glsl: Allow redeclaration of gl_Color and its variants in GLSL 1.30
[mesa.git] / src / glsl / ast_to_hir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file ast_to_hir.c
26 * Convert abstract syntax to to high-level intermediate reprensentation (HIR).
27 *
28 * During the conversion to HIR, the majority of the symantic checking is
29 * preformed on the program. This includes:
30 *
31 * * Symbol table management
32 * * Type checking
33 * * Function binding
34 *
35 * The majority of this work could be done during parsing, and the parser could
36 * probably generate HIR directly. However, this results in frequent changes
37 * to the parser code. Since we do not assume that every system this complier
38 * is built on will have Flex and Bison installed, we have to store the code
39 * generated by these tools in our version control system. In other parts of
40 * the system we've seen problems where a parser was changed but the generated
41 * code was not committed, merge conflicts where created because two developers
42 * had slightly different versions of Bison installed, etc.
43 *
44 * I have also noticed that running Bison generated parsers in GDB is very
45 * irritating. When you get a segfault on '$$ = $1->foo', you can't very
46 * well 'print $1' in GDB.
47 *
48 * As a result, my preference is to put as little C code as possible in the
49 * parser (and lexer) sources.
50 */
51
52 #include "main/core.h" /* for struct gl_extensions */
53 #include "glsl_symbol_table.h"
54 #include "glsl_parser_extras.h"
55 #include "ast.h"
56 #include "glsl_types.h"
57 #include "ir.h"
58
59 void
60 _mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
61 {
62 _mesa_glsl_initialize_variables(instructions, state);
63 _mesa_glsl_initialize_functions(state);
64
65 state->symbols->language_version = state->language_version;
66
67 state->current_function = NULL;
68
69 /* Section 4.2 of the GLSL 1.20 specification states:
70 * "The built-in functions are scoped in a scope outside the global scope
71 * users declare global variables in. That is, a shader's global scope,
72 * available for user-defined functions and global variables, is nested
73 * inside the scope containing the built-in functions."
74 *
75 * Since built-in functions like ftransform() access built-in variables,
76 * it follows that those must be in the outer scope as well.
77 *
78 * We push scope here to create this nesting effect...but don't pop.
79 * This way, a shader's globals are still in the symbol table for use
80 * by the linker.
81 */
82 state->symbols->push_scope();
83
84 foreach_list_typed (ast_node, ast, link, & state->translation_unit)
85 ast->hir(instructions, state);
86 }
87
88
89 /**
90 * If a conversion is available, convert one operand to a different type
91 *
92 * The \c from \c ir_rvalue is converted "in place".
93 *
94 * \param to Type that the operand it to be converted to
95 * \param from Operand that is being converted
96 * \param state GLSL compiler state
97 *
98 * \return
99 * If a conversion is possible (or unnecessary), \c true is returned.
100 * Otherwise \c false is returned.
101 */
102 bool
103 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
104 struct _mesa_glsl_parse_state *state)
105 {
106 void *ctx = state;
107 if (to->base_type == from->type->base_type)
108 return true;
109
110 /* This conversion was added in GLSL 1.20. If the compilation mode is
111 * GLSL 1.10, the conversion is skipped.
112 */
113 if (state->language_version < 120)
114 return false;
115
116 /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
117 *
118 * "There are no implicit array or structure conversions. For
119 * example, an array of int cannot be implicitly converted to an
120 * array of float. There are no implicit conversions between
121 * signed and unsigned integers."
122 */
123 /* FINISHME: The above comment is partially a lie. There is int/uint
124 * FINISHME: conversion for immediate constants.
125 */
126 if (!to->is_float() || !from->type->is_numeric())
127 return false;
128
129 /* Convert to a floating point type with the same number of components
130 * as the original type - i.e. int to float, not int to vec4.
131 */
132 to = glsl_type::get_instance(GLSL_TYPE_FLOAT, from->type->vector_elements,
133 from->type->matrix_columns);
134
135 switch (from->type->base_type) {
136 case GLSL_TYPE_INT:
137 from = new(ctx) ir_expression(ir_unop_i2f, to, from, NULL);
138 break;
139 case GLSL_TYPE_UINT:
140 from = new(ctx) ir_expression(ir_unop_u2f, to, from, NULL);
141 break;
142 case GLSL_TYPE_BOOL:
143 from = new(ctx) ir_expression(ir_unop_b2f, to, from, NULL);
144 break;
145 default:
146 assert(0);
147 }
148
149 return true;
150 }
151
152
153 static const struct glsl_type *
154 arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
155 bool multiply,
156 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
157 {
158 const glsl_type *type_a = value_a->type;
159 const glsl_type *type_b = value_b->type;
160
161 /* From GLSL 1.50 spec, page 56:
162 *
163 * "The arithmetic binary operators add (+), subtract (-),
164 * multiply (*), and divide (/) operate on integer and
165 * floating-point scalars, vectors, and matrices."
166 */
167 if (!type_a->is_numeric() || !type_b->is_numeric()) {
168 _mesa_glsl_error(loc, state,
169 "Operands to arithmetic operators must be numeric");
170 return glsl_type::error_type;
171 }
172
173
174 /* "If one operand is floating-point based and the other is
175 * not, then the conversions from Section 4.1.10 "Implicit
176 * Conversions" are applied to the non-floating-point-based operand."
177 */
178 if (!apply_implicit_conversion(type_a, value_b, state)
179 && !apply_implicit_conversion(type_b, value_a, state)) {
180 _mesa_glsl_error(loc, state,
181 "Could not implicitly convert operands to "
182 "arithmetic operator");
183 return glsl_type::error_type;
184 }
185 type_a = value_a->type;
186 type_b = value_b->type;
187
188 /* "If the operands are integer types, they must both be signed or
189 * both be unsigned."
190 *
191 * From this rule and the preceeding conversion it can be inferred that
192 * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
193 * The is_numeric check above already filtered out the case where either
194 * type is not one of these, so now the base types need only be tested for
195 * equality.
196 */
197 if (type_a->base_type != type_b->base_type) {
198 _mesa_glsl_error(loc, state,
199 "base type mismatch for arithmetic operator");
200 return glsl_type::error_type;
201 }
202
203 /* "All arithmetic binary operators result in the same fundamental type
204 * (signed integer, unsigned integer, or floating-point) as the
205 * operands they operate on, after operand type conversion. After
206 * conversion, the following cases are valid
207 *
208 * * The two operands are scalars. In this case the operation is
209 * applied, resulting in a scalar."
210 */
211 if (type_a->is_scalar() && type_b->is_scalar())
212 return type_a;
213
214 /* "* One operand is a scalar, and the other is a vector or matrix.
215 * In this case, the scalar operation is applied independently to each
216 * component of the vector or matrix, resulting in the same size
217 * vector or matrix."
218 */
219 if (type_a->is_scalar()) {
220 if (!type_b->is_scalar())
221 return type_b;
222 } else if (type_b->is_scalar()) {
223 return type_a;
224 }
225
226 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
227 * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
228 * handled.
229 */
230 assert(!type_a->is_scalar());
231 assert(!type_b->is_scalar());
232
233 /* "* The two operands are vectors of the same size. In this case, the
234 * operation is done component-wise resulting in the same size
235 * vector."
236 */
237 if (type_a->is_vector() && type_b->is_vector()) {
238 if (type_a == type_b) {
239 return type_a;
240 } else {
241 _mesa_glsl_error(loc, state,
242 "vector size mismatch for arithmetic operator");
243 return glsl_type::error_type;
244 }
245 }
246
247 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
248 * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
249 * <vector, vector> have been handled. At least one of the operands must
250 * be matrix. Further, since there are no integer matrix types, the base
251 * type of both operands must be float.
252 */
253 assert(type_a->is_matrix() || type_b->is_matrix());
254 assert(type_a->base_type == GLSL_TYPE_FLOAT);
255 assert(type_b->base_type == GLSL_TYPE_FLOAT);
256
257 /* "* The operator is add (+), subtract (-), or divide (/), and the
258 * operands are matrices with the same number of rows and the same
259 * number of columns. In this case, the operation is done component-
260 * wise resulting in the same size matrix."
261 * * The operator is multiply (*), where both operands are matrices or
262 * one operand is a vector and the other a matrix. A right vector
263 * operand is treated as a column vector and a left vector operand as a
264 * row vector. In all these cases, it is required that the number of
265 * columns of the left operand is equal to the number of rows of the
266 * right operand. Then, the multiply (*) operation does a linear
267 * algebraic multiply, yielding an object that has the same number of
268 * rows as the left operand and the same number of columns as the right
269 * operand. Section 5.10 "Vector and Matrix Operations" explains in
270 * more detail how vectors and matrices are operated on."
271 */
272 if (! multiply) {
273 if (type_a == type_b)
274 return type_a;
275 } else {
276 if (type_a->is_matrix() && type_b->is_matrix()) {
277 /* Matrix multiply. The columns of A must match the rows of B. Given
278 * the other previously tested constraints, this means the vector type
279 * of a row from A must be the same as the vector type of a column from
280 * B.
281 */
282 if (type_a->row_type() == type_b->column_type()) {
283 /* The resulting matrix has the number of columns of matrix B and
284 * the number of rows of matrix A. We get the row count of A by
285 * looking at the size of a vector that makes up a column. The
286 * transpose (size of a row) is done for B.
287 */
288 const glsl_type *const type =
289 glsl_type::get_instance(type_a->base_type,
290 type_a->column_type()->vector_elements,
291 type_b->row_type()->vector_elements);
292 assert(type != glsl_type::error_type);
293
294 return type;
295 }
296 } else if (type_a->is_matrix()) {
297 /* A is a matrix and B is a column vector. Columns of A must match
298 * rows of B. Given the other previously tested constraints, this
299 * means the vector type of a row from A must be the same as the
300 * vector the type of B.
301 */
302 if (type_a->row_type() == type_b) {
303 /* The resulting vector has a number of elements equal to
304 * the number of rows of matrix A. */
305 const glsl_type *const type =
306 glsl_type::get_instance(type_a->base_type,
307 type_a->column_type()->vector_elements,
308 1);
309 assert(type != glsl_type::error_type);
310
311 return type;
312 }
313 } else {
314 assert(type_b->is_matrix());
315
316 /* A is a row vector and B is a matrix. Columns of A must match rows
317 * of B. Given the other previously tested constraints, this means
318 * the type of A must be the same as the vector type of a column from
319 * B.
320 */
321 if (type_a == type_b->column_type()) {
322 /* The resulting vector has a number of elements equal to
323 * the number of columns of matrix B. */
324 const glsl_type *const type =
325 glsl_type::get_instance(type_a->base_type,
326 type_b->row_type()->vector_elements,
327 1);
328 assert(type != glsl_type::error_type);
329
330 return type;
331 }
332 }
333
334 _mesa_glsl_error(loc, state, "size mismatch for matrix multiplication");
335 return glsl_type::error_type;
336 }
337
338
339 /* "All other cases are illegal."
340 */
341 _mesa_glsl_error(loc, state, "type mismatch");
342 return glsl_type::error_type;
343 }
344
345
346 static const struct glsl_type *
347 unary_arithmetic_result_type(const struct glsl_type *type,
348 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
349 {
350 /* From GLSL 1.50 spec, page 57:
351 *
352 * "The arithmetic unary operators negate (-), post- and pre-increment
353 * and decrement (-- and ++) operate on integer or floating-point
354 * values (including vectors and matrices). All unary operators work
355 * component-wise on their operands. These result with the same type
356 * they operated on."
357 */
358 if (!type->is_numeric()) {
359 _mesa_glsl_error(loc, state,
360 "Operands to arithmetic operators must be numeric");
361 return glsl_type::error_type;
362 }
363
364 return type;
365 }
366
367 /**
368 * \brief Return the result type of a bit-logic operation.
369 *
370 * If the given types to the bit-logic operator are invalid, return
371 * glsl_type::error_type.
372 *
373 * \param type_a Type of LHS of bit-logic op
374 * \param type_b Type of RHS of bit-logic op
375 */
376 static const struct glsl_type *
377 bit_logic_result_type(const struct glsl_type *type_a,
378 const struct glsl_type *type_b,
379 ast_operators op,
380 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
381 {
382 if (state->language_version < 130) {
383 _mesa_glsl_error(loc, state, "bit operations require GLSL 1.30");
384 return glsl_type::error_type;
385 }
386
387 /* From page 50 (page 56 of PDF) of GLSL 1.30 spec:
388 *
389 * "The bitwise operators and (&), exclusive-or (^), and inclusive-or
390 * (|). The operands must be of type signed or unsigned integers or
391 * integer vectors."
392 */
393 if (!type_a->is_integer()) {
394 _mesa_glsl_error(loc, state, "LHS of `%s' must be an integer",
395 ast_expression::operator_string(op));
396 return glsl_type::error_type;
397 }
398 if (!type_b->is_integer()) {
399 _mesa_glsl_error(loc, state, "RHS of `%s' must be an integer",
400 ast_expression::operator_string(op));
401 return glsl_type::error_type;
402 }
403
404 /* "The fundamental types of the operands (signed or unsigned) must
405 * match,"
406 */
407 if (type_a->base_type != type_b->base_type) {
408 _mesa_glsl_error(loc, state, "operands of `%s' must have the same "
409 "base type", ast_expression::operator_string(op));
410 return glsl_type::error_type;
411 }
412
413 /* "The operands cannot be vectors of differing size." */
414 if (type_a->is_vector() &&
415 type_b->is_vector() &&
416 type_a->vector_elements != type_b->vector_elements) {
417 _mesa_glsl_error(loc, state, "operands of `%s' cannot be vectors of "
418 "different sizes", ast_expression::operator_string(op));
419 return glsl_type::error_type;
420 }
421
422 /* "If one operand is a scalar and the other a vector, the scalar is
423 * applied component-wise to the vector, resulting in the same type as
424 * the vector. The fundamental types of the operands [...] will be the
425 * resulting fundamental type."
