glsl: Correctly handle unary plus operator.
[mesa.git] / src / glsl / ast_to_hir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file ast_to_hir.c
26 * Convert abstract syntax to to high-level intermediate reprensentation (HIR).
27 *
28 * During the conversion to HIR, the majority of the symantic checking is
29 * preformed on the program. This includes:
30 *
31 * * Symbol table management
32 * * Type checking
33 * * Function binding
34 *
35 * The majority of this work could be done during parsing, and the parser could
36 * probably generate HIR directly. However, this results in frequent changes
37 * to the parser code. Since we do not assume that every system this complier
38 * is built on will have Flex and Bison installed, we have to store the code
39 * generated by these tools in our version control system. In other parts of
40 * the system we've seen problems where a parser was changed but the generated
41 * code was not committed, merge conflicts where created because two developers
42 * had slightly different versions of Bison installed, etc.
43 *
44 * I have also noticed that running Bison generated parsers in GDB is very
45 * irritating. When you get a segfault on '$$ = $1->foo', you can't very
46 * well 'print $1' in GDB.
47 *
48 * As a result, my preference is to put as little C code as possible in the
49 * parser (and lexer) sources.
50 */
51
52 #include "main/imports.h"
53 #include "glsl_symbol_table.h"
54 #include "glsl_parser_extras.h"
55 #include "ast.h"
56 #include "glsl_types.h"
57 #include "ir.h"
58
59 void
60 _mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
61 {
62 _mesa_glsl_initialize_variables(instructions, state);
63 _mesa_glsl_initialize_functions(instructions, state);
64
65 state->current_function = NULL;
66
67 foreach_list_typed (ast_node, ast, link, & state->translation_unit)
68 ast->hir(instructions, state);
69 }
70
71
72 /**
73 * If a conversion is available, convert one operand to a different type
74 *
75 * The \c from \c ir_rvalue is converted "in place".
76 *
77 * \param to Type that the operand it to be converted to
78 * \param from Operand that is being converted
79 * \param state GLSL compiler state
80 *
81 * \return
82 * If a conversion is possible (or unnecessary), \c true is returned.
83 * Otherwise \c false is returned.
84 */
85 static bool
86 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
87 struct _mesa_glsl_parse_state *state)
88 {
89 void *ctx = state;
90 if (to->base_type == from->type->base_type)
91 return true;
92
93 /* This conversion was added in GLSL 1.20. If the compilation mode is
94 * GLSL 1.10, the conversion is skipped.
95 */
96 if (state->language_version < 120)
97 return false;
98
99 /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
100 *
101 * "There are no implicit array or structure conversions. For
102 * example, an array of int cannot be implicitly converted to an
103 * array of float. There are no implicit conversions between
104 * signed and unsigned integers."
105 */
106 /* FINISHME: The above comment is partially a lie. There is int/uint
107 * FINISHME: conversion for immediate constants.
108 */
109 if (!to->is_float() || !from->type->is_numeric())
110 return false;
111
112 /* Convert to a floating point type with the same number of components
113 * as the original type - i.e. int to float, not int to vec4.
114 */
115 to = glsl_type::get_instance(GLSL_TYPE_FLOAT, from->type->vector_elements,
116 from->type->matrix_columns);
117
118 switch (from->type->base_type) {
119 case GLSL_TYPE_INT:
120 from = new(ctx) ir_expression(ir_unop_i2f, to, from, NULL);
121 break;
122 case GLSL_TYPE_UINT:
123 from = new(ctx) ir_expression(ir_unop_u2f, to, from, NULL);
124 break;
125 case GLSL_TYPE_BOOL:
126 from = new(ctx) ir_expression(ir_unop_b2f, to, from, NULL);
127 break;
128 default:
129 assert(0);
130 }
131
132 return true;
133 }
134
135
136 static const struct glsl_type *
137 arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
138 bool multiply,
139 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
140 {
141 const glsl_type *type_a = value_a->type;
142 const glsl_type *type_b = value_b->type;
143
144 /* From GLSL 1.50 spec, page 56:
145 *
146 * "The arithmetic binary operators add (+), subtract (-),
147 * multiply (*), and divide (/) operate on integer and
148 * floating-point scalars, vectors, and matrices."
149 */
150 if (!type_a->is_numeric() || !type_b->is_numeric()) {
151 _mesa_glsl_error(loc, state,
152 "Operands to arithmetic operators must be numeric");
153 return glsl_type::error_type;
154 }
155
156
157 /* "If one operand is floating-point based and the other is
158 * not, then the conversions from Section 4.1.10 "Implicit
159 * Conversions" are applied to the non-floating-point-based operand."
160 */
161 if (!apply_implicit_conversion(type_a, value_b, state)
162 && !apply_implicit_conversion(type_b, value_a, state)) {
163 _mesa_glsl_error(loc, state,
164 "Could not implicitly convert operands to "
165 "arithmetic operator");
166 return glsl_type::error_type;
167 }
168 type_a = value_a->type;
169 type_b = value_b->type;
170
171 /* "If the operands are integer types, they must both be signed or
172 * both be unsigned."
173 *
174 * From this rule and the preceeding conversion it can be inferred that
175 * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
176 * The is_numeric check above already filtered out the case where either
177 * type is not one of these, so now the base types need only be tested for
178 * equality.
179 */
180 if (type_a->base_type != type_b->base_type) {
181 _mesa_glsl_error(loc, state,
182 "base type mismatch for arithmetic operator");
183 return glsl_type::error_type;
184 }
185
186 /* "All arithmetic binary operators result in the same fundamental type
187 * (signed integer, unsigned integer, or floating-point) as the
188 * operands they operate on, after operand type conversion. After
189 * conversion, the following cases are valid
190 *
191 * * The two operands are scalars. In this case the operation is
192 * applied, resulting in a scalar."
193 */
194 if (type_a->is_scalar() && type_b->is_scalar())
195 return type_a;
196
197 /* "* One operand is a scalar, and the other is a vector or matrix.
198 * In this case, the scalar operation is applied independently to each
199 * component of the vector or matrix, resulting in the same size
200 * vector or matrix."
201 */
202 if (type_a->is_scalar()) {
203 if (!type_b->is_scalar())
204 return type_b;
205 } else if (type_b->is_scalar()) {
206 return type_a;
207 }
208
209 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
210 * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
211 * handled.
212 */
213 assert(!type_a->is_scalar());
214 assert(!type_b->is_scalar());
215
216 /* "* The two operands are vectors of the same size. In this case, the
217 * operation is done component-wise resulting in the same size
218 * vector."
219 */
220 if (type_a->is_vector() && type_b->is_vector()) {
221 if (type_a == type_b) {
222 return type_a;
223 } else {
224 _mesa_glsl_error(loc, state,
225 "vector size mismatch for arithmetic operator");
226 return glsl_type::error_type;
227 }
228 }
229
230 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
231 * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
232 * <vector, vector> have been handled. At least one of the operands must
233 * be matrix. Further, since there are no integer matrix types, the base
234 * type of both operands must be float.
235 */
236 assert(type_a->is_matrix() || type_b->is_matrix());
237 assert(type_a->base_type == GLSL_TYPE_FLOAT);
238 assert(type_b->base_type == GLSL_TYPE_FLOAT);
239
240 /* "* The operator is add (+), subtract (-), or divide (/), and the
241 * operands are matrices with the same number of rows and the same
242 * number of columns. In this case, the operation is done component-
243 * wise resulting in the same size matrix."
244 * * The operator is multiply (*), where both operands are matrices or
245 * one operand is a vector and the other a matrix. A right vector
246 * operand is treated as a column vector and a left vector operand as a
247 * row vector. In all these cases, it is required that the number of
248 * columns of the left operand is equal to the number of rows of the
249 * right operand. Then, the multiply (*) operation does a linear
250 * algebraic multiply, yielding an object that has the same number of
251 * rows as the left operand and the same number of columns as the right
252 * operand. Section 5.10 "Vector and Matrix Operations" explains in
253 * more detail how vectors and matrices are operated on."
254 */
255 if (! multiply) {
256 if (type_a == type_b)
257 return type_a;
258 } else {
259 if (type_a->is_matrix() && type_b->is_matrix()) {
260 /* Matrix multiply. The columns of A must match the rows of B. Given
261 * the other previously tested constraints, this means the vector type
262 * of a row from A must be the same as the vector type of a column from
263 * B.
264 */
265 if (type_a->row_type() == type_b->column_type()) {
266 /* The resulting matrix has the number of columns of matrix B and
267 * the number of rows of matrix A. We get the row count of A by
268 * looking at the size of a vector that makes up a column. The
269 * transpose (size of a row) is done for B.
270 */
271 const glsl_type *const type =
272 glsl_type::get_instance(type_a->base_type,
273 type_a->column_type()->vector_elements,
274 type_b->row_type()->vector_elements);
275 assert(type != glsl_type::error_type);
276
277 return type;
278 }
279 } else if (type_a->is_matrix()) {
280 /* A is a matrix and B is a column vector. Columns of A must match
281 * rows of B. Given the other previously tested constraints, this
282 * means the vector type of a row from A must be the same as the
283 * vector the type of B.
284 */
285 if (type_a->row_type() == type_b)
286 return type_b;
287 } else {
288 assert(type_b->is_matrix());
289
290 /* A is a row vector and B is a matrix. Columns of A must match rows
291 * of B. Given the other previously tested constraints, this means
292 * the type of A must be the same as the vector type of a column from
293 * B.
294 */
295 if (type_a == type_b->column_type())
296 return type_a;
297 }
298
299 _mesa_glsl_error(loc, state, "size mismatch for matrix multiplication");
300 return glsl_type::error_type;
301 }
302
303
304 /* "All other cases are illegal."
305 */
306 _mesa_glsl_error(loc, state, "type mismatch");
307 return glsl_type::error_type;
308 }
309
310
311 static const struct glsl_type *
312 unary_arithmetic_result_type(const struct glsl_type *type,
313 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
314 {
315 /* From GLSL 1.50 spec, page 57:
316 *
317 * "The arithmetic unary operators negate (-), post- and pre-increment
318 * and decrement (-- and ++) operate on integer or floating-point
319 * values (including vectors and matrices). All unary operators work
320 * component-wise on their operands. These result with the same type
321 * they operated on."
322 */
323 if (!type->is_numeric()) {
324 _mesa_glsl_error(loc, state,
325 "Operands to arithmetic operators must be numeric");
326 return glsl_type::error_type;
327 }
328
329 return type;
330 }
331
332
333 static const struct glsl_type *
334 modulus_result_type(const struct glsl_type *type_a,
335 const struct glsl_type *type_b,
336 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
337 {
338 /* From GLSL 1.50 spec, page 56:
339 * "The operator modulus (%) operates on signed or unsigned integers or
340 * integer vectors. The operand types must both be signed or both be
341 * unsigned."
