glsl: only do type and qualifier validation once per declaration
[mesa.git] / src / glsl / ast_to_hir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file ast_to_hir.c
26 * Convert abstract syntax to to high-level intermediate reprensentation (HIR).
27 *
28 * During the conversion to HIR, the majority of the symantic checking is
29 * preformed on the program. This includes:
30 *
31 * * Symbol table management
32 * * Type checking
33 * * Function binding
34 *
35 * The majority of this work could be done during parsing, and the parser could
36 * probably generate HIR directly. However, this results in frequent changes
37 * to the parser code. Since we do not assume that every system this complier
38 * is built on will have Flex and Bison installed, we have to store the code
39 * generated by these tools in our version control system. In other parts of
40 * the system we've seen problems where a parser was changed but the generated
41 * code was not committed, merge conflicts where created because two developers
42 * had slightly different versions of Bison installed, etc.
43 *
44 * I have also noticed that running Bison generated parsers in GDB is very
45 * irritating. When you get a segfault on '$$ = $1->foo', you can't very
46 * well 'print $1' in GDB.
47 *
48 * As a result, my preference is to put as little C code as possible in the
49 * parser (and lexer) sources.
50 */
51
52 #include "glsl_symbol_table.h"
53 #include "glsl_parser_extras.h"
54 #include "ast.h"
55 #include "glsl_types.h"
56 #include "program/hash_table.h"
57 #include "main/shaderobj.h"
58 #include "ir.h"
59 #include "ir_builder.h"
60
61 using namespace ir_builder;
62
63 static void
64 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
65 exec_list *instructions);
66 static void
67 remove_per_vertex_blocks(exec_list *instructions,
68 _mesa_glsl_parse_state *state, ir_variable_mode mode);
69
70 /**
71 * Visitor class that finds the first instance of any write-only variable that
72 * is ever read, if any
73 */
74 class read_from_write_only_variable_visitor : public ir_hierarchical_visitor
75 {
76 public:
77 read_from_write_only_variable_visitor() : found(NULL)
78 {
79 }
80
81 virtual ir_visitor_status visit(ir_dereference_variable *ir)
82 {
83 if (this->in_assignee)
84 return visit_continue;
85
86 ir_variable *var = ir->variable_referenced();
87 /* We can have image_write_only set on both images and buffer variables,
88 * but in the former there is a distinction between reads from
89 * the variable itself (write_only) and from the memory they point to
90 * (image_write_only), while in the case of buffer variables there is
91 * no such distinction, that is why this check here is limited to
92 * buffer variables alone.
93 */
94 if (!var || var->data.mode != ir_var_shader_storage)
95 return visit_continue;
96
97 if (var->data.image_write_only) {
98 found = var;
99 return visit_stop;
100 }
101
102 return visit_continue;
103 }
104
105 ir_variable *get_variable() {
106 return found;
107 }
108
109 private:
110 ir_variable *found;
111 };
112
113 void
114 _mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
115 {
116 _mesa_glsl_initialize_variables(instructions, state);
117
118 state->symbols->separate_function_namespace = state->language_version == 110;
119
120 state->current_function = NULL;
121
122 state->toplevel_ir = instructions;
123
124 state->gs_input_prim_type_specified = false;
125 state->tcs_output_vertices_specified = false;
126 state->cs_input_local_size_specified = false;
127
128 /* Section 4.2 of the GLSL 1.20 specification states:
129 * "The built-in functions are scoped in a scope outside the global scope
130 * users declare global variables in. That is, a shader's global scope,
131 * available for user-defined functions and global variables, is nested
132 * inside the scope containing the built-in functions."
133 *
134 * Since built-in functions like ftransform() access built-in variables,
135 * it follows that those must be in the outer scope as well.
136 *
137 * We push scope here to create this nesting effect...but don't pop.
138 * This way, a shader's globals are still in the symbol table for use
139 * by the linker.
140 */
141 state->symbols->push_scope();
142
143 foreach_list_typed (ast_node, ast, link, & state->translation_unit)
144 ast->hir(instructions, state);
145
146 detect_recursion_unlinked(state, instructions);
147 detect_conflicting_assignments(state, instructions);
148
149 state->toplevel_ir = NULL;
150
151 /* Move all of the variable declarations to the front of the IR list, and
152 * reverse the order. This has the (intended!) side effect that vertex
153 * shader inputs and fragment shader outputs will appear in the IR in the
154 * same order that they appeared in the shader code. This results in the
155 * locations being assigned in the declared order. Many (arguably buggy)
156 * applications depend on this behavior, and it matches what nearly all
157 * other drivers do.
158 */
159 foreach_in_list_safe(ir_instruction, node, instructions) {
160 ir_variable *const var = node->as_variable();
161
162 if (var == NULL)
163 continue;
164
165 var->remove();
166 instructions->push_head(var);
167 }
168
169 /* Figure out if gl_FragCoord is actually used in fragment shader */
170 ir_variable *const var = state->symbols->get_variable("gl_FragCoord");
171 if (var != NULL)
172 state->fs_uses_gl_fragcoord = var->data.used;
173
174 /* From section 7.1 (Built-In Language Variables) of the GLSL 4.10 spec:
175 *
176 * If multiple shaders using members of a built-in block belonging to
177 * the same interface are linked together in the same program, they
178 * must all redeclare the built-in block in the same way, as described
179 * in section 4.3.7 "Interface Blocks" for interface block matching, or
180 * a link error will result.
181 *
182 * The phrase "using members of a built-in block" implies that if two
183 * shaders are linked together and one of them *does not use* any members
184 * of the built-in block, then that shader does not need to have a matching
185 * redeclaration of the built-in block.
186 *
187 * This appears to be a clarification to the behaviour established for
188 * gl_PerVertex by GLSL 1.50, therefore implement it regardless of GLSL
189 * version.
190 *
191 * The definition of "interface" in section 4.3.7 that applies here is as
192 * follows:
193 *
194 * The boundary between adjacent programmable pipeline stages: This
195 * spans all the outputs in all compilation units of the first stage
196 * and all the inputs in all compilation units of the second stage.
197 *
198 * Therefore this rule applies to both inter- and intra-stage linking.
199 *
200 * The easiest way to implement this is to check whether the shader uses
201 * gl_PerVertex right after ast-to-ir conversion, and if it doesn't, simply
202 * remove all the relevant variable declaration from the IR, so that the
203 * linker won't see them and complain about mismatches.
204 */
205 remove_per_vertex_blocks(instructions, state, ir_var_shader_in);
206 remove_per_vertex_blocks(instructions, state, ir_var_shader_out);
207
208 /* Check that we don't have reads from write-only variables */
209 read_from_write_only_variable_visitor v;
210 v.run(instructions);
211 ir_variable *error_var = v.get_variable();
212 if (error_var) {
213 /* It would be nice to have proper location information, but for that
214 * we would need to check this as we process each kind of AST node
215 */
216 YYLTYPE loc;
217 memset(&loc, 0, sizeof(loc));
218 _mesa_glsl_error(&loc, state, "Read from write-only variable `%s'",
219 error_var->name);
220 }
221 }
222
223
224 static ir_expression_operation
225 get_conversion_operation(const glsl_type *to, const glsl_type *from,
226 struct _mesa_glsl_parse_state *state)
227 {
228 switch (to->base_type) {
229 case GLSL_TYPE_FLOAT:
230 switch (from->base_type) {
231 case GLSL_TYPE_INT: return ir_unop_i2f;
232 case GLSL_TYPE_UINT: return ir_unop_u2f;
233 case GLSL_TYPE_DOUBLE: return ir_unop_d2f;
234 default: return (ir_expression_operation)0;
235 }
236
237 case GLSL_TYPE_UINT:
238 if (!state->is_version(400, 0) && !state->ARB_gpu_shader5_enable)
239 return (ir_expression_operation)0;
240 switch (from->base_type) {
241 case GLSL_TYPE_INT: return ir_unop_i2u;
242 default: return (ir_expression_operation)0;
243 }
244
245 case GLSL_TYPE_DOUBLE:
246 if (!state->has_double())
247 return (ir_expression_operation)0;
248 switch (from->base_type) {
249 case GLSL_TYPE_INT: return ir_unop_i2d;
250 case GLSL_TYPE_UINT: return ir_unop_u2d;
251 case GLSL_TYPE_FLOAT: return ir_unop_f2d;
252 default: return (ir_expression_operation)0;
253 }
254
255 default: return (ir_expression_operation)0;
256 }
257 }
258
259
260 /**
261 * If a conversion is available, convert one operand to a different type
262 *
263 * The \c from \c ir_rvalue is converted "in place".
264 *
265 * \param to Type that the operand it to be converted to
266 * \param from Operand that is being converted
267 * \param state GLSL compiler state
268 *
269 * \return
270 * If a conversion is possible (or unnecessary), \c true is returned.
271 * Otherwise \c false is returned.
272 */
273 bool
274 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
275 struct _mesa_glsl_parse_state *state)
276 {
277 void *ctx = state;
278 if (to->base_type == from->type->base_type)
279 return true;
280
281 /* Prior to GLSL 1.20, there are no implicit conversions */
282 if (!state->is_version(120, 0))
283 return false;
284
285 /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
286 *
287 * "There are no implicit array or structure conversions. For
288 * example, an array of int cannot be implicitly converted to an
289 * array of float.
290 */
291 if (!to->is_numeric() || !from->type->is_numeric())
292 return false;
293
294 /* We don't actually want the specific type `to`, we want a type
295 * with the same base type as `to`, but the same vector width as
296 * `from`.
297 */
298 to = glsl_type::get_instance(to->base_type, from->type->vector_elements,
299 from->type->matrix_columns);
300
301 ir_expression_operation op = get_conversion_operation(to, from->type, state);
302 if (op) {
303 from = new(ctx) ir_expression(op, to, from, NULL);
304 return true;
305 } else {
306 return false;
307 }
308 }
309
310
311 static const struct glsl_type *
312 arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
313 bool multiply,
314 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
315 {
316 const glsl_type *type_a = value_a->type;
317 const glsl_type *type_b = value_b->type;
318
319 /* From GLSL 1.50 spec, page 56:
320 *
321 * "The arithmetic binary operators add (+), subtract (-),
322 * multiply (*), and divide (/) operate on integer and
323 * floating-point scalars, vectors, and matrices."
324 */
325 if (!type_a->is_numeric() || !type_b->is_numeric()) {
326 _mesa_glsl_error(loc, state,
327 "operands to arithmetic operators must be numeric");
328 return glsl_type::error_type;
329 }
330
331
332 /* "If one operand is floating-point based and the other is
333 * not, then the conversions from Section 4.1.10 "Implicit
334 * Conversions" are applied to the non-floating-point-based operand."
335 */
336 if (!apply_implicit_conversion(type_a, value_b, state)
337 && !apply_implicit_conversion(type_b, value_a, state)) {
338 _mesa_glsl_error(loc, state,
339 "could not implicitly convert operands to "
340 "arithmetic operator");
341 return glsl_type::error_type;
342 }
343 type_a = value_a->type;
344 type_b = value_b->type;
345
346 /* "If the operands are integer types, they must both be signed or
347 * both be unsigned."
348 *
349 * From this rule and the preceeding conversion it can be inferred that
350 * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
351 * The is_numeric check above already filtered out the case where either
352 * type is not one of these, so now the base types need only be tested for
353 * equality.
354 */
355 if (type_a->base_type != type_b->base_type) {
356 _mesa_glsl_error(loc, state,
357 "base type mismatch for arithmetic operator");
358 return glsl_type::error_type;
359 }
360
361 /* "All arithmetic binary operators result in the same fundamental type
362 * (signed integer, unsigned integer, or floating-point) as the
363 * operands they operate on, after operand type conversion. After
364 * conversion, the following cases are valid
365 *
366 * * The two operands are scalars. In this case the operation is
367 * applied, resulting in a scalar."
368 */
369 if (type_a->is_scalar() && type_b->is_scalar())
370 return type_a;
371
372 /* "* One operand is a scalar, and the other is a vector or matrix.
373 * In this case, the scalar operation is applied independently to each
374 * component of the vector or matrix, resulting in the same size
375 * vector or matrix."
376 */
377 if (type_a->is_scalar()) {
378 if (!type_b->is_scalar())
379 return type_b;
380 } else if (type_b->is_scalar()) {
381 return type_a;
382 }
383
384 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
385 * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
386 * handled.
387 */
388 assert(!type_a->is_scalar());
389 assert(!type_b->is_scalar());
390
391 /* "* The two operands are vectors of the same size. In this case, the
392 * operation is done component-wise resulting in the same size
393 * vector."
394 */
395 if (type_a->is_vector() && type_b->is_vector()) {
396 if (type_a == type_b) {
397 return type_a;
398 } else {
399 _mesa_glsl_error(loc, state,
400 "vector size mismatch for arithmetic operator");
401 return glsl_type::error_type;
402 }
403 }
404
405 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
406 * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
407 * <vector, vector> have been handled. At least one of the operands must
408 * be matrix. Further, since there are no integer matrix types, the base
409 * type of both operands must be float.
410 */
411 assert(type_a->is_matrix() || type_b->is_matrix());
412 assert(type_a->base_type == GLSL_TYPE_FLOAT ||
413 type_a->base_type == GLSL_TYPE_DOUBLE);
414 assert(type_b->base_type == GLSL_TYPE_FLOAT ||
415 type_b->base_type == GLSL_TYPE_DOUBLE);
416
417 /* "* The operator is add (+), subtract (-), or divide (/), and the
418 * operands are matrices with the same number of rows and the same
419 * number of columns. In this case, the operation is done component-
420 * wise resulting in the same size matrix."
421 * * The operator is multiply (*), where both operands are matrices or
422 * one operand is a vector and the other a matrix. A right vector
423 * operand is treated as a column vector and a left vector operand as a
424 * row vector. In all these cases, it is required that the number of
425 * columns of the left operand is equal to the number of rows of the
426 * right operand. Then, the multiply (*) operation does a linear
427 * algebraic multiply, yielding an object that has the same number of
428 * rows as the left operand and the same number of columns as the right
429 * operand. Section 5.10 "Vector and Matrix Operations" explains in
430 * more detail how vectors and matrices are operated on."
431 */
432 if (! multiply) {
433 if (type_a == type_b)
434 return type_a;
435 } else {
436 const glsl_type *type = glsl_type::get_mul_type(type_a, type_b);
437
438 if (type == glsl_type::error_type) {
439 _mesa_glsl_error(loc, state,
440 "size mismatch for matrix multiplication");
441 }
442
443 return type;
444 }
445
446
447 /* "All other cases are illegal."
448 */
449 _mesa_glsl_error(loc, state, "type mismatch");
450 return glsl_type::error_type;
451 }
452
453
454 static const struct glsl_type *
455 unary_arithmetic_result_type(const struct glsl_type *type,
456 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
457 {
458 /* From GLSL 1.50 spec, page 57:
459 *
460 * "The arithmetic unary operators negate (-), post- and pre-increment
461 * and decrement (-- and ++) operate on integer or floating-point
462 * values (including vectors and matrices). All unary operators work
463 * component-wise on their operands. These result with the same type
464 * they operated on."
465 */
466 if (!type->is_numeric()) {
467 _mesa_glsl_error(loc, state,
468 "operands to arithmetic operators must be numeric");
469 return glsl_type::error_type;
470 }
471
472 return type;
473 }
474
475 /**
476 * \brief Return the result type of a bit-logic operation.
477 *
478 * If the given types to the bit-logic operator are invalid, return
479 * glsl_type::error_type.
480 *
481 * \param type_a Type of LHS of bit-logic op
482 * \param type_b Type of RHS of bit-logic op
483 */
484 static const struct glsl_type *
485 bit_logic_result_type(const struct glsl_type *type_a,
486 const struct glsl_type *type_b,
487 ast_operators op,
488 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
489 {
490 if (!state->check_bitwise_operations_allowed(loc)) {
491 return glsl_type::error_type;
492 }
493
494 /* From page 50 (page 56 of PDF) of GLSL 1.30 spec:
495 *
496 * "The bitwise operators and (&), exclusive-or (^), and inclusive-or
497 * (|). The operands must be of type signed or unsigned integers or
498 * integer vectors."
499 */
500 if (!type_a->is_integer()) {
501 _mesa_glsl_error(loc, state, "LHS of `%s' must be an integer",
502 ast_expression::operator_string(op));
503 return glsl_type::error_type;
504 }
505 if (!type_b->is_integer()) {
506 _mesa_glsl_error(loc, state, "RHS of `%s' must be an integer",
507 ast_expression::operator_string(op));
508 return glsl_type::error_type;
509 }
510
511 /* "The fundamental types of the operands (signed or unsigned) must
512 * match,"
513 */
514 if (type_a->base_type != type_b->base_type) {
515 _mesa_glsl_error(loc, state, "operands of `%s' must have the same "
516 "base type", ast_expression::operator_string(op));
517 return glsl_type::error_type;
518 }
519
520 /* "The operands cannot be vectors of differing size." */
521 if (type_a->is_vector() &&
522 type_b->is_vector() &&
523 type_a->vector_elements != type_b->vector_elements) {
524 _mesa_glsl_error(loc, state, "operands of `%s' cannot be vectors of "
525 "different sizes", ast_expression::operator_string(op));
526 return glsl_type::error_type;
527 }
528
529 /* "If one operand is a scalar and the other a vector, the scalar is
530 * applied component-wise to the vector, resulting in the same type as
531 * the vector. The fundamental types of the operands [...] will be the
532 * resulting fundamental type."
533 */
534 if (type_a->is_scalar())
535 return type_b;
536 else
537 return type_a;
538 }
539
540 static const struct glsl_type *
541 modulus_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
542 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
543 {
544 const glsl_type *type_a = value_a->type;
545 const glsl_type *type_b = value_b->type;
546
547 if (!state->check_version(130, 300, loc, "operator '%%' is reserved")) {
548 return glsl_type::error_type;
549 }
550
551 /* Section 5.9 (Expressions) of the GLSL 4.00 specification says:
552 *
553 * "The operator modulus (%) operates on signed or unsigned integers or
554 * integer vectors."
555 */
556 if (!type_a->is_integer()) {
557 _mesa_glsl_error(loc, state, "LHS of operator %% must be an integer");
558 return glsl_type::error_type;
559 }
560 if (!type_b->is_integer()) {
561 _mesa_glsl_error(loc, state, "RHS of operator %% must be an integer");
562 return glsl_type::error_type;
563 }
564
565 /* "If the fundamental types in the operands do not match, then the
566 * conversions from section 4.1.10 "Implicit Conversions" are applied
567 * to create matching types."
568 *
569 * Note that GLSL 4.00 (and GL_ARB_gpu_shader5) introduced implicit
570 * int -> uint conversion rules. Prior to that, there were no implicit
571 * conversions. So it's harmless to apply them universally - no implicit
572 * conversions will exist. If the types don't match, we'll receive false,
573 * and raise an error, satisfying the GLSL 1.50 spec, page 56:
574 *
575 * "The operand types must both be signed or unsigned."
576 */
577 if (!apply_implicit_conversion(type_a, value_b, state) &&
578 !apply_implicit_conversion(type_b, value_a, state)) {
579 _mesa_glsl_error(loc, state,
580 "could not implicitly convert operands to "
581 "modulus (%%) operator");
582 return glsl_type::error_type;
583 }
584 type_a = value_a->type;
585 type_b = value_b->type;
586
587 /* "The operands cannot be vectors of differing size. If one operand is
588 * a scalar and the other vector, then the scalar is applied component-
589 * wise to the vector, resulting in the same type as the vector. If both
590 * are vectors of the same size, the result is computed component-wise."
591 */
592 if (type_a->is_vector()) {
593 if (!type_b->is_vector()
594 || (type_a->vector_elements == type_b->vector_elements))
595 return type_a;
596 } else
597 return type_b;
598
599 /* "The operator modulus (%) is not defined for any other data types
600 * (non-integer types)."
601 */
602 _mesa_glsl_error(loc, state, "type mismatch");
603 return glsl_type::error_type;
604 }
605
606
607 static const struct glsl_type *
608 relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
609 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
610 {
611 const glsl_type *type_a = value_a->type;
612 const glsl_type *type_b = value_b->type;
613
614 /* From GLSL 1.50 spec, page 56:
615 * "The relational operators greater than (>), less than (<), greater
616 * than or equal (>=), and less than or equal (<=) operate only on
617 * scalar integer and scalar floating-point expressions."
618 */
619 if (!type_a->is_numeric()
620 || !type_b->is_numeric()
621 || !type_a->is_scalar()
622 || !type_b->is_scalar()) {
623 _mesa_glsl_error(loc, state,
624 "operands to relational operators must be scalar and "
625 "numeric");
626 return glsl_type::error_type;
627 }
628
629 /* "Either the operands' types must match, or the conversions from
630 * Section 4.1.10 "Implicit Conversions" will be applied to the integer
631 * operand, after which the types must match."
632 */
633 if (!apply_implicit_conversion(type_a, value_b, state)
634 && !apply_implicit_conversion(type_b, value_a, state)) {
635 _mesa_glsl_error(loc, state,
636 "could not implicitly convert operands to "
637 "relational operator");
638 return glsl_type::error_type;
639 }
640 type_a = value_a->type;
641 type_b = value_b->type;
642
643 if (type_a->base_type != type_b->base_type) {
644 _mesa_glsl_error(loc, state, "base type mismatch");
645 return glsl_type::error_type;
646 }
647
648 /* "The result is scalar Boolean."
