glsl ast_to_hir: support in/out for interface blocks
[mesa.git] / src / glsl / ast_to_hir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file ast_to_hir.c
26 * Convert abstract syntax to to high-level intermediate reprensentation (HIR).
27 *
28 * During the conversion to HIR, the majority of the symantic checking is
29 * preformed on the program. This includes:
30 *
31 * * Symbol table management
32 * * Type checking
33 * * Function binding
34 *
35 * The majority of this work could be done during parsing, and the parser could
36 * probably generate HIR directly. However, this results in frequent changes
37 * to the parser code. Since we do not assume that every system this complier
38 * is built on will have Flex and Bison installed, we have to store the code
39 * generated by these tools in our version control system. In other parts of
40 * the system we've seen problems where a parser was changed but the generated
41 * code was not committed, merge conflicts where created because two developers
42 * had slightly different versions of Bison installed, etc.
43 *
44 * I have also noticed that running Bison generated parsers in GDB is very
45 * irritating. When you get a segfault on '$$ = $1->foo', you can't very
46 * well 'print $1' in GDB.
47 *
48 * As a result, my preference is to put as little C code as possible in the
49 * parser (and lexer) sources.
50 */
51
52 #include "main/core.h" /* for struct gl_extensions */
53 #include "glsl_symbol_table.h"
54 #include "glsl_parser_extras.h"
55 #include "ast.h"
56 #include "glsl_types.h"
57 #include "program/hash_table.h"
58 #include "ir.h"
59
60 static void
61 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
62 exec_list *instructions);
63
64 void
65 _mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
66 {
67 _mesa_glsl_initialize_variables(instructions, state);
68
69 state->symbols->separate_function_namespace = state->language_version == 110;
70
71 state->current_function = NULL;
72
73 state->toplevel_ir = instructions;
74
75 /* Section 4.2 of the GLSL 1.20 specification states:
76 * "The built-in functions are scoped in a scope outside the global scope
77 * users declare global variables in. That is, a shader's global scope,
78 * available for user-defined functions and global variables, is nested
79 * inside the scope containing the built-in functions."
80 *
81 * Since built-in functions like ftransform() access built-in variables,
82 * it follows that those must be in the outer scope as well.
83 *
84 * We push scope here to create this nesting effect...but don't pop.
85 * This way, a shader's globals are still in the symbol table for use
86 * by the linker.
87 */
88 state->symbols->push_scope();
89
90 foreach_list_typed (ast_node, ast, link, & state->translation_unit)
91 ast->hir(instructions, state);
92
93 detect_recursion_unlinked(state, instructions);
94 detect_conflicting_assignments(state, instructions);
95
96 state->toplevel_ir = NULL;
97 }
98
99
100 /**
101 * If a conversion is available, convert one operand to a different type
102 *
103 * The \c from \c ir_rvalue is converted "in place".
104 *
105 * \param to Type that the operand it to be converted to
106 * \param from Operand that is being converted
107 * \param state GLSL compiler state
108 *
109 * \return
110 * If a conversion is possible (or unnecessary), \c true is returned.
111 * Otherwise \c false is returned.
112 */
113 bool
114 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
115 struct _mesa_glsl_parse_state *state)
116 {
117 void *ctx = state;
118 if (to->base_type == from->type->base_type)
119 return true;
120
121 /* This conversion was added in GLSL 1.20. If the compilation mode is
122 * GLSL 1.10, the conversion is skipped.
123 */
124 if (!state->is_version(120, 0))
125 return false;
126
127 /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
128 *
129 * "There are no implicit array or structure conversions. For
130 * example, an array of int cannot be implicitly converted to an
131 * array of float. There are no implicit conversions between
132 * signed and unsigned integers."
133 */
134 /* FINISHME: The above comment is partially a lie. There is int/uint
135 * FINISHME: conversion for immediate constants.
136 */
137 if (!to->is_float() || !from->type->is_numeric())
138 return false;
139
140 /* Convert to a floating point type with the same number of components
141 * as the original type - i.e. int to float, not int to vec4.
142 */
143 to = glsl_type::get_instance(GLSL_TYPE_FLOAT, from->type->vector_elements,
144 from->type->matrix_columns);
145
146 switch (from->type->base_type) {
147 case GLSL_TYPE_INT:
148 from = new(ctx) ir_expression(ir_unop_i2f, to, from, NULL);
149 break;
150 case GLSL_TYPE_UINT:
151 from = new(ctx) ir_expression(ir_unop_u2f, to, from, NULL);
152 break;
153 case GLSL_TYPE_BOOL:
154 from = new(ctx) ir_expression(ir_unop_b2f, to, from, NULL);
155 break;
156 default:
157 assert(0);
158 }
159
160 return true;
161 }
162
163
164 static const struct glsl_type *
165 arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
166 bool multiply,
167 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
168 {
169 const glsl_type *type_a = value_a->type;
170 const glsl_type *type_b = value_b->type;
171
172 /* From GLSL 1.50 spec, page 56:
173 *
174 * "The arithmetic binary operators add (+), subtract (-),
175 * multiply (*), and divide (/) operate on integer and
176 * floating-point scalars, vectors, and matrices."
177 */
178 if (!type_a->is_numeric() || !type_b->is_numeric()) {
179 _mesa_glsl_error(loc, state,
180 "Operands to arithmetic operators must be numeric");
181 return glsl_type::error_type;
182 }
183
184
185 /* "If one operand is floating-point based and the other is
186 * not, then the conversions from Section 4.1.10 "Implicit
187 * Conversions" are applied to the non-floating-point-based operand."
188 */
189 if (!apply_implicit_conversion(type_a, value_b, state)
190 && !apply_implicit_conversion(type_b, value_a, state)) {
191 _mesa_glsl_error(loc, state,
192 "Could not implicitly convert operands to "
193 "arithmetic operator");
194 return glsl_type::error_type;
195 }
196 type_a = value_a->type;
197 type_b = value_b->type;
198
199 /* "If the operands are integer types, they must both be signed or
200 * both be unsigned."
201 *
202 * From this rule and the preceeding conversion it can be inferred that
203 * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
204 * The is_numeric check above already filtered out the case where either
205 * type is not one of these, so now the base types need only be tested for
206 * equality.
207 */
208 if (type_a->base_type != type_b->base_type) {
209 _mesa_glsl_error(loc, state,
210 "base type mismatch for arithmetic operator");
211 return glsl_type::error_type;
212 }
213
214 /* "All arithmetic binary operators result in the same fundamental type
215 * (signed integer, unsigned integer, or floating-point) as the
216 * operands they operate on, after operand type conversion. After
217 * conversion, the following cases are valid
218 *
219 * * The two operands are scalars. In this case the operation is
220 * applied, resulting in a scalar."
221 */
222 if (type_a->is_scalar() && type_b->is_scalar())
223 return type_a;
224
225 /* "* One operand is a scalar, and the other is a vector or matrix.
226 * In this case, the scalar operation is applied independently to each
227 * component of the vector or matrix, resulting in the same size
228 * vector or matrix."
229 */
230 if (type_a->is_scalar()) {
231 if (!type_b->is_scalar())
232 return type_b;
233 } else if (type_b->is_scalar()) {
234 return type_a;
235 }
236
237 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
238 * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
239 * handled.
240 */
241 assert(!type_a->is_scalar());
242 assert(!type_b->is_scalar());
243
244 /* "* The two operands are vectors of the same size. In this case, the
245 * operation is done component-wise resulting in the same size
246 * vector."
247 */
248 if (type_a->is_vector() && type_b->is_vector()) {
249 if (type_a == type_b) {
250 return type_a;
251 } else {
252 _mesa_glsl_error(loc, state,
253 "vector size mismatch for arithmetic operator");
254 return glsl_type::error_type;
255 }
256 }
257
258 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
259 * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
260 * <vector, vector> have been handled. At least one of the operands must
261 * be matrix. Further, since there are no integer matrix types, the base
262 * type of both operands must be float.
263 */
264 assert(type_a->is_matrix() || type_b->is_matrix());
265 assert(type_a->base_type == GLSL_TYPE_FLOAT);
266 assert(type_b->base_type == GLSL_TYPE_FLOAT);
267
268 /* "* The operator is add (+), subtract (-), or divide (/), and the
269 * operands are matrices with the same number of rows and the same
270 * number of columns. In this case, the operation is done component-
271 * wise resulting in the same size matrix."
272 * * The operator is multiply (*), where both operands are matrices or
273 * one operand is a vector and the other a matrix. A right vector
274 * operand is treated as a column vector and a left vector operand as a
275 * row vector. In all these cases, it is required that the number of
276 * columns of the left operand is equal to the number of rows of the
277 * right operand. Then, the multiply (*) operation does a linear
278 * algebraic multiply, yielding an object that has the same number of
279 * rows as the left operand and the same number of columns as the right
280 * operand. Section 5.10 "Vector and Matrix Operations" explains in
281 * more detail how vectors and matrices are operated on."
282 */
283 if (! multiply) {
284 if (type_a == type_b)
285 return type_a;
286 } else {
287 if (type_a->is_matrix() && type_b->is_matrix()) {
288 /* Matrix multiply. The columns of A must match the rows of B. Given
289 * the other previously tested constraints, this means the vector type
290 * of a row from A must be the same as the vector type of a column from
291 * B.
292 */
293 if (type_a->row_type() == type_b->column_type()) {
294 /* The resulting matrix has the number of columns of matrix B and
295 * the number of rows of matrix A. We get the row count of A by
296 * looking at the size of a vector that makes up a column. The
297 * transpose (size of a row) is done for B.
298 */
299 const glsl_type *const type =
300 glsl_type::get_instance(type_a->base_type,
301 type_a->column_type()->vector_elements,
302 type_b->row_type()->vector_elements);
303 assert(type != glsl_type::error_type);
304
305 return type;
306 }
307 } else if (type_a->is_matrix()) {
308 /* A is a matrix and B is a column vector. Columns of A must match
309 * rows of B. Given the other previously tested constraints, this
310 * means the vector type of a row from A must be the same as the
311 * vector the type of B.
312 */
313 if (type_a->row_type() == type_b) {
314 /* The resulting vector has a number of elements equal to
315 * the number of rows of matrix A. */
316 const glsl_type *const type =
317 glsl_type::get_instance(type_a->base_type,
318 type_a->column_type()->vector_elements,
319 1);
320 assert(type != glsl_type::error_type);
321
322 return type;
323 }
324 } else {
325 assert(type_b->is_matrix());
326
327 /* A is a row vector and B is a matrix. Columns of A must match rows
328 * of B. Given the other previously tested constraints, this means
329 * the type of A must be the same as the vector type of a column from
330 * B.
331 */
332 if (type_a == type_b->column_type()) {
333 /* The resulting vector has a number of elements equal to
334 * the number of columns of matrix B. */
335 const glsl_type *const type =
336 glsl_type::get_instance(type_a->base_type,
337 type_b->row_type()->vector_elements,
338 1);
339 assert(type != glsl_type::error_type);
340
341 return type;
342 }
343 }
344
345 _mesa_glsl_error(loc, state, "size mismatch for matrix multiplication");
346 return glsl_type::error_type;
347 }
348
349
350 /* "All other cases are illegal."
351 */
352 _mesa_glsl_error(loc, state, "type mismatch");
353 return glsl_type::error_type;
354 }
355
356
357 static const struct glsl_type *
358 unary_arithmetic_result_type(const struct glsl_type *type,
359 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
360 {
361 /* From GLSL 1.50 spec, page 57:
362 *
363 * "The arithmetic unary operators negate (-), post- and pre-increment
364 * and decrement (-- and ++) operate on integer or floating-point
365 * values (including vectors and matrices). All unary operators work
366 * component-wise on their operands. These result with the same type
367 * they operated on."
368 */
369 if (!type->is_numeric()) {
370 _mesa_glsl_error(loc, state,
371 "Operands to arithmetic operators must be numeric");
372 return glsl_type::error_type;
373 }
374
375 return type;
376 }
377
378 /**
379 * \brief Return the result type of a bit-logic operation.
380 *
381 * If the given types to the bit-logic operator are invalid, return
382 * glsl_type::error_type.
383 *
384 * \param type_a Type of LHS of bit-logic op
385 * \param type_b Type of RHS of bit-logic op
386 */
387 static const struct glsl_type *
388 bit_logic_result_type(const struct glsl_type *type_a,
389 const struct glsl_type *type_b,
390 ast_operators op,
391 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
392 {
393 if (!state->check_bitwise_operations_allowed(loc)) {
394 return glsl_type::error_type;
395 }
396
397 /* From page 50 (page 56 of PDF) of GLSL 1.30 spec:
398 *
399 * "The bitwise operators and (&), exclusive-or (^), and inclusive-or
400 * (|). The operands must be of type signed or unsigned integers or
401 * integer vectors."
402 */
403 if (!type_a->is_integer()) {
404 _mesa_glsl_error(loc, state, "LHS of `%s' must be an integer",
405 ast_expression::operator_string(op));
406 return glsl_type::error_type;
407 }
408 if (!type_b->is_integer()) {
409 _mesa_glsl_error(loc, state, "RHS of `%s' must be an integer",
410 ast_expression::operator_string(op));
411 return glsl_type::error_type;
412 }
413
414 /* "The fundamental types of the operands (signed or unsigned) must
415 * match,"
416 */
417 if (type_a->base_type != type_b->base_type) {
418 _mesa_glsl_error(loc, state, "operands of `%s' must have the same "
419 "base type", ast_expression::operator_string(op));
420 return glsl_type::error_type;
421 }
422
423 /* "The operands cannot be vectors of differing size." */
424 if (type_a->is_vector() &&
425 type_b->is_vector() &&
426 type_a->vector_elements != type_b->vector_elements) {
427 _mesa_glsl_error(loc, state, "operands of `%s' cannot be vectors of "
428 "different sizes", ast_expression::operator_string(op));
429 return glsl_type::error_type;
430 }
431
432 /* "If one operand is a scalar and the other a vector, the scalar is
433 * applied component-wise to the vector, resulting in the same type as
434 * the vector. The fundamental types of the operands [...] will be the
435 * resulting fundamental type."
436 */
437 if (type_a->is_scalar())
438 return type_b;
439 else
440 return type_a;
441 }
442
443 static const struct glsl_type *
444 modulus_result_type(const struct glsl_type *type_a,
445 const struct glsl_type *type_b,
446 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
447 {
448 if (!state->check_version(130, 300, loc, "operator '%%' is reserved")) {
449 return glsl_type::error_type;
450 }
451
452 /* From GLSL 1.50 spec, page 56:
453 * "The operator modulus (%) operates on signed or unsigned integers or
454 * integer vectors. The operand types must both be signed or both be
455 * unsigned."
456 */
457 if (!type_a->is_integer()) {
458 _mesa_glsl_error(loc, state, "LHS of operator %% must be an integer.");
459 return glsl_type::error_type;
460 }
461 if (!type_b->is_integer()) {
462 _mesa_glsl_error(loc, state, "RHS of operator %% must be an integer.");
463 return glsl_type::error_type;
464 }
465 if (type_a->base_type != type_b->base_type) {
466 _mesa_glsl_error(loc, state,
467 "operands of %% must have the same base type");
468 return glsl_type::error_type;
469 }
470
471 /* "The operands cannot be vectors of differing size. If one operand is
472 * a scalar and the other vector, then the scalar is applied component-
473 * wise to the vector, resulting in the same type as the vector. If both
474 * are vectors of the same size, the result is computed component-wise."
475 */
476 if (type_a->is_vector()) {
477 if (!type_b->is_vector()
478 || (type_a->vector_elements == type_b->vector_elements))
479 return type_a;
480 } else
481 return type_b;
482
483 /* "The operator modulus (%) is not defined for any other data types
484 * (non-integer types)."
485 */
486 _mesa_glsl_error(loc, state, "type mismatch");
487 return glsl_type::error_type;
488 }
489
490
491 static const struct glsl_type *
492 relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
493 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
494 {
495 const glsl_type *type_a = value_a->type;
496 const glsl_type *type_b = value_b->type;
497
498 /* From GLSL 1.50 spec, page 56:
499 * "The relational operators greater than (>), less than (<), greater
500 * than or equal (>=), and less than or equal (<=) operate only on
501 * scalar integer and scalar floating-point expressions."
502 */
503 if (!type_a->is_numeric()
504 || !type_b->is_numeric()
505 || !type_a->is_scalar()
506 || !type_b->is_scalar()) {
507 _mesa_glsl_error(loc, state,
508 "Operands to relational operators must be scalar and "
509 "numeric");
510 return glsl_type::error_type;
511 }
512
513 /* "Either the operands' types must match, or the conversions from
514 * Section 4.1.10 "Implicit Conversions" will be applied to the integer
515 * operand, after which the types must match."
516 */
517 if (!apply_implicit_conversion(type_a, value_b, state)
518 && !apply_implicit_conversion(type_b, value_a, state)) {
519 _mesa_glsl_error(loc, state,
520 "Could not implicitly convert operands to "
521 "relational operator");
522 return glsl_type::error_type;
523 }
524 type_a = value_a->type;
525 type_b = value_b->type;
526
527 if (type_a->base_type != type_b->base_type) {
528 _mesa_glsl_error(loc, state, "base type mismatch");
529 return glsl_type::error_type;
530 }
531
532 /* "The result is scalar Boolean."
533 */
534 return glsl_type::bool_type;
535 }
536
537 /**
538 * \brief Return the result type of a bit-shift operation.
539 *
540 * If the given types to the bit-shift operator are invalid, return
541 * glsl_type::error_type.
542 *
543 * \param type_a Type of LHS of bit-shift op
544 * \param type_b Type of RHS of bit-shift op
545 */
546 static const struct glsl_type *
547 shift_result_type(const struct glsl_type *type_a,
548 const struct glsl_type *type_b,
549 ast_operators op,
550 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
551 {
552 if (!state->check_bitwise_operations_allowed(loc)) {
553 return glsl_type::error_type;
554 }
555
556 /* From page 50 (page 56 of the PDF) of the GLSL 1.30 spec:
557 *
558 * "The shift operators (<<) and (>>). For both operators, the operands
559 * must be signed or unsigned integers or integer vectors. One operand
560 * can be signed while the other is unsigned."
561 */
562 if (!type_a->is_integer()) {
563 _mesa_glsl_error(loc, state, "LHS of operator %s must be an integer or "
564 "integer vector", ast_expression::operator_string(op));
565 return glsl_type::error_type;
566
567 }
568 if (!type_b->is_integer()) {
569 _mesa_glsl_error(loc, state, "RHS of operator %s must be an integer or "
570 "integer vector", ast_expression::operator_string(op));
571 return glsl_type::error_type;
572 }
573
574 /* "If the first operand is a scalar, the second operand has to be
575 * a scalar as well."
576 */
577 if (type_a->is_scalar() && !type_b->is_scalar()) {
578 _mesa_glsl_error(loc, state, "If the first operand of %s is scalar, the "
579 "second must be scalar as well",
580 ast_expression::operator_string(op));
581 return glsl_type::error_type;
582 }
583
584 /* If both operands are vectors, check that they have same number of
585 * elements.