342 */
343 if (!type_a->is_integer() || !type_b->is_integer()
344 || (type_a->base_type != type_b->base_type)) {
345 _mesa_glsl_error(loc, state, "type mismatch");
346 return glsl_type::error_type;
347 }
348
349 /* "The operands cannot be vectors of differing size. If one operand is
350 * a scalar and the other vector, then the scalar is applied component-
351 * wise to the vector, resulting in the same type as the vector. If both
352 * are vectors of the same size, the result is computed component-wise."
353 */
354 if (type_a->is_vector()) {
355 if (!type_b->is_vector()
356 || (type_a->vector_elements == type_b->vector_elements))
357 return type_a;
358 } else
359 return type_b;
360
361 /* "The operator modulus (%) is not defined for any other data types
362 * (non-integer types)."
363 */
364 _mesa_glsl_error(loc, state, "type mismatch");
365 return glsl_type::error_type;
366 }
367
368
369 static const struct glsl_type *
370 relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
371 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
372 {
373 const glsl_type *type_a = value_a->type;
374 const glsl_type *type_b = value_b->type;
375
376 /* From GLSL 1.50 spec, page 56:
377 * "The relational operators greater than (>), less than (<), greater
378 * than or equal (>=), and less than or equal (<=) operate only on
379 * scalar integer and scalar floating-point expressions."
380 */
381 if (!type_a->is_numeric()
382 || !type_b->is_numeric()
383 || !type_a->is_scalar()
384 || !type_b->is_scalar()) {
385 _mesa_glsl_error(loc, state,
386 "Operands to relational operators must be scalar and "
387 "numeric");
388 return glsl_type::error_type;
389 }
390
391 /* "Either the operands' types must match, or the conversions from
392 * Section 4.1.10 "Implicit Conversions" will be applied to the integer
393 * operand, after which the types must match."
394 */
395 if (!apply_implicit_conversion(type_a, value_b, state)
396 && !apply_implicit_conversion(type_b, value_a, state)) {
397 _mesa_glsl_error(loc, state,
398 "Could not implicitly convert operands to "
399 "relational operator");
400 return glsl_type::error_type;
401 }
402 type_a = value_a->type;
403 type_b = value_b->type;
404
405 if (type_a->base_type != type_b->base_type) {
406 _mesa_glsl_error(loc, state, "base type mismatch");
407 return glsl_type::error_type;
408 }
409
410 /* "The result is scalar Boolean."
411 */
412 return glsl_type::bool_type;
413 }
414
415
416 /**
417 * Validates that a value can be assigned to a location with a specified type
418 *
419 * Validates that \c rhs can be assigned to some location. If the types are
420 * not an exact match but an automatic conversion is possible, \c rhs will be
421 * converted.
422 *
423 * \return
424 * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
425 * Otherwise the actual RHS to be assigned will be returned. This may be
426 * \c rhs, or it may be \c rhs after some type conversion.
427 *
428 * \note
429 * In addition to being used for assignments, this function is used to
430 * type-check return values.
431 */
432 ir_rvalue *
433 validate_assignment(struct _mesa_glsl_parse_state *state,
434 const glsl_type *lhs_type, ir_rvalue *rhs)
435 {
436 const glsl_type *rhs_type = rhs->type;
437
438 /* If there is already some error in the RHS, just return it. Anything
439 * else will lead to an avalanche of error message back to the user.
440 */
441 if (rhs_type->is_error())
442 return rhs;
443
444 /* If the types are identical, the assignment can trivially proceed.
445 */
446 if (rhs_type == lhs_type)
447 return rhs;
448
449 /* If the array element types are the same and the size of the LHS is zero,
450 * the assignment is okay.
451 *
452 * Note: Whole-array assignments are not permitted in GLSL 1.10, but this
453 * is handled by ir_dereference::is_lvalue.
454 */
455 if (lhs_type->is_array() && rhs->type->is_array()
456 && (lhs_type->element_type() == rhs->type->element_type())
457 && (lhs_type->array_size() == 0)) {
458 return rhs;
459 }
460
461 /* Check for implicit conversion in GLSL 1.20 */
462 if (apply_implicit_conversion(lhs_type, rhs, state)) {
463 rhs_type = rhs->type;
464 if (rhs_type == lhs_type)
465 return rhs;
466 }
467
468 return NULL;
469 }
470
471 ir_rvalue *
472 do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state,
473 ir_rvalue *lhs, ir_rvalue *rhs,
474 YYLTYPE lhs_loc)
475 {
476 void *ctx = state;
477 bool error_emitted = (lhs->type->is_error() || rhs->type->is_error());
478
479 if (!error_emitted) {
480 /* FINISHME: This does not handle 'foo.bar.a.b.c[5].d = 5' */
481 if (!lhs->is_lvalue()) {
482 _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment");
483 error_emitted = true;
484 }
485 }
486
487 ir_rvalue *new_rhs = validate_assignment(state, lhs->type, rhs);
488 if (new_rhs == NULL) {
489 _mesa_glsl_error(& lhs_loc, state, "type mismatch");
490 } else {
491 rhs = new_rhs;
492
493 /* If the LHS array was not declared with a size, it takes it size from
494 * the RHS. If the LHS is an l-value and a whole array, it must be a
495 * dereference of a variable. Any other case would require that the LHS
496 * is either not an l-value or not a whole array.
497 */
498 if (lhs->type->array_size() == 0) {
499 ir_dereference *const d = lhs->as_dereference();
500
501 assert(d != NULL);
502
503 ir_variable *const var = d->variable_referenced();
504
505 assert(var != NULL);
506
507 if (var->max_array_access >= unsigned(rhs->type->array_size())) {
508 /* FINISHME: This should actually log the location of the RHS. */
509 _mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to "
510 "previous access",
511 var->max_array_access);
512 }
513
514 var->type = glsl_type::get_array_instance(lhs->type->element_type(),
515 rhs->type->array_size());
516 }
517 }
518
519 /* Most callers of do_assignment (assign, add_assign, pre_inc/dec,
520 * but not post_inc) need the converted assigned value as an rvalue
521 * to handle things like:
522 *
523 * i = j += 1;
524 *
525 * So we always just store the computed value being assigned to a
526 * temporary and return a deref of that temporary. If the rvalue
527 * ends up not being used, the temp will get copy-propagated out.
528 */
529 ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp",
530 ir_var_temporary);
531 ir_dereference_variable *deref_var = new(ctx) ir_dereference_variable(var);
532 instructions->push_tail(var);
533 instructions->push_tail(new(ctx) ir_assignment(deref_var,
534 rhs,
535 NULL));
536 deref_var = new(ctx) ir_dereference_variable(var);
537
538 instructions->push_tail(new(ctx) ir_assignment(lhs,
539 deref_var,
540 NULL));
541
542 return new(ctx) ir_dereference_variable(var);
543 }
544
545 static ir_rvalue *
546 get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue)
547 {
548 void *ctx = talloc_parent(lvalue);
549 ir_variable *var;
550
551 /* FINISHME: Give unique names to the temporaries. */
552 var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp",
553 ir_var_temporary);
554 instructions->push_tail(var);
555 var->mode = ir_var_auto;
556
557 instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
558 lvalue, NULL));
559
560 /* Once we've created this temporary, mark it read only so it's no
561 * longer considered an lvalue.
562 */
563 var->read_only = true;
564
565 return new(ctx) ir_dereference_variable(var);
566 }
567
568
569 ir_rvalue *
570 ast_node::hir(exec_list *instructions,
571 struct _mesa_glsl_parse_state *state)
572 {
573 (void) instructions;
574 (void) state;
575
576 return NULL;
577 }
578
579
580 ir_rvalue *
581 ast_expression::hir(exec_list *instructions,
582 struct _mesa_glsl_parse_state *state)
583 {
584 void *ctx = state;
585 static const int operations[AST_NUM_OPERATORS] = {
586 -1, /* ast_assign doesn't convert to ir_expression. */
587 -1, /* ast_plus doesn't convert to ir_expression. */
588 ir_unop_neg,
589 ir_binop_add,
590 ir_binop_sub,
591 ir_binop_mul,
592 ir_binop_div,
593 ir_binop_mod,
594 ir_binop_lshift,
595 ir_binop_rshift,
596 ir_binop_less,
597 ir_binop_greater,
598 ir_binop_lequal,
599 ir_binop_gequal,
600 ir_binop_equal,
601 ir_binop_nequal,
602 ir_binop_bit_and,
603 ir_binop_bit_xor,
604 ir_binop_bit_or,
605 ir_unop_bit_not,
606 ir_binop_logic_and,
607 ir_binop_logic_xor,
608 ir_binop_logic_or,
609 ir_unop_logic_not,
610
611 /* Note: The following block of expression types actually convert
612 * to multiple IR instructions.
