b,
524 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
525 {
526 if (!state->check_version(130, 300, loc, "operator '%%' is reserved")) {
527 return glsl_type::error_type;
528 }
529
530 /* From GLSL 1.50 spec, page 56:
531 * "The operator modulus (%) operates on signed or unsigned integers or
532 * integer vectors. The operand types must both be signed or both be
533 * unsigned."
534 */
535 if (!type_a->is_integer()) {
536 _mesa_glsl_error(loc, state, "LHS of operator %% must be an integer");
537 return glsl_type::error_type;
538 }
539 if (!type_b->is_integer()) {
540 _mesa_glsl_error(loc, state, "RHS of operator %% must be an integer");
541 return glsl_type::error_type;
542 }
543 if (type_a->base_type != type_b->base_type) {
544 _mesa_glsl_error(loc, state,
545 "operands of %% must have the same base type");
546 return glsl_type::error_type;
547 }
548
549 /* "The operands cannot be vectors of differing size. If one operand is
550 * a scalar and the other vector, then the scalar is applied component-
551 * wise to the vector, resulting in the same type as the vector. If both
552 * are vectors of the same size, the result is computed component-wise."
553 */
554 if (type_a->is_vector()) {
555 if (!type_b->is_vector()
556 || (type_a->vector_elements == type_b->vector_elements))
557 return type_a;
558 } else
559 return type_b;
560
561 /* "The operator modulus (%) is not defined for any other data types
562 * (non-integer types)."
563 */
564 _mesa_glsl_error(loc, state, "type mismatch");
565 return glsl_type::error_type;
566 }
567
568
569 static const struct glsl_type *
570 relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
571 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
572 {
573 const glsl_type *type_a = value_a->type;
574 const glsl_type *type_b = value_b->type;
575
576 /* From GLSL 1.50 spec, page 56:
577 * "The relational operators greater than (>), less than (<), greater
578 * than or equal (>=), and less than or equal (<=) operate only on
579 * scalar integer and scalar floating-point expressions."
580 */
581 if (!type_a->is_numeric()
582 || !type_b->is_numeric()
583 || !type_a->is_scalar()
584 || !type_b->is_scalar()) {
585 _mesa_glsl_error(loc, state,
586 "operands to relational operators must be scalar and "
587 "numeric");
588 return glsl_type::error_type;
589 }
590
591 /* "Either the operands' types must match, or the conversions from
592 * Section 4.1.10 "Implicit Conversions" will be applied to the integer
593 * operand, after which the types must match."
594 */
595 if (!apply_implicit_conversion(type_a, value_b, state)
596 && !apply_implicit_conversion(type_b, value_a, state)) {
597 _mesa_glsl_error(loc, state,
598 "could not implicitly convert operands to "
599 "relational operator");
600 return glsl_type::error_type;
601 }
602 type_a = value_a->type;
603 type_b = value_b->type;
604
605 if (type_a->base_type != type_b->base_type) {
606 _mesa_glsl_error(loc, state, "base type mismatch");
607 return glsl_type::error_type;
608 }
609
610 /* "The result is scalar Boolean."
611 */
612 return glsl_type::bool_type;
613 }
614
615 /**
616 * \brief Return the result type of a bit-shift operation.
617 *
618 * If the given types to the bit-shift operator are invalid, return
619 * glsl_type::error_type.
620 *
621 * \param type_a Type of LHS of bit-shift op
622 * \param type_b Type of RHS of bit-shift op
623 */
624 static const struct glsl_type *
625 shift_result_type(const struct glsl_type *type_a,
626 const struct glsl_type *type_b,
627 ast_operators op,
628 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
629 {
630 if (!state->check_bitwise_operations_allowed(loc)) {
631 return glsl_type::error_type;
632 }
633
634 /* From page 50 (page 56 of the PDF) of the GLSL 1.30 spec:
635 *
636 * "The shift operators (<<) and (>>). For both operators, the operands
637 * must be signed or unsigned integers or integer vectors. One operand
638 * can be signed while the other is unsigned."
639 */
640 if (!type_a->is_integer()) {
641 _mesa_glsl_error(loc, state, "LHS of operator %s must be an integer or "
642 "integer vector", ast_expression::operator_string(op));
643 return glsl_type::error_type;
644
645 }
646 if (!type_b->is_integer()) {
647 _mesa_glsl_error(loc, state, "RHS of operator %s must be an integer or "
648 "integer vector", ast_expression::operator_string(op));
649 return glsl_type::error_type;
650 }
651
652 /* "If the first operand is a scalar, the second operand has to be
653 * a scalar as well."
654 */
655 if (type_a->is_scalar() && !type_b->is_scalar()) {
656 _mesa_glsl_error(loc, state, "if the first operand of %s is scalar, the "
657 "second must be scalar as well",
658 ast_expression::operator_string(op));
659 return glsl_type::error_type;
660 }
661
662 /* If both operands are vectors, check that they have same number of
663 * elements.
664 */
665 if (type_a->is_vector() &&
666 type_b->is_vector() &&
667 type_a->vector_elements != type_b->vector_elements) {
668 _mesa_glsl_error(loc, state, "vector operands to operator %s must "
669 "have same number of elements",
670 ast_expression::operator_string(op));
671 return glsl_type::error_type;
672 }
673
674 /* "In all cases, the resulting type will be the same type as the left
675 * operand."
676 */
677 return type_a;
678 }
679
680 /**
681 * Validates that a value can be assigned to a location with a specified type
682 *
683 * Validates that \c rhs can be assigned to some location. If the types are
684 * not an exact match but an automatic conversion is possible, \c rhs will be
685 * converted.
686 *
687 * \return
688 * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
689 * Otherwise the actual RHS to be assigned will be returned. This may be
690 * \c rhs, or it may be \c rhs after some type conversion.
691 *
692 * \note
693 * In addition to being used for assignments, this function is used to
694 * type-check return values.
695 */
696 ir_rvalue *
697 validate_assignment(struct _mesa_glsl_parse_state *state,
698 YYLTYPE loc, const glsl_type *lhs_type,
699 ir_rvalue *rhs, bool is_initializer)
700 {
701 /* If there is already some error in the RHS, just return it. Anything
702 * else will lead to an avalanche of error message back to the user.
703 */
704 if (rhs->type->is_error())
705 return rhs;
706
707 /* If the types are identical, the assignment can trivially proceed.
708 */
709 if (rhs->type == lhs_type)
710 return rhs;
711
712 /* If the array element types are the same and the LHS is unsized,
713 * the assignment is okay for initializers embedded in variable
714 * declarations.
715 *
716 * Note: Whole-array assignments are not permitted in GLSL 1.10, but this
717 * is handled by ir_dereference::is_lvalue.
718 */
719 if (lhs_type->is_unsized_array() && rhs->type->is_array()
720 && (lhs_type->element_type() == rhs->type->element_type())) {
721 if (is_initializer) {
722 return rhs;
723 } else {
724 _mesa_glsl_error(&loc, state,
725 "implicitly sized arrays cannot be assigned");
726 return NULL;
727 }
728 }
729
730 /* Check for implicit conversion in GLSL 1.20 */
731 if (apply_implicit_conversion(lhs_type, rhs, state)) {
732 if (rhs->type == lhs_type)
733 return rhs;
734 }
735
736 _mesa_glsl_error(&loc, state,
737 "%s of type %s cannot be assigned to "
738 "variable of type %s",
739 is_initializer ? "initializer" : "value",
740 rhs->type->name, lhs_type->name);
741
742 return NULL;
743 }
744
745 static void
746 mark_whole_array_access(ir_rvalue *access)
747 {
748 ir_dereference_variable *deref = access->as_dereference_variable();
749
750 if (deref && deref->var) {
751 deref->var->data.max_array_access = deref->type->length - 1;
752 }
753 }
754
755 static bool
756 do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state,
757 const char *non_lvalue_description,
758 ir_rvalue *lhs, ir_rvalue *rhs,
759 ir_rvalue **out_rvalue, bool needs_rvalue,
760 bool is_initializer,
761 YYLTYPE lhs_loc)
762 {
763 void *ctx = state;
764 bool error_emitted = (lhs->type->is_error() || rhs->type->is_error());
765 ir_rvalue *extract_channel = NULL;
766
767 /* If the assignment LHS comes back as an ir_binop_vector_extract
768 * expression, move it to the RHS as an ir_triop_vector_insert.
769 */
770 if (lhs->ir_type == ir_type_expression) {
771 ir_expression *const lhs_expr = lhs->as_expression();
772
773 if (unlikely(lhs_expr->operation == ir_binop_vector_extract)) {
774 ir_rvalue *new_rhs =
775 validate_assignment(state, lhs_loc, lhs->type,
776 rhs, is_initializer);
777
778 if (new_rhs == NULL) {
779 return lhs;
780 } else {
781 /* This converts:
782 * - LHS: (expression float vector_extract <vec> <channel>)
783 * - RHS: <scalar>
784 * into:
785 * - LHS: <vec>
786 * - RHS: (expression vec2 vector_insert <vec> <channel> <scalar>)
787 *
788 * The LHS type is now a vector instead of a scalar. Since GLSL
789 * allows assignments to be used as rvalues, we need to re-extract
790 * the channel from assignment_temp when returning the rvalue.
791 */
792 extract_channel = lhs_expr->operands[1];
793 rhs = new(ctx) ir_expression(ir_triop_vector_insert,
794 lhs_expr->operands[0]->type,
795 lhs_expr->operands[0],
796 new_rhs,
797 extract_channel);
798 lhs = lhs_expr->operands[0]->clone(ctx, NULL);
799 }
800 }
801 }
802
803 ir_variable *lhs_var = lhs->variable_referenced();
804 if (lhs_var)
805 lhs_var->data.assigned = true;
806
807 if (!error_emitted) {
808 if (non_lvalue_description != NULL) {
809 _mesa_glsl_error(&lhs_loc, state,
810 "assignment to %s",
811 non_lvalue_description);
812 error_emitted = true;
813 } else if (lhs_var != NULL && lhs_var->data.read_only) {
814 _mesa_glsl_error(&lhs_loc, state,
815 "assignment to read-only variable '%s'",
816 lhs_var->name);
817 error_emitted = true;
818 } else if (lhs->type->is_array() &&
819 !state->check_version(120, 300, &lhs_loc,
820 "whole array assignment forbidden")) {
821 /* From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
822 *
823 * "Other binary or unary expressions, non-dereferenced
824 * arrays, function names, swizzles with repeated fields,
825 * and constants cannot be l-values."
826 *
827 * The restriction on arrays is lifted in GLSL 1.20 and GLSL ES 3.00.
828 */
829 error_emitted = true;
830 } else if (!lhs->is_lvalue()) {
831 _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment");
832 error_emitted = true;
833 }
834 }
835
836 ir_rvalue *new_rhs =
837 validate_assignment(state, lhs_loc, lhs->type, rhs, is_initializer);
838 if (new_rhs != NULL) {
839 rhs = new_rhs;
840
841 /* If the LHS array was not declared with a size, it takes it size from
842 * the RHS. If the LHS is an l-value and a whole array, it must be a
843 * dereference of a variable. Any other case would require that the LHS
844 * is either not an l-value or not a whole array.
845 */
846 if (lhs->type->is_unsized_array()) {
847 ir_dereference *const d = lhs->as_dereference();
848
849 assert(d != NULL);
850
851 ir_variable *const var = d->variable_referenced();
852
853 assert(var != NULL);
854
855 if (var->data.max_array_access >= unsigned(rhs->type->array_size())) {
856 /* FINISHME: This should actually log the location of the RHS. */
857 _mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to "
858 "previous access",
859 var->data.max_array_access);
860 }
861
862 var->type = glsl_type::get_array_instance(lhs->type->element_type(),
863 rhs->type->array_size());
864 d->type = var->type;
865 }
866 if (lhs->type->is_array()) {
867 mark_whole_array_access(rhs);
868 mark_whole_array_access(lhs);
869 }
870 }
871
872 /* Most callers of do_assignment (assign, add_assign, pre_inc/dec,
873 * but not post_inc) need the converted assigned value as an rvalue
874 * to handle things like:
875 *
876 * i = j += 1;
877 */
878 if (needs_rvalue) {
879 ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp",
880 ir_var_temporary);
881 instructions->push_tail(var);
882 instructions->push_tail(assign(var, rhs));
883
884 if (!error_emitted) {
885 ir_dereference_variable *deref_var = new(ctx) ir_dereference_variable(var);
886 instructions->push_tail(new(ctx) ir_assignment(lhs, deref_var));
887 }
888 ir_rvalue *rvalue = new(ctx) ir_dereference_variable(var);
889
890 if (extract_channel) {
891 rvalue = new(ctx) ir_expression(ir_binop_vector_extract,
892 rvalue,
893 extract_channel->clone(ctx, NULL));
894 }
895
896 *out_rvalue = rvalue;
897 } else {
898 if (!error_emitted)
899 instructions->push_tail(new(ctx) ir_assignment(lhs, rhs));
900 *out_rvalue = NULL;
901 }
902
903 return error_emitted;
904 }
905
906 static ir_rvalue *
907 get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue)
908 {
909 void *ctx = ralloc_parent(lvalue);
910 ir_variable *var;
911
912 var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp",
913 ir_var_temporary);
914 instructions->push_tail(var);
915
916 instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
917 lvalue));
918
919 return new(ctx) ir_dereference_variable(var);
920 }
921
922
923 ir_rvalue *
924 ast_node::hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
925 {
926 (void) instructions;
927 (void) state;
928
929 return NULL;
930 }
931
932 void
933 ast_function_expression::hir_no_rvalue(exec_list *instructions,
934 struct _mesa_glsl_parse_state *state)
935 {
936 (void)hir(instructions, state);
937 }
938
939 void
940 ast_aggregate_initializer::hir_no_rvalue(exec_list *instructions,
941 struct _mesa_glsl_parse_state *state)
942 {
943 (void)hir(instructions, state);
944 }
945
946 static ir_rvalue *
947 do_comparison(void *mem_ctx, int operation, ir_rvalue *op0, ir_rvalue *op1)
948 {
949 int join_op;
950 ir_rvalue *cmp = NULL;
951
952 if (operation == ir_binop_all_equal)
953 join_op = ir_binop_logic_and;
954 else
955 join_op = ir_binop_logic_or;
956
957 switch (op0->type->base_type) {
958 case GLSL_TYPE_FLOAT:
959 case GLSL_TYPE_UINT:
960 case GLSL_TYPE_INT:
961 case GLSL_TYPE_BOOL:
962 return new(mem_ctx) ir_expression(operation, op0, op1);
963
964 case GLSL_TYPE_ARRAY: {
965 for (unsigned int i = 0; i < op0->type->length; i++) {
966 ir_rvalue *e0, *e1, *result;
967
968 e0 = new(mem_ctx) ir_dereference_array(op0->clone(mem_ctx, NULL),
969 new(mem_ctx) ir_constant(i));
970 e1 = new(mem_ctx) ir_dereference_array(op1->clone(mem_ctx, NULL),
971 new(mem_ctx) ir_constant(i));
972 result = do_comparison(mem_ctx, operation, e0, e1);
973
974 if (cmp) {
975 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
976 } else {
977 cmp = result;
978 }
979 }
980
981 mark_whole_array_access(op0);
982 mark_whole_array_access(op1);
983 break;
984 }
985
986 case GLSL_TYPE_STRUCT: {
987 for (unsigned int i = 0; i < op0->type->length; i++) {
988 ir_rvalue *e0, *e1, *result;
989 const char *field_name = op0->type->fields.structure[i].name;
990
991 e0 = new(mem_ctx) ir_dereference_record(op0->clone(mem_ctx, NULL),
992 field_name);
993 e1 = new(mem_ctx) ir_dereference_record(op1->clone(mem_ctx, NULL),
994 field_name);
995 result = do_comparison(mem_ctx, operation, e0, e1);
996
997 if (cmp) {
998 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
999 } else {
1000 cmp = result;
1001 }
1002 }
1003 break;
1004 }
1005
1006 case GLSL_TYPE_ERROR:
1007 case GLSL_TYPE_VOID:
1008 case GLSL_TYPE_SAMPLER:
1009 case GLSL_TYPE_IMAGE:
1010 case GLSL_TYPE_INTERFACE:
1011 case GLSL_TYPE_ATOMIC_UINT:
1012 /* I assume a comparison of a struct containing a sampler just
1013 * ignores the sampler present in the type.
1014 */
1015 break;
1016 }
1017
1018 if (cmp == NULL)
1019 cmp = new(mem_ctx) ir_constant(true);
1020
1021 return cmp;
1022 }
1023
1024 /* For logical operations, we want to ensure that the operands are
1025 * scalar booleans. If it isn't, emit an error and return a constant
1026 * boolean to avoid triggering cascading error messages.
1027 */
1028 ir_rvalue *
1029 get_scalar_boolean_operand(exec_list *instructions,
1030 struct _mesa_glsl_parse_state *state,
1031 ast_expression *parent_expr,
1032 int operand,
1033 const char *operand_name,
1034 bool *error_emitted)
1035 {
1036 ast_expression *expr = parent_expr->subexpressions[operand];
1037 void *ctx = state;
1038 ir_rvalue *val = expr->hir(instructions, state);
1039
1040 if (val->type->is_boolean() && val->type->is_scalar())
1041 return val;
1042
1043 if (!*error_emitted) {
1044 YYLTYPE loc = expr->get_location();
1045 _mesa_glsl_error(&loc, state, "%s of `%s' must be scalar boolean",
1046 operand_name,
1047 parent_expr->operator_string(parent_expr->oper));
1048 *error_emitted = true;
1049 }
1050
1051 return new(ctx) ir_constant(true);
1052 }
1053
1054 /**
1055 * If name refers to a builtin array whose maximum allowed size is less than
1056 * size, report an error and return true. Otherwise return false.
1057 */
1058 void
1059 check_builtin_array_max_size(const char *name, unsigned size,
1060 YYLTYPE loc, struct _mesa_glsl_parse_state *state)
1061 {
1062 if ((strcmp("gl_TexCoord", name) == 0)
1063 && (size > state->Const.MaxTextureCoords)) {
1064 /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec:
1065 *
1066 * "The size [of gl_TexCoord] can be at most
1067 * gl_MaxTextureCoords."
1068 */
1069 _mesa_glsl_error(&loc, state, "`gl_TexCoord' array size cannot "
1070 "be larger than gl_MaxTextureCoords (%u)",
1071 state->Const.MaxTextureCoords);
1072 } else if (strcmp("gl_ClipDistance", name) == 0
1073 && size > state->Const.MaxClipPlanes) {
1074 /* From section 7.1 (Vertex Shader Special Variables) of the
1075 * GLSL 1.30 spec:
1076 *
1077 * "The gl_ClipDistance array is predeclared as unsized and
1078 * must be sized by the shader either redeclaring it with a
1079 * size or indexing it only with integral constant
1080 * expressions. ... The size can be at most
1081 * gl_MaxClipDistances."
1082 */
1083 _mesa_glsl_error(&loc, state, "`gl_ClipDistance' array size cannot "
1084 "be larger than gl_MaxClipDistances (%u)",
1085 state->Const.MaxClipPlanes);
1086 }
1087 }
1088
1089 /**
1090 * Create the constant 1, of a which is appropriate for incrementing and
1091 * decrementing values of the given GLSL type. For example, if type is vec4,
1092 * this creates a constant value of 1.0 having type float.
1093 *
1094 * If the given type is invalid for increment and decrement operators, return
1095 * a floating point 1--the error will be detected later.
1096 */
1097 static ir_rvalue *
1098 constant_one_for_inc_dec(void *ctx, const glsl_type *type)
1099 {
1100 switch (type->base_type) {
1101 case GLSL_TYPE_UINT:
1102 return new(ctx) ir_constant((unsigned) 1);
1103 case GLSL_TYPE_INT:
1104 return new(ctx) ir_constant(1);
1105 default:
1106 case GLSL_TYPE_FLOAT:
1107 return new(ctx) ir_constant(1.0f);
1108 }
1109 }
1110
1111 ir_rvalue *
1112 ast_expression::hir(exec_list *instructions,
1113 struct _mesa_glsl_parse_state *state)
1114 {
1115 return do_hir(instructions, state, true);
1116 }
1117
1118 void
1119 ast_expression::hir_no_rvalue(exec_list *instructions,
1120 struct _mesa_glsl_parse_state *state)
1121 {
1122 do_hir(instructions, state, false);
1123 }
1124
1125 ir_rvalue *
1126 ast_expression::do_hir(exec_list *instructions,
1127 struct _mesa_glsl_parse_state *state,
1128 bool needs_rvalue)
1129 {
1130 void *ctx = state;
1131 static const int operations[AST_NUM_OPERATORS] = {
1132 -1, /* ast_assign doesn't convert to ir_expression. */
1133 -1, /* ast_plus doesn't convert to ir_expression. */
1134 ir_unop_neg,
1135 ir_binop_add,
1136 ir_binop_sub,
1137 ir_binop_mul,
1138 ir_binop_div,
1139 ir_binop_mod,
1140 ir_binop_lshift,
1141 ir_binop_rshift,
1142 ir_binop_less,
1143 ir_binop_greater,
1144 ir_binop_lequal,
1145 ir_binop_gequal,
1146 ir_binop_all_equal,
1147 ir_binop_any_nequal,
1148 ir_binop_bit_and,
1149 ir_binop_bit_xor,
1150 ir_binop_bit_or,
1151 ir_unop_bit_not,
1152 ir_binop_logic_and,
1153 ir_binop_logic_xor,
1154 ir_binop_logic_or,
1155 ir_unop_logic_not,
1156
1157 /* Note: The following block of expression types actually convert
1158 * to multiple IR instructions.
1159 */
1160 ir_binop_mul, /* ast_mul_assign */
1161 ir_binop_div, /* ast_div_assign */
1162 ir_binop_mod, /* ast_mod_assign */
1163 ir_binop_add, /* ast_add_assign */
1164 ir_binop_sub, /* ast_sub_assign */
1165 ir_binop_lshift, /* ast_ls_assign */
1166 ir_binop_rshift, /* ast_rs_assign */
1167 ir_binop_bit_and, /* ast_and_assign */
1168 ir_binop_bit_xor, /* ast_xor_assign */
1169 ir_binop_bit_or, /* ast_or_assign */
1170
1171 -1, /* ast_conditional doesn't convert to ir_expression. */
1172 ir_binop_add, /* ast_pre_inc. */
1173 ir_binop_sub, /* ast_pre_dec. */
1174 ir_binop_add, /* ast_post_inc. */
1175 ir_binop_sub, /* ast_post_dec. */
1176 -1, /* ast_field_selection doesn't conv to ir_expression. */
1177 -1, /* ast_array_index doesn't convert to ir_expression. */
1178 -1, /* ast_function_call doesn't conv to ir_expression. */
1179 -1, /* ast_identifier doesn't convert to ir_expression. */
1180 -1, /* ast_int_constant doesn't convert to ir_expression. */
1181 -1, /* ast_uint_constant doesn't conv to ir_expression. */
1182 -1, /* ast_float_constant doesn't conv to ir_expression. */
1183 -1, /* ast_bool_constant doesn't conv to ir_expression. */
1184 -1, /* ast_sequence doesn't convert to ir_expression. */
1185 };
1186 ir_rvalue *result = NULL;
1187 ir_rvalue *op[3];
1188 const struct glsl_type *type; /* a temporary variable for switch cases */
1189 bool error_emitted = false;
1190 YYLTYPE loc;
1191
1192 loc = this->get_location();
1193
1194 switch (this->oper) {
1195 case ast_aggregate:
1196 assert(!"ast_aggregate: Should never get here.");
1197 break;
1198
1199 case ast_assign: {
1200 op[0] = this->subexpressions[0]->hir(instructions, state);
1201 op[1] = this->subexpressions[1]->hir(instructions, state);
1202
1203 error_emitted =
1204 do_assignment(instructions, state,
1205 this->subexpressions[0]->non_lvalue_description,
1206 op[0], op[1], &result, needs_rvalue, false,
1207 this->subexpressions[0]->get_location());
1208 break;
1209 }
1210
1211 case ast_plus:
1212 op[0] = this->subexpressions[0]->hir(instructions, state);
1213
1214 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1215
1216 error_emitted = type->is_error();
1217
1218 result = op[0];
1219 break;
1220
1221 case ast_neg:
1222 op[0] = this->subexpressions[0]->hir(instructions, state);
1223
1224 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1225
1226 error_emitted = type->is_error();
1227
1228 result = new(ctx) ir_expression(operations[this->oper], type,
1229 op[0], NULL);
1230 break;
1231
1232 case ast_add:
1233 case ast_sub:
1234 case ast_mul:
1235 case ast_div:
1236 op[0] = this->subexpressions[0]->hir(instructions, state);
1237 op[1] = this->subexpressions[1]->hir(instructions, state);
1238
1239 type = arithmetic_result_type(op[0], op[1],
1240 (this->oper == ast_mul),
1241 state, & loc);
1242 error_emitted = type->is_error();
1243
1244 result = new(ctx) ir_expression(operations[this->oper], type,
1245 op[0], op[1]);
1246 break;
1247
1248 case ast_mod:
1249 op[0] = this->subexpressions[0]->hir(instructions, state);
1250 op[1] = this->subexpressions[1]->hir(instructions, state);
1251
1252 type = modulus_result_type(op[0]->type, op[1]->type, state, & loc);
1253
1254 assert(operations[this->oper] == ir_binop_mod);
1255
1256 result = new(ctx) ir_expression(operations[this->oper], type,
1257 op[0], op[1]);
1258 error_emitted = type->is_error();
1259 break;
1260
1261 case ast_lshift:
1262 case ast_rshift:
1263 if (!state->check_bitwise_operations_allowed(&loc)) {
1264 error_emitted = true;
1265 }
1266
1267 op[0] = this->subexpressions[0]->hir(instructions, state);
1268 op[1] = this->subexpressions[1]->hir(instructions, state);
1269 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1270 &loc);
1271 result = new(ctx) ir_expression(operations[this->oper], type,
1272 op[0], op[1]);
1273 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1274 break;
1275
1276 case ast_less:
1277 case ast_greater:
1278 case ast_lequal:
1279 case ast_gequal:
1280 op[0] = this->subexpressions[0]->hir(instructions, state);
1281 op[1] = this->subexpressions[1]->hir(instructions, state);
1282
1283 type = relational_result_type(op[0], op[1], state, & loc);
1284
1285 /* The relational operators must either generate an error or result
1286 * in a scalar boolean. See page 57 of the GLSL 1.50 spec.