426 */
427 if (type_a->is_scalar())
428 return type_b;
429 else
430 return type_a;
431 }
432
433 static const struct glsl_type *
434 modulus_result_type(const struct glsl_type *type_a,
435 const struct glsl_type *type_b,
436 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
437 {
438 /* From GLSL 1.50 spec, page 56:
439 * "The operator modulus (%) operates on signed or unsigned integers or
440 * integer vectors. The operand types must both be signed or both be
441 * unsigned."
442 */
443 if (!type_a->is_integer() || !type_b->is_integer()
444 || (type_a->base_type != type_b->base_type)) {
445 _mesa_glsl_error(loc, state, "type mismatch");
446 return glsl_type::error_type;
447 }
448
449 /* "The operands cannot be vectors of differing size. If one operand is
450 * a scalar and the other vector, then the scalar is applied component-
451 * wise to the vector, resulting in the same type as the vector. If both
452 * are vectors of the same size, the result is computed component-wise."
453 */
454 if (type_a->is_vector()) {
455 if (!type_b->is_vector()
456 || (type_a->vector_elements == type_b->vector_elements))
457 return type_a;
458 } else
459 return type_b;
460
461 /* "The operator modulus (%) is not defined for any other data types
462 * (non-integer types)."
463 */
464 _mesa_glsl_error(loc, state, "type mismatch");
465 return glsl_type::error_type;
466 }
467
468
469 static const struct glsl_type *
470 relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
471 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
472 {
473 const glsl_type *type_a = value_a->type;
474 const glsl_type *type_b = value_b->type;
475
476 /* From GLSL 1.50 spec, page 56:
477 * "The relational operators greater than (>), less than (<), greater
478 * than or equal (>=), and less than or equal (<=) operate only on
479 * scalar integer and scalar floating-point expressions."
480 */
481 if (!type_a->is_numeric()
482 || !type_b->is_numeric()
483 || !type_a->is_scalar()
484 || !type_b->is_scalar()) {
485 _mesa_glsl_error(loc, state,
486 "Operands to relational operators must be scalar and "
487 "numeric");
488 return glsl_type::error_type;
489 }
490
491 /* "Either the operands' types must match, or the conversions from
492 * Section 4.1.10 "Implicit Conversions" will be applied to the integer
493 * operand, after which the types must match."
494 */
495 if (!apply_implicit_conversion(type_a, value_b, state)
496 && !apply_implicit_conversion(type_b, value_a, state)) {
497 _mesa_glsl_error(loc, state,
498 "Could not implicitly convert operands to "
499 "relational operator");
500 return glsl_type::error_type;
501 }
502 type_a = value_a->type;
503 type_b = value_b->type;
504
505 if (type_a->base_type != type_b->base_type) {
506 _mesa_glsl_error(loc, state, "base type mismatch");
507 return glsl_type::error_type;
508 }
509
510 /* "The result is scalar Boolean."
511 */
512 return glsl_type::bool_type;
513 }
514
515 /**
516 * \brief Return the result type of a bit-shift operation.
517 *
518 * If the given types to the bit-shift operator are invalid, return
519 * glsl_type::error_type.
520 *
521 * \param type_a Type of LHS of bit-shift op
522 * \param type_b Type of RHS of bit-shift op
523 */
524 static const struct glsl_type *
525 shift_result_type(const struct glsl_type *type_a,
526 const struct glsl_type *type_b,
527 ast_operators op,
528 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
529 {
530 if (state->language_version < 130) {
531 _mesa_glsl_error(loc, state, "bit operations require GLSL 1.30");
532 return glsl_type::error_type;
533 }
534
535 /* From page 50 (page 56 of the PDF) of the GLSL 1.30 spec:
536 *
537 * "The shift operators (<<) and (>>). For both operators, the operands
538 * must be signed or unsigned integers or integer vectors. One operand
539 * can be signed while the other is unsigned."
540 */
541 if (!type_a->is_integer()) {
542 _mesa_glsl_error(loc, state, "LHS of operator %s must be an integer or "
543 "integer vector", ast_expression::operator_string(op));
544 return glsl_type::error_type;
545
546 }
547 if (!type_b->is_integer()) {
548 _mesa_glsl_error(loc, state, "RHS of operator %s must be an integer or "
549 "integer vector", ast_expression::operator_string(op));
550 return glsl_type::error_type;
551 }
552
553 /* "If the first operand is a scalar, the second operand has to be
554 * a scalar as well."
555 */
556 if (type_a->is_scalar() && !type_b->is_scalar()) {
557 _mesa_glsl_error(loc, state, "If the first operand of %s is scalar, the "
558 "second must be scalar as well",
559 ast_expression::operator_string(op));
560 return glsl_type::error_type;
561 }
562
563 /* If both operands are vectors, check that they have same number of
564 * elements.
565 */
566 if (type_a->is_vector() &&
567 type_b->is_vector() &&
568 type_a->vector_elements != type_b->vector_elements) {
569 _mesa_glsl_error(loc, state, "Vector operands to operator %s must "
570 "have same number of elements",
571 ast_expression::operator_string(op));
572 return glsl_type::error_type;
573 }
574
575 /* "In all cases, the resulting type will be the same type as the left
576 * operand."
577 */
578 return type_a;
579 }
580
581 /**
582 * Validates that a value can be assigned to a location with a specified type
583 *
584 * Validates that \c rhs can be assigned to some location. If the types are
585 * not an exact match but an automatic conversion is possible, \c rhs will be
586 * converted.
587 *
588 * \return
589 * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
590 * Otherwise the actual RHS to be assigned will be returned. This may be
591 * \c rhs, or it may be \c rhs after some type conversion.
592 *
593 * \note
594 * In addition to being used for assignments, this function is used to
595 * type-check return values.
596 */
597 ir_rvalue *
598 validate_assignment(struct _mesa_glsl_parse_state *state,
599 const glsl_type *lhs_type, ir_rvalue *rhs)
600 {
601 /* If there is already some error in the RHS, just return it. Anything
602 * else will lead to an avalanche of error message back to the user.
603 */
604 if (rhs->type->is_error())
605 return rhs;
606
607 /* If the types are identical, the assignment can trivially proceed.
608 */
609 if (rhs->type == lhs_type)
610 return rhs;
611
612 /* If the array element types are the same and the size of the LHS is zero,
613 * the assignment is okay.
614 *
615 * Note: Whole-array assignments are not permitted in GLSL 1.10, but this
616 * is handled by ir_dereference::is_lvalue.
617 */
618 if (lhs_type->is_array() && rhs->type->is_array()
619 && (lhs_type->element_type() == rhs->type->element_type())
620 && (lhs_type->array_size() == 0)) {
621 return rhs;
622 }
623
624 /* Check for implicit conversion in GLSL 1.20 */
625 if (apply_implicit_conversion(lhs_type, rhs, state)) {
626 if (rhs->type == lhs_type)
627 return rhs;
628 }
629
630 return NULL;
631 }
632
633 ir_rvalue *
634 do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state,
635 ir_rvalue *lhs, ir_rvalue *rhs,
636 YYLTYPE lhs_loc)
637 {
638 void *ctx = state;
639 bool error_emitted = (lhs->type->is_error() || rhs->type->is_error());
640
641 if (!error_emitted) {
642 if (!lhs->is_lvalue()) {
643 _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment");
644 error_emitted = true;
645 }
646
647 if (state->es_shader && lhs->type->is_array()) {
648 _mesa_glsl_error(&lhs_loc, state, "whole array assignment is not "
649 "allowed in GLSL ES 1.00.");
650 error_emitted = true;
651 }
652 }
653
654 ir_rvalue *new_rhs = validate_assignment(state, lhs->type, rhs);
655 if (new_rhs == NULL) {
656 _mesa_glsl_error(& lhs_loc, state, "type mismatch");
657 } else {
658 rhs = new_rhs;
659
660 /* If the LHS array was not declared with a size, it takes it size from
661 * the RHS. If the LHS is an l-value and a whole array, it must be a
662 * dereference of a variable. Any other case would require that the LHS
663 * is either not an l-value or not a whole array.
664 */
665 if (lhs->type->array_size() == 0) {
666 ir_dereference *const d = lhs->as_dereference();
667
668 assert(d != NULL);
669
670 ir_variable *const var = d->variable_referenced();
671
672 assert(var != NULL);
673
674 if (var->max_array_access >= unsigned(rhs->type->array_size())) {
675 /* FINISHME: This should actually log the location of the RHS. */
676 _mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to "
677 "previous access",
678 var->max_array_access);
679 }
680
681 var->type = glsl_type::get_array_instance(lhs->type->element_type(),
682 rhs->type->array_size());
683 d->type = var->type;
684 }
685 }
686
687 /* Most callers of do_assignment (assign, add_assign, pre_inc/dec,
688 * but not post_inc) need the converted assigned value as an rvalue
689 * to handle things like:
690 *
691 * i = j += 1;
692 *
693 * So we always just store the computed value being assigned to a
694 * temporary and return a deref of that temporary. If the rvalue
695 * ends up not being used, the temp will get copy-propagated out.
696 */
697 ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp",
698 ir_var_temporary);
699 ir_dereference_variable *deref_var = new(ctx) ir_dereference_variable(var);
700 instructions->push_tail(var);
701 instructions->push_tail(new(ctx) ir_assignment(deref_var,
702 rhs,
703 NULL));
704 deref_var = new(ctx) ir_dereference_variable(var);
705
706 if (!error_emitted)
707 instructions->push_tail(new(ctx) ir_assignment(lhs, deref_var, NULL));
708
709 return new(ctx) ir_dereference_variable(var);
710 }
711
712 static ir_rvalue *
713 get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue)
714 {
715 void *ctx = talloc_parent(lvalue);
716 ir_variable *var;
717
718 var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp",
719 ir_var_temporary);
720 instructions->push_tail(var);
721 var->mode = ir_var_auto;
722
723 instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
724 lvalue, NULL));
725
726 /* Once we've created this temporary, mark it read only so it's no
727 * longer considered an lvalue.
728 */
729 var->read_only = true;
730
731 return new(ctx) ir_dereference_variable(var);
732 }
733
734
735 ir_rvalue *
736 ast_node::hir(exec_list *instructions,
737 struct _mesa_glsl_parse_state *state)
738 {
739 (void) instructions;
740 (void) state;
741
742 return NULL;
743 }
744
745 static void
746 mark_whole_array_access(ir_rvalue *access)
747 {
748 ir_dereference_variable *deref = access->as_dereference_variable();
749
750 if (deref) {
751 deref->var->max_array_access = deref->type->length - 1;
752 }
753 }
754
755 static ir_rvalue *
756 do_comparison(void *mem_ctx, int operation, ir_rvalue *op0, ir_rvalue *op1)
757 {
758 int join_op;
759 ir_rvalue *cmp = NULL;
760
761 if (operation == ir_binop_all_equal)
762 join_op = ir_binop_logic_and;
763 else
764 join_op = ir_binop_logic_or;
765
766 switch (op0->type->base_type) {
767 case GLSL_TYPE_FLOAT:
768 case GLSL_TYPE_UINT:
769 case GLSL_TYPE_INT:
770 case GLSL_TYPE_BOOL:
771 return new(mem_ctx) ir_expression(operation, op0, op1);
772
773 case GLSL_TYPE_ARRAY: {
774 for (unsigned int i = 0; i < op0->type->length; i++) {
775 ir_rvalue *e0, *e1, *result;
776
777 e0 = new(mem_ctx) ir_dereference_array(op0->clone(mem_ctx, NULL),
778 new(mem_ctx) ir_constant(i));
779 e1 = new(mem_ctx) ir_dereference_array(op1->clone(mem_ctx, NULL),
780 new(mem_ctx) ir_constant(i));
781 result = do_comparison(mem_ctx, operation, e0, e1);
782
783 if (cmp) {
784 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
785 } else {
786 cmp = result;
787 }
788 }
789
790 mark_whole_array_access(op0);
791 mark_whole_array_access(op1);
792 break;
793 }
794
795 case GLSL_TYPE_STRUCT: {
796 for (unsigned int i = 0; i < op0->type->length; i++) {
797 ir_rvalue *e0, *e1, *result;
798 const char *field_name = op0->type->fields.structure[i].name;
799
800 e0 = new(mem_ctx) ir_dereference_record(op0->clone(mem_ctx, NULL),
801 field_name);
802 e1 = new(mem_ctx) ir_dereference_record(op1->clone(mem_ctx, NULL),
803 field_name);
804 result = do_comparison(mem_ctx, operation, e0, e1);
805
806 if (cmp) {
807 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
808 } else {
809 cmp = result;
810 }
811 }
812 break;
813 }
814
815 case GLSL_TYPE_ERROR:
816 case GLSL_TYPE_VOID:
817 case GLSL_TYPE_SAMPLER:
818 /* I assume a comparison of a struct containing a sampler just
819 * ignores the sampler present in the type.