613 */
614 ir_binop_mul, /* ast_mul_assign */
615 ir_binop_div, /* ast_div_assign */
616 ir_binop_mod, /* ast_mod_assign */
617 ir_binop_add, /* ast_add_assign */
618 ir_binop_sub, /* ast_sub_assign */
619 ir_binop_lshift, /* ast_ls_assign */
620 ir_binop_rshift, /* ast_rs_assign */
621 ir_binop_bit_and, /* ast_and_assign */
622 ir_binop_bit_xor, /* ast_xor_assign */
623 ir_binop_bit_or, /* ast_or_assign */
624
625 -1, /* ast_conditional doesn't convert to ir_expression. */
626 ir_binop_add, /* ast_pre_inc. */
627 ir_binop_sub, /* ast_pre_dec. */
628 ir_binop_add, /* ast_post_inc. */
629 ir_binop_sub, /* ast_post_dec. */
630 -1, /* ast_field_selection doesn't conv to ir_expression. */
631 -1, /* ast_array_index doesn't convert to ir_expression. */
632 -1, /* ast_function_call doesn't conv to ir_expression. */
633 -1, /* ast_identifier doesn't convert to ir_expression. */
634 -1, /* ast_int_constant doesn't convert to ir_expression. */
635 -1, /* ast_uint_constant doesn't conv to ir_expression. */
636 -1, /* ast_float_constant doesn't conv to ir_expression. */
637 -1, /* ast_bool_constant doesn't conv to ir_expression. */
638 -1, /* ast_sequence doesn't convert to ir_expression. */
639 };
640 ir_rvalue *result = NULL;
641 ir_rvalue *op[2];
642 const struct glsl_type *type = glsl_type::error_type;
643 bool error_emitted = false;
644 YYLTYPE loc;
645
646 loc = this->get_location();
647
648 switch (this->oper) {
649 case ast_assign: {
650 op[0] = this->subexpressions[0]->hir(instructions, state);
651 op[1] = this->subexpressions[1]->hir(instructions, state);
652
653 result = do_assignment(instructions, state, op[0], op[1],
654 this->subexpressions[0]->get_location());
655 error_emitted = result->type->is_error();
656 type = result->type;
657 break;
658 }
659
660 case ast_plus:
661 op[0] = this->subexpressions[0]->hir(instructions, state);
662
663 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
664
665 error_emitted = type->is_error();
666
667 result = op[0];
668 break;
669
670 case ast_neg:
671 op[0] = this->subexpressions[0]->hir(instructions, state);
672
673 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
674
675 error_emitted = type->is_error();
676
677 result = new(ctx) ir_expression(operations[this->oper], type,
678 op[0], NULL);
679 break;
680
681 case ast_add:
682 case ast_sub:
683 case ast_mul:
684 case ast_div:
685 op[0] = this->subexpressions[0]->hir(instructions, state);
686 op[1] = this->subexpressions[1]->hir(instructions, state);
687
688 type = arithmetic_result_type(op[0], op[1],
689 (this->oper == ast_mul),
690 state, & loc);
691 error_emitted = type->is_error();
692
693 result = new(ctx) ir_expression(operations[this->oper], type,
694 op[0], op[1]);
695 break;
696
697 case ast_mod:
698 op[0] = this->subexpressions[0]->hir(instructions, state);
699 op[1] = this->subexpressions[1]->hir(instructions, state);
700
701 type = modulus_result_type(op[0]->type, op[1]->type, state, & loc);
702
703 assert(operations[this->oper] == ir_binop_mod);
704
705 result = new(ctx) ir_expression(operations[this->oper], type,
706 op[0], op[1]);
707 error_emitted = type->is_error();
708 break;
709
710 case ast_lshift:
711 case ast_rshift:
712 _mesa_glsl_error(& loc, state, "FINISHME: implement bit-shift operators");
713 error_emitted = true;
714 break;
715
716 case ast_less:
717 case ast_greater:
718 case ast_lequal:
719 case ast_gequal:
720 op[0] = this->subexpressions[0]->hir(instructions, state);
721 op[1] = this->subexpressions[1]->hir(instructions, state);
722
723 type = relational_result_type(op[0], op[1], state, & loc);
724
725 /* The relational operators must either generate an error or result
726 * in a scalar boolean. See page 57 of the GLSL 1.50 spec.
727 */
728 assert(type->is_error()
729 || ((type->base_type == GLSL_TYPE_BOOL)
730 && type->is_scalar()));
731
732 result = new(ctx) ir_expression(operations[this->oper], type,
733 op[0], op[1]);
734 error_emitted = type->is_error();
735 break;
736
737 case ast_nequal:
738 case ast_equal:
739 op[0] = this->subexpressions[0]->hir(instructions, state);
740 op[1] = this->subexpressions[1]->hir(instructions, state);
741
742 /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
743 *
744 * "The equality operators equal (==), and not equal (!=)
745 * operate on all types. They result in a scalar Boolean. If
746 * the operand types do not match, then there must be a
747 * conversion from Section 4.1.10 "Implicit Conversions"
748 * applied to one operand that can make them match, in which
749 * case this conversion is done."
750 */
751 if ((!apply_implicit_conversion(op[0]->type, op[1], state)
752 && !apply_implicit_conversion(op[1]->type, op[0], state))
753 || (op[0]->type != op[1]->type)) {
754 _mesa_glsl_error(& loc, state, "operands of `%s' must have the same "
755 "type", (this->oper == ast_equal) ? "==" : "!=");
756 error_emitted = true;
757 } else if ((state->language_version <= 110)
758 && (op[0]->type->is_array() || op[1]->type->is_array())) {
759 _mesa_glsl_error(& loc, state, "array comparisons forbidden in "
760 "GLSL 1.10");
761 error_emitted = true;
762 }
763
764 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
765 op[0], op[1]);
766 type = glsl_type::bool_type;
767
768 assert(result->type == glsl_type::bool_type);
769 break;
770
771 case ast_bit_and:
772 case ast_bit_xor:
773 case ast_bit_or:
774 case ast_bit_not:
775 _mesa_glsl_error(& loc, state, "FINISHME: implement bit-wise operators");
776 error_emitted = true;
777 break;
778
779 case ast_logic_and: {
780 op[0] = this->subexpressions[0]->hir(instructions, state);
781
782 if (!op[0]->type->is_boolean() || !op[0]->type->is_scalar()) {
783 YYLTYPE loc = this->subexpressions[0]->get_location();
784
785 _mesa_glsl_error(& loc, state, "LHS of `%s' must be scalar boolean",
786 operator_string(this->oper));
787 error_emitted = true;
788 }
789
790 ir_constant *op0_const = op[0]->constant_expression_value();
791 if (op0_const) {
792 if (op0_const->value.b[0]) {
793 op[1] = this->subexpressions[1]->hir(instructions, state);
794
795 if (!op[1]->type->is_boolean() || !op[1]->type->is_scalar()) {
796 YYLTYPE loc = this->subexpressions[1]->get_location();
797
798 _mesa_glsl_error(& loc, state,
799 "RHS of `%s' must be scalar boolean",
800 operator_string(this->oper));
801 error_emitted = true;
802 }
803 result = op[1];
804 } else {
805 result = op0_const;
806 }
807 type = glsl_type::bool_type;
808 } else {
809 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
810 "and_tmp",
811 ir_var_temporary);
812 instructions->push_tail(tmp);
813
814 ir_if *const stmt = new(ctx) ir_if(op[0]);
815 instructions->push_tail(stmt);
816
817 op[1] = this->subexpressions[1]->hir(&stmt->then_instructions, state);
818
819 if (!op[1]->type->is_boolean() || !op[1]->type->is_scalar()) {
820 YYLTYPE loc = this->subexpressions[1]->get_location();
821
822 _mesa_glsl_error(& loc, state,
823 "RHS of `%s' must be scalar boolean",
824 operator_string(this->oper));
825 error_emitted = true;
826 }
827
828 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
829 ir_assignment *const then_assign =
830 new(ctx) ir_assignment(then_deref, op[1], NULL);
831 stmt->then_instructions.push_tail(then_assign);
832
833 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
834 ir_assignment *const else_assign =
835 new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false), NULL);
836 stmt->else_instructions.push_tail(else_assign);
837
838 result = new(ctx) ir_dereference_variable(tmp);
839 type = tmp->type;
840 }
841 break;
842 }
843
844 case ast_logic_or: {
845 op[0] = this->subexpressions[0]->hir(instructions, state);
846
847 if (!op[0]->type->is_boolean() || !op[0]->type->is_scalar()) {
848 YYLTYPE loc = this->subexpressions[0]->get_location();
849
850 _mesa_glsl_error(& loc, state, "LHS of `%s' must be scalar boolean",
851 operator_string(this->oper));
852 error_emitted = true;
853 }
854
855 ir_constant *op0_const = op[0]->constant_expression_value();
856 if (op0_const) {
857 if (op0_const->value.b[0]) {
858 result = op0_const;
859 } else {
860 op[1] = this->subexpressions[1]->hir(instructions, state);
861
862 if (!op[1]->type->is_boolean() || !op[1]->type->is_scalar()) {
863 YYLTYPE loc = this->subexpressions[1]->get_location();
864
865 _mesa_glsl_error(& loc, state,
866 "RHS of `%s' must be scalar boolean",
867 operator_string(this->oper));
868 error_emitted = true;
869 }
870 result = op[1];
871 }
872 type = glsl_type::bool_type;
873 } else {
874 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
875 "or_tmp",
876 ir_var_temporary);
877 instructions->push_tail(tmp);
878
879 ir_if *const stmt = new(ctx) ir_if(op[0]);
880 instructions->push_tail(stmt);
881
882 op[1] = this->subexpressions[1]->hir(&stmt->then_instructions, state);
883
884 if (!op[1]->type->is_boolean() || !op[1]->type->is_scalar()) {
885 YYLTYPE loc = this->subexpressions[1]->get_location();
886
887 _mesa_glsl_error(& loc, state, "RHS of `%s' must be scalar boolean",
888 operator_string(this->oper));
889 error_emitted = true;
890 }
891
892 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
893 ir_assignment *const then_assign =
894 new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true), NULL);
895 stmt->then_instructions.push_tail(then_assign);
896
897 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
898 ir_assignment *const else_assign =
899 new(ctx) ir_assignment(else_deref, op[1], NULL);
900 stmt->else_instructions.push_tail(else_assign);
901
902 result = new(ctx) ir_dereference_variable(tmp);
903 type = tmp->type;
904 }
905 break;
906 }
907
908 case ast_logic_xor:
909 op[0] = this->subexpressions[0]->hir(instructions, state);
910 op[1] = this->subexpressions[1]->hir(instructions, state);
911
912
913 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
914 op[0], op[1]);
915 type = glsl_type::bool_type;
916 break;
917
918 case ast_logic_not:
919 op[0] = this->subexpressions[0]->hir(instructions, state);
920
921 if (!op[0]->type->is_boolean() || !op[0]->type->is_scalar()) {
922 YYLTYPE loc = this->subexpressions[0]->get_location();
923
924 _mesa_glsl_error(& loc, state,
925 "operand of `!' must be scalar boolean");
926 error_emitted = true;
927 }
928
929 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
930 op[0], NULL);
931 type = glsl_type::bool_type;
932 break;
933
934 case ast_mul_assign:
935 case ast_div_assign:
936 case ast_add_assign:
937 case ast_sub_assign: {
938 op[0] = this->subexpressions[0]->hir(instructions, state);
939 op[1] = this->subexpressions[1]->hir(instructions, state);
940
941 type = arithmetic_result_type(op[0], op[1],
942 (this->oper == ast_mul_assign),
943 state, & loc);
944
945 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
946 op[0], op[1]);
947
948 result = do_assignment(instructions, state,
949 op[0]->clone(NULL), temp_rhs,
950 this->subexpressions[0]->get_location());
951 type = result->type;
952 error_emitted = (op[0]->type->is_error());
953
954 /* GLSL 1.10 does not allow array assignment. However, we don't have to
955 * explicitly test for this because none of the binary expression
956 * operators allow array operands either.
