Merge branch 'wip/i965-separate-sampler-tex' into vulkan
[mesa.git] / src / glsl / ast_to_hir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file ast_to_hir.c
26 * Convert abstract syntax to to high-level intermediate reprensentation (HIR).
27 *
28 * During the conversion to HIR, the majority of the symantic checking is
29 * preformed on the program. This includes:
30 *
31 * * Symbol table management
32 * * Type checking
33 * * Function binding
34 *
35 * The majority of this work could be done during parsing, and the parser could
36 * probably generate HIR directly. However, this results in frequent changes
37 * to the parser code. Since we do not assume that every system this complier
38 * is built on will have Flex and Bison installed, we have to store the code
39 * generated by these tools in our version control system. In other parts of
40 * the system we've seen problems where a parser was changed but the generated
41 * code was not committed, merge conflicts where created because two developers
42 * had slightly different versions of Bison installed, etc.
43 *
44 * I have also noticed that running Bison generated parsers in GDB is very
45 * irritating. When you get a segfault on '$$ = $1->foo', you can't very
46 * well 'print $1' in GDB.
47 *
48 * As a result, my preference is to put as little C code as possible in the
49 * parser (and lexer) sources.
50 */
51
52 #include "glsl_symbol_table.h"
53 #include "glsl_parser_extras.h"
54 #include "ast.h"
55 #include "glsl_types.h"
56 #include "program/hash_table.h"
57 #include "main/shaderobj.h"
58 #include "ir.h"
59 #include "ir_builder.h"
60
61 using namespace ir_builder;
62
63 static void
64 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
65 exec_list *instructions);
66 static void
67 remove_per_vertex_blocks(exec_list *instructions,
68 _mesa_glsl_parse_state *state, ir_variable_mode mode);
69
70 /**
71 * Visitor class that finds the first instance of any write-only variable that
72 * is ever read, if any
73 */
74 class read_from_write_only_variable_visitor : public ir_hierarchical_visitor
75 {
76 public:
77 read_from_write_only_variable_visitor() : found(NULL)
78 {
79 }
80
81 virtual ir_visitor_status visit(ir_dereference_variable *ir)
82 {
83 if (this->in_assignee)
84 return visit_continue;
85
86 ir_variable *var = ir->variable_referenced();
87 /* We can have image_write_only set on both images and buffer variables,
88 * but in the former there is a distinction between reads from
89 * the variable itself (write_only) and from the memory they point to
90 * (image_write_only), while in the case of buffer variables there is
91 * no such distinction, that is why this check here is limited to
92 * buffer variables alone.
93 */
94 if (!var || var->data.mode != ir_var_shader_storage)
95 return visit_continue;
96
97 if (var->data.image_write_only) {
98 found = var;
99 return visit_stop;
100 }
101
102 return visit_continue;
103 }
104
105 ir_variable *get_variable() {
106 return found;
107 }
108
109 private:
110 ir_variable *found;
111 };
112
113 void
114 _mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
115 {
116 _mesa_glsl_initialize_variables(instructions, state);
117
118 state->symbols->separate_function_namespace = state->language_version == 110;
119
120 state->current_function = NULL;
121
122 state->toplevel_ir = instructions;
123
124 state->gs_input_prim_type_specified = false;
125 state->tcs_output_vertices_specified = false;
126 state->cs_input_local_size_specified = false;
127
128 /* Section 4.2 of the GLSL 1.20 specification states:
129 * "The built-in functions are scoped in a scope outside the global scope
130 * users declare global variables in. That is, a shader's global scope,
131 * available for user-defined functions and global variables, is nested
132 * inside the scope containing the built-in functions."
133 *
134 * Since built-in functions like ftransform() access built-in variables,
135 * it follows that those must be in the outer scope as well.
136 *
137 * We push scope here to create this nesting effect...but don't pop.
138 * This way, a shader's globals are still in the symbol table for use
139 * by the linker.
140 */
141 state->symbols->push_scope();
142
143 foreach_list_typed (ast_node, ast, link, & state->translation_unit)
144 ast->hir(instructions, state);
145
146 detect_recursion_unlinked(state, instructions);
147 detect_conflicting_assignments(state, instructions);
148
149 state->toplevel_ir = NULL;
150
151 /* Move all of the variable declarations to the front of the IR list, and
152 * reverse the order. This has the (intended!) side effect that vertex
153 * shader inputs and fragment shader outputs will appear in the IR in the
154 * same order that they appeared in the shader code. This results in the
155 * locations being assigned in the declared order. Many (arguably buggy)
156 * applications depend on this behavior, and it matches what nearly all
157 * other drivers do.
158 */
159 foreach_in_list_safe(ir_instruction, node, instructions) {
160 ir_variable *const var = node->as_variable();
161
162 if (var == NULL)
163 continue;
164
165 var->remove();
166 instructions->push_head(var);
167 }
168
169 /* Figure out if gl_FragCoord is actually used in fragment shader */
170 ir_variable *const var = state->symbols->get_variable("gl_FragCoord");
171 if (var != NULL)
172 state->fs_uses_gl_fragcoord = var->data.used;
173
174 /* From section 7.1 (Built-In Language Variables) of the GLSL 4.10 spec:
175 *
176 * If multiple shaders using members of a built-in block belonging to
177 * the same interface are linked together in the same program, they
178 * must all redeclare the built-in block in the same way, as described
179 * in section 4.3.7 "Interface Blocks" for interface block matching, or
180 * a link error will result.
181 *
182 * The phrase "using members of a built-in block" implies that if two
183 * shaders are linked together and one of them *does not use* any members
184 * of the built-in block, then that shader does not need to have a matching
185 * redeclaration of the built-in block.
186 *
187 * This appears to be a clarification to the behaviour established for
188 * gl_PerVertex by GLSL 1.50, therefore implement it regardless of GLSL
189 * version.
190 *
191 * The definition of "interface" in section 4.3.7 that applies here is as
192 * follows:
193 *
194 * The boundary between adjacent programmable pipeline stages: This
195 * spans all the outputs in all compilation units of the first stage
196 * and all the inputs in all compilation units of the second stage.
197 *
198 * Therefore this rule applies to both inter- and intra-stage linking.
199 *
200 * The easiest way to implement this is to check whether the shader uses
201 * gl_PerVertex right after ast-to-ir conversion, and if it doesn't, simply
202 * remove all the relevant variable declaration from the IR, so that the
203 * linker won't see them and complain about mismatches.
204 */
205 remove_per_vertex_blocks(instructions, state, ir_var_shader_in);
206 remove_per_vertex_blocks(instructions, state, ir_var_shader_out);
207
208 /* Check that we don't have reads from write-only variables */
209 read_from_write_only_variable_visitor v;
210 v.run(instructions);
211 ir_variable *error_var = v.get_variable();
212 if (error_var) {
213 /* It would be nice to have proper location information, but for that
214 * we would need to check this as we process each kind of AST node
215 */
216 YYLTYPE loc;
217 memset(&loc, 0, sizeof(loc));
218 _mesa_glsl_error(&loc, state, "Read from write-only variable `%s'",
219 error_var->name);
220 }
221 }
222
223
224 static ir_expression_operation
225 get_conversion_operation(const glsl_type *to, const glsl_type *from,
226 struct _mesa_glsl_parse_state *state)
227 {
228 switch (to->base_type) {
229 case GLSL_TYPE_FLOAT:
230 switch (from->base_type) {
231 case GLSL_TYPE_INT: return ir_unop_i2f;
232 case GLSL_TYPE_UINT: return ir_unop_u2f;
233 case GLSL_TYPE_DOUBLE: return ir_unop_d2f;
234 default: return (ir_expression_operation)0;
235 }
236
237 case GLSL_TYPE_UINT:
238 if (!state->is_version(400, 0) && !state->ARB_gpu_shader5_enable)
239 return (ir_expression_operation)0;
240 switch (from->base_type) {
241 case GLSL_TYPE_INT: return ir_unop_i2u;
242 default: return (ir_expression_operation)0;
243 }
244
245 case GLSL_TYPE_DOUBLE:
246 if (!state->has_double())
247 return (ir_expression_operation)0;
248 switch (from->base_type) {
249 case GLSL_TYPE_INT: return ir_unop_i2d;
250 case GLSL_TYPE_UINT: return ir_unop_u2d;
251 case GLSL_TYPE_FLOAT: return ir_unop_f2d;
252 default: return (ir_expression_operation)0;
253 }
254
255 default: return (ir_expression_operation)0;
256 }
257 }
258
259
260 /**
261 * If a conversion is available, convert one operand to a different type
262 *
263 * The \c from \c ir_rvalue is converted "in place".
264 *
265 * \param to Type that the operand it to be converted to
266 * \param from Operand that is being converted
267 * \param state GLSL compiler state
268 *
269 * \return
270 * If a conversion is possible (or unnecessary), \c true is returned.
271 * Otherwise \c false is returned.
272 */
273 bool
274 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
275 struct _mesa_glsl_parse_state *state)
276 {
277 void *ctx = state;
278 if (to->base_type == from->type->base_type)
279 return true;
280
281 /* Prior to GLSL 1.20, there are no implicit conversions */
282 if (!state->is_version(120, 0))
283 return false;
284
285 /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
286 *
287 * "There are no implicit array or structure conversions. For
288 * example, an array of int cannot be implicitly converted to an
289 * array of float.
290 */
291 if (!to->is_numeric() || !from->type->is_numeric())
292 return false;
293
294 /* We don't actually want the specific type `to`, we want a type
295 * with the same base type as `to`, but the same vector width as
296 * `from`.
297 */
298 to = glsl_type::get_instance(to->base_type, from->type->vector_elements,
299 from->type->matrix_columns);
300
301 ir_expression_operation op = get_conversion_operation(to, from->type, state);
302 if (op) {
303 from = new(ctx) ir_expression(op, to, from, NULL);
304 return true;
305 } else {
306 return false;
307 }
308 }
309
310
311 static const struct glsl_type *
312 arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
313 bool multiply,
314 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
315 {
316 const glsl_type *type_a = value_a->type;
317 const glsl_type *type_b = value_b->type;
318
319 /* From GLSL 1.50 spec, page 56:
320 *
321 * "The arithmetic binary operators add (+), subtract (-),
322 * multiply (*), and divide (/) operate on integer and
323 * floating-point scalars, vectors, and matrices."
324 */
325 if (!type_a->is_numeric() || !type_b->is_numeric()) {
326 _mesa_glsl_error(loc, state,
327 "operands to arithmetic operators must be numeric");
328 return glsl_type::error_type;
329 }
330
331
332 /* "If one operand is floating-point based and the other is
333 * not, then the conversions from Section 4.1.10 "Implicit
334 * Conversions" are applied to the non-floating-point-based operand."
335 */
336 if (!apply_implicit_conversion(type_a, value_b, state)
337 && !apply_implicit_conversion(type_b, value_a, state)) {
338 _mesa_glsl_error(loc, state,
339 "could not implicitly convert operands to "
340 "arithmetic operator");
341 return glsl_type::error_type;
342 }
343 type_a = value_a->type;
344 type_b = value_b->type;
345
346 /* "If the operands are integer types, they must both be signed or
347 * both be unsigned."
348 *
349 * From this rule and the preceeding conversion it can be inferred that
350 * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
351 * The is_numeric check above already filtered out the case where either
352 * type is not one of these, so now the base types need only be tested for
353 * equality.
354 */
355 if (type_a->base_type != type_b->base_type) {
356 _mesa_glsl_error(loc, state,
357 "base type mismatch for arithmetic operator");
358 return glsl_type::error_type;
359 }
360
361 /* "All arithmetic binary operators result in the same fundamental type
362 * (signed integer, unsigned integer, or floating-point) as the
363 * operands they operate on, after operand type conversion. After
364 * conversion, the following cases are valid
365 *
366 * * The two operands are scalars. In this case the operation is
367 * applied, resulting in a scalar."
368 */
369 if (type_a->is_scalar() && type_b->is_scalar())
370 return type_a;
371
372 /* "* One operand is a scalar, and the other is a vector or matrix.
373 * In this case, the scalar operation is applied independently to each
374 * component of the vector or matrix, resulting in the same size
375 * vector or matrix."
376 */
377 if (type_a->is_scalar()) {
378 if (!type_b->is_scalar())
379 return type_b;
380 } else if (type_b->is_scalar()) {
381 return type_a;
382 }
383
384 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
385 * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
386 * handled.
387 */
388 assert(!type_a->is_scalar());
389 assert(!type_b->is_scalar());
390
391 /* "* The two operands are vectors of the same size. In this case, the
392 * operation is done component-wise resulting in the same size
393 * vector."
394 */
395 if (type_a->is_vector() && type_b->is_vector()) {
396 if (type_a == type_b) {
397 return type_a;
398 } else {
399 _mesa_glsl_error(loc, state,
400 "vector size mismatch for arithmetic operator");
401 return glsl_type::error_type;
402 }
403 }
404
405 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
406 * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
407 * <vector, vector> have been handled. At least one of the operands must
408 * be matrix. Further, since there are no integer matrix types, the base
409 * type of both operands must be float.
410 */
411 assert(type_a->is_matrix() || type_b->is_matrix());
412 assert(type_a->base_type == GLSL_TYPE_FLOAT ||
413 type_a->base_type == GLSL_TYPE_DOUBLE);
414 assert(type_b->base_type == GLSL_TYPE_FLOAT ||
415 type_b->base_type == GLSL_TYPE_DOUBLE);
416
417 /* "* The operator is add (+), subtract (-), or divide (/), and the
418 * operands are matrices with the same number of rows and the same
419 * number of columns. In this case, the operation is done component-
420 * wise resulting in the same size matrix."
421 * * The operator is multiply (*), where both operands are matrices or
422 * one operand is a vector and the other a matrix. A right vector
423 * operand is treated as a column vector and a left vector operand as a
424 * row vector. In all these cases, it is required that the number of
425 * columns of the left operand is equal to the number of rows of the
426 * right operand. Then, the multiply (*) operation does a linear
427 * algebraic multiply, yielding an object that has the same number of
428 * rows as the left operand and the same number of columns as the right
429 * operand. Section 5.10 "Vector and Matrix Operations" explains in
430 * more detail how vectors and matrices are operated on."
431 */
432 if (! multiply) {
433 if (type_a == type_b)
434 return type_a;
435 } else {
436 const glsl_type *type = glsl_type::get_mul_type(type_a, type_b);
437
438 if (type == glsl_type::error_type) {
439 _mesa_glsl_error(loc, state,
440 "size mismatch for matrix multiplication");
441 }
442
443 return type;
444 }
445
446
447 /* "All other cases are illegal."
448 */
449 _mesa_glsl_error(loc, state, "type mismatch");
450 return glsl_type::error_type;
451 }
452
453
454 static const struct glsl_type *
455 unary_arithmetic_result_type(const struct glsl_type *type,
456 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
457 {
458 /* From GLSL 1.50 spec, page 57:
459 *
460 * "The arithmetic unary operators negate (-), post- and pre-increment
461 * and decrement (-- and ++) operate on integer or floating-point
462 * values (including vectors and matrices). All unary operators work
463 * component-wise on their operands. These result with the same type
464 * they operated on."
465 */
466 if (!type->is_numeric()) {
467 _mesa_glsl_error(loc, state,
468 "operands to arithmetic operators must be numeric");
469 return glsl_type::error_type;
470 }
471
472 return type;
473 }
474
475 /**
476 * \brief Return the result type of a bit-logic operation.
477 *
478 * If the given types to the bit-logic operator are invalid, return
479 * glsl_type::error_type.
480 *
481 * \param type_a Type of LHS of bit-logic op
482 * \param type_b Type of RHS of bit-logic op
483 */
484 static const struct glsl_type *
485 bit_logic_result_type(const struct glsl_type *type_a,
486 const struct glsl_type *type_b,
487 ast_operators op,
488 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
489 {
490 if (!state->check_bitwise_operations_allowed(loc)) {
491 return glsl_type::error_type;
492 }
493
494 /* From page 50 (page 56 of PDF) of GLSL 1.30 spec:
495 *
496 * "The bitwise operators and (&), exclusive-or (^), and inclusive-or
497 * (|). The operands must be of type signed or unsigned integers or
498 * integer vectors."
499 */
500 if (!type_a->is_integer()) {
501 _mesa_glsl_error(loc, state, "LHS of `%s' must be an integer",
502 ast_expression::operator_string(op));
503 return glsl_type::error_type;
504 }
505 if (!type_b->is_integer()) {
506 _mesa_glsl_error(loc, state, "RHS of `%s' must be an integer",
507 ast_expression::operator_string(op));
508 return glsl_type::error_type;
509 }
510
511 /* "The fundamental types of the operands (signed or unsigned) must
512 * match,"
513 */
514 if (type_a->base_type != type_b->base_type) {
515 _mesa_glsl_error(loc, state, "operands of `%s' must have the same "
516 "base type", ast_expression::operator_string(op));
517 return glsl_type::error_type;
518 }
519
520 /* "The operands cannot be vectors of differing size." */
521 if (type_a->is_vector() &&
522 type_b->is_vector() &&
523 type_a->vector_elements != type_b->vector_elements) {
524 _mesa_glsl_error(loc, state, "operands of `%s' cannot be vectors of "
525 "different sizes", ast_expression::operator_string(op));
526 return glsl_type::error_type;
527 }
528
529 /* "If one operand is a scalar and the other a vector, the scalar is
530 * applied component-wise to the vector, resulting in the same type as
531 * the vector. The fundamental types of the operands [...] will be the
532 * resulting fundamental type."
533 */
534 if (type_a->is_scalar())
535 return type_b;
536 else
537 return type_a;
538 }
539
540 static const struct glsl_type *
541 modulus_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
542 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
543 {
544 const glsl_type *type_a = value_a->type;
545 const glsl_type *type_b = value_b->type;
546
547 if (!state->check_version(130, 300, loc, "operator '%%' is reserved")) {
548 return glsl_type::error_type;
549 }
550
551 /* Section 5.9 (Expressions) of the GLSL 4.00 specification says:
552 *
553 * "The operator modulus (%) operates on signed or unsigned integers or
554 * integer vectors."
555 */
556 if (!type_a->is_integer()) {
557 _mesa_glsl_error(loc, state, "LHS of operator %% must be an integer");
558 return glsl_type::error_type;
559 }
560 if (!type_b->is_integer()) {
561 _mesa_glsl_error(loc, state, "RHS of operator %% must be an integer");
562 return glsl_type::error_type;
563 }
564
565 /* "If the fundamental types in the operands do not match, then the
566 * conversions from section 4.1.10 "Implicit Conversions" are applied
567 * to create matching types."
568 *
569 * Note that GLSL 4.00 (and GL_ARB_gpu_shader5) introduced implicit
570 * int -> uint conversion rules. Prior to that, there were no implicit
571 * conversions. So it's harmless to apply them universally - no implicit
572 * conversions will exist. If the types don't match, we'll receive false,
573 * and raise an error, satisfying the GLSL 1.50 spec, page 56:
574 *
575 * "The operand types must both be signed or unsigned."
576 */
577 if (!apply_implicit_conversion(type_a, value_b, state) &&
578 !apply_implicit_conversion(type_b, value_a, state)) {
579 _mesa_glsl_error(loc, state,
580 "could not implicitly convert operands to "
581 "modulus (%%) operator");
582 return glsl_type::error_type;
583 }
584 type_a = value_a->type;
585 type_b = value_b->type;
586
587 /* "The operands cannot be vectors of differing size. If one operand is
588 * a scalar and the other vector, then the scalar is applied component-
589 * wise to the vector, resulting in the same type as the vector. If both
590 * are vectors of the same size, the result is computed component-wise."
591 */
592 if (type_a->is_vector()) {
593 if (!type_b->is_vector()
594 || (type_a->vector_elements == type_b->vector_elements))
595 return type_a;
596 } else
597 return type_b;
598
599 /* "The operator modulus (%) is not defined for any other data types
600 * (non-integer types)."
601 */
602 _mesa_glsl_error(loc, state, "type mismatch");
603 return glsl_type::error_type;
604 }
605
606
607 static const struct glsl_type *
608 relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
609 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
610 {
611 const glsl_type *type_a = value_a->type;
612 const glsl_type *type_b = value_b->type;
613
614 /* From GLSL 1.50 spec, page 56:
615 * "The relational operators greater than (>), less than (<), greater
616 * than or equal (>=), and less than or equal (<=) operate only on
617 * scalar integer and scalar floating-point expressions."
618 */
619 if (!type_a->is_numeric()
620 || !type_b->is_numeric()
621 || !type_a->is_scalar()
622 || !type_b->is_scalar()) {
623 _mesa_glsl_error(loc, state,
624 "operands to relational operators must be scalar and "
625 "numeric");
626 return glsl_type::error_type;
627 }
628
629 /* "Either the operands' types must match, or the conversions from
630 * Section 4.1.10 "Implicit Conversions" will be applied to the integer
631 * operand, after which the types must match."
632 */
633 if (!apply_implicit_conversion(type_a, value_b, state)
634 && !apply_implicit_conversion(type_b, value_a, state)) {
635 _mesa_glsl_error(loc, state,
636 "could not implicitly convert operands to "
637 "relational operator");
638 return glsl_type::error_type;
639 }
640 type_a = value_a->type;
641 type_b = value_b->type;
642
643 if (type_a->base_type != type_b->base_type) {
644 _mesa_glsl_error(loc, state, "base type mismatch");
645 return glsl_type::error_type;
646 }
647
648 /* "The result is scalar Boolean."
649 */
650 return glsl_type::bool_type;
651 }
652
653 /**
654 * \brief Return the result type of a bit-shift operation.
655 *
656 * If the given types to the bit-shift operator are invalid, return
657 * glsl_type::error_type.
658 *
659 * \param type_a Type of LHS of bit-shift op
660 * \param type_b Type of RHS of bit-shift op
661 */
662 static const struct glsl_type *
663 shift_result_type(const struct glsl_type *type_a,
664 const struct glsl_type *type_b,
665 ast_operators op,
666 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
667 {
668 if (!state->check_bitwise_operations_allowed(loc)) {
669 return glsl_type::error_type;
670 }
671
672 /* From page 50 (page 56 of the PDF) of the GLSL 1.30 spec:
673 *
674 * "The shift operators (<<) and (>>). For both operators, the operands
675 * must be signed or unsigned integers or integer vectors. One operand
676 * can be signed while the other is unsigned."
677 */
678 if (!type_a->is_integer()) {
679 _mesa_glsl_error(loc, state, "LHS of operator %s must be an integer or "
680 "integer vector", ast_expression::operator_string(op));
681 return glsl_type::error_type;
682
683 }
684 if (!type_b->is_integer()) {
685 _mesa_glsl_error(loc, state, "RHS of operator %s must be an integer or "
686 "integer vector", ast_expression::operator_string(op));
687 return glsl_type::error_type;
688 }
689
690 /* "If the first operand is a scalar, the second operand has to be
691 * a scalar as well."
692 */
693 if (type_a->is_scalar() && !type_b->is_scalar()) {
694 _mesa_glsl_error(loc, state, "if the first operand of %s is scalar, the "
695 "second must be scalar as well",
696 ast_expression::operator_string(op));
697 return glsl_type::error_type;
698 }
699
700 /* If both operands are vectors, check that they have same number of
701 * elements.
702 */
703 if (type_a->is_vector() &&
704 type_b->is_vector() &&
705 type_a->vector_elements != type_b->vector_elements) {
706 _mesa_glsl_error(loc, state, "vector operands to operator %s must "
707 "have same number of elements",
708 ast_expression::operator_string(op));
709 return glsl_type::error_type;
710 }
711
712 /* "In all cases, the resulting type will be the same type as the left
713 * operand."
714 */
715 return type_a;
716 }
717
718 /**
719 * Returns the innermost array index expression in an rvalue tree.
720 * This is the largest indexing level -- if an array of blocks, then
721 * it is the block index rather than an indexing expression for an
722 * array-typed member of an array of blocks.
723 */
724 static ir_rvalue *
725 find_innermost_array_index(ir_rvalue *rv)
726 {
727 ir_dereference_array *last = NULL;
728 while (rv) {
729 if (rv->as_dereference_array()) {
730 last = rv->as_dereference_array();
731 rv = last->array;
732 } else if (rv->as_dereference_record())
733 rv = rv->as_dereference_record()->record;
734 else if (rv->as_swizzle())
735 rv = rv->as_swizzle()->val;
736 else
737 rv = NULL;
738 }
739
740 if (last)
741 return last->array_index;
742
743 return NULL;
744 }
745
746 /**
747 * Validates that a value can be assigned to a location with a specified type
748 *
749 * Validates that \c rhs can be assigned to some location. If the types are
750 * not an exact match but an automatic conversion is possible, \c rhs will be
751 * converted.
752 *
753 * \return
754 * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
755 * Otherwise the actual RHS to be assigned will be returned. This may be
756 * \c rhs, or it may be \c rhs after some type conversion.
757 *
758 * \note
759 * In addition to being used for assignments, this function is used to
760 * type-check return values.
761 */
762 static ir_rvalue *
763 validate_assignment(struct _mesa_glsl_parse_state *state,
764 YYLTYPE loc, ir_rvalue *lhs,
765 ir_rvalue *rhs, bool is_initializer)
766 {
767 /* If there is already some error in the RHS, just return it. Anything
768 * else will lead to an avalanche of error message back to the user.
769 */
770 if (rhs->type->is_error())
771 return rhs;
772
773 /* In the Tessellation Control Shader:
774 * If a per-vertex output variable is used as an l-value, it is an error
775 * if the expression indicating the vertex number is not the identifier
776 * `gl_InvocationID`.
777 */
778 if (state->stage == MESA_SHADER_TESS_CTRL) {
779 ir_variable *var = lhs->variable_referenced();
780 if (var->data.mode == ir_var_shader_out && !var->data.patch) {
781 ir_rvalue *index = find_innermost_array_index(lhs);
782 ir_variable *index_var = index ? index->variable_referenced() : NULL;
783 if (!index_var || strcmp(index_var->name, "gl_InvocationID") != 0) {
784 _mesa_glsl_error(&loc, state,
785 "Tessellation control shader outputs can only "
786 "be indexed by gl_InvocationID");
787 return NULL;
788 }
789 }
790 }
791
792 /* If the types are identical, the assignment can trivially proceed.
793 */
794 if (rhs->type == lhs->type)
795 return rhs;
796
797 /* If the array element types are the same and the LHS is unsized,
798 * the assignment is okay for initializers embedded in variable
799 * declarations.
800 *
801 * Note: Whole-array assignments are not permitted in GLSL 1.10, but this
802 * is handled by ir_dereference::is_lvalue.
803 */
804 const glsl_type *lhs_t = lhs->type;
805 const glsl_type *rhs_t = rhs->type;
806 bool unsized_array = false;
807 while(lhs_t->is_array()) {
808 if (rhs_t == lhs_t)
809 break; /* the rest of the inner arrays match so break out early */
810 if (!rhs_t->is_array()) {
811 unsized_array = false;
812 break; /* number of dimensions mismatch */
813 }
814 if (lhs_t->length == rhs_t->length) {
815 lhs_t = lhs_t->fields.array;
816 rhs_t = rhs_t->fields.array;
817 continue;
818 } else if (lhs_t->is_unsized_array()) {
819 unsized_array = true;
820 } else {
821 unsized_array = false;
822 break; /* sized array mismatch */
823 }
824 lhs_t = lhs_t->fields.array;
825 rhs_t = rhs_t->fields.array;
826 }
827 if (unsized_array) {
828 if (is_initializer) {
829 return rhs;
830 } else {
831 _mesa_glsl_error(&loc, state,
832 "implicitly sized arrays cannot be assigned");
833 return NULL;
834 }
835 }
836
837 /* Check for implicit conversion in GLSL 1.20 */
838 if (apply_implicit_conversion(lhs->type, rhs, state)) {
839 if (rhs->type == lhs->type)
840 return rhs;
841 }
842
843 _mesa_glsl_error(&loc, state,
844 "%s of type %s cannot be assigned to "
845 "variable of type %s",
846 is_initializer ? "initializer" : "value",
847 rhs->type->name, lhs->type->name);
848
849 return NULL;
850 }
851
852 static void
853 mark_whole_array_access(ir_rvalue *access)
854 {
855 ir_dereference_variable *deref = access->as_dereference_variable();
856
857 if (deref && deref->var) {
858 deref->var->data.max_array_access = deref->type->length - 1;
859 }
860 }
861
862 static bool
863 do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state,
864 const char *non_lvalue_description,
865 ir_rvalue *lhs, ir_rvalue *rhs,
866 ir_rvalue **out_rvalue, bool needs_rvalue,
867 bool is_initializer,
868 YYLTYPE lhs_loc)
869 {
870 void *ctx = state;
871 bool error_emitted = (lhs->type->is_error() || rhs->type->is_error());
872
873 ir_variable *lhs_var = lhs->variable_referenced();
874 if (lhs_var)
875 lhs_var->data.assigned = true;
876
877 if (!error_emitted) {
878 if (non_lvalue_description != NULL) {
879 _mesa_glsl_error(&lhs_loc, state,
880 "assignment to %s",
881 non_lvalue_description);
882 error_emitted = true;
883 } else if (lhs_var != NULL && (lhs_var->data.read_only ||
884 (lhs_var->data.mode == ir_var_shader_storage &&
885 lhs_var->data.image_read_only))) {
886 /* We can have image_read_only set on both images and buffer variables,
887 * but in the former there is a distinction between assignments to
888 * the variable itself (read_only) and to the memory they point to
889 * (image_read_only), while in the case of buffer variables there is
890 * no such distinction, that is why this check here is limited to
891 * buffer variables alone.
892 */
893 _mesa_glsl_error(&lhs_loc, state,
894 "assignment to read-only variable '%s'",
895 lhs_var->name);
896 error_emitted = true;
897 } else if (lhs->type->is_array() &&
898 !state->check_version(120, 300, &lhs_loc,
899 "whole array assignment forbidden")) {
900 /* From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
901 *
902 * "Other binary or unary expressions, non-dereferenced
903 * arrays, function names, swizzles with repeated fields,
904 * and constants cannot be l-values."
905 *
906 * The restriction on arrays is lifted in GLSL 1.20 and GLSL ES 3.00.
907 */
908 error_emitted = true;
909 } else if (!lhs->is_lvalue()) {
910 _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment");
911 error_emitted = true;
912 }
913 }
914
915 ir_rvalue *new_rhs =
916 validate_assignment(state, lhs_loc, lhs, rhs, is_initializer);
917 if (new_rhs != NULL) {
918 rhs = new_rhs;
919
920 /* If the LHS array was not declared with a size, it takes it size from
921 * the RHS. If the LHS is an l-value and a whole array, it must be a
922 * dereference of a variable. Any other case would require that the LHS
923 * is either not an l-value or not a whole array.