820 */
821 break;
822
823 default:
824 assert(!"Should not get here.");
825 break;
826 }
827
828 if (cmp == NULL)
829 cmp = new(mem_ctx) ir_constant(true);
830
831 return cmp;
832 }
833
834 ir_rvalue *
835 ast_expression::hir(exec_list *instructions,
836 struct _mesa_glsl_parse_state *state)
837 {
838 void *ctx = state;
839 static const int operations[AST_NUM_OPERATORS] = {
840 -1, /* ast_assign doesn't convert to ir_expression. */
841 -1, /* ast_plus doesn't convert to ir_expression. */
842 ir_unop_neg,
843 ir_binop_add,
844 ir_binop_sub,
845 ir_binop_mul,
846 ir_binop_div,
847 ir_binop_mod,
848 ir_binop_lshift,
849 ir_binop_rshift,
850 ir_binop_less,
851 ir_binop_greater,
852 ir_binop_lequal,
853 ir_binop_gequal,
854 ir_binop_all_equal,
855 ir_binop_any_nequal,
856 ir_binop_bit_and,
857 ir_binop_bit_xor,
858 ir_binop_bit_or,
859 ir_unop_bit_not,
860 ir_binop_logic_and,
861 ir_binop_logic_xor,
862 ir_binop_logic_or,
863 ir_unop_logic_not,
864
865 /* Note: The following block of expression types actually convert
866 * to multiple IR instructions.
867 */
868 ir_binop_mul, /* ast_mul_assign */
869 ir_binop_div, /* ast_div_assign */
870 ir_binop_mod, /* ast_mod_assign */
871 ir_binop_add, /* ast_add_assign */
872 ir_binop_sub, /* ast_sub_assign */
873 ir_binop_lshift, /* ast_ls_assign */
874 ir_binop_rshift, /* ast_rs_assign */
875 ir_binop_bit_and, /* ast_and_assign */
876 ir_binop_bit_xor, /* ast_xor_assign */
877 ir_binop_bit_or, /* ast_or_assign */
878
879 -1, /* ast_conditional doesn't convert to ir_expression. */
880 ir_binop_add, /* ast_pre_inc. */
881 ir_binop_sub, /* ast_pre_dec. */
882 ir_binop_add, /* ast_post_inc. */
883 ir_binop_sub, /* ast_post_dec. */
884 -1, /* ast_field_selection doesn't conv to ir_expression. */
885 -1, /* ast_array_index doesn't convert to ir_expression. */
886 -1, /* ast_function_call doesn't conv to ir_expression. */
887 -1, /* ast_identifier doesn't convert to ir_expression. */
888 -1, /* ast_int_constant doesn't convert to ir_expression. */
889 -1, /* ast_uint_constant doesn't conv to ir_expression. */
890 -1, /* ast_float_constant doesn't conv to ir_expression. */
891 -1, /* ast_bool_constant doesn't conv to ir_expression. */
892 -1, /* ast_sequence doesn't convert to ir_expression. */
893 };
894 ir_rvalue *result = NULL;
895 ir_rvalue *op[3];
896 const struct glsl_type *type = glsl_type::error_type;
897 bool error_emitted = false;
898 YYLTYPE loc;
899
900 loc = this->get_location();
901
902 switch (this->oper) {
903 case ast_assign: {
904 op[0] = this->subexpressions[0]->hir(instructions, state);
905 op[1] = this->subexpressions[1]->hir(instructions, state);
906
907 result = do_assignment(instructions, state, op[0], op[1],
908 this->subexpressions[0]->get_location());
909 error_emitted = result->type->is_error();
910 type = result->type;
911 break;
912 }
913
914 case ast_plus:
915 op[0] = this->subexpressions[0]->hir(instructions, state);
916
917 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
918
919 error_emitted = type->is_error();
920
921 result = op[0];
922 break;
923
924 case ast_neg:
925 op[0] = this->subexpressions[0]->hir(instructions, state);
926
927 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
928
929 error_emitted = type->is_error();
930
931 result = new(ctx) ir_expression(operations[this->oper], type,
932 op[0], NULL);
933 break;
934
935 case ast_add:
936 case ast_sub:
937 case ast_mul:
938 case ast_div:
939 op[0] = this->subexpressions[0]->hir(instructions, state);
940 op[1] = this->subexpressions[1]->hir(instructions, state);
941
942 type = arithmetic_result_type(op[0], op[1],
943 (this->oper == ast_mul),
944 state, & loc);
945 error_emitted = type->is_error();
946
947 result = new(ctx) ir_expression(operations[this->oper], type,
948 op[0], op[1]);
949 break;
950
951 case ast_mod:
952 op[0] = this->subexpressions[0]->hir(instructions, state);
953 op[1] = this->subexpressions[1]->hir(instructions, state);
954
955 type = modulus_result_type(op[0]->type, op[1]->type, state, & loc);
956
957 assert(operations[this->oper] == ir_binop_mod);
958
959 result = new(ctx) ir_expression(operations[this->oper], type,
960 op[0], op[1]);
961 error_emitted = type->is_error();
962 break;
963
964 case ast_lshift:
965 case ast_rshift:
966 if (state->language_version < 130) {
967 _mesa_glsl_error(&loc, state, "operator %s requires GLSL 1.30",
968 operator_string(this->oper));
969 error_emitted = true;
970 }
971
972 op[0] = this->subexpressions[0]->hir(instructions, state);
973 op[1] = this->subexpressions[1]->hir(instructions, state);
974 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
975 &loc);
976 result = new(ctx) ir_expression(operations[this->oper], type,
977 op[0], op[1]);
978 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
979 break;
980
981 case ast_less:
982 case ast_greater:
983 case ast_lequal:
984 case ast_gequal:
985 op[0] = this->subexpressions[0]->hir(instructions, state);
986 op[1] = this->subexpressions[1]->hir(instructions, state);
987
988 type = relational_result_type(op[0], op[1], state, & loc);
989
990 /* The relational operators must either generate an error or result
991 * in a scalar boolean. See page 57 of the GLSL 1.50 spec.
992 */
993 assert(type->is_error()
994 || ((type->base_type == GLSL_TYPE_BOOL)
995 && type->is_scalar()));
996
997 result = new(ctx) ir_expression(operations[this->oper], type,
998 op[0], op[1]);
999 error_emitted = type->is_error();
1000 break;
1001
1002 case ast_nequal:
1003 case ast_equal:
1004 op[0] = this->subexpressions[0]->hir(instructions, state);
1005 op[1] = this->subexpressions[1]->hir(instructions, state);
1006
1007 /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
1008 *
1009 * "The equality operators equal (==), and not equal (!=)
1010 * operate on all types. They result in a scalar Boolean. If
1011 * the operand types do not match, then there must be a
1012 * conversion from Section 4.1.10 "Implicit Conversions"
1013 * applied to one operand that can make them match, in which
1014 * case this conversion is done."
1015 */
1016 if ((!apply_implicit_conversion(op[0]->type, op[1], state)
1017 && !apply_implicit_conversion(op[1]->type, op[0], state))
1018 || (op[0]->type != op[1]->type)) {
1019 _mesa_glsl_error(& loc, state, "operands of `%s' must have the same "
1020 "type", (this->oper == ast_equal) ? "==" : "!=");
1021 error_emitted = true;
1022 } else if ((state->language_version <= 110)
1023 && (op[0]->type->is_array() || op[1]->type->is_array())) {
1024 _mesa_glsl_error(& loc, state, "array comparisons forbidden in "
1025 "GLSL 1.10");
1026 error_emitted = true;
1027 }
1028
1029 result = do_comparison(ctx, operations[this->oper], op[0], op[1]);
1030 type = glsl_type::bool_type;
1031
1032 assert(error_emitted || (result->type == glsl_type::bool_type));
1033 break;
1034
1035 case ast_bit_and:
1036 case ast_bit_xor:
1037 case ast_bit_or:
1038 op[0] = this->subexpressions[0]->hir(instructions, state);
1039 op[1] = this->subexpressions[1]->hir(instructions, state);
1040 type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
1041 state, &loc);
1042 result = new(ctx) ir_expression(operations[this->oper], type,
1043 op[0], op[1]);
1044 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1045 break;
1046
1047 case ast_bit_not:
1048 op[0] = this->subexpressions[0]->hir(instructions, state);
1049
1050 if (state->language_version < 130) {
1051 _mesa_glsl_error(&loc, state, "bit-wise operations require GLSL 1.30");
1052 error_emitted = true;
1053 }
1054
1055 if (!op[0]->type->is_integer()) {
1056 _mesa_glsl_error(&loc, state, "operand of `~' must be an integer");
1057 error_emitted = true;
1058 }
1059
1060 type = op[0]->type;
1061 result = new(ctx) ir_expression(ir_unop_bit_not, type, op[0], NULL);
1062 break;
1063
1064 case ast_logic_and: {
1065 op[0] = this->subexpressions[0]->hir(instructions, state);
1066
1067 if (!op[0]->type->is_boolean() || !op[0]->type->is_scalar()) {
1068 YYLTYPE loc = this->subexpressions[0]->get_location();
1069
1070 _mesa_glsl_error(& loc, state, "LHS of `%s' must be scalar boolean",
1071 operator_string(this->oper));
1072 error_emitted = true;
1073 }
1074
1075 ir_constant *op0_const = op[0]->constant_expression_value();
1076 if (op0_const) {
1077 if (op0_const->value.b[0]) {
1078 op[1] = this->subexpressions[1]->hir(instructions, state);
1079
1080 if (!op[1]->type->is_boolean() || !op[1]->type->is_scalar()) {
1081 YYLTYPE loc = this->subexpressions[1]->get_location();
1082
1083 _mesa_glsl_error(& loc, state,
1084 "RHS of `%s' must be scalar boolean",
1085 operator_string(this->oper));
1086 error_emitted = true;
1087 }
1088 result = op[1];
1089 } else {
1090 result = op0_const;
1091 }
1092 type = glsl_type::bool_type;
1093 } else {
1094 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1095 "and_tmp",
1096 ir_var_temporary);
1097 instructions->push_tail(tmp);
1098
1099 ir_if *const stmt = new(ctx) ir_if(op[0]);
1100 instructions->push_tail(stmt);
1101
1102 op[1] = this->subexpressions[1]->hir(&stmt->then_instructions, state);
1103
1104 if (!op[1]->type->is_boolean() || !op[1]->type->is_scalar()) {
1105 YYLTYPE loc = this->subexpressions[1]->get_location();
1106
1107 _mesa_glsl_error(& loc, state,
1108 "RHS of `%s' must be scalar boolean",
1109 operator_string(this->oper));
1110 error_emitted = true;
1111 }
1112
1113 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1114 ir_assignment *const then_assign =
1115 new(ctx) ir_assignment(then_deref, op[1], NULL);
1116 stmt->then_instructions.push_tail(then_assign);
1117
1118 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1119 ir_assignment *const else_assign =
1120 new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false), NULL);
1121 stmt->else_instructions.push_tail(else_assign);
1122
1123 result = new(ctx) ir_dereference_variable(tmp);
1124 type = tmp->type;
1125 }
1126 break;
1127 }
1128
1129 case ast_logic_or: {
1130 op[0] = this->subexpressions[0]->hir(instructions, state);
1131
1132 if (!op[0]->type->is_boolean() || !op[0]->type->is_scalar()) {
1133 YYLTYPE loc = this->subexpressions[0]->get_location();
1134
1135 _mesa_glsl_error(& loc, state, "LHS of `%s' must be scalar boolean",
1136 operator_string(this->oper));
1137 error_emitted = true;
1138 }
1139
1140 ir_constant *op0_const = op[0]->constant_expression_value();
1141 if (op0_const) {
1142 if (op0_const->value.b[0]) {
1143 result = op0_const;
1144 } else {
1145 op[1] = this->subexpressions[1]->hir(instructions, state);
1146
1147 if (!op[1]->type->is_boolean() || !op[1]->type->is_scalar()) {
1148 YYLTYPE loc = this->subexpressions[1]->get_location();
1149
1150 _mesa_glsl_error(& loc, state,
1151 "RHS of `%s' must be scalar boolean",
1152 operator_string(this->oper));
1153 error_emitted = true;
1154 }
1155 result = op[1];
1156 }
1157 type = glsl_type::bool_type;
1158 } else {
1159 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1160 "or_tmp",
1161 ir_var_temporary);
1162 instructions->push_tail(tmp);
1163
1164 ir_if *const stmt = new(ctx) ir_if(op[0]);
1165 instructions->push_tail(stmt);
1166
1167 op[1] = this->subexpressions[1]->hir(&stmt->else_instructions, state);
1168
1169 if (!op[1]->type->is_boolean() || !op[1]->type->is_scalar()) {
1170 YYLTYPE loc = this->subexpressions[1]->get_location();
1171
1172 _mesa_glsl_error(& loc, state, "RHS of `%s' must be scalar boolean",
1173 operator_string(this->oper));
1174 error_emitted = true;
1175 }
1176
1177 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1178 ir_assignment *const then_assign =
1179 new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true), NULL);
1180 stmt->then_instructions.push_tail(then_assign);
1181
1182 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1183 ir_assignment *const else_assign =
1184 new(ctx) ir_assignment(else_deref, op[1], NULL);
1185 stmt->else_instructions.push_tail(else_assign);
1186
1187 result = new(ctx) ir_dereference_variable(tmp);
1188 type = tmp->type;
1189 }
1190 break;
1191 }
1192
1193 case ast_logic_xor:
1194 op[0] = this->subexpressions[0]->hir(instructions, state);
1195 op[1] = this->subexpressions[1]->hir(instructions, state);
1196
1197
1198 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1199 op[0], op[1]);
1200 type = glsl_type::bool_type;
1201 break;
1202
1203 case ast_logic_not:
1204 op[0] = this->subexpressions[0]->hir(instructions, state);
1205
1206 if (!op[0]->type->is_boolean() || !op[0]->type->is_scalar()) {
1207 YYLTYPE loc = this->subexpressions[0]->get_location();
1208
1209 _mesa_glsl_error(& loc, state,
1210 "operand of `!' must be scalar boolean");
1211 error_emitted = true;
1212 }
1213
1214 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1215 op[0], NULL);
1216 type = glsl_type::bool_type;
1217 break;
1218
1219 case ast_mul_assign:
1220 case ast_div_assign:
1221 case ast_add_assign:
1222 case ast_sub_assign: {
1223 op[0] = this->subexpressions[0]->hir(instructions, state);
1224 op[1] = this->subexpressions[1]->hir(instructions, state);
1225
1226 type = arithmetic_result_type(op[0], op[1],
1227 (this->oper == ast_mul_assign),
1228 state, & loc);
1229
1230 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1231 op[0], op[1]);
1232
1233 result = do_assignment(instructions, state,
1234 op[0]->clone(ctx, NULL), temp_rhs,
1235 this->subexpressions[0]->get_location());
1236 type = result->type;
1237 error_emitted = (op[0]->type->is_error());
1238
1239 /* GLSL 1.10 does not allow array assignment. However, we don't have to
1240 * explicitly test for this because none of the binary expression
1241 * operators allow array operands either.