957 */
958
959 break;
960 }
961
962 case ast_mod_assign: {
963 op[0] = this->subexpressions[0]->hir(instructions, state);
964 op[1] = this->subexpressions[1]->hir(instructions, state);
965
966 type = modulus_result_type(op[0]->type, op[1]->type, state, & loc);
967
968 assert(operations[this->oper] == ir_binop_mod);
969
970 struct ir_rvalue *temp_rhs;
971 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
972 op[0], op[1]);
973
974 result = do_assignment(instructions, state,
975 op[0]->clone(NULL), temp_rhs,
976 this->subexpressions[0]->get_location());
977 type = result->type;
978 error_emitted = type->is_error();
979 break;
980 }
981
982 case ast_ls_assign:
983 case ast_rs_assign:
984 _mesa_glsl_error(& loc, state,
985 "FINISHME: implement bit-shift assignment operators");
986 error_emitted = true;
987 break;
988
989 case ast_and_assign:
990 case ast_xor_assign:
991 case ast_or_assign:
992 _mesa_glsl_error(& loc, state,
993 "FINISHME: implement logic assignment operators");
994 error_emitted = true;
995 break;
996
997 case ast_conditional: {
998 op[0] = this->subexpressions[0]->hir(instructions, state);
999
1000 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1001 *
1002 * "The ternary selection operator (?:). It operates on three
1003 * expressions (exp1 ? exp2 : exp3). This operator evaluates the
1004 * first expression, which must result in a scalar Boolean."
1005 */
1006 if (!op[0]->type->is_boolean() || !op[0]->type->is_scalar()) {
1007 YYLTYPE loc = this->subexpressions[0]->get_location();
1008
1009 _mesa_glsl_error(& loc, state, "?: condition must be scalar boolean");
1010 error_emitted = true;
1011 }
1012
1013 /* The :? operator is implemented by generating an anonymous temporary
1014 * followed by an if-statement. The last instruction in each branch of
1015 * the if-statement assigns a value to the anonymous temporary. This
1016 * temporary is the r-value of the expression.
1017 */
1018 exec_list then_instructions;
1019 exec_list else_instructions;
1020
1021 op[1] = this->subexpressions[1]->hir(&then_instructions, state);
1022 op[2] = this->subexpressions[2]->hir(&else_instructions, state);
1023
1024 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1025 *
1026 * "The second and third expressions can be any type, as
1027 * long their types match, or there is a conversion in
1028 * Section 4.1.10 "Implicit Conversions" that can be applied
1029 * to one of the expressions to make their types match. This
1030 * resulting matching type is the type of the entire
1031 * expression."
1032 */
1033 if ((!apply_implicit_conversion(op[1]->type, op[2], state)
1034 && !apply_implicit_conversion(op[2]->type, op[1], state))
1035 || (op[1]->type != op[2]->type)) {
1036 YYLTYPE loc = this->subexpressions[1]->get_location();
1037
1038 _mesa_glsl_error(& loc, state, "Second and third operands of ?: "
1039 "operator must have matching types.");
1040 error_emitted = true;
1041 type = glsl_type::error_type;
1042 } else {
1043 type = op[1]->type;
1044 }
1045
1046 ir_constant *cond_val = op[0]->constant_expression_value();
1047 ir_constant *then_val = op[1]->constant_expression_value();
1048 ir_constant *else_val = op[2]->constant_expression_value();
1049
1050 if (then_instructions.is_empty()
1051 && else_instructions.is_empty()
1052 && (cond_val != NULL) && (then_val != NULL) && (else_val != NULL)) {
1053 result = (cond_val->value.b[0]) ? then_val : else_val;
1054 } else {
1055 ir_variable *const tmp =
1056 new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary);
1057 instructions->push_tail(tmp);
1058
1059 ir_if *const stmt = new(ctx) ir_if(op[0]);
1060 instructions->push_tail(stmt);
1061
1062 then_instructions.move_nodes_to(& stmt->then_instructions);
1063 ir_dereference *const then_deref =
1064 new(ctx) ir_dereference_variable(tmp);
1065 ir_assignment *const then_assign =
1066 new(ctx) ir_assignment(then_deref, op[1], NULL);
1067 stmt->then_instructions.push_tail(then_assign);
1068
1069 else_instructions.move_nodes_to(& stmt->else_instructions);
1070 ir_dereference *const else_deref =
1071 new(ctx) ir_dereference_variable(tmp);
1072 ir_assignment *const else_assign =
1073 new(ctx) ir_assignment(else_deref, op[2], NULL);
1074 stmt->else_instructions.push_tail(else_assign);
1075
1076 result = new(ctx) ir_dereference_variable(tmp);
1077 }
1078 break;
1079 }
1080
1081 case ast_pre_inc:
1082 case ast_pre_dec: {
1083 op[0] = this->subexpressions[0]->hir(instructions, state);
1084 if (op[0]->type->base_type == GLSL_TYPE_FLOAT)
1085 op[1] = new(ctx) ir_constant(1.0f);
1086 else
1087 op[1] = new(ctx) ir_constant(1);
1088
1089 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1090
1091 struct ir_rvalue *temp_rhs;
1092 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1093 op[0], op[1]);
1094
1095 result = do_assignment(instructions, state,
1096 op[0]->clone(NULL), temp_rhs,
1097 this->subexpressions[0]->get_location());
1098 type = result->type;
1099 error_emitted = op[0]->type->is_error();
1100 break;
1101 }
1102
1103 case ast_post_inc:
1104 case ast_post_dec: {
1105 op[0] = this->subexpressions[0]->hir(instructions, state);
1106 if (op[0]->type->base_type == GLSL_TYPE_FLOAT)
1107 op[1] = new(ctx) ir_constant(1.0f);
1108 else
1109 op[1] = new(ctx) ir_constant(1);
1110
1111 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1112
1113 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1114
1115 struct ir_rvalue *temp_rhs;
1116 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1117 op[0], op[1]);
1118
1119 /* Get a temporary of a copy of the lvalue before it's modified.
1120 * This may get thrown away later.
1121 */
1122 result = get_lvalue_copy(instructions, op[0]->clone(NULL));
1123
1124 (void)do_assignment(instructions, state,
1125 op[0]->clone(NULL), temp_rhs,
1126 this->subexpressions[0]->get_location());
1127
1128 type = result->type;
1129 error_emitted = op[0]->type->is_error();
1130 break;
1131 }
1132
1133 case ast_field_selection:
1134 result = _mesa_ast_field_selection_to_hir(this, instructions, state);
1135 type = result->type;
1136 break;
1137
1138 case ast_array_index: {
1139 YYLTYPE index_loc = subexpressions[1]->get_location();
1140
1141 op[0] = subexpressions[0]->hir(instructions, state);
1142 op[1] = subexpressions[1]->hir(instructions, state);
1143
1144 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1145
1146 ir_rvalue *const array = op[0];
1147
1148 result = new(ctx) ir_dereference_array(op[0], op[1]);
1149
1150 /* Do not use op[0] after this point. Use array.
1151 */
1152 op[0] = NULL;
1153
1154
1155 if (error_emitted)
1156 break;
1157
1158 if (!array->type->is_array()
1159 && !array->type->is_matrix()
1160 && !array->type->is_vector()) {
1161 _mesa_glsl_error(& index_loc, state,
1162 "cannot dereference non-array / non-matrix / "
1163 "non-vector");
1164 error_emitted = true;
1165 }
1166
1167 if (!op[1]->type->is_integer()) {
1168 _mesa_glsl_error(& index_loc, state,
1169 "array index must be integer type");
1170 error_emitted = true;
1171 } else if (!op[1]->type->is_scalar()) {
1172 _mesa_glsl_error(& index_loc, state,
1173 "array index must be scalar");
1174 error_emitted = true;
1175 }
1176
1177 /* If the array index is a constant expression and the array has a
1178 * declared size, ensure that the access is in-bounds. If the array
1179 * index is not a constant expression, ensure that the array has a
1180 * declared size.
1181 */
1182 ir_constant *const const_index = op[1]->constant_expression_value();
1183 if (const_index != NULL) {
1184 const int idx = const_index->value.i[0];
1185 const char *type_name;
1186 unsigned bound = 0;
1187
1188 if (array->type->is_matrix()) {
1189 type_name = "matrix";
1190 } else if (array->type->is_vector()) {
1191 type_name = "vector";
1192 } else {
1193 type_name = "array";
1194 }
1195
1196 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec:
1197 *
1198 * "It is illegal to declare an array with a size, and then
1199 * later (in the same shader) index the same array with an
1200 * integral constant expression greater than or equal to the
1201 * declared size. It is also illegal to index an array with a
1202 * negative constant expression."
1203 */
1204 if (array->type->is_matrix()) {
1205 if (array->type->row_type()->vector_elements <= idx) {
1206 bound = array->type->row_type()->vector_elements;
1207 }
1208 } else if (array->type->is_vector()) {
1209 if (array->type->vector_elements <= idx) {
1210 bound = array->type->vector_elements;
1211 }
1212 } else {
1213 if ((array->type->array_size() > 0)
1214 && (array->type->array_size() <= idx)) {
1215 bound = array->type->array_size();
1216 }
1217 }
1218
1219 if (bound > 0) {
1220 _mesa_glsl_error(& loc, state, "%s index must be < %u",
1221 type_name, bound);
1222 error_emitted = true;
1223 } else if (idx < 0) {
1224 _mesa_glsl_error(& loc, state, "%s index must be >= 0",
1225 type_name);
1226 error_emitted = true;
1227 }
1228
1229 if (array->type->is_array()) {
1230 /* If the array is a variable dereference, it dereferences the
1231 * whole array, by definition. Use this to get the variable.
1232 *
1233 * FINISHME: Should some methods for getting / setting / testing
1234 * FINISHME: array access limits be added to ir_dereference?
1235 */
1236 ir_variable *const v = array->whole_variable_referenced();
1237 if ((v != NULL) && (unsigned(idx) > v->max_array_access))
1238 v->max_array_access = idx;
1239 }
1240 } else if (array->type->array_size() == 0) {
1241 _mesa_glsl_error(&loc, state, "unsized array index must be constant");
1242 }
1243
1244 if (error_emitted)
1245 result->type = glsl_type::error_type;
1246
1247 type = result->type;
1248 break;
1249 }
1250
1251 case ast_function_call:
1252 /* Should *NEVER* get here. ast_function_call should always be handled
1253 * by ast_function_expression::hir.
1254 */
1255 assert(0);
1256 break;
1257
1258 case ast_identifier: {
1259 /* ast_identifier can appear several places in a full abstract syntax
1260 * tree. This particular use must be at location specified in the grammar
1261 * as 'variable_identifier'.