1287 */
1288 assert(type->is_error()
1289 || ((type->base_type == GLSL_TYPE_BOOL)
1290 && type->is_scalar()));
1291
1292 result = new(ctx) ir_expression(operations[this->oper], type,
1293 op[0], op[1]);
1294 error_emitted = type->is_error();
1295 break;
1296
1297 case ast_nequal:
1298 case ast_equal:
1299 op[0] = this->subexpressions[0]->hir(instructions, state);
1300 op[1] = this->subexpressions[1]->hir(instructions, state);
1301
1302 /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
1303 *
1304 * "The equality operators equal (==), and not equal (!=)
1305 * operate on all types. They result in a scalar Boolean. If
1306 * the operand types do not match, then there must be a
1307 * conversion from Section 4.1.10 "Implicit Conversions"
1308 * applied to one operand that can make them match, in which
1309 * case this conversion is done."
1310 */
1311 if ((!apply_implicit_conversion(op[0]->type, op[1], state)
1312 && !apply_implicit_conversion(op[1]->type, op[0], state))
1313 || (op[0]->type != op[1]->type)) {
1314 _mesa_glsl_error(& loc, state, "operands of `%s' must have the same "
1315 "type", (this->oper == ast_equal) ? "==" : "!=");
1316 error_emitted = true;
1317 } else if ((op[0]->type->is_array() || op[1]->type->is_array()) &&
1318 !state->check_version(120, 300, &loc,
1319 "array comparisons forbidden")) {
1320 error_emitted = true;
1321 } else if ((op[0]->type->contains_opaque() ||
1322 op[1]->type->contains_opaque())) {
1323 _mesa_glsl_error(&loc, state, "opaque type comparisons forbidden");
1324 error_emitted = true;
1325 }
1326
1327 if (error_emitted) {
1328 result = new(ctx) ir_constant(false);
1329 } else {
1330 result = do_comparison(ctx, operations[this->oper], op[0], op[1]);
1331 assert(result->type == glsl_type::bool_type);
1332 }
1333 break;
1334
1335 case ast_bit_and:
1336 case ast_bit_xor:
1337 case ast_bit_or:
1338 op[0] = this->subexpressions[0]->hir(instructions, state);
1339 op[1] = this->subexpressions[1]->hir(instructions, state);
1340 type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
1341 state, &loc);
1342 result = new(ctx) ir_expression(operations[this->oper], type,
1343 op[0], op[1]);
1344 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1345 break;
1346
1347 case ast_bit_not:
1348 op[0] = this->subexpressions[0]->hir(instructions, state);
1349
1350 if (!state->check_bitwise_operations_allowed(&loc)) {
1351 error_emitted = true;
1352 }
1353
1354 if (!op[0]->type->is_integer()) {
1355 _mesa_glsl_error(&loc, state, "operand of `~' must be an integer");
1356 error_emitted = true;
1357 }
1358
1359 type = error_emitted ? glsl_type::error_type : op[0]->type;
1360 result = new(ctx) ir_expression(ir_unop_bit_not, type, op[0], NULL);
1361 break;
1362
1363 case ast_logic_and: {
1364 exec_list rhs_instructions;
1365 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1366 "LHS", &error_emitted);
1367 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1368 "RHS", &error_emitted);
1369
1370 if (rhs_instructions.is_empty()) {
1371 result = new(ctx) ir_expression(ir_binop_logic_and, op[0], op[1]);
1372 type = result->type;
1373 } else {
1374 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1375 "and_tmp",
1376 ir_var_temporary);
1377 instructions->push_tail(tmp);
1378
1379 ir_if *const stmt = new(ctx) ir_if(op[0]);
1380 instructions->push_tail(stmt);
1381
1382 stmt->then_instructions.append_list(&rhs_instructions);
1383 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1384 ir_assignment *const then_assign =
1385 new(ctx) ir_assignment(then_deref, op[1]);
1386 stmt->then_instructions.push_tail(then_assign);
1387
1388 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1389 ir_assignment *const else_assign =
1390 new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false));
1391 stmt->else_instructions.push_tail(else_assign);
1392
1393 result = new(ctx) ir_dereference_variable(tmp);
1394 type = tmp->type;
1395 }
1396 break;
1397 }
1398
1399 case ast_logic_or: {
1400 exec_list rhs_instructions;
1401 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1402 "LHS", &error_emitted);
1403 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1404 "RHS", &error_emitted);
1405
1406 if (rhs_instructions.is_empty()) {
1407 result = new(ctx) ir_expression(ir_binop_logic_or, op[0], op[1]);
1408 type = result->type;
1409 } else {
1410 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1411 "or_tmp",
1412 ir_var_temporary);
1413 instructions->push_tail(tmp);
1414
1415 ir_if *const stmt = new(ctx) ir_if(op[0]);
1416 instructions->push_tail(stmt);
1417
1418 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1419 ir_assignment *const then_assign =
1420 new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true));
1421 stmt->then_instructions.push_tail(then_assign);
1422
1423 stmt->else_instructions.append_list(&rhs_instructions);
1424 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1425 ir_assignment *const else_assign =
1426 new(ctx) ir_assignment(else_deref, op[1]);
1427 stmt->else_instructions.push_tail(else_assign);
1428
1429 result = new(ctx) ir_dereference_variable(tmp);
1430 type = tmp->type;
1431 }
1432 break;
1433 }
1434
1435 case ast_logic_xor:
1436 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1437 *
1438 * "The logical binary operators and (&&), or ( | | ), and
1439 * exclusive or (^^). They operate only on two Boolean
1440 * expressions and result in a Boolean expression."
1441 */
1442 op[0] = get_scalar_boolean_operand(instructions, state, this, 0, "LHS",
1443 &error_emitted);
1444 op[1] = get_scalar_boolean_operand(instructions, state, this, 1, "RHS",
1445 &error_emitted);
1446
1447 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1448 op[0], op[1]);
1449 break;
1450
1451 case ast_logic_not:
1452 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1453 "operand", &error_emitted);
1454
1455 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1456 op[0], NULL);
1457 break;
1458
1459 case ast_mul_assign:
1460 case ast_div_assign:
1461 case ast_add_assign:
1462 case ast_sub_assign: {
1463 op[0] = this->subexpressions[0]->hir(instructions, state);
1464 op[1] = this->subexpressions[1]->hir(instructions, state);
1465
1466 type = arithmetic_result_type(op[0], op[1],
1467 (this->oper == ast_mul_assign),
1468 state, & loc);
1469
1470 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1471 op[0], op[1]);
1472
1473 error_emitted =
1474 do_assignment(instructions, state,
1475 this->subexpressions[0]->non_lvalue_description,
1476 op[0]->clone(ctx, NULL), temp_rhs,
1477 &result, needs_rvalue, false,
1478 this->subexpressions[0]->get_location());
1479
1480 /* GLSL 1.10 does not allow array assignment. However, we don't have to
1481 * explicitly test for this because none of the binary expression
1482 * operators allow array operands either.
1483 */
1484
1485 break;
1486 }
1487
1488 case ast_mod_assign: {
1489 op[0] = this->subexpressions[0]->hir(instructions, state);
1490 op[1] = this->subexpressions[1]->hir(instructions, state);
1491
1492 type = modulus_result_type(op[0]->type, op[1]->type, state, & loc);
1493
1494 assert(operations[this->oper] == ir_binop_mod);
1495
1496 ir_rvalue *temp_rhs;
1497 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1498 op[0], op[1]);
1499
1500 error_emitted =
1501 do_assignment(instructions, state,
1502 this->subexpressions[0]->non_lvalue_description,
1503 op[0]->clone(ctx, NULL), temp_rhs,
1504 &result, needs_rvalue, false,
1505 this->subexpressions[0]->get_location());
1506 break;
1507 }
1508
1509 case ast_ls_assign:
1510 case ast_rs_assign: {
1511 op[0] = this->subexpressions[0]->hir(instructions, state);
1512 op[1] = this->subexpressions[1]->hir(instructions, state);
1513 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1514 &loc);
1515 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1516 type, op[0], op[1]);
1517 error_emitted =
1518 do_assignment(instructions, state,
1519 this->subexpressions[0]->non_lvalue_description,
1520 op[0]->clone(ctx, NULL), temp_rhs,
1521 &result, needs_rvalue, false,
1522 this->subexpressions[0]->get_location());
1523 break;
1524 }
1525
1526 case ast_and_assign:
1527 case ast_xor_assign:
1528 case ast_or_assign: {
1529 op[0] = this->subexpressions[0]->hir(instructions, state);
1530 op[1] = this->subexpressions[1]->hir(instructions, state);
1531 type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
1532 state, &loc);
1533 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1534 type, op[0], op[1]);
1535 error_emitted =
1536 do_assignment(instructions, state,
1537 this->subexpressions[0]->non_lvalue_description,
1538 op[0]->clone(ctx, NULL), temp_rhs,
1539 &result, needs_rvalue, false,
1540 this->subexpressions[0]->get_location());
1541 break;
1542 }
1543
1544 case ast_conditional: {
1545 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1546 *
1547 * "The ternary selection operator (?:). It operates on three
1548 * expressions (exp1 ? exp2 : exp3). This operator evaluates the
1549 * first expression, which must result in a scalar Boolean."
1550 */
1551 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1552 "condition", &error_emitted);
1553
1554 /* The :? operator is implemented by generating an anonymous temporary
1555 * followed by an if-statement. The last instruction in each branch of
1556 * the if-statement assigns a value to the anonymous temporary. This
1557 * temporary is the r-value of the expression.
1558 */
1559 exec_list then_instructions;
1560 exec_list else_instructions;
1561
1562 op[1] = this->subexpressions[1]->hir(&then_instructions, state);
1563 op[2] = this->subexpressions[2]->hir(&else_instructions, state);
1564
1565 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1566 *
1567 * "The second and third expressions can be any type, as
1568 * long their types match, or there is a conversion in
1569 * Section 4.1.10 "Implicit Conversions" that can be applied
1570 * to one of the expressions to make their types match. This
1571 * resulting matching type is the type of the entire
1572 * expression."
1573 */
1574 if ((!apply_implicit_conversion(op[1]->type, op[2], state)
1575 && !apply_implicit_conversion(op[2]->type, op[1], state))
1576 || (op[1]->type != op[2]->type)) {
1577 YYLTYPE loc = this->subexpressions[1]->get_location();
1578
1579 _mesa_glsl_error(& loc, state, "second and third operands of ?: "
1580 "operator must have matching types");
1581 error_emitted = true;
1582 type = glsl_type::error_type;
1583 } else {
1584 type = op[1]->type;
1585 }
1586
1587 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1588 *
1589 * "The second and third expressions must be the same type, but can
1590 * be of any type other than an array."
1591 */
1592 if (type->is_array() &&
1593 !state->check_version(120, 300, &loc,
1594 "second and third operands of ?: operator "
1595 "cannot be arrays")) {
1596 error_emitted = true;
1597 }
1598
1599 ir_constant *cond_val = op[0]->constant_expression_value();
1600 ir_constant *then_val = op[1]->constant_expression_value();
1601 ir_constant *else_val = op[2]->constant_expression_value();
1602
1603 if (then_instructions.is_empty()
1604 && else_instructions.is_empty()
1605 && (cond_val != NULL) && (then_val != NULL) && (else_val != NULL)) {
1606 result = (cond_val->value.b[0]) ? then_val : else_val;
1607 } else {
1608 ir_variable *const tmp =
1609 new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary);
1610 instructions->push_tail(tmp);
1611
1612 ir_if *const stmt = new(ctx) ir_if(op[0]);
1613 instructions->push_tail(stmt);
1614
1615 then_instructions.move_nodes_to(& stmt->then_instructions);
1616 ir_dereference *const then_deref =
1617 new(ctx) ir_dereference_variable(tmp);
1618 ir_assignment *const then_assign =
1619 new(ctx) ir_assignment(then_deref, op[1]);
1620 stmt->then_instructions.push_tail(then_assign);
1621
1622 else_instructions.move_nodes_to(& stmt->else_instructions);
1623 ir_dereference *const else_deref =
1624 new(ctx) ir_dereference_variable(tmp);
1625 ir_assignment *const else_assign =
1626 new(ctx) ir_assignment(else_deref, op[2]);
1627 stmt->else_instructions.push_tail(else_assign);
1628
1629 result = new(ctx) ir_dereference_variable(tmp);
1630 }
1631 break;
1632 }
1633
1634 case ast_pre_inc:
1635 case ast_pre_dec: {
1636 this->non_lvalue_description = (this->oper == ast_pre_inc)
1637 ? "pre-increment operation" : "pre-decrement operation";
1638
1639 op[0] = this->subexpressions[0]->hir(instructions, state);
1640 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1641
1642 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1643
1644 ir_rvalue *temp_rhs;
1645 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1646 op[0], op[1]);
1647
1648 error_emitted =
1649 do_assignment(instructions, state,
1650 this->subexpressions[0]->non_lvalue_description,
1651 op[0]->clone(ctx, NULL), temp_rhs,
1652 &result, needs_rvalue, false,
1653 this->subexpressions[0]->get_location());
1654 break;
1655 }
1656
1657 case ast_post_inc:
1658 case ast_post_dec: {
1659 this->non_lvalue_description = (this->oper == ast_post_inc)
1660 ? "post-increment operation" : "post-decrement operation";
1661 op[0] = this->subexpressions[0]->hir(instructions, state);
1662 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1663
1664 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1665
1666 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1667
1668 ir_rvalue *temp_rhs;
1669 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1670 op[0], op[1]);
1671
1672 /* Get a temporary of a copy of the lvalue before it's modified.
1673 * This may get thrown away later.
1674 */
1675 result = get_lvalue_copy(instructions, op[0]->clone(ctx, NULL));
1676
1677 ir_rvalue *junk_rvalue;
1678 error_emitted =
1679 do_assignment(instructions, state,
1680 this->subexpressions[0]->non_lvalue_description,
1681 op[0]->clone(ctx, NULL), temp_rhs,
1682 &junk_rvalue, false, false,
1683 this->subexpressions[0]->get_location());
1684
1685 break;
1686 }
1687
1688 case ast_field_selection:
1689 result = _mesa_ast_field_selection_to_hir(this, instructions, state);
1690 break;
1691
1692 case ast_array_index: {
1693 YYLTYPE index_loc = subexpressions[1]->get_location();
1694
1695 op[0] = subexpressions[0]->hir(instructions, state);
1696 op[1] = subexpressions[1]->hir(instructions, state);
1697
1698 result = _mesa_ast_array_index_to_hir(ctx, state, op[0], op[1],
1699 loc, index_loc);
1700
1701 if (result->type->is_error())
1702 error_emitted = true;
1703
1704 break;
1705 }
1706
1707 case ast_function_call:
1708 /* Should *NEVER* get here. ast_function_call should always be handled
1709 * by ast_function_expression::hir.
1710 */
1711 assert(0);
1712 break;
1713
1714 case ast_identifier: {
1715 /* ast_identifier can appear several places in a full abstract syntax
1716 * tree. This particular use must be at location specified in the grammar
1717 * as 'variable_identifier'.
1718 */
1719 ir_variable *var =
1720 state->symbols->get_variable(this->primary_expression.identifier);
1721
1722 if (var != NULL) {
1723 var->data.used = true;
1724 result = new(ctx) ir_dereference_variable(var);
1725 } else {
1726 _mesa_glsl_error(& loc, state, "`%s' undeclared",
1727 this->primary_expression.identifier);
1728
1729 result = ir_rvalue::error_value(ctx);
1730 error_emitted = true;
1731 }
1732 break;
1733 }
1734
1735 case ast_int_constant:
1736 result = new(ctx) ir_constant(this->primary_expression.int_constant);
1737 break;
1738
1739 case ast_uint_constant:
1740 result = new(ctx) ir_constant(this->primary_expression.uint_constant);
1741 break;
1742
1743 case ast_float_constant:
1744 result = new(ctx) ir_constant(this->primary_expression.float_constant);
1745 break;
1746
1747 case ast_bool_constant:
1748 result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant));
1749 break;
1750
1751 case ast_sequence: {
1752 /* It should not be possible to generate a sequence in the AST without
1753 * any expressions in it.
1754 */
1755 assert(!this->expressions.is_empty());
1756
1757 /* The r-value of a sequence is the last expression in the sequence. If
1758 * the other expressions in the sequence do not have side-effects (and
1759 * therefore add instructions to the instruction list), they get dropped
1760 * on the floor.
1761 */
1762 exec_node *previous_tail_pred = NULL;
1763 YYLTYPE previous_operand_loc = loc;
1764
1765 foreach_list_typed (ast_node, ast, link, &this->expressions) {
1766 /* If one of the operands of comma operator does not generate any
1767 * code, we want to emit a warning. At each pass through the loop
1768 * previous_tail_pred will point to the last instruction in the
1769 * stream *before* processing the previous operand. Naturally,
1770 * instructions->tail_pred will point to the last instruction in the
1771 * stream *after* processing the previous operand. If the two
1772 * pointers match, then the previous operand had no effect.
1773 *
1774 * The warning behavior here differs slightly from GCC. GCC will
1775 * only emit a warning if none of the left-hand operands have an
1776 * effect. However, it will emit a warning for each. I believe that
1777 * there are some cases in C (especially with GCC extensions) where
1778 * it is useful to have an intermediate step in a sequence have no
1779 * effect, but I don't think these cases exist in GLSL. Either way,
1780 * it would be a giant hassle to replicate that behavior.
1781 */
1782 if (previous_tail_pred == instructions->tail_pred) {
1783 _mesa_glsl_warning(&previous_operand_loc, state,
1784 "left-hand operand of comma expression has "
1785 "no effect");
1786 }
1787
1788 /* tail_pred is directly accessed instead of using the get_tail()
1789 * method for performance reasons. get_tail() has extra code to
1790 * return NULL when the list is empty. We don't care about that
1791 * here, so using tail_pred directly is fine.
1792 */
1793 previous_tail_pred = instructions->tail_pred;
1794 previous_operand_loc = ast->get_location();
1795
1796 result = ast->hir(instructions, state);
1797 }
1798
1799 /* Any errors should have already been emitted in the loop above.
1800 */
1801 error_emitted = true;
1802 break;
1803 }
1804 }
1805 type = NULL; /* use result->type, not type. */
1806 assert(result != NULL || !needs_rvalue);
1807
1808 if (result && result->type->is_error() && !error_emitted)
1809 _mesa_glsl_error(& loc, state, "type mismatch");
1810
1811 return result;
1812 }
1813
1814
1815 ir_rvalue *
1816 ast_expression_statement::hir(exec_list *instructions,
1817 struct _mesa_glsl_parse_state *state)
1818 {
1819 /* It is possible to have expression statements that don't have an
1820 * expression. This is the solitary semicolon:
1821 *
1822 * for (i = 0; i < 5; i++)
1823 * ;
1824 *
1825 * In this case the expression will be NULL. Test for NULL and don't do
1826 * anything in that case.
1827 */
1828 if (expression != NULL)
1829 expression->hir_no_rvalue(instructions, state);
1830
1831 /* Statements do not have r-values.
1832 */
1833 return NULL;
1834 }
1835
1836
1837 ir_rvalue *
1838 ast_compound_statement::hir(exec_list *instructions,
1839 struct _mesa_glsl_parse_state *state)
1840 {
1841 if (new_scope)
1842 state->symbols->push_scope();
1843
1844 foreach_list_typed (ast_node, ast, link, &this->statements)
1845 ast->hir(instructions, state);
1846
1847 if (new_scope)
1848 state->symbols->pop_scope();
1849
1850 /* Compound statements do not have r-values.
1851 */
1852 return NULL;
1853 }
1854
1855 /**
1856 * Evaluate the given exec_node (which should be an ast_node representing
1857 * a single array dimension) and return its integer value.
1858 */
1859 static unsigned
1860 process_array_size(exec_node *node,
1861 struct _mesa_glsl_parse_state *state)
1862 {
1863 exec_list dummy_instructions;
1864
1865 ast_node *array_size = exec_node_data(ast_node, node, link);
1866 ir_rvalue *const ir = array_size->hir(& dummy_instructions, state);
1867 YYLTYPE loc = array_size->get_location();
1868
1869 if (ir == NULL) {
1870 _mesa_glsl_error(& loc, state,
1871 "array size could not be resolved");
1872 return 0;
1873 }
1874
1875 if (!ir->type->is_integer()) {
1876 _mesa_glsl_error(& loc, state,
1877 "array size must be integer type");
1878 return 0;
1879 }
1880
1881 if (!ir->type->is_scalar()) {
1882 _mesa_glsl_error(& loc, state,
1883 "array size must be scalar type");
1884 return 0;
1885 }
1886
1887 ir_constant *const size = ir->constant_expression_value();
1888 if (size == NULL) {
1889 _mesa_glsl_error(& loc, state, "array size must be a "
1890 "constant valued expression");
1891 return 0;
1892 }
1893
1894 if (size->value.i[0] <= 0) {
1895 _mesa_glsl_error(& loc, state, "array size must be > 0");
1896 return 0;
1897 }
1898
1899 assert(size->type == ir->type);
1900
1901 /* If the array size is const (and we've verified that
1902 * it is) then no instructions should have been emitted
1903 * when we converted it to HIR. If they were emitted,
1904 * then either the array size isn't const after all, or
1905 * we are emitting unnecessary instructions.
1906 */
1907 assert(dummy_instructions.is_empty());
1908
1909 return size->value.u[0];
1910 }
1911
1912 static const glsl_type *
1913 process_array_type(YYLTYPE *loc, const glsl_type *base,
1914 ast_array_specifier *array_specifier,
1915 struct _mesa_glsl_parse_state *state)
1916 {
1917 const glsl_type *array_type = base;
1918
1919 if (array_specifier != NULL) {
1920 if (base->is_array()) {
1921
1922 /* From page 19 (page 25) of the GLSL 1.20 spec:
1923 *
1924 * "Only one-dimensional arrays may be declared."
1925 */
1926 if (!state->ARB_arrays_of_arrays_enable) {
1927 _mesa_glsl_error(loc, state,
1928 "invalid array of `%s'"
1929 "GL_ARB_arrays_of_arrays "
1930 "required for defining arrays of arrays",
1931 base->name);
1932 return glsl_type::error_type;
1933 }
1934
1935 if (base->length == 0) {
1936 _mesa_glsl_error(loc, state,
1937 "only the outermost array dimension can "
1938 "be unsized",
1939 base->name);
1940 return glsl_type::error_type;
1941 }
1942 }
1943
1944 for (exec_node *node = array_specifier->array_dimensions.tail_pred;
1945 !node->is_head_sentinel(); node = node->prev) {
1946 unsigned array_size = process_array_size(node, state);
1947 array_type = glsl_type::get_array_instance(array_type, array_size);
1948 }
1949
1950 if (array_specifier->is_unsized_array)
1951 array_type = glsl_type::get_array_instance(array_type, 0);
1952 }
1953
1954 return array_type;
1955 }
1956
1957
1958 const glsl_type *
1959 ast_type_specifier::glsl_type(const char **name,
1960 struct _mesa_glsl_parse_state *state) const
1961 {
1962 const struct glsl_type *type;
1963
1964 type = state->symbols->get_type(this->type_name);
1965 *name = this->type_name;
1966
1967 YYLTYPE loc = this->get_location();
1968 type = process_array_type(&loc, type, this->array_specifier, state);
1969
1970 return type;
1971 }
1972
1973 const glsl_type *
1974 ast_fully_specified_type::glsl_type(const char **name,
1975 struct _mesa_glsl_parse_state *state) const
1976 {
1977 const struct glsl_type *type = this->specifier->glsl_type(name, state);
1978
1979 if (type == NULL)
1980 return NULL;
1981
1982 if (type->base_type == GLSL_TYPE_FLOAT
1983 && state->es_shader
1984 && state->stage == MESA_SHADER_FRAGMENT
1985 && this->qualifier.precision == ast_precision_none
1986 && state->symbols->get_variable("#default precision") == NULL) {
1987 YYLTYPE loc = this->get_location();
1988 _mesa_glsl_error(&loc, state,
1989 "no precision specified this scope for type `%s'",
1990 type->name);
1991 }
1992
1993 return type;
1994 }
1995
1996 /**
1997 * Determine whether a toplevel variable declaration declares a varying. This
1998 * function operates by examining the variable's mode and the shader target,
1999 * so it correctly identifies linkage variables regardless of whether they are
2000 * declared using the deprecated "varying" syntax or the new "in/out" syntax.