1242 */
1243
1244 break;
1245 }
1246
1247 case ast_mod_assign: {
1248 op[0] = this->subexpressions[0]->hir(instructions, state);
1249 op[1] = this->subexpressions[1]->hir(instructions, state);
1250
1251 type = modulus_result_type(op[0]->type, op[1]->type, state, & loc);
1252
1253 assert(operations[this->oper] == ir_binop_mod);
1254
1255 ir_rvalue *temp_rhs;
1256 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1257 op[0], op[1]);
1258
1259 result = do_assignment(instructions, state,
1260 op[0]->clone(ctx, NULL), temp_rhs,
1261 this->subexpressions[0]->get_location());
1262 type = result->type;
1263 error_emitted = type->is_error();
1264 break;
1265 }
1266
1267 case ast_ls_assign:
1268 case ast_rs_assign: {
1269 op[0] = this->subexpressions[0]->hir(instructions, state);
1270 op[1] = this->subexpressions[1]->hir(instructions, state);
1271 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1272 &loc);
1273 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1274 type, op[0], op[1]);
1275 result = do_assignment(instructions, state, op[0]->clone(ctx, NULL),
1276 temp_rhs,
1277 this->subexpressions[0]->get_location());
1278 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1279 break;
1280 }
1281
1282 case ast_and_assign:
1283 case ast_xor_assign:
1284 case ast_or_assign: {
1285 op[0] = this->subexpressions[0]->hir(instructions, state);
1286 op[1] = this->subexpressions[1]->hir(instructions, state);
1287 type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
1288 state, &loc);
1289 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1290 type, op[0], op[1]);
1291 result = do_assignment(instructions, state, op[0]->clone(ctx, NULL),
1292 temp_rhs,
1293 this->subexpressions[0]->get_location());
1294 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1295 break;
1296 }
1297
1298 case ast_conditional: {
1299 op[0] = this->subexpressions[0]->hir(instructions, state);
1300
1301 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1302 *
1303 * "The ternary selection operator (?:). It operates on three
1304 * expressions (exp1 ? exp2 : exp3). This operator evaluates the
1305 * first expression, which must result in a scalar Boolean."
1306 */
1307 if (!op[0]->type->is_boolean() || !op[0]->type->is_scalar()) {
1308 YYLTYPE loc = this->subexpressions[0]->get_location();
1309
1310 _mesa_glsl_error(& loc, state, "?: condition must be scalar boolean");
1311 error_emitted = true;
1312 }
1313
1314 /* The :? operator is implemented by generating an anonymous temporary
1315 * followed by an if-statement. The last instruction in each branch of
1316 * the if-statement assigns a value to the anonymous temporary. This
1317 * temporary is the r-value of the expression.
1318 */
1319 exec_list then_instructions;
1320 exec_list else_instructions;
1321
1322 op[1] = this->subexpressions[1]->hir(&then_instructions, state);
1323 op[2] = this->subexpressions[2]->hir(&else_instructions, state);
1324
1325 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1326 *
1327 * "The second and third expressions can be any type, as
1328 * long their types match, or there is a conversion in
1329 * Section 4.1.10 "Implicit Conversions" that can be applied
1330 * to one of the expressions to make their types match. This
1331 * resulting matching type is the type of the entire
1332 * expression."
1333 */
1334 if ((!apply_implicit_conversion(op[1]->type, op[2], state)
1335 && !apply_implicit_conversion(op[2]->type, op[1], state))
1336 || (op[1]->type != op[2]->type)) {
1337 YYLTYPE loc = this->subexpressions[1]->get_location();
1338
1339 _mesa_glsl_error(& loc, state, "Second and third operands of ?: "
1340 "operator must have matching types.");
1341 error_emitted = true;
1342 type = glsl_type::error_type;
1343 } else {
1344 type = op[1]->type;
1345 }
1346
1347 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1348 *
1349 * "The second and third expressions must be the same type, but can
1350 * be of any type other than an array."
1351 */
1352 if ((state->language_version <= 110) && type->is_array()) {
1353 _mesa_glsl_error(& loc, state, "Second and third operands of ?: "
1354 "operator must not be arrays.");
1355 error_emitted = true;
1356 }
1357
1358 ir_constant *cond_val = op[0]->constant_expression_value();
1359 ir_constant *then_val = op[1]->constant_expression_value();
1360 ir_constant *else_val = op[2]->constant_expression_value();
1361
1362 if (then_instructions.is_empty()
1363 && else_instructions.is_empty()
1364 && (cond_val != NULL) && (then_val != NULL) && (else_val != NULL)) {
1365 result = (cond_val->value.b[0]) ? then_val : else_val;
1366 } else {
1367 ir_variable *const tmp =
1368 new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary);
1369 instructions->push_tail(tmp);
1370
1371 ir_if *const stmt = new(ctx) ir_if(op[0]);
1372 instructions->push_tail(stmt);
1373
1374 then_instructions.move_nodes_to(& stmt->then_instructions);
1375 ir_dereference *const then_deref =
1376 new(ctx) ir_dereference_variable(tmp);
1377 ir_assignment *const then_assign =
1378 new(ctx) ir_assignment(then_deref, op[1], NULL);
1379 stmt->then_instructions.push_tail(then_assign);
1380
1381 else_instructions.move_nodes_to(& stmt->else_instructions);
1382 ir_dereference *const else_deref =
1383 new(ctx) ir_dereference_variable(tmp);
1384 ir_assignment *const else_assign =
1385 new(ctx) ir_assignment(else_deref, op[2], NULL);
1386 stmt->else_instructions.push_tail(else_assign);
1387
1388 result = new(ctx) ir_dereference_variable(tmp);
1389 }
1390 break;
1391 }
1392
1393 case ast_pre_inc:
1394 case ast_pre_dec: {
1395 op[0] = this->subexpressions[0]->hir(instructions, state);
1396 if (op[0]->type->base_type == GLSL_TYPE_FLOAT)
1397 op[1] = new(ctx) ir_constant(1.0f);
1398 else
1399 op[1] = new(ctx) ir_constant(1);
1400
1401 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1402
1403 ir_rvalue *temp_rhs;
1404 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1405 op[0], op[1]);
1406
1407 result = do_assignment(instructions, state,
1408 op[0]->clone(ctx, NULL), temp_rhs,
1409 this->subexpressions[0]->get_location());
1410 type = result->type;
1411 error_emitted = op[0]->type->is_error();
1412 break;
1413 }
1414
1415 case ast_post_inc:
1416 case ast_post_dec: {
1417 op[0] = this->subexpressions[0]->hir(instructions, state);
1418 if (op[0]->type->base_type == GLSL_TYPE_FLOAT)
1419 op[1] = new(ctx) ir_constant(1.0f);
1420 else
1421 op[1] = new(ctx) ir_constant(1);
1422
1423 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1424
1425 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1426
1427 ir_rvalue *temp_rhs;
1428 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1429 op[0], op[1]);
1430
1431 /* Get a temporary of a copy of the lvalue before it's modified.
1432 * This may get thrown away later.
1433 */
1434 result = get_lvalue_copy(instructions, op[0]->clone(ctx, NULL));
1435
1436 (void)do_assignment(instructions, state,
1437 op[0]->clone(ctx, NULL), temp_rhs,
1438 this->subexpressions[0]->get_location());
1439
1440 type = result->type;
1441 error_emitted = op[0]->type->is_error();
1442 break;
1443 }
1444
1445 case ast_field_selection:
1446 result = _mesa_ast_field_selection_to_hir(this, instructions, state);
1447 type = result->type;
1448 break;
1449
1450 case ast_array_index: {
1451 YYLTYPE index_loc = subexpressions[1]->get_location();
1452
1453 op[0] = subexpressions[0]->hir(instructions, state);
1454 op[1] = subexpressions[1]->hir(instructions, state);
1455
1456 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1457
1458 ir_rvalue *const array = op[0];
1459
1460 result = new(ctx) ir_dereference_array(op[0], op[1]);
1461
1462 /* Do not use op[0] after this point. Use array.
1463 */
1464 op[0] = NULL;
1465
1466
1467 if (error_emitted)
1468 break;
1469
1470 if (!array->type->is_array()
1471 && !array->type->is_matrix()
1472 && !array->type->is_vector()) {
1473 _mesa_glsl_error(& index_loc, state,
1474 "cannot dereference non-array / non-matrix / "
1475 "non-vector");
1476 error_emitted = true;
1477 }
1478
1479 if (!op[1]->type->is_integer()) {
1480 _mesa_glsl_error(& index_loc, state,
1481 "array index must be integer type");
1482 error_emitted = true;
1483 } else if (!op[1]->type->is_scalar()) {
1484 _mesa_glsl_error(& index_loc, state,
1485 "array index must be scalar");
1486 error_emitted = true;
1487 }
1488
1489 /* If the array index is a constant expression and the array has a
1490 * declared size, ensure that the access is in-bounds. If the array
1491 * index is not a constant expression, ensure that the array has a
1492 * declared size.
1493 */
1494 ir_constant *const const_index = op[1]->constant_expression_value();
1495 if (const_index != NULL) {
1496 const int idx = const_index->value.i[0];
1497 const char *type_name;
1498 unsigned bound = 0;
1499
1500 if (array->type->is_matrix()) {
1501 type_name = "matrix";
1502 } else if (array->type->is_vector()) {
1503 type_name = "vector";
1504 } else {
1505 type_name = "array";
1506 }
1507
1508 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec:
1509 *
1510 * "It is illegal to declare an array with a size, and then
1511 * later (in the same shader) index the same array with an
1512 * integral constant expression greater than or equal to the
1513 * declared size. It is also illegal to index an array with a
1514 * negative constant expression."
1515 */
1516 if (array->type->is_matrix()) {
1517 if (array->type->row_type()->vector_elements <= idx) {
1518 bound = array->type->row_type()->vector_elements;
1519 }
1520 } else if (array->type->is_vector()) {
1521 if (array->type->vector_elements <= idx) {
1522 bound = array->type->vector_elements;
1523 }
1524 } else {
1525 if ((array->type->array_size() > 0)
1526 && (array->type->array_size() <= idx)) {
1527 bound = array->type->array_size();
1528 }
1529 }
1530
1531 if (bound > 0) {
1532 _mesa_glsl_error(& loc, state, "%s index must be < %u",
1533 type_name, bound);
1534 error_emitted = true;
1535 } else if (idx < 0) {
1536 _mesa_glsl_error(& loc, state, "%s index must be >= 0",
1537 type_name);
1538 error_emitted = true;
1539 }
1540
1541 if (array->type->is_array()) {
1542 /* If the array is a variable dereference, it dereferences the
1543 * whole array, by definition. Use this to get the variable.
1544 *
1545 * FINISHME: Should some methods for getting / setting / testing
1546 * FINISHME: array access limits be added to ir_dereference?
1547 */
1548 ir_variable *const v = array->whole_variable_referenced();
1549 if ((v != NULL) && (unsigned(idx) > v->max_array_access))
1550 v->max_array_access = idx;
1551 }
1552 } else if (array->type->array_size() == 0) {
1553 _mesa_glsl_error(&loc, state, "unsized array index must be constant");
1554 } else {
1555 if (array->type->is_array()) {
1556 /* whole_variable_referenced can return NULL if the array is a
1557 * member of a structure. In this case it is safe to not update
1558 * the max_array_access field because it is never used for fields
1559 * of structures.