924 */
925 if (lhs->type->is_unsized_array()) {
926 ir_dereference *const d = lhs->as_dereference();
927
928 assert(d != NULL);
929
930 ir_variable *const var = d->variable_referenced();
931
932 assert(var != NULL);
933
934 if (var->data.max_array_access >= unsigned(rhs->type->array_size())) {
935 /* FINISHME: This should actually log the location of the RHS. */
936 _mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to "
937 "previous access",
938 var->data.max_array_access);
939 }
940
941 var->type = glsl_type::get_array_instance(lhs->type->fields.array,
942 rhs->type->array_size());
943 d->type = var->type;
944 }
945 if (lhs->type->is_array()) {
946 mark_whole_array_access(rhs);
947 mark_whole_array_access(lhs);
948 }
949 }
950
951 /* Most callers of do_assignment (assign, add_assign, pre_inc/dec,
952 * but not post_inc) need the converted assigned value as an rvalue
953 * to handle things like:
954 *
955 * i = j += 1;
956 */
957 if (needs_rvalue) {
958 ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp",
959 ir_var_temporary);
960 instructions->push_tail(var);
961 instructions->push_tail(assign(var, rhs));
962
963 if (!error_emitted) {
964 ir_dereference_variable *deref_var = new(ctx) ir_dereference_variable(var);
965 instructions->push_tail(new(ctx) ir_assignment(lhs, deref_var));
966 }
967 ir_rvalue *rvalue = new(ctx) ir_dereference_variable(var);
968
969 *out_rvalue = rvalue;
970 } else {
971 if (!error_emitted)
972 instructions->push_tail(new(ctx) ir_assignment(lhs, rhs));
973 *out_rvalue = NULL;
974 }
975
976 return error_emitted;
977 }
978
979 static ir_rvalue *
980 get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue)
981 {
982 void *ctx = ralloc_parent(lvalue);
983 ir_variable *var;
984
985 var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp",
986 ir_var_temporary);
987 instructions->push_tail(var);
988
989 instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
990 lvalue));
991
992 return new(ctx) ir_dereference_variable(var);
993 }
994
995
996 ir_rvalue *
997 ast_node::hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
998 {
999 (void) instructions;
1000 (void) state;
1001
1002 return NULL;
1003 }
1004
1005 bool
1006 ast_node::has_sequence_subexpression() const
1007 {
1008 return false;
1009 }
1010
1011 void
1012 ast_function_expression::hir_no_rvalue(exec_list *instructions,
1013 struct _mesa_glsl_parse_state *state)
1014 {
1015 (void)hir(instructions, state);
1016 }
1017
1018 void
1019 ast_aggregate_initializer::hir_no_rvalue(exec_list *instructions,
1020 struct _mesa_glsl_parse_state *state)
1021 {
1022 (void)hir(instructions, state);
1023 }
1024
1025 static ir_rvalue *
1026 do_comparison(void *mem_ctx, int operation, ir_rvalue *op0, ir_rvalue *op1)
1027 {
1028 int join_op;
1029 ir_rvalue *cmp = NULL;
1030
1031 if (operation == ir_binop_all_equal)
1032 join_op = ir_binop_logic_and;
1033 else
1034 join_op = ir_binop_logic_or;
1035
1036 switch (op0->type->base_type) {
1037 case GLSL_TYPE_FLOAT:
1038 case GLSL_TYPE_UINT:
1039 case GLSL_TYPE_INT:
1040 case GLSL_TYPE_BOOL:
1041 case GLSL_TYPE_DOUBLE:
1042 return new(mem_ctx) ir_expression(operation, op0, op1);
1043
1044 case GLSL_TYPE_ARRAY: {
1045 for (unsigned int i = 0; i < op0->type->length; i++) {
1046 ir_rvalue *e0, *e1, *result;
1047
1048 e0 = new(mem_ctx) ir_dereference_array(op0->clone(mem_ctx, NULL),
1049 new(mem_ctx) ir_constant(i));
1050 e1 = new(mem_ctx) ir_dereference_array(op1->clone(mem_ctx, NULL),
1051 new(mem_ctx) ir_constant(i));
1052 result = do_comparison(mem_ctx, operation, e0, e1);
1053
1054 if (cmp) {
1055 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
1056 } else {
1057 cmp = result;
1058 }
1059 }
1060
1061 mark_whole_array_access(op0);
1062 mark_whole_array_access(op1);
1063 break;
1064 }
1065
1066 case GLSL_TYPE_STRUCT: {
1067 for (unsigned int i = 0; i < op0->type->length; i++) {
1068 ir_rvalue *e0, *e1, *result;
1069 const char *field_name = op0->type->fields.structure[i].name;
1070
1071 e0 = new(mem_ctx) ir_dereference_record(op0->clone(mem_ctx, NULL),
1072 field_name);
1073 e1 = new(mem_ctx) ir_dereference_record(op1->clone(mem_ctx, NULL),
1074 field_name);
1075 result = do_comparison(mem_ctx, operation, e0, e1);
1076
1077 if (cmp) {
1078 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
1079 } else {
1080 cmp = result;
1081 }
1082 }
1083 break;
1084 }
1085
1086 case GLSL_TYPE_ERROR:
1087 case GLSL_TYPE_VOID:
1088 case GLSL_TYPE_SAMPLER:
1089 case GLSL_TYPE_IMAGE:
1090 case GLSL_TYPE_INTERFACE:
1091 case GLSL_TYPE_FUNCTION:
1092 case GLSL_TYPE_ATOMIC_UINT:
1093 case GLSL_TYPE_SUBROUTINE:
1094 /* I assume a comparison of a struct containing a sampler just
1095 * ignores the sampler present in the type.
1096 */
1097 break;
1098 }
1099
1100 if (cmp == NULL)
1101 cmp = new(mem_ctx) ir_constant(true);
1102
1103 return cmp;
1104 }
1105
1106 /* For logical operations, we want to ensure that the operands are
1107 * scalar booleans. If it isn't, emit an error and return a constant
1108 * boolean to avoid triggering cascading error messages.
1109 */
1110 ir_rvalue *
1111 get_scalar_boolean_operand(exec_list *instructions,
1112 struct _mesa_glsl_parse_state *state,
1113 ast_expression *parent_expr,
1114 int operand,
1115 const char *operand_name,
1116 bool *error_emitted)
1117 {
1118 ast_expression *expr = parent_expr->subexpressions[operand];
1119 void *ctx = state;
1120 ir_rvalue *val = expr->hir(instructions, state);
1121
1122 if (val->type->is_boolean() && val->type->is_scalar())
1123 return val;
1124
1125 if (!*error_emitted) {
1126 YYLTYPE loc = expr->get_location();
1127 _mesa_glsl_error(&loc, state, "%s of `%s' must be scalar boolean",
1128 operand_name,
1129 parent_expr->operator_string(parent_expr->oper));
1130 *error_emitted = true;
1131 }
1132
1133 return new(ctx) ir_constant(true);
1134 }
1135
1136 /**
1137 * If name refers to a builtin array whose maximum allowed size is less than
1138 * size, report an error and return true. Otherwise return false.
1139 */
1140 void
1141 check_builtin_array_max_size(const char *name, unsigned size,
1142 YYLTYPE loc, struct _mesa_glsl_parse_state *state)
1143 {
1144 if ((strcmp("gl_TexCoord", name) == 0)
1145 && (size > state->Const.MaxTextureCoords)) {
1146 /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec:
1147 *
1148 * "The size [of gl_TexCoord] can be at most
1149 * gl_MaxTextureCoords."
1150 */
1151 _mesa_glsl_error(&loc, state, "`gl_TexCoord' array size cannot "
1152 "be larger than gl_MaxTextureCoords (%u)",
1153 state->Const.MaxTextureCoords);
1154 } else if (strcmp("gl_ClipDistance", name) == 0
1155 && size > state->Const.MaxClipPlanes) {
1156 /* From section 7.1 (Vertex Shader Special Variables) of the
1157 * GLSL 1.30 spec:
1158 *
1159 * "The gl_ClipDistance array is predeclared as unsized and
1160 * must be sized by the shader either redeclaring it with a
1161 * size or indexing it only with integral constant
1162 * expressions. ... The size can be at most
1163 * gl_MaxClipDistances."
1164 */
1165 _mesa_glsl_error(&loc, state, "`gl_ClipDistance' array size cannot "
1166 "be larger than gl_MaxClipDistances (%u)",
1167 state->Const.MaxClipPlanes);
1168 }
1169 }
1170
1171 /**
1172 * Create the constant 1, of a which is appropriate for incrementing and
1173 * decrementing values of the given GLSL type. For example, if type is vec4,
1174 * this creates a constant value of 1.0 having type float.
1175 *
1176 * If the given type is invalid for increment and decrement operators, return
1177 * a floating point 1--the error will be detected later.
1178 */
1179 static ir_rvalue *
1180 constant_one_for_inc_dec(void *ctx, const glsl_type *type)
1181 {
1182 switch (type->base_type) {
1183 case GLSL_TYPE_UINT:
1184 return new(ctx) ir_constant((unsigned) 1);
1185 case GLSL_TYPE_INT:
1186 return new(ctx) ir_constant(1);
1187 default:
1188 case GLSL_TYPE_FLOAT:
1189 return new(ctx) ir_constant(1.0f);
1190 }
1191 }
1192
1193 ir_rvalue *
1194 ast_expression::hir(exec_list *instructions,
1195 struct _mesa_glsl_parse_state *state)
1196 {
1197 return do_hir(instructions, state, true);
1198 }
1199
1200 void
1201 ast_expression::hir_no_rvalue(exec_list *instructions,
1202 struct _mesa_glsl_parse_state *state)
1203 {
1204 do_hir(instructions, state, false);
1205 }
1206
1207 ir_rvalue *
1208 ast_expression::do_hir(exec_list *instructions,
1209 struct _mesa_glsl_parse_state *state,
1210 bool needs_rvalue)
1211 {
1212 void *ctx = state;
1213 static const int operations[AST_NUM_OPERATORS] = {
1214 -1, /* ast_assign doesn't convert to ir_expression. */
1215 -1, /* ast_plus doesn't convert to ir_expression. */
1216 ir_unop_neg,
1217 ir_binop_add,
1218 ir_binop_sub,
1219 ir_binop_mul,
1220 ir_binop_div,
1221 ir_binop_mod,
1222 ir_binop_lshift,
1223 ir_binop_rshift,
1224 ir_binop_less,
1225 ir_binop_greater,
1226 ir_binop_lequal,
1227 ir_binop_gequal,
1228 ir_binop_all_equal,
1229 ir_binop_any_nequal,
1230 ir_binop_bit_and,
1231 ir_binop_bit_xor,
1232 ir_binop_bit_or,
1233 ir_unop_bit_not,
1234 ir_binop_logic_and,
1235 ir_binop_logic_xor,
1236 ir_binop_logic_or,
1237 ir_unop_logic_not,
1238
1239 /* Note: The following block of expression types actually convert
1240 * to multiple IR instructions.
1241 */
1242 ir_binop_mul, /* ast_mul_assign */
1243 ir_binop_div, /* ast_div_assign */
1244 ir_binop_mod, /* ast_mod_assign */
1245 ir_binop_add, /* ast_add_assign */
1246 ir_binop_sub, /* ast_sub_assign */
1247 ir_binop_lshift, /* ast_ls_assign */
1248 ir_binop_rshift, /* ast_rs_assign */
1249 ir_binop_bit_and, /* ast_and_assign */
1250 ir_binop_bit_xor, /* ast_xor_assign */
1251 ir_binop_bit_or, /* ast_or_assign */
1252
1253 -1, /* ast_conditional doesn't convert to ir_expression. */
1254 ir_binop_add, /* ast_pre_inc. */
1255 ir_binop_sub, /* ast_pre_dec. */
1256 ir_binop_add, /* ast_post_inc. */
1257 ir_binop_sub, /* ast_post_dec. */
1258 -1, /* ast_field_selection doesn't conv to ir_expression. */
1259 -1, /* ast_array_index doesn't convert to ir_expression. */
1260 -1, /* ast_function_call doesn't conv to ir_expression. */
1261 -1, /* ast_identifier doesn't convert to ir_expression. */
1262 -1, /* ast_int_constant doesn't convert to ir_expression. */
1263 -1, /* ast_uint_constant doesn't conv to ir_expression. */
1264 -1, /* ast_float_constant doesn't conv to ir_expression. */
1265 -1, /* ast_bool_constant doesn't conv to ir_expression. */
1266 -1, /* ast_sequence doesn't convert to ir_expression. */
1267 };
1268 ir_rvalue *result = NULL;
1269 ir_rvalue *op[3];
1270 const struct glsl_type *type; /* a temporary variable for switch cases */
1271 bool error_emitted = false;
1272 YYLTYPE loc;
1273
1274 loc = this->get_location();
1275
1276 switch (this->oper) {
1277 case ast_aggregate:
1278 assert(!"ast_aggregate: Should never get here.");
1279 break;
1280
1281 case ast_assign: {
1282 op[0] = this->subexpressions[0]->hir(instructions, state);
1283 op[1] = this->subexpressions[1]->hir(instructions, state);
1284
1285 error_emitted =
1286 do_assignment(instructions, state,
1287 this->subexpressions[0]->non_lvalue_description,
1288 op[0], op[1], &result, needs_rvalue, false,
1289 this->subexpressions[0]->get_location());
1290 break;
1291 }
1292
1293 case ast_plus:
1294 op[0] = this->subexpressions[0]->hir(instructions, state);
1295
1296 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1297
1298 error_emitted = type->is_error();
1299
1300 result = op[0];
1301 break;
1302
1303 case ast_neg:
1304 op[0] = this->subexpressions[0]->hir(instructions, state);
1305
1306 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1307
1308 error_emitted = type->is_error();
1309
1310 result = new(ctx) ir_expression(operations[this->oper], type,
1311 op[0], NULL);
1312 break;
1313
1314 case ast_add:
1315 case ast_sub:
1316 case ast_mul:
1317 case ast_div:
1318 op[0] = this->subexpressions[0]->hir(instructions, state);
1319 op[1] = this->subexpressions[1]->hir(instructions, state);
1320
1321 type = arithmetic_result_type(op[0], op[1],
1322 (this->oper == ast_mul),
1323 state, & loc);
1324 error_emitted = type->is_error();
1325
1326 result = new(ctx) ir_expression(operations[this->oper], type,
1327 op[0], op[1]);
1328 break;
1329
1330 case ast_mod:
1331 op[0] = this->subexpressions[0]->hir(instructions, state);
1332 op[1] = this->subexpressions[1]->hir(instructions, state);
1333
1334 type = modulus_result_type(op[0], op[1], state, &loc);
1335
1336 assert(operations[this->oper] == ir_binop_mod);
1337
1338 result = new(ctx) ir_expression(operations[this->oper], type,
1339 op[0], op[1]);
1340 error_emitted = type->is_error();
1341 break;
1342
1343 case ast_lshift:
1344 case ast_rshift:
1345 if (!state->check_bitwise_operations_allowed(&loc)) {
1346 error_emitted = true;
1347 }
1348
1349 op[0] = this->subexpressions[0]->hir(instructions, state);
1350 op[1] = this->subexpressions[1]->hir(instructions, state);
1351 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1352 &loc);
1353 result = new(ctx) ir_expression(operations[this->oper], type,
1354 op[0], op[1]);
1355 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1356 break;
1357
1358 case ast_less:
1359 case ast_greater:
1360 case ast_lequal:
1361 case ast_gequal:
1362 op[0] = this->subexpressions[0]->hir(instructions, state);
1363 op[1] = this->subexpressions[1]->hir(instructions, state);
1364
1365 type = relational_result_type(op[0], op[1], state, & loc);
1366
1367 /* The relational operators must either generate an error or result
1368 * in a scalar boolean. See page 57 of the GLSL 1.50 spec.
1369 */
1370 assert(type->is_error()
1371 || ((type->base_type == GLSL_TYPE_BOOL)
1372 && type->is_scalar()));
1373
1374 result = new(ctx) ir_expression(operations[this->oper], type,
1375 op[0], op[1]);
1376 error_emitted = type->is_error();
1377 break;
1378
1379 case ast_nequal:
1380 case ast_equal:
1381 op[0] = this->subexpressions[0]->hir(instructions, state);
1382 op[1] = this->subexpressions[1]->hir(instructions, state);
1383
1384 /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
1385 *
1386 * "The equality operators equal (==), and not equal (!=)
1387 * operate on all types. They result in a scalar Boolean. If
1388 * the operand types do not match, then there must be a
1389 * conversion from Section 4.1.10 "Implicit Conversions"
1390 * applied to one operand that can make them match, in which
1391 * case this conversion is done."
1392 */
1393
1394 if (op[0]->type == glsl_type::void_type || op[1]->type == glsl_type::void_type) {
1395 _mesa_glsl_error(& loc, state, "`%s': wrong operand types: "
1396 "no operation `%1$s' exists that takes a left-hand "
1397 "operand of type 'void' or a right operand of type "
1398 "'void'", (this->oper == ast_equal) ? "==" : "!=");
1399 error_emitted = true;
1400 } else if ((!apply_implicit_conversion(op[0]->type, op[1], state)
1401 && !apply_implicit_conversion(op[1]->type, op[0], state))
1402 || (op[0]->type != op[1]->type)) {
1403 _mesa_glsl_error(& loc, state, "operands of `%s' must have the same "
1404 "type", (this->oper == ast_equal) ? "==" : "!=");
1405 error_emitted = true;
1406 } else if ((op[0]->type->is_array() || op[1]->type->is_array()) &&
1407 !state->check_version(120, 300, &loc,
1408 "array comparisons forbidden")) {
1409 error_emitted = true;
1410 } else if ((op[0]->type->contains_opaque() ||
1411 op[1]->type->contains_opaque())) {
1412 _mesa_glsl_error(&loc, state, "opaque type comparisons forbidden");
1413 error_emitted = true;
1414 }
1415
1416 if (error_emitted) {
1417 result = new(ctx) ir_constant(false);
1418 } else {
1419 result = do_comparison(ctx, operations[this->oper], op[0], op[1]);
1420 assert(result->type == glsl_type::bool_type);
1421 }
1422 break;
1423
1424 case ast_bit_and:
1425 case ast_bit_xor:
1426 case ast_bit_or:
1427 op[0] = this->subexpressions[0]->hir(instructions, state);
1428 op[1] = this->subexpressions[1]->hir(instructions, state);
1429 type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
1430 state, &loc);
1431 result = new(ctx) ir_expression(operations[this->oper], type,
1432 op[0], op[1]);
1433 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1434 break;
1435
1436 case ast_bit_not:
1437 op[0] = this->subexpressions[0]->hir(instructions, state);
1438
1439 if (!state->check_bitwise_operations_allowed(&loc)) {
1440 error_emitted = true;
1441 }
1442
1443 if (!op[0]->type->is_integer()) {
1444 _mesa_glsl_error(&loc, state, "operand of `~' must be an integer");
1445 error_emitted = true;
1446 }
1447
1448 type = error_emitted ? glsl_type::error_type : op[0]->type;
1449 result = new(ctx) ir_expression(ir_unop_bit_not, type, op[0], NULL);
1450 break;
1451
1452 case ast_logic_and: {
1453 exec_list rhs_instructions;
1454 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1455 "LHS", &error_emitted);
1456 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1457 "RHS", &error_emitted);
1458
1459 if (rhs_instructions.is_empty()) {
1460 result = new(ctx) ir_expression(ir_binop_logic_and, op[0], op[1]);
1461 type = result->type;
1462 } else {
1463 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1464 "and_tmp",
1465 ir_var_temporary);
1466 instructions->push_tail(tmp);
1467
1468 ir_if *const stmt = new(ctx) ir_if(op[0]);
1469 instructions->push_tail(stmt);
1470
1471 stmt->then_instructions.append_list(&rhs_instructions);
1472 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1473 ir_assignment *const then_assign =
1474 new(ctx) ir_assignment(then_deref, op[1]);
1475 stmt->then_instructions.push_tail(then_assign);
1476
1477 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1478 ir_assignment *const else_assign =
1479 new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false));
1480 stmt->else_instructions.push_tail(else_assign);
1481
1482 result = new(ctx) ir_dereference_variable(tmp);
1483 type = tmp->type;
1484 }
1485 break;
1486 }
1487
1488 case ast_logic_or: {
1489 exec_list rhs_instructions;
1490 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1491 "LHS", &error_emitted);
1492 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1493 "RHS", &error_emitted);
1494
1495 if (rhs_instructions.is_empty()) {
1496 result = new(ctx) ir_expression(ir_binop_logic_or, op[0], op[1]);
1497 type = result->type;
1498 } else {
1499 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1500 "or_tmp",
1501 ir_var_temporary);
1502 instructions->push_tail(tmp);
1503
1504 ir_if *const stmt = new(ctx) ir_if(op[0]);
1505 instructions->push_tail(stmt);
1506
1507 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1508 ir_assignment *const then_assign =
1509 new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true));
1510 stmt->then_instructions.push_tail(then_assign);
1511
1512 stmt->else_instructions.append_list(&rhs_instructions);
1513 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1514 ir_assignment *const else_assign =
1515 new(ctx) ir_assignment(else_deref, op[1]);
1516 stmt->else_instructions.push_tail(else_assign);
1517
1518 result = new(ctx) ir_dereference_variable(tmp);
1519 type = tmp->type;
1520 }
1521 break;
1522 }
1523
1524 case ast_logic_xor:
1525 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1526 *
1527 * "The logical binary operators and (&&), or ( | | ), and
1528 * exclusive or (^^). They operate only on two Boolean
1529 * expressions and result in a Boolean expression."
1530 */
1531 op[0] = get_scalar_boolean_operand(instructions, state, this, 0, "LHS",
1532 &error_emitted);
1533 op[1] = get_scalar_boolean_operand(instructions, state, this, 1, "RHS",
1534 &error_emitted);
1535
1536 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1537 op[0], op[1]);
1538 break;
1539
1540 case ast_logic_not:
1541 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1542 "operand", &error_emitted);
1543
1544 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1545 op[0], NULL);
1546 break;
1547
1548 case ast_mul_assign:
1549 case ast_div_assign:
1550 case ast_add_assign:
1551 case ast_sub_assign: {
1552 op[0] = this->subexpressions[0]->hir(instructions, state);
1553 op[1] = this->subexpressions[1]->hir(instructions, state);
1554
1555 type = arithmetic_result_type(op[0], op[1],
1556 (this->oper == ast_mul_assign),
1557 state, & loc);
1558
1559 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1560 op[0], op[1]);
1561
1562 error_emitted =
1563 do_assignment(instructions, state,
1564 this->subexpressions[0]->non_lvalue_description,
1565 op[0]->clone(ctx, NULL), temp_rhs,
1566 &result, needs_rvalue, false,
1567 this->subexpressions[0]->get_location());
1568
1569 /* GLSL 1.10 does not allow array assignment. However, we don't have to
1570 * explicitly test for this because none of the binary expression
1571 * operators allow array operands either.
1572 */
1573
1574 break;
1575 }
1576
1577 case ast_mod_assign: {
1578 op[0] = this->subexpressions[0]->hir(instructions, state);
1579 op[1] = this->subexpressions[1]->hir(instructions, state);
1580
1581 type = modulus_result_type(op[0], op[1], state, &loc);
1582
1583 assert(operations[this->oper] == ir_binop_mod);
1584
1585 ir_rvalue *temp_rhs;
1586 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1587 op[0], op[1]);
1588
1589 error_emitted =
1590 do_assignment(instructions, state,
1591 this->subexpressions[0]->non_lvalue_description,
1592 op[0]->clone(ctx, NULL), temp_rhs,
1593 &result, needs_rvalue, false,
1594 this->subexpressions[0]->get_location());
1595 break;
1596 }
1597
1598 case ast_ls_assign:
1599 case ast_rs_assign: {
1600 op[0] = this->subexpressions[0]->hir(instructions, state);
1601 op[1] = this->subexpressions[1]->hir(instructions, state);
1602 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1603 &loc);
1604 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1605 type, op[0], op[1]);
1606 error_emitted =
1607 do_assignment(instructions, state,
1608 this->subexpressions[0]->non_lvalue_description,
1609 op[0]->clone(ctx, NULL), temp_rhs,
1610 &result, needs_rvalue, false,
1611 this->subexpressions[0]->get_location());
1612 break;
1613 }
1614
1615 case ast_and_assign:
1616 case ast_xor_assign:
1617 case ast_or_assign: {
1618 op[0] = this->subexpressions[0]->hir(instructions, state);
1619 op[1] = this->subexpressions[1]->hir(instructions, state);
1620 type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
1621 state, &loc);
1622 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1623 type, op[0], op[1]);
1624 error_emitted =
1625 do_assignment(instructions, state,
1626 this->subexpressions[0]->non_lvalue_description,
1627 op[0]->clone(ctx, NULL), temp_rhs,
1628 &result, needs_rvalue, false,
1629 this->subexpressions[0]->get_location());
1630 break;
1631 }
1632
1633 case ast_conditional: {
1634 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1635 *
1636 * "The ternary selection operator (?:). It operates on three
1637 * expressions (exp1 ? exp2 : exp3). This operator evaluates the
1638 * first expression, which must result in a scalar Boolean."
1639 */
1640 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1641 "condition", &error_emitted);
1642
1643 /* The :? operator is implemented by generating an anonymous temporary
1644 * followed by an if-statement. The last instruction in each branch of
1645 * the if-statement assigns a value to the anonymous temporary. This
1646 * temporary is the r-value of the expression.
1647 */
1648 exec_list then_instructions;
1649 exec_list else_instructions;
1650
1651 op[1] = this->subexpressions[1]->hir(&then_instructions, state);
1652 op[2] = this->subexpressions[2]->hir(&else_instructions, state);
1653
1654 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1655 *
1656 * "The second and third expressions can be any type, as
1657 * long their types match, or there is a conversion in
1658 * Section 4.1.10 "Implicit Conversions" that can be applied
1659 * to one of the expressions to make their types match. This
1660 * resulting matching type is the type of the entire
1661 * expression."
1662 */
1663 if ((!apply_implicit_conversion(op[1]->type, op[2], state)
1664 && !apply_implicit_conversion(op[2]->type, op[1], state))
1665 || (op[1]->type != op[2]->type)) {
1666 YYLTYPE loc = this->subexpressions[1]->get_location();
1667
1668 _mesa_glsl_error(& loc, state, "second and third operands of ?: "
1669 "operator must have matching types");
1670 error_emitted = true;
1671 type = glsl_type::error_type;
1672 } else {
1673 type = op[1]->type;
1674 }
1675
1676 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1677 *
1678 * "The second and third expressions must be the same type, but can
1679 * be of any type other than an array."
1680 */
1681 if (type->is_array() &&
1682 !state->check_version(120, 300, &loc,
1683 "second and third operands of ?: operator "
1684 "cannot be arrays")) {
1685 error_emitted = true;
1686 }
1687
1688 /* From section 4.1.7 of the GLSL 4.50 spec (Opaque Types):
1689 *
1690 * "Except for array indexing, structure member selection, and
1691 * parentheses, opaque variables are not allowed to be operands in
1692 * expressions; such use results in a compile-time error."
1693 */
1694 if (type->contains_opaque()) {
1695 _mesa_glsl_error(&loc, state, "opaque variables cannot be operands "
1696 "of the ?: operator");
1697 error_emitted = true;
1698 }
1699
1700 ir_constant *cond_val = op[0]->constant_expression_value();
1701
1702 if (then_instructions.is_empty()
1703 && else_instructions.is_empty()
1704 && cond_val != NULL) {
1705 result = cond_val->value.b[0] ? op[1] : op[2];
1706 } else {
1707 /* The copy to conditional_tmp reads the whole array. */
1708 if (type->is_array()) {
1709 mark_whole_array_access(op[1]);
1710 mark_whole_array_access(op[2]);
1711 }
1712
1713 ir_variable *const tmp =
1714 new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary);
1715 instructions->push_tail(tmp);
1716
1717 ir_if *const stmt = new(ctx) ir_if(op[0]);
1718 instructions->push_tail(stmt);
1719
1720 then_instructions.move_nodes_to(& stmt->then_instructions);
1721 ir_dereference *const then_deref =
1722 new(ctx) ir_dereference_variable(tmp);
1723 ir_assignment *const then_assign =
1724 new(ctx) ir_assignment(then_deref, op[1]);
1725 stmt->then_instructions.push_tail(then_assign);
1726
1727 else_instructions.move_nodes_to(& stmt->else_instructions);
1728 ir_dereference *const else_deref =
1729 new(ctx) ir_dereference_variable(tmp);
1730 ir_assignment *const else_assign =
1731 new(ctx) ir_assignment(else_deref, op[2]);
1732 stmt->else_instructions.push_tail(else_assign);
1733
1734 result = new(ctx) ir_dereference_variable(tmp);
1735 }
1736 break;
1737 }
1738
1739 case ast_pre_inc:
1740 case ast_pre_dec: {
1741 this->non_lvalue_description = (this->oper == ast_pre_inc)
1742 ? "pre-increment operation" : "pre-decrement operation";
1743
1744 op[0] = this->subexpressions[0]->hir(instructions, state);
1745 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1746
1747 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1748
1749 ir_rvalue *temp_rhs;
1750 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1751 op[0], op[1]);
1752
1753 error_emitted =
1754 do_assignment(instructions, state,
1755 this->subexpressions[0]->non_lvalue_description,
1756 op[0]->clone(ctx, NULL), temp_rhs,
1757 &result, needs_rvalue, false,
1758 this->subexpressions[0]->get_location());
1759 break;
1760 }
1761
1762 case ast_post_inc:
1763 case ast_post_dec: {
1764 this->non_lvalue_description = (this->oper == ast_post_inc)
1765 ? "post-increment operation" : "post-decrement operation";
1766 op[0] = this->subexpressions[0]->hir(instructions, state);
1767 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1768
1769 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1770
1771 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1772
1773 ir_rvalue *temp_rhs;
1774 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1775 op[0], op[1]);
1776
1777 /* Get a temporary of a copy of the lvalue before it's modified.
1778 * This may get thrown away later.
1779 */
1780 result = get_lvalue_copy(instructions, op[0]->clone(ctx, NULL));
1781
1782 ir_rvalue *junk_rvalue;
1783 error_emitted =
1784 do_assignment(instructions, state,
1785 this->subexpressions[0]->non_lvalue_description,
1786 op[0]->clone(ctx, NULL), temp_rhs,
1787 &junk_rvalue, false, false,
1788 this->subexpressions[0]->get_location());
1789
1790 break;
1791 }
1792
1793 case ast_field_selection:
1794 result = _mesa_ast_field_selection_to_hir(this, instructions, state);
1795 break;
1796
1797 case ast_array_index: {
1798 YYLTYPE index_loc = subexpressions[1]->get_location();
1799
1800 op[0] = subexpressions[0]->hir(instructions, state);
1801 op[1] = subexpressions[1]->hir(instructions, state);
1802
1803 result = _mesa_ast_array_index_to_hir(ctx, state, op[0], op[1],
1804 loc, index_loc);
1805
1806 if (result->type->is_error())
1807 error_emitted = true;
1808
1809 break;
1810 }
1811
1812 case ast_unsized_array_dim:
1813 assert(!"ast_unsized_array_dim: Should never get here.");
1814 break;
1815
1816 case ast_function_call:
1817 /* Should *NEVER* get here. ast_function_call should always be handled
1818 * by ast_function_expression::hir.
1819 */
1820 assert(0);
1821 break;
1822
1823 case ast_identifier: {
1824 /* ast_identifier can appear several places in a full abstract syntax
1825 * tree. This particular use must be at location specified in the grammar
1826 * as 'variable_identifier'.
1827 */
1828 ir_variable *var =
1829 state->symbols->get_variable(this->primary_expression.identifier);
1830
1831 if (var != NULL) {
1832 var->data.used = true;
1833 result = new(ctx) ir_dereference_variable(var);
1834 } else {
1835 _mesa_glsl_error(& loc, state, "`%s' undeclared",
1836 this->primary_expression.identifier);
1837
1838 result = ir_rvalue::error_value(ctx);
1839 error_emitted = true;
1840 }
1841 break;
1842 }
1843
1844 case ast_int_constant:
1845 result = new(ctx) ir_constant(this->primary_expression.int_constant);
1846 break;
1847
1848 case ast_uint_constant:
1849 result = new(ctx) ir_constant(this->primary_expression.uint_constant);
1850 break;
1851
1852 case ast_float_constant:
1853 result = new(ctx) ir_constant(this->primary_expression.float_constant);
1854 break;
1855
1856 case ast_bool_constant:
1857 result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant));
1858 break;
1859
1860 case ast_double_constant:
1861 result = new(ctx) ir_constant(this->primary_expression.double_constant);
1862 break;
1863
1864 case ast_sequence: {
1865 /* It should not be possible to generate a sequence in the AST without
1866 * any expressions in it.
1867 */
1868 assert(!this->expressions.is_empty());
1869
1870 /* The r-value of a sequence is the last expression in the sequence. If
1871 * the other expressions in the sequence do not have side-effects (and
1872 * therefore add instructions to the instruction list), they get dropped
1873 * on the floor.
1874 */
1875 exec_node *previous_tail_pred = NULL;
1876 YYLTYPE previous_operand_loc = loc;
1877
1878 foreach_list_typed (ast_node, ast, link, &this->expressions) {
1879 /* If one of the operands of comma operator does not generate any
1880 * code, we want to emit a warning. At each pass through the loop
1881 * previous_tail_pred will point to the last instruction in the
1882 * stream *before* processing the previous operand. Naturally,
1883 * instructions->tail_pred will point to the last instruction in the
1884 * stream *after* processing the previous operand. If the two
1885 * pointers match, then the previous operand had no effect.
1886 *
1887 * The warning behavior here differs slightly from GCC. GCC will
1888 * only emit a warning if none of the left-hand operands have an
1889 * effect. However, it will emit a warning for each. I believe that
1890 * there are some cases in C (especially with GCC extensions) where
1891 * it is useful to have an intermediate step in a sequence have no
1892 * effect, but I don't think these cases exist in GLSL. Either way,
1893 * it would be a giant hassle to replicate that behavior.
1894 */
1895 if (previous_tail_pred == instructions->tail_pred) {
1896 _mesa_glsl_warning(&previous_operand_loc, state,
1897 "left-hand operand of comma expression has "
1898 "no effect");
1899 }
1900
1901 /* tail_pred is directly accessed instead of using the get_tail()
1902 * method for performance reasons. get_tail() has extra code to
1903 * return NULL when the list is empty. We don't care about that
1904 * here, so using tail_pred directly is fine.
1905 */
1906 previous_tail_pred = instructions->tail_pred;
1907 previous_operand_loc = ast->get_location();
1908
1909 result = ast->hir(instructions, state);
1910 }
1911
1912 /* Any errors should have already been emitted in the loop above.
