glsl: Inherrit type of declared variable from initializer
[mesa.git] / src / glsl / ast_to_hir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file ast_to_hir.c
26 * Convert abstract syntax to to high-level intermediate reprensentation (HIR).
27 *
28 * During the conversion to HIR, the majority of the symantic checking is
29 * preformed on the program. This includes:
30 *
31 * * Symbol table management
32 * * Type checking
33 * * Function binding
34 *
35 * The majority of this work could be done during parsing, and the parser could
36 * probably generate HIR directly. However, this results in frequent changes
37 * to the parser code. Since we do not assume that every system this complier
38 * is built on will have Flex and Bison installed, we have to store the code
39 * generated by these tools in our version control system. In other parts of
40 * the system we've seen problems where a parser was changed but the generated
41 * code was not committed, merge conflicts where created because two developers
42 * had slightly different versions of Bison installed, etc.
43 *
44 * I have also noticed that running Bison generated parsers in GDB is very
45 * irritating. When you get a segfault on '$$ = $1->foo', you can't very
46 * well 'print $1' in GDB.
47 *
48 * As a result, my preference is to put as little C code as possible in the
49 * parser (and lexer) sources.
50 */
51
52 #include "main/core.h" /* for struct gl_extensions */
53 #include "glsl_symbol_table.h"
54 #include "glsl_parser_extras.h"
55 #include "ast.h"
56 #include "glsl_types.h"
57 #include "ir.h"
58
59 void
60 _mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
61 {
62 _mesa_glsl_initialize_variables(instructions, state);
63 _mesa_glsl_initialize_functions(instructions, state);
64
65 state->symbols->language_version = state->language_version;
66
67 state->current_function = NULL;
68
69 /* Section 4.2 of the GLSL 1.20 specification states:
70 * "The built-in functions are scoped in a scope outside the global scope
71 * users declare global variables in. That is, a shader's global scope,
72 * available for user-defined functions and global variables, is nested
73 * inside the scope containing the built-in functions."
74 *
75 * Since built-in functions like ftransform() access built-in variables,
76 * it follows that those must be in the outer scope as well.
77 *
78 * We push scope here to create this nesting effect...but don't pop.
79 * This way, a shader's globals are still in the symbol table for use
80 * by the linker.
81 */
82 state->symbols->push_scope();
83
84 foreach_list_typed (ast_node, ast, link, & state->translation_unit)
85 ast->hir(instructions, state);
86 }
87
88
89 /**
90 * If a conversion is available, convert one operand to a different type
91 *
92 * The \c from \c ir_rvalue is converted "in place".
93 *
94 * \param to Type that the operand it to be converted to
95 * \param from Operand that is being converted
96 * \param state GLSL compiler state
97 *
98 * \return
99 * If a conversion is possible (or unnecessary), \c true is returned.
100 * Otherwise \c false is returned.
101 */
102 bool
103 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
104 struct _mesa_glsl_parse_state *state)
105 {
106 void *ctx = state;
107 if (to->base_type == from->type->base_type)
108 return true;
109
110 /* This conversion was added in GLSL 1.20. If the compilation mode is
111 * GLSL 1.10, the conversion is skipped.
112 */
113 if (state->language_version < 120)
114 return false;
115
116 /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
117 *
118 * "There are no implicit array or structure conversions. For
119 * example, an array of int cannot be implicitly converted to an
120 * array of float. There are no implicit conversions between
121 * signed and unsigned integers."
122 */
123 /* FINISHME: The above comment is partially a lie. There is int/uint
124 * FINISHME: conversion for immediate constants.
125 */
126 if (!to->is_float() || !from->type->is_numeric())
127 return false;
128
129 /* Convert to a floating point type with the same number of components
130 * as the original type - i.e. int to float, not int to vec4.
131 */
132 to = glsl_type::get_instance(GLSL_TYPE_FLOAT, from->type->vector_elements,
133 from->type->matrix_columns);
134
135 switch (from->type->base_type) {
136 case GLSL_TYPE_INT:
137 from = new(ctx) ir_expression(ir_unop_i2f, to, from, NULL);
138 break;
139 case GLSL_TYPE_UINT:
140 from = new(ctx) ir_expression(ir_unop_u2f, to, from, NULL);
141 break;
142 case GLSL_TYPE_BOOL:
143 from = new(ctx) ir_expression(ir_unop_b2f, to, from, NULL);
144 break;
145 default:
146 assert(0);
147 }
148
149 return true;
150 }
151
152
153 static const struct glsl_type *
154 arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
155 bool multiply,
156 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
157 {
158 const glsl_type *type_a = value_a->type;
159 const glsl_type *type_b = value_b->type;
160
161 /* From GLSL 1.50 spec, page 56:
162 *
163 * "The arithmetic binary operators add (+), subtract (-),
164 * multiply (*), and divide (/) operate on integer and
165 * floating-point scalars, vectors, and matrices."
166 */
167 if (!type_a->is_numeric() || !type_b->is_numeric()) {
168 _mesa_glsl_error(loc, state,
169 "Operands to arithmetic operators must be numeric");
170 return glsl_type::error_type;
171 }
172
173
174 /* "If one operand is floating-point based and the other is
175 * not, then the conversions from Section 4.1.10 "Implicit
176 * Conversions" are applied to the non-floating-point-based operand."
177 */
178 if (!apply_implicit_conversion(type_a, value_b, state)
179 && !apply_implicit_conversion(type_b, value_a, state)) {
180 _mesa_glsl_error(loc, state,
181 "Could not implicitly convert operands to "
182 "arithmetic operator");
183 return glsl_type::error_type;
184 }
185 type_a = value_a->type;
186 type_b = value_b->type;
187
188 /* "If the operands are integer types, they must both be signed or
189 * both be unsigned."
190 *
191 * From this rule and the preceeding conversion it can be inferred that
192 * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
193 * The is_numeric check above already filtered out the case where either
194 * type is not one of these, so now the base types need only be tested for
195 * equality.
196 */
197 if (type_a->base_type != type_b->base_type) {
198 _mesa_glsl_error(loc, state,
199 "base type mismatch for arithmetic operator");
200 return glsl_type::error_type;
201 }
202
203 /* "All arithmetic binary operators result in the same fundamental type
204 * (signed integer, unsigned integer, or floating-point) as the
205 * operands they operate on, after operand type conversion. After
206 * conversion, the following cases are valid
207 *
208 * * The two operands are scalars. In this case the operation is
209 * applied, resulting in a scalar."
210 */
211 if (type_a->is_scalar() && type_b->is_scalar())
212 return type_a;
213
214 /* "* One operand is a scalar, and the other is a vector or matrix.
215 * In this case, the scalar operation is applied independently to each
216 * component of the vector or matrix, resulting in the same size
217 * vector or matrix."
218 */
219 if (type_a->is_scalar()) {
220 if (!type_b->is_scalar())
221 return type_b;
222 } else if (type_b->is_scalar()) {
223 return type_a;
224 }
225
226 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
227 * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
228 * handled.
229 */
230 assert(!type_a->is_scalar());
231 assert(!type_b->is_scalar());
232
233 /* "* The two operands are vectors of the same size. In this case, the
234 * operation is done component-wise resulting in the same size
235 * vector."
236 */
237 if (type_a->is_vector() && type_b->is_vector()) {
238 if (type_a == type_b) {
239 return type_a;
240 } else {
241 _mesa_glsl_error(loc, state,
242 "vector size mismatch for arithmetic operator");
243 return glsl_type::error_type;
244 }
245 }
246
247 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
248 * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
249 * <vector, vector> have been handled. At least one of the operands must
250 * be matrix. Further, since there are no integer matrix types, the base
251 * type of both operands must be float.
252 */
253 assert(type_a->is_matrix() || type_b->is_matrix());
254 assert(type_a->base_type == GLSL_TYPE_FLOAT);
255 assert(type_b->base_type == GLSL_TYPE_FLOAT);
256
257 /* "* The operator is add (+), subtract (-), or divide (/), and the
258 * operands are matrices with the same number of rows and the same
259 * number of columns. In this case, the operation is done component-
260 * wise resulting in the same size matrix."
261 * * The operator is multiply (*), where both operands are matrices or
262 * one operand is a vector and the other a matrix. A right vector
263 * operand is treated as a column vector and a left vector operand as a
264 * row vector. In all these cases, it is required that the number of
265 * columns of the left operand is equal to the number of rows of the
266 * right operand. Then, the multiply (*) operation does a linear
267 * algebraic multiply, yielding an object that has the same number of
268 * rows as the left operand and the same number of columns as the right
269 * operand. Section 5.10 "Vector and Matrix Operations" explains in
270 * more detail how vectors and matrices are operated on."
271 */
272 if (! multiply) {
273 if (type_a == type_b)
274 return type_a;
275 } else {
276 if (type_a->is_matrix() && type_b->is_matrix()) {
277 /* Matrix multiply. The columns of A must match the rows of B. Given
278 * the other previously tested constraints, this means the vector type
279 * of a row from A must be the same as the vector type of a column from
280 * B.
281 */
282 if (type_a->row_type() == type_b->column_type()) {
283 /* The resulting matrix has the number of columns of matrix B and
284 * the number of rows of matrix A. We get the row count of A by
285 * looking at the size of a vector that makes up a column. The
286 * transpose (size of a row) is done for B.
287 */
288 const glsl_type *const type =
289 glsl_type::get_instance(type_a->base_type,
290 type_a->column_type()->vector_elements,
291 type_b->row_type()->vector_elements);
292 assert(type != glsl_type::error_type);
293
294 return type;
295 }
296 } else if (type_a->is_matrix()) {
297 /* A is a matrix and B is a column vector. Columns of A must match
298 * rows of B. Given the other previously tested constraints, this
299 * means the vector type of a row from A must be the same as the
300 * vector the type of B.
301 */
302 if (type_a->row_type() == type_b) {
303 /* The resulting vector has a number of elements equal to
304 * the number of rows of matrix A. */
305 const glsl_type *const type =
306 glsl_type::get_instance(type_a->base_type,
307 type_a->column_type()->vector_elements,
308 1);
309 assert(type != glsl_type::error_type);
310
311 return type;
312 }
313 } else {
314 assert(type_b->is_matrix());
315
316 /* A is a row vector and B is a matrix. Columns of A must match rows
317 * of B. Given the other previously tested constraints, this means
318 * the type of A must be the same as the vector type of a column from
319 * B.
320 */
321 if (type_a == type_b->column_type()) {
322 /* The resulting vector has a number of elements equal to
323 * the number of columns of matrix B. */
324 const glsl_type *const type =
325 glsl_type::get_instance(type_a->base_type,
326 type_b->row_type()->vector_elements,
327 1);
328 assert(type != glsl_type::error_type);
329
330 return type;
331 }
332 }
333
334 _mesa_glsl_error(loc, state, "size mismatch for matrix multiplication");
335 return glsl_type::error_type;
336 }
337
338
339 /* "All other cases are illegal."
340 */
341 _mesa_glsl_error(loc, state, "type mismatch");
342 return glsl_type::error_type;
343 }
344
345
346 static const struct glsl_type *
347 unary_arithmetic_result_type(const struct glsl_type *type,
348 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
349 {
350 /* From GLSL 1.50 spec, page 57:
351 *
352 * "The arithmetic unary operators negate (-), post- and pre-increment
353 * and decrement (-- and ++) operate on integer or floating-point
354 * values (including vectors and matrices). All unary operators work
355 * component-wise on their operands. These result with the same type
356 * they operated on."
357 */
358 if (!type->is_numeric()) {
359 _mesa_glsl_error(loc, state,
360 "Operands to arithmetic operators must be numeric");
361 return glsl_type::error_type;
362 }
363
364 return type;
365 }
366
367 /**
368 * \brief Return the result type of a bit-logic operation.
369 *
370 * If the given types to the bit-logic operator are invalid, return
371 * glsl_type::error_type.
372 *
373 * \param type_a Type of LHS of bit-logic op
374 * \param type_b Type of RHS of bit-logic op
375 */
376 static const struct glsl_type *
377 bit_logic_result_type(const struct glsl_type *type_a,
378 const struct glsl_type *type_b,
379 ast_operators op,
380 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
381 {
382 if (state->language_version < 130) {
383 _mesa_glsl_error(loc, state, "bit operations require GLSL 1.30");
384 return glsl_type::error_type;
385 }
386
387 /* From page 50 (page 56 of PDF) of GLSL 1.30 spec:
388 *
389 * "The bitwise operators and (&), exclusive-or (^), and inclusive-or
390 * (|). The operands must be of type signed or unsigned integers or
391 * integer vectors."