1560 */
1561 ir_variable *v = array->whole_variable_referenced();
1562 if (v != NULL)
1563 v->max_array_access = array->type->array_size();
1564 }
1565 }
1566
1567 /* From section 4.1.7 of the GLSL 1.30 spec:
1568 * "Samplers aggregated into arrays within a shader (using square
1569 * brackets [ ]) can only be indexed with integral constant
1570 * expressions [...]."
1571 */
1572 if (array->type->is_array() &&
1573 array->type->element_type()->is_sampler() &&
1574 const_index == NULL) {
1575
1576 _mesa_glsl_error(&loc, state, "sampler arrays can only be indexed "
1577 "with constant expressions");
1578 error_emitted = true;
1579 }
1580
1581 if (error_emitted)
1582 result->type = glsl_type::error_type;
1583
1584 type = result->type;
1585 break;
1586 }
1587
1588 case ast_function_call:
1589 /* Should *NEVER* get here. ast_function_call should always be handled
1590 * by ast_function_expression::hir.
1591 */
1592 assert(0);
1593 break;
1594
1595 case ast_identifier: {
1596 /* ast_identifier can appear several places in a full abstract syntax
1597 * tree. This particular use must be at location specified in the grammar
1598 * as 'variable_identifier'.
1599 */
1600 ir_variable *var =
1601 state->symbols->get_variable(this->primary_expression.identifier);
1602
1603 result = new(ctx) ir_dereference_variable(var);
1604
1605 if (var != NULL) {
1606 type = result->type;
1607 } else {
1608 _mesa_glsl_error(& loc, state, "`%s' undeclared",
1609 this->primary_expression.identifier);
1610
1611 error_emitted = true;
1612 }
1613 break;
1614 }
1615
1616 case ast_int_constant:
1617 type = glsl_type::int_type;
1618 result = new(ctx) ir_constant(this->primary_expression.int_constant);
1619 break;
1620
1621 case ast_uint_constant:
1622 type = glsl_type::uint_type;
1623 result = new(ctx) ir_constant(this->primary_expression.uint_constant);
1624 break;
1625
1626 case ast_float_constant:
1627 type = glsl_type::float_type;
1628 result = new(ctx) ir_constant(this->primary_expression.float_constant);
1629 break;
1630
1631 case ast_bool_constant:
1632 type = glsl_type::bool_type;
1633 result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant));
1634 break;
1635
1636 case ast_sequence: {
1637 /* It should not be possible to generate a sequence in the AST without
1638 * any expressions in it.
1639 */
1640 assert(!this->expressions.is_empty());
1641
1642 /* The r-value of a sequence is the last expression in the sequence. If
1643 * the other expressions in the sequence do not have side-effects (and
1644 * therefore add instructions to the instruction list), they get dropped
1645 * on the floor.
1646 */
1647 foreach_list_typed (ast_node, ast, link, &this->expressions)
1648 result = ast->hir(instructions, state);
1649
1650 type = result->type;
1651
1652 /* Any errors should have already been emitted in the loop above.
1653 */
1654 error_emitted = true;
1655 break;
1656 }
1657 }
1658
1659 if (type->is_error() && !error_emitted)
1660 _mesa_glsl_error(& loc, state, "type mismatch");
1661
1662 return result;
1663 }
1664
1665
1666 ir_rvalue *
1667 ast_expression_statement::hir(exec_list *instructions,
1668 struct _mesa_glsl_parse_state *state)
1669 {
1670 /* It is possible to have expression statements that don't have an
1671 * expression. This is the solitary semicolon:
1672 *
1673 * for (i = 0; i < 5; i++)
1674 * ;
1675 *
1676 * In this case the expression will be NULL. Test for NULL and don't do
1677 * anything in that case.
1678 */
1679 if (expression != NULL)
1680 expression->hir(instructions, state);
1681
1682 /* Statements do not have r-values.
1683 */
1684 return NULL;
1685 }
1686
1687
1688 ir_rvalue *
1689 ast_compound_statement::hir(exec_list *instructions,
1690 struct _mesa_glsl_parse_state *state)
1691 {
1692 if (new_scope)
1693 state->symbols->push_scope();
1694
1695 foreach_list_typed (ast_node, ast, link, &this->statements)
1696 ast->hir(instructions, state);
1697
1698 if (new_scope)
1699 state->symbols->pop_scope();
1700
1701 /* Compound statements do not have r-values.
1702 */
1703 return NULL;
1704 }
1705
1706
1707 static const glsl_type *
1708 process_array_type(YYLTYPE *loc, const glsl_type *base, ast_node *array_size,
1709 struct _mesa_glsl_parse_state *state)
1710 {
1711 unsigned length = 0;
1712
1713 /* FINISHME: Reject delcarations of multidimensional arrays. */
1714
1715 if (array_size != NULL) {
1716 exec_list dummy_instructions;
1717 ir_rvalue *const ir = array_size->hir(& dummy_instructions, state);
1718 YYLTYPE loc = array_size->get_location();
1719
1720 /* FINISHME: Verify that the grammar forbids side-effects in array
1721 * FINISHME: sizes. i.e., 'vec4 [x = 12] data'
1722 */
1723 assert(dummy_instructions.is_empty());
1724
1725 if (ir != NULL) {
1726 if (!ir->type->is_integer()) {
1727 _mesa_glsl_error(& loc, state, "array size must be integer type");
1728 } else if (!ir->type->is_scalar()) {
1729 _mesa_glsl_error(& loc, state, "array size must be scalar type");
1730 } else {
1731 ir_constant *const size = ir->constant_expression_value();
1732
1733 if (size == NULL) {
1734 _mesa_glsl_error(& loc, state, "array size must be a "
1735 "constant valued expression");
1736 } else if (size->value.i[0] <= 0) {
1737 _mesa_glsl_error(& loc, state, "array size must be > 0");
1738 } else {
1739 assert(size->type == ir->type);
1740 length = size->value.u[0];
1741 }
1742 }
1743 }
1744 } else if (state->es_shader) {
1745 /* Section 10.17 of the GLSL ES 1.00 specification states that unsized
1746 * array declarations have been removed from the language.
1747 */
1748 _mesa_glsl_error(loc, state, "unsized array declarations are not "
1749 "allowed in GLSL ES 1.00.");
1750 }
1751
1752 return glsl_type::get_array_instance(base, length);
1753 }
1754
1755
1756 const glsl_type *
1757 ast_type_specifier::glsl_type(const char **name,
1758 struct _mesa_glsl_parse_state *state) const
1759 {
1760 const struct glsl_type *type;
1761
1762 type = state->symbols->get_type(this->type_name);
1763 *name = this->type_name;
1764
1765 if (this->is_array) {
1766 YYLTYPE loc = this->get_location();
1767 type = process_array_type(&loc, type, this->array_size, state);
1768 }
1769
1770 return type;
1771 }
1772
1773
1774 static void
1775 apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
1776 ir_variable *var,
1777 struct _mesa_glsl_parse_state *state,
1778 YYLTYPE *loc)
1779 {
1780 if (qual->flags.q.invariant)
1781 var->invariant = 1;
1782
1783 /* FINISHME: Mark 'in' variables at global scope as read-only. */
1784 if (qual->flags.q.constant || qual->flags.q.attribute
1785 || qual->flags.q.uniform
1786 || (qual->flags.q.varying && (state->target == fragment_shader)))
1787 var->read_only = 1;
1788
1789 if (qual->flags.q.centroid)
1790 var->centroid = 1;
1791
1792 if (qual->flags.q.attribute && state->target != vertex_shader) {
1793 var->type = glsl_type::error_type;
1794 _mesa_glsl_error(loc, state,
1795 "`attribute' variables may not be declared in the "
1796 "%s shader",
1797 _mesa_glsl_shader_target_name(state->target));
1798 }
1799
1800 /* From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
1801 *
1802 * "The varying qualifier can be used only with the data types
1803 * float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
1804 * these."
1805 */
1806 if (qual->flags.q.varying) {
1807 const glsl_type *non_array_type;
1808
1809 if (var->type && var->type->is_array())
1810 non_array_type = var->type->fields.array;
1811 else
1812 non_array_type = var->type;
1813
1814 if (non_array_type && non_array_type->base_type != GLSL_TYPE_FLOAT) {
1815 var->type = glsl_type::error_type;
1816 _mesa_glsl_error(loc, state,
1817 "varying variables must be of base type float");
1818 }
1819 }
1820
1821 /* If there is no qualifier that changes the mode of the variable, leave
1822 * the setting alone.
1823 */
1824 if (qual->flags.q.in && qual->flags.q.out)
1825 var->mode = ir_var_inout;
1826 else if (qual->flags.q.attribute || qual->flags.q.in
1827 || (qual->flags.q.varying && (state->target == fragment_shader)))
1828 var->mode = ir_var_in;
1829 else if (qual->flags.q.out
1830 || (qual->flags.q.varying && (state->target == vertex_shader)))
1831 var->mode = ir_var_out;
1832 else if (qual->flags.q.uniform)
1833 var->mode = ir_var_uniform;
1834
1835 if (qual->flags.q.flat)
1836 var->interpolation = ir_var_flat;
1837 else if (qual->flags.q.noperspective)
1838 var->interpolation = ir_var_noperspective;
1839 else
1840 var->interpolation = ir_var_smooth;
1841
1842 var->pixel_center_integer = qual->flags.q.pixel_center_integer;
1843 var->origin_upper_left = qual->flags.q.origin_upper_left;
1844 if ((qual->flags.q.origin_upper_left || qual->flags.q.pixel_center_integer)
1845 && (strcmp(var->name, "gl_FragCoord") != 0)) {
1846 const char *const qual_string = (qual->flags.q.origin_upper_left)
1847 ? "origin_upper_left" : "pixel_center_integer";
1848
1849 _mesa_glsl_error(loc, state,
1850 "layout qualifier `%s' can only be applied to "
1851 "fragment shader input `gl_FragCoord'",
1852 qual_string);
1853 }
1854
1855 if (qual->flags.q.explicit_location) {
1856 const bool global_scope = (state->current_function == NULL);
1857 bool fail = false;
1858 const char *string = "";
1859
1860 /* In the vertex shader only shader inputs can be given explicit
1861 * locations.
1862 *
1863 * In the fragment shader only shader outputs can be given explicit
1864 * locations.
1865 */
1866 switch (state->target) {
1867 case vertex_shader:
1868 if (!global_scope || (var->mode != ir_var_in)) {
1869 fail = true;
1870 string = "input";
1871 }
1872 break;
1873
1874 case geometry_shader:
1875 _mesa_glsl_error(loc, state,
1876 "geometry shader variables cannot be given "
1877 "explicit locations\n");
1878 break;
1879
1880 case fragment_shader:
1881 if (!global_scope || (var->mode != ir_var_in)) {
1882 fail = true;
1883 string = "output";
1884 }
1885 break;
1886 };
1887
1888 if (fail) {
1889 _mesa_glsl_error(loc, state,
1890 "only %s shader %s variables can be given an "
1891 "explicit location\n",
1892 _mesa_glsl_shader_target_name(state->target),
1893 string);
1894 } else {
1895 var->explicit_location = true;
1896
1897 /* This bit of silliness is needed because invalid explicit locations
1898 * are supposed to be flagged during linking. Small negative values
1899 * biased by VERT_ATTRIB_GENERIC0 or FRAG_RESULT_DATA0 could alias
1900 * built-in values (e.g., -16+VERT_ATTRIB_GENERIC0 = VERT_ATTRIB_POS).
1901 * The linker needs to be able to differentiate these cases. This
1902 * ensures that negative values stay negative.
1903 */
1904 if (qual->location >= 0) {
1905 var->location = (state->target == vertex_shader)
1906 ? (qual->location + VERT_ATTRIB_GENERIC0)
1907 : (qual->location + FRAG_RESULT_DATA0);
1908 } else {
1909 var->location = qual->location;
1910 }
1911 }
1912 }
1913
1914 if (var->type->is_array() && state->language_version != 110) {
1915 var->array_lvalue = true;
1916 }
1917 }
1918
1919
1920 ir_rvalue *
1921 ast_declarator_list::hir(exec_list *instructions,
1922 struct _mesa_glsl_parse_state *state)
1923 {
1924 void *ctx = state;
1925 const struct glsl_type *decl_type;
1926 const char *type_name = NULL;
1927 ir_rvalue *result = NULL;
1928 YYLTYPE loc = this->get_location();
1929
1930 /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec:
1931 *
1932 * "To ensure that a particular output variable is invariant, it is
1933 * necessary to use the invariant qualifier. It can either be used to
1934 * qualify a previously declared variable as being invariant
1935 *
1936 * invariant gl_Position; // make existing gl_Position be invariant"
1937 *
1938 * In these cases the parser will set the 'invariant' flag in the declarator
1939 * list, and the type will be NULL.