586 */
587 if (type_a->is_vector() &&
588 type_b->is_vector() &&
589 type_a->vector_elements != type_b->vector_elements) {
590 _mesa_glsl_error(loc, state, "Vector operands to operator %s must "
591 "have same number of elements",
592 ast_expression::operator_string(op));
593 return glsl_type::error_type;
594 }
595
596 /* "In all cases, the resulting type will be the same type as the left
597 * operand."
598 */
599 return type_a;
600 }
601
602 /**
603 * Validates that a value can be assigned to a location with a specified type
604 *
605 * Validates that \c rhs can be assigned to some location. If the types are
606 * not an exact match but an automatic conversion is possible, \c rhs will be
607 * converted.
608 *
609 * \return
610 * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
611 * Otherwise the actual RHS to be assigned will be returned. This may be
612 * \c rhs, or it may be \c rhs after some type conversion.
613 *
614 * \note
615 * In addition to being used for assignments, this function is used to
616 * type-check return values.
617 */
618 ir_rvalue *
619 validate_assignment(struct _mesa_glsl_parse_state *state,
620 const glsl_type *lhs_type, ir_rvalue *rhs,
621 bool is_initializer)
622 {
623 /* If there is already some error in the RHS, just return it. Anything
624 * else will lead to an avalanche of error message back to the user.
625 */
626 if (rhs->type->is_error())
627 return rhs;
628
629 /* If the types are identical, the assignment can trivially proceed.
630 */
631 if (rhs->type == lhs_type)
632 return rhs;
633
634 /* If the array element types are the same and the size of the LHS is zero,
635 * the assignment is okay for initializers embedded in variable
636 * declarations.
637 *
638 * Note: Whole-array assignments are not permitted in GLSL 1.10, but this
639 * is handled by ir_dereference::is_lvalue.
640 */
641 if (is_initializer && lhs_type->is_array() && rhs->type->is_array()
642 && (lhs_type->element_type() == rhs->type->element_type())
643 && (lhs_type->array_size() == 0)) {
644 return rhs;
645 }
646
647 /* Check for implicit conversion in GLSL 1.20 */
648 if (apply_implicit_conversion(lhs_type, rhs, state)) {
649 if (rhs->type == lhs_type)
650 return rhs;
651 }
652
653 return NULL;
654 }
655
656 static void
657 mark_whole_array_access(ir_rvalue *access)
658 {
659 ir_dereference_variable *deref = access->as_dereference_variable();
660
661 if (deref && deref->var) {
662 deref->var->max_array_access = deref->type->length - 1;
663 }
664 }
665
666 ir_rvalue *
667 do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state,
668 const char *non_lvalue_description,
669 ir_rvalue *lhs, ir_rvalue *rhs, bool is_initializer,
670 YYLTYPE lhs_loc)
671 {
672 void *ctx = state;
673 bool error_emitted = (lhs->type->is_error() || rhs->type->is_error());
674
675 /* If the assignment LHS comes back as an ir_binop_vector_extract
676 * expression, move it to the RHS as an ir_triop_vector_insert.
677 */
678 if (lhs->ir_type == ir_type_expression) {
679 ir_expression *const expr = lhs->as_expression();
680
681 if (unlikely(expr->operation == ir_binop_vector_extract)) {
682 ir_rvalue *new_rhs =
683 validate_assignment(state, lhs->type, rhs, is_initializer);
684
685 if (new_rhs == NULL) {
686 _mesa_glsl_error(& lhs_loc, state, "type mismatch");
687 return lhs;
688 } else {
689 rhs = new(ctx) ir_expression(ir_triop_vector_insert,
690 expr->operands[0]->type,
691 expr->operands[0],
692 new_rhs,
693 expr->operands[1]);
694 lhs = expr->operands[0]->clone(ctx, NULL);
695 }
696 }
697 }
698
699 ir_variable *lhs_var = lhs->variable_referenced();
700 if (lhs_var)
701 lhs_var->assigned = true;
702
703 if (!error_emitted) {
704 if (non_lvalue_description != NULL) {
705 _mesa_glsl_error(&lhs_loc, state,
706 "assignment to %s",
707 non_lvalue_description);
708 error_emitted = true;
709 } else if (lhs->variable_referenced() != NULL
710 && lhs->variable_referenced()->read_only) {
711 _mesa_glsl_error(&lhs_loc, state,
712 "assignment to read-only variable '%s'",
713 lhs->variable_referenced()->name);
714 error_emitted = true;
715
716 } else if (lhs->type->is_array() &&
717 !state->check_version(120, 300, &lhs_loc,
718 "whole array assignment forbidden")) {
719 /* From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
720 *
721 * "Other binary or unary expressions, non-dereferenced
722 * arrays, function names, swizzles with repeated fields,
723 * and constants cannot be l-values."
724 *
725 * The restriction on arrays is lifted in GLSL 1.20 and GLSL ES 3.00.
726 */
727 error_emitted = true;
728 } else if (!lhs->is_lvalue()) {
729 _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment");
730 error_emitted = true;
731 }
732 }
733
734 ir_rvalue *new_rhs =
735 validate_assignment(state, lhs->type, rhs, is_initializer);
736 if (new_rhs == NULL) {
737 _mesa_glsl_error(& lhs_loc, state, "type mismatch");
738 } else {
739 rhs = new_rhs;
740
741 /* If the LHS array was not declared with a size, it takes it size from
742 * the RHS. If the LHS is an l-value and a whole array, it must be a
743 * dereference of a variable. Any other case would require that the LHS
744 * is either not an l-value or not a whole array.
745 */
746 if (lhs->type->array_size() == 0) {
747 ir_dereference *const d = lhs->as_dereference();
748
749 assert(d != NULL);
750
751 ir_variable *const var = d->variable_referenced();
752
753 assert(var != NULL);
754
755 if (var->max_array_access >= unsigned(rhs->type->array_size())) {
756 /* FINISHME: This should actually log the location of the RHS. */
757 _mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to "
758 "previous access",
759 var->max_array_access);
760 }
761
762 var->type = glsl_type::get_array_instance(lhs->type->element_type(),
763 rhs->type->array_size());
764 d->type = var->type;
765 }
766 mark_whole_array_access(rhs);
767 mark_whole_array_access(lhs);
768 }
769
770 /* Most callers of do_assignment (assign, add_assign, pre_inc/dec,
771 * but not post_inc) need the converted assigned value as an rvalue
772 * to handle things like:
773 *
774 * i = j += 1;
775 *
776 * So we always just store the computed value being assigned to a
777 * temporary and return a deref of that temporary. If the rvalue
778 * ends up not being used, the temp will get copy-propagated out.
779 */
780 ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp",
781 ir_var_temporary);
782 ir_dereference_variable *deref_var = new(ctx) ir_dereference_variable(var);
783 instructions->push_tail(var);
784 instructions->push_tail(new(ctx) ir_assignment(deref_var, rhs));
785 deref_var = new(ctx) ir_dereference_variable(var);
786
787 if (!error_emitted)
788 instructions->push_tail(new(ctx) ir_assignment(lhs, deref_var));
789
790 return new(ctx) ir_dereference_variable(var);
791 }
792
793 static ir_rvalue *
794 get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue)
795 {
796 void *ctx = ralloc_parent(lvalue);
797 ir_variable *var;
798
799 var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp",
800 ir_var_temporary);
801 instructions->push_tail(var);
802 var->mode = ir_var_auto;
803
804 instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
805 lvalue));
806
807 return new(ctx) ir_dereference_variable(var);
808 }
809
810
811 ir_rvalue *
812 ast_node::hir(exec_list *instructions,
813 struct _mesa_glsl_parse_state *state)
814 {
815 (void) instructions;
816 (void) state;
817
818 return NULL;
819 }
820
821 static ir_rvalue *
822 do_comparison(void *mem_ctx, int operation, ir_rvalue *op0, ir_rvalue *op1)
823 {
824 int join_op;
825 ir_rvalue *cmp = NULL;
826
827 if (operation == ir_binop_all_equal)
828 join_op = ir_binop_logic_and;
829 else
830 join_op = ir_binop_logic_or;
831
832 switch (op0->type->base_type) {
833 case GLSL_TYPE_FLOAT:
834 case GLSL_TYPE_UINT:
835 case GLSL_TYPE_INT:
836 case GLSL_TYPE_BOOL:
837 return new(mem_ctx) ir_expression(operation, op0, op1);
838
839 case GLSL_TYPE_ARRAY: {
840 for (unsigned int i = 0; i < op0->type->length; i++) {
841 ir_rvalue *e0, *e1, *result;
842
843 e0 = new(mem_ctx) ir_dereference_array(op0->clone(mem_ctx, NULL),
844 new(mem_ctx) ir_constant(i));
845 e1 = new(mem_ctx) ir_dereference_array(op1->clone(mem_ctx, NULL),
846 new(mem_ctx) ir_constant(i));
847 result = do_comparison(mem_ctx, operation, e0, e1);
848
849 if (cmp) {
850 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
851 } else {
852 cmp = result;
853 }
854 }
855
856 mark_whole_array_access(op0);
857 mark_whole_array_access(op1);
858 break;
859 }
860
861 case GLSL_TYPE_STRUCT: {
862 for (unsigned int i = 0; i < op0->type->length; i++) {
863 ir_rvalue *e0, *e1, *result;
864 const char *field_name = op0->type->fields.structure[i].name;
865
866 e0 = new(mem_ctx) ir_dereference_record(op0->clone(mem_ctx, NULL),
867 field_name);
868 e1 = new(mem_ctx) ir_dereference_record(op1->clone(mem_ctx, NULL),
869 field_name);
870 result = do_comparison(mem_ctx, operation, e0, e1);
871
872 if (cmp) {
873 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
874 } else {
875 cmp = result;
876 }
877 }
878 break;
879 }
880
881 case GLSL_TYPE_ERROR:
882 case GLSL_TYPE_VOID:
883 case GLSL_TYPE_SAMPLER:
884 case GLSL_TYPE_INTERFACE:
885 /* I assume a comparison of a struct containing a sampler just
886 * ignores the sampler present in the type.
887 */
888 break;
889 }
890
891 if (cmp == NULL)
892 cmp = new(mem_ctx) ir_constant(true);
893
894 return cmp;
895 }
896
897 /* For logical operations, we want to ensure that the operands are
898 * scalar booleans. If it isn't, emit an error and return a constant
899 * boolean to avoid triggering cascading error messages.
900 */
901 ir_rvalue *
902 get_scalar_boolean_operand(exec_list *instructions,
903 struct _mesa_glsl_parse_state *state,
904 ast_expression *parent_expr,
905 int operand,
906 const char *operand_name,
907 bool *error_emitted)
908 {
909 ast_expression *expr = parent_expr->subexpressions[operand];
910 void *ctx = state;
911 ir_rvalue *val = expr->hir(instructions, state);
912
913 if (val->type->is_boolean() && val->type->is_scalar())
914 return val;
915
916 if (!*error_emitted) {
917 YYLTYPE loc = expr->get_location();
918 _mesa_glsl_error(&loc, state, "%s of `%s' must be scalar boolean",
919 operand_name,
920 parent_expr->operator_string(parent_expr->oper));
921 *error_emitted = true;
922 }
923
924 return new(ctx) ir_constant(true);
925 }
926
927 /**
928 * If name refers to a builtin array whose maximum allowed size is less than
929 * size, report an error and return true. Otherwise return false.
930 */
931 void
932 check_builtin_array_max_size(const char *name, unsigned size,
933 YYLTYPE loc, struct _mesa_glsl_parse_state *state)
934 {
935 if ((strcmp("gl_TexCoord", name) == 0)
936 && (size > state->Const.MaxTextureCoords)) {
937 /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec:
938 *
939 * "The size [of gl_TexCoord] can be at most
940 * gl_MaxTextureCoords."
941 */
942 _mesa_glsl_error(&loc, state, "`gl_TexCoord' array size cannot "
943 "be larger than gl_MaxTextureCoords (%u)\n",
944 state->Const.MaxTextureCoords);
945 } else if (strcmp("gl_ClipDistance", name) == 0
946 && size > state->Const.MaxClipPlanes) {
947 /* From section 7.1 (Vertex Shader Special Variables) of the
948 * GLSL 1.30 spec:
949 *
950 * "The gl_ClipDistance array is predeclared as unsized and
951 * must be sized by the shader either redeclaring it with a
952 * size or indexing it only with integral constant
953 * expressions. ... The size can be at most
954 * gl_MaxClipDistances."
955 */
956 _mesa_glsl_error(&loc, state, "`gl_ClipDistance' array size cannot "
957 "be larger than gl_MaxClipDistances (%u)\n",
958 state->Const.MaxClipPlanes);
959 }
960 }
961
962 /**
963 * Create the constant 1, of a which is appropriate for incrementing and
964 * decrementing values of the given GLSL type. For example, if type is vec4,
965 * this creates a constant value of 1.0 having type float.
966 *
967 * If the given type is invalid for increment and decrement operators, return
968 * a floating point 1--the error will be detected later.
969 */
970 static ir_rvalue *
971 constant_one_for_inc_dec(void *ctx, const glsl_type *type)
972 {
973 switch (type->base_type) {
974 case GLSL_TYPE_UINT:
975 return new(ctx) ir_constant((unsigned) 1);
976 case GLSL_TYPE_INT:
977 return new(ctx) ir_constant(1);
978 default:
979 case GLSL_TYPE_FLOAT:
980 return new(ctx) ir_constant(1.0f);
981 }
982 }
983
984 ir_rvalue *
985 ast_expression::hir(exec_list *instructions,
986 struct _mesa_glsl_parse_state *state)
987 {
988 void *ctx = state;
989 static const int operations[AST_NUM_OPERATORS] = {
990 -1, /* ast_assign doesn't convert to ir_expression. */
991 -1, /* ast_plus doesn't convert to ir_expression. */
992 ir_unop_neg,
993 ir_binop_add,
994 ir_binop_sub,
995 ir_binop_mul,
996 ir_binop_div,
997 ir_binop_mod,
998 ir_binop_lshift,
999 ir_binop_rshift,
1000 ir_binop_less,
1001 ir_binop_greater,
1002 ir_binop_lequal,
1003 ir_binop_gequal,
1004 ir_binop_all_equal,
1005 ir_binop_any_nequal,
1006 ir_binop_bit_and,
1007 ir_binop_bit_xor,
1008 ir_binop_bit_or,
1009 ir_unop_bit_not,
1010 ir_binop_logic_and,
1011 ir_binop_logic_xor,
1012 ir_binop_logic_or,
1013 ir_unop_logic_not,
1014
1015 /* Note: The following block of expression types actually convert
1016 * to multiple IR instructions.
1017 */
1018 ir_binop_mul, /* ast_mul_assign */
1019 ir_binop_div, /* ast_div_assign */
1020 ir_binop_mod, /* ast_mod_assign */
1021 ir_binop_add, /* ast_add_assign */
1022 ir_binop_sub, /* ast_sub_assign */
1023 ir_binop_lshift, /* ast_ls_assign */
1024 ir_binop_rshift, /* ast_rs_assign */
1025 ir_binop_bit_and, /* ast_and_assign */
1026 ir_binop_bit_xor, /* ast_xor_assign */
1027 ir_binop_bit_or, /* ast_or_assign */
1028
1029 -1, /* ast_conditional doesn't convert to ir_expression. */
1030 ir_binop_add, /* ast_pre_inc. */
1031 ir_binop_sub, /* ast_pre_dec. */
1032 ir_binop_add, /* ast_post_inc. */
1033 ir_binop_sub, /* ast_post_dec. */
1034 -1, /* ast_field_selection doesn't conv to ir_expression. */
1035 -1, /* ast_array_index doesn't convert to ir_expression. */
1036 -1, /* ast_function_call doesn't conv to ir_expression. */
1037 -1, /* ast_identifier doesn't convert to ir_expression. */
1038 -1, /* ast_int_constant doesn't convert to ir_expression. */
1039 -1, /* ast_uint_constant doesn't conv to ir_expression. */
1040 -1, /* ast_float_constant doesn't conv to ir_expression. */
1041 -1, /* ast_bool_constant doesn't conv to ir_expression. */
1042 -1, /* ast_sequence doesn't convert to ir_expression. */
1043 };
1044 ir_rvalue *result = NULL;
1045 ir_rvalue *op[3];
1046 const struct glsl_type *type; /* a temporary variable for switch cases */
1047 bool error_emitted = false;
1048 YYLTYPE loc;
1049
1050 loc = this->get_location();
1051
1052 switch (this->oper) {
1053 case ast_assign: {
1054 op[0] = this->subexpressions[0]->hir(instructions, state);
1055 op[1] = this->subexpressions[1]->hir(instructions, state);
1056
1057 result = do_assignment(instructions, state,
1058 this->subexpressions[0]->non_lvalue_description,
1059 op[0], op[1], false,
1060 this->subexpressions[0]->get_location());
1061 error_emitted = result->type->is_error();
1062 break;
1063 }
1064
1065 case ast_plus:
1066 op[0] = this->subexpressions[0]->hir(instructions, state);
1067
1068 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1069
1070 error_emitted = type->is_error();
1071
1072 result = op[0];
1073 break;
1074
1075 case ast_neg:
1076 op[0] = this->subexpressions[0]->hir(instructions, state);
1077
1078 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1079
1080 error_emitted = type->is_error();
1081
1082 result = new(ctx) ir_expression(operations[this->oper], type,
1083 op[0], NULL);
1084 break;
1085
1086 case ast_add:
1087 case ast_sub:
1088 case ast_mul:
1089 case ast_div:
1090 op[0] = this->subexpressions[0]->hir(instructions, state);
1091 op[1] = this->subexpressions[1]->hir(instructions, state);
1092
1093 type = arithmetic_result_type(op[0], op[1],
1094 (this->oper == ast_mul),
1095 state, & loc);
1096 error_emitted = type->is_error();
1097
1098 result = new(ctx) ir_expression(operations[this->oper], type,
1099 op[0], op[1]);
1100 break;
1101
1102 case ast_mod:
1103 op[0] = this->subexpressions[0]->hir(instructions, state);
1104 op[1] = this->subexpressions[1]->hir(instructions, state);
1105
1106 type = modulus_result_type(op[0]->type, op[1]->type, state, & loc);
1107
1108 assert(operations[this->oper] == ir_binop_mod);
1109
1110 result = new(ctx) ir_expression(operations[this->oper], type,
1111 op[0], op[1]);
1112 error_emitted = type->is_error();
1113 break;
1114
1115 case ast_lshift:
1116 case ast_rshift:
1117 if (!state->check_bitwise_operations_allowed(&loc)) {
1118 error_emitted = true;
1119 }
1120
1121 op[0] = this->subexpressions[0]->hir(instructions, state);
1122 op[1] = this->subexpressions[1]->hir(instructions, state);
1123 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1124 &loc);
1125 result = new(ctx) ir_expression(operations[this->oper], type,
1126 op[0], op[1]);
1127 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1128 break;
1129
1130 case ast_less:
1131 case ast_greater:
1132 case ast_lequal:
1133 case ast_gequal:
1134 op[0] = this->subexpressions[0]->hir(instructions, state);
1135 op[1] = this->subexpressions[1]->hir(instructions, state);
1136
1137 type = relational_result_type(op[0], op[1], state, & loc);
1138
1139 /* The relational operators must either generate an error or result
1140 * in a scalar boolean. See page 57 of the GLSL 1.50 spec.