392 */
393 if (!type_a->is_integer()) {
394 _mesa_glsl_error(loc, state, "LHS of `%s' must be an integer",
395 ast_expression::operator_string(op));
396 return glsl_type::error_type;
397 }
398 if (!type_b->is_integer()) {
399 _mesa_glsl_error(loc, state, "RHS of `%s' must be an integer",
400 ast_expression::operator_string(op));
401 return glsl_type::error_type;
402 }
403
404 /* "The fundamental types of the operands (signed or unsigned) must
405 * match,"
406 */
407 if (type_a->base_type != type_b->base_type) {
408 _mesa_glsl_error(loc, state, "operands of `%s' must have the same "
409 "base type", ast_expression::operator_string(op));
410 return glsl_type::error_type;
411 }
412
413 /* "The operands cannot be vectors of differing size." */
414 if (type_a->is_vector() &&
415 type_b->is_vector() &&
416 type_a->vector_elements != type_b->vector_elements) {
417 _mesa_glsl_error(loc, state, "operands of `%s' cannot be vectors of "
418 "different sizes", ast_expression::operator_string(op));
419 return glsl_type::error_type;
420 }
421
422 /* "If one operand is a scalar and the other a vector, the scalar is
423 * applied component-wise to the vector, resulting in the same type as
424 * the vector. The fundamental types of the operands [...] will be the
425 * resulting fundamental type."
426 */
427 if (type_a->is_scalar())
428 return type_b;
429 else
430 return type_a;
431 }
432
433 static const struct glsl_type *
434 modulus_result_type(const struct glsl_type *type_a,
435 const struct glsl_type *type_b,
436 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
437 {
438 /* From GLSL 1.50 spec, page 56:
439 * "The operator modulus (%) operates on signed or unsigned integers or
440 * integer vectors. The operand types must both be signed or both be
441 * unsigned."
442 */
443 if (!type_a->is_integer() || !type_b->is_integer()
444 || (type_a->base_type != type_b->base_type)) {
445 _mesa_glsl_error(loc, state, "type mismatch");
446 return glsl_type::error_type;
447 }
448
449 /* "The operands cannot be vectors of differing size. If one operand is
450 * a scalar and the other vector, then the scalar is applied component-
451 * wise to the vector, resulting in the same type as the vector. If both
452 * are vectors of the same size, the result is computed component-wise."
453 */
454 if (type_a->is_vector()) {
455 if (!type_b->is_vector()
456 || (type_a->vector_elements == type_b->vector_elements))
457 return type_a;
458 } else
459 return type_b;
460
461 /* "The operator modulus (%) is not defined for any other data types
462 * (non-integer types)."
463 */
464 _mesa_glsl_error(loc, state, "type mismatch");
465 return glsl_type::error_type;
466 }
467
468
469 static const struct glsl_type *
470 relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
471 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
472 {
473 const glsl_type *type_a = value_a->type;
474 const glsl_type *type_b = value_b->type;
475
476 /* From GLSL 1.50 spec, page 56:
477 * "The relational operators greater than (>), less than (<), greater
478 * than or equal (>=), and less than or equal (<=) operate only on
479 * scalar integer and scalar floating-point expressions."
480 */
481 if (!type_a->is_numeric()
482 || !type_b->is_numeric()
483 || !type_a->is_scalar()
484 || !type_b->is_scalar()) {
485 _mesa_glsl_error(loc, state,
486 "Operands to relational operators must be scalar and "
487 "numeric");
488 return glsl_type::error_type;
489 }
490
491 /* "Either the operands' types must match, or the conversions from
492 * Section 4.1.10 "Implicit Conversions" will be applied to the integer
493 * operand, after which the types must match."
494 */
495 if (!apply_implicit_conversion(type_a, value_b, state)
496 && !apply_implicit_conversion(type_b, value_a, state)) {
497 _mesa_glsl_error(loc, state,
498 "Could not implicitly convert operands to "
499 "relational operator");
500 return glsl_type::error_type;
501 }
502 type_a = value_a->type;
503 type_b = value_b->type;
504
505 if (type_a->base_type != type_b->base_type) {
506 _mesa_glsl_error(loc, state, "base type mismatch");
507 return glsl_type::error_type;
508 }
509
510 /* "The result is scalar Boolean."
511 */
512 return glsl_type::bool_type;
513 }
514
515 /**
516 * \brief Return the result type of a bit-shift operation.
517 *
518 * If the given types to the bit-shift operator are invalid, return
519 * glsl_type::error_type.
520 *
521 * \param type_a Type of LHS of bit-shift op
522 * \param type_b Type of RHS of bit-shift op
523 */
524 static const struct glsl_type *
525 shift_result_type(const struct glsl_type *type_a,
526 const struct glsl_type *type_b,
527 ast_operators op,
528 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
529 {
530 if (state->language_version < 130) {
531 _mesa_glsl_error(loc, state, "bit operations require GLSL 1.30");
532 return glsl_type::error_type;
533 }
534
535 /* From page 50 (page 56 of the PDF) of the GLSL 1.30 spec:
536 *
537 * "The shift operators (<<) and (>>). For both operators, the operands
538 * must be signed or unsigned integers or integer vectors. One operand
539 * can be signed while the other is unsigned."
540 */
541 if (!type_a->is_integer()) {
542 _mesa_glsl_error(loc, state, "LHS of operator %s must be an integer or "
543 "integer vector", ast_expression::operator_string(op));
544 return glsl_type::error_type;
545
546 }
547 if (!type_b->is_integer()) {
548 _mesa_glsl_error(loc, state, "RHS of operator %s must be an integer or "
549 "integer vector", ast_expression::operator_string(op));
550 return glsl_type::error_type;
551 }
552
553 /* "If the first operand is a scalar, the second operand has to be
554 * a scalar as well."
555 */
556 if (type_a->is_scalar() && !type_b->is_scalar()) {
557 _mesa_glsl_error(loc, state, "If the first operand of %s is scalar, the "
558 "second must be scalar as well",
559 ast_expression::operator_string(op));
560 return glsl_type::error_type;
561 }
562
563 /* If both operands are vectors, check that they have same number of
564 * elements.
565 */
566 if (type_a->is_vector() &&
567 type_b->is_vector() &&
568 type_a->vector_elements != type_b->vector_elements) {
569 _mesa_glsl_error(loc, state, "Vector operands to operator %s must "
570 "have same number of elements",
571 ast_expression::operator_string(op));
572 return glsl_type::error_type;
573 }
574
575 /* "In all cases, the resulting type will be the same type as the left
576 * operand."
577 */
578 return type_a;
579 }
580
581 /**
582 * Validates that a value can be assigned to a location with a specified type
583 *
584 * Validates that \c rhs can be assigned to some location. If the types are
585 * not an exact match but an automatic conversion is possible, \c rhs will be
586 * converted.
587 *
588 * \return
589 * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
590 * Otherwise the actual RHS to be assigned will be returned. This may be
591 * \c rhs, or it may be \c rhs after some type conversion.
592 *
593 * \note
594 * In addition to being used for assignments, this function is used to
595 * type-check return values.
596 */
597 ir_rvalue *
598 validate_assignment(struct _mesa_glsl_parse_state *state,
599 const glsl_type *lhs_type, ir_rvalue *rhs)
600 {
601 const glsl_type *rhs_type = rhs->type;
602
603 /* If there is already some error in the RHS, just return it. Anything
604 * else will lead to an avalanche of error message back to the user.
605 */
606 if (rhs_type->is_error())
607 return rhs;
608
609 /* If the types are identical, the assignment can trivially proceed.
610 */
611 if (rhs_type == lhs_type)
612 return rhs;
613
614 /* If the array element types are the same and the size of the LHS is zero,
615 * the assignment is okay.
616 *
617 * Note: Whole-array assignments are not permitted in GLSL 1.10, but this
618 * is handled by ir_dereference::is_lvalue.
619 */
620 if (lhs_type->is_array() && rhs->type->is_array()
621 && (lhs_type->element_type() == rhs->type->element_type())
622 && (lhs_type->array_size() == 0)) {
623 return rhs;
624 }
625
626 /* Check for implicit conversion in GLSL 1.20 */
627 if (apply_implicit_conversion(lhs_type, rhs, state)) {
628 rhs_type = rhs->type;
629 if (rhs_type == lhs_type)
630 return rhs;
631 }
632
633 return NULL;
634 }
635
636 ir_rvalue *
637 do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state,
638 ir_rvalue *lhs, ir_rvalue *rhs,
639 YYLTYPE lhs_loc)
640 {
641 void *ctx = state;
642 bool error_emitted = (lhs->type->is_error() || rhs->type->is_error());
643
644 if (!error_emitted) {
645 if (!lhs->is_lvalue()) {
646 _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment");
647 error_emitted = true;
648 }
649
650 if (state->es_shader && lhs->type->is_array()) {
651 _mesa_glsl_error(&lhs_loc, state, "whole array assignment is not "
652 "allowed in GLSL ES 1.00.");
653 error_emitted = true;
654 }
655 }
656
657 ir_rvalue *new_rhs = validate_assignment(state, lhs->type, rhs);
658 if (new_rhs == NULL) {
659 _mesa_glsl_error(& lhs_loc, state, "type mismatch");
660 } else {
661 rhs = new_rhs;
662
663 /* If the LHS array was not declared with a size, it takes it size from
664 * the RHS. If the LHS is an l-value and a whole array, it must be a
665 * dereference of a variable. Any other case would require that the LHS
666 * is either not an l-value or not a whole array.
667 */
668 if (lhs->type->array_size() == 0) {
669 ir_dereference *const d = lhs->as_dereference();
670
671 assert(d != NULL);
672
673 ir_variable *const var = d->variable_referenced();
674
675 assert(var != NULL);
676
677 if (var->max_array_access >= unsigned(rhs->type->array_size())) {
678 /* FINISHME: This should actually log the location of the RHS. */
679 _mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to "
680 "previous access",
681 var->max_array_access);
682 }
683
684 var->type = glsl_type::get_array_instance(lhs->type->element_type(),
685 rhs->type->array_size());
686 d->type = var->type;
687 }
688 }
689
690 /* Most callers of do_assignment (assign, add_assign, pre_inc/dec,
691 * but not post_inc) need the converted assigned value as an rvalue
692 * to handle things like:
693 *
694 * i = j += 1;
695 *
696 * So we always just store the computed value being assigned to a
697 * temporary and return a deref of that temporary. If the rvalue
698 * ends up not being used, the temp will get copy-propagated out.
699 */
700 ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp",
701 ir_var_temporary);
702 ir_dereference_variable *deref_var = new(ctx) ir_dereference_variable(var);
703 instructions->push_tail(var);
704 instructions->push_tail(new(ctx) ir_assignment(deref_var,
705 rhs,
706 NULL));
707 deref_var = new(ctx) ir_dereference_variable(var);
708
709 if (!error_emitted)
710 instructions->push_tail(new(ctx) ir_assignment(lhs, deref_var, NULL));
711
712 return new(ctx) ir_dereference_variable(var);
713 }
714
715 static ir_rvalue *
716 get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue)
717 {
718 void *ctx = talloc_parent(lvalue);
719 ir_variable *var;
720
721 var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp",
722 ir_var_temporary);
723 instructions->push_tail(var);
724 var->mode = ir_var_auto;
725
726 instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
727 lvalue, NULL));
728
729 /* Once we've created this temporary, mark it read only so it's no
730 * longer considered an lvalue.
731 */
732 var->read_only = true;
733
734 return new(ctx) ir_dereference_variable(var);
735 }
736
737
738 ir_rvalue *
739 ast_node::hir(exec_list *instructions,
740 struct _mesa_glsl_parse_state *state)
741 {
742 (void) instructions;
743 (void) state;
744
745 return NULL;
746 }
747
748 static void
749 mark_whole_array_access(ir_rvalue *access)
750 {
751 ir_dereference_variable *deref = access->as_dereference_variable();
752
753 if (deref) {
754 deref->var->max_array_access = deref->type->length - 1;
755 }
756 }
757
758 static ir_rvalue *
759 do_comparison(void *mem_ctx, int operation, ir_rvalue *op0, ir_rvalue *op1)
760 {
761 int join_op;
762 ir_rvalue *cmp = NULL;
763
764 if (operation == ir_binop_all_equal)
765 join_op = ir_binop_logic_and;
766 else
767 join_op = ir_binop_logic_or;
768
769 switch (op0->type->base_type) {
770 case GLSL_TYPE_FLOAT:
771 case GLSL_TYPE_UINT:
772 case GLSL_TYPE_INT:
773 case GLSL_TYPE_BOOL:
774 return new(mem_ctx) ir_expression(operation, op0, op1);
775
776 case GLSL_TYPE_ARRAY: {
777 for (unsigned int i = 0; i < op0->type->length; i++) {
778 ir_rvalue *e0, *e1, *result;
779
780 e0 = new(mem_ctx) ir_dereference_array(op0->clone(mem_ctx, NULL),
781 new(mem_ctx) ir_constant(i));
782 e1 = new(mem_ctx) ir_dereference_array(op1->clone(mem_ctx, NULL),
783 new(mem_ctx) ir_constant(i));
784 result = do_comparison(mem_ctx, operation, e0, e1);
785
786 if (cmp) {
787 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
788 } else {
789 cmp = result;
790 }
791 }
792
793 mark_whole_array_access(op0);
794 mark_whole_array_access(op1);
795 break;
796 }
797
798 case GLSL_TYPE_STRUCT: {
799 for (unsigned int i = 0; i < op0->type->length; i++) {
800 ir_rvalue *e0, *e1, *result;
801 const char *field_name = op0->type->fields.structure[i].name;
802
803 e0 = new(mem_ctx) ir_dereference_record(op0->clone(mem_ctx, NULL),
804 field_name);
805 e1 = new(mem_ctx) ir_dereference_record(op1->clone(mem_ctx, NULL),
806 field_name);
807 result = do_comparison(mem_ctx, operation, e0, e1);
808
809 if (cmp) {
810 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
811 } else {
812 cmp = result;
813 }
814 }
815 break;
816 }
817
818 case GLSL_TYPE_ERROR:
819 case GLSL_TYPE_VOID:
820 case GLSL_TYPE_SAMPLER:
821 /* I assume a comparison of a struct containing a sampler just
822 * ignores the sampler present in the type.
