glsl: introduce data section to ir_variable
[mesa.git] / src / glsl / ast_to_hir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file ast_to_hir.c
26 * Convert abstract syntax to to high-level intermediate reprensentation (HIR).
27 *
28 * During the conversion to HIR, the majority of the symantic checking is
29 * preformed on the program. This includes:
30 *
31 * * Symbol table management
32 * * Type checking
33 * * Function binding
34 *
35 * The majority of this work could be done during parsing, and the parser could
36 * probably generate HIR directly. However, this results in frequent changes
37 * to the parser code. Since we do not assume that every system this complier
38 * is built on will have Flex and Bison installed, we have to store the code
39 * generated by these tools in our version control system. In other parts of
40 * the system we've seen problems where a parser was changed but the generated
41 * code was not committed, merge conflicts where created because two developers
42 * had slightly different versions of Bison installed, etc.
43 *
44 * I have also noticed that running Bison generated parsers in GDB is very
45 * irritating. When you get a segfault on '$$ = $1->foo', you can't very
46 * well 'print $1' in GDB.
47 *
48 * As a result, my preference is to put as little C code as possible in the
49 * parser (and lexer) sources.
50 */
51
52 #include "main/core.h" /* for struct gl_extensions */
53 #include "glsl_symbol_table.h"
54 #include "glsl_parser_extras.h"
55 #include "ast.h"
56 #include "glsl_types.h"
57 #include "program/hash_table.h"
58 #include "ir.h"
59
60 static void
61 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
62 exec_list *instructions);
63 static void
64 remove_per_vertex_blocks(exec_list *instructions,
65 _mesa_glsl_parse_state *state, ir_variable_mode mode);
66
67
68 void
69 _mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
70 {
71 _mesa_glsl_initialize_variables(instructions, state);
72
73 state->symbols->separate_function_namespace = state->language_version == 110;
74
75 state->current_function = NULL;
76
77 state->toplevel_ir = instructions;
78
79 state->gs_input_prim_type_specified = false;
80
81 /* Section 4.2 of the GLSL 1.20 specification states:
82 * "The built-in functions are scoped in a scope outside the global scope
83 * users declare global variables in. That is, a shader's global scope,
84 * available for user-defined functions and global variables, is nested
85 * inside the scope containing the built-in functions."
86 *
87 * Since built-in functions like ftransform() access built-in variables,
88 * it follows that those must be in the outer scope as well.
89 *
90 * We push scope here to create this nesting effect...but don't pop.
91 * This way, a shader's globals are still in the symbol table for use
92 * by the linker.
93 */
94 state->symbols->push_scope();
95
96 foreach_list_typed (ast_node, ast, link, & state->translation_unit)
97 ast->hir(instructions, state);
98
99 detect_recursion_unlinked(state, instructions);
100 detect_conflicting_assignments(state, instructions);
101
102 state->toplevel_ir = NULL;
103
104 /* Move all of the variable declarations to the front of the IR list, and
105 * reverse the order. This has the (intended!) side effect that vertex
106 * shader inputs and fragment shader outputs will appear in the IR in the
107 * same order that they appeared in the shader code. This results in the
108 * locations being assigned in the declared order. Many (arguably buggy)
109 * applications depend on this behavior, and it matches what nearly all
110 * other drivers do.
111 */
112 foreach_list_safe(node, instructions) {
113 ir_variable *const var = ((ir_instruction *) node)->as_variable();
114
115 if (var == NULL)
116 continue;
117
118 var->remove();
119 instructions->push_head(var);
120 }
121
122 /* From section 7.1 (Built-In Language Variables) of the GLSL 4.10 spec:
123 *
124 * If multiple shaders using members of a built-in block belonging to
125 * the same interface are linked together in the same program, they
126 * must all redeclare the built-in block in the same way, as described
127 * in section 4.3.7 "Interface Blocks" for interface block matching, or
128 * a link error will result.
129 *
130 * The phrase "using members of a built-in block" implies that if two
131 * shaders are linked together and one of them *does not use* any members
132 * of the built-in block, then that shader does not need to have a matching
133 * redeclaration of the built-in block.
134 *
135 * This appears to be a clarification to the behaviour established for
136 * gl_PerVertex by GLSL 1.50, therefore implement it regardless of GLSL
137 * version.
138 *
139 * The definition of "interface" in section 4.3.7 that applies here is as
140 * follows:
141 *
142 * The boundary between adjacent programmable pipeline stages: This
143 * spans all the outputs in all compilation units of the first stage
144 * and all the inputs in all compilation units of the second stage.
145 *
146 * Therefore this rule applies to both inter- and intra-stage linking.
147 *
148 * The easiest way to implement this is to check whether the shader uses
149 * gl_PerVertex right after ast-to-ir conversion, and if it doesn't, simply
150 * remove all the relevant variable declaration from the IR, so that the
151 * linker won't see them and complain about mismatches.
152 */
153 remove_per_vertex_blocks(instructions, state, ir_var_shader_in);
154 remove_per_vertex_blocks(instructions, state, ir_var_shader_out);
155 }
156
157
158 /**
159 * If a conversion is available, convert one operand to a different type
160 *
161 * The \c from \c ir_rvalue is converted "in place".
162 *
163 * \param to Type that the operand it to be converted to
164 * \param from Operand that is being converted
165 * \param state GLSL compiler state
166 *
167 * \return
168 * If a conversion is possible (or unnecessary), \c true is returned.
169 * Otherwise \c false is returned.
170 */
171 bool
172 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
173 struct _mesa_glsl_parse_state *state)
174 {
175 void *ctx = state;
176 if (to->base_type == from->type->base_type)
177 return true;
178
179 /* This conversion was added in GLSL 1.20. If the compilation mode is
180 * GLSL 1.10, the conversion is skipped.
181 */
182 if (!state->is_version(120, 0))
183 return false;
184
185 /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
186 *
187 * "There are no implicit array or structure conversions. For
188 * example, an array of int cannot be implicitly converted to an
189 * array of float. There are no implicit conversions between
190 * signed and unsigned integers."
191 */
192 /* FINISHME: The above comment is partially a lie. There is int/uint
193 * FINISHME: conversion for immediate constants.
194 */
195 if (!to->is_float() || !from->type->is_numeric())
196 return false;
197
198 /* Convert to a floating point type with the same number of components
199 * as the original type - i.e. int to float, not int to vec4.
200 */
201 to = glsl_type::get_instance(GLSL_TYPE_FLOAT, from->type->vector_elements,
202 from->type->matrix_columns);
203
204 switch (from->type->base_type) {
205 case GLSL_TYPE_INT:
206 from = new(ctx) ir_expression(ir_unop_i2f, to, from, NULL);
207 break;
208 case GLSL_TYPE_UINT:
209 from = new(ctx) ir_expression(ir_unop_u2f, to, from, NULL);
210 break;
211 case GLSL_TYPE_BOOL:
212 from = new(ctx) ir_expression(ir_unop_b2f, to, from, NULL);
213 break;
214 default:
215 assert(0);
216 }
217
218 return true;
219 }
220
221
222 static const struct glsl_type *
223 arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
224 bool multiply,
225 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
226 {
227 const glsl_type *type_a = value_a->type;
228 const glsl_type *type_b = value_b->type;
229
230 /* From GLSL 1.50 spec, page 56:
231 *
232 * "The arithmetic binary operators add (+), subtract (-),
233 * multiply (*), and divide (/) operate on integer and
234 * floating-point scalars, vectors, and matrices."
235 */
236 if (!type_a->is_numeric() || !type_b->is_numeric()) {
237 _mesa_glsl_error(loc, state,
238 "operands to arithmetic operators must be numeric");
239 return glsl_type::error_type;
240 }
241
242
243 /* "If one operand is floating-point based and the other is
244 * not, then the conversions from Section 4.1.10 "Implicit
245 * Conversions" are applied to the non-floating-point-based operand."
246 */
247 if (!apply_implicit_conversion(type_a, value_b, state)
248 && !apply_implicit_conversion(type_b, value_a, state)) {
249 _mesa_glsl_error(loc, state,
250 "could not implicitly convert operands to "
251 "arithmetic operator");
252 return glsl_type::error_type;
253 }
254 type_a = value_a->type;
255 type_b = value_b->type;
256
257 /* "If the operands are integer types, they must both be signed or
258 * both be unsigned."
259 *
260 * From this rule and the preceeding conversion it can be inferred that
261 * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
262 * The is_numeric check above already filtered out the case where either
263 * type is not one of these, so now the base types need only be tested for
264 * equality.
265 */
266 if (type_a->base_type != type_b->base_type) {
267 _mesa_glsl_error(loc, state,
268 "base type mismatch for arithmetic operator");
269 return glsl_type::error_type;
270 }
271
272 /* "All arithmetic binary operators result in the same fundamental type
273 * (signed integer, unsigned integer, or floating-point) as the
274 * operands they operate on, after operand type conversion. After
275 * conversion, the following cases are valid
276 *
277 * * The two operands are scalars. In this case the operation is
278 * applied, resulting in a scalar."
279 */
280 if (type_a->is_scalar() && type_b->is_scalar())
281 return type_a;
282
283 /* "* One operand is a scalar, and the other is a vector or matrix.
284 * In this case, the scalar operation is applied independently to each
285 * component of the vector or matrix, resulting in the same size
286 * vector or matrix."
287 */
288 if (type_a->is_scalar()) {
289 if (!type_b->is_scalar())
290 return type_b;
291 } else if (type_b->is_scalar()) {
292 return type_a;
293 }
294
295 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
296 * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
297 * handled.
298 */
299 assert(!type_a->is_scalar());
300 assert(!type_b->is_scalar());
301
302 /* "* The two operands are vectors of the same size. In this case, the
303 * operation is done component-wise resulting in the same size
304 * vector."
305 */
306 if (type_a->is_vector() && type_b->is_vector()) {
307 if (type_a == type_b) {
308 return type_a;
309 } else {
310 _mesa_glsl_error(loc, state,
311 "vector size mismatch for arithmetic operator");
312 return glsl_type::error_type;
313 }
314 }
315
316 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
317 * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
318 * <vector, vector> have been handled. At least one of the operands must
319 * be matrix. Further, since there are no integer matrix types, the base
320 * type of both operands must be float.
321 */
322 assert(type_a->is_matrix() || type_b->is_matrix());
323 assert(type_a->base_type == GLSL_TYPE_FLOAT);
324 assert(type_b->base_type == GLSL_TYPE_FLOAT);
325
326 /* "* The operator is add (+), subtract (-), or divide (/), and the
327 * operands are matrices with the same number of rows and the same
328 * number of columns. In this case, the operation is done component-
329 * wise resulting in the same size matrix."
330 * * The operator is multiply (*), where both operands are matrices or
331 * one operand is a vector and the other a matrix. A right vector
332 * operand is treated as a column vector and a left vector operand as a
333 * row vector. In all these cases, it is required that the number of
334 * columns of the left operand is equal to the number of rows of the
335 * right operand. Then, the multiply (*) operation does a linear
336 * algebraic multiply, yielding an object that has the same number of
337 * rows as the left operand and the same number of columns as the right
338 * operand. Section 5.10 "Vector and Matrix Operations" explains in
339 * more detail how vectors and matrices are operated on."
340 */
341 if (! multiply) {
342 if (type_a == type_b)
343 return type_a;
344 } else {
345 if (type_a->is_matrix() && type_b->is_matrix()) {
346 /* Matrix multiply. The columns of A must match the rows of B. Given
347 * the other previously tested constraints, this means the vector type
348 * of a row from A must be the same as the vector type of a column from
349 * B.
350 */
351 if (type_a->row_type() == type_b->column_type()) {
352 /* The resulting matrix has the number of columns of matrix B and
353 * the number of rows of matrix A. We get the row count of A by
354 * looking at the size of a vector that makes up a column. The
355 * transpose (size of a row) is done for B.
356 */
357 const glsl_type *const type =
358 glsl_type::get_instance(type_a->base_type,
359 type_a->column_type()->vector_elements,
360 type_b->row_type()->vector_elements);
361 assert(type != glsl_type::error_type);
362
363 return type;
364 }
365 } else if (type_a->is_matrix()) {
366 /* A is a matrix and B is a column vector. Columns of A must match
367 * rows of B. Given the other previously tested constraints, this
368 * means the vector type of a row from A must be the same as the
369 * vector the type of B.
370 */
371 if (type_a->row_type() == type_b) {
372 /* The resulting vector has a number of elements equal to
373 * the number of rows of matrix A. */
374 const glsl_type *const type =
375 glsl_type::get_instance(type_a->base_type,
376 type_a->column_type()->vector_elements,
377 1);
378 assert(type != glsl_type::error_type);
379
380 return type;
381 }
382 } else {
383 assert(type_b->is_matrix());
384
385 /* A is a row vector and B is a matrix. Columns of A must match rows
386 * of B. Given the other previously tested constraints, this means
387 * the type of A must be the same as the vector type of a column from
388 * B.
389 */
390 if (type_a == type_b->column_type()) {
391 /* The resulting vector has a number of elements equal to
392 * the number of columns of matrix B. */
393 const glsl_type *const type =
394 glsl_type::get_instance(type_a->base_type,
395 type_b->row_type()->vector_elements,
396 1);
397 assert(type != glsl_type::error_type);
398
399 return type;
400 }
401 }
402
403 _mesa_glsl_error(loc, state, "size mismatch for matrix multiplication");
404 return glsl_type::error_type;
405 }
406
407
408 /* "All other cases are illegal."
409 */
410 _mesa_glsl_error(loc, state, "type mismatch");
411 return glsl_type::error_type;
412 }
413
414
415 static const struct glsl_type *
416 unary_arithmetic_result_type(const struct glsl_type *type,
417 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
418 {
419 /* From GLSL 1.50 spec, page 57:
420 *
421 * "The arithmetic unary operators negate (-), post- and pre-increment
422 * and decrement (-- and ++) operate on integer or floating-point
423 * values (including vectors and matrices). All unary operators work
424 * component-wise on their operands. These result with the same type
425 * they operated on."
426 */
427 if (!type->is_numeric()) {
428 _mesa_glsl_error(loc, state,
429 "operands to arithmetic operators must be numeric");
430 return glsl_type::error_type;
431 }
432
433 return type;
434 }
435
436 /**
437 * \brief Return the result type of a bit-logic operation.
438 *
439 * If the given types to the bit-logic operator are invalid, return
440 * glsl_type::error_type.
441 *
442 * \param type_a Type of LHS of bit-logic op
443 * \param type_b Type of RHS of bit-logic op
444 */
445 static const struct glsl_type *
446 bit_logic_result_type(const struct glsl_type *type_a,
447 const struct glsl_type *type_b,
448 ast_operators op,
449 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
450 {
451 if (!state->check_bitwise_operations_allowed(loc)) {
452 return glsl_type::error_type;
453 }
454
455 /* From page 50 (page 56 of PDF) of GLSL 1.30 spec:
456 *
457 * "The bitwise operators and (&), exclusive-or (^), and inclusive-or
458 * (|). The operands must be of type signed or unsigned integers or
459 * integer vectors."
460 */
461 if (!type_a->is_integer()) {
462 _mesa_glsl_error(loc, state, "LHS of `%s' must be an integer",
463 ast_expression::operator_string(op));
464 return glsl_type::error_type;
465 }
466 if (!type_b->is_integer()) {
467 _mesa_glsl_error(loc, state, "RHS of `%s' must be an integer",
468 ast_expression::operator_string(op));
469 return glsl_type::error_type;
470 }
471
472 /* "The fundamental types of the operands (signed or unsigned) must
473 * match,"
474 */
475 if (type_a->base_type != type_b->base_type) {
476 _mesa_glsl_error(loc, state, "operands of `%s' must have the same "
477 "base type", ast_expression::operator_string(op));
478 return glsl_type::error_type;
479 }
480
481 /* "The operands cannot be vectors of differing size." */
482 if (type_a->is_vector() &&
483 type_b->is_vector() &&
484 type_a->vector_elements != type_b->vector_elements) {
485 _mesa_glsl_error(loc, state, "operands of `%s' cannot be vectors of "
486 "different sizes", ast_expression::operator_string(op));
487 return glsl_type::error_type;
488 }
489
490 /* "If one operand is a scalar and the other a vector, the scalar is
491 * applied component-wise to the vector, resulting in the same type as
492 * the vector. The fundamental types of the operands [...] will be the
493 * resulting fundamental type."
494 */
495 if (type_a->is_scalar())
496 return type_b;
497 else
498 return type_a;
499 }
500
501 static const struct glsl_type *
502 modulus_result_type(const struct glsl_type *type_a,
503 const struct glsl_type *type_b,
504 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
505 {
506 if (!state->check_version(130, 300, loc, "operator '%%' is reserved")) {
507 return glsl_type::error_type;
508 }
509
510 /* From GLSL 1.50 spec, page 56:
511 * "The operator modulus (%) operates on signed or unsigned integers or
512 * integer vectors. The operand types must both be signed or both be
513 * unsigned."
514 */
515 if (!type_a->is_integer()) {
516 _mesa_glsl_error(loc, state, "LHS of operator %% must be an integer");
517 return glsl_type::error_type;
518 }
519 if (!type_b->is_integer()) {
520 _mesa_glsl_error(loc, state, "RHS of operator %% must be an integer");
521 return glsl_type::error_type;
522 }
523 if (type_a->base_type != type_b->base_type) {
524 _mesa_glsl_error(loc, state,
525 "operands of %% must have the same base type");
526 return glsl_type::error_type;
527 }
528
529 /* "The operands cannot be vectors of differing size. If one operand is
530 * a scalar and the other vector, then the scalar is applied component-
531 * wise to the vector, resulting in the same type as the vector. If both
532 * are vectors of the same size, the result is computed component-wise."
533 */
534 if (type_a->is_vector()) {
535 if (!type_b->is_vector()
536 || (type_a->vector_elements == type_b->vector_elements))
537 return type_a;
538 } else
539 return type_b;
540
541 /* "The operator modulus (%) is not defined for any other data types
542 * (non-integer types)."
543 */
544 _mesa_glsl_error(loc, state, "type mismatch");
545 return glsl_type::error_type;
546 }
547
548
549 static const struct glsl_type *
550 relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
551 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
552 {
553 const glsl_type *type_a = value_a->type;
554 const glsl_type *type_b = value_b->type;
555
556 /* From GLSL 1.50 spec, page 56:
557 * "The relational operators greater than (>), less than (<), greater
558 * than or equal (>=), and less than or equal (<=) operate only on
559 * scalar integer and scalar floating-point expressions."
560 */
561 if (!type_a->is_numeric()
562 || !type_b->is_numeric()
563 || !type_a->is_scalar()
564 || !type_b->is_scalar()) {
565 _mesa_glsl_error(loc, state,
566 "operands to relational operators must be scalar and "
567 "numeric");
568 return glsl_type::error_type;
569 }
570
571 /* "Either the operands' types must match, or the conversions from
572 * Section 4.1.10 "Implicit Conversions" will be applied to the integer
573 * operand, after which the types must match."
574 */
575 if (!apply_implicit_conversion(type_a, value_b, state)
576 && !apply_implicit_conversion(type_b, value_a, state)) {
577 _mesa_glsl_error(loc, state,
578 "could not implicitly convert operands to "
579 "relational operator");
580 return glsl_type::error_type;
581 }
582 type_a = value_a->type;
583 type_b = value_b->type;
584
585 if (type_a->base_type != type_b->base_type) {
586 _mesa_glsl_error(loc, state, "base type mismatch");
587 return glsl_type::error_type;
588 }
589
590 /* "The result is scalar Boolean."
591 */
592 return glsl_type::bool_type;
593 }
594
595 /**
596 * \brief Return the result type of a bit-shift operation.
597 *
598 * If the given types to the bit-shift operator are invalid, return
599 * glsl_type::error_type.
600 *
601 * \param type_a Type of LHS of bit-shift op
602 * \param type_b Type of RHS of bit-shift op
603 */
604 static const struct glsl_type *
605 shift_result_type(const struct glsl_type *type_a,
606 const struct glsl_type *type_b,
607 ast_operators op,
608 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
609 {
610 if (!state->check_bitwise_operations_allowed(loc)) {
611 return glsl_type::error_type;
612 }
613
614 /* From page 50 (page 56 of the PDF) of the GLSL 1.30 spec:
615 *
616 * "The shift operators (<<) and (>>). For both operators, the operands
617 * must be signed or unsigned integers or integer vectors. One operand
618 * can be signed while the other is unsigned."
619 */
620 if (!type_a->is_integer()) {
621 _mesa_glsl_error(loc, state, "LHS of operator %s must be an integer or "
622 "integer vector", ast_expression::operator_string(op));
623 return glsl_type::error_type;
624
625 }
626 if (!type_b->is_integer()) {
627 _mesa_glsl_error(loc, state, "RHS of operator %s must be an integer or "
628 "integer vector", ast_expression::operator_string(op));
629 return glsl_type::error_type;
630 }
631
632 /* "If the first operand is a scalar, the second operand has to be
633 * a scalar as well."
634 */
635 if (type_a->is_scalar() && !type_b->is_scalar()) {
636 _mesa_glsl_error(loc, state, "if the first operand of %s is scalar, the "
637 "second must be scalar as well",
638 ast_expression::operator_string(op));
639 return glsl_type::error_type;
640 }
641
642 /* If both operands are vectors, check that they have same number of
643 * elements.
644 */
645 if (type_a->is_vector() &&
646 type_b->is_vector() &&
647 type_a->vector_elements != type_b->vector_elements) {
648 _mesa_glsl_error(loc, state, "vector operands to operator %s must "
649 "have same number of elements",
650 ast_expression::operator_string(op));
651 return glsl_type::error_type;
652 }
653
654 /* "In all cases, the resulting type will be the same type as the left
655 * operand."
656 */
657 return type_a;
658 }
659
660 /**
661 * Validates that a value can be assigned to a location with a specified type
662 *
663 * Validates that \c rhs can be assigned to some location. If the types are
664 * not an exact match but an automatic conversion is possible, \c rhs will be
665 * converted.
666 *
667 * \return
668 * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
669 * Otherwise the actual RHS to be assigned will be returned. This may be
670 * \c rhs, or it may be \c rhs after some type conversion.
671 *
672 * \note
673 * In addition to being used for assignments, this function is used to
674 * type-check return values.
675 */
676 ir_rvalue *
677 validate_assignment(struct _mesa_glsl_parse_state *state,
678 YYLTYPE loc, const glsl_type *lhs_type,
679 ir_rvalue *rhs, bool is_initializer)
680 {
681 /* If there is already some error in the RHS, just return it. Anything
682 * else will lead to an avalanche of error message back to the user.
683 */
684 if (rhs->type->is_error())
685 return rhs;
686
687 /* If the types are identical, the assignment can trivially proceed.
688 */
689 if (rhs->type == lhs_type)
690 return rhs;
691
692 /* If the array element types are the same and the LHS is unsized,
693 * the assignment is okay for initializers embedded in variable
694 * declarations.
695 *
696 * Note: Whole-array assignments are not permitted in GLSL 1.10, but this
697 * is handled by ir_dereference::is_lvalue.
698 */
699 if (lhs_type->is_unsized_array() && rhs->type->is_array()
700 && (lhs_type->element_type() == rhs->type->element_type())) {
701 if (is_initializer) {
702 return rhs;
703 } else {
704 _mesa_glsl_error(&loc, state,
705 "implicitly sized arrays cannot be assigned");
706 return NULL;
707 }
708 }
709
710 /* Check for implicit conversion in GLSL 1.20 */
711 if (apply_implicit_conversion(lhs_type, rhs, state)) {
712 if (rhs->type == lhs_type)
713 return rhs;
714 }
715
716 _mesa_glsl_error(&loc, state,
717 "%s of type %s cannot be assigned to "
718 "variable of type %s",
719 is_initializer ? "initializer" : "value",
720 rhs->type->name, lhs_type->name);
721
722 return NULL;
723 }
724
725 static void
726 mark_whole_array_access(ir_rvalue *access)
727 {
728 ir_dereference_variable *deref = access->as_dereference_variable();
729
730 if (deref && deref->var) {
731 deref->var->max_array_access = deref->type->length - 1;
732 }
733 }
734
735 ir_rvalue *
736 do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state,
737 const char *non_lvalue_description,
738 ir_rvalue *lhs, ir_rvalue *rhs, bool is_initializer,
739 YYLTYPE lhs_loc)
740 {
741 void *ctx = state;
742 bool error_emitted = (lhs->type->is_error() || rhs->type->is_error());
743
744 /* If the assignment LHS comes back as an ir_binop_vector_extract
745 * expression, move it to the RHS as an ir_triop_vector_insert.