1141 */
1142 assert(type->is_error()
1143 || ((type->base_type == GLSL_TYPE_BOOL)
1144 && type->is_scalar()));
1145
1146 result = new(ctx) ir_expression(operations[this->oper], type,
1147 op[0], op[1]);
1148 error_emitted = type->is_error();
1149 break;
1150
1151 case ast_nequal:
1152 case ast_equal:
1153 op[0] = this->subexpressions[0]->hir(instructions, state);
1154 op[1] = this->subexpressions[1]->hir(instructions, state);
1155
1156 /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
1157 *
1158 * "The equality operators equal (==), and not equal (!=)
1159 * operate on all types. They result in a scalar Boolean. If
1160 * the operand types do not match, then there must be a
1161 * conversion from Section 4.1.10 "Implicit Conversions"
1162 * applied to one operand that can make them match, in which
1163 * case this conversion is done."
1164 */
1165 if ((!apply_implicit_conversion(op[0]->type, op[1], state)
1166 && !apply_implicit_conversion(op[1]->type, op[0], state))
1167 || (op[0]->type != op[1]->type)) {
1168 _mesa_glsl_error(& loc, state, "operands of `%s' must have the same "
1169 "type", (this->oper == ast_equal) ? "==" : "!=");
1170 error_emitted = true;
1171 } else if ((op[0]->type->is_array() || op[1]->type->is_array()) &&
1172 !state->check_version(120, 300, &loc,
1173 "array comparisons forbidden")) {
1174 error_emitted = true;
1175 }
1176
1177 if (error_emitted) {
1178 result = new(ctx) ir_constant(false);
1179 } else {
1180 result = do_comparison(ctx, operations[this->oper], op[0], op[1]);
1181 assert(result->type == glsl_type::bool_type);
1182 }
1183 break;
1184
1185 case ast_bit_and:
1186 case ast_bit_xor:
1187 case ast_bit_or:
1188 op[0] = this->subexpressions[0]->hir(instructions, state);
1189 op[1] = this->subexpressions[1]->hir(instructions, state);
1190 type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
1191 state, &loc);
1192 result = new(ctx) ir_expression(operations[this->oper], type,
1193 op[0], op[1]);
1194 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1195 break;
1196
1197 case ast_bit_not:
1198 op[0] = this->subexpressions[0]->hir(instructions, state);
1199
1200 if (!state->check_bitwise_operations_allowed(&loc)) {
1201 error_emitted = true;
1202 }
1203
1204 if (!op[0]->type->is_integer()) {
1205 _mesa_glsl_error(&loc, state, "operand of `~' must be an integer");
1206 error_emitted = true;
1207 }
1208
1209 type = error_emitted ? glsl_type::error_type : op[0]->type;
1210 result = new(ctx) ir_expression(ir_unop_bit_not, type, op[0], NULL);
1211 break;
1212
1213 case ast_logic_and: {
1214 exec_list rhs_instructions;
1215 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1216 "LHS", &error_emitted);
1217 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1218 "RHS", &error_emitted);
1219
1220 if (rhs_instructions.is_empty()) {
1221 result = new(ctx) ir_expression(ir_binop_logic_and, op[0], op[1]);
1222 type = result->type;
1223 } else {
1224 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1225 "and_tmp",
1226 ir_var_temporary);
1227 instructions->push_tail(tmp);
1228
1229 ir_if *const stmt = new(ctx) ir_if(op[0]);
1230 instructions->push_tail(stmt);
1231
1232 stmt->then_instructions.append_list(&rhs_instructions);
1233 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1234 ir_assignment *const then_assign =
1235 new(ctx) ir_assignment(then_deref, op[1]);
1236 stmt->then_instructions.push_tail(then_assign);
1237
1238 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1239 ir_assignment *const else_assign =
1240 new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false));
1241 stmt->else_instructions.push_tail(else_assign);
1242
1243 result = new(ctx) ir_dereference_variable(tmp);
1244 type = tmp->type;
1245 }
1246 break;
1247 }
1248
1249 case ast_logic_or: {
1250 exec_list rhs_instructions;
1251 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1252 "LHS", &error_emitted);
1253 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1254 "RHS", &error_emitted);
1255
1256 if (rhs_instructions.is_empty()) {
1257 result = new(ctx) ir_expression(ir_binop_logic_or, op[0], op[1]);
1258 type = result->type;
1259 } else {
1260 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1261 "or_tmp",
1262 ir_var_temporary);
1263 instructions->push_tail(tmp);
1264
1265 ir_if *const stmt = new(ctx) ir_if(op[0]);
1266 instructions->push_tail(stmt);
1267
1268 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1269 ir_assignment *const then_assign =
1270 new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true));
1271 stmt->then_instructions.push_tail(then_assign);
1272
1273 stmt->else_instructions.append_list(&rhs_instructions);
1274 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1275 ir_assignment *const else_assign =
1276 new(ctx) ir_assignment(else_deref, op[1]);
1277 stmt->else_instructions.push_tail(else_assign);
1278
1279 result = new(ctx) ir_dereference_variable(tmp);
1280 type = tmp->type;
1281 }
1282 break;
1283 }
1284
1285 case ast_logic_xor:
1286 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1287 *
1288 * "The logical binary operators and (&&), or ( | | ), and
1289 * exclusive or (^^). They operate only on two Boolean
1290 * expressions and result in a Boolean expression."
1291 */
1292 op[0] = get_scalar_boolean_operand(instructions, state, this, 0, "LHS",
1293 &error_emitted);
1294 op[1] = get_scalar_boolean_operand(instructions, state, this, 1, "RHS",
1295 &error_emitted);
1296
1297 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1298 op[0], op[1]);
1299 break;
1300
1301 case ast_logic_not:
1302 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1303 "operand", &error_emitted);
1304
1305 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1306 op[0], NULL);
1307 break;
1308
1309 case ast_mul_assign:
1310 case ast_div_assign:
1311 case ast_add_assign:
1312 case ast_sub_assign: {
1313 op[0] = this->subexpressions[0]->hir(instructions, state);
1314 op[1] = this->subexpressions[1]->hir(instructions, state);
1315
1316 type = arithmetic_result_type(op[0], op[1],
1317 (this->oper == ast_mul_assign),
1318 state, & loc);
1319
1320 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1321 op[0], op[1]);
1322
1323 result = do_assignment(instructions, state,
1324 this->subexpressions[0]->non_lvalue_description,
1325 op[0]->clone(ctx, NULL), temp_rhs, false,
1326 this->subexpressions[0]->get_location());
1327 error_emitted = (op[0]->type->is_error());
1328
1329 /* GLSL 1.10 does not allow array assignment. However, we don't have to
1330 * explicitly test for this because none of the binary expression
1331 * operators allow array operands either.
1332 */
1333
1334 break;
1335 }
1336
1337 case ast_mod_assign: {
1338 op[0] = this->subexpressions[0]->hir(instructions, state);
1339 op[1] = this->subexpressions[1]->hir(instructions, state);
1340
1341 type = modulus_result_type(op[0]->type, op[1]->type, state, & loc);
1342
1343 assert(operations[this->oper] == ir_binop_mod);
1344
1345 ir_rvalue *temp_rhs;
1346 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1347 op[0], op[1]);
1348
1349 result = do_assignment(instructions, state,
1350 this->subexpressions[0]->non_lvalue_description,
1351 op[0]->clone(ctx, NULL), temp_rhs, false,
1352 this->subexpressions[0]->get_location());
1353 error_emitted = type->is_error();
1354 break;
1355 }
1356
1357 case ast_ls_assign:
1358 case ast_rs_assign: {
1359 op[0] = this->subexpressions[0]->hir(instructions, state);
1360 op[1] = this->subexpressions[1]->hir(instructions, state);
1361 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1362 &loc);
1363 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1364 type, op[0], op[1]);
1365 result = do_assignment(instructions, state,
1366 this->subexpressions[0]->non_lvalue_description,
1367 op[0]->clone(ctx, NULL), temp_rhs, false,
1368 this->subexpressions[0]->get_location());
1369 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1370 break;
1371 }
1372
1373 case ast_and_assign:
1374 case ast_xor_assign:
1375 case ast_or_assign: {
1376 op[0] = this->subexpressions[0]->hir(instructions, state);
1377 op[1] = this->subexpressions[1]->hir(instructions, state);
1378 type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
1379 state, &loc);
1380 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1381 type, op[0], op[1]);
1382 result = do_assignment(instructions, state,
1383 this->subexpressions[0]->non_lvalue_description,
1384 op[0]->clone(ctx, NULL), temp_rhs, false,
1385 this->subexpressions[0]->get_location());
1386 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1387 break;
1388 }
1389
1390 case ast_conditional: {
1391 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1392 *
1393 * "The ternary selection operator (?:). It operates on three
1394 * expressions (exp1 ? exp2 : exp3). This operator evaluates the
1395 * first expression, which must result in a scalar Boolean."
1396 */
1397 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1398 "condition", &error_emitted);
1399
1400 /* The :? operator is implemented by generating an anonymous temporary
1401 * followed by an if-statement. The last instruction in each branch of
1402 * the if-statement assigns a value to the anonymous temporary. This
1403 * temporary is the r-value of the expression.
1404 */
1405 exec_list then_instructions;
1406 exec_list else_instructions;
1407
1408 op[1] = this->subexpressions[1]->hir(&then_instructions, state);
1409 op[2] = this->subexpressions[2]->hir(&else_instructions, state);
1410
1411 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1412 *
1413 * "The second and third expressions can be any type, as
1414 * long their types match, or there is a conversion in
1415 * Section 4.1.10 "Implicit Conversions" that can be applied
1416 * to one of the expressions to make their types match. This
1417 * resulting matching type is the type of the entire
1418 * expression."
1419 */
1420 if ((!apply_implicit_conversion(op[1]->type, op[2], state)
1421 && !apply_implicit_conversion(op[2]->type, op[1], state))
1422 || (op[1]->type != op[2]->type)) {
1423 YYLTYPE loc = this->subexpressions[1]->get_location();
1424
1425 _mesa_glsl_error(& loc, state, "Second and third operands of ?: "
1426 "operator must have matching types.");
1427 error_emitted = true;
1428 type = glsl_type::error_type;
1429 } else {
1430 type = op[1]->type;
1431 }
1432
1433 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1434 *
1435 * "The second and third expressions must be the same type, but can
1436 * be of any type other than an array."
1437 */
1438 if (type->is_array() &&
1439 !state->check_version(120, 300, &loc,
1440 "Second and third operands of ?: operator "
1441 "cannot be arrays")) {
1442 error_emitted = true;
1443 }
1444
1445 ir_constant *cond_val = op[0]->constant_expression_value();
1446 ir_constant *then_val = op[1]->constant_expression_value();
1447 ir_constant *else_val = op[2]->constant_expression_value();
1448
1449 if (then_instructions.is_empty()
1450 && else_instructions.is_empty()
1451 && (cond_val != NULL) && (then_val != NULL) && (else_val != NULL)) {
1452 result = (cond_val->value.b[0]) ? then_val : else_val;
1453 } else {
1454 ir_variable *const tmp =
1455 new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary);
1456 instructions->push_tail(tmp);
1457
1458 ir_if *const stmt = new(ctx) ir_if(op[0]);
1459 instructions->push_tail(stmt);
1460
1461 then_instructions.move_nodes_to(& stmt->then_instructions);
1462 ir_dereference *const then_deref =
1463 new(ctx) ir_dereference_variable(tmp);
1464 ir_assignment *const then_assign =
1465 new(ctx) ir_assignment(then_deref, op[1]);
1466 stmt->then_instructions.push_tail(then_assign);
1467
1468 else_instructions.move_nodes_to(& stmt->else_instructions);
1469 ir_dereference *const else_deref =
1470 new(ctx) ir_dereference_variable(tmp);
1471 ir_assignment *const else_assign =
1472 new(ctx) ir_assignment(else_deref, op[2]);
1473 stmt->else_instructions.push_tail(else_assign);
1474
1475 result = new(ctx) ir_dereference_variable(tmp);
1476 }
1477 break;
1478 }
1479
1480 case ast_pre_inc:
1481 case ast_pre_dec: {
1482 this->non_lvalue_description = (this->oper == ast_pre_inc)
1483 ? "pre-increment operation" : "pre-decrement operation";
1484
1485 op[0] = this->subexpressions[0]->hir(instructions, state);
1486 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1487
1488 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1489
1490 ir_rvalue *temp_rhs;
1491 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1492 op[0], op[1]);
1493
1494 result = do_assignment(instructions, state,
1495 this->subexpressions[0]->non_lvalue_description,
1496 op[0]->clone(ctx, NULL), temp_rhs, false,
1497 this->subexpressions[0]->get_location());
1498 error_emitted = op[0]->type->is_error();
1499 break;
1500 }
1501
1502 case ast_post_inc:
1503 case ast_post_dec: {
1504 this->non_lvalue_description = (this->oper == ast_post_inc)
1505 ? "post-increment operation" : "post-decrement operation";
1506 op[0] = this->subexpressions[0]->hir(instructions, state);
1507 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1508
1509 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1510
1511 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1512
1513 ir_rvalue *temp_rhs;
1514 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1515 op[0], op[1]);
1516
1517 /* Get a temporary of a copy of the lvalue before it's modified.
1518 * This may get thrown away later.
1519 */
1520 result = get_lvalue_copy(instructions, op[0]->clone(ctx, NULL));
1521
1522 (void)do_assignment(instructions, state,
1523 this->subexpressions[0]->non_lvalue_description,
1524 op[0]->clone(ctx, NULL), temp_rhs, false,
1525 this->subexpressions[0]->get_location());
1526
1527 error_emitted = op[0]->type->is_error();
1528 break;
1529 }
1530
1531 case ast_field_selection:
1532 result = _mesa_ast_field_selection_to_hir(this, instructions, state);
1533 break;
1534
1535 case ast_array_index: {
1536 YYLTYPE index_loc = subexpressions[1]->get_location();
1537
1538 op[0] = subexpressions[0]->hir(instructions, state);
1539 op[1] = subexpressions[1]->hir(instructions, state);
1540
1541 result = _mesa_ast_array_index_to_hir(ctx, state, op[0], op[1],
1542 loc, index_loc);
1543
1544 if (result->type->is_error())
1545 error_emitted = true;
1546
1547 break;
1548 }
1549
1550 case ast_function_call:
1551 /* Should *NEVER* get here. ast_function_call should always be handled
1552 * by ast_function_expression::hir.
1553 */
1554 assert(0);
1555 break;
1556
1557 case ast_identifier: {
1558 /* ast_identifier can appear several places in a full abstract syntax
1559 * tree. This particular use must be at location specified in the grammar
1560 * as 'variable_identifier'.
1561 */
1562 ir_variable *var =
1563 state->symbols->get_variable(this->primary_expression.identifier);
1564
1565 if (var != NULL) {
1566 var->used = true;
1567 result = new(ctx) ir_dereference_variable(var);
1568 } else {
1569 _mesa_glsl_error(& loc, state, "`%s' undeclared",
1570 this->primary_expression.identifier);
1571
1572 result = ir_rvalue::error_value(ctx);
1573 error_emitted = true;
1574 }
1575 break;
1576 }
1577
1578 case ast_int_constant:
1579 result = new(ctx) ir_constant(this->primary_expression.int_constant);
1580 break;
1581
1582 case ast_uint_constant:
1583 result = new(ctx) ir_constant(this->primary_expression.uint_constant);
1584 break;
1585
1586 case ast_float_constant:
1587 result = new(ctx) ir_constant(this->primary_expression.float_constant);
1588 break;
1589
1590 case ast_bool_constant:
1591 result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant));
1592 break;
1593
1594 case ast_sequence: {
1595 /* It should not be possible to generate a sequence in the AST without
1596 * any expressions in it.
1597 */
1598 assert(!this->expressions.is_empty());
1599
1600 /* The r-value of a sequence is the last expression in the sequence. If
1601 * the other expressions in the sequence do not have side-effects (and
1602 * therefore add instructions to the instruction list), they get dropped
1603 * on the floor.
1604 */
1605 exec_node *previous_tail_pred = NULL;
1606 YYLTYPE previous_operand_loc = loc;
1607
1608 foreach_list_typed (ast_node, ast, link, &this->expressions) {
1609 /* If one of the operands of comma operator does not generate any
1610 * code, we want to emit a warning. At each pass through the loop
1611 * previous_tail_pred will point to the last instruction in the
1612 * stream *before* processing the previous operand. Naturally,
1613 * instructions->tail_pred will point to the last instruction in the
1614 * stream *after* processing the previous operand. If the two
1615 * pointers match, then the previous operand had no effect.
1616 *
1617 * The warning behavior here differs slightly from GCC. GCC will
1618 * only emit a warning if none of the left-hand operands have an
1619 * effect. However, it will emit a warning for each. I believe that
1620 * there are some cases in C (especially with GCC extensions) where
1621 * it is useful to have an intermediate step in a sequence have no
1622 * effect, but I don't think these cases exist in GLSL. Either way,
1623 * it would be a giant hassle to replicate that behavior.
1624 */
1625 if (previous_tail_pred == instructions->tail_pred) {
1626 _mesa_glsl_warning(&previous_operand_loc, state,
1627 "left-hand operand of comma expression has "
1628 "no effect");
1629 }
1630
1631 /* tail_pred is directly accessed instead of using the get_tail()
1632 * method for performance reasons. get_tail() has extra code to
1633 * return NULL when the list is empty. We don't care about that
1634 * here, so using tail_pred directly is fine.
1635 */
1636 previous_tail_pred = instructions->tail_pred;
1637 previous_operand_loc = ast->get_location();
1638
1639 result = ast->hir(instructions, state);
1640 }
1641
1642 /* Any errors should have already been emitted in the loop above.
1643 */
1644 error_emitted = true;
1645 break;
1646 }
1647 }
1648 type = NULL; /* use result->type, not type. */
1649 assert(result != NULL);
1650
1651 if (result->type->is_error() && !error_emitted)
1652 _mesa_glsl_error(& loc, state, "type mismatch");
1653
1654 return result;
1655 }
1656
1657
1658 ir_rvalue *
1659 ast_expression_statement::hir(exec_list *instructions,
1660 struct _mesa_glsl_parse_state *state)
1661 {
1662 /* It is possible to have expression statements that don't have an
1663 * expression. This is the solitary semicolon:
1664 *
1665 * for (i = 0; i < 5; i++)
1666 * ;
1667 *
1668 * In this case the expression will be NULL. Test for NULL and don't do
1669 * anything in that case.
1670 */
1671 if (expression != NULL)
1672 expression->hir(instructions, state);
1673
1674 /* Statements do not have r-values.