823 */
824 break;
825
826 default:
827 assert(!"Should not get here.");
828 break;
829 }
830
831 if (cmp == NULL)
832 cmp = new(mem_ctx) ir_constant(true);
833
834 return cmp;
835 }
836
837 ir_rvalue *
838 ast_expression::hir(exec_list *instructions,
839 struct _mesa_glsl_parse_state *state)
840 {
841 void *ctx = state;
842 static const int operations[AST_NUM_OPERATORS] = {
843 -1, /* ast_assign doesn't convert to ir_expression. */
844 -1, /* ast_plus doesn't convert to ir_expression. */
845 ir_unop_neg,
846 ir_binop_add,
847 ir_binop_sub,
848 ir_binop_mul,
849 ir_binop_div,
850 ir_binop_mod,
851 ir_binop_lshift,
852 ir_binop_rshift,
853 ir_binop_less,
854 ir_binop_greater,
855 ir_binop_lequal,
856 ir_binop_gequal,
857 ir_binop_all_equal,
858 ir_binop_any_nequal,
859 ir_binop_bit_and,
860 ir_binop_bit_xor,
861 ir_binop_bit_or,
862 ir_unop_bit_not,
863 ir_binop_logic_and,
864 ir_binop_logic_xor,
865 ir_binop_logic_or,
866 ir_unop_logic_not,
867
868 /* Note: The following block of expression types actually convert
869 * to multiple IR instructions.
870 */
871 ir_binop_mul, /* ast_mul_assign */
872 ir_binop_div, /* ast_div_assign */
873 ir_binop_mod, /* ast_mod_assign */
874 ir_binop_add, /* ast_add_assign */
875 ir_binop_sub, /* ast_sub_assign */
876 ir_binop_lshift, /* ast_ls_assign */
877 ir_binop_rshift, /* ast_rs_assign */
878 ir_binop_bit_and, /* ast_and_assign */
879 ir_binop_bit_xor, /* ast_xor_assign */
880 ir_binop_bit_or, /* ast_or_assign */
881
882 -1, /* ast_conditional doesn't convert to ir_expression. */
883 ir_binop_add, /* ast_pre_inc. */
884 ir_binop_sub, /* ast_pre_dec. */
885 ir_binop_add, /* ast_post_inc. */
886 ir_binop_sub, /* ast_post_dec. */
887 -1, /* ast_field_selection doesn't conv to ir_expression. */
888 -1, /* ast_array_index doesn't convert to ir_expression. */
889 -1, /* ast_function_call doesn't conv to ir_expression. */
890 -1, /* ast_identifier doesn't convert to ir_expression. */
891 -1, /* ast_int_constant doesn't convert to ir_expression. */
892 -1, /* ast_uint_constant doesn't conv to ir_expression. */
893 -1, /* ast_float_constant doesn't conv to ir_expression. */
894 -1, /* ast_bool_constant doesn't conv to ir_expression. */
895 -1, /* ast_sequence doesn't convert to ir_expression. */
896 };
897 ir_rvalue *result = NULL;
898 ir_rvalue *op[3];
899 const struct glsl_type *type = glsl_type::error_type;
900 bool error_emitted = false;
901 YYLTYPE loc;
902
903 loc = this->get_location();
904
905 switch (this->oper) {
906 case ast_assign: {
907 op[0] = this->subexpressions[0]->hir(instructions, state);
908 op[1] = this->subexpressions[1]->hir(instructions, state);
909
910 result = do_assignment(instructions, state, op[0], op[1],
911 this->subexpressions[0]->get_location());
912 error_emitted = result->type->is_error();
913 type = result->type;
914 break;
915 }
916
917 case ast_plus:
918 op[0] = this->subexpressions[0]->hir(instructions, state);
919
920 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
921
922 error_emitted = type->is_error();
923
924 result = op[0];
925 break;
926
927 case ast_neg:
928 op[0] = this->subexpressions[0]->hir(instructions, state);
929
930 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
931
932 error_emitted = type->is_error();
933
934 result = new(ctx) ir_expression(operations[this->oper], type,
935 op[0], NULL);
936 break;
937
938 case ast_add:
939 case ast_sub:
940 case ast_mul:
941 case ast_div:
942 op[0] = this->subexpressions[0]->hir(instructions, state);
943 op[1] = this->subexpressions[1]->hir(instructions, state);
944
945 type = arithmetic_result_type(op[0], op[1],
946 (this->oper == ast_mul),
947 state, & loc);
948 error_emitted = type->is_error();
949
950 result = new(ctx) ir_expression(operations[this->oper], type,
951 op[0], op[1]);
952 break;
953
954 case ast_mod:
955 op[0] = this->subexpressions[0]->hir(instructions, state);
956 op[1] = this->subexpressions[1]->hir(instructions, state);
957
958 type = modulus_result_type(op[0]->type, op[1]->type, state, & loc);
959
960 assert(operations[this->oper] == ir_binop_mod);
961
962 result = new(ctx) ir_expression(operations[this->oper], type,
963 op[0], op[1]);
964 error_emitted = type->is_error();
965 break;
966
967 case ast_lshift:
968 case ast_rshift:
969 if (state->language_version < 130) {
970 _mesa_glsl_error(&loc, state, "operator %s requires GLSL 1.30",
971 operator_string(this->oper));
972 error_emitted = true;
973 }
974
975 op[0] = this->subexpressions[0]->hir(instructions, state);
976 op[1] = this->subexpressions[1]->hir(instructions, state);
977 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
978 &loc);
979 result = new(ctx) ir_expression(operations[this->oper], type,
980 op[0], op[1]);
981 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
982 break;
983
984 case ast_less:
985 case ast_greater:
986 case ast_lequal:
987 case ast_gequal:
988 op[0] = this->subexpressions[0]->hir(instructions, state);
989 op[1] = this->subexpressions[1]->hir(instructions, state);
990
991 type = relational_result_type(op[0], op[1], state, & loc);
992
993 /* The relational operators must either generate an error or result
994 * in a scalar boolean. See page 57 of the GLSL 1.50 spec.
995 */
996 assert(type->is_error()
997 || ((type->base_type == GLSL_TYPE_BOOL)
998 && type->is_scalar()));
999
1000 result = new(ctx) ir_expression(operations[this->oper], type,
1001 op[0], op[1]);
1002 error_emitted = type->is_error();
1003 break;
1004
1005 case ast_nequal:
1006 case ast_equal:
1007 op[0] = this->subexpressions[0]->hir(instructions, state);
1008 op[1] = this->subexpressions[1]->hir(instructions, state);
1009
1010 /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
1011 *
1012 * "The equality operators equal (==), and not equal (!=)
1013 * operate on all types. They result in a scalar Boolean. If
1014 * the operand types do not match, then there must be a
1015 * conversion from Section 4.1.10 "Implicit Conversions"
1016 * applied to one operand that can make them match, in which
1017 * case this conversion is done."
1018 */
1019 if ((!apply_implicit_conversion(op[0]->type, op[1], state)
1020 && !apply_implicit_conversion(op[1]->type, op[0], state))
1021 || (op[0]->type != op[1]->type)) {
1022 _mesa_glsl_error(& loc, state, "operands of `%s' must have the same "
1023 "type", (this->oper == ast_equal) ? "==" : "!=");
1024 error_emitted = true;
1025 } else if ((state->language_version <= 110)
1026 && (op[0]->type->is_array() || op[1]->type->is_array())) {
1027 _mesa_glsl_error(& loc, state, "array comparisons forbidden in "
1028 "GLSL 1.10");
1029 error_emitted = true;
1030 }
1031
1032 result = do_comparison(ctx, operations[this->oper], op[0], op[1]);
1033 type = glsl_type::bool_type;
1034
1035 assert(error_emitted || (result->type == glsl_type::bool_type));
1036 break;
1037
1038 case ast_bit_and:
1039 case ast_bit_xor:
1040 case ast_bit_or:
1041 op[0] = this->subexpressions[0]->hir(instructions, state);
1042 op[1] = this->subexpressions[1]->hir(instructions, state);
1043 type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
1044 state, &loc);
1045 result = new(ctx) ir_expression(operations[this->oper], type,
1046 op[0], op[1]);
1047 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1048 break;
1049
1050 case ast_bit_not:
1051 op[0] = this->subexpressions[0]->hir(instructions, state);
1052
1053 if (state->language_version < 130) {
1054 _mesa_glsl_error(&loc, state, "bit-wise operations require GLSL 1.30");
1055 error_emitted = true;
1056 }
1057
1058 if (!op[0]->type->is_integer()) {
1059 _mesa_glsl_error(&loc, state, "operand of `~' must be an integer");
1060 error_emitted = true;
1061 }
1062
1063 type = op[0]->type;
1064 result = new(ctx) ir_expression(ir_unop_bit_not, type, op[0], NULL);
1065 break;
1066
1067 case ast_logic_and: {
1068 op[0] = this->subexpressions[0]->hir(instructions, state);
1069
1070 if (!op[0]->type->is_boolean() || !op[0]->type->is_scalar()) {
1071 YYLTYPE loc = this->subexpressions[0]->get_location();
1072
1073 _mesa_glsl_error(& loc, state, "LHS of `%s' must be scalar boolean",
1074 operator_string(this->oper));
1075 error_emitted = true;
1076 }
1077
1078 ir_constant *op0_const = op[0]->constant_expression_value();
1079 if (op0_const) {
1080 if (op0_const->value.b[0]) {
1081 op[1] = this->subexpressions[1]->hir(instructions, state);
1082
1083 if (!op[1]->type->is_boolean() || !op[1]->type->is_scalar()) {
1084 YYLTYPE loc = this->subexpressions[1]->get_location();
1085
1086 _mesa_glsl_error(& loc, state,
1087 "RHS of `%s' must be scalar boolean",
1088 operator_string(this->oper));
1089 error_emitted = true;
1090 }
1091 result = op[1];
1092 } else {
1093 result = op0_const;
1094 }
1095 type = glsl_type::bool_type;
1096 } else {
1097 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1098 "and_tmp",
1099 ir_var_temporary);
1100 instructions->push_tail(tmp);
1101
1102 ir_if *const stmt = new(ctx) ir_if(op[0]);
1103 instructions->push_tail(stmt);
1104
1105 op[1] = this->subexpressions[1]->hir(&stmt->then_instructions, state);
1106
1107 if (!op[1]->type->is_boolean() || !op[1]->type->is_scalar()) {
1108 YYLTYPE loc = this->subexpressions[1]->get_location();
1109
1110 _mesa_glsl_error(& loc, state,
1111 "RHS of `%s' must be scalar boolean",
1112 operator_string(this->oper));
1113 error_emitted = true;
1114 }
1115
1116 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1117 ir_assignment *const then_assign =
1118 new(ctx) ir_assignment(then_deref, op[1], NULL);
1119 stmt->then_instructions.push_tail(then_assign);
1120
1121 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1122 ir_assignment *const else_assign =
1123 new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false), NULL);
1124 stmt->else_instructions.push_tail(else_assign);
1125
1126 result = new(ctx) ir_dereference_variable(tmp);
1127 type = tmp->type;
1128 }
1129 break;
1130 }
1131
1132 case ast_logic_or: {
1133 op[0] = this->subexpressions[0]->hir(instructions, state);
1134
1135 if (!op[0]->type->is_boolean() || !op[0]->type->is_scalar()) {
1136 YYLTYPE loc = this->subexpressions[0]->get_location();
1137
1138 _mesa_glsl_error(& loc, state, "LHS of `%s' must be scalar boolean",
1139 operator_string(this->oper));
1140 error_emitted = true;
1141 }
1142
1143 ir_constant *op0_const = op[0]->constant_expression_value();
1144 if (op0_const) {
1145 if (op0_const->value.b[0]) {
1146 result = op0_const;
1147 } else {
1148 op[1] = this->subexpressions[1]->hir(instructions, state);
1149
1150 if (!op[1]->type->is_boolean() || !op[1]->type->is_scalar()) {
1151 YYLTYPE loc = this->subexpressions[1]->get_location();
1152
1153 _mesa_glsl_error(& loc, state,
1154 "RHS of `%s' must be scalar boolean",
1155 operator_string(this->oper));
1156 error_emitted = true;
1157 }
1158 result = op[1];
1159 }
1160 type = glsl_type::bool_type;
1161 } else {
1162 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1163 "or_tmp",
1164 ir_var_temporary);
1165 instructions->push_tail(tmp);
1166
1167 ir_if *const stmt = new(ctx) ir_if(op[0]);
1168 instructions->push_tail(stmt);
1169
1170 op[1] = this->subexpressions[1]->hir(&stmt->else_instructions, state);
1171
1172 if (!op[1]->type->is_boolean() || !op[1]->type->is_scalar()) {
1173 YYLTYPE loc = this->subexpressions[1]->get_location();
1174
1175 _mesa_glsl_error(& loc, state, "RHS of `%s' must be scalar boolean",
1176 operator_string(this->oper));
1177 error_emitted = true;
1178 }
1179
1180 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1181 ir_assignment *const then_assign =
1182 new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true), NULL);
1183 stmt->then_instructions.push_tail(then_assign);
1184
1185 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1186 ir_assignment *const else_assign =
1187 new(ctx) ir_assignment(else_deref, op[1], NULL);
1188 stmt->else_instructions.push_tail(else_assign);
1189
1190 result = new(ctx) ir_dereference_variable(tmp);
1191 type = tmp->type;
1192 }
1193 break;
1194 }
1195
1196 case ast_logic_xor:
1197 op[0] = this->subexpressions[0]->hir(instructions, state);
1198 op[1] = this->subexpressions[1]->hir(instructions, state);
1199
1200
1201 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1202 op[0], op[1]);
1203 type = glsl_type::bool_type;
1204 break;
1205
1206 case ast_logic_not:
1207 op[0] = this->subexpressions[0]->hir(instructions, state);
1208
1209 if (!op[0]->type->is_boolean() || !op[0]->type->is_scalar()) {
1210 YYLTYPE loc = this->subexpressions[0]->get_location();
1211
1212 _mesa_glsl_error(& loc, state,
1213 "operand of `!' must be scalar boolean");
1214 error_emitted = true;
1215 }
1216
1217 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1218 op[0], NULL);
1219 type = glsl_type::bool_type;
1220 break;
1221
1222 case ast_mul_assign:
1223 case ast_div_assign:
1224 case ast_add_assign:
1225 case ast_sub_assign: {
1226 op[0] = this->subexpressions[0]->hir(instructions, state);
1227 op[1] = this->subexpressions[1]->hir(instructions, state);
1228
1229 type = arithmetic_result_type(op[0], op[1],
1230 (this->oper == ast_mul_assign),
1231 state, & loc);
1232
1233 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1234 op[0], op[1]);
1235
1236 result = do_assignment(instructions, state,
1237 op[0]->clone(ctx, NULL), temp_rhs,
1238 this->subexpressions[0]->get_location());
1239 type = result->type;
1240 error_emitted = (op[0]->type->is_error());
1241
1242 /* GLSL 1.10 does not allow array assignment. However, we don't have to
1243 * explicitly test for this because none of the binary expression
1244 * operators allow array operands either.