2001 *
2002 * Passing a non-toplevel variable declaration (e.g. a function parameter) to
2003 * this function will produce undefined results.
2004 */
2005 static bool
2006 is_varying_var(ir_variable *var, gl_shader_stage target)
2007 {
2008 switch (target) {
2009 case MESA_SHADER_VERTEX:
2010 return var->data.mode == ir_var_shader_out;
2011 case MESA_SHADER_FRAGMENT:
2012 return var->data.mode == ir_var_shader_in;
2013 default:
2014 return var->data.mode == ir_var_shader_out || var->data.mode == ir_var_shader_in;
2015 }
2016 }
2017
2018
2019 /**
2020 * Matrix layout qualifiers are only allowed on certain types
2021 */
2022 static void
2023 validate_matrix_layout_for_type(struct _mesa_glsl_parse_state *state,
2024 YYLTYPE *loc,
2025 const glsl_type *type,
2026 ir_variable *var)
2027 {
2028 if (var && !var->is_in_uniform_block()) {
2029 /* Layout qualifiers may only apply to interface blocks and fields in
2030 * them.
2031 */
2032 _mesa_glsl_error(loc, state,
2033 "uniform block layout qualifiers row_major and "
2034 "column_major may not be applied to variables "
2035 "outside of uniform blocks");
2036 } else if (!type->is_matrix()) {
2037 /* The OpenGL ES 3.0 conformance tests did not originally allow
2038 * matrix layout qualifiers on non-matrices. However, the OpenGL
2039 * 4.4 and OpenGL ES 3.0 (revision TBD) specifications were
2040 * amended to specifically allow these layouts on all types. Emit
2041 * a warning so that people know their code may not be portable.
2042 */
2043 _mesa_glsl_warning(loc, state,
2044 "uniform block layout qualifiers row_major and "
2045 "column_major applied to non-matrix types may "
2046 "be rejected by older compilers");
2047 } else if (type->is_record()) {
2048 /* We allow 'layout(row_major)' on structure types because it's the only
2049 * way to get row-major layouts on matrices contained in structures.
2050 */
2051 _mesa_glsl_warning(loc, state,
2052 "uniform block layout qualifiers row_major and "
2053 "column_major applied to structure types is not "
2054 "strictly conformant and may be rejected by other "
2055 "compilers");
2056 }
2057 }
2058
2059 static bool
2060 validate_binding_qualifier(struct _mesa_glsl_parse_state *state,
2061 YYLTYPE *loc,
2062 ir_variable *var,
2063 const ast_type_qualifier *qual)
2064 {
2065 if (var->data.mode != ir_var_uniform) {
2066 _mesa_glsl_error(loc, state,
2067 "the \"binding\" qualifier only applies to uniforms");
2068 return false;
2069 }
2070
2071 if (qual->binding < 0) {
2072 _mesa_glsl_error(loc, state, "binding values must be >= 0");
2073 return false;
2074 }
2075
2076 const struct gl_context *const ctx = state->ctx;
2077 unsigned elements = var->type->is_array() ? var->type->length : 1;
2078 unsigned max_index = qual->binding + elements - 1;
2079
2080 if (var->type->is_interface()) {
2081 /* UBOs. From page 60 of the GLSL 4.20 specification:
2082 * "If the binding point for any uniform block instance is less than zero,
2083 * or greater than or equal to the implementation-dependent maximum
2084 * number of uniform buffer bindings, a compilation error will occur.
2085 * When the binding identifier is used with a uniform block instanced as
2086 * an array of size N, all elements of the array from binding through
2087 * binding + N – 1 must be within this range."
2088 *
2089 * The implementation-dependent maximum is GL_MAX_UNIFORM_BUFFER_BINDINGS.
2090 */
2091 if (max_index >= ctx->Const.MaxUniformBufferBindings) {
2092 _mesa_glsl_error(loc, state, "layout(binding = %d) for %d UBOs exceeds "
2093 "the maximum number of UBO binding points (%d)",
2094 qual->binding, elements,
2095 ctx->Const.MaxUniformBufferBindings);
2096 return false;
2097 }
2098 } else if (var->type->is_sampler() ||
2099 (var->type->is_array() && var->type->fields.array->is_sampler())) {
2100 /* Samplers. From page 63 of the GLSL 4.20 specification:
2101 * "If the binding is less than zero, or greater than or equal to the
2102 * implementation-dependent maximum supported number of units, a
2103 * compilation error will occur. When the binding identifier is used
2104 * with an array of size N, all elements of the array from binding
2105 * through binding + N - 1 must be within this range."
2106 */
2107 unsigned limit = ctx->Const.Program[state->stage].MaxTextureImageUnits;
2108
2109 if (max_index >= limit) {
2110 _mesa_glsl_error(loc, state, "layout(binding = %d) for %d samplers "
2111 "exceeds the maximum number of texture image units "
2112 "(%d)", qual->binding, elements, limit);
2113
2114 return false;
2115 }
2116 } else if (var->type->contains_atomic()) {
2117 assert(ctx->Const.MaxAtomicBufferBindings <= MAX_COMBINED_ATOMIC_BUFFERS);
2118 if (unsigned(qual->binding) >= ctx->Const.MaxAtomicBufferBindings) {
2119 _mesa_glsl_error(loc, state, "layout(binding = %d) exceeds the "
2120 " maximum number of atomic counter buffer bindings"
2121 "(%d)", qual->binding,
2122 ctx->Const.MaxAtomicBufferBindings);
2123
2124 return false;
2125 }
2126 } else {
2127 _mesa_glsl_error(loc, state,
2128 "the \"binding\" qualifier only applies to uniform "
2129 "blocks, samplers, atomic counters, or arrays thereof");
2130 return false;
2131 }
2132
2133 return true;
2134 }
2135
2136
2137 static glsl_interp_qualifier
2138 interpret_interpolation_qualifier(const struct ast_type_qualifier *qual,
2139 ir_variable_mode mode,
2140 struct _mesa_glsl_parse_state *state,
2141 YYLTYPE *loc)
2142 {
2143 glsl_interp_qualifier interpolation;
2144 if (qual->flags.q.flat)
2145 interpolation = INTERP_QUALIFIER_FLAT;
2146 else if (qual->flags.q.noperspective)
2147 interpolation = INTERP_QUALIFIER_NOPERSPECTIVE;
2148 else if (qual->flags.q.smooth)
2149 interpolation = INTERP_QUALIFIER_SMOOTH;
2150 else
2151 interpolation = INTERP_QUALIFIER_NONE;
2152
2153 if (interpolation != INTERP_QUALIFIER_NONE) {
2154 if (mode != ir_var_shader_in && mode != ir_var_shader_out) {
2155 _mesa_glsl_error(loc, state,
2156 "interpolation qualifier `%s' can only be applied to "
2157 "shader inputs or outputs.",
2158 interpolation_string(interpolation));
2159
2160 }
2161
2162 if ((state->stage == MESA_SHADER_VERTEX && mode == ir_var_shader_in) ||
2163 (state->stage == MESA_SHADER_FRAGMENT && mode == ir_var_shader_out)) {
2164 _mesa_glsl_error(loc, state,
2165 "interpolation qualifier `%s' cannot be applied to "
2166 "vertex shader inputs or fragment shader outputs",
2167 interpolation_string(interpolation));
2168 }
2169 }
2170
2171 return interpolation;
2172 }
2173
2174
2175 static void
2176 validate_explicit_location(const struct ast_type_qualifier *qual,
2177 ir_variable *var,
2178 struct _mesa_glsl_parse_state *state,
2179 YYLTYPE *loc)
2180 {
2181 bool fail = false;
2182
2183 /* Checks for GL_ARB_explicit_uniform_location. */
2184 if (qual->flags.q.uniform) {
2185 if (!state->check_explicit_uniform_location_allowed(loc, var))
2186 return;
2187
2188 const struct gl_context *const ctx = state->ctx;
2189 unsigned max_loc = qual->location + var->type->uniform_locations() - 1;
2190
2191 /* ARB_explicit_uniform_location specification states:
2192 *
2193 * "The explicitly defined locations and the generated locations
2194 * must be in the range of 0 to MAX_UNIFORM_LOCATIONS minus one."
2195 *
2196 * "Valid locations for default-block uniform variable locations
2197 * are in the range of 0 to the implementation-defined maximum
2198 * number of uniform locations."
2199 */
2200 if (qual->location < 0) {
2201 _mesa_glsl_error(loc, state,
2202 "explicit location < 0 for uniform %s", var->name);
2203 return;
2204 }
2205
2206 if (max_loc >= ctx->Const.MaxUserAssignableUniformLocations) {
2207 _mesa_glsl_error(loc, state, "location(s) consumed by uniform %s "
2208 ">= MAX_UNIFORM_LOCATIONS (%u)", var->name,
2209 ctx->Const.MaxUserAssignableUniformLocations);
2210 return;
2211 }
2212
2213 var->data.explicit_location = true;
2214 var->data.location = qual->location;
2215 return;
2216 }
2217
2218 /* Between GL_ARB_explicit_attrib_location an
2219 * GL_ARB_separate_shader_objects, the inputs and outputs of any shader
2220 * stage can be assigned explicit locations. The checking here associates
2221 * the correct extension with the correct stage's input / output:
2222 *
2223 * input output
2224 * ----- ------
2225 * vertex explicit_loc sso
2226 * geometry sso sso
2227 * fragment sso explicit_loc
2228 */
2229 switch (state->stage) {
2230 case MESA_SHADER_VERTEX:
2231 if (var->data.mode == ir_var_shader_in) {
2232 if (!state->check_explicit_attrib_location_allowed(loc, var))
2233 return;
2234
2235 break;
2236 }
2237
2238 if (var->data.mode == ir_var_shader_out) {
2239 if (!state->check_separate_shader_objects_allowed(loc, var))
2240 return;
2241
2242 break;
2243 }
2244
2245 fail = true;
2246 break;
2247
2248 case MESA_SHADER_GEOMETRY:
2249 if (var->data.mode == ir_var_shader_in || var->data.mode == ir_var_shader_out) {
2250 if (!state->check_separate_shader_objects_allowed(loc, var))
2251 return;
2252
2253 break;
2254 }
2255
2256 fail = true;
2257 break;
2258
2259 case MESA_SHADER_FRAGMENT:
2260 if (var->data.mode == ir_var_shader_in) {
2261 if (!state->check_separate_shader_objects_allowed(loc, var))
2262 return;
2263
2264 break;
2265 }
2266
2267 if (var->data.mode == ir_var_shader_out) {
2268 if (!state->check_explicit_attrib_location_allowed(loc, var))
2269 return;
2270
2271 break;
2272 }
2273
2274 fail = true;
2275 break;
2276
2277 case MESA_SHADER_COMPUTE:
2278 _mesa_glsl_error(loc, state,
2279 "compute shader variables cannot be given "
2280 "explicit locations");
2281 return;
2282 };
2283
2284 if (fail) {
2285 _mesa_glsl_error(loc, state,
2286 "%s cannot be given an explicit location in %s shader",
2287 mode_string(var),
2288 _mesa_shader_stage_to_string(state->stage));
2289 } else {
2290 var->data.explicit_location = true;
2291
2292 /* This bit of silliness is needed because invalid explicit locations
2293 * are supposed to be flagged during linking. Small negative values
2294 * biased by VERT_ATTRIB_GENERIC0 or FRAG_RESULT_DATA0 could alias
2295 * built-in values (e.g., -16+VERT_ATTRIB_GENERIC0 = VERT_ATTRIB_POS).
2296 * The linker needs to be able to differentiate these cases. This
2297 * ensures that negative values stay negative.
2298 */
2299 if (qual->location >= 0) {
2300 switch (state->stage) {
2301 case MESA_SHADER_VERTEX:
2302 var->data.location = (var->data.mode == ir_var_shader_in)
2303 ? (qual->location + VERT_ATTRIB_GENERIC0)
2304 : (qual->location + VARYING_SLOT_VAR0);
2305 break;
2306
2307 case MESA_SHADER_GEOMETRY:
2308 var->data.location = qual->location + VARYING_SLOT_VAR0;
2309 break;
2310
2311 case MESA_SHADER_FRAGMENT:
2312 var->data.location = (var->data.mode == ir_var_shader_out)
2313 ? (qual->location + FRAG_RESULT_DATA0)
2314 : (qual->location + VARYING_SLOT_VAR0);
2315 break;
2316 case MESA_SHADER_COMPUTE:
2317 assert(!"Unexpected shader type");
2318 break;
2319 }
2320 } else {
2321 var->data.location = qual->location;
2322 }
2323
2324 if (qual->flags.q.explicit_index) {
2325 /* From the GLSL 4.30 specification, section 4.4.2 (Output
2326 * Layout Qualifiers):
2327 *
2328 * "It is also a compile-time error if a fragment shader
2329 * sets a layout index to less than 0 or greater than 1."
2330 *
2331 * Older specifications don't mandate a behavior; we take
2332 * this as a clarification and always generate the error.
2333 */
2334 if (qual->index < 0 || qual->index > 1) {
2335 _mesa_glsl_error(loc, state,
2336 "explicit index may only be 0 or 1");
2337 } else {
2338 var->data.explicit_index = true;
2339 var->data.index = qual->index;
2340 }
2341 }
2342 }
2343 }
2344
2345 static void
2346 apply_image_qualifier_to_variable(const struct ast_type_qualifier *qual,
2347 ir_variable *var,
2348 struct _mesa_glsl_parse_state *state,
2349 YYLTYPE *loc)
2350 {
2351 const glsl_type *base_type =
2352 (var->type->is_array() ? var->type->element_type() : var->type);
2353
2354 if (base_type->is_image()) {
2355 if (var->data.mode != ir_var_uniform &&
2356 var->data.mode != ir_var_function_in) {
2357 _mesa_glsl_error(loc, state, "image variables may only be declared as "
2358 "function parameters or uniform-qualified "
2359 "global variables");
2360 }
2361
2362 var->data.image_read_only |= qual->flags.q.read_only;
2363 var->data.image_write_only |= qual->flags.q.write_only;
2364 var->data.image_coherent |= qual->flags.q.coherent;
2365 var->data.image_volatile |= qual->flags.q._volatile;
2366 var->data.image_restrict |= qual->flags.q.restrict_flag;
2367 var->data.read_only = true;
2368
2369 if (qual->flags.q.explicit_image_format) {
2370 if (var->data.mode == ir_var_function_in) {
2371 _mesa_glsl_error(loc, state, "format qualifiers cannot be "
2372 "used on image function parameters");
2373 }
2374
2375 if (qual->image_base_type != base_type->sampler_type) {
2376 _mesa_glsl_error(loc, state, "format qualifier doesn't match the "
2377 "base data type of the image");
2378 }
2379
2380 var->data.image_format = qual->image_format;
2381 } else {
2382 if (var->data.mode == ir_var_uniform && !qual->flags.q.write_only) {
2383 _mesa_glsl_error(loc, state, "uniforms not qualified with "
2384 "`writeonly' must have a format layout "
2385 "qualifier");
2386 }
2387
2388 var->data.image_format = GL_NONE;
2389 }
2390 }
2391 }
2392
2393 static inline const char*
2394 get_layout_qualifier_string(bool origin_upper_left, bool pixel_center_integer)
2395 {
2396 if (origin_upper_left && pixel_center_integer)
2397 return "origin_upper_left, pixel_center_integer";
2398 else if (origin_upper_left)
2399 return "origin_upper_left";
2400 else if (pixel_center_integer)
2401 return "pixel_center_integer";
2402 else
2403 return " ";
2404 }
2405
2406 static inline bool
2407 is_conflicting_fragcoord_redeclaration(struct _mesa_glsl_parse_state *state,
2408 const struct ast_type_qualifier *qual)
2409 {
2410 /* If gl_FragCoord was previously declared, and the qualifiers were
2411 * different in any way, return true.
2412 */
2413 if (state->fs_redeclares_gl_fragcoord) {
2414 return (state->fs_pixel_center_integer != qual->flags.q.pixel_center_integer
2415 || state->fs_origin_upper_left != qual->flags.q.origin_upper_left);
2416 }
2417
2418 return false;
2419 }
2420
2421 static void
2422 apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
2423 ir_variable *var,
2424 struct _mesa_glsl_parse_state *state,
2425 YYLTYPE *loc,
2426 bool is_parameter)
2427 {
2428 STATIC_ASSERT(sizeof(qual->flags.q) <= sizeof(qual->flags.i));
2429
2430 if (qual->flags.q.invariant) {
2431 if (var->data.used) {
2432 _mesa_glsl_error(loc, state,
2433 "variable `%s' may not be redeclared "
2434 "`invariant' after being used",
2435 var->name);
2436 } else {
2437 var->data.invariant = 1;
2438 }
2439 }
2440
2441 if (qual->flags.q.precise) {
2442 if (var->data.used) {
2443 _mesa_glsl_error(loc, state,
2444 "variable `%s' may not be redeclared "
2445 "`precise' after being used",
2446 var->name);
2447 } else {
2448 var->data.precise = 1;
2449 }
2450 }
2451
2452 if (qual->flags.q.constant || qual->flags.q.attribute
2453 || qual->flags.q.uniform
2454 || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
2455 var->data.read_only = 1;
2456
2457 if (qual->flags.q.centroid)
2458 var->data.centroid = 1;
2459
2460 if (qual->flags.q.sample)
2461 var->data.sample = 1;
2462
2463 if (state->stage == MESA_SHADER_GEOMETRY &&
2464 qual->flags.q.out && qual->flags.q.stream) {
2465 var->data.stream = qual->stream;
2466 }
2467
2468 if (qual->flags.q.attribute && state->stage != MESA_SHADER_VERTEX) {
2469 var->type = glsl_type::error_type;
2470 _mesa_glsl_error(loc, state,
2471 "`attribute' variables may not be declared in the "
2472 "%s shader",
2473 _mesa_shader_stage_to_string(state->stage));
2474 }
2475
2476 /* Disallow layout qualifiers which may only appear on layout declarations. */
2477 if (qual->flags.q.prim_type) {
2478 _mesa_glsl_error(loc, state,
2479 "Primitive type may only be specified on GS input or output "
2480 "layout declaration, not on variables.");
2481 }
2482
2483 /* Section 6.1.1 (Function Calling Conventions) of the GLSL 1.10 spec says:
2484 *
2485 * "However, the const qualifier cannot be used with out or inout."
2486 *
2487 * The same section of the GLSL 4.40 spec further clarifies this saying:
2488 *
2489 * "The const qualifier cannot be used with out or inout, or a
2490 * compile-time error results."
2491 */
2492 if (is_parameter && qual->flags.q.constant && qual->flags.q.out) {
2493 _mesa_glsl_error(loc, state,
2494 "`const' may not be applied to `out' or `inout' "
2495 "function parameters");
2496 }
2497
2498 /* If there is no qualifier that changes the mode of the variable, leave
2499 * the setting alone.
2500 */
2501 assert(var->data.mode != ir_var_temporary);
2502 if (qual->flags.q.in && qual->flags.q.out)
2503 var->data.mode = ir_var_function_inout;
2504 else if (qual->flags.q.in)
2505 var->data.mode = is_parameter ? ir_var_function_in : ir_var_shader_in;
2506 else if (qual->flags.q.attribute
2507 || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
2508 var->data.mode = ir_var_shader_in;
2509 else if (qual->flags.q.out)
2510 var->data.mode = is_parameter ? ir_var_function_out : ir_var_shader_out;
2511 else if (qual->flags.q.varying && (state->stage == MESA_SHADER_VERTEX))
2512 var->data.mode = ir_var_shader_out;
2513 else if (qual->flags.q.uniform)
2514 var->data.mode = ir_var_uniform;
2515
2516 if (!is_parameter && is_varying_var(var, state->stage)) {
2517 /* User-defined ins/outs are not permitted in compute shaders. */
2518 if (state->stage == MESA_SHADER_COMPUTE) {
2519 _mesa_glsl_error(loc, state,
2520 "user-defined input and output variables are not "
2521 "permitted in compute shaders");
2522 }
2523
2524 /* This variable is being used to link data between shader stages (in
2525 * pre-glsl-1.30 parlance, it's a "varying"). Check that it has a type
2526 * that is allowed for such purposes.
2527 *
2528 * From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
2529 *
2530 * "The varying qualifier can be used only with the data types
2531 * float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
2532 * these."
2533 *
2534 * This was relaxed in GLSL version 1.30 and GLSL ES version 3.00. From
2535 * page 31 (page 37 of the PDF) of the GLSL 1.30 spec:
2536 *
2537 * "Fragment inputs can only be signed and unsigned integers and
2538 * integer vectors, float, floating-point vectors, matrices, or
2539 * arrays of these. Structures cannot be input.
2540 *
2541 * Similar text exists in the section on vertex shader outputs.
2542 *
2543 * Similar text exists in the GLSL ES 3.00 spec, except that the GLSL ES
2544 * 3.00 spec allows structs as well. Varying structs are also allowed
2545 * in GLSL 1.50.
2546 */
2547 switch (var->type->get_scalar_type()->base_type) {
2548 case GLSL_TYPE_FLOAT:
2549 /* Ok in all GLSL versions */
2550 break;
2551 case GLSL_TYPE_UINT:
2552 case GLSL_TYPE_INT:
2553 if (state->is_version(130, 300))
2554 break;
2555 _mesa_glsl_error(loc, state,
2556 "varying variables must be of base type float in %s",
2557 state->get_version_string());
2558 break;
2559 case GLSL_TYPE_STRUCT:
2560 if (state->is_version(150, 300))
2561 break;
2562 _mesa_glsl_error(loc, state,
2563 "varying variables may not be of type struct");
2564 break;
2565 default:
2566 _mesa_glsl_error(loc, state, "illegal type for a varying variable");
2567 break;
2568 }
2569 }
2570
2571 if (state->all_invariant && (state->current_function == NULL)) {
2572 switch (state->stage) {
2573 case MESA_SHADER_VERTEX:
2574 if (var->data.mode == ir_var_shader_out)
2575 var->data.invariant = true;
2576 break;
2577 case MESA_SHADER_GEOMETRY:
2578 if ((var->data.mode == ir_var_shader_in)
2579 || (var->data.mode == ir_var_shader_out))
2580 var->data.invariant = true;
2581 break;
2582 case MESA_SHADER_FRAGMENT:
2583 if (var->data.mode == ir_var_shader_in)
2584 var->data.invariant = true;
2585 break;
2586 case MESA_SHADER_COMPUTE:
2587 /* Invariance isn't meaningful in compute shaders. */
2588 break;
2589 }
2590 }
2591
2592 var->data.interpolation =
2593 interpret_interpolation_qualifier(qual, (ir_variable_mode) var->data.mode,
2594 state, loc);
2595
2596 var->data.pixel_center_integer = qual->flags.q.pixel_center_integer;
2597 var->data.origin_upper_left = qual->flags.q.origin_upper_left;
2598 if ((qual->flags.q.origin_upper_left || qual->flags.q.pixel_center_integer)
2599 && (strcmp(var->name, "gl_FragCoord") != 0)) {
2600 const char *const qual_string = (qual->flags.q.origin_upper_left)
2601 ? "origin_upper_left" : "pixel_center_integer";
2602
2603 _mesa_glsl_error(loc, state,
2604 "layout qualifier `%s' can only be applied to "
2605 "fragment shader input `gl_FragCoord'",
2606 qual_string);
2607 }
2608
2609 if (var->name != NULL && strcmp(var->name, "gl_FragCoord") == 0) {
2610
2611 /* Section 4.3.8.1, page 39 of GLSL 1.50 spec says:
2612 *
2613 * "Within any shader, the first redeclarations of gl_FragCoord
2614 * must appear before any use of gl_FragCoord."
2615 *
2616 * Generate a compiler error if above condition is not met by the
2617 * fragment shader.