1913 */
1914 error_emitted = true;
1915 break;
1916 }
1917 }
1918 type = NULL; /* use result->type, not type. */
1919 assert(result != NULL || !needs_rvalue);
1920
1921 if (result && result->type->is_error() && !error_emitted)
1922 _mesa_glsl_error(& loc, state, "type mismatch");
1923
1924 return result;
1925 }
1926
1927 bool
1928 ast_expression::has_sequence_subexpression() const
1929 {
1930 switch (this->oper) {
1931 case ast_plus:
1932 case ast_neg:
1933 case ast_bit_not:
1934 case ast_logic_not:
1935 case ast_pre_inc:
1936 case ast_pre_dec:
1937 case ast_post_inc:
1938 case ast_post_dec:
1939 return this->subexpressions[0]->has_sequence_subexpression();
1940
1941 case ast_assign:
1942 case ast_add:
1943 case ast_sub:
1944 case ast_mul:
1945 case ast_div:
1946 case ast_mod:
1947 case ast_lshift:
1948 case ast_rshift:
1949 case ast_less:
1950 case ast_greater:
1951 case ast_lequal:
1952 case ast_gequal:
1953 case ast_nequal:
1954 case ast_equal:
1955 case ast_bit_and:
1956 case ast_bit_xor:
1957 case ast_bit_or:
1958 case ast_logic_and:
1959 case ast_logic_or:
1960 case ast_logic_xor:
1961 case ast_array_index:
1962 case ast_mul_assign:
1963 case ast_div_assign:
1964 case ast_add_assign:
1965 case ast_sub_assign:
1966 case ast_mod_assign:
1967 case ast_ls_assign:
1968 case ast_rs_assign:
1969 case ast_and_assign:
1970 case ast_xor_assign:
1971 case ast_or_assign:
1972 return this->subexpressions[0]->has_sequence_subexpression() ||
1973 this->subexpressions[1]->has_sequence_subexpression();
1974
1975 case ast_conditional:
1976 return this->subexpressions[0]->has_sequence_subexpression() ||
1977 this->subexpressions[1]->has_sequence_subexpression() ||
1978 this->subexpressions[2]->has_sequence_subexpression();
1979
1980 case ast_sequence:
1981 return true;
1982
1983 case ast_field_selection:
1984 case ast_identifier:
1985 case ast_int_constant:
1986 case ast_uint_constant:
1987 case ast_float_constant:
1988 case ast_bool_constant:
1989 case ast_double_constant:
1990 return false;
1991
1992 case ast_aggregate:
1993 unreachable("ast_aggregate: Should never get here.");
1994
1995 case ast_function_call:
1996 unreachable("should be handled by ast_function_expression::hir");
1997
1998 case ast_unsized_array_dim:
1999 unreachable("ast_unsized_array_dim: Should never get here.");
2000 }
2001
2002 return false;
2003 }
2004
2005 ir_rvalue *
2006 ast_expression_statement::hir(exec_list *instructions,
2007 struct _mesa_glsl_parse_state *state)
2008 {
2009 /* It is possible to have expression statements that don't have an
2010 * expression. This is the solitary semicolon:
2011 *
2012 * for (i = 0; i < 5; i++)
2013 * ;
2014 *
2015 * In this case the expression will be NULL. Test for NULL and don't do
2016 * anything in that case.
2017 */
2018 if (expression != NULL)
2019 expression->hir_no_rvalue(instructions, state);
2020
2021 /* Statements do not have r-values.
2022 */
2023 return NULL;
2024 }
2025
2026
2027 ir_rvalue *
2028 ast_compound_statement::hir(exec_list *instructions,
2029 struct _mesa_glsl_parse_state *state)
2030 {
2031 if (new_scope)
2032 state->symbols->push_scope();
2033
2034 foreach_list_typed (ast_node, ast, link, &this->statements)
2035 ast->hir(instructions, state);
2036
2037 if (new_scope)
2038 state->symbols->pop_scope();
2039
2040 /* Compound statements do not have r-values.
2041 */
2042 return NULL;
2043 }
2044
2045 /**
2046 * Evaluate the given exec_node (which should be an ast_node representing
2047 * a single array dimension) and return its integer value.
2048 */
2049 static unsigned
2050 process_array_size(exec_node *node,
2051 struct _mesa_glsl_parse_state *state)
2052 {
2053 exec_list dummy_instructions;
2054
2055 ast_node *array_size = exec_node_data(ast_node, node, link);
2056
2057 /**
2058 * Dimensions other than the outermost dimension can by unsized if they
2059 * are immediately sized by a constructor or initializer.
2060 */
2061 if (((ast_expression*)array_size)->oper == ast_unsized_array_dim)
2062 return 0;
2063
2064 ir_rvalue *const ir = array_size->hir(& dummy_instructions, state);
2065 YYLTYPE loc = array_size->get_location();
2066
2067 if (ir == NULL) {
2068 _mesa_glsl_error(& loc, state,
2069 "array size could not be resolved");
2070 return 0;
2071 }
2072
2073 if (!ir->type->is_integer()) {
2074 _mesa_glsl_error(& loc, state,
2075 "array size must be integer type");
2076 return 0;
2077 }
2078
2079 if (!ir->type->is_scalar()) {
2080 _mesa_glsl_error(& loc, state,
2081 "array size must be scalar type");
2082 return 0;
2083 }
2084
2085 ir_constant *const size = ir->constant_expression_value();
2086 if (size == NULL || array_size->has_sequence_subexpression()) {
2087 _mesa_glsl_error(& loc, state, "array size must be a "
2088 "constant valued expression");
2089 return 0;
2090 }
2091
2092 if (size->value.i[0] <= 0) {
2093 _mesa_glsl_error(& loc, state, "array size must be > 0");
2094 return 0;
2095 }
2096
2097 assert(size->type == ir->type);
2098
2099 /* If the array size is const (and we've verified that
2100 * it is) then no instructions should have been emitted
2101 * when we converted it to HIR. If they were emitted,
2102 * then either the array size isn't const after all, or
2103 * we are emitting unnecessary instructions.
2104 */
2105 assert(dummy_instructions.is_empty());
2106
2107 return size->value.u[0];
2108 }
2109
2110 static const glsl_type *
2111 process_array_type(YYLTYPE *loc, const glsl_type *base,
2112 ast_array_specifier *array_specifier,
2113 struct _mesa_glsl_parse_state *state)
2114 {
2115 const glsl_type *array_type = base;
2116
2117 if (array_specifier != NULL) {
2118 if (base->is_array()) {
2119
2120 /* From page 19 (page 25) of the GLSL 1.20 spec:
2121 *
2122 * "Only one-dimensional arrays may be declared."
2123 */
2124 if (!state->check_arrays_of_arrays_allowed(loc)) {
2125 return glsl_type::error_type;
2126 }
2127 }
2128
2129 for (exec_node *node = array_specifier->array_dimensions.tail_pred;
2130 !node->is_head_sentinel(); node = node->prev) {
2131 unsigned array_size = process_array_size(node, state);
2132 array_type = glsl_type::get_array_instance(array_type, array_size);
2133 }
2134 }
2135
2136 return array_type;
2137 }
2138
2139 static bool
2140 precision_qualifier_allowed(const glsl_type *type)
2141 {
2142 /* Precision qualifiers apply to floating point, integer and opaque
2143 * types.
2144 *
2145 * Section 4.5.2 (Precision Qualifiers) of the GLSL 1.30 spec says:
2146 * "Any floating point or any integer declaration can have the type
2147 * preceded by one of these precision qualifiers [...] Literal
2148 * constants do not have precision qualifiers. Neither do Boolean
2149 * variables.
2150 *
2151 * Section 4.5 (Precision and Precision Qualifiers) of the GLSL 1.30
2152 * spec also says:
2153 *
2154 * "Precision qualifiers are added for code portability with OpenGL
2155 * ES, not for functionality. They have the same syntax as in OpenGL
2156 * ES."
2157 *
2158 * Section 8 (Built-In Functions) of the GLSL ES 1.00 spec says:
2159 *
2160 * "uniform lowp sampler2D sampler;
2161 * highp vec2 coord;
2162 * ...
2163 * lowp vec4 col = texture2D (sampler, coord);
2164 * // texture2D returns lowp"
2165 *
2166 * From this, we infer that GLSL 1.30 (and later) should allow precision
2167 * qualifiers on sampler types just like float and integer types.
2168 */
2169 return (type->is_float()
2170 || type->is_integer()
2171 || type->contains_opaque())
2172 && !type->without_array()->is_record();
2173 }
2174
2175 const glsl_type *
2176 ast_type_specifier::glsl_type(const char **name,
2177 struct _mesa_glsl_parse_state *state) const
2178 {
2179 const struct glsl_type *type;
2180
2181 type = state->symbols->get_type(this->type_name);
2182 *name = this->type_name;
2183
2184 YYLTYPE loc = this->get_location();
2185 type = process_array_type(&loc, type, this->array_specifier, state);
2186
2187 return type;
2188 }
2189
2190 /**
2191 * From the OpenGL ES 3.0 spec, 4.5.4 Default Precision Qualifiers:
2192 *
2193 * "The precision statement
2194 *
2195 * precision precision-qualifier type;
2196 *
2197 * can be used to establish a default precision qualifier. The type field can
2198 * be either int or float or any of the sampler types, (...) If type is float,
2199 * the directive applies to non-precision-qualified floating point type
2200 * (scalar, vector, and matrix) declarations. If type is int, the directive
2201 * applies to all non-precision-qualified integer type (scalar, vector, signed,
2202 * and unsigned) declarations."
2203 *
2204 * We use the symbol table to keep the values of the default precisions for
2205 * each 'type' in each scope and we use the 'type' string from the precision
2206 * statement as key in the symbol table. When we want to retrieve the default
2207 * precision associated with a given glsl_type we need to know the type string
2208 * associated with it. This is what this function returns.
2209 */
2210 static const char *
2211 get_type_name_for_precision_qualifier(const glsl_type *type)
2212 {
2213 switch (type->base_type) {
2214 case GLSL_TYPE_FLOAT:
2215 return "float";
2216 case GLSL_TYPE_UINT:
2217 case GLSL_TYPE_INT:
2218 return "int";
2219 case GLSL_TYPE_ATOMIC_UINT:
2220 return "atomic_uint";
2221 case GLSL_TYPE_IMAGE:
2222 /* fallthrough */
2223 case GLSL_TYPE_SAMPLER: {
2224 const unsigned type_idx =
2225 type->sampler_array + 2 * type->sampler_shadow;
2226 const unsigned offset = type->base_type == GLSL_TYPE_SAMPLER ? 0 : 4;
2227 assert(type_idx < 4);
2228 switch (type->sampler_type) {
2229 case GLSL_TYPE_FLOAT:
2230 switch (type->sampler_dimensionality) {
2231 case GLSL_SAMPLER_DIM_1D: {
2232 assert(type->base_type == GLSL_TYPE_SAMPLER);
2233 static const char *const names[4] = {
2234 "sampler1D", "sampler1DArray",
2235 "sampler1DShadow", "sampler1DArrayShadow"
2236 };
2237 return names[type_idx];
2238 }
2239 case GLSL_SAMPLER_DIM_2D: {
2240 static const char *const names[8] = {
2241 "sampler2D", "sampler2DArray",
2242 "sampler2DShadow", "sampler2DArrayShadow",
2243 "image2D", "image2DArray", NULL, NULL
2244 };
2245 return names[offset + type_idx];
2246 }
2247 case GLSL_SAMPLER_DIM_3D: {
2248 static const char *const names[8] = {
2249 "sampler3D", NULL, NULL, NULL,
2250 "image3D", NULL, NULL, NULL
2251 };
2252 return names[offset + type_idx];
2253 }
2254 case GLSL_SAMPLER_DIM_CUBE: {
2255 static const char *const names[8] = {
2256 "samplerCube", "samplerCubeArray",
2257 "samplerCubeShadow", "samplerCubeArrayShadow",
2258 "imageCube", NULL, NULL, NULL
2259 };
2260 return names[offset + type_idx];
2261 }
2262 case GLSL_SAMPLER_DIM_MS: {
2263 assert(type->base_type == GLSL_TYPE_SAMPLER);
2264 static const char *const names[4] = {
2265 "sampler2DMS", "sampler2DMSArray", NULL, NULL
2266 };
2267 return names[type_idx];
2268 }
2269 case GLSL_SAMPLER_DIM_RECT: {
2270 assert(type->base_type == GLSL_TYPE_SAMPLER);
2271 static const char *const names[4] = {
2272 "samplerRect", NULL, "samplerRectShadow", NULL
2273 };
2274 return names[type_idx];
2275 }
2276 case GLSL_SAMPLER_DIM_BUF: {
2277 assert(type->base_type == GLSL_TYPE_SAMPLER);
2278 static const char *const names[4] = {
2279 "samplerBuffer", NULL, NULL, NULL
2280 };
2281 return names[type_idx];
2282 }
2283 case GLSL_SAMPLER_DIM_EXTERNAL: {
2284 assert(type->base_type == GLSL_TYPE_SAMPLER);
2285 static const char *const names[4] = {
2286 "samplerExternalOES", NULL, NULL, NULL
2287 };
2288 return names[type_idx];
2289 }
2290 default:
2291 unreachable("Unsupported sampler/image dimensionality");
2292 } /* sampler/image float dimensionality */
2293 break;
2294 case GLSL_TYPE_INT:
2295 switch (type->sampler_dimensionality) {
2296 case GLSL_SAMPLER_DIM_1D: {
2297 assert(type->base_type == GLSL_TYPE_SAMPLER);
2298 static const char *const names[4] = {
2299 "isampler1D", "isampler1DArray", NULL, NULL
2300 };
2301 return names[type_idx];
2302 }
2303 case GLSL_SAMPLER_DIM_2D: {
2304 static const char *const names[8] = {
2305 "isampler2D", "isampler2DArray", NULL, NULL,
2306 "iimage2D", "iimage2DArray", NULL, NULL
2307 };
2308 return names[offset + type_idx];
2309 }
2310 case GLSL_SAMPLER_DIM_3D: {
2311 static const char *const names[8] = {
2312 "isampler3D", NULL, NULL, NULL,
2313 "iimage3D", NULL, NULL, NULL
2314 };
2315 return names[offset + type_idx];
2316 }
2317 case GLSL_SAMPLER_DIM_CUBE: {
2318 static const char *const names[8] = {
2319 "isamplerCube", "isamplerCubeArray", NULL, NULL,
2320 "iimageCube", NULL, NULL, NULL
2321 };
2322 return names[offset + type_idx];
2323 }
2324 case GLSL_SAMPLER_DIM_MS: {
2325 assert(type->base_type == GLSL_TYPE_SAMPLER);
2326 static const char *const names[4] = {
2327 "isampler2DMS", "isampler2DMSArray", NULL, NULL
2328 };
2329 return names[type_idx];
2330 }
2331 case GLSL_SAMPLER_DIM_RECT: {
2332 assert(type->base_type == GLSL_TYPE_SAMPLER);
2333 static const char *const names[4] = {
2334 "isamplerRect", NULL, "isamplerRectShadow", NULL
2335 };
2336 return names[type_idx];
2337 }
2338 case GLSL_SAMPLER_DIM_BUF: {
2339 assert(type->base_type == GLSL_TYPE_SAMPLER);
2340 static const char *const names[4] = {
2341 "isamplerBuffer", NULL, NULL, NULL
2342 };
2343 return names[type_idx];
2344 }
2345 default:
2346 unreachable("Unsupported isampler/iimage dimensionality");
2347 } /* sampler/image int dimensionality */
2348 break;
2349 case GLSL_TYPE_UINT:
2350 switch (type->sampler_dimensionality) {
2351 case GLSL_SAMPLER_DIM_1D: {
2352 assert(type->base_type == GLSL_TYPE_SAMPLER);
2353 static const char *const names[4] = {
2354 "usampler1D", "usampler1DArray", NULL, NULL
2355 };
2356 return names[type_idx];
2357 }
2358 case GLSL_SAMPLER_DIM_2D: {
2359 static const char *const names[8] = {
2360 "usampler2D", "usampler2DArray", NULL, NULL,
2361 "uimage2D", "uimage2DArray", NULL, NULL
2362 };
2363 return names[offset + type_idx];
2364 }
2365 case GLSL_SAMPLER_DIM_3D: {
2366 static const char *const names[8] = {
2367 "usampler3D", NULL, NULL, NULL,
2368 "uimage3D", NULL, NULL, NULL
2369 };
2370 return names[offset + type_idx];
2371 }
2372 case GLSL_SAMPLER_DIM_CUBE: {
2373 static const char *const names[8] = {
2374 "usamplerCube", "usamplerCubeArray", NULL, NULL,
2375 "uimageCube", NULL, NULL, NULL
2376 };
2377 return names[offset + type_idx];
2378 }
2379 case GLSL_SAMPLER_DIM_MS: {
2380 assert(type->base_type == GLSL_TYPE_SAMPLER);
2381 static const char *const names[4] = {
2382 "usampler2DMS", "usampler2DMSArray", NULL, NULL
2383 };
2384 return names[type_idx];
2385 }
2386 case GLSL_SAMPLER_DIM_RECT: {
2387 assert(type->base_type == GLSL_TYPE_SAMPLER);
2388 static const char *const names[4] = {
2389 "usamplerRect", NULL, "usamplerRectShadow", NULL
2390 };
2391 return names[type_idx];
2392 }
2393 case GLSL_SAMPLER_DIM_BUF: {
2394 assert(type->base_type == GLSL_TYPE_SAMPLER);
2395 static const char *const names[4] = {
2396 "usamplerBuffer", NULL, NULL, NULL
2397 };
2398 return names[type_idx];
2399 }
2400 default:
2401 unreachable("Unsupported usampler/uimage dimensionality");
2402 } /* sampler/image uint dimensionality */
2403 break;
2404 default:
2405 unreachable("Unsupported sampler/image type");
2406 } /* sampler/image type */
2407 break;
2408 } /* GLSL_TYPE_SAMPLER/GLSL_TYPE_IMAGE */
2409 break;
2410 default:
2411 unreachable("Unsupported type");
2412 } /* base type */
2413 }
2414
2415 static unsigned
2416 select_gles_precision(unsigned qual_precision,
2417 const glsl_type *type,
2418 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
2419 {
2420 /* Precision qualifiers do not have any meaning in Desktop GLSL.
2421 * In GLES we take the precision from the type qualifier if present,
2422 * otherwise, if the type of the variable allows precision qualifiers at
2423 * all, we look for the default precision qualifier for that type in the
2424 * current scope.
2425 */
2426 assert(state->es_shader);
2427
2428 unsigned precision = GLSL_PRECISION_NONE;
2429 if (qual_precision) {
2430 precision = qual_precision;
2431 } else if (precision_qualifier_allowed(type)) {
2432 const char *type_name =
2433 get_type_name_for_precision_qualifier(type->without_array());
2434 assert(type_name != NULL);
2435
2436 precision =
2437 state->symbols->get_default_precision_qualifier(type_name);
2438 if (precision == ast_precision_none) {
2439 _mesa_glsl_error(loc, state,
2440 "No precision specified in this scope for type `%s'",
2441 type->name);
2442 }
2443 }
2444 return precision;
2445 }
2446
2447 const glsl_type *
2448 ast_fully_specified_type::glsl_type(const char **name,
2449 struct _mesa_glsl_parse_state *state) const
2450 {
2451 return this->specifier->glsl_type(name, state);
2452 }
2453
2454 /**
2455 * Determine whether a toplevel variable declaration declares a varying. This
2456 * function operates by examining the variable's mode and the shader target,
2457 * so it correctly identifies linkage variables regardless of whether they are
2458 * declared using the deprecated "varying" syntax or the new "in/out" syntax.
2459 *
2460 * Passing a non-toplevel variable declaration (e.g. a function parameter) to
2461 * this function will produce undefined results.
2462 */
2463 static bool
2464 is_varying_var(ir_variable *var, gl_shader_stage target)
2465 {
2466 switch (target) {
2467 case MESA_SHADER_VERTEX:
2468 return var->data.mode == ir_var_shader_out;
2469 case MESA_SHADER_FRAGMENT:
2470 return var->data.mode == ir_var_shader_in;
2471 default:
2472 return var->data.mode == ir_var_shader_out || var->data.mode == ir_var_shader_in;
2473 }
2474 }
2475
2476
2477 /**
2478 * Matrix layout qualifiers are only allowed on certain types
2479 */
2480 static void
2481 validate_matrix_layout_for_type(struct _mesa_glsl_parse_state *state,
2482 YYLTYPE *loc,
2483 const glsl_type *type,
2484 ir_variable *var)
2485 {
2486 if (var && !var->is_in_buffer_block()) {
2487 /* Layout qualifiers may only apply to interface blocks and fields in
2488 * them.
2489 */
2490 _mesa_glsl_error(loc, state,
2491 "uniform block layout qualifiers row_major and "
2492 "column_major may not be applied to variables "
2493 "outside of uniform blocks");
2494 } else if (!type->is_matrix()) {
2495 /* The OpenGL ES 3.0 conformance tests did not originally allow
2496 * matrix layout qualifiers on non-matrices. However, the OpenGL
2497 * 4.4 and OpenGL ES 3.0 (revision TBD) specifications were
2498 * amended to specifically allow these layouts on all types. Emit
2499 * a warning so that people know their code may not be portable.
2500 */
2501 _mesa_glsl_warning(loc, state,
2502 "uniform block layout qualifiers row_major and "
2503 "column_major applied to non-matrix types may "
2504 "be rejected by older compilers");
2505 } else if (type->is_record()) {
2506 /* We allow 'layout(row_major)' on structure types because it's the only
2507 * way to get row-major layouts on matrices contained in structures.
2508 */
2509 _mesa_glsl_warning(loc, state,
2510 "uniform block layout qualifiers row_major and "
2511 "column_major applied to structure types is not "
2512 "strictly conformant and may be rejected by other "
2513 "compilers");
2514 }
2515 }
2516
2517 static bool
2518 validate_binding_qualifier(struct _mesa_glsl_parse_state *state,
2519 YYLTYPE *loc,
2520 const glsl_type *type,
2521 const ast_type_qualifier *qual)
2522 {
2523 if (!qual->flags.q.uniform && !qual->flags.q.buffer) {
2524 _mesa_glsl_error(loc, state,
2525 "the \"binding\" qualifier only applies to uniforms and "
2526 "shader storage buffer objects");
2527 return false;
2528 }
2529
2530 if (qual->binding < 0) {
2531 _mesa_glsl_error(loc, state, "binding values must be >= 0");
2532 return false;
2533 }
2534
2535 const struct gl_context *const ctx = state->ctx;
2536 unsigned elements = type->is_array() ? type->arrays_of_arrays_size() : 1;
2537 unsigned max_index = qual->binding + elements - 1;
2538 const glsl_type *base_type = type->without_array();
2539
2540 if (base_type->is_interface()) {
2541 /* UBOs. From page 60 of the GLSL 4.20 specification:
2542 * "If the binding point for any uniform block instance is less than zero,
2543 * or greater than or equal to the implementation-dependent maximum
2544 * number of uniform buffer bindings, a compilation error will occur.
2545 * When the binding identifier is used with a uniform block instanced as
2546 * an array of size N, all elements of the array from binding through
2547 * binding + N – 1 must be within this range."
2548 *
2549 * The implementation-dependent maximum is GL_MAX_UNIFORM_BUFFER_BINDINGS.
2550 */
2551 if (qual->flags.q.uniform &&
2552 max_index >= ctx->Const.MaxUniformBufferBindings) {
2553 _mesa_glsl_error(loc, state, "layout(binding = %d) for %d UBOs exceeds "
2554 "the maximum number of UBO binding points (%d)",
2555 qual->binding, elements,
2556 ctx->Const.MaxUniformBufferBindings);
2557 return false;
2558 }
2559
2560 /* SSBOs. From page 67 of the GLSL 4.30 specification:
2561 * "If the binding point for any uniform or shader storage block instance
2562 * is less than zero, or greater than or equal to the
2563 * implementation-dependent maximum number of uniform buffer bindings, a
2564 * compile-time error will occur. When the binding identifier is used
2565 * with a uniform or shader storage block instanced as an array of size
2566 * N, all elements of the array from binding through binding + N – 1 must
2567 * be within this range."
2568 */
2569 if (qual->flags.q.buffer &&
2570 max_index >= ctx->Const.MaxShaderStorageBufferBindings) {
2571 _mesa_glsl_error(loc, state, "layout(binding = %d) for %d SSBOs exceeds "
2572 "the maximum number of SSBO binding points (%d)",
2573 qual->binding, elements,
2574 ctx->Const.MaxShaderStorageBufferBindings);
2575 return false;
2576 }
2577 } else if (base_type->is_sampler()) {
2578 /* Samplers. From page 63 of the GLSL 4.20 specification:
2579 * "If the binding is less than zero, or greater than or equal to the
2580 * implementation-dependent maximum supported number of units, a
2581 * compilation error will occur. When the binding identifier is used
2582 * with an array of size N, all elements of the array from binding
2583 * through binding + N - 1 must be within this range."
2584 */
2585 unsigned limit = ctx->Const.MaxCombinedTextureImageUnits;
2586
2587 if (max_index >= limit) {
2588 _mesa_glsl_error(loc, state, "layout(binding = %d) for %d samplers "
2589 "exceeds the maximum number of texture image units "
2590 "(%d)", qual->binding, elements, limit);
2591
2592 return false;
2593 }
2594 } else if (base_type->contains_atomic()) {
2595 assert(ctx->Const.MaxAtomicBufferBindings <= MAX_COMBINED_ATOMIC_BUFFERS);
2596 if (unsigned(qual->binding) >= ctx->Const.MaxAtomicBufferBindings) {
2597 _mesa_glsl_error(loc, state, "layout(binding = %d) exceeds the "
2598 " maximum number of atomic counter buffer bindings"
2599 "(%d)", qual->binding,
2600 ctx->Const.MaxAtomicBufferBindings);
2601
2602 return false;
2603 }
2604 } else if (state->is_version(420, 310) && base_type->is_image()) {
2605 assert(ctx->Const.MaxImageUnits <= MAX_IMAGE_UNITS);
2606 if (max_index >= ctx->Const.MaxImageUnits) {
2607 _mesa_glsl_error(loc, state, "Image binding %d exceeds the "
2608 " maximum number of image units (%d)", max_index,
2609 ctx->Const.MaxImageUnits);
2610 return false;
2611 }
2612
2613 } else {
2614 _mesa_glsl_error(loc, state,
2615 "the \"binding\" qualifier only applies to uniform "
2616 "blocks, opaque variables, or arrays thereof");
2617 return false;
2618 }
2619
2620 return true;
2621 }
2622
2623
2624 static glsl_interp_qualifier
2625 interpret_interpolation_qualifier(const struct ast_type_qualifier *qual,
2626 ir_variable_mode mode,
2627 struct _mesa_glsl_parse_state *state,
2628 YYLTYPE *loc)
2629 {
2630 glsl_interp_qualifier interpolation;
2631 if (qual->flags.q.flat)
2632 interpolation = INTERP_QUALIFIER_FLAT;
2633 else if (qual->flags.q.noperspective)
2634 interpolation = INTERP_QUALIFIER_NOPERSPECTIVE;
2635 else if (qual->flags.q.smooth)
2636 interpolation = INTERP_QUALIFIER_SMOOTH;
2637 else
2638 interpolation = INTERP_QUALIFIER_NONE;
2639
2640 if (interpolation != INTERP_QUALIFIER_NONE) {
2641 if (mode != ir_var_shader_in && mode != ir_var_shader_out) {
2642 _mesa_glsl_error(loc, state,
2643 "interpolation qualifier `%s' can only be applied to "
2644 "shader inputs or outputs.",
2645 interpolation_string(interpolation));
2646
2647 }
2648
2649 if ((state->stage == MESA_SHADER_VERTEX && mode == ir_var_shader_in) ||
2650 (state->stage == MESA_SHADER_FRAGMENT && mode == ir_var_shader_out)) {
2651 _mesa_glsl_error(loc, state,
2652 "interpolation qualifier `%s' cannot be applied to "
2653 "vertex shader inputs or fragment shader outputs",
2654 interpolation_string(interpolation));
2655 }
2656 }
2657
2658 return interpolation;
2659 }
2660
2661
2662 static void
2663 validate_explicit_location(const struct ast_type_qualifier *qual,
2664 ir_variable *var,
2665 struct _mesa_glsl_parse_state *state,
2666 YYLTYPE *loc)
2667 {
2668 bool fail = false;
2669
2670 /* Checks for GL_ARB_explicit_uniform_location. */
2671 if (qual->flags.q.uniform) {
2672 if (!state->check_explicit_uniform_location_allowed(loc, var))
2673 return;
2674
2675 const struct gl_context *const ctx = state->ctx;
2676 unsigned max_loc = qual->location + var->type->uniform_locations() - 1;
2677
2678 if (max_loc >= ctx->Const.MaxUserAssignableUniformLocations) {
2679 _mesa_glsl_error(loc, state, "location(s) consumed by uniform %s "
2680 ">= MAX_UNIFORM_LOCATIONS (%u)", var->name,
2681 ctx->Const.MaxUserAssignableUniformLocations);
2682 return;
2683 }
2684
2685 var->data.explicit_location = true;
2686 var->data.location = qual->location;
2687 return;
2688 }
2689
2690 /* Between GL_ARB_explicit_attrib_location an
2691 * GL_ARB_separate_shader_objects, the inputs and outputs of any shader
2692 * stage can be assigned explicit locations. The checking here associates
2693 * the correct extension with the correct stage's input / output:
2694 *
2695 * input output
2696 * ----- ------
2697 * vertex explicit_loc sso
2698 * tess control sso sso
2699 * tess eval sso sso
2700 * geometry sso sso
2701 * fragment sso explicit_loc
2702 */
2703 switch (state->stage) {
2704 case MESA_SHADER_VERTEX:
2705 if (var->data.mode == ir_var_shader_in) {
2706 if (!state->check_explicit_attrib_location_allowed(loc, var))
2707 return;
2708
2709 break;
2710 }
2711
2712 if (var->data.mode == ir_var_shader_out) {
2713 if (!state->check_separate_shader_objects_allowed(loc, var))
2714 return;
2715
2716 break;
2717 }
2718
2719 fail = true;
2720 break;
2721
2722 case MESA_SHADER_TESS_CTRL:
2723 case MESA_SHADER_TESS_EVAL:
2724 case MESA_SHADER_GEOMETRY:
2725 if (var->data.mode == ir_var_shader_in || var->data.mode == ir_var_shader_out) {
2726 if (!state->check_separate_shader_objects_allowed(loc, var))
2727 return;
2728
2729 break;
2730 }
2731
2732 fail = true;
2733 break;
2734
2735 case MESA_SHADER_FRAGMENT:
2736 if (var->data.mode == ir_var_shader_in) {
2737 if (!state->check_separate_shader_objects_allowed(loc, var))
2738 return;
2739
2740 break;
2741 }
2742
2743 if (var->data.mode == ir_var_shader_out) {
2744 if (!state->check_explicit_attrib_location_allowed(loc, var))
2745 return;
2746
2747 break;
2748 }
2749
2750 fail = true;
2751 break;
2752
2753 case MESA_SHADER_COMPUTE:
2754 _mesa_glsl_error(loc, state,
2755 "compute shader variables cannot be given "
2756 "explicit locations");
2757 return;
2758 };
2759
2760 if (fail) {
2761 _mesa_glsl_error(loc, state,
2762 "%s cannot be given an explicit location in %s shader",
2763 mode_string(var),
2764 _mesa_shader_stage_to_string(state->stage));
2765 } else {
2766 var->data.explicit_location = true;
2767
2768 switch (state->stage) {
2769 case MESA_SHADER_VERTEX:
2770 var->data.location = (var->data.mode == ir_var_shader_in)
2771 ? (qual->location + VERT_ATTRIB_GENERIC0)
2772 : (qual->location + VARYING_SLOT_VAR0);
2773 break;
2774
2775 case MESA_SHADER_TESS_CTRL:
2776 case MESA_SHADER_TESS_EVAL:
2777 case MESA_SHADER_GEOMETRY:
2778 if (var->data.patch)
2779 var->data.location = qual->location + VARYING_SLOT_PATCH0;
2780 else
2781 var->data.location = qual->location + VARYING_SLOT_VAR0;
2782 break;
2783
2784 case MESA_SHADER_FRAGMENT:
2785 var->data.location = (var->data.mode == ir_var_shader_out)
2786 ? (qual->location + FRAG_RESULT_DATA0)
2787 : (qual->location + VARYING_SLOT_VAR0);
2788 break;
2789 case MESA_SHADER_COMPUTE:
2790 assert(!"Unexpected shader type");
2791 break;
2792 }
2793
2794 if (qual->flags.q.explicit_index) {
2795 /* From the GLSL 4.30 specification, section 4.4.2 (Output
2796 * Layout Qualifiers):
2797 *
2798 * "It is also a compile-time error if a fragment shader
2799 * sets a layout index to less than 0 or greater than 1."
2800 *
2801 * Older specifications don't mandate a behavior; we take
2802 * this as a clarification and always generate the error.