1245 */
1246
1247 break;
1248 }
1249
1250 case ast_mod_assign: {
1251 op[0] = this->subexpressions[0]->hir(instructions, state);
1252 op[1] = this->subexpressions[1]->hir(instructions, state);
1253
1254 type = modulus_result_type(op[0]->type, op[1]->type, state, & loc);
1255
1256 assert(operations[this->oper] == ir_binop_mod);
1257
1258 ir_rvalue *temp_rhs;
1259 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1260 op[0], op[1]);
1261
1262 result = do_assignment(instructions, state,
1263 op[0]->clone(ctx, NULL), temp_rhs,
1264 this->subexpressions[0]->get_location());
1265 type = result->type;
1266 error_emitted = type->is_error();
1267 break;
1268 }
1269
1270 case ast_ls_assign:
1271 case ast_rs_assign: {
1272 op[0] = this->subexpressions[0]->hir(instructions, state);
1273 op[1] = this->subexpressions[1]->hir(instructions, state);
1274 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1275 &loc);
1276 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1277 type, op[0], op[1]);
1278 result = do_assignment(instructions, state, op[0]->clone(ctx, NULL),
1279 temp_rhs,
1280 this->subexpressions[0]->get_location());
1281 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1282 break;
1283 }
1284
1285 case ast_and_assign:
1286 case ast_xor_assign:
1287 case ast_or_assign: {
1288 op[0] = this->subexpressions[0]->hir(instructions, state);
1289 op[1] = this->subexpressions[1]->hir(instructions, state);
1290 type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
1291 state, &loc);
1292 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1293 type, op[0], op[1]);
1294 result = do_assignment(instructions, state, op[0]->clone(ctx, NULL),
1295 temp_rhs,
1296 this->subexpressions[0]->get_location());
1297 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1298 break;
1299 }
1300
1301 case ast_conditional: {
1302 op[0] = this->subexpressions[0]->hir(instructions, state);
1303
1304 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1305 *
1306 * "The ternary selection operator (?:). It operates on three
1307 * expressions (exp1 ? exp2 : exp3). This operator evaluates the
1308 * first expression, which must result in a scalar Boolean."
1309 */
1310 if (!op[0]->type->is_boolean() || !op[0]->type->is_scalar()) {
1311 YYLTYPE loc = this->subexpressions[0]->get_location();
1312
1313 _mesa_glsl_error(& loc, state, "?: condition must be scalar boolean");
1314 error_emitted = true;
1315 }
1316
1317 /* The :? operator is implemented by generating an anonymous temporary
1318 * followed by an if-statement. The last instruction in each branch of
1319 * the if-statement assigns a value to the anonymous temporary. This
1320 * temporary is the r-value of the expression.
1321 */
1322 exec_list then_instructions;
1323 exec_list else_instructions;
1324
1325 op[1] = this->subexpressions[1]->hir(&then_instructions, state);
1326 op[2] = this->subexpressions[2]->hir(&else_instructions, state);
1327
1328 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1329 *
1330 * "The second and third expressions can be any type, as
1331 * long their types match, or there is a conversion in
1332 * Section 4.1.10 "Implicit Conversions" that can be applied
1333 * to one of the expressions to make their types match. This
1334 * resulting matching type is the type of the entire
1335 * expression."
1336 */
1337 if ((!apply_implicit_conversion(op[1]->type, op[2], state)
1338 && !apply_implicit_conversion(op[2]->type, op[1], state))
1339 || (op[1]->type != op[2]->type)) {
1340 YYLTYPE loc = this->subexpressions[1]->get_location();
1341
1342 _mesa_glsl_error(& loc, state, "Second and third operands of ?: "
1343 "operator must have matching types.");
1344 error_emitted = true;
1345 type = glsl_type::error_type;
1346 } else {
1347 type = op[1]->type;
1348 }
1349
1350 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1351 *
1352 * "The second and third expressions must be the same type, but can
1353 * be of any type other than an array."
1354 */
1355 if ((state->language_version <= 110) && type->is_array()) {
1356 _mesa_glsl_error(& loc, state, "Second and third operands of ?: "
1357 "operator must not be arrays.");
1358 error_emitted = true;
1359 }
1360
1361 ir_constant *cond_val = op[0]->constant_expression_value();
1362 ir_constant *then_val = op[1]->constant_expression_value();
1363 ir_constant *else_val = op[2]->constant_expression_value();
1364
1365 if (then_instructions.is_empty()
1366 && else_instructions.is_empty()
1367 && (cond_val != NULL) && (then_val != NULL) && (else_val != NULL)) {
1368 result = (cond_val->value.b[0]) ? then_val : else_val;
1369 } else {
1370 ir_variable *const tmp =
1371 new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary);
1372 instructions->push_tail(tmp);
1373
1374 ir_if *const stmt = new(ctx) ir_if(op[0]);
1375 instructions->push_tail(stmt);
1376
1377 then_instructions.move_nodes_to(& stmt->then_instructions);
1378 ir_dereference *const then_deref =
1379 new(ctx) ir_dereference_variable(tmp);
1380 ir_assignment *const then_assign =
1381 new(ctx) ir_assignment(then_deref, op[1], NULL);
1382 stmt->then_instructions.push_tail(then_assign);
1383
1384 else_instructions.move_nodes_to(& stmt->else_instructions);
1385 ir_dereference *const else_deref =
1386 new(ctx) ir_dereference_variable(tmp);
1387 ir_assignment *const else_assign =
1388 new(ctx) ir_assignment(else_deref, op[2], NULL);
1389 stmt->else_instructions.push_tail(else_assign);
1390
1391 result = new(ctx) ir_dereference_variable(tmp);
1392 }
1393 break;
1394 }
1395
1396 case ast_pre_inc:
1397 case ast_pre_dec: {
1398 op[0] = this->subexpressions[0]->hir(instructions, state);
1399 if (op[0]->type->base_type == GLSL_TYPE_FLOAT)
1400 op[1] = new(ctx) ir_constant(1.0f);
1401 else
1402 op[1] = new(ctx) ir_constant(1);
1403
1404 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1405
1406 ir_rvalue *temp_rhs;
1407 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1408 op[0], op[1]);
1409
1410 result = do_assignment(instructions, state,
1411 op[0]->clone(ctx, NULL), temp_rhs,
1412 this->subexpressions[0]->get_location());
1413 type = result->type;
1414 error_emitted = op[0]->type->is_error();
1415 break;
1416 }
1417
1418 case ast_post_inc:
1419 case ast_post_dec: {
1420 op[0] = this->subexpressions[0]->hir(instructions, state);
1421 if (op[0]->type->base_type == GLSL_TYPE_FLOAT)
1422 op[1] = new(ctx) ir_constant(1.0f);
1423 else
1424 op[1] = new(ctx) ir_constant(1);
1425
1426 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1427
1428 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1429
1430 ir_rvalue *temp_rhs;
1431 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1432 op[0], op[1]);
1433
1434 /* Get a temporary of a copy of the lvalue before it's modified.
1435 * This may get thrown away later.
1436 */
1437 result = get_lvalue_copy(instructions, op[0]->clone(ctx, NULL));
1438
1439 (void)do_assignment(instructions, state,
1440 op[0]->clone(ctx, NULL), temp_rhs,
1441 this->subexpressions[0]->get_location());
1442
1443 type = result->type;
1444 error_emitted = op[0]->type->is_error();
1445 break;
1446 }
1447
1448 case ast_field_selection:
1449 result = _mesa_ast_field_selection_to_hir(this, instructions, state);
1450 type = result->type;
1451 break;
1452
1453 case ast_array_index: {
1454 YYLTYPE index_loc = subexpressions[1]->get_location();
1455
1456 op[0] = subexpressions[0]->hir(instructions, state);
1457 op[1] = subexpressions[1]->hir(instructions, state);
1458
1459 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1460
1461 ir_rvalue *const array = op[0];
1462
1463 result = new(ctx) ir_dereference_array(op[0], op[1]);
1464
1465 /* Do not use op[0] after this point. Use array.
1466 */
1467 op[0] = NULL;
1468
1469
1470 if (error_emitted)
1471 break;
1472
1473 if (!array->type->is_array()
1474 && !array->type->is_matrix()
1475 && !array->type->is_vector()) {
1476 _mesa_glsl_error(& index_loc, state,
1477 "cannot dereference non-array / non-matrix / "
1478 "non-vector");
1479 error_emitted = true;
1480 }
1481
1482 if (!op[1]->type->is_integer()) {
1483 _mesa_glsl_error(& index_loc, state,
1484 "array index must be integer type");
1485 error_emitted = true;
1486 } else if (!op[1]->type->is_scalar()) {
1487 _mesa_glsl_error(& index_loc, state,
1488 "array index must be scalar");
1489 error_emitted = true;
1490 }
1491
1492 /* If the array index is a constant expression and the array has a
1493 * declared size, ensure that the access is in-bounds. If the array
1494 * index is not a constant expression, ensure that the array has a
1495 * declared size.
1496 */
1497 ir_constant *const const_index = op[1]->constant_expression_value();
1498 if (const_index != NULL) {
1499 const int idx = const_index->value.i[0];
1500 const char *type_name;
1501 unsigned bound = 0;
1502
1503 if (array->type->is_matrix()) {
1504 type_name = "matrix";
1505 } else if (array->type->is_vector()) {
1506 type_name = "vector";
1507 } else {
1508 type_name = "array";
1509 }
1510
1511 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec:
1512 *
1513 * "It is illegal to declare an array with a size, and then
1514 * later (in the same shader) index the same array with an
1515 * integral constant expression greater than or equal to the
1516 * declared size. It is also illegal to index an array with a
1517 * negative constant expression."
1518 */
1519 if (array->type->is_matrix()) {
1520 if (array->type->row_type()->vector_elements <= idx) {
1521 bound = array->type->row_type()->vector_elements;
1522 }
1523 } else if (array->type->is_vector()) {
1524 if (array->type->vector_elements <= idx) {
1525 bound = array->type->vector_elements;
1526 }
1527 } else {
1528 if ((array->type->array_size() > 0)
1529 && (array->type->array_size() <= idx)) {
1530 bound = array->type->array_size();
1531 }
1532 }
1533
1534 if (bound > 0) {
1535 _mesa_glsl_error(& loc, state, "%s index must be < %u",
1536 type_name, bound);
1537 error_emitted = true;
1538 } else if (idx < 0) {
1539 _mesa_glsl_error(& loc, state, "%s index must be >= 0",
1540 type_name);
1541 error_emitted = true;
1542 }
1543
1544 if (array->type->is_array()) {
1545 /* If the array is a variable dereference, it dereferences the
1546 * whole array, by definition. Use this to get the variable.