2618 */
2619 ir_variable *earlier = state->symbols->get_variable("gl_FragCoord");
2620 if (earlier != NULL &&
2621 earlier->data.used &&
2622 !state->fs_redeclares_gl_fragcoord) {
2623 _mesa_glsl_error(loc, state,
2624 "gl_FragCoord used before its first redeclaration "
2625 "in fragment shader");
2626 }
2627
2628 /* Make sure all gl_FragCoord redeclarations specify the same layout
2629 * qualifiers.
2630 */
2631 if (is_conflicting_fragcoord_redeclaration(state, qual)) {
2632 const char *const qual_string =
2633 get_layout_qualifier_string(qual->flags.q.origin_upper_left,
2634 qual->flags.q.pixel_center_integer);
2635
2636 const char *const state_string =
2637 get_layout_qualifier_string(state->fs_origin_upper_left,
2638 state->fs_pixel_center_integer);
2639
2640 _mesa_glsl_error(loc, state,
2641 "gl_FragCoord redeclared with different layout "
2642 "qualifiers (%s) and (%s) ",
2643 state_string,
2644 qual_string);
2645 }
2646 state->fs_origin_upper_left = qual->flags.q.origin_upper_left;
2647 state->fs_pixel_center_integer = qual->flags.q.pixel_center_integer;
2648 state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers =
2649 !qual->flags.q.origin_upper_left && !qual->flags.q.pixel_center_integer;
2650 state->fs_redeclares_gl_fragcoord =
2651 state->fs_origin_upper_left ||
2652 state->fs_pixel_center_integer ||
2653 state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers;
2654 }
2655
2656 if (qual->flags.q.explicit_location) {
2657 validate_explicit_location(qual, var, state, loc);
2658 } else if (qual->flags.q.explicit_index) {
2659 _mesa_glsl_error(loc, state, "explicit index requires explicit location");
2660 }
2661
2662 if (qual->flags.q.explicit_binding &&
2663 validate_binding_qualifier(state, loc, var, qual)) {
2664 var->data.explicit_binding = true;
2665 var->data.binding = qual->binding;
2666 }
2667
2668 if (var->type->contains_atomic()) {
2669 if (var->data.mode == ir_var_uniform) {
2670 if (var->data.explicit_binding) {
2671 unsigned *offset =
2672 &state->atomic_counter_offsets[var->data.binding];
2673
2674 if (*offset % ATOMIC_COUNTER_SIZE)
2675 _mesa_glsl_error(loc, state,
2676 "misaligned atomic counter offset");
2677
2678 var->data.atomic.offset = *offset;
2679 *offset += var->type->atomic_size();
2680
2681 } else {
2682 _mesa_glsl_error(loc, state,
2683 "atomic counters require explicit binding point");
2684 }
2685 } else if (var->data.mode != ir_var_function_in) {
2686 _mesa_glsl_error(loc, state, "atomic counters may only be declared as "
2687 "function parameters or uniform-qualified "
2688 "global variables");
2689 }
2690 }
2691
2692 /* Does the declaration use the deprecated 'attribute' or 'varying'
2693 * keywords?
2694 */
2695 const bool uses_deprecated_qualifier = qual->flags.q.attribute
2696 || qual->flags.q.varying;
2697
2698
2699 /* Validate auxiliary storage qualifiers */
2700
2701 /* From section 4.3.4 of the GLSL 1.30 spec:
2702 * "It is an error to use centroid in in a vertex shader."
2703 *
2704 * From section 4.3.4 of the GLSL ES 3.00 spec:
2705 * "It is an error to use centroid in or interpolation qualifiers in
2706 * a vertex shader input."
2707 */
2708
2709 /* Section 4.3.6 of the GLSL 1.30 specification states:
2710 * "It is an error to use centroid out in a fragment shader."
2711 *
2712 * The GL_ARB_shading_language_420pack extension specification states:
2713 * "It is an error to use auxiliary storage qualifiers or interpolation
2714 * qualifiers on an output in a fragment shader."
2715 */
2716 if (qual->flags.q.sample && (!is_varying_var(var, state->stage) || uses_deprecated_qualifier)) {
2717 _mesa_glsl_error(loc, state,
2718 "sample qualifier may only be used on `in` or `out` "
2719 "variables between shader stages");
2720 }
2721 if (qual->flags.q.centroid && !is_varying_var(var, state->stage)) {
2722 _mesa_glsl_error(loc, state,
2723 "centroid qualifier may only be used with `in', "
2724 "`out' or `varying' variables between shader stages");
2725 }
2726
2727
2728 /* Is the 'layout' keyword used with parameters that allow relaxed checking.
2729 * Many implementations of GL_ARB_fragment_coord_conventions_enable and some
2730 * implementations (only Mesa?) GL_ARB_explicit_attrib_location_enable
2731 * allowed the layout qualifier to be used with 'varying' and 'attribute'.
2732 * These extensions and all following extensions that add the 'layout'
2733 * keyword have been modified to require the use of 'in' or 'out'.
2734 *
2735 * The following extension do not allow the deprecated keywords:
2736 *
2737 * GL_AMD_conservative_depth
2738 * GL_ARB_conservative_depth
2739 * GL_ARB_gpu_shader5
2740 * GL_ARB_separate_shader_objects
2741 * GL_ARB_tesselation_shader
2742 * GL_ARB_transform_feedback3
2743 * GL_ARB_uniform_buffer_object
2744 *
2745 * It is unknown whether GL_EXT_shader_image_load_store or GL_NV_gpu_shader5
2746 * allow layout with the deprecated keywords.
2747 */
2748 const bool relaxed_layout_qualifier_checking =
2749 state->ARB_fragment_coord_conventions_enable;
2750
2751 if (qual->has_layout() && uses_deprecated_qualifier) {
2752 if (relaxed_layout_qualifier_checking) {
2753 _mesa_glsl_warning(loc, state,
2754 "`layout' qualifier may not be used with "
2755 "`attribute' or `varying'");
2756 } else {
2757 _mesa_glsl_error(loc, state,
2758 "`layout' qualifier may not be used with "
2759 "`attribute' or `varying'");
2760 }
2761 }
2762
2763 /* Layout qualifiers for gl_FragDepth, which are enabled by extension
2764 * AMD_conservative_depth.
2765 */
2766 int depth_layout_count = qual->flags.q.depth_any
2767 + qual->flags.q.depth_greater
2768 + qual->flags.q.depth_less
2769 + qual->flags.q.depth_unchanged;
2770 if (depth_layout_count > 0
2771 && !state->AMD_conservative_depth_enable
2772 && !state->ARB_conservative_depth_enable) {
2773 _mesa_glsl_error(loc, state,
2774 "extension GL_AMD_conservative_depth or "
2775 "GL_ARB_conservative_depth must be enabled "
2776 "to use depth layout qualifiers");
2777 } else if (depth_layout_count > 0
2778 && strcmp(var->name, "gl_FragDepth") != 0) {
2779 _mesa_glsl_error(loc, state,
2780 "depth layout qualifiers can be applied only to "
2781 "gl_FragDepth");
2782 } else if (depth_layout_count > 1
2783 && strcmp(var->name, "gl_FragDepth") == 0) {
2784 _mesa_glsl_error(loc, state,
2785 "at most one depth layout qualifier can be applied to "
2786 "gl_FragDepth");
2787 }
2788 if (qual->flags.q.depth_any)
2789 var->data.depth_layout = ir_depth_layout_any;
2790 else if (qual->flags.q.depth_greater)
2791 var->data.depth_layout = ir_depth_layout_greater;
2792 else if (qual->flags.q.depth_less)
2793 var->data.depth_layout = ir_depth_layout_less;
2794 else if (qual->flags.q.depth_unchanged)
2795 var->data.depth_layout = ir_depth_layout_unchanged;
2796 else
2797 var->data.depth_layout = ir_depth_layout_none;
2798
2799 if (qual->flags.q.std140 ||
2800 qual->flags.q.packed ||
2801 qual->flags.q.shared) {
2802 _mesa_glsl_error(loc, state,
2803 "uniform block layout qualifiers std140, packed, and "
2804 "shared can only be applied to uniform blocks, not "
2805 "members");
2806 }
2807
2808 if (qual->flags.q.row_major || qual->flags.q.column_major) {
2809 validate_matrix_layout_for_type(state, loc, var->type, var);
2810 }
2811
2812 if (var->type->contains_image())
2813 apply_image_qualifier_to_variable(qual, var, state, loc);
2814 }
2815
2816 /**
2817 * Get the variable that is being redeclared by this declaration
2818 *
2819 * Semantic checks to verify the validity of the redeclaration are also
2820 * performed. If semantic checks fail, compilation error will be emitted via
2821 * \c _mesa_glsl_error, but a non-\c NULL pointer will still be returned.
2822 *
2823 * \returns
2824 * A pointer to an existing variable in the current scope if the declaration
2825 * is a redeclaration, \c NULL otherwise.
2826 */
2827 static ir_variable *
2828 get_variable_being_redeclared(ir_variable *var, YYLTYPE loc,
2829 struct _mesa_glsl_parse_state *state,
2830 bool allow_all_redeclarations)
2831 {
2832 /* Check if this declaration is actually a re-declaration, either to
2833 * resize an array or add qualifiers to an existing variable.
2834 *
2835 * This is allowed for variables in the current scope, or when at
2836 * global scope (for built-ins in the implicit outer scope).
2837 */
2838 ir_variable *earlier = state->symbols->get_variable(var->name);
2839 if (earlier == NULL ||
2840 (state->current_function != NULL &&
2841 !state->symbols->name_declared_this_scope(var->name))) {
2842 return NULL;
2843 }
2844
2845
2846 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
2847 *
2848 * "It is legal to declare an array without a size and then
2849 * later re-declare the same name as an array of the same
2850 * type and specify a size."
2851 */
2852 if (earlier->type->is_unsized_array() && var->type->is_array()
2853 && (var->type->element_type() == earlier->type->element_type())) {
2854 /* FINISHME: This doesn't match the qualifiers on the two
2855 * FINISHME: declarations. It's not 100% clear whether this is
2856 * FINISHME: required or not.
2857 */
2858
2859 const unsigned size = unsigned(var->type->array_size());
2860 check_builtin_array_max_size(var->name, size, loc, state);
2861 if ((size > 0) && (size <= earlier->data.max_array_access)) {
2862 _mesa_glsl_error(& loc, state, "array size must be > %u due to "
2863 "previous access",
2864 earlier->data.max_array_access);
2865 }
2866
2867 earlier->type = var->type;
2868 delete var;
2869 var = NULL;
2870 } else if ((state->ARB_fragment_coord_conventions_enable ||
2871 state->is_version(150, 0))
2872 && strcmp(var->name, "gl_FragCoord") == 0
2873 && earlier->type == var->type
2874 && earlier->data.mode == var->data.mode) {
2875 /* Allow redeclaration of gl_FragCoord for ARB_fcc layout
2876 * qualifiers.
2877 */
2878 earlier->data.origin_upper_left = var->data.origin_upper_left;
2879 earlier->data.pixel_center_integer = var->data.pixel_center_integer;
2880
2881 /* According to section 4.3.7 of the GLSL 1.30 spec,
2882 * the following built-in varaibles can be redeclared with an
2883 * interpolation qualifier:
2884 * * gl_FrontColor
2885 * * gl_BackColor
2886 * * gl_FrontSecondaryColor
2887 * * gl_BackSecondaryColor
2888 * * gl_Color
2889 * * gl_SecondaryColor
2890 */
2891 } else if (state->is_version(130, 0)
2892 && (strcmp(var->name, "gl_FrontColor") == 0
2893 || strcmp(var->name, "gl_BackColor") == 0
2894 || strcmp(var->name, "gl_FrontSecondaryColor") == 0
2895 || strcmp(var->name, "gl_BackSecondaryColor") == 0
2896 || strcmp(var->name, "gl_Color") == 0
2897 || strcmp(var->name, "gl_SecondaryColor") == 0)
2898 && earlier->type == var->type
2899 && earlier->data.mode == var->data.mode) {
2900 earlier->data.interpolation = var->data.interpolation;
2901
2902 /* Layout qualifiers for gl_FragDepth. */
2903 } else if ((state->AMD_conservative_depth_enable ||
2904 state->ARB_conservative_depth_enable)
2905 && strcmp(var->name, "gl_FragDepth") == 0
2906 && earlier->type == var->type
2907 && earlier->data.mode == var->data.mode) {
2908
2909 /** From the AMD_conservative_depth spec:
2910 * Within any shader, the first redeclarations of gl_FragDepth
2911 * must appear before any use of gl_FragDepth.
2912 */
2913 if (earlier->data.used) {
2914 _mesa_glsl_error(&loc, state,
2915 "the first redeclaration of gl_FragDepth "
2916 "must appear before any use of gl_FragDepth");
2917 }
2918
2919 /* Prevent inconsistent redeclaration of depth layout qualifier. */
2920 if (earlier->data.depth_layout != ir_depth_layout_none
2921 && earlier->data.depth_layout != var->data.depth_layout) {
2922 _mesa_glsl_error(&loc, state,
2923 "gl_FragDepth: depth layout is declared here "
2924 "as '%s, but it was previously declared as "
2925 "'%s'",
2926 depth_layout_string(var->data.depth_layout),
2927 depth_layout_string(earlier->data.depth_layout));
2928 }
2929
2930 earlier->data.depth_layout = var->data.depth_layout;
2931
2932 } else if (allow_all_redeclarations) {
2933 if (earlier->data.mode != var->data.mode) {
2934 _mesa_glsl_error(&loc, state,
2935 "redeclaration of `%s' with incorrect qualifiers",
2936 var->name);
2937 } else if (earlier->type != var->type) {
2938 _mesa_glsl_error(&loc, state,
2939 "redeclaration of `%s' has incorrect type",
2940 var->name);
2941 }
2942 } else {
2943 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
2944 }
2945
2946 return earlier;
2947 }
2948
2949 /**
2950 * Generate the IR for an initializer in a variable declaration
2951 */
2952 ir_rvalue *
2953 process_initializer(ir_variable *var, ast_declaration *decl,
2954 ast_fully_specified_type *type,
2955 exec_list *initializer_instructions,
2956 struct _mesa_glsl_parse_state *state)
2957 {
2958 ir_rvalue *result = NULL;
2959
2960 YYLTYPE initializer_loc = decl->initializer->get_location();
2961
2962 /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
2963 *
2964 * "All uniform variables are read-only and are initialized either
2965 * directly by an application via API commands, or indirectly by
2966 * OpenGL."
2967 */
2968 if (var->data.mode == ir_var_uniform) {
2969 state->check_version(120, 0, &initializer_loc,
2970 "cannot initialize uniforms");
2971 }
2972
2973 /* From section 4.1.7 of the GLSL 4.40 spec:
2974 *
2975 * "Opaque variables [...] are initialized only through the
2976 * OpenGL API; they cannot be declared with an initializer in a
2977 * shader."
2978 */
2979 if (var->type->contains_opaque()) {
2980 _mesa_glsl_error(& initializer_loc, state,
2981 "cannot initialize opaque variable");
2982 }
2983
2984 if ((var->data.mode == ir_var_shader_in) && (state->current_function == NULL)) {
2985 _mesa_glsl_error(& initializer_loc, state,
2986 "cannot initialize %s shader input / %s",
2987 _mesa_shader_stage_to_string(state->stage),
2988 (state->stage == MESA_SHADER_VERTEX)
2989 ? "attribute" : "varying");
2990 }
2991
2992 /* If the initializer is an ast_aggregate_initializer, recursively store
2993 * type information from the LHS into it, so that its hir() function can do
2994 * type checking.
2995 */
2996 if (decl->initializer->oper == ast_aggregate)
2997 _mesa_ast_set_aggregate_type(var->type, decl->initializer);
2998
2999 ir_dereference *const lhs = new(state) ir_dereference_variable(var);
3000 ir_rvalue *rhs = decl->initializer->hir(initializer_instructions, state);
3001
3002 /* Calculate the constant value if this is a const or uniform
3003 * declaration.
3004 */
3005 if (type->qualifier.flags.q.constant
3006 || type->qualifier.flags.q.uniform) {
3007 ir_rvalue *new_rhs = validate_assignment(state, initializer_loc,
3008 var->type, rhs, true);
3009 if (new_rhs != NULL) {
3010 rhs = new_rhs;
3011
3012 ir_constant *constant_value = rhs->constant_expression_value();
3013 if (!constant_value) {
3014 /* If ARB_shading_language_420pack is enabled, initializers of
3015 * const-qualified local variables do not have to be constant
3016 * expressions. Const-qualified global variables must still be
3017 * initialized with constant expressions.
3018 */
3019 if (!state->ARB_shading_language_420pack_enable
3020 || state->current_function == NULL) {
3021 _mesa_glsl_error(& initializer_loc, state,
3022 "initializer of %s variable `%s' must be a "
3023 "constant expression",
3024 (type->qualifier.flags.q.constant)
3025 ? "const" : "uniform",
3026 decl->identifier);
3027 if (var->type->is_numeric()) {
3028 /* Reduce cascading errors. */
3029 var->constant_value = ir_constant::zero(state, var->type);
3030 }
3031 }
3032 } else {
3033 rhs = constant_value;
3034 var->constant_value = constant_value;
3035 }
3036 } else {
3037 if (var->type->is_numeric()) {
3038 /* Reduce cascading errors. */
3039 var->constant_value = ir_constant::zero(state, var->type);
3040 }
3041 }
3042 }
3043
3044 if (rhs && !rhs->type->is_error()) {
3045 bool temp = var->data.read_only;
3046 if (type->qualifier.flags.q.constant)
3047 var->data.read_only = false;
3048
3049 /* Never emit code to initialize a uniform.
3050 */
3051 const glsl_type *initializer_type;
3052 if (!type->qualifier.flags.q.uniform) {
3053 do_assignment(initializer_instructions, state,
3054 NULL,
3055 lhs, rhs,
3056 &result, true,
3057 true,
3058 type->get_location());
3059 initializer_type = result->type;
3060 } else
3061 initializer_type = rhs->type;
3062
3063 var->constant_initializer = rhs->constant_expression_value();
3064 var->data.has_initializer = true;
3065
3066 /* If the declared variable is an unsized array, it must inherrit
3067 * its full type from the initializer. A declaration such as
3068 *
3069 * uniform float a[] = float[](1.0, 2.0, 3.0, 3.0);
3070 *
3071 * becomes
3072 *
3073 * uniform float a[4] = float[](1.0, 2.0, 3.0, 3.0);
3074 *
3075 * The assignment generated in the if-statement (below) will also
3076 * automatically handle this case for non-uniforms.
3077 *
3078 * If the declared variable is not an array, the types must
3079 * already match exactly. As a result, the type assignment
3080 * here can be done unconditionally. For non-uniforms the call
3081 * to do_assignment can change the type of the initializer (via
3082 * the implicit conversion rules). For uniforms the initializer
3083 * must be a constant expression, and the type of that expression
3084 * was validated above.
3085 */
3086 var->type = initializer_type;
3087
3088 var->data.read_only = temp;
3089 }
3090
3091 return result;
3092 }
3093
3094
3095 /**
3096 * Do additional processing necessary for geometry shader input declarations
3097 * (this covers both interface blocks arrays and bare input variables).
3098 */
3099 static void
3100 handle_geometry_shader_input_decl(struct _mesa_glsl_parse_state *state,
3101 YYLTYPE loc, ir_variable *var)
3102 {
3103 unsigned num_vertices = 0;
3104 if (state->gs_input_prim_type_specified) {
3105 num_vertices = vertices_per_prim(state->in_qualifier->prim_type);
3106 }
3107
3108 /* Geometry shader input variables must be arrays. Caller should have
3109 * reported an error for this.
3110 */
3111 if (!var->type->is_array()) {
3112 assert(state->error);
3113
3114 /* To avoid cascading failures, short circuit the checks below. */
3115 return;
3116 }
3117
3118 if (var->type->is_unsized_array()) {
3119 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec says:
3120 *
3121 * All geometry shader input unsized array declarations will be
3122 * sized by an earlier input layout qualifier, when present, as per
3123 * the following table.
3124 *
3125 * Followed by a table mapping each allowed input layout qualifier to
3126 * the corresponding input length.
3127 */
3128 if (num_vertices != 0)
3129 var->type = glsl_type::get_array_instance(var->type->fields.array,
3130 num_vertices);
3131 } else {
3132 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec
3133 * includes the following examples of compile-time errors:
3134 *
3135 * // code sequence within one shader...
3136 * in vec4 Color1[]; // size unknown
3137 * ...Color1.length()...// illegal, length() unknown
3138 * in vec4 Color2[2]; // size is 2
3139 * ...Color1.length()...// illegal, Color1 still has no size
3140 * in vec4 Color3[3]; // illegal, input sizes are inconsistent
3141 * layout(lines) in; // legal, input size is 2, matching
3142 * in vec4 Color4[3]; // illegal, contradicts layout
3143 * ...
3144 *
3145 * To detect the case illustrated by Color3, we verify that the size of
3146 * an explicitly-sized array matches the size of any previously declared
3147 * explicitly-sized array. To detect the case illustrated by Color4, we
3148 * verify that the size of an explicitly-sized array is consistent with
3149 * any previously declared input layout.
3150 */
3151 if (num_vertices != 0 && var->type->length != num_vertices) {
3152 _mesa_glsl_error(&loc, state,
3153 "geometry shader input size contradicts previously"
3154 " declared layout (size is %u, but layout requires a"
3155 " size of %u)", var->type->length, num_vertices);
3156 } else if (state->gs_input_size != 0 &&
3157 var->type->length != state->gs_input_size) {
3158 _mesa_glsl_error(&loc, state,
3159 "geometry shader input sizes are "
3160 "inconsistent (size is %u, but a previous "
3161 "declaration has size %u)",
3162 var->type->length, state->gs_input_size);
3163 } else {
3164 state->gs_input_size = var->type->length;
3165 }
3166 }
3167 }
3168
3169
3170 void
3171 validate_identifier(const char *identifier, YYLTYPE loc,
3172 struct _mesa_glsl_parse_state *state)
3173 {
3174 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
3175 *
3176 * "Identifiers starting with "gl_" are reserved for use by
3177 * OpenGL, and may not be declared in a shader as either a
3178 * variable or a function."
3179 */
3180 if (is_gl_identifier(identifier)) {
3181 _mesa_glsl_error(&loc, state,
3182 "identifier `%s' uses reserved `gl_' prefix",
3183 identifier);
3184 } else if (strstr(identifier, "__")) {
3185 /* From page 14 (page 20 of the PDF) of the GLSL 1.10
3186 * spec:
3187 *
3188 * "In addition, all identifiers containing two
3189 * consecutive underscores (__) are reserved as
3190 * possible future keywords."
3191 *
3192 * The intention is that names containing __ are reserved for internal
3193 * use by the implementation, and names prefixed with GL_ are reserved
3194 * for use by Khronos. Names simply containing __ are dangerous to use,
3195 * but should be allowed.
3196 *
3197 * A future version of the GLSL specification will clarify this.
3198 */
3199 _mesa_glsl_warning(&loc, state,
3200 "identifier `%s' uses reserved `__' string",
3201 identifier);
3202 }
3203 }
3204
3205 static bool
3206 precision_qualifier_allowed(const glsl_type *type)
3207 {
3208 /* Precision qualifiers apply to floating point, integer and sampler
3209 * types.
3210 *
3211 * Section 4.5.2 (Precision Qualifiers) of the GLSL 1.30 spec says:
3212 * "Any floating point or any integer declaration can have the type
3213 * preceded by one of these precision qualifiers [...] Literal
3214 * constants do not have precision qualifiers. Neither do Boolean
3215 * variables.
3216 *
3217 * Section 4.5 (Precision and Precision Qualifiers) of the GLSL 1.30
3218 * spec also says:
3219 *
3220 * "Precision qualifiers are added for code portability with OpenGL
3221 * ES, not for functionality. They have the same syntax as in OpenGL
3222 * ES."
3223 *
3224 * Section 8 (Built-In Functions) of the GLSL ES 1.00 spec says:
3225 *
3226 * "uniform lowp sampler2D sampler;
3227 * highp vec2 coord;
3228 * ...
3229 * lowp vec4 col = texture2D (sampler, coord);
3230 * // texture2D returns lowp"
3231 *
3232 * From this, we infer that GLSL 1.30 (and later) should allow precision
3233 * qualifiers on sampler types just like float and integer types.
3234 */
3235 return type->is_float()
3236 || type->is_integer()
3237 || type->is_record()
3238 || type->is_sampler();
3239 }
3240
3241 ir_rvalue *
3242 ast_declarator_list::hir(exec_list *instructions,
3243 struct _mesa_glsl_parse_state *state)
3244 {
3245 void *ctx = state;
3246 const struct glsl_type *decl_type;
3247 const char *type_name = NULL;
3248 ir_rvalue *result = NULL;
3249 YYLTYPE loc = this->get_location();
3250
3251 /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec:
3252 *
3253 * "To ensure that a particular output variable is invariant, it is
3254 * necessary to use the invariant qualifier. It can either be used to
3255 * qualify a previously declared variable as being invariant
3256 *
3257 * invariant gl_Position; // make existing gl_Position be invariant"
3258 *
3259 * In these cases the parser will set the 'invariant' flag in the declarator
3260 * list, and the type will be NULL.