2803 */
2804 if (qual->index < 0 || qual->index > 1) {
2805 _mesa_glsl_error(loc, state,
2806 "explicit index may only be 0 or 1");
2807 } else {
2808 var->data.explicit_index = true;
2809 var->data.index = qual->index;
2810 }
2811 }
2812 }
2813 }
2814
2815 static void
2816 apply_image_qualifier_to_variable(const struct ast_type_qualifier *qual,
2817 ir_variable *var,
2818 struct _mesa_glsl_parse_state *state,
2819 YYLTYPE *loc)
2820 {
2821 const glsl_type *base_type = var->type->without_array();
2822
2823 if (base_type->is_image()) {
2824 if (var->data.mode != ir_var_uniform &&
2825 var->data.mode != ir_var_function_in) {
2826 _mesa_glsl_error(loc, state, "image variables may only be declared as "
2827 "function parameters or uniform-qualified "
2828 "global variables");
2829 }
2830
2831 var->data.image_read_only |= qual->flags.q.read_only;
2832 var->data.image_write_only |= qual->flags.q.write_only;
2833 var->data.image_coherent |= qual->flags.q.coherent;
2834 var->data.image_volatile |= qual->flags.q._volatile;
2835 var->data.image_restrict |= qual->flags.q.restrict_flag;
2836 var->data.read_only = true;
2837
2838 if (qual->flags.q.explicit_image_format) {
2839 if (var->data.mode == ir_var_function_in) {
2840 _mesa_glsl_error(loc, state, "format qualifiers cannot be "
2841 "used on image function parameters");
2842 }
2843
2844 if (qual->image_base_type != base_type->sampler_type) {
2845 _mesa_glsl_error(loc, state, "format qualifier doesn't match the "
2846 "base data type of the image");
2847 }
2848
2849 var->data.image_format = qual->image_format;
2850 } else {
2851 if (var->data.mode == ir_var_uniform) {
2852 if (state->es_shader) {
2853 _mesa_glsl_error(loc, state, "all image uniforms "
2854 "must have a format layout qualifier");
2855
2856 } else if (!qual->flags.q.write_only) {
2857 _mesa_glsl_error(loc, state, "image uniforms not qualified with "
2858 "`writeonly' must have a format layout "
2859 "qualifier");
2860 }
2861 }
2862
2863 var->data.image_format = GL_NONE;
2864 }
2865
2866 /* From page 70 of the GLSL ES 3.1 specification:
2867 *
2868 * "Except for image variables qualified with the format qualifiers
2869 * r32f, r32i, and r32ui, image variables must specify either memory
2870 * qualifier readonly or the memory qualifier writeonly."
2871 */
2872 if (state->es_shader &&
2873 var->data.image_format != GL_R32F &&
2874 var->data.image_format != GL_R32I &&
2875 var->data.image_format != GL_R32UI &&
2876 !var->data.image_read_only &&
2877 !var->data.image_write_only) {
2878 _mesa_glsl_error(loc, state, "image variables of format other than "
2879 "r32f, r32i or r32ui must be qualified `readonly' or "
2880 "`writeonly'");
2881 }
2882
2883 } else if (qual->flags.q.read_only ||
2884 qual->flags.q.write_only ||
2885 qual->flags.q.coherent ||
2886 qual->flags.q._volatile ||
2887 qual->flags.q.restrict_flag ||
2888 qual->flags.q.explicit_image_format) {
2889 _mesa_glsl_error(loc, state, "memory qualifiers may only be applied to "
2890 "images");
2891 }
2892 }
2893
2894 static inline const char*
2895 get_layout_qualifier_string(bool origin_upper_left, bool pixel_center_integer)
2896 {
2897 if (origin_upper_left && pixel_center_integer)
2898 return "origin_upper_left, pixel_center_integer";
2899 else if (origin_upper_left)
2900 return "origin_upper_left";
2901 else if (pixel_center_integer)
2902 return "pixel_center_integer";
2903 else
2904 return " ";
2905 }
2906
2907 static inline bool
2908 is_conflicting_fragcoord_redeclaration(struct _mesa_glsl_parse_state *state,
2909 const struct ast_type_qualifier *qual)
2910 {
2911 /* If gl_FragCoord was previously declared, and the qualifiers were
2912 * different in any way, return true.
2913 */
2914 if (state->fs_redeclares_gl_fragcoord) {
2915 return (state->fs_pixel_center_integer != qual->flags.q.pixel_center_integer
2916 || state->fs_origin_upper_left != qual->flags.q.origin_upper_left);
2917 }
2918
2919 return false;
2920 }
2921
2922 static inline void
2923 validate_array_dimensions(const glsl_type *t,
2924 struct _mesa_glsl_parse_state *state,
2925 YYLTYPE *loc) {
2926 if (t->is_array()) {
2927 t = t->fields.array;
2928 while (t->is_array()) {
2929 if (t->is_unsized_array()) {
2930 _mesa_glsl_error(loc, state,
2931 "only the outermost array dimension can "
2932 "be unsized",
2933 t->name);
2934 break;
2935 }
2936 t = t->fields.array;
2937 }
2938 }
2939 }
2940
2941 static void
2942 apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
2943 ir_variable *var,
2944 struct _mesa_glsl_parse_state *state,
2945 YYLTYPE *loc,
2946 bool is_parameter)
2947 {
2948 STATIC_ASSERT(sizeof(qual->flags.q) <= sizeof(qual->flags.i));
2949
2950 if (qual->flags.q.invariant) {
2951 if (var->data.used) {
2952 _mesa_glsl_error(loc, state,
2953 "variable `%s' may not be redeclared "
2954 "`invariant' after being used",
2955 var->name);
2956 } else {
2957 var->data.invariant = 1;
2958 }
2959 }
2960
2961 if (qual->flags.q.precise) {
2962 if (var->data.used) {
2963 _mesa_glsl_error(loc, state,
2964 "variable `%s' may not be redeclared "
2965 "`precise' after being used",
2966 var->name);
2967 } else {
2968 var->data.precise = 1;
2969 }
2970 }
2971
2972 if (qual->flags.q.subroutine && !qual->flags.q.uniform) {
2973 _mesa_glsl_error(loc, state,
2974 "`subroutine' may only be applied to uniforms, "
2975 "subroutine type declarations, or function definitions");
2976 }
2977
2978 if (qual->flags.q.constant || qual->flags.q.attribute
2979 || qual->flags.q.uniform
2980 || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
2981 var->data.read_only = 1;
2982
2983 if (qual->flags.q.centroid)
2984 var->data.centroid = 1;
2985
2986 if (qual->flags.q.sample)
2987 var->data.sample = 1;
2988
2989 /* Precision qualifiers do not hold any meaning in Desktop GLSL */
2990 if (state->es_shader) {
2991 var->data.precision =
2992 select_gles_precision(qual->precision, var->type, state, loc);
2993 }
2994
2995 if (state->stage == MESA_SHADER_GEOMETRY &&
2996 qual->flags.q.out && qual->flags.q.stream) {
2997 var->data.stream = qual->stream;
2998 }
2999
3000 if (qual->flags.q.patch)
3001 var->data.patch = 1;
3002
3003 if (qual->flags.q.attribute && state->stage != MESA_SHADER_VERTEX) {
3004 var->type = glsl_type::error_type;
3005 _mesa_glsl_error(loc, state,
3006 "`attribute' variables may not be declared in the "
3007 "%s shader",
3008 _mesa_shader_stage_to_string(state->stage));
3009 }
3010
3011 /* Disallow layout qualifiers which may only appear on layout declarations. */
3012 if (qual->flags.q.prim_type) {
3013 _mesa_glsl_error(loc, state,
3014 "Primitive type may only be specified on GS input or output "
3015 "layout declaration, not on variables.");
3016 }
3017
3018 /* Section 6.1.1 (Function Calling Conventions) of the GLSL 1.10 spec says:
3019 *
3020 * "However, the const qualifier cannot be used with out or inout."
3021 *
3022 * The same section of the GLSL 4.40 spec further clarifies this saying:
3023 *
3024 * "The const qualifier cannot be used with out or inout, or a
3025 * compile-time error results."
3026 */
3027 if (is_parameter && qual->flags.q.constant && qual->flags.q.out) {
3028 _mesa_glsl_error(loc, state,
3029 "`const' may not be applied to `out' or `inout' "
3030 "function parameters");
3031 }
3032
3033 /* If there is no qualifier that changes the mode of the variable, leave
3034 * the setting alone.
3035 */
3036 assert(var->data.mode != ir_var_temporary);
3037 if (qual->flags.q.in && qual->flags.q.out)
3038 var->data.mode = ir_var_function_inout;
3039 else if (qual->flags.q.in)
3040 var->data.mode = is_parameter ? ir_var_function_in : ir_var_shader_in;
3041 else if (qual->flags.q.attribute
3042 || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
3043 var->data.mode = ir_var_shader_in;
3044 else if (qual->flags.q.out)
3045 var->data.mode = is_parameter ? ir_var_function_out : ir_var_shader_out;
3046 else if (qual->flags.q.varying && (state->stage == MESA_SHADER_VERTEX))
3047 var->data.mode = ir_var_shader_out;
3048 else if (qual->flags.q.uniform)
3049 var->data.mode = ir_var_uniform;
3050 else if (qual->flags.q.buffer)
3051 var->data.mode = ir_var_shader_storage;
3052 else if (qual->flags.q.shared_storage)
3053 var->data.mode = ir_var_shader_shared;
3054
3055 if (!is_parameter && is_varying_var(var, state->stage)) {
3056 /* User-defined ins/outs are not permitted in compute shaders. */
3057 if (state->stage == MESA_SHADER_COMPUTE) {
3058 _mesa_glsl_error(loc, state,
3059 "user-defined input and output variables are not "
3060 "permitted in compute shaders");
3061 }
3062
3063 /* This variable is being used to link data between shader stages (in
3064 * pre-glsl-1.30 parlance, it's a "varying"). Check that it has a type
3065 * that is allowed for such purposes.
3066 *
3067 * From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
3068 *
3069 * "The varying qualifier can be used only with the data types
3070 * float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
3071 * these."
3072 *
3073 * This was relaxed in GLSL version 1.30 and GLSL ES version 3.00. From
3074 * page 31 (page 37 of the PDF) of the GLSL 1.30 spec:
3075 *
3076 * "Fragment inputs can only be signed and unsigned integers and
3077 * integer vectors, float, floating-point vectors, matrices, or
3078 * arrays of these. Structures cannot be input.
3079 *
3080 * Similar text exists in the section on vertex shader outputs.
3081 *
3082 * Similar text exists in the GLSL ES 3.00 spec, except that the GLSL ES
3083 * 3.00 spec allows structs as well. Varying structs are also allowed
3084 * in GLSL 1.50.
3085 */
3086 switch (var->type->get_scalar_type()->base_type) {
3087 case GLSL_TYPE_FLOAT:
3088 /* Ok in all GLSL versions */
3089 break;
3090 case GLSL_TYPE_UINT:
3091 case GLSL_TYPE_INT:
3092 if (state->is_version(130, 300))
3093 break;
3094 _mesa_glsl_error(loc, state,
3095 "varying variables must be of base type float in %s",
3096 state->get_version_string());
3097 break;
3098 case GLSL_TYPE_STRUCT:
3099 if (state->is_version(150, 300))
3100 break;
3101 _mesa_glsl_error(loc, state,
3102 "varying variables may not be of type struct");
3103 break;
3104 case GLSL_TYPE_DOUBLE:
3105 break;
3106 default:
3107 _mesa_glsl_error(loc, state, "illegal type for a varying variable");
3108 break;
3109 }
3110 }
3111
3112 if (state->all_invariant && (state->current_function == NULL)) {
3113 switch (state->stage) {
3114 case MESA_SHADER_VERTEX:
3115 if (var->data.mode == ir_var_shader_out)
3116 var->data.invariant = true;
3117 break;
3118 case MESA_SHADER_TESS_CTRL:
3119 case MESA_SHADER_TESS_EVAL:
3120 case MESA_SHADER_GEOMETRY:
3121 if ((var->data.mode == ir_var_shader_in)
3122 || (var->data.mode == ir_var_shader_out))
3123 var->data.invariant = true;
3124 break;
3125 case MESA_SHADER_FRAGMENT:
3126 if (var->data.mode == ir_var_shader_in)
3127 var->data.invariant = true;
3128 break;
3129 case MESA_SHADER_COMPUTE:
3130 /* Invariance isn't meaningful in compute shaders. */
3131 break;
3132 }
3133 }
3134
3135 var->data.interpolation =
3136 interpret_interpolation_qualifier(qual, (ir_variable_mode) var->data.mode,
3137 state, loc);
3138
3139 var->data.pixel_center_integer = qual->flags.q.pixel_center_integer;
3140 var->data.origin_upper_left = qual->flags.q.origin_upper_left;
3141 if ((qual->flags.q.origin_upper_left || qual->flags.q.pixel_center_integer)
3142 && (strcmp(var->name, "gl_FragCoord") != 0)) {
3143 const char *const qual_string = (qual->flags.q.origin_upper_left)
3144 ? "origin_upper_left" : "pixel_center_integer";
3145
3146 _mesa_glsl_error(loc, state,
3147 "layout qualifier `%s' can only be applied to "
3148 "fragment shader input `gl_FragCoord'",
3149 qual_string);
3150 }
3151
3152 if (var->name != NULL && strcmp(var->name, "gl_FragCoord") == 0) {
3153
3154 /* Section 4.3.8.1, page 39 of GLSL 1.50 spec says:
3155 *
3156 * "Within any shader, the first redeclarations of gl_FragCoord
3157 * must appear before any use of gl_FragCoord."
3158 *
3159 * Generate a compiler error if above condition is not met by the
3160 * fragment shader.
3161 */
3162 ir_variable *earlier = state->symbols->get_variable("gl_FragCoord");
3163 if (earlier != NULL &&
3164 earlier->data.used &&
3165 !state->fs_redeclares_gl_fragcoord) {
3166 _mesa_glsl_error(loc, state,
3167 "gl_FragCoord used before its first redeclaration "
3168 "in fragment shader");
3169 }
3170
3171 /* Make sure all gl_FragCoord redeclarations specify the same layout
3172 * qualifiers.
3173 */
3174 if (is_conflicting_fragcoord_redeclaration(state, qual)) {
3175 const char *const qual_string =
3176 get_layout_qualifier_string(qual->flags.q.origin_upper_left,
3177 qual->flags.q.pixel_center_integer);
3178
3179 const char *const state_string =
3180 get_layout_qualifier_string(state->fs_origin_upper_left,
3181 state->fs_pixel_center_integer);
3182
3183 _mesa_glsl_error(loc, state,
3184 "gl_FragCoord redeclared with different layout "
3185 "qualifiers (%s) and (%s) ",
3186 state_string,
3187 qual_string);
3188 }
3189 state->fs_origin_upper_left = qual->flags.q.origin_upper_left;
3190 state->fs_pixel_center_integer = qual->flags.q.pixel_center_integer;
3191 state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers =
3192 !qual->flags.q.origin_upper_left && !qual->flags.q.pixel_center_integer;
3193 state->fs_redeclares_gl_fragcoord =
3194 state->fs_origin_upper_left ||
3195 state->fs_pixel_center_integer ||
3196 state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers;
3197 }
3198
3199 if (qual->flags.q.explicit_location) {
3200 validate_explicit_location(qual, var, state, loc);
3201 } else if (qual->flags.q.explicit_index) {
3202 _mesa_glsl_error(loc, state, "explicit index requires explicit location");
3203 }
3204
3205 if (qual->flags.q.explicit_binding &&
3206 validate_binding_qualifier(state, loc, var->type, qual)) {
3207 var->data.explicit_binding = true;
3208 var->data.binding = qual->binding;
3209 }
3210
3211 if (var->type->contains_atomic()) {
3212 if (var->data.mode == ir_var_uniform) {
3213 if (var->data.explicit_binding) {
3214 unsigned *offset =
3215 &state->atomic_counter_offsets[var->data.binding];
3216
3217 if (*offset % ATOMIC_COUNTER_SIZE)
3218 _mesa_glsl_error(loc, state,
3219 "misaligned atomic counter offset");
3220
3221 var->data.atomic.offset = *offset;
3222 *offset += var->type->atomic_size();
3223
3224 } else {
3225 _mesa_glsl_error(loc, state,
3226 "atomic counters require explicit binding point");
3227 }
3228 } else if (var->data.mode != ir_var_function_in) {
3229 _mesa_glsl_error(loc, state, "atomic counters may only be declared as "
3230 "function parameters or uniform-qualified "
3231 "global variables");
3232 }
3233 }
3234
3235 /* Does the declaration use the deprecated 'attribute' or 'varying'
3236 * keywords?
3237 */
3238 const bool uses_deprecated_qualifier = qual->flags.q.attribute
3239 || qual->flags.q.varying;
3240
3241
3242 /* Validate auxiliary storage qualifiers */
3243
3244 /* From section 4.3.4 of the GLSL 1.30 spec:
3245 * "It is an error to use centroid in in a vertex shader."
3246 *
3247 * From section 4.3.4 of the GLSL ES 3.00 spec:
3248 * "It is an error to use centroid in or interpolation qualifiers in
3249 * a vertex shader input."
3250 */
3251
3252 /* Section 4.3.6 of the GLSL 1.30 specification states:
3253 * "It is an error to use centroid out in a fragment shader."
3254 *
3255 * The GL_ARB_shading_language_420pack extension specification states:
3256 * "It is an error to use auxiliary storage qualifiers or interpolation
3257 * qualifiers on an output in a fragment shader."
3258 */
3259 if (qual->flags.q.sample && (!is_varying_var(var, state->stage) || uses_deprecated_qualifier)) {
3260 _mesa_glsl_error(loc, state,
3261 "sample qualifier may only be used on `in` or `out` "
3262 "variables between shader stages");
3263 }
3264 if (qual->flags.q.centroid && !is_varying_var(var, state->stage)) {
3265 _mesa_glsl_error(loc, state,
3266 "centroid qualifier may only be used with `in', "
3267 "`out' or `varying' variables between shader stages");
3268 }
3269
3270
3271 /* Is the 'layout' keyword used with parameters that allow relaxed checking.
3272 * Many implementations of GL_ARB_fragment_coord_conventions_enable and some
3273 * implementations (only Mesa?) GL_ARB_explicit_attrib_location_enable
3274 * allowed the layout qualifier to be used with 'varying' and 'attribute'.
3275 * These extensions and all following extensions that add the 'layout'
3276 * keyword have been modified to require the use of 'in' or 'out'.
3277 *
3278 * The following extension do not allow the deprecated keywords:
3279 *
3280 * GL_AMD_conservative_depth
3281 * GL_ARB_conservative_depth
3282 * GL_ARB_gpu_shader5
3283 * GL_ARB_separate_shader_objects
3284 * GL_ARB_tessellation_shader
3285 * GL_ARB_transform_feedback3
3286 * GL_ARB_uniform_buffer_object
3287 *
3288 * It is unknown whether GL_EXT_shader_image_load_store or GL_NV_gpu_shader5
3289 * allow layout with the deprecated keywords.
3290 */
3291 const bool relaxed_layout_qualifier_checking =
3292 state->ARB_fragment_coord_conventions_enable;
3293
3294 if (qual->has_layout() && uses_deprecated_qualifier) {
3295 if (relaxed_layout_qualifier_checking) {
3296 _mesa_glsl_warning(loc, state,
3297 "`layout' qualifier may not be used with "
3298 "`attribute' or `varying'");
3299 } else {
3300 _mesa_glsl_error(loc, state,
3301 "`layout' qualifier may not be used with "
3302 "`attribute' or `varying'");
3303 }
3304 }
3305
3306 /* Layout qualifiers for gl_FragDepth, which are enabled by extension
3307 * AMD_conservative_depth.
3308 */
3309 int depth_layout_count = qual->flags.q.depth_any
3310 + qual->flags.q.depth_greater
3311 + qual->flags.q.depth_less
3312 + qual->flags.q.depth_unchanged;
3313 if (depth_layout_count > 0
3314 && !state->AMD_conservative_depth_enable
3315 && !state->ARB_conservative_depth_enable) {
3316 _mesa_glsl_error(loc, state,
3317 "extension GL_AMD_conservative_depth or "
3318 "GL_ARB_conservative_depth must be enabled "
3319 "to use depth layout qualifiers");
3320 } else if (depth_layout_count > 0
3321 && strcmp(var->name, "gl_FragDepth") != 0) {
3322 _mesa_glsl_error(loc, state,
3323 "depth layout qualifiers can be applied only to "
3324 "gl_FragDepth");
3325 } else if (depth_layout_count > 1
3326 && strcmp(var->name, "gl_FragDepth") == 0) {
3327 _mesa_glsl_error(loc, state,
3328 "at most one depth layout qualifier can be applied to "
3329 "gl_FragDepth");
3330 }
3331 if (qual->flags.q.depth_any)
3332 var->data.depth_layout = ir_depth_layout_any;
3333 else if (qual->flags.q.depth_greater)
3334 var->data.depth_layout = ir_depth_layout_greater;
3335 else if (qual->flags.q.depth_less)
3336 var->data.depth_layout = ir_depth_layout_less;
3337 else if (qual->flags.q.depth_unchanged)
3338 var->data.depth_layout = ir_depth_layout_unchanged;
3339 else
3340 var->data.depth_layout = ir_depth_layout_none;
3341
3342 if (qual->flags.q.std140 ||
3343 qual->flags.q.std430 ||
3344 qual->flags.q.packed ||
3345 qual->flags.q.shared) {
3346 _mesa_glsl_error(loc, state,
3347 "uniform and shader storage block layout qualifiers "
3348 "std140, std430, packed, and shared can only be "
3349 "applied to uniform or shader storage blocks, not "
3350 "members");
3351 }
3352
3353 if (qual->flags.q.shared_storage && state->stage != MESA_SHADER_COMPUTE) {
3354 _mesa_glsl_error(loc, state,
3355 "the shared storage qualifiers can only be used with "
3356 "compute shaders");
3357 }
3358
3359 if (qual->flags.q.row_major || qual->flags.q.column_major) {
3360 validate_matrix_layout_for_type(state, loc, var->type, var);
3361 }
3362
3363 apply_image_qualifier_to_variable(qual, var, state, loc);
3364
3365 /* From section 4.4.1.3 of the GLSL 4.50 specification (Fragment Shader
3366 * Inputs):
3367 *
3368 * "Fragment shaders also allow the following layout qualifier on in only
3369 * (not with variable declarations)
3370 * layout-qualifier-id
3371 * early_fragment_tests
3372 * [...]"
3373 */
3374 if (qual->flags.q.early_fragment_tests) {
3375 _mesa_glsl_error(loc, state, "early_fragment_tests layout qualifier only "
3376 "valid in fragment shader input layout declaration.");
3377 }
3378 }
3379
3380 /**
3381 * Get the variable that is being redeclared by this declaration
3382 *
3383 * Semantic checks to verify the validity of the redeclaration are also
3384 * performed. If semantic checks fail, compilation error will be emitted via
3385 * \c _mesa_glsl_error, but a non-\c NULL pointer will still be returned.
3386 *
3387 * \returns
3388 * A pointer to an existing variable in the current scope if the declaration
3389 * is a redeclaration, \c NULL otherwise.
3390 */
3391 static ir_variable *
3392 get_variable_being_redeclared(ir_variable *var, YYLTYPE loc,
3393 struct _mesa_glsl_parse_state *state,
3394 bool allow_all_redeclarations)
3395 {
3396 /* Check if this declaration is actually a re-declaration, either to
3397 * resize an array or add qualifiers to an existing variable.
3398 *
3399 * This is allowed for variables in the current scope, or when at
3400 * global scope (for built-ins in the implicit outer scope).
3401 */
3402 ir_variable *earlier = state->symbols->get_variable(var->name);
3403 if (earlier == NULL ||
3404 (state->current_function != NULL &&
3405 !state->symbols->name_declared_this_scope(var->name))) {
3406 return NULL;
3407 }
3408
3409
3410 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
3411 *
3412 * "It is legal to declare an array without a size and then
3413 * later re-declare the same name as an array of the same
3414 * type and specify a size."
3415 */
3416 if (earlier->type->is_unsized_array() && var->type->is_array()
3417 && (var->type->fields.array == earlier->type->fields.array)) {
3418 /* FINISHME: This doesn't match the qualifiers on the two
3419 * FINISHME: declarations. It's not 100% clear whether this is
3420 * FINISHME: required or not.
3421 */
3422
3423 const unsigned size = unsigned(var->type->array_size());
3424 check_builtin_array_max_size(var->name, size, loc, state);
3425 if ((size > 0) && (size <= earlier->data.max_array_access)) {
3426 _mesa_glsl_error(& loc, state, "array size must be > %u due to "
3427 "previous access",
3428 earlier->data.max_array_access);
3429 }
3430
3431 earlier->type = var->type;
3432 delete var;
3433 var = NULL;
3434 } else if ((state->ARB_fragment_coord_conventions_enable ||
3435 state->is_version(150, 0))
3436 && strcmp(var->name, "gl_FragCoord") == 0
3437 && earlier->type == var->type
3438 && earlier->data.mode == var->data.mode) {
3439 /* Allow redeclaration of gl_FragCoord for ARB_fcc layout
3440 * qualifiers.
3441 */
3442 earlier->data.origin_upper_left = var->data.origin_upper_left;
3443 earlier->data.pixel_center_integer = var->data.pixel_center_integer;
3444
3445 /* According to section 4.3.7 of the GLSL 1.30 spec,
3446 * the following built-in varaibles can be redeclared with an
3447 * interpolation qualifier:
3448 * * gl_FrontColor
3449 * * gl_BackColor
3450 * * gl_FrontSecondaryColor
3451 * * gl_BackSecondaryColor
3452 * * gl_Color
3453 * * gl_SecondaryColor
3454 */
3455 } else if (state->is_version(130, 0)
3456 && (strcmp(var->name, "gl_FrontColor") == 0
3457 || strcmp(var->name, "gl_BackColor") == 0
3458 || strcmp(var->name, "gl_FrontSecondaryColor") == 0
3459 || strcmp(var->name, "gl_BackSecondaryColor") == 0
3460 || strcmp(var->name, "gl_Color") == 0
3461 || strcmp(var->name, "gl_SecondaryColor") == 0)
3462 && earlier->type == var->type
3463 && earlier->data.mode == var->data.mode) {
3464 earlier->data.interpolation = var->data.interpolation;
3465
3466 /* Layout qualifiers for gl_FragDepth. */
3467 } else if ((state->AMD_conservative_depth_enable ||
3468 state->ARB_conservative_depth_enable)
3469 && strcmp(var->name, "gl_FragDepth") == 0
3470 && earlier->type == var->type
3471 && earlier->data.mode == var->data.mode) {
3472
3473 /** From the AMD_conservative_depth spec:
3474 * Within any shader, the first redeclarations of gl_FragDepth
3475 * must appear before any use of gl_FragDepth.
3476 */
3477 if (earlier->data.used) {
3478 _mesa_glsl_error(&loc, state,
3479 "the first redeclaration of gl_FragDepth "
3480 "must appear before any use of gl_FragDepth");
3481 }
3482
3483 /* Prevent inconsistent redeclaration of depth layout qualifier. */
3484 if (earlier->data.depth_layout != ir_depth_layout_none
3485 && earlier->data.depth_layout != var->data.depth_layout) {
3486 _mesa_glsl_error(&loc, state,
3487 "gl_FragDepth: depth layout is declared here "
3488 "as '%s, but it was previously declared as "
3489 "'%s'",
3490 depth_layout_string(var->data.depth_layout),
3491 depth_layout_string(earlier->data.depth_layout));
3492 }
3493
3494 earlier->data.depth_layout = var->data.depth_layout;
3495
3496 } else if (allow_all_redeclarations) {
3497 if (earlier->data.mode != var->data.mode) {
3498 _mesa_glsl_error(&loc, state,
3499 "redeclaration of `%s' with incorrect qualifiers",
3500 var->name);
3501 } else if (earlier->type != var->type) {
3502 _mesa_glsl_error(&loc, state,
3503 "redeclaration of `%s' has incorrect type",
3504 var->name);
3505 }
3506 } else {
3507 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
3508 }
3509
3510 return earlier;
3511 }
3512
3513 /**
3514 * Generate the IR for an initializer in a variable declaration
3515 */
3516 ir_rvalue *
3517 process_initializer(ir_variable *var, ast_declaration *decl,
3518 ast_fully_specified_type *type,
3519 exec_list *initializer_instructions,
3520 struct _mesa_glsl_parse_state *state)
3521 {
3522 ir_rvalue *result = NULL;
3523
3524 YYLTYPE initializer_loc = decl->initializer->get_location();
3525
3526 /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
3527 *
3528 * "All uniform variables are read-only and are initialized either
3529 * directly by an application via API commands, or indirectly by
3530 * OpenGL."
3531 */
3532 if (var->data.mode == ir_var_uniform) {
3533 state->check_version(120, 0, &initializer_loc,
3534 "cannot initialize uniform %s",
3535 var->name);
3536 }
3537
3538 /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec:
3539 *
3540 * "Buffer variables cannot have initializers."
3541 */
3542 if (var->data.mode == ir_var_shader_storage) {
3543 _mesa_glsl_error(&initializer_loc, state,
3544 "cannot initialize buffer variable %s",
3545 var->name);
3546 }
3547
3548 /* From section 4.1.7 of the GLSL 4.40 spec:
3549 *
3550 * "Opaque variables [...] are initialized only through the
3551 * OpenGL API; they cannot be declared with an initializer in a
3552 * shader."
3553 */
3554 if (var->type->contains_opaque()) {
3555 _mesa_glsl_error(&initializer_loc, state,
3556 "cannot initialize opaque variable %s",
3557 var->name);
3558 }
3559
3560 if ((var->data.mode == ir_var_shader_in) && (state->current_function == NULL)) {
3561 _mesa_glsl_error(&initializer_loc, state,
3562 "cannot initialize %s shader input / %s %s",
3563 _mesa_shader_stage_to_string(state->stage),
3564 (state->stage == MESA_SHADER_VERTEX)
3565 ? "attribute" : "varying",
3566 var->name);
3567 }
3568
3569 if (var->data.mode == ir_var_shader_out && state->current_function == NULL) {
3570 _mesa_glsl_error(&initializer_loc, state,
3571 "cannot initialize %s shader output %s",
3572 _mesa_shader_stage_to_string(state->stage),
3573 var->name);
3574 }
3575
3576 /* If the initializer is an ast_aggregate_initializer, recursively store
3577 * type information from the LHS into it, so that its hir() function can do
3578 * type checking.
3579 */
3580 if (decl->initializer->oper == ast_aggregate)
3581 _mesa_ast_set_aggregate_type(var->type, decl->initializer);
3582
3583 ir_dereference *const lhs = new(state) ir_dereference_variable(var);
3584 ir_rvalue *rhs = decl->initializer->hir(initializer_instructions, state);
3585
3586 /* Calculate the constant value if this is a const or uniform
3587 * declaration.
3588 *
3589 * Section 4.3 (Storage Qualifiers) of the GLSL ES 1.00.17 spec says:
3590 *
3591 * "Declarations of globals without a storage qualifier, or with
3592 * just the const qualifier, may include initializers, in which case
3593 * they will be initialized before the first line of main() is
3594 * executed. Such initializers must be a constant expression."
3595 *
3596 * The same section of the GLSL ES 3.00.4 spec has similar language.
3597 */
3598 if (type->qualifier.flags.q.constant
3599 || type->qualifier.flags.q.uniform
3600 || (state->es_shader && state->current_function == NULL)) {
3601 ir_rvalue *new_rhs = validate_assignment(state, initializer_loc,
3602 lhs, rhs, true);
3603 if (new_rhs != NULL) {
3604 rhs = new_rhs;
3605
3606 /* Section 4.3.3 (Constant Expressions) of the GLSL ES 3.00.4 spec
3607 * says:
3608 *
3609 * "A constant expression is one of
3610 *
3611 * ...
3612 *
3613 * - an expression formed by an operator on operands that are
3614 * all constant expressions, including getting an element of
3615 * a constant array, or a field of a constant structure, or
3616 * components of a constant vector. However, the sequence
3617 * operator ( , ) and the assignment operators ( =, +=, ...)
3618 * are not included in the operators that can create a
3619 * constant expression."
3620 *
3621 * Section 12.43 (Sequence operator and constant expressions) says:
3622 *
3623 * "Should the following construct be allowed?
3624 *
3625 * float a[2,3];
3626 *
3627 * The expression within the brackets uses the sequence operator
3628 * (',') and returns the integer 3 so the construct is declaring
3629 * a single-dimensional array of size 3. In some languages, the
3630 * construct declares a two-dimensional array. It would be
3631 * preferable to make this construct illegal to avoid confusion.
3632 *
3633 * One possibility is to change the definition of the sequence
3634 * operator so that it does not return a constant-expression and
3635 * hence cannot be used to declare an array size.
3636 *
3637 * RESOLUTION: The result of a sequence operator is not a
3638 * constant-expression."
3639 *
3640 * Section 4.3.3 (Constant Expressions) of the GLSL 4.30.9 spec
3641 * contains language almost identical to the section 4.3.3 in the
3642 * GLSL ES 3.00.4 spec. This is a new limitation for these GLSL
3643 * versions.
3644 */
3645 ir_constant *constant_value = rhs->constant_expression_value();
3646 if (!constant_value ||
3647 (state->is_version(430, 300) &&
3648 decl->initializer->has_sequence_subexpression())) {
3649 const char *const variable_mode =
3650 (type->qualifier.flags.q.constant)
3651 ? "const"
3652 : ((type->qualifier.flags.q.uniform) ? "uniform" : "global");
3653
3654 /* If ARB_shading_language_420pack is enabled, initializers of
3655 * const-qualified local variables do not have to be constant
3656 * expressions. Const-qualified global variables must still be
3657 * initialized with constant expressions.
3658 */
3659 if (!state->ARB_shading_language_420pack_enable
3660 || state->current_function == NULL) {
3661 _mesa_glsl_error(& initializer_loc, state,
3662 "initializer of %s variable `%s' must be a "
3663 "constant expression",
3664 variable_mode,
3665 decl->identifier);
3666 if (var->type->is_numeric()) {
3667 /* Reduce cascading errors. */
3668 var->constant_value = type->qualifier.flags.q.constant
3669 ? ir_constant::zero(state, var->type) : NULL;
3670 }
3671 }
3672 } else {
3673 rhs = constant_value;
3674 var->constant_value = type->qualifier.flags.q.constant
3675 ? constant_value : NULL;
3676 }
3677 } else {
3678 if (var->type->is_numeric()) {
3679 /* Reduce cascading errors. */
3680 var->constant_value = type->qualifier.flags.q.constant
3681 ? ir_constant::zero(state, var->type) : NULL;
3682 }
3683 }
3684 }
3685
3686 if (rhs && !rhs->type->is_error()) {
3687 bool temp = var->data.read_only;
3688 if (type->qualifier.flags.q.constant)
3689 var->data.read_only = false;
3690
3691 /* Never emit code to initialize a uniform.