1547 *
1548 * FINISHME: Should some methods for getting / setting / testing
1549 * FINISHME: array access limits be added to ir_dereference?
1550 */
1551 ir_variable *const v = array->whole_variable_referenced();
1552 if ((v != NULL) && (unsigned(idx) > v->max_array_access))
1553 v->max_array_access = idx;
1554 }
1555 } else if (array->type->array_size() == 0) {
1556 _mesa_glsl_error(&loc, state, "unsized array index must be constant");
1557 } else {
1558 if (array->type->is_array()) {
1559 /* whole_variable_referenced can return NULL if the array is a
1560 * member of a structure. In this case it is safe to not update
1561 * the max_array_access field because it is never used for fields
1562 * of structures.
1563 */
1564 ir_variable *v = array->whole_variable_referenced();
1565 if (v != NULL)
1566 v->max_array_access = array->type->array_size();
1567 }
1568 }
1569
1570 if (error_emitted)
1571 result->type = glsl_type::error_type;
1572
1573 type = result->type;
1574 break;
1575 }
1576
1577 case ast_function_call:
1578 /* Should *NEVER* get here. ast_function_call should always be handled
1579 * by ast_function_expression::hir.
1580 */
1581 assert(0);
1582 break;
1583
1584 case ast_identifier: {
1585 /* ast_identifier can appear several places in a full abstract syntax
1586 * tree. This particular use must be at location specified in the grammar
1587 * as 'variable_identifier'.
1588 */
1589 ir_variable *var =
1590 state->symbols->get_variable(this->primary_expression.identifier);
1591
1592 result = new(ctx) ir_dereference_variable(var);
1593
1594 if (var != NULL) {
1595 type = result->type;
1596 } else {
1597 _mesa_glsl_error(& loc, state, "`%s' undeclared",
1598 this->primary_expression.identifier);
1599
1600 error_emitted = true;
1601 }
1602 break;
1603 }
1604
1605 case ast_int_constant:
1606 type = glsl_type::int_type;
1607 result = new(ctx) ir_constant(this->primary_expression.int_constant);
1608 break;
1609
1610 case ast_uint_constant:
1611 type = glsl_type::uint_type;
1612 result = new(ctx) ir_constant(this->primary_expression.uint_constant);
1613 break;
1614
1615 case ast_float_constant:
1616 type = glsl_type::float_type;
1617 result = new(ctx) ir_constant(this->primary_expression.float_constant);
1618 break;
1619
1620 case ast_bool_constant:
1621 type = glsl_type::bool_type;
1622 result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant));
1623 break;
1624
1625 case ast_sequence: {
1626 /* It should not be possible to generate a sequence in the AST without
1627 * any expressions in it.
1628 */
1629 assert(!this->expressions.is_empty());
1630
1631 /* The r-value of a sequence is the last expression in the sequence. If
1632 * the other expressions in the sequence do not have side-effects (and
1633 * therefore add instructions to the instruction list), they get dropped
1634 * on the floor.
1635 */
1636 foreach_list_typed (ast_node, ast, link, &this->expressions)
1637 result = ast->hir(instructions, state);
1638
1639 type = result->type;
1640
1641 /* Any errors should have already been emitted in the loop above.
1642 */
1643 error_emitted = true;
1644 break;
1645 }
1646 }
1647
1648 if (type->is_error() && !error_emitted)
1649 _mesa_glsl_error(& loc, state, "type mismatch");
1650
1651 return result;
1652 }
1653
1654
1655 ir_rvalue *
1656 ast_expression_statement::hir(exec_list *instructions,
1657 struct _mesa_glsl_parse_state *state)
1658 {
1659 /* It is possible to have expression statements that don't have an
1660 * expression. This is the solitary semicolon:
1661 *
1662 * for (i = 0; i < 5; i++)
1663 * ;
1664 *
1665 * In this case the expression will be NULL. Test for NULL and don't do
1666 * anything in that case.
1667 */
1668 if (expression != NULL)
1669 expression->hir(instructions, state);
1670
1671 /* Statements do not have r-values.
1672 */
1673 return NULL;
1674 }
1675
1676
1677 ir_rvalue *
1678 ast_compound_statement::hir(exec_list *instructions,
1679 struct _mesa_glsl_parse_state *state)
1680 {
1681 if (new_scope)
1682 state->symbols->push_scope();
1683
1684 foreach_list_typed (ast_node, ast, link, &this->statements)
1685 ast->hir(instructions, state);
1686
1687 if (new_scope)
1688 state->symbols->pop_scope();
1689
1690 /* Compound statements do not have r-values.
1691 */
1692 return NULL;
1693 }
1694
1695
1696 static const glsl_type *
1697 process_array_type(YYLTYPE *loc, const glsl_type *base, ast_node *array_size,
1698 struct _mesa_glsl_parse_state *state)
1699 {
1700 unsigned length = 0;
1701
1702 /* FINISHME: Reject delcarations of multidimensional arrays. */
1703
1704 if (array_size != NULL) {
1705 exec_list dummy_instructions;
1706 ir_rvalue *const ir = array_size->hir(& dummy_instructions, state);
1707 YYLTYPE loc = array_size->get_location();
1708
1709 /* FINISHME: Verify that the grammar forbids side-effects in array
1710 * FINISHME: sizes. i.e., 'vec4 [x = 12] data'
1711 */
1712 assert(dummy_instructions.is_empty());
1713
1714 if (ir != NULL) {
1715 if (!ir->type->is_integer()) {
1716 _mesa_glsl_error(& loc, state, "array size must be integer type");
1717 } else if (!ir->type->is_scalar()) {
1718 _mesa_glsl_error(& loc, state, "array size must be scalar type");
1719 } else {
1720 ir_constant *const size = ir->constant_expression_value();
1721
1722 if (size == NULL) {
1723 _mesa_glsl_error(& loc, state, "array size must be a "
1724 "constant valued expression");
1725 } else if (size->value.i[0] <= 0) {
1726 _mesa_glsl_error(& loc, state, "array size must be > 0");
1727 } else {
1728 assert(size->type == ir->type);
1729 length = size->value.u[0];
1730 }
1731 }
1732 }
1733 } else if (state->es_shader) {
1734 /* Section 10.17 of the GLSL ES 1.00 specification states that unsized
1735 * array declarations have been removed from the language.
1736 */
1737 _mesa_glsl_error(loc, state, "unsized array declarations are not "
1738 "allowed in GLSL ES 1.00.");
1739 }
1740
1741 return glsl_type::get_array_instance(base, length);
1742 }
1743
1744
1745 const glsl_type *
1746 ast_type_specifier::glsl_type(const char **name,
1747 struct _mesa_glsl_parse_state *state) const
1748 {
1749 const struct glsl_type *type;
1750
1751 type = state->symbols->get_type(this->type_name);
1752 *name = this->type_name;
1753
1754 if (this->is_array) {
1755 YYLTYPE loc = this->get_location();
1756 type = process_array_type(&loc, type, this->array_size, state);
1757 }
1758
1759 return type;
1760 }
1761
1762
1763 static void
1764 apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
1765 ir_variable *var,
1766 struct _mesa_glsl_parse_state *state,
1767 YYLTYPE *loc)
1768 {
1769 if (qual->flags.q.invariant)
1770 var->invariant = 1;
1771
1772 /* FINISHME: Mark 'in' variables at global scope as read-only. */
1773 if (qual->flags.q.constant || qual->flags.q.attribute
1774 || qual->flags.q.uniform
1775 || (qual->flags.q.varying && (state->target == fragment_shader)))
1776 var->read_only = 1;
1777
1778 if (qual->flags.q.centroid)
1779 var->centroid = 1;
1780
1781 if (qual->flags.q.attribute && state->target != vertex_shader) {
1782 var->type = glsl_type::error_type;
1783 _mesa_glsl_error(loc, state,
1784 "`attribute' variables may not be declared in the "
1785 "%s shader",
1786 _mesa_glsl_shader_target_name(state->target));
1787 }
1788
1789 /* From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
1790 *
1791 * "The varying qualifier can be used only with the data types
1792 * float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
1793 * these."
1794 */
1795 if (qual->flags.q.varying) {
1796 const glsl_type *non_array_type;
1797
1798 if (var->type && var->type->is_array())
1799 non_array_type = var->type->fields.array;
1800 else
1801 non_array_type = var->type;
1802
1803 if (non_array_type && non_array_type->base_type != GLSL_TYPE_FLOAT) {
1804 var->type = glsl_type::error_type;
1805 _mesa_glsl_error(loc, state,
1806 "varying variables must be of base type float");
1807 }
1808 }
1809
1810 /* If there is no qualifier that changes the mode of the variable, leave
1811 * the setting alone.
1812 */
1813 if (qual->flags.q.in && qual->flags.q.out)
1814 var->mode = ir_var_inout;
1815 else if (qual->flags.q.attribute || qual->flags.q.in
1816 || (qual->flags.q.varying && (state->target == fragment_shader)))
1817 var->mode = ir_var_in;
1818 else if (qual->flags.q.out
1819 || (qual->flags.q.varying && (state->target == vertex_shader)))
1820 var->mode = ir_var_out;
1821 else if (qual->flags.q.uniform)
1822 var->mode = ir_var_uniform;
1823
1824 if (qual->flags.q.flat)
1825 var->interpolation = ir_var_flat;
1826 else if (qual->flags.q.noperspective)
1827 var->interpolation = ir_var_noperspective;
1828 else
1829 var->interpolation = ir_var_smooth;
1830
1831 var->pixel_center_integer = qual->flags.q.pixel_center_integer;
1832 var->origin_upper_left = qual->flags.q.origin_upper_left;
1833 if ((qual->flags.q.origin_upper_left || qual->flags.q.pixel_center_integer)
1834 && (strcmp(var->name, "gl_FragCoord") != 0)) {
1835 const char *const qual_string = (qual->flags.q.origin_upper_left)
1836 ? "origin_upper_left" : "pixel_center_integer";
1837
1838 _mesa_glsl_error(loc, state,
1839 "layout qualifier `%s' can only be applied to "
1840 "fragment shader input `gl_FragCoord'",
1841 qual_string);
1842 }
1843
1844 if (qual->flags.q.explicit_location) {
1845 const bool global_scope = (state->current_function == NULL);
1846 bool fail = false;
1847 const char *string = "";
1848
1849 /* In the vertex shader only shader inputs can be given explicit
1850 * locations.
1851 *
1852 * In the fragment shader only shader outputs can be given explicit
1853 * locations.
1854 */
1855 switch (state->target) {
1856 case vertex_shader:
1857 if (!global_scope || (var->mode != ir_var_in)) {
1858 fail = true;
1859 string = "input";
1860 }
1861 break;
1862
1863 case geometry_shader:
1864 _mesa_glsl_error(loc, state,
1865 "geometry shader variables cannot be given "
1866 "explicit locations\n");
1867 break;
1868
1869 case fragment_shader:
1870 if (!global_scope || (var->mode != ir_var_in)) {
1871 fail = true;
1872 string = "output";
1873 }
1874 break;
1875 };
1876
1877 if (fail) {
1878 _mesa_glsl_error(loc, state,
1879 "only %s shader %s variables can be given an "
1880 "explicit location\n",
1881 _mesa_glsl_shader_target_name(state->target),
1882 string);
1883 } else {
1884 var->explicit_location = true;
1885
1886 /* This bit of silliness is needed because invalid explicit locations
1887 * are supposed to be flagged during linking. Small negative values
1888 * biased by VERT_ATTRIB_GENERIC0 or FRAG_RESULT_DATA0 could alias
1889 * built-in values (e.g., -16+VERT_ATTRIB_GENERIC0 = VERT_ATTRIB_POS).
1890 * The linker needs to be able to differentiate these cases. This
1891 * ensures that negative values stay negative.
1892 */
1893 if (qual->location >= 0) {
1894 var->location = (state->target == vertex_shader)
1895 ? (qual->location + VERT_ATTRIB_GENERIC0)
1896 : (qual->location + FRAG_RESULT_DATA0);
1897 } else {
1898 var->location = qual->location;
1899 }
1900 }
1901 }
1902
1903 if (var->type->is_array() && state->language_version != 110) {
1904 var->array_lvalue = true;
1905 }
1906 }
1907
1908
1909 ir_rvalue *
1910 ast_declarator_list::hir(exec_list *instructions,
1911 struct _mesa_glsl_parse_state *state)
1912 {
1913 void *ctx = state;
1914 const struct glsl_type *decl_type;
1915 const char *type_name = NULL;
1916 ir_rvalue *result = NULL;
1917 YYLTYPE loc = this->get_location();
1918
1919 /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec:
1920 *
1921 * "To ensure that a particular output variable is invariant, it is
1922 * necessary to use the invariant qualifier. It can either be used to
1923 * qualify a previously declared variable as being invariant
1924 *
1925 * invariant gl_Position; // make existing gl_Position be invariant"
1926 *
1927 * In these cases the parser will set the 'invariant' flag in the declarator
1928 * list, and the type will be NULL.