746 */
747 if (lhs->ir_type == ir_type_expression) {
748 ir_expression *const expr = lhs->as_expression();
749
750 if (unlikely(expr->operation == ir_binop_vector_extract)) {
751 ir_rvalue *new_rhs =
752 validate_assignment(state, lhs_loc, lhs->type,
753 rhs, is_initializer);
754
755 if (new_rhs == NULL) {
756 return lhs;
757 } else {
758 rhs = new(ctx) ir_expression(ir_triop_vector_insert,
759 expr->operands[0]->type,
760 expr->operands[0],
761 new_rhs,
762 expr->operands[1]);
763 lhs = expr->operands[0]->clone(ctx, NULL);
764 }
765 }
766 }
767
768 ir_variable *lhs_var = lhs->variable_referenced();
769 if (lhs_var)
770 lhs_var->assigned = true;
771
772 if (!error_emitted) {
773 if (non_lvalue_description != NULL) {
774 _mesa_glsl_error(&lhs_loc, state,
775 "assignment to %s",
776 non_lvalue_description);
777 error_emitted = true;
778 } else if (lhs->variable_referenced() != NULL
779 && lhs->variable_referenced()->data.read_only) {
780 _mesa_glsl_error(&lhs_loc, state,
781 "assignment to read-only variable '%s'",
782 lhs->variable_referenced()->name);
783 error_emitted = true;
784
785 } else if (lhs->type->is_array() &&
786 !state->check_version(120, 300, &lhs_loc,
787 "whole array assignment forbidden")) {
788 /* From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
789 *
790 * "Other binary or unary expressions, non-dereferenced
791 * arrays, function names, swizzles with repeated fields,
792 * and constants cannot be l-values."
793 *
794 * The restriction on arrays is lifted in GLSL 1.20 and GLSL ES 3.00.
795 */
796 error_emitted = true;
797 } else if (!lhs->is_lvalue()) {
798 _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment");
799 error_emitted = true;
800 }
801 }
802
803 ir_rvalue *new_rhs =
804 validate_assignment(state, lhs_loc, lhs->type, rhs, is_initializer);
805 if (new_rhs != NULL) {
806 rhs = new_rhs;
807
808 /* If the LHS array was not declared with a size, it takes it size from
809 * the RHS. If the LHS is an l-value and a whole array, it must be a
810 * dereference of a variable. Any other case would require that the LHS
811 * is either not an l-value or not a whole array.
812 */
813 if (lhs->type->is_unsized_array()) {
814 ir_dereference *const d = lhs->as_dereference();
815
816 assert(d != NULL);
817
818 ir_variable *const var = d->variable_referenced();
819
820 assert(var != NULL);
821
822 if (var->max_array_access >= unsigned(rhs->type->array_size())) {
823 /* FINISHME: This should actually log the location of the RHS. */
824 _mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to "
825 "previous access",
826 var->max_array_access);
827 }
828
829 var->type = glsl_type::get_array_instance(lhs->type->element_type(),
830 rhs->type->array_size());
831 d->type = var->type;
832 }
833 mark_whole_array_access(rhs);
834 mark_whole_array_access(lhs);
835 }
836
837 /* Most callers of do_assignment (assign, add_assign, pre_inc/dec,
838 * but not post_inc) need the converted assigned value as an rvalue
839 * to handle things like:
840 *
841 * i = j += 1;
842 *
843 * So we always just store the computed value being assigned to a
844 * temporary and return a deref of that temporary. If the rvalue
845 * ends up not being used, the temp will get copy-propagated out.
846 */
847 ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp",
848 ir_var_temporary);
849 ir_dereference_variable *deref_var = new(ctx) ir_dereference_variable(var);
850 instructions->push_tail(var);
851 instructions->push_tail(new(ctx) ir_assignment(deref_var, rhs));
852 deref_var = new(ctx) ir_dereference_variable(var);
853
854 if (!error_emitted)
855 instructions->push_tail(new(ctx) ir_assignment(lhs, deref_var));
856
857 return new(ctx) ir_dereference_variable(var);
858 }
859
860 static ir_rvalue *
861 get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue)
862 {
863 void *ctx = ralloc_parent(lvalue);
864 ir_variable *var;
865
866 var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp",
867 ir_var_temporary);
868 instructions->push_tail(var);
869 var->mode = ir_var_auto;
870
871 instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
872 lvalue));
873
874 return new(ctx) ir_dereference_variable(var);
875 }
876
877
878 ir_rvalue *
879 ast_node::hir(exec_list *instructions,
880 struct _mesa_glsl_parse_state *state)
881 {
882 (void) instructions;
883 (void) state;
884
885 return NULL;
886 }
887
888 static ir_rvalue *
889 do_comparison(void *mem_ctx, int operation, ir_rvalue *op0, ir_rvalue *op1)
890 {
891 int join_op;
892 ir_rvalue *cmp = NULL;
893
894 if (operation == ir_binop_all_equal)
895 join_op = ir_binop_logic_and;
896 else
897 join_op = ir_binop_logic_or;
898
899 switch (op0->type->base_type) {
900 case GLSL_TYPE_FLOAT:
901 case GLSL_TYPE_UINT:
902 case GLSL_TYPE_INT:
903 case GLSL_TYPE_BOOL:
904 return new(mem_ctx) ir_expression(operation, op0, op1);
905
906 case GLSL_TYPE_ARRAY: {
907 for (unsigned int i = 0; i < op0->type->length; i++) {
908 ir_rvalue *e0, *e1, *result;
909
910 e0 = new(mem_ctx) ir_dereference_array(op0->clone(mem_ctx, NULL),
911 new(mem_ctx) ir_constant(i));
912 e1 = new(mem_ctx) ir_dereference_array(op1->clone(mem_ctx, NULL),
913 new(mem_ctx) ir_constant(i));
914 result = do_comparison(mem_ctx, operation, e0, e1);
915
916 if (cmp) {
917 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
918 } else {
919 cmp = result;
920 }
921 }
922
923 mark_whole_array_access(op0);
924 mark_whole_array_access(op1);
925 break;
926 }
927
928 case GLSL_TYPE_STRUCT: {
929 for (unsigned int i = 0; i < op0->type->length; i++) {
930 ir_rvalue *e0, *e1, *result;
931 const char *field_name = op0->type->fields.structure[i].name;
932
933 e0 = new(mem_ctx) ir_dereference_record(op0->clone(mem_ctx, NULL),
934 field_name);
935 e1 = new(mem_ctx) ir_dereference_record(op1->clone(mem_ctx, NULL),
936 field_name);
937 result = do_comparison(mem_ctx, operation, e0, e1);
938
939 if (cmp) {
940 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
941 } else {
942 cmp = result;
943 }
944 }
945 break;
946 }
947
948 case GLSL_TYPE_ERROR:
949 case GLSL_TYPE_VOID:
950 case GLSL_TYPE_SAMPLER:
951 case GLSL_TYPE_INTERFACE:
952 case GLSL_TYPE_ATOMIC_UINT:
953 /* I assume a comparison of a struct containing a sampler just
954 * ignores the sampler present in the type.
955 */
956 break;
957 }
958
959 if (cmp == NULL)
960 cmp = new(mem_ctx) ir_constant(true);
961
962 return cmp;
963 }
964
965 /* For logical operations, we want to ensure that the operands are
966 * scalar booleans. If it isn't, emit an error and return a constant
967 * boolean to avoid triggering cascading error messages.
968 */
969 ir_rvalue *
970 get_scalar_boolean_operand(exec_list *instructions,
971 struct _mesa_glsl_parse_state *state,
972 ast_expression *parent_expr,
973 int operand,
974 const char *operand_name,
975 bool *error_emitted)
976 {
977 ast_expression *expr = parent_expr->subexpressions[operand];
978 void *ctx = state;
979 ir_rvalue *val = expr->hir(instructions, state);
980
981 if (val->type->is_boolean() && val->type->is_scalar())
982 return val;
983
984 if (!*error_emitted) {
985 YYLTYPE loc = expr->get_location();
986 _mesa_glsl_error(&loc, state, "%s of `%s' must be scalar boolean",
987 operand_name,
988 parent_expr->operator_string(parent_expr->oper));
989 *error_emitted = true;
990 }
991
992 return new(ctx) ir_constant(true);
993 }
994
995 /**
996 * If name refers to a builtin array whose maximum allowed size is less than
997 * size, report an error and return true. Otherwise return false.
998 */
999 void
1000 check_builtin_array_max_size(const char *name, unsigned size,
1001 YYLTYPE loc, struct _mesa_glsl_parse_state *state)
1002 {
1003 if ((strcmp("gl_TexCoord", name) == 0)
1004 && (size > state->Const.MaxTextureCoords)) {
1005 /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec:
1006 *
1007 * "The size [of gl_TexCoord] can be at most
1008 * gl_MaxTextureCoords."
1009 */
1010 _mesa_glsl_error(&loc, state, "`gl_TexCoord' array size cannot "
1011 "be larger than gl_MaxTextureCoords (%u)",
1012 state->Const.MaxTextureCoords);
1013 } else if (strcmp("gl_ClipDistance", name) == 0
1014 && size > state->Const.MaxClipPlanes) {
1015 /* From section 7.1 (Vertex Shader Special Variables) of the
1016 * GLSL 1.30 spec:
1017 *
1018 * "The gl_ClipDistance array is predeclared as unsized and
1019 * must be sized by the shader either redeclaring it with a
1020 * size or indexing it only with integral constant
1021 * expressions. ... The size can be at most
1022 * gl_MaxClipDistances."
1023 */
1024 _mesa_glsl_error(&loc, state, "`gl_ClipDistance' array size cannot "
1025 "be larger than gl_MaxClipDistances (%u)",
1026 state->Const.MaxClipPlanes);
1027 }
1028 }
1029
1030 /**
1031 * Create the constant 1, of a which is appropriate for incrementing and
1032 * decrementing values of the given GLSL type. For example, if type is vec4,
1033 * this creates a constant value of 1.0 having type float.
1034 *
1035 * If the given type is invalid for increment and decrement operators, return
1036 * a floating point 1--the error will be detected later.
1037 */
1038 static ir_rvalue *
1039 constant_one_for_inc_dec(void *ctx, const glsl_type *type)
1040 {
1041 switch (type->base_type) {
1042 case GLSL_TYPE_UINT:
1043 return new(ctx) ir_constant((unsigned) 1);
1044 case GLSL_TYPE_INT:
1045 return new(ctx) ir_constant(1);
1046 default:
1047 case GLSL_TYPE_FLOAT:
1048 return new(ctx) ir_constant(1.0f);
1049 }
1050 }
1051
1052 ir_rvalue *
1053 ast_expression::hir(exec_list *instructions,
1054 struct _mesa_glsl_parse_state *state)
1055 {
1056 void *ctx = state;
1057 static const int operations[AST_NUM_OPERATORS] = {
1058 -1, /* ast_assign doesn't convert to ir_expression. */
1059 -1, /* ast_plus doesn't convert to ir_expression. */
1060 ir_unop_neg,
1061 ir_binop_add,
1062 ir_binop_sub,
1063 ir_binop_mul,
1064 ir_binop_div,
1065 ir_binop_mod,
1066 ir_binop_lshift,
1067 ir_binop_rshift,
1068 ir_binop_less,
1069 ir_binop_greater,
1070 ir_binop_lequal,
1071 ir_binop_gequal,
1072 ir_binop_all_equal,
1073 ir_binop_any_nequal,
1074 ir_binop_bit_and,
1075 ir_binop_bit_xor,
1076 ir_binop_bit_or,
1077 ir_unop_bit_not,
1078 ir_binop_logic_and,
1079 ir_binop_logic_xor,
1080 ir_binop_logic_or,
1081 ir_unop_logic_not,
1082
1083 /* Note: The following block of expression types actually convert
1084 * to multiple IR instructions.
1085 */
1086 ir_binop_mul, /* ast_mul_assign */
1087 ir_binop_div, /* ast_div_assign */
1088 ir_binop_mod, /* ast_mod_assign */
1089 ir_binop_add, /* ast_add_assign */
1090 ir_binop_sub, /* ast_sub_assign */
1091 ir_binop_lshift, /* ast_ls_assign */
1092 ir_binop_rshift, /* ast_rs_assign */
1093 ir_binop_bit_and, /* ast_and_assign */
1094 ir_binop_bit_xor, /* ast_xor_assign */
1095 ir_binop_bit_or, /* ast_or_assign */
1096
1097 -1, /* ast_conditional doesn't convert to ir_expression. */
1098 ir_binop_add, /* ast_pre_inc. */
1099 ir_binop_sub, /* ast_pre_dec. */
1100 ir_binop_add, /* ast_post_inc. */
1101 ir_binop_sub, /* ast_post_dec. */
1102 -1, /* ast_field_selection doesn't conv to ir_expression. */
1103 -1, /* ast_array_index doesn't convert to ir_expression. */
1104 -1, /* ast_function_call doesn't conv to ir_expression. */
1105 -1, /* ast_identifier doesn't convert to ir_expression. */
1106 -1, /* ast_int_constant doesn't convert to ir_expression. */
1107 -1, /* ast_uint_constant doesn't conv to ir_expression. */
1108 -1, /* ast_float_constant doesn't conv to ir_expression. */
1109 -1, /* ast_bool_constant doesn't conv to ir_expression. */
1110 -1, /* ast_sequence doesn't convert to ir_expression. */
1111 };
1112 ir_rvalue *result = NULL;
1113 ir_rvalue *op[3];
1114 const struct glsl_type *type; /* a temporary variable for switch cases */
1115 bool error_emitted = false;
1116 YYLTYPE loc;
1117
1118 loc = this->get_location();
1119
1120 switch (this->oper) {
1121 case ast_aggregate:
1122 assert(!"ast_aggregate: Should never get here.");
1123 break;
1124
1125 case ast_assign: {
1126 op[0] = this->subexpressions[0]->hir(instructions, state);
1127 op[1] = this->subexpressions[1]->hir(instructions, state);
1128
1129 result = do_assignment(instructions, state,
1130 this->subexpressions[0]->non_lvalue_description,
1131 op[0], op[1], false,
1132 this->subexpressions[0]->get_location());
1133 error_emitted = result->type->is_error();
1134 break;
1135 }
1136
1137 case ast_plus:
1138 op[0] = this->subexpressions[0]->hir(instructions, state);
1139
1140 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1141
1142 error_emitted = type->is_error();
1143
1144 result = op[0];
1145 break;
1146
1147 case ast_neg:
1148 op[0] = this->subexpressions[0]->hir(instructions, state);
1149
1150 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1151
1152 error_emitted = type->is_error();
1153
1154 result = new(ctx) ir_expression(operations[this->oper], type,
1155 op[0], NULL);
1156 break;
1157
1158 case ast_add:
1159 case ast_sub:
1160 case ast_mul:
1161 case ast_div:
1162 op[0] = this->subexpressions[0]->hir(instructions, state);
1163 op[1] = this->subexpressions[1]->hir(instructions, state);
1164
1165 type = arithmetic_result_type(op[0], op[1],
1166 (this->oper == ast_mul),
1167 state, & loc);
1168 error_emitted = type->is_error();
1169
1170 result = new(ctx) ir_expression(operations[this->oper], type,
1171 op[0], op[1]);
1172 break;
1173
1174 case ast_mod:
1175 op[0] = this->subexpressions[0]->hir(instructions, state);
1176 op[1] = this->subexpressions[1]->hir(instructions, state);
1177
1178 type = modulus_result_type(op[0]->type, op[1]->type, state, & loc);
1179
1180 assert(operations[this->oper] == ir_binop_mod);
1181
1182 result = new(ctx) ir_expression(operations[this->oper], type,
1183 op[0], op[1]);
1184 error_emitted = type->is_error();
1185 break;
1186
1187 case ast_lshift:
1188 case ast_rshift:
1189 if (!state->check_bitwise_operations_allowed(&loc)) {
1190 error_emitted = true;
1191 }
1192
1193 op[0] = this->subexpressions[0]->hir(instructions, state);
1194 op[1] = this->subexpressions[1]->hir(instructions, state);
1195 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1196 &loc);
1197 result = new(ctx) ir_expression(operations[this->oper], type,
1198 op[0], op[1]);
1199 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1200 break;
1201
1202 case ast_less:
1203 case ast_greater:
1204 case ast_lequal:
1205 case ast_gequal:
1206 op[0] = this->subexpressions[0]->hir(instructions, state);
1207 op[1] = this->subexpressions[1]->hir(instructions, state);
1208
1209 type = relational_result_type(op[0], op[1], state, & loc);
1210
1211 /* The relational operators must either generate an error or result
1212 * in a scalar boolean. See page 57 of the GLSL 1.50 spec.
1213 */
1214 assert(type->is_error()
1215 || ((type->base_type == GLSL_TYPE_BOOL)
1216 && type->is_scalar()));
1217
1218 result = new(ctx) ir_expression(operations[this->oper], type,
1219 op[0], op[1]);
1220 error_emitted = type->is_error();
1221 break;
1222
1223 case ast_nequal:
1224 case ast_equal:
1225 op[0] = this->subexpressions[0]->hir(instructions, state);
1226 op[1] = this->subexpressions[1]->hir(instructions, state);
1227
1228 /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
1229 *
1230 * "The equality operators equal (==), and not equal (!=)
1231 * operate on all types. They result in a scalar Boolean. If
1232 * the operand types do not match, then there must be a
1233 * conversion from Section 4.1.10 "Implicit Conversions"
1234 * applied to one operand that can make them match, in which
1235 * case this conversion is done."
1236 */
1237 if ((!apply_implicit_conversion(op[0]->type, op[1], state)
1238 && !apply_implicit_conversion(op[1]->type, op[0], state))
1239 || (op[0]->type != op[1]->type)) {
1240 _mesa_glsl_error(& loc, state, "operands of `%s' must have the same "
1241 "type", (this->oper == ast_equal) ? "==" : "!=");
1242 error_emitted = true;
1243 } else if ((op[0]->type->is_array() || op[1]->type->is_array()) &&
1244 !state->check_version(120, 300, &loc,
1245 "array comparisons forbidden")) {
1246 error_emitted = true;
1247 } else if ((op[0]->type->contains_opaque() ||
1248 op[1]->type->contains_opaque())) {
1249 _mesa_glsl_error(&loc, state, "opaque type comparisons forbidden");
1250 error_emitted = true;
1251 }
1252
1253 if (error_emitted) {
1254 result = new(ctx) ir_constant(false);
1255 } else {
1256 result = do_comparison(ctx, operations[this->oper], op[0], op[1]);
1257 assert(result->type == glsl_type::bool_type);
1258 }
1259 break;
1260
1261 case ast_bit_and:
1262 case ast_bit_xor:
1263 case ast_bit_or:
1264 op[0] = this->subexpressions[0]->hir(instructions, state);
1265 op[1] = this->subexpressions[1]->hir(instructions, state);
1266 type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
1267 state, &loc);
1268 result = new(ctx) ir_expression(operations[this->oper], type,
1269 op[0], op[1]);
1270 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1271 break;
1272
1273 case ast_bit_not:
1274 op[0] = this->subexpressions[0]->hir(instructions, state);
1275
1276 if (!state->check_bitwise_operations_allowed(&loc)) {
1277 error_emitted = true;
1278 }
1279
1280 if (!op[0]->type->is_integer()) {
1281 _mesa_glsl_error(&loc, state, "operand of `~' must be an integer");
1282 error_emitted = true;
1283 }
1284
1285 type = error_emitted ? glsl_type::error_type : op[0]->type;
1286 result = new(ctx) ir_expression(ir_unop_bit_not, type, op[0], NULL);
1287 break;
1288
1289 case ast_logic_and: {
1290 exec_list rhs_instructions;
1291 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1292 "LHS", &error_emitted);
1293 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1294 "RHS", &error_emitted);
1295
1296 if (rhs_instructions.is_empty()) {
1297 result = new(ctx) ir_expression(ir_binop_logic_and, op[0], op[1]);
1298 type = result->type;
1299 } else {
1300 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1301 "and_tmp",
1302 ir_var_temporary);
1303 instructions->push_tail(tmp);
1304
1305 ir_if *const stmt = new(ctx) ir_if(op[0]);
1306 instructions->push_tail(stmt);
1307
1308 stmt->then_instructions.append_list(&rhs_instructions);
1309 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1310 ir_assignment *const then_assign =
1311 new(ctx) ir_assignment(then_deref, op[1]);
1312 stmt->then_instructions.push_tail(then_assign);
1313
1314 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1315 ir_assignment *const else_assign =
1316 new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false));
1317 stmt->else_instructions.push_tail(else_assign);
1318
1319 result = new(ctx) ir_dereference_variable(tmp);
1320 type = tmp->type;
1321 }
1322 break;
1323 }
1324
1325 case ast_logic_or: {
1326 exec_list rhs_instructions;
1327 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1328 "LHS", &error_emitted);
1329 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1330 "RHS", &error_emitted);
1331
1332 if (rhs_instructions.is_empty()) {
1333 result = new(ctx) ir_expression(ir_binop_logic_or, op[0], op[1]);
1334 type = result->type;
1335 } else {
1336 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1337 "or_tmp",
1338 ir_var_temporary);
1339 instructions->push_tail(tmp);
1340
1341 ir_if *const stmt = new(ctx) ir_if(op[0]);
1342 instructions->push_tail(stmt);
1343
1344 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1345 ir_assignment *const then_assign =
1346 new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true));
1347 stmt->then_instructions.push_tail(then_assign);
1348
1349 stmt->else_instructions.append_list(&rhs_instructions);
1350 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1351 ir_assignment *const else_assign =
1352 new(ctx) ir_assignment(else_deref, op[1]);
1353 stmt->else_instructions.push_tail(else_assign);
1354
1355 result = new(ctx) ir_dereference_variable(tmp);
1356 type = tmp->type;
1357 }
1358 break;
1359 }
1360
1361 case ast_logic_xor:
1362 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1363 *
1364 * "The logical binary operators and (&&), or ( | | ), and
1365 * exclusive or (^^). They operate only on two Boolean
1366 * expressions and result in a Boolean expression."
1367 */
1368 op[0] = get_scalar_boolean_operand(instructions, state, this, 0, "LHS",
1369 &error_emitted);
1370 op[1] = get_scalar_boolean_operand(instructions, state, this, 1, "RHS",
1371 &error_emitted);
1372
1373 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1374 op[0], op[1]);
1375 break;
1376
1377 case ast_logic_not:
1378 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1379 "operand", &error_emitted);
1380
1381 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1382 op[0], NULL);
1383 break;
1384
1385 case ast_mul_assign:
1386 case ast_div_assign:
1387 case ast_add_assign:
1388 case ast_sub_assign: {
1389 op[0] = this->subexpressions[0]->hir(instructions, state);
1390 op[1] = this->subexpressions[1]->hir(instructions, state);
1391
1392 type = arithmetic_result_type(op[0], op[1],
1393 (this->oper == ast_mul_assign),
1394 state, & loc);
1395
1396 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1397 op[0], op[1]);
1398
1399 result = do_assignment(instructions, state,
1400 this->subexpressions[0]->non_lvalue_description,
1401 op[0]->clone(ctx, NULL), temp_rhs, false,
1402 this->subexpressions[0]->get_location());
1403 error_emitted = (op[0]->type->is_error());
1404
1405 /* GLSL 1.10 does not allow array assignment. However, we don't have to
1406 * explicitly test for this because none of the binary expression
1407 * operators allow array operands either.