3692 */
3693 const glsl_type *initializer_type;
3694 if (!type->qualifier.flags.q.uniform) {
3695 do_assignment(initializer_instructions, state,
3696 NULL,
3697 lhs, rhs,
3698 &result, true,
3699 true,
3700 type->get_location());
3701 initializer_type = result->type;
3702 } else
3703 initializer_type = rhs->type;
3704
3705 var->constant_initializer = rhs->constant_expression_value();
3706 var->data.has_initializer = true;
3707
3708 /* If the declared variable is an unsized array, it must inherrit
3709 * its full type from the initializer. A declaration such as
3710 *
3711 * uniform float a[] = float[](1.0, 2.0, 3.0, 3.0);
3712 *
3713 * becomes
3714 *
3715 * uniform float a[4] = float[](1.0, 2.0, 3.0, 3.0);
3716 *
3717 * The assignment generated in the if-statement (below) will also
3718 * automatically handle this case for non-uniforms.
3719 *
3720 * If the declared variable is not an array, the types must
3721 * already match exactly. As a result, the type assignment
3722 * here can be done unconditionally. For non-uniforms the call
3723 * to do_assignment can change the type of the initializer (via
3724 * the implicit conversion rules). For uniforms the initializer
3725 * must be a constant expression, and the type of that expression
3726 * was validated above.
3727 */
3728 var->type = initializer_type;
3729
3730 var->data.read_only = temp;
3731 }
3732
3733 return result;
3734 }
3735
3736 static void
3737 validate_layout_qualifier_vertex_count(struct _mesa_glsl_parse_state *state,
3738 YYLTYPE loc, ir_variable *var,
3739 unsigned num_vertices,
3740 unsigned *size,
3741 const char *var_category)
3742 {
3743 if (var->type->is_unsized_array()) {
3744 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec says:
3745 *
3746 * All geometry shader input unsized array declarations will be
3747 * sized by an earlier input layout qualifier, when present, as per
3748 * the following table.
3749 *
3750 * Followed by a table mapping each allowed input layout qualifier to
3751 * the corresponding input length.
3752 *
3753 * Similarly for tessellation control shader outputs.
3754 */
3755 if (num_vertices != 0)
3756 var->type = glsl_type::get_array_instance(var->type->fields.array,
3757 num_vertices);
3758 } else {
3759 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec
3760 * includes the following examples of compile-time errors:
3761 *
3762 * // code sequence within one shader...
3763 * in vec4 Color1[]; // size unknown
3764 * ...Color1.length()...// illegal, length() unknown
3765 * in vec4 Color2[2]; // size is 2
3766 * ...Color1.length()...// illegal, Color1 still has no size
3767 * in vec4 Color3[3]; // illegal, input sizes are inconsistent
3768 * layout(lines) in; // legal, input size is 2, matching
3769 * in vec4 Color4[3]; // illegal, contradicts layout
3770 * ...
3771 *
3772 * To detect the case illustrated by Color3, we verify that the size of
3773 * an explicitly-sized array matches the size of any previously declared
3774 * explicitly-sized array. To detect the case illustrated by Color4, we
3775 * verify that the size of an explicitly-sized array is consistent with
3776 * any previously declared input layout.
3777 */
3778 if (num_vertices != 0 && var->type->length != num_vertices) {
3779 _mesa_glsl_error(&loc, state,
3780 "%s size contradicts previously declared layout "
3781 "(size is %u, but layout requires a size of %u)",
3782 var_category, var->type->length, num_vertices);
3783 } else if (*size != 0 && var->type->length != *size) {
3784 _mesa_glsl_error(&loc, state,
3785 "%s sizes are inconsistent (size is %u, but a "
3786 "previous declaration has size %u)",
3787 var_category, var->type->length, *size);
3788 } else {
3789 *size = var->type->length;
3790 }
3791 }
3792 }
3793
3794 static void
3795 handle_tess_ctrl_shader_output_decl(struct _mesa_glsl_parse_state *state,
3796 YYLTYPE loc, ir_variable *var)
3797 {
3798 unsigned num_vertices = 0;
3799
3800 if (state->tcs_output_vertices_specified) {
3801 num_vertices = state->out_qualifier->vertices;
3802 }
3803
3804 if (!var->type->is_array() && !var->data.patch) {
3805 _mesa_glsl_error(&loc, state,
3806 "tessellation control shader outputs must be arrays");
3807
3808 /* To avoid cascading failures, short circuit the checks below. */
3809 return;
3810 }
3811
3812 if (var->data.patch)
3813 return;
3814
3815 validate_layout_qualifier_vertex_count(state, loc, var, num_vertices,
3816 &state->tcs_output_size,
3817 "tessellation control shader output");
3818 }
3819
3820 /**
3821 * Do additional processing necessary for tessellation control/evaluation shader
3822 * input declarations. This covers both interface block arrays and bare input
3823 * variables.
3824 */
3825 static void
3826 handle_tess_shader_input_decl(struct _mesa_glsl_parse_state *state,
3827 YYLTYPE loc, ir_variable *var)
3828 {
3829 if (!var->type->is_array() && !var->data.patch) {
3830 _mesa_glsl_error(&loc, state,
3831 "per-vertex tessellation shader inputs must be arrays");
3832 /* Avoid cascading failures. */
3833 return;
3834 }
3835
3836 if (var->data.patch)
3837 return;
3838
3839 /* Unsized arrays are implicitly sized to gl_MaxPatchVertices. */
3840 if (var->type->is_unsized_array()) {
3841 var->type = glsl_type::get_array_instance(var->type->fields.array,
3842 state->Const.MaxPatchVertices);
3843 }
3844 }
3845
3846
3847 /**
3848 * Do additional processing necessary for geometry shader input declarations
3849 * (this covers both interface blocks arrays and bare input variables).
3850 */
3851 static void
3852 handle_geometry_shader_input_decl(struct _mesa_glsl_parse_state *state,
3853 YYLTYPE loc, ir_variable *var)
3854 {
3855 unsigned num_vertices = 0;
3856
3857 if (state->gs_input_prim_type_specified) {
3858 num_vertices = vertices_per_prim(state->in_qualifier->prim_type);
3859 }
3860
3861 /* Geometry shader input variables must be arrays. Caller should have
3862 * reported an error for this.
3863 */
3864 if (!var->type->is_array()) {
3865 assert(state->error);
3866
3867 /* To avoid cascading failures, short circuit the checks below. */
3868 return;
3869 }
3870
3871 validate_layout_qualifier_vertex_count(state, loc, var, num_vertices,
3872 &state->gs_input_size,
3873 "geometry shader input");
3874 }
3875
3876 void
3877 validate_identifier(const char *identifier, YYLTYPE loc,
3878 struct _mesa_glsl_parse_state *state)
3879 {
3880 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
3881 *
3882 * "Identifiers starting with "gl_" are reserved for use by
3883 * OpenGL, and may not be declared in a shader as either a
3884 * variable or a function."
3885 */
3886 if (is_gl_identifier(identifier)) {
3887 _mesa_glsl_error(&loc, state,
3888 "identifier `%s' uses reserved `gl_' prefix",
3889 identifier);
3890 } else if (strstr(identifier, "__")) {
3891 /* From page 14 (page 20 of the PDF) of the GLSL 1.10
3892 * spec:
3893 *
3894 * "In addition, all identifiers containing two
3895 * consecutive underscores (__) are reserved as
3896 * possible future keywords."
3897 *
3898 * The intention is that names containing __ are reserved for internal
3899 * use by the implementation, and names prefixed with GL_ are reserved
3900 * for use by Khronos. Names simply containing __ are dangerous to use,
3901 * but should be allowed.
3902 *
3903 * A future version of the GLSL specification will clarify this.
3904 */
3905 _mesa_glsl_warning(&loc, state,
3906 "identifier `%s' uses reserved `__' string",
3907 identifier);
3908 }
3909 }
3910
3911 ir_rvalue *
3912 ast_declarator_list::hir(exec_list *instructions,
3913 struct _mesa_glsl_parse_state *state)
3914 {
3915 void *ctx = state;
3916 const struct glsl_type *decl_type;
3917 const char *type_name = NULL;
3918 ir_rvalue *result = NULL;
3919 YYLTYPE loc = this->get_location();
3920
3921 /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec:
3922 *
3923 * "To ensure that a particular output variable is invariant, it is
3924 * necessary to use the invariant qualifier. It can either be used to
3925 * qualify a previously declared variable as being invariant
3926 *
3927 * invariant gl_Position; // make existing gl_Position be invariant"
3928 *
3929 * In these cases the parser will set the 'invariant' flag in the declarator
3930 * list, and the type will be NULL.
3931 */
3932 if (this->invariant) {
3933 assert(this->type == NULL);
3934
3935 if (state->current_function != NULL) {
3936 _mesa_glsl_error(& loc, state,
3937 "all uses of `invariant' keyword must be at global "
3938 "scope");
3939 }
3940
3941 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
3942 assert(decl->array_specifier == NULL);
3943 assert(decl->initializer == NULL);
3944
3945 ir_variable *const earlier =
3946 state->symbols->get_variable(decl->identifier);
3947 if (earlier == NULL) {
3948 _mesa_glsl_error(& loc, state,
3949 "undeclared variable `%s' cannot be marked "
3950 "invariant", decl->identifier);
3951 } else if (!is_varying_var(earlier, state->stage)) {
3952 _mesa_glsl_error(&loc, state,
3953 "`%s' cannot be marked invariant; interfaces between "
3954 "shader stages only.", decl->identifier);
3955 } else if (earlier->data.used) {
3956 _mesa_glsl_error(& loc, state,
3957 "variable `%s' may not be redeclared "
3958 "`invariant' after being used",
3959 earlier->name);
3960 } else {
3961 earlier->data.invariant = true;
3962 }
3963 }
3964
3965 /* Invariant redeclarations do not have r-values.
3966 */
3967 return NULL;
3968 }
3969
3970 if (this->precise) {
3971 assert(this->type == NULL);
3972
3973 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
3974 assert(decl->array_specifier == NULL);
3975 assert(decl->initializer == NULL);
3976
3977 ir_variable *const earlier =
3978 state->symbols->get_variable(decl->identifier);
3979 if (earlier == NULL) {
3980 _mesa_glsl_error(& loc, state,
3981 "undeclared variable `%s' cannot be marked "
3982 "precise", decl->identifier);
3983 } else if (state->current_function != NULL &&
3984 !state->symbols->name_declared_this_scope(decl->identifier)) {
3985 /* Note: we have to check if we're in a function, since
3986 * builtins are treated as having come from another scope.
3987 */
3988 _mesa_glsl_error(& loc, state,
3989 "variable `%s' from an outer scope may not be "
3990 "redeclared `precise' in this scope",
3991 earlier->name);
3992 } else if (earlier->data.used) {
3993 _mesa_glsl_error(& loc, state,
3994 "variable `%s' may not be redeclared "
3995 "`precise' after being used",
3996 earlier->name);
3997 } else {
3998 earlier->data.precise = true;
3999 }
4000 }
4001
4002 /* Precise redeclarations do not have r-values either. */
4003 return NULL;
4004 }
4005
4006 assert(this->type != NULL);
4007 assert(!this->invariant);
4008 assert(!this->precise);
4009
4010 /* The type specifier may contain a structure definition. Process that
4011 * before any of the variable declarations.
4012 */
4013 (void) this->type->specifier->hir(instructions, state);
4014
4015 decl_type = this->type->glsl_type(& type_name, state);
4016
4017 /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec:
4018 * "Buffer variables may only be declared inside interface blocks
4019 * (section 4.3.9 “Interface Blocks”), which are then referred to as
4020 * shader storage blocks. It is a compile-time error to declare buffer
4021 * variables at global scope (outside a block)."
4022 */
4023 if (type->qualifier.flags.q.buffer && !decl_type->is_interface()) {
4024 _mesa_glsl_error(&loc, state,
4025 "buffer variables cannot be declared outside "
4026 "interface blocks");
4027 }
4028
4029 /* An offset-qualified atomic counter declaration sets the default
4030 * offset for the next declaration within the same atomic counter
4031 * buffer.
4032 */
4033 if (decl_type && decl_type->contains_atomic()) {
4034 if (type->qualifier.flags.q.explicit_binding &&
4035 type->qualifier.flags.q.explicit_offset)
4036 state->atomic_counter_offsets[type->qualifier.binding] =
4037 type->qualifier.offset;
4038 }
4039
4040 if (this->declarations.is_empty()) {
4041 /* If there is no structure involved in the program text, there are two
4042 * possible scenarios:
4043 *
4044 * - The program text contained something like 'vec4;'. This is an
4045 * empty declaration. It is valid but weird. Emit a warning.
4046 *
4047 * - The program text contained something like 'S;' and 'S' is not the
4048 * name of a known structure type. This is both invalid and weird.
4049 * Emit an error.
4050 *
4051 * - The program text contained something like 'mediump float;'
4052 * when the programmer probably meant 'precision mediump
4053 * float;' Emit a warning with a description of what they
4054 * probably meant to do.
4055 *
4056 * Note that if decl_type is NULL and there is a structure involved,
4057 * there must have been some sort of error with the structure. In this
4058 * case we assume that an error was already generated on this line of
4059 * code for the structure. There is no need to generate an additional,
4060 * confusing error.
4061 */
4062 assert(this->type->specifier->structure == NULL || decl_type != NULL
4063 || state->error);
4064
4065 if (decl_type == NULL) {
4066 _mesa_glsl_error(&loc, state,
4067 "invalid type `%s' in empty declaration",
4068 type_name);
4069 } else if (decl_type->base_type == GLSL_TYPE_ATOMIC_UINT) {
4070 /* Empty atomic counter declarations are allowed and useful
4071 * to set the default offset qualifier.
4072 */
4073 return NULL;
4074 } else if (this->type->qualifier.precision != ast_precision_none) {
4075 if (this->type->specifier->structure != NULL) {
4076 _mesa_glsl_error(&loc, state,
4077 "precision qualifiers can't be applied "
4078 "to structures");
4079 } else {
4080 static const char *const precision_names[] = {
4081 "highp",
4082 "highp",
4083 "mediump",
4084 "lowp"
4085 };
4086
4087 _mesa_glsl_warning(&loc, state,
4088 "empty declaration with precision qualifier, "
4089 "to set the default precision, use "
4090 "`precision %s %s;'",
4091 precision_names[this->type->qualifier.precision],
4092 type_name);
4093 }
4094 } else if (this->type->specifier->structure == NULL) {
4095 _mesa_glsl_warning(&loc, state, "empty declaration");
4096 }
4097 }
4098
4099 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4100 const struct glsl_type *var_type;
4101 ir_variable *var;
4102 const char *identifier = decl->identifier;
4103 /* FINISHME: Emit a warning if a variable declaration shadows a
4104 * FINISHME: declaration at a higher scope.
4105 */
4106
4107 if ((decl_type == NULL) || decl_type->is_void()) {
4108 if (type_name != NULL) {
4109 _mesa_glsl_error(& loc, state,
4110 "invalid type `%s' in declaration of `%s'",
4111 type_name, decl->identifier);
4112 } else {
4113 _mesa_glsl_error(& loc, state,
4114 "invalid type in declaration of `%s'",
4115 decl->identifier);
4116 }
4117 continue;
4118 }
4119
4120 if (this->type->qualifier.flags.q.subroutine) {
4121 const glsl_type *t;
4122 const char *name;
4123
4124 t = state->symbols->get_type(this->type->specifier->type_name);
4125 if (!t)
4126 _mesa_glsl_error(& loc, state,
4127 "invalid type in declaration of `%s'",
4128 decl->identifier);
4129 name = ralloc_asprintf(ctx, "%s_%s", _mesa_shader_stage_to_subroutine_prefix(state->stage), decl->identifier);
4130
4131 identifier = name;
4132
4133 }
4134 var_type = process_array_type(&loc, decl_type, decl->array_specifier,
4135 state);
4136
4137 var = new(ctx) ir_variable(var_type, identifier, ir_var_auto);
4138
4139 /* The 'varying in' and 'varying out' qualifiers can only be used with
4140 * ARB_geometry_shader4 and EXT_geometry_shader4, which we don't support
4141 * yet.
4142 */
4143 if (this->type->qualifier.flags.q.varying) {
4144 if (this->type->qualifier.flags.q.in) {
4145 _mesa_glsl_error(& loc, state,
4146 "`varying in' qualifier in declaration of "
4147 "`%s' only valid for geometry shaders using "
4148 "ARB_geometry_shader4 or EXT_geometry_shader4",
4149 decl->identifier);
4150 } else if (this->type->qualifier.flags.q.out) {
4151 _mesa_glsl_error(& loc, state,
4152 "`varying out' qualifier in declaration of "
4153 "`%s' only valid for geometry shaders using "
4154 "ARB_geometry_shader4 or EXT_geometry_shader4",
4155 decl->identifier);
4156 }
4157 }
4158
4159 /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
4160 *
4161 * "Global variables can only use the qualifiers const,
4162 * attribute, uniform, or varying. Only one may be
4163 * specified.
4164 *
4165 * Local variables can only use the qualifier const."
4166 *
4167 * This is relaxed in GLSL 1.30 and GLSL ES 3.00. It is also relaxed by
4168 * any extension that adds the 'layout' keyword.
4169 */
4170 if (!state->is_version(130, 300)
4171 && !state->has_explicit_attrib_location()
4172 && !state->has_separate_shader_objects()
4173 && !state->ARB_fragment_coord_conventions_enable) {
4174 if (this->type->qualifier.flags.q.out) {
4175 _mesa_glsl_error(& loc, state,
4176 "`out' qualifier in declaration of `%s' "
4177 "only valid for function parameters in %s",
4178 decl->identifier, state->get_version_string());
4179 }
4180 if (this->type->qualifier.flags.q.in) {
4181 _mesa_glsl_error(& loc, state,
4182 "`in' qualifier in declaration of `%s' "
4183 "only valid for function parameters in %s",
4184 decl->identifier, state->get_version_string());
4185 }
4186 /* FINISHME: Test for other invalid qualifiers. */
4187 }
4188
4189 apply_type_qualifier_to_variable(& this->type->qualifier, var, state,
4190 & loc, false);
4191
4192 if (this->type->qualifier.flags.q.invariant) {
4193 if (!is_varying_var(var, state->stage)) {
4194 _mesa_glsl_error(&loc, state,
4195 "`%s' cannot be marked invariant; interfaces between "
4196 "shader stages only", var->name);
4197 }
4198 }
4199
4200 if (state->current_function != NULL) {
4201 const char *mode = NULL;
4202 const char *extra = "";
4203
4204 /* There is no need to check for 'inout' here because the parser will
4205 * only allow that in function parameter lists.
4206 */
4207 if (this->type->qualifier.flags.q.attribute) {
4208 mode = "attribute";
4209 } else if (this->type->qualifier.flags.q.subroutine) {
4210 mode = "subroutine uniform";
4211 } else if (this->type->qualifier.flags.q.uniform) {
4212 mode = "uniform";
4213 } else if (this->type->qualifier.flags.q.varying) {
4214 mode = "varying";
4215 } else if (this->type->qualifier.flags.q.in) {
4216 mode = "in";
4217 extra = " or in function parameter list";
4218 } else if (this->type->qualifier.flags.q.out) {
4219 mode = "out";
4220 extra = " or in function parameter list";
4221 }
4222
4223 if (mode) {
4224 _mesa_glsl_error(& loc, state,
4225 "%s variable `%s' must be declared at "
4226 "global scope%s",
4227 mode, var->name, extra);
4228 }
4229 } else if (var->data.mode == ir_var_shader_in) {
4230 var->data.read_only = true;
4231
4232 if (state->stage == MESA_SHADER_VERTEX) {
4233 bool error_emitted = false;
4234
4235 /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
4236 *
4237 * "Vertex shader inputs can only be float, floating-point
4238 * vectors, matrices, signed and unsigned integers and integer
4239 * vectors. Vertex shader inputs can also form arrays of these
4240 * types, but not structures."
4241 *
4242 * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
4243 *
4244 * "Vertex shader inputs can only be float, floating-point
4245 * vectors, matrices, signed and unsigned integers and integer
4246 * vectors. They cannot be arrays or structures."
4247 *
4248 * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
4249 *
4250 * "The attribute qualifier can be used only with float,
4251 * floating-point vectors, and matrices. Attribute variables
4252 * cannot be declared as arrays or structures."
4253 *
4254 * From page 33 (page 39 of the PDF) of the GLSL ES 3.00 spec:
4255 *
4256 * "Vertex shader inputs can only be float, floating-point
4257 * vectors, matrices, signed and unsigned integers and integer
4258 * vectors. Vertex shader inputs cannot be arrays or
4259 * structures."
4260 */
4261 const glsl_type *check_type = var->type->without_array();
4262
4263 switch (check_type->base_type) {
4264 case GLSL_TYPE_FLOAT:
4265 break;
4266 case GLSL_TYPE_UINT:
4267 case GLSL_TYPE_INT:
4268 if (state->is_version(120, 300))
4269 break;
4270 case GLSL_TYPE_DOUBLE:
4271 if (check_type->base_type == GLSL_TYPE_DOUBLE && (state->is_version(410, 0) || state->ARB_vertex_attrib_64bit_enable))
4272 break;
4273 /* FALLTHROUGH */
4274 default:
4275 _mesa_glsl_error(& loc, state,
4276 "vertex shader input / attribute cannot have "
4277 "type %s`%s'",
4278 var->type->is_array() ? "array of " : "",
4279 check_type->name);
4280 error_emitted = true;
4281 }
4282
4283 if (!error_emitted && var->type->is_array() &&
4284 !state->check_version(150, 0, &loc,
4285 "vertex shader input / attribute "
4286 "cannot have array type")) {
4287 error_emitted = true;
4288 }
4289 } else if (state->stage == MESA_SHADER_GEOMETRY) {
4290 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
4291 *
4292 * Geometry shader input variables get the per-vertex values
4293 * written out by vertex shader output variables of the same
4294 * names. Since a geometry shader operates on a set of
4295 * vertices, each input varying variable (or input block, see
4296 * interface blocks below) needs to be declared as an array.
4297 */
4298 if (!var->type->is_array()) {
4299 _mesa_glsl_error(&loc, state,
4300 "geometry shader inputs must be arrays");
4301 }
4302
4303 handle_geometry_shader_input_decl(state, loc, var);
4304 } else if (state->stage == MESA_SHADER_FRAGMENT) {
4305 /* From section 4.3.4 (Input Variables) of the GLSL ES 3.10 spec:
4306 *
4307 * It is a compile-time error to declare a fragment shader
4308 * input with, or that contains, any of the following types:
4309 *
4310 * * A boolean type
4311 * * An opaque type
4312 * * An array of arrays
4313 * * An array of structures
4314 * * A structure containing an array
4315 * * A structure containing a structure
4316 */
4317 if (state->es_shader) {
4318 const glsl_type *check_type = var->type->without_array();
4319 if (check_type->is_boolean() ||
4320 check_type->contains_opaque()) {
4321 _mesa_glsl_error(&loc, state,
4322 "fragment shader input cannot have type %s",
4323 check_type->name);
4324 }
4325 if (var->type->is_array() &&
4326 var->type->fields.array->is_array()) {
4327 _mesa_glsl_error(&loc, state,
4328 "%s shader output "
4329 "cannot have an array of arrays",
4330 _mesa_shader_stage_to_string(state->stage));
4331 }
4332 if (var->type->is_array() &&
4333 var->type->fields.array->is_record()) {
4334 _mesa_glsl_error(&loc, state,
4335 "fragment shader input "
4336 "cannot have an array of structs");
4337 }
4338 if (var->type->is_record()) {
4339 for (unsigned i = 0; i < var->type->length; i++) {
4340 if (var->type->fields.structure[i].type->is_array() ||
4341 var->type->fields.structure[i].type->is_record())
4342 _mesa_glsl_error(&loc, state,
4343 "fragement shader input cannot have "
4344 "a struct that contains an "
4345 "array or struct");
4346 }
4347 }
4348 }
4349 } else if (state->stage == MESA_SHADER_TESS_CTRL ||
4350 state->stage == MESA_SHADER_TESS_EVAL) {
4351 handle_tess_shader_input_decl(state, loc, var);
4352 }
4353 } else if (var->data.mode == ir_var_shader_out) {
4354 const glsl_type *check_type = var->type->without_array();
4355
4356 /* From section 4.3.6 (Output variables) of the GLSL 4.40 spec:
4357 *
4358 * It is a compile-time error to declare a vertex, tessellation
4359 * evaluation, tessellation control, or geometry shader output
4360 * that contains any of the following:
4361 *
4362 * * A Boolean type (bool, bvec2 ...)
4363 * * An opaque type
4364 */
4365 if (check_type->is_boolean() || check_type->contains_opaque())
4366 _mesa_glsl_error(&loc, state,
4367 "%s shader output cannot have type %s",
4368 _mesa_shader_stage_to_string(state->stage),
4369 check_type->name);
4370
4371 /* From section 4.3.6 (Output variables) of the GLSL 4.40 spec:
4372 *
4373 * It is a compile-time error to declare a fragment shader output
4374 * that contains any of the following:
4375 *
4376 * * A Boolean type (bool, bvec2 ...)
4377 * * A double-precision scalar or vector (double, dvec2 ...)
4378 * * An opaque type
4379 * * Any matrix type
4380 * * A structure
4381 */
4382 if (state->stage == MESA_SHADER_FRAGMENT) {
4383 if (check_type->is_record() || check_type->is_matrix())
4384 _mesa_glsl_error(&loc, state,
4385 "fragment shader output "
4386 "cannot have struct or matrix type");
4387 switch (check_type->base_type) {
4388 case GLSL_TYPE_UINT:
4389 case GLSL_TYPE_INT:
4390 case GLSL_TYPE_FLOAT:
4391 break;
4392 default:
4393 _mesa_glsl_error(&loc, state,
4394 "fragment shader output cannot have "
4395 "type %s", check_type->name);
4396 }
4397 }
4398
4399 /* From section 4.3.6 (Output Variables) of the GLSL ES 3.10 spec:
4400 *
4401 * It is a compile-time error to declare a vertex shader output
4402 * with, or that contains, any of the following types:
4403 *
4404 * * A boolean type
4405 * * An opaque type
4406 * * An array of arrays
4407 * * An array of structures
4408 * * A structure containing an array
4409 * * A structure containing a structure
4410 *
4411 * It is a compile-time error to declare a fragment shader output
4412 * with, or that contains, any of the following types:
4413 *
4414 * * A boolean type
4415 * * An opaque type
4416 * * A matrix
4417 * * A structure
4418 * * An array of array
4419 */
4420 if (state->es_shader) {
4421 if (var->type->is_array() &&
4422 var->type->fields.array->is_array()) {
4423 _mesa_glsl_error(&loc, state,
4424 "%s shader output "
4425 "cannot have an array of arrays",
4426 _mesa_shader_stage_to_string(state->stage));
4427 }
4428 if (state->stage == MESA_SHADER_VERTEX) {
4429 if (var->type->is_array() &&
4430 var->type->fields.array->is_record()) {
4431 _mesa_glsl_error(&loc, state,
4432 "vertex shader output "
4433 "cannot have an array of structs");
4434 }
4435 if (var->type->is_record()) {
4436 for (unsigned i = 0; i < var->type->length; i++) {
4437 if (var->type->fields.structure[i].type->is_array() ||
4438 var->type->fields.structure[i].type->is_record())
4439 _mesa_glsl_error(&loc, state,
4440 "vertex shader output cannot have a "
4441 "struct that contains an "
4442 "array or struct");
4443 }
4444 }
4445 }
4446 }
4447
4448 if (state->stage == MESA_SHADER_TESS_CTRL) {
4449 handle_tess_ctrl_shader_output_decl(state, loc, var);
4450 }
4451 } else if (var->type->contains_subroutine()) {
4452 /* declare subroutine uniforms as hidden */
4453 var->data.how_declared = ir_var_hidden;
4454 }
4455
4456 /* Integer fragment inputs must be qualified with 'flat'. In GLSL ES,
4457 * so must integer vertex outputs.
4458 *
4459 * From section 4.3.4 ("Inputs") of the GLSL 1.50 spec:
4460 * "Fragment shader inputs that are signed or unsigned integers or
4461 * integer vectors must be qualified with the interpolation qualifier
4462 * flat."
4463 *
4464 * From section 4.3.4 ("Input Variables") of the GLSL 3.00 ES spec:
4465 * "Fragment shader inputs that are, or contain, signed or unsigned
4466 * integers or integer vectors must be qualified with the
4467 * interpolation qualifier flat."
4468 *
4469 * From section 4.3.6 ("Output Variables") of the GLSL 3.00 ES spec:
4470 * "Vertex shader outputs that are, or contain, signed or unsigned
4471 * integers or integer vectors must be qualified with the
4472 * interpolation qualifier flat."
4473 *
4474 * Note that prior to GLSL 1.50, this requirement applied to vertex
4475 * outputs rather than fragment inputs. That creates problems in the
4476 * presence of geometry shaders, so we adopt the GLSL 1.50 rule for all
4477 * desktop GL shaders. For GLSL ES shaders, we follow the spec and
4478 * apply the restriction to both vertex outputs and fragment inputs.
4479 *
4480 * Note also that the desktop GLSL specs are missing the text "or
4481 * contain"; this is presumably an oversight, since there is no
4482 * reasonable way to interpolate a fragment shader input that contains
4483 * an integer.
4484 */
4485 if (state->is_version(130, 300) &&
4486 var->type->contains_integer() &&
4487 var->data.interpolation != INTERP_QUALIFIER_FLAT &&
4488 ((state->stage == MESA_SHADER_FRAGMENT && var->data.mode == ir_var_shader_in)
4489 || (state->stage == MESA_SHADER_VERTEX && var->data.mode == ir_var_shader_out
4490 && state->es_shader))) {
4491 const char *var_type = (state->stage == MESA_SHADER_VERTEX) ?
4492 "vertex output" : "fragment input";
4493 _mesa_glsl_error(&loc, state, "if a %s is (or contains) "
4494 "an integer, then it must be qualified with 'flat'",
4495 var_type);
4496 }
4497
4498 /* Double fragment inputs must be qualified with 'flat'. */
4499 if (var->type->contains_double() &&
4500 var->data.interpolation != INTERP_QUALIFIER_FLAT &&
4501 state->stage == MESA_SHADER_FRAGMENT &&
4502 var->data.mode == ir_var_shader_in) {
4503 _mesa_glsl_error(&loc, state, "if a fragment input is (or contains) "
4504 "a double, then it must be qualified with 'flat'",
4505 var_type);
4506 }
4507
4508 /* Interpolation qualifiers cannot be applied to 'centroid' and
4509 * 'centroid varying'.
4510 *
4511 * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
4512 * "interpolation qualifiers may only precede the qualifiers in,
4513 * centroid in, out, or centroid out in a declaration. They do not apply
4514 * to the deprecated storage qualifiers varying or centroid varying."
4515 *
4516 * These deprecated storage qualifiers do not exist in GLSL ES 3.00.
4517 */
4518 if (state->is_version(130, 0)
4519 && this->type->qualifier.has_interpolation()
4520 && this->type->qualifier.flags.q.varying) {
4521
4522 const char *i = this->type->qualifier.interpolation_string();
4523 assert(i != NULL);
4524 const char *s;
4525 if (this->type->qualifier.flags.q.centroid)
4526 s = "centroid varying";
4527 else
4528 s = "varying";
4529
4530 _mesa_glsl_error(&loc, state,
4531 "qualifier '%s' cannot be applied to the "
4532 "deprecated storage qualifier '%s'", i, s);
4533 }
4534
4535
4536 /* Interpolation qualifiers can only apply to vertex shader outputs and
4537 * fragment shader inputs.
4538 *
4539 * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
4540 * "Outputs from a vertex shader (out) and inputs to a fragment
4541 * shader (in) can be further qualified with one or more of these
4542 * interpolation qualifiers"
4543 *
4544 * From page 31 (page 37 of the PDF) of the GLSL ES 3.00 spec:
4545 * "These interpolation qualifiers may only precede the qualifiers
4546 * in, centroid in, out, or centroid out in a declaration. They do
4547 * not apply to inputs into a vertex shader or outputs from a
4548 * fragment shader."
4549 */
4550 if (state->is_version(130, 300)
4551 && this->type->qualifier.has_interpolation()) {
4552
4553 const char *i = this->type->qualifier.interpolation_string();
4554 assert(i != NULL);
4555
4556 switch (state->stage) {
4557 case MESA_SHADER_VERTEX:
4558 if (this->type->qualifier.flags.q.in) {
4559 _mesa_glsl_error(&loc, state,
4560 "qualifier '%s' cannot be applied to vertex "
4561 "shader inputs", i);
4562 }
4563 break;
4564 case MESA_SHADER_FRAGMENT:
4565 if (this->type->qualifier.flags.q.out) {
4566 _mesa_glsl_error(&loc, state,
4567 "qualifier '%s' cannot be applied to fragment "
4568 "shader outputs", i);
4569 }
4570 break;
4571 default:
4572 break;
4573 }
4574 }
4575
4576
4577 /* From section 4.3.4 of the GLSL 4.00 spec:
4578 * "Input variables may not be declared using the patch in qualifier
4579 * in tessellation control or geometry shaders."