3261 */
3262 if (this->invariant) {
3263 assert(this->type == NULL);
3264
3265 if (state->current_function != NULL) {
3266 _mesa_glsl_error(& loc, state,
3267 "all uses of `invariant' keyword must be at global "
3268 "scope");
3269 }
3270
3271 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
3272 assert(decl->array_specifier == NULL);
3273 assert(decl->initializer == NULL);
3274
3275 ir_variable *const earlier =
3276 state->symbols->get_variable(decl->identifier);
3277 if (earlier == NULL) {
3278 _mesa_glsl_error(& loc, state,
3279 "undeclared variable `%s' cannot be marked "
3280 "invariant", decl->identifier);
3281 } else if (!is_varying_var(earlier, state->stage)) {
3282 _mesa_glsl_error(&loc, state,
3283 "`%s' cannot be marked invariant; interfaces between "
3284 "shader stages only.", decl->identifier);
3285 } else if (earlier->data.used) {
3286 _mesa_glsl_error(& loc, state,
3287 "variable `%s' may not be redeclared "
3288 "`invariant' after being used",
3289 earlier->name);
3290 } else {
3291 earlier->data.invariant = true;
3292 }
3293 }
3294
3295 /* Invariant redeclarations do not have r-values.
3296 */
3297 return NULL;
3298 }
3299
3300 if (this->precise) {
3301 assert(this->type == NULL);
3302
3303 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
3304 assert(decl->array_specifier == NULL);
3305 assert(decl->initializer == NULL);
3306
3307 ir_variable *const earlier =
3308 state->symbols->get_variable(decl->identifier);
3309 if (earlier == NULL) {
3310 _mesa_glsl_error(& loc, state,
3311 "undeclared variable `%s' cannot be marked "
3312 "precise", decl->identifier);
3313 } else if (state->current_function != NULL &&
3314 !state->symbols->name_declared_this_scope(decl->identifier)) {
3315 /* Note: we have to check if we're in a function, since
3316 * builtins are treated as having come from another scope.
3317 */
3318 _mesa_glsl_error(& loc, state,
3319 "variable `%s' from an outer scope may not be "
3320 "redeclared `precise' in this scope",
3321 earlier->name);
3322 } else if (earlier->data.used) {
3323 _mesa_glsl_error(& loc, state,
3324 "variable `%s' may not be redeclared "
3325 "`precise' after being used",
3326 earlier->name);
3327 } else {
3328 earlier->data.precise = true;
3329 }
3330 }
3331
3332 /* Precise redeclarations do not have r-values either. */
3333 return NULL;
3334 }
3335
3336 assert(this->type != NULL);
3337 assert(!this->invariant);
3338 assert(!this->precise);
3339
3340 /* The type specifier may contain a structure definition. Process that
3341 * before any of the variable declarations.
3342 */
3343 (void) this->type->specifier->hir(instructions, state);
3344
3345 decl_type = this->type->glsl_type(& type_name, state);
3346
3347 /* An offset-qualified atomic counter declaration sets the default
3348 * offset for the next declaration within the same atomic counter
3349 * buffer.
3350 */
3351 if (decl_type && decl_type->contains_atomic()) {
3352 if (type->qualifier.flags.q.explicit_binding &&
3353 type->qualifier.flags.q.explicit_offset)
3354 state->atomic_counter_offsets[type->qualifier.binding] =
3355 type->qualifier.offset;
3356 }
3357
3358 if (this->declarations.is_empty()) {
3359 /* If there is no structure involved in the program text, there are two
3360 * possible scenarios:
3361 *
3362 * - The program text contained something like 'vec4;'. This is an
3363 * empty declaration. It is valid but weird. Emit a warning.
3364 *
3365 * - The program text contained something like 'S;' and 'S' is not the
3366 * name of a known structure type. This is both invalid and weird.
3367 * Emit an error.
3368 *
3369 * - The program text contained something like 'mediump float;'
3370 * when the programmer probably meant 'precision mediump
3371 * float;' Emit a warning with a description of what they
3372 * probably meant to do.
3373 *
3374 * Note that if decl_type is NULL and there is a structure involved,
3375 * there must have been some sort of error with the structure. In this
3376 * case we assume that an error was already generated on this line of
3377 * code for the structure. There is no need to generate an additional,
3378 * confusing error.
3379 */
3380 assert(this->type->specifier->structure == NULL || decl_type != NULL
3381 || state->error);
3382
3383 if (decl_type == NULL) {
3384 _mesa_glsl_error(&loc, state,
3385 "invalid type `%s' in empty declaration",
3386 type_name);
3387 } else if (decl_type->base_type == GLSL_TYPE_ATOMIC_UINT) {
3388 /* Empty atomic counter declarations are allowed and useful
3389 * to set the default offset qualifier.
3390 */
3391 return NULL;
3392 } else if (this->type->qualifier.precision != ast_precision_none) {
3393 if (this->type->specifier->structure != NULL) {
3394 _mesa_glsl_error(&loc, state,
3395 "precision qualifiers can't be applied "
3396 "to structures");
3397 } else {
3398 static const char *const precision_names[] = {
3399 "highp",
3400 "highp",
3401 "mediump",
3402 "lowp"
3403 };
3404
3405 _mesa_glsl_warning(&loc, state,
3406 "empty declaration with precision qualifier, "
3407 "to set the default precision, use "
3408 "`precision %s %s;'",
3409 precision_names[this->type->qualifier.precision],
3410 type_name);
3411 }
3412 } else if (this->type->specifier->structure == NULL) {
3413 _mesa_glsl_warning(&loc, state, "empty declaration");
3414 }
3415 }
3416
3417 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
3418 const struct glsl_type *var_type;
3419 ir_variable *var;
3420
3421 /* FINISHME: Emit a warning if a variable declaration shadows a
3422 * FINISHME: declaration at a higher scope.
3423 */
3424
3425 if ((decl_type == NULL) || decl_type->is_void()) {
3426 if (type_name != NULL) {
3427 _mesa_glsl_error(& loc, state,
3428 "invalid type `%s' in declaration of `%s'",
3429 type_name, decl->identifier);
3430 } else {
3431 _mesa_glsl_error(& loc, state,
3432 "invalid type in declaration of `%s'",
3433 decl->identifier);
3434 }
3435 continue;
3436 }
3437
3438 var_type = process_array_type(&loc, decl_type, decl->array_specifier,
3439 state);
3440
3441 var = new(ctx) ir_variable(var_type, decl->identifier, ir_var_auto);
3442
3443 /* The 'varying in' and 'varying out' qualifiers can only be used with
3444 * ARB_geometry_shader4 and EXT_geometry_shader4, which we don't support
3445 * yet.
3446 */
3447 if (this->type->qualifier.flags.q.varying) {
3448 if (this->type->qualifier.flags.q.in) {
3449 _mesa_glsl_error(& loc, state,
3450 "`varying in' qualifier in declaration of "
3451 "`%s' only valid for geometry shaders using "
3452 "ARB_geometry_shader4 or EXT_geometry_shader4",
3453 decl->identifier);
3454 } else if (this->type->qualifier.flags.q.out) {
3455 _mesa_glsl_error(& loc, state,
3456 "`varying out' qualifier in declaration of "
3457 "`%s' only valid for geometry shaders using "
3458 "ARB_geometry_shader4 or EXT_geometry_shader4",
3459 decl->identifier);
3460 }
3461 }
3462
3463 /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
3464 *
3465 * "Global variables can only use the qualifiers const,
3466 * attribute, uniform, or varying. Only one may be
3467 * specified.
3468 *
3469 * Local variables can only use the qualifier const."
3470 *
3471 * This is relaxed in GLSL 1.30 and GLSL ES 3.00. It is also relaxed by
3472 * any extension that adds the 'layout' keyword.
3473 */
3474 if (!state->is_version(130, 300)
3475 && !state->has_explicit_attrib_location()
3476 && !state->has_separate_shader_objects()
3477 && !state->ARB_fragment_coord_conventions_enable) {
3478 if (this->type->qualifier.flags.q.out) {
3479 _mesa_glsl_error(& loc, state,
3480 "`out' qualifier in declaration of `%s' "
3481 "only valid for function parameters in %s",
3482 decl->identifier, state->get_version_string());
3483 }
3484 if (this->type->qualifier.flags.q.in) {
3485 _mesa_glsl_error(& loc, state,
3486 "`in' qualifier in declaration of `%s' "
3487 "only valid for function parameters in %s",
3488 decl->identifier, state->get_version_string());
3489 }
3490 /* FINISHME: Test for other invalid qualifiers. */
3491 }
3492
3493 apply_type_qualifier_to_variable(& this->type->qualifier, var, state,
3494 & loc, false);
3495
3496 if (this->type->qualifier.flags.q.invariant) {
3497 if (!is_varying_var(var, state->stage)) {
3498 _mesa_glsl_error(&loc, state,
3499 "`%s' cannot be marked invariant; interfaces between "
3500 "shader stages only", var->name);
3501 }
3502 }
3503
3504 if (state->current_function != NULL) {
3505 const char *mode = NULL;
3506 const char *extra = "";
3507
3508 /* There is no need to check for 'inout' here because the parser will
3509 * only allow that in function parameter lists.
3510 */
3511 if (this->type->qualifier.flags.q.attribute) {
3512 mode = "attribute";
3513 } else if (this->type->qualifier.flags.q.uniform) {
3514 mode = "uniform";
3515 } else if (this->type->qualifier.flags.q.varying) {
3516 mode = "varying";
3517 } else if (this->type->qualifier.flags.q.in) {
3518 mode = "in";
3519 extra = " or in function parameter list";
3520 } else if (this->type->qualifier.flags.q.out) {
3521 mode = "out";
3522 extra = " or in function parameter list";
3523 }
3524
3525 if (mode) {
3526 _mesa_glsl_error(& loc, state,
3527 "%s variable `%s' must be declared at "
3528 "global scope%s",
3529 mode, var->name, extra);
3530 }
3531 } else if (var->data.mode == ir_var_shader_in) {
3532 var->data.read_only = true;
3533
3534 if (state->stage == MESA_SHADER_VERTEX) {
3535 bool error_emitted = false;
3536
3537 /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
3538 *
3539 * "Vertex shader inputs can only be float, floating-point
3540 * vectors, matrices, signed and unsigned integers and integer
3541 * vectors. Vertex shader inputs can also form arrays of these
3542 * types, but not structures."
3543 *
3544 * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
3545 *
3546 * "Vertex shader inputs can only be float, floating-point
3547 * vectors, matrices, signed and unsigned integers and integer
3548 * vectors. They cannot be arrays or structures."
3549 *
3550 * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
3551 *
3552 * "The attribute qualifier can be used only with float,
3553 * floating-point vectors, and matrices. Attribute variables
3554 * cannot be declared as arrays or structures."
3555 *
3556 * From page 33 (page 39 of the PDF) of the GLSL ES 3.00 spec:
3557 *
3558 * "Vertex shader inputs can only be float, floating-point
3559 * vectors, matrices, signed and unsigned integers and integer
3560 * vectors. Vertex shader inputs cannot be arrays or
3561 * structures."
3562 */
3563 const glsl_type *check_type = var->type;
3564 while (check_type->is_array())
3565 check_type = check_type->element_type();
3566
3567 switch (check_type->base_type) {
3568 case GLSL_TYPE_FLOAT:
3569 break;
3570 case GLSL_TYPE_UINT:
3571 case GLSL_TYPE_INT:
3572 if (state->is_version(120, 300))
3573 break;
3574 /* FALLTHROUGH */
3575 default:
3576 _mesa_glsl_error(& loc, state,
3577 "vertex shader input / attribute cannot have "
3578 "type %s`%s'",
3579 var->type->is_array() ? "array of " : "",
3580 check_type->name);
3581 error_emitted = true;
3582 }
3583
3584 if (!error_emitted && var->type->is_array() &&
3585 !state->check_version(150, 0, &loc,
3586 "vertex shader input / attribute "
3587 "cannot have array type")) {
3588 error_emitted = true;
3589 }
3590 } else if (state->stage == MESA_SHADER_GEOMETRY) {
3591 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
3592 *
3593 * Geometry shader input variables get the per-vertex values
3594 * written out by vertex shader output variables of the same
3595 * names. Since a geometry shader operates on a set of
3596 * vertices, each input varying variable (or input block, see
3597 * interface blocks below) needs to be declared as an array.
3598 */
3599 if (!var->type->is_array()) {
3600 _mesa_glsl_error(&loc, state,
3601 "geometry shader inputs must be arrays");
3602 }
3603
3604 handle_geometry_shader_input_decl(state, loc, var);
3605 }
3606 }
3607
3608 /* Integer fragment inputs must be qualified with 'flat'. In GLSL ES,
3609 * so must integer vertex outputs.
3610 *
3611 * From section 4.3.4 ("Inputs") of the GLSL 1.50 spec:
3612 * "Fragment shader inputs that are signed or unsigned integers or
3613 * integer vectors must be qualified with the interpolation qualifier
3614 * flat."
3615 *
3616 * From section 4.3.4 ("Input Variables") of the GLSL 3.00 ES spec:
3617 * "Fragment shader inputs that are, or contain, signed or unsigned
3618 * integers or integer vectors must be qualified with the
3619 * interpolation qualifier flat."
3620 *
3621 * From section 4.3.6 ("Output Variables") of the GLSL 3.00 ES spec:
3622 * "Vertex shader outputs that are, or contain, signed or unsigned
3623 * integers or integer vectors must be qualified with the
3624 * interpolation qualifier flat."
3625 *
3626 * Note that prior to GLSL 1.50, this requirement applied to vertex
3627 * outputs rather than fragment inputs. That creates problems in the
3628 * presence of geometry shaders, so we adopt the GLSL 1.50 rule for all
3629 * desktop GL shaders. For GLSL ES shaders, we follow the spec and
3630 * apply the restriction to both vertex outputs and fragment inputs.
3631 *
3632 * Note also that the desktop GLSL specs are missing the text "or
3633 * contain"; this is presumably an oversight, since there is no
3634 * reasonable way to interpolate a fragment shader input that contains
3635 * an integer.
3636 */
3637 if (state->is_version(130, 300) &&
3638 var->type->contains_integer() &&
3639 var->data.interpolation != INTERP_QUALIFIER_FLAT &&
3640 ((state->stage == MESA_SHADER_FRAGMENT && var->data.mode == ir_var_shader_in)
3641 || (state->stage == MESA_SHADER_VERTEX && var->data.mode == ir_var_shader_out
3642 && state->es_shader))) {
3643 const char *var_type = (state->stage == MESA_SHADER_VERTEX) ?
3644 "vertex output" : "fragment input";
3645 _mesa_glsl_error(&loc, state, "if a %s is (or contains) "
3646 "an integer, then it must be qualified with 'flat'",
3647 var_type);
3648 }
3649
3650
3651 /* Interpolation qualifiers cannot be applied to 'centroid' and
3652 * 'centroid varying'.
3653 *
3654 * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
3655 * "interpolation qualifiers may only precede the qualifiers in,
3656 * centroid in, out, or centroid out in a declaration. They do not apply
3657 * to the deprecated storage qualifiers varying or centroid varying."
3658 *
3659 * These deprecated storage qualifiers do not exist in GLSL ES 3.00.
3660 */
3661 if (state->is_version(130, 0)
3662 && this->type->qualifier.has_interpolation()
3663 && this->type->qualifier.flags.q.varying) {
3664
3665 const char *i = this->type->qualifier.interpolation_string();
3666 assert(i != NULL);
3667 const char *s;
3668 if (this->type->qualifier.flags.q.centroid)
3669 s = "centroid varying";
3670 else
3671 s = "varying";
3672
3673 _mesa_glsl_error(&loc, state,
3674 "qualifier '%s' cannot be applied to the "
3675 "deprecated storage qualifier '%s'", i, s);
3676 }
3677
3678
3679 /* Interpolation qualifiers can only apply to vertex shader outputs and
3680 * fragment shader inputs.
3681 *
3682 * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
3683 * "Outputs from a vertex shader (out) and inputs to a fragment
3684 * shader (in) can be further qualified with one or more of these
3685 * interpolation qualifiers"
3686 *
3687 * From page 31 (page 37 of the PDF) of the GLSL ES 3.00 spec:
3688 * "These interpolation qualifiers may only precede the qualifiers
3689 * in, centroid in, out, or centroid out in a declaration. They do
3690 * not apply to inputs into a vertex shader or outputs from a
3691 * fragment shader."
3692 */
3693 if (state->is_version(130, 300)
3694 && this->type->qualifier.has_interpolation()) {
3695
3696 const char *i = this->type->qualifier.interpolation_string();
3697 assert(i != NULL);
3698
3699 switch (state->stage) {
3700 case MESA_SHADER_VERTEX:
3701 if (this->type->qualifier.flags.q.in) {
3702 _mesa_glsl_error(&loc, state,
3703 "qualifier '%s' cannot be applied to vertex "
3704 "shader inputs", i);
3705 }
3706 break;
3707 case MESA_SHADER_FRAGMENT:
3708 if (this->type->qualifier.flags.q.out) {
3709 _mesa_glsl_error(&loc, state,
3710 "qualifier '%s' cannot be applied to fragment "
3711 "shader outputs", i);
3712 }
3713 break;
3714 default:
3715 break;
3716 }
3717 }
3718
3719
3720 /* Precision qualifiers exists only in GLSL versions 1.00 and >= 1.30.
3721 */
3722 if (this->type->qualifier.precision != ast_precision_none) {
3723 state->check_precision_qualifiers_allowed(&loc);
3724 }
3725
3726
3727 /* If a precision qualifier is allowed on a type, it is allowed on
3728 * an array of that type.
3729 */
3730 if (!(this->type->qualifier.precision == ast_precision_none
3731 || precision_qualifier_allowed(var->type)
3732 || (var->type->is_array()
3733 && precision_qualifier_allowed(var->type->fields.array)))) {
3734
3735 _mesa_glsl_error(&loc, state,
3736 "precision qualifiers apply only to floating point"
3737 ", integer and sampler types");
3738 }
3739
3740 /* From section 4.1.7 of the GLSL 4.40 spec:
3741 *
3742 * "[Opaque types] can only be declared as function
3743 * parameters or uniform-qualified variables."
3744 */
3745 if (var_type->contains_opaque() &&
3746 !this->type->qualifier.flags.q.uniform) {
3747 _mesa_glsl_error(&loc, state,
3748 "opaque variables must be declared uniform");
3749 }
3750
3751 /* Process the initializer and add its instructions to a temporary
3752 * list. This list will be added to the instruction stream (below) after
3753 * the declaration is added. This is done because in some cases (such as
3754 * redeclarations) the declaration may not actually be added to the
3755 * instruction stream.
3756 */
3757 exec_list initializer_instructions;
3758
3759 /* Examine var name here since var may get deleted in the next call */
3760 bool var_is_gl_id = is_gl_identifier(var->name);
3761
3762 ir_variable *earlier =
3763 get_variable_being_redeclared(var, decl->get_location(), state,
3764 false /* allow_all_redeclarations */);
3765 if (earlier != NULL) {
3766 if (var_is_gl_id &&
3767 earlier->data.how_declared == ir_var_declared_in_block) {
3768 _mesa_glsl_error(&loc, state,
3769 "`%s' has already been redeclared using "
3770 "gl_PerVertex", var->name);
3771 }
3772 earlier->data.how_declared = ir_var_declared_normally;
3773 }
3774
3775 if (decl->initializer != NULL) {
3776 result = process_initializer((earlier == NULL) ? var : earlier,
3777 decl, this->type,
3778 &initializer_instructions, state);
3779 }
3780
3781 /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
3782 *
3783 * "It is an error to write to a const variable outside of
3784 * its declaration, so they must be initialized when
3785 * declared."
3786 */
3787 if (this->type->qualifier.flags.q.constant && decl->initializer == NULL) {
3788 _mesa_glsl_error(& loc, state,
3789 "const declaration of `%s' must be initialized",
3790 decl->identifier);
3791 }
3792
3793 if (state->es_shader) {
3794 const glsl_type *const t = (earlier == NULL)
3795 ? var->type : earlier->type;
3796
3797 if (t->is_unsized_array())
3798 /* Section 10.17 of the GLSL ES 1.00 specification states that
3799 * unsized array declarations have been removed from the language.
3800 * Arrays that are sized using an initializer are still explicitly
3801 * sized. However, GLSL ES 1.00 does not allow array
3802 * initializers. That is only allowed in GLSL ES 3.00.
3803 *
3804 * Section 4.1.9 (Arrays) of the GLSL ES 3.00 spec says:
3805 *
3806 * "An array type can also be formed without specifying a size
3807 * if the definition includes an initializer:
3808 *
3809 * float x[] = float[2] (1.0, 2.0); // declares an array of size 2
3810 * float y[] = float[] (1.0, 2.0, 3.0); // declares an array of size 3
3811 *
3812 * float a[5];
3813 * float b[] = a;"
3814 */
3815 _mesa_glsl_error(& loc, state,
3816 "unsized array declarations are not allowed in "
3817 "GLSL ES");
3818 }
3819
3820 /* If the declaration is not a redeclaration, there are a few additional
3821 * semantic checks that must be applied. In addition, variable that was
3822 * created for the declaration should be added to the IR stream.
3823 */
3824 if (earlier == NULL) {
3825 validate_identifier(decl->identifier, loc, state);
3826
3827 /* Add the variable to the symbol table. Note that the initializer's
3828 * IR was already processed earlier (though it hasn't been emitted
3829 * yet), without the variable in scope.
3830 *
3831 * This differs from most C-like languages, but it follows the GLSL
3832 * specification. From page 28 (page 34 of the PDF) of the GLSL 1.50
3833 * spec:
3834 *
3835 * "Within a declaration, the scope of a name starts immediately
3836 * after the initializer if present or immediately after the name
3837 * being declared if not."
3838 */
3839 if (!state->symbols->add_variable(var)) {
3840 YYLTYPE loc = this->get_location();
3841 _mesa_glsl_error(&loc, state, "name `%s' already taken in the "
3842 "current scope", decl->identifier);
3843 continue;
3844 }
3845
3846 /* Push the variable declaration to the top. It means that all the
3847 * variable declarations will appear in a funny last-to-first order,
3848 * but otherwise we run into trouble if a function is prototyped, a
3849 * global var is decled, then the function is defined with usage of
3850 * the global var. See glslparsertest's CorrectModule.frag.
3851 */
3852 instructions->push_head(var);
3853 }
3854
3855 instructions->append_list(&initializer_instructions);
3856 }
3857
3858
3859 /* Generally, variable declarations do not have r-values. However,
3860 * one is used for the declaration in
3861 *
3862 * while (bool b = some_condition()) {
3863 * ...
3864 * }
3865 *
3866 * so we return the rvalue from the last seen declaration here.
3867 */
3868 return result;
3869 }
3870
3871
3872 ir_rvalue *
3873 ast_parameter_declarator::hir(exec_list *instructions,
3874 struct _mesa_glsl_parse_state *state)
3875 {
3876 void *ctx = state;
3877 const struct glsl_type *type;
3878 const char *name = NULL;
3879 YYLTYPE loc = this->get_location();
3880
3881 type = this->type->glsl_type(& name, state);
3882
3883 if (type == NULL) {
3884 if (name != NULL) {
3885 _mesa_glsl_error(& loc, state,
3886 "invalid type `%s' in declaration of `%s'",
3887 name, this->identifier);
3888 } else {
3889 _mesa_glsl_error(& loc, state,
3890 "invalid type in declaration of `%s'",
3891 this->identifier);
3892 }
3893
3894 type = glsl_type::error_type;
3895 }
3896
3897 /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
3898 *
3899 * "Functions that accept no input arguments need not use void in the
3900 * argument list because prototypes (or definitions) are required and
3901 * therefore there is no ambiguity when an empty argument list "( )" is
3902 * declared. The idiom "(void)" as a parameter list is provided for
3903 * convenience."
3904 *
3905 * Placing this check here prevents a void parameter being set up
3906 * for a function, which avoids tripping up checks for main taking
3907 * parameters and lookups of an unnamed symbol.
3908 */
3909 if (type->is_void()) {
3910 if (this->identifier != NULL)
3911 _mesa_glsl_error(& loc, state,
3912 "named parameter cannot have type `void'");
3913
3914 is_void = true;
3915 return NULL;
3916 }
3917
3918 if (formal_parameter && (this->identifier == NULL)) {
3919 _mesa_glsl_error(& loc, state, "formal parameter lacks a name");
3920 return NULL;
3921 }
3922
3923 /* This only handles "vec4 foo[..]". The earlier specifier->glsl_type(...)
3924 * call already handled the "vec4[..] foo" case.