649 */
650 return glsl_type::bool_type;
651 }
652
653 /**
654 * \brief Return the result type of a bit-shift operation.
655 *
656 * If the given types to the bit-shift operator are invalid, return
657 * glsl_type::error_type.
658 *
659 * \param type_a Type of LHS of bit-shift op
660 * \param type_b Type of RHS of bit-shift op
661 */
662 static const struct glsl_type *
663 shift_result_type(const struct glsl_type *type_a,
664 const struct glsl_type *type_b,
665 ast_operators op,
666 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
667 {
668 if (!state->check_bitwise_operations_allowed(loc)) {
669 return glsl_type::error_type;
670 }
671
672 /* From page 50 (page 56 of the PDF) of the GLSL 1.30 spec:
673 *
674 * "The shift operators (<<) and (>>). For both operators, the operands
675 * must be signed or unsigned integers or integer vectors. One operand
676 * can be signed while the other is unsigned."
677 */
678 if (!type_a->is_integer()) {
679 _mesa_glsl_error(loc, state, "LHS of operator %s must be an integer or "
680 "integer vector", ast_expression::operator_string(op));
681 return glsl_type::error_type;
682
683 }
684 if (!type_b->is_integer()) {
685 _mesa_glsl_error(loc, state, "RHS of operator %s must be an integer or "
686 "integer vector", ast_expression::operator_string(op));
687 return glsl_type::error_type;
688 }
689
690 /* "If the first operand is a scalar, the second operand has to be
691 * a scalar as well."
692 */
693 if (type_a->is_scalar() && !type_b->is_scalar()) {
694 _mesa_glsl_error(loc, state, "if the first operand of %s is scalar, the "
695 "second must be scalar as well",
696 ast_expression::operator_string(op));
697 return glsl_type::error_type;
698 }
699
700 /* If both operands are vectors, check that they have same number of
701 * elements.
702 */
703 if (type_a->is_vector() &&
704 type_b->is_vector() &&
705 type_a->vector_elements != type_b->vector_elements) {
706 _mesa_glsl_error(loc, state, "vector operands to operator %s must "
707 "have same number of elements",
708 ast_expression::operator_string(op));
709 return glsl_type::error_type;
710 }
711
712 /* "In all cases, the resulting type will be the same type as the left
713 * operand."
714 */
715 return type_a;
716 }
717
718 /**
719 * Returns the innermost array index expression in an rvalue tree.
720 * This is the largest indexing level -- if an array of blocks, then
721 * it is the block index rather than an indexing expression for an
722 * array-typed member of an array of blocks.
723 */
724 static ir_rvalue *
725 find_innermost_array_index(ir_rvalue *rv)
726 {
727 ir_dereference_array *last = NULL;
728 while (rv) {
729 if (rv->as_dereference_array()) {
730 last = rv->as_dereference_array();
731 rv = last->array;
732 } else if (rv->as_dereference_record())
733 rv = rv->as_dereference_record()->record;
734 else if (rv->as_swizzle())
735 rv = rv->as_swizzle()->val;
736 else
737 rv = NULL;
738 }
739
740 if (last)
741 return last->array_index;
742
743 return NULL;
744 }
745
746 /**
747 * Validates that a value can be assigned to a location with a specified type
748 *
749 * Validates that \c rhs can be assigned to some location. If the types are
750 * not an exact match but an automatic conversion is possible, \c rhs will be
751 * converted.
752 *
753 * \return
754 * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
755 * Otherwise the actual RHS to be assigned will be returned. This may be
756 * \c rhs, or it may be \c rhs after some type conversion.
757 *
758 * \note
759 * In addition to being used for assignments, this function is used to
760 * type-check return values.
761 */
762 static ir_rvalue *
763 validate_assignment(struct _mesa_glsl_parse_state *state,
764 YYLTYPE loc, ir_rvalue *lhs,
765 ir_rvalue *rhs, bool is_initializer)
766 {
767 /* If there is already some error in the RHS, just return it. Anything
768 * else will lead to an avalanche of error message back to the user.
769 */
770 if (rhs->type->is_error())
771 return rhs;
772
773 /* In the Tessellation Control Shader:
774 * If a per-vertex output variable is used as an l-value, it is an error
775 * if the expression indicating the vertex number is not the identifier
776 * `gl_InvocationID`.
777 */
778 if (state->stage == MESA_SHADER_TESS_CTRL) {
779 ir_variable *var = lhs->variable_referenced();
780 if (var->data.mode == ir_var_shader_out && !var->data.patch) {
781 ir_rvalue *index = find_innermost_array_index(lhs);
782 ir_variable *index_var = index ? index->variable_referenced() : NULL;
783 if (!index_var || strcmp(index_var->name, "gl_InvocationID") != 0) {
784 _mesa_glsl_error(&loc, state,
785 "Tessellation control shader outputs can only "
786 "be indexed by gl_InvocationID");
787 return NULL;
788 }
789 }
790 }
791
792 /* If the types are identical, the assignment can trivially proceed.
793 */
794 if (rhs->type == lhs->type)
795 return rhs;
796
797 /* If the array element types are the same and the LHS is unsized,
798 * the assignment is okay for initializers embedded in variable
799 * declarations.
800 *
801 * Note: Whole-array assignments are not permitted in GLSL 1.10, but this
802 * is handled by ir_dereference::is_lvalue.
803 */
804 const glsl_type *lhs_t = lhs->type;
805 const glsl_type *rhs_t = rhs->type;
806 bool unsized_array = false;
807 while(lhs_t->is_array()) {
808 if (rhs_t == lhs_t)
809 break; /* the rest of the inner arrays match so break out early */
810 if (!rhs_t->is_array()) {
811 unsized_array = false;
812 break; /* number of dimensions mismatch */
813 }
814 if (lhs_t->length == rhs_t->length) {
815 lhs_t = lhs_t->fields.array;
816 rhs_t = rhs_t->fields.array;
817 continue;
818 } else if (lhs_t->is_unsized_array()) {
819 unsized_array = true;
820 } else {
821 unsized_array = false;
822 break; /* sized array mismatch */
823 }
824 lhs_t = lhs_t->fields.array;
825 rhs_t = rhs_t->fields.array;
826 }
827 if (unsized_array) {
828 if (is_initializer) {
829 return rhs;
830 } else {
831 _mesa_glsl_error(&loc, state,
832 "implicitly sized arrays cannot be assigned");
833 return NULL;
834 }
835 }
836
837 /* Check for implicit conversion in GLSL 1.20 */
838 if (apply_implicit_conversion(lhs->type, rhs, state)) {
839 if (rhs->type == lhs->type)
840 return rhs;
841 }
842
843 _mesa_glsl_error(&loc, state,
844 "%s of type %s cannot be assigned to "
845 "variable of type %s",
846 is_initializer ? "initializer" : "value",
847 rhs->type->name, lhs->type->name);
848
849 return NULL;
850 }
851
852 static void
853 mark_whole_array_access(ir_rvalue *access)
854 {
855 ir_dereference_variable *deref = access->as_dereference_variable();
856
857 if (deref && deref->var) {
858 deref->var->data.max_array_access = deref->type->length - 1;
859 }
860 }
861
862 static bool
863 do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state,
864 const char *non_lvalue_description,
865 ir_rvalue *lhs, ir_rvalue *rhs,
866 ir_rvalue **out_rvalue, bool needs_rvalue,
867 bool is_initializer,
868 YYLTYPE lhs_loc)
869 {
870 void *ctx = state;
871 bool error_emitted = (lhs->type->is_error() || rhs->type->is_error());
872
873 ir_variable *lhs_var = lhs->variable_referenced();
874 if (lhs_var)
875 lhs_var->data.assigned = true;
876
877 if (!error_emitted) {
878 if (non_lvalue_description != NULL) {
879 _mesa_glsl_error(&lhs_loc, state,
880 "assignment to %s",
881 non_lvalue_description);
882 error_emitted = true;
883 } else if (lhs_var != NULL && (lhs_var->data.read_only ||
884 (lhs_var->data.mode == ir_var_shader_storage &&
885 lhs_var->data.image_read_only))) {
886 /* We can have image_read_only set on both images and buffer variables,
887 * but in the former there is a distinction between assignments to
888 * the variable itself (read_only) and to the memory they point to
889 * (image_read_only), while in the case of buffer variables there is
890 * no such distinction, that is why this check here is limited to
891 * buffer variables alone.
892 */
893 _mesa_glsl_error(&lhs_loc, state,
894 "assignment to read-only variable '%s'",
895 lhs_var->name);
896 error_emitted = true;
897 } else if (lhs->type->is_array() &&
898 !state->check_version(120, 300, &lhs_loc,
899 "whole array assignment forbidden")) {
900 /* From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
901 *
902 * "Other binary or unary expressions, non-dereferenced
903 * arrays, function names, swizzles with repeated fields,
904 * and constants cannot be l-values."
905 *
906 * The restriction on arrays is lifted in GLSL 1.20 and GLSL ES 3.00.
907 */
908 error_emitted = true;
909 } else if (!lhs->is_lvalue()) {
910 _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment");
911 error_emitted = true;
912 }
913 }
914
915 ir_rvalue *new_rhs =
916 validate_assignment(state, lhs_loc, lhs, rhs, is_initializer);
917 if (new_rhs != NULL) {
918 rhs = new_rhs;
919
920 /* If the LHS array was not declared with a size, it takes it size from
921 * the RHS. If the LHS is an l-value and a whole array, it must be a
922 * dereference of a variable. Any other case would require that the LHS
923 * is either not an l-value or not a whole array.
924 */
925 if (lhs->type->is_unsized_array()) {
926 ir_dereference *const d = lhs->as_dereference();
927
928 assert(d != NULL);
929
930 ir_variable *const var = d->variable_referenced();
931
932 assert(var != NULL);
933
934 if (var->data.max_array_access >= unsigned(rhs->type->array_size())) {
935 /* FINISHME: This should actually log the location of the RHS. */
936 _mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to "
937 "previous access",
938 var->data.max_array_access);
939 }
940
941 var->type = glsl_type::get_array_instance(lhs->type->fields.array,
942 rhs->type->array_size());
943 d->type = var->type;
944 }
945 if (lhs->type->is_array()) {
946 mark_whole_array_access(rhs);
947 mark_whole_array_access(lhs);
948 }
949 }
950
951 /* Most callers of do_assignment (assign, add_assign, pre_inc/dec,
952 * but not post_inc) need the converted assigned value as an rvalue
953 * to handle things like:
954 *
955 * i = j += 1;
956 */
957 if (needs_rvalue) {
958 ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp",
959 ir_var_temporary);
960 instructions->push_tail(var);
961 instructions->push_tail(assign(var, rhs));
962
963 if (!error_emitted) {
964 ir_dereference_variable *deref_var = new(ctx) ir_dereference_variable(var);
965 instructions->push_tail(new(ctx) ir_assignment(lhs, deref_var));
966 }
967 ir_rvalue *rvalue = new(ctx) ir_dereference_variable(var);
968
969 *out_rvalue = rvalue;
970 } else {
971 if (!error_emitted)
972 instructions->push_tail(new(ctx) ir_assignment(lhs, rhs));
973 *out_rvalue = NULL;
974 }
975
976 return error_emitted;
977 }
978
979 static ir_rvalue *
980 get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue)
981 {
982 void *ctx = ralloc_parent(lvalue);
983 ir_variable *var;
984
985 var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp",
986 ir_var_temporary);
987 instructions->push_tail(var);
988
989 instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
990 lvalue));
991
992 return new(ctx) ir_dereference_variable(var);
993 }
994
995
996 ir_rvalue *
997 ast_node::hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
998 {
999 (void) instructions;
1000 (void) state;
1001
1002 return NULL;
1003 }
1004
1005 bool
1006 ast_node::has_sequence_subexpression() const
1007 {
1008 return false;
1009 }
1010
1011 void
1012 ast_function_expression::hir_no_rvalue(exec_list *instructions,
1013 struct _mesa_glsl_parse_state *state)
1014 {
1015 (void)hir(instructions, state);
1016 }
1017
1018 void
1019 ast_aggregate_initializer::hir_no_rvalue(exec_list *instructions,
1020 struct _mesa_glsl_parse_state *state)
1021 {
1022 (void)hir(instructions, state);
1023 }
1024
1025 static ir_rvalue *
1026 do_comparison(void *mem_ctx, int operation, ir_rvalue *op0, ir_rvalue *op1)
1027 {
1028 int join_op;
1029 ir_rvalue *cmp = NULL;
1030
1031 if (operation == ir_binop_all_equal)
1032 join_op = ir_binop_logic_and;
1033 else
1034 join_op = ir_binop_logic_or;
1035
1036 switch (op0->type->base_type) {
1037 case GLSL_TYPE_FLOAT:
1038 case GLSL_TYPE_UINT:
1039 case GLSL_TYPE_INT:
1040 case GLSL_TYPE_BOOL:
1041 case GLSL_TYPE_DOUBLE:
1042 return new(mem_ctx) ir_expression(operation, op0, op1);
1043
1044 case GLSL_TYPE_ARRAY: {
1045 for (unsigned int i = 0; i < op0->type->length; i++) {
1046 ir_rvalue *e0, *e1, *result;
1047
1048 e0 = new(mem_ctx) ir_dereference_array(op0->clone(mem_ctx, NULL),
1049 new(mem_ctx) ir_constant(i));
1050 e1 = new(mem_ctx) ir_dereference_array(op1->clone(mem_ctx, NULL),
1051 new(mem_ctx) ir_constant(i));
1052 result = do_comparison(mem_ctx, operation, e0, e1);
1053
1054 if (cmp) {
1055 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
1056 } else {
1057 cmp = result;
1058 }
1059 }
1060
1061 mark_whole_array_access(op0);
1062 mark_whole_array_access(op1);
1063 break;
1064 }
1065
1066 case GLSL_TYPE_STRUCT: {
1067 for (unsigned int i = 0; i < op0->type->length; i++) {
1068 ir_rvalue *e0, *e1, *result;
1069 const char *field_name = op0->type->fields.structure[i].name;
1070
1071 e0 = new(mem_ctx) ir_dereference_record(op0->clone(mem_ctx, NULL),
1072 field_name);
1073 e1 = new(mem_ctx) ir_dereference_record(op1->clone(mem_ctx, NULL),
1074 field_name);
1075 result = do_comparison(mem_ctx, operation, e0, e1);
1076
1077 if (cmp) {
1078 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
1079 } else {
1080 cmp = result;
1081 }
1082 }
1083 break;
1084 }
1085
1086 case GLSL_TYPE_ERROR:
1087 case GLSL_TYPE_VOID:
1088 case GLSL_TYPE_SAMPLER:
1089 case GLSL_TYPE_IMAGE:
1090 case GLSL_TYPE_INTERFACE:
1091 case GLSL_TYPE_ATOMIC_UINT:
1092 case GLSL_TYPE_SUBROUTINE:
1093 /* I assume a comparison of a struct containing a sampler just
1094 * ignores the sampler present in the type.
1095 */
1096 break;
1097 }
1098
1099 if (cmp == NULL)
1100 cmp = new(mem_ctx) ir_constant(true);
1101
1102 return cmp;
1103 }
1104
1105 /* For logical operations, we want to ensure that the operands are
1106 * scalar booleans. If it isn't, emit an error and return a constant
1107 * boolean to avoid triggering cascading error messages.
1108 */
1109 ir_rvalue *
1110 get_scalar_boolean_operand(exec_list *instructions,
1111 struct _mesa_glsl_parse_state *state,
1112 ast_expression *parent_expr,
1113 int operand,
1114 const char *operand_name,
1115 bool *error_emitted)
1116 {
1117 ast_expression *expr = parent_expr->subexpressions[operand];
1118 void *ctx = state;
1119 ir_rvalue *val = expr->hir(instructions, state);
1120
1121 if (val->type->is_boolean() && val->type->is_scalar())
1122 return val;
1123
1124 if (!*error_emitted) {
1125 YYLTYPE loc = expr->get_location();
1126 _mesa_glsl_error(&loc, state, "%s of `%s' must be scalar boolean",
1127 operand_name,
1128 parent_expr->operator_string(parent_expr->oper));
1129 *error_emitted = true;
1130 }
1131
1132 return new(ctx) ir_constant(true);
1133 }
1134
1135 /**
1136 * If name refers to a builtin array whose maximum allowed size is less than
1137 * size, report an error and return true. Otherwise return false.
1138 */
1139 void
1140 check_builtin_array_max_size(const char *name, unsigned size,
1141 YYLTYPE loc, struct _mesa_glsl_parse_state *state)
1142 {
1143 if ((strcmp("gl_TexCoord", name) == 0)
1144 && (size > state->Const.MaxTextureCoords)) {
1145 /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec:
1146 *
1147 * "The size [of gl_TexCoord] can be at most
1148 * gl_MaxTextureCoords."
1149 */
1150 _mesa_glsl_error(&loc, state, "`gl_TexCoord' array size cannot "
1151 "be larger than gl_MaxTextureCoords (%u)",
1152 state->Const.MaxTextureCoords);
1153 } else if (strcmp("gl_ClipDistance", name) == 0
1154 && size > state->Const.MaxClipPlanes) {
1155 /* From section 7.1 (Vertex Shader Special Variables) of the
1156 * GLSL 1.30 spec:
1157 *
1158 * "The gl_ClipDistance array is predeclared as unsized and
1159 * must be sized by the shader either redeclaring it with a
1160 * size or indexing it only with integral constant
1161 * expressions. ... The size can be at most
1162 * gl_MaxClipDistances."
1163 */
1164 _mesa_glsl_error(&loc, state, "`gl_ClipDistance' array size cannot "
1165 "be larger than gl_MaxClipDistances (%u)",
1166 state->Const.MaxClipPlanes);
1167 }
1168 }
1169
1170 /**
1171 * Create the constant 1, of a which is appropriate for incrementing and
1172 * decrementing values of the given GLSL type. For example, if type is vec4,
1173 * this creates a constant value of 1.0 having type float.
1174 *
1175 * If the given type is invalid for increment and decrement operators, return
1176 * a floating point 1--the error will be detected later.
1177 */
1178 static ir_rvalue *
1179 constant_one_for_inc_dec(void *ctx, const glsl_type *type)
1180 {
1181 switch (type->base_type) {
1182 case GLSL_TYPE_UINT:
1183 return new(ctx) ir_constant((unsigned) 1);
1184 case GLSL_TYPE_INT:
1185 return new(ctx) ir_constant(1);
1186 default:
1187 case GLSL_TYPE_FLOAT:
1188 return new(ctx) ir_constant(1.0f);
1189 }
1190 }
1191
1192 ir_rvalue *
1193 ast_expression::hir(exec_list *instructions,
1194 struct _mesa_glsl_parse_state *state)
1195 {
1196 return do_hir(instructions, state, true);
1197 }
1198
1199 void
1200 ast_expression::hir_no_rvalue(exec_list *instructions,
1201 struct _mesa_glsl_parse_state *state)
1202 {
1203 do_hir(instructions, state, false);
1204 }
1205
1206 ir_rvalue *
1207 ast_expression::do_hir(exec_list *instructions,
1208 struct _mesa_glsl_parse_state *state,
1209 bool needs_rvalue)
1210 {
1211 void *ctx = state;
1212 static const int operations[AST_NUM_OPERATORS] = {
1213 -1, /* ast_assign doesn't convert to ir_expression. */
1214 -1, /* ast_plus doesn't convert to ir_expression. */
1215 ir_unop_neg,
1216 ir_binop_add,
1217 ir_binop_sub,
1218 ir_binop_mul,
1219 ir_binop_div,
1220 ir_binop_mod,
1221 ir_binop_lshift,
1222 ir_binop_rshift,
1223 ir_binop_less,
1224 ir_binop_greater,
1225 ir_binop_lequal,
1226 ir_binop_gequal,
1227 ir_binop_all_equal,
1228 ir_binop_any_nequal,
1229 ir_binop_bit_and,
1230 ir_binop_bit_xor,
1231 ir_binop_bit_or,
1232 ir_unop_bit_not,
1233 ir_binop_logic_and,
1234 ir_binop_logic_xor,
1235 ir_binop_logic_or,
1236 ir_unop_logic_not,
1237
1238 /* Note: The following block of expression types actually convert
1239 * to multiple IR instructions.