1408 */
1409
1410 break;
1411 }
1412
1413 case ast_mod_assign: {
1414 op[0] = this->subexpressions[0]->hir(instructions, state);
1415 op[1] = this->subexpressions[1]->hir(instructions, state);
1416
1417 type = modulus_result_type(op[0]->type, op[1]->type, state, & loc);
1418
1419 assert(operations[this->oper] == ir_binop_mod);
1420
1421 ir_rvalue *temp_rhs;
1422 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1423 op[0], op[1]);
1424
1425 result = do_assignment(instructions, state,
1426 this->subexpressions[0]->non_lvalue_description,
1427 op[0]->clone(ctx, NULL), temp_rhs, false,
1428 this->subexpressions[0]->get_location());
1429 error_emitted = type->is_error();
1430 break;
1431 }
1432
1433 case ast_ls_assign:
1434 case ast_rs_assign: {
1435 op[0] = this->subexpressions[0]->hir(instructions, state);
1436 op[1] = this->subexpressions[1]->hir(instructions, state);
1437 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1438 &loc);
1439 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1440 type, op[0], op[1]);
1441 result = do_assignment(instructions, state,
1442 this->subexpressions[0]->non_lvalue_description,
1443 op[0]->clone(ctx, NULL), temp_rhs, false,
1444 this->subexpressions[0]->get_location());
1445 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1446 break;
1447 }
1448
1449 case ast_and_assign:
1450 case ast_xor_assign:
1451 case ast_or_assign: {
1452 op[0] = this->subexpressions[0]->hir(instructions, state);
1453 op[1] = this->subexpressions[1]->hir(instructions, state);
1454 type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
1455 state, &loc);
1456 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1457 type, op[0], op[1]);
1458 result = do_assignment(instructions, state,
1459 this->subexpressions[0]->non_lvalue_description,
1460 op[0]->clone(ctx, NULL), temp_rhs, false,
1461 this->subexpressions[0]->get_location());
1462 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1463 break;
1464 }
1465
1466 case ast_conditional: {
1467 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1468 *
1469 * "The ternary selection operator (?:). It operates on three
1470 * expressions (exp1 ? exp2 : exp3). This operator evaluates the
1471 * first expression, which must result in a scalar Boolean."
1472 */
1473 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1474 "condition", &error_emitted);
1475
1476 /* The :? operator is implemented by generating an anonymous temporary
1477 * followed by an if-statement. The last instruction in each branch of
1478 * the if-statement assigns a value to the anonymous temporary. This
1479 * temporary is the r-value of the expression.
1480 */
1481 exec_list then_instructions;
1482 exec_list else_instructions;
1483
1484 op[1] = this->subexpressions[1]->hir(&then_instructions, state);
1485 op[2] = this->subexpressions[2]->hir(&else_instructions, state);
1486
1487 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1488 *
1489 * "The second and third expressions can be any type, as
1490 * long their types match, or there is a conversion in
1491 * Section 4.1.10 "Implicit Conversions" that can be applied
1492 * to one of the expressions to make their types match. This
1493 * resulting matching type is the type of the entire
1494 * expression."
1495 */
1496 if ((!apply_implicit_conversion(op[1]->type, op[2], state)
1497 && !apply_implicit_conversion(op[2]->type, op[1], state))
1498 || (op[1]->type != op[2]->type)) {
1499 YYLTYPE loc = this->subexpressions[1]->get_location();
1500
1501 _mesa_glsl_error(& loc, state, "second and third operands of ?: "
1502 "operator must have matching types");
1503 error_emitted = true;
1504 type = glsl_type::error_type;
1505 } else {
1506 type = op[1]->type;
1507 }
1508
1509 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1510 *
1511 * "The second and third expressions must be the same type, but can
1512 * be of any type other than an array."
1513 */
1514 if (type->is_array() &&
1515 !state->check_version(120, 300, &loc,
1516 "second and third operands of ?: operator "
1517 "cannot be arrays")) {
1518 error_emitted = true;
1519 }
1520
1521 ir_constant *cond_val = op[0]->constant_expression_value();
1522 ir_constant *then_val = op[1]->constant_expression_value();
1523 ir_constant *else_val = op[2]->constant_expression_value();
1524
1525 if (then_instructions.is_empty()
1526 && else_instructions.is_empty()
1527 && (cond_val != NULL) && (then_val != NULL) && (else_val != NULL)) {
1528 result = (cond_val->value.b[0]) ? then_val : else_val;
1529 } else {
1530 ir_variable *const tmp =
1531 new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary);
1532 instructions->push_tail(tmp);
1533
1534 ir_if *const stmt = new(ctx) ir_if(op[0]);
1535 instructions->push_tail(stmt);
1536
1537 then_instructions.move_nodes_to(& stmt->then_instructions);
1538 ir_dereference *const then_deref =
1539 new(ctx) ir_dereference_variable(tmp);
1540 ir_assignment *const then_assign =
1541 new(ctx) ir_assignment(then_deref, op[1]);
1542 stmt->then_instructions.push_tail(then_assign);
1543
1544 else_instructions.move_nodes_to(& stmt->else_instructions);
1545 ir_dereference *const else_deref =
1546 new(ctx) ir_dereference_variable(tmp);
1547 ir_assignment *const else_assign =
1548 new(ctx) ir_assignment(else_deref, op[2]);
1549 stmt->else_instructions.push_tail(else_assign);
1550
1551 result = new(ctx) ir_dereference_variable(tmp);
1552 }
1553 break;
1554 }
1555
1556 case ast_pre_inc:
1557 case ast_pre_dec: {
1558 this->non_lvalue_description = (this->oper == ast_pre_inc)
1559 ? "pre-increment operation" : "pre-decrement operation";
1560
1561 op[0] = this->subexpressions[0]->hir(instructions, state);
1562 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1563
1564 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1565
1566 ir_rvalue *temp_rhs;
1567 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1568 op[0], op[1]);
1569
1570 result = do_assignment(instructions, state,
1571 this->subexpressions[0]->non_lvalue_description,
1572 op[0]->clone(ctx, NULL), temp_rhs, false,
1573 this->subexpressions[0]->get_location());
1574 error_emitted = op[0]->type->is_error();
1575 break;
1576 }
1577
1578 case ast_post_inc:
1579 case ast_post_dec: {
1580 this->non_lvalue_description = (this->oper == ast_post_inc)
1581 ? "post-increment operation" : "post-decrement operation";
1582 op[0] = this->subexpressions[0]->hir(instructions, state);
1583 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1584
1585 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1586
1587 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1588
1589 ir_rvalue *temp_rhs;
1590 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1591 op[0], op[1]);
1592
1593 /* Get a temporary of a copy of the lvalue before it's modified.
1594 * This may get thrown away later.
1595 */
1596 result = get_lvalue_copy(instructions, op[0]->clone(ctx, NULL));
1597
1598 (void)do_assignment(instructions, state,
1599 this->subexpressions[0]->non_lvalue_description,
1600 op[0]->clone(ctx, NULL), temp_rhs, false,
1601 this->subexpressions[0]->get_location());
1602
1603 error_emitted = op[0]->type->is_error();
1604 break;
1605 }
1606
1607 case ast_field_selection:
1608 result = _mesa_ast_field_selection_to_hir(this, instructions, state);
1609 break;
1610
1611 case ast_array_index: {
1612 YYLTYPE index_loc = subexpressions[1]->get_location();
1613
1614 op[0] = subexpressions[0]->hir(instructions, state);
1615 op[1] = subexpressions[1]->hir(instructions, state);
1616
1617 result = _mesa_ast_array_index_to_hir(ctx, state, op[0], op[1],
1618 loc, index_loc);
1619
1620 if (result->type->is_error())
1621 error_emitted = true;
1622
1623 break;
1624 }
1625
1626 case ast_function_call:
1627 /* Should *NEVER* get here. ast_function_call should always be handled
1628 * by ast_function_expression::hir.
1629 */
1630 assert(0);
1631 break;
1632
1633 case ast_identifier: {
1634 /* ast_identifier can appear several places in a full abstract syntax
1635 * tree. This particular use must be at location specified in the grammar
1636 * as 'variable_identifier'.
1637 */
1638 ir_variable *var =
1639 state->symbols->get_variable(this->primary_expression.identifier);
1640
1641 if (var != NULL) {
1642 var->used = true;
1643 result = new(ctx) ir_dereference_variable(var);
1644 } else {
1645 _mesa_glsl_error(& loc, state, "`%s' undeclared",
1646 this->primary_expression.identifier);
1647
1648 result = ir_rvalue::error_value(ctx);
1649 error_emitted = true;
1650 }
1651 break;
1652 }
1653
1654 case ast_int_constant:
1655 result = new(ctx) ir_constant(this->primary_expression.int_constant);
1656 break;
1657
1658 case ast_uint_constant:
1659 result = new(ctx) ir_constant(this->primary_expression.uint_constant);
1660 break;
1661
1662 case ast_float_constant:
1663 result = new(ctx) ir_constant(this->primary_expression.float_constant);
1664 break;
1665
1666 case ast_bool_constant:
1667 result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant));
1668 break;
1669
1670 case ast_sequence: {
1671 /* It should not be possible to generate a sequence in the AST without
1672 * any expressions in it.
1673 */
1674 assert(!this->expressions.is_empty());
1675
1676 /* The r-value of a sequence is the last expression in the sequence. If
1677 * the other expressions in the sequence do not have side-effects (and
1678 * therefore add instructions to the instruction list), they get dropped
1679 * on the floor.
1680 */
1681 exec_node *previous_tail_pred = NULL;
1682 YYLTYPE previous_operand_loc = loc;
1683
1684 foreach_list_typed (ast_node, ast, link, &this->expressions) {
1685 /* If one of the operands of comma operator does not generate any
1686 * code, we want to emit a warning. At each pass through the loop
1687 * previous_tail_pred will point to the last instruction in the
1688 * stream *before* processing the previous operand. Naturally,
1689 * instructions->tail_pred will point to the last instruction in the
1690 * stream *after* processing the previous operand. If the two
1691 * pointers match, then the previous operand had no effect.
1692 *
1693 * The warning behavior here differs slightly from GCC. GCC will
1694 * only emit a warning if none of the left-hand operands have an
1695 * effect. However, it will emit a warning for each. I believe that
1696 * there are some cases in C (especially with GCC extensions) where
1697 * it is useful to have an intermediate step in a sequence have no
1698 * effect, but I don't think these cases exist in GLSL. Either way,
1699 * it would be a giant hassle to replicate that behavior.
1700 */
1701 if (previous_tail_pred == instructions->tail_pred) {
1702 _mesa_glsl_warning(&previous_operand_loc, state,
1703 "left-hand operand of comma expression has "
1704 "no effect");
1705 }
1706
1707 /* tail_pred is directly accessed instead of using the get_tail()
1708 * method for performance reasons. get_tail() has extra code to
1709 * return NULL when the list is empty. We don't care about that
1710 * here, so using tail_pred directly is fine.
1711 */
1712 previous_tail_pred = instructions->tail_pred;
1713 previous_operand_loc = ast->get_location();
1714
1715 result = ast->hir(instructions, state);
1716 }
1717
1718 /* Any errors should have already been emitted in the loop above.
1719 */
1720 error_emitted = true;
1721 break;
1722 }
1723 }
1724 type = NULL; /* use result->type, not type. */
1725 assert(result != NULL);
1726
1727 if (result->type->is_error() && !error_emitted)
1728 _mesa_glsl_error(& loc, state, "type mismatch");
1729
1730 return result;
1731 }
1732
1733
1734 ir_rvalue *
1735 ast_expression_statement::hir(exec_list *instructions,
1736 struct _mesa_glsl_parse_state *state)
1737 {
1738 /* It is possible to have expression statements that don't have an
1739 * expression. This is the solitary semicolon:
1740 *
1741 * for (i = 0; i < 5; i++)
1742 * ;
1743 *
1744 * In this case the expression will be NULL. Test for NULL and don't do
1745 * anything in that case.
1746 */
1747 if (expression != NULL)
1748 expression->hir(instructions, state);
1749
1750 /* Statements do not have r-values.
1751 */
1752 return NULL;
1753 }
1754
1755
1756 ir_rvalue *
1757 ast_compound_statement::hir(exec_list *instructions,
1758 struct _mesa_glsl_parse_state *state)
1759 {
1760 if (new_scope)
1761 state->symbols->push_scope();
1762
1763 foreach_list_typed (ast_node, ast, link, &this->statements)
1764 ast->hir(instructions, state);
1765
1766 if (new_scope)
1767 state->symbols->pop_scope();
1768
1769 /* Compound statements do not have r-values.
1770 */
1771 return NULL;
1772 }
1773
1774
1775 static const glsl_type *
1776 process_array_type(YYLTYPE *loc, const glsl_type *base, ast_node *array_size,
1777 struct _mesa_glsl_parse_state *state)
1778 {
1779 unsigned length = 0;
1780
1781 if (base == NULL)
1782 return glsl_type::error_type;
1783
1784 /* From page 19 (page 25) of the GLSL 1.20 spec:
1785 *
1786 * "Only one-dimensional arrays may be declared."
1787 */
1788 if (base->is_array()) {
1789 _mesa_glsl_error(loc, state,
1790 "invalid array of `%s' (only one-dimensional arrays "
1791 "may be declared)",
1792 base->name);
1793 return glsl_type::error_type;
1794 }
1795
1796 if (array_size != NULL) {
1797 exec_list dummy_instructions;
1798 ir_rvalue *const ir = array_size->hir(& dummy_instructions, state);
1799 YYLTYPE loc = array_size->get_location();
1800
1801 if (ir != NULL) {
1802 if (!ir->type->is_integer()) {
1803 _mesa_glsl_error(& loc, state, "array size must be integer type");
1804 } else if (!ir->type->is_scalar()) {
1805 _mesa_glsl_error(& loc, state, "array size must be scalar type");
1806 } else {
1807 ir_constant *const size = ir->constant_expression_value();
1808
1809 if (size == NULL) {
1810 _mesa_glsl_error(& loc, state, "array size must be a "
1811 "constant valued expression");
1812 } else if (size->value.i[0] <= 0) {
1813 _mesa_glsl_error(& loc, state, "array size must be > 0");
1814 } else {
1815 assert(size->type == ir->type);
1816 length = size->value.u[0];
1817
1818 /* If the array size is const (and we've verified that
1819 * it is) then no instructions should have been emitted
1820 * when we converted it to HIR. If they were emitted,
1821 * then either the array size isn't const after all, or
1822 * we are emitting unnecessary instructions.
1823 */
1824 assert(dummy_instructions.is_empty());
1825 }
1826 }
1827 }
1828 }
1829
1830 const glsl_type *array_type = glsl_type::get_array_instance(base, length);
1831 return array_type != NULL ? array_type : glsl_type::error_type;
1832 }
1833
1834
1835 const glsl_type *
1836 ast_type_specifier::glsl_type(const char **name,
1837 struct _mesa_glsl_parse_state *state) const
1838 {
1839 const struct glsl_type *type;
1840
1841 type = state->symbols->get_type(this->type_name);
1842 *name = this->type_name;
1843
1844 if (this->is_array) {
1845 YYLTYPE loc = this->get_location();
1846 type = process_array_type(&loc, type, this->array_size, state);
1847 }
1848
1849 return type;
1850 }
1851
1852 const glsl_type *
1853 ast_fully_specified_type::glsl_type(const char **name,
1854 struct _mesa_glsl_parse_state *state) const
1855 {
1856 const struct glsl_type *type = this->specifier->glsl_type(name, state);
1857
1858 if (type == NULL)
1859 return NULL;
1860
1861 if (type->base_type == GLSL_TYPE_FLOAT
1862 && state->es_shader
1863 && state->target == fragment_shader
1864 && this->qualifier.precision == ast_precision_none
1865 && state->symbols->get_variable("#default precision") == NULL) {
1866 YYLTYPE loc = this->get_location();
1867 _mesa_glsl_error(&loc, state,
1868 "no precision specified this scope for type `%s'",
1869 type->name);
1870 }
1871
1872 return type;
1873 }
1874
1875 /**
1876 * Determine whether a toplevel variable declaration declares a varying. This
1877 * function operates by examining the variable's mode and the shader target,
1878 * so it correctly identifies linkage variables regardless of whether they are
1879 * declared using the deprecated "varying" syntax or the new "in/out" syntax.
1880 *
1881 * Passing a non-toplevel variable declaration (e.g. a function parameter) to
1882 * this function will produce undefined results.
1883 */
1884 static bool
1885 is_varying_var(ir_variable *var, _mesa_glsl_parser_targets target)
1886 {
1887 switch (target) {
1888 case vertex_shader:
1889 return var->mode == ir_var_shader_out;
1890 case fragment_shader:
1891 return var->mode == ir_var_shader_in;
1892 default:
1893 return var->mode == ir_var_shader_out || var->mode == ir_var_shader_in;
1894 }
1895 }
1896
1897
1898 /**
1899 * Matrix layout qualifiers are only allowed on certain types
1900 */
1901 static void
1902 validate_matrix_layout_for_type(struct _mesa_glsl_parse_state *state,
1903 YYLTYPE *loc,
1904 const glsl_type *type,
1905 ir_variable *var)
1906 {
1907 if (var && !var->is_in_uniform_block()) {
1908 /* Layout qualifiers may only apply to interface blocks and fields in
1909 * them.
1910 */
1911 _mesa_glsl_error(loc, state,
1912 "uniform block layout qualifiers row_major and "
1913 "column_major may not be applied to variables "
1914 "outside of uniform blocks");
1915 } else if (!type->is_matrix()) {
1916 /* The OpenGL ES 3.0 conformance tests did not originally allow
1917 * matrix layout qualifiers on non-matrices. However, the OpenGL
1918 * 4.4 and OpenGL ES 3.0 (revision TBD) specifications were
1919 * amended to specifically allow these layouts on all types. Emit
1920 * a warning so that people know their code may not be portable.
1921 */
1922 _mesa_glsl_warning(loc, state,
1923 "uniform block layout qualifiers row_major and "
1924 "column_major applied to non-matrix types may "
1925 "be rejected by older compilers");
1926 } else if (type->is_record()) {
1927 /* We allow 'layout(row_major)' on structure types because it's the only
1928 * way to get row-major layouts on matrices contained in structures.
1929 */
1930 _mesa_glsl_warning(loc, state,
1931 "uniform block layout qualifiers row_major and "
1932 "column_major applied to structure types is not "
1933 "strictly conformant and may be rejected by other "
1934 "compilers");
1935 }
1936 }
1937
1938 static bool
1939 validate_binding_qualifier(struct _mesa_glsl_parse_state *state,
1940 YYLTYPE *loc,
1941 ir_variable *var,
1942 const ast_type_qualifier *qual)
1943 {
1944 if (var->mode != ir_var_uniform) {
1945 _mesa_glsl_error(loc, state,
1946 "the \"binding\" qualifier only applies to uniforms");
1947 return false;
1948 }
1949
1950 if (qual->binding < 0) {
1951 _mesa_glsl_error(loc, state, "binding values must be >= 0");
1952 return false;
1953 }
1954
1955 const struct gl_context *const ctx = state->ctx;
1956 unsigned elements = var->type->is_array() ? var->type->length : 1;
1957 unsigned max_index = qual->binding + elements - 1;
1958
1959 if (var->type->is_interface()) {
1960 /* UBOs. From page 60 of the GLSL 4.20 specification:
1961 * "If the binding point for any uniform block instance is less than zero,
1962 * or greater than or equal to the implementation-dependent maximum
1963 * number of uniform buffer bindings, a compilation error will occur.
1964 * When the binding identifier is used with a uniform block instanced as
1965 * an array of size N, all elements of the array from binding through
1966 * binding + N – 1 must be within this range."
1967 *
1968 * The implementation-dependent maximum is GL_MAX_UNIFORM_BUFFER_BINDINGS.
1969 */
1970 if (max_index >= ctx->Const.MaxUniformBufferBindings) {
1971 _mesa_glsl_error(loc, state, "layout(binding = %d) for %d UBOs exceeds "
1972 "the maximum number of UBO binding points (%d)",
1973 qual->binding, elements,
1974 ctx->Const.MaxUniformBufferBindings);
1975 return false;
1976 }
1977 } else if (var->type->is_sampler() ||
1978 (var->type->is_array() && var->type->fields.array->is_sampler())) {
1979 /* Samplers. From page 63 of the GLSL 4.20 specification:
1980 * "If the binding is less than zero, or greater than or equal to the
1981 * implementation-dependent maximum supported number of units, a
1982 * compilation error will occur. When the binding identifier is used
1983 * with an array of size N, all elements of the array from binding
1984 * through binding + N - 1 must be within this range."
1985 */
1986 unsigned limit = 0;
1987 switch (state->target) {
1988 case vertex_shader:
1989 limit = ctx->Const.VertexProgram.MaxTextureImageUnits;
1990 break;
1991 case geometry_shader:
1992 limit = ctx->Const.GeometryProgram.MaxTextureImageUnits;
1993 break;
1994 case fragment_shader:
1995 limit = ctx->Const.FragmentProgram.MaxTextureImageUnits;
1996 break;
1997 }
1998
1999 if (max_index >= limit) {
2000 _mesa_glsl_error(loc, state, "layout(binding = %d) for %d samplers "
2001 "exceeds the maximum number of texture image units "
2002 "(%d)", qual->binding, elements, limit);
2003
2004 return false;
2005 }
2006 } else if (var->type->contains_atomic()) {
2007 assert(ctx->Const.MaxAtomicBufferBindings <= MAX_COMBINED_ATOMIC_BUFFERS);
2008 if (unsigned(qual->binding) >= ctx->Const.MaxAtomicBufferBindings) {
2009 _mesa_glsl_error(loc, state, "layout(binding = %d) exceeds the "
2010 " maximum number of atomic counter buffer bindings"
2011 "(%d)", qual->binding,
2012 ctx->Const.MaxAtomicBufferBindings);
2013
2014 return false;
2015 }
2016 } else {
2017 _mesa_glsl_error(loc, state,
2018 "the \"binding\" qualifier only applies to uniform "
2019 "blocks, samplers, atomic counters, or arrays thereof");
2020 return false;
2021 }
2022
2023 return true;
2024 }
2025
2026
2027 static glsl_interp_qualifier
2028 interpret_interpolation_qualifier(const struct ast_type_qualifier *qual,
2029 ir_variable_mode mode,
2030 struct _mesa_glsl_parse_state *state,
2031 YYLTYPE *loc)
2032 {
2033 glsl_interp_qualifier interpolation;
2034 if (qual->flags.q.flat)
2035 interpolation = INTERP_QUALIFIER_FLAT;
2036 else if (qual->flags.q.noperspective)
2037 interpolation = INTERP_QUALIFIER_NOPERSPECTIVE;
2038 else if (qual->flags.q.smooth)
2039 interpolation = INTERP_QUALIFIER_SMOOTH;
2040 else
2041 interpolation = INTERP_QUALIFIER_NONE;
2042
2043 if (interpolation != INTERP_QUALIFIER_NONE) {
2044 if (mode != ir_var_shader_in && mode != ir_var_shader_out) {
2045 _mesa_glsl_error(loc, state,
2046 "interpolation qualifier `%s' can only be applied to "
2047 "shader inputs or outputs.",
2048 interpolation_string(interpolation));
2049
2050 }
2051
2052 if ((state->target == vertex_shader && mode == ir_var_shader_in) ||
2053 (state->target == fragment_shader && mode == ir_var_shader_out)) {
2054 _mesa_glsl_error(loc, state,
2055 "interpolation qualifier `%s' cannot be applied to "
2056 "vertex shader inputs or fragment shader outputs",
2057 interpolation_string(interpolation));
2058 }
2059 }
2060
2061 return interpolation;
2062 }
2063
2064
2065 static void
2066 validate_explicit_location(const struct ast_type_qualifier *qual,
2067 ir_variable *var,
2068 struct _mesa_glsl_parse_state *state,
2069 YYLTYPE *loc)
2070 {
2071 bool fail = false;
2072
2073 /* In the vertex shader only shader inputs can be given explicit
2074 * locations.