1675 */
1676 return NULL;
1677 }
1678
1679
1680 ir_rvalue *
1681 ast_compound_statement::hir(exec_list *instructions,
1682 struct _mesa_glsl_parse_state *state)
1683 {
1684 if (new_scope)
1685 state->symbols->push_scope();
1686
1687 foreach_list_typed (ast_node, ast, link, &this->statements)
1688 ast->hir(instructions, state);
1689
1690 if (new_scope)
1691 state->symbols->pop_scope();
1692
1693 /* Compound statements do not have r-values.
1694 */
1695 return NULL;
1696 }
1697
1698
1699 static const glsl_type *
1700 process_array_type(YYLTYPE *loc, const glsl_type *base, ast_node *array_size,
1701 struct _mesa_glsl_parse_state *state)
1702 {
1703 unsigned length = 0;
1704
1705 if (base == NULL)
1706 return glsl_type::error_type;
1707
1708 /* From page 19 (page 25) of the GLSL 1.20 spec:
1709 *
1710 * "Only one-dimensional arrays may be declared."
1711 */
1712 if (base->is_array()) {
1713 _mesa_glsl_error(loc, state,
1714 "invalid array of `%s' (only one-dimensional arrays "
1715 "may be declared)",
1716 base->name);
1717 return glsl_type::error_type;
1718 }
1719
1720 if (array_size != NULL) {
1721 exec_list dummy_instructions;
1722 ir_rvalue *const ir = array_size->hir(& dummy_instructions, state);
1723 YYLTYPE loc = array_size->get_location();
1724
1725 if (ir != NULL) {
1726 if (!ir->type->is_integer()) {
1727 _mesa_glsl_error(& loc, state, "array size must be integer type");
1728 } else if (!ir->type->is_scalar()) {
1729 _mesa_glsl_error(& loc, state, "array size must be scalar type");
1730 } else {
1731 ir_constant *const size = ir->constant_expression_value();
1732
1733 if (size == NULL) {
1734 _mesa_glsl_error(& loc, state, "array size must be a "
1735 "constant valued expression");
1736 } else if (size->value.i[0] <= 0) {
1737 _mesa_glsl_error(& loc, state, "array size must be > 0");
1738 } else {
1739 assert(size->type == ir->type);
1740 length = size->value.u[0];
1741
1742 /* If the array size is const (and we've verified that
1743 * it is) then no instructions should have been emitted
1744 * when we converted it to HIR. If they were emitted,
1745 * then either the array size isn't const after all, or
1746 * we are emitting unnecessary instructions.
1747 */
1748 assert(dummy_instructions.is_empty());
1749 }
1750 }
1751 }
1752 } else if (state->es_shader) {
1753 /* Section 10.17 of the GLSL ES 1.00 specification states that unsized
1754 * array declarations have been removed from the language.
1755 */
1756 _mesa_glsl_error(loc, state, "unsized array declarations are not "
1757 "allowed in GLSL ES 1.00.");
1758 }
1759
1760 const glsl_type *array_type = glsl_type::get_array_instance(base, length);
1761 return array_type != NULL ? array_type : glsl_type::error_type;
1762 }
1763
1764
1765 const glsl_type *
1766 ast_type_specifier::glsl_type(const char **name,
1767 struct _mesa_glsl_parse_state *state) const
1768 {
1769 const struct glsl_type *type;
1770
1771 type = state->symbols->get_type(this->type_name);
1772 *name = this->type_name;
1773
1774 if (this->is_array) {
1775 YYLTYPE loc = this->get_location();
1776 type = process_array_type(&loc, type, this->array_size, state);
1777 }
1778
1779 return type;
1780 }
1781
1782
1783 /**
1784 * Determine whether a toplevel variable declaration declares a varying. This
1785 * function operates by examining the variable's mode and the shader target,
1786 * so it correctly identifies linkage variables regardless of whether they are
1787 * declared using the deprecated "varying" syntax or the new "in/out" syntax.
1788 *
1789 * Passing a non-toplevel variable declaration (e.g. a function parameter) to
1790 * this function will produce undefined results.
1791 */
1792 static bool
1793 is_varying_var(ir_variable *var, _mesa_glsl_parser_targets target)
1794 {
1795 switch (target) {
1796 case vertex_shader:
1797 return var->mode == ir_var_shader_out;
1798 case fragment_shader:
1799 return var->mode == ir_var_shader_in;
1800 default:
1801 return var->mode == ir_var_shader_out || var->mode == ir_var_shader_in;
1802 }
1803 }
1804
1805
1806 /**
1807 * Matrix layout qualifiers are only allowed on certain types
1808 */
1809 static void
1810 validate_matrix_layout_for_type(struct _mesa_glsl_parse_state *state,
1811 YYLTYPE *loc,
1812 const glsl_type *type)
1813 {
1814 if (!type->is_matrix() && !type->is_record()) {
1815 _mesa_glsl_error(loc, state,
1816 "uniform block layout qualifiers row_major and "
1817 "column_major can only be applied to matrix and "
1818 "structure types");
1819 } else if (type->is_record()) {
1820 /* We allow 'layout(row_major)' on structure types because it's the only
1821 * way to get row-major layouts on matrices contained in structures.
1822 */
1823 _mesa_glsl_warning(loc, state,
1824 "uniform block layout qualifiers row_major and "
1825 "column_major applied to structure types is not "
1826 "strictly conformant and my be rejected by other "
1827 "compilers");
1828 }
1829 }
1830
1831 static void
1832 apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
1833 ir_variable *var,
1834 struct _mesa_glsl_parse_state *state,
1835 YYLTYPE *loc,
1836 bool ubo_qualifiers_valid,
1837 bool is_parameter)
1838 {
1839 if (qual->flags.q.invariant) {
1840 if (var->used) {
1841 _mesa_glsl_error(loc, state,
1842 "variable `%s' may not be redeclared "
1843 "`invariant' after being used",
1844 var->name);
1845 } else {
1846 var->invariant = 1;
1847 }
1848 }
1849
1850 if (qual->flags.q.constant || qual->flags.q.attribute
1851 || qual->flags.q.uniform
1852 || (qual->flags.q.varying && (state->target == fragment_shader)))
1853 var->read_only = 1;
1854
1855 if (qual->flags.q.centroid)
1856 var->centroid = 1;
1857
1858 if (qual->flags.q.attribute && state->target != vertex_shader) {
1859 var->type = glsl_type::error_type;
1860 _mesa_glsl_error(loc, state,
1861 "`attribute' variables may not be declared in the "
1862 "%s shader",
1863 _mesa_glsl_shader_target_name(state->target));
1864 }
1865
1866 /* If there is no qualifier that changes the mode of the variable, leave
1867 * the setting alone.
1868 */
1869 if (qual->flags.q.in && qual->flags.q.out)
1870 var->mode = ir_var_function_inout;
1871 else if (qual->flags.q.in)
1872 var->mode = is_parameter ? ir_var_function_in : ir_var_shader_in;
1873 else if (qual->flags.q.attribute
1874 || (qual->flags.q.varying && (state->target == fragment_shader)))
1875 var->mode = ir_var_shader_in;
1876 else if (qual->flags.q.out)
1877 var->mode = is_parameter ? ir_var_function_out : ir_var_shader_out;
1878 else if (qual->flags.q.varying && (state->target == vertex_shader))
1879 var->mode = ir_var_shader_out;
1880 else if (qual->flags.q.uniform)
1881 var->mode = ir_var_uniform;
1882
1883 if (!is_parameter && is_varying_var(var, state->target)) {
1884 /* This variable is being used to link data between shader stages (in
1885 * pre-glsl-1.30 parlance, it's a "varying"). Check that it has a type
1886 * that is allowed for such purposes.
1887 *
1888 * From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
1889 *
1890 * "The varying qualifier can be used only with the data types
1891 * float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
1892 * these."
1893 *
1894 * This was relaxed in GLSL version 1.30 and GLSL ES version 3.00. From
1895 * page 31 (page 37 of the PDF) of the GLSL 1.30 spec:
1896 *
1897 * "Fragment inputs can only be signed and unsigned integers and
1898 * integer vectors, float, floating-point vectors, matrices, or
1899 * arrays of these. Structures cannot be input.
1900 *
1901 * Similar text exists in the section on vertex shader outputs.
1902 *
1903 * Similar text exists in the GLSL ES 3.00 spec, except that the GLSL ES
1904 * 3.00 spec allows structs as well. Varying structs are also allowed
1905 * in GLSL 1.50.
1906 */
1907 switch (var->type->get_scalar_type()->base_type) {
1908 case GLSL_TYPE_FLOAT:
1909 /* Ok in all GLSL versions */
1910 break;
1911 case GLSL_TYPE_UINT:
1912 case GLSL_TYPE_INT:
1913 if (state->is_version(130, 300))
1914 break;
1915 _mesa_glsl_error(loc, state,
1916 "varying variables must be of base type float in %s",
1917 state->get_version_string());
1918 break;
1919 case GLSL_TYPE_STRUCT:
1920 if (state->is_version(150, 300))
1921 break;
1922 _mesa_glsl_error(loc, state,
1923 "varying variables may not be of type struct");
1924 break;
1925 default:
1926 _mesa_glsl_error(loc, state, "illegal type for a varying variable");
1927 break;
1928 }
1929 }
1930
1931 if (state->all_invariant && (state->current_function == NULL)) {
1932 switch (state->target) {
1933 case vertex_shader:
1934 if (var->mode == ir_var_shader_out)
1935 var->invariant = true;
1936 break;
1937 case geometry_shader:
1938 if ((var->mode == ir_var_shader_in)
1939 || (var->mode == ir_var_shader_out))
1940 var->invariant = true;
1941 break;
1942 case fragment_shader:
1943 if (var->mode == ir_var_shader_in)
1944 var->invariant = true;
1945 break;
1946 }
1947 }
1948
1949 if (qual->flags.q.flat)
1950 var->interpolation = INTERP_QUALIFIER_FLAT;
1951 else if (qual->flags.q.noperspective)
1952 var->interpolation = INTERP_QUALIFIER_NOPERSPECTIVE;
1953 else if (qual->flags.q.smooth)
1954 var->interpolation = INTERP_QUALIFIER_SMOOTH;
1955 else
1956 var->interpolation = INTERP_QUALIFIER_NONE;
1957
1958 if (var->interpolation != INTERP_QUALIFIER_NONE &&
1959 !(state->target == vertex_shader && var->mode == ir_var_shader_out) &&
1960 !(state->target == fragment_shader && var->mode == ir_var_shader_in)) {
1961 _mesa_glsl_error(loc, state,
1962 "interpolation qualifier `%s' can only be applied to "
1963 "vertex shader outputs and fragment shader inputs.",
1964 var->interpolation_string());
1965 }
1966
1967 var->pixel_center_integer = qual->flags.q.pixel_center_integer;
1968 var->origin_upper_left = qual->flags.q.origin_upper_left;
1969 if ((qual->flags.q.origin_upper_left || qual->flags.q.pixel_center_integer)
1970 && (strcmp(var->name, "gl_FragCoord") != 0)) {
1971 const char *const qual_string = (qual->flags.q.origin_upper_left)
1972 ? "origin_upper_left" : "pixel_center_integer";
1973
1974 _mesa_glsl_error(loc, state,
1975 "layout qualifier `%s' can only be applied to "
1976 "fragment shader input `gl_FragCoord'",
1977 qual_string);
1978 }
1979
1980 if (qual->flags.q.explicit_location) {
1981 const bool global_scope = (state->current_function == NULL);
1982 bool fail = false;
1983 const char *string = "";
1984
1985 /* In the vertex shader only shader inputs can be given explicit
1986 * locations.
1987 *
1988 * In the fragment shader only shader outputs can be given explicit
1989 * locations.
1990 */
1991 switch (state->target) {
1992 case vertex_shader:
1993 if (!global_scope || (var->mode != ir_var_shader_in)) {
1994 fail = true;
1995 string = "input";
1996 }
1997 break;
1998
1999 case geometry_shader:
2000 _mesa_glsl_error(loc, state,
2001 "geometry shader variables cannot be given "
2002 "explicit locations\n");
2003 break;
2004
2005 case fragment_shader:
2006 if (!global_scope || (var->mode != ir_var_shader_out)) {
2007 fail = true;
2008 string = "output";
2009 }
2010 break;
2011 };
2012
2013 if (fail) {
2014 _mesa_glsl_error(loc, state,
2015 "only %s shader %s variables can be given an "
2016 "explicit location\n",
2017 _mesa_glsl_shader_target_name(state->target),
2018 string);
2019 } else {
2020 var->explicit_location = true;
2021
2022 /* This bit of silliness is needed because invalid explicit locations
2023 * are supposed to be flagged during linking. Small negative values
2024 * biased by VERT_ATTRIB_GENERIC0 or FRAG_RESULT_DATA0 could alias
2025 * built-in values (e.g., -16+VERT_ATTRIB_GENERIC0 = VERT_ATTRIB_POS).
2026 * The linker needs to be able to differentiate these cases. This
2027 * ensures that negative values stay negative.
2028 */
2029 if (qual->location >= 0) {
2030 var->location = (state->target == vertex_shader)
2031 ? (qual->location + VERT_ATTRIB_GENERIC0)
2032 : (qual->location + FRAG_RESULT_DATA0);
2033 } else {
2034 var->location = qual->location;
2035 }
2036
2037 if (qual->flags.q.explicit_index) {
2038 /* From the GLSL 4.30 specification, section 4.4.2 (Output
2039 * Layout Qualifiers):
2040 *
2041 * "It is also a compile-time error if a fragment shader
2042 * sets a layout index to less than 0 or greater than 1."
2043 *
2044 * Older specifications don't mandate a behavior; we take
2045 * this as a clarification and always generate the error.
2046 */
2047 if (qual->index < 0 || qual->index > 1) {
2048 _mesa_glsl_error(loc, state,
2049 "explicit index may only be 0 or 1\n");
2050 } else {
2051 var->explicit_index = true;
2052 var->index = qual->index;
2053 }
2054 }
2055 }
2056 } else if (qual->flags.q.explicit_index) {
2057 _mesa_glsl_error(loc, state,
2058 "explicit index requires explicit location\n");
2059 }
2060
2061 /* Does the declaration use the 'layout' keyword?
2062 */
2063 const bool uses_layout = qual->flags.q.pixel_center_integer
2064 || qual->flags.q.origin_upper_left
2065 || qual->flags.q.explicit_location; /* no need for index since it relies on location */
2066
2067 /* Does the declaration use the deprecated 'attribute' or 'varying'
2068 * keywords?
2069 */
2070 const bool uses_deprecated_qualifier = qual->flags.q.attribute
2071 || qual->flags.q.varying;
2072
2073 /* Is the 'layout' keyword used with parameters that allow relaxed checking.
2074 * Many implementations of GL_ARB_fragment_coord_conventions_enable and some
2075 * implementations (only Mesa?) GL_ARB_explicit_attrib_location_enable
2076 * allowed the layout qualifier to be used with 'varying' and 'attribute'.
2077 * These extensions and all following extensions that add the 'layout'
2078 * keyword have been modified to require the use of 'in' or 'out'.
2079 *
2080 * The following extension do not allow the deprecated keywords:
2081 *
2082 * GL_AMD_conservative_depth
2083 * GL_ARB_conservative_depth
2084 * GL_ARB_gpu_shader5
2085 * GL_ARB_separate_shader_objects
2086 * GL_ARB_tesselation_shader
2087 * GL_ARB_transform_feedback3
2088 * GL_ARB_uniform_buffer_object
2089 *
2090 * It is unknown whether GL_EXT_shader_image_load_store or GL_NV_gpu_shader5
2091 * allow layout with the deprecated keywords.
2092 */
2093 const bool relaxed_layout_qualifier_checking =
2094 state->ARB_fragment_coord_conventions_enable;
2095
2096 if (uses_layout && uses_deprecated_qualifier) {
2097 if (relaxed_layout_qualifier_checking) {
2098 _mesa_glsl_warning(loc, state,
2099 "`layout' qualifier may not be used with "
2100 "`attribute' or `varying'");
2101 } else {
2102 _mesa_glsl_error(loc, state,
2103 "`layout' qualifier may not be used with "
2104 "`attribute' or `varying'");
2105 }
2106 }
2107
2108 /* Layout qualifiers for gl_FragDepth, which are enabled by extension
2109 * AMD_conservative_depth.
2110 */
2111 int depth_layout_count = qual->flags.q.depth_any
2112 + qual->flags.q.depth_greater
2113 + qual->flags.q.depth_less
2114 + qual->flags.q.depth_unchanged;
2115 if (depth_layout_count > 0
2116 && !state->AMD_conservative_depth_enable
2117 && !state->ARB_conservative_depth_enable) {
2118 _mesa_glsl_error(loc, state,
2119 "extension GL_AMD_conservative_depth or "
2120 "GL_ARB_conservative_depth must be enabled "
2121 "to use depth layout qualifiers");
2122 } else if (depth_layout_count > 0
2123 && strcmp(var->name, "gl_FragDepth") != 0) {
2124 _mesa_glsl_error(loc, state,
2125 "depth layout qualifiers can be applied only to "
2126 "gl_FragDepth");
2127 } else if (depth_layout_count > 1
2128 && strcmp(var->name, "gl_FragDepth") == 0) {
2129 _mesa_glsl_error(loc, state,
2130 "at most one depth layout qualifier can be applied to "
2131 "gl_FragDepth");
2132 }
2133 if (qual->flags.q.depth_any)
2134 var->depth_layout = ir_depth_layout_any;
2135 else if (qual->flags.q.depth_greater)
2136 var->depth_layout = ir_depth_layout_greater;
2137 else if (qual->flags.q.depth_less)
2138 var->depth_layout = ir_depth_layout_less;
2139 else if (qual->flags.q.depth_unchanged)
2140 var->depth_layout = ir_depth_layout_unchanged;
2141 else
2142 var->depth_layout = ir_depth_layout_none;
2143
2144 if (qual->flags.q.std140 ||
2145 qual->flags.q.packed ||
2146 qual->flags.q.shared) {
2147 _mesa_glsl_error(loc, state,
2148 "uniform block layout qualifiers std140, packed, and "
2149 "shared can only be applied to uniform blocks, not "
2150 "members");
2151 }
2152
2153 if (qual->flags.q.row_major || qual->flags.q.column_major) {
2154 if (!ubo_qualifiers_valid) {
2155 _mesa_glsl_error(loc, state,
2156 "uniform block layout qualifiers row_major and "
2157 "column_major can only be applied to uniform block "
2158 "members");
2159 } else
2160 validate_matrix_layout_for_type(state, loc, var->type);
2161 }
2162 }
2163
2164 /**
2165 * Get the variable that is being redeclared by this declaration
2166 *
2167 * Semantic checks to verify the validity of the redeclaration are also
2168 * performed. If semantic checks fail, compilation error will be emitted via
2169 * \c _mesa_glsl_error, but a non-\c NULL pointer will still be returned.
2170 *
2171 * \returns
2172 * A pointer to an existing variable in the current scope if the declaration
2173 * is a redeclaration, \c NULL otherwise.