1929 */
1930 if (this->invariant) {
1931 assert(this->type == NULL);
1932
1933 if (state->current_function != NULL) {
1934 _mesa_glsl_error(& loc, state,
1935 "All uses of `invariant' keyword must be at global "
1936 "scope\n");
1937 }
1938
1939 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
1940 assert(!decl->is_array);
1941 assert(decl->array_size == NULL);
1942 assert(decl->initializer == NULL);
1943
1944 ir_variable *const earlier =
1945 state->symbols->get_variable(decl->identifier);
1946 if (earlier == NULL) {
1947 _mesa_glsl_error(& loc, state,
1948 "Undeclared variable `%s' cannot be marked "
1949 "invariant\n", decl->identifier);
1950 } else if ((state->target == vertex_shader)
1951 && (earlier->mode != ir_var_out)) {
1952 _mesa_glsl_error(& loc, state,
1953 "`%s' cannot be marked invariant, vertex shader "
1954 "outputs only\n", decl->identifier);
1955 } else if ((state->target == fragment_shader)
1956 && (earlier->mode != ir_var_in)) {
1957 _mesa_glsl_error(& loc, state,
1958 "`%s' cannot be marked invariant, fragment shader "
1959 "inputs only\n", decl->identifier);
1960 } else {
1961 earlier->invariant = true;
1962 }
1963 }
1964
1965 /* Invariant redeclarations do not have r-values.
1966 */
1967 return NULL;
1968 }
1969
1970 assert(this->type != NULL);
1971 assert(!this->invariant);
1972
1973 /* The type specifier may contain a structure definition. Process that
1974 * before any of the variable declarations.
1975 */
1976 (void) this->type->specifier->hir(instructions, state);
1977
1978 decl_type = this->type->specifier->glsl_type(& type_name, state);
1979 if (this->declarations.is_empty()) {
1980 /* The only valid case where the declaration list can be empty is when
1981 * the declaration is setting the default precision of a built-in type
1982 * (e.g., 'precision highp vec4;').
1983 */
1984
1985 if (decl_type != NULL) {
1986 } else {
1987 _mesa_glsl_error(& loc, state, "incomplete declaration");
1988 }
1989 }
1990
1991 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
1992 const struct glsl_type *var_type;
1993 ir_variable *var;
1994
1995 /* FINISHME: Emit a warning if a variable declaration shadows a
1996 * FINISHME: declaration at a higher scope.
1997 */
1998
1999 if ((decl_type == NULL) || decl_type->is_void()) {
2000 if (type_name != NULL) {
2001 _mesa_glsl_error(& loc, state,
2002 "invalid type `%s' in declaration of `%s'",
2003 type_name, decl->identifier);
2004 } else {
2005 _mesa_glsl_error(& loc, state,
2006 "invalid type in declaration of `%s'",
2007 decl->identifier);
2008 }
2009 continue;
2010 }
2011
2012 if (decl->is_array) {
2013 var_type = process_array_type(&loc, decl_type, decl->array_size,
2014 state);
2015 } else {
2016 var_type = decl_type;
2017 }
2018
2019 var = new(ctx) ir_variable(var_type, decl->identifier, ir_var_auto);
2020
2021 /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
2022 *
2023 * "Global variables can only use the qualifiers const,
2024 * attribute, uni form, or varying. Only one may be
2025 * specified.
2026 *
2027 * Local variables can only use the qualifier const."
2028 *
2029 * This is relaxed in GLSL 1.30.
2030 */
2031 if (state->language_version < 120) {
2032 if (this->type->qualifier.flags.q.out) {
2033 _mesa_glsl_error(& loc, state,
2034 "`out' qualifier in declaration of `%s' "
2035 "only valid for function parameters in GLSL 1.10.",
2036 decl->identifier);
2037 }
2038 if (this->type->qualifier.flags.q.in) {
2039 _mesa_glsl_error(& loc, state,
2040 "`in' qualifier in declaration of `%s' "
2041 "only valid for function parameters in GLSL 1.10.",
2042 decl->identifier);
2043 }
2044 /* FINISHME: Test for other invalid qualifiers. */
2045 }
2046
2047 apply_type_qualifier_to_variable(& this->type->qualifier, var, state,
2048 & loc);
2049
2050 if (this->type->qualifier.flags.q.invariant) {
2051 if ((state->target == vertex_shader) && !(var->mode == ir_var_out ||
2052 var->mode == ir_var_inout)) {
2053 /* FINISHME: Note that this doesn't work for invariant on
2054 * a function signature outval
2055 */
2056 _mesa_glsl_error(& loc, state,
2057 "`%s' cannot be marked invariant, vertex shader "
2058 "outputs only\n", var->name);
2059 } else if ((state->target == fragment_shader) &&
2060 !(var->mode == ir_var_in || var->mode == ir_var_inout)) {
2061 /* FINISHME: Note that this doesn't work for invariant on
2062 * a function signature inval
2063 */
2064 _mesa_glsl_error(& loc, state,
2065 "`%s' cannot be marked invariant, fragment shader "
2066 "inputs only\n", var->name);
2067 }
2068 }
2069
2070 if (state->current_function != NULL) {
2071 const char *mode = NULL;
2072 const char *extra = "";
2073
2074 /* There is no need to check for 'inout' here because the parser will
2075 * only allow that in function parameter lists.
2076 */
2077 if (this->type->qualifier.flags.q.attribute) {
2078 mode = "attribute";
2079 } else if (this->type->qualifier.flags.q.uniform) {
2080 mode = "uniform";
2081 } else if (this->type->qualifier.flags.q.varying) {
2082 mode = "varying";
2083 } else if (this->type->qualifier.flags.q.in) {
2084 mode = "in";
2085 extra = " or in function parameter list";
2086 } else if (this->type->qualifier.flags.q.out) {
2087 mode = "out";
2088 extra = " or in function parameter list";
2089 }
2090
2091 if (mode) {
2092 _mesa_glsl_error(& loc, state,
2093 "%s variable `%s' must be declared at "
2094 "global scope%s",
2095 mode, var->name, extra);
2096 }
2097 } else if (var->mode == ir_var_in) {
2098 if (state->target == vertex_shader) {
2099 bool error_emitted = false;
2100
2101 /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
2102 *
2103 * "Vertex shader inputs can only be float, floating-point
2104 * vectors, matrices, signed and unsigned integers and integer
2105 * vectors. Vertex shader inputs can also form arrays of these
2106 * types, but not structures."
2107 *
2108 * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
2109 *
2110 * "Vertex shader inputs can only be float, floating-point
2111 * vectors, matrices, signed and unsigned integers and integer
2112 * vectors. They cannot be arrays or structures."
2113 *
2114 * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
2115 *
2116 * "The attribute qualifier can be used only with float,
2117 * floating-point vectors, and matrices. Attribute variables
2118 * cannot be declared as arrays or structures."
2119 */
2120 const glsl_type *check_type = var->type->is_array()
2121 ? var->type->fields.array : var->type;
2122
2123 switch (check_type->base_type) {
2124 case GLSL_TYPE_FLOAT:
2125 break;
2126 case GLSL_TYPE_UINT:
2127 case GLSL_TYPE_INT:
2128 if (state->language_version > 120)
2129 break;
2130 /* FALLTHROUGH */
2131 default:
2132 _mesa_glsl_error(& loc, state,
2133 "vertex shader input / attribute cannot have "
2134 "type %s`%s'",
2135 var->type->is_array() ? "array of " : "",
2136 check_type->name);
2137 error_emitted = true;
2138 }
2139
2140 if (!error_emitted && (state->language_version <= 130)
2141 && var->type->is_array()) {
2142 _mesa_glsl_error(& loc, state,
2143 "vertex shader input / attribute cannot have "
2144 "array type");
2145 error_emitted = true;
2146 }
2147 }
2148 }
2149
2150 /* Process the initializer and add its instructions to a temporary
2151 * list. This list will be added to the instruction stream (below) after
2152 * the declaration is added. This is done because in some cases (such as
2153 * redeclarations) the declaration may not actually be added to the
2154 * instruction stream.
2155 */
2156 exec_list initializer_instructions;
2157 if (decl->initializer != NULL) {
2158 YYLTYPE initializer_loc = decl->initializer->get_location();
2159
2160 /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
2161 *
2162 * "All uniform variables are read-only and are initialized either
2163 * directly by an application via API commands, or indirectly by
2164 * OpenGL."
2165 */
2166 if ((state->language_version <= 110)
2167 && (var->mode == ir_var_uniform)) {
2168 _mesa_glsl_error(& initializer_loc, state,
2169 "cannot initialize uniforms in GLSL 1.10");
2170 }
2171
2172 if (var->type->is_sampler()) {
2173 _mesa_glsl_error(& initializer_loc, state,
2174 "cannot initialize samplers");
2175 }
2176
2177 if ((var->mode == ir_var_in) && (state->current_function == NULL)) {
2178 _mesa_glsl_error(& initializer_loc, state,
2179 "cannot initialize %s shader input / %s",
2180 _mesa_glsl_shader_target_name(state->target),
2181 (state->target == vertex_shader)
2182 ? "attribute" : "varying");
2183 }
2184
2185 ir_dereference *const lhs = new(ctx) ir_dereference_variable(var);
2186 ir_rvalue *rhs = decl->initializer->hir(&initializer_instructions,
2187 state);
2188
2189 /* Calculate the constant value if this is a const or uniform
2190 * declaration.
2191 */
2192 if (this->type->qualifier.flags.q.constant
2193 || this->type->qualifier.flags.q.uniform) {
2194 ir_rvalue *new_rhs = validate_assignment(state, var->type, rhs);
2195 if (new_rhs != NULL) {
2196 rhs = new_rhs;
2197
2198 ir_constant *constant_value = rhs->constant_expression_value();
2199 if (!constant_value) {
2200 _mesa_glsl_error(& initializer_loc, state,
2201 "initializer of %s variable `%s' must be a "
2202 "constant expression",
2203 (this->type->qualifier.flags.q.constant)
2204 ? "const" : "uniform",
2205 decl->identifier);
2206 if (var->type->is_numeric()) {
2207 /* Reduce cascading errors. */
2208 var->constant_value = ir_constant::zero(ctx, var->type);
2209 }
2210 } else {
2211 rhs = constant_value;
2212 var->constant_value = constant_value;
2213 }
2214 } else {
2215 _mesa_glsl_error(&initializer_loc, state,
2216 "initializer of type %s cannot be assigned to "
2217 "variable of type %s",
2218 rhs->type->name, var->type->name);
2219 if (var->type->is_numeric()) {
2220 /* Reduce cascading errors. */
2221 var->constant_value = ir_constant::zero(ctx, var->type);
2222 }
2223 }
2224 }
2225
2226 if (rhs && !rhs->type->is_error()) {
2227 bool temp = var->read_only;
2228 if (this->type->qualifier.flags.q.constant)
2229 var->read_only = false;
2230
2231 /* If the declared variable is an unsized array, it must inherrit
2232 * its full type from the initializer. A declaration such as
2233 *
2234 * uniform float a[] = float[](1.0, 2.0, 3.0, 3.0);
2235 *
2236 * becomes
2237 *
2238 * uniform float a[4] = float[](1.0, 2.0, 3.0, 3.0);
2239 *
2240 * The assignment generated in the if-statement (below) will also
2241 * automatically handle this case for non-uniforms.
2242 *
2243 * If the declared variable is not an array, the types must
2244 * already match exactly. As a result, the type assignment
2245 * here can be done unconditionally.
2246 */
2247 var->type = rhs->type;
2248
2249 /* Never emit code to initialize a uniform.
2250 */
2251 if (!this->type->qualifier.flags.q.uniform)
2252 result = do_assignment(&initializer_instructions, state,
2253 lhs, rhs,
2254 this->get_location());
2255 var->read_only = temp;
2256 }
2257 }
2258
2259 /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
2260 *
2261 * "It is an error to write to a const variable outside of
2262 * its declaration, so they must be initialized when
2263 * declared."
2264 */
2265 if (this->type->qualifier.flags.q.constant && decl->initializer == NULL) {
2266 _mesa_glsl_error(& loc, state,
2267 "const declaration of `%s' must be initialized");
2268 }
2269
2270 /* Check if this declaration is actually a re-declaration, either to
2271 * resize an array or add qualifiers to an existing variable.
2272 *
2273 * This is allowed for variables in the current scope, or when at
2274 * global scope (for built-ins in the implicit outer scope).
2275 */
2276 ir_variable *earlier = state->symbols->get_variable(decl->identifier);
2277 if (earlier != NULL && (state->current_function == NULL ||
2278 state->symbols->name_declared_this_scope(decl->identifier))) {
2279
2280 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
2281 *
2282 * "It is legal to declare an array without a size and then
2283 * later re-declare the same name as an array of the same
2284 * type and specify a size."
2285 */
2286 if ((earlier->type->array_size() == 0)
2287 && var->type->is_array()
2288 && (var->type->element_type() == earlier->type->element_type())) {
2289 /* FINISHME: This doesn't match the qualifiers on the two
2290 * FINISHME: declarations. It's not 100% clear whether this is
2291 * FINISHME: required or not.