1240 */
1241 ir_binop_mul, /* ast_mul_assign */
1242 ir_binop_div, /* ast_div_assign */
1243 ir_binop_mod, /* ast_mod_assign */
1244 ir_binop_add, /* ast_add_assign */
1245 ir_binop_sub, /* ast_sub_assign */
1246 ir_binop_lshift, /* ast_ls_assign */
1247 ir_binop_rshift, /* ast_rs_assign */
1248 ir_binop_bit_and, /* ast_and_assign */
1249 ir_binop_bit_xor, /* ast_xor_assign */
1250 ir_binop_bit_or, /* ast_or_assign */
1251
1252 -1, /* ast_conditional doesn't convert to ir_expression. */
1253 ir_binop_add, /* ast_pre_inc. */
1254 ir_binop_sub, /* ast_pre_dec. */
1255 ir_binop_add, /* ast_post_inc. */
1256 ir_binop_sub, /* ast_post_dec. */
1257 -1, /* ast_field_selection doesn't conv to ir_expression. */
1258 -1, /* ast_array_index doesn't convert to ir_expression. */
1259 -1, /* ast_function_call doesn't conv to ir_expression. */
1260 -1, /* ast_identifier doesn't convert to ir_expression. */
1261 -1, /* ast_int_constant doesn't convert to ir_expression. */
1262 -1, /* ast_uint_constant doesn't conv to ir_expression. */
1263 -1, /* ast_float_constant doesn't conv to ir_expression. */
1264 -1, /* ast_bool_constant doesn't conv to ir_expression. */
1265 -1, /* ast_sequence doesn't convert to ir_expression. */
1266 };
1267 ir_rvalue *result = NULL;
1268 ir_rvalue *op[3];
1269 const struct glsl_type *type; /* a temporary variable for switch cases */
1270 bool error_emitted = false;
1271 YYLTYPE loc;
1272
1273 loc = this->get_location();
1274
1275 switch (this->oper) {
1276 case ast_aggregate:
1277 assert(!"ast_aggregate: Should never get here.");
1278 break;
1279
1280 case ast_assign: {
1281 op[0] = this->subexpressions[0]->hir(instructions, state);
1282 op[1] = this->subexpressions[1]->hir(instructions, state);
1283
1284 error_emitted =
1285 do_assignment(instructions, state,
1286 this->subexpressions[0]->non_lvalue_description,
1287 op[0], op[1], &result, needs_rvalue, false,
1288 this->subexpressions[0]->get_location());
1289 break;
1290 }
1291
1292 case ast_plus:
1293 op[0] = this->subexpressions[0]->hir(instructions, state);
1294
1295 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1296
1297 error_emitted = type->is_error();
1298
1299 result = op[0];
1300 break;
1301
1302 case ast_neg:
1303 op[0] = this->subexpressions[0]->hir(instructions, state);
1304
1305 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1306
1307 error_emitted = type->is_error();
1308
1309 result = new(ctx) ir_expression(operations[this->oper], type,
1310 op[0], NULL);
1311 break;
1312
1313 case ast_add:
1314 case ast_sub:
1315 case ast_mul:
1316 case ast_div:
1317 op[0] = this->subexpressions[0]->hir(instructions, state);
1318 op[1] = this->subexpressions[1]->hir(instructions, state);
1319
1320 type = arithmetic_result_type(op[0], op[1],
1321 (this->oper == ast_mul),
1322 state, & loc);
1323 error_emitted = type->is_error();
1324
1325 result = new(ctx) ir_expression(operations[this->oper], type,
1326 op[0], op[1]);
1327 break;
1328
1329 case ast_mod:
1330 op[0] = this->subexpressions[0]->hir(instructions, state);
1331 op[1] = this->subexpressions[1]->hir(instructions, state);
1332
1333 type = modulus_result_type(op[0], op[1], state, &loc);
1334
1335 assert(operations[this->oper] == ir_binop_mod);
1336
1337 result = new(ctx) ir_expression(operations[this->oper], type,
1338 op[0], op[1]);
1339 error_emitted = type->is_error();
1340 break;
1341
1342 case ast_lshift:
1343 case ast_rshift:
1344 if (!state->check_bitwise_operations_allowed(&loc)) {
1345 error_emitted = true;
1346 }
1347
1348 op[0] = this->subexpressions[0]->hir(instructions, state);
1349 op[1] = this->subexpressions[1]->hir(instructions, state);
1350 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1351 &loc);
1352 result = new(ctx) ir_expression(operations[this->oper], type,
1353 op[0], op[1]);
1354 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1355 break;
1356
1357 case ast_less:
1358 case ast_greater:
1359 case ast_lequal:
1360 case ast_gequal:
1361 op[0] = this->subexpressions[0]->hir(instructions, state);
1362 op[1] = this->subexpressions[1]->hir(instructions, state);
1363
1364 type = relational_result_type(op[0], op[1], state, & loc);
1365
1366 /* The relational operators must either generate an error or result
1367 * in a scalar boolean. See page 57 of the GLSL 1.50 spec.
1368 */
1369 assert(type->is_error()
1370 || ((type->base_type == GLSL_TYPE_BOOL)
1371 && type->is_scalar()));
1372
1373 result = new(ctx) ir_expression(operations[this->oper], type,
1374 op[0], op[1]);
1375 error_emitted = type->is_error();
1376 break;
1377
1378 case ast_nequal:
1379 case ast_equal:
1380 op[0] = this->subexpressions[0]->hir(instructions, state);
1381 op[1] = this->subexpressions[1]->hir(instructions, state);
1382
1383 /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
1384 *
1385 * "The equality operators equal (==), and not equal (!=)
1386 * operate on all types. They result in a scalar Boolean. If
1387 * the operand types do not match, then there must be a
1388 * conversion from Section 4.1.10 "Implicit Conversions"
1389 * applied to one operand that can make them match, in which
1390 * case this conversion is done."
1391 */
1392
1393 if (op[0]->type == glsl_type::void_type || op[1]->type == glsl_type::void_type) {
1394 _mesa_glsl_error(& loc, state, "`%s': wrong operand types: "
1395 "no operation `%1$s' exists that takes a left-hand "
1396 "operand of type 'void' or a right operand of type "
1397 "'void'", (this->oper == ast_equal) ? "==" : "!=");
1398 error_emitted = true;
1399 } else if ((!apply_implicit_conversion(op[0]->type, op[1], state)
1400 && !apply_implicit_conversion(op[1]->type, op[0], state))
1401 || (op[0]->type != op[1]->type)) {
1402 _mesa_glsl_error(& loc, state, "operands of `%s' must have the same "
1403 "type", (this->oper == ast_equal) ? "==" : "!=");
1404 error_emitted = true;
1405 } else if ((op[0]->type->is_array() || op[1]->type->is_array()) &&
1406 !state->check_version(120, 300, &loc,
1407 "array comparisons forbidden")) {
1408 error_emitted = true;
1409 } else if ((op[0]->type->contains_opaque() ||
1410 op[1]->type->contains_opaque())) {
1411 _mesa_glsl_error(&loc, state, "opaque type comparisons forbidden");
1412 error_emitted = true;
1413 }
1414
1415 if (error_emitted) {
1416 result = new(ctx) ir_constant(false);
1417 } else {
1418 result = do_comparison(ctx, operations[this->oper], op[0], op[1]);
1419 assert(result->type == glsl_type::bool_type);
1420 }
1421 break;
1422
1423 case ast_bit_and:
1424 case ast_bit_xor:
1425 case ast_bit_or:
1426 op[0] = this->subexpressions[0]->hir(instructions, state);
1427 op[1] = this->subexpressions[1]->hir(instructions, state);
1428 type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
1429 state, &loc);
1430 result = new(ctx) ir_expression(operations[this->oper], type,
1431 op[0], op[1]);
1432 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1433 break;
1434
1435 case ast_bit_not:
1436 op[0] = this->subexpressions[0]->hir(instructions, state);
1437
1438 if (!state->check_bitwise_operations_allowed(&loc)) {
1439 error_emitted = true;
1440 }
1441
1442 if (!op[0]->type->is_integer()) {
1443 _mesa_glsl_error(&loc, state, "operand of `~' must be an integer");
1444 error_emitted = true;
1445 }
1446
1447 type = error_emitted ? glsl_type::error_type : op[0]->type;
1448 result = new(ctx) ir_expression(ir_unop_bit_not, type, op[0], NULL);
1449 break;
1450
1451 case ast_logic_and: {
1452 exec_list rhs_instructions;
1453 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1454 "LHS", &error_emitted);
1455 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1456 "RHS", &error_emitted);
1457
1458 if (rhs_instructions.is_empty()) {
1459 result = new(ctx) ir_expression(ir_binop_logic_and, op[0], op[1]);
1460 type = result->type;
1461 } else {
1462 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1463 "and_tmp",
1464 ir_var_temporary);
1465 instructions->push_tail(tmp);
1466
1467 ir_if *const stmt = new(ctx) ir_if(op[0]);
1468 instructions->push_tail(stmt);
1469
1470 stmt->then_instructions.append_list(&rhs_instructions);
1471 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1472 ir_assignment *const then_assign =
1473 new(ctx) ir_assignment(then_deref, op[1]);
1474 stmt->then_instructions.push_tail(then_assign);
1475
1476 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1477 ir_assignment *const else_assign =
1478 new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false));
1479 stmt->else_instructions.push_tail(else_assign);
1480
1481 result = new(ctx) ir_dereference_variable(tmp);
1482 type = tmp->type;
1483 }
1484 break;
1485 }
1486
1487 case ast_logic_or: {
1488 exec_list rhs_instructions;
1489 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1490 "LHS", &error_emitted);
1491 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1492 "RHS", &error_emitted);
1493
1494 if (rhs_instructions.is_empty()) {
1495 result = new(ctx) ir_expression(ir_binop_logic_or, op[0], op[1]);
1496 type = result->type;
1497 } else {
1498 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1499 "or_tmp",
1500 ir_var_temporary);
1501 instructions->push_tail(tmp);
1502
1503 ir_if *const stmt = new(ctx) ir_if(op[0]);
1504 instructions->push_tail(stmt);
1505
1506 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1507 ir_assignment *const then_assign =
1508 new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true));
1509 stmt->then_instructions.push_tail(then_assign);
1510
1511 stmt->else_instructions.append_list(&rhs_instructions);
1512 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1513 ir_assignment *const else_assign =
1514 new(ctx) ir_assignment(else_deref, op[1]);
1515 stmt->else_instructions.push_tail(else_assign);
1516
1517 result = new(ctx) ir_dereference_variable(tmp);
1518 type = tmp->type;
1519 }
1520 break;
1521 }
1522
1523 case ast_logic_xor:
1524 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1525 *
1526 * "The logical binary operators and (&&), or ( | | ), and
1527 * exclusive or (^^). They operate only on two Boolean
1528 * expressions and result in a Boolean expression."
1529 */
1530 op[0] = get_scalar_boolean_operand(instructions, state, this, 0, "LHS",
1531 &error_emitted);
1532 op[1] = get_scalar_boolean_operand(instructions, state, this, 1, "RHS",
1533 &error_emitted);
1534
1535 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1536 op[0], op[1]);
1537 break;
1538
1539 case ast_logic_not:
1540 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1541 "operand", &error_emitted);
1542
1543 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1544 op[0], NULL);
1545 break;
1546
1547 case ast_mul_assign:
1548 case ast_div_assign:
1549 case ast_add_assign:
1550 case ast_sub_assign: {
1551 op[0] = this->subexpressions[0]->hir(instructions, state);
1552 op[1] = this->subexpressions[1]->hir(instructions, state);
1553
1554 type = arithmetic_result_type(op[0], op[1],
1555 (this->oper == ast_mul_assign),
1556 state, & loc);
1557
1558 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1559 op[0], op[1]);
1560
1561 error_emitted =
1562 do_assignment(instructions, state,
1563 this->subexpressions[0]->non_lvalue_description,
1564 op[0]->clone(ctx, NULL), temp_rhs,
1565 &result, needs_rvalue, false,
1566 this->subexpressions[0]->get_location());
1567
1568 /* GLSL 1.10 does not allow array assignment. However, we don't have to
1569 * explicitly test for this because none of the binary expression
1570 * operators allow array operands either.
1571 */
1572
1573 break;
1574 }
1575
1576 case ast_mod_assign: {
1577 op[0] = this->subexpressions[0]->hir(instructions, state);
1578 op[1] = this->subexpressions[1]->hir(instructions, state);
1579
1580 type = modulus_result_type(op[0], op[1], state, &loc);
1581
1582 assert(operations[this->oper] == ir_binop_mod);
1583
1584 ir_rvalue *temp_rhs;
1585 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1586 op[0], op[1]);
1587
1588 error_emitted =
1589 do_assignment(instructions, state,
1590 this->subexpressions[0]->non_lvalue_description,
1591 op[0]->clone(ctx, NULL), temp_rhs,
1592 &result, needs_rvalue, false,
1593 this->subexpressions[0]->get_location());
1594 break;
1595 }
1596
1597 case ast_ls_assign:
1598 case ast_rs_assign: {
1599 op[0] = this->subexpressions[0]->hir(instructions, state);
1600 op[1] = this->subexpressions[1]->hir(instructions, state);
1601 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1602 &loc);
1603 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1604 type, op[0], op[1]);
1605 error_emitted =
1606 do_assignment(instructions, state,
1607 this->subexpressions[0]->non_lvalue_description,
1608 op[0]->clone(ctx, NULL), temp_rhs,
1609 &result, needs_rvalue, false,
1610 this->subexpressions[0]->get_location());
1611 break;
1612 }
1613
1614 case ast_and_assign:
1615 case ast_xor_assign:
1616 case ast_or_assign: {
1617 op[0] = this->subexpressions[0]->hir(instructions, state);
1618 op[1] = this->subexpressions[1]->hir(instructions, state);
1619 type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
1620 state, &loc);
1621 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1622 type, op[0], op[1]);
1623 error_emitted =
1624 do_assignment(instructions, state,
1625 this->subexpressions[0]->non_lvalue_description,
1626 op[0]->clone(ctx, NULL), temp_rhs,
1627 &result, needs_rvalue, false,
1628 this->subexpressions[0]->get_location());
1629 break;
1630 }
1631
1632 case ast_conditional: {
1633 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1634 *
1635 * "The ternary selection operator (?:). It operates on three
1636 * expressions (exp1 ? exp2 : exp3). This operator evaluates the
1637 * first expression, which must result in a scalar Boolean."
1638 */
1639 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1640 "condition", &error_emitted);
1641
1642 /* The :? operator is implemented by generating an anonymous temporary
1643 * followed by an if-statement. The last instruction in each branch of
1644 * the if-statement assigns a value to the anonymous temporary. This
1645 * temporary is the r-value of the expression.
1646 */
1647 exec_list then_instructions;
1648 exec_list else_instructions;
1649
1650 op[1] = this->subexpressions[1]->hir(&then_instructions, state);
1651 op[2] = this->subexpressions[2]->hir(&else_instructions, state);
1652
1653 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1654 *
1655 * "The second and third expressions can be any type, as
1656 * long their types match, or there is a conversion in
1657 * Section 4.1.10 "Implicit Conversions" that can be applied
1658 * to one of the expressions to make their types match. This
1659 * resulting matching type is the type of the entire
1660 * expression."
1661 */
1662 if ((!apply_implicit_conversion(op[1]->type, op[2], state)
1663 && !apply_implicit_conversion(op[2]->type, op[1], state))
1664 || (op[1]->type != op[2]->type)) {
1665 YYLTYPE loc = this->subexpressions[1]->get_location();
1666
1667 _mesa_glsl_error(& loc, state, "second and third operands of ?: "
1668 "operator must have matching types");
1669 error_emitted = true;
1670 type = glsl_type::error_type;
1671 } else {
1672 type = op[1]->type;
1673 }
1674
1675 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1676 *
1677 * "The second and third expressions must be the same type, but can
1678 * be of any type other than an array."
1679 */
1680 if (type->is_array() &&
1681 !state->check_version(120, 300, &loc,
1682 "second and third operands of ?: operator "
1683 "cannot be arrays")) {
1684 error_emitted = true;
1685 }
1686
1687 /* From section 4.1.7 of the GLSL 4.50 spec (Opaque Types):
1688 *
1689 * "Except for array indexing, structure member selection, and
1690 * parentheses, opaque variables are not allowed to be operands in
1691 * expressions; such use results in a compile-time error."
1692 */
1693 if (type->contains_opaque()) {
1694 _mesa_glsl_error(&loc, state, "opaque variables cannot be operands "
1695 "of the ?: operator");
1696 error_emitted = true;
1697 }
1698
1699 ir_constant *cond_val = op[0]->constant_expression_value();
1700
1701 if (then_instructions.is_empty()
1702 && else_instructions.is_empty()
1703 && cond_val != NULL) {
1704 result = cond_val->value.b[0] ? op[1] : op[2];
1705 } else {
1706 /* The copy to conditional_tmp reads the whole array. */
1707 if (type->is_array()) {
1708 mark_whole_array_access(op[1]);
1709 mark_whole_array_access(op[2]);
1710 }
1711
1712 ir_variable *const tmp =
1713 new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary);
1714 instructions->push_tail(tmp);
1715
1716 ir_if *const stmt = new(ctx) ir_if(op[0]);
1717 instructions->push_tail(stmt);
1718
1719 then_instructions.move_nodes_to(& stmt->then_instructions);
1720 ir_dereference *const then_deref =
1721 new(ctx) ir_dereference_variable(tmp);
1722 ir_assignment *const then_assign =
1723 new(ctx) ir_assignment(then_deref, op[1]);
1724 stmt->then_instructions.push_tail(then_assign);
1725
1726 else_instructions.move_nodes_to(& stmt->else_instructions);
1727 ir_dereference *const else_deref =
1728 new(ctx) ir_dereference_variable(tmp);
1729 ir_assignment *const else_assign =
1730 new(ctx) ir_assignment(else_deref, op[2]);
1731 stmt->else_instructions.push_tail(else_assign);
1732
1733 result = new(ctx) ir_dereference_variable(tmp);
1734 }
1735 break;
1736 }
1737
1738 case ast_pre_inc:
1739 case ast_pre_dec: {
1740 this->non_lvalue_description = (this->oper == ast_pre_inc)
1741 ? "pre-increment operation" : "pre-decrement operation";
1742
1743 op[0] = this->subexpressions[0]->hir(instructions, state);
1744 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1745
1746 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1747
1748 ir_rvalue *temp_rhs;
1749 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1750 op[0], op[1]);
1751
1752 error_emitted =
1753 do_assignment(instructions, state,
1754 this->subexpressions[0]->non_lvalue_description,
1755 op[0]->clone(ctx, NULL), temp_rhs,
1756 &result, needs_rvalue, false,
1757 this->subexpressions[0]->get_location());
1758 break;
1759 }
1760
1761 case ast_post_inc:
1762 case ast_post_dec: {
1763 this->non_lvalue_description = (this->oper == ast_post_inc)
1764 ? "post-increment operation" : "post-decrement operation";
1765 op[0] = this->subexpressions[0]->hir(instructions, state);
1766 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1767
1768 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1769
1770 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1771
1772 ir_rvalue *temp_rhs;
1773 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1774 op[0], op[1]);
1775
1776 /* Get a temporary of a copy of the lvalue before it's modified.
1777 * This may get thrown away later.
1778 */
1779 result = get_lvalue_copy(instructions, op[0]->clone(ctx, NULL));
1780
1781 ir_rvalue *junk_rvalue;
1782 error_emitted =
1783 do_assignment(instructions, state,
1784 this->subexpressions[0]->non_lvalue_description,
1785 op[0]->clone(ctx, NULL), temp_rhs,
1786 &junk_rvalue, false, false,
1787 this->subexpressions[0]->get_location());
1788
1789 break;
1790 }
1791
1792 case ast_field_selection:
1793 result = _mesa_ast_field_selection_to_hir(this, instructions, state);
1794 break;
1795
1796 case ast_array_index: {
1797 YYLTYPE index_loc = subexpressions[1]->get_location();
1798
1799 op[0] = subexpressions[0]->hir(instructions, state);
1800 op[1] = subexpressions[1]->hir(instructions, state);
1801
1802 result = _mesa_ast_array_index_to_hir(ctx, state, op[0], op[1],
1803 loc, index_loc);
1804
1805 if (result->type->is_error())
1806 error_emitted = true;
1807
1808 break;
1809 }
1810
1811 case ast_unsized_array_dim:
1812 assert(!"ast_unsized_array_dim: Should never get here.");
1813 break;
1814
1815 case ast_function_call:
1816 /* Should *NEVER* get here. ast_function_call should always be handled
1817 * by ast_function_expression::hir.
1818 */
1819 assert(0);
1820 break;
1821
1822 case ast_identifier: {
1823 /* ast_identifier can appear several places in a full abstract syntax
1824 * tree. This particular use must be at location specified in the grammar
1825 * as 'variable_identifier'.
1826 */
1827 ir_variable *var =
1828 state->symbols->get_variable(this->primary_expression.identifier);
1829
1830 if (var != NULL) {
1831 var->data.used = true;
1832 result = new(ctx) ir_dereference_variable(var);
1833 } else {
1834 _mesa_glsl_error(& loc, state, "`%s' undeclared",
1835 this->primary_expression.identifier);
1836
1837 result = ir_rvalue::error_value(ctx);
1838 error_emitted = true;
1839 }
1840 break;
1841 }
1842
1843 case ast_int_constant:
1844 result = new(ctx) ir_constant(this->primary_expression.int_constant);
1845 break;
1846
1847 case ast_uint_constant:
1848 result = new(ctx) ir_constant(this->primary_expression.uint_constant);
1849 break;
1850
1851 case ast_float_constant:
1852 result = new(ctx) ir_constant(this->primary_expression.float_constant);
1853 break;
1854
1855 case ast_bool_constant:
1856 result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant));
1857 break;
1858
1859 case ast_double_constant:
1860 result = new(ctx) ir_constant(this->primary_expression.double_constant);
1861 break;
1862
1863 case ast_sequence: {
1864 /* It should not be possible to generate a sequence in the AST without
1865 * any expressions in it.