2174 */
2175 ir_variable *
2176 get_variable_being_redeclared(ir_variable *var, ast_declaration *decl,
2177 struct _mesa_glsl_parse_state *state)
2178 {
2179 /* Check if this declaration is actually a re-declaration, either to
2180 * resize an array or add qualifiers to an existing variable.
2181 *
2182 * This is allowed for variables in the current scope, or when at
2183 * global scope (for built-ins in the implicit outer scope).
2184 */
2185 ir_variable *earlier = state->symbols->get_variable(decl->identifier);
2186 if (earlier == NULL ||
2187 (state->current_function != NULL &&
2188 !state->symbols->name_declared_this_scope(decl->identifier))) {
2189 return NULL;
2190 }
2191
2192
2193 YYLTYPE loc = decl->get_location();
2194
2195 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
2196 *
2197 * "It is legal to declare an array without a size and then
2198 * later re-declare the same name as an array of the same
2199 * type and specify a size."
2200 */
2201 if ((earlier->type->array_size() == 0)
2202 && var->type->is_array()
2203 && (var->type->element_type() == earlier->type->element_type())) {
2204 /* FINISHME: This doesn't match the qualifiers on the two
2205 * FINISHME: declarations. It's not 100% clear whether this is
2206 * FINISHME: required or not.
2207 */
2208
2209 const unsigned size = unsigned(var->type->array_size());
2210 check_builtin_array_max_size(var->name, size, loc, state);
2211 if ((size > 0) && (size <= earlier->max_array_access)) {
2212 _mesa_glsl_error(& loc, state, "array size must be > %u due to "
2213 "previous access",
2214 earlier->max_array_access);
2215 }
2216
2217 earlier->type = var->type;
2218 delete var;
2219 var = NULL;
2220 } else if (state->ARB_fragment_coord_conventions_enable
2221 && strcmp(var->name, "gl_FragCoord") == 0
2222 && earlier->type == var->type
2223 && earlier->mode == var->mode) {
2224 /* Allow redeclaration of gl_FragCoord for ARB_fcc layout
2225 * qualifiers.
2226 */
2227 earlier->origin_upper_left = var->origin_upper_left;
2228 earlier->pixel_center_integer = var->pixel_center_integer;
2229
2230 /* According to section 4.3.7 of the GLSL 1.30 spec,
2231 * the following built-in varaibles can be redeclared with an
2232 * interpolation qualifier:
2233 * * gl_FrontColor
2234 * * gl_BackColor
2235 * * gl_FrontSecondaryColor
2236 * * gl_BackSecondaryColor
2237 * * gl_Color
2238 * * gl_SecondaryColor
2239 */
2240 } else if (state->is_version(130, 0)
2241 && (strcmp(var->name, "gl_FrontColor") == 0
2242 || strcmp(var->name, "gl_BackColor") == 0
2243 || strcmp(var->name, "gl_FrontSecondaryColor") == 0
2244 || strcmp(var->name, "gl_BackSecondaryColor") == 0
2245 || strcmp(var->name, "gl_Color") == 0
2246 || strcmp(var->name, "gl_SecondaryColor") == 0)
2247 && earlier->type == var->type
2248 && earlier->mode == var->mode) {
2249 earlier->interpolation = var->interpolation;
2250
2251 /* Layout qualifiers for gl_FragDepth. */
2252 } else if ((state->AMD_conservative_depth_enable ||
2253 state->ARB_conservative_depth_enable)
2254 && strcmp(var->name, "gl_FragDepth") == 0
2255 && earlier->type == var->type
2256 && earlier->mode == var->mode) {
2257
2258 /** From the AMD_conservative_depth spec:
2259 * Within any shader, the first redeclarations of gl_FragDepth
2260 * must appear before any use of gl_FragDepth.
2261 */
2262 if (earlier->used) {
2263 _mesa_glsl_error(&loc, state,
2264 "the first redeclaration of gl_FragDepth "
2265 "must appear before any use of gl_FragDepth");
2266 }
2267
2268 /* Prevent inconsistent redeclaration of depth layout qualifier. */
2269 if (earlier->depth_layout != ir_depth_layout_none
2270 && earlier->depth_layout != var->depth_layout) {
2271 _mesa_glsl_error(&loc, state,
2272 "gl_FragDepth: depth layout is declared here "
2273 "as '%s, but it was previously declared as "
2274 "'%s'",
2275 depth_layout_string(var->depth_layout),
2276 depth_layout_string(earlier->depth_layout));
2277 }
2278
2279 earlier->depth_layout = var->depth_layout;
2280
2281 } else {
2282 _mesa_glsl_error(&loc, state, "`%s' redeclared", decl->identifier);
2283 }
2284
2285 return earlier;
2286 }
2287
2288 /**
2289 * Generate the IR for an initializer in a variable declaration
2290 */
2291 ir_rvalue *
2292 process_initializer(ir_variable *var, ast_declaration *decl,
2293 ast_fully_specified_type *type,
2294 exec_list *initializer_instructions,
2295 struct _mesa_glsl_parse_state *state)
2296 {
2297 ir_rvalue *result = NULL;
2298
2299 YYLTYPE initializer_loc = decl->initializer->get_location();
2300
2301 /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
2302 *
2303 * "All uniform variables are read-only and are initialized either
2304 * directly by an application via API commands, or indirectly by
2305 * OpenGL."
2306 */
2307 if (var->mode == ir_var_uniform) {
2308 state->check_version(120, 0, &initializer_loc,
2309 "cannot initialize uniforms");
2310 }
2311
2312 if (var->type->is_sampler()) {
2313 _mesa_glsl_error(& initializer_loc, state,
2314 "cannot initialize samplers");
2315 }
2316
2317 if ((var->mode == ir_var_shader_in) && (state->current_function == NULL)) {
2318 _mesa_glsl_error(& initializer_loc, state,
2319 "cannot initialize %s shader input / %s",
2320 _mesa_glsl_shader_target_name(state->target),
2321 (state->target == vertex_shader)
2322 ? "attribute" : "varying");
2323 }
2324
2325 ir_dereference *const lhs = new(state) ir_dereference_variable(var);
2326 ir_rvalue *rhs = decl->initializer->hir(initializer_instructions,
2327 state);
2328
2329 /* Calculate the constant value if this is a const or uniform
2330 * declaration.
2331 */
2332 if (type->qualifier.flags.q.constant
2333 || type->qualifier.flags.q.uniform) {
2334 ir_rvalue *new_rhs = validate_assignment(state, var->type, rhs, true);
2335 if (new_rhs != NULL) {
2336 rhs = new_rhs;
2337
2338 ir_constant *constant_value = rhs->constant_expression_value();
2339 if (!constant_value) {
2340 _mesa_glsl_error(& initializer_loc, state,
2341 "initializer of %s variable `%s' must be a "
2342 "constant expression",
2343 (type->qualifier.flags.q.constant)
2344 ? "const" : "uniform",
2345 decl->identifier);
2346 if (var->type->is_numeric()) {
2347 /* Reduce cascading errors. */
2348 var->constant_value = ir_constant::zero(state, var->type);
2349 }
2350 } else {
2351 rhs = constant_value;
2352 var->constant_value = constant_value;
2353 }
2354 } else {
2355 _mesa_glsl_error(&initializer_loc, state,
2356 "initializer of type %s cannot be assigned to "
2357 "variable of type %s",
2358 rhs->type->name, var->type->name);
2359 if (var->type->is_numeric()) {
2360 /* Reduce cascading errors. */
2361 var->constant_value = ir_constant::zero(state, var->type);
2362 }
2363 }
2364 }
2365
2366 if (rhs && !rhs->type->is_error()) {
2367 bool temp = var->read_only;
2368 if (type->qualifier.flags.q.constant)
2369 var->read_only = false;
2370
2371 /* Never emit code to initialize a uniform.
2372 */
2373 const glsl_type *initializer_type;
2374 if (!type->qualifier.flags.q.uniform) {
2375 result = do_assignment(initializer_instructions, state,
2376 NULL,
2377 lhs, rhs, true,
2378 type->get_location());
2379 initializer_type = result->type;
2380 } else
2381 initializer_type = rhs->type;
2382
2383 var->constant_initializer = rhs->constant_expression_value();
2384 var->has_initializer = true;
2385
2386 /* If the declared variable is an unsized array, it must inherrit
2387 * its full type from the initializer. A declaration such as
2388 *
2389 * uniform float a[] = float[](1.0, 2.0, 3.0, 3.0);
2390 *
2391 * becomes
2392 *
2393 * uniform float a[4] = float[](1.0, 2.0, 3.0, 3.0);
2394 *
2395 * The assignment generated in the if-statement (below) will also
2396 * automatically handle this case for non-uniforms.
2397 *
2398 * If the declared variable is not an array, the types must
2399 * already match exactly. As a result, the type assignment
2400 * here can be done unconditionally. For non-uniforms the call
2401 * to do_assignment can change the type of the initializer (via
2402 * the implicit conversion rules). For uniforms the initializer
2403 * must be a constant expression, and the type of that expression
2404 * was validated above.
2405 */
2406 var->type = initializer_type;
2407
2408 var->read_only = temp;
2409 }
2410
2411 return result;
2412 }
2413
2414 ir_rvalue *
2415 ast_declarator_list::hir(exec_list *instructions,
2416 struct _mesa_glsl_parse_state *state)
2417 {
2418 void *ctx = state;
2419 const struct glsl_type *decl_type;
2420 const char *type_name = NULL;
2421 ir_rvalue *result = NULL;
2422 YYLTYPE loc = this->get_location();
2423
2424 /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec:
2425 *
2426 * "To ensure that a particular output variable is invariant, it is
2427 * necessary to use the invariant qualifier. It can either be used to
2428 * qualify a previously declared variable as being invariant
2429 *
2430 * invariant gl_Position; // make existing gl_Position be invariant"
2431 *
2432 * In these cases the parser will set the 'invariant' flag in the declarator
2433 * list, and the type will be NULL.
2434 */
2435 if (this->invariant) {
2436 assert(this->type == NULL);
2437
2438 if (state->current_function != NULL) {
2439 _mesa_glsl_error(& loc, state,
2440 "All uses of `invariant' keyword must be at global "
2441 "scope\n");
2442 }
2443
2444 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
2445 assert(!decl->is_array);
2446 assert(decl->array_size == NULL);
2447 assert(decl->initializer == NULL);
2448
2449 ir_variable *const earlier =
2450 state->symbols->get_variable(decl->identifier);
2451 if (earlier == NULL) {
2452 _mesa_glsl_error(& loc, state,
2453 "Undeclared variable `%s' cannot be marked "
2454 "invariant\n", decl->identifier);
2455 } else if ((state->target == vertex_shader)
2456 && (earlier->mode != ir_var_shader_out)) {
2457 _mesa_glsl_error(& loc, state,
2458 "`%s' cannot be marked invariant, vertex shader "
2459 "outputs only\n", decl->identifier);
2460 } else if ((state->target == fragment_shader)
2461 && (earlier->mode != ir_var_shader_in)) {
2462 _mesa_glsl_error(& loc, state,
2463 "`%s' cannot be marked invariant, fragment shader "
2464 "inputs only\n", decl->identifier);
2465 } else if (earlier->used) {
2466 _mesa_glsl_error(& loc, state,
2467 "variable `%s' may not be redeclared "
2468 "`invariant' after being used",
2469 earlier->name);
2470 } else {
2471 earlier->invariant = true;
2472 }
2473 }
2474
2475 /* Invariant redeclarations do not have r-values.
2476 */
2477 return NULL;
2478 }
2479
2480 assert(this->type != NULL);
2481 assert(!this->invariant);
2482
2483 /* The type specifier may contain a structure definition. Process that
2484 * before any of the variable declarations.
2485 */
2486 (void) this->type->specifier->hir(instructions, state);
2487
2488 decl_type = this->type->specifier->glsl_type(& type_name, state);
2489 if (this->declarations.is_empty()) {
2490 /* If there is no structure involved in the program text, there are two
2491 * possible scenarios:
2492 *
2493 * - The program text contained something like 'vec4;'. This is an
2494 * empty declaration. It is valid but weird. Emit a warning.
2495 *
2496 * - The program text contained something like 'S;' and 'S' is not the
2497 * name of a known structure type. This is both invalid and weird.
2498 * Emit an error.
2499 *
2500 * Note that if decl_type is NULL and there is a structure involved,
2501 * there must have been some sort of error with the structure. In this
2502 * case we assume that an error was already generated on this line of
2503 * code for the structure. There is no need to generate an additional,
2504 * confusing error.
2505 */
2506 assert(this->type->specifier->structure == NULL || decl_type != NULL
2507 || state->error);
2508 if (this->type->specifier->structure == NULL) {
2509 if (decl_type != NULL) {
2510 _mesa_glsl_warning(&loc, state, "empty declaration");
2511 } else {
2512 _mesa_glsl_error(&loc, state,
2513 "invalid type `%s' in empty declaration",
2514 type_name);
2515 }
2516 }
2517 }
2518
2519 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
2520 const struct glsl_type *var_type;
2521 ir_variable *var;
2522
2523 /* FINISHME: Emit a warning if a variable declaration shadows a
2524 * FINISHME: declaration at a higher scope.
2525 */
2526
2527 if ((decl_type == NULL) || decl_type->is_void()) {
2528 if (type_name != NULL) {
2529 _mesa_glsl_error(& loc, state,
2530 "invalid type `%s' in declaration of `%s'",
2531 type_name, decl->identifier);
2532 } else {
2533 _mesa_glsl_error(& loc, state,
2534 "invalid type in declaration of `%s'",
2535 decl->identifier);
2536 }
2537 continue;
2538 }
2539
2540 if (decl->is_array) {
2541 var_type = process_array_type(&loc, decl_type, decl->array_size,
2542 state);
2543 if (var_type->is_error())
2544 continue;
2545 } else {
2546 var_type = decl_type;
2547 }
2548
2549 var = new(ctx) ir_variable(var_type, decl->identifier, ir_var_auto);
2550
2551 /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
2552 *
2553 * "Global variables can only use the qualifiers const,
2554 * attribute, uni form, or varying. Only one may be
2555 * specified.
2556 *
2557 * Local variables can only use the qualifier const."
2558 *
2559 * This is relaxed in GLSL 1.30 and GLSL ES 3.00. It is also relaxed by
2560 * any extension that adds the 'layout' keyword.
2561 */
2562 if (!state->is_version(130, 300)
2563 && !state->ARB_explicit_attrib_location_enable
2564 && !state->ARB_fragment_coord_conventions_enable) {
2565 if (this->type->qualifier.flags.q.out) {
2566 _mesa_glsl_error(& loc, state,
2567 "`out' qualifier in declaration of `%s' "
2568 "only valid for function parameters in %s.",
2569 decl->identifier, state->get_version_string());
2570 }
2571 if (this->type->qualifier.flags.q.in) {
2572 _mesa_glsl_error(& loc, state,
2573 "`in' qualifier in declaration of `%s' "
2574 "only valid for function parameters in %s.",
2575 decl->identifier, state->get_version_string());
2576 }
2577 /* FINISHME: Test for other invalid qualifiers. */
2578 }
2579
2580 apply_type_qualifier_to_variable(& this->type->qualifier, var, state,
2581 & loc, this->ubo_qualifiers_valid, false);
2582
2583 if (this->type->qualifier.flags.q.invariant) {
2584 if ((state->target == vertex_shader) &&
2585 var->mode != ir_var_shader_out) {
2586 _mesa_glsl_error(& loc, state,
2587 "`%s' cannot be marked invariant, vertex shader "
2588 "outputs only\n", var->name);
2589 } else if ((state->target == fragment_shader) &&
2590 var->mode != ir_var_shader_in) {
2591 /* FINISHME: Note that this doesn't work for invariant on
2592 * a function signature inval
2593 */
2594 _mesa_glsl_error(& loc, state,
2595 "`%s' cannot be marked invariant, fragment shader "
2596 "inputs only\n", var->name);
2597 }
2598 }
2599
2600 if (state->current_function != NULL) {
2601 const char *mode = NULL;
2602 const char *extra = "";
2603
2604 /* There is no need to check for 'inout' here because the parser will
2605 * only allow that in function parameter lists.
2606 */
2607 if (this->type->qualifier.flags.q.attribute) {
2608 mode = "attribute";
2609 } else if (this->type->qualifier.flags.q.uniform) {
2610 mode = "uniform";
2611 } else if (this->type->qualifier.flags.q.varying) {
2612 mode = "varying";
2613 } else if (this->type->qualifier.flags.q.in) {
2614 mode = "in";
2615 extra = " or in function parameter list";
2616 } else if (this->type->qualifier.flags.q.out) {
2617 mode = "out";
2618 extra = " or in function parameter list";
2619 }
2620
2621 if (mode) {
2622 _mesa_glsl_error(& loc, state,
2623 "%s variable `%s' must be declared at "
2624 "global scope%s",
2625 mode, var->name, extra);
2626 }
2627 } else if (var->mode == ir_var_shader_in) {
2628 var->read_only = true;
2629
2630 if (state->target == vertex_shader) {
2631 bool error_emitted = false;
2632
2633 /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
2634 *
2635 * "Vertex shader inputs can only be float, floating-point
2636 * vectors, matrices, signed and unsigned integers and integer
2637 * vectors. Vertex shader inputs can also form arrays of these
2638 * types, but not structures."
2639 *
2640 * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
2641 *
2642 * "Vertex shader inputs can only be float, floating-point
2643 * vectors, matrices, signed and unsigned integers and integer
2644 * vectors. They cannot be arrays or structures."
2645 *
2646 * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
2647 *
2648 * "The attribute qualifier can be used only with float,
2649 * floating-point vectors, and matrices. Attribute variables
2650 * cannot be declared as arrays or structures."
2651 *
2652 * From page 33 (page 39 of the PDF) of the GLSL ES 3.00 spec:
2653 *
2654 * "Vertex shader inputs can only be float, floating-point
2655 * vectors, matrices, signed and unsigned integers and integer
2656 * vectors. Vertex shader inputs cannot be arrays or
2657 * structures."
2658 */
2659 const glsl_type *check_type = var->type->is_array()
2660 ? var->type->fields.array : var->type;
2661
2662 switch (check_type->base_type) {
2663 case GLSL_TYPE_FLOAT:
2664 break;
2665 case GLSL_TYPE_UINT:
2666 case GLSL_TYPE_INT:
2667 if (state->is_version(120, 300))
2668 break;
2669 /* FALLTHROUGH */
2670 default:
2671 _mesa_glsl_error(& loc, state,
2672 "vertex shader input / attribute cannot have "
2673 "type %s`%s'",
2674 var->type->is_array() ? "array of " : "",
2675 check_type->name);
2676 error_emitted = true;
2677 }
2678
2679 if (!error_emitted && var->type->is_array() &&
2680 !state->check_version(140, 0, &loc,
2681 "vertex shader input / attribute "
2682 "cannot have array type")) {
2683 error_emitted = true;
2684 }
2685 }
2686 }
2687
2688 /* Integer fragment inputs must be qualified with 'flat'. In GLSL ES,
2689 * so must integer vertex outputs.