2292 */
2293
2294 /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec:
2295 *
2296 * "The size [of gl_TexCoord] can be at most
2297 * gl_MaxTextureCoords."
2298 */
2299 const unsigned size = unsigned(var->type->array_size());
2300 if ((strcmp("gl_TexCoord", var->name) == 0)
2301 && (size > state->Const.MaxTextureCoords)) {
2302 YYLTYPE loc = this->get_location();
2303
2304 _mesa_glsl_error(& loc, state, "`gl_TexCoord' array size cannot "
2305 "be larger than gl_MaxTextureCoords (%u)\n",
2306 state->Const.MaxTextureCoords);
2307 } else if ((size > 0) && (size <= earlier->max_array_access)) {
2308 YYLTYPE loc = this->get_location();
2309
2310 _mesa_glsl_error(& loc, state, "array size must be > %u due to "
2311 "previous access",
2312 earlier->max_array_access);
2313 }
2314
2315 earlier->type = var->type;
2316 delete var;
2317 var = NULL;
2318 } else if (state->ARB_fragment_coord_conventions_enable
2319 && strcmp(var->name, "gl_FragCoord") == 0
2320 && earlier->type == var->type
2321 && earlier->mode == var->mode) {
2322 /* Allow redeclaration of gl_FragCoord for ARB_fcc layout
2323 * qualifiers.
2324 */
2325 earlier->origin_upper_left = var->origin_upper_left;
2326 earlier->pixel_center_integer = var->pixel_center_integer;
2327 } else {
2328 YYLTYPE loc = this->get_location();
2329 _mesa_glsl_error(&loc, state, "`%s' redeclared", decl->identifier);
2330 }
2331
2332 continue;
2333 }
2334
2335 /* By now, we know it's a new variable declaration (we didn't hit the
2336 * above "continue").
2337 *
2338 * From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
2339 *
2340 * "Identifiers starting with "gl_" are reserved for use by
2341 * OpenGL, and may not be declared in a shader as either a
2342 * variable or a function."
2343 */
2344 if (strncmp(decl->identifier, "gl_", 3) == 0)
2345 _mesa_glsl_error(& loc, state,
2346 "identifier `%s' uses reserved `gl_' prefix",
2347 decl->identifier);
2348
2349 /* Add the variable to the symbol table. Note that the initializer's
2350 * IR was already processed earlier (though it hasn't been emitted yet),
2351 * without the variable in scope.
2352 *
2353 * This differs from most C-like languages, but it follows the GLSL
2354 * specification. From page 28 (page 34 of the PDF) of the GLSL 1.50
2355 * spec:
2356 *
2357 * "Within a declaration, the scope of a name starts immediately
2358 * after the initializer if present or immediately after the name
2359 * being declared if not."
2360 */
2361 if (!state->symbols->add_variable(var)) {
2362 YYLTYPE loc = this->get_location();
2363 _mesa_glsl_error(&loc, state, "name `%s' already taken in the "
2364 "current scope", decl->identifier);
2365 continue;
2366 }
2367
2368 /* Push the variable declaration to the top. It means that all
2369 * the variable declarations will appear in a funny
2370 * last-to-first order, but otherwise we run into trouble if a
2371 * function is prototyped, a global var is decled, then the
2372 * function is defined with usage of the global var. See
2373 * glslparsertest's CorrectModule.frag.
2374 */
2375 instructions->push_head(var);
2376 instructions->append_list(&initializer_instructions);
2377 }
2378
2379
2380 /* Generally, variable declarations do not have r-values. However,
2381 * one is used for the declaration in
2382 *
2383 * while (bool b = some_condition()) {
2384 * ...
2385 * }
2386 *
2387 * so we return the rvalue from the last seen declaration here.
2388 */
2389 return result;
2390 }
2391
2392
2393 ir_rvalue *
2394 ast_parameter_declarator::hir(exec_list *instructions,
2395 struct _mesa_glsl_parse_state *state)
2396 {
2397 void *ctx = state;
2398 const struct glsl_type *type;
2399 const char *name = NULL;
2400 YYLTYPE loc = this->get_location();
2401
2402 type = this->type->specifier->glsl_type(& name, state);
2403
2404 if (type == NULL) {
2405 if (name != NULL) {
2406 _mesa_glsl_error(& loc, state,
2407 "invalid type `%s' in declaration of `%s'",
2408 name, this->identifier);
2409 } else {
2410 _mesa_glsl_error(& loc, state,
2411 "invalid type in declaration of `%s'",
2412 this->identifier);
2413 }
2414
2415 type = glsl_type::error_type;
2416 }
2417
2418 /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
2419 *
2420 * "Functions that accept no input arguments need not use void in the
2421 * argument list because prototypes (or definitions) are required and
2422 * therefore there is no ambiguity when an empty argument list "( )" is
2423 * declared. The idiom "(void)" as a parameter list is provided for
2424 * convenience."
2425 *
2426 * Placing this check here prevents a void parameter being set up
2427 * for a function, which avoids tripping up checks for main taking
2428 * parameters and lookups of an unnamed symbol.
2429 */
2430 if (type->is_void()) {
2431 if (this->identifier != NULL)
2432 _mesa_glsl_error(& loc, state,
2433 "named parameter cannot have type `void'");
2434
2435 is_void = true;
2436 return NULL;
2437 }
2438
2439 if (formal_parameter && (this->identifier == NULL)) {
2440 _mesa_glsl_error(& loc, state, "formal parameter lacks a name");
2441 return NULL;
2442 }
2443
2444 /* This only handles "vec4 foo[..]". The earlier specifier->glsl_type(...)
2445 * call already handled the "vec4[..] foo" case.
2446 */
2447 if (this->is_array) {
2448 type = process_array_type(&loc, type, this->array_size, state);
2449 }
2450
2451 if (type->array_size() == 0) {
2452 _mesa_glsl_error(&loc, state, "arrays passed as parameters must have "
2453 "a declared size.");
2454 type = glsl_type::error_type;
2455 }
2456
2457 is_void = false;
2458 ir_variable *var = new(ctx) ir_variable(type, this->identifier, ir_var_in);
2459
2460 /* Apply any specified qualifiers to the parameter declaration. Note that
2461 * for function parameters the default mode is 'in'.
2462 */
2463 apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc);
2464
2465 instructions->push_tail(var);
2466
2467 /* Parameter declarations do not have r-values.
2468 */
2469 return NULL;
2470 }
2471
2472
2473 void
2474 ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters,
2475 bool formal,
2476 exec_list *ir_parameters,
2477 _mesa_glsl_parse_state *state)
2478 {
2479 ast_parameter_declarator *void_param = NULL;
2480 unsigned count = 0;
2481
2482 foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) {
2483 param->formal_parameter = formal;
2484 param->hir(ir_parameters, state);
2485
2486 if (param->is_void)
2487 void_param = param;
2488
2489 count++;
2490 }
2491
2492 if ((void_param != NULL) && (count > 1)) {
2493 YYLTYPE loc = void_param->get_location();
2494
2495 _mesa_glsl_error(& loc, state,
2496 "`void' parameter must be only parameter");
2497 }
2498 }
2499
2500
2501 void
2502 emit_function(_mesa_glsl_parse_state *state, exec_list *instructions,
2503 ir_function *f)
2504 {
2505 /* Emit the new function header */
2506 if (state->current_function == NULL) {
2507 instructions->push_tail(f);
2508 } else {
2509 /* IR invariants disallow function declarations or definitions nested
2510 * within other function definitions. Insert the new ir_function
2511 * block in the instruction sequence before the ir_function block
2512 * containing the current ir_function_signature.
2513 */
2514 ir_function *const curr =
2515 const_cast<ir_function *>(state->current_function->function());
2516
2517 curr->insert_before(f);
2518 }
2519 }
2520
2521
2522 ir_rvalue *
2523 ast_function::hir(exec_list *instructions,
2524 struct _mesa_glsl_parse_state *state)
2525 {
2526 void *ctx = state;
2527 ir_function *f = NULL;
2528 ir_function_signature *sig = NULL;
2529 exec_list hir_parameters;
2530
2531 const char *const name = identifier;
2532
2533 /* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec,
2534 *
2535 * "Function declarations (prototypes) cannot occur inside of functions;
2536 * they must be at global scope, or for the built-in functions, outside
2537 * the global scope."
2538 *
2539 * From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec,
2540 *
2541 * "User defined functions may only be defined within the global scope."
2542 *
2543 * Note that this language does not appear in GLSL 1.10.
2544 */
2545 if ((state->current_function != NULL) && (state->language_version != 110)) {
2546 YYLTYPE loc = this->get_location();
2547 _mesa_glsl_error(&loc, state,
2548 "declaration of function `%s' not allowed within "
2549 "function body", name);
2550 }
2551
2552 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
2553 *
2554 * "Identifiers starting with "gl_" are reserved for use by
2555 * OpenGL, and may not be declared in a shader as either a
2556 * variable or a function."
2557 */
2558 if (strncmp(name, "gl_", 3) == 0) {
2559 YYLTYPE loc = this->get_location();
2560 _mesa_glsl_error(&loc, state,
2561 "identifier `%s' uses reserved `gl_' prefix", name);
2562 }
2563
2564 /* Convert the list of function parameters to HIR now so that they can be
2565 * used below to compare this function's signature with previously seen
2566 * signatures for functions with the same name.
2567 */
2568 ast_parameter_declarator::parameters_to_hir(& this->parameters,
2569 is_definition,
2570 & hir_parameters, state);
2571
2572 const char *return_type_name;
2573 const glsl_type *return_type =
2574 this->return_type->specifier->glsl_type(& return_type_name, state);
2575
2576 if (!return_type) {
2577 YYLTYPE loc = this->get_location();
2578 _mesa_glsl_error(&loc, state,
2579 "function `%s' has undeclared return type `%s'",
2580 name, return_type_name);
2581 return_type = glsl_type::error_type;
2582 }
2583
2584 /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec:
2585 * "No qualifier is allowed on the return type of a function."
2586 */
2587 if (this->return_type->has_qualifiers()) {
2588 YYLTYPE loc = this->get_location();
2589 _mesa_glsl_error(& loc, state,
2590 "function `%s' return type has qualifiers", name);
2591 }
2592
2593 /* Verify that this function's signature either doesn't match a previously
2594 * seen signature for a function with the same name, or, if a match is found,
2595 * that the previously seen signature does not have an associated definition.
2596 */
2597 f = state->symbols->get_function(name);
2598 if (f != NULL && (state->es_shader || f->has_user_signature())) {
2599 sig = f->exact_matching_signature(&hir_parameters);
2600 if (sig != NULL) {
2601 const char *badvar = sig->qualifiers_match(&hir_parameters);
2602 if (badvar != NULL) {
2603 YYLTYPE loc = this->get_location();
2604
2605 _mesa_glsl_error(&loc, state, "function `%s' parameter `%s' "
2606 "qualifiers don't match prototype", name, badvar);
2607 }
2608
2609 if (sig->return_type != return_type) {
2610 YYLTYPE loc = this->get_location();
2611
2612 _mesa_glsl_error(&loc, state, "function `%s' return type doesn't "
2613 "match prototype", name);
2614 }
2615
2616 if (is_definition && sig->is_defined) {
2617 YYLTYPE loc = this->get_location();
2618
2619 _mesa_glsl_error(& loc, state, "function `%s' redefined", name);
2620 }
2621 }
2622 } else {
2623 f = new(ctx) ir_function(name);
2624 if (!state->symbols->add_function(f)) {
2625 /* This function name shadows a non-function use of the same name. */
2626 YYLTYPE loc = this->get_location();
2627
2628 _mesa_glsl_error(&loc, state, "function name `%s' conflicts with "
2629 "non-function", name);
2630 return NULL;
2631 }
2632
2633 emit_function(state, instructions, f);
2634 }
2635
2636 /* Verify the return type of main() */
2637 if (strcmp(name, "main") == 0) {
2638 if (! return_type->is_void()) {
2639 YYLTYPE loc = this->get_location();
2640
2641 _mesa_glsl_error(& loc, state, "main() must return void");
2642 }
2643
2644 if (!hir_parameters.is_empty()) {
2645 YYLTYPE loc = this->get_location();
2646
2647 _mesa_glsl_error(& loc, state, "main() must not take any parameters");
2648 }
2649 }
2650
2651 /* Finish storing the information about this new function in its signature.
2652 */
2653 if (sig == NULL) {
2654 sig = new(ctx) ir_function_signature(return_type);
2655 f->add_signature(sig);
2656 }
2657
2658 sig->replace_parameters(&hir_parameters);
2659 signature = sig;
2660
2661 /* Function declarations (prototypes) do not have r-values.
2662 */
2663 return NULL;
2664 }
2665
2666
2667 ir_rvalue *
2668 ast_function_definition::hir(exec_list *instructions,
2669 struct _mesa_glsl_parse_state *state)
2670 {
2671 prototype->is_definition = true;
2672 prototype->hir(instructions, state);
2673
2674 ir_function_signature *signature = prototype->signature;
2675 if (signature == NULL)
2676 return NULL;
2677
2678 assert(state->current_function == NULL);
2679 state->current_function = signature;
2680 state->found_return = false;
2681
2682 /* Duplicate parameters declared in the prototype as concrete variables.