1866 */
1867 assert(!this->expressions.is_empty());
1868
1869 /* The r-value of a sequence is the last expression in the sequence. If
1870 * the other expressions in the sequence do not have side-effects (and
1871 * therefore add instructions to the instruction list), they get dropped
1872 * on the floor.
1873 */
1874 exec_node *previous_tail_pred = NULL;
1875 YYLTYPE previous_operand_loc = loc;
1876
1877 foreach_list_typed (ast_node, ast, link, &this->expressions) {
1878 /* If one of the operands of comma operator does not generate any
1879 * code, we want to emit a warning. At each pass through the loop
1880 * previous_tail_pred will point to the last instruction in the
1881 * stream *before* processing the previous operand. Naturally,
1882 * instructions->tail_pred will point to the last instruction in the
1883 * stream *after* processing the previous operand. If the two
1884 * pointers match, then the previous operand had no effect.
1885 *
1886 * The warning behavior here differs slightly from GCC. GCC will
1887 * only emit a warning if none of the left-hand operands have an
1888 * effect. However, it will emit a warning for each. I believe that
1889 * there are some cases in C (especially with GCC extensions) where
1890 * it is useful to have an intermediate step in a sequence have no
1891 * effect, but I don't think these cases exist in GLSL. Either way,
1892 * it would be a giant hassle to replicate that behavior.
1893 */
1894 if (previous_tail_pred == instructions->tail_pred) {
1895 _mesa_glsl_warning(&previous_operand_loc, state,
1896 "left-hand operand of comma expression has "
1897 "no effect");
1898 }
1899
1900 /* tail_pred is directly accessed instead of using the get_tail()
1901 * method for performance reasons. get_tail() has extra code to
1902 * return NULL when the list is empty. We don't care about that
1903 * here, so using tail_pred directly is fine.
1904 */
1905 previous_tail_pred = instructions->tail_pred;
1906 previous_operand_loc = ast->get_location();
1907
1908 result = ast->hir(instructions, state);
1909 }
1910
1911 /* Any errors should have already been emitted in the loop above.
1912 */
1913 error_emitted = true;
1914 break;
1915 }
1916 }
1917 type = NULL; /* use result->type, not type. */
1918 assert(result != NULL || !needs_rvalue);
1919
1920 if (result && result->type->is_error() && !error_emitted)
1921 _mesa_glsl_error(& loc, state, "type mismatch");
1922
1923 return result;
1924 }
1925
1926 bool
1927 ast_expression::has_sequence_subexpression() const
1928 {
1929 switch (this->oper) {
1930 case ast_plus:
1931 case ast_neg:
1932 case ast_bit_not:
1933 case ast_logic_not:
1934 case ast_pre_inc:
1935 case ast_pre_dec:
1936 case ast_post_inc:
1937 case ast_post_dec:
1938 return this->subexpressions[0]->has_sequence_subexpression();
1939
1940 case ast_assign:
1941 case ast_add:
1942 case ast_sub:
1943 case ast_mul:
1944 case ast_div:
1945 case ast_mod:
1946 case ast_lshift:
1947 case ast_rshift:
1948 case ast_less:
1949 case ast_greater:
1950 case ast_lequal:
1951 case ast_gequal:
1952 case ast_nequal:
1953 case ast_equal:
1954 case ast_bit_and:
1955 case ast_bit_xor:
1956 case ast_bit_or:
1957 case ast_logic_and:
1958 case ast_logic_or:
1959 case ast_logic_xor:
1960 case ast_array_index:
1961 case ast_mul_assign:
1962 case ast_div_assign:
1963 case ast_add_assign:
1964 case ast_sub_assign:
1965 case ast_mod_assign:
1966 case ast_ls_assign:
1967 case ast_rs_assign:
1968 case ast_and_assign:
1969 case ast_xor_assign:
1970 case ast_or_assign:
1971 return this->subexpressions[0]->has_sequence_subexpression() ||
1972 this->subexpressions[1]->has_sequence_subexpression();
1973
1974 case ast_conditional:
1975 return this->subexpressions[0]->has_sequence_subexpression() ||
1976 this->subexpressions[1]->has_sequence_subexpression() ||
1977 this->subexpressions[2]->has_sequence_subexpression();
1978
1979 case ast_sequence:
1980 return true;
1981
1982 case ast_field_selection:
1983 case ast_identifier:
1984 case ast_int_constant:
1985 case ast_uint_constant:
1986 case ast_float_constant:
1987 case ast_bool_constant:
1988 case ast_double_constant:
1989 return false;
1990
1991 case ast_aggregate:
1992 unreachable("ast_aggregate: Should never get here.");
1993
1994 case ast_function_call:
1995 unreachable("should be handled by ast_function_expression::hir");
1996
1997 case ast_unsized_array_dim:
1998 unreachable("ast_unsized_array_dim: Should never get here.");
1999 }
2000
2001 return false;
2002 }
2003
2004 ir_rvalue *
2005 ast_expression_statement::hir(exec_list *instructions,
2006 struct _mesa_glsl_parse_state *state)
2007 {
2008 /* It is possible to have expression statements that don't have an
2009 * expression. This is the solitary semicolon:
2010 *
2011 * for (i = 0; i < 5; i++)
2012 * ;
2013 *
2014 * In this case the expression will be NULL. Test for NULL and don't do
2015 * anything in that case.
2016 */
2017 if (expression != NULL)
2018 expression->hir_no_rvalue(instructions, state);
2019
2020 /* Statements do not have r-values.
2021 */
2022 return NULL;
2023 }
2024
2025
2026 ir_rvalue *
2027 ast_compound_statement::hir(exec_list *instructions,
2028 struct _mesa_glsl_parse_state *state)
2029 {
2030 if (new_scope)
2031 state->symbols->push_scope();
2032
2033 foreach_list_typed (ast_node, ast, link, &this->statements)
2034 ast->hir(instructions, state);
2035
2036 if (new_scope)
2037 state->symbols->pop_scope();
2038
2039 /* Compound statements do not have r-values.
2040 */
2041 return NULL;
2042 }
2043
2044 /**
2045 * Evaluate the given exec_node (which should be an ast_node representing
2046 * a single array dimension) and return its integer value.
2047 */
2048 static unsigned
2049 process_array_size(exec_node *node,
2050 struct _mesa_glsl_parse_state *state)
2051 {
2052 exec_list dummy_instructions;
2053
2054 ast_node *array_size = exec_node_data(ast_node, node, link);
2055
2056 /**
2057 * Dimensions other than the outermost dimension can by unsized if they
2058 * are immediately sized by a constructor or initializer.
2059 */
2060 if (((ast_expression*)array_size)->oper == ast_unsized_array_dim)
2061 return 0;
2062
2063 ir_rvalue *const ir = array_size->hir(& dummy_instructions, state);
2064 YYLTYPE loc = array_size->get_location();
2065
2066 if (ir == NULL) {
2067 _mesa_glsl_error(& loc, state,
2068 "array size could not be resolved");
2069 return 0;
2070 }
2071
2072 if (!ir->type->is_integer()) {
2073 _mesa_glsl_error(& loc, state,
2074 "array size must be integer type");
2075 return 0;
2076 }
2077
2078 if (!ir->type->is_scalar()) {
2079 _mesa_glsl_error(& loc, state,
2080 "array size must be scalar type");
2081 return 0;
2082 }
2083
2084 ir_constant *const size = ir->constant_expression_value();
2085 if (size == NULL || array_size->has_sequence_subexpression()) {
2086 _mesa_glsl_error(& loc, state, "array size must be a "
2087 "constant valued expression");
2088 return 0;
2089 }
2090
2091 if (size->value.i[0] <= 0) {
2092 _mesa_glsl_error(& loc, state, "array size must be > 0");
2093 return 0;
2094 }
2095
2096 assert(size->type == ir->type);
2097
2098 /* If the array size is const (and we've verified that
2099 * it is) then no instructions should have been emitted
2100 * when we converted it to HIR. If they were emitted,
2101 * then either the array size isn't const after all, or
2102 * we are emitting unnecessary instructions.
2103 */
2104 assert(dummy_instructions.is_empty());
2105
2106 return size->value.u[0];
2107 }
2108
2109 static const glsl_type *
2110 process_array_type(YYLTYPE *loc, const glsl_type *base,
2111 ast_array_specifier *array_specifier,
2112 struct _mesa_glsl_parse_state *state)
2113 {
2114 const glsl_type *array_type = base;
2115
2116 if (array_specifier != NULL) {
2117 if (base->is_array()) {
2118
2119 /* From page 19 (page 25) of the GLSL 1.20 spec:
2120 *
2121 * "Only one-dimensional arrays may be declared."
2122 */
2123 if (!state->check_arrays_of_arrays_allowed(loc)) {
2124 return glsl_type::error_type;
2125 }
2126 }
2127
2128 for (exec_node *node = array_specifier->array_dimensions.tail_pred;
2129 !node->is_head_sentinel(); node = node->prev) {
2130 unsigned array_size = process_array_size(node, state);
2131 array_type = glsl_type::get_array_instance(array_type, array_size);
2132 }
2133 }
2134
2135 return array_type;
2136 }
2137
2138 static bool
2139 precision_qualifier_allowed(const glsl_type *type)
2140 {
2141 /* Precision qualifiers apply to floating point, integer and opaque
2142 * types.
2143 *
2144 * Section 4.5.2 (Precision Qualifiers) of the GLSL 1.30 spec says:
2145 * "Any floating point or any integer declaration can have the type
2146 * preceded by one of these precision qualifiers [...] Literal
2147 * constants do not have precision qualifiers. Neither do Boolean
2148 * variables.
2149 *
2150 * Section 4.5 (Precision and Precision Qualifiers) of the GLSL 1.30
2151 * spec also says:
2152 *
2153 * "Precision qualifiers are added for code portability with OpenGL
2154 * ES, not for functionality. They have the same syntax as in OpenGL
2155 * ES."
2156 *
2157 * Section 8 (Built-In Functions) of the GLSL ES 1.00 spec says:
2158 *
2159 * "uniform lowp sampler2D sampler;
2160 * highp vec2 coord;
2161 * ...
2162 * lowp vec4 col = texture2D (sampler, coord);
2163 * // texture2D returns lowp"
2164 *
2165 * From this, we infer that GLSL 1.30 (and later) should allow precision
2166 * qualifiers on sampler types just like float and integer types.
2167 */
2168 return (type->is_float()
2169 || type->is_integer()
2170 || type->contains_opaque())
2171 && !type->without_array()->is_record();
2172 }
2173
2174 const glsl_type *
2175 ast_type_specifier::glsl_type(const char **name,
2176 struct _mesa_glsl_parse_state *state) const
2177 {
2178 const struct glsl_type *type;
2179
2180 type = state->symbols->get_type(this->type_name);
2181 *name = this->type_name;
2182
2183 YYLTYPE loc = this->get_location();
2184 type = process_array_type(&loc, type, this->array_specifier, state);
2185
2186 return type;
2187 }
2188
2189 /**
2190 * From the OpenGL ES 3.0 spec, 4.5.4 Default Precision Qualifiers:
2191 *
2192 * "The precision statement
2193 *
2194 * precision precision-qualifier type;
2195 *
2196 * can be used to establish a default precision qualifier. The type field can
2197 * be either int or float or any of the sampler types, (...) If type is float,
2198 * the directive applies to non-precision-qualified floating point type
2199 * (scalar, vector, and matrix) declarations. If type is int, the directive
2200 * applies to all non-precision-qualified integer type (scalar, vector, signed,
2201 * and unsigned) declarations."
2202 *
2203 * We use the symbol table to keep the values of the default precisions for
2204 * each 'type' in each scope and we use the 'type' string from the precision
2205 * statement as key in the symbol table. When we want to retrieve the default
2206 * precision associated with a given glsl_type we need to know the type string
2207 * associated with it. This is what this function returns.
2208 */
2209 static const char *
2210 get_type_name_for_precision_qualifier(const glsl_type *type)
2211 {
2212 switch (type->base_type) {
2213 case GLSL_TYPE_FLOAT:
2214 return "float";
2215 case GLSL_TYPE_UINT:
2216 case GLSL_TYPE_INT:
2217 return "int";
2218 case GLSL_TYPE_ATOMIC_UINT:
2219 return "atomic_uint";
2220 case GLSL_TYPE_IMAGE:
2221 /* fallthrough */
2222 case GLSL_TYPE_SAMPLER: {
2223 const unsigned type_idx =
2224 type->sampler_array + 2 * type->sampler_shadow;
2225 const unsigned offset = type->base_type == GLSL_TYPE_SAMPLER ? 0 : 4;
2226 assert(type_idx < 4);
2227 switch (type->sampler_type) {
2228 case GLSL_TYPE_FLOAT:
2229 switch (type->sampler_dimensionality) {
2230 case GLSL_SAMPLER_DIM_1D: {
2231 assert(type->base_type == GLSL_TYPE_SAMPLER);
2232 static const char *const names[4] = {
2233 "sampler1D", "sampler1DArray",
2234 "sampler1DShadow", "sampler1DArrayShadow"
2235 };
2236 return names[type_idx];
2237 }
2238 case GLSL_SAMPLER_DIM_2D: {
2239 static const char *const names[8] = {
2240 "sampler2D", "sampler2DArray",
2241 "sampler2DShadow", "sampler2DArrayShadow",
2242 "image2D", "image2DArray", NULL, NULL
2243 };
2244 return names[offset + type_idx];
2245 }
2246 case GLSL_SAMPLER_DIM_3D: {
2247 static const char *const names[8] = {
2248 "sampler3D", NULL, NULL, NULL,
2249 "image3D", NULL, NULL, NULL
2250 };
2251 return names[offset + type_idx];
2252 }
2253 case GLSL_SAMPLER_DIM_CUBE: {
2254 static const char *const names[8] = {
2255 "samplerCube", "samplerCubeArray",
2256 "samplerCubeShadow", "samplerCubeArrayShadow",
2257 "imageCube", NULL, NULL, NULL
2258 };
2259 return names[offset + type_idx];
2260 }
2261 case GLSL_SAMPLER_DIM_MS: {
2262 assert(type->base_type == GLSL_TYPE_SAMPLER);
2263 static const char *const names[4] = {
2264 "sampler2DMS", "sampler2DMSArray", NULL, NULL
2265 };
2266 return names[type_idx];
2267 }
2268 case GLSL_SAMPLER_DIM_RECT: {
2269 assert(type->base_type == GLSL_TYPE_SAMPLER);
2270 static const char *const names[4] = {
2271 "samplerRect", NULL, "samplerRectShadow", NULL
2272 };
2273 return names[type_idx];
2274 }
2275 case GLSL_SAMPLER_DIM_BUF: {
2276 assert(type->base_type == GLSL_TYPE_SAMPLER);
2277 static const char *const names[4] = {
2278 "samplerBuffer", NULL, NULL, NULL
2279 };
2280 return names[type_idx];
2281 }
2282 case GLSL_SAMPLER_DIM_EXTERNAL: {
2283 assert(type->base_type == GLSL_TYPE_SAMPLER);
2284 static const char *const names[4] = {
2285 "samplerExternalOES", NULL, NULL, NULL
2286 };
2287 return names[type_idx];
2288 }
2289 default:
2290 unreachable("Unsupported sampler/image dimensionality");
2291 } /* sampler/image float dimensionality */
2292 break;
2293 case GLSL_TYPE_INT:
2294 switch (type->sampler_dimensionality) {
2295 case GLSL_SAMPLER_DIM_1D: {
2296 assert(type->base_type == GLSL_TYPE_SAMPLER);
2297 static const char *const names[4] = {
2298 "isampler1D", "isampler1DArray", NULL, NULL
2299 };
2300 return names[type_idx];
2301 }
2302 case GLSL_SAMPLER_DIM_2D: {
2303 static const char *const names[8] = {
2304 "isampler2D", "isampler2DArray", NULL, NULL,
2305 "iimage2D", "iimage2DArray", NULL, NULL
2306 };
2307 return names[offset + type_idx];
2308 }
2309 case GLSL_SAMPLER_DIM_3D: {
2310 static const char *const names[8] = {
2311 "isampler3D", NULL, NULL, NULL,
2312 "iimage3D", NULL, NULL, NULL
2313 };
2314 return names[offset + type_idx];
2315 }
2316 case GLSL_SAMPLER_DIM_CUBE: {
2317 static const char *const names[8] = {
2318 "isamplerCube", "isamplerCubeArray", NULL, NULL,
2319 "iimageCube", NULL, NULL, NULL
2320 };
2321 return names[offset + type_idx];
2322 }
2323 case GLSL_SAMPLER_DIM_MS: {
2324 assert(type->base_type == GLSL_TYPE_SAMPLER);
2325 static const char *const names[4] = {
2326 "isampler2DMS", "isampler2DMSArray", NULL, NULL
2327 };
2328 return names[type_idx];
2329 }
2330 case GLSL_SAMPLER_DIM_RECT: {
2331 assert(type->base_type == GLSL_TYPE_SAMPLER);
2332 static const char *const names[4] = {
2333 "isamplerRect", NULL, "isamplerRectShadow", NULL
2334 };
2335 return names[type_idx];
2336 }
2337 case GLSL_SAMPLER_DIM_BUF: {
2338 assert(type->base_type == GLSL_TYPE_SAMPLER);
2339 static const char *const names[4] = {
2340 "isamplerBuffer", NULL, NULL, NULL
2341 };
2342 return names[type_idx];
2343 }
2344 default:
2345 unreachable("Unsupported isampler/iimage dimensionality");
2346 } /* sampler/image int dimensionality */
2347 break;
2348 case GLSL_TYPE_UINT:
2349 switch (type->sampler_dimensionality) {
2350 case GLSL_SAMPLER_DIM_1D: {
2351 assert(type->base_type == GLSL_TYPE_SAMPLER);
2352 static const char *const names[4] = {
2353 "usampler1D", "usampler1DArray", NULL, NULL
2354 };
2355 return names[type_idx];
2356 }
2357 case GLSL_SAMPLER_DIM_2D: {
2358 static const char *const names[8] = {
2359 "usampler2D", "usampler2DArray", NULL, NULL,
2360 "uimage2D", "uimage2DArray", NULL, NULL
2361 };
2362 return names[offset + type_idx];
2363 }
2364 case GLSL_SAMPLER_DIM_3D: {
2365 static const char *const names[8] = {
2366 "usampler3D", NULL, NULL, NULL,
2367 "uimage3D", NULL, NULL, NULL
2368 };
2369 return names[offset + type_idx];
2370 }
2371 case GLSL_SAMPLER_DIM_CUBE: {
2372 static const char *const names[8] = {
2373 "usamplerCube", "usamplerCubeArray", NULL, NULL,
2374 "uimageCube", NULL, NULL, NULL
2375 };
2376 return names[offset + type_idx];
2377 }
2378 case GLSL_SAMPLER_DIM_MS: {
2379 assert(type->base_type == GLSL_TYPE_SAMPLER);
2380 static const char *const names[4] = {
2381 "usampler2DMS", "usampler2DMSArray", NULL, NULL
2382 };
2383 return names[type_idx];
2384 }
2385 case GLSL_SAMPLER_DIM_RECT: {
2386 assert(type->base_type == GLSL_TYPE_SAMPLER);
2387 static const char *const names[4] = {
2388 "usamplerRect", NULL, "usamplerRectShadow", NULL
2389 };
2390 return names[type_idx];
2391 }
2392 case GLSL_SAMPLER_DIM_BUF: {
2393 assert(type->base_type == GLSL_TYPE_SAMPLER);
2394 static const char *const names[4] = {
2395 "usamplerBuffer", NULL, NULL, NULL
2396 };
2397 return names[type_idx];
2398 }
2399 default:
2400 unreachable("Unsupported usampler/uimage dimensionality");
2401 } /* sampler/image uint dimensionality */
2402 break;
2403 default:
2404 unreachable("Unsupported sampler/image type");
2405 } /* sampler/image type */
2406 break;
2407 } /* GLSL_TYPE_SAMPLER/GLSL_TYPE_IMAGE */
2408 break;
2409 default:
2410 unreachable("Unsupported type");
2411 } /* base type */
2412 }
2413
2414 static unsigned
2415 select_gles_precision(unsigned qual_precision,
2416 const glsl_type *type,
2417 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
2418 {
2419 /* Precision qualifiers do not have any meaning in Desktop GLSL.
2420 * In GLES we take the precision from the type qualifier if present,
2421 * otherwise, if the type of the variable allows precision qualifiers at
2422 * all, we look for the default precision qualifier for that type in the
2423 * current scope.
2424 */
2425 assert(state->es_shader);
2426
2427 unsigned precision = GLSL_PRECISION_NONE;
2428 if (qual_precision) {
2429 precision = qual_precision;
2430 } else if (precision_qualifier_allowed(type)) {
2431 const char *type_name =
2432 get_type_name_for_precision_qualifier(type->without_array());
2433 assert(type_name != NULL);
2434
2435 precision =
2436 state->symbols->get_default_precision_qualifier(type_name);
2437 if (precision == ast_precision_none) {
2438 _mesa_glsl_error(loc, state,
2439 "No precision specified in this scope for type `%s'",
2440 type->name);
2441 }
2442 }
2443 return precision;
2444 }
2445
2446 const glsl_type *
2447 ast_fully_specified_type::glsl_type(const char **name,
2448 struct _mesa_glsl_parse_state *state) const
2449 {
2450 return this->specifier->glsl_type(name, state);
2451 }
2452
2453 /**
2454 * Determine whether a toplevel variable declaration declares a varying. This
2455 * function operates by examining the variable's mode and the shader target,
2456 * so it correctly identifies linkage variables regardless of whether they are
2457 * declared using the deprecated "varying" syntax or the new "in/out" syntax.