4580 *
4581 * From section 4.3.6 of the GLSL 4.00 spec:
4582 * "It is an error to use patch out in a vertex, tessellation
4583 * evaluation, or geometry shader."
4584 *
4585 * This doesn't explicitly forbid using them in a fragment shader, but
4586 * that's probably just an oversight.
4587 */
4588 if (state->stage != MESA_SHADER_TESS_EVAL
4589 && this->type->qualifier.flags.q.patch
4590 && this->type->qualifier.flags.q.in) {
4591
4592 _mesa_glsl_error(&loc, state, "'patch in' can only be used in a "
4593 "tessellation evaluation shader");
4594 }
4595
4596 if (state->stage != MESA_SHADER_TESS_CTRL
4597 && this->type->qualifier.flags.q.patch
4598 && this->type->qualifier.flags.q.out) {
4599
4600 _mesa_glsl_error(&loc, state, "'patch out' can only be used in a "
4601 "tessellation control shader");
4602 }
4603
4604 /* Precision qualifiers exists only in GLSL versions 1.00 and >= 1.30.
4605 */
4606 if (this->type->qualifier.precision != ast_precision_none) {
4607 state->check_precision_qualifiers_allowed(&loc);
4608 }
4609
4610
4611 /* If a precision qualifier is allowed on a type, it is allowed on
4612 * an array of that type.
4613 */
4614 if (!(this->type->qualifier.precision == ast_precision_none
4615 || precision_qualifier_allowed(var->type->without_array()))) {
4616
4617 _mesa_glsl_error(&loc, state,
4618 "precision qualifiers apply only to floating point"
4619 ", integer and opaque types");
4620 }
4621
4622 /* From section 4.1.7 of the GLSL 4.40 spec:
4623 *
4624 * "[Opaque types] can only be declared as function
4625 * parameters or uniform-qualified variables."
4626 */
4627 if (var_type->contains_opaque() &&
4628 !this->type->qualifier.flags.q.uniform) {
4629 _mesa_glsl_error(&loc, state,
4630 "opaque variables must be declared uniform");
4631 }
4632
4633 /* Process the initializer and add its instructions to a temporary
4634 * list. This list will be added to the instruction stream (below) after
4635 * the declaration is added. This is done because in some cases (such as
4636 * redeclarations) the declaration may not actually be added to the
4637 * instruction stream.
4638 */
4639 exec_list initializer_instructions;
4640
4641 /* Examine var name here since var may get deleted in the next call */
4642 bool var_is_gl_id = is_gl_identifier(var->name);
4643
4644 ir_variable *earlier =
4645 get_variable_being_redeclared(var, decl->get_location(), state,
4646 false /* allow_all_redeclarations */);
4647 if (earlier != NULL) {
4648 if (var_is_gl_id &&
4649 earlier->data.how_declared == ir_var_declared_in_block) {
4650 _mesa_glsl_error(&loc, state,
4651 "`%s' has already been redeclared using "
4652 "gl_PerVertex", earlier->name);
4653 }
4654 earlier->data.how_declared = ir_var_declared_normally;
4655 }
4656
4657 if (decl->initializer != NULL) {
4658 result = process_initializer((earlier == NULL) ? var : earlier,
4659 decl, this->type,
4660 &initializer_instructions, state);
4661 } else {
4662 validate_array_dimensions(var_type, state, &loc);
4663 }
4664
4665 /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
4666 *
4667 * "It is an error to write to a const variable outside of
4668 * its declaration, so they must be initialized when
4669 * declared."
4670 */
4671 if (this->type->qualifier.flags.q.constant && decl->initializer == NULL) {
4672 _mesa_glsl_error(& loc, state,
4673 "const declaration of `%s' must be initialized",
4674 decl->identifier);
4675 }
4676
4677 if (state->es_shader) {
4678 const glsl_type *const t = (earlier == NULL)
4679 ? var->type : earlier->type;
4680
4681 if (t->is_unsized_array())
4682 /* Section 10.17 of the GLSL ES 1.00 specification states that
4683 * unsized array declarations have been removed from the language.
4684 * Arrays that are sized using an initializer are still explicitly
4685 * sized. However, GLSL ES 1.00 does not allow array
4686 * initializers. That is only allowed in GLSL ES 3.00.
4687 *
4688 * Section 4.1.9 (Arrays) of the GLSL ES 3.00 spec says:
4689 *
4690 * "An array type can also be formed without specifying a size
4691 * if the definition includes an initializer:
4692 *
4693 * float x[] = float[2] (1.0, 2.0); // declares an array of size 2
4694 * float y[] = float[] (1.0, 2.0, 3.0); // declares an array of size 3
4695 *
4696 * float a[5];
4697 * float b[] = a;"
4698 */
4699 _mesa_glsl_error(& loc, state,
4700 "unsized array declarations are not allowed in "
4701 "GLSL ES");
4702 }
4703
4704 /* If the declaration is not a redeclaration, there are a few additional
4705 * semantic checks that must be applied. In addition, variable that was
4706 * created for the declaration should be added to the IR stream.
4707 */
4708 if (earlier == NULL) {
4709 validate_identifier(decl->identifier, loc, state);
4710
4711 /* Add the variable to the symbol table. Note that the initializer's
4712 * IR was already processed earlier (though it hasn't been emitted
4713 * yet), without the variable in scope.
4714 *
4715 * This differs from most C-like languages, but it follows the GLSL
4716 * specification. From page 28 (page 34 of the PDF) of the GLSL 1.50
4717 * spec:
4718 *
4719 * "Within a declaration, the scope of a name starts immediately
4720 * after the initializer if present or immediately after the name
4721 * being declared if not."
4722 */
4723 if (!state->symbols->add_variable(var)) {
4724 YYLTYPE loc = this->get_location();
4725 _mesa_glsl_error(&loc, state, "name `%s' already taken in the "
4726 "current scope", decl->identifier);
4727 continue;
4728 }
4729
4730 /* Push the variable declaration to the top. It means that all the
4731 * variable declarations will appear in a funny last-to-first order,
4732 * but otherwise we run into trouble if a function is prototyped, a
4733 * global var is decled, then the function is defined with usage of
4734 * the global var. See glslparsertest's CorrectModule.frag.
4735 */
4736 instructions->push_head(var);
4737 }
4738
4739 instructions->append_list(&initializer_instructions);
4740 }
4741
4742
4743 /* Generally, variable declarations do not have r-values. However,
4744 * one is used for the declaration in
4745 *
4746 * while (bool b = some_condition()) {
4747 * ...
4748 * }
4749 *
4750 * so we return the rvalue from the last seen declaration here.
4751 */
4752 return result;
4753 }
4754
4755
4756 ir_rvalue *
4757 ast_parameter_declarator::hir(exec_list *instructions,
4758 struct _mesa_glsl_parse_state *state)
4759 {
4760 void *ctx = state;
4761 const struct glsl_type *type;
4762 const char *name = NULL;
4763 YYLTYPE loc = this->get_location();
4764
4765 type = this->type->glsl_type(& name, state);
4766
4767 if (type == NULL) {
4768 if (name != NULL) {
4769 _mesa_glsl_error(& loc, state,
4770 "invalid type `%s' in declaration of `%s'",
4771 name, this->identifier);
4772 } else {
4773 _mesa_glsl_error(& loc, state,
4774 "invalid type in declaration of `%s'",
4775 this->identifier);
4776 }
4777
4778 type = glsl_type::error_type;
4779 }
4780
4781 /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
4782 *
4783 * "Functions that accept no input arguments need not use void in the
4784 * argument list because prototypes (or definitions) are required and
4785 * therefore there is no ambiguity when an empty argument list "( )" is
4786 * declared. The idiom "(void)" as a parameter list is provided for
4787 * convenience."
4788 *
4789 * Placing this check here prevents a void parameter being set up
4790 * for a function, which avoids tripping up checks for main taking
4791 * parameters and lookups of an unnamed symbol.
4792 */
4793 if (type->is_void()) {
4794 if (this->identifier != NULL)
4795 _mesa_glsl_error(& loc, state,
4796 "named parameter cannot have type `void'");
4797
4798 is_void = true;
4799 return NULL;
4800 }
4801
4802 if (formal_parameter && (this->identifier == NULL)) {
4803 _mesa_glsl_error(& loc, state, "formal parameter lacks a name");
4804 return NULL;
4805 }
4806
4807 /* This only handles "vec4 foo[..]". The earlier specifier->glsl_type(...)
4808 * call already handled the "vec4[..] foo" case.
4809 */
4810 type = process_array_type(&loc, type, this->array_specifier, state);
4811
4812 if (!type->is_error() && type->is_unsized_array()) {
4813 _mesa_glsl_error(&loc, state, "arrays passed as parameters must have "
4814 "a declared size");
4815 type = glsl_type::error_type;
4816 }
4817
4818 is_void = false;
4819 ir_variable *var = new(ctx)
4820 ir_variable(type, this->identifier, ir_var_function_in);
4821
4822 /* Apply any specified qualifiers to the parameter declaration. Note that
4823 * for function parameters the default mode is 'in'.
4824 */
4825 apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc,
4826 true);
4827
4828 /* From section 4.1.7 of the GLSL 4.40 spec:
4829 *
4830 * "Opaque variables cannot be treated as l-values; hence cannot
4831 * be used as out or inout function parameters, nor can they be
4832 * assigned into."
4833 */
4834 if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
4835 && type->contains_opaque()) {
4836 _mesa_glsl_error(&loc, state, "out and inout parameters cannot "
4837 "contain opaque variables");
4838 type = glsl_type::error_type;
4839 }
4840
4841 /* From page 39 (page 45 of the PDF) of the GLSL 1.10 spec:
4842 *
4843 * "When calling a function, expressions that do not evaluate to
4844 * l-values cannot be passed to parameters declared as out or inout."
4845 *
4846 * From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
4847 *
4848 * "Other binary or unary expressions, non-dereferenced arrays,
4849 * function names, swizzles with repeated fields, and constants
4850 * cannot be l-values."
4851 *
4852 * So for GLSL 1.10, passing an array as an out or inout parameter is not
4853 * allowed. This restriction is removed in GLSL 1.20, and in GLSL ES.
4854 */
4855 if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
4856 && type->is_array()
4857 && !state->check_version(120, 100, &loc,
4858 "arrays cannot be out or inout parameters")) {
4859 type = glsl_type::error_type;
4860 }
4861
4862 instructions->push_tail(var);
4863
4864 /* Parameter declarations do not have r-values.
4865 */
4866 return NULL;
4867 }
4868
4869
4870 void
4871 ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters,
4872 bool formal,
4873 exec_list *ir_parameters,
4874 _mesa_glsl_parse_state *state)
4875 {
4876 ast_parameter_declarator *void_param = NULL;
4877 unsigned count = 0;
4878
4879 foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) {
4880 param->formal_parameter = formal;
4881 param->hir(ir_parameters, state);
4882
4883 if (param->is_void)
4884 void_param = param;
4885
4886 count++;
4887 }
4888
4889 if ((void_param != NULL) && (count > 1)) {
4890 YYLTYPE loc = void_param->get_location();
4891
4892 _mesa_glsl_error(& loc, state,
4893 "`void' parameter must be only parameter");
4894 }
4895 }
4896
4897
4898 void
4899 emit_function(_mesa_glsl_parse_state *state, ir_function *f)
4900 {
4901 /* IR invariants disallow function declarations or definitions
4902 * nested within other function definitions. But there is no
4903 * requirement about the relative order of function declarations
4904 * and definitions with respect to one another. So simply insert
4905 * the new ir_function block at the end of the toplevel instruction
4906 * list.
4907 */
4908 state->toplevel_ir->push_tail(f);
4909 }
4910
4911
4912 ir_rvalue *
4913 ast_function::hir(exec_list *instructions,
4914 struct _mesa_glsl_parse_state *state)
4915 {
4916 void *ctx = state;
4917 ir_function *f = NULL;
4918 ir_function_signature *sig = NULL;
4919 exec_list hir_parameters;
4920 YYLTYPE loc = this->get_location();
4921
4922 const char *const name = identifier;
4923
4924 /* New functions are always added to the top-level IR instruction stream,
4925 * so this instruction list pointer is ignored. See also emit_function
4926 * (called below).
4927 */
4928 (void) instructions;
4929
4930 /* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec,
4931 *
4932 * "Function declarations (prototypes) cannot occur inside of functions;
4933 * they must be at global scope, or for the built-in functions, outside
4934 * the global scope."
4935 *
4936 * From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec,
4937 *
4938 * "User defined functions may only be defined within the global scope."
4939 *
4940 * Note that this language does not appear in GLSL 1.10.
4941 */
4942 if ((state->current_function != NULL) &&
4943 state->is_version(120, 100)) {
4944 YYLTYPE loc = this->get_location();
4945 _mesa_glsl_error(&loc, state,
4946 "declaration of function `%s' not allowed within "
4947 "function body", name);
4948 }
4949
4950 validate_identifier(name, this->get_location(), state);
4951
4952 /* Convert the list of function parameters to HIR now so that they can be
4953 * used below to compare this function's signature with previously seen
4954 * signatures for functions with the same name.
4955 */
4956 ast_parameter_declarator::parameters_to_hir(& this->parameters,
4957 is_definition,
4958 & hir_parameters, state);
4959
4960 const char *return_type_name;
4961 const glsl_type *return_type =
4962 this->return_type->glsl_type(& return_type_name, state);
4963
4964 if (!return_type) {
4965 YYLTYPE loc = this->get_location();
4966 _mesa_glsl_error(&loc, state,
4967 "function `%s' has undeclared return type `%s'",
4968 name, return_type_name);
4969 return_type = glsl_type::error_type;
4970 }
4971
4972 /* ARB_shader_subroutine states:
4973 * "Subroutine declarations cannot be prototyped. It is an error to prepend
4974 * subroutine(...) to a function declaration."
4975 */
4976 if (this->return_type->qualifier.flags.q.subroutine_def && !is_definition) {
4977 YYLTYPE loc = this->get_location();
4978 _mesa_glsl_error(&loc, state,
4979 "function declaration `%s' cannot have subroutine prepended",
4980 name);
4981 }
4982
4983 /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec:
4984 * "No qualifier is allowed on the return type of a function."
4985 */
4986 if (this->return_type->has_qualifiers()) {
4987 YYLTYPE loc = this->get_location();
4988 _mesa_glsl_error(& loc, state,
4989 "function `%s' return type has qualifiers", name);
4990 }
4991
4992 /* Section 6.1 (Function Definitions) of the GLSL 1.20 spec says:
4993 *
4994 * "Arrays are allowed as arguments and as the return type. In both
4995 * cases, the array must be explicitly sized."
4996 */
4997 if (return_type->is_unsized_array()) {
4998 YYLTYPE loc = this->get_location();
4999 _mesa_glsl_error(& loc, state,
5000 "function `%s' return type array must be explicitly "
5001 "sized", name);
5002 }
5003
5004 /* From section 4.1.7 of the GLSL 4.40 spec:
5005 *
5006 * "[Opaque types] can only be declared as function parameters
5007 * or uniform-qualified variables."
5008 */
5009 if (return_type->contains_opaque()) {
5010 YYLTYPE loc = this->get_location();
5011 _mesa_glsl_error(&loc, state,
5012 "function `%s' return type can't contain an opaque type",
5013 name);
5014 }
5015
5016 /* Create an ir_function if one doesn't already exist. */
5017 f = state->symbols->get_function(name);
5018 if (f == NULL) {
5019 f = new(ctx) ir_function(name);
5020 if (!this->return_type->qualifier.flags.q.subroutine) {
5021 if (!state->symbols->add_function(f)) {
5022 /* This function name shadows a non-function use of the same name. */
5023 YYLTYPE loc = this->get_location();
5024 _mesa_glsl_error(&loc, state, "function name `%s' conflicts with "
5025 "non-function", name);
5026 return NULL;
5027 }
5028 }
5029 emit_function(state, f);
5030 }
5031
5032 /* From GLSL ES 3.0 spec, chapter 6.1 "Function Definitions", page 71:
5033 *
5034 * "A shader cannot redefine or overload built-in functions."
5035 *
5036 * While in GLSL ES 1.0 specification, chapter 8 "Built-in Functions":
5037 *
5038 * "User code can overload the built-in functions but cannot redefine
5039 * them."
5040 */
5041 if (state->es_shader && state->language_version >= 300) {
5042 /* Local shader has no exact candidates; check the built-ins. */
5043 _mesa_glsl_initialize_builtin_functions();
5044 if (_mesa_glsl_find_builtin_function_by_name(name)) {
5045 YYLTYPE loc = this->get_location();
5046 _mesa_glsl_error(& loc, state,
5047 "A shader cannot redefine or overload built-in "
5048 "function `%s' in GLSL ES 3.00", name);
5049 return NULL;
5050 }
5051 }
5052
5053 /* Verify that this function's signature either doesn't match a previously
5054 * seen signature for a function with the same name, or, if a match is found,
5055 * that the previously seen signature does not have an associated definition.
5056 */
5057 if (state->es_shader || f->has_user_signature()) {
5058 sig = f->exact_matching_signature(state, &hir_parameters);
5059 if (sig != NULL) {
5060 const char *badvar = sig->qualifiers_match(&hir_parameters);
5061 if (badvar != NULL) {
5062 YYLTYPE loc = this->get_location();
5063
5064 _mesa_glsl_error(&loc, state, "function `%s' parameter `%s' "
5065 "qualifiers don't match prototype", name, badvar);
5066 }
5067
5068 if (sig->return_type != return_type) {
5069 YYLTYPE loc = this->get_location();
5070
5071 _mesa_glsl_error(&loc, state, "function `%s' return type doesn't "
5072 "match prototype", name);
5073 }
5074
5075 if (sig->is_defined) {
5076 if (is_definition) {
5077 YYLTYPE loc = this->get_location();
5078 _mesa_glsl_error(& loc, state, "function `%s' redefined", name);
5079 } else {
5080 /* We just encountered a prototype that exactly matches a
5081 * function that's already been defined. This is redundant,
5082 * and we should ignore it.
5083 */
5084 return NULL;
5085 }
5086 }
5087 }
5088 }
5089
5090 /* Verify the return type of main() */
5091 if (strcmp(name, "main") == 0) {
5092 if (! return_type->is_void()) {
5093 YYLTYPE loc = this->get_location();
5094
5095 _mesa_glsl_error(& loc, state, "main() must return void");
5096 }
5097
5098 if (!hir_parameters.is_empty()) {
5099 YYLTYPE loc = this->get_location();
5100
5101 _mesa_glsl_error(& loc, state, "main() must not take any parameters");
5102 }
5103 }
5104
5105 /* Finish storing the information about this new function in its signature.
5106 */
5107 if (sig == NULL) {
5108 sig = new(ctx) ir_function_signature(return_type);
5109 f->add_signature(sig);
5110 }
5111
5112 sig->replace_parameters(&hir_parameters);
5113 signature = sig;
5114
5115 if (this->return_type->qualifier.flags.q.subroutine_def) {
5116 int idx;
5117
5118 f->num_subroutine_types = this->return_type->qualifier.subroutine_list->declarations.length();
5119 f->subroutine_types = ralloc_array(state, const struct glsl_type *,
5120 f->num_subroutine_types);
5121 idx = 0;
5122 foreach_list_typed(ast_declaration, decl, link, &this->return_type->qualifier.subroutine_list->declarations) {
5123 const struct glsl_type *type;
5124 /* the subroutine type must be already declared */
5125 type = state->symbols->get_type(decl->identifier);
5126 if (!type) {
5127 _mesa_glsl_error(& loc, state, "unknown type '%s' in subroutine function definition", decl->identifier);
5128 }
5129 f->subroutine_types[idx++] = type;
5130 }
5131 state->subroutines = (ir_function **)reralloc(state, state->subroutines,
5132 ir_function *,
5133 state->num_subroutines + 1);
5134 state->subroutines[state->num_subroutines] = f;
5135 state->num_subroutines++;
5136
5137 }
5138
5139 if (this->return_type->qualifier.flags.q.subroutine) {
5140 if (!state->symbols->add_type(this->identifier, glsl_type::get_subroutine_instance(this->identifier))) {
5141 _mesa_glsl_error(& loc, state, "type '%s' previously defined", this->identifier);
5142 return NULL;
5143 }
5144 state->subroutine_types = (ir_function **)reralloc(state, state->subroutine_types,
5145 ir_function *,
5146 state->num_subroutine_types + 1);
5147 state->subroutine_types[state->num_subroutine_types] = f;
5148 state->num_subroutine_types++;
5149
5150 f->is_subroutine = true;
5151 }
5152
5153 /* Function declarations (prototypes) do not have r-values.
5154 */
5155 return NULL;
5156 }
5157
5158
5159 ir_rvalue *
5160 ast_function_definition::hir(exec_list *instructions,
5161 struct _mesa_glsl_parse_state *state)
5162 {
5163 prototype->is_definition = true;
5164 prototype->hir(instructions, state);
5165
5166 ir_function_signature *signature = prototype->signature;
5167 if (signature == NULL)
5168 return NULL;
5169
5170 assert(state->current_function == NULL);
5171 state->current_function = signature;
5172 state->found_return = false;
5173
5174 /* Duplicate parameters declared in the prototype as concrete variables.
5175 * Add these to the symbol table.
5176 */
5177 state->symbols->push_scope();
5178 foreach_in_list(ir_variable, var, &signature->parameters) {
5179 assert(var->as_variable() != NULL);
5180
5181 /* The only way a parameter would "exist" is if two parameters have
5182 * the same name.
5183 */
5184 if (state->symbols->name_declared_this_scope(var->name)) {
5185 YYLTYPE loc = this->get_location();
5186
5187 _mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name);
5188 } else {
5189 state->symbols->add_variable(var);
5190 }
5191 }
5192
5193 /* Convert the body of the function to HIR. */
5194 this->body->hir(&signature->body, state);
5195 signature->is_defined = true;
5196
5197 state->symbols->pop_scope();
5198
5199 assert(state->current_function == signature);
5200 state->current_function = NULL;
5201
5202 if (!signature->return_type->is_void() && !state->found_return) {
5203 YYLTYPE loc = this->get_location();
5204 _mesa_glsl_error(& loc, state, "function `%s' has non-void return type "
5205 "%s, but no return statement",
5206 signature->function_name(),
5207 signature->return_type->name);
5208 }
5209
5210 /* Function definitions do not have r-values.
5211 */
5212 return NULL;
5213 }
5214
5215
5216 ir_rvalue *
5217 ast_jump_statement::hir(exec_list *instructions,
5218 struct _mesa_glsl_parse_state *state)
5219 {
5220 void *ctx = state;
5221
5222 switch (mode) {
5223 case ast_return: {
5224 ir_return *inst;
5225 assert(state->current_function);
5226
5227 if (opt_return_value) {
5228 ir_rvalue *ret = opt_return_value->hir(instructions, state);
5229
5230 /* The value of the return type can be NULL if the shader says
5231 * 'return foo();' and foo() is a function that returns void.
5232 *
5233 * NOTE: The GLSL spec doesn't say that this is an error. The type
5234 * of the return value is void. If the return type of the function is
5235 * also void, then this should compile without error. Seriously.
5236 */
5237 const glsl_type *const ret_type =
5238 (ret == NULL) ? glsl_type::void_type : ret->type;
5239
5240 /* Implicit conversions are not allowed for return values prior to
5241 * ARB_shading_language_420pack.
5242 */
5243 if (state->current_function->return_type != ret_type) {
5244 YYLTYPE loc = this->get_location();
5245
5246 if (state->ARB_shading_language_420pack_enable) {
5247 if (!apply_implicit_conversion(state->current_function->return_type,
5248 ret, state)) {
5249 _mesa_glsl_error(& loc, state,
5250 "could not implicitly convert return value "
5251 "to %s, in function `%s'",
5252 state->current_function->return_type->name,
5253 state->current_function->function_name());
5254 }
5255 } else {
5256 _mesa_glsl_error(& loc, state,
5257 "`return' with wrong type %s, in function `%s' "
5258 "returning %s",
5259 ret_type->name,
5260 state->current_function->function_name(),
5261 state->current_function->return_type->name);
5262 }
5263 } else if (state->current_function->return_type->base_type ==
5264 GLSL_TYPE_VOID) {
5265 YYLTYPE loc = this->get_location();
5266
5267 /* The ARB_shading_language_420pack, GLSL ES 3.0, and GLSL 4.20
5268 * specs add a clarification:
5269 *
5270 * "A void function can only use return without a return argument, even if
5271 * the return argument has void type. Return statements only accept values:
5272 *
5273 * void func1() { }
5274 * void func2() { return func1(); } // illegal return statement"
5275 */
5276 _mesa_glsl_error(& loc, state,
5277 "void functions can only use `return' without a "
5278 "return argument");
5279 }
5280
5281 inst = new(ctx) ir_return(ret);
5282 } else {
5283 if (state->current_function->return_type->base_type !=
5284 GLSL_TYPE_VOID) {
5285 YYLTYPE loc = this->get_location();
5286
5287 _mesa_glsl_error(& loc, state,
5288 "`return' with no value, in function %s returning "
5289 "non-void",
5290 state->current_function->function_name());
5291 }
5292 inst = new(ctx) ir_return;
5293 }
5294
5295 state->found_return = true;
5296 instructions->push_tail(inst);
5297 break;
5298 }
5299
5300 case ast_discard:
5301 if (state->stage != MESA_SHADER_FRAGMENT) {
5302 YYLTYPE loc = this->get_location();
5303
5304 _mesa_glsl_error(& loc, state,
5305 "`discard' may only appear in a fragment shader");
5306 }
5307 instructions->push_tail(new(ctx) ir_discard);
5308 break;
5309
5310 case ast_break:
5311 case ast_continue:
5312 if (mode == ast_continue &&
5313 state->loop_nesting_ast == NULL) {
5314 YYLTYPE loc = this->get_location();
5315
5316 _mesa_glsl_error(& loc, state, "continue may only appear in a loop");
5317 } else if (mode == ast_break &&
5318 state->loop_nesting_ast == NULL &&
5319 state->switch_state.switch_nesting_ast == NULL) {
5320 YYLTYPE loc = this->get_location();
5321
5322 _mesa_glsl_error(& loc, state,
5323 "break may only appear in a loop or a switch");
5324 } else {
5325 /* For a loop, inline the for loop expression again, since we don't
5326 * know where near the end of the loop body the normal copy of it is
5327 * going to be placed. Same goes for the condition for a do-while
5328 * loop.
5329 */
5330 if (state->loop_nesting_ast != NULL &&
5331 mode == ast_continue && !state->switch_state.is_switch_innermost) {
5332 if (state->loop_nesting_ast->rest_expression) {
5333 state->loop_nesting_ast->rest_expression->hir(instructions,
5334 state);
5335 }
5336 if (state->loop_nesting_ast->mode ==
5337 ast_iteration_statement::ast_do_while) {
5338 state->loop_nesting_ast->condition_to_hir(instructions, state);
5339 }
5340 }
5341
5342 if (state->switch_state.is_switch_innermost &&
5343 mode == ast_continue) {
5344 /* Set 'continue_inside' to true. */
5345 ir_rvalue *const true_val = new (ctx) ir_constant(true);
5346 ir_dereference_variable *deref_continue_inside_var =
5347 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
5348 instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
5349 true_val));
5350
5351 /* Break out from the switch, continue for the loop will
5352 * be called right after switch. */
5353 ir_loop_jump *const jump =
5354 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
5355 instructions->push_tail(jump);
5356
5357 } else if (state->switch_state.is_switch_innermost &&
5358 mode == ast_break) {
5359 /* Force break out of switch by inserting a break. */
5360 ir_loop_jump *const jump =
5361 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
5362 instructions->push_tail(jump);
5363 } else {
5364 ir_loop_jump *const jump =
5365 new(ctx) ir_loop_jump((mode == ast_break)
5366 ? ir_loop_jump::jump_break
5367 : ir_loop_jump::jump_continue);
5368 instructions->push_tail(jump);
5369 }
5370 }
5371
5372 break;
5373 }
5374
5375 /* Jump instructions do not have r-values.
5376 */
5377 return NULL;
5378 }
5379
5380
5381 ir_rvalue *
5382 ast_selection_statement::hir(exec_list *instructions,
5383 struct _mesa_glsl_parse_state *state)
5384 {
5385 void *ctx = state;
5386
5387 ir_rvalue *const condition = this->condition->hir(instructions, state);
5388
5389 /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
5390 *
5391 * "Any expression whose type evaluates to a Boolean can be used as the
5392 * conditional expression bool-expression. Vector types are not accepted
5393 * as the expression to if."
5394 *
5395 * The checks are separated so that higher quality diagnostics can be
5396 * generated for cases where both rules are violated.
5397 */
5398 if (!condition->type->is_boolean() || !condition->type->is_scalar()) {
5399 YYLTYPE loc = this->condition->get_location();
5400
5401 _mesa_glsl_error(& loc, state, "if-statement condition must be scalar "
5402 "boolean");
5403 }
5404
5405 ir_if *const stmt = new(ctx) ir_if(condition);
5406
5407 if (then_statement != NULL) {
5408 state->symbols->push_scope();
5409 then_statement->hir(& stmt->then_instructions, state);
5410 state->symbols->pop_scope();
5411 }
5412
5413 if (else_statement != NULL) {
5414 state->symbols->push_scope();
5415 else_statement->hir(& stmt->else_instructions, state);
5416 state->symbols->pop_scope();
5417 }
5418
5419 instructions->push_tail(stmt);
5420
5421 /* if-statements do not have r-values.
5422 */
5423 return NULL;
5424 }
5425
5426
5427 ir_rvalue *
5428 ast_switch_statement::hir(exec_list *instructions,
5429 struct _mesa_glsl_parse_state *state)
5430 {
5431 void *ctx = state;
5432
5433 ir_rvalue *const test_expression =
5434 this->test_expression->hir(instructions, state);
5435
5436 /* From page 66 (page 55 of the PDF) of the GLSL 1.50 spec:
5437 *
5438 * "The type of init-expression in a switch statement must be a
5439 * scalar integer."
5440 */
5441 if (!test_expression->type->is_scalar() ||
5442 !test_expression->type->is_integer()) {
5443 YYLTYPE loc = this->test_expression->get_location();
5444
5445 _mesa_glsl_error(& loc,
5446 state,
5447 "switch-statement expression must be scalar "
5448 "integer");
5449 }
5450
5451 /* Track the switch-statement nesting in a stack-like manner.
5452 */
5453 struct glsl_switch_state saved = state->switch_state;
5454
5455 state->switch_state.is_switch_innermost = true;
5456 state->switch_state.switch_nesting_ast = this;
5457 state->switch_state.labels_ht = hash_table_ctor(0, hash_table_pointer_hash,
5458 hash_table_pointer_compare);
5459 state->switch_state.previous_default = NULL;
5460
5461 /* Initalize is_fallthru state to false.
5462 */
5463 ir_rvalue *const is_fallthru_val = new (ctx) ir_constant(false);
5464 state->switch_state.is_fallthru_var =
5465 new(ctx) ir_variable(glsl_type::bool_type,
5466 "switch_is_fallthru_tmp",
5467 ir_var_temporary);
5468 instructions->push_tail(state->switch_state.is_fallthru_var);
5469
5470 ir_dereference_variable *deref_is_fallthru_var =
5471 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
5472 instructions->push_tail(new(ctx) ir_assignment(deref_is_fallthru_var,
5473 is_fallthru_val));
5474
5475 /* Initialize continue_inside state to false.
5476 */
5477 state->switch_state.continue_inside =
5478 new(ctx) ir_variable(glsl_type::bool_type,
5479 "continue_inside_tmp",
5480 ir_var_temporary);
5481 instructions->push_tail(state->switch_state.continue_inside);
5482
5483 ir_rvalue *const false_val = new (ctx) ir_constant(false);
5484 ir_dereference_variable *deref_continue_inside_var =
5485 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
5486 instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
5487 false_val));
5488
5489 state->switch_state.run_default =
5490 new(ctx) ir_variable(glsl_type::bool_type,
5491 "run_default_tmp",
5492 ir_var_temporary);
5493 instructions->push_tail(state->switch_state.run_default);
5494
5495 /* Loop around the switch is used for flow control. */
5496 ir_loop * loop = new(ctx) ir_loop();
5497 instructions->push_tail(loop);
5498
5499 /* Cache test expression.
5500 */
5501 test_to_hir(&loop->body_instructions, state);
5502
5503 /* Emit code for body of switch stmt.