1262 */
1263 ir_variable *var =
1264 state->symbols->get_variable(this->primary_expression.identifier);
1265
1266 result = new(ctx) ir_dereference_variable(var);
1267
1268 if (var != NULL) {
1269 type = result->type;
1270 } else {
1271 _mesa_glsl_error(& loc, state, "`%s' undeclared",
1272 this->primary_expression.identifier);
1273
1274 error_emitted = true;
1275 }
1276 break;
1277 }
1278
1279 case ast_int_constant:
1280 type = glsl_type::int_type;
1281 result = new(ctx) ir_constant(this->primary_expression.int_constant);
1282 break;
1283
1284 case ast_uint_constant:
1285 type = glsl_type::uint_type;
1286 result = new(ctx) ir_constant(this->primary_expression.uint_constant);
1287 break;
1288
1289 case ast_float_constant:
1290 type = glsl_type::float_type;
1291 result = new(ctx) ir_constant(this->primary_expression.float_constant);
1292 break;
1293
1294 case ast_bool_constant:
1295 type = glsl_type::bool_type;
1296 result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant));
1297 break;
1298
1299 case ast_sequence: {
1300 /* It should not be possible to generate a sequence in the AST without
1301 * any expressions in it.
1302 */
1303 assert(!this->expressions.is_empty());
1304
1305 /* The r-value of a sequence is the last expression in the sequence. If
1306 * the other expressions in the sequence do not have side-effects (and
1307 * therefore add instructions to the instruction list), they get dropped
1308 * on the floor.
1309 */
1310 foreach_list_typed (ast_node, ast, link, &this->expressions)
1311 result = ast->hir(instructions, state);
1312
1313 type = result->type;
1314
1315 /* Any errors should have already been emitted in the loop above.
1316 */
1317 error_emitted = true;
1318 break;
1319 }
1320 }
1321
1322 if (type->is_error() && !error_emitted)
1323 _mesa_glsl_error(& loc, state, "type mismatch");
1324
1325 return result;
1326 }
1327
1328
1329 ir_rvalue *
1330 ast_expression_statement::hir(exec_list *instructions,
1331 struct _mesa_glsl_parse_state *state)
1332 {
1333 /* It is possible to have expression statements that don't have an
1334 * expression. This is the solitary semicolon:
1335 *
1336 * for (i = 0; i < 5; i++)
1337 * ;
1338 *
1339 * In this case the expression will be NULL. Test for NULL and don't do
1340 * anything in that case.
1341 */
1342 if (expression != NULL)
1343 expression->hir(instructions, state);
1344
1345 /* Statements do not have r-values.
1346 */
1347 return NULL;
1348 }
1349
1350
1351 ir_rvalue *
1352 ast_compound_statement::hir(exec_list *instructions,
1353 struct _mesa_glsl_parse_state *state)
1354 {
1355 if (new_scope)
1356 state->symbols->push_scope();
1357
1358 foreach_list_typed (ast_node, ast, link, &this->statements)
1359 ast->hir(instructions, state);
1360
1361 if (new_scope)
1362 state->symbols->pop_scope();
1363
1364 /* Compound statements do not have r-values.
1365 */
1366 return NULL;
1367 }
1368
1369
1370 static const glsl_type *
1371 process_array_type(const glsl_type *base, ast_node *array_size,
1372 struct _mesa_glsl_parse_state *state)
1373 {
1374 unsigned length = 0;
1375
1376 /* FINISHME: Reject delcarations of multidimensional arrays. */
1377
1378 if (array_size != NULL) {
1379 exec_list dummy_instructions;
1380 ir_rvalue *const ir = array_size->hir(& dummy_instructions, state);
1381 YYLTYPE loc = array_size->get_location();
1382
1383 /* FINISHME: Verify that the grammar forbids side-effects in array
1384 * FINISHME: sizes. i.e., 'vec4 [x = 12] data'
1385 */
1386 assert(dummy_instructions.is_empty());
1387
1388 if (ir != NULL) {
1389 if (!ir->type->is_integer()) {
1390 _mesa_glsl_error(& loc, state, "array size must be integer type");
1391 } else if (!ir->type->is_scalar()) {
1392 _mesa_glsl_error(& loc, state, "array size must be scalar type");
1393 } else {
1394 ir_constant *const size = ir->constant_expression_value();
1395
1396 if (size == NULL) {
1397 _mesa_glsl_error(& loc, state, "array size must be a "
1398 "constant valued expression");
1399 } else if (size->value.i[0] <= 0) {
1400 _mesa_glsl_error(& loc, state, "array size must be > 0");
1401 } else {
1402 assert(size->type == ir->type);
1403 length = size->value.u[0];
1404 }
1405 }
1406 }
1407 }
1408
1409 return glsl_type::get_array_instance(base, length);
1410 }
1411
1412
1413 const glsl_type *
1414 ast_type_specifier::glsl_type(const char **name,
1415 struct _mesa_glsl_parse_state *state) const
1416 {
1417 const struct glsl_type *type;
1418
1419 if ((this->type_specifier == ast_struct) && (this->type_name == NULL)) {
1420 /* FINISHME: Handle annonymous structures. */
1421 type = NULL;
1422 } else {
1423 type = state->symbols->get_type(this->type_name);
1424 *name = this->type_name;
1425
1426 if (this->is_array) {
1427 type = process_array_type(type, this->array_size, state);
1428 }
1429 }
1430
1431 return type;
1432 }
1433
1434
1435 static void
1436 apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
1437 struct ir_variable *var,
1438 struct _mesa_glsl_parse_state *state,
1439 YYLTYPE *loc)
1440 {
1441 if (qual->invariant)
1442 var->invariant = 1;
1443
1444 /* FINISHME: Mark 'in' variables at global scope as read-only. */
1445 if (qual->constant || qual->attribute || qual->uniform
1446 || (qual->varying && (state->target == fragment_shader)))
1447 var->read_only = 1;
1448
1449 if (qual->centroid)
1450 var->centroid = 1;
1451
1452 if (qual->attribute && state->target != vertex_shader) {
1453 var->type = glsl_type::error_type;
1454 _mesa_glsl_error(loc, state,
1455 "`attribute' variables may not be declared in the "
1456 "%s shader",
1457 _mesa_glsl_shader_target_name(state->target));
1458 }
1459
1460 /* From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
1461 *
1462 * "The varying qualifier can be used only with the data types
1463 * float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
1464 * these."
1465 */
1466 if (qual->varying) {
1467 const glsl_type *non_array_type;
1468
1469 if (var->type && var->type->is_array())
1470 non_array_type = var->type->fields.array;
1471 else
1472 non_array_type = var->type;
1473
1474 if (non_array_type && non_array_type->base_type != GLSL_TYPE_FLOAT) {
1475 var->type = glsl_type::error_type;
1476 _mesa_glsl_error(loc, state,
1477 "varying variables must be of base type float");
1478 }
1479 }
1480
1481 /* If there is no qualifier that changes the mode of the variable, leave
1482 * the setting alone.
1483 */
1484 if (qual->in && qual->out)
1485 var->mode = ir_var_inout;
1486 else if (qual->attribute || qual->in
1487 || (qual->varying && (state->target == fragment_shader)))
1488 var->mode = ir_var_in;
1489 else if (qual->out || (qual->varying && (state->target == vertex_shader)))
1490 var->mode = ir_var_out;
1491 else if (qual->uniform)
1492 var->mode = ir_var_uniform;
1493
1494 if (qual->uniform)
1495 var->shader_in = true;
1496
1497 /* Any 'in' or 'inout' variables at global scope must be marked as being
1498 * shader inputs. Likewise, any 'out' or 'inout' variables at global scope
1499 * must be marked as being shader outputs.
1500 */
1501 if (state->current_function == NULL) {
1502 switch (var->mode) {
1503 case ir_var_in:
1504 case ir_var_uniform:
1505 var->shader_in = true;
1506 break;
1507 case ir_var_out:
1508 var->shader_out = true;
1509 break;
1510 case ir_var_inout:
1511 var->shader_in = true;
1512 var->shader_out = true;
1513 break;
1514 default:
1515 break;
1516 }
1517 }
1518
1519 if (qual->flat)
1520 var->interpolation = ir_var_flat;
1521 else if (qual->noperspective)
1522 var->interpolation = ir_var_noperspective;
1523 else
1524 var->interpolation = ir_var_smooth;
1525
1526 if (var->type->is_array() && (state->language_version >= 120)) {
1527 var->array_lvalue = true;
1528 }
1529 }
1530
1531
1532 ir_rvalue *
1533 ast_declarator_list::hir(exec_list *instructions,
1534 struct _mesa_glsl_parse_state *state)
1535 {
1536 void *ctx = state;
1537 const struct glsl_type *decl_type;
1538 const char *type_name = NULL;
1539 ir_rvalue *result = NULL;
1540 YYLTYPE loc = this->get_location();
1541
1542 /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec:
1543 *
1544 * "To ensure that a particular output variable is invariant, it is
1545 * necessary to use the invariant qualifier. It can either be used to
1546 * qualify a previously declared variable as being invariant
1547 *
1548 * invariant gl_Position; // make existing gl_Position be invariant"
1549 *
1550 * In these cases the parser will set the 'invariant' flag in the declarator
1551 * list, and the type will be NULL.
1552 */
1553 if (this->invariant) {
1554 assert(this->type == NULL);
1555
1556 if (state->current_function != NULL) {
1557 _mesa_glsl_error(& loc, state,
1558 "All uses of `invariant' keyword must be at global "
1559 "scope\n");
1560 }
1561
1562 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
1563 assert(!decl->is_array);
1564 assert(decl->array_size == NULL);
1565 assert(decl->initializer == NULL);
1566
1567 ir_variable *const earlier =
1568 state->symbols->get_variable(decl->identifier);
1569 if (earlier == NULL) {
1570 _mesa_glsl_error(& loc, state,
1571 "Undeclared variable `%s' cannot be marked "
1572 "invariant\n", decl->identifier);
1573 } else if ((state->target == vertex_shader)
1574 && (earlier->mode != ir_var_out)) {
1575 _mesa_glsl_error(& loc, state,
1576 "`%s' cannot be marked invariant, vertex shader "
1577 "outputs only\n", decl->identifier);
1578 } else if ((state->target == fragment_shader)
1579 && (earlier->mode != ir_var_in)) {
1580 _mesa_glsl_error(& loc, state,
1581 "`%s' cannot be marked invariant, fragment shader "
1582 "inputs only\n", decl->identifier);
1583 } else {
1584 earlier->invariant = true;
1585 }
1586 }
1587
1588 /* Invariant redeclarations do not have r-values.
1589 */
1590 return NULL;
1591 }
1592
1593 assert(this->type != NULL);
1594 assert(!this->invariant);
1595
1596 /* The type specifier may contain a structure definition. Process that
1597 * before any of the variable declarations.