3925 */
3926 type = process_array_type(&loc, type, this->array_specifier, state);
3927
3928 if (!type->is_error() && type->is_unsized_array()) {
3929 _mesa_glsl_error(&loc, state, "arrays passed as parameters must have "
3930 "a declared size");
3931 type = glsl_type::error_type;
3932 }
3933
3934 is_void = false;
3935 ir_variable *var = new(ctx)
3936 ir_variable(type, this->identifier, ir_var_function_in);
3937
3938 /* Apply any specified qualifiers to the parameter declaration. Note that
3939 * for function parameters the default mode is 'in'.
3940 */
3941 apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc,
3942 true);
3943
3944 /* From section 4.1.7 of the GLSL 4.40 spec:
3945 *
3946 * "Opaque variables cannot be treated as l-values; hence cannot
3947 * be used as out or inout function parameters, nor can they be
3948 * assigned into."
3949 */
3950 if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
3951 && type->contains_opaque()) {
3952 _mesa_glsl_error(&loc, state, "out and inout parameters cannot "
3953 "contain opaque variables");
3954 type = glsl_type::error_type;
3955 }
3956
3957 /* From page 39 (page 45 of the PDF) of the GLSL 1.10 spec:
3958 *
3959 * "When calling a function, expressions that do not evaluate to
3960 * l-values cannot be passed to parameters declared as out or inout."
3961 *
3962 * From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
3963 *
3964 * "Other binary or unary expressions, non-dereferenced arrays,
3965 * function names, swizzles with repeated fields, and constants
3966 * cannot be l-values."
3967 *
3968 * So for GLSL 1.10, passing an array as an out or inout parameter is not
3969 * allowed. This restriction is removed in GLSL 1.20, and in GLSL ES.
3970 */
3971 if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
3972 && type->is_array()
3973 && !state->check_version(120, 100, &loc,
3974 "arrays cannot be out or inout parameters")) {
3975 type = glsl_type::error_type;
3976 }
3977
3978 instructions->push_tail(var);
3979
3980 /* Parameter declarations do not have r-values.
3981 */
3982 return NULL;
3983 }
3984
3985
3986 void
3987 ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters,
3988 bool formal,
3989 exec_list *ir_parameters,
3990 _mesa_glsl_parse_state *state)
3991 {
3992 ast_parameter_declarator *void_param = NULL;
3993 unsigned count = 0;
3994
3995 foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) {
3996 param->formal_parameter = formal;
3997 param->hir(ir_parameters, state);
3998
3999 if (param->is_void)
4000 void_param = param;
4001
4002 count++;
4003 }
4004
4005 if ((void_param != NULL) && (count > 1)) {
4006 YYLTYPE loc = void_param->get_location();
4007
4008 _mesa_glsl_error(& loc, state,
4009 "`void' parameter must be only parameter");
4010 }
4011 }
4012
4013
4014 void
4015 emit_function(_mesa_glsl_parse_state *state, ir_function *f)
4016 {
4017 /* IR invariants disallow function declarations or definitions
4018 * nested within other function definitions. But there is no
4019 * requirement about the relative order of function declarations
4020 * and definitions with respect to one another. So simply insert
4021 * the new ir_function block at the end of the toplevel instruction
4022 * list.
4023 */
4024 state->toplevel_ir->push_tail(f);
4025 }
4026
4027
4028 ir_rvalue *
4029 ast_function::hir(exec_list *instructions,
4030 struct _mesa_glsl_parse_state *state)
4031 {
4032 void *ctx = state;
4033 ir_function *f = NULL;
4034 ir_function_signature *sig = NULL;
4035 exec_list hir_parameters;
4036
4037 const char *const name = identifier;
4038
4039 /* New functions are always added to the top-level IR instruction stream,
4040 * so this instruction list pointer is ignored. See also emit_function
4041 * (called below).
4042 */
4043 (void) instructions;
4044
4045 /* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec,
4046 *
4047 * "Function declarations (prototypes) cannot occur inside of functions;
4048 * they must be at global scope, or for the built-in functions, outside
4049 * the global scope."
4050 *
4051 * From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec,
4052 *
4053 * "User defined functions may only be defined within the global scope."
4054 *
4055 * Note that this language does not appear in GLSL 1.10.
4056 */
4057 if ((state->current_function != NULL) &&
4058 state->is_version(120, 100)) {
4059 YYLTYPE loc = this->get_location();
4060 _mesa_glsl_error(&loc, state,
4061 "declaration of function `%s' not allowed within "
4062 "function body", name);
4063 }
4064
4065 validate_identifier(name, this->get_location(), state);
4066
4067 /* Convert the list of function parameters to HIR now so that they can be
4068 * used below to compare this function's signature with previously seen
4069 * signatures for functions with the same name.
4070 */
4071 ast_parameter_declarator::parameters_to_hir(& this->parameters,
4072 is_definition,
4073 & hir_parameters, state);
4074
4075 const char *return_type_name;
4076 const glsl_type *return_type =
4077 this->return_type->glsl_type(& return_type_name, state);
4078
4079 if (!return_type) {
4080 YYLTYPE loc = this->get_location();
4081 _mesa_glsl_error(&loc, state,
4082 "function `%s' has undeclared return type `%s'",
4083 name, return_type_name);
4084 return_type = glsl_type::error_type;
4085 }
4086
4087 /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec:
4088 * "No qualifier is allowed on the return type of a function."
4089 */
4090 if (this->return_type->has_qualifiers()) {
4091 YYLTYPE loc = this->get_location();
4092 _mesa_glsl_error(& loc, state,
4093 "function `%s' return type has qualifiers", name);
4094 }
4095
4096 /* Section 6.1 (Function Definitions) of the GLSL 1.20 spec says:
4097 *
4098 * "Arrays are allowed as arguments and as the return type. In both
4099 * cases, the array must be explicitly sized."
4100 */
4101 if (return_type->is_unsized_array()) {
4102 YYLTYPE loc = this->get_location();
4103 _mesa_glsl_error(& loc, state,
4104 "function `%s' return type array must be explicitly "
4105 "sized", name);
4106 }
4107
4108 /* From section 4.1.7 of the GLSL 4.40 spec:
4109 *
4110 * "[Opaque types] can only be declared as function parameters
4111 * or uniform-qualified variables."
4112 */
4113 if (return_type->contains_opaque()) {
4114 YYLTYPE loc = this->get_location();
4115 _mesa_glsl_error(&loc, state,
4116 "function `%s' return type can't contain an opaque type",
4117 name);
4118 }
4119
4120 /* Create an ir_function if one doesn't already exist. */
4121 f = state->symbols->get_function(name);
4122 if (f == NULL) {
4123 f = new(ctx) ir_function(name);
4124 if (!state->symbols->add_function(f)) {
4125 /* This function name shadows a non-function use of the same name. */
4126 YYLTYPE loc = this->get_location();
4127
4128 _mesa_glsl_error(&loc, state, "function name `%s' conflicts with "
4129 "non-function", name);
4130 return NULL;
4131 }
4132
4133 emit_function(state, f);
4134 }
4135
4136 /* Verify that this function's signature either doesn't match a previously
4137 * seen signature for a function with the same name, or, if a match is found,
4138 * that the previously seen signature does not have an associated definition.
4139 */
4140 if (state->es_shader || f->has_user_signature()) {
4141 sig = f->exact_matching_signature(state, &hir_parameters);
4142 if (sig != NULL) {
4143 const char *badvar = sig->qualifiers_match(&hir_parameters);
4144 if (badvar != NULL) {
4145 YYLTYPE loc = this->get_location();
4146
4147 _mesa_glsl_error(&loc, state, "function `%s' parameter `%s' "
4148 "qualifiers don't match prototype", name, badvar);
4149 }
4150
4151 if (sig->return_type != return_type) {
4152 YYLTYPE loc = this->get_location();
4153
4154 _mesa_glsl_error(&loc, state, "function `%s' return type doesn't "
4155 "match prototype", name);
4156 }
4157
4158 if (sig->is_defined) {
4159 if (is_definition) {
4160 YYLTYPE loc = this->get_location();
4161 _mesa_glsl_error(& loc, state, "function `%s' redefined", name);
4162 } else {
4163 /* We just encountered a prototype that exactly matches a
4164 * function that's already been defined. This is redundant,
4165 * and we should ignore it.
4166 */
4167 return NULL;
4168 }
4169 }
4170 }
4171 }
4172
4173 /* Verify the return type of main() */
4174 if (strcmp(name, "main") == 0) {
4175 if (! return_type->is_void()) {
4176 YYLTYPE loc = this->get_location();
4177
4178 _mesa_glsl_error(& loc, state, "main() must return void");
4179 }
4180
4181 if (!hir_parameters.is_empty()) {
4182 YYLTYPE loc = this->get_location();
4183
4184 _mesa_glsl_error(& loc, state, "main() must not take any parameters");
4185 }
4186 }
4187
4188 /* Finish storing the information about this new function in its signature.
4189 */
4190 if (sig == NULL) {
4191 sig = new(ctx) ir_function_signature(return_type);
4192 f->add_signature(sig);
4193 }
4194
4195 sig->replace_parameters(&hir_parameters);
4196 signature = sig;
4197
4198 /* Function declarations (prototypes) do not have r-values.
4199 */
4200 return NULL;
4201 }
4202
4203
4204 ir_rvalue *
4205 ast_function_definition::hir(exec_list *instructions,
4206 struct _mesa_glsl_parse_state *state)
4207 {
4208 prototype->is_definition = true;
4209 prototype->hir(instructions, state);
4210
4211 ir_function_signature *signature = prototype->signature;
4212 if (signature == NULL)
4213 return NULL;
4214
4215 assert(state->current_function == NULL);
4216 state->current_function = signature;
4217 state->found_return = false;
4218
4219 /* Duplicate parameters declared in the prototype as concrete variables.
4220 * Add these to the symbol table.
4221 */
4222 state->symbols->push_scope();
4223 foreach_in_list(ir_variable, var, &signature->parameters) {
4224 assert(var->as_variable() != NULL);
4225
4226 /* The only way a parameter would "exist" is if two parameters have
4227 * the same name.
4228 */
4229 if (state->symbols->name_declared_this_scope(var->name)) {
4230 YYLTYPE loc = this->get_location();
4231
4232 _mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name);
4233 } else {
4234 state->symbols->add_variable(var);
4235 }
4236 }
4237
4238 /* Convert the body of the function to HIR. */
4239 this->body->hir(&signature->body, state);
4240 signature->is_defined = true;
4241
4242 state->symbols->pop_scope();
4243
4244 assert(state->current_function == signature);
4245 state->current_function = NULL;
4246
4247 if (!signature->return_type->is_void() && !state->found_return) {
4248 YYLTYPE loc = this->get_location();
4249 _mesa_glsl_error(& loc, state, "function `%s' has non-void return type "
4250 "%s, but no return statement",
4251 signature->function_name(),
4252 signature->return_type->name);
4253 }
4254
4255 /* Function definitions do not have r-values.
4256 */
4257 return NULL;
4258 }
4259
4260
4261 ir_rvalue *
4262 ast_jump_statement::hir(exec_list *instructions,
4263 struct _mesa_glsl_parse_state *state)
4264 {
4265 void *ctx = state;
4266
4267 switch (mode) {
4268 case ast_return: {
4269 ir_return *inst;
4270 assert(state->current_function);
4271
4272 if (opt_return_value) {
4273 ir_rvalue *ret = opt_return_value->hir(instructions, state);
4274
4275 /* The value of the return type can be NULL if the shader says
4276 * 'return foo();' and foo() is a function that returns void.
4277 *
4278 * NOTE: The GLSL spec doesn't say that this is an error. The type
4279 * of the return value is void. If the return type of the function is
4280 * also void, then this should compile without error. Seriously.
4281 */
4282 const glsl_type *const ret_type =
4283 (ret == NULL) ? glsl_type::void_type : ret->type;
4284
4285 /* Implicit conversions are not allowed for return values prior to
4286 * ARB_shading_language_420pack.
4287 */
4288 if (state->current_function->return_type != ret_type) {
4289 YYLTYPE loc = this->get_location();
4290
4291 if (state->ARB_shading_language_420pack_enable) {
4292 if (!apply_implicit_conversion(state->current_function->return_type,
4293 ret, state)) {
4294 _mesa_glsl_error(& loc, state,
4295 "could not implicitly convert return value "
4296 "to %s, in function `%s'",
4297 state->current_function->return_type->name,
4298 state->current_function->function_name());
4299 }
4300 } else {
4301 _mesa_glsl_error(& loc, state,
4302 "`return' with wrong type %s, in function `%s' "
4303 "returning %s",
4304 ret_type->name,
4305 state->current_function->function_name(),
4306 state->current_function->return_type->name);
4307 }
4308 } else if (state->current_function->return_type->base_type ==
4309 GLSL_TYPE_VOID) {
4310 YYLTYPE loc = this->get_location();
4311
4312 /* The ARB_shading_language_420pack, GLSL ES 3.0, and GLSL 4.20
4313 * specs add a clarification:
4314 *
4315 * "A void function can only use return without a return argument, even if
4316 * the return argument has void type. Return statements only accept values:
4317 *
4318 * void func1() { }
4319 * void func2() { return func1(); } // illegal return statement"
4320 */
4321 _mesa_glsl_error(& loc, state,
4322 "void functions can only use `return' without a "
4323 "return argument");
4324 }
4325
4326 inst = new(ctx) ir_return(ret);
4327 } else {
4328 if (state->current_function->return_type->base_type !=
4329 GLSL_TYPE_VOID) {
4330 YYLTYPE loc = this->get_location();
4331
4332 _mesa_glsl_error(& loc, state,
4333 "`return' with no value, in function %s returning "
4334 "non-void",
4335 state->current_function->function_name());
4336 }
4337 inst = new(ctx) ir_return;
4338 }
4339
4340 state->found_return = true;
4341 instructions->push_tail(inst);
4342 break;
4343 }
4344
4345 case ast_discard:
4346 if (state->stage != MESA_SHADER_FRAGMENT) {
4347 YYLTYPE loc = this->get_location();
4348
4349 _mesa_glsl_error(& loc, state,
4350 "`discard' may only appear in a fragment shader");
4351 }
4352 instructions->push_tail(new(ctx) ir_discard);
4353 break;
4354
4355 case ast_break:
4356 case ast_continue:
4357 if (mode == ast_continue &&
4358 state->loop_nesting_ast == NULL) {
4359 YYLTYPE loc = this->get_location();
4360
4361 _mesa_glsl_error(& loc, state, "continue may only appear in a loop");
4362 } else if (mode == ast_break &&
4363 state->loop_nesting_ast == NULL &&
4364 state->switch_state.switch_nesting_ast == NULL) {
4365 YYLTYPE loc = this->get_location();
4366
4367 _mesa_glsl_error(& loc, state,
4368 "break may only appear in a loop or a switch");
4369 } else {
4370 /* For a loop, inline the for loop expression again, since we don't
4371 * know where near the end of the loop body the normal copy of it is
4372 * going to be placed. Same goes for the condition for a do-while
4373 * loop.
4374 */
4375 if (state->loop_nesting_ast != NULL &&
4376 mode == ast_continue) {
4377 if (state->loop_nesting_ast->rest_expression) {
4378 state->loop_nesting_ast->rest_expression->hir(instructions,
4379 state);
4380 }
4381 if (state->loop_nesting_ast->mode ==
4382 ast_iteration_statement::ast_do_while) {
4383 state->loop_nesting_ast->condition_to_hir(instructions, state);
4384 }
4385 }
4386
4387 if (state->switch_state.is_switch_innermost &&
4388 mode == ast_break) {
4389 /* Force break out of switch by setting is_break switch state.
4390 */
4391 ir_variable *const is_break_var = state->switch_state.is_break_var;
4392 ir_dereference_variable *const deref_is_break_var =
4393 new(ctx) ir_dereference_variable(is_break_var);
4394 ir_constant *const true_val = new(ctx) ir_constant(true);
4395 ir_assignment *const set_break_var =
4396 new(ctx) ir_assignment(deref_is_break_var, true_val);
4397
4398 instructions->push_tail(set_break_var);
4399 }
4400 else {
4401 ir_loop_jump *const jump =
4402 new(ctx) ir_loop_jump((mode == ast_break)
4403 ? ir_loop_jump::jump_break
4404 : ir_loop_jump::jump_continue);
4405 instructions->push_tail(jump);
4406 }
4407 }
4408
4409 break;
4410 }
4411
4412 /* Jump instructions do not have r-values.
4413 */
4414 return NULL;
4415 }
4416
4417
4418 ir_rvalue *
4419 ast_selection_statement::hir(exec_list *instructions,
4420 struct _mesa_glsl_parse_state *state)
4421 {
4422 void *ctx = state;
4423
4424 ir_rvalue *const condition = this->condition->hir(instructions, state);
4425
4426 /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
4427 *
4428 * "Any expression whose type evaluates to a Boolean can be used as the
4429 * conditional expression bool-expression. Vector types are not accepted
4430 * as the expression to if."
4431 *
4432 * The checks are separated so that higher quality diagnostics can be
4433 * generated for cases where both rules are violated.
4434 */
4435 if (!condition->type->is_boolean() || !condition->type->is_scalar()) {
4436 YYLTYPE loc = this->condition->get_location();
4437
4438 _mesa_glsl_error(& loc, state, "if-statement condition must be scalar "
4439 "boolean");
4440 }
4441
4442 ir_if *const stmt = new(ctx) ir_if(condition);
4443
4444 if (then_statement != NULL) {
4445 state->symbols->push_scope();
4446 then_statement->hir(& stmt->then_instructions, state);
4447 state->symbols->pop_scope();
4448 }
4449
4450 if (else_statement != NULL) {
4451 state->symbols->push_scope();
4452 else_statement->hir(& stmt->else_instructions, state);
4453 state->symbols->pop_scope();
4454 }
4455
4456 instructions->push_tail(stmt);
4457
4458 /* if-statements do not have r-values.
4459 */
4460 return NULL;
4461 }
4462
4463
4464 ir_rvalue *
4465 ast_switch_statement::hir(exec_list *instructions,
4466 struct _mesa_glsl_parse_state *state)
4467 {
4468 void *ctx = state;
4469
4470 ir_rvalue *const test_expression =
4471 this->test_expression->hir(instructions, state);
4472
4473 /* From page 66 (page 55 of the PDF) of the GLSL 1.50 spec:
4474 *
4475 * "The type of init-expression in a switch statement must be a
4476 * scalar integer."
4477 */
4478 if (!test_expression->type->is_scalar() ||
4479 !test_expression->type->is_integer()) {
4480 YYLTYPE loc = this->test_expression->get_location();
4481
4482 _mesa_glsl_error(& loc,
4483 state,
4484 "switch-statement expression must be scalar "
4485 "integer");
4486 }
4487
4488 /* Track the switch-statement nesting in a stack-like manner.
4489 */
4490 struct glsl_switch_state saved = state->switch_state;
4491
4492 state->switch_state.is_switch_innermost = true;
4493 state->switch_state.switch_nesting_ast = this;
4494 state->switch_state.labels_ht = hash_table_ctor(0, hash_table_pointer_hash,
4495 hash_table_pointer_compare);
4496 state->switch_state.previous_default = NULL;
4497
4498 /* Initalize is_fallthru state to false.
4499 */
4500 ir_rvalue *const is_fallthru_val = new (ctx) ir_constant(false);
4501 state->switch_state.is_fallthru_var =
4502 new(ctx) ir_variable(glsl_type::bool_type,
4503 "switch_is_fallthru_tmp",
4504 ir_var_temporary);
4505 instructions->push_tail(state->switch_state.is_fallthru_var);
4506
4507 ir_dereference_variable *deref_is_fallthru_var =
4508 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
4509 instructions->push_tail(new(ctx) ir_assignment(deref_is_fallthru_var,
4510 is_fallthru_val));
4511
4512 /* Initalize is_break state to false.
4513 */
4514 ir_rvalue *const is_break_val = new (ctx) ir_constant(false);
4515 state->switch_state.is_break_var =
4516 new(ctx) ir_variable(glsl_type::bool_type,
4517 "switch_is_break_tmp",
4518 ir_var_temporary);
4519 instructions->push_tail(state->switch_state.is_break_var);
4520
4521 ir_dereference_variable *deref_is_break_var =
4522 new(ctx) ir_dereference_variable(state->switch_state.is_break_var);
4523 instructions->push_tail(new(ctx) ir_assignment(deref_is_break_var,
4524 is_break_val));
4525
4526 state->switch_state.run_default =
4527 new(ctx) ir_variable(glsl_type::bool_type,
4528 "run_default_tmp",
4529 ir_var_temporary);
4530 instructions->push_tail(state->switch_state.run_default);
4531
4532 /* Cache test expression.
4533 */
4534 test_to_hir(instructions, state);
4535
4536 /* Emit code for body of switch stmt.
4537 */
4538 body->hir(instructions, state);
4539
4540 hash_table_dtor(state->switch_state.labels_ht);
4541
4542 state->switch_state = saved;
4543
4544 /* Switch statements do not have r-values. */
4545 return NULL;
4546 }
4547
4548
4549 void
4550 ast_switch_statement::test_to_hir(exec_list *instructions,
4551 struct _mesa_glsl_parse_state *state)
4552 {
4553 void *ctx = state;
4554
4555 /* Cache value of test expression. */
4556 ir_rvalue *const test_val =
4557 test_expression->hir(instructions,
4558 state);
4559
4560 state->switch_state.test_var = new(ctx) ir_variable(test_val->type,
4561 "switch_test_tmp",
4562 ir_var_temporary);
4563 ir_dereference_variable *deref_test_var =
4564 new(ctx) ir_dereference_variable(state->switch_state.test_var);
4565
4566 instructions->push_tail(state->switch_state.test_var);
4567 instructions->push_tail(new(ctx) ir_assignment(deref_test_var, test_val));
4568 }
4569
4570
4571 ir_rvalue *
4572 ast_switch_body::hir(exec_list *instructions,
4573 struct _mesa_glsl_parse_state *state)
4574 {
4575 if (stmts != NULL)
4576 stmts->hir(instructions, state);
4577
4578 /* Switch bodies do not have r-values. */
4579 return NULL;
4580 }
4581
4582 ir_rvalue *
4583 ast_case_statement_list::hir(exec_list *instructions,
4584 struct _mesa_glsl_parse_state *state)
4585 {
4586 exec_list default_case, after_default, tmp;
4587
4588 foreach_list_typed (ast_case_statement, case_stmt, link, & this->cases) {
4589 case_stmt->hir(&tmp, state);
4590
4591 /* Default case. */
4592 if (state->switch_state.previous_default && default_case.is_empty()) {
4593 default_case.append_list(&tmp);
4594 continue;
4595 }
4596
4597 /* If default case found, append 'after_default' list. */
4598 if (!default_case.is_empty())
4599 after_default.append_list(&tmp);
4600 else
4601 instructions->append_list(&tmp);
4602 }
4603
4604 /* Handle the default case. This is done here because default might not be
4605 * the last case. We need to add checks against following cases first to see
4606 * if default should be chosen or not.
4607 */
4608 if (!default_case.is_empty()) {
4609
4610 ir_rvalue *const true_val = new (state) ir_constant(true);
4611 ir_dereference_variable *deref_run_default_var =
4612 new(state) ir_dereference_variable(state->switch_state.run_default);
4613
4614 /* Choose to run default case initially, following conditional
4615 * assignments might change this.