2075 *
2076 * In the fragment shader only shader outputs can be given explicit
2077 * locations.
2078 */
2079 switch (state->target) {
2080 case vertex_shader:
2081 if (var->mode == ir_var_shader_in) {
2082 if (!state->check_explicit_attrib_location_allowed(loc, var))
2083 return;
2084
2085 break;
2086 }
2087
2088 fail = true;
2089 break;
2090
2091 case geometry_shader:
2092 _mesa_glsl_error(loc, state,
2093 "geometry shader variables cannot be given "
2094 "explicit locations");
2095 return;
2096
2097 case fragment_shader:
2098 if (var->mode == ir_var_shader_out) {
2099 if (!state->check_explicit_attrib_location_allowed(loc, var))
2100 return;
2101
2102 break;
2103 }
2104
2105 fail = true;
2106 break;
2107 };
2108
2109 if (fail) {
2110 _mesa_glsl_error(loc, state,
2111 "%s cannot be given an explicit location in %s shader",
2112 mode_string(var),
2113 _mesa_glsl_shader_target_name(state->target));
2114 } else {
2115 var->explicit_location = true;
2116
2117 /* This bit of silliness is needed because invalid explicit locations
2118 * are supposed to be flagged during linking. Small negative values
2119 * biased by VERT_ATTRIB_GENERIC0 or FRAG_RESULT_DATA0 could alias
2120 * built-in values (e.g., -16+VERT_ATTRIB_GENERIC0 = VERT_ATTRIB_POS).
2121 * The linker needs to be able to differentiate these cases. This
2122 * ensures that negative values stay negative.
2123 */
2124 if (qual->location >= 0) {
2125 var->location = (state->target == vertex_shader)
2126 ? (qual->location + VERT_ATTRIB_GENERIC0)
2127 : (qual->location + FRAG_RESULT_DATA0);
2128 } else {
2129 var->location = qual->location;
2130 }
2131
2132 if (qual->flags.q.explicit_index) {
2133 /* From the GLSL 4.30 specification, section 4.4.2 (Output
2134 * Layout Qualifiers):
2135 *
2136 * "It is also a compile-time error if a fragment shader
2137 * sets a layout index to less than 0 or greater than 1."
2138 *
2139 * Older specifications don't mandate a behavior; we take
2140 * this as a clarification and always generate the error.
2141 */
2142 if (qual->index < 0 || qual->index > 1) {
2143 _mesa_glsl_error(loc, state,
2144 "explicit index may only be 0 or 1");
2145 } else {
2146 var->explicit_index = true;
2147 var->index = qual->index;
2148 }
2149 }
2150 }
2151
2152 return;
2153 }
2154
2155 static void
2156 apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
2157 ir_variable *var,
2158 struct _mesa_glsl_parse_state *state,
2159 YYLTYPE *loc,
2160 bool is_parameter)
2161 {
2162 STATIC_ASSERT(sizeof(qual->flags.q) <= sizeof(qual->flags.i));
2163
2164 if (qual->flags.q.invariant) {
2165 if (var->used) {
2166 _mesa_glsl_error(loc, state,
2167 "variable `%s' may not be redeclared "
2168 "`invariant' after being used",
2169 var->name);
2170 } else {
2171 var->data.invariant = 1;
2172 }
2173 }
2174
2175 if (qual->flags.q.constant || qual->flags.q.attribute
2176 || qual->flags.q.uniform
2177 || (qual->flags.q.varying && (state->target == fragment_shader)))
2178 var->data.read_only = 1;
2179
2180 if (qual->flags.q.centroid)
2181 var->data.centroid = 1;
2182
2183 if (qual->flags.q.sample)
2184 var->data.sample = 1;
2185
2186 if (qual->flags.q.attribute && state->target != vertex_shader) {
2187 var->type = glsl_type::error_type;
2188 _mesa_glsl_error(loc, state,
2189 "`attribute' variables may not be declared in the "
2190 "%s shader",
2191 _mesa_glsl_shader_target_name(state->target));
2192 }
2193
2194 /* Section 6.1.1 (Function Calling Conventions) of the GLSL 1.10 spec says:
2195 *
2196 * "However, the const qualifier cannot be used with out or inout."
2197 *
2198 * The same section of the GLSL 4.40 spec further clarifies this saying:
2199 *
2200 * "The const qualifier cannot be used with out or inout, or a
2201 * compile-time error results."
2202 */
2203 if (is_parameter && qual->flags.q.constant && qual->flags.q.out) {
2204 _mesa_glsl_error(loc, state,
2205 "`const' may not be applied to `out' or `inout' "
2206 "function parameters");
2207 }
2208
2209 /* If there is no qualifier that changes the mode of the variable, leave
2210 * the setting alone.
2211 */
2212 if (qual->flags.q.in && qual->flags.q.out)
2213 var->mode = ir_var_function_inout;
2214 else if (qual->flags.q.in)
2215 var->mode = is_parameter ? ir_var_function_in : ir_var_shader_in;
2216 else if (qual->flags.q.attribute
2217 || (qual->flags.q.varying && (state->target == fragment_shader)))
2218 var->mode = ir_var_shader_in;
2219 else if (qual->flags.q.out)
2220 var->mode = is_parameter ? ir_var_function_out : ir_var_shader_out;
2221 else if (qual->flags.q.varying && (state->target == vertex_shader))
2222 var->mode = ir_var_shader_out;
2223 else if (qual->flags.q.uniform)
2224 var->mode = ir_var_uniform;
2225
2226 if (!is_parameter && is_varying_var(var, state->target)) {
2227 /* This variable is being used to link data between shader stages (in
2228 * pre-glsl-1.30 parlance, it's a "varying"). Check that it has a type
2229 * that is allowed for such purposes.
2230 *
2231 * From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
2232 *
2233 * "The varying qualifier can be used only with the data types
2234 * float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
2235 * these."
2236 *
2237 * This was relaxed in GLSL version 1.30 and GLSL ES version 3.00. From
2238 * page 31 (page 37 of the PDF) of the GLSL 1.30 spec:
2239 *
2240 * "Fragment inputs can only be signed and unsigned integers and
2241 * integer vectors, float, floating-point vectors, matrices, or
2242 * arrays of these. Structures cannot be input.
2243 *
2244 * Similar text exists in the section on vertex shader outputs.
2245 *
2246 * Similar text exists in the GLSL ES 3.00 spec, except that the GLSL ES
2247 * 3.00 spec allows structs as well. Varying structs are also allowed
2248 * in GLSL 1.50.
2249 */
2250 switch (var->type->get_scalar_type()->base_type) {
2251 case GLSL_TYPE_FLOAT:
2252 /* Ok in all GLSL versions */
2253 break;
2254 case GLSL_TYPE_UINT:
2255 case GLSL_TYPE_INT:
2256 if (state->is_version(130, 300))
2257 break;
2258 _mesa_glsl_error(loc, state,
2259 "varying variables must be of base type float in %s",
2260 state->get_version_string());
2261 break;
2262 case GLSL_TYPE_STRUCT:
2263 if (state->is_version(150, 300))
2264 break;
2265 _mesa_glsl_error(loc, state,
2266 "varying variables may not be of type struct");
2267 break;
2268 default:
2269 _mesa_glsl_error(loc, state, "illegal type for a varying variable");
2270 break;
2271 }
2272 }
2273
2274 if (state->all_invariant && (state->current_function == NULL)) {
2275 switch (state->target) {
2276 case vertex_shader:
2277 if (var->mode == ir_var_shader_out)
2278 var->data.invariant = true;
2279 break;
2280 case geometry_shader:
2281 if ((var->mode == ir_var_shader_in)
2282 || (var->mode == ir_var_shader_out))
2283 var->data.invariant = true;
2284 break;
2285 case fragment_shader:
2286 if (var->mode == ir_var_shader_in)
2287 var->data.invariant = true;
2288 break;
2289 }
2290 }
2291
2292 var->interpolation =
2293 interpret_interpolation_qualifier(qual, (ir_variable_mode) var->mode,
2294 state, loc);
2295
2296 var->pixel_center_integer = qual->flags.q.pixel_center_integer;
2297 var->origin_upper_left = qual->flags.q.origin_upper_left;
2298 if ((qual->flags.q.origin_upper_left || qual->flags.q.pixel_center_integer)
2299 && (strcmp(var->name, "gl_FragCoord") != 0)) {
2300 const char *const qual_string = (qual->flags.q.origin_upper_left)
2301 ? "origin_upper_left" : "pixel_center_integer";
2302
2303 _mesa_glsl_error(loc, state,
2304 "layout qualifier `%s' can only be applied to "
2305 "fragment shader input `gl_FragCoord'",
2306 qual_string);
2307 }
2308
2309 if (qual->flags.q.explicit_location) {
2310 validate_explicit_location(qual, var, state, loc);
2311 } else if (qual->flags.q.explicit_index) {
2312 _mesa_glsl_error(loc, state,
2313 "explicit index requires explicit location");
2314 }
2315
2316 if (qual->flags.q.explicit_binding &&
2317 validate_binding_qualifier(state, loc, var, qual)) {
2318 var->explicit_binding = true;
2319 var->binding = qual->binding;
2320 }
2321
2322 if (var->type->contains_atomic()) {
2323 if (var->mode == ir_var_uniform) {
2324 if (var->explicit_binding) {
2325 unsigned *offset = &state->atomic_counter_offsets[var->binding];
2326
2327 if (*offset % ATOMIC_COUNTER_SIZE)
2328 _mesa_glsl_error(loc, state,
2329 "misaligned atomic counter offset");
2330
2331 var->atomic.offset = *offset;
2332 *offset += var->type->atomic_size();
2333
2334 } else {
2335 _mesa_glsl_error(loc, state,
2336 "atomic counters require explicit binding point");
2337 }
2338 } else if (var->mode != ir_var_function_in) {
2339 _mesa_glsl_error(loc, state, "atomic counters may only be declared as "
2340 "function parameters or uniform-qualified "
2341 "global variables");
2342 }
2343 }
2344
2345 /* Does the declaration use the deprecated 'attribute' or 'varying'
2346 * keywords?
2347 */
2348 const bool uses_deprecated_qualifier = qual->flags.q.attribute
2349 || qual->flags.q.varying;
2350
2351 /* Is the 'layout' keyword used with parameters that allow relaxed checking.
2352 * Many implementations of GL_ARB_fragment_coord_conventions_enable and some
2353 * implementations (only Mesa?) GL_ARB_explicit_attrib_location_enable
2354 * allowed the layout qualifier to be used with 'varying' and 'attribute'.
2355 * These extensions and all following extensions that add the 'layout'
2356 * keyword have been modified to require the use of 'in' or 'out'.
2357 *
2358 * The following extension do not allow the deprecated keywords:
2359 *
2360 * GL_AMD_conservative_depth
2361 * GL_ARB_conservative_depth
2362 * GL_ARB_gpu_shader5
2363 * GL_ARB_separate_shader_objects
2364 * GL_ARB_tesselation_shader
2365 * GL_ARB_transform_feedback3
2366 * GL_ARB_uniform_buffer_object
2367 *
2368 * It is unknown whether GL_EXT_shader_image_load_store or GL_NV_gpu_shader5
2369 * allow layout with the deprecated keywords.
2370 */
2371 const bool relaxed_layout_qualifier_checking =
2372 state->ARB_fragment_coord_conventions_enable;
2373
2374 if (qual->has_layout() && uses_deprecated_qualifier) {
2375 if (relaxed_layout_qualifier_checking) {
2376 _mesa_glsl_warning(loc, state,
2377 "`layout' qualifier may not be used with "
2378 "`attribute' or `varying'");
2379 } else {
2380 _mesa_glsl_error(loc, state,
2381 "`layout' qualifier may not be used with "
2382 "`attribute' or `varying'");
2383 }
2384 }
2385
2386 /* Layout qualifiers for gl_FragDepth, which are enabled by extension
2387 * AMD_conservative_depth.
2388 */
2389 int depth_layout_count = qual->flags.q.depth_any
2390 + qual->flags.q.depth_greater
2391 + qual->flags.q.depth_less
2392 + qual->flags.q.depth_unchanged;
2393 if (depth_layout_count > 0
2394 && !state->AMD_conservative_depth_enable
2395 && !state->ARB_conservative_depth_enable) {
2396 _mesa_glsl_error(loc, state,
2397 "extension GL_AMD_conservative_depth or "
2398 "GL_ARB_conservative_depth must be enabled "
2399 "to use depth layout qualifiers");
2400 } else if (depth_layout_count > 0
2401 && strcmp(var->name, "gl_FragDepth") != 0) {
2402 _mesa_glsl_error(loc, state,
2403 "depth layout qualifiers can be applied only to "
2404 "gl_FragDepth");
2405 } else if (depth_layout_count > 1
2406 && strcmp(var->name, "gl_FragDepth") == 0) {
2407 _mesa_glsl_error(loc, state,
2408 "at most one depth layout qualifier can be applied to "
2409 "gl_FragDepth");
2410 }
2411 if (qual->flags.q.depth_any)
2412 var->depth_layout = ir_depth_layout_any;
2413 else if (qual->flags.q.depth_greater)
2414 var->depth_layout = ir_depth_layout_greater;
2415 else if (qual->flags.q.depth_less)
2416 var->depth_layout = ir_depth_layout_less;
2417 else if (qual->flags.q.depth_unchanged)
2418 var->depth_layout = ir_depth_layout_unchanged;
2419 else
2420 var->depth_layout = ir_depth_layout_none;
2421
2422 if (qual->flags.q.std140 ||
2423 qual->flags.q.packed ||
2424 qual->flags.q.shared) {
2425 _mesa_glsl_error(loc, state,
2426 "uniform block layout qualifiers std140, packed, and "
2427 "shared can only be applied to uniform blocks, not "
2428 "members");
2429 }
2430
2431 if (qual->flags.q.row_major || qual->flags.q.column_major) {
2432 validate_matrix_layout_for_type(state, loc, var->type, var);
2433 }
2434 }
2435
2436 /**
2437 * Get the variable that is being redeclared by this declaration
2438 *
2439 * Semantic checks to verify the validity of the redeclaration are also
2440 * performed. If semantic checks fail, compilation error will be emitted via
2441 * \c _mesa_glsl_error, but a non-\c NULL pointer will still be returned.
2442 *
2443 * \returns
2444 * A pointer to an existing variable in the current scope if the declaration
2445 * is a redeclaration, \c NULL otherwise.
2446 */
2447 static ir_variable *
2448 get_variable_being_redeclared(ir_variable *var, YYLTYPE loc,
2449 struct _mesa_glsl_parse_state *state,
2450 bool allow_all_redeclarations)
2451 {
2452 /* Check if this declaration is actually a re-declaration, either to
2453 * resize an array or add qualifiers to an existing variable.
2454 *
2455 * This is allowed for variables in the current scope, or when at
2456 * global scope (for built-ins in the implicit outer scope).
2457 */
2458 ir_variable *earlier = state->symbols->get_variable(var->name);
2459 if (earlier == NULL ||
2460 (state->current_function != NULL &&
2461 !state->symbols->name_declared_this_scope(var->name))) {
2462 return NULL;
2463 }
2464
2465
2466 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
2467 *
2468 * "It is legal to declare an array without a size and then
2469 * later re-declare the same name as an array of the same
2470 * type and specify a size."
2471 */
2472 if (earlier->type->is_unsized_array() && var->type->is_array()
2473 && (var->type->element_type() == earlier->type->element_type())) {
2474 /* FINISHME: This doesn't match the qualifiers on the two
2475 * FINISHME: declarations. It's not 100% clear whether this is
2476 * FINISHME: required or not.
2477 */
2478
2479 const unsigned size = unsigned(var->type->array_size());
2480 check_builtin_array_max_size(var->name, size, loc, state);
2481 if ((size > 0) && (size <= earlier->max_array_access)) {
2482 _mesa_glsl_error(& loc, state, "array size must be > %u due to "
2483 "previous access",
2484 earlier->max_array_access);
2485 }
2486
2487 earlier->type = var->type;
2488 delete var;
2489 var = NULL;
2490 } else if ((state->ARB_fragment_coord_conventions_enable ||
2491 state->is_version(150, 0))
2492 && strcmp(var->name, "gl_FragCoord") == 0
2493 && earlier->type == var->type
2494 && earlier->mode == var->mode) {
2495 /* Allow redeclaration of gl_FragCoord for ARB_fcc layout
2496 * qualifiers.
2497 */
2498 earlier->origin_upper_left = var->origin_upper_left;
2499 earlier->pixel_center_integer = var->pixel_center_integer;
2500
2501 /* According to section 4.3.7 of the GLSL 1.30 spec,
2502 * the following built-in varaibles can be redeclared with an
2503 * interpolation qualifier:
2504 * * gl_FrontColor
2505 * * gl_BackColor
2506 * * gl_FrontSecondaryColor
2507 * * gl_BackSecondaryColor
2508 * * gl_Color
2509 * * gl_SecondaryColor
2510 */
2511 } else if (state->is_version(130, 0)
2512 && (strcmp(var->name, "gl_FrontColor") == 0
2513 || strcmp(var->name, "gl_BackColor") == 0
2514 || strcmp(var->name, "gl_FrontSecondaryColor") == 0
2515 || strcmp(var->name, "gl_BackSecondaryColor") == 0
2516 || strcmp(var->name, "gl_Color") == 0
2517 || strcmp(var->name, "gl_SecondaryColor") == 0)
2518 && earlier->type == var->type
2519 && earlier->mode == var->mode) {
2520 earlier->interpolation = var->interpolation;
2521
2522 /* Layout qualifiers for gl_FragDepth. */
2523 } else if ((state->AMD_conservative_depth_enable ||
2524 state->ARB_conservative_depth_enable)
2525 && strcmp(var->name, "gl_FragDepth") == 0
2526 && earlier->type == var->type
2527 && earlier->mode == var->mode) {
2528
2529 /** From the AMD_conservative_depth spec:
2530 * Within any shader, the first redeclarations of gl_FragDepth
2531 * must appear before any use of gl_FragDepth.
2532 */
2533 if (earlier->used) {
2534 _mesa_glsl_error(&loc, state,
2535 "the first redeclaration of gl_FragDepth "
2536 "must appear before any use of gl_FragDepth");
2537 }
2538
2539 /* Prevent inconsistent redeclaration of depth layout qualifier. */
2540 if (earlier->depth_layout != ir_depth_layout_none
2541 && earlier->depth_layout != var->depth_layout) {
2542 _mesa_glsl_error(&loc, state,
2543 "gl_FragDepth: depth layout is declared here "
2544 "as '%s, but it was previously declared as "
2545 "'%s'",
2546 depth_layout_string(var->depth_layout),
2547 depth_layout_string(earlier->depth_layout));
2548 }
2549
2550 earlier->depth_layout = var->depth_layout;
2551
2552 } else if (allow_all_redeclarations) {
2553 if (earlier->mode != var->mode) {
2554 _mesa_glsl_error(&loc, state,
2555 "redeclaration of `%s' with incorrect qualifiers",
2556 var->name);
2557 } else if (earlier->type != var->type) {
2558 _mesa_glsl_error(&loc, state,
2559 "redeclaration of `%s' has incorrect type",
2560 var->name);
2561 }
2562 } else {
2563 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
2564 }
2565
2566 return earlier;
2567 }
2568
2569 /**
2570 * Generate the IR for an initializer in a variable declaration
2571 */
2572 ir_rvalue *
2573 process_initializer(ir_variable *var, ast_declaration *decl,
2574 ast_fully_specified_type *type,
2575 exec_list *initializer_instructions,
2576 struct _mesa_glsl_parse_state *state)
2577 {
2578 ir_rvalue *result = NULL;
2579
2580 YYLTYPE initializer_loc = decl->initializer->get_location();
2581
2582 /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
2583 *
2584 * "All uniform variables are read-only and are initialized either
2585 * directly by an application via API commands, or indirectly by
2586 * OpenGL."
2587 */
2588 if (var->mode == ir_var_uniform) {
2589 state->check_version(120, 0, &initializer_loc,
2590 "cannot initialize uniforms");
2591 }
2592
2593 if (var->type->is_sampler()) {
2594 _mesa_glsl_error(& initializer_loc, state,
2595 "cannot initialize samplers");
2596 }
2597
2598 if ((var->mode == ir_var_shader_in) && (state->current_function == NULL)) {
2599 _mesa_glsl_error(& initializer_loc, state,
2600 "cannot initialize %s shader input / %s",
2601 _mesa_glsl_shader_target_name(state->target),
2602 (state->target == vertex_shader)
2603 ? "attribute" : "varying");
2604 }
2605
2606 ir_dereference *const lhs = new(state) ir_dereference_variable(var);
2607 ir_rvalue *rhs = decl->initializer->hir(initializer_instructions,
2608 state);
2609
2610 /* Calculate the constant value if this is a const or uniform
2611 * declaration.
2612 */
2613 if (type->qualifier.flags.q.constant
2614 || type->qualifier.flags.q.uniform) {
2615 ir_rvalue *new_rhs = validate_assignment(state, initializer_loc,
2616 var->type, rhs, true);
2617 if (new_rhs != NULL) {
2618 rhs = new_rhs;
2619
2620 ir_constant *constant_value = rhs->constant_expression_value();
2621 if (!constant_value) {
2622 /* If ARB_shading_language_420pack is enabled, initializers of
2623 * const-qualified local variables do not have to be constant
2624 * expressions. Const-qualified global variables must still be
2625 * initialized with constant expressions.
2626 */
2627 if (!state->ARB_shading_language_420pack_enable
2628 || state->current_function == NULL) {
2629 _mesa_glsl_error(& initializer_loc, state,
2630 "initializer of %s variable `%s' must be a "
2631 "constant expression",
2632 (type->qualifier.flags.q.constant)
2633 ? "const" : "uniform",
2634 decl->identifier);
2635 if (var->type->is_numeric()) {
2636 /* Reduce cascading errors. */
2637 var->constant_value = ir_constant::zero(state, var->type);
2638 }
2639 }
2640 } else {
2641 rhs = constant_value;
2642 var->constant_value = constant_value;
2643 }
2644 } else {
2645 if (var->type->is_numeric()) {
2646 /* Reduce cascading errors. */
2647 var->constant_value = ir_constant::zero(state, var->type);
2648 }
2649 }
2650 }
2651
2652 if (rhs && !rhs->type->is_error()) {
2653 bool temp = var->data.read_only;
2654 if (type->qualifier.flags.q.constant)
2655 var->data.read_only = false;
2656
2657 /* Never emit code to initialize a uniform.
2658 */
2659 const glsl_type *initializer_type;
2660 if (!type->qualifier.flags.q.uniform) {
2661 result = do_assignment(initializer_instructions, state,
2662 NULL,
2663 lhs, rhs, true,
2664 type->get_location());
2665 initializer_type = result->type;
2666 } else
2667 initializer_type = rhs->type;
2668
2669 var->constant_initializer = rhs->constant_expression_value();
2670 var->has_initializer = true;
2671
2672 /* If the declared variable is an unsized array, it must inherrit
2673 * its full type from the initializer. A declaration such as
2674 *
2675 * uniform float a[] = float[](1.0, 2.0, 3.0, 3.0);
2676 *
2677 * becomes
2678 *
2679 * uniform float a[4] = float[](1.0, 2.0, 3.0, 3.0);
2680 *
2681 * The assignment generated in the if-statement (below) will also
2682 * automatically handle this case for non-uniforms.
2683 *
2684 * If the declared variable is not an array, the types must
2685 * already match exactly. As a result, the type assignment
2686 * here can be done unconditionally. For non-uniforms the call
2687 * to do_assignment can change the type of the initializer (via
2688 * the implicit conversion rules). For uniforms the initializer
2689 * must be a constant expression, and the type of that expression
2690 * was validated above.