1598 */
1599 (void) this->type->specifier->hir(instructions, state);
1600
1601 decl_type = this->type->specifier->glsl_type(& type_name, state);
1602 if (this->declarations.is_empty()) {
1603 /* The only valid case where the declaration list can be empty is when
1604 * the declaration is setting the default precision of a built-in type
1605 * (e.g., 'precision highp vec4;').
1606 */
1607
1608 if (decl_type != NULL) {
1609 } else {
1610 _mesa_glsl_error(& loc, state, "incomplete declaration");
1611 }
1612 }
1613
1614 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
1615 const struct glsl_type *var_type;
1616 struct ir_variable *var;
1617
1618 /* FINISHME: Emit a warning if a variable declaration shadows a
1619 * FINISHME: declaration at a higher scope.
1620 */
1621
1622 if ((decl_type == NULL) || decl_type->is_void()) {
1623 if (type_name != NULL) {
1624 _mesa_glsl_error(& loc, state,
1625 "invalid type `%s' in declaration of `%s'",
1626 type_name, decl->identifier);
1627 } else {
1628 _mesa_glsl_error(& loc, state,
1629 "invalid type in declaration of `%s'",
1630 decl->identifier);
1631 }
1632 continue;
1633 }
1634
1635 if (decl->is_array) {
1636 var_type = process_array_type(decl_type, decl->array_size, state);
1637 } else {
1638 var_type = decl_type;
1639 }
1640
1641 var = new(ctx) ir_variable(var_type, decl->identifier, ir_var_auto);
1642
1643 /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
1644 *
1645 * "Global variables can only use the qualifiers const,
1646 * attribute, uni form, or varying. Only one may be
1647 * specified.
1648 *
1649 * Local variables can only use the qualifier const."
1650 *
1651 * This is relaxed in GLSL 1.30.
1652 */
1653 if (state->language_version < 120) {
1654 if (this->type->qualifier.out) {
1655 _mesa_glsl_error(& loc, state,
1656 "`out' qualifier in declaration of `%s' "
1657 "only valid for function parameters in GLSL 1.10.",
1658 decl->identifier);
1659 }
1660 if (this->type->qualifier.in) {
1661 _mesa_glsl_error(& loc, state,
1662 "`in' qualifier in declaration of `%s' "
1663 "only valid for function parameters in GLSL 1.10.",
1664 decl->identifier);
1665 }
1666 /* FINISHME: Test for other invalid qualifiers. */
1667 }
1668
1669 apply_type_qualifier_to_variable(& this->type->qualifier, var, state,
1670 & loc);
1671
1672 if (this->type->qualifier.invariant) {
1673 if ((state->target == vertex_shader) && !var->shader_out) {
1674 _mesa_glsl_error(& loc, state,
1675 "`%s' cannot be marked invariant, vertex shader "
1676 "outputs only\n", var->name);
1677 } else if ((state->target == fragment_shader) && !var->shader_in) {
1678 _mesa_glsl_error(& loc, state,
1679 "`%s' cannot be marked invariant, fragment shader "
1680 "inputs only\n", var->name);
1681 }
1682 }
1683
1684 if (state->current_function != NULL) {
1685 const char *mode = NULL;
1686 const char *extra = "";
1687
1688 /* There is no need to check for 'inout' here because the parser will
1689 * only allow that in function parameter lists.
1690 */
1691 if (this->type->qualifier.attribute) {
1692 mode = "attribute";
1693 } else if (this->type->qualifier.uniform) {
1694 mode = "uniform";
1695 } else if (this->type->qualifier.varying) {
1696 mode = "varying";
1697 } else if (this->type->qualifier.in) {
1698 mode = "in";
1699 extra = " or in function parameter list";
1700 } else if (this->type->qualifier.out) {
1701 mode = "out";
1702 extra = " or in function parameter list";
1703 }
1704
1705 if (mode) {
1706 _mesa_glsl_error(& loc, state,
1707 "%s variable `%s' must be declared at "
1708 "global scope%s",
1709 mode, var->name, extra);
1710 }
1711 } else if (var->mode == ir_var_in) {
1712 if (state->target == vertex_shader) {
1713 bool error_emitted = false;
1714
1715 /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
1716 *
1717 * "Vertex shader inputs can only be float, floating-point
1718 * vectors, matrices, signed and unsigned integers and integer
1719 * vectors. Vertex shader inputs can also form arrays of these
1720 * types, but not structures."
1721 *
1722 * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
1723 *
1724 * "Vertex shader inputs can only be float, floating-point
1725 * vectors, matrices, signed and unsigned integers and integer
1726 * vectors. They cannot be arrays or structures."
1727 *
1728 * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
1729 *
1730 * "The attribute qualifier can be used only with float,
1731 * floating-point vectors, and matrices. Attribute variables
1732 * cannot be declared as arrays or structures."
1733 */
1734 const glsl_type *check_type = var->type->is_array()
1735 ? var->type->fields.array : var->type;
1736
1737 switch (check_type->base_type) {
1738 case GLSL_TYPE_FLOAT:
1739 break;
1740 case GLSL_TYPE_UINT:
1741 case GLSL_TYPE_INT:
1742 if (state->language_version > 120)
1743 break;
1744 /* FALLTHROUGH */
1745 default:
1746 _mesa_glsl_error(& loc, state,
1747 "vertex shader input / attribute cannot have "
1748 "type %s`%s'",
1749 var->type->is_array() ? "array of " : "",
1750 check_type->name);
1751 error_emitted = true;
1752 }
1753
1754 if (!error_emitted && (state->language_version <= 130)
1755 && var->type->is_array()) {
1756 _mesa_glsl_error(& loc, state,
1757 "vertex shader input / attribute cannot have "
1758 "array type");
1759 error_emitted = true;
1760 }
1761 }
1762 }
1763
1764 /* Process the initializer and add its instructions to a temporary
1765 * list. This list will be added to the instruction stream (below) after
1766 * the declaration is added. This is done because in some cases (such as
1767 * redeclarations) the declaration may not actually be added to the
1768 * instruction stream.
1769 */
1770 exec_list intializer_instructions;
1771 if (decl->initializer != NULL) {
1772 YYLTYPE initializer_loc = decl->initializer->get_location();
1773
1774 /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
1775 *
1776 * "All uniform variables are read-only and are initialized either
1777 * directly by an application via API commands, or indirectly by
1778 * OpenGL."
1779 */
1780 if ((state->language_version <= 110)
1781 && (var->mode == ir_var_uniform)) {
1782 _mesa_glsl_error(& initializer_loc, state,
1783 "cannot initialize uniforms in GLSL 1.10");
1784 }
1785
1786 if (var->type->is_sampler()) {
1787 _mesa_glsl_error(& initializer_loc, state,
1788 "cannot initialize samplers");
1789 }
1790
1791 if ((var->mode == ir_var_in) && (state->current_function == NULL)) {
1792 _mesa_glsl_error(& initializer_loc, state,
1793 "cannot initialize %s shader input / %s",
1794 _mesa_glsl_shader_target_name(state->target),
1795 (state->target == vertex_shader)
1796 ? "attribute" : "varying");
1797 }
1798
1799 ir_dereference *const lhs = new(ctx) ir_dereference_variable(var);
1800 ir_rvalue *rhs = decl->initializer->hir(&intializer_instructions,
1801 state);
1802
1803 /* Calculate the constant value if this is a const or uniform
1804 * declaration.
1805 */
1806 if (this->type->qualifier.constant || this->type->qualifier.uniform) {
1807 ir_constant *constant_value = rhs->constant_expression_value();
1808 if (!constant_value) {
1809 _mesa_glsl_error(& initializer_loc, state,
1810 "initializer of %s variable `%s' must be a "
1811 "constant expression",
1812 (this->type->qualifier.constant)
1813 ? "const" : "uniform",
1814 decl->identifier);
1815 } else {
1816 rhs = constant_value;
1817 var->constant_value = constant_value;
1818 }
1819 }
1820
1821 if (rhs && !rhs->type->is_error()) {
1822 bool temp = var->read_only;
1823 if (this->type->qualifier.constant)
1824 var->read_only = false;
1825
1826 /* Never emit code to initialize a uniform.
1827 */
1828 if (!this->type->qualifier.uniform)
1829 result = do_assignment(&intializer_instructions, state, lhs, rhs,
1830 this->get_location());
1831 var->read_only = temp;
1832 }
1833 }
1834
1835 /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
1836 *
1837 * "It is an error to write to a const variable outside of
1838 * its declaration, so they must be initialized when
1839 * declared."
1840 */
1841 if (this->type->qualifier.constant && decl->initializer == NULL) {
1842 _mesa_glsl_error(& loc, state,
1843 "const declaration of `%s' must be initialized");
1844 }
1845
1846 /* Attempt to add the variable to the symbol table. If this fails, it
1847 * means the variable has already been declared at this scope. Arrays
1848 * fudge this rule a little bit.
1849 *
1850 * From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
1851 *
1852 * "It is legal to declare an array without a size and then
1853 * later re-declare the same name as an array of the same
1854 * type and specify a size."
1855 */
1856 if (state->symbols->name_declared_this_scope(decl->identifier)) {
1857 ir_variable *const earlier =
1858 state->symbols->get_variable(decl->identifier);
1859
1860 if ((earlier != NULL)
1861 && (earlier->type->array_size() == 0)
1862 && var->type->is_array()
1863 && (var->type->element_type() == earlier->type->element_type())) {
1864 /* FINISHME: This doesn't match the qualifiers on the two
1865 * FINISHME: declarations. It's not 100% clear whether this is
1866 * FINISHME: required or not.
1867 */
1868
1869 /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec:
1870 *
1871 * "The size [of gl_TexCoord] can be at most
1872 * gl_MaxTextureCoords."
1873 */
1874 const unsigned size = unsigned(var->type->array_size());
1875 if ((strcmp("gl_TexCoord", var->name) == 0)
1876 && (size > state->Const.MaxTextureCoords)) {
1877 YYLTYPE loc = this->get_location();
1878
1879 _mesa_glsl_error(& loc, state, "`gl_TexCoord' array size cannot "
1880 "be larger than gl_MaxTextureCoords (%u)\n",
1881 state->Const.MaxTextureCoords);
1882 } else if ((size > 0) && (size <= earlier->max_array_access)) {
1883 YYLTYPE loc = this->get_location();
1884
1885 _mesa_glsl_error(& loc, state, "array size must be > %u due to "
1886 "previous access",
1887 earlier->max_array_access);
1888 }
1889
1890 earlier->type = var->type;
1891 delete var;
1892 var = NULL;
1893 } else {
1894 YYLTYPE loc = this->get_location();
1895
1896 _mesa_glsl_error(& loc, state, "`%s' redeclared",
1897 decl->identifier);
1898 }
1899
1900 continue;
1901 }
1902
1903 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
1904 *
1905 * "Identifiers starting with "gl_" are reserved for use by
1906 * OpenGL, and may not be declared in a shader as either a
1907 * variable or a function."