4616 */
4617 ir_assignment *const init_var =
4618 new(state) ir_assignment(deref_run_default_var, true_val);
4619 instructions->push_tail(init_var);
4620
4621 /* Default case was the last one, no checks required. */
4622 if (after_default.is_empty()) {
4623 instructions->append_list(&default_case);
4624 return NULL;
4625 }
4626
4627 foreach_in_list(ir_instruction, ir, &after_default) {
4628 ir_assignment *assign = ir->as_assignment();
4629
4630 if (!assign)
4631 continue;
4632
4633 /* Clone the check between case label and init expression. */
4634 ir_expression *exp = (ir_expression*) assign->condition;
4635 ir_expression *clone = exp->clone(state, NULL);
4636
4637 ir_dereference_variable *deref_var =
4638 new(state) ir_dereference_variable(state->switch_state.run_default);
4639 ir_rvalue *const false_val = new (state) ir_constant(false);
4640
4641 ir_assignment *const set_false =
4642 new(state) ir_assignment(deref_var, false_val, clone);
4643
4644 instructions->push_tail(set_false);
4645 }
4646
4647 /* Append default case and all cases after it. */
4648 instructions->append_list(&default_case);
4649 instructions->append_list(&after_default);
4650 }
4651
4652 /* Case statements do not have r-values. */
4653 return NULL;
4654 }
4655
4656 ir_rvalue *
4657 ast_case_statement::hir(exec_list *instructions,
4658 struct _mesa_glsl_parse_state *state)
4659 {
4660 labels->hir(instructions, state);
4661
4662 /* Conditionally set fallthru state based on break state. */
4663 ir_constant *const false_val = new(state) ir_constant(false);
4664 ir_dereference_variable *const deref_is_fallthru_var =
4665 new(state) ir_dereference_variable(state->switch_state.is_fallthru_var);
4666 ir_dereference_variable *const deref_is_break_var =
4667 new(state) ir_dereference_variable(state->switch_state.is_break_var);
4668 ir_assignment *const reset_fallthru_on_break =
4669 new(state) ir_assignment(deref_is_fallthru_var,
4670 false_val,
4671 deref_is_break_var);
4672 instructions->push_tail(reset_fallthru_on_break);
4673
4674 /* Guard case statements depending on fallthru state. */
4675 ir_dereference_variable *const deref_fallthru_guard =
4676 new(state) ir_dereference_variable(state->switch_state.is_fallthru_var);
4677 ir_if *const test_fallthru = new(state) ir_if(deref_fallthru_guard);
4678
4679 foreach_list_typed (ast_node, stmt, link, & this->stmts)
4680 stmt->hir(& test_fallthru->then_instructions, state);
4681
4682 instructions->push_tail(test_fallthru);
4683
4684 /* Case statements do not have r-values. */
4685 return NULL;
4686 }
4687
4688
4689 ir_rvalue *
4690 ast_case_label_list::hir(exec_list *instructions,
4691 struct _mesa_glsl_parse_state *state)
4692 {
4693 foreach_list_typed (ast_case_label, label, link, & this->labels)
4694 label->hir(instructions, state);
4695
4696 /* Case labels do not have r-values. */
4697 return NULL;
4698 }
4699
4700 ir_rvalue *
4701 ast_case_label::hir(exec_list *instructions,
4702 struct _mesa_glsl_parse_state *state)
4703 {
4704 void *ctx = state;
4705
4706 ir_dereference_variable *deref_fallthru_var =
4707 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
4708
4709 ir_rvalue *const true_val = new(ctx) ir_constant(true);
4710
4711 /* If not default case, ... */
4712 if (this->test_value != NULL) {
4713 /* Conditionally set fallthru state based on
4714 * comparison of cached test expression value to case label.
4715 */
4716 ir_rvalue *const label_rval = this->test_value->hir(instructions, state);
4717 ir_constant *label_const = label_rval->constant_expression_value();
4718
4719 if (!label_const) {
4720 YYLTYPE loc = this->test_value->get_location();
4721
4722 _mesa_glsl_error(& loc, state,
4723 "switch statement case label must be a "
4724 "constant expression");
4725
4726 /* Stuff a dummy value in to allow processing to continue. */
4727 label_const = new(ctx) ir_constant(0);
4728 } else {
4729 ast_expression *previous_label = (ast_expression *)
4730 hash_table_find(state->switch_state.labels_ht,
4731 (void *)(uintptr_t)label_const->value.u[0]);
4732
4733 if (previous_label) {
4734 YYLTYPE loc = this->test_value->get_location();
4735 _mesa_glsl_error(& loc, state, "duplicate case value");
4736
4737 loc = previous_label->get_location();
4738 _mesa_glsl_error(& loc, state, "this is the previous case label");
4739 } else {
4740 hash_table_insert(state->switch_state.labels_ht,
4741 this->test_value,
4742 (void *)(uintptr_t)label_const->value.u[0]);
4743 }
4744 }
4745
4746 ir_dereference_variable *deref_test_var =
4747 new(ctx) ir_dereference_variable(state->switch_state.test_var);
4748
4749 ir_expression *test_cond = new(ctx) ir_expression(ir_binop_all_equal,
4750 label_const,
4751 deref_test_var);
4752
4753 /*
4754 * From GLSL 4.40 specification section 6.2 ("Selection"):
4755 *
4756 * "The type of the init-expression value in a switch statement must
4757 * be a scalar int or uint. The type of the constant-expression value
4758 * in a case label also must be a scalar int or uint. When any pair
4759 * of these values is tested for "equal value" and the types do not
4760 * match, an implicit conversion will be done to convert the int to a
4761 * uint (see section 4.1.10 “Implicit Conversions”) before the compare
4762 * is done."
4763 */
4764 if (label_const->type != state->switch_state.test_var->type) {
4765 YYLTYPE loc = this->test_value->get_location();
4766
4767 const glsl_type *type_a = label_const->type;
4768 const glsl_type *type_b = state->switch_state.test_var->type;
4769
4770 /* Check if int->uint implicit conversion is supported. */
4771 bool integer_conversion_supported =
4772 glsl_type::int_type->can_implicitly_convert_to(glsl_type::uint_type,
4773 state);
4774
4775 if ((!type_a->is_integer() || !type_b->is_integer()) ||
4776 !integer_conversion_supported) {
4777 _mesa_glsl_error(&loc, state, "type mismatch with switch "
4778 "init-expression and case label (%s != %s)",
4779 type_a->name, type_b->name);
4780 } else {
4781 /* Conversion of the case label. */
4782 if (type_a->base_type == GLSL_TYPE_INT) {
4783 if (!apply_implicit_conversion(glsl_type::uint_type,
4784 test_cond->operands[0], state))
4785 _mesa_glsl_error(&loc, state, "implicit type conversion error");
4786 } else {
4787 /* Conversion of the init-expression value. */
4788 if (!apply_implicit_conversion(glsl_type::uint_type,
4789 test_cond->operands[1], state))
4790 _mesa_glsl_error(&loc, state, "implicit type conversion error");
4791 }
4792 }
4793 }
4794
4795 ir_assignment *set_fallthru_on_test =
4796 new(ctx) ir_assignment(deref_fallthru_var, true_val, test_cond);
4797
4798 instructions->push_tail(set_fallthru_on_test);
4799 } else { /* default case */
4800 if (state->switch_state.previous_default) {
4801 YYLTYPE loc = this->get_location();
4802 _mesa_glsl_error(& loc, state,
4803 "multiple default labels in one switch");
4804
4805 loc = state->switch_state.previous_default->get_location();
4806 _mesa_glsl_error(& loc, state, "this is the first default label");
4807 }
4808 state->switch_state.previous_default = this;
4809
4810 /* Set fallthru condition on 'run_default' bool. */
4811 ir_dereference_variable *deref_run_default =
4812 new(ctx) ir_dereference_variable(state->switch_state.run_default);
4813 ir_rvalue *const cond_true = new(ctx) ir_constant(true);
4814 ir_expression *test_cond = new(ctx) ir_expression(ir_binop_all_equal,
4815 cond_true,
4816 deref_run_default);
4817
4818 /* Set falltrhu state. */
4819 ir_assignment *set_fallthru =
4820 new(ctx) ir_assignment(deref_fallthru_var, true_val, test_cond);
4821
4822 instructions->push_tail(set_fallthru);
4823 }
4824
4825 /* Case statements do not have r-values. */
4826 return NULL;
4827 }
4828
4829 void
4830 ast_iteration_statement::condition_to_hir(exec_list *instructions,
4831 struct _mesa_glsl_parse_state *state)
4832 {
4833 void *ctx = state;
4834
4835 if (condition != NULL) {
4836 ir_rvalue *const cond =
4837 condition->hir(instructions, state);
4838
4839 if ((cond == NULL)
4840 || !cond->type->is_boolean() || !cond->type->is_scalar()) {
4841 YYLTYPE loc = condition->get_location();
4842
4843 _mesa_glsl_error(& loc, state,
4844 "loop condition must be scalar boolean");
4845 } else {
4846 /* As the first code in the loop body, generate a block that looks
4847 * like 'if (!condition) break;' as the loop termination condition.
4848 */
4849 ir_rvalue *const not_cond =
4850 new(ctx) ir_expression(ir_unop_logic_not, cond);
4851
4852 ir_if *const if_stmt = new(ctx) ir_if(not_cond);
4853
4854 ir_jump *const break_stmt =
4855 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
4856
4857 if_stmt->then_instructions.push_tail(break_stmt);
4858 instructions->push_tail(if_stmt);
4859 }
4860 }
4861 }
4862
4863
4864 ir_rvalue *
4865 ast_iteration_statement::hir(exec_list *instructions,
4866 struct _mesa_glsl_parse_state *state)
4867 {
4868 void *ctx = state;
4869
4870 /* For-loops and while-loops start a new scope, but do-while loops do not.
4871 */
4872 if (mode != ast_do_while)
4873 state->symbols->push_scope();
4874
4875 if (init_statement != NULL)
4876 init_statement->hir(instructions, state);
4877
4878 ir_loop *const stmt = new(ctx) ir_loop();
4879 instructions->push_tail(stmt);
4880
4881 /* Track the current loop nesting. */
4882 ast_iteration_statement *nesting_ast = state->loop_nesting_ast;
4883
4884 state->loop_nesting_ast = this;
4885
4886 /* Likewise, indicate that following code is closest to a loop,
4887 * NOT closest to a switch.
4888 */
4889 bool saved_is_switch_innermost = state->switch_state.is_switch_innermost;
4890 state->switch_state.is_switch_innermost = false;
4891
4892 if (mode != ast_do_while)
4893 condition_to_hir(&stmt->body_instructions, state);
4894
4895 if (body != NULL)
4896 body->hir(& stmt->body_instructions, state);
4897
4898 if (rest_expression != NULL)
4899 rest_expression->hir(& stmt->body_instructions, state);
4900
4901 if (mode == ast_do_while)
4902 condition_to_hir(&stmt->body_instructions, state);
4903
4904 if (mode != ast_do_while)
4905 state->symbols->pop_scope();
4906
4907 /* Restore previous nesting before returning. */
4908 state->loop_nesting_ast = nesting_ast;
4909 state->switch_state.is_switch_innermost = saved_is_switch_innermost;
4910
4911 /* Loops do not have r-values.
4912 */
4913 return NULL;
4914 }
4915
4916
4917 /**
4918 * Determine if the given type is valid for establishing a default precision
4919 * qualifier.
4920 *
4921 * From GLSL ES 3.00 section 4.5.4 ("Default Precision Qualifiers"):
4922 *
4923 * "The precision statement
4924 *
4925 * precision precision-qualifier type;
4926 *
4927 * can be used to establish a default precision qualifier. The type field
4928 * can be either int or float or any of the sampler types, and the
4929 * precision-qualifier can be lowp, mediump, or highp."
4930 *
4931 * GLSL ES 1.00 has similar language. GLSL 1.30 doesn't allow precision
4932 * qualifiers on sampler types, but this seems like an oversight (since the
4933 * intention of including these in GLSL 1.30 is to allow compatibility with ES
4934 * shaders). So we allow int, float, and all sampler types regardless of GLSL
4935 * version.
4936 */
4937 static bool
4938 is_valid_default_precision_type(const struct glsl_type *const type)
4939 {
4940 if (type == NULL)
4941 return false;
4942
4943 switch (type->base_type) {
4944 case GLSL_TYPE_INT:
4945 case GLSL_TYPE_FLOAT:
4946 /* "int" and "float" are valid, but vectors and matrices are not. */
4947 return type->vector_elements == 1 && type->matrix_columns == 1;
4948 case GLSL_TYPE_SAMPLER:
4949 return true;
4950 default:
4951 return false;
4952 }
4953 }
4954
4955
4956 ir_rvalue *
4957 ast_type_specifier::hir(exec_list *instructions,
4958 struct _mesa_glsl_parse_state *state)
4959 {
4960 if (this->default_precision == ast_precision_none && this->structure == NULL)
4961 return NULL;
4962
4963 YYLTYPE loc = this->get_location();
4964
4965 /* If this is a precision statement, check that the type to which it is
4966 * applied is either float or int.
4967 *
4968 * From section 4.5.3 of the GLSL 1.30 spec:
4969 * "The precision statement
4970 * precision precision-qualifier type;
4971 * can be used to establish a default precision qualifier. The type
4972 * field can be either int or float [...]. Any other types or
4973 * qualifiers will result in an error.
4974 */
4975 if (this->default_precision != ast_precision_none) {
4976 if (!state->check_precision_qualifiers_allowed(&loc))
4977 return NULL;
4978
4979 if (this->structure != NULL) {
4980 _mesa_glsl_error(&loc, state,
4981 "precision qualifiers do not apply to structures");
4982 return NULL;
4983 }
4984
4985 if (this->array_specifier != NULL) {
4986 _mesa_glsl_error(&loc, state,
4987 "default precision statements do not apply to "
4988 "arrays");
4989 return NULL;
4990 }
4991
4992 const struct glsl_type *const type =
4993 state->symbols->get_type(this->type_name);
4994 if (!is_valid_default_precision_type(type)) {
4995 _mesa_glsl_error(&loc, state,
4996 "default precision statements apply only to "
4997 "float, int, and sampler types");
4998 return NULL;
4999 }
5000
5001 if (type->base_type == GLSL_TYPE_FLOAT
5002 && state->es_shader
5003 && state->stage == MESA_SHADER_FRAGMENT) {
5004 /* Section 4.5.3 (Default Precision Qualifiers) of the GLSL ES 1.00
5005 * spec says:
5006 *
5007 * "The fragment language has no default precision qualifier for
5008 * floating point types."
5009 *
5010 * As a result, we have to track whether or not default precision has
5011 * been specified for float in GLSL ES fragment shaders.
5012 *
5013 * Earlier in that same section, the spec says:
5014 *
5015 * "Non-precision qualified declarations will use the precision
5016 * qualifier specified in the most recent precision statement
5017 * that is still in scope. The precision statement has the same
5018 * scoping rules as variable declarations. If it is declared
5019 * inside a compound statement, its effect stops at the end of
5020 * the innermost statement it was declared in. Precision
5021 * statements in nested scopes override precision statements in
5022 * outer scopes. Multiple precision statements for the same basic
5023 * type can appear inside the same scope, with later statements
5024 * overriding earlier statements within that scope."
5025 *
5026 * Default precision specifications follow the same scope rules as
5027 * variables. So, we can track the state of the default float
5028 * precision in the symbol table, and the rules will just work. This
5029 * is a slight abuse of the symbol table, but it has the semantics
5030 * that we want.
5031 */
5032 ir_variable *const junk =
5033 new(state) ir_variable(type, "#default precision",
5034 ir_var_auto);
5035
5036 state->symbols->add_variable(junk);
5037 }
5038
5039 /* FINISHME: Translate precision statements into IR. */
5040 return NULL;
5041 }
5042
5043 /* _mesa_ast_set_aggregate_type() sets the <structure> field so that
5044 * process_record_constructor() can do type-checking on C-style initializer
5045 * expressions of structs, but ast_struct_specifier should only be translated
5046 * to HIR if it is declaring the type of a structure.
5047 *
5048 * The ->is_declaration field is false for initializers of variables
5049 * declared separately from the struct's type definition.
5050 *
5051 * struct S { ... }; (is_declaration = true)
5052 * struct T { ... } t = { ... }; (is_declaration = true)
5053 * S s = { ... }; (is_declaration = false)
5054 */
5055 if (this->structure != NULL && this->structure->is_declaration)
5056 return this->structure->hir(instructions, state);
5057
5058 return NULL;
5059 }
5060
5061
5062 /**
5063 * Process a structure or interface block tree into an array of structure fields
5064 *
5065 * After parsing, where there are some syntax differnces, structures and
5066 * interface blocks are almost identical. They are similar enough that the
5067 * AST for each can be processed the same way into a set of
5068 * \c glsl_struct_field to describe the members.
5069 *
5070 * If we're processing an interface block, var_mode should be the type of the
5071 * interface block (ir_var_shader_in, ir_var_shader_out, or ir_var_uniform).
5072 * If we're processing a structure, var_mode should be ir_var_auto.
5073 *
5074 * \return
5075 * The number of fields processed. A pointer to the array structure fields is
5076 * stored in \c *fields_ret.
5077 */
5078 unsigned
5079 ast_process_structure_or_interface_block(exec_list *instructions,
5080 struct _mesa_glsl_parse_state *state,
5081 exec_list *declarations,
5082 YYLTYPE &loc,
5083 glsl_struct_field **fields_ret,
5084 bool is_interface,
5085 enum glsl_matrix_layout matrix_layout,
5086 bool allow_reserved_names,
5087 ir_variable_mode var_mode)
5088 {
5089 unsigned decl_count = 0;
5090
5091 /* Make an initial pass over the list of fields to determine how
5092 * many there are. Each element in this list is an ast_declarator_list.
5093 * This means that we actually need to count the number of elements in the
5094 * 'declarations' list in each of the elements.
5095 */
5096 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
5097 decl_count += decl_list->declarations.length();
5098 }
5099
5100 /* Allocate storage for the fields and process the field
5101 * declarations. As the declarations are processed, try to also convert
5102 * the types to HIR. This ensures that structure definitions embedded in
5103 * other structure definitions or in interface blocks are processed.
5104 */
5105 glsl_struct_field *const fields = ralloc_array(state, glsl_struct_field,
5106 decl_count);
5107
5108 unsigned i = 0;
5109 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
5110 const char *type_name;
5111
5112 decl_list->type->specifier->hir(instructions, state);
5113
5114 /* Section 10.9 of the GLSL ES 1.00 specification states that
5115 * embedded structure definitions have been removed from the language.
5116 */
5117 if (state->es_shader && decl_list->type->specifier->structure != NULL) {
5118 _mesa_glsl_error(&loc, state, "embedded structure definitions are "
5119 "not allowed in GLSL ES 1.00");
5120 }
5121
5122 const glsl_type *decl_type =
5123 decl_list->type->glsl_type(& type_name, state);
5124
5125 foreach_list_typed (ast_declaration, decl, link,
5126 &decl_list->declarations) {
5127 if (!allow_reserved_names)
5128 validate_identifier(decl->identifier, loc, state);
5129
5130 /* From section 4.3.9 of the GLSL 4.40 spec:
5131 *
5132 * "[In interface blocks] opaque types are not allowed."
5133 *
5134 * It should be impossible for decl_type to be NULL here. Cases that
5135 * might naturally lead to decl_type being NULL, especially for the
5136 * is_interface case, will have resulted in compilation having
5137 * already halted due to a syntax error.
5138 */
5139 const struct glsl_type *field_type =
5140 decl_type != NULL ? decl_type : glsl_type::error_type;
5141
5142 if (is_interface && field_type->contains_opaque()) {
5143 YYLTYPE loc = decl_list->get_location();
5144 _mesa_glsl_error(&loc, state,
5145 "uniform in non-default uniform block contains "
5146 "opaque variable");
5147 }
5148
5149 if (field_type->contains_atomic()) {
5150 /* FINISHME: Add a spec quotation here once updated spec
5151 * FINISHME: language is available. See Khronos bug #10903
5152 * FINISHME: on whether atomic counters are allowed in
5153 * FINISHME: structures.
5154 */
5155 YYLTYPE loc = decl_list->get_location();
5156 _mesa_glsl_error(&loc, state, "atomic counter in structure or "
5157 "uniform block");
5158 }
5159
5160 if (field_type->contains_image()) {
5161 /* FINISHME: Same problem as with atomic counters.
5162 * FINISHME: Request clarification from Khronos and add
5163 * FINISHME: spec quotation here.
5164 */
5165 YYLTYPE loc = decl_list->get_location();
5166 _mesa_glsl_error(&loc, state,
5167 "image in structure or uniform block");
5168 }
5169
5170 const struct ast_type_qualifier *const qual =
5171 & decl_list->type->qualifier;
5172 if (qual->flags.q.std140 ||
5173 qual->flags.q.packed ||
5174 qual->flags.q.shared) {
5175 _mesa_glsl_error(&loc, state,
5176 "uniform block layout qualifiers std140, packed, and "
5177 "shared can only be applied to uniform blocks, not "
5178 "members");
5179 }
5180
5181 field_type = process_array_type(&loc, decl_type,
5182 decl->array_specifier, state);
5183 fields[i].type = field_type;
5184 fields[i].name = decl->identifier;
5185 fields[i].location = -1;
5186 fields[i].interpolation =
5187 interpret_interpolation_qualifier(qual, var_mode, state, &loc);
5188 fields[i].centroid = qual->flags.q.centroid ? 1 : 0;
5189 fields[i].sample = qual->flags.q.sample ? 1 : 0;
5190
5191 /* Only save explicitly defined streams in block's field */
5192 fields[i].stream = qual->flags.q.explicit_stream ? qual->stream : -1;
5193
5194 if (qual->flags.q.row_major || qual->flags.q.column_major) {
5195 if (!qual->flags.q.uniform) {
5196 _mesa_glsl_error(&loc, state,
5197 "row_major and column_major can only be "
5198 "applied to uniform interface blocks");
5199 } else
5200 validate_matrix_layout_for_type(state, &loc, field_type, NULL);
5201 }
5202
5203 if (qual->flags.q.uniform && qual->has_interpolation()) {
5204 _mesa_glsl_error(&loc, state,
5205 "interpolation qualifiers cannot be used "
5206 "with uniform interface blocks");
5207 }
5208
5209 if ((qual->flags.q.uniform || !is_interface) &&
5210 qual->has_auxiliary_storage()) {
5211 _mesa_glsl_error(&loc, state,
5212 "auxiliary storage qualifiers cannot be used "
5213 "in uniform blocks or structures.");
5214 }
5215
5216 /* Propogate row- / column-major information down the fields of the
5217 * structure or interface block. Structures need this data because
5218 * the structure may contain a structure that contains ... a matrix
5219 * that need the proper layout.
5220 */
5221 if (field_type->without_array()->is_matrix()
5222 || field_type->without_array()->is_record()) {
5223 /* If no layout is specified for the field, inherit the layout
5224 * from the block.
5225 */
5226 fields[i].matrix_layout = matrix_layout;
5227
5228 if (qual->flags.q.row_major)
5229 fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
5230 else if (qual->flags.q.column_major)
5231 fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
5232
5233 /* If we're processing an interface block, the matrix layout must
5234 * be decided by this point.
5235 */
5236 assert(!is_interface
5237 || fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR
5238 || fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_COLUMN_MAJOR);
5239 }
5240
5241 i++;
5242 }
5243 }
5244
5245 assert(i == decl_count);
5246
5247 *fields_ret = fields;
5248 return decl_count;
5249 }
5250
5251
5252 ir_rvalue *
5253 ast_struct_specifier::hir(exec_list *instructions,
5254 struct _mesa_glsl_parse_state *state)
5255 {
5256 YYLTYPE loc = this->get_location();
5257
5258 /* Section 4.1.8 (Structures) of the GLSL 1.10 spec says:
5259 *
5260 * "Anonymous structures are not supported; so embedded structures must
5261 * have a declarator. A name given to an embedded struct is scoped at
5262 * the same level as the struct it is embedded in."
5263 *
5264 * The same section of the GLSL 1.20 spec says:
5265 *
5266 * "Anonymous structures are not supported. Embedded structures are not
5267 * supported.
5268 *
5269 * struct S { float f; };
5270 * struct T {
5271 * S; // Error: anonymous structures disallowed
5272 * struct { ... }; // Error: embedded structures disallowed
5273 * S s; // Okay: nested structures with name are allowed
5274 * };"
5275 *
5276 * The GLSL ES 1.00 and 3.00 specs have similar langauge and examples. So,
5277 * we allow embedded structures in 1.10 only.
5278 */
5279 if (state->language_version != 110 && state->struct_specifier_depth != 0)
5280 _mesa_glsl_error(&loc, state,
5281 "embedded structure declarations are not allowed");
5282
5283 state->struct_specifier_depth++;
5284
5285 glsl_struct_field *fields;
5286 unsigned decl_count =
5287 ast_process_structure_or_interface_block(instructions,
5288 state,
5289 &this->declarations,
5290 loc,
5291 &fields,
5292 false,
5293 GLSL_MATRIX_LAYOUT_INHERITED,
5294 false /* allow_reserved_names */,
5295 ir_var_auto);
5296
5297 validate_identifier(this->name, loc, state);
5298
5299 const glsl_type *t =
5300 glsl_type::get_record_instance(fields, decl_count, this->name);
5301
5302 if (!state->symbols->add_type(name, t)) {
5303 _mesa_glsl_error(& loc, state, "struct `%s' previously defined", name);
5304 } else {
5305 const glsl_type **s = reralloc(state, state->user_structures,
5306 const glsl_type *,
5307 state->num_user_structures + 1);
5308 if (s != NULL) {
5309 s[state->num_user_structures] = t;
5310 state->user_structures = s;
5311 state->num_user_structures++;
5312 }
5313 }
5314
5315 state->struct_specifier_depth--;
5316
5317 /* Structure type definitions do not have r-values.
5318 */
5319 return NULL;
5320 }
5321
5322
5323 /**
5324 * Visitor class which detects whether a given interface block has been used.
5325 */
5326 class interface_block_usage_visitor : public ir_hierarchical_visitor
5327 {
5328 public:
5329 interface_block_usage_visitor(ir_variable_mode mode, const glsl_type *block)
5330 : mode(mode), block(block), found(false)
5331 {
5332 }
5333
5334 virtual ir_visitor_status visit(ir_dereference_variable *ir)
5335 {
5336 if (ir->var->data.mode == mode && ir->var->get_interface_type() == block) {
5337 found = true;
5338 return visit_stop;
5339 }
5340 return visit_continue;
5341 }
5342
5343 bool usage_found() const
5344 {
5345 return this->found;
5346 }
5347
5348 private:
5349 ir_variable_mode mode;
5350 const glsl_type *block;
5351 bool found;
5352 };
5353
5354
5355 ir_rvalue *
5356 ast_interface_block::hir(exec_list *instructions,
5357 struct _mesa_glsl_parse_state *state)
5358 {
5359 YYLTYPE loc = this->get_location();
5360
5361 /* The ast_interface_block has a list of ast_declarator_lists. We
5362 * need to turn those into ir_variables with an association
5363 * with this uniform block.