5504 */
5505 body->hir(&loop->body_instructions, state);
5506
5507 /* Insert a break at the end to exit loop. */
5508 ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
5509 loop->body_instructions.push_tail(jump);
5510
5511 /* If we are inside loop, check if continue got called inside switch. */
5512 if (state->loop_nesting_ast != NULL) {
5513 ir_dereference_variable *deref_continue_inside =
5514 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
5515 ir_if *irif = new(ctx) ir_if(deref_continue_inside);
5516 ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_continue);
5517
5518 if (state->loop_nesting_ast != NULL) {
5519 if (state->loop_nesting_ast->rest_expression) {
5520 state->loop_nesting_ast->rest_expression->hir(&irif->then_instructions,
5521 state);
5522 }
5523 if (state->loop_nesting_ast->mode ==
5524 ast_iteration_statement::ast_do_while) {
5525 state->loop_nesting_ast->condition_to_hir(&irif->then_instructions, state);
5526 }
5527 }
5528 irif->then_instructions.push_tail(jump);
5529 instructions->push_tail(irif);
5530 }
5531
5532 hash_table_dtor(state->switch_state.labels_ht);
5533
5534 state->switch_state = saved;
5535
5536 /* Switch statements do not have r-values. */
5537 return NULL;
5538 }
5539
5540
5541 void
5542 ast_switch_statement::test_to_hir(exec_list *instructions,
5543 struct _mesa_glsl_parse_state *state)
5544 {
5545 void *ctx = state;
5546
5547 /* Cache value of test expression. */
5548 ir_rvalue *const test_val =
5549 test_expression->hir(instructions,
5550 state);
5551
5552 state->switch_state.test_var = new(ctx) ir_variable(test_val->type,
5553 "switch_test_tmp",
5554 ir_var_temporary);
5555 ir_dereference_variable *deref_test_var =
5556 new(ctx) ir_dereference_variable(state->switch_state.test_var);
5557
5558 instructions->push_tail(state->switch_state.test_var);
5559 instructions->push_tail(new(ctx) ir_assignment(deref_test_var, test_val));
5560 }
5561
5562
5563 ir_rvalue *
5564 ast_switch_body::hir(exec_list *instructions,
5565 struct _mesa_glsl_parse_state *state)
5566 {
5567 if (stmts != NULL)
5568 stmts->hir(instructions, state);
5569
5570 /* Switch bodies do not have r-values. */
5571 return NULL;
5572 }
5573
5574 ir_rvalue *
5575 ast_case_statement_list::hir(exec_list *instructions,
5576 struct _mesa_glsl_parse_state *state)
5577 {
5578 exec_list default_case, after_default, tmp;
5579
5580 foreach_list_typed (ast_case_statement, case_stmt, link, & this->cases) {
5581 case_stmt->hir(&tmp, state);
5582
5583 /* Default case. */
5584 if (state->switch_state.previous_default && default_case.is_empty()) {
5585 default_case.append_list(&tmp);
5586 continue;
5587 }
5588
5589 /* If default case found, append 'after_default' list. */
5590 if (!default_case.is_empty())
5591 after_default.append_list(&tmp);
5592 else
5593 instructions->append_list(&tmp);
5594 }
5595
5596 /* Handle the default case. This is done here because default might not be
5597 * the last case. We need to add checks against following cases first to see
5598 * if default should be chosen or not.
5599 */
5600 if (!default_case.is_empty()) {
5601
5602 ir_rvalue *const true_val = new (state) ir_constant(true);
5603 ir_dereference_variable *deref_run_default_var =
5604 new(state) ir_dereference_variable(state->switch_state.run_default);
5605
5606 /* Choose to run default case initially, following conditional
5607 * assignments might change this.
5608 */
5609 ir_assignment *const init_var =
5610 new(state) ir_assignment(deref_run_default_var, true_val);
5611 instructions->push_tail(init_var);
5612
5613 /* Default case was the last one, no checks required. */
5614 if (after_default.is_empty()) {
5615 instructions->append_list(&default_case);
5616 return NULL;
5617 }
5618
5619 foreach_in_list(ir_instruction, ir, &after_default) {
5620 ir_assignment *assign = ir->as_assignment();
5621
5622 if (!assign)
5623 continue;
5624
5625 /* Clone the check between case label and init expression. */
5626 ir_expression *exp = (ir_expression*) assign->condition;
5627 ir_expression *clone = exp->clone(state, NULL);
5628
5629 ir_dereference_variable *deref_var =
5630 new(state) ir_dereference_variable(state->switch_state.run_default);
5631 ir_rvalue *const false_val = new (state) ir_constant(false);
5632
5633 ir_assignment *const set_false =
5634 new(state) ir_assignment(deref_var, false_val, clone);
5635
5636 instructions->push_tail(set_false);
5637 }
5638
5639 /* Append default case and all cases after it. */
5640 instructions->append_list(&default_case);
5641 instructions->append_list(&after_default);
5642 }
5643
5644 /* Case statements do not have r-values. */
5645 return NULL;
5646 }
5647
5648 ir_rvalue *
5649 ast_case_statement::hir(exec_list *instructions,
5650 struct _mesa_glsl_parse_state *state)
5651 {
5652 labels->hir(instructions, state);
5653
5654 /* Guard case statements depending on fallthru state. */
5655 ir_dereference_variable *const deref_fallthru_guard =
5656 new(state) ir_dereference_variable(state->switch_state.is_fallthru_var);
5657 ir_if *const test_fallthru = new(state) ir_if(deref_fallthru_guard);
5658
5659 foreach_list_typed (ast_node, stmt, link, & this->stmts)
5660 stmt->hir(& test_fallthru->then_instructions, state);
5661
5662 instructions->push_tail(test_fallthru);
5663
5664 /* Case statements do not have r-values. */
5665 return NULL;
5666 }
5667
5668
5669 ir_rvalue *
5670 ast_case_label_list::hir(exec_list *instructions,
5671 struct _mesa_glsl_parse_state *state)
5672 {
5673 foreach_list_typed (ast_case_label, label, link, & this->labels)
5674 label->hir(instructions, state);
5675
5676 /* Case labels do not have r-values. */
5677 return NULL;
5678 }
5679
5680 ir_rvalue *
5681 ast_case_label::hir(exec_list *instructions,
5682 struct _mesa_glsl_parse_state *state)
5683 {
5684 void *ctx = state;
5685
5686 ir_dereference_variable *deref_fallthru_var =
5687 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
5688
5689 ir_rvalue *const true_val = new(ctx) ir_constant(true);
5690
5691 /* If not default case, ... */
5692 if (this->test_value != NULL) {
5693 /* Conditionally set fallthru state based on
5694 * comparison of cached test expression value to case label.
5695 */
5696 ir_rvalue *const label_rval = this->test_value->hir(instructions, state);
5697 ir_constant *label_const = label_rval->constant_expression_value();
5698
5699 if (!label_const) {
5700 YYLTYPE loc = this->test_value->get_location();
5701
5702 _mesa_glsl_error(& loc, state,
5703 "switch statement case label must be a "
5704 "constant expression");
5705
5706 /* Stuff a dummy value in to allow processing to continue. */
5707 label_const = new(ctx) ir_constant(0);
5708 } else {
5709 ast_expression *previous_label = (ast_expression *)
5710 hash_table_find(state->switch_state.labels_ht,
5711 (void *)(uintptr_t)label_const->value.u[0]);
5712
5713 if (previous_label) {
5714 YYLTYPE loc = this->test_value->get_location();
5715 _mesa_glsl_error(& loc, state, "duplicate case value");
5716
5717 loc = previous_label->get_location();
5718 _mesa_glsl_error(& loc, state, "this is the previous case label");
5719 } else {
5720 hash_table_insert(state->switch_state.labels_ht,
5721 this->test_value,
5722 (void *)(uintptr_t)label_const->value.u[0]);
5723 }
5724 }
5725
5726 ir_dereference_variable *deref_test_var =
5727 new(ctx) ir_dereference_variable(state->switch_state.test_var);
5728
5729 ir_expression *test_cond = new(ctx) ir_expression(ir_binop_all_equal,
5730 label_const,
5731 deref_test_var);
5732
5733 /*
5734 * From GLSL 4.40 specification section 6.2 ("Selection"):
5735 *
5736 * "The type of the init-expression value in a switch statement must
5737 * be a scalar int or uint. The type of the constant-expression value
5738 * in a case label also must be a scalar int or uint. When any pair
5739 * of these values is tested for "equal value" and the types do not
5740 * match, an implicit conversion will be done to convert the int to a
5741 * uint (see section 4.1.10 “Implicit Conversions”) before the compare
5742 * is done."
5743 */
5744 if (label_const->type != state->switch_state.test_var->type) {
5745 YYLTYPE loc = this->test_value->get_location();
5746
5747 const glsl_type *type_a = label_const->type;
5748 const glsl_type *type_b = state->switch_state.test_var->type;
5749
5750 /* Check if int->uint implicit conversion is supported. */
5751 bool integer_conversion_supported =
5752 glsl_type::int_type->can_implicitly_convert_to(glsl_type::uint_type,
5753 state);
5754
5755 if ((!type_a->is_integer() || !type_b->is_integer()) ||
5756 !integer_conversion_supported) {
5757 _mesa_glsl_error(&loc, state, "type mismatch with switch "
5758 "init-expression and case label (%s != %s)",
5759 type_a->name, type_b->name);
5760 } else {
5761 /* Conversion of the case label. */
5762 if (type_a->base_type == GLSL_TYPE_INT) {
5763 if (!apply_implicit_conversion(glsl_type::uint_type,
5764 test_cond->operands[0], state))
5765 _mesa_glsl_error(&loc, state, "implicit type conversion error");
5766 } else {
5767 /* Conversion of the init-expression value. */
5768 if (!apply_implicit_conversion(glsl_type::uint_type,
5769 test_cond->operands[1], state))
5770 _mesa_glsl_error(&loc, state, "implicit type conversion error");
5771 }
5772 }
5773 }
5774
5775 ir_assignment *set_fallthru_on_test =
5776 new(ctx) ir_assignment(deref_fallthru_var, true_val, test_cond);
5777
5778 instructions->push_tail(set_fallthru_on_test);
5779 } else { /* default case */
5780 if (state->switch_state.previous_default) {
5781 YYLTYPE loc = this->get_location();
5782 _mesa_glsl_error(& loc, state,
5783 "multiple default labels in one switch");
5784
5785 loc = state->switch_state.previous_default->get_location();
5786 _mesa_glsl_error(& loc, state, "this is the first default label");
5787 }
5788 state->switch_state.previous_default = this;
5789
5790 /* Set fallthru condition on 'run_default' bool. */
5791 ir_dereference_variable *deref_run_default =
5792 new(ctx) ir_dereference_variable(state->switch_state.run_default);
5793 ir_rvalue *const cond_true = new(ctx) ir_constant(true);
5794 ir_expression *test_cond = new(ctx) ir_expression(ir_binop_all_equal,
5795 cond_true,
5796 deref_run_default);
5797
5798 /* Set falltrhu state. */
5799 ir_assignment *set_fallthru =
5800 new(ctx) ir_assignment(deref_fallthru_var, true_val, test_cond);
5801
5802 instructions->push_tail(set_fallthru);
5803 }
5804
5805 /* Case statements do not have r-values. */
5806 return NULL;
5807 }
5808
5809 void
5810 ast_iteration_statement::condition_to_hir(exec_list *instructions,
5811 struct _mesa_glsl_parse_state *state)
5812 {
5813 void *ctx = state;
5814
5815 if (condition != NULL) {
5816 ir_rvalue *const cond =
5817 condition->hir(instructions, state);
5818
5819 if ((cond == NULL)
5820 || !cond->type->is_boolean() || !cond->type->is_scalar()) {
5821 YYLTYPE loc = condition->get_location();
5822
5823 _mesa_glsl_error(& loc, state,
5824 "loop condition must be scalar boolean");
5825 } else {
5826 /* As the first code in the loop body, generate a block that looks
5827 * like 'if (!condition) break;' as the loop termination condition.
5828 */
5829 ir_rvalue *const not_cond =
5830 new(ctx) ir_expression(ir_unop_logic_not, cond);
5831
5832 ir_if *const if_stmt = new(ctx) ir_if(not_cond);
5833
5834 ir_jump *const break_stmt =
5835 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
5836
5837 if_stmt->then_instructions.push_tail(break_stmt);
5838 instructions->push_tail(if_stmt);
5839 }
5840 }
5841 }
5842
5843
5844 ir_rvalue *
5845 ast_iteration_statement::hir(exec_list *instructions,
5846 struct _mesa_glsl_parse_state *state)
5847 {
5848 void *ctx = state;
5849
5850 /* For-loops and while-loops start a new scope, but do-while loops do not.
5851 */
5852 if (mode != ast_do_while)
5853 state->symbols->push_scope();
5854
5855 if (init_statement != NULL)
5856 init_statement->hir(instructions, state);
5857
5858 ir_loop *const stmt = new(ctx) ir_loop();
5859 instructions->push_tail(stmt);
5860
5861 /* Track the current loop nesting. */
5862 ast_iteration_statement *nesting_ast = state->loop_nesting_ast;
5863
5864 state->loop_nesting_ast = this;
5865
5866 /* Likewise, indicate that following code is closest to a loop,
5867 * NOT closest to a switch.
5868 */
5869 bool saved_is_switch_innermost = state->switch_state.is_switch_innermost;
5870 state->switch_state.is_switch_innermost = false;
5871
5872 if (mode != ast_do_while)
5873 condition_to_hir(&stmt->body_instructions, state);
5874
5875 if (body != NULL)
5876 body->hir(& stmt->body_instructions, state);
5877
5878 if (rest_expression != NULL)
5879 rest_expression->hir(& stmt->body_instructions, state);
5880
5881 if (mode == ast_do_while)
5882 condition_to_hir(&stmt->body_instructions, state);
5883
5884 if (mode != ast_do_while)
5885 state->symbols->pop_scope();
5886
5887 /* Restore previous nesting before returning. */
5888 state->loop_nesting_ast = nesting_ast;
5889 state->switch_state.is_switch_innermost = saved_is_switch_innermost;
5890
5891 /* Loops do not have r-values.
5892 */
5893 return NULL;
5894 }
5895
5896
5897 /**
5898 * Determine if the given type is valid for establishing a default precision
5899 * qualifier.
5900 *
5901 * From GLSL ES 3.00 section 4.5.4 ("Default Precision Qualifiers"):
5902 *
5903 * "The precision statement
5904 *
5905 * precision precision-qualifier type;
5906 *
5907 * can be used to establish a default precision qualifier. The type field
5908 * can be either int or float or any of the sampler types, and the
5909 * precision-qualifier can be lowp, mediump, or highp."
5910 *
5911 * GLSL ES 1.00 has similar language. GLSL 1.30 doesn't allow precision
5912 * qualifiers on sampler types, but this seems like an oversight (since the
5913 * intention of including these in GLSL 1.30 is to allow compatibility with ES
5914 * shaders). So we allow int, float, and all sampler types regardless of GLSL
5915 * version.
5916 */
5917 static bool
5918 is_valid_default_precision_type(const struct glsl_type *const type)
5919 {
5920 if (type == NULL)
5921 return false;
5922
5923 switch (type->base_type) {
5924 case GLSL_TYPE_INT:
5925 case GLSL_TYPE_FLOAT:
5926 /* "int" and "float" are valid, but vectors and matrices are not. */
5927 return type->vector_elements == 1 && type->matrix_columns == 1;
5928 case GLSL_TYPE_SAMPLER:
5929 case GLSL_TYPE_IMAGE:
5930 case GLSL_TYPE_ATOMIC_UINT:
5931 return true;
5932 default:
5933 return false;
5934 }
5935 }
5936
5937
5938 ir_rvalue *
5939 ast_type_specifier::hir(exec_list *instructions,
5940 struct _mesa_glsl_parse_state *state)
5941 {
5942 if (this->default_precision == ast_precision_none && this->structure == NULL)
5943 return NULL;
5944
5945 YYLTYPE loc = this->get_location();
5946
5947 /* If this is a precision statement, check that the type to which it is
5948 * applied is either float or int.
5949 *
5950 * From section 4.5.3 of the GLSL 1.30 spec:
5951 * "The precision statement
5952 * precision precision-qualifier type;
5953 * can be used to establish a default precision qualifier. The type
5954 * field can be either int or float [...]. Any other types or
5955 * qualifiers will result in an error.
5956 */
5957 if (this->default_precision != ast_precision_none) {
5958 if (!state->check_precision_qualifiers_allowed(&loc))
5959 return NULL;
5960
5961 if (this->structure != NULL) {
5962 _mesa_glsl_error(&loc, state,
5963 "precision qualifiers do not apply to structures");
5964 return NULL;
5965 }
5966
5967 if (this->array_specifier != NULL) {
5968 _mesa_glsl_error(&loc, state,
5969 "default precision statements do not apply to "
5970 "arrays");
5971 return NULL;
5972 }
5973
5974 const struct glsl_type *const type =
5975 state->symbols->get_type(this->type_name);
5976 if (!is_valid_default_precision_type(type)) {
5977 _mesa_glsl_error(&loc, state,
5978 "default precision statements apply only to "
5979 "float, int, and opaque types");
5980 return NULL;
5981 }
5982
5983 if (state->es_shader) {
5984 /* Section 4.5.3 (Default Precision Qualifiers) of the GLSL ES 1.00
5985 * spec says:
5986 *
5987 * "Non-precision qualified declarations will use the precision
5988 * qualifier specified in the most recent precision statement
5989 * that is still in scope. The precision statement has the same
5990 * scoping rules as variable declarations. If it is declared
5991 * inside a compound statement, its effect stops at the end of
5992 * the innermost statement it was declared in. Precision
5993 * statements in nested scopes override precision statements in
5994 * outer scopes. Multiple precision statements for the same basic
5995 * type can appear inside the same scope, with later statements
5996 * overriding earlier statements within that scope."
5997 *
5998 * Default precision specifications follow the same scope rules as
5999 * variables. So, we can track the state of the default precision
6000 * qualifiers in the symbol table, and the rules will just work. This
6001 * is a slight abuse of the symbol table, but it has the semantics
6002 * that we want.
6003 */
6004 state->symbols->add_default_precision_qualifier(this->type_name,
6005 this->default_precision);
6006 }
6007
6008 /* FINISHME: Translate precision statements into IR. */
6009 return NULL;
6010 }
6011
6012 /* _mesa_ast_set_aggregate_type() sets the <structure> field so that
6013 * process_record_constructor() can do type-checking on C-style initializer
6014 * expressions of structs, but ast_struct_specifier should only be translated
6015 * to HIR if it is declaring the type of a structure.
6016 *
6017 * The ->is_declaration field is false for initializers of variables
6018 * declared separately from the struct's type definition.
6019 *
6020 * struct S { ... }; (is_declaration = true)
6021 * struct T { ... } t = { ... }; (is_declaration = true)
6022 * S s = { ... }; (is_declaration = false)
6023 */
6024 if (this->structure != NULL && this->structure->is_declaration)
6025 return this->structure->hir(instructions, state);
6026
6027 return NULL;
6028 }
6029
6030
6031 /**
6032 * Process a structure or interface block tree into an array of structure fields
6033 *
6034 * After parsing, where there are some syntax differnces, structures and
6035 * interface blocks are almost identical. They are similar enough that the
6036 * AST for each can be processed the same way into a set of
6037 * \c glsl_struct_field to describe the members.
6038 *
6039 * If we're processing an interface block, var_mode should be the type of the
6040 * interface block (ir_var_shader_in, ir_var_shader_out, ir_var_uniform or
6041 * ir_var_shader_storage). If we're processing a structure, var_mode should be
6042 * ir_var_auto.
6043 *
6044 * \return
6045 * The number of fields processed. A pointer to the array structure fields is
6046 * stored in \c *fields_ret.
6047 */
6048 unsigned
6049 ast_process_structure_or_interface_block(exec_list *instructions,
6050 struct _mesa_glsl_parse_state *state,
6051 exec_list *declarations,
6052 YYLTYPE &loc,
6053 glsl_struct_field **fields_ret,
6054 bool is_interface,
6055 enum glsl_matrix_layout matrix_layout,
6056 bool allow_reserved_names,
6057 ir_variable_mode var_mode,
6058 ast_type_qualifier *layout)
6059 {
6060 unsigned decl_count = 0;
6061
6062 /* For blocks that accept memory qualifiers (i.e. shader storage), verify
6063 * that we don't have incompatible qualifiers
6064 */
6065 if (layout && layout->flags.q.read_only && layout->flags.q.write_only) {
6066 _mesa_glsl_error(&loc, state,
6067 "Interface block sets both readonly and writeonly");
6068 }
6069
6070 /* Make an initial pass over the list of fields to determine how
6071 * many there are. Each element in this list is an ast_declarator_list.
6072 * This means that we actually need to count the number of elements in the
6073 * 'declarations' list in each of the elements.
6074 */
6075 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
6076 decl_count += decl_list->declarations.length();
6077 }
6078
6079 /* Allocate storage for the fields and process the field
6080 * declarations. As the declarations are processed, try to also convert
6081 * the types to HIR. This ensures that structure definitions embedded in
6082 * other structure definitions or in interface blocks are processed.
6083 */
6084 glsl_struct_field *const fields = ralloc_array(state, glsl_struct_field,
6085 decl_count);
6086
6087 unsigned i = 0;
6088 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
6089 const char *type_name;
6090
6091 decl_list->type->specifier->hir(instructions, state);
6092
6093 /* Section 10.9 of the GLSL ES 1.00 specification states that
6094 * embedded structure definitions have been removed from the language.
6095 */
6096 if (state->es_shader && decl_list->type->specifier->structure != NULL) {
6097 _mesa_glsl_error(&loc, state, "embedded structure definitions are "
6098 "not allowed in GLSL ES 1.00");
6099 }
6100
6101 const glsl_type *decl_type =
6102 decl_list->type->glsl_type(& type_name, state);
6103
6104 foreach_list_typed (ast_declaration, decl, link,
6105 &decl_list->declarations) {
6106 if (!allow_reserved_names)
6107 validate_identifier(decl->identifier, loc, state);
6108
6109 /* From section 4.3.9 of the GLSL 4.40 spec:
6110 *
6111 * "[In interface blocks] opaque types are not allowed."
6112 *
6113 * It should be impossible for decl_type to be NULL here. Cases that
6114 * might naturally lead to decl_type being NULL, especially for the
6115 * is_interface case, will have resulted in compilation having
6116 * already halted due to a syntax error.
6117 */
6118 assert(decl_type);
6119
6120 if (is_interface && decl_type->contains_opaque()) {
6121 YYLTYPE loc = decl_list->get_location();
6122 _mesa_glsl_error(&loc, state,
6123 "uniform/buffer in non-default interface block contains "
6124 "opaque variable");
6125 }
6126
6127 if (decl_type->contains_atomic()) {
6128 /* From section 4.1.7.3 of the GLSL 4.40 spec:
6129 *
6130 * "Members of structures cannot be declared as atomic counter
6131 * types."
6132 */
6133 YYLTYPE loc = decl_list->get_location();
6134 _mesa_glsl_error(&loc, state, "atomic counter in structure, "
6135 "shader storage block or uniform block");
6136 }
6137
6138 if (decl_type->contains_image()) {
6139 /* FINISHME: Same problem as with atomic counters.
6140 * FINISHME: Request clarification from Khronos and add
6141 * FINISHME: spec quotation here.
6142 */
6143 YYLTYPE loc = decl_list->get_location();
6144 _mesa_glsl_error(&loc, state,
6145 "image in structure, shader storage block or "
6146 "uniform block");
6147 }
6148
6149 const struct ast_type_qualifier *const qual =
6150 & decl_list->type->qualifier;
6151
6152 if (qual->flags.q.explicit_binding)
6153 validate_binding_qualifier(state, &loc, decl_type, qual);
6154
6155 if (qual->flags.q.std140 ||
6156 qual->flags.q.std430 ||
6157 qual->flags.q.packed ||
6158 qual->flags.q.shared) {
6159 _mesa_glsl_error(&loc, state,
6160 "uniform/shader storage block layout qualifiers "
6161 "std140, std430, packed, and shared can only be "
6162 "applied to uniform/shader storage blocks, not "
6163 "members");
6164 }
6165
6166 if (qual->flags.q.constant) {
6167 YYLTYPE loc = decl_list->get_location();
6168 _mesa_glsl_error(&loc, state,
6169 "const storage qualifier cannot be applied "
6170 "to struct or interface block members");
6171 }
6172
6173 const struct glsl_type *field_type =
6174 process_array_type(&loc, decl_type, decl->array_specifier, state);
6175 validate_array_dimensions(field_type, state, &loc);
6176 fields[i].type = field_type;
6177 fields[i].name = decl->identifier;
6178 fields[i].location = -1;
6179 fields[i].interpolation =
6180 interpret_interpolation_qualifier(qual, var_mode, state, &loc);
6181 fields[i].centroid = qual->flags.q.centroid ? 1 : 0;
6182 fields[i].sample = qual->flags.q.sample ? 1 : 0;
6183 fields[i].patch = qual->flags.q.patch ? 1 : 0;
6184 fields[i].precision = qual->precision;
6185
6186 /* From Section 4.4.2.3 (Geometry Outputs) of the GLSL 4.50 spec:
6187 *
6188 * "A block member may be declared with a stream identifier, but
6189 * the specified stream must match the stream associated with the
6190 * containing block."
6191 */
6192 if (qual->flags.q.explicit_stream &&
6193 qual->stream != layout->stream) {
6194 _mesa_glsl_error(&loc, state, "stream layout qualifier on "
6195 "interface block member `%s' does not match "
6196 "the interface block (%d vs %d)",
6197 fields[i].name, qual->stream, layout->stream);
6198 }
6199
6200 if (qual->flags.q.row_major || qual->flags.q.column_major) {
6201 if (!qual->flags.q.uniform && !qual->flags.q.buffer) {
6202 _mesa_glsl_error(&loc, state,
6203 "row_major and column_major can only be "
6204 "applied to interface blocks");
6205 } else
6206 validate_matrix_layout_for_type(state, &loc, field_type, NULL);
6207 }
6208
6209 if (qual->flags.q.uniform && qual->has_interpolation()) {
6210 _mesa_glsl_error(&loc, state,
6211 "interpolation qualifiers cannot be used "
6212 "with uniform interface blocks");
6213 }
6214
6215 if ((qual->flags.q.uniform || !is_interface) &&
6216 qual->has_auxiliary_storage()) {
6217 _mesa_glsl_error(&loc, state,
6218 "auxiliary storage qualifiers cannot be used "
6219 "in uniform blocks or structures.");
6220 }
6221
6222 /* Propogate row- / column-major information down the fields of the
6223 * structure or interface block. Structures need this data because
6224 * the structure may contain a structure that contains ... a matrix
6225 * that need the proper layout.
6226 */
6227 if (field_type->without_array()->is_matrix()
6228 || field_type->without_array()->is_record()) {
6229 /* If no layout is specified for the field, inherit the layout
6230 * from the block.
6231 */
6232 fields[i].matrix_layout = matrix_layout;
6233
6234 if (qual->flags.q.row_major)
6235 fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
6236 else if (qual->flags.q.column_major)
6237 fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
6238
6239 /* If we're processing an interface block, the matrix layout must
6240 * be decided by this point.
6241 */
6242 assert(!is_interface
6243 || fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR
6244 || fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_COLUMN_MAJOR);
6245 }
6246
6247 /* Image qualifiers are allowed on buffer variables, which can only
6248 * be defined inside shader storage buffer objects
6249 */
6250 if (layout && var_mode == ir_var_shader_storage) {
6251 if (qual->flags.q.read_only && qual->flags.q.write_only) {
6252 _mesa_glsl_error(&loc, state,
6253 "buffer variable `%s' can't be "
6254 "readonly and writeonly.", fields[i].name);
6255 }
6256
6257 /* For readonly and writeonly qualifiers the field definition,
6258 * if set, overwrites the layout qualifier.
6259 */
6260 bool read_only = layout->flags.q.read_only;
6261 bool write_only = layout->flags.q.write_only;
6262
6263 if (qual->flags.q.read_only) {
6264 read_only = true;
6265 write_only = false;
6266 } else if (qual->flags.q.write_only) {
6267 read_only = false;
6268 write_only = true;
6269 }
6270
6271 fields[i].image_read_only = read_only;
6272 fields[i].image_write_only = write_only;
6273
6274 /* For other qualifiers, we set the flag if either the layout
6275 * qualifier or the field qualifier are set
6276 */
6277 fields[i].image_coherent = qual->flags.q.coherent ||
6278 layout->flags.q.coherent;
6279 fields[i].image_volatile = qual->flags.q._volatile ||
6280 layout->flags.q._volatile;
6281 fields[i].image_restrict = qual->flags.q.restrict_flag ||
6282 layout->flags.q.restrict_flag;
6283 }
6284
6285 i++;
6286 }
6287 }
6288
6289 assert(i == decl_count);
6290
6291 *fields_ret = fields;
6292 return decl_count;
6293 }
6294
6295
6296 ir_rvalue *
6297 ast_struct_specifier::hir(exec_list *instructions,
6298 struct _mesa_glsl_parse_state *state)
6299 {
6300 YYLTYPE loc = this->get_location();
6301
6302 /* Section 4.1.8 (Structures) of the GLSL 1.10 spec says:
6303 *
6304 * "Anonymous structures are not supported; so embedded structures must
6305 * have a declarator. A name given to an embedded struct is scoped at
6306 * the same level as the struct it is embedded in."
6307 *
6308 * The same section of the GLSL 1.20 spec says:
6309 *
6310 * "Anonymous structures are not supported. Embedded structures are not
6311 * supported.
6312 *
6313 * struct S { float f; };
6314 * struct T {
6315 * S; // Error: anonymous structures disallowed
6316 * struct { ... }; // Error: embedded structures disallowed
6317 * S s; // Okay: nested structures with name are allowed
6318 * };"
6319 *
6320 * The GLSL ES 1.00 and 3.00 specs have similar langauge and examples. So,
6321 * we allow embedded structures in 1.10 only.
6322 */
6323 if (state->language_version != 110 && state->struct_specifier_depth != 0)
6324 _mesa_glsl_error(&loc, state,
6325 "embedded structure declarations are not allowed");
6326
6327 state->struct_specifier_depth++;
6328
6329 glsl_struct_field *fields;
6330 unsigned decl_count =
6331 ast_process_structure_or_interface_block(instructions,
6332 state,
6333 &this->declarations,
6334 loc,
6335 &fields,
6336 false,
6337 GLSL_MATRIX_LAYOUT_INHERITED,
6338 false /* allow_reserved_names */,
6339 ir_var_auto,
6340 NULL);
6341
6342 validate_identifier(this->name, loc, state);
6343
6344 const glsl_type *t =
6345 glsl_type::get_record_instance(fields, decl_count, this->name);
6346
6347 if (!state->symbols->add_type(name, t)) {
6348 _mesa_glsl_error(& loc, state, "struct `%s' previously defined", name);
6349 } else {
6350 const glsl_type **s = reralloc(state, state->user_structures,
6351 const glsl_type *,
6352 state->num_user_structures + 1);
6353 if (s != NULL) {
6354 s[state->num_user_structures] = t;
6355 state->user_structures = s;
6356 state->num_user_structures++;
6357 }
6358 }
6359
6360 state->struct_specifier_depth--;
6361
6362 /* Structure type definitions do not have r-values.
6363 */
6364 return NULL;
6365 }
6366
6367
6368 /**
6369 * Visitor class which detects whether a given interface block has been used.
6370 */
6371 class interface_block_usage_visitor : public ir_hierarchical_visitor
6372 {
6373 public:
6374 interface_block_usage_visitor(ir_variable_mode mode, const glsl_type *block)
6375 : mode(mode), block(block), found(false)
6376 {
6377 }
6378
6379 virtual ir_visitor_status visit(ir_dereference_variable *ir)
6380 {
6381 if (ir->var->data.mode == mode && ir->var->get_interface_type() == block) {
6382 found = true;
6383 return visit_stop;
6384 }
6385 return visit_continue;
6386 }
6387
6388 bool usage_found() const
6389 {
6390 return this->found;
6391 }
6392
6393 private:
6394 ir_variable_mode mode;
6395 const glsl_type *block;
6396 bool found;
6397 };
6398
6399 static bool
6400 is_unsized_array_last_element(ir_variable *v)
6401 {
6402 const glsl_type *interface_type = v->get_interface_type();
6403 int length = interface_type->length;
6404
6405 assert(v->type->is_unsized_array());
6406
6407 /* Check if it is the last element of the interface */
6408 if (strcmp(interface_type->fields.structure[length-1].name, v->name) == 0)
6409 return true;
6410 return false;
6411 }
6412
6413 ir_rvalue *
6414 ast_interface_block::hir(exec_list *instructions,
6415 struct _mesa_glsl_parse_state *state)
6416 {
6417 YYLTYPE loc = this->get_location();
6418
6419 /* Interface blocks must be declared at global scope */
6420 if (state->current_function != NULL) {
6421 _mesa_glsl_error(&loc, state,
6422 "Interface block `%s' must be declared "
6423 "at global scope",
6424 this->block_name);
6425 }
6426
6427 if (!this->layout.flags.q.buffer &&
6428 this->layout.flags.q.std430) {
6429 _mesa_glsl_error(&loc, state,
6430 "std430 storage block layout qualifier is supported "
6431 "only for shader storage blocks");
6432 }
6433
6434 /* The ast_interface_block has a list of ast_declarator_lists. We
6435 * need to turn those into ir_variables with an association
6436 * with this uniform block.