2691 */
2692 var->type = initializer_type;
2693
2694 var->data.read_only = temp;
2695 }
2696
2697 return result;
2698 }
2699
2700
2701 /**
2702 * Do additional processing necessary for geometry shader input declarations
2703 * (this covers both interface blocks arrays and bare input variables).
2704 */
2705 static void
2706 handle_geometry_shader_input_decl(struct _mesa_glsl_parse_state *state,
2707 YYLTYPE loc, ir_variable *var)
2708 {
2709 unsigned num_vertices = 0;
2710 if (state->gs_input_prim_type_specified) {
2711 num_vertices = vertices_per_prim(state->gs_input_prim_type);
2712 }
2713
2714 /* Geometry shader input variables must be arrays. Caller should have
2715 * reported an error for this.
2716 */
2717 if (!var->type->is_array()) {
2718 assert(state->error);
2719
2720 /* To avoid cascading failures, short circuit the checks below. */
2721 return;
2722 }
2723
2724 if (var->type->is_unsized_array()) {
2725 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec says:
2726 *
2727 * All geometry shader input unsized array declarations will be
2728 * sized by an earlier input layout qualifier, when present, as per
2729 * the following table.
2730 *
2731 * Followed by a table mapping each allowed input layout qualifier to
2732 * the corresponding input length.
2733 */
2734 if (num_vertices != 0)
2735 var->type = glsl_type::get_array_instance(var->type->fields.array,
2736 num_vertices);
2737 } else {
2738 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec
2739 * includes the following examples of compile-time errors:
2740 *
2741 * // code sequence within one shader...
2742 * in vec4 Color1[]; // size unknown
2743 * ...Color1.length()...// illegal, length() unknown
2744 * in vec4 Color2[2]; // size is 2
2745 * ...Color1.length()...// illegal, Color1 still has no size
2746 * in vec4 Color3[3]; // illegal, input sizes are inconsistent
2747 * layout(lines) in; // legal, input size is 2, matching
2748 * in vec4 Color4[3]; // illegal, contradicts layout
2749 * ...
2750 *
2751 * To detect the case illustrated by Color3, we verify that the size of
2752 * an explicitly-sized array matches the size of any previously declared
2753 * explicitly-sized array. To detect the case illustrated by Color4, we
2754 * verify that the size of an explicitly-sized array is consistent with
2755 * any previously declared input layout.
2756 */
2757 if (num_vertices != 0 && var->type->length != num_vertices) {
2758 _mesa_glsl_error(&loc, state,
2759 "geometry shader input size contradicts previously"
2760 " declared layout (size is %u, but layout requires a"
2761 " size of %u)", var->type->length, num_vertices);
2762 } else if (state->gs_input_size != 0 &&
2763 var->type->length != state->gs_input_size) {
2764 _mesa_glsl_error(&loc, state,
2765 "geometry shader input sizes are "
2766 "inconsistent (size is %u, but a previous "
2767 "declaration has size %u)",
2768 var->type->length, state->gs_input_size);
2769 } else {
2770 state->gs_input_size = var->type->length;
2771 }
2772 }
2773 }
2774
2775
2776 void
2777 validate_identifier(const char *identifier, YYLTYPE loc,
2778 struct _mesa_glsl_parse_state *state)
2779 {
2780 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
2781 *
2782 * "Identifiers starting with "gl_" are reserved for use by
2783 * OpenGL, and may not be declared in a shader as either a
2784 * variable or a function."
2785 */
2786 if (strncmp(identifier, "gl_", 3) == 0) {
2787 _mesa_glsl_error(&loc, state,
2788 "identifier `%s' uses reserved `gl_' prefix",
2789 identifier);
2790 } else if (strstr(identifier, "__")) {
2791 /* From page 14 (page 20 of the PDF) of the GLSL 1.10
2792 * spec:
2793 *
2794 * "In addition, all identifiers containing two
2795 * consecutive underscores (__) are reserved as
2796 * possible future keywords."
2797 */
2798 _mesa_glsl_error(&loc, state,
2799 "identifier `%s' uses reserved `__' string",
2800 identifier);
2801 }
2802 }
2803
2804
2805 ir_rvalue *
2806 ast_declarator_list::hir(exec_list *instructions,
2807 struct _mesa_glsl_parse_state *state)
2808 {
2809 void *ctx = state;
2810 const struct glsl_type *decl_type;
2811 const char *type_name = NULL;
2812 ir_rvalue *result = NULL;
2813 YYLTYPE loc = this->get_location();
2814
2815 /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec:
2816 *
2817 * "To ensure that a particular output variable is invariant, it is
2818 * necessary to use the invariant qualifier. It can either be used to
2819 * qualify a previously declared variable as being invariant
2820 *
2821 * invariant gl_Position; // make existing gl_Position be invariant"
2822 *
2823 * In these cases the parser will set the 'invariant' flag in the declarator
2824 * list, and the type will be NULL.
2825 */
2826 if (this->invariant) {
2827 assert(this->type == NULL);
2828
2829 if (state->current_function != NULL) {
2830 _mesa_glsl_error(& loc, state,
2831 "all uses of `invariant' keyword must be at global "
2832 "scope");
2833 }
2834
2835 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
2836 assert(!decl->is_array);
2837 assert(decl->array_size == NULL);
2838 assert(decl->initializer == NULL);
2839
2840 ir_variable *const earlier =
2841 state->symbols->get_variable(decl->identifier);
2842 if (earlier == NULL) {
2843 _mesa_glsl_error(& loc, state,
2844 "undeclared variable `%s' cannot be marked "
2845 "invariant", decl->identifier);
2846 } else if ((state->target == vertex_shader)
2847 && (earlier->mode != ir_var_shader_out)) {
2848 _mesa_glsl_error(& loc, state,
2849 "`%s' cannot be marked invariant, vertex shader "
2850 "outputs only", decl->identifier);
2851 } else if ((state->target == fragment_shader)
2852 && (earlier->mode != ir_var_shader_in)) {
2853 _mesa_glsl_error(& loc, state,
2854 "`%s' cannot be marked invariant, fragment shader "
2855 "inputs only", decl->identifier);
2856 } else if (earlier->used) {
2857 _mesa_glsl_error(& loc, state,
2858 "variable `%s' may not be redeclared "
2859 "`invariant' after being used",
2860 earlier->name);
2861 } else {
2862 earlier->data.invariant = true;
2863 }
2864 }
2865
2866 /* Invariant redeclarations do not have r-values.
2867 */
2868 return NULL;
2869 }
2870
2871 assert(this->type != NULL);
2872 assert(!this->invariant);
2873
2874 /* The type specifier may contain a structure definition. Process that
2875 * before any of the variable declarations.
2876 */
2877 (void) this->type->specifier->hir(instructions, state);
2878
2879 decl_type = this->type->glsl_type(& type_name, state);
2880
2881 /* An offset-qualified atomic counter declaration sets the default
2882 * offset for the next declaration within the same atomic counter
2883 * buffer.
2884 */
2885 if (decl_type && decl_type->contains_atomic()) {
2886 if (type->qualifier.flags.q.explicit_binding &&
2887 type->qualifier.flags.q.explicit_offset)
2888 state->atomic_counter_offsets[type->qualifier.binding] =
2889 type->qualifier.offset;
2890 }
2891
2892 if (this->declarations.is_empty()) {
2893 /* If there is no structure involved in the program text, there are two
2894 * possible scenarios:
2895 *
2896 * - The program text contained something like 'vec4;'. This is an
2897 * empty declaration. It is valid but weird. Emit a warning.
2898 *
2899 * - The program text contained something like 'S;' and 'S' is not the
2900 * name of a known structure type. This is both invalid and weird.
2901 * Emit an error.
2902 *
2903 * - The program text contained something like 'mediump float;'
2904 * when the programmer probably meant 'precision mediump
2905 * float;' Emit a warning with a description of what they
2906 * probably meant to do.
2907 *
2908 * Note that if decl_type is NULL and there is a structure involved,
2909 * there must have been some sort of error with the structure. In this
2910 * case we assume that an error was already generated on this line of
2911 * code for the structure. There is no need to generate an additional,
2912 * confusing error.
2913 */
2914 assert(this->type->specifier->structure == NULL || decl_type != NULL
2915 || state->error);
2916
2917 if (decl_type == NULL) {
2918 _mesa_glsl_error(&loc, state,
2919 "invalid type `%s' in empty declaration",
2920 type_name);
2921 } else if (decl_type->base_type == GLSL_TYPE_ATOMIC_UINT) {
2922 /* Empty atomic counter declarations are allowed and useful
2923 * to set the default offset qualifier.
2924 */
2925 return NULL;
2926 } else if (this->type->qualifier.precision != ast_precision_none) {
2927 if (this->type->specifier->structure != NULL) {
2928 _mesa_glsl_error(&loc, state,
2929 "precision qualifiers can't be applied "
2930 "to structures");
2931 } else {
2932 static const char *const precision_names[] = {
2933 "highp",
2934 "highp",
2935 "mediump",
2936 "lowp"
2937 };
2938
2939 _mesa_glsl_warning(&loc, state,
2940 "empty declaration with precision qualifier, "
2941 "to set the default precision, use "
2942 "`precision %s %s;'",
2943 precision_names[this->type->qualifier.precision],
2944 type_name);
2945 }
2946 } else if (this->type->specifier->structure == NULL) {
2947 _mesa_glsl_warning(&loc, state, "empty declaration");
2948 }
2949 }
2950
2951 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
2952 const struct glsl_type *var_type;
2953 ir_variable *var;
2954
2955 /* FINISHME: Emit a warning if a variable declaration shadows a
2956 * FINISHME: declaration at a higher scope.
2957 */
2958
2959 if ((decl_type == NULL) || decl_type->is_void()) {
2960 if (type_name != NULL) {
2961 _mesa_glsl_error(& loc, state,
2962 "invalid type `%s' in declaration of `%s'",
2963 type_name, decl->identifier);
2964 } else {
2965 _mesa_glsl_error(& loc, state,
2966 "invalid type in declaration of `%s'",
2967 decl->identifier);
2968 }
2969 continue;
2970 }
2971
2972 if (decl->is_array) {
2973 var_type = process_array_type(&loc, decl_type, decl->array_size,
2974 state);
2975 if (var_type->is_error())
2976 continue;
2977 } else {
2978 var_type = decl_type;
2979 }
2980
2981 var = new(ctx) ir_variable(var_type, decl->identifier, ir_var_auto);
2982
2983 /* The 'varying in' and 'varying out' qualifiers can only be used with
2984 * ARB_geometry_shader4 and EXT_geometry_shader4, which we don't support
2985 * yet.
2986 */
2987 if (this->type->qualifier.flags.q.varying) {
2988 if (this->type->qualifier.flags.q.in) {
2989 _mesa_glsl_error(& loc, state,
2990 "`varying in' qualifier in declaration of "
2991 "`%s' only valid for geometry shaders using "
2992 "ARB_geometry_shader4 or EXT_geometry_shader4",
2993 decl->identifier);
2994 } else if (this->type->qualifier.flags.q.out) {
2995 _mesa_glsl_error(& loc, state,
2996 "`varying out' qualifier in declaration of "
2997 "`%s' only valid for geometry shaders using "
2998 "ARB_geometry_shader4 or EXT_geometry_shader4",
2999 decl->identifier);
3000 }
3001 }
3002
3003 /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
3004 *
3005 * "Global variables can only use the qualifiers const,
3006 * attribute, uni form, or varying. Only one may be
3007 * specified.
3008 *
3009 * Local variables can only use the qualifier const."
3010 *
3011 * This is relaxed in GLSL 1.30 and GLSL ES 3.00. It is also relaxed by
3012 * any extension that adds the 'layout' keyword.
3013 */
3014 if (!state->is_version(130, 300)
3015 && !state->has_explicit_attrib_location()
3016 && !state->ARB_fragment_coord_conventions_enable) {
3017 if (this->type->qualifier.flags.q.out) {
3018 _mesa_glsl_error(& loc, state,
3019 "`out' qualifier in declaration of `%s' "
3020 "only valid for function parameters in %s",
3021 decl->identifier, state->get_version_string());
3022 }
3023 if (this->type->qualifier.flags.q.in) {
3024 _mesa_glsl_error(& loc, state,
3025 "`in' qualifier in declaration of `%s' "
3026 "only valid for function parameters in %s",
3027 decl->identifier, state->get_version_string());
3028 }
3029 /* FINISHME: Test for other invalid qualifiers. */
3030 }
3031
3032 apply_type_qualifier_to_variable(& this->type->qualifier, var, state,
3033 & loc, false);
3034
3035 if (this->type->qualifier.flags.q.invariant) {
3036 if ((state->target == vertex_shader) &&
3037 var->mode != ir_var_shader_out) {
3038 _mesa_glsl_error(& loc, state,
3039 "`%s' cannot be marked invariant, vertex shader "
3040 "outputs only", var->name);
3041 } else if ((state->target == fragment_shader) &&
3042 var->mode != ir_var_shader_in) {
3043 /* FINISHME: Note that this doesn't work for invariant on
3044 * a function signature inval
3045 */
3046 _mesa_glsl_error(& loc, state,
3047 "`%s' cannot be marked invariant, fragment shader "
3048 "inputs only", var->name);
3049 }
3050 }
3051
3052 if (state->current_function != NULL) {
3053 const char *mode = NULL;
3054 const char *extra = "";
3055
3056 /* There is no need to check for 'inout' here because the parser will
3057 * only allow that in function parameter lists.
3058 */
3059 if (this->type->qualifier.flags.q.attribute) {
3060 mode = "attribute";
3061 } else if (this->type->qualifier.flags.q.uniform) {
3062 mode = "uniform";
3063 } else if (this->type->qualifier.flags.q.varying) {
3064 mode = "varying";
3065 } else if (this->type->qualifier.flags.q.in) {
3066 mode = "in";
3067 extra = " or in function parameter list";
3068 } else if (this->type->qualifier.flags.q.out) {
3069 mode = "out";
3070 extra = " or in function parameter list";
3071 }
3072
3073 if (mode) {
3074 _mesa_glsl_error(& loc, state,
3075 "%s variable `%s' must be declared at "
3076 "global scope%s",
3077 mode, var->name, extra);
3078 }
3079 } else if (var->mode == ir_var_shader_in) {
3080 var->data.read_only = true;
3081
3082 if (state->target == vertex_shader) {
3083 bool error_emitted = false;
3084
3085 /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
3086 *
3087 * "Vertex shader inputs can only be float, floating-point
3088 * vectors, matrices, signed and unsigned integers and integer
3089 * vectors. Vertex shader inputs can also form arrays of these
3090 * types, but not structures."
3091 *
3092 * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
3093 *
3094 * "Vertex shader inputs can only be float, floating-point
3095 * vectors, matrices, signed and unsigned integers and integer
3096 * vectors. They cannot be arrays or structures."
3097 *
3098 * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
3099 *
3100 * "The attribute qualifier can be used only with float,
3101 * floating-point vectors, and matrices. Attribute variables
3102 * cannot be declared as arrays or structures."
3103 *
3104 * From page 33 (page 39 of the PDF) of the GLSL ES 3.00 spec:
3105 *
3106 * "Vertex shader inputs can only be float, floating-point
3107 * vectors, matrices, signed and unsigned integers and integer
3108 * vectors. Vertex shader inputs cannot be arrays or
3109 * structures."
3110 */
3111 const glsl_type *check_type = var->type->is_array()
3112 ? var->type->fields.array : var->type;
3113
3114 switch (check_type->base_type) {
3115 case GLSL_TYPE_FLOAT:
3116 break;
3117 case GLSL_TYPE_UINT:
3118 case GLSL_TYPE_INT:
3119 if (state->is_version(120, 300))
3120 break;
3121 /* FALLTHROUGH */
3122 default:
3123 _mesa_glsl_error(& loc, state,
3124 "vertex shader input / attribute cannot have "
3125 "type %s`%s'",
3126 var->type->is_array() ? "array of " : "",
3127 check_type->name);
3128 error_emitted = true;
3129 }
3130
3131 if (!error_emitted && var->type->is_array() &&
3132 !state->check_version(150, 0, &loc,
3133 "vertex shader input / attribute "
3134 "cannot have array type")) {
3135 error_emitted = true;
3136 }
3137 } else if (state->target == geometry_shader) {
3138 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
3139 *
3140 * Geometry shader input variables get the per-vertex values
3141 * written out by vertex shader output variables of the same
3142 * names. Since a geometry shader operates on a set of
3143 * vertices, each input varying variable (or input block, see
3144 * interface blocks below) needs to be declared as an array.
3145 */
3146 if (!var->type->is_array()) {
3147 _mesa_glsl_error(&loc, state,
3148 "geometry shader inputs must be arrays");
3149 }
3150
3151 handle_geometry_shader_input_decl(state, loc, var);
3152 }
3153 }
3154
3155 /* Integer fragment inputs must be qualified with 'flat'. In GLSL ES,
3156 * so must integer vertex outputs.
3157 *
3158 * From section 4.3.4 ("Inputs") of the GLSL 1.50 spec:
3159 * "Fragment shader inputs that are signed or unsigned integers or
3160 * integer vectors must be qualified with the interpolation qualifier
3161 * flat."
3162 *
3163 * From section 4.3.4 ("Input Variables") of the GLSL 3.00 ES spec:
3164 * "Fragment shader inputs that are, or contain, signed or unsigned
3165 * integers or integer vectors must be qualified with the
3166 * interpolation qualifier flat."
3167 *
3168 * From section 4.3.6 ("Output Variables") of the GLSL 3.00 ES spec:
3169 * "Vertex shader outputs that are, or contain, signed or unsigned
3170 * integers or integer vectors must be qualified with the
3171 * interpolation qualifier flat."
3172 *
3173 * Note that prior to GLSL 1.50, this requirement applied to vertex
3174 * outputs rather than fragment inputs. That creates problems in the
3175 * presence of geometry shaders, so we adopt the GLSL 1.50 rule for all
3176 * desktop GL shaders. For GLSL ES shaders, we follow the spec and
3177 * apply the restriction to both vertex outputs and fragment inputs.
3178 *
3179 * Note also that the desktop GLSL specs are missing the text "or
3180 * contain"; this is presumably an oversight, since there is no
3181 * reasonable way to interpolate a fragment shader input that contains
3182 * an integer.
3183 */
3184 if (state->is_version(130, 300) &&
3185 var->type->contains_integer() &&
3186 var->interpolation != INTERP_QUALIFIER_FLAT &&
3187 ((state->target == fragment_shader && var->mode == ir_var_shader_in)
3188 || (state->target == vertex_shader && var->mode == ir_var_shader_out
3189 && state->es_shader))) {
3190 const char *var_type = (state->target == vertex_shader) ?
3191 "vertex output" : "fragment input";
3192 _mesa_glsl_error(&loc, state, "if a %s is (or contains) "
3193 "an integer, then it must be qualified with 'flat'",
3194 var_type);
3195 }
3196
3197
3198 /* Interpolation qualifiers cannot be applied to 'centroid' and
3199 * 'centroid varying'.
3200 *
3201 * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
3202 * "interpolation qualifiers may only precede the qualifiers in,
3203 * centroid in, out, or centroid out in a declaration. They do not apply
3204 * to the deprecated storage qualifiers varying or centroid varying."
3205 *
3206 * These deprecated storage qualifiers do not exist in GLSL ES 3.00.
3207 */
3208 if (state->is_version(130, 0)
3209 && this->type->qualifier.has_interpolation()
3210 && this->type->qualifier.flags.q.varying) {
3211
3212 const char *i = this->type->qualifier.interpolation_string();
3213 assert(i != NULL);
3214 const char *s;
3215 if (this->type->qualifier.flags.q.centroid)
3216 s = "centroid varying";
3217 else
3218 s = "varying";
3219
3220 _mesa_glsl_error(&loc, state,
3221 "qualifier '%s' cannot be applied to the "
3222 "deprecated storage qualifier '%s'", i, s);
3223 }
3224
3225
3226 /* Interpolation qualifiers can only apply to vertex shader outputs and
3227 * fragment shader inputs.
3228 *
3229 * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
3230 * "Outputs from a vertex shader (out) and inputs to a fragment
3231 * shader (in) can be further qualified with one or more of these
3232 * interpolation qualifiers"
3233 *
3234 * From page 31 (page 37 of the PDF) of the GLSL ES 3.00 spec:
3235 * "These interpolation qualifiers may only precede the qualifiers
3236 * in, centroid in, out, or centroid out in a declaration. They do
3237 * not apply to inputs into a vertex shader or outputs from a
3238 * fragment shader."
3239 */
3240 if (state->is_version(130, 300)
3241 && this->type->qualifier.has_interpolation()) {
3242
3243 const char *i = this->type->qualifier.interpolation_string();
3244 assert(i != NULL);
3245
3246 switch (state->target) {
3247 case vertex_shader:
3248 if (this->type->qualifier.flags.q.in) {
3249 _mesa_glsl_error(&loc, state,
3250 "qualifier '%s' cannot be applied to vertex "
3251 "shader inputs", i);
3252 }
3253 break;
3254 case fragment_shader:
3255 if (this->type->qualifier.flags.q.out) {
3256 _mesa_glsl_error(&loc, state,
3257 "qualifier '%s' cannot be applied to fragment "
3258 "shader outputs", i);
3259 }
3260 break;
3261 default:
3262 break;
3263 }
3264 }
3265
3266
3267 /* From section 4.3.4 of the GLSL 1.30 spec:
3268 * "It is an error to use centroid in in a vertex shader."
3269 *
3270 * From section 4.3.4 of the GLSL ES 3.00 spec:
3271 * "It is an error to use centroid in or interpolation qualifiers in
3272 * a vertex shader input."
3273 */
3274 if (state->is_version(130, 300)
3275 && this->type->qualifier.flags.q.centroid
3276 && this->type->qualifier.flags.q.in
3277 && state->target == vertex_shader) {
3278
3279 _mesa_glsl_error(&loc, state,
3280 "'centroid in' cannot be used in a vertex shader");
3281 }
3282
3283 if (state->target == vertex_shader
3284 && this->type->qualifier.flags.q.sample
3285 && this->type->qualifier.flags.q.in) {
3286
3287 _mesa_glsl_error(&loc, state,
3288 "'sample in' cannot be used in a vertex shader");
3289 }
3290
3291 /* Section 4.3.6 of the GLSL 1.30 specification states:
3292 * "It is an error to use centroid out in a fragment shader."
3293 *
3294 * The GL_ARB_shading_language_420pack extension specification states:
3295 * "It is an error to use auxiliary storage qualifiers or interpolation
3296 * qualifiers on an output in a fragment shader."
3297 */
3298 if (state->target == fragment_shader &&
3299 this->type->qualifier.flags.q.out &&
3300 this->type->qualifier.has_auxiliary_storage()) {
3301 _mesa_glsl_error(&loc, state,
3302 "auxiliary storage qualifiers cannot be used on "
3303 "fragment shader outputs");
3304 }
3305
3306 /* Precision qualifiers exists only in GLSL versions 1.00 and >= 1.30.
3307 */
3308 if (this->type->qualifier.precision != ast_precision_none) {
3309 state->check_precision_qualifiers_allowed(&loc);
3310 }
3311
3312
3313 /* Precision qualifiers apply to floating point, integer and sampler
3314 * types.
3315 *
3316 * Section 4.5.2 (Precision Qualifiers) of the GLSL 1.30 spec says:
3317 * "Any floating point or any integer declaration can have the type
3318 * preceded by one of these precision qualifiers [...] Literal
3319 * constants do not have precision qualifiers. Neither do Boolean
3320 * variables.
3321 *
3322 * Section 4.5 (Precision and Precision Qualifiers) of the GLSL 1.30
3323 * spec also says:
3324 *
3325 * "Precision qualifiers are added for code portability with OpenGL
3326 * ES, not for functionality. They have the same syntax as in OpenGL
3327 * ES."
3328 *
3329 * Section 8 (Built-In Functions) of the GLSL ES 1.00 spec says:
3330 *
3331 * "uniform lowp sampler2D sampler;
3332 * highp vec2 coord;
3333 * ...