1940 */
1941 if (this->invariant) {
1942 assert(this->type == NULL);
1943
1944 if (state->current_function != NULL) {
1945 _mesa_glsl_error(& loc, state,
1946 "All uses of `invariant' keyword must be at global "
1947 "scope\n");
1948 }
1949
1950 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
1951 assert(!decl->is_array);
1952 assert(decl->array_size == NULL);
1953 assert(decl->initializer == NULL);
1954
1955 ir_variable *const earlier =
1956 state->symbols->get_variable(decl->identifier);
1957 if (earlier == NULL) {
1958 _mesa_glsl_error(& loc, state,
1959 "Undeclared variable `%s' cannot be marked "
1960 "invariant\n", decl->identifier);
1961 } else if ((state->target == vertex_shader)
1962 && (earlier->mode != ir_var_out)) {
1963 _mesa_glsl_error(& loc, state,
1964 "`%s' cannot be marked invariant, vertex shader "
1965 "outputs only\n", decl->identifier);
1966 } else if ((state->target == fragment_shader)
1967 && (earlier->mode != ir_var_in)) {
1968 _mesa_glsl_error(& loc, state,
1969 "`%s' cannot be marked invariant, fragment shader "
1970 "inputs only\n", decl->identifier);
1971 } else {
1972 earlier->invariant = true;
1973 }
1974 }
1975
1976 /* Invariant redeclarations do not have r-values.
1977 */
1978 return NULL;
1979 }
1980
1981 assert(this->type != NULL);
1982 assert(!this->invariant);
1983
1984 /* The type specifier may contain a structure definition. Process that
1985 * before any of the variable declarations.
1986 */
1987 (void) this->type->specifier->hir(instructions, state);
1988
1989 decl_type = this->type->specifier->glsl_type(& type_name, state);
1990 if (this->declarations.is_empty()) {
1991 /* The only valid case where the declaration list can be empty is when
1992 * the declaration is setting the default precision of a built-in type
1993 * (e.g., 'precision highp vec4;').
1994 */
1995
1996 if (decl_type != NULL) {
1997 } else {
1998 _mesa_glsl_error(& loc, state, "incomplete declaration");
1999 }
2000 }
2001
2002 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
2003 const struct glsl_type *var_type;
2004 ir_variable *var;
2005
2006 /* FINISHME: Emit a warning if a variable declaration shadows a
2007 * FINISHME: declaration at a higher scope.
2008 */
2009
2010 if ((decl_type == NULL) || decl_type->is_void()) {
2011 if (type_name != NULL) {
2012 _mesa_glsl_error(& loc, state,
2013 "invalid type `%s' in declaration of `%s'",
2014 type_name, decl->identifier);
2015 } else {
2016 _mesa_glsl_error(& loc, state,
2017 "invalid type in declaration of `%s'",
2018 decl->identifier);
2019 }
2020 continue;
2021 }
2022
2023 if (decl->is_array) {
2024 var_type = process_array_type(&loc, decl_type, decl->array_size,
2025 state);
2026 } else {
2027 var_type = decl_type;
2028 }
2029
2030 var = new(ctx) ir_variable(var_type, decl->identifier, ir_var_auto);
2031
2032 /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
2033 *
2034 * "Global variables can only use the qualifiers const,
2035 * attribute, uni form, or varying. Only one may be
2036 * specified.
2037 *
2038 * Local variables can only use the qualifier const."
2039 *
2040 * This is relaxed in GLSL 1.30.
2041 */
2042 if (state->language_version < 120) {
2043 if (this->type->qualifier.flags.q.out) {
2044 _mesa_glsl_error(& loc, state,
2045 "`out' qualifier in declaration of `%s' "
2046 "only valid for function parameters in GLSL 1.10.",
2047 decl->identifier);
2048 }
2049 if (this->type->qualifier.flags.q.in) {
2050 _mesa_glsl_error(& loc, state,
2051 "`in' qualifier in declaration of `%s' "
2052 "only valid for function parameters in GLSL 1.10.",
2053 decl->identifier);
2054 }
2055 /* FINISHME: Test for other invalid qualifiers. */
2056 }
2057
2058 apply_type_qualifier_to_variable(& this->type->qualifier, var, state,
2059 & loc);
2060
2061 if (this->type->qualifier.flags.q.invariant) {
2062 if ((state->target == vertex_shader) && !(var->mode == ir_var_out ||
2063 var->mode == ir_var_inout)) {
2064 /* FINISHME: Note that this doesn't work for invariant on
2065 * a function signature outval
2066 */
2067 _mesa_glsl_error(& loc, state,
2068 "`%s' cannot be marked invariant, vertex shader "
2069 "outputs only\n", var->name);
2070 } else if ((state->target == fragment_shader) &&
2071 !(var->mode == ir_var_in || var->mode == ir_var_inout)) {
2072 /* FINISHME: Note that this doesn't work for invariant on
2073 * a function signature inval
2074 */
2075 _mesa_glsl_error(& loc, state,
2076 "`%s' cannot be marked invariant, fragment shader "
2077 "inputs only\n", var->name);
2078 }
2079 }
2080
2081 if (state->current_function != NULL) {
2082 const char *mode = NULL;
2083 const char *extra = "";
2084
2085 /* There is no need to check for 'inout' here because the parser will
2086 * only allow that in function parameter lists.
2087 */
2088 if (this->type->qualifier.flags.q.attribute) {
2089 mode = "attribute";
2090 } else if (this->type->qualifier.flags.q.uniform) {
2091 mode = "uniform";
2092 } else if (this->type->qualifier.flags.q.varying) {
2093 mode = "varying";
2094 } else if (this->type->qualifier.flags.q.in) {
2095 mode = "in";
2096 extra = " or in function parameter list";
2097 } else if (this->type->qualifier.flags.q.out) {
2098 mode = "out";
2099 extra = " or in function parameter list";
2100 }
2101
2102 if (mode) {
2103 _mesa_glsl_error(& loc, state,
2104 "%s variable `%s' must be declared at "
2105 "global scope%s",
2106 mode, var->name, extra);
2107 }
2108 } else if (var->mode == ir_var_in) {
2109 if (state->target == vertex_shader) {
2110 bool error_emitted = false;
2111
2112 /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
2113 *
2114 * "Vertex shader inputs can only be float, floating-point
2115 * vectors, matrices, signed and unsigned integers and integer
2116 * vectors. Vertex shader inputs can also form arrays of these
2117 * types, but not structures."
2118 *
2119 * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
2120 *
2121 * "Vertex shader inputs can only be float, floating-point
2122 * vectors, matrices, signed and unsigned integers and integer
2123 * vectors. They cannot be arrays or structures."
2124 *
2125 * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
2126 *
2127 * "The attribute qualifier can be used only with float,
2128 * floating-point vectors, and matrices. Attribute variables
2129 * cannot be declared as arrays or structures."
2130 */
2131 const glsl_type *check_type = var->type->is_array()
2132 ? var->type->fields.array : var->type;
2133
2134 switch (check_type->base_type) {
2135 case GLSL_TYPE_FLOAT:
2136 break;
2137 case GLSL_TYPE_UINT:
2138 case GLSL_TYPE_INT:
2139 if (state->language_version > 120)
2140 break;
2141 /* FALLTHROUGH */
2142 default:
2143 _mesa_glsl_error(& loc, state,
2144 "vertex shader input / attribute cannot have "
2145 "type %s`%s'",
2146 var->type->is_array() ? "array of " : "",
2147 check_type->name);
2148 error_emitted = true;
2149 }
2150
2151 if (!error_emitted && (state->language_version <= 130)
2152 && var->type->is_array()) {
2153 _mesa_glsl_error(& loc, state,
2154 "vertex shader input / attribute cannot have "
2155 "array type");
2156 error_emitted = true;
2157 }
2158 }
2159 }
2160
2161 /* Process the initializer and add its instructions to a temporary
2162 * list. This list will be added to the instruction stream (below) after
2163 * the declaration is added. This is done because in some cases (such as
2164 * redeclarations) the declaration may not actually be added to the
2165 * instruction stream.
2166 */
2167 exec_list initializer_instructions;
2168 if (decl->initializer != NULL) {
2169 YYLTYPE initializer_loc = decl->initializer->get_location();
2170
2171 /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
2172 *
2173 * "All uniform variables are read-only and are initialized either
2174 * directly by an application via API commands, or indirectly by
2175 * OpenGL."
2176 */
2177 if ((state->language_version <= 110)
2178 && (var->mode == ir_var_uniform)) {
2179 _mesa_glsl_error(& initializer_loc, state,
2180 "cannot initialize uniforms in GLSL 1.10");
2181 }
2182
2183 if (var->type->is_sampler()) {
2184 _mesa_glsl_error(& initializer_loc, state,
2185 "cannot initialize samplers");
2186 }
2187
2188 if ((var->mode == ir_var_in) && (state->current_function == NULL)) {
2189 _mesa_glsl_error(& initializer_loc, state,
2190 "cannot initialize %s shader input / %s",
2191 _mesa_glsl_shader_target_name(state->target),
2192 (state->target == vertex_shader)
2193 ? "attribute" : "varying");
2194 }
2195
2196 ir_dereference *const lhs = new(ctx) ir_dereference_variable(var);
2197 ir_rvalue *rhs = decl->initializer->hir(&initializer_instructions,
2198 state);
2199
2200 /* Calculate the constant value if this is a const or uniform
2201 * declaration.
2202 */
2203 if (this->type->qualifier.flags.q.constant
2204 || this->type->qualifier.flags.q.uniform) {
2205 ir_rvalue *new_rhs = validate_assignment(state, var->type, rhs);
2206 if (new_rhs != NULL) {
2207 rhs = new_rhs;
2208
2209 ir_constant *constant_value = rhs->constant_expression_value();
2210 if (!constant_value) {
2211 _mesa_glsl_error(& initializer_loc, state,
2212 "initializer of %s variable `%s' must be a "
2213 "constant expression",
2214 (this->type->qualifier.flags.q.constant)
2215 ? "const" : "uniform",
2216 decl->identifier);
2217 if (var->type->is_numeric()) {
2218 /* Reduce cascading errors. */
2219 var->constant_value = ir_constant::zero(ctx, var->type);
2220 }
2221 } else {
2222 rhs = constant_value;
2223 var->constant_value = constant_value;
2224 }
2225 } else {
2226 _mesa_glsl_error(&initializer_loc, state,
2227 "initializer of type %s cannot be assigned to "
2228 "variable of type %s",
2229 rhs->type->name, var->type->name);
2230 if (var->type->is_numeric()) {
2231 /* Reduce cascading errors. */
2232 var->constant_value = ir_constant::zero(ctx, var->type);
2233 }
2234 }
2235 }
2236
2237 if (rhs && !rhs->type->is_error()) {
2238 bool temp = var->read_only;
2239 if (this->type->qualifier.flags.q.constant)
2240 var->read_only = false;
2241
2242 /* Never emit code to initialize a uniform.
2243 */
2244 const glsl_type *initializer_type;
2245 if (!this->type->qualifier.flags.q.uniform) {
2246 result = do_assignment(&initializer_instructions, state,
2247 lhs, rhs,
2248 this->get_location());
2249 initializer_type = result->type;
2250 } else
2251 initializer_type = rhs->type;
2252
2253 /* If the declared variable is an unsized array, it must inherrit
2254 * its full type from the initializer. A declaration such as
2255 *
2256 * uniform float a[] = float[](1.0, 2.0, 3.0, 3.0);
2257 *
2258 * becomes
2259 *
2260 * uniform float a[4] = float[](1.0, 2.0, 3.0, 3.0);
2261 *
2262 * The assignment generated in the if-statement (below) will also
2263 * automatically handle this case for non-uniforms.
2264 *
2265 * If the declared variable is not an array, the types must
2266 * already match exactly. As a result, the type assignment
2267 * here can be done unconditionally. For non-uniforms the call
2268 * to do_assignment can change the type of the initializer (via
2269 * the implicit conversion rules). For uniforms the initializer
2270 * must be a constant expression, and the type of that expression
2271 * was validated above.
2272 */
2273 var->type = initializer_type;
2274
2275 var->read_only = temp;
2276 }
2277 }
2278
2279 /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
2280 *
2281 * "It is an error to write to a const variable outside of
2282 * its declaration, so they must be initialized when
2283 * declared."
2284 */
2285 if (this->type->qualifier.flags.q.constant && decl->initializer == NULL) {
2286 _mesa_glsl_error(& loc, state,
2287 "const declaration of `%s' must be initialized");
2288 }
2289
2290 /* Check if this declaration is actually a re-declaration, either to
2291 * resize an array or add qualifiers to an existing variable.
2292 *
2293 * This is allowed for variables in the current scope, or when at
2294 * global scope (for built-ins in the implicit outer scope).
2295 */
2296 ir_variable *earlier = state->symbols->get_variable(decl->identifier);
2297 if (earlier != NULL && (state->current_function == NULL ||
2298 state->symbols->name_declared_this_scope(decl->identifier))) {
2299
2300 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
2301 *
2302 * "It is legal to declare an array without a size and then
2303 * later re-declare the same name as an array of the same
2304 * type and specify a size."
2305 */
2306 if ((earlier->type->array_size() == 0)
2307 && var->type->is_array()
2308 && (var->type->element_type() == earlier->type->element_type())) {
2309 /* FINISHME: This doesn't match the qualifiers on the two
2310 * FINISHME: declarations. It's not 100% clear whether this is
2311 * FINISHME: required or not.
2312 */
2313
2314 /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec:
2315 *
2316 * "The size [of gl_TexCoord] can be at most
2317 * gl_MaxTextureCoords."