1908 */
1909 if (strncmp(decl->identifier, "gl_", 3) == 0) {
1910 /* FINISHME: This should only trigger if we're not redefining
1911 * FINISHME: a builtin (to add a qualifier, for example).
1912 */
1913 _mesa_glsl_error(& loc, state,
1914 "identifier `%s' uses reserved `gl_' prefix",
1915 decl->identifier);
1916 }
1917
1918 instructions->push_tail(var);
1919 instructions->append_list(&intializer_instructions);
1920
1921 /* Add the variable to the symbol table after processing the initializer.
1922 * This differs from most C-like languages, but it follows the GLSL
1923 * specification. From page 28 (page 34 of the PDF) of the GLSL 1.50
1924 * spec:
1925 *
1926 * "Within a declaration, the scope of a name starts immediately
1927 * after the initializer if present or immediately after the name
1928 * being declared if not."
1929 */
1930 const bool added_variable =
1931 state->symbols->add_variable(var->name, var);
1932 assert(added_variable);
1933 }
1934
1935
1936 /* Generally, variable declarations do not have r-values. However,
1937 * one is used for the declaration in
1938 *
1939 * while (bool b = some_condition()) {
1940 * ...
1941 * }
1942 *
1943 * so we return the rvalue from the last seen declaration here.
1944 */
1945 return result;
1946 }
1947
1948
1949 ir_rvalue *
1950 ast_parameter_declarator::hir(exec_list *instructions,
1951 struct _mesa_glsl_parse_state *state)
1952 {
1953 void *ctx = state;
1954 const struct glsl_type *type;
1955 const char *name = NULL;
1956 YYLTYPE loc = this->get_location();
1957
1958 type = this->type->specifier->glsl_type(& name, state);
1959
1960 if (type == NULL) {
1961 if (name != NULL) {
1962 _mesa_glsl_error(& loc, state,
1963 "invalid type `%s' in declaration of `%s'",
1964 name, this->identifier);
1965 } else {
1966 _mesa_glsl_error(& loc, state,
1967 "invalid type in declaration of `%s'",
1968 this->identifier);
1969 }
1970
1971 type = glsl_type::error_type;
1972 }
1973
1974 /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
1975 *
1976 * "Functions that accept no input arguments need not use void in the
1977 * argument list because prototypes (or definitions) are required and
1978 * therefore there is no ambiguity when an empty argument list "( )" is
1979 * declared. The idiom "(void)" as a parameter list is provided for
1980 * convenience."
1981 *
1982 * Placing this check here prevents a void parameter being set up
1983 * for a function, which avoids tripping up checks for main taking
1984 * parameters and lookups of an unnamed symbol.
1985 */
1986 if (type->is_void()) {
1987 if (this->identifier != NULL)
1988 _mesa_glsl_error(& loc, state,
1989 "named parameter cannot have type `void'");
1990
1991 is_void = true;
1992 return NULL;
1993 }
1994
1995 if (formal_parameter && (this->identifier == NULL)) {
1996 _mesa_glsl_error(& loc, state, "formal parameter lacks a name");
1997 return NULL;
1998 }
1999
2000 is_void = false;
2001 ir_variable *var = new(ctx) ir_variable(type, this->identifier, ir_var_in);
2002
2003 /* FINISHME: Handle array declarations. Note that this requires
2004 * FINISHME: complete handling of constant expressions.
2005 */
2006
2007 /* Apply any specified qualifiers to the parameter declaration. Note that
2008 * for function parameters the default mode is 'in'.
2009 */
2010 apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc);
2011
2012 instructions->push_tail(var);
2013
2014 /* Parameter declarations do not have r-values.
2015 */
2016 return NULL;
2017 }
2018
2019
2020 void
2021 ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters,
2022 bool formal,
2023 exec_list *ir_parameters,
2024 _mesa_glsl_parse_state *state)
2025 {
2026 ast_parameter_declarator *void_param = NULL;
2027 unsigned count = 0;
2028
2029 foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) {
2030 param->formal_parameter = formal;
2031 param->hir(ir_parameters, state);
2032
2033 if (param->is_void)
2034 void_param = param;
2035
2036 count++;
2037 }
2038
2039 if ((void_param != NULL) && (count > 1)) {
2040 YYLTYPE loc = void_param->get_location();
2041
2042 _mesa_glsl_error(& loc, state,
2043 "`void' parameter must be only parameter");
2044 }
2045 }
2046
2047
2048 ir_rvalue *
2049 ast_function::hir(exec_list *instructions,
2050 struct _mesa_glsl_parse_state *state)
2051 {
2052 void *ctx = state;
2053 ir_function *f = NULL;
2054 ir_function_signature *sig = NULL;
2055 exec_list hir_parameters;
2056
2057 const char *const name = identifier;
2058
2059 /* Convert the list of function parameters to HIR now so that they can be
2060 * used below to compare this function's signature with previously seen
2061 * signatures for functions with the same name.
2062 */
2063 ast_parameter_declarator::parameters_to_hir(& this->parameters,
2064 is_definition,
2065 & hir_parameters, state);
2066
2067 const char *return_type_name;
2068 const glsl_type *return_type =
2069 this->return_type->specifier->glsl_type(& return_type_name, state);
2070
2071 assert(return_type != NULL);
2072
2073 /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec:
2074 * "No qualifier is allowed on the return type of a function."
2075 */
2076 if (this->return_type->has_qualifiers()) {
2077 YYLTYPE loc = this->get_location();
2078 _mesa_glsl_error(& loc, state,
2079 "function `%s' return type has qualifiers", name);
2080 }
2081
2082 /* Verify that this function's signature either doesn't match a previously
2083 * seen signature for a function with the same name, or, if a match is found,
2084 * that the previously seen signature does not have an associated definition.
2085 */
2086 f = state->symbols->get_function(name);
2087 if (f != NULL) {
2088 ir_function_signature *sig = f->exact_matching_signature(&hir_parameters);
2089 if (sig != NULL) {
2090 const char *badvar = sig->qualifiers_match(&hir_parameters);
2091 if (badvar != NULL) {
2092 YYLTYPE loc = this->get_location();
2093
2094 _mesa_glsl_error(&loc, state, "function `%s' parameter `%s' "
2095 "qualifiers don't match prototype", name, badvar);
2096 }
2097
2098 if (sig->return_type != return_type) {
2099 YYLTYPE loc = this->get_location();
2100
2101 _mesa_glsl_error(&loc, state, "function `%s' return type doesn't "
2102 "match prototype", name);
2103 }
2104
2105 if (is_definition && sig->is_defined) {
2106 YYLTYPE loc = this->get_location();
2107
2108 _mesa_glsl_error(& loc, state, "function `%s' redefined", name);
2109 sig = NULL;
2110 }
2111 }
2112 } else if (state->symbols->name_declared_this_scope(name)) {
2113 /* This function name shadows a non-function use of the same name.
2114 */
2115 YYLTYPE loc = this->get_location();
2116
2117 _mesa_glsl_error(& loc, state, "function name `%s' conflicts with "
2118 "non-function", name);
2119 sig = NULL;
2120 } else {
2121 f = new(ctx) ir_function(name);
2122 state->symbols->add_function(f->name, f);
2123
2124 /* Emit the new function header */
2125 instructions->push_tail(f);
2126 }
2127
2128 /* Verify the return type of main() */
2129 if (strcmp(name, "main") == 0) {
2130 if (! return_type->is_void()) {
2131 YYLTYPE loc = this->get_location();
2132
2133 _mesa_glsl_error(& loc, state, "main() must return void");
2134 }
2135
2136 if (!hir_parameters.is_empty()) {
2137 YYLTYPE loc = this->get_location();
2138
2139 _mesa_glsl_error(& loc, state, "main() must not take any parameters");
2140 }
2141 }
2142
2143 /* Finish storing the information about this new function in its signature.
2144 */
2145 if (sig == NULL) {
2146 sig = new(ctx) ir_function_signature(return_type);
2147 f->add_signature(sig);
2148 }
2149
2150 sig->replace_parameters(&hir_parameters);
2151 signature = sig;
2152
2153 /* Function declarations (prototypes) do not have r-values.
2154 */
2155 return NULL;
2156 }
2157
2158
2159 ir_rvalue *
2160 ast_function_definition::hir(exec_list *instructions,
2161 struct _mesa_glsl_parse_state *state)
2162 {
2163 prototype->is_definition = true;
2164 prototype->hir(instructions, state);
2165
2166 ir_function_signature *signature = prototype->signature;
2167
2168 assert(state->current_function == NULL);
2169 state->current_function = signature;
2170 state->found_return = false;
2171
2172 /* Duplicate parameters declared in the prototype as concrete variables.
2173 * Add these to the symbol table.
2174 */
2175 state->symbols->push_scope();
2176 foreach_iter(exec_list_iterator, iter, signature->parameters) {
2177 ir_variable *const var = ((ir_instruction *) iter.get())->as_variable();
2178
2179 assert(var != NULL);
2180
2181 /* The only way a parameter would "exist" is if two parameters have
2182 * the same name.
2183 */
2184 if (state->symbols->name_declared_this_scope(var->name)) {
2185 YYLTYPE loc = this->get_location();
2186
2187 _mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name);
2188 } else {
2189 state->symbols->add_variable(var->name, var);
2190 }
2191 }
2192
2193 /* Convert the body of the function to HIR. */
2194 this->body->hir(&signature->body, state);
2195 signature->is_defined = true;
2196
2197 state->symbols->pop_scope();
2198
2199 assert(state->current_function == signature);
2200 state->current_function = NULL;
2201
2202 if (!signature->return_type->is_void() && !state->found_return) {
2203 YYLTYPE loc = this->get_location();
2204 _mesa_glsl_error(& loc, state, "function `%s' has non-void return type "
2205 "%s, but no return statement",
2206 signature->function_name(),
2207 signature->return_type->name);
2208 }
2209
2210 /* Function definitions do not have r-values.