3334 * lowp vec4 col = texture2D (sampler, coord);
3335 * // texture2D returns lowp"
3336 *
3337 * From this, we infer that GLSL 1.30 (and later) should allow precision
3338 * qualifiers on sampler types just like float and integer types.
3339 */
3340 if (this->type->qualifier.precision != ast_precision_none
3341 && !var->type->is_float()
3342 && !var->type->is_integer()
3343 && !var->type->is_record()
3344 && !var->type->is_sampler()
3345 && !(var->type->is_array()
3346 && (var->type->fields.array->is_float()
3347 || var->type->fields.array->is_integer()))) {
3348
3349 _mesa_glsl_error(&loc, state,
3350 "precision qualifiers apply only to floating point"
3351 ", integer and sampler types");
3352 }
3353
3354 /* From page 17 (page 23 of the PDF) of the GLSL 1.20 spec:
3355 *
3356 * "[Sampler types] can only be declared as function
3357 * parameters or uniform variables (see Section 4.3.5
3358 * "Uniform")".
3359 */
3360 if (var_type->contains_sampler() &&
3361 !this->type->qualifier.flags.q.uniform) {
3362 _mesa_glsl_error(&loc, state, "samplers must be declared uniform");
3363 }
3364
3365 /* Process the initializer and add its instructions to a temporary
3366 * list. This list will be added to the instruction stream (below) after
3367 * the declaration is added. This is done because in some cases (such as
3368 * redeclarations) the declaration may not actually be added to the
3369 * instruction stream.
3370 */
3371 exec_list initializer_instructions;
3372 ir_variable *earlier =
3373 get_variable_being_redeclared(var, decl->get_location(), state,
3374 false /* allow_all_redeclarations */);
3375 if (earlier != NULL) {
3376 if (strncmp(var->name, "gl_", 3) == 0 &&
3377 earlier->how_declared == ir_var_declared_in_block) {
3378 _mesa_glsl_error(&loc, state,
3379 "`%s' has already been redeclared using "
3380 "gl_PerVertex", var->name);
3381 }
3382 earlier->how_declared = ir_var_declared_normally;
3383 }
3384
3385 if (decl->initializer != NULL) {
3386 result = process_initializer((earlier == NULL) ? var : earlier,
3387 decl, this->type,
3388 &initializer_instructions, state);
3389 }
3390
3391 /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
3392 *
3393 * "It is an error to write to a const variable outside of
3394 * its declaration, so they must be initialized when
3395 * declared."
3396 */
3397 if (this->type->qualifier.flags.q.constant && decl->initializer == NULL) {
3398 _mesa_glsl_error(& loc, state,
3399 "const declaration of `%s' must be initialized",
3400 decl->identifier);
3401 }
3402
3403 if (state->es_shader) {
3404 const glsl_type *const t = (earlier == NULL)
3405 ? var->type : earlier->type;
3406
3407 if (t->is_unsized_array())
3408 /* Section 10.17 of the GLSL ES 1.00 specification states that
3409 * unsized array declarations have been removed from the language.
3410 * Arrays that are sized using an initializer are still explicitly
3411 * sized. However, GLSL ES 1.00 does not allow array
3412 * initializers. That is only allowed in GLSL ES 3.00.
3413 *
3414 * Section 4.1.9 (Arrays) of the GLSL ES 3.00 spec says:
3415 *
3416 * "An array type can also be formed without specifying a size
3417 * if the definition includes an initializer:
3418 *
3419 * float x[] = float[2] (1.0, 2.0); // declares an array of size 2
3420 * float y[] = float[] (1.0, 2.0, 3.0); // declares an array of size 3
3421 *
3422 * float a[5];
3423 * float b[] = a;"
3424 */
3425 _mesa_glsl_error(& loc, state,
3426 "unsized array declarations are not allowed in "
3427 "GLSL ES");
3428 }
3429
3430 /* If the declaration is not a redeclaration, there are a few additional
3431 * semantic checks that must be applied. In addition, variable that was
3432 * created for the declaration should be added to the IR stream.
3433 */
3434 if (earlier == NULL) {
3435 validate_identifier(decl->identifier, loc, state);
3436
3437 /* Add the variable to the symbol table. Note that the initializer's
3438 * IR was already processed earlier (though it hasn't been emitted
3439 * yet), without the variable in scope.
3440 *
3441 * This differs from most C-like languages, but it follows the GLSL
3442 * specification. From page 28 (page 34 of the PDF) of the GLSL 1.50
3443 * spec:
3444 *
3445 * "Within a declaration, the scope of a name starts immediately
3446 * after the initializer if present or immediately after the name
3447 * being declared if not."
3448 */
3449 if (!state->symbols->add_variable(var)) {
3450 YYLTYPE loc = this->get_location();
3451 _mesa_glsl_error(&loc, state, "name `%s' already taken in the "
3452 "current scope", decl->identifier);
3453 continue;
3454 }
3455
3456 /* Push the variable declaration to the top. It means that all the
3457 * variable declarations will appear in a funny last-to-first order,
3458 * but otherwise we run into trouble if a function is prototyped, a
3459 * global var is decled, then the function is defined with usage of
3460 * the global var. See glslparsertest's CorrectModule.frag.
3461 */
3462 instructions->push_head(var);
3463 }
3464
3465 instructions->append_list(&initializer_instructions);
3466 }
3467
3468
3469 /* Generally, variable declarations do not have r-values. However,
3470 * one is used for the declaration in
3471 *
3472 * while (bool b = some_condition()) {
3473 * ...
3474 * }
3475 *
3476 * so we return the rvalue from the last seen declaration here.
3477 */
3478 return result;
3479 }
3480
3481
3482 ir_rvalue *
3483 ast_parameter_declarator::hir(exec_list *instructions,
3484 struct _mesa_glsl_parse_state *state)
3485 {
3486 void *ctx = state;
3487 const struct glsl_type *type;
3488 const char *name = NULL;
3489 YYLTYPE loc = this->get_location();
3490
3491 type = this->type->glsl_type(& name, state);
3492
3493 if (type == NULL) {
3494 if (name != NULL) {
3495 _mesa_glsl_error(& loc, state,
3496 "invalid type `%s' in declaration of `%s'",
3497 name, this->identifier);
3498 } else {
3499 _mesa_glsl_error(& loc, state,
3500 "invalid type in declaration of `%s'",
3501 this->identifier);
3502 }
3503
3504 type = glsl_type::error_type;
3505 }
3506
3507 /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
3508 *
3509 * "Functions that accept no input arguments need not use void in the
3510 * argument list because prototypes (or definitions) are required and
3511 * therefore there is no ambiguity when an empty argument list "( )" is
3512 * declared. The idiom "(void)" as a parameter list is provided for
3513 * convenience."
3514 *
3515 * Placing this check here prevents a void parameter being set up
3516 * for a function, which avoids tripping up checks for main taking
3517 * parameters and lookups of an unnamed symbol.
3518 */
3519 if (type->is_void()) {
3520 if (this->identifier != NULL)
3521 _mesa_glsl_error(& loc, state,
3522 "named parameter cannot have type `void'");
3523
3524 is_void = true;
3525 return NULL;
3526 }
3527
3528 if (formal_parameter && (this->identifier == NULL)) {
3529 _mesa_glsl_error(& loc, state, "formal parameter lacks a name");
3530 return NULL;
3531 }
3532
3533 /* This only handles "vec4 foo[..]". The earlier specifier->glsl_type(...)
3534 * call already handled the "vec4[..] foo" case.
3535 */
3536 if (this->is_array) {
3537 type = process_array_type(&loc, type, this->array_size, state);
3538 }
3539
3540 if (!type->is_error() && type->is_unsized_array()) {
3541 _mesa_glsl_error(&loc, state, "arrays passed as parameters must have "
3542 "a declared size");
3543 type = glsl_type::error_type;
3544 }
3545
3546 is_void = false;
3547 ir_variable *var = new(ctx)
3548 ir_variable(type, this->identifier, ir_var_function_in);
3549
3550 /* Apply any specified qualifiers to the parameter declaration. Note that
3551 * for function parameters the default mode is 'in'.
3552 */
3553 apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc,
3554 true);
3555
3556 /* From page 17 (page 23 of the PDF) of the GLSL 1.20 spec:
3557 *
3558 * "Samplers cannot be treated as l-values; hence cannot be used
3559 * as out or inout function parameters, nor can they be assigned
3560 * into."
3561 */
3562 if ((var->mode == ir_var_function_inout || var->mode == ir_var_function_out)
3563 && type->contains_sampler()) {
3564 _mesa_glsl_error(&loc, state, "out and inout parameters cannot contain samplers");
3565 type = glsl_type::error_type;
3566 }
3567
3568 /* From page 39 (page 45 of the PDF) of the GLSL 1.10 spec:
3569 *
3570 * "When calling a function, expressions that do not evaluate to
3571 * l-values cannot be passed to parameters declared as out or inout."
3572 *
3573 * From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
3574 *
3575 * "Other binary or unary expressions, non-dereferenced arrays,
3576 * function names, swizzles with repeated fields, and constants
3577 * cannot be l-values."
3578 *
3579 * So for GLSL 1.10, passing an array as an out or inout parameter is not
3580 * allowed. This restriction is removed in GLSL 1.20, and in GLSL ES.
3581 */
3582 if ((var->mode == ir_var_function_inout || var->mode == ir_var_function_out)
3583 && type->is_array()
3584 && !state->check_version(120, 100, &loc,
3585 "arrays cannot be out or inout parameters")) {
3586 type = glsl_type::error_type;
3587 }
3588
3589 instructions->push_tail(var);
3590
3591 /* Parameter declarations do not have r-values.
3592 */
3593 return NULL;
3594 }
3595
3596
3597 void
3598 ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters,
3599 bool formal,
3600 exec_list *ir_parameters,
3601 _mesa_glsl_parse_state *state)
3602 {
3603 ast_parameter_declarator *void_param = NULL;
3604 unsigned count = 0;
3605
3606 foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) {
3607 param->formal_parameter = formal;
3608 param->hir(ir_parameters, state);
3609
3610 if (param->is_void)
3611 void_param = param;
3612
3613 count++;
3614 }
3615
3616 if ((void_param != NULL) && (count > 1)) {
3617 YYLTYPE loc = void_param->get_location();
3618
3619 _mesa_glsl_error(& loc, state,
3620 "`void' parameter must be only parameter");
3621 }
3622 }
3623
3624
3625 void
3626 emit_function(_mesa_glsl_parse_state *state, ir_function *f)
3627 {
3628 /* IR invariants disallow function declarations or definitions
3629 * nested within other function definitions. But there is no
3630 * requirement about the relative order of function declarations
3631 * and definitions with respect to one another. So simply insert
3632 * the new ir_function block at the end of the toplevel instruction
3633 * list.
3634 */
3635 state->toplevel_ir->push_tail(f);
3636 }
3637
3638
3639 ir_rvalue *
3640 ast_function::hir(exec_list *instructions,
3641 struct _mesa_glsl_parse_state *state)
3642 {
3643 void *ctx = state;
3644 ir_function *f = NULL;
3645 ir_function_signature *sig = NULL;
3646 exec_list hir_parameters;
3647
3648 const char *const name = identifier;
3649
3650 /* New functions are always added to the top-level IR instruction stream,
3651 * so this instruction list pointer is ignored. See also emit_function
3652 * (called below).
3653 */
3654 (void) instructions;
3655
3656 /* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec,
3657 *
3658 * "Function declarations (prototypes) cannot occur inside of functions;
3659 * they must be at global scope, or for the built-in functions, outside
3660 * the global scope."
3661 *
3662 * From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec,
3663 *
3664 * "User defined functions may only be defined within the global scope."
3665 *
3666 * Note that this language does not appear in GLSL 1.10.
3667 */
3668 if ((state->current_function != NULL) &&
3669 state->is_version(120, 100)) {
3670 YYLTYPE loc = this->get_location();
3671 _mesa_glsl_error(&loc, state,
3672 "declaration of function `%s' not allowed within "
3673 "function body", name);
3674 }
3675
3676 validate_identifier(name, this->get_location(), state);
3677
3678 /* Convert the list of function parameters to HIR now so that they can be
3679 * used below to compare this function's signature with previously seen
3680 * signatures for functions with the same name.
3681 */
3682 ast_parameter_declarator::parameters_to_hir(& this->parameters,
3683 is_definition,
3684 & hir_parameters, state);
3685
3686 const char *return_type_name;
3687 const glsl_type *return_type =
3688 this->return_type->glsl_type(& return_type_name, state);
3689
3690 if (!return_type) {
3691 YYLTYPE loc = this->get_location();
3692 _mesa_glsl_error(&loc, state,
3693 "function `%s' has undeclared return type `%s'",
3694 name, return_type_name);
3695 return_type = glsl_type::error_type;
3696 }
3697
3698 /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec:
3699 * "No qualifier is allowed on the return type of a function."
3700 */
3701 if (this->return_type->has_qualifiers()) {
3702 YYLTYPE loc = this->get_location();
3703 _mesa_glsl_error(& loc, state,
3704 "function `%s' return type has qualifiers", name);
3705 }
3706
3707 /* Section 6.1 (Function Definitions) of the GLSL 1.20 spec says:
3708 *
3709 * "Arrays are allowed as arguments and as the return type. In both
3710 * cases, the array must be explicitly sized."
3711 */
3712 if (return_type->is_unsized_array()) {
3713 YYLTYPE loc = this->get_location();
3714 _mesa_glsl_error(& loc, state,
3715 "function `%s' return type array must be explicitly "
3716 "sized", name);
3717 }
3718
3719 /* From page 17 (page 23 of the PDF) of the GLSL 1.20 spec:
3720 *
3721 * "[Sampler types] can only be declared as function parameters
3722 * or uniform variables (see Section 4.3.5 "Uniform")".
3723 */
3724 if (return_type->contains_sampler()) {
3725 YYLTYPE loc = this->get_location();
3726 _mesa_glsl_error(&loc, state,
3727 "function `%s' return type can't contain a sampler",
3728 name);
3729 }
3730
3731 /* Verify that this function's signature either doesn't match a previously
3732 * seen signature for a function with the same name, or, if a match is found,
3733 * that the previously seen signature does not have an associated definition.
3734 */
3735 f = state->symbols->get_function(name);
3736 if (f != NULL && (state->es_shader || f->has_user_signature())) {
3737 sig = f->exact_matching_signature(state, &hir_parameters);
3738 if (sig != NULL) {
3739 const char *badvar = sig->qualifiers_match(&hir_parameters);
3740 if (badvar != NULL) {
3741 YYLTYPE loc = this->get_location();
3742
3743 _mesa_glsl_error(&loc, state, "function `%s' parameter `%s' "
3744 "qualifiers don't match prototype", name, badvar);
3745 }
3746
3747 if (sig->return_type != return_type) {
3748 YYLTYPE loc = this->get_location();
3749
3750 _mesa_glsl_error(&loc, state, "function `%s' return type doesn't "
3751 "match prototype", name);
3752 }
3753
3754 if (sig->is_defined) {
3755 if (is_definition) {
3756 YYLTYPE loc = this->get_location();
3757 _mesa_glsl_error(& loc, state, "function `%s' redefined", name);
3758 } else {
3759 /* We just encountered a prototype that exactly matches a
3760 * function that's already been defined. This is redundant,
3761 * and we should ignore it.
3762 */
3763 return NULL;
3764 }
3765 }
3766 }
3767 } else {
3768 f = new(ctx) ir_function(name);
3769 if (!state->symbols->add_function(f)) {
3770 /* This function name shadows a non-function use of the same name. */
3771 YYLTYPE loc = this->get_location();
3772
3773 _mesa_glsl_error(&loc, state, "function name `%s' conflicts with "
3774 "non-function", name);
3775 return NULL;
3776 }
3777
3778 emit_function(state, f);
3779 }
3780
3781 /* Verify the return type of main() */
3782 if (strcmp(name, "main") == 0) {
3783 if (! return_type->is_void()) {
3784 YYLTYPE loc = this->get_location();
3785
3786 _mesa_glsl_error(& loc, state, "main() must return void");
3787 }
3788
3789 if (!hir_parameters.is_empty()) {
3790 YYLTYPE loc = this->get_location();
3791
3792 _mesa_glsl_error(& loc, state, "main() must not take any parameters");
3793 }
3794 }
3795
3796 /* Finish storing the information about this new function in its signature.
3797 */
3798 if (sig == NULL) {
3799 sig = new(ctx) ir_function_signature(return_type);
3800 f->add_signature(sig);
3801 }
3802
3803 sig->replace_parameters(&hir_parameters);
3804 signature = sig;
3805
3806 /* Function declarations (prototypes) do not have r-values.
3807 */
3808 return NULL;
3809 }
3810
3811
3812 ir_rvalue *
3813 ast_function_definition::hir(exec_list *instructions,
3814 struct _mesa_glsl_parse_state *state)
3815 {
3816 prototype->is_definition = true;
3817 prototype->hir(instructions, state);
3818
3819 ir_function_signature *signature = prototype->signature;
3820 if (signature == NULL)
3821 return NULL;
3822
3823 assert(state->current_function == NULL);
3824 state->current_function = signature;
3825 state->found_return = false;
3826
3827 /* Duplicate parameters declared in the prototype as concrete variables.
3828 * Add these to the symbol table.
3829 */
3830 state->symbols->push_scope();
3831 foreach_iter(exec_list_iterator, iter, signature->parameters) {
3832 ir_variable *const var = ((ir_instruction *) iter.get())->as_variable();
3833
3834 assert(var != NULL);
3835
3836 /* The only way a parameter would "exist" is if two parameters have
3837 * the same name.
3838 */
3839 if (state->symbols->name_declared_this_scope(var->name)) {
3840 YYLTYPE loc = this->get_location();
3841
3842 _mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name);
3843 } else {
3844 state->symbols->add_variable(var);
3845 }
3846 }
3847
3848 /* Convert the body of the function to HIR. */
3849 this->body->hir(&signature->body, state);
3850 signature->is_defined = true;
3851
3852 state->symbols->pop_scope();
3853
3854 assert(state->current_function == signature);
3855 state->current_function = NULL;
3856
3857 if (!signature->return_type->is_void() && !state->found_return) {
3858 YYLTYPE loc = this->get_location();
3859 _mesa_glsl_error(& loc, state, "function `%s' has non-void return type "
3860 "%s, but no return statement",
3861 signature->function_name(),
3862 signature->return_type->name);
3863 }
3864
3865 /* Function definitions do not have r-values.
3866 */
3867 return NULL;
3868 }
3869
3870
3871 ir_rvalue *
3872 ast_jump_statement::hir(exec_list *instructions,
3873 struct _mesa_glsl_parse_state *state)
3874 {
3875 void *ctx = state;
3876
3877 switch (mode) {
3878 case ast_return: {
3879 ir_return *inst;
3880 assert(state->current_function);
3881
3882 if (opt_return_value) {
3883 ir_rvalue *ret = opt_return_value->hir(instructions, state);
3884
3885 /* The value of the return type can be NULL if the shader says
3886 * 'return foo();' and foo() is a function that returns void.
3887 *
3888 * NOTE: The GLSL spec doesn't say that this is an error. The type
3889 * of the return value is void. If the return type of the function is
3890 * also void, then this should compile without error. Seriously.
3891 */
3892 const glsl_type *const ret_type =
3893 (ret == NULL) ? glsl_type::void_type : ret->type;
3894
3895 /* Implicit conversions are not allowed for return values prior to
3896 * ARB_shading_language_420pack.
3897 */
3898 if (state->current_function->return_type != ret_type) {
3899 YYLTYPE loc = this->get_location();
3900
3901 if (state->ARB_shading_language_420pack_enable) {
3902 if (!apply_implicit_conversion(state->current_function->return_type,
3903 ret, state)) {
3904 _mesa_glsl_error(& loc, state,
3905 "could not implicitly convert return value "
3906 "to %s, in function `%s'",
3907 state->current_function->return_type->name,
3908 state->current_function->function_name());
3909 }
3910 } else {
3911 _mesa_glsl_error(& loc, state,
3912 "`return' with wrong type %s, in function `%s' "
3913 "returning %s",
3914 ret_type->name,
3915 state->current_function->function_name(),
3916 state->current_function->return_type->name);
3917 }
3918 } else if (state->current_function->return_type->base_type ==
3919 GLSL_TYPE_VOID) {
3920 YYLTYPE loc = this->get_location();
3921
3922 /* The ARB_shading_language_420pack, GLSL ES 3.0, and GLSL 4.20
3923 * specs add a clarification:
3924 *
3925 * "A void function can only use return without a return argument, even if
3926 * the return argument has void type. Return statements only accept values:
3927 *
3928 * void func1() { }
3929 * void func2() { return func1(); } // illegal return statement"
3930 */
3931 _mesa_glsl_error(& loc, state,
3932 "void functions can only use `return' without a "
3933 "return argument");
3934 }
3935
3936 inst = new(ctx) ir_return(ret);
3937 } else {
3938 if (state->current_function->return_type->base_type !=
3939 GLSL_TYPE_VOID) {
3940 YYLTYPE loc = this->get_location();
3941
3942 _mesa_glsl_error(& loc, state,
3943 "`return' with no value, in function %s returning "
3944 "non-void",
3945 state->current_function->function_name());
3946 }
3947 inst = new(ctx) ir_return;
3948 }
3949
3950 state->found_return = true;
3951 instructions->push_tail(inst);
3952 break;
3953 }
3954
3955 case ast_discard:
3956 if (state->target != fragment_shader) {
3957 YYLTYPE loc = this->get_location();
3958
3959 _mesa_glsl_error(& loc, state,
3960 "`discard' may only appear in a fragment shader");
3961 }
3962 instructions->push_tail(new(ctx) ir_discard);
3963 break;
3964
3965 case ast_break:
3966 case ast_continue:
3967 if (mode == ast_continue &&
3968 state->loop_nesting_ast == NULL) {
3969 YYLTYPE loc = this->get_location();
3970
3971 _mesa_glsl_error(& loc, state,
3972 "continue may only appear in a loop");
3973 } else if (mode == ast_break &&
3974 state->loop_nesting_ast == NULL &&
3975 state->switch_state.switch_nesting_ast == NULL) {
3976 YYLTYPE loc = this->get_location();
3977
3978 _mesa_glsl_error(& loc, state,
3979 "break may only appear in a loop or a switch");
3980 } else {
3981 /* For a loop, inline the for loop expression again,
3982 * since we don't know where near the end of
3983 * the loop body the normal copy of it
3984 * is going to be placed.
3985 */
3986 if (state->loop_nesting_ast != NULL &&
3987 mode == ast_continue &&
3988 state->loop_nesting_ast->rest_expression) {
3989 state->loop_nesting_ast->rest_expression->hir(instructions,
3990 state);
3991 }
3992
3993 if (state->switch_state.is_switch_innermost &&
3994 mode == ast_break) {
3995 /* Force break out of switch by setting is_break switch state.
3996 */
3997 ir_variable *const is_break_var = state->switch_state.is_break_var;
3998 ir_dereference_variable *const deref_is_break_var =
3999 new(ctx) ir_dereference_variable(is_break_var);
4000 ir_constant *const true_val = new(ctx) ir_constant(true);
4001 ir_assignment *const set_break_var =
4002 new(ctx) ir_assignment(deref_is_break_var, true_val);
4003
4004 instructions->push_tail(set_break_var);
4005 }
4006 else {
4007 ir_loop_jump *const jump =
4008 new(ctx) ir_loop_jump((mode == ast_break)
4009 ? ir_loop_jump::jump_break
4010 : ir_loop_jump::jump_continue);
4011 instructions->push_tail(jump);
4012 }
4013 }
4014
4015 break;
4016 }
4017
4018 /* Jump instructions do not have r-values.