6437 */
6438 enum glsl_interface_packing packing;
6439 if (this->layout.flags.q.shared) {
6440 packing = GLSL_INTERFACE_PACKING_SHARED;
6441 } else if (this->layout.flags.q.packed) {
6442 packing = GLSL_INTERFACE_PACKING_PACKED;
6443 } else if (this->layout.flags.q.std430) {
6444 packing = GLSL_INTERFACE_PACKING_STD430;
6445 } else {
6446 /* The default layout is std140.
6447 */
6448 packing = GLSL_INTERFACE_PACKING_STD140;
6449 }
6450
6451 ir_variable_mode var_mode;
6452 const char *iface_type_name;
6453 if (this->layout.flags.q.in) {
6454 var_mode = ir_var_shader_in;
6455 iface_type_name = "in";
6456 } else if (this->layout.flags.q.out) {
6457 var_mode = ir_var_shader_out;
6458 iface_type_name = "out";
6459 } else if (this->layout.flags.q.uniform) {
6460 var_mode = ir_var_uniform;
6461 iface_type_name = "uniform";
6462 } else if (this->layout.flags.q.buffer) {
6463 var_mode = ir_var_shader_storage;
6464 iface_type_name = "buffer";
6465 } else {
6466 var_mode = ir_var_auto;
6467 iface_type_name = "UNKNOWN";
6468 assert(!"interface block layout qualifier not found!");
6469 }
6470
6471 enum glsl_matrix_layout matrix_layout = GLSL_MATRIX_LAYOUT_INHERITED;
6472 if (this->layout.flags.q.row_major)
6473 matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
6474 else if (this->layout.flags.q.column_major)
6475 matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
6476
6477 bool redeclaring_per_vertex = strcmp(this->block_name, "gl_PerVertex") == 0;
6478 exec_list declared_variables;
6479 glsl_struct_field *fields;
6480
6481 /* Treat an interface block as one level of nesting, so that embedded struct
6482 * specifiers will be disallowed.
6483 */
6484 state->struct_specifier_depth++;
6485
6486 unsigned int num_variables =
6487 ast_process_structure_or_interface_block(&declared_variables,
6488 state,
6489 &this->declarations,
6490 loc,
6491 &fields,
6492 true,
6493 matrix_layout,
6494 redeclaring_per_vertex,
6495 var_mode,
6496 &this->layout);
6497
6498 state->struct_specifier_depth--;
6499
6500 if (!redeclaring_per_vertex) {
6501 validate_identifier(this->block_name, loc, state);
6502
6503 /* From section 4.3.9 ("Interface Blocks") of the GLSL 4.50 spec:
6504 *
6505 * "Block names have no other use within a shader beyond interface
6506 * matching; it is a compile-time error to use a block name at global
6507 * scope for anything other than as a block name."
6508 */
6509 ir_variable *var = state->symbols->get_variable(this->block_name);
6510 if (var && !var->type->is_interface()) {
6511 _mesa_glsl_error(&loc, state, "Block name `%s' is "
6512 "already used in the scope.",
6513 this->block_name);
6514 }
6515 }
6516
6517 const glsl_type *earlier_per_vertex = NULL;
6518 if (redeclaring_per_vertex) {
6519 /* Find the previous declaration of gl_PerVertex. If we're redeclaring
6520 * the named interface block gl_in, we can find it by looking at the
6521 * previous declaration of gl_in. Otherwise we can find it by looking
6522 * at the previous decalartion of any of the built-in outputs,
6523 * e.g. gl_Position.
6524 *
6525 * Also check that the instance name and array-ness of the redeclaration
6526 * are correct.
6527 */
6528 switch (var_mode) {
6529 case ir_var_shader_in:
6530 if (ir_variable *earlier_gl_in =
6531 state->symbols->get_variable("gl_in")) {
6532 earlier_per_vertex = earlier_gl_in->get_interface_type();
6533 } else {
6534 _mesa_glsl_error(&loc, state,
6535 "redeclaration of gl_PerVertex input not allowed "
6536 "in the %s shader",
6537 _mesa_shader_stage_to_string(state->stage));
6538 }
6539 if (this->instance_name == NULL ||
6540 strcmp(this->instance_name, "gl_in") != 0 || this->array_specifier == NULL ||
6541 !this->array_specifier->is_single_dimension()) {
6542 _mesa_glsl_error(&loc, state,
6543 "gl_PerVertex input must be redeclared as "
6544 "gl_in[]");
6545 }
6546 break;
6547 case ir_var_shader_out:
6548 if (ir_variable *earlier_gl_Position =
6549 state->symbols->get_variable("gl_Position")) {
6550 earlier_per_vertex = earlier_gl_Position->get_interface_type();
6551 } else if (ir_variable *earlier_gl_out =
6552 state->symbols->get_variable("gl_out")) {
6553 earlier_per_vertex = earlier_gl_out->get_interface_type();
6554 } else {
6555 _mesa_glsl_error(&loc, state,
6556 "redeclaration of gl_PerVertex output not "
6557 "allowed in the %s shader",
6558 _mesa_shader_stage_to_string(state->stage));
6559 }
6560 if (state->stage == MESA_SHADER_TESS_CTRL) {
6561 if (this->instance_name == NULL ||
6562 strcmp(this->instance_name, "gl_out") != 0 || this->array_specifier == NULL) {
6563 _mesa_glsl_error(&loc, state,
6564 "gl_PerVertex output must be redeclared as "
6565 "gl_out[]");
6566 }
6567 } else {
6568 if (this->instance_name != NULL) {
6569 _mesa_glsl_error(&loc, state,
6570 "gl_PerVertex output may not be redeclared with "
6571 "an instance name");
6572 }
6573 }
6574 break;
6575 default:
6576 _mesa_glsl_error(&loc, state,
6577 "gl_PerVertex must be declared as an input or an "
6578 "output");
6579 break;
6580 }
6581
6582 if (earlier_per_vertex == NULL) {
6583 /* An error has already been reported. Bail out to avoid null
6584 * dereferences later in this function.
6585 */
6586 return NULL;
6587 }
6588
6589 /* Copy locations from the old gl_PerVertex interface block. */
6590 for (unsigned i = 0; i < num_variables; i++) {
6591 int j = earlier_per_vertex->field_index(fields[i].name);
6592 if (j == -1) {
6593 _mesa_glsl_error(&loc, state,
6594 "redeclaration of gl_PerVertex must be a subset "
6595 "of the built-in members of gl_PerVertex");
6596 } else {
6597 fields[i].location =
6598 earlier_per_vertex->fields.structure[j].location;
6599 fields[i].interpolation =
6600 earlier_per_vertex->fields.structure[j].interpolation;
6601 fields[i].centroid =
6602 earlier_per_vertex->fields.structure[j].centroid;
6603 fields[i].sample =
6604 earlier_per_vertex->fields.structure[j].sample;
6605 fields[i].patch =
6606 earlier_per_vertex->fields.structure[j].patch;
6607 }
6608 }
6609
6610 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10
6611 * spec:
6612 *
6613 * If a built-in interface block is redeclared, it must appear in
6614 * the shader before any use of any member included in the built-in
6615 * declaration, or a compilation error will result.
6616 *
6617 * This appears to be a clarification to the behaviour established for
6618 * gl_PerVertex by GLSL 1.50, therefore we implement this behaviour
6619 * regardless of GLSL version.
6620 */
6621 interface_block_usage_visitor v(var_mode, earlier_per_vertex);
6622 v.run(instructions);
6623 if (v.usage_found()) {
6624 _mesa_glsl_error(&loc, state,
6625 "redeclaration of a built-in interface block must "
6626 "appear before any use of any member of the "
6627 "interface block");
6628 }
6629 }
6630
6631 const glsl_type *block_type =
6632 glsl_type::get_interface_instance(fields,
6633 num_variables,
6634 packing,
6635 this->block_name);
6636 if (this->layout.flags.q.explicit_binding)
6637 validate_binding_qualifier(state, &loc, block_type, &this->layout);
6638
6639 if (!state->symbols->add_interface(block_type->name, block_type, var_mode)) {
6640 YYLTYPE loc = this->get_location();
6641 _mesa_glsl_error(&loc, state, "interface block `%s' with type `%s' "
6642 "already taken in the current scope",
6643 this->block_name, iface_type_name);
6644 }
6645
6646 /* Since interface blocks cannot contain statements, it should be
6647 * impossible for the block to generate any instructions.
6648 */
6649 assert(declared_variables.is_empty());
6650
6651 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
6652 *
6653 * Geometry shader input variables get the per-vertex values written
6654 * out by vertex shader output variables of the same names. Since a
6655 * geometry shader operates on a set of vertices, each input varying
6656 * variable (or input block, see interface blocks below) needs to be
6657 * declared as an array.
6658 */
6659 if (state->stage == MESA_SHADER_GEOMETRY && this->array_specifier == NULL &&
6660 var_mode == ir_var_shader_in) {
6661 _mesa_glsl_error(&loc, state, "geometry shader inputs must be arrays");
6662 } else if ((state->stage == MESA_SHADER_TESS_CTRL ||
6663 state->stage == MESA_SHADER_TESS_EVAL) &&
6664 this->array_specifier == NULL &&
6665 var_mode == ir_var_shader_in) {
6666 _mesa_glsl_error(&loc, state, "per-vertex tessellation shader inputs must be arrays");
6667 } else if (state->stage == MESA_SHADER_TESS_CTRL &&
6668 this->array_specifier == NULL &&
6669 var_mode == ir_var_shader_out) {
6670 _mesa_glsl_error(&loc, state, "tessellation control shader outputs must be arrays");
6671 }
6672
6673
6674 /* Page 39 (page 45 of the PDF) of section 4.3.7 in the GLSL ES 3.00 spec
6675 * says:
6676 *
6677 * "If an instance name (instance-name) is used, then it puts all the
6678 * members inside a scope within its own name space, accessed with the
6679 * field selector ( . ) operator (analogously to structures)."
6680 */
6681 if (this->instance_name) {
6682 if (redeclaring_per_vertex) {
6683 /* When a built-in in an unnamed interface block is redeclared,
6684 * get_variable_being_redeclared() calls
6685 * check_builtin_array_max_size() to make sure that built-in array
6686 * variables aren't redeclared to illegal sizes. But we're looking
6687 * at a redeclaration of a named built-in interface block. So we
6688 * have to manually call check_builtin_array_max_size() for all parts
6689 * of the interface that are arrays.
6690 */
6691 for (unsigned i = 0; i < num_variables; i++) {
6692 if (fields[i].type->is_array()) {
6693 const unsigned size = fields[i].type->array_size();
6694 check_builtin_array_max_size(fields[i].name, size, loc, state);
6695 }
6696 }
6697 } else {
6698 validate_identifier(this->instance_name, loc, state);
6699 }
6700
6701 ir_variable *var;
6702
6703 if (this->array_specifier != NULL) {
6704 const glsl_type *block_array_type =
6705 process_array_type(&loc, block_type, this->array_specifier, state);
6706
6707 /* Section 4.3.7 (Interface Blocks) of the GLSL 1.50 spec says:
6708 *
6709 * For uniform blocks declared an array, each individual array
6710 * element corresponds to a separate buffer object backing one
6711 * instance of the block. As the array size indicates the number
6712 * of buffer objects needed, uniform block array declarations
6713 * must specify an array size.
6714 *
6715 * And a few paragraphs later:
6716 *
6717 * Geometry shader input blocks must be declared as arrays and
6718 * follow the array declaration and linking rules for all
6719 * geometry shader inputs. All other input and output block
6720 * arrays must specify an array size.
6721 *
6722 * The same applies to tessellation shaders.
6723 *
6724 * The upshot of this is that the only circumstance where an
6725 * interface array size *doesn't* need to be specified is on a
6726 * geometry shader input, tessellation control shader input,
6727 * tessellation control shader output, and tessellation evaluation
6728 * shader input.
6729 */
6730 if (block_array_type->is_unsized_array()) {
6731 bool allow_inputs = state->stage == MESA_SHADER_GEOMETRY ||
6732 state->stage == MESA_SHADER_TESS_CTRL ||
6733 state->stage == MESA_SHADER_TESS_EVAL;
6734 bool allow_outputs = state->stage == MESA_SHADER_TESS_CTRL;
6735
6736 if (this->layout.flags.q.in) {
6737 if (!allow_inputs)
6738 _mesa_glsl_error(&loc, state,
6739 "unsized input block arrays not allowed in "
6740 "%s shader",
6741 _mesa_shader_stage_to_string(state->stage));
6742 } else if (this->layout.flags.q.out) {
6743 if (!allow_outputs)
6744 _mesa_glsl_error(&loc, state,
6745 "unsized output block arrays not allowed in "
6746 "%s shader",
6747 _mesa_shader_stage_to_string(state->stage));
6748 } else {
6749 /* by elimination, this is a uniform block array */
6750 _mesa_glsl_error(&loc, state,
6751 "unsized uniform block arrays not allowed in "
6752 "%s shader",
6753 _mesa_shader_stage_to_string(state->stage));
6754 }
6755 }
6756
6757 /* From section 4.3.9 (Interface Blocks) of the GLSL ES 3.10 spec:
6758 *
6759 * * Arrays of arrays of blocks are not allowed
6760 */
6761 if (state->es_shader && block_array_type->is_array() &&
6762 block_array_type->fields.array->is_array()) {
6763 _mesa_glsl_error(&loc, state,
6764 "arrays of arrays interface blocks are "
6765 "not allowed");
6766 }
6767
6768 if (this->layout.flags.q.explicit_binding)
6769 validate_binding_qualifier(state, &loc, block_array_type,
6770 &this->layout);
6771
6772 var = new(state) ir_variable(block_array_type,
6773 this->instance_name,
6774 var_mode);
6775 } else {
6776 var = new(state) ir_variable(block_type,
6777 this->instance_name,
6778 var_mode);
6779 }
6780
6781 var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
6782 ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
6783
6784 if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
6785 var->data.read_only = true;
6786
6787 if (state->stage == MESA_SHADER_GEOMETRY && var_mode == ir_var_shader_in)
6788 handle_geometry_shader_input_decl(state, loc, var);
6789 else if ((state->stage == MESA_SHADER_TESS_CTRL ||
6790 state->stage == MESA_SHADER_TESS_EVAL) && var_mode == ir_var_shader_in)
6791 handle_tess_shader_input_decl(state, loc, var);
6792 else if (state->stage == MESA_SHADER_TESS_CTRL && var_mode == ir_var_shader_out)
6793 handle_tess_ctrl_shader_output_decl(state, loc, var);
6794
6795 for (unsigned i = 0; i < num_variables; i++) {
6796 if (fields[i].type->is_unsized_array()) {
6797 if (var_mode == ir_var_shader_storage) {
6798 if (i != (num_variables - 1)) {
6799 _mesa_glsl_error(&loc, state, "unsized array `%s' definition: "
6800 "only last member of a shader storage block "
6801 "can be defined as unsized array",
6802 fields[i].name);
6803 }
6804 } else {
6805 /* From GLSL ES 3.10 spec, section 4.1.9 "Arrays":
6806 *
6807 * "If an array is declared as the last member of a shader storage
6808 * block and the size is not specified at compile-time, it is
6809 * sized at run-time. In all other cases, arrays are sized only
6810 * at compile-time."
6811 */
6812 if (state->es_shader) {
6813 _mesa_glsl_error(&loc, state, "unsized array `%s' definition: "
6814 "only last member of a shader storage block "
6815 "can be defined as unsized array",
6816 fields[i].name);
6817 }
6818 }
6819 }
6820 }
6821
6822 if (ir_variable *earlier =
6823 state->symbols->get_variable(this->instance_name)) {
6824 if (!redeclaring_per_vertex) {
6825 _mesa_glsl_error(&loc, state, "`%s' redeclared",
6826 this->instance_name);
6827 }
6828 earlier->data.how_declared = ir_var_declared_normally;
6829 earlier->type = var->type;
6830 earlier->reinit_interface_type(block_type);
6831 delete var;
6832 } else {
6833 /* Propagate the "binding" keyword into this UBO's fields;
6834 * the UBO declaration itself doesn't get an ir_variable unless it
6835 * has an instance name. This is ugly.
6836 */
6837 var->data.explicit_binding = this->layout.flags.q.explicit_binding;
6838 var->data.binding = this->layout.binding;
6839
6840 var->data.stream = this->layout.stream;
6841
6842 state->symbols->add_variable(var);
6843 instructions->push_tail(var);
6844 }
6845 } else {
6846 /* In order to have an array size, the block must also be declared with
6847 * an instance name.
6848 */
6849 assert(this->array_specifier == NULL);
6850
6851 for (unsigned i = 0; i < num_variables; i++) {
6852 ir_variable *var =
6853 new(state) ir_variable(fields[i].type,
6854 ralloc_strdup(state, fields[i].name),
6855 var_mode);
6856 var->data.interpolation = fields[i].interpolation;
6857 var->data.centroid = fields[i].centroid;
6858 var->data.sample = fields[i].sample;
6859 var->data.patch = fields[i].patch;
6860 var->data.stream = this->layout.stream;
6861 var->init_interface_type(block_type);
6862
6863 if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
6864 var->data.read_only = true;
6865
6866 /* Precision qualifiers do not have any meaning in Desktop GLSL */
6867 if (state->es_shader) {
6868 var->data.precision =
6869 select_gles_precision(fields[i].precision, fields[i].type,
6870 state, &loc);
6871 }
6872
6873 if (fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED) {
6874 var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
6875 ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
6876 } else {
6877 var->data.matrix_layout = fields[i].matrix_layout;
6878 }
6879
6880 if (var->data.mode == ir_var_shader_storage) {
6881 var->data.image_read_only = fields[i].image_read_only;
6882 var->data.image_write_only = fields[i].image_write_only;
6883 var->data.image_coherent = fields[i].image_coherent;
6884 var->data.image_volatile = fields[i].image_volatile;
6885 var->data.image_restrict = fields[i].image_restrict;
6886 }
6887
6888 /* Examine var name here since var may get deleted in the next call */
6889 bool var_is_gl_id = is_gl_identifier(var->name);
6890
6891 if (redeclaring_per_vertex) {
6892 ir_variable *earlier =
6893 get_variable_being_redeclared(var, loc, state,
6894 true /* allow_all_redeclarations */);
6895 if (!var_is_gl_id || earlier == NULL) {
6896 _mesa_glsl_error(&loc, state,
6897 "redeclaration of gl_PerVertex can only "
6898 "include built-in variables");
6899 } else if (earlier->data.how_declared == ir_var_declared_normally) {
6900 _mesa_glsl_error(&loc, state,
6901 "`%s' has already been redeclared",
6902 earlier->name);
6903 } else {
6904 earlier->data.how_declared = ir_var_declared_in_block;
6905 earlier->reinit_interface_type(block_type);
6906 }
6907 continue;
6908 }
6909
6910 if (state->symbols->get_variable(var->name) != NULL)
6911 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
6912
6913 /* Propagate the "binding" keyword into this UBO/SSBO's fields.
6914 * The UBO declaration itself doesn't get an ir_variable unless it
6915 * has an instance name. This is ugly.
6916 */
6917 var->data.explicit_binding = this->layout.flags.q.explicit_binding;
6918 var->data.binding = this->layout.binding;
6919
6920 if (var->type->is_unsized_array()) {
6921 if (var->is_in_shader_storage_block()) {
6922 if (!is_unsized_array_last_element(var)) {
6923 _mesa_glsl_error(&loc, state, "unsized array `%s' definition: "
6924 "only last member of a shader storage block "
6925 "can be defined as unsized array",
6926 var->name);
6927 }
6928 var->data.from_ssbo_unsized_array = true;
6929 } else {
6930 /* From GLSL ES 3.10 spec, section 4.1.9 "Arrays":
6931 *
6932 * "If an array is declared as the last member of a shader storage
6933 * block and the size is not specified at compile-time, it is
6934 * sized at run-time. In all other cases, arrays are sized only
6935 * at compile-time."
6936 */
6937 if (state->es_shader) {
6938 _mesa_glsl_error(&loc, state, "unsized array `%s' definition: "
6939 "only last member of a shader storage block "
6940 "can be defined as unsized array",
6941 var->name);
6942 }
6943 }
6944 }
6945
6946 state->symbols->add_variable(var);
6947 instructions->push_tail(var);
6948 }
6949
6950 if (redeclaring_per_vertex && block_type != earlier_per_vertex) {
6951 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10 spec:
6952 *
6953 * It is also a compilation error ... to redeclare a built-in
6954 * block and then use a member from that built-in block that was
6955 * not included in the redeclaration.
6956 *
6957 * This appears to be a clarification to the behaviour established
6958 * for gl_PerVertex by GLSL 1.50, therefore we implement this
6959 * behaviour regardless of GLSL version.
6960 *
6961 * To prevent the shader from using a member that was not included in
6962 * the redeclaration, we disable any ir_variables that are still
6963 * associated with the old declaration of gl_PerVertex (since we've
6964 * already updated all of the variables contained in the new
6965 * gl_PerVertex to point to it).
6966 *
6967 * As a side effect this will prevent
6968 * validate_intrastage_interface_blocks() from getting confused and
6969 * thinking there are conflicting definitions of gl_PerVertex in the
6970 * shader.
6971 */
6972 foreach_in_list_safe(ir_instruction, node, instructions) {
6973 ir_variable *const var = node->as_variable();
6974 if (var != NULL &&
6975 var->get_interface_type() == earlier_per_vertex &&
6976 var->data.mode == var_mode) {
6977 if (var->data.how_declared == ir_var_declared_normally) {
6978 _mesa_glsl_error(&loc, state,
6979 "redeclaration of gl_PerVertex cannot "
6980 "follow a redeclaration of `%s'",
6981 var->name);
6982 }
6983 state->symbols->disable_variable(var->name);
6984 var->remove();
6985 }
6986 }
6987 }
6988 }
6989
6990 return NULL;
6991 }
6992
6993
6994 ir_rvalue *
6995 ast_tcs_output_layout::hir(exec_list *instructions,
6996 struct _mesa_glsl_parse_state *state)
6997 {
6998 YYLTYPE loc = this->get_location();
6999
7000 /* If any tessellation control output layout declaration preceded this
7001 * one, make sure it was consistent with this one.
7002 */
7003 if (state->tcs_output_vertices_specified &&
7004 state->out_qualifier->vertices != this->vertices) {
7005 _mesa_glsl_error(&loc, state,
7006 "tessellation control shader output layout does not "
7007 "match previous declaration");
7008 return NULL;
7009 }
7010
7011 /* If any shader outputs occurred before this declaration and specified an
7012 * array size, make sure the size they specified is consistent with the
7013 * primitive type.
7014 */
7015 unsigned num_vertices = this->vertices;
7016 if (state->tcs_output_size != 0 && state->tcs_output_size != num_vertices) {
7017 _mesa_glsl_error(&loc, state,
7018 "this tessellation control shader output layout "
7019 "specifies %u vertices, but a previous output "
7020 "is declared with size %u",
7021 num_vertices, state->tcs_output_size);
7022 return NULL;
7023 }
7024
7025 state->tcs_output_vertices_specified = true;
7026
7027 /* If any shader outputs occurred before this declaration and did not
7028 * specify an array size, their size is determined now.
7029 */
7030 foreach_in_list (ir_instruction, node, instructions) {
7031 ir_variable *var = node->as_variable();
7032 if (var == NULL || var->data.mode != ir_var_shader_out)
7033 continue;
7034
7035 /* Note: Not all tessellation control shader output are arrays. */
7036 if (!var->type->is_unsized_array() || var->data.patch)
7037 continue;
7038
7039 if (var->data.max_array_access >= num_vertices) {
7040 _mesa_glsl_error(&loc, state,
7041 "this tessellation control shader output layout "
7042 "specifies %u vertices, but an access to element "
7043 "%u of output `%s' already exists", num_vertices,
7044 var->data.max_array_access, var->name);
7045 } else {
7046 var->type = glsl_type::get_array_instance(var->type->fields.array,
7047 num_vertices);
7048 }
7049 }
7050
7051 return NULL;
7052 }
7053
7054
7055 ir_rvalue *
7056 ast_gs_input_layout::hir(exec_list *instructions,
7057 struct _mesa_glsl_parse_state *state)
7058 {
7059 YYLTYPE loc = this->get_location();
7060
7061 /* If any geometry input layout declaration preceded this one, make sure it
7062 * was consistent with this one.
7063 */
7064 if (state->gs_input_prim_type_specified &&
7065 state->in_qualifier->prim_type != this->prim_type) {
7066 _mesa_glsl_error(&loc, state,
7067 "geometry shader input layout does not match"
7068 " previous declaration");
7069 return NULL;
7070 }
7071
7072 /* If any shader inputs occurred before this declaration and specified an
7073 * array size, make sure the size they specified is consistent with the
7074 * primitive type.
7075 */
7076 unsigned num_vertices = vertices_per_prim(this->prim_type);
7077 if (state->gs_input_size != 0 && state->gs_input_size != num_vertices) {
7078 _mesa_glsl_error(&loc, state,
7079 "this geometry shader input layout implies %u vertices"
7080 " per primitive, but a previous input is declared"
7081 " with size %u", num_vertices, state->gs_input_size);
7082 return NULL;
7083 }
7084
7085 state->gs_input_prim_type_specified = true;
7086
7087 /* If any shader inputs occurred before this declaration and did not
7088 * specify an array size, their size is determined now.
7089 */
7090 foreach_in_list(ir_instruction, node, instructions) {
7091 ir_variable *var = node->as_variable();
7092 if (var == NULL || var->data.mode != ir_var_shader_in)
7093 continue;
7094
7095 /* Note: gl_PrimitiveIDIn has mode ir_var_shader_in, but it's not an
7096 * array; skip it.
7097 */
7098
7099 if (var->type->is_unsized_array()) {
7100 if (var->data.max_array_access >= num_vertices) {
7101 _mesa_glsl_error(&loc, state,
7102 "this geometry shader input layout implies %u"
7103 " vertices, but an access to element %u of input"
7104 " `%s' already exists", num_vertices,
7105 var->data.max_array_access, var->name);
7106 } else {
7107 var->type = glsl_type::get_array_instance(var->type->fields.array,
7108 num_vertices);
7109 }
7110 }
7111 }
7112
7113 return NULL;
7114 }
7115
7116
7117 ir_rvalue *
7118 ast_cs_input_layout::hir(exec_list *instructions,
7119 struct _mesa_glsl_parse_state *state)
7120 {
7121 YYLTYPE loc = this->get_location();
7122
7123 /* If any compute input layout declaration preceded this one, make sure it
7124 * was consistent with this one.
7125 */
7126 if (state->cs_input_local_size_specified) {
7127 for (int i = 0; i < 3; i++) {
7128 if (state->cs_input_local_size[i] != this->local_size[i]) {
7129 _mesa_glsl_error(&loc, state,
7130 "compute shader input layout does not match"
7131 " previous declaration");
7132 return NULL;
7133 }
7134 }
7135 }
7136
7137 /* From the ARB_compute_shader specification:
7138 *
7139 * If the local size of the shader in any dimension is greater
7140 * than the maximum size supported by the implementation for that
7141 * dimension, a compile-time error results.
7142 *
7143 * It is not clear from the spec how the error should be reported if
7144 * the total size of the work group exceeds
7145 * MAX_COMPUTE_WORK_GROUP_INVOCATIONS, but it seems reasonable to
7146 * report it at compile time as well.
7147 */
7148 GLuint64 total_invocations = 1;
7149 for (int i = 0; i < 3; i++) {
7150 if (this->local_size[i] > state->ctx->Const.MaxComputeWorkGroupSize[i]) {
7151 _mesa_glsl_error(&loc, state,
7152 "local_size_%c exceeds MAX_COMPUTE_WORK_GROUP_SIZE"
7153 " (%d)", 'x' + i,
7154 state->ctx->Const.MaxComputeWorkGroupSize[i]);
7155 break;
7156 }
7157 total_invocations *= this->local_size[i];
7158 if (total_invocations >
7159 state->ctx->Const.MaxComputeWorkGroupInvocations) {
7160 _mesa_glsl_error(&loc, state,
7161 "product of local_sizes exceeds "
7162 "MAX_COMPUTE_WORK_GROUP_INVOCATIONS (%d)",
7163 state->ctx->Const.MaxComputeWorkGroupInvocations);
7164 break;
7165 }
7166 }
7167
7168 state->cs_input_local_size_specified = true;
7169 for (int i = 0; i < 3; i++)
7170 state->cs_input_local_size[i] = this->local_size[i];
7171
7172 /* We may now declare the built-in constant gl_WorkGroupSize (see
7173 * builtin_variable_generator::generate_constants() for why we didn't
7174 * declare it earlier).
7175 */
7176 ir_variable *var = new(state->symbols)
7177 ir_variable(glsl_type::uvec3_type, "gl_WorkGroupSize", ir_var_auto);
7178 var->data.how_declared = ir_var_declared_implicitly;
7179 var->data.read_only = true;
7180 instructions->push_tail(var);
7181 state->symbols->add_variable(var);
7182 ir_constant_data data;
7183 memset(&data, 0, sizeof(data));
7184 for (int i = 0; i < 3; i++)
7185 data.u[i] = this->local_size[i];
7186 var->constant_value = new(var) ir_constant(glsl_type::uvec3_type, &data);
7187 var->constant_initializer =
7188 new(var) ir_constant(glsl_type::uvec3_type, &data);
7189 var->data.has_initializer = true;
7190
7191 return NULL;
7192 }
7193
7194
7195 static void
7196 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
7197 exec_list *instructions)
7198 {
7199 bool gl_FragColor_assigned = false;
7200 bool gl_FragData_assigned = false;
7201 bool user_defined_fs_output_assigned = false;
7202 ir_variable *user_defined_fs_output = NULL;
7203
7204 /* It would be nice to have proper location information. */
7205 YYLTYPE loc;
7206 memset(&loc, 0, sizeof(loc));
7207
7208 foreach_in_list(ir_instruction, node, instructions) {
7209 ir_variable *var = node->as_variable();
7210
7211 if (!var || !var->data.assigned)
7212 continue;
7213
7214 if (strcmp(var->name, "gl_FragColor") == 0)
7215 gl_FragColor_assigned = true;
7216 else if (strcmp(var->name, "gl_FragData") == 0)
7217 gl_FragData_assigned = true;
7218 else if (!is_gl_identifier(var->name)) {
7219 if (state->stage == MESA_SHADER_FRAGMENT &&
7220 var->data.mode == ir_var_shader_out) {
7221 user_defined_fs_output_assigned = true;
7222 user_defined_fs_output = var;
7223 }
7224 }
7225 }
7226
7227 /* From the GLSL 1.30 spec:
7228 *
7229 * "If a shader statically assigns a value to gl_FragColor, it
7230 * may not assign a value to any element of gl_FragData. If a
7231 * shader statically writes a value to any element of
7232 * gl_FragData, it may not assign a value to
7233 * gl_FragColor. That is, a shader may assign values to either
7234 * gl_FragColor or gl_FragData, but not both. Multiple shaders
7235 * linked together must also consistently write just one of
7236 * these variables. Similarly, if user declared output
7237 * variables are in use (statically assigned to), then the
7238 * built-in variables gl_FragColor and gl_FragData may not be
7239 * assigned to. These incorrect usages all generate compile
7240 * time errors."
7241 */
7242 if (gl_FragColor_assigned && gl_FragData_assigned) {
7243 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7244 "`gl_FragColor' and `gl_FragData'");
7245 } else if (gl_FragColor_assigned && user_defined_fs_output_assigned) {
7246 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7247 "`gl_FragColor' and `%s'",
7248 user_defined_fs_output->name);
7249 } else if (gl_FragData_assigned && user_defined_fs_output_assigned) {
7250 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7251 "`gl_FragData' and `%s'",
7252 user_defined_fs_output->name);
7253 }
7254 }
7255
7256
7257 static void
7258 remove_per_vertex_blocks(exec_list *instructions,
7259 _mesa_glsl_parse_state *state, ir_variable_mode mode)
7260 {
7261 /* Find the gl_PerVertex interface block of the appropriate (in/out) mode,
7262 * if it exists in this shader type.
7263 */
7264 const glsl_type *per_vertex = NULL;
7265 switch (mode) {
7266 case ir_var_shader_in:
7267 if (ir_variable *gl_in = state->symbols->get_variable("gl_in"))
7268 per_vertex = gl_in->get_interface_type();
7269 break;
7270 case ir_var_shader_out:
7271 if (ir_variable *gl_Position =
7272 state->symbols->get_variable("gl_Position")) {
7273 per_vertex = gl_Position->get_interface_type();
7274 }
7275 break;
7276 default:
7277 assert(!"Unexpected mode");
7278 break;
7279 }
7280
7281 /* If we didn't find a built-in gl_PerVertex interface block, then we don't
7282 * need to do anything.
7283 */
7284 if (per_vertex == NULL)
7285 return;
7286
7287 /* If the interface block is used by the shader, then we don't need to do
7288 * anything.
7289 */
7290 interface_block_usage_visitor v(mode, per_vertex);
7291 v.run(instructions);
7292 if (v.usage_found())
7293 return;
7294
7295 /* Remove any ir_variable declarations that refer to the interface block
7296 * we're removing.
7297 */
7298 foreach_in_list_safe(ir_instruction, node, instructions) {
7299 ir_variable *const var = node->as_variable();
7300 if (var != NULL && var->get_interface_type() == per_vertex &&
7301 var->data.mode == mode) {
7302 state->symbols->disable_variable(var->name);
7303 var->remove();
7304 }
7305 }
7306 }