5364 */
5365 enum glsl_interface_packing packing;
5366 if (this->layout.flags.q.shared) {
5367 packing = GLSL_INTERFACE_PACKING_SHARED;
5368 } else if (this->layout.flags.q.packed) {
5369 packing = GLSL_INTERFACE_PACKING_PACKED;
5370 } else {
5371 /* The default layout is std140.
5372 */
5373 packing = GLSL_INTERFACE_PACKING_STD140;
5374 }
5375
5376 ir_variable_mode var_mode;
5377 const char *iface_type_name;
5378 if (this->layout.flags.q.in) {
5379 var_mode = ir_var_shader_in;
5380 iface_type_name = "in";
5381 } else if (this->layout.flags.q.out) {
5382 var_mode = ir_var_shader_out;
5383 iface_type_name = "out";
5384 } else if (this->layout.flags.q.uniform) {
5385 var_mode = ir_var_uniform;
5386 iface_type_name = "uniform";
5387 } else {
5388 var_mode = ir_var_auto;
5389 iface_type_name = "UNKNOWN";
5390 assert(!"interface block layout qualifier not found!");
5391 }
5392
5393 enum glsl_matrix_layout matrix_layout = GLSL_MATRIX_LAYOUT_INHERITED;
5394 if (this->layout.flags.q.row_major)
5395 matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
5396 else if (this->layout.flags.q.column_major)
5397 matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
5398
5399 bool redeclaring_per_vertex = strcmp(this->block_name, "gl_PerVertex") == 0;
5400 exec_list declared_variables;
5401 glsl_struct_field *fields;
5402
5403 /* Treat an interface block as one level of nesting, so that embedded struct
5404 * specifiers will be disallowed.
5405 */
5406 state->struct_specifier_depth++;
5407
5408 unsigned int num_variables =
5409 ast_process_structure_or_interface_block(&declared_variables,
5410 state,
5411 &this->declarations,
5412 loc,
5413 &fields,
5414 true,
5415 matrix_layout,
5416 redeclaring_per_vertex,
5417 var_mode);
5418
5419 state->struct_specifier_depth--;
5420
5421 if (!redeclaring_per_vertex)
5422 validate_identifier(this->block_name, loc, state);
5423
5424 const glsl_type *earlier_per_vertex = NULL;
5425 if (redeclaring_per_vertex) {
5426 /* Find the previous declaration of gl_PerVertex. If we're redeclaring
5427 * the named interface block gl_in, we can find it by looking at the
5428 * previous declaration of gl_in. Otherwise we can find it by looking
5429 * at the previous decalartion of any of the built-in outputs,
5430 * e.g. gl_Position.
5431 *
5432 * Also check that the instance name and array-ness of the redeclaration
5433 * are correct.
5434 */
5435 switch (var_mode) {
5436 case ir_var_shader_in:
5437 if (ir_variable *earlier_gl_in =
5438 state->symbols->get_variable("gl_in")) {
5439 earlier_per_vertex = earlier_gl_in->get_interface_type();
5440 } else {
5441 _mesa_glsl_error(&loc, state,
5442 "redeclaration of gl_PerVertex input not allowed "
5443 "in the %s shader",
5444 _mesa_shader_stage_to_string(state->stage));
5445 }
5446 if (this->instance_name == NULL ||
5447 strcmp(this->instance_name, "gl_in") != 0 || this->array_specifier == NULL) {
5448 _mesa_glsl_error(&loc, state,
5449 "gl_PerVertex input must be redeclared as "
5450 "gl_in[]");
5451 }
5452 break;
5453 case ir_var_shader_out:
5454 if (ir_variable *earlier_gl_Position =
5455 state->symbols->get_variable("gl_Position")) {
5456 earlier_per_vertex = earlier_gl_Position->get_interface_type();
5457 } else {
5458 _mesa_glsl_error(&loc, state,
5459 "redeclaration of gl_PerVertex output not "
5460 "allowed in the %s shader",
5461 _mesa_shader_stage_to_string(state->stage));
5462 }
5463 if (this->instance_name != NULL) {
5464 _mesa_glsl_error(&loc, state,
5465 "gl_PerVertex output may not be redeclared with "
5466 "an instance name");
5467 }
5468 break;
5469 default:
5470 _mesa_glsl_error(&loc, state,
5471 "gl_PerVertex must be declared as an input or an "
5472 "output");
5473 break;
5474 }
5475
5476 if (earlier_per_vertex == NULL) {
5477 /* An error has already been reported. Bail out to avoid null
5478 * dereferences later in this function.
5479 */
5480 return NULL;
5481 }
5482
5483 /* Copy locations from the old gl_PerVertex interface block. */
5484 for (unsigned i = 0; i < num_variables; i++) {
5485 int j = earlier_per_vertex->field_index(fields[i].name);
5486 if (j == -1) {
5487 _mesa_glsl_error(&loc, state,
5488 "redeclaration of gl_PerVertex must be a subset "
5489 "of the built-in members of gl_PerVertex");
5490 } else {
5491 fields[i].location =
5492 earlier_per_vertex->fields.structure[j].location;
5493 fields[i].interpolation =
5494 earlier_per_vertex->fields.structure[j].interpolation;
5495 fields[i].centroid =
5496 earlier_per_vertex->fields.structure[j].centroid;
5497 fields[i].sample =
5498 earlier_per_vertex->fields.structure[j].sample;
5499 }
5500 }
5501
5502 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10
5503 * spec:
5504 *
5505 * If a built-in interface block is redeclared, it must appear in
5506 * the shader before any use of any member included in the built-in
5507 * declaration, or a compilation error will result.
5508 *
5509 * This appears to be a clarification to the behaviour established for
5510 * gl_PerVertex by GLSL 1.50, therefore we implement this behaviour
5511 * regardless of GLSL version.
5512 */
5513 interface_block_usage_visitor v(var_mode, earlier_per_vertex);
5514 v.run(instructions);
5515 if (v.usage_found()) {
5516 _mesa_glsl_error(&loc, state,
5517 "redeclaration of a built-in interface block must "
5518 "appear before any use of any member of the "
5519 "interface block");
5520 }
5521 }
5522
5523 const glsl_type *block_type =
5524 glsl_type::get_interface_instance(fields,
5525 num_variables,
5526 packing,
5527 this->block_name);
5528
5529 if (!state->symbols->add_interface(block_type->name, block_type, var_mode)) {
5530 YYLTYPE loc = this->get_location();
5531 _mesa_glsl_error(&loc, state, "interface block `%s' with type `%s' "
5532 "already taken in the current scope",
5533 this->block_name, iface_type_name);
5534 }
5535
5536 /* Since interface blocks cannot contain statements, it should be
5537 * impossible for the block to generate any instructions.
5538 */
5539 assert(declared_variables.is_empty());
5540
5541 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
5542 *
5543 * Geometry shader input variables get the per-vertex values written
5544 * out by vertex shader output variables of the same names. Since a
5545 * geometry shader operates on a set of vertices, each input varying
5546 * variable (or input block, see interface blocks below) needs to be
5547 * declared as an array.
5548 */
5549 if (state->stage == MESA_SHADER_GEOMETRY && this->array_specifier == NULL &&
5550 var_mode == ir_var_shader_in) {
5551 _mesa_glsl_error(&loc, state, "geometry shader inputs must be arrays");
5552 }
5553
5554 /* Page 39 (page 45 of the PDF) of section 4.3.7 in the GLSL ES 3.00 spec
5555 * says:
5556 *
5557 * "If an instance name (instance-name) is used, then it puts all the
5558 * members inside a scope within its own name space, accessed with the
5559 * field selector ( . ) operator (analogously to structures)."
5560 */
5561 if (this->instance_name) {
5562 if (redeclaring_per_vertex) {
5563 /* When a built-in in an unnamed interface block is redeclared,
5564 * get_variable_being_redeclared() calls
5565 * check_builtin_array_max_size() to make sure that built-in array
5566 * variables aren't redeclared to illegal sizes. But we're looking
5567 * at a redeclaration of a named built-in interface block. So we
5568 * have to manually call check_builtin_array_max_size() for all parts
5569 * of the interface that are arrays.
5570 */
5571 for (unsigned i = 0; i < num_variables; i++) {
5572 if (fields[i].type->is_array()) {
5573 const unsigned size = fields[i].type->array_size();
5574 check_builtin_array_max_size(fields[i].name, size, loc, state);
5575 }
5576 }
5577 } else {
5578 validate_identifier(this->instance_name, loc, state);
5579 }
5580
5581 ir_variable *var;
5582
5583 if (this->array_specifier != NULL) {
5584 /* Section 4.3.7 (Interface Blocks) of the GLSL 1.50 spec says:
5585 *
5586 * For uniform blocks declared an array, each individual array
5587 * element corresponds to a separate buffer object backing one
5588 * instance of the block. As the array size indicates the number
5589 * of buffer objects needed, uniform block array declarations
5590 * must specify an array size.
5591 *
5592 * And a few paragraphs later:
5593 *
5594 * Geometry shader input blocks must be declared as arrays and
5595 * follow the array declaration and linking rules for all
5596 * geometry shader inputs. All other input and output block
5597 * arrays must specify an array size.
5598 *
5599 * The upshot of this is that the only circumstance where an
5600 * interface array size *doesn't* need to be specified is on a
5601 * geometry shader input.
5602 */
5603 if (this->array_specifier->is_unsized_array &&
5604 (state->stage != MESA_SHADER_GEOMETRY || !this->layout.flags.q.in)) {
5605 _mesa_glsl_error(&loc, state,
5606 "only geometry shader inputs may be unsized "
5607 "instance block arrays");
5608
5609 }
5610
5611 const glsl_type *block_array_type =
5612 process_array_type(&loc, block_type, this->array_specifier, state);
5613
5614 var = new(state) ir_variable(block_array_type,
5615 this->instance_name,
5616 var_mode);
5617 } else {
5618 var = new(state) ir_variable(block_type,
5619 this->instance_name,
5620 var_mode);
5621 }
5622
5623 var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
5624 ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
5625
5626 if (state->stage == MESA_SHADER_GEOMETRY && var_mode == ir_var_shader_in)
5627 handle_geometry_shader_input_decl(state, loc, var);
5628
5629 if (ir_variable *earlier =
5630 state->symbols->get_variable(this->instance_name)) {
5631 if (!redeclaring_per_vertex) {
5632 _mesa_glsl_error(&loc, state, "`%s' redeclared",
5633 this->instance_name);
5634 }
5635 earlier->data.how_declared = ir_var_declared_normally;
5636 earlier->type = var->type;
5637 earlier->reinit_interface_type(block_type);
5638 delete var;
5639 } else {
5640 /* Propagate the "binding" keyword into this UBO's fields;
5641 * the UBO declaration itself doesn't get an ir_variable unless it
5642 * has an instance name. This is ugly.
5643 */
5644 var->data.explicit_binding = this->layout.flags.q.explicit_binding;
5645 var->data.binding = this->layout.binding;
5646
5647 state->symbols->add_variable(var);
5648 instructions->push_tail(var);
5649 }
5650 } else {
5651 /* In order to have an array size, the block must also be declared with
5652 * an instance name.
5653 */
5654 assert(this->array_specifier == NULL);
5655
5656 for (unsigned i = 0; i < num_variables; i++) {
5657 ir_variable *var =
5658 new(state) ir_variable(fields[i].type,
5659 ralloc_strdup(state, fields[i].name),
5660 var_mode);
5661 var->data.interpolation = fields[i].interpolation;
5662 var->data.centroid = fields[i].centroid;
5663 var->data.sample = fields[i].sample;
5664 var->init_interface_type(block_type);
5665
5666 if (fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED) {
5667 var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
5668 ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
5669 } else {
5670 var->data.matrix_layout = fields[i].matrix_layout;
5671 }
5672
5673 if (fields[i].stream != -1 &&
5674 ((unsigned)fields[i].stream) != this->layout.stream) {
5675 _mesa_glsl_error(&loc, state,
5676 "stream layout qualifier on "
5677 "interface block member `%s' does not match "
5678 "the interface block (%d vs %d)",
5679 var->name, fields[i].stream, this->layout.stream);
5680 }
5681
5682 var->data.stream = this->layout.stream;
5683
5684 if (redeclaring_per_vertex) {
5685 ir_variable *earlier =
5686 get_variable_being_redeclared(var, loc, state,
5687 true /* allow_all_redeclarations */);
5688 if (!is_gl_identifier(var->name) || earlier == NULL) {
5689 _mesa_glsl_error(&loc, state,
5690 "redeclaration of gl_PerVertex can only "
5691 "include built-in variables");
5692 } else if (earlier->data.how_declared == ir_var_declared_normally) {
5693 _mesa_glsl_error(&loc, state,
5694 "`%s' has already been redeclared", var->name);
5695 } else {
5696 earlier->data.how_declared = ir_var_declared_in_block;
5697 earlier->reinit_interface_type(block_type);
5698 }
5699 continue;
5700 }
5701
5702 if (state->symbols->get_variable(var->name) != NULL)
5703 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
5704
5705 /* Propagate the "binding" keyword into this UBO's fields;
5706 * the UBO declaration itself doesn't get an ir_variable unless it
5707 * has an instance name. This is ugly.
5708 */
5709 var->data.explicit_binding = this->layout.flags.q.explicit_binding;
5710 var->data.binding = this->layout.binding;
5711
5712 state->symbols->add_variable(var);
5713 instructions->push_tail(var);
5714 }
5715
5716 if (redeclaring_per_vertex && block_type != earlier_per_vertex) {
5717 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10 spec:
5718 *
5719 * It is also a compilation error ... to redeclare a built-in
5720 * block and then use a member from that built-in block that was
5721 * not included in the redeclaration.
5722 *
5723 * This appears to be a clarification to the behaviour established
5724 * for gl_PerVertex by GLSL 1.50, therefore we implement this
5725 * behaviour regardless of GLSL version.
5726 *
5727 * To prevent the shader from using a member that was not included in
5728 * the redeclaration, we disable any ir_variables that are still
5729 * associated with the old declaration of gl_PerVertex (since we've
5730 * already updated all of the variables contained in the new
5731 * gl_PerVertex to point to it).
5732 *
5733 * As a side effect this will prevent
5734 * validate_intrastage_interface_blocks() from getting confused and
5735 * thinking there are conflicting definitions of gl_PerVertex in the
5736 * shader.
5737 */
5738 foreach_in_list_safe(ir_instruction, node, instructions) {
5739 ir_variable *const var = node->as_variable();
5740 if (var != NULL &&
5741 var->get_interface_type() == earlier_per_vertex &&
5742 var->data.mode == var_mode) {
5743 if (var->data.how_declared == ir_var_declared_normally) {
5744 _mesa_glsl_error(&loc, state,
5745 "redeclaration of gl_PerVertex cannot "
5746 "follow a redeclaration of `%s'",
5747 var->name);
5748 }
5749 state->symbols->disable_variable(var->name);
5750 var->remove();
5751 }
5752 }
5753 }
5754 }
5755
5756 return NULL;
5757 }
5758
5759
5760 ir_rvalue *
5761 ast_gs_input_layout::hir(exec_list *instructions,
5762 struct _mesa_glsl_parse_state *state)
5763 {
5764 YYLTYPE loc = this->get_location();
5765
5766 /* If any geometry input layout declaration preceded this one, make sure it
5767 * was consistent with this one.
5768 */
5769 if (state->gs_input_prim_type_specified &&
5770 state->in_qualifier->prim_type != this->prim_type) {
5771 _mesa_glsl_error(&loc, state,
5772 "geometry shader input layout does not match"
5773 " previous declaration");
5774 return NULL;
5775 }
5776
5777 /* If any shader inputs occurred before this declaration and specified an
5778 * array size, make sure the size they specified is consistent with the
5779 * primitive type.
5780 */
5781 unsigned num_vertices = vertices_per_prim(this->prim_type);
5782 if (state->gs_input_size != 0 && state->gs_input_size != num_vertices) {
5783 _mesa_glsl_error(&loc, state,
5784 "this geometry shader input layout implies %u vertices"
5785 " per primitive, but a previous input is declared"
5786 " with size %u", num_vertices, state->gs_input_size);
5787 return NULL;
5788 }
5789
5790 state->gs_input_prim_type_specified = true;
5791
5792 /* If any shader inputs occurred before this declaration and did not
5793 * specify an array size, their size is determined now.
5794 */
5795 foreach_in_list(ir_instruction, node, instructions) {
5796 ir_variable *var = node->as_variable();
5797 if (var == NULL || var->data.mode != ir_var_shader_in)
5798 continue;
5799
5800 /* Note: gl_PrimitiveIDIn has mode ir_var_shader_in, but it's not an
5801 * array; skip it.
5802 */
5803
5804 if (var->type->is_unsized_array()) {
5805 if (var->data.max_array_access >= num_vertices) {
5806 _mesa_glsl_error(&loc, state,
5807 "this geometry shader input layout implies %u"
5808 " vertices, but an access to element %u of input"
5809 " `%s' already exists", num_vertices,
5810 var->data.max_array_access, var->name);
5811 } else {
5812 var->type = glsl_type::get_array_instance(var->type->fields.array,
5813 num_vertices);
5814 }
5815 }
5816 }
5817
5818 return NULL;
5819 }
5820
5821
5822 ir_rvalue *
5823 ast_cs_input_layout::hir(exec_list *instructions,
5824 struct _mesa_glsl_parse_state *state)
5825 {
5826 YYLTYPE loc = this->get_location();
5827
5828 /* If any compute input layout declaration preceded this one, make sure it
5829 * was consistent with this one.
5830 */
5831 if (state->cs_input_local_size_specified) {
5832 for (int i = 0; i < 3; i++) {
5833 if (state->cs_input_local_size[i] != this->local_size[i]) {
5834 _mesa_glsl_error(&loc, state,
5835 "compute shader input layout does not match"
5836 " previous declaration");
5837 return NULL;
5838 }
5839 }
5840 }
5841
5842 /* From the ARB_compute_shader specification:
5843 *
5844 * If the local size of the shader in any dimension is greater
5845 * than the maximum size supported by the implementation for that
5846 * dimension, a compile-time error results.
5847 *
5848 * It is not clear from the spec how the error should be reported if
5849 * the total size of the work group exceeds
5850 * MAX_COMPUTE_WORK_GROUP_INVOCATIONS, but it seems reasonable to
5851 * report it at compile time as well.
5852 */
5853 GLuint64 total_invocations = 1;
5854 for (int i = 0; i < 3; i++) {
5855 if (this->local_size[i] > state->ctx->Const.MaxComputeWorkGroupSize[i]) {
5856 _mesa_glsl_error(&loc, state,
5857 "local_size_%c exceeds MAX_COMPUTE_WORK_GROUP_SIZE"
5858 " (%d)", 'x' + i,
5859 state->ctx->Const.MaxComputeWorkGroupSize[i]);
5860 break;
5861 }
5862 total_invocations *= this->local_size[i];
5863 if (total_invocations >
5864 state->ctx->Const.MaxComputeWorkGroupInvocations) {
5865 _mesa_glsl_error(&loc, state,
5866 "product of local_sizes exceeds "
5867 "MAX_COMPUTE_WORK_GROUP_INVOCATIONS (%d)",
5868 state->ctx->Const.MaxComputeWorkGroupInvocations);
5869 break;
5870 }
5871 }
5872
5873 state->cs_input_local_size_specified = true;
5874 for (int i = 0; i < 3; i++)
5875 state->cs_input_local_size[i] = this->local_size[i];
5876
5877 /* We may now declare the built-in constant gl_WorkGroupSize (see
5878 * builtin_variable_generator::generate_constants() for why we didn't
5879 * declare it earlier).
5880 */
5881 ir_variable *var = new(state->symbols)
5882 ir_variable(glsl_type::ivec3_type, "gl_WorkGroupSize", ir_var_auto);
5883 var->data.how_declared = ir_var_declared_implicitly;
5884 var->data.read_only = true;
5885 instructions->push_tail(var);
5886 state->symbols->add_variable(var);
5887 ir_constant_data data;
5888 memset(&data, 0, sizeof(data));
5889 for (int i = 0; i < 3; i++)
5890 data.i[i] = this->local_size[i];
5891 var->constant_value = new(var) ir_constant(glsl_type::ivec3_type, &data);
5892 var->constant_initializer =
5893 new(var) ir_constant(glsl_type::ivec3_type, &data);
5894 var->data.has_initializer = true;
5895
5896 return NULL;
5897 }
5898
5899
5900 static void
5901 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
5902 exec_list *instructions)
5903 {
5904 bool gl_FragColor_assigned = false;
5905 bool gl_FragData_assigned = false;
5906 bool user_defined_fs_output_assigned = false;
5907 ir_variable *user_defined_fs_output = NULL;
5908
5909 /* It would be nice to have proper location information. */
5910 YYLTYPE loc;
5911 memset(&loc, 0, sizeof(loc));
5912
5913 foreach_in_list(ir_instruction, node, instructions) {
5914 ir_variable *var = node->as_variable();
5915
5916 if (!var || !var->data.assigned)
5917 continue;
5918
5919 if (strcmp(var->name, "gl_FragColor") == 0)
5920 gl_FragColor_assigned = true;
5921 else if (strcmp(var->name, "gl_FragData") == 0)
5922 gl_FragData_assigned = true;
5923 else if (!is_gl_identifier(var->name)) {
5924 if (state->stage == MESA_SHADER_FRAGMENT &&
5925 var->data.mode == ir_var_shader_out) {
5926 user_defined_fs_output_assigned = true;
5927 user_defined_fs_output = var;
5928 }
5929 }
5930 }
5931
5932 /* From the GLSL 1.30 spec:
5933 *
5934 * "If a shader statically assigns a value to gl_FragColor, it
5935 * may not assign a value to any element of gl_FragData. If a
5936 * shader statically writes a value to any element of
5937 * gl_FragData, it may not assign a value to
5938 * gl_FragColor. That is, a shader may assign values to either
5939 * gl_FragColor or gl_FragData, but not both. Multiple shaders
5940 * linked together must also consistently write just one of
5941 * these variables. Similarly, if user declared output
5942 * variables are in use (statically assigned to), then the
5943 * built-in variables gl_FragColor and gl_FragData may not be
5944 * assigned to. These incorrect usages all generate compile
5945 * time errors."
5946 */
5947 if (gl_FragColor_assigned && gl_FragData_assigned) {
5948 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
5949 "`gl_FragColor' and `gl_FragData'");
5950 } else if (gl_FragColor_assigned && user_defined_fs_output_assigned) {
5951 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
5952 "`gl_FragColor' and `%s'",
5953 user_defined_fs_output->name);
5954 } else if (gl_FragData_assigned && user_defined_fs_output_assigned) {
5955 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
5956 "`gl_FragData' and `%s'",
5957 user_defined_fs_output->name);
5958 }
5959 }
5960
5961
5962 static void
5963 remove_per_vertex_blocks(exec_list *instructions,
5964 _mesa_glsl_parse_state *state, ir_variable_mode mode)
5965 {
5966 /* Find the gl_PerVertex interface block of the appropriate (in/out) mode,
5967 * if it exists in this shader type.
5968 */
5969 const glsl_type *per_vertex = NULL;
5970 switch (mode) {
5971 case ir_var_shader_in:
5972 if (ir_variable *gl_in = state->symbols->get_variable("gl_in"))
5973 per_vertex = gl_in->get_interface_type();
5974 break;
5975 case ir_var_shader_out:
5976 if (ir_variable *gl_Position =
5977 state->symbols->get_variable("gl_Position")) {
5978 per_vertex = gl_Position->get_interface_type();
5979 }
5980 break;
5981 default:
5982 assert(!"Unexpected mode");
5983 break;
5984 }
5985
5986 /* If we didn't find a built-in gl_PerVertex interface block, then we don't
5987 * need to do anything.
5988 */
5989 if (per_vertex == NULL)
5990 return;
5991
5992 /* If the interface block is used by the shader, then we don't need to do
5993 * anything.
5994 */
5995 interface_block_usage_visitor v(mode, per_vertex);
5996 v.run(instructions);
5997 if (v.usage_found())
5998 return;
5999
6000 /* Remove any ir_variable declarations that refer to the interface block
6001 * we're removing.
6002 */
6003 foreach_in_list_safe(ir_instruction, node, instructions) {
6004 ir_variable *const var = node->as_variable();
6005 if (var != NULL && var->get_interface_type() == per_vertex &&
6006 var->data.mode == mode) {
6007 state->symbols->disable_variable(var->name);
6008 var->remove();
6009 }
6010 }
6011 }