4019 */
4020 return NULL;
4021 }
4022
4023
4024 ir_rvalue *
4025 ast_selection_statement::hir(exec_list *instructions,
4026 struct _mesa_glsl_parse_state *state)
4027 {
4028 void *ctx = state;
4029
4030 ir_rvalue *const condition = this->condition->hir(instructions, state);
4031
4032 /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
4033 *
4034 * "Any expression whose type evaluates to a Boolean can be used as the
4035 * conditional expression bool-expression. Vector types are not accepted
4036 * as the expression to if."
4037 *
4038 * The checks are separated so that higher quality diagnostics can be
4039 * generated for cases where both rules are violated.
4040 */
4041 if (!condition->type->is_boolean() || !condition->type->is_scalar()) {
4042 YYLTYPE loc = this->condition->get_location();
4043
4044 _mesa_glsl_error(& loc, state, "if-statement condition must be scalar "
4045 "boolean");
4046 }
4047
4048 ir_if *const stmt = new(ctx) ir_if(condition);
4049
4050 if (then_statement != NULL) {
4051 state->symbols->push_scope();
4052 then_statement->hir(& stmt->then_instructions, state);
4053 state->symbols->pop_scope();
4054 }
4055
4056 if (else_statement != NULL) {
4057 state->symbols->push_scope();
4058 else_statement->hir(& stmt->else_instructions, state);
4059 state->symbols->pop_scope();
4060 }
4061
4062 instructions->push_tail(stmt);
4063
4064 /* if-statements do not have r-values.
4065 */
4066 return NULL;
4067 }
4068
4069
4070 ir_rvalue *
4071 ast_switch_statement::hir(exec_list *instructions,
4072 struct _mesa_glsl_parse_state *state)
4073 {
4074 void *ctx = state;
4075
4076 ir_rvalue *const test_expression =
4077 this->test_expression->hir(instructions, state);
4078
4079 /* From page 66 (page 55 of the PDF) of the GLSL 1.50 spec:
4080 *
4081 * "The type of init-expression in a switch statement must be a
4082 * scalar integer."
4083 */
4084 if (!test_expression->type->is_scalar() ||
4085 !test_expression->type->is_integer()) {
4086 YYLTYPE loc = this->test_expression->get_location();
4087
4088 _mesa_glsl_error(& loc,
4089 state,
4090 "switch-statement expression must be scalar "
4091 "integer");
4092 }
4093
4094 /* Track the switch-statement nesting in a stack-like manner.
4095 */
4096 struct glsl_switch_state saved = state->switch_state;
4097
4098 state->switch_state.is_switch_innermost = true;
4099 state->switch_state.switch_nesting_ast = this;
4100 state->switch_state.labels_ht = hash_table_ctor(0, hash_table_pointer_hash,
4101 hash_table_pointer_compare);
4102 state->switch_state.previous_default = NULL;
4103
4104 /* Initalize is_fallthru state to false.
4105 */
4106 ir_rvalue *const is_fallthru_val = new (ctx) ir_constant(false);
4107 state->switch_state.is_fallthru_var =
4108 new(ctx) ir_variable(glsl_type::bool_type,
4109 "switch_is_fallthru_tmp",
4110 ir_var_temporary);
4111 instructions->push_tail(state->switch_state.is_fallthru_var);
4112
4113 ir_dereference_variable *deref_is_fallthru_var =
4114 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
4115 instructions->push_tail(new(ctx) ir_assignment(deref_is_fallthru_var,
4116 is_fallthru_val));
4117
4118 /* Initalize is_break state to false.
4119 */
4120 ir_rvalue *const is_break_val = new (ctx) ir_constant(false);
4121 state->switch_state.is_break_var = new(ctx) ir_variable(glsl_type::bool_type,
4122 "switch_is_break_tmp",
4123 ir_var_temporary);
4124 instructions->push_tail(state->switch_state.is_break_var);
4125
4126 ir_dereference_variable *deref_is_break_var =
4127 new(ctx) ir_dereference_variable(state->switch_state.is_break_var);
4128 instructions->push_tail(new(ctx) ir_assignment(deref_is_break_var,
4129 is_break_val));
4130
4131 /* Cache test expression.
4132 */
4133 test_to_hir(instructions, state);
4134
4135 /* Emit code for body of switch stmt.
4136 */
4137 body->hir(instructions, state);
4138
4139 hash_table_dtor(state->switch_state.labels_ht);
4140
4141 state->switch_state = saved;
4142
4143 /* Switch statements do not have r-values. */
4144 return NULL;
4145 }
4146
4147
4148 void
4149 ast_switch_statement::test_to_hir(exec_list *instructions,
4150 struct _mesa_glsl_parse_state *state)
4151 {
4152 void *ctx = state;
4153
4154 /* Cache value of test expression. */
4155 ir_rvalue *const test_val =
4156 test_expression->hir(instructions,
4157 state);
4158
4159 state->switch_state.test_var = new(ctx) ir_variable(test_val->type,
4160 "switch_test_tmp",
4161 ir_var_temporary);
4162 ir_dereference_variable *deref_test_var =
4163 new(ctx) ir_dereference_variable(state->switch_state.test_var);
4164
4165 instructions->push_tail(state->switch_state.test_var);
4166 instructions->push_tail(new(ctx) ir_assignment(deref_test_var, test_val));
4167 }
4168
4169
4170 ir_rvalue *
4171 ast_switch_body::hir(exec_list *instructions,
4172 struct _mesa_glsl_parse_state *state)
4173 {
4174 if (stmts != NULL)
4175 stmts->hir(instructions, state);
4176
4177 /* Switch bodies do not have r-values. */
4178 return NULL;
4179 }
4180
4181 ir_rvalue *
4182 ast_case_statement_list::hir(exec_list *instructions,
4183 struct _mesa_glsl_parse_state *state)
4184 {
4185 foreach_list_typed (ast_case_statement, case_stmt, link, & this->cases)
4186 case_stmt->hir(instructions, state);
4187
4188 /* Case statements do not have r-values. */
4189 return NULL;
4190 }
4191
4192 ir_rvalue *
4193 ast_case_statement::hir(exec_list *instructions,
4194 struct _mesa_glsl_parse_state *state)
4195 {
4196 labels->hir(instructions, state);
4197
4198 /* Conditionally set fallthru state based on break state. */
4199 ir_constant *const false_val = new(state) ir_constant(false);
4200 ir_dereference_variable *const deref_is_fallthru_var =
4201 new(state) ir_dereference_variable(state->switch_state.is_fallthru_var);
4202 ir_dereference_variable *const deref_is_break_var =
4203 new(state) ir_dereference_variable(state->switch_state.is_break_var);
4204 ir_assignment *const reset_fallthru_on_break =
4205 new(state) ir_assignment(deref_is_fallthru_var,
4206 false_val,
4207 deref_is_break_var);
4208 instructions->push_tail(reset_fallthru_on_break);
4209
4210 /* Guard case statements depending on fallthru state. */
4211 ir_dereference_variable *const deref_fallthru_guard =
4212 new(state) ir_dereference_variable(state->switch_state.is_fallthru_var);
4213 ir_if *const test_fallthru = new(state) ir_if(deref_fallthru_guard);
4214
4215 foreach_list_typed (ast_node, stmt, link, & this->stmts)
4216 stmt->hir(& test_fallthru->then_instructions, state);
4217
4218 instructions->push_tail(test_fallthru);
4219
4220 /* Case statements do not have r-values. */
4221 return NULL;
4222 }
4223
4224
4225 ir_rvalue *
4226 ast_case_label_list::hir(exec_list *instructions,
4227 struct _mesa_glsl_parse_state *state)
4228 {
4229 foreach_list_typed (ast_case_label, label, link, & this->labels)
4230 label->hir(instructions, state);
4231
4232 /* Case labels do not have r-values. */
4233 return NULL;
4234 }
4235
4236 ir_rvalue *
4237 ast_case_label::hir(exec_list *instructions,
4238 struct _mesa_glsl_parse_state *state)
4239 {
4240 void *ctx = state;
4241
4242 ir_dereference_variable *deref_fallthru_var =
4243 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
4244
4245 ir_rvalue *const true_val = new(ctx) ir_constant(true);
4246
4247 /* If not default case, ... */
4248 if (this->test_value != NULL) {
4249 /* Conditionally set fallthru state based on
4250 * comparison of cached test expression value to case label.
4251 */
4252 ir_rvalue *const label_rval = this->test_value->hir(instructions, state);
4253 ir_constant *label_const = label_rval->constant_expression_value();
4254
4255 if (!label_const) {
4256 YYLTYPE loc = this->test_value->get_location();
4257
4258 _mesa_glsl_error(& loc, state,
4259 "switch statement case label must be a "
4260 "constant expression");
4261
4262 /* Stuff a dummy value in to allow processing to continue. */
4263 label_const = new(ctx) ir_constant(0);
4264 } else {
4265 ast_expression *previous_label = (ast_expression *)
4266 hash_table_find(state->switch_state.labels_ht,
4267 (void *)(uintptr_t)label_const->value.u[0]);
4268
4269 if (previous_label) {
4270 YYLTYPE loc = this->test_value->get_location();
4271 _mesa_glsl_error(& loc, state,
4272 "duplicate case value");
4273
4274 loc = previous_label->get_location();
4275 _mesa_glsl_error(& loc, state,
4276 "this is the previous case label");
4277 } else {
4278 hash_table_insert(state->switch_state.labels_ht,
4279 this->test_value,
4280 (void *)(uintptr_t)label_const->value.u[0]);
4281 }
4282 }
4283
4284 ir_dereference_variable *deref_test_var =
4285 new(ctx) ir_dereference_variable(state->switch_state.test_var);
4286
4287 ir_rvalue *const test_cond = new(ctx) ir_expression(ir_binop_all_equal,
4288 label_const,
4289 deref_test_var);
4290
4291 ir_assignment *set_fallthru_on_test =
4292 new(ctx) ir_assignment(deref_fallthru_var,
4293 true_val,
4294 test_cond);
4295
4296 instructions->push_tail(set_fallthru_on_test);
4297 } else { /* default case */
4298 if (state->switch_state.previous_default) {
4299 YYLTYPE loc = this->get_location();
4300 _mesa_glsl_error(& loc, state,
4301 "multiple default labels in one switch");
4302
4303 loc = state->switch_state.previous_default->get_location();
4304 _mesa_glsl_error(& loc, state,
4305 "this is the first default label");
4306 }
4307 state->switch_state.previous_default = this;
4308
4309 /* Set falltrhu state. */
4310 ir_assignment *set_fallthru =
4311 new(ctx) ir_assignment(deref_fallthru_var, true_val);
4312
4313 instructions->push_tail(set_fallthru);
4314 }
4315
4316 /* Case statements do not have r-values. */
4317 return NULL;
4318 }
4319
4320 void
4321 ast_iteration_statement::condition_to_hir(ir_loop *stmt,
4322 struct _mesa_glsl_parse_state *state)
4323 {
4324 void *ctx = state;
4325
4326 if (condition != NULL) {
4327 ir_rvalue *const cond =
4328 condition->hir(& stmt->body_instructions, state);
4329
4330 if ((cond == NULL)
4331 || !cond->type->is_boolean() || !cond->type->is_scalar()) {
4332 YYLTYPE loc = condition->get_location();
4333
4334 _mesa_glsl_error(& loc, state,
4335 "loop condition must be scalar boolean");
4336 } else {
4337 /* As the first code in the loop body, generate a block that looks
4338 * like 'if (!condition) break;' as the loop termination condition.
4339 */
4340 ir_rvalue *const not_cond =
4341 new(ctx) ir_expression(ir_unop_logic_not, cond);
4342
4343 ir_if *const if_stmt = new(ctx) ir_if(not_cond);
4344
4345 ir_jump *const break_stmt =
4346 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
4347
4348 if_stmt->then_instructions.push_tail(break_stmt);
4349 stmt->body_instructions.push_tail(if_stmt);
4350 }
4351 }
4352 }
4353
4354
4355 ir_rvalue *
4356 ast_iteration_statement::hir(exec_list *instructions,
4357 struct _mesa_glsl_parse_state *state)
4358 {
4359 void *ctx = state;
4360
4361 /* For-loops and while-loops start a new scope, but do-while loops do not.
4362 */
4363 if (mode != ast_do_while)
4364 state->symbols->push_scope();
4365
4366 if (init_statement != NULL)
4367 init_statement->hir(instructions, state);
4368
4369 ir_loop *const stmt = new(ctx) ir_loop();
4370 instructions->push_tail(stmt);
4371
4372 /* Track the current loop nesting. */
4373 ast_iteration_statement *nesting_ast = state->loop_nesting_ast;
4374
4375 state->loop_nesting_ast = this;
4376
4377 /* Likewise, indicate that following code is closest to a loop,
4378 * NOT closest to a switch.
4379 */
4380 bool saved_is_switch_innermost = state->switch_state.is_switch_innermost;
4381 state->switch_state.is_switch_innermost = false;
4382
4383 if (mode != ast_do_while)
4384 condition_to_hir(stmt, state);
4385
4386 if (body != NULL)
4387 body->hir(& stmt->body_instructions, state);
4388
4389 if (rest_expression != NULL)
4390 rest_expression->hir(& stmt->body_instructions, state);
4391
4392 if (mode == ast_do_while)
4393 condition_to_hir(stmt, state);
4394
4395 if (mode != ast_do_while)
4396 state->symbols->pop_scope();
4397
4398 /* Restore previous nesting before returning. */
4399 state->loop_nesting_ast = nesting_ast;
4400 state->switch_state.is_switch_innermost = saved_is_switch_innermost;
4401
4402 /* Loops do not have r-values.
4403 */
4404 return NULL;
4405 }
4406
4407
4408 /**
4409 * Determine if the given type is valid for establishing a default precision
4410 * qualifier.
4411 *
4412 * From GLSL ES 3.00 section 4.5.4 ("Default Precision Qualifiers"):
4413 *
4414 * "The precision statement
4415 *
4416 * precision precision-qualifier type;
4417 *
4418 * can be used to establish a default precision qualifier. The type field
4419 * can be either int or float or any of the sampler types, and the
4420 * precision-qualifier can be lowp, mediump, or highp."
4421 *
4422 * GLSL ES 1.00 has similar language. GLSL 1.30 doesn't allow precision
4423 * qualifiers on sampler types, but this seems like an oversight (since the
4424 * intention of including these in GLSL 1.30 is to allow compatibility with ES
4425 * shaders). So we allow int, float, and all sampler types regardless of GLSL
4426 * version.
4427 */
4428 static bool
4429 is_valid_default_precision_type(const struct glsl_type *const type)
4430 {
4431 if (type == NULL)
4432 return false;
4433
4434 switch (type->base_type) {
4435 case GLSL_TYPE_INT:
4436 case GLSL_TYPE_FLOAT:
4437 /* "int" and "float" are valid, but vectors and matrices are not. */
4438 return type->vector_elements == 1 && type->matrix_columns == 1;
4439 case GLSL_TYPE_SAMPLER:
4440 return true;
4441 default:
4442 return false;
4443 }
4444 }
4445
4446
4447 ir_rvalue *
4448 ast_type_specifier::hir(exec_list *instructions,
4449 struct _mesa_glsl_parse_state *state)
4450 {
4451 if (this->default_precision == ast_precision_none && this->structure == NULL)
4452 return NULL;
4453
4454 YYLTYPE loc = this->get_location();
4455
4456 /* If this is a precision statement, check that the type to which it is
4457 * applied is either float or int.
4458 *
4459 * From section 4.5.3 of the GLSL 1.30 spec:
4460 * "The precision statement
4461 * precision precision-qualifier type;
4462 * can be used to establish a default precision qualifier. The type
4463 * field can be either int or float [...]. Any other types or
4464 * qualifiers will result in an error.
4465 */
4466 if (this->default_precision != ast_precision_none) {
4467 if (!state->check_precision_qualifiers_allowed(&loc))
4468 return NULL;
4469
4470 if (this->structure != NULL) {
4471 _mesa_glsl_error(&loc, state,
4472 "precision qualifiers do not apply to structures");
4473 return NULL;
4474 }
4475
4476 if (this->is_array) {
4477 _mesa_glsl_error(&loc, state,
4478 "default precision statements do not apply to "
4479 "arrays");
4480 return NULL;
4481 }
4482
4483 const struct glsl_type *const type =
4484 state->symbols->get_type(this->type_name);
4485 if (!is_valid_default_precision_type(type)) {
4486 _mesa_glsl_error(&loc, state,
4487 "default precision statements apply only to "
4488 "float, int, and sampler types");
4489 return NULL;
4490 }
4491
4492 if (type->base_type == GLSL_TYPE_FLOAT
4493 && state->es_shader
4494 && state->target == fragment_shader) {
4495 /* Section 4.5.3 (Default Precision Qualifiers) of the GLSL ES 1.00
4496 * spec says:
4497 *
4498 * "The fragment language has no default precision qualifier for
4499 * floating point types."
4500 *
4501 * As a result, we have to track whether or not default precision has
4502 * been specified for float in GLSL ES fragment shaders.
4503 *
4504 * Earlier in that same section, the spec says:
4505 *
4506 * "Non-precision qualified declarations will use the precision
4507 * qualifier specified in the most recent precision statement
4508 * that is still in scope. The precision statement has the same
4509 * scoping rules as variable declarations. If it is declared
4510 * inside a compound statement, its effect stops at the end of
4511 * the innermost statement it was declared in. Precision
4512 * statements in nested scopes override precision statements in
4513 * outer scopes. Multiple precision statements for the same basic
4514 * type can appear inside the same scope, with later statements
4515 * overriding earlier statements within that scope."
4516 *
4517 * Default precision specifications follow the same scope rules as
4518 * variables. So, we can track the state of the default float
4519 * precision in the symbol table, and the rules will just work. This
4520 * is a slight abuse of the symbol table, but it has the semantics
4521 * that we want.
4522 */
4523 ir_variable *const junk =
4524 new(state) ir_variable(type, "#default precision",
4525 ir_var_temporary);
4526
4527 state->symbols->add_variable(junk);
4528 }
4529
4530 /* FINISHME: Translate precision statements into IR. */
4531 return NULL;
4532 }
4533
4534 /* _mesa_ast_set_aggregate_type() sets the <structure> field so that
4535 * process_record_constructor() can do type-checking on C-style initializer
4536 * expressions of structs, but ast_struct_specifier should only be translated
4537 * to HIR if it is declaring the type of a structure.
4538 *
4539 * The ->is_declaration field is false for initializers of variables
4540 * declared separately from the struct's type definition.
4541 *
4542 * struct S { ... }; (is_declaration = true)
4543 * struct T { ... } t = { ... }; (is_declaration = true)
4544 * S s = { ... }; (is_declaration = false)
4545 */
4546 if (this->structure != NULL && this->structure->is_declaration)
4547 return this->structure->hir(instructions, state);
4548
4549 return NULL;
4550 }
4551
4552
4553 /**
4554 * Process a structure or interface block tree into an array of structure fields
4555 *
4556 * After parsing, where there are some syntax differnces, structures and
4557 * interface blocks are almost identical. They are similar enough that the
4558 * AST for each can be processed the same way into a set of
4559 * \c glsl_struct_field to describe the members.
4560 *
4561 * If we're processing an interface block, var_mode should be the type of the
4562 * interface block (ir_var_shader_in, ir_var_shader_out, or ir_var_uniform).
4563 * If we're processing a structure, var_mode should be ir_var_auto.
4564 *
4565 * \return
4566 * The number of fields processed. A pointer to the array structure fields is
4567 * stored in \c *fields_ret.
4568 */
4569 unsigned
4570 ast_process_structure_or_interface_block(exec_list *instructions,
4571 struct _mesa_glsl_parse_state *state,
4572 exec_list *declarations,
4573 YYLTYPE &loc,
4574 glsl_struct_field **fields_ret,
4575 bool is_interface,
4576 bool block_row_major,
4577 bool allow_reserved_names,
4578 ir_variable_mode var_mode)
4579 {
4580 unsigned decl_count = 0;
4581
4582 /* Make an initial pass over the list of fields to determine how
4583 * many there are. Each element in this list is an ast_declarator_list.
4584 * This means that we actually need to count the number of elements in the
4585 * 'declarations' list in each of the elements.
4586 */
4587 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
4588 foreach_list_const (decl_ptr, & decl_list->declarations) {
4589 decl_count++;
4590 }
4591 }
4592
4593 /* Allocate storage for the fields and process the field
4594 * declarations. As the declarations are processed, try to also convert
4595 * the types to HIR. This ensures that structure definitions embedded in
4596 * other structure definitions or in interface blocks are processed.
4597 */
4598 glsl_struct_field *const fields = ralloc_array(state, glsl_struct_field,
4599 decl_count);
4600
4601 unsigned i = 0;
4602 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
4603 const char *type_name;
4604
4605 decl_list->type->specifier->hir(instructions, state);
4606
4607 /* Section 10.9 of the GLSL ES 1.00 specification states that
4608 * embedded structure definitions have been removed from the language.
4609 */
4610 if (state->es_shader && decl_list->type->specifier->structure != NULL) {
4611 _mesa_glsl_error(&loc, state, "embedded structure definitions are "
4612 "not allowed in GLSL ES 1.00");
4613 }
4614
4615 const glsl_type *decl_type =
4616 decl_list->type->glsl_type(& type_name, state);
4617
4618 foreach_list_typed (ast_declaration, decl, link,
4619 &decl_list->declarations) {
4620 if (!allow_reserved_names)
4621 validate_identifier(decl->identifier, loc, state);
4622
4623 /* From the GL_ARB_uniform_buffer_object spec:
4624 *
4625 * "Sampler types are not allowed inside of uniform
4626 * blocks. All other types, arrays, and structures
4627 * allowed for uniforms are allowed within a uniform
4628 * block."
4629 *
4630 * It should be impossible for decl_type to be NULL here. Cases that
4631 * might naturally lead to decl_type being NULL, especially for the
4632 * is_interface case, will have resulted in compilation having
4633 * already halted due to a syntax error.
4634 */
4635 const struct glsl_type *field_type =
4636 decl_type != NULL ? decl_type : glsl_type::error_type;
4637
4638 if (is_interface && field_type->contains_sampler()) {
4639 YYLTYPE loc = decl_list->get_location();
4640 _mesa_glsl_error(&loc, state,
4641 "uniform in non-default uniform block contains sampler");
4642 }
4643
4644 if (field_type->contains_atomic()) {
4645 /* FINISHME: Add a spec quotation here once updated spec
4646 * FINISHME: language is available. See Khronos bug #10903
4647 * FINISHME: on whether atomic counters are allowed in
4648 * FINISHME: structures.
4649 */
4650 YYLTYPE loc = decl_list->get_location();
4651 _mesa_glsl_error(&loc, state, "atomic counter in structure or "
4652 "uniform block");
4653 }
4654
4655 const struct ast_type_qualifier *const qual =
4656 & decl_list->type->qualifier;
4657 if (qual->flags.q.std140 ||
4658 qual->flags.q.packed ||
4659 qual->flags.q.shared) {
4660 _mesa_glsl_error(&loc, state,
4661 "uniform block layout qualifiers std140, packed, and "
4662 "shared can only be applied to uniform blocks, not "
4663 "members");
4664 }
4665
4666 if (decl->is_array) {
4667 field_type = process_array_type(&loc, decl_type, decl->array_size,
4668 state);
4669 }
4670 fields[i].type = field_type;
4671 fields[i].name = decl->identifier;
4672 fields[i].location = -1;
4673 fields[i].interpolation =
4674 interpret_interpolation_qualifier(qual, var_mode, state, &loc);
4675 fields[i].centroid = qual->flags.q.centroid ? 1 : 0;
4676 fields[i].sample = qual->flags.q.sample ? 1 : 0;
4677
4678 if (qual->flags.q.row_major || qual->flags.q.column_major) {
4679 if (!qual->flags.q.uniform) {
4680 _mesa_glsl_error(&loc, state,
4681 "row_major and column_major can only be "
4682 "applied to uniform interface blocks");
4683 } else
4684 validate_matrix_layout_for_type(state, &loc, field_type, NULL);
4685 }
4686
4687 if (qual->flags.q.uniform && qual->has_interpolation()) {
4688 _mesa_glsl_error(&loc, state,
4689 "interpolation qualifiers cannot be used "
4690 "with uniform interface blocks");
4691 }
4692
4693 if (field_type->is_matrix() ||
4694 (field_type->is_array() && field_type->fields.array->is_matrix())) {
4695 fields[i].row_major = block_row_major;
4696 if (qual->flags.q.row_major)
4697 fields[i].row_major = true;
4698 else if (qual->flags.q.column_major)
4699 fields[i].row_major = false;
4700 }
4701
4702 i++;
4703 }
4704 }
4705
4706 assert(i == decl_count);
4707
4708 *fields_ret = fields;
4709 return decl_count;
4710 }
4711
4712
4713 ir_rvalue *
4714 ast_struct_specifier::hir(exec_list *instructions,
4715 struct _mesa_glsl_parse_state *state)
4716 {
4717 YYLTYPE loc = this->get_location();
4718
4719 /* Section 4.1.8 (Structures) of the GLSL 1.10 spec says:
4720 *
4721 * "Anonymous structures are not supported; so embedded structures must
4722 * have a declarator. A name given to an embedded struct is scoped at
4723 * the same level as the struct it is embedded in."