2458 *
2459 * Passing a non-toplevel variable declaration (e.g. a function parameter) to
2460 * this function will produce undefined results.
2461 */
2462 static bool
2463 is_varying_var(ir_variable *var, gl_shader_stage target)
2464 {
2465 switch (target) {
2466 case MESA_SHADER_VERTEX:
2467 return var->data.mode == ir_var_shader_out;
2468 case MESA_SHADER_FRAGMENT:
2469 return var->data.mode == ir_var_shader_in;
2470 default:
2471 return var->data.mode == ir_var_shader_out || var->data.mode == ir_var_shader_in;
2472 }
2473 }
2474
2475
2476 /**
2477 * Matrix layout qualifiers are only allowed on certain types
2478 */
2479 static void
2480 validate_matrix_layout_for_type(struct _mesa_glsl_parse_state *state,
2481 YYLTYPE *loc,
2482 const glsl_type *type,
2483 ir_variable *var)
2484 {
2485 if (var && !var->is_in_buffer_block()) {
2486 /* Layout qualifiers may only apply to interface blocks and fields in
2487 * them.
2488 */
2489 _mesa_glsl_error(loc, state,
2490 "uniform block layout qualifiers row_major and "
2491 "column_major may not be applied to variables "
2492 "outside of uniform blocks");
2493 } else if (!type->is_matrix()) {
2494 /* The OpenGL ES 3.0 conformance tests did not originally allow
2495 * matrix layout qualifiers on non-matrices. However, the OpenGL
2496 * 4.4 and OpenGL ES 3.0 (revision TBD) specifications were
2497 * amended to specifically allow these layouts on all types. Emit
2498 * a warning so that people know their code may not be portable.
2499 */
2500 _mesa_glsl_warning(loc, state,
2501 "uniform block layout qualifiers row_major and "
2502 "column_major applied to non-matrix types may "
2503 "be rejected by older compilers");
2504 } else if (type->is_record()) {
2505 /* We allow 'layout(row_major)' on structure types because it's the only
2506 * way to get row-major layouts on matrices contained in structures.
2507 */
2508 _mesa_glsl_warning(loc, state,
2509 "uniform block layout qualifiers row_major and "
2510 "column_major applied to structure types is not "
2511 "strictly conformant and may be rejected by other "
2512 "compilers");
2513 }
2514 }
2515
2516 static bool
2517 validate_binding_qualifier(struct _mesa_glsl_parse_state *state,
2518 YYLTYPE *loc,
2519 const glsl_type *type,
2520 const ast_type_qualifier *qual)
2521 {
2522 if (!qual->flags.q.uniform && !qual->flags.q.buffer) {
2523 _mesa_glsl_error(loc, state,
2524 "the \"binding\" qualifier only applies to uniforms and "
2525 "shader storage buffer objects");
2526 return false;
2527 }
2528
2529 if (qual->binding < 0) {
2530 _mesa_glsl_error(loc, state, "binding values must be >= 0");
2531 return false;
2532 }
2533
2534 const struct gl_context *const ctx = state->ctx;
2535 unsigned elements = type->is_array() ? type->arrays_of_arrays_size() : 1;
2536 unsigned max_index = qual->binding + elements - 1;
2537 const glsl_type *base_type = type->without_array();
2538
2539 if (base_type->is_interface()) {
2540 /* UBOs. From page 60 of the GLSL 4.20 specification:
2541 * "If the binding point for any uniform block instance is less than zero,
2542 * or greater than or equal to the implementation-dependent maximum
2543 * number of uniform buffer bindings, a compilation error will occur.
2544 * When the binding identifier is used with a uniform block instanced as
2545 * an array of size N, all elements of the array from binding through
2546 * binding + N – 1 must be within this range."
2547 *
2548 * The implementation-dependent maximum is GL_MAX_UNIFORM_BUFFER_BINDINGS.
2549 */
2550 if (qual->flags.q.uniform &&
2551 max_index >= ctx->Const.MaxUniformBufferBindings) {
2552 _mesa_glsl_error(loc, state, "layout(binding = %d) for %d UBOs exceeds "
2553 "the maximum number of UBO binding points (%d)",
2554 qual->binding, elements,
2555 ctx->Const.MaxUniformBufferBindings);
2556 return false;
2557 }
2558
2559 /* SSBOs. From page 67 of the GLSL 4.30 specification:
2560 * "If the binding point for any uniform or shader storage block instance
2561 * is less than zero, or greater than or equal to the
2562 * implementation-dependent maximum number of uniform buffer bindings, a
2563 * compile-time error will occur. When the binding identifier is used
2564 * with a uniform or shader storage block instanced as an array of size
2565 * N, all elements of the array from binding through binding + N – 1 must
2566 * be within this range."
2567 */
2568 if (qual->flags.q.buffer &&
2569 max_index >= ctx->Const.MaxShaderStorageBufferBindings) {
2570 _mesa_glsl_error(loc, state, "layout(binding = %d) for %d SSBOs exceeds "
2571 "the maximum number of SSBO binding points (%d)",
2572 qual->binding, elements,
2573 ctx->Const.MaxShaderStorageBufferBindings);
2574 return false;
2575 }
2576 } else if (base_type->is_sampler()) {
2577 /* Samplers. From page 63 of the GLSL 4.20 specification:
2578 * "If the binding is less than zero, or greater than or equal to the
2579 * implementation-dependent maximum supported number of units, a
2580 * compilation error will occur. When the binding identifier is used
2581 * with an array of size N, all elements of the array from binding
2582 * through binding + N - 1 must be within this range."
2583 */
2584 unsigned limit = ctx->Const.MaxCombinedTextureImageUnits;
2585
2586 if (max_index >= limit) {
2587 _mesa_glsl_error(loc, state, "layout(binding = %d) for %d samplers "
2588 "exceeds the maximum number of texture image units "
2589 "(%d)", qual->binding, elements, limit);
2590
2591 return false;
2592 }
2593 } else if (base_type->contains_atomic()) {
2594 assert(ctx->Const.MaxAtomicBufferBindings <= MAX_COMBINED_ATOMIC_BUFFERS);
2595 if (unsigned(qual->binding) >= ctx->Const.MaxAtomicBufferBindings) {
2596 _mesa_glsl_error(loc, state, "layout(binding = %d) exceeds the "
2597 " maximum number of atomic counter buffer bindings"
2598 "(%d)", qual->binding,
2599 ctx->Const.MaxAtomicBufferBindings);
2600
2601 return false;
2602 }
2603 } else if (state->is_version(420, 310) && base_type->is_image()) {
2604 assert(ctx->Const.MaxImageUnits <= MAX_IMAGE_UNITS);
2605 if (max_index >= ctx->Const.MaxImageUnits) {
2606 _mesa_glsl_error(loc, state, "Image binding %d exceeds the "
2607 " maximum number of image units (%d)", max_index,
2608 ctx->Const.MaxImageUnits);
2609 return false;
2610 }
2611
2612 } else {
2613 _mesa_glsl_error(loc, state,
2614 "the \"binding\" qualifier only applies to uniform "
2615 "blocks, opaque variables, or arrays thereof");
2616 return false;
2617 }
2618
2619 return true;
2620 }
2621
2622
2623 static glsl_interp_qualifier
2624 interpret_interpolation_qualifier(const struct ast_type_qualifier *qual,
2625 ir_variable_mode mode,
2626 struct _mesa_glsl_parse_state *state,
2627 YYLTYPE *loc)
2628 {
2629 glsl_interp_qualifier interpolation;
2630 if (qual->flags.q.flat)
2631 interpolation = INTERP_QUALIFIER_FLAT;
2632 else if (qual->flags.q.noperspective)
2633 interpolation = INTERP_QUALIFIER_NOPERSPECTIVE;
2634 else if (qual->flags.q.smooth)
2635 interpolation = INTERP_QUALIFIER_SMOOTH;
2636 else
2637 interpolation = INTERP_QUALIFIER_NONE;
2638
2639 if (interpolation != INTERP_QUALIFIER_NONE) {
2640 if (mode != ir_var_shader_in && mode != ir_var_shader_out) {
2641 _mesa_glsl_error(loc, state,
2642 "interpolation qualifier `%s' can only be applied to "
2643 "shader inputs or outputs.",
2644 interpolation_string(interpolation));
2645
2646 }
2647
2648 if ((state->stage == MESA_SHADER_VERTEX && mode == ir_var_shader_in) ||
2649 (state->stage == MESA_SHADER_FRAGMENT && mode == ir_var_shader_out)) {
2650 _mesa_glsl_error(loc, state,
2651 "interpolation qualifier `%s' cannot be applied to "
2652 "vertex shader inputs or fragment shader outputs",
2653 interpolation_string(interpolation));
2654 }
2655 }
2656
2657 return interpolation;
2658 }
2659
2660
2661 static void
2662 validate_explicit_location(const struct ast_type_qualifier *qual,
2663 ir_variable *var,
2664 struct _mesa_glsl_parse_state *state,
2665 YYLTYPE *loc)
2666 {
2667 bool fail = false;
2668
2669 /* Checks for GL_ARB_explicit_uniform_location. */
2670 if (qual->flags.q.uniform) {
2671 if (!state->check_explicit_uniform_location_allowed(loc, var))
2672 return;
2673
2674 const struct gl_context *const ctx = state->ctx;
2675 unsigned max_loc = qual->location + var->type->uniform_locations() - 1;
2676
2677 if (max_loc >= ctx->Const.MaxUserAssignableUniformLocations) {
2678 _mesa_glsl_error(loc, state, "location(s) consumed by uniform %s "
2679 ">= MAX_UNIFORM_LOCATIONS (%u)", var->name,
2680 ctx->Const.MaxUserAssignableUniformLocations);
2681 return;
2682 }
2683
2684 var->data.explicit_location = true;
2685 var->data.location = qual->location;
2686 return;
2687 }
2688
2689 /* Between GL_ARB_explicit_attrib_location an
2690 * GL_ARB_separate_shader_objects, the inputs and outputs of any shader
2691 * stage can be assigned explicit locations. The checking here associates
2692 * the correct extension with the correct stage's input / output:
2693 *
2694 * input output
2695 * ----- ------
2696 * vertex explicit_loc sso
2697 * tess control sso sso
2698 * tess eval sso sso
2699 * geometry sso sso
2700 * fragment sso explicit_loc
2701 */
2702 switch (state->stage) {
2703 case MESA_SHADER_VERTEX:
2704 if (var->data.mode == ir_var_shader_in) {
2705 if (!state->check_explicit_attrib_location_allowed(loc, var))
2706 return;
2707
2708 break;
2709 }
2710
2711 if (var->data.mode == ir_var_shader_out) {
2712 if (!state->check_separate_shader_objects_allowed(loc, var))
2713 return;
2714
2715 break;
2716 }
2717
2718 fail = true;
2719 break;
2720
2721 case MESA_SHADER_TESS_CTRL:
2722 case MESA_SHADER_TESS_EVAL:
2723 case MESA_SHADER_GEOMETRY:
2724 if (var->data.mode == ir_var_shader_in || var->data.mode == ir_var_shader_out) {
2725 if (!state->check_separate_shader_objects_allowed(loc, var))
2726 return;
2727
2728 break;
2729 }
2730
2731 fail = true;
2732 break;
2733
2734 case MESA_SHADER_FRAGMENT:
2735 if (var->data.mode == ir_var_shader_in) {
2736 if (!state->check_separate_shader_objects_allowed(loc, var))
2737 return;
2738
2739 break;
2740 }
2741
2742 if (var->data.mode == ir_var_shader_out) {
2743 if (!state->check_explicit_attrib_location_allowed(loc, var))
2744 return;
2745
2746 break;
2747 }
2748
2749 fail = true;
2750 break;
2751
2752 case MESA_SHADER_COMPUTE:
2753 _mesa_glsl_error(loc, state,
2754 "compute shader variables cannot be given "
2755 "explicit locations");
2756 return;
2757 };
2758
2759 if (fail) {
2760 _mesa_glsl_error(loc, state,
2761 "%s cannot be given an explicit location in %s shader",
2762 mode_string(var),
2763 _mesa_shader_stage_to_string(state->stage));
2764 } else {
2765 var->data.explicit_location = true;
2766
2767 switch (state->stage) {
2768 case MESA_SHADER_VERTEX:
2769 var->data.location = (var->data.mode == ir_var_shader_in)
2770 ? (qual->location + VERT_ATTRIB_GENERIC0)
2771 : (qual->location + VARYING_SLOT_VAR0);
2772 break;
2773
2774 case MESA_SHADER_TESS_CTRL:
2775 case MESA_SHADER_TESS_EVAL:
2776 case MESA_SHADER_GEOMETRY:
2777 if (var->data.patch)
2778 var->data.location = qual->location + VARYING_SLOT_PATCH0;
2779 else
2780 var->data.location = qual->location + VARYING_SLOT_VAR0;
2781 break;
2782
2783 case MESA_SHADER_FRAGMENT:
2784 var->data.location = (var->data.mode == ir_var_shader_out)
2785 ? (qual->location + FRAG_RESULT_DATA0)
2786 : (qual->location + VARYING_SLOT_VAR0);
2787 break;
2788 case MESA_SHADER_COMPUTE:
2789 assert(!"Unexpected shader type");
2790 break;
2791 }
2792
2793 if (qual->flags.q.explicit_index) {
2794 /* From the GLSL 4.30 specification, section 4.4.2 (Output
2795 * Layout Qualifiers):
2796 *
2797 * "It is also a compile-time error if a fragment shader
2798 * sets a layout index to less than 0 or greater than 1."
2799 *
2800 * Older specifications don't mandate a behavior; we take
2801 * this as a clarification and always generate the error.
2802 */
2803 if (qual->index < 0 || qual->index > 1) {
2804 _mesa_glsl_error(loc, state,
2805 "explicit index may only be 0 or 1");
2806 } else {
2807 var->data.explicit_index = true;
2808 var->data.index = qual->index;
2809 }
2810 }
2811 }
2812 }
2813
2814 static void
2815 apply_image_qualifier_to_variable(const struct ast_type_qualifier *qual,
2816 ir_variable *var,
2817 struct _mesa_glsl_parse_state *state,
2818 YYLTYPE *loc)
2819 {
2820 const glsl_type *base_type = var->type->without_array();
2821
2822 if (base_type->is_image()) {
2823 if (var->data.mode != ir_var_uniform &&
2824 var->data.mode != ir_var_function_in) {
2825 _mesa_glsl_error(loc, state, "image variables may only be declared as "
2826 "function parameters or uniform-qualified "
2827 "global variables");
2828 }
2829
2830 var->data.image_read_only |= qual->flags.q.read_only;
2831 var->data.image_write_only |= qual->flags.q.write_only;
2832 var->data.image_coherent |= qual->flags.q.coherent;
2833 var->data.image_volatile |= qual->flags.q._volatile;
2834 var->data.image_restrict |= qual->flags.q.restrict_flag;
2835 var->data.read_only = true;
2836
2837 if (qual->flags.q.explicit_image_format) {
2838 if (var->data.mode == ir_var_function_in) {
2839 _mesa_glsl_error(loc, state, "format qualifiers cannot be "
2840 "used on image function parameters");
2841 }
2842
2843 if (qual->image_base_type != base_type->sampler_type) {
2844 _mesa_glsl_error(loc, state, "format qualifier doesn't match the "
2845 "base data type of the image");
2846 }
2847
2848 var->data.image_format = qual->image_format;
2849 } else {
2850 if (var->data.mode == ir_var_uniform) {
2851 if (state->es_shader) {
2852 _mesa_glsl_error(loc, state, "all image uniforms "
2853 "must have a format layout qualifier");
2854
2855 } else if (!qual->flags.q.write_only) {
2856 _mesa_glsl_error(loc, state, "image uniforms not qualified with "
2857 "`writeonly' must have a format layout "
2858 "qualifier");
2859 }
2860 }
2861
2862 var->data.image_format = GL_NONE;
2863 }
2864
2865 /* From page 70 of the GLSL ES 3.1 specification:
2866 *
2867 * "Except for image variables qualified with the format qualifiers
2868 * r32f, r32i, and r32ui, image variables must specify either memory
2869 * qualifier readonly or the memory qualifier writeonly."
2870 */
2871 if (state->es_shader &&
2872 var->data.image_format != GL_R32F &&
2873 var->data.image_format != GL_R32I &&
2874 var->data.image_format != GL_R32UI &&
2875 !var->data.image_read_only &&
2876 !var->data.image_write_only) {
2877 _mesa_glsl_error(loc, state, "image variables of format other than "
2878 "r32f, r32i or r32ui must be qualified `readonly' or "
2879 "`writeonly'");
2880 }
2881
2882 } else if (qual->flags.q.read_only ||
2883 qual->flags.q.write_only ||
2884 qual->flags.q.coherent ||
2885 qual->flags.q._volatile ||
2886 qual->flags.q.restrict_flag ||
2887 qual->flags.q.explicit_image_format) {
2888 _mesa_glsl_error(loc, state, "memory qualifiers may only be applied to "
2889 "images");
2890 }
2891 }
2892
2893 static inline const char*
2894 get_layout_qualifier_string(bool origin_upper_left, bool pixel_center_integer)
2895 {
2896 if (origin_upper_left && pixel_center_integer)
2897 return "origin_upper_left, pixel_center_integer";
2898 else if (origin_upper_left)
2899 return "origin_upper_left";
2900 else if (pixel_center_integer)
2901 return "pixel_center_integer";
2902 else
2903 return " ";
2904 }
2905
2906 static inline bool
2907 is_conflicting_fragcoord_redeclaration(struct _mesa_glsl_parse_state *state,
2908 const struct ast_type_qualifier *qual)
2909 {
2910 /* If gl_FragCoord was previously declared, and the qualifiers were
2911 * different in any way, return true.
2912 */
2913 if (state->fs_redeclares_gl_fragcoord) {
2914 return (state->fs_pixel_center_integer != qual->flags.q.pixel_center_integer
2915 || state->fs_origin_upper_left != qual->flags.q.origin_upper_left);
2916 }
2917
2918 return false;
2919 }
2920
2921 static inline void
2922 validate_array_dimensions(const glsl_type *t,
2923 struct _mesa_glsl_parse_state *state,
2924 YYLTYPE *loc) {
2925 if (t->is_array()) {
2926 t = t->fields.array;
2927 while (t->is_array()) {
2928 if (t->is_unsized_array()) {
2929 _mesa_glsl_error(loc, state,
2930 "only the outermost array dimension can "
2931 "be unsized",
2932 t->name);
2933 break;
2934 }
2935 t = t->fields.array;
2936 }
2937 }
2938 }
2939
2940 static void
2941 apply_layout_qualifier_to_variable(const struct ast_type_qualifier *qual,
2942 ir_variable *var,
2943 struct _mesa_glsl_parse_state *state,
2944 YYLTYPE *loc)
2945 {
2946 if (var->name != NULL && strcmp(var->name, "gl_FragCoord") == 0) {
2947
2948 /* Section 4.3.8.1, page 39 of GLSL 1.50 spec says:
2949 *
2950 * "Within any shader, the first redeclarations of gl_FragCoord
2951 * must appear before any use of gl_FragCoord."
2952 *
2953 * Generate a compiler error if above condition is not met by the
2954 * fragment shader.
2955 */
2956 ir_variable *earlier = state->symbols->get_variable("gl_FragCoord");
2957 if (earlier != NULL &&
2958 earlier->data.used &&
2959 !state->fs_redeclares_gl_fragcoord) {
2960 _mesa_glsl_error(loc, state,
2961 "gl_FragCoord used before its first redeclaration "
2962 "in fragment shader");
2963 }
2964
2965 /* Make sure all gl_FragCoord redeclarations specify the same layout
2966 * qualifiers.