2211 */
2212 return NULL;
2213 }
2214
2215
2216 ir_rvalue *
2217 ast_jump_statement::hir(exec_list *instructions,
2218 struct _mesa_glsl_parse_state *state)
2219 {
2220 void *ctx = state;
2221
2222 switch (mode) {
2223 case ast_return: {
2224 ir_return *inst;
2225 assert(state->current_function);
2226
2227 if (opt_return_value) {
2228 if (state->current_function->return_type->base_type ==
2229 GLSL_TYPE_VOID) {
2230 YYLTYPE loc = this->get_location();
2231
2232 _mesa_glsl_error(& loc, state,
2233 "`return` with a value, in function `%s' "
2234 "returning void",
2235 state->current_function->function_name());
2236 }
2237
2238 ir_expression *const ret = (ir_expression *)
2239 opt_return_value->hir(instructions, state);
2240 assert(ret != NULL);
2241
2242 /* Implicit conversions are not allowed for return values. */
2243 if (state->current_function->return_type != ret->type) {
2244 YYLTYPE loc = this->get_location();
2245
2246 _mesa_glsl_error(& loc, state,
2247 "`return' with wrong type %s, in function `%s' "
2248 "returning %s",
2249 ret->type->name,
2250 state->current_function->function_name(),
2251 state->current_function->return_type->name);
2252 }
2253
2254 inst = new(ctx) ir_return(ret);
2255 } else {
2256 if (state->current_function->return_type->base_type !=
2257 GLSL_TYPE_VOID) {
2258 YYLTYPE loc = this->get_location();
2259
2260 _mesa_glsl_error(& loc, state,
2261 "`return' with no value, in function %s returning "
2262 "non-void",
2263 state->current_function->function_name());
2264 }
2265 inst = new(ctx) ir_return;
2266 }
2267
2268 state->found_return = true;
2269 instructions->push_tail(inst);
2270 break;
2271 }
2272
2273 case ast_discard:
2274 if (state->target != fragment_shader) {
2275 YYLTYPE loc = this->get_location();
2276
2277 _mesa_glsl_error(& loc, state,
2278 "`discard' may only appear in a fragment shader");
2279 }
2280 instructions->push_tail(new(ctx) ir_discard);
2281 break;
2282
2283 case ast_break:
2284 case ast_continue:
2285 /* FINISHME: Handle switch-statements. They cannot contain 'continue',
2286 * FINISHME: and they use a different IR instruction for 'break'.
2287 */
2288 /* FINISHME: Correctly handle the nesting. If a switch-statement is
2289 * FINISHME: inside a loop, a 'continue' is valid and will bind to the
2290 * FINISHME: loop.
2291 */
2292 if (state->loop_or_switch_nesting == NULL) {
2293 YYLTYPE loc = this->get_location();
2294
2295 _mesa_glsl_error(& loc, state,
2296 "`%s' may only appear in a loop",
2297 (mode == ast_break) ? "break" : "continue");
2298 } else {
2299 ir_loop *const loop = state->loop_or_switch_nesting->as_loop();
2300
2301 if (loop != NULL) {
2302 ir_loop_jump *const jump =
2303 new(ctx) ir_loop_jump((mode == ast_break)
2304 ? ir_loop_jump::jump_break
2305 : ir_loop_jump::jump_continue);
2306 instructions->push_tail(jump);
2307 }
2308 }
2309
2310 break;
2311 }
2312
2313 /* Jump instructions do not have r-values.
2314 */
2315 return NULL;
2316 }
2317
2318
2319 ir_rvalue *
2320 ast_selection_statement::hir(exec_list *instructions,
2321 struct _mesa_glsl_parse_state *state)
2322 {
2323 void *ctx = state;
2324
2325 ir_rvalue *const condition = this->condition->hir(instructions, state);
2326
2327 /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
2328 *
2329 * "Any expression whose type evaluates to a Boolean can be used as the
2330 * conditional expression bool-expression. Vector types are not accepted
2331 * as the expression to if."
2332 *
2333 * The checks are separated so that higher quality diagnostics can be
2334 * generated for cases where both rules are violated.
2335 */
2336 if (!condition->type->is_boolean() || !condition->type->is_scalar()) {
2337 YYLTYPE loc = this->condition->get_location();
2338
2339 _mesa_glsl_error(& loc, state, "if-statement condition must be scalar "
2340 "boolean");
2341 }
2342
2343 ir_if *const stmt = new(ctx) ir_if(condition);
2344
2345 if (then_statement != NULL)
2346 then_statement->hir(& stmt->then_instructions, state);
2347
2348 if (else_statement != NULL)
2349 else_statement->hir(& stmt->else_instructions, state);
2350
2351 instructions->push_tail(stmt);
2352
2353 /* if-statements do not have r-values.
2354 */
2355 return NULL;
2356 }
2357
2358
2359 void
2360 ast_iteration_statement::condition_to_hir(ir_loop *stmt,
2361 struct _mesa_glsl_parse_state *state)
2362 {
2363 void *ctx = state;
2364
2365 if (condition != NULL) {
2366 ir_rvalue *const cond =
2367 condition->hir(& stmt->body_instructions, state);
2368
2369 if ((cond == NULL)
2370 || !cond->type->is_boolean() || !cond->type->is_scalar()) {
2371 YYLTYPE loc = condition->get_location();
2372
2373 _mesa_glsl_error(& loc, state,
2374 "loop condition must be scalar boolean");
2375 } else {
2376 /* As the first code in the loop body, generate a block that looks
2377 * like 'if (!condition) break;' as the loop termination condition.
2378 */
2379 ir_rvalue *const not_cond =
2380 new(ctx) ir_expression(ir_unop_logic_not, glsl_type::bool_type, cond,
2381 NULL);
2382
2383 ir_if *const if_stmt = new(ctx) ir_if(not_cond);
2384
2385 ir_jump *const break_stmt =
2386 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
2387
2388 if_stmt->then_instructions.push_tail(break_stmt);
2389 stmt->body_instructions.push_tail(if_stmt);
2390 }
2391 }
2392 }
2393
2394
2395 ir_rvalue *
2396 ast_iteration_statement::hir(exec_list *instructions,
2397 struct _mesa_glsl_parse_state *state)
2398 {
2399 void *ctx = state;
2400
2401 /* For-loops and while-loops start a new scope, but do-while loops do not.
2402 */
2403 if (mode != ast_do_while)
2404 state->symbols->push_scope();
2405
2406 if (init_statement != NULL)
2407 init_statement->hir(instructions, state);
2408
2409 ir_loop *const stmt = new(ctx) ir_loop();
2410 instructions->push_tail(stmt);
2411
2412 /* Track the current loop and / or switch-statement nesting.
2413 */
2414 ir_instruction *const nesting = state->loop_or_switch_nesting;
2415 state->loop_or_switch_nesting = stmt;
2416
2417 if (mode != ast_do_while)
2418 condition_to_hir(stmt, state);
2419
2420 if (body != NULL)
2421 body->hir(& stmt->body_instructions, state);
2422
2423 if (rest_expression != NULL)
2424 rest_expression->hir(& stmt->body_instructions, state);
2425
2426 if (mode == ast_do_while)
2427 condition_to_hir(stmt, state);
2428
2429 if (mode != ast_do_while)
2430 state->symbols->pop_scope();
2431
2432 /* Restore previous nesting before returning.
2433 */
2434 state->loop_or_switch_nesting = nesting;
2435
2436 /* Loops do not have r-values.
2437 */
2438 return NULL;
2439 }
2440
2441
2442 ir_rvalue *
2443 ast_type_specifier::hir(exec_list *instructions,
2444 struct _mesa_glsl_parse_state *state)
2445 {
2446 if (this->structure != NULL)
2447 return this->structure->hir(instructions, state);
2448
2449 return NULL;
2450 }
2451
2452
2453 ir_rvalue *
2454 ast_struct_specifier::hir(exec_list *instructions,
2455 struct _mesa_glsl_parse_state *state)
2456 {
2457 unsigned decl_count = 0;
2458
2459 /* Make an initial pass over the list of structure fields to determine how
2460 * many there are. Each element in this list is an ast_declarator_list.
2461 * This means that we actually need to count the number of elements in the
2462 * 'declarations' list in each of the elements.
2463 */
2464 foreach_list_typed (ast_declarator_list, decl_list, link,
2465 &this->declarations) {
2466 foreach_list_const (decl_ptr, & decl_list->declarations) {
2467 decl_count++;
2468 }
2469 }
2470
2471
2472 /* Allocate storage for the structure fields and process the field
2473 * declarations. As the declarations are processed, try to also convert
2474 * the types to HIR. This ensures that structure definitions embedded in
2475 * other structure definitions are processed.
2476 */
2477 glsl_struct_field *const fields = talloc_array(state, glsl_struct_field,
2478 decl_count);
2479
2480 unsigned i = 0;
2481 foreach_list_typed (ast_declarator_list, decl_list, link,
2482 &this->declarations) {
2483 const char *type_name;
2484
2485 decl_list->type->specifier->hir(instructions, state);
2486
2487 const glsl_type *decl_type =
2488 decl_list->type->specifier->glsl_type(& type_name, state);
2489
2490 foreach_list_typed (ast_declaration, decl, link,
2491 &decl_list->declarations) {
2492 const struct glsl_type *const field_type =
2493 (decl->is_array)
2494 ? process_array_type(decl_type, decl->array_size, state)
2495 : decl_type;
2496
2497 fields[i].type = (field_type != NULL)
2498 ? field_type : glsl_type::error_type;
2499 fields[i].name = decl->identifier;
2500 i++;
2501 }
2502 }
2503
2504 assert(i == decl_count);
2505
2506 const char *name;
2507 if (this->name == NULL) {
2508 static unsigned anon_count = 1;
2509 char buf[32];
2510
2511 snprintf(buf, sizeof(buf), "#anon_struct_%04x", anon_count);
2512 anon_count++;
2513
2514 name = strdup(buf);
2515 } else {
2516 name = this->name;
2517 }
2518
2519 const glsl_type *t =
2520 glsl_type::get_record_instance(fields, decl_count, name);
2521
2522 YYLTYPE loc = this->get_location();
2523 if (!state->symbols->add_type(name, t)) {
2524 _mesa_glsl_error(& loc, state, "struct `%s' previously defined", name);
2525 } else {
2526 /* This logic is a bit tricky. It is an error to declare a structure at
2527 * global scope if there is also a function with the same name.
2528 */
2529 if ((state->current_function == NULL)
2530 && (state->symbols->get_function(name) != NULL)) {
2531 _mesa_glsl_error(& loc, state, "name `%s' previously defined", name);
2532 } else {
2533 t->generate_constructor(state->symbols);
2534 }
2535
2536 const glsl_type **s = (const glsl_type **)
2537 realloc(state->user_structures,
2538 sizeof(state->user_structures[0]) *
2539 (state->num_user_structures + 1));
2540 if (s != NULL) {
2541 s[state->num_user_structures] = t;
2542 state->user_structures = s;
2543 state->num_user_structures++;
2544 }
2545 }
2546
2547 /* Structure type definitions do not have r-values.
2548 */
2549 return NULL;
2550 }