2690 *
2691 * From section 4.3.4 ("Inputs") of the GLSL 1.50 spec:
2692 * "Fragment shader inputs that are signed or unsigned integers or
2693 * integer vectors must be qualified with the interpolation qualifier
2694 * flat."
2695 *
2696 * From section 4.3.4 ("Input Variables") of the GLSL 3.00 ES spec:
2697 * "Fragment shader inputs that are, or contain, signed or unsigned
2698 * integers or integer vectors must be qualified with the
2699 * interpolation qualifier flat."
2700 *
2701 * From section 4.3.6 ("Output Variables") of the GLSL 3.00 ES spec:
2702 * "Vertex shader outputs that are, or contain, signed or unsigned
2703 * integers or integer vectors must be qualified with the
2704 * interpolation qualifier flat."
2705 *
2706 * Note that prior to GLSL 1.50, this requirement applied to vertex
2707 * outputs rather than fragment inputs. That creates problems in the
2708 * presence of geometry shaders, so we adopt the GLSL 1.50 rule for all
2709 * desktop GL shaders. For GLSL ES shaders, we follow the spec and
2710 * apply the restriction to both vertex outputs and fragment inputs.
2711 *
2712 * Note also that the desktop GLSL specs are missing the text "or
2713 * contain"; this is presumably an oversight, since there is no
2714 * reasonable way to interpolate a fragment shader input that contains
2715 * an integer.
2716 */
2717 if (state->is_version(130, 300) &&
2718 var->type->contains_integer() &&
2719 var->interpolation != INTERP_QUALIFIER_FLAT &&
2720 ((state->target == fragment_shader && var->mode == ir_var_shader_in)
2721 || (state->target == vertex_shader && var->mode == ir_var_shader_out
2722 && state->es_shader))) {
2723 const char *var_type = (state->target == vertex_shader) ?
2724 "vertex output" : "fragment input";
2725 _mesa_glsl_error(&loc, state, "If a %s is (or contains) "
2726 "an integer, then it must be qualified with 'flat'",
2727 var_type);
2728 }
2729
2730
2731 /* Interpolation qualifiers cannot be applied to 'centroid' and
2732 * 'centroid varying'.
2733 *
2734 * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
2735 * "interpolation qualifiers may only precede the qualifiers in,
2736 * centroid in, out, or centroid out in a declaration. They do not apply
2737 * to the deprecated storage qualifiers varying or centroid varying."
2738 *
2739 * These deprecated storage qualifiers do not exist in GLSL ES 3.00.
2740 */
2741 if (state->is_version(130, 0)
2742 && this->type->qualifier.has_interpolation()
2743 && this->type->qualifier.flags.q.varying) {
2744
2745 const char *i = this->type->qualifier.interpolation_string();
2746 assert(i != NULL);
2747 const char *s;
2748 if (this->type->qualifier.flags.q.centroid)
2749 s = "centroid varying";
2750 else
2751 s = "varying";
2752
2753 _mesa_glsl_error(&loc, state,
2754 "qualifier '%s' cannot be applied to the "
2755 "deprecated storage qualifier '%s'", i, s);
2756 }
2757
2758
2759 /* Interpolation qualifiers can only apply to vertex shader outputs and
2760 * fragment shader inputs.
2761 *
2762 * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
2763 * "Outputs from a vertex shader (out) and inputs to a fragment
2764 * shader (in) can be further qualified with one or more of these
2765 * interpolation qualifiers"
2766 *
2767 * From page 31 (page 37 of the PDF) of the GLSL ES 3.00 spec:
2768 * "These interpolation qualifiers may only precede the qualifiers
2769 * in, centroid in, out, or centroid out in a declaration. They do
2770 * not apply to inputs into a vertex shader or outputs from a
2771 * fragment shader."
2772 */
2773 if (state->is_version(130, 300)
2774 && this->type->qualifier.has_interpolation()) {
2775
2776 const char *i = this->type->qualifier.interpolation_string();
2777 assert(i != NULL);
2778
2779 switch (state->target) {
2780 case vertex_shader:
2781 if (this->type->qualifier.flags.q.in) {
2782 _mesa_glsl_error(&loc, state,
2783 "qualifier '%s' cannot be applied to vertex "
2784 "shader inputs", i);
2785 }
2786 break;
2787 case fragment_shader:
2788 if (this->type->qualifier.flags.q.out) {
2789 _mesa_glsl_error(&loc, state,
2790 "qualifier '%s' cannot be applied to fragment "
2791 "shader outputs", i);
2792 }
2793 break;
2794 default:
2795 assert(0);
2796 }
2797 }
2798
2799
2800 /* From section 4.3.4 of the GLSL 1.30 spec:
2801 * "It is an error to use centroid in in a vertex shader."
2802 *
2803 * From section 4.3.4 of the GLSL ES 3.00 spec:
2804 * "It is an error to use centroid in or interpolation qualifiers in
2805 * a vertex shader input."
2806 */
2807 if (state->is_version(130, 300)
2808 && this->type->qualifier.flags.q.centroid
2809 && this->type->qualifier.flags.q.in
2810 && state->target == vertex_shader) {
2811
2812 _mesa_glsl_error(&loc, state,
2813 "'centroid in' cannot be used in a vertex shader");
2814 }
2815
2816
2817 /* Precision qualifiers exists only in GLSL versions 1.00 and >= 1.30.
2818 */
2819 if (this->type->specifier->precision != ast_precision_none) {
2820 state->check_precision_qualifiers_allowed(&loc);
2821 }
2822
2823
2824 /* Precision qualifiers only apply to floating point and integer types.
2825 *
2826 * From section 4.5.2 of the GLSL 1.30 spec:
2827 * "Any floating point or any integer declaration can have the type
2828 * preceded by one of these precision qualifiers [...] Literal
2829 * constants do not have precision qualifiers. Neither do Boolean
2830 * variables.
2831 *
2832 * In GLSL ES, sampler types are also allowed.
2833 *
2834 * From page 87 of the GLSL ES spec:
2835 * "RESOLUTION: Allow sampler types to take a precision qualifier."
2836 */
2837 if (this->type->specifier->precision != ast_precision_none
2838 && !var->type->is_float()
2839 && !var->type->is_integer()
2840 && !(var->type->is_sampler() && state->es_shader)
2841 && !(var->type->is_array()
2842 && (var->type->fields.array->is_float()
2843 || var->type->fields.array->is_integer()))) {
2844
2845 _mesa_glsl_error(&loc, state,
2846 "precision qualifiers apply only to floating point"
2847 "%s types", state->es_shader ? ", integer, and sampler"
2848 : "and integer");
2849 }
2850
2851 /* From page 17 (page 23 of the PDF) of the GLSL 1.20 spec:
2852 *
2853 * "[Sampler types] can only be declared as function
2854 * parameters or uniform variables (see Section 4.3.5
2855 * "Uniform")".
2856 */
2857 if (var_type->contains_sampler() &&
2858 !this->type->qualifier.flags.q.uniform) {
2859 _mesa_glsl_error(&loc, state, "samplers must be declared uniform");
2860 }
2861
2862 /* Process the initializer and add its instructions to a temporary
2863 * list. This list will be added to the instruction stream (below) after
2864 * the declaration is added. This is done because in some cases (such as
2865 * redeclarations) the declaration may not actually be added to the
2866 * instruction stream.
2867 */
2868 exec_list initializer_instructions;
2869 ir_variable *earlier = get_variable_being_redeclared(var, decl, state);
2870
2871 if (decl->initializer != NULL) {
2872 result = process_initializer((earlier == NULL) ? var : earlier,
2873 decl, this->type,
2874 &initializer_instructions, state);
2875 }
2876
2877 /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
2878 *
2879 * "It is an error to write to a const variable outside of
2880 * its declaration, so they must be initialized when
2881 * declared."
2882 */
2883 if (this->type->qualifier.flags.q.constant && decl->initializer == NULL) {
2884 _mesa_glsl_error(& loc, state,
2885 "const declaration of `%s' must be initialized",
2886 decl->identifier);
2887 }
2888
2889 /* If the declaration is not a redeclaration, there are a few additional
2890 * semantic checks that must be applied. In addition, variable that was
2891 * created for the declaration should be added to the IR stream.
2892 */
2893 if (earlier == NULL) {
2894 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
2895 *
2896 * "Identifiers starting with "gl_" are reserved for use by
2897 * OpenGL, and may not be declared in a shader as either a
2898 * variable or a function."
2899 */
2900 if (strncmp(decl->identifier, "gl_", 3) == 0)
2901 _mesa_glsl_error(& loc, state,
2902 "identifier `%s' uses reserved `gl_' prefix",
2903 decl->identifier);
2904 else if (strstr(decl->identifier, "__")) {
2905 /* From page 14 (page 20 of the PDF) of the GLSL 1.10
2906 * spec:
2907 *
2908 * "In addition, all identifiers containing two
2909 * consecutive underscores (__) are reserved as
2910 * possible future keywords."
2911 */
2912 _mesa_glsl_error(& loc, state,
2913 "identifier `%s' uses reserved `__' string",
2914 decl->identifier);
2915 }
2916
2917 /* Add the variable to the symbol table. Note that the initializer's
2918 * IR was already processed earlier (though it hasn't been emitted
2919 * yet), without the variable in scope.
2920 *
2921 * This differs from most C-like languages, but it follows the GLSL
2922 * specification. From page 28 (page 34 of the PDF) of the GLSL 1.50
2923 * spec:
2924 *
2925 * "Within a declaration, the scope of a name starts immediately
2926 * after the initializer if present or immediately after the name
2927 * being declared if not."
2928 */
2929 if (!state->symbols->add_variable(var)) {
2930 YYLTYPE loc = this->get_location();
2931 _mesa_glsl_error(&loc, state, "name `%s' already taken in the "
2932 "current scope", decl->identifier);
2933 continue;
2934 }
2935
2936 /* Push the variable declaration to the top. It means that all the
2937 * variable declarations will appear in a funny last-to-first order,
2938 * but otherwise we run into trouble if a function is prototyped, a
2939 * global var is decled, then the function is defined with usage of
2940 * the global var. See glslparsertest's CorrectModule.frag.
2941 */
2942 instructions->push_head(var);
2943 }
2944
2945 instructions->append_list(&initializer_instructions);
2946 }
2947
2948
2949 /* Generally, variable declarations do not have r-values. However,
2950 * one is used for the declaration in
2951 *
2952 * while (bool b = some_condition()) {
2953 * ...
2954 * }
2955 *
2956 * so we return the rvalue from the last seen declaration here.
2957 */
2958 return result;
2959 }
2960
2961
2962 ir_rvalue *
2963 ast_parameter_declarator::hir(exec_list *instructions,
2964 struct _mesa_glsl_parse_state *state)
2965 {
2966 void *ctx = state;
2967 const struct glsl_type *type;
2968 const char *name = NULL;
2969 YYLTYPE loc = this->get_location();
2970
2971 type = this->type->specifier->glsl_type(& name, state);
2972
2973 if (type == NULL) {
2974 if (name != NULL) {
2975 _mesa_glsl_error(& loc, state,
2976 "invalid type `%s' in declaration of `%s'",
2977 name, this->identifier);
2978 } else {
2979 _mesa_glsl_error(& loc, state,
2980 "invalid type in declaration of `%s'",
2981 this->identifier);
2982 }
2983
2984 type = glsl_type::error_type;
2985 }
2986
2987 /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
2988 *
2989 * "Functions that accept no input arguments need not use void in the
2990 * argument list because prototypes (or definitions) are required and
2991 * therefore there is no ambiguity when an empty argument list "( )" is
2992 * declared. The idiom "(void)" as a parameter list is provided for
2993 * convenience."
2994 *
2995 * Placing this check here prevents a void parameter being set up
2996 * for a function, which avoids tripping up checks for main taking
2997 * parameters and lookups of an unnamed symbol.
2998 */
2999 if (type->is_void()) {
3000 if (this->identifier != NULL)
3001 _mesa_glsl_error(& loc, state,
3002 "named parameter cannot have type `void'");
3003
3004 is_void = true;
3005 return NULL;
3006 }
3007
3008 if (formal_parameter && (this->identifier == NULL)) {
3009 _mesa_glsl_error(& loc, state, "formal parameter lacks a name");
3010 return NULL;
3011 }
3012
3013 /* This only handles "vec4 foo[..]". The earlier specifier->glsl_type(...)
3014 * call already handled the "vec4[..] foo" case.
3015 */
3016 if (this->is_array) {
3017 type = process_array_type(&loc, type, this->array_size, state);
3018 }
3019
3020 if (!type->is_error() && type->array_size() == 0) {
3021 _mesa_glsl_error(&loc, state, "arrays passed as parameters must have "
3022 "a declared size.");
3023 type = glsl_type::error_type;
3024 }
3025
3026 is_void = false;
3027 ir_variable *var = new(ctx)
3028 ir_variable(type, this->identifier, ir_var_function_in);
3029
3030 /* Apply any specified qualifiers to the parameter declaration. Note that
3031 * for function parameters the default mode is 'in'.
3032 */
3033 apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc,
3034 false, true);
3035
3036 /* From page 17 (page 23 of the PDF) of the GLSL 1.20 spec:
3037 *
3038 * "Samplers cannot be treated as l-values; hence cannot be used
3039 * as out or inout function parameters, nor can they be assigned
3040 * into."
3041 */
3042 if ((var->mode == ir_var_function_inout || var->mode == ir_var_function_out)
3043 && type->contains_sampler()) {
3044 _mesa_glsl_error(&loc, state, "out and inout parameters cannot contain samplers");
3045 type = glsl_type::error_type;
3046 }
3047
3048 /* From page 39 (page 45 of the PDF) of the GLSL 1.10 spec:
3049 *
3050 * "When calling a function, expressions that do not evaluate to
3051 * l-values cannot be passed to parameters declared as out or inout."
3052 *
3053 * From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
3054 *
3055 * "Other binary or unary expressions, non-dereferenced arrays,
3056 * function names, swizzles with repeated fields, and constants
3057 * cannot be l-values."
3058 *
3059 * So for GLSL 1.10, passing an array as an out or inout parameter is not
3060 * allowed. This restriction is removed in GLSL 1.20, and in GLSL ES.
3061 */
3062 if ((var->mode == ir_var_function_inout || var->mode == ir_var_function_out)
3063 && type->is_array()
3064 && !state->check_version(120, 100, &loc,
3065 "Arrays cannot be out or inout parameters")) {
3066 type = glsl_type::error_type;
3067 }
3068
3069 instructions->push_tail(var);
3070
3071 /* Parameter declarations do not have r-values.
3072 */
3073 return NULL;
3074 }
3075
3076
3077 void
3078 ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters,
3079 bool formal,
3080 exec_list *ir_parameters,
3081 _mesa_glsl_parse_state *state)
3082 {
3083 ast_parameter_declarator *void_param = NULL;
3084 unsigned count = 0;
3085
3086 foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) {
3087 param->formal_parameter = formal;
3088 param->hir(ir_parameters, state);
3089
3090 if (param->is_void)
3091 void_param = param;
3092
3093 count++;
3094 }
3095
3096 if ((void_param != NULL) && (count > 1)) {
3097 YYLTYPE loc = void_param->get_location();
3098
3099 _mesa_glsl_error(& loc, state,
3100 "`void' parameter must be only parameter");
3101 }
3102 }
3103
3104
3105 void
3106 emit_function(_mesa_glsl_parse_state *state, ir_function *f)
3107 {
3108 /* IR invariants disallow function declarations or definitions
3109 * nested within other function definitions. But there is no
3110 * requirement about the relative order of function declarations
3111 * and definitions with respect to one another. So simply insert
3112 * the new ir_function block at the end of the toplevel instruction
3113 * list.
3114 */
3115 state->toplevel_ir->push_tail(f);
3116 }
3117
3118
3119 ir_rvalue *
3120 ast_function::hir(exec_list *instructions,
3121 struct _mesa_glsl_parse_state *state)
3122 {
3123 void *ctx = state;
3124 ir_function *f = NULL;
3125 ir_function_signature *sig = NULL;
3126 exec_list hir_parameters;
3127
3128 const char *const name = identifier;
3129
3130 /* New functions are always added to the top-level IR instruction stream,
3131 * so this instruction list pointer is ignored. See also emit_function
3132 * (called below).
3133 */
3134 (void) instructions;
3135
3136 /* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec,
3137 *
3138 * "Function declarations (prototypes) cannot occur inside of functions;
3139 * they must be at global scope, or for the built-in functions, outside
3140 * the global scope."
3141 *
3142 * From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec,
3143 *
3144 * "User defined functions may only be defined within the global scope."
3145 *
3146 * Note that this language does not appear in GLSL 1.10.
3147 */
3148 if ((state->current_function != NULL) &&
3149 state->is_version(120, 100)) {
3150 YYLTYPE loc = this->get_location();
3151 _mesa_glsl_error(&loc, state,
3152 "declaration of function `%s' not allowed within "
3153 "function body", name);
3154 }
3155
3156 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
3157 *
3158 * "Identifiers starting with "gl_" are reserved for use by
3159 * OpenGL, and may not be declared in a shader as either a
3160 * variable or a function."
3161 */
3162 if (strncmp(name, "gl_", 3) == 0) {
3163 YYLTYPE loc = this->get_location();
3164 _mesa_glsl_error(&loc, state,
3165 "identifier `%s' uses reserved `gl_' prefix", name);
3166 }
3167
3168 /* Convert the list of function parameters to HIR now so that they can be
3169 * used below to compare this function's signature with previously seen
3170 * signatures for functions with the same name.
3171 */
3172 ast_parameter_declarator::parameters_to_hir(& this->parameters,
3173 is_definition,
3174 & hir_parameters, state);
3175
3176 const char *return_type_name;
3177 const glsl_type *return_type =
3178 this->return_type->specifier->glsl_type(& return_type_name, state);
3179
3180 if (!return_type) {
3181 YYLTYPE loc = this->get_location();
3182 _mesa_glsl_error(&loc, state,
3183 "function `%s' has undeclared return type `%s'",
3184 name, return_type_name);
3185 return_type = glsl_type::error_type;
3186 }
3187
3188 /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec:
3189 * "No qualifier is allowed on the return type of a function."
3190 */
3191 if (this->return_type->has_qualifiers()) {
3192 YYLTYPE loc = this->get_location();
3193 _mesa_glsl_error(& loc, state,
3194 "function `%s' return type has qualifiers", name);
3195 }
3196
3197 /* From page 17 (page 23 of the PDF) of the GLSL 1.20 spec:
3198 *
3199 * "[Sampler types] can only be declared as function parameters
3200 * or uniform variables (see Section 4.3.5 "Uniform")".
3201 */
3202 if (return_type->contains_sampler()) {
3203 YYLTYPE loc = this->get_location();
3204 _mesa_glsl_error(&loc, state,
3205 "function `%s' return type can't contain a sampler",
3206 name);
3207 }
3208
3209 /* Verify that this function's signature either doesn't match a previously
3210 * seen signature for a function with the same name, or, if a match is found,
3211 * that the previously seen signature does not have an associated definition.