2318 */
2319 const unsigned size = unsigned(var->type->array_size());
2320 if ((strcmp("gl_TexCoord", var->name) == 0)
2321 && (size > state->Const.MaxTextureCoords)) {
2322 YYLTYPE loc = this->get_location();
2323
2324 _mesa_glsl_error(& loc, state, "`gl_TexCoord' array size cannot "
2325 "be larger than gl_MaxTextureCoords (%u)\n",
2326 state->Const.MaxTextureCoords);
2327 } else if ((size > 0) && (size <= earlier->max_array_access)) {
2328 YYLTYPE loc = this->get_location();
2329
2330 _mesa_glsl_error(& loc, state, "array size must be > %u due to "
2331 "previous access",
2332 earlier->max_array_access);
2333 }
2334
2335 earlier->type = var->type;
2336 delete var;
2337 var = NULL;
2338 } else if (state->ARB_fragment_coord_conventions_enable
2339 && strcmp(var->name, "gl_FragCoord") == 0
2340 && earlier->type == var->type
2341 && earlier->mode == var->mode) {
2342 /* Allow redeclaration of gl_FragCoord for ARB_fcc layout
2343 * qualifiers.
2344 */
2345 earlier->origin_upper_left = var->origin_upper_left;
2346 earlier->pixel_center_integer = var->pixel_center_integer;
2347
2348 /* According to section 4.3.7 of the GLSL 1.30 spec,
2349 * the following built-in varaibles can be redeclared with an
2350 * interpolation qualifier:
2351 * * gl_FrontColor
2352 * * gl_BackColor
2353 * * gl_FrontSecondaryColor
2354 * * gl_BackSecondaryColor
2355 * * gl_Color
2356 * * gl_SecondaryColor
2357 */
2358 } else if (state->language_version >= 130
2359 && (strcmp(var->name, "gl_FrontColor") == 0
2360 || strcmp(var->name, "gl_BackColor") == 0
2361 || strcmp(var->name, "gl_FrontSecondaryColor") == 0
2362 || strcmp(var->name, "gl_BackSecondaryColor") == 0
2363 || strcmp(var->name, "gl_Color") == 0
2364 || strcmp(var->name, "gl_SecondaryColor") == 0)
2365 && earlier->type == var->type
2366 && earlier->mode == var->mode) {
2367 earlier->interpolation = var->interpolation;
2368 } else {
2369 YYLTYPE loc = this->get_location();
2370 _mesa_glsl_error(&loc, state, "`%s' redeclared", decl->identifier);
2371 }
2372
2373 continue;
2374 }
2375
2376 /* By now, we know it's a new variable declaration (we didn't hit the
2377 * above "continue").
2378 *
2379 * From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
2380 *
2381 * "Identifiers starting with "gl_" are reserved for use by
2382 * OpenGL, and may not be declared in a shader as either a
2383 * variable or a function."
2384 */
2385 if (strncmp(decl->identifier, "gl_", 3) == 0)
2386 _mesa_glsl_error(& loc, state,
2387 "identifier `%s' uses reserved `gl_' prefix",
2388 decl->identifier);
2389
2390 /* Add the variable to the symbol table. Note that the initializer's
2391 * IR was already processed earlier (though it hasn't been emitted yet),
2392 * without the variable in scope.
2393 *
2394 * This differs from most C-like languages, but it follows the GLSL
2395 * specification. From page 28 (page 34 of the PDF) of the GLSL 1.50
2396 * spec:
2397 *
2398 * "Within a declaration, the scope of a name starts immediately
2399 * after the initializer if present or immediately after the name
2400 * being declared if not."
2401 */
2402 if (!state->symbols->add_variable(var)) {
2403 YYLTYPE loc = this->get_location();
2404 _mesa_glsl_error(&loc, state, "name `%s' already taken in the "
2405 "current scope", decl->identifier);
2406 continue;
2407 }
2408
2409 /* Push the variable declaration to the top. It means that all
2410 * the variable declarations will appear in a funny
2411 * last-to-first order, but otherwise we run into trouble if a
2412 * function is prototyped, a global var is decled, then the
2413 * function is defined with usage of the global var. See
2414 * glslparsertest's CorrectModule.frag.
2415 */
2416 instructions->push_head(var);
2417 instructions->append_list(&initializer_instructions);
2418 }
2419
2420
2421 /* Generally, variable declarations do not have r-values. However,
2422 * one is used for the declaration in
2423 *
2424 * while (bool b = some_condition()) {
2425 * ...
2426 * }
2427 *
2428 * so we return the rvalue from the last seen declaration here.
2429 */
2430 return result;
2431 }
2432
2433
2434 ir_rvalue *
2435 ast_parameter_declarator::hir(exec_list *instructions,
2436 struct _mesa_glsl_parse_state *state)
2437 {
2438 void *ctx = state;
2439 const struct glsl_type *type;
2440 const char *name = NULL;
2441 YYLTYPE loc = this->get_location();
2442
2443 type = this->type->specifier->glsl_type(& name, state);
2444
2445 if (type == NULL) {
2446 if (name != NULL) {
2447 _mesa_glsl_error(& loc, state,
2448 "invalid type `%s' in declaration of `%s'",
2449 name, this->identifier);
2450 } else {
2451 _mesa_glsl_error(& loc, state,
2452 "invalid type in declaration of `%s'",
2453 this->identifier);
2454 }
2455
2456 type = glsl_type::error_type;
2457 }
2458
2459 /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
2460 *
2461 * "Functions that accept no input arguments need not use void in the
2462 * argument list because prototypes (or definitions) are required and
2463 * therefore there is no ambiguity when an empty argument list "( )" is
2464 * declared. The idiom "(void)" as a parameter list is provided for
2465 * convenience."
2466 *
2467 * Placing this check here prevents a void parameter being set up
2468 * for a function, which avoids tripping up checks for main taking
2469 * parameters and lookups of an unnamed symbol.
2470 */
2471 if (type->is_void()) {
2472 if (this->identifier != NULL)
2473 _mesa_glsl_error(& loc, state,
2474 "named parameter cannot have type `void'");
2475
2476 is_void = true;
2477 return NULL;
2478 }
2479
2480 if (formal_parameter && (this->identifier == NULL)) {
2481 _mesa_glsl_error(& loc, state, "formal parameter lacks a name");
2482 return NULL;
2483 }
2484
2485 /* This only handles "vec4 foo[..]". The earlier specifier->glsl_type(...)
2486 * call already handled the "vec4[..] foo" case.
2487 */
2488 if (this->is_array) {
2489 type = process_array_type(&loc, type, this->array_size, state);
2490 }
2491
2492 if (type->array_size() == 0) {
2493 _mesa_glsl_error(&loc, state, "arrays passed as parameters must have "
2494 "a declared size.");
2495 type = glsl_type::error_type;
2496 }
2497
2498 is_void = false;
2499 ir_variable *var = new(ctx) ir_variable(type, this->identifier, ir_var_in);
2500
2501 /* Apply any specified qualifiers to the parameter declaration. Note that
2502 * for function parameters the default mode is 'in'.
2503 */
2504 apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc);
2505
2506 instructions->push_tail(var);
2507
2508 /* Parameter declarations do not have r-values.
2509 */
2510 return NULL;
2511 }
2512
2513
2514 void
2515 ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters,
2516 bool formal,
2517 exec_list *ir_parameters,
2518 _mesa_glsl_parse_state *state)
2519 {
2520 ast_parameter_declarator *void_param = NULL;
2521 unsigned count = 0;
2522
2523 foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) {
2524 param->formal_parameter = formal;
2525 param->hir(ir_parameters, state);
2526
2527 if (param->is_void)
2528 void_param = param;
2529
2530 count++;
2531 }
2532
2533 if ((void_param != NULL) && (count > 1)) {
2534 YYLTYPE loc = void_param->get_location();
2535
2536 _mesa_glsl_error(& loc, state,
2537 "`void' parameter must be only parameter");
2538 }
2539 }
2540
2541
2542 void
2543 emit_function(_mesa_glsl_parse_state *state, exec_list *instructions,
2544 ir_function *f)
2545 {
2546 /* Emit the new function header */
2547 if (state->current_function == NULL) {
2548 instructions->push_tail(f);
2549 } else {
2550 /* IR invariants disallow function declarations or definitions nested
2551 * within other function definitions. Insert the new ir_function
2552 * block in the instruction sequence before the ir_function block
2553 * containing the current ir_function_signature.
2554 */
2555 ir_function *const curr =
2556 const_cast<ir_function *>(state->current_function->function());
2557
2558 curr->insert_before(f);
2559 }
2560 }
2561
2562
2563 ir_rvalue *
2564 ast_function::hir(exec_list *instructions,
2565 struct _mesa_glsl_parse_state *state)
2566 {
2567 void *ctx = state;
2568 ir_function *f = NULL;
2569 ir_function_signature *sig = NULL;
2570 exec_list hir_parameters;
2571
2572 const char *const name = identifier;
2573
2574 /* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec,
2575 *
2576 * "Function declarations (prototypes) cannot occur inside of functions;
2577 * they must be at global scope, or for the built-in functions, outside
2578 * the global scope."
2579 *
2580 * From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec,
2581 *
2582 * "User defined functions may only be defined within the global scope."
2583 *
2584 * Note that this language does not appear in GLSL 1.10.
2585 */
2586 if ((state->current_function != NULL) && (state->language_version != 110)) {
2587 YYLTYPE loc = this->get_location();
2588 _mesa_glsl_error(&loc, state,
2589 "declaration of function `%s' not allowed within "
2590 "function body", name);
2591 }
2592
2593 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
2594 *
2595 * "Identifiers starting with "gl_" are reserved for use by
2596 * OpenGL, and may not be declared in a shader as either a
2597 * variable or a function."
2598 */
2599 if (strncmp(name, "gl_", 3) == 0) {
2600 YYLTYPE loc = this->get_location();
2601 _mesa_glsl_error(&loc, state,
2602 "identifier `%s' uses reserved `gl_' prefix", name);
2603 }
2604
2605 /* Convert the list of function parameters to HIR now so that they can be
2606 * used below to compare this function's signature with previously seen
2607 * signatures for functions with the same name.
2608 */
2609 ast_parameter_declarator::parameters_to_hir(& this->parameters,
2610 is_definition,
2611 & hir_parameters, state);
2612
2613 const char *return_type_name;
2614 const glsl_type *return_type =
2615 this->return_type->specifier->glsl_type(& return_type_name, state);
2616
2617 if (!return_type) {
2618 YYLTYPE loc = this->get_location();
2619 _mesa_glsl_error(&loc, state,
2620 "function `%s' has undeclared return type `%s'",
2621 name, return_type_name);
2622 return_type = glsl_type::error_type;
2623 }
2624
2625 /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec:
2626 * "No qualifier is allowed on the return type of a function."
2627 */
2628 if (this->return_type->has_qualifiers()) {
2629 YYLTYPE loc = this->get_location();
2630 _mesa_glsl_error(& loc, state,
2631 "function `%s' return type has qualifiers", name);
2632 }
2633
2634 /* Verify that this function's signature either doesn't match a previously
2635 * seen signature for a function with the same name, or, if a match is found,
2636 * that the previously seen signature does not have an associated definition.
2637 */
2638 f = state->symbols->get_function(name);
2639 if (f != NULL && (state->es_shader || f->has_user_signature())) {
2640 sig = f->exact_matching_signature(&hir_parameters);
2641 if (sig != NULL) {
2642 const char *badvar = sig->qualifiers_match(&hir_parameters);
2643 if (badvar != NULL) {
2644 YYLTYPE loc = this->get_location();
2645
2646 _mesa_glsl_error(&loc, state, "function `%s' parameter `%s' "
2647 "qualifiers don't match prototype", name, badvar);
2648 }
2649
2650 if (sig->return_type != return_type) {
2651 YYLTYPE loc = this->get_location();
2652
2653 _mesa_glsl_error(&loc, state, "function `%s' return type doesn't "
2654 "match prototype", name);
2655 }
2656
2657 if (is_definition && sig->is_defined) {
2658 YYLTYPE loc = this->get_location();
2659
2660 _mesa_glsl_error(& loc, state, "function `%s' redefined", name);
2661 }
2662 }
2663 } else {
2664 f = new(ctx) ir_function(name);
2665 if (!state->symbols->add_function(f)) {
2666 /* This function name shadows a non-function use of the same name. */
2667 YYLTYPE loc = this->get_location();
2668
2669 _mesa_glsl_error(&loc, state, "function name `%s' conflicts with "
2670 "non-function", name);
2671 return NULL;
2672 }
2673
2674 emit_function(state, instructions, f);
2675 }
2676
2677 /* Verify the return type of main() */
2678 if (strcmp(name, "main") == 0) {
2679 if (! return_type->is_void()) {
2680 YYLTYPE loc = this->get_location();
2681
2682 _mesa_glsl_error(& loc, state, "main() must return void");
2683 }
2684
2685 if (!hir_parameters.is_empty()) {
2686 YYLTYPE loc = this->get_location();
2687
2688 _mesa_glsl_error(& loc, state, "main() must not take any parameters");
2689 }
2690 }
2691
2692 /* Finish storing the information about this new function in its signature.
2693 */
2694 if (sig == NULL) {
2695 sig = new(ctx) ir_function_signature(return_type);
2696 f->add_signature(sig);
2697 }
2698
2699 sig->replace_parameters(&hir_parameters);
2700 signature = sig;
2701
2702 /* Function declarations (prototypes) do not have r-values.