2967 */
2968 if (is_conflicting_fragcoord_redeclaration(state, qual)) {
2969 const char *const qual_string =
2970 get_layout_qualifier_string(qual->flags.q.origin_upper_left,
2971 qual->flags.q.pixel_center_integer);
2972
2973 const char *const state_string =
2974 get_layout_qualifier_string(state->fs_origin_upper_left,
2975 state->fs_pixel_center_integer);
2976
2977 _mesa_glsl_error(loc, state,
2978 "gl_FragCoord redeclared with different layout "
2979 "qualifiers (%s) and (%s) ",
2980 state_string,
2981 qual_string);
2982 }
2983 state->fs_origin_upper_left = qual->flags.q.origin_upper_left;
2984 state->fs_pixel_center_integer = qual->flags.q.pixel_center_integer;
2985 state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers =
2986 !qual->flags.q.origin_upper_left && !qual->flags.q.pixel_center_integer;
2987 state->fs_redeclares_gl_fragcoord =
2988 state->fs_origin_upper_left ||
2989 state->fs_pixel_center_integer ||
2990 state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers;
2991 }
2992
2993 var->data.pixel_center_integer = qual->flags.q.pixel_center_integer;
2994 var->data.origin_upper_left = qual->flags.q.origin_upper_left;
2995 if ((qual->flags.q.origin_upper_left || qual->flags.q.pixel_center_integer)
2996 && (strcmp(var->name, "gl_FragCoord") != 0)) {
2997 const char *const qual_string = (qual->flags.q.origin_upper_left)
2998 ? "origin_upper_left" : "pixel_center_integer";
2999
3000 _mesa_glsl_error(loc, state,
3001 "layout qualifier `%s' can only be applied to "
3002 "fragment shader input `gl_FragCoord'",
3003 qual_string);
3004 }
3005
3006 if (qual->flags.q.explicit_location) {
3007 validate_explicit_location(qual, var, state, loc);
3008 } else if (qual->flags.q.explicit_index) {
3009 _mesa_glsl_error(loc, state, "explicit index requires explicit location");
3010 }
3011
3012 if (qual->flags.q.explicit_binding &&
3013 validate_binding_qualifier(state, loc, var->type, qual)) {
3014 var->data.explicit_binding = true;
3015 var->data.binding = qual->binding;
3016 }
3017
3018 if (state->stage == MESA_SHADER_GEOMETRY &&
3019 qual->flags.q.out && qual->flags.q.stream) {
3020 var->data.stream = qual->stream;
3021 }
3022
3023 if (var->type->contains_atomic()) {
3024 if (var->data.mode == ir_var_uniform) {
3025 if (var->data.explicit_binding) {
3026 unsigned *offset =
3027 &state->atomic_counter_offsets[var->data.binding];
3028
3029 if (*offset % ATOMIC_COUNTER_SIZE)
3030 _mesa_glsl_error(loc, state,
3031 "misaligned atomic counter offset");
3032
3033 var->data.atomic.offset = *offset;
3034 *offset += var->type->atomic_size();
3035
3036 } else {
3037 _mesa_glsl_error(loc, state,
3038 "atomic counters require explicit binding point");
3039 }
3040 } else if (var->data.mode != ir_var_function_in) {
3041 _mesa_glsl_error(loc, state, "atomic counters may only be declared as "
3042 "function parameters or uniform-qualified "
3043 "global variables");
3044 }
3045 }
3046
3047 /* Is the 'layout' keyword used with parameters that allow relaxed checking.
3048 * Many implementations of GL_ARB_fragment_coord_conventions_enable and some
3049 * implementations (only Mesa?) GL_ARB_explicit_attrib_location_enable
3050 * allowed the layout qualifier to be used with 'varying' and 'attribute'.
3051 * These extensions and all following extensions that add the 'layout'
3052 * keyword have been modified to require the use of 'in' or 'out'.
3053 *
3054 * The following extension do not allow the deprecated keywords:
3055 *
3056 * GL_AMD_conservative_depth
3057 * GL_ARB_conservative_depth
3058 * GL_ARB_gpu_shader5
3059 * GL_ARB_separate_shader_objects
3060 * GL_ARB_tessellation_shader
3061 * GL_ARB_transform_feedback3
3062 * GL_ARB_uniform_buffer_object
3063 *
3064 * It is unknown whether GL_EXT_shader_image_load_store or GL_NV_gpu_shader5
3065 * allow layout with the deprecated keywords.
3066 */
3067 const bool relaxed_layout_qualifier_checking =
3068 state->ARB_fragment_coord_conventions_enable;
3069
3070 const bool uses_deprecated_qualifier = qual->flags.q.attribute
3071 || qual->flags.q.varying;
3072 if (qual->has_layout() && uses_deprecated_qualifier) {
3073 if (relaxed_layout_qualifier_checking) {
3074 _mesa_glsl_warning(loc, state,
3075 "`layout' qualifier may not be used with "
3076 "`attribute' or `varying'");
3077 } else {
3078 _mesa_glsl_error(loc, state,
3079 "`layout' qualifier may not be used with "
3080 "`attribute' or `varying'");
3081 }
3082 }
3083
3084 /* Layout qualifiers for gl_FragDepth, which are enabled by extension
3085 * AMD_conservative_depth.
3086 */
3087 int depth_layout_count = qual->flags.q.depth_any
3088 + qual->flags.q.depth_greater
3089 + qual->flags.q.depth_less
3090 + qual->flags.q.depth_unchanged;
3091 if (depth_layout_count > 0
3092 && !state->AMD_conservative_depth_enable
3093 && !state->ARB_conservative_depth_enable) {
3094 _mesa_glsl_error(loc, state,
3095 "extension GL_AMD_conservative_depth or "
3096 "GL_ARB_conservative_depth must be enabled "
3097 "to use depth layout qualifiers");
3098 } else if (depth_layout_count > 0
3099 && strcmp(var->name, "gl_FragDepth") != 0) {
3100 _mesa_glsl_error(loc, state,
3101 "depth layout qualifiers can be applied only to "
3102 "gl_FragDepth");
3103 } else if (depth_layout_count > 1
3104 && strcmp(var->name, "gl_FragDepth") == 0) {
3105 _mesa_glsl_error(loc, state,
3106 "at most one depth layout qualifier can be applied to "
3107 "gl_FragDepth");
3108 }
3109 if (qual->flags.q.depth_any)
3110 var->data.depth_layout = ir_depth_layout_any;
3111 else if (qual->flags.q.depth_greater)
3112 var->data.depth_layout = ir_depth_layout_greater;
3113 else if (qual->flags.q.depth_less)
3114 var->data.depth_layout = ir_depth_layout_less;
3115 else if (qual->flags.q.depth_unchanged)
3116 var->data.depth_layout = ir_depth_layout_unchanged;
3117 else
3118 var->data.depth_layout = ir_depth_layout_none;
3119
3120 if (qual->flags.q.std140 ||
3121 qual->flags.q.std430 ||
3122 qual->flags.q.packed ||
3123 qual->flags.q.shared) {
3124 _mesa_glsl_error(loc, state,
3125 "uniform and shader storage block layout qualifiers "
3126 "std140, std430, packed, and shared can only be "
3127 "applied to uniform or shader storage blocks, not "
3128 "members");
3129 }
3130
3131 if (qual->flags.q.row_major || qual->flags.q.column_major) {
3132 validate_matrix_layout_for_type(state, loc, var->type, var);
3133 }
3134
3135 /* From section 4.4.1.3 of the GLSL 4.50 specification (Fragment Shader
3136 * Inputs):
3137 *
3138 * "Fragment shaders also allow the following layout qualifier on in only
3139 * (not with variable declarations)
3140 * layout-qualifier-id
3141 * early_fragment_tests
3142 * [...]"
3143 */
3144 if (qual->flags.q.early_fragment_tests) {
3145 _mesa_glsl_error(loc, state, "early_fragment_tests layout qualifier only "
3146 "valid in fragment shader input layout declaration.");
3147 }
3148 }
3149
3150 static void
3151 apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
3152 ir_variable *var,
3153 struct _mesa_glsl_parse_state *state,
3154 YYLTYPE *loc,
3155 bool is_parameter)
3156 {
3157 STATIC_ASSERT(sizeof(qual->flags.q) <= sizeof(qual->flags.i));
3158
3159 if (qual->flags.q.invariant) {
3160 if (var->data.used) {
3161 _mesa_glsl_error(loc, state,
3162 "variable `%s' may not be redeclared "
3163 "`invariant' after being used",
3164 var->name);
3165 } else {
3166 var->data.invariant = 1;
3167 }
3168 }
3169
3170 if (qual->flags.q.precise) {
3171 if (var->data.used) {
3172 _mesa_glsl_error(loc, state,
3173 "variable `%s' may not be redeclared "
3174 "`precise' after being used",
3175 var->name);
3176 } else {
3177 var->data.precise = 1;
3178 }
3179 }
3180
3181 if (qual->flags.q.subroutine && !qual->flags.q.uniform) {
3182 _mesa_glsl_error(loc, state,
3183 "`subroutine' may only be applied to uniforms, "
3184 "subroutine type declarations, or function definitions");
3185 }
3186
3187 if (qual->flags.q.constant || qual->flags.q.attribute
3188 || qual->flags.q.uniform
3189 || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
3190 var->data.read_only = 1;
3191
3192 if (qual->flags.q.centroid)
3193 var->data.centroid = 1;
3194
3195 if (qual->flags.q.sample)
3196 var->data.sample = 1;
3197
3198 /* Precision qualifiers do not hold any meaning in Desktop GLSL */
3199 if (state->es_shader) {
3200 var->data.precision =
3201 select_gles_precision(qual->precision, var->type, state, loc);
3202 }
3203
3204 if (qual->flags.q.patch)
3205 var->data.patch = 1;
3206
3207 if (qual->flags.q.attribute && state->stage != MESA_SHADER_VERTEX) {
3208 var->type = glsl_type::error_type;
3209 _mesa_glsl_error(loc, state,
3210 "`attribute' variables may not be declared in the "
3211 "%s shader",
3212 _mesa_shader_stage_to_string(state->stage));
3213 }
3214
3215 /* Disallow layout qualifiers which may only appear on layout declarations. */
3216 if (qual->flags.q.prim_type) {
3217 _mesa_glsl_error(loc, state,
3218 "Primitive type may only be specified on GS input or output "
3219 "layout declaration, not on variables.");
3220 }
3221
3222 /* Section 6.1.1 (Function Calling Conventions) of the GLSL 1.10 spec says:
3223 *
3224 * "However, the const qualifier cannot be used with out or inout."
3225 *
3226 * The same section of the GLSL 4.40 spec further clarifies this saying:
3227 *
3228 * "The const qualifier cannot be used with out or inout, or a
3229 * compile-time error results."
3230 */
3231 if (is_parameter && qual->flags.q.constant && qual->flags.q.out) {
3232 _mesa_glsl_error(loc, state,
3233 "`const' may not be applied to `out' or `inout' "
3234 "function parameters");
3235 }
3236
3237 /* If there is no qualifier that changes the mode of the variable, leave
3238 * the setting alone.
3239 */
3240 assert(var->data.mode != ir_var_temporary);
3241 if (qual->flags.q.in && qual->flags.q.out)
3242 var->data.mode = ir_var_function_inout;
3243 else if (qual->flags.q.in)
3244 var->data.mode = is_parameter ? ir_var_function_in : ir_var_shader_in;
3245 else if (qual->flags.q.attribute
3246 || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
3247 var->data.mode = ir_var_shader_in;
3248 else if (qual->flags.q.out)
3249 var->data.mode = is_parameter ? ir_var_function_out : ir_var_shader_out;
3250 else if (qual->flags.q.varying && (state->stage == MESA_SHADER_VERTEX))
3251 var->data.mode = ir_var_shader_out;
3252 else if (qual->flags.q.uniform)
3253 var->data.mode = ir_var_uniform;
3254 else if (qual->flags.q.buffer)
3255 var->data.mode = ir_var_shader_storage;
3256 else if (qual->flags.q.shared_storage)
3257 var->data.mode = ir_var_shader_shared;
3258
3259 if (!is_parameter && is_varying_var(var, state->stage)) {
3260 /* User-defined ins/outs are not permitted in compute shaders. */
3261 if (state->stage == MESA_SHADER_COMPUTE) {
3262 _mesa_glsl_error(loc, state,
3263 "user-defined input and output variables are not "
3264 "permitted in compute shaders");
3265 }
3266
3267 /* This variable is being used to link data between shader stages (in
3268 * pre-glsl-1.30 parlance, it's a "varying"). Check that it has a type
3269 * that is allowed for such purposes.
3270 *
3271 * From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
3272 *
3273 * "The varying qualifier can be used only with the data types
3274 * float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
3275 * these."
3276 *
3277 * This was relaxed in GLSL version 1.30 and GLSL ES version 3.00. From
3278 * page 31 (page 37 of the PDF) of the GLSL 1.30 spec:
3279 *
3280 * "Fragment inputs can only be signed and unsigned integers and
3281 * integer vectors, float, floating-point vectors, matrices, or
3282 * arrays of these. Structures cannot be input.
3283 *
3284 * Similar text exists in the section on vertex shader outputs.
3285 *
3286 * Similar text exists in the GLSL ES 3.00 spec, except that the GLSL ES
3287 * 3.00 spec allows structs as well. Varying structs are also allowed
3288 * in GLSL 1.50.
3289 */
3290 switch (var->type->get_scalar_type()->base_type) {
3291 case GLSL_TYPE_FLOAT:
3292 /* Ok in all GLSL versions */
3293 break;
3294 case GLSL_TYPE_UINT:
3295 case GLSL_TYPE_INT:
3296 if (state->is_version(130, 300))
3297 break;
3298 _mesa_glsl_error(loc, state,
3299 "varying variables must be of base type float in %s",
3300 state->get_version_string());
3301 break;
3302 case GLSL_TYPE_STRUCT:
3303 if (state->is_version(150, 300))
3304 break;
3305 _mesa_glsl_error(loc, state,
3306 "varying variables may not be of type struct");
3307 break;
3308 case GLSL_TYPE_DOUBLE:
3309 break;
3310 default:
3311 _mesa_glsl_error(loc, state, "illegal type for a varying variable");
3312 break;
3313 }
3314 }
3315
3316 if (state->all_invariant && (state->current_function == NULL)) {
3317 switch (state->stage) {
3318 case MESA_SHADER_VERTEX:
3319 if (var->data.mode == ir_var_shader_out)
3320 var->data.invariant = true;
3321 break;
3322 case MESA_SHADER_TESS_CTRL:
3323 case MESA_SHADER_TESS_EVAL:
3324 case MESA_SHADER_GEOMETRY:
3325 if ((var->data.mode == ir_var_shader_in)
3326 || (var->data.mode == ir_var_shader_out))
3327 var->data.invariant = true;
3328 break;
3329 case MESA_SHADER_FRAGMENT:
3330 if (var->data.mode == ir_var_shader_in)
3331 var->data.invariant = true;
3332 break;
3333 case MESA_SHADER_COMPUTE:
3334 /* Invariance isn't meaningful in compute shaders. */
3335 break;
3336 }
3337 }
3338
3339 var->data.interpolation =
3340 interpret_interpolation_qualifier(qual, (ir_variable_mode) var->data.mode,
3341 state, loc);
3342
3343 /* Does the declaration use the deprecated 'attribute' or 'varying'
3344 * keywords?
3345 */
3346 const bool uses_deprecated_qualifier = qual->flags.q.attribute
3347 || qual->flags.q.varying;
3348
3349
3350 /* Validate auxiliary storage qualifiers */
3351
3352 /* From section 4.3.4 of the GLSL 1.30 spec:
3353 * "It is an error to use centroid in in a vertex shader."
3354 *
3355 * From section 4.3.4 of the GLSL ES 3.00 spec:
3356 * "It is an error to use centroid in or interpolation qualifiers in
3357 * a vertex shader input."
3358 */
3359
3360 /* Section 4.3.6 of the GLSL 1.30 specification states:
3361 * "It is an error to use centroid out in a fragment shader."
3362 *
3363 * The GL_ARB_shading_language_420pack extension specification states:
3364 * "It is an error to use auxiliary storage qualifiers or interpolation
3365 * qualifiers on an output in a fragment shader."
3366 */
3367 if (qual->flags.q.sample && (!is_varying_var(var, state->stage) || uses_deprecated_qualifier)) {
3368 _mesa_glsl_error(loc, state,
3369 "sample qualifier may only be used on `in` or `out` "
3370 "variables between shader stages");
3371 }
3372 if (qual->flags.q.centroid && !is_varying_var(var, state->stage)) {
3373 _mesa_glsl_error(loc, state,
3374 "centroid qualifier may only be used with `in', "
3375 "`out' or `varying' variables between shader stages");
3376 }
3377
3378 if (qual->flags.q.shared_storage && state->stage != MESA_SHADER_COMPUTE) {
3379 _mesa_glsl_error(loc, state,
3380 "the shared storage qualifiers can only be used with "
3381 "compute shaders");
3382 }
3383
3384 apply_image_qualifier_to_variable(qual, var, state, loc);
3385 }
3386
3387 /**
3388 * Get the variable that is being redeclared by this declaration
3389 *
3390 * Semantic checks to verify the validity of the redeclaration are also
3391 * performed. If semantic checks fail, compilation error will be emitted via
3392 * \c _mesa_glsl_error, but a non-\c NULL pointer will still be returned.
3393 *
3394 * \returns
3395 * A pointer to an existing variable in the current scope if the declaration
3396 * is a redeclaration, \c NULL otherwise.
3397 */
3398 static ir_variable *
3399 get_variable_being_redeclared(ir_variable *var, YYLTYPE loc,
3400 struct _mesa_glsl_parse_state *state,
3401 bool allow_all_redeclarations)
3402 {
3403 /* Check if this declaration is actually a re-declaration, either to
3404 * resize an array or add qualifiers to an existing variable.
3405 *
3406 * This is allowed for variables in the current scope, or when at
3407 * global scope (for built-ins in the implicit outer scope).
3408 */
3409 ir_variable *earlier = state->symbols->get_variable(var->name);
3410 if (earlier == NULL ||
3411 (state->current_function != NULL &&
3412 !state->symbols->name_declared_this_scope(var->name))) {
3413 return NULL;
3414 }
3415
3416
3417 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
3418 *
3419 * "It is legal to declare an array without a size and then
3420 * later re-declare the same name as an array of the same
3421 * type and specify a size."
3422 */
3423 if (earlier->type->is_unsized_array() && var->type->is_array()
3424 && (var->type->fields.array == earlier->type->fields.array)) {
3425 /* FINISHME: This doesn't match the qualifiers on the two
3426 * FINISHME: declarations. It's not 100% clear whether this is
3427 * FINISHME: required or not.
3428 */
3429
3430 const unsigned size = unsigned(var->type->array_size());
3431 check_builtin_array_max_size(var->name, size, loc, state);
3432 if ((size > 0) && (size <= earlier->data.max_array_access)) {
3433 _mesa_glsl_error(& loc, state, "array size must be > %u due to "
3434 "previous access",
3435 earlier->data.max_array_access);
3436 }
3437
3438 earlier->type = var->type;
3439 delete var;
3440 var = NULL;
3441 } else if ((state->ARB_fragment_coord_conventions_enable ||
3442 state->is_version(150, 0))
3443 && strcmp(var->name, "gl_FragCoord") == 0
3444 && earlier->type == var->type
3445 && earlier->data.mode == var->data.mode) {
3446 /* Allow redeclaration of gl_FragCoord for ARB_fcc layout
3447 * qualifiers.
3448 */
3449 earlier->data.origin_upper_left = var->data.origin_upper_left;
3450 earlier->data.pixel_center_integer = var->data.pixel_center_integer;
3451
3452 /* According to section 4.3.7 of the GLSL 1.30 spec,
3453 * the following built-in varaibles can be redeclared with an
3454 * interpolation qualifier:
3455 * * gl_FrontColor
3456 * * gl_BackColor
3457 * * gl_FrontSecondaryColor
3458 * * gl_BackSecondaryColor
3459 * * gl_Color
3460 * * gl_SecondaryColor
3461 */
3462 } else if (state->is_version(130, 0)
3463 && (strcmp(var->name, "gl_FrontColor") == 0
3464 || strcmp(var->name, "gl_BackColor") == 0
3465 || strcmp(var->name, "gl_FrontSecondaryColor") == 0
3466 || strcmp(var->name, "gl_BackSecondaryColor") == 0
3467 || strcmp(var->name, "gl_Color") == 0
3468 || strcmp(var->name, "gl_SecondaryColor") == 0)
3469 && earlier->type == var->type
3470 && earlier->data.mode == var->data.mode) {
3471 earlier->data.interpolation = var->data.interpolation;
3472
3473 /* Layout qualifiers for gl_FragDepth. */
3474 } else if ((state->AMD_conservative_depth_enable ||
3475 state->ARB_conservative_depth_enable)
3476 && strcmp(var->name, "gl_FragDepth") == 0
3477 && earlier->type == var->type
3478 && earlier->data.mode == var->data.mode) {
3479
3480 /** From the AMD_conservative_depth spec:
3481 * Within any shader, the first redeclarations of gl_FragDepth
3482 * must appear before any use of gl_FragDepth.
3483 */
3484 if (earlier->data.used) {
3485 _mesa_glsl_error(&loc, state,
3486 "the first redeclaration of gl_FragDepth "
3487 "must appear before any use of gl_FragDepth");
3488 }
3489
3490 /* Prevent inconsistent redeclaration of depth layout qualifier. */
3491 if (earlier->data.depth_layout != ir_depth_layout_none
3492 && earlier->data.depth_layout != var->data.depth_layout) {
3493 _mesa_glsl_error(&loc, state,
3494 "gl_FragDepth: depth layout is declared here "
3495 "as '%s, but it was previously declared as "
3496 "'%s'",
3497 depth_layout_string(var->data.depth_layout),
3498 depth_layout_string(earlier->data.depth_layout));
3499 }
3500
3501 earlier->data.depth_layout = var->data.depth_layout;
3502
3503 } else if (allow_all_redeclarations) {
3504 if (earlier->data.mode != var->data.mode) {
3505 _mesa_glsl_error(&loc, state,
3506 "redeclaration of `%s' with incorrect qualifiers",
3507 var->name);
3508 } else if (earlier->type != var->type) {
3509 _mesa_glsl_error(&loc, state,
3510 "redeclaration of `%s' has incorrect type",
3511 var->name);
3512 }
3513 } else {
3514 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
3515 }
3516
3517 return earlier;
3518 }
3519
3520 /**
3521 * Generate the IR for an initializer in a variable declaration
3522 */
3523 ir_rvalue *
3524 process_initializer(ir_variable *var, ast_declaration *decl,
3525 ast_fully_specified_type *type,
3526 exec_list *initializer_instructions,
3527 struct _mesa_glsl_parse_state *state)
3528 {
3529 ir_rvalue *result = NULL;
3530
3531 YYLTYPE initializer_loc = decl->initializer->get_location();
3532
3533 /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
3534 *
3535 * "All uniform variables are read-only and are initialized either
3536 * directly by an application via API commands, or indirectly by
3537 * OpenGL."