4724 *
4725 * The same section of the GLSL 1.20 spec says:
4726 *
4727 * "Anonymous structures are not supported. Embedded structures are not
4728 * supported.
4729 *
4730 * struct S { float f; };
4731 * struct T {
4732 * S; // Error: anonymous structures disallowed
4733 * struct { ... }; // Error: embedded structures disallowed
4734 * S s; // Okay: nested structures with name are allowed
4735 * };"
4736 *
4737 * The GLSL ES 1.00 and 3.00 specs have similar langauge and examples. So,
4738 * we allow embedded structures in 1.10 only.
4739 */
4740 if (state->language_version != 110 && state->struct_specifier_depth != 0)
4741 _mesa_glsl_error(&loc, state,
4742 "embedded structure declartions are not allowed");
4743
4744 state->struct_specifier_depth++;
4745
4746 glsl_struct_field *fields;
4747 unsigned decl_count =
4748 ast_process_structure_or_interface_block(instructions,
4749 state,
4750 &this->declarations,
4751 loc,
4752 &fields,
4753 false,
4754 false,
4755 false /* allow_reserved_names */,
4756 ir_var_auto);
4757
4758 validate_identifier(this->name, loc, state);
4759
4760 const glsl_type *t =
4761 glsl_type::get_record_instance(fields, decl_count, this->name);
4762
4763 if (!state->symbols->add_type(name, t)) {
4764 _mesa_glsl_error(& loc, state, "struct `%s' previously defined", name);
4765 } else {
4766 const glsl_type **s = reralloc(state, state->user_structures,
4767 const glsl_type *,
4768 state->num_user_structures + 1);
4769 if (s != NULL) {
4770 s[state->num_user_structures] = t;
4771 state->user_structures = s;
4772 state->num_user_structures++;
4773 }
4774 }
4775
4776 state->struct_specifier_depth--;
4777
4778 /* Structure type definitions do not have r-values.
4779 */
4780 return NULL;
4781 }
4782
4783
4784 /**
4785 * Visitor class which detects whether a given interface block has been used.
4786 */
4787 class interface_block_usage_visitor : public ir_hierarchical_visitor
4788 {
4789 public:
4790 interface_block_usage_visitor(ir_variable_mode mode, const glsl_type *block)
4791 : mode(mode), block(block), found(false)
4792 {
4793 }
4794
4795 virtual ir_visitor_status visit(ir_dereference_variable *ir)
4796 {
4797 if (ir->var->mode == mode && ir->var->get_interface_type() == block) {
4798 found = true;
4799 return visit_stop;
4800 }
4801 return visit_continue;
4802 }
4803
4804 bool usage_found() const
4805 {
4806 return this->found;
4807 }
4808
4809 private:
4810 ir_variable_mode mode;
4811 const glsl_type *block;
4812 bool found;
4813 };
4814
4815
4816 ir_rvalue *
4817 ast_interface_block::hir(exec_list *instructions,
4818 struct _mesa_glsl_parse_state *state)
4819 {
4820 YYLTYPE loc = this->get_location();
4821
4822 /* The ast_interface_block has a list of ast_declarator_lists. We
4823 * need to turn those into ir_variables with an association
4824 * with this uniform block.
4825 */
4826 enum glsl_interface_packing packing;
4827 if (this->layout.flags.q.shared) {
4828 packing = GLSL_INTERFACE_PACKING_SHARED;
4829 } else if (this->layout.flags.q.packed) {
4830 packing = GLSL_INTERFACE_PACKING_PACKED;
4831 } else {
4832 /* The default layout is std140.
4833 */
4834 packing = GLSL_INTERFACE_PACKING_STD140;
4835 }
4836
4837 ir_variable_mode var_mode;
4838 const char *iface_type_name;
4839 if (this->layout.flags.q.in) {
4840 var_mode = ir_var_shader_in;
4841 iface_type_name = "in";
4842 } else if (this->layout.flags.q.out) {
4843 var_mode = ir_var_shader_out;
4844 iface_type_name = "out";
4845 } else if (this->layout.flags.q.uniform) {
4846 var_mode = ir_var_uniform;
4847 iface_type_name = "uniform";
4848 } else {
4849 var_mode = ir_var_auto;
4850 iface_type_name = "UNKNOWN";
4851 assert(!"interface block layout qualifier not found!");
4852 }
4853
4854 bool redeclaring_per_vertex = strcmp(this->block_name, "gl_PerVertex") == 0;
4855 bool block_row_major = this->layout.flags.q.row_major;
4856 exec_list declared_variables;
4857 glsl_struct_field *fields;
4858 unsigned int num_variables =
4859 ast_process_structure_or_interface_block(&declared_variables,
4860 state,
4861 &this->declarations,
4862 loc,
4863 &fields,
4864 true,
4865 block_row_major,
4866 redeclaring_per_vertex,
4867 var_mode);
4868
4869 if (!redeclaring_per_vertex)
4870 validate_identifier(this->block_name, loc, state);
4871
4872 const glsl_type *earlier_per_vertex = NULL;
4873 if (redeclaring_per_vertex) {
4874 /* Find the previous declaration of gl_PerVertex. If we're redeclaring
4875 * the named interface block gl_in, we can find it by looking at the
4876 * previous declaration of gl_in. Otherwise we can find it by looking
4877 * at the previous decalartion of any of the built-in outputs,
4878 * e.g. gl_Position.
4879 *
4880 * Also check that the instance name and array-ness of the redeclaration
4881 * are correct.
4882 */
4883 switch (var_mode) {
4884 case ir_var_shader_in:
4885 if (ir_variable *earlier_gl_in =
4886 state->symbols->get_variable("gl_in")) {
4887 earlier_per_vertex = earlier_gl_in->get_interface_type();
4888 } else {
4889 _mesa_glsl_error(&loc, state,
4890 "redeclaration of gl_PerVertex input not allowed "
4891 "in the %s shader",
4892 _mesa_glsl_shader_target_name(state->target));
4893 }
4894 if (this->instance_name == NULL ||
4895 strcmp(this->instance_name, "gl_in") != 0 || !this->is_array) {
4896 _mesa_glsl_error(&loc, state,
4897 "gl_PerVertex input must be redeclared as "
4898 "gl_in[]");
4899 }
4900 break;
4901 case ir_var_shader_out:
4902 if (ir_variable *earlier_gl_Position =
4903 state->symbols->get_variable("gl_Position")) {
4904 earlier_per_vertex = earlier_gl_Position->get_interface_type();
4905 } else {
4906 _mesa_glsl_error(&loc, state,
4907 "redeclaration of gl_PerVertex output not "
4908 "allowed in the %s shader",
4909 _mesa_glsl_shader_target_name(state->target));
4910 }
4911 if (this->instance_name != NULL) {
4912 _mesa_glsl_error(&loc, state,
4913 "gl_PerVertex input may not be redeclared with "
4914 "an instance name");
4915 }
4916 break;
4917 default:
4918 _mesa_glsl_error(&loc, state,
4919 "gl_PerVertex must be declared as an input or an "
4920 "output");
4921 break;
4922 }
4923
4924 if (earlier_per_vertex == NULL) {
4925 /* An error has already been reported. Bail out to avoid null
4926 * dereferences later in this function.
4927 */
4928 return NULL;
4929 }
4930
4931 /* Copy locations from the old gl_PerVertex interface block. */
4932 for (unsigned i = 0; i < num_variables; i++) {
4933 int j = earlier_per_vertex->field_index(fields[i].name);
4934 if (j == -1) {
4935 _mesa_glsl_error(&loc, state,
4936 "redeclaration of gl_PerVertex must be a subset "
4937 "of the built-in members of gl_PerVertex");
4938 } else {
4939 fields[i].location =
4940 earlier_per_vertex->fields.structure[j].location;
4941 fields[i].interpolation =
4942 earlier_per_vertex->fields.structure[j].interpolation;
4943 fields[i].centroid =
4944 earlier_per_vertex->fields.structure[j].centroid;
4945 fields[i].sample =
4946 earlier_per_vertex->fields.structure[j].sample;
4947 }
4948 }
4949
4950 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10
4951 * spec:
4952 *
4953 * If a built-in interface block is redeclared, it must appear in
4954 * the shader before any use of any member included in the built-in
4955 * declaration, or a compilation error will result.
4956 *
4957 * This appears to be a clarification to the behaviour established for
4958 * gl_PerVertex by GLSL 1.50, therefore we implement this behaviour
4959 * regardless of GLSL version.
4960 */
4961 interface_block_usage_visitor v(var_mode, earlier_per_vertex);
4962 v.run(instructions);
4963 if (v.usage_found()) {
4964 _mesa_glsl_error(&loc, state,
4965 "redeclaration of a built-in interface block must "
4966 "appear before any use of any member of the "
4967 "interface block");
4968 }
4969 }
4970
4971 const glsl_type *block_type =
4972 glsl_type::get_interface_instance(fields,
4973 num_variables,
4974 packing,
4975 this->block_name);
4976
4977 if (!state->symbols->add_interface(block_type->name, block_type, var_mode)) {
4978 YYLTYPE loc = this->get_location();
4979 _mesa_glsl_error(&loc, state, "interface block `%s' with type `%s' "
4980 "already taken in the current scope",
4981 this->block_name, iface_type_name);
4982 }
4983
4984 /* Since interface blocks cannot contain statements, it should be
4985 * impossible for the block to generate any instructions.
4986 */
4987 assert(declared_variables.is_empty());
4988
4989 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
4990 *
4991 * Geometry shader input variables get the per-vertex values written
4992 * out by vertex shader output variables of the same names. Since a
4993 * geometry shader operates on a set of vertices, each input varying
4994 * variable (or input block, see interface blocks below) needs to be
4995 * declared as an array.
4996 */
4997 if (state->target == geometry_shader && !this->is_array &&
4998 var_mode == ir_var_shader_in) {
4999 _mesa_glsl_error(&loc, state, "geometry shader inputs must be arrays");
5000 }
5001
5002 /* Page 39 (page 45 of the PDF) of section 4.3.7 in the GLSL ES 3.00 spec
5003 * says:
5004 *
5005 * "If an instance name (instance-name) is used, then it puts all the
5006 * members inside a scope within its own name space, accessed with the
5007 * field selector ( . ) operator (analogously to structures)."
5008 */
5009 if (this->instance_name) {
5010 if (redeclaring_per_vertex) {
5011 /* When a built-in in an unnamed interface block is redeclared,
5012 * get_variable_being_redeclared() calls
5013 * check_builtin_array_max_size() to make sure that built-in array
5014 * variables aren't redeclared to illegal sizes. But we're looking
5015 * at a redeclaration of a named built-in interface block. So we
5016 * have to manually call check_builtin_array_max_size() for all parts
5017 * of the interface that are arrays.
5018 */
5019 for (unsigned i = 0; i < num_variables; i++) {
5020 if (fields[i].type->is_array()) {
5021 const unsigned size = fields[i].type->array_size();
5022 check_builtin_array_max_size(fields[i].name, size, loc, state);
5023 }
5024 }
5025 } else {
5026 validate_identifier(this->instance_name, loc, state);
5027 }
5028
5029 ir_variable *var;
5030
5031 if (this->is_array) {
5032 /* Section 4.3.7 (Interface Blocks) of the GLSL 1.50 spec says:
5033 *
5034 * For uniform blocks declared an array, each individual array
5035 * element corresponds to a separate buffer object backing one
5036 * instance of the block. As the array size indicates the number
5037 * of buffer objects needed, uniform block array declarations
5038 * must specify an array size.
5039 *
5040 * And a few paragraphs later:
5041 *
5042 * Geometry shader input blocks must be declared as arrays and
5043 * follow the array declaration and linking rules for all
5044 * geometry shader inputs. All other input and output block
5045 * arrays must specify an array size.
5046 *
5047 * The upshot of this is that the only circumstance where an
5048 * interface array size *doesn't* need to be specified is on a
5049 * geometry shader input.
5050 */
5051 if (this->array_size == NULL &&
5052 (state->target != geometry_shader || !this->layout.flags.q.in)) {
5053 _mesa_glsl_error(&loc, state,
5054 "only geometry shader inputs may be unsized "
5055 "instance block arrays");
5056
5057 }
5058
5059 const glsl_type *block_array_type =
5060 process_array_type(&loc, block_type, this->array_size, state);
5061
5062 var = new(state) ir_variable(block_array_type,
5063 this->instance_name,
5064 var_mode);
5065 } else {
5066 var = new(state) ir_variable(block_type,
5067 this->instance_name,
5068 var_mode);
5069 }
5070
5071 if (state->target == geometry_shader && var_mode == ir_var_shader_in)
5072 handle_geometry_shader_input_decl(state, loc, var);
5073
5074 if (ir_variable *earlier =
5075 state->symbols->get_variable(this->instance_name)) {
5076 if (!redeclaring_per_vertex) {
5077 _mesa_glsl_error(&loc, state, "`%s' redeclared",
5078 this->instance_name);
5079 }
5080 earlier->how_declared = ir_var_declared_normally;
5081 earlier->type = var->type;
5082 earlier->reinit_interface_type(block_type);
5083 delete var;
5084 } else {
5085 state->symbols->add_variable(var);
5086 instructions->push_tail(var);
5087 }
5088 } else {
5089 /* In order to have an array size, the block must also be declared with
5090 * an instane name.
5091 */
5092 assert(!this->is_array);
5093
5094 for (unsigned i = 0; i < num_variables; i++) {
5095 ir_variable *var =
5096 new(state) ir_variable(fields[i].type,
5097 ralloc_strdup(state, fields[i].name),
5098 var_mode);
5099 var->interpolation = fields[i].interpolation;
5100 var->data.centroid = fields[i].centroid;
5101 var->data.sample = fields[i].sample;
5102 var->init_interface_type(block_type);
5103
5104 if (redeclaring_per_vertex) {
5105 ir_variable *earlier =
5106 get_variable_being_redeclared(var, loc, state,
5107 true /* allow_all_redeclarations */);
5108 if (strncmp(var->name, "gl_", 3) != 0 || earlier == NULL) {
5109 _mesa_glsl_error(&loc, state,
5110 "redeclaration of gl_PerVertex can only "
5111 "include built-in variables");
5112 } else if (earlier->how_declared == ir_var_declared_normally) {
5113 _mesa_glsl_error(&loc, state,
5114 "`%s' has already been redeclared", var->name);
5115 } else {
5116 earlier->how_declared = ir_var_declared_in_block;
5117 earlier->reinit_interface_type(block_type);
5118 }
5119 continue;
5120 }
5121
5122 if (state->symbols->get_variable(var->name) != NULL)
5123 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
5124
5125 /* Propagate the "binding" keyword into this UBO's fields;
5126 * the UBO declaration itself doesn't get an ir_variable unless it
5127 * has an instance name. This is ugly.
5128 */
5129 var->explicit_binding = this->layout.flags.q.explicit_binding;
5130 var->binding = this->layout.binding;
5131
5132 state->symbols->add_variable(var);
5133 instructions->push_tail(var);
5134 }
5135
5136 if (redeclaring_per_vertex && block_type != earlier_per_vertex) {
5137 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10 spec:
5138 *
5139 * It is also a compilation error ... to redeclare a built-in
5140 * block and then use a member from that built-in block that was
5141 * not included in the redeclaration.
5142 *
5143 * This appears to be a clarification to the behaviour established
5144 * for gl_PerVertex by GLSL 1.50, therefore we implement this
5145 * behaviour regardless of GLSL version.
5146 *
5147 * To prevent the shader from using a member that was not included in
5148 * the redeclaration, we disable any ir_variables that are still
5149 * associated with the old declaration of gl_PerVertex (since we've
5150 * already updated all of the variables contained in the new
5151 * gl_PerVertex to point to it).
5152 *
5153 * As a side effect this will prevent
5154 * validate_intrastage_interface_blocks() from getting confused and
5155 * thinking there are conflicting definitions of gl_PerVertex in the
5156 * shader.
5157 */
5158 foreach_list_safe(node, instructions) {
5159 ir_variable *const var = ((ir_instruction *) node)->as_variable();
5160 if (var != NULL &&
5161 var->get_interface_type() == earlier_per_vertex &&
5162 var->mode == var_mode) {
5163 if (var->how_declared == ir_var_declared_normally) {
5164 _mesa_glsl_error(&loc, state,
5165 "redeclaration of gl_PerVertex cannot "
5166 "follow a redeclaration of `%s'",
5167 var->name);
5168 }
5169 state->symbols->disable_variable(var->name);
5170 var->remove();
5171 }
5172 }
5173 }
5174 }
5175
5176 return NULL;
5177 }
5178
5179
5180 ir_rvalue *
5181 ast_gs_input_layout::hir(exec_list *instructions,
5182 struct _mesa_glsl_parse_state *state)
5183 {
5184 YYLTYPE loc = this->get_location();
5185
5186 /* If any geometry input layout declaration preceded this one, make sure it
5187 * was consistent with this one.
5188 */
5189 if (state->gs_input_prim_type_specified &&
5190 state->gs_input_prim_type != this->prim_type) {
5191 _mesa_glsl_error(&loc, state,
5192 "geometry shader input layout does not match"
5193 " previous declaration");
5194 return NULL;
5195 }
5196
5197 /* If any shader inputs occurred before this declaration and specified an
5198 * array size, make sure the size they specified is consistent with the
5199 * primitive type.
5200 */
5201 unsigned num_vertices = vertices_per_prim(this->prim_type);
5202 if (state->gs_input_size != 0 && state->gs_input_size != num_vertices) {
5203 _mesa_glsl_error(&loc, state,
5204 "this geometry shader input layout implies %u vertices"
5205 " per primitive, but a previous input is declared"
5206 " with size %u", num_vertices, state->gs_input_size);
5207 return NULL;
5208 }
5209
5210 state->gs_input_prim_type_specified = true;
5211 state->gs_input_prim_type = this->prim_type;
5212
5213 /* If any shader inputs occurred before this declaration and did not
5214 * specify an array size, their size is determined now.
5215 */
5216 foreach_list (node, instructions) {
5217 ir_variable *var = ((ir_instruction *) node)->as_variable();
5218 if (var == NULL || var->mode != ir_var_shader_in)
5219 continue;
5220
5221 /* Note: gl_PrimitiveIDIn has mode ir_var_shader_in, but it's not an
5222 * array; skip it.
5223 */
5224
5225 if (var->type->is_unsized_array()) {
5226 if (var->max_array_access >= num_vertices) {
5227 _mesa_glsl_error(&loc, state,
5228 "this geometry shader input layout implies %u"
5229 " vertices, but an access to element %u of input"
5230 " `%s' already exists", num_vertices,
5231 var->max_array_access, var->name);
5232 } else {
5233 var->type = glsl_type::get_array_instance(var->type->fields.array,
5234 num_vertices);
5235 }
5236 }
5237 }
5238
5239 return NULL;
5240 }
5241
5242
5243 static void
5244 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
5245 exec_list *instructions)
5246 {
5247 bool gl_FragColor_assigned = false;
5248 bool gl_FragData_assigned = false;
5249 bool user_defined_fs_output_assigned = false;
5250 ir_variable *user_defined_fs_output = NULL;
5251
5252 /* It would be nice to have proper location information. */
5253 YYLTYPE loc;
5254 memset(&loc, 0, sizeof(loc));
5255
5256 foreach_list(node, instructions) {
5257 ir_variable *var = ((ir_instruction *)node)->as_variable();
5258
5259 if (!var || !var->assigned)
5260 continue;
5261
5262 if (strcmp(var->name, "gl_FragColor") == 0)
5263 gl_FragColor_assigned = true;
5264 else if (strcmp(var->name, "gl_FragData") == 0)
5265 gl_FragData_assigned = true;
5266 else if (strncmp(var->name, "gl_", 3) != 0) {
5267 if (state->target == fragment_shader &&
5268 var->mode == ir_var_shader_out) {
5269 user_defined_fs_output_assigned = true;
5270 user_defined_fs_output = var;
5271 }
5272 }
5273 }
5274
5275 /* From the GLSL 1.30 spec:
5276 *
5277 * "If a shader statically assigns a value to gl_FragColor, it
5278 * may not assign a value to any element of gl_FragData. If a
5279 * shader statically writes a value to any element of
5280 * gl_FragData, it may not assign a value to
5281 * gl_FragColor. That is, a shader may assign values to either
5282 * gl_FragColor or gl_FragData, but not both. Multiple shaders
5283 * linked together must also consistently write just one of
5284 * these variables. Similarly, if user declared output
5285 * variables are in use (statically assigned to), then the
5286 * built-in variables gl_FragColor and gl_FragData may not be
5287 * assigned to. These incorrect usages all generate compile
5288 * time errors."
5289 */
5290 if (gl_FragColor_assigned && gl_FragData_assigned) {
5291 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
5292 "`gl_FragColor' and `gl_FragData'");
5293 } else if (gl_FragColor_assigned && user_defined_fs_output_assigned) {
5294 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
5295 "`gl_FragColor' and `%s'",
5296 user_defined_fs_output->name);
5297 } else if (gl_FragData_assigned && user_defined_fs_output_assigned) {
5298 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
5299 "`gl_FragData' and `%s'",
5300 user_defined_fs_output->name);
5301 }
5302 }
5303
5304
5305 static void
5306 remove_per_vertex_blocks(exec_list *instructions,
5307 _mesa_glsl_parse_state *state, ir_variable_mode mode)
5308 {
5309 /* Find the gl_PerVertex interface block of the appropriate (in/out) mode,
5310 * if it exists in this shader type.
5311 */
5312 const glsl_type *per_vertex = NULL;
5313 switch (mode) {
5314 case ir_var_shader_in:
5315 if (ir_variable *gl_in = state->symbols->get_variable("gl_in"))
5316 per_vertex = gl_in->get_interface_type();
5317 break;
5318 case ir_var_shader_out:
5319 if (ir_variable *gl_Position =
5320 state->symbols->get_variable("gl_Position")) {
5321 per_vertex = gl_Position->get_interface_type();
5322 }
5323 break;
5324 default:
5325 assert(!"Unexpected mode");
5326 break;
5327 }
5328
5329 /* If we didn't find a built-in gl_PerVertex interface block, then we don't
5330 * need to do anything.
5331 */
5332 if (per_vertex == NULL)
5333 return;
5334
5335 /* If the interface block is used by the shader, then we don't need to do
5336 * anything.
5337 */
5338 interface_block_usage_visitor v(mode, per_vertex);
5339 v.run(instructions);
5340 if (v.usage_found())
5341 return;
5342
5343 /* Remove any ir_variable declarations that refer to the interface block
5344 * we're removing.
5345 */
5346 foreach_list_safe(node, instructions) {
5347 ir_variable *const var = ((ir_instruction *) node)->as_variable();
5348 if (var != NULL && var->get_interface_type() == per_vertex &&
5349 var->mode == mode) {
5350 state->symbols->disable_variable(var->name);
5351 var->remove();
5352 }
5353 }
5354 }