3212 */
3213 f = state->symbols->get_function(name);
3214 if (f != NULL && (state->es_shader || f->has_user_signature())) {
3215 sig = f->exact_matching_signature(&hir_parameters);
3216 if (sig != NULL) {
3217 const char *badvar = sig->qualifiers_match(&hir_parameters);
3218 if (badvar != NULL) {
3219 YYLTYPE loc = this->get_location();
3220
3221 _mesa_glsl_error(&loc, state, "function `%s' parameter `%s' "
3222 "qualifiers don't match prototype", name, badvar);
3223 }
3224
3225 if (sig->return_type != return_type) {
3226 YYLTYPE loc = this->get_location();
3227
3228 _mesa_glsl_error(&loc, state, "function `%s' return type doesn't "
3229 "match prototype", name);
3230 }
3231
3232 if (sig->is_defined) {
3233 if (is_definition) {
3234 YYLTYPE loc = this->get_location();
3235 _mesa_glsl_error(& loc, state, "function `%s' redefined", name);
3236 } else {
3237 /* We just encountered a prototype that exactly matches a
3238 * function that's already been defined. This is redundant,
3239 * and we should ignore it.
3240 */
3241 return NULL;
3242 }
3243 }
3244 }
3245 } else {
3246 f = new(ctx) ir_function(name);
3247 if (!state->symbols->add_function(f)) {
3248 /* This function name shadows a non-function use of the same name. */
3249 YYLTYPE loc = this->get_location();
3250
3251 _mesa_glsl_error(&loc, state, "function name `%s' conflicts with "
3252 "non-function", name);
3253 return NULL;
3254 }
3255
3256 emit_function(state, f);
3257 }
3258
3259 /* Verify the return type of main() */
3260 if (strcmp(name, "main") == 0) {
3261 if (! return_type->is_void()) {
3262 YYLTYPE loc = this->get_location();
3263
3264 _mesa_glsl_error(& loc, state, "main() must return void");
3265 }
3266
3267 if (!hir_parameters.is_empty()) {
3268 YYLTYPE loc = this->get_location();
3269
3270 _mesa_glsl_error(& loc, state, "main() must not take any parameters");
3271 }
3272 }
3273
3274 /* Finish storing the information about this new function in its signature.
3275 */
3276 if (sig == NULL) {
3277 sig = new(ctx) ir_function_signature(return_type);
3278 f->add_signature(sig);
3279 }
3280
3281 sig->replace_parameters(&hir_parameters);
3282 signature = sig;
3283
3284 /* Function declarations (prototypes) do not have r-values.
3285 */
3286 return NULL;
3287 }
3288
3289
3290 ir_rvalue *
3291 ast_function_definition::hir(exec_list *instructions,
3292 struct _mesa_glsl_parse_state *state)
3293 {
3294 prototype->is_definition = true;
3295 prototype->hir(instructions, state);
3296
3297 ir_function_signature *signature = prototype->signature;
3298 if (signature == NULL)
3299 return NULL;
3300
3301 assert(state->current_function == NULL);
3302 state->current_function = signature;
3303 state->found_return = false;
3304
3305 /* Duplicate parameters declared in the prototype as concrete variables.
3306 * Add these to the symbol table.
3307 */
3308 state->symbols->push_scope();
3309 foreach_iter(exec_list_iterator, iter, signature->parameters) {
3310 ir_variable *const var = ((ir_instruction *) iter.get())->as_variable();
3311
3312 assert(var != NULL);
3313
3314 /* The only way a parameter would "exist" is if two parameters have
3315 * the same name.
3316 */
3317 if (state->symbols->name_declared_this_scope(var->name)) {
3318 YYLTYPE loc = this->get_location();
3319
3320 _mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name);
3321 } else {
3322 state->symbols->add_variable(var);
3323 }
3324 }
3325
3326 /* Convert the body of the function to HIR. */
3327 this->body->hir(&signature->body, state);
3328 signature->is_defined = true;
3329
3330 state->symbols->pop_scope();
3331
3332 assert(state->current_function == signature);
3333 state->current_function = NULL;
3334
3335 if (!signature->return_type->is_void() && !state->found_return) {
3336 YYLTYPE loc = this->get_location();
3337 _mesa_glsl_error(& loc, state, "function `%s' has non-void return type "
3338 "%s, but no return statement",
3339 signature->function_name(),
3340 signature->return_type->name);
3341 }
3342
3343 /* Function definitions do not have r-values.
3344 */
3345 return NULL;
3346 }
3347
3348
3349 ir_rvalue *
3350 ast_jump_statement::hir(exec_list *instructions,
3351 struct _mesa_glsl_parse_state *state)
3352 {
3353 void *ctx = state;
3354
3355 switch (mode) {
3356 case ast_return: {
3357 ir_return *inst;
3358 assert(state->current_function);
3359
3360 if (opt_return_value) {
3361 ir_rvalue *const ret = opt_return_value->hir(instructions, state);
3362
3363 /* The value of the return type can be NULL if the shader says
3364 * 'return foo();' and foo() is a function that returns void.
3365 *
3366 * NOTE: The GLSL spec doesn't say that this is an error. The type
3367 * of the return value is void. If the return type of the function is
3368 * also void, then this should compile without error. Seriously.
3369 */
3370 const glsl_type *const ret_type =
3371 (ret == NULL) ? glsl_type::void_type : ret->type;
3372
3373 /* Implicit conversions are not allowed for return values. */
3374 if (state->current_function->return_type != ret_type) {
3375 YYLTYPE loc = this->get_location();
3376
3377 _mesa_glsl_error(& loc, state,
3378 "`return' with wrong type %s, in function `%s' "
3379 "returning %s",
3380 ret_type->name,
3381 state->current_function->function_name(),
3382 state->current_function->return_type->name);
3383 }
3384
3385 inst = new(ctx) ir_return(ret);
3386 } else {
3387 if (state->current_function->return_type->base_type !=
3388 GLSL_TYPE_VOID) {
3389 YYLTYPE loc = this->get_location();
3390
3391 _mesa_glsl_error(& loc, state,
3392 "`return' with no value, in function %s returning "
3393 "non-void",
3394 state->current_function->function_name());
3395 }
3396 inst = new(ctx) ir_return;
3397 }
3398
3399 state->found_return = true;
3400 instructions->push_tail(inst);
3401 break;
3402 }
3403
3404 case ast_discard:
3405 if (state->target != fragment_shader) {
3406 YYLTYPE loc = this->get_location();
3407
3408 _mesa_glsl_error(& loc, state,
3409 "`discard' may only appear in a fragment shader");
3410 }
3411 instructions->push_tail(new(ctx) ir_discard);
3412 break;
3413
3414 case ast_break:
3415 case ast_continue:
3416 if (mode == ast_continue &&
3417 state->loop_nesting_ast == NULL) {
3418 YYLTYPE loc = this->get_location();
3419
3420 _mesa_glsl_error(& loc, state,
3421 "continue may only appear in a loop");
3422 } else if (mode == ast_break &&
3423 state->loop_nesting_ast == NULL &&
3424 state->switch_state.switch_nesting_ast == NULL) {
3425 YYLTYPE loc = this->get_location();
3426
3427 _mesa_glsl_error(& loc, state,
3428 "break may only appear in a loop or a switch");
3429 } else {
3430 /* For a loop, inline the for loop expression again,
3431 * since we don't know where near the end of
3432 * the loop body the normal copy of it
3433 * is going to be placed.
3434 */
3435 if (state->loop_nesting_ast != NULL &&
3436 mode == ast_continue &&
3437 state->loop_nesting_ast->rest_expression) {
3438 state->loop_nesting_ast->rest_expression->hir(instructions,
3439 state);
3440 }
3441
3442 if (state->switch_state.is_switch_innermost &&
3443 mode == ast_break) {
3444 /* Force break out of switch by setting is_break switch state.
3445 */
3446 ir_variable *const is_break_var = state->switch_state.is_break_var;
3447 ir_dereference_variable *const deref_is_break_var =
3448 new(ctx) ir_dereference_variable(is_break_var);
3449 ir_constant *const true_val = new(ctx) ir_constant(true);
3450 ir_assignment *const set_break_var =
3451 new(ctx) ir_assignment(deref_is_break_var, true_val);
3452
3453 instructions->push_tail(set_break_var);
3454 }
3455 else {
3456 ir_loop_jump *const jump =
3457 new(ctx) ir_loop_jump((mode == ast_break)
3458 ? ir_loop_jump::jump_break
3459 : ir_loop_jump::jump_continue);
3460 instructions->push_tail(jump);
3461 }
3462 }
3463
3464 break;
3465 }
3466
3467 /* Jump instructions do not have r-values.
3468 */
3469 return NULL;
3470 }
3471
3472
3473 ir_rvalue *
3474 ast_selection_statement::hir(exec_list *instructions,
3475 struct _mesa_glsl_parse_state *state)
3476 {
3477 void *ctx = state;
3478
3479 ir_rvalue *const condition = this->condition->hir(instructions, state);
3480
3481 /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
3482 *
3483 * "Any expression whose type evaluates to a Boolean can be used as the
3484 * conditional expression bool-expression. Vector types are not accepted
3485 * as the expression to if."
3486 *
3487 * The checks are separated so that higher quality diagnostics can be
3488 * generated for cases where both rules are violated.
3489 */
3490 if (!condition->type->is_boolean() || !condition->type->is_scalar()) {
3491 YYLTYPE loc = this->condition->get_location();
3492
3493 _mesa_glsl_error(& loc, state, "if-statement condition must be scalar "
3494 "boolean");
3495 }
3496
3497 ir_if *const stmt = new(ctx) ir_if(condition);
3498
3499 if (then_statement != NULL) {
3500 state->symbols->push_scope();
3501 then_statement->hir(& stmt->then_instructions, state);
3502 state->symbols->pop_scope();
3503 }
3504
3505 if (else_statement != NULL) {
3506 state->symbols->push_scope();
3507 else_statement->hir(& stmt->else_instructions, state);
3508 state->symbols->pop_scope();
3509 }
3510
3511 instructions->push_tail(stmt);
3512
3513 /* if-statements do not have r-values.
3514 */
3515 return NULL;
3516 }
3517
3518
3519 ir_rvalue *
3520 ast_switch_statement::hir(exec_list *instructions,
3521 struct _mesa_glsl_parse_state *state)
3522 {
3523 void *ctx = state;
3524
3525 ir_rvalue *const test_expression =
3526 this->test_expression->hir(instructions, state);
3527
3528 /* From page 66 (page 55 of the PDF) of the GLSL 1.50 spec:
3529 *
3530 * "The type of init-expression in a switch statement must be a
3531 * scalar integer."
3532 */
3533 if (!test_expression->type->is_scalar() ||
3534 !test_expression->type->is_integer()) {
3535 YYLTYPE loc = this->test_expression->get_location();
3536
3537 _mesa_glsl_error(& loc,
3538 state,
3539 "switch-statement expression must be scalar "
3540 "integer");
3541 }
3542
3543 /* Track the switch-statement nesting in a stack-like manner.
3544 */
3545 struct glsl_switch_state saved = state->switch_state;
3546
3547 state->switch_state.is_switch_innermost = true;
3548 state->switch_state.switch_nesting_ast = this;
3549 state->switch_state.labels_ht = hash_table_ctor(0, hash_table_pointer_hash,
3550 hash_table_pointer_compare);
3551 state->switch_state.previous_default = NULL;
3552
3553 /* Initalize is_fallthru state to false.
3554 */
3555 ir_rvalue *const is_fallthru_val = new (ctx) ir_constant(false);
3556 state->switch_state.is_fallthru_var =
3557 new(ctx) ir_variable(glsl_type::bool_type,
3558 "switch_is_fallthru_tmp",
3559 ir_var_temporary);
3560 instructions->push_tail(state->switch_state.is_fallthru_var);
3561
3562 ir_dereference_variable *deref_is_fallthru_var =
3563 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
3564 instructions->push_tail(new(ctx) ir_assignment(deref_is_fallthru_var,
3565 is_fallthru_val));
3566
3567 /* Initalize is_break state to false.
3568 */
3569 ir_rvalue *const is_break_val = new (ctx) ir_constant(false);
3570 state->switch_state.is_break_var = new(ctx) ir_variable(glsl_type::bool_type,
3571 "switch_is_break_tmp",
3572 ir_var_temporary);
3573 instructions->push_tail(state->switch_state.is_break_var);
3574
3575 ir_dereference_variable *deref_is_break_var =
3576 new(ctx) ir_dereference_variable(state->switch_state.is_break_var);
3577 instructions->push_tail(new(ctx) ir_assignment(deref_is_break_var,
3578 is_break_val));
3579
3580 /* Cache test expression.
3581 */
3582 test_to_hir(instructions, state);
3583
3584 /* Emit code for body of switch stmt.
3585 */
3586 body->hir(instructions, state);
3587
3588 hash_table_dtor(state->switch_state.labels_ht);
3589
3590 state->switch_state = saved;
3591
3592 /* Switch statements do not have r-values. */
3593 return NULL;
3594 }
3595
3596
3597 void
3598 ast_switch_statement::test_to_hir(exec_list *instructions,
3599 struct _mesa_glsl_parse_state *state)
3600 {
3601 void *ctx = state;
3602
3603 /* Cache value of test expression. */
3604 ir_rvalue *const test_val =
3605 test_expression->hir(instructions,
3606 state);
3607
3608 state->switch_state.test_var = new(ctx) ir_variable(test_val->type,
3609 "switch_test_tmp",
3610 ir_var_temporary);
3611 ir_dereference_variable *deref_test_var =
3612 new(ctx) ir_dereference_variable(state->switch_state.test_var);
3613
3614 instructions->push_tail(state->switch_state.test_var);
3615 instructions->push_tail(new(ctx) ir_assignment(deref_test_var, test_val));
3616 }
3617
3618
3619 ir_rvalue *
3620 ast_switch_body::hir(exec_list *instructions,
3621 struct _mesa_glsl_parse_state *state)
3622 {
3623 if (stmts != NULL)
3624 stmts->hir(instructions, state);
3625
3626 /* Switch bodies do not have r-values. */
3627 return NULL;
3628 }
3629
3630 ir_rvalue *
3631 ast_case_statement_list::hir(exec_list *instructions,
3632 struct _mesa_glsl_parse_state *state)
3633 {
3634 foreach_list_typed (ast_case_statement, case_stmt, link, & this->cases)
3635 case_stmt->hir(instructions, state);
3636
3637 /* Case statements do not have r-values. */
3638 return NULL;
3639 }
3640
3641 ir_rvalue *
3642 ast_case_statement::hir(exec_list *instructions,
3643 struct _mesa_glsl_parse_state *state)
3644 {
3645 labels->hir(instructions, state);
3646
3647 /* Conditionally set fallthru state based on break state. */
3648 ir_constant *const false_val = new(state) ir_constant(false);
3649 ir_dereference_variable *const deref_is_fallthru_var =
3650 new(state) ir_dereference_variable(state->switch_state.is_fallthru_var);
3651 ir_dereference_variable *const deref_is_break_var =
3652 new(state) ir_dereference_variable(state->switch_state.is_break_var);
3653 ir_assignment *const reset_fallthru_on_break =
3654 new(state) ir_assignment(deref_is_fallthru_var,
3655 false_val,
3656 deref_is_break_var);
3657 instructions->push_tail(reset_fallthru_on_break);
3658
3659 /* Guard case statements depending on fallthru state. */
3660 ir_dereference_variable *const deref_fallthru_guard =
3661 new(state) ir_dereference_variable(state->switch_state.is_fallthru_var);
3662 ir_if *const test_fallthru = new(state) ir_if(deref_fallthru_guard);
3663
3664 foreach_list_typed (ast_node, stmt, link, & this->stmts)
3665 stmt->hir(& test_fallthru->then_instructions, state);
3666
3667 instructions->push_tail(test_fallthru);
3668
3669 /* Case statements do not have r-values. */
3670 return NULL;
3671 }
3672
3673
3674 ir_rvalue *
3675 ast_case_label_list::hir(exec_list *instructions,
3676 struct _mesa_glsl_parse_state *state)
3677 {
3678 foreach_list_typed (ast_case_label, label, link, & this->labels)
3679 label->hir(instructions, state);
3680
3681 /* Case labels do not have r-values. */
3682 return NULL;
3683 }
3684
3685 ir_rvalue *
3686 ast_case_label::hir(exec_list *instructions,
3687 struct _mesa_glsl_parse_state *state)
3688 {
3689 void *ctx = state;
3690
3691 ir_dereference_variable *deref_fallthru_var =
3692 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
3693
3694 ir_rvalue *const true_val = new(ctx) ir_constant(true);
3695
3696 /* If not default case, ... */
3697 if (this->test_value != NULL) {
3698 /* Conditionally set fallthru state based on
3699 * comparison of cached test expression value to case label.
3700 */
3701 ir_rvalue *const label_rval = this->test_value->hir(instructions, state);
3702 ir_constant *label_const = label_rval->constant_expression_value();
3703
3704 if (!label_const) {
3705 YYLTYPE loc = this->test_value->get_location();
3706
3707 _mesa_glsl_error(& loc, state,
3708 "switch statement case label must be a "
3709 "constant expression");
3710
3711 /* Stuff a dummy value in to allow processing to continue. */
3712 label_const = new(ctx) ir_constant(0);
3713 } else {
3714 ast_expression *previous_label = (ast_expression *)
3715 hash_table_find(state->switch_state.labels_ht,
3716 (void *)(uintptr_t)label_const->value.u[0]);
3717
3718 if (previous_label) {
3719 YYLTYPE loc = this->test_value->get_location();
3720 _mesa_glsl_error(& loc, state,
3721 "duplicate case value");
3722
3723 loc = previous_label->get_location();
3724 _mesa_glsl_error(& loc, state,
3725 "this is the previous case label");
3726 } else {
3727 hash_table_insert(state->switch_state.labels_ht,
3728 this->test_value,
3729 (void *)(uintptr_t)label_const->value.u[0]);
3730 }
3731 }
3732
3733 ir_dereference_variable *deref_test_var =
3734 new(ctx) ir_dereference_variable(state->switch_state.test_var);
3735
3736 ir_rvalue *const test_cond = new(ctx) ir_expression(ir_binop_all_equal,
3737 label_const,
3738 deref_test_var);
3739
3740 ir_assignment *set_fallthru_on_test =
3741 new(ctx) ir_assignment(deref_fallthru_var,
3742 true_val,
3743 test_cond);
3744
3745 instructions->push_tail(set_fallthru_on_test);
3746 } else { /* default case */
3747 if (state->switch_state.previous_default) {
3748 YYLTYPE loc = this->get_location();
3749 _mesa_glsl_error(& loc, state,
3750 "multiple default labels in one switch");
3751
3752 loc = state->switch_state.previous_default->get_location();
3753 _mesa_glsl_error(& loc, state,
3754 "this is the first default label");
3755 }
3756 state->switch_state.previous_default = this;
3757
3758 /* Set falltrhu state. */
3759 ir_assignment *set_fallthru =
3760 new(ctx) ir_assignment(deref_fallthru_var, true_val);
3761
3762 instructions->push_tail(set_fallthru);
3763 }
3764
3765 /* Case statements do not have r-values. */
3766 return NULL;
3767 }
3768
3769 void
3770 ast_iteration_statement::condition_to_hir(ir_loop *stmt,
3771 struct _mesa_glsl_parse_state *state)
3772 {
3773 void *ctx = state;
3774
3775 if (condition != NULL) {
3776 ir_rvalue *const cond =
3777 condition->hir(& stmt->body_instructions, state);
3778
3779 if ((cond == NULL)
3780 || !cond->type->is_boolean() || !cond->type->is_scalar()) {
3781 YYLTYPE loc = condition->get_location();
3782
3783 _mesa_glsl_error(& loc, state,
3784 "loop condition must be scalar boolean");
3785 } else {
3786 /* As the first code in the loop body, generate a block that looks
3787 * like 'if (!condition) break;' as the loop termination condition.