2703 */
2704 return NULL;
2705 }
2706
2707
2708 ir_rvalue *
2709 ast_function_definition::hir(exec_list *instructions,
2710 struct _mesa_glsl_parse_state *state)
2711 {
2712 prototype->is_definition = true;
2713 prototype->hir(instructions, state);
2714
2715 ir_function_signature *signature = prototype->signature;
2716 if (signature == NULL)
2717 return NULL;
2718
2719 assert(state->current_function == NULL);
2720 state->current_function = signature;
2721 state->found_return = false;
2722
2723 /* Duplicate parameters declared in the prototype as concrete variables.
2724 * Add these to the symbol table.
2725 */
2726 state->symbols->push_scope();
2727 foreach_iter(exec_list_iterator, iter, signature->parameters) {
2728 ir_variable *const var = ((ir_instruction *) iter.get())->as_variable();
2729
2730 assert(var != NULL);
2731
2732 /* The only way a parameter would "exist" is if two parameters have
2733 * the same name.
2734 */
2735 if (state->symbols->name_declared_this_scope(var->name)) {
2736 YYLTYPE loc = this->get_location();
2737
2738 _mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name);
2739 } else {
2740 state->symbols->add_variable(var);
2741 }
2742 }
2743
2744 /* Convert the body of the function to HIR. */
2745 this->body->hir(&signature->body, state);
2746 signature->is_defined = true;
2747
2748 state->symbols->pop_scope();
2749
2750 assert(state->current_function == signature);
2751 state->current_function = NULL;
2752
2753 if (!signature->return_type->is_void() && !state->found_return) {
2754 YYLTYPE loc = this->get_location();
2755 _mesa_glsl_error(& loc, state, "function `%s' has non-void return type "
2756 "%s, but no return statement",
2757 signature->function_name(),
2758 signature->return_type->name);
2759 }
2760
2761 /* Function definitions do not have r-values.
2762 */
2763 return NULL;
2764 }
2765
2766
2767 ir_rvalue *
2768 ast_jump_statement::hir(exec_list *instructions,
2769 struct _mesa_glsl_parse_state *state)
2770 {
2771 void *ctx = state;
2772
2773 switch (mode) {
2774 case ast_return: {
2775 ir_return *inst;
2776 assert(state->current_function);
2777
2778 if (opt_return_value) {
2779 if (state->current_function->return_type->base_type ==
2780 GLSL_TYPE_VOID) {
2781 YYLTYPE loc = this->get_location();
2782
2783 _mesa_glsl_error(& loc, state,
2784 "`return` with a value, in function `%s' "
2785 "returning void",
2786 state->current_function->function_name());
2787 }
2788
2789 ir_rvalue *const ret = opt_return_value->hir(instructions, state);
2790 assert(ret != NULL);
2791
2792 /* Implicit conversions are not allowed for return values. */
2793 if (state->current_function->return_type != ret->type) {
2794 YYLTYPE loc = this->get_location();
2795
2796 _mesa_glsl_error(& loc, state,
2797 "`return' with wrong type %s, in function `%s' "
2798 "returning %s",
2799 ret->type->name,
2800 state->current_function->function_name(),
2801 state->current_function->return_type->name);
2802 }
2803
2804 inst = new(ctx) ir_return(ret);
2805 } else {
2806 if (state->current_function->return_type->base_type !=
2807 GLSL_TYPE_VOID) {
2808 YYLTYPE loc = this->get_location();
2809
2810 _mesa_glsl_error(& loc, state,
2811 "`return' with no value, in function %s returning "
2812 "non-void",
2813 state->current_function->function_name());
2814 }
2815 inst = new(ctx) ir_return;
2816 }
2817
2818 state->found_return = true;
2819 instructions->push_tail(inst);
2820 break;
2821 }
2822
2823 case ast_discard:
2824 if (state->target != fragment_shader) {
2825 YYLTYPE loc = this->get_location();
2826
2827 _mesa_glsl_error(& loc, state,
2828 "`discard' may only appear in a fragment shader");
2829 }
2830 instructions->push_tail(new(ctx) ir_discard);
2831 break;
2832
2833 case ast_break:
2834 case ast_continue:
2835 /* FINISHME: Handle switch-statements. They cannot contain 'continue',
2836 * FINISHME: and they use a different IR instruction for 'break'.
2837 */
2838 /* FINISHME: Correctly handle the nesting. If a switch-statement is
2839 * FINISHME: inside a loop, a 'continue' is valid and will bind to the
2840 * FINISHME: loop.
2841 */
2842 if (state->loop_or_switch_nesting == NULL) {
2843 YYLTYPE loc = this->get_location();
2844
2845 _mesa_glsl_error(& loc, state,
2846 "`%s' may only appear in a loop",
2847 (mode == ast_break) ? "break" : "continue");
2848 } else {
2849 ir_loop *const loop = state->loop_or_switch_nesting->as_loop();
2850
2851 /* Inline the for loop expression again, since we don't know
2852 * where near the end of the loop body the normal copy of it
2853 * is going to be placed.
2854 */
2855 if (mode == ast_continue &&
2856 state->loop_or_switch_nesting_ast->rest_expression) {
2857 state->loop_or_switch_nesting_ast->rest_expression->hir(instructions,
2858 state);
2859 }
2860
2861 if (loop != NULL) {
2862 ir_loop_jump *const jump =
2863 new(ctx) ir_loop_jump((mode == ast_break)
2864 ? ir_loop_jump::jump_break
2865 : ir_loop_jump::jump_continue);
2866 instructions->push_tail(jump);
2867 }
2868 }
2869
2870 break;
2871 }
2872
2873 /* Jump instructions do not have r-values.
2874 */
2875 return NULL;
2876 }
2877
2878
2879 ir_rvalue *
2880 ast_selection_statement::hir(exec_list *instructions,
2881 struct _mesa_glsl_parse_state *state)
2882 {
2883 void *ctx = state;
2884
2885 ir_rvalue *const condition = this->condition->hir(instructions, state);
2886
2887 /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
2888 *
2889 * "Any expression whose type evaluates to a Boolean can be used as the
2890 * conditional expression bool-expression. Vector types are not accepted
2891 * as the expression to if."
2892 *
2893 * The checks are separated so that higher quality diagnostics can be
2894 * generated for cases where both rules are violated.
2895 */
2896 if (!condition->type->is_boolean() || !condition->type->is_scalar()) {
2897 YYLTYPE loc = this->condition->get_location();
2898
2899 _mesa_glsl_error(& loc, state, "if-statement condition must be scalar "
2900 "boolean");
2901 }
2902
2903 ir_if *const stmt = new(ctx) ir_if(condition);
2904
2905 if (then_statement != NULL) {
2906 state->symbols->push_scope();
2907 then_statement->hir(& stmt->then_instructions, state);
2908 state->symbols->pop_scope();
2909 }
2910
2911 if (else_statement != NULL) {
2912 state->symbols->push_scope();
2913 else_statement->hir(& stmt->else_instructions, state);
2914 state->symbols->pop_scope();
2915 }
2916
2917 instructions->push_tail(stmt);
2918
2919 /* if-statements do not have r-values.
2920 */
2921 return NULL;
2922 }
2923
2924
2925 void
2926 ast_iteration_statement::condition_to_hir(ir_loop *stmt,
2927 struct _mesa_glsl_parse_state *state)
2928 {
2929 void *ctx = state;
2930
2931 if (condition != NULL) {
2932 ir_rvalue *const cond =
2933 condition->hir(& stmt->body_instructions, state);
2934
2935 if ((cond == NULL)
2936 || !cond->type->is_boolean() || !cond->type->is_scalar()) {
2937 YYLTYPE loc = condition->get_location();
2938
2939 _mesa_glsl_error(& loc, state,
2940 "loop condition must be scalar boolean");
2941 } else {
2942 /* As the first code in the loop body, generate a block that looks
2943 * like 'if (!condition) break;' as the loop termination condition.
2944 */
2945 ir_rvalue *const not_cond =
2946 new(ctx) ir_expression(ir_unop_logic_not, glsl_type::bool_type, cond,
2947 NULL);
2948
2949 ir_if *const if_stmt = new(ctx) ir_if(not_cond);
2950
2951 ir_jump *const break_stmt =
2952 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
2953
2954 if_stmt->then_instructions.push_tail(break_stmt);
2955 stmt->body_instructions.push_tail(if_stmt);
2956 }
2957 }
2958 }
2959
2960
2961 ir_rvalue *
2962 ast_iteration_statement::hir(exec_list *instructions,
2963 struct _mesa_glsl_parse_state *state)
2964 {
2965 void *ctx = state;
2966
2967 /* For-loops and while-loops start a new scope, but do-while loops do not.
2968 */
2969 if (mode != ast_do_while)
2970 state->symbols->push_scope();
2971
2972 if (init_statement != NULL)
2973 init_statement->hir(instructions, state);
2974
2975 ir_loop *const stmt = new(ctx) ir_loop();
2976 instructions->push_tail(stmt);
2977
2978 /* Track the current loop and / or switch-statement nesting.
2979 */
2980 ir_instruction *const nesting = state->loop_or_switch_nesting;
2981 ast_iteration_statement *nesting_ast = state->loop_or_switch_nesting_ast;
2982
2983 state->loop_or_switch_nesting = stmt;
2984 state->loop_or_switch_nesting_ast = this;
2985
2986 if (mode != ast_do_while)
2987 condition_to_hir(stmt, state);
2988
2989 if (body != NULL)
2990 body->hir(& stmt->body_instructions, state);
2991
2992 if (rest_expression != NULL)
2993 rest_expression->hir(& stmt->body_instructions, state);
2994
2995 if (mode == ast_do_while)
2996 condition_to_hir(stmt, state);
2997
2998 if (mode != ast_do_while)
2999 state->symbols->pop_scope();
3000
3001 /* Restore previous nesting before returning.
3002 */
3003 state->loop_or_switch_nesting = nesting;
3004 state->loop_or_switch_nesting_ast = nesting_ast;
3005
3006 /* Loops do not have r-values.
3007 */
3008 return NULL;
3009 }
3010
3011
3012 ir_rvalue *
3013 ast_type_specifier::hir(exec_list *instructions,
3014 struct _mesa_glsl_parse_state *state)
3015 {
3016 if (this->structure != NULL)
3017 return this->structure->hir(instructions, state);
3018
3019 return NULL;
3020 }
3021
3022
3023 ir_rvalue *
3024 ast_struct_specifier::hir(exec_list *instructions,
3025 struct _mesa_glsl_parse_state *state)
3026 {
3027 unsigned decl_count = 0;
3028
3029 /* Make an initial pass over the list of structure fields to determine how
3030 * many there are. Each element in this list is an ast_declarator_list.
3031 * This means that we actually need to count the number of elements in the
3032 * 'declarations' list in each of the elements.
3033 */
3034 foreach_list_typed (ast_declarator_list, decl_list, link,
3035 &this->declarations) {
3036 foreach_list_const (decl_ptr, & decl_list->declarations) {
3037 decl_count++;
3038 }
3039 }
3040
3041 /* Allocate storage for the structure fields and process the field
3042 * declarations. As the declarations are processed, try to also convert
3043 * the types to HIR. This ensures that structure definitions embedded in
3044 * other structure definitions are processed.
3045 */
3046 glsl_struct_field *const fields = talloc_array(state, glsl_struct_field,
3047 decl_count);
3048
3049 unsigned i = 0;
3050 foreach_list_typed (ast_declarator_list, decl_list, link,
3051 &this->declarations) {
3052 const char *type_name;
3053
3054 decl_list->type->specifier->hir(instructions, state);
3055
3056 /* Section 10.9 of the GLSL ES 1.00 specification states that
3057 * embedded structure definitions have been removed from the language.
3058 */
3059 if (state->es_shader && decl_list->type->specifier->structure != NULL) {
3060 YYLTYPE loc = this->get_location();
3061 _mesa_glsl_error(&loc, state, "Embedded structure definitions are "
3062 "not allowed in GLSL ES 1.00.");
3063 }
3064
3065 const glsl_type *decl_type =
3066 decl_list->type->specifier->glsl_type(& type_name, state);
3067
3068 foreach_list_typed (ast_declaration, decl, link,
3069 &decl_list->declarations) {
3070 const struct glsl_type *field_type = decl_type;
3071 if (decl->is_array) {
3072 YYLTYPE loc = decl->get_location();
3073 field_type = process_array_type(&loc, decl_type, decl->array_size,
3074 state);
3075 }
3076 fields[i].type = (field_type != NULL)
3077 ? field_type : glsl_type::error_type;
3078 fields[i].name = decl->identifier;
3079 i++;
3080 }
3081 }
3082
3083 assert(i == decl_count);
3084
3085 const glsl_type *t =
3086 glsl_type::get_record_instance(fields, decl_count, this->name);
3087
3088 YYLTYPE loc = this->get_location();
3089 if (!state->symbols->add_type(name, t)) {
3090 _mesa_glsl_error(& loc, state, "struct `%s' previously defined", name);
3091 } else {
3092
3093 const glsl_type **s = (const glsl_type **)
3094 realloc(state->user_structures,
3095 sizeof(state->user_structures[0]) *
3096 (state->num_user_structures + 1));
3097 if (s != NULL) {
3098 s[state->num_user_structures] = t;
3099 state->user_structures = s;
3100 state->num_user_structures++;
3101 }
3102 }
3103
3104 /* Structure type definitions do not have r-values.
3105 */
3106 return NULL;
3107 }