3538 */
3539 if (var->data.mode == ir_var_uniform) {
3540 state->check_version(120, 0, &initializer_loc,
3541 "cannot initialize uniform %s",
3542 var->name);
3543 }
3544
3545 /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec:
3546 *
3547 * "Buffer variables cannot have initializers."
3548 */
3549 if (var->data.mode == ir_var_shader_storage) {
3550 _mesa_glsl_error(&initializer_loc, state,
3551 "cannot initialize buffer variable %s",
3552 var->name);
3553 }
3554
3555 /* From section 4.1.7 of the GLSL 4.40 spec:
3556 *
3557 * "Opaque variables [...] are initialized only through the
3558 * OpenGL API; they cannot be declared with an initializer in a
3559 * shader."
3560 */
3561 if (var->type->contains_opaque()) {
3562 _mesa_glsl_error(&initializer_loc, state,
3563 "cannot initialize opaque variable %s",
3564 var->name);
3565 }
3566
3567 if ((var->data.mode == ir_var_shader_in) && (state->current_function == NULL)) {
3568 _mesa_glsl_error(&initializer_loc, state,
3569 "cannot initialize %s shader input / %s %s",
3570 _mesa_shader_stage_to_string(state->stage),
3571 (state->stage == MESA_SHADER_VERTEX)
3572 ? "attribute" : "varying",
3573 var->name);
3574 }
3575
3576 if (var->data.mode == ir_var_shader_out && state->current_function == NULL) {
3577 _mesa_glsl_error(&initializer_loc, state,
3578 "cannot initialize %s shader output %s",
3579 _mesa_shader_stage_to_string(state->stage),
3580 var->name);
3581 }
3582
3583 /* If the initializer is an ast_aggregate_initializer, recursively store
3584 * type information from the LHS into it, so that its hir() function can do
3585 * type checking.
3586 */
3587 if (decl->initializer->oper == ast_aggregate)
3588 _mesa_ast_set_aggregate_type(var->type, decl->initializer);
3589
3590 ir_dereference *const lhs = new(state) ir_dereference_variable(var);
3591 ir_rvalue *rhs = decl->initializer->hir(initializer_instructions, state);
3592
3593 /* Calculate the constant value if this is a const or uniform
3594 * declaration.
3595 *
3596 * Section 4.3 (Storage Qualifiers) of the GLSL ES 1.00.17 spec says:
3597 *
3598 * "Declarations of globals without a storage qualifier, or with
3599 * just the const qualifier, may include initializers, in which case
3600 * they will be initialized before the first line of main() is
3601 * executed. Such initializers must be a constant expression."
3602 *
3603 * The same section of the GLSL ES 3.00.4 spec has similar language.
3604 */
3605 if (type->qualifier.flags.q.constant
3606 || type->qualifier.flags.q.uniform
3607 || (state->es_shader && state->current_function == NULL)) {
3608 ir_rvalue *new_rhs = validate_assignment(state, initializer_loc,
3609 lhs, rhs, true);
3610 if (new_rhs != NULL) {
3611 rhs = new_rhs;
3612
3613 /* Section 4.3.3 (Constant Expressions) of the GLSL ES 3.00.4 spec
3614 * says:
3615 *
3616 * "A constant expression is one of
3617 *
3618 * ...
3619 *
3620 * - an expression formed by an operator on operands that are
3621 * all constant expressions, including getting an element of
3622 * a constant array, or a field of a constant structure, or
3623 * components of a constant vector. However, the sequence
3624 * operator ( , ) and the assignment operators ( =, +=, ...)
3625 * are not included in the operators that can create a
3626 * constant expression."
3627 *
3628 * Section 12.43 (Sequence operator and constant expressions) says:
3629 *
3630 * "Should the following construct be allowed?
3631 *
3632 * float a[2,3];
3633 *
3634 * The expression within the brackets uses the sequence operator
3635 * (',') and returns the integer 3 so the construct is declaring
3636 * a single-dimensional array of size 3. In some languages, the
3637 * construct declares a two-dimensional array. It would be
3638 * preferable to make this construct illegal to avoid confusion.
3639 *
3640 * One possibility is to change the definition of the sequence
3641 * operator so that it does not return a constant-expression and
3642 * hence cannot be used to declare an array size.
3643 *
3644 * RESOLUTION: The result of a sequence operator is not a
3645 * constant-expression."
3646 *
3647 * Section 4.3.3 (Constant Expressions) of the GLSL 4.30.9 spec
3648 * contains language almost identical to the section 4.3.3 in the
3649 * GLSL ES 3.00.4 spec. This is a new limitation for these GLSL
3650 * versions.
3651 */
3652 ir_constant *constant_value = rhs->constant_expression_value();
3653 if (!constant_value ||
3654 (state->is_version(430, 300) &&
3655 decl->initializer->has_sequence_subexpression())) {
3656 const char *const variable_mode =
3657 (type->qualifier.flags.q.constant)
3658 ? "const"
3659 : ((type->qualifier.flags.q.uniform) ? "uniform" : "global");
3660
3661 /* If ARB_shading_language_420pack is enabled, initializers of
3662 * const-qualified local variables do not have to be constant
3663 * expressions. Const-qualified global variables must still be
3664 * initialized with constant expressions.
3665 */
3666 if (!state->ARB_shading_language_420pack_enable
3667 || state->current_function == NULL) {
3668 _mesa_glsl_error(& initializer_loc, state,
3669 "initializer of %s variable `%s' must be a "
3670 "constant expression",
3671 variable_mode,
3672 decl->identifier);
3673 if (var->type->is_numeric()) {
3674 /* Reduce cascading errors. */
3675 var->constant_value = type->qualifier.flags.q.constant
3676 ? ir_constant::zero(state, var->type) : NULL;
3677 }
3678 }
3679 } else {
3680 rhs = constant_value;
3681 var->constant_value = type->qualifier.flags.q.constant
3682 ? constant_value : NULL;
3683 }
3684 } else {
3685 if (var->type->is_numeric()) {
3686 /* Reduce cascading errors. */
3687 var->constant_value = type->qualifier.flags.q.constant
3688 ? ir_constant::zero(state, var->type) : NULL;
3689 }
3690 }
3691 }
3692
3693 if (rhs && !rhs->type->is_error()) {
3694 bool temp = var->data.read_only;
3695 if (type->qualifier.flags.q.constant)
3696 var->data.read_only = false;
3697
3698 /* Never emit code to initialize a uniform.
3699 */
3700 const glsl_type *initializer_type;
3701 if (!type->qualifier.flags.q.uniform) {
3702 do_assignment(initializer_instructions, state,
3703 NULL,
3704 lhs, rhs,
3705 &result, true,
3706 true,
3707 type->get_location());
3708 initializer_type = result->type;
3709 } else
3710 initializer_type = rhs->type;
3711
3712 var->constant_initializer = rhs->constant_expression_value();
3713 var->data.has_initializer = true;
3714
3715 /* If the declared variable is an unsized array, it must inherrit
3716 * its full type from the initializer. A declaration such as
3717 *
3718 * uniform float a[] = float[](1.0, 2.0, 3.0, 3.0);
3719 *
3720 * becomes
3721 *
3722 * uniform float a[4] = float[](1.0, 2.0, 3.0, 3.0);
3723 *
3724 * The assignment generated in the if-statement (below) will also
3725 * automatically handle this case for non-uniforms.
3726 *
3727 * If the declared variable is not an array, the types must
3728 * already match exactly. As a result, the type assignment
3729 * here can be done unconditionally. For non-uniforms the call
3730 * to do_assignment can change the type of the initializer (via
3731 * the implicit conversion rules). For uniforms the initializer
3732 * must be a constant expression, and the type of that expression
3733 * was validated above.
3734 */
3735 var->type = initializer_type;
3736
3737 var->data.read_only = temp;
3738 }
3739
3740 return result;
3741 }
3742
3743 static void
3744 validate_layout_qualifier_vertex_count(struct _mesa_glsl_parse_state *state,
3745 YYLTYPE loc, ir_variable *var,
3746 unsigned num_vertices,
3747 unsigned *size,
3748 const char *var_category)
3749 {
3750 if (var->type->is_unsized_array()) {
3751 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec says:
3752 *
3753 * All geometry shader input unsized array declarations will be
3754 * sized by an earlier input layout qualifier, when present, as per
3755 * the following table.
3756 *
3757 * Followed by a table mapping each allowed input layout qualifier to
3758 * the corresponding input length.
3759 *
3760 * Similarly for tessellation control shader outputs.
3761 */
3762 if (num_vertices != 0)
3763 var->type = glsl_type::get_array_instance(var->type->fields.array,
3764 num_vertices);
3765 } else {
3766 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec
3767 * includes the following examples of compile-time errors:
3768 *
3769 * // code sequence within one shader...
3770 * in vec4 Color1[]; // size unknown
3771 * ...Color1.length()...// illegal, length() unknown
3772 * in vec4 Color2[2]; // size is 2
3773 * ...Color1.length()...// illegal, Color1 still has no size
3774 * in vec4 Color3[3]; // illegal, input sizes are inconsistent
3775 * layout(lines) in; // legal, input size is 2, matching
3776 * in vec4 Color4[3]; // illegal, contradicts layout
3777 * ...
3778 *
3779 * To detect the case illustrated by Color3, we verify that the size of
3780 * an explicitly-sized array matches the size of any previously declared
3781 * explicitly-sized array. To detect the case illustrated by Color4, we
3782 * verify that the size of an explicitly-sized array is consistent with
3783 * any previously declared input layout.
3784 */
3785 if (num_vertices != 0 && var->type->length != num_vertices) {
3786 _mesa_glsl_error(&loc, state,
3787 "%s size contradicts previously declared layout "
3788 "(size is %u, but layout requires a size of %u)",
3789 var_category, var->type->length, num_vertices);
3790 } else if (*size != 0 && var->type->length != *size) {
3791 _mesa_glsl_error(&loc, state,
3792 "%s sizes are inconsistent (size is %u, but a "
3793 "previous declaration has size %u)",
3794 var_category, var->type->length, *size);
3795 } else {
3796 *size = var->type->length;
3797 }
3798 }
3799 }
3800
3801 static void
3802 handle_tess_ctrl_shader_output_decl(struct _mesa_glsl_parse_state *state,
3803 YYLTYPE loc, ir_variable *var)
3804 {
3805 unsigned num_vertices = 0;
3806
3807 if (state->tcs_output_vertices_specified) {
3808 num_vertices = state->out_qualifier->vertices;
3809 }
3810
3811 if (!var->type->is_array() && !var->data.patch) {
3812 _mesa_glsl_error(&loc, state,
3813 "tessellation control shader outputs must be arrays");
3814
3815 /* To avoid cascading failures, short circuit the checks below. */
3816 return;
3817 }
3818
3819 if (var->data.patch)
3820 return;
3821
3822 validate_layout_qualifier_vertex_count(state, loc, var, num_vertices,
3823 &state->tcs_output_size,
3824 "tessellation control shader output");
3825 }
3826
3827 /**
3828 * Do additional processing necessary for tessellation control/evaluation shader
3829 * input declarations. This covers both interface block arrays and bare input
3830 * variables.
3831 */
3832 static void
3833 handle_tess_shader_input_decl(struct _mesa_glsl_parse_state *state,
3834 YYLTYPE loc, ir_variable *var)
3835 {
3836 if (!var->type->is_array() && !var->data.patch) {
3837 _mesa_glsl_error(&loc, state,
3838 "per-vertex tessellation shader inputs must be arrays");
3839 /* Avoid cascading failures. */
3840 return;
3841 }
3842
3843 if (var->data.patch)
3844 return;
3845
3846 /* Unsized arrays are implicitly sized to gl_MaxPatchVertices. */
3847 if (var->type->is_unsized_array()) {
3848 var->type = glsl_type::get_array_instance(var->type->fields.array,
3849 state->Const.MaxPatchVertices);
3850 }
3851 }
3852
3853
3854 /**
3855 * Do additional processing necessary for geometry shader input declarations
3856 * (this covers both interface blocks arrays and bare input variables).
3857 */
3858 static void
3859 handle_geometry_shader_input_decl(struct _mesa_glsl_parse_state *state,
3860 YYLTYPE loc, ir_variable *var)
3861 {
3862 unsigned num_vertices = 0;
3863
3864 if (state->gs_input_prim_type_specified) {
3865 num_vertices = vertices_per_prim(state->in_qualifier->prim_type);
3866 }
3867
3868 /* Geometry shader input variables must be arrays. Caller should have
3869 * reported an error for this.
3870 */
3871 if (!var->type->is_array()) {
3872 assert(state->error);
3873
3874 /* To avoid cascading failures, short circuit the checks below. */
3875 return;
3876 }
3877
3878 validate_layout_qualifier_vertex_count(state, loc, var, num_vertices,
3879 &state->gs_input_size,
3880 "geometry shader input");
3881 }
3882
3883 void
3884 validate_identifier(const char *identifier, YYLTYPE loc,
3885 struct _mesa_glsl_parse_state *state)
3886 {
3887 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
3888 *
3889 * "Identifiers starting with "gl_" are reserved for use by
3890 * OpenGL, and may not be declared in a shader as either a
3891 * variable or a function."
3892 */
3893 if (is_gl_identifier(identifier)) {
3894 _mesa_glsl_error(&loc, state,
3895 "identifier `%s' uses reserved `gl_' prefix",
3896 identifier);
3897 } else if (strstr(identifier, "__")) {
3898 /* From page 14 (page 20 of the PDF) of the GLSL 1.10
3899 * spec:
3900 *
3901 * "In addition, all identifiers containing two
3902 * consecutive underscores (__) are reserved as
3903 * possible future keywords."
3904 *
3905 * The intention is that names containing __ are reserved for internal
3906 * use by the implementation, and names prefixed with GL_ are reserved
3907 * for use by Khronos. Names simply containing __ are dangerous to use,
3908 * but should be allowed.
3909 *
3910 * A future version of the GLSL specification will clarify this.
3911 */
3912 _mesa_glsl_warning(&loc, state,
3913 "identifier `%s' uses reserved `__' string",
3914 identifier);
3915 }
3916 }
3917
3918 ir_rvalue *
3919 ast_declarator_list::hir(exec_list *instructions,
3920 struct _mesa_glsl_parse_state *state)
3921 {
3922 void *ctx = state;
3923 const struct glsl_type *decl_type;
3924 const char *type_name = NULL;
3925 ir_rvalue *result = NULL;
3926 YYLTYPE loc = this->get_location();
3927
3928 /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec:
3929 *
3930 * "To ensure that a particular output variable is invariant, it is
3931 * necessary to use the invariant qualifier. It can either be used to
3932 * qualify a previously declared variable as being invariant
3933 *
3934 * invariant gl_Position; // make existing gl_Position be invariant"
3935 *
3936 * In these cases the parser will set the 'invariant' flag in the declarator
3937 * list, and the type will be NULL.
3938 */
3939 if (this->invariant) {
3940 assert(this->type == NULL);
3941
3942 if (state->current_function != NULL) {
3943 _mesa_glsl_error(& loc, state,
3944 "all uses of `invariant' keyword must be at global "
3945 "scope");
3946 }
3947
3948 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
3949 assert(decl->array_specifier == NULL);
3950 assert(decl->initializer == NULL);
3951
3952 ir_variable *const earlier =
3953 state->symbols->get_variable(decl->identifier);
3954 if (earlier == NULL) {
3955 _mesa_glsl_error(& loc, state,
3956 "undeclared variable `%s' cannot be marked "
3957 "invariant", decl->identifier);
3958 } else if (!is_varying_var(earlier, state->stage)) {
3959 _mesa_glsl_error(&loc, state,
3960 "`%s' cannot be marked invariant; interfaces between "
3961 "shader stages only.", decl->identifier);
3962 } else if (earlier->data.used) {
3963 _mesa_glsl_error(& loc, state,
3964 "variable `%s' may not be redeclared "
3965 "`invariant' after being used",
3966 earlier->name);
3967 } else {
3968 earlier->data.invariant = true;
3969 }
3970 }
3971
3972 /* Invariant redeclarations do not have r-values.
3973 */
3974 return NULL;
3975 }
3976
3977 if (this->precise) {
3978 assert(this->type == NULL);
3979
3980 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
3981 assert(decl->array_specifier == NULL);
3982 assert(decl->initializer == NULL);
3983
3984 ir_variable *const earlier =
3985 state->symbols->get_variable(decl->identifier);
3986 if (earlier == NULL) {
3987 _mesa_glsl_error(& loc, state,
3988 "undeclared variable `%s' cannot be marked "
3989 "precise", decl->identifier);
3990 } else if (state->current_function != NULL &&
3991 !state->symbols->name_declared_this_scope(decl->identifier)) {
3992 /* Note: we have to check if we're in a function, since
3993 * builtins are treated as having come from another scope.
3994 */
3995 _mesa_glsl_error(& loc, state,
3996 "variable `%s' from an outer scope may not be "
3997 "redeclared `precise' in this scope",
3998 earlier->name);
3999 } else if (earlier->data.used) {
4000 _mesa_glsl_error(& loc, state,
4001 "variable `%s' may not be redeclared "
4002 "`precise' after being used",
4003 earlier->name);
4004 } else {
4005 earlier->data.precise = true;
4006 }
4007 }
4008
4009 /* Precise redeclarations do not have r-values either. */
4010 return NULL;
4011 }
4012
4013 assert(this->type != NULL);
4014 assert(!this->invariant);
4015 assert(!this->precise);
4016
4017 /* The type specifier may contain a structure definition. Process that
4018 * before any of the variable declarations.
4019 */
4020 (void) this->type->specifier->hir(instructions, state);
4021
4022 decl_type = this->type->glsl_type(& type_name, state);
4023
4024 /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec:
4025 * "Buffer variables may only be declared inside interface blocks
4026 * (section 4.3.9 “Interface Blocks”), which are then referred to as
4027 * shader storage blocks. It is a compile-time error to declare buffer
4028 * variables at global scope (outside a block)."
4029 */
4030 if (type->qualifier.flags.q.buffer && !decl_type->is_interface()) {
4031 _mesa_glsl_error(&loc, state,
4032 "buffer variables cannot be declared outside "
4033 "interface blocks");
4034 }
4035
4036 /* An offset-qualified atomic counter declaration sets the default
4037 * offset for the next declaration within the same atomic counter
4038 * buffer.
4039 */
4040 if (decl_type && decl_type->contains_atomic()) {
4041 if (type->qualifier.flags.q.explicit_binding &&
4042 type->qualifier.flags.q.explicit_offset)
4043 state->atomic_counter_offsets[type->qualifier.binding] =
4044 type->qualifier.offset;
4045 }
4046
4047 if (this->declarations.is_empty()) {
4048 /* If there is no structure involved in the program text, there are two
4049 * possible scenarios:
4050 *
4051 * - The program text contained something like 'vec4;'. This is an
4052 * empty declaration. It is valid but weird. Emit a warning.
4053 *
4054 * - The program text contained something like 'S;' and 'S' is not the
4055 * name of a known structure type. This is both invalid and weird.
4056 * Emit an error.
4057 *
4058 * - The program text contained something like 'mediump float;'
4059 * when the programmer probably meant 'precision mediump
4060 * float;' Emit a warning with a description of what they
4061 * probably meant to do.
4062 *
4063 * Note that if decl_type is NULL and there is a structure involved,
4064 * there must have been some sort of error with the structure. In this
4065 * case we assume that an error was already generated on this line of
4066 * code for the structure. There is no need to generate an additional,
4067 * confusing error.
4068 */
4069 assert(this->type->specifier->structure == NULL || decl_type != NULL
4070 || state->error);
4071
4072 if (decl_type == NULL) {
4073 _mesa_glsl_error(&loc, state,
4074 "invalid type `%s' in empty declaration",
4075 type_name);
4076 } else if (decl_type->base_type == GLSL_TYPE_ATOMIC_UINT) {
4077 /* Empty atomic counter declarations are allowed and useful
4078 * to set the default offset qualifier.
4079 */
4080 return NULL;
4081 } else if (this->type->qualifier.precision != ast_precision_none) {
4082 if (this->type->specifier->structure != NULL) {
4083 _mesa_glsl_error(&loc, state,
4084 "precision qualifiers can't be applied "
4085 "to structures");
4086 } else {
4087 static const char *const precision_names[] = {
4088 "highp",
4089 "highp",
4090 "mediump",
4091 "lowp"
4092 };
4093
4094 _mesa_glsl_warning(&loc, state,
4095 "empty declaration with precision qualifier, "
4096 "to set the default precision, use "
4097 "`precision %s %s;'",
4098 precision_names[this->type->qualifier.precision],
4099 type_name);
4100 }
4101 } else if (this->type->specifier->structure == NULL) {
4102 _mesa_glsl_warning(&loc, state, "empty declaration");
4103 }
4104 }
4105
4106 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4107 const struct glsl_type *var_type;
4108 ir_variable *var;
4109 const char *identifier = decl->identifier;
4110 /* FINISHME: Emit a warning if a variable declaration shadows a
4111 * FINISHME: declaration at a higher scope.