2683 * Add these to the symbol table.
2684 */
2685 state->symbols->push_scope();
2686 foreach_iter(exec_list_iterator, iter, signature->parameters) {
2687 ir_variable *const var = ((ir_instruction *) iter.get())->as_variable();
2688
2689 assert(var != NULL);
2690
2691 /* The only way a parameter would "exist" is if two parameters have
2692 * the same name.
2693 */
2694 if (state->symbols->name_declared_this_scope(var->name)) {
2695 YYLTYPE loc = this->get_location();
2696
2697 _mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name);
2698 } else {
2699 state->symbols->add_variable(var);
2700 }
2701 }
2702
2703 /* Convert the body of the function to HIR. */
2704 this->body->hir(&signature->body, state);
2705 signature->is_defined = true;
2706
2707 state->symbols->pop_scope();
2708
2709 assert(state->current_function == signature);
2710 state->current_function = NULL;
2711
2712 if (!signature->return_type->is_void() && !state->found_return) {
2713 YYLTYPE loc = this->get_location();
2714 _mesa_glsl_error(& loc, state, "function `%s' has non-void return type "
2715 "%s, but no return statement",
2716 signature->function_name(),
2717 signature->return_type->name);
2718 }
2719
2720 /* Function definitions do not have r-values.
2721 */
2722 return NULL;
2723 }
2724
2725
2726 ir_rvalue *
2727 ast_jump_statement::hir(exec_list *instructions,
2728 struct _mesa_glsl_parse_state *state)
2729 {
2730 void *ctx = state;
2731
2732 switch (mode) {
2733 case ast_return: {
2734 ir_return *inst;
2735 assert(state->current_function);
2736
2737 if (opt_return_value) {
2738 if (state->current_function->return_type->base_type ==
2739 GLSL_TYPE_VOID) {
2740 YYLTYPE loc = this->get_location();
2741
2742 _mesa_glsl_error(& loc, state,
2743 "`return` with a value, in function `%s' "
2744 "returning void",
2745 state->current_function->function_name());
2746 }
2747
2748 ir_rvalue *const ret = opt_return_value->hir(instructions, state);
2749 assert(ret != NULL);
2750
2751 /* Implicit conversions are not allowed for return values. */
2752 if (state->current_function->return_type != ret->type) {
2753 YYLTYPE loc = this->get_location();
2754
2755 _mesa_glsl_error(& loc, state,
2756 "`return' with wrong type %s, in function `%s' "
2757 "returning %s",
2758 ret->type->name,
2759 state->current_function->function_name(),
2760 state->current_function->return_type->name);
2761 }
2762
2763 inst = new(ctx) ir_return(ret);
2764 } else {
2765 if (state->current_function->return_type->base_type !=
2766 GLSL_TYPE_VOID) {
2767 YYLTYPE loc = this->get_location();
2768
2769 _mesa_glsl_error(& loc, state,
2770 "`return' with no value, in function %s returning "
2771 "non-void",
2772 state->current_function->function_name());
2773 }
2774 inst = new(ctx) ir_return;
2775 }
2776
2777 state->found_return = true;
2778 instructions->push_tail(inst);
2779 break;
2780 }
2781
2782 case ast_discard:
2783 if (state->target != fragment_shader) {
2784 YYLTYPE loc = this->get_location();
2785
2786 _mesa_glsl_error(& loc, state,
2787 "`discard' may only appear in a fragment shader");
2788 }
2789 instructions->push_tail(new(ctx) ir_discard);
2790 break;
2791
2792 case ast_break:
2793 case ast_continue:
2794 /* FINISHME: Handle switch-statements. They cannot contain 'continue',
2795 * FINISHME: and they use a different IR instruction for 'break'.
2796 */
2797 /* FINISHME: Correctly handle the nesting. If a switch-statement is
2798 * FINISHME: inside a loop, a 'continue' is valid and will bind to the
2799 * FINISHME: loop.
2800 */
2801 if (state->loop_or_switch_nesting == NULL) {
2802 YYLTYPE loc = this->get_location();
2803
2804 _mesa_glsl_error(& loc, state,
2805 "`%s' may only appear in a loop",
2806 (mode == ast_break) ? "break" : "continue");
2807 } else {
2808 ir_loop *const loop = state->loop_or_switch_nesting->as_loop();
2809
2810 /* Inline the for loop expression again, since we don't know
2811 * where near the end of the loop body the normal copy of it
2812 * is going to be placed.
2813 */
2814 if (mode == ast_continue &&
2815 state->loop_or_switch_nesting_ast->rest_expression) {
2816 state->loop_or_switch_nesting_ast->rest_expression->hir(instructions,
2817 state);
2818 }
2819
2820 if (loop != NULL) {
2821 ir_loop_jump *const jump =
2822 new(ctx) ir_loop_jump((mode == ast_break)
2823 ? ir_loop_jump::jump_break
2824 : ir_loop_jump::jump_continue);
2825 instructions->push_tail(jump);
2826 }
2827 }
2828
2829 break;
2830 }
2831
2832 /* Jump instructions do not have r-values.
2833 */
2834 return NULL;
2835 }
2836
2837
2838 ir_rvalue *
2839 ast_selection_statement::hir(exec_list *instructions,
2840 struct _mesa_glsl_parse_state *state)
2841 {
2842 void *ctx = state;
2843
2844 ir_rvalue *const condition = this->condition->hir(instructions, state);
2845
2846 /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
2847 *
2848 * "Any expression whose type evaluates to a Boolean can be used as the
2849 * conditional expression bool-expression. Vector types are not accepted
2850 * as the expression to if."
2851 *
2852 * The checks are separated so that higher quality diagnostics can be
2853 * generated for cases where both rules are violated.
2854 */
2855 if (!condition->type->is_boolean() || !condition->type->is_scalar()) {
2856 YYLTYPE loc = this->condition->get_location();
2857
2858 _mesa_glsl_error(& loc, state, "if-statement condition must be scalar "
2859 "boolean");
2860 }
2861
2862 ir_if *const stmt = new(ctx) ir_if(condition);
2863
2864 if (then_statement != NULL) {
2865 state->symbols->push_scope();
2866 then_statement->hir(& stmt->then_instructions, state);
2867 state->symbols->pop_scope();
2868 }
2869
2870 if (else_statement != NULL) {
2871 state->symbols->push_scope();
2872 else_statement->hir(& stmt->else_instructions, state);
2873 state->symbols->pop_scope();
2874 }
2875
2876 instructions->push_tail(stmt);
2877
2878 /* if-statements do not have r-values.
2879 */
2880 return NULL;
2881 }
2882
2883
2884 void
2885 ast_iteration_statement::condition_to_hir(ir_loop *stmt,
2886 struct _mesa_glsl_parse_state *state)
2887 {
2888 void *ctx = state;
2889
2890 if (condition != NULL) {
2891 ir_rvalue *const cond =
2892 condition->hir(& stmt->body_instructions, state);
2893
2894 if ((cond == NULL)
2895 || !cond->type->is_boolean() || !cond->type->is_scalar()) {
2896 YYLTYPE loc = condition->get_location();
2897
2898 _mesa_glsl_error(& loc, state,
2899 "loop condition must be scalar boolean");
2900 } else {
2901 /* As the first code in the loop body, generate a block that looks
2902 * like 'if (!condition) break;' as the loop termination condition.
2903 */
2904 ir_rvalue *const not_cond =
2905 new(ctx) ir_expression(ir_unop_logic_not, glsl_type::bool_type, cond,
2906 NULL);
2907
2908 ir_if *const if_stmt = new(ctx) ir_if(not_cond);
2909
2910 ir_jump *const break_stmt =
2911 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
2912
2913 if_stmt->then_instructions.push_tail(break_stmt);
2914 stmt->body_instructions.push_tail(if_stmt);
2915 }
2916 }
2917 }
2918
2919
2920 ir_rvalue *
2921 ast_iteration_statement::hir(exec_list *instructions,
2922 struct _mesa_glsl_parse_state *state)
2923 {
2924 void *ctx = state;
2925
2926 /* For-loops and while-loops start a new scope, but do-while loops do not.
2927 */
2928 if (mode != ast_do_while)
2929 state->symbols->push_scope();
2930
2931 if (init_statement != NULL)
2932 init_statement->hir(instructions, state);
2933
2934 ir_loop *const stmt = new(ctx) ir_loop();
2935 instructions->push_tail(stmt);
2936
2937 /* Track the current loop and / or switch-statement nesting.
2938 */
2939 ir_instruction *const nesting = state->loop_or_switch_nesting;
2940 ast_iteration_statement *nesting_ast = state->loop_or_switch_nesting_ast;
2941
2942 state->loop_or_switch_nesting = stmt;
2943 state->loop_or_switch_nesting_ast = this;
2944
2945 if (mode != ast_do_while)
2946 condition_to_hir(stmt, state);
2947
2948 if (body != NULL)
2949 body->hir(& stmt->body_instructions, state);
2950
2951 if (rest_expression != NULL)
2952 rest_expression->hir(& stmt->body_instructions, state);
2953
2954 if (mode == ast_do_while)
2955 condition_to_hir(stmt, state);
2956
2957 if (mode != ast_do_while)
2958 state->symbols->pop_scope();
2959
2960 /* Restore previous nesting before returning.
2961 */
2962 state->loop_or_switch_nesting = nesting;
2963 state->loop_or_switch_nesting_ast = nesting_ast;
2964
2965 /* Loops do not have r-values.
2966 */
2967 return NULL;
2968 }
2969
2970
2971 ir_rvalue *
2972 ast_type_specifier::hir(exec_list *instructions,
2973 struct _mesa_glsl_parse_state *state)
2974 {
2975 if (this->structure != NULL)
2976 return this->structure->hir(instructions, state);
2977
2978 return NULL;
2979 }
2980
2981
2982 ir_rvalue *
2983 ast_struct_specifier::hir(exec_list *instructions,
2984 struct _mesa_glsl_parse_state *state)
2985 {
2986 unsigned decl_count = 0;
2987
2988 /* Make an initial pass over the list of structure fields to determine how
2989 * many there are. Each element in this list is an ast_declarator_list.
2990 * This means that we actually need to count the number of elements in the
2991 * 'declarations' list in each of the elements.
2992 */
2993 foreach_list_typed (ast_declarator_list, decl_list, link,
2994 &this->declarations) {
2995 foreach_list_const (decl_ptr, & decl_list->declarations) {
2996 decl_count++;
2997 }
2998 }
2999
3000 /* Allocate storage for the structure fields and process the field
3001 * declarations. As the declarations are processed, try to also convert
3002 * the types to HIR. This ensures that structure definitions embedded in
3003 * other structure definitions are processed.
3004 */
3005 glsl_struct_field *const fields = talloc_array(state, glsl_struct_field,
3006 decl_count);
3007
3008 unsigned i = 0;
3009 foreach_list_typed (ast_declarator_list, decl_list, link,
3010 &this->declarations) {
3011 const char *type_name;
3012
3013 decl_list->type->specifier->hir(instructions, state);
3014
3015 /* Section 10.9 of the GLSL ES 1.00 specification states that
3016 * embedded structure definitions have been removed from the language.
3017 */
3018 if (state->es_shader && decl_list->type->specifier->structure != NULL) {
3019 YYLTYPE loc = this->get_location();
3020 _mesa_glsl_error(&loc, state, "Embedded structure definitions are "
3021 "not allowed in GLSL ES 1.00.");
3022 }
3023
3024 const glsl_type *decl_type =
3025 decl_list->type->specifier->glsl_type(& type_name, state);
3026
3027 foreach_list_typed (ast_declaration, decl, link,
3028 &decl_list->declarations) {
3029 const struct glsl_type *field_type = decl_type;
3030 if (decl->is_array) {
3031 YYLTYPE loc = decl->get_location();
3032 field_type = process_array_type(&loc, decl_type, decl->array_size,
3033 state);
3034 }
3035 fields[i].type = (field_type != NULL)
3036 ? field_type : glsl_type::error_type;
3037 fields[i].name = decl->identifier;
3038 i++;
3039 }
3040 }
3041
3042 assert(i == decl_count);
3043
3044 const glsl_type *t =
3045 glsl_type::get_record_instance(fields, decl_count, this->name);
3046
3047 YYLTYPE loc = this->get_location();
3048 if (!state->symbols->add_type(name, t)) {
3049 _mesa_glsl_error(& loc, state, "struct `%s' previously defined", name);
3050 } else {
3051
3052 const glsl_type **s = (const glsl_type **)
3053 realloc(state->user_structures,
3054 sizeof(state->user_structures[0]) *
3055 (state->num_user_structures + 1));
3056 if (s != NULL) {
3057 s[state->num_user_structures] = t;
3058 state->user_structures = s;
3059 state->num_user_structures++;
3060 }
3061 }
3062
3063 /* Structure type definitions do not have r-values.
3064 */
3065 return NULL;
3066 }