3788 */
3789 ir_rvalue *const not_cond =
3790 new(ctx) ir_expression(ir_unop_logic_not, cond);
3791
3792 ir_if *const if_stmt = new(ctx) ir_if(not_cond);
3793
3794 ir_jump *const break_stmt =
3795 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
3796
3797 if_stmt->then_instructions.push_tail(break_stmt);
3798 stmt->body_instructions.push_tail(if_stmt);
3799 }
3800 }
3801 }
3802
3803
3804 ir_rvalue *
3805 ast_iteration_statement::hir(exec_list *instructions,
3806 struct _mesa_glsl_parse_state *state)
3807 {
3808 void *ctx = state;
3809
3810 /* For-loops and while-loops start a new scope, but do-while loops do not.
3811 */
3812 if (mode != ast_do_while)
3813 state->symbols->push_scope();
3814
3815 if (init_statement != NULL)
3816 init_statement->hir(instructions, state);
3817
3818 ir_loop *const stmt = new(ctx) ir_loop();
3819 instructions->push_tail(stmt);
3820
3821 /* Track the current loop nesting. */
3822 ast_iteration_statement *nesting_ast = state->loop_nesting_ast;
3823
3824 state->loop_nesting_ast = this;
3825
3826 /* Likewise, indicate that following code is closest to a loop,
3827 * NOT closest to a switch.
3828 */
3829 bool saved_is_switch_innermost = state->switch_state.is_switch_innermost;
3830 state->switch_state.is_switch_innermost = false;
3831
3832 if (mode != ast_do_while)
3833 condition_to_hir(stmt, state);
3834
3835 if (body != NULL)
3836 body->hir(& stmt->body_instructions, state);
3837
3838 if (rest_expression != NULL)
3839 rest_expression->hir(& stmt->body_instructions, state);
3840
3841 if (mode == ast_do_while)
3842 condition_to_hir(stmt, state);
3843
3844 if (mode != ast_do_while)
3845 state->symbols->pop_scope();
3846
3847 /* Restore previous nesting before returning. */
3848 state->loop_nesting_ast = nesting_ast;
3849 state->switch_state.is_switch_innermost = saved_is_switch_innermost;
3850
3851 /* Loops do not have r-values.
3852 */
3853 return NULL;
3854 }
3855
3856
3857 /**
3858 * Determine if the given type is valid for establishing a default precision
3859 * qualifier.
3860 *
3861 * From GLSL ES 3.00 section 4.5.4 ("Default Precision Qualifiers"):
3862 *
3863 * "The precision statement
3864 *
3865 * precision precision-qualifier type;
3866 *
3867 * can be used to establish a default precision qualifier. The type field
3868 * can be either int or float or any of the sampler types, and the
3869 * precision-qualifier can be lowp, mediump, or highp."
3870 *
3871 * GLSL ES 1.00 has similar language. GLSL 1.30 doesn't allow precision
3872 * qualifiers on sampler types, but this seems like an oversight (since the
3873 * intention of including these in GLSL 1.30 is to allow compatibility with ES
3874 * shaders). So we allow int, float, and all sampler types regardless of GLSL
3875 * version.
3876 */
3877 static bool
3878 is_valid_default_precision_type(const struct _mesa_glsl_parse_state *state,
3879 const char *type_name)
3880 {
3881 const struct glsl_type *type = state->symbols->get_type(type_name);
3882 if (type == NULL)
3883 return false;
3884
3885 switch (type->base_type) {
3886 case GLSL_TYPE_INT:
3887 case GLSL_TYPE_FLOAT:
3888 /* "int" and "float" are valid, but vectors and matrices are not. */
3889 return type->vector_elements == 1 && type->matrix_columns == 1;
3890 case GLSL_TYPE_SAMPLER:
3891 return true;
3892 default:
3893 return false;
3894 }
3895 }
3896
3897
3898 ir_rvalue *
3899 ast_type_specifier::hir(exec_list *instructions,
3900 struct _mesa_glsl_parse_state *state)
3901 {
3902 if (!this->is_precision_statement && this->structure == NULL)
3903 return NULL;
3904
3905 YYLTYPE loc = this->get_location();
3906
3907 if (this->precision != ast_precision_none
3908 && !state->check_precision_qualifiers_allowed(&loc)) {
3909 return NULL;
3910 }
3911 if (this->precision != ast_precision_none
3912 && this->structure != NULL) {
3913 _mesa_glsl_error(&loc, state,
3914 "precision qualifiers do not apply to structures");
3915 return NULL;
3916 }
3917
3918 /* If this is a precision statement, check that the type to which it is
3919 * applied is either float or int.
3920 *
3921 * From section 4.5.3 of the GLSL 1.30 spec:
3922 * "The precision statement
3923 * precision precision-qualifier type;
3924 * can be used to establish a default precision qualifier. The type
3925 * field can be either int or float [...]. Any other types or
3926 * qualifiers will result in an error.
3927 */
3928 if (this->is_precision_statement) {
3929 assert(this->precision != ast_precision_none);
3930 assert(this->structure == NULL); /* The check for structures was
3931 * performed above. */
3932 if (this->is_array) {
3933 _mesa_glsl_error(&loc, state,
3934 "default precision statements do not apply to "
3935 "arrays");
3936 return NULL;
3937 }
3938 if (!is_valid_default_precision_type(state, this->type_name)) {
3939 _mesa_glsl_error(&loc, state,
3940 "default precision statements apply only to types "
3941 "float, int, and sampler types");
3942 return NULL;
3943 }
3944
3945 /* FINISHME: Translate precision statements into IR. */
3946 return NULL;
3947 }
3948
3949 if (this->structure != NULL)
3950 return this->structure->hir(instructions, state);
3951
3952 return NULL;
3953 }
3954
3955
3956 /**
3957 * Process a structure or interface block tree into an array of structure fields
3958 *
3959 * After parsing, where there are some syntax differnces, structures and
3960 * interface blocks are almost identical. They are similar enough that the
3961 * AST for each can be processed the same way into a set of
3962 * \c glsl_struct_field to describe the members.
3963 *
3964 * \return
3965 * The number of fields processed. A pointer to the array structure fields is
3966 * stored in \c *fields_ret.
3967 */
3968 unsigned
3969 ast_process_structure_or_interface_block(exec_list *instructions,
3970 struct _mesa_glsl_parse_state *state,
3971 exec_list *declarations,
3972 YYLTYPE &loc,
3973 glsl_struct_field **fields_ret,
3974 bool is_interface,
3975 bool block_row_major)
3976 {
3977 unsigned decl_count = 0;
3978
3979 /* Make an initial pass over the list of fields to determine how
3980 * many there are. Each element in this list is an ast_declarator_list.
3981 * This means that we actually need to count the number of elements in the
3982 * 'declarations' list in each of the elements.
3983 */
3984 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
3985 foreach_list_const (decl_ptr, & decl_list->declarations) {
3986 decl_count++;
3987 }
3988 }
3989
3990 /* Allocate storage for the fields and process the field
3991 * declarations. As the declarations are processed, try to also convert
3992 * the types to HIR. This ensures that structure definitions embedded in
3993 * other structure definitions or in interface blocks are processed.
3994 */
3995 glsl_struct_field *const fields = ralloc_array(state, glsl_struct_field,
3996 decl_count);
3997
3998 unsigned i = 0;
3999 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
4000 const char *type_name;
4001
4002 decl_list->type->specifier->hir(instructions, state);
4003
4004 /* Section 10.9 of the GLSL ES 1.00 specification states that
4005 * embedded structure definitions have been removed from the language.
4006 */
4007 if (state->es_shader && decl_list->type->specifier->structure != NULL) {
4008 _mesa_glsl_error(&loc, state, "Embedded structure definitions are "
4009 "not allowed in GLSL ES 1.00.");
4010 }
4011
4012 const glsl_type *decl_type =
4013 decl_list->type->specifier->glsl_type(& type_name, state);
4014
4015 foreach_list_typed (ast_declaration, decl, link,
4016 &decl_list->declarations) {
4017 /* From the GL_ARB_uniform_buffer_object spec:
4018 *
4019 * "Sampler types are not allowed inside of uniform
4020 * blocks. All other types, arrays, and structures
4021 * allowed for uniforms are allowed within a uniform
4022 * block."
4023 *
4024 * It should be impossible for decl_type to be NULL here. Cases that
4025 * might naturally lead to decl_type being NULL, especially for the
4026 * is_interface case, will have resulted in compilation having
4027 * already halted due to a syntax error.
4028 */
4029 const struct glsl_type *field_type =
4030 decl_type != NULL ? decl_type : glsl_type::error_type;
4031
4032 if (is_interface && field_type->contains_sampler()) {
4033 YYLTYPE loc = decl_list->get_location();
4034 _mesa_glsl_error(&loc, state,
4035 "Uniform in non-default uniform block contains sampler\n");
4036 }
4037
4038 const struct ast_type_qualifier *const qual =
4039 & decl_list->type->qualifier;
4040 if (qual->flags.q.std140 ||
4041 qual->flags.q.packed ||
4042 qual->flags.q.shared) {
4043 _mesa_glsl_error(&loc, state,
4044 "uniform block layout qualifiers std140, packed, and "
4045 "shared can only be applied to uniform blocks, not "
4046 "members");
4047 }
4048
4049 if (decl->is_array) {
4050 field_type = process_array_type(&loc, decl_type, decl->array_size,
4051 state);
4052 }
4053 fields[i].type = field_type;
4054 fields[i].name = decl->identifier;
4055
4056 if (qual->flags.q.row_major || qual->flags.q.column_major) {
4057 if (!qual->flags.q.uniform) {
4058 _mesa_glsl_error(&loc, state,
4059 "row_major and column_major can only be "
4060 "applied to uniform interface blocks.");
4061 } else if (!field_type->is_matrix() && !field_type->is_record()) {
4062 _mesa_glsl_error(&loc, state,
4063 "uniform block layout qualifiers row_major and "
4064 "column_major can only be applied to matrix and "
4065 "structure types");
4066 } else
4067 validate_matrix_layout_for_type(state, &loc, field_type);
4068 }
4069
4070 if (qual->flags.q.uniform && qual->has_interpolation()) {
4071 _mesa_glsl_error(&loc, state,
4072 "interpolation qualifiers cannot be used "
4073 "with uniform interface blocks");
4074 }
4075
4076 if (field_type->is_matrix() ||
4077 (field_type->is_array() && field_type->fields.array->is_matrix())) {
4078 fields[i].row_major = block_row_major;
4079 if (qual->flags.q.row_major)
4080 fields[i].row_major = true;
4081 else if (qual->flags.q.column_major)
4082 fields[i].row_major = false;
4083 }
4084
4085 i++;
4086 }
4087 }
4088
4089 assert(i == decl_count);
4090
4091 *fields_ret = fields;
4092 return decl_count;
4093 }
4094
4095
4096 ir_rvalue *
4097 ast_struct_specifier::hir(exec_list *instructions,
4098 struct _mesa_glsl_parse_state *state)
4099 {
4100 YYLTYPE loc = this->get_location();
4101 glsl_struct_field *fields;
4102 unsigned decl_count =
4103 ast_process_structure_or_interface_block(instructions,
4104 state,
4105 &this->declarations,
4106 loc,
4107 &fields,
4108 false,
4109 false);
4110
4111 const glsl_type *t =
4112 glsl_type::get_record_instance(fields, decl_count, this->name);
4113
4114 if (!state->symbols->add_type(name, t)) {
4115 _mesa_glsl_error(& loc, state, "struct `%s' previously defined", name);
4116 } else {
4117 const glsl_type **s = reralloc(state, state->user_structures,
4118 const glsl_type *,
4119 state->num_user_structures + 1);
4120 if (s != NULL) {
4121 s[state->num_user_structures] = t;
4122 state->user_structures = s;
4123 state->num_user_structures++;
4124 }
4125 }
4126
4127 /* Structure type definitions do not have r-values.
4128 */
4129 return NULL;
4130 }
4131
4132 ir_rvalue *
4133 ast_interface_block::hir(exec_list *instructions,
4134 struct _mesa_glsl_parse_state *state)
4135 {
4136 YYLTYPE loc = this->get_location();
4137
4138 /* The ast_interface_block has a list of ast_declarator_lists. We
4139 * need to turn those into ir_variables with an association
4140 * with this uniform block.
4141 */
4142 enum glsl_interface_packing packing;
4143 if (this->layout.flags.q.shared) {
4144 packing = GLSL_INTERFACE_PACKING_SHARED;
4145 } else if (this->layout.flags.q.packed) {
4146 packing = GLSL_INTERFACE_PACKING_PACKED;
4147 } else {
4148 /* The default layout is std140.
4149 */
4150 packing = GLSL_INTERFACE_PACKING_STD140;
4151 }
4152
4153 bool block_row_major = this->layout.flags.q.row_major;
4154 exec_list declared_variables;
4155 glsl_struct_field *fields;
4156 unsigned int num_variables =
4157 ast_process_structure_or_interface_block(&declared_variables,
4158 state,
4159 &this->declarations,
4160 loc,
4161 &fields,
4162 true,
4163 block_row_major);
4164
4165 ir_variable_mode var_mode;
4166 const char *iface_type_name;
4167 if (this->layout.flags.q.in) {
4168 var_mode = ir_var_shader_in;
4169 iface_type_name = "in";
4170 } else if (this->layout.flags.q.out) {
4171 var_mode = ir_var_shader_out;
4172 iface_type_name = "out";
4173 } else if (this->layout.flags.q.uniform) {
4174 var_mode = ir_var_uniform;
4175 iface_type_name = "uniform";
4176 } else {
4177 assert(!"interface block layout qualifier not found!");
4178 }
4179
4180 const glsl_type *block_type =
4181 glsl_type::get_interface_instance(fields,
4182 num_variables,
4183 packing,
4184 this->block_name);
4185
4186 if (!state->symbols->add_interface(block_type->name, block_type, var_mode)) {
4187 YYLTYPE loc = this->get_location();
4188 _mesa_glsl_error(&loc, state, "Interface block `%s' with type `%s' "
4189 "already taken in the current scope.\n",
4190 this->block_name, iface_type_name);
4191 }
4192
4193 /* Since interface blocks cannot contain statements, it should be
4194 * impossible for the block to generate any instructions.
4195 */
4196 assert(declared_variables.is_empty());
4197
4198 /* Page 39 (page 45 of the PDF) of section 4.3.7 in the GLSL ES 3.00 spec
4199 * says:
4200 *
4201 * "If an instance name (instance-name) is used, then it puts all the
4202 * members inside a scope within its own name space, accessed with the
4203 * field selector ( . ) operator (analogously to structures)."
4204 */
4205 if (this->instance_name) {
4206 ir_variable *var;
4207
4208 if (this->array_size != NULL) {
4209 const glsl_type *block_array_type =
4210 process_array_type(&loc, block_type, this->array_size, state);
4211
4212 var = new(state) ir_variable(block_array_type,
4213 this->instance_name,
4214 var_mode);
4215 } else {
4216 var = new(state) ir_variable(block_type,
4217 this->instance_name,
4218 var_mode);
4219 }
4220
4221 var->interface_type = block_type;
4222 state->symbols->add_variable(var);
4223 instructions->push_tail(var);
4224 } else {
4225 /* In order to have an array size, the block must also be declared with
4226 * an instane name.
4227 */
4228 assert(this->array_size == NULL);
4229
4230 for (unsigned i = 0; i < num_variables; i++) {
4231 ir_variable *var =
4232 new(state) ir_variable(fields[i].type,
4233 ralloc_strdup(state, fields[i].name),
4234 var_mode);
4235 var->interface_type = block_type;
4236
4237 state->symbols->add_variable(var);
4238 instructions->push_tail(var);
4239 }
4240 }
4241
4242 return NULL;
4243 }
4244
4245 static void
4246 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
4247 exec_list *instructions)
4248 {
4249 bool gl_FragColor_assigned = false;
4250 bool gl_FragData_assigned = false;
4251 bool user_defined_fs_output_assigned = false;
4252 ir_variable *user_defined_fs_output = NULL;
4253
4254 /* It would be nice to have proper location information. */
4255 YYLTYPE loc;
4256 memset(&loc, 0, sizeof(loc));
4257
4258 foreach_list(node, instructions) {
4259 ir_variable *var = ((ir_instruction *)node)->as_variable();
4260
4261 if (!var || !var->assigned)
4262 continue;
4263
4264 if (strcmp(var->name, "gl_FragColor") == 0)
4265 gl_FragColor_assigned = true;
4266 else if (strcmp(var->name, "gl_FragData") == 0)
4267 gl_FragData_assigned = true;
4268 else if (strncmp(var->name, "gl_", 3) != 0) {
4269 if (state->target == fragment_shader &&
4270 var->mode == ir_var_shader_out) {
4271 user_defined_fs_output_assigned = true;
4272 user_defined_fs_output = var;
4273 }
4274 }
4275 }
4276
4277 /* From the GLSL 1.30 spec:
4278 *
4279 * "If a shader statically assigns a value to gl_FragColor, it
4280 * may not assign a value to any element of gl_FragData. If a
4281 * shader statically writes a value to any element of
4282 * gl_FragData, it may not assign a value to
4283 * gl_FragColor. That is, a shader may assign values to either
4284 * gl_FragColor or gl_FragData, but not both. Multiple shaders
4285 * linked together must also consistently write just one of
4286 * these variables. Similarly, if user declared output
4287 * variables are in use (statically assigned to), then the
4288 * built-in variables gl_FragColor and gl_FragData may not be
4289 * assigned to. These incorrect usages all generate compile
4290 * time errors."
4291 */
4292 if (gl_FragColor_assigned && gl_FragData_assigned) {
4293 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
4294 "`gl_FragColor' and `gl_FragData'\n");
4295 } else if (gl_FragColor_assigned && user_defined_fs_output_assigned) {
4296 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
4297 "`gl_FragColor' and `%s'\n",
4298 user_defined_fs_output->name);
4299 } else if (gl_FragData_assigned && user_defined_fs_output_assigned) {
4300 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
4301 "`gl_FragData' and `%s'\n",
4302 user_defined_fs_output->name);
4303 }
4304 }