4112 */
4113
4114 if ((decl_type == NULL) || decl_type->is_void()) {
4115 if (type_name != NULL) {
4116 _mesa_glsl_error(& loc, state,
4117 "invalid type `%s' in declaration of `%s'",
4118 type_name, decl->identifier);
4119 } else {
4120 _mesa_glsl_error(& loc, state,
4121 "invalid type in declaration of `%s'",
4122 decl->identifier);
4123 }
4124 continue;
4125 }
4126
4127 if (this->type->qualifier.flags.q.subroutine) {
4128 const glsl_type *t;
4129 const char *name;
4130
4131 t = state->symbols->get_type(this->type->specifier->type_name);
4132 if (!t)
4133 _mesa_glsl_error(& loc, state,
4134 "invalid type in declaration of `%s'",
4135 decl->identifier);
4136 name = ralloc_asprintf(ctx, "%s_%s", _mesa_shader_stage_to_subroutine_prefix(state->stage), decl->identifier);
4137
4138 identifier = name;
4139
4140 }
4141 var_type = process_array_type(&loc, decl_type, decl->array_specifier,
4142 state);
4143
4144 var = new(ctx) ir_variable(var_type, identifier, ir_var_auto);
4145
4146 /* The 'varying in' and 'varying out' qualifiers can only be used with
4147 * ARB_geometry_shader4 and EXT_geometry_shader4, which we don't support
4148 * yet.
4149 */
4150 if (this->type->qualifier.flags.q.varying) {
4151 if (this->type->qualifier.flags.q.in) {
4152 _mesa_glsl_error(& loc, state,
4153 "`varying in' qualifier in declaration of "
4154 "`%s' only valid for geometry shaders using "
4155 "ARB_geometry_shader4 or EXT_geometry_shader4",
4156 decl->identifier);
4157 } else if (this->type->qualifier.flags.q.out) {
4158 _mesa_glsl_error(& loc, state,
4159 "`varying out' qualifier in declaration of "
4160 "`%s' only valid for geometry shaders using "
4161 "ARB_geometry_shader4 or EXT_geometry_shader4",
4162 decl->identifier);
4163 }
4164 }
4165
4166 /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
4167 *
4168 * "Global variables can only use the qualifiers const,
4169 * attribute, uniform, or varying. Only one may be
4170 * specified.
4171 *
4172 * Local variables can only use the qualifier const."
4173 *
4174 * This is relaxed in GLSL 1.30 and GLSL ES 3.00. It is also relaxed by
4175 * any extension that adds the 'layout' keyword.
4176 */
4177 if (!state->is_version(130, 300)
4178 && !state->has_explicit_attrib_location()
4179 && !state->has_separate_shader_objects()
4180 && !state->ARB_fragment_coord_conventions_enable) {
4181 if (this->type->qualifier.flags.q.out) {
4182 _mesa_glsl_error(& loc, state,
4183 "`out' qualifier in declaration of `%s' "
4184 "only valid for function parameters in %s",
4185 decl->identifier, state->get_version_string());
4186 }
4187 if (this->type->qualifier.flags.q.in) {
4188 _mesa_glsl_error(& loc, state,
4189 "`in' qualifier in declaration of `%s' "
4190 "only valid for function parameters in %s",
4191 decl->identifier, state->get_version_string());
4192 }
4193 /* FINISHME: Test for other invalid qualifiers. */
4194 }
4195
4196 apply_type_qualifier_to_variable(& this->type->qualifier, var, state,
4197 & loc, false);
4198 apply_layout_qualifier_to_variable(&this->type->qualifier, var, state,
4199 &loc);
4200
4201 if (this->type->qualifier.flags.q.invariant) {
4202 if (!is_varying_var(var, state->stage)) {
4203 _mesa_glsl_error(&loc, state,
4204 "`%s' cannot be marked invariant; interfaces between "
4205 "shader stages only", var->name);
4206 }
4207 }
4208
4209 if (state->current_function != NULL) {
4210 const char *mode = NULL;
4211 const char *extra = "";
4212
4213 /* There is no need to check for 'inout' here because the parser will
4214 * only allow that in function parameter lists.
4215 */
4216 if (this->type->qualifier.flags.q.attribute) {
4217 mode = "attribute";
4218 } else if (this->type->qualifier.flags.q.subroutine) {
4219 mode = "subroutine uniform";
4220 } else if (this->type->qualifier.flags.q.uniform) {
4221 mode = "uniform";
4222 } else if (this->type->qualifier.flags.q.varying) {
4223 mode = "varying";
4224 } else if (this->type->qualifier.flags.q.in) {
4225 mode = "in";
4226 extra = " or in function parameter list";
4227 } else if (this->type->qualifier.flags.q.out) {
4228 mode = "out";
4229 extra = " or in function parameter list";
4230 }
4231
4232 if (mode) {
4233 _mesa_glsl_error(& loc, state,
4234 "%s variable `%s' must be declared at "
4235 "global scope%s",
4236 mode, var->name, extra);
4237 }
4238 } else if (var->data.mode == ir_var_shader_in) {
4239 var->data.read_only = true;
4240
4241 if (state->stage == MESA_SHADER_VERTEX) {
4242 bool error_emitted = false;
4243
4244 /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
4245 *
4246 * "Vertex shader inputs can only be float, floating-point
4247 * vectors, matrices, signed and unsigned integers and integer
4248 * vectors. Vertex shader inputs can also form arrays of these
4249 * types, but not structures."
4250 *
4251 * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
4252 *
4253 * "Vertex shader inputs can only be float, floating-point
4254 * vectors, matrices, signed and unsigned integers and integer
4255 * vectors. They cannot be arrays or structures."
4256 *
4257 * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
4258 *
4259 * "The attribute qualifier can be used only with float,
4260 * floating-point vectors, and matrices. Attribute variables
4261 * cannot be declared as arrays or structures."
4262 *
4263 * From page 33 (page 39 of the PDF) of the GLSL ES 3.00 spec:
4264 *
4265 * "Vertex shader inputs can only be float, floating-point
4266 * vectors, matrices, signed and unsigned integers and integer
4267 * vectors. Vertex shader inputs cannot be arrays or
4268 * structures."
4269 */
4270 const glsl_type *check_type = var->type->without_array();
4271
4272 switch (check_type->base_type) {
4273 case GLSL_TYPE_FLOAT:
4274 break;
4275 case GLSL_TYPE_UINT:
4276 case GLSL_TYPE_INT:
4277 if (state->is_version(120, 300))
4278 break;
4279 case GLSL_TYPE_DOUBLE:
4280 if (check_type->base_type == GLSL_TYPE_DOUBLE && (state->is_version(410, 0) || state->ARB_vertex_attrib_64bit_enable))
4281 break;
4282 /* FALLTHROUGH */
4283 default:
4284 _mesa_glsl_error(& loc, state,
4285 "vertex shader input / attribute cannot have "
4286 "type %s`%s'",
4287 var->type->is_array() ? "array of " : "",
4288 check_type->name);
4289 error_emitted = true;
4290 }
4291
4292 if (!error_emitted && var->type->is_array() &&
4293 !state->check_version(150, 0, &loc,
4294 "vertex shader input / attribute "
4295 "cannot have array type")) {
4296 error_emitted = true;
4297 }
4298 } else if (state->stage == MESA_SHADER_GEOMETRY) {
4299 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
4300 *
4301 * Geometry shader input variables get the per-vertex values
4302 * written out by vertex shader output variables of the same
4303 * names. Since a geometry shader operates on a set of
4304 * vertices, each input varying variable (or input block, see
4305 * interface blocks below) needs to be declared as an array.
4306 */
4307 if (!var->type->is_array()) {
4308 _mesa_glsl_error(&loc, state,
4309 "geometry shader inputs must be arrays");
4310 }
4311
4312 handle_geometry_shader_input_decl(state, loc, var);
4313 } else if (state->stage == MESA_SHADER_FRAGMENT) {
4314 /* From section 4.3.4 (Input Variables) of the GLSL ES 3.10 spec:
4315 *
4316 * It is a compile-time error to declare a fragment shader
4317 * input with, or that contains, any of the following types:
4318 *
4319 * * A boolean type
4320 * * An opaque type
4321 * * An array of arrays
4322 * * An array of structures
4323 * * A structure containing an array
4324 * * A structure containing a structure
4325 */
4326 if (state->es_shader) {
4327 const glsl_type *check_type = var->type->without_array();
4328 if (check_type->is_boolean() ||
4329 check_type->contains_opaque()) {
4330 _mesa_glsl_error(&loc, state,
4331 "fragment shader input cannot have type %s",
4332 check_type->name);
4333 }
4334 if (var->type->is_array() &&
4335 var->type->fields.array->is_array()) {
4336 _mesa_glsl_error(&loc, state,
4337 "%s shader output "
4338 "cannot have an array of arrays",
4339 _mesa_shader_stage_to_string(state->stage));
4340 }
4341 if (var->type->is_array() &&
4342 var->type->fields.array->is_record()) {
4343 _mesa_glsl_error(&loc, state,
4344 "fragment shader input "
4345 "cannot have an array of structs");
4346 }
4347 if (var->type->is_record()) {
4348 for (unsigned i = 0; i < var->type->length; i++) {
4349 if (var->type->fields.structure[i].type->is_array() ||
4350 var->type->fields.structure[i].type->is_record())
4351 _mesa_glsl_error(&loc, state,
4352 "fragement shader input cannot have "
4353 "a struct that contains an "
4354 "array or struct");
4355 }
4356 }
4357 }
4358 } else if (state->stage == MESA_SHADER_TESS_CTRL ||
4359 state->stage == MESA_SHADER_TESS_EVAL) {
4360 handle_tess_shader_input_decl(state, loc, var);
4361 }
4362 } else if (var->data.mode == ir_var_shader_out) {
4363 const glsl_type *check_type = var->type->without_array();
4364
4365 /* From section 4.3.6 (Output variables) of the GLSL 4.40 spec:
4366 *
4367 * It is a compile-time error to declare a vertex, tessellation
4368 * evaluation, tessellation control, or geometry shader output
4369 * that contains any of the following:
4370 *
4371 * * A Boolean type (bool, bvec2 ...)
4372 * * An opaque type
4373 */
4374 if (check_type->is_boolean() || check_type->contains_opaque())
4375 _mesa_glsl_error(&loc, state,
4376 "%s shader output cannot have type %s",
4377 _mesa_shader_stage_to_string(state->stage),
4378 check_type->name);
4379
4380 /* From section 4.3.6 (Output variables) of the GLSL 4.40 spec:
4381 *
4382 * It is a compile-time error to declare a fragment shader output
4383 * that contains any of the following:
4384 *
4385 * * A Boolean type (bool, bvec2 ...)
4386 * * A double-precision scalar or vector (double, dvec2 ...)
4387 * * An opaque type
4388 * * Any matrix type
4389 * * A structure
4390 */
4391 if (state->stage == MESA_SHADER_FRAGMENT) {
4392 if (check_type->is_record() || check_type->is_matrix())
4393 _mesa_glsl_error(&loc, state,
4394 "fragment shader output "
4395 "cannot have struct or matrix type");
4396 switch (check_type->base_type) {
4397 case GLSL_TYPE_UINT:
4398 case GLSL_TYPE_INT:
4399 case GLSL_TYPE_FLOAT:
4400 break;
4401 default:
4402 _mesa_glsl_error(&loc, state,
4403 "fragment shader output cannot have "
4404 "type %s", check_type->name);
4405 }
4406 }
4407
4408 /* From section 4.3.6 (Output Variables) of the GLSL ES 3.10 spec:
4409 *
4410 * It is a compile-time error to declare a vertex shader output
4411 * with, or that contains, any of the following types:
4412 *
4413 * * A boolean type
4414 * * An opaque type
4415 * * An array of arrays
4416 * * An array of structures
4417 * * A structure containing an array
4418 * * A structure containing a structure
4419 *
4420 * It is a compile-time error to declare a fragment shader output
4421 * with, or that contains, any of the following types:
4422 *
4423 * * A boolean type
4424 * * An opaque type
4425 * * A matrix
4426 * * A structure
4427 * * An array of array
4428 */
4429 if (state->es_shader) {
4430 if (var->type->is_array() &&
4431 var->type->fields.array->is_array()) {
4432 _mesa_glsl_error(&loc, state,
4433 "%s shader output "
4434 "cannot have an array of arrays",
4435 _mesa_shader_stage_to_string(state->stage));
4436 }
4437 if (state->stage == MESA_SHADER_VERTEX) {
4438 if (var->type->is_array() &&
4439 var->type->fields.array->is_record()) {
4440 _mesa_glsl_error(&loc, state,
4441 "vertex shader output "
4442 "cannot have an array of structs");
4443 }
4444 if (var->type->is_record()) {
4445 for (unsigned i = 0; i < var->type->length; i++) {
4446 if (var->type->fields.structure[i].type->is_array() ||
4447 var->type->fields.structure[i].type->is_record())
4448 _mesa_glsl_error(&loc, state,
4449 "vertex shader output cannot have a "
4450 "struct that contains an "
4451 "array or struct");
4452 }
4453 }
4454 }
4455 }
4456
4457 if (state->stage == MESA_SHADER_TESS_CTRL) {
4458 handle_tess_ctrl_shader_output_decl(state, loc, var);
4459 }
4460 } else if (var->type->contains_subroutine()) {
4461 /* declare subroutine uniforms as hidden */
4462 var->data.how_declared = ir_var_hidden;
4463 }
4464
4465 /* Integer fragment inputs must be qualified with 'flat'. In GLSL ES,
4466 * so must integer vertex outputs.
4467 *
4468 * From section 4.3.4 ("Inputs") of the GLSL 1.50 spec:
4469 * "Fragment shader inputs that are signed or unsigned integers or
4470 * integer vectors must be qualified with the interpolation qualifier
4471 * flat."
4472 *
4473 * From section 4.3.4 ("Input Variables") of the GLSL 3.00 ES spec:
4474 * "Fragment shader inputs that are, or contain, signed or unsigned
4475 * integers or integer vectors must be qualified with the
4476 * interpolation qualifier flat."
4477 *
4478 * From section 4.3.6 ("Output Variables") of the GLSL 3.00 ES spec:
4479 * "Vertex shader outputs that are, or contain, signed or unsigned
4480 * integers or integer vectors must be qualified with the
4481 * interpolation qualifier flat."
4482 *
4483 * Note that prior to GLSL 1.50, this requirement applied to vertex
4484 * outputs rather than fragment inputs. That creates problems in the
4485 * presence of geometry shaders, so we adopt the GLSL 1.50 rule for all
4486 * desktop GL shaders. For GLSL ES shaders, we follow the spec and
4487 * apply the restriction to both vertex outputs and fragment inputs.
4488 *
4489 * Note also that the desktop GLSL specs are missing the text "or
4490 * contain"; this is presumably an oversight, since there is no
4491 * reasonable way to interpolate a fragment shader input that contains
4492 * an integer.
4493 */
4494 if (state->is_version(130, 300) &&
4495 var->type->contains_integer() &&
4496 var->data.interpolation != INTERP_QUALIFIER_FLAT &&
4497 ((state->stage == MESA_SHADER_FRAGMENT && var->data.mode == ir_var_shader_in)
4498 || (state->stage == MESA_SHADER_VERTEX && var->data.mode == ir_var_shader_out
4499 && state->es_shader))) {
4500 const char *var_type = (state->stage == MESA_SHADER_VERTEX) ?
4501 "vertex output" : "fragment input";
4502 _mesa_glsl_error(&loc, state, "if a %s is (or contains) "
4503 "an integer, then it must be qualified with 'flat'",
4504 var_type);
4505 }
4506
4507 /* Double fragment inputs must be qualified with 'flat'. */
4508 if (var->type->contains_double() &&
4509 var->data.interpolation != INTERP_QUALIFIER_FLAT &&
4510 state->stage == MESA_SHADER_FRAGMENT &&
4511 var->data.mode == ir_var_shader_in) {
4512 _mesa_glsl_error(&loc, state, "if a fragment input is (or contains) "
4513 "a double, then it must be qualified with 'flat'",
4514 var_type);
4515 }
4516
4517 /* Interpolation qualifiers cannot be applied to 'centroid' and
4518 * 'centroid varying'.
4519 *
4520 * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
4521 * "interpolation qualifiers may only precede the qualifiers in,
4522 * centroid in, out, or centroid out in a declaration. They do not apply
4523 * to the deprecated storage qualifiers varying or centroid varying."
4524 *
4525 * These deprecated storage qualifiers do not exist in GLSL ES 3.00.
4526 */
4527 if (state->is_version(130, 0)
4528 && this->type->qualifier.has_interpolation()
4529 && this->type->qualifier.flags.q.varying) {
4530
4531 const char *i = this->type->qualifier.interpolation_string();
4532 assert(i != NULL);
4533 const char *s;
4534 if (this->type->qualifier.flags.q.centroid)
4535 s = "centroid varying";
4536 else
4537 s = "varying";
4538
4539 _mesa_glsl_error(&loc, state,
4540 "qualifier '%s' cannot be applied to the "
4541 "deprecated storage qualifier '%s'", i, s);
4542 }
4543
4544
4545 /* Interpolation qualifiers can only apply to vertex shader outputs and
4546 * fragment shader inputs.
4547 *
4548 * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
4549 * "Outputs from a vertex shader (out) and inputs to a fragment
4550 * shader (in) can be further qualified with one or more of these
4551 * interpolation qualifiers"
4552 *
4553 * From page 31 (page 37 of the PDF) of the GLSL ES 3.00 spec:
4554 * "These interpolation qualifiers may only precede the qualifiers
4555 * in, centroid in, out, or centroid out in a declaration. They do
4556 * not apply to inputs into a vertex shader or outputs from a
4557 * fragment shader."
4558 */
4559 if (state->is_version(130, 300)
4560 && this->type->qualifier.has_interpolation()) {
4561
4562 const char *i = this->type->qualifier.interpolation_string();
4563 assert(i != NULL);
4564
4565 switch (state->stage) {
4566 case MESA_SHADER_VERTEX:
4567 if (this->type->qualifier.flags.q.in) {
4568 _mesa_glsl_error(&loc, state,
4569 "qualifier '%s' cannot be applied to vertex "
4570 "shader inputs", i);
4571 }
4572 break;
4573 case MESA_SHADER_FRAGMENT:
4574 if (this->type->qualifier.flags.q.out) {
4575 _mesa_glsl_error(&loc, state,
4576 "qualifier '%s' cannot be applied to fragment "
4577 "shader outputs", i);
4578 }
4579 break;
4580 default:
4581 break;
4582 }
4583 }
4584
4585
4586 /* From section 4.3.4 of the GLSL 4.00 spec:
4587 * "Input variables may not be declared using the patch in qualifier
4588 * in tessellation control or geometry shaders."
4589 *
4590 * From section 4.3.6 of the GLSL 4.00 spec:
4591 * "It is an error to use patch out in a vertex, tessellation
4592 * evaluation, or geometry shader."
4593 *
4594 * This doesn't explicitly forbid using them in a fragment shader, but
4595 * that's probably just an oversight.
4596 */
4597 if (state->stage != MESA_SHADER_TESS_EVAL
4598 && this->type->qualifier.flags.q.patch
4599 && this->type->qualifier.flags.q.in) {
4600
4601 _mesa_glsl_error(&loc, state, "'patch in' can only be used in a "
4602 "tessellation evaluation shader");
4603 }
4604
4605 if (state->stage != MESA_SHADER_TESS_CTRL
4606 && this->type->qualifier.flags.q.patch
4607 && this->type->qualifier.flags.q.out) {
4608
4609 _mesa_glsl_error(&loc, state, "'patch out' can only be used in a "
4610 "tessellation control shader");
4611 }
4612
4613 /* Precision qualifiers exists only in GLSL versions 1.00 and >= 1.30.
4614 */
4615 if (this->type->qualifier.precision != ast_precision_none) {
4616 state->check_precision_qualifiers_allowed(&loc);
4617 }
4618
4619
4620 /* If a precision qualifier is allowed on a type, it is allowed on
4621 * an array of that type.
4622 */
4623 if (!(this->type->qualifier.precision == ast_precision_none
4624 || precision_qualifier_allowed(var->type->without_array()))) {
4625
4626 _mesa_glsl_error(&loc, state,
4627 "precision qualifiers apply only to floating point"
4628 ", integer and opaque types");
4629 }
4630
4631 /* From section 4.1.7 of the GLSL 4.40 spec:
4632 *
4633 * "[Opaque types] can only be declared as function
4634 * parameters or uniform-qualified variables."
4635 */
4636 if (var_type->contains_opaque() &&
4637 !this->type->qualifier.flags.q.uniform) {
4638 _mesa_glsl_error(&loc, state,
4639 "opaque variables must be declared uniform");
4640 }
4641
4642 /* Process the initializer and add its instructions to a temporary
4643 * list. This list will be added to the instruction stream (below) after
4644 * the declaration is added. This is done because in some cases (such as
4645 * redeclarations) the declaration may not actually be added to the
4646 * instruction stream.
4647 */
4648 exec_list initializer_instructions;
4649
4650 /* Examine var name here since var may get deleted in the next call */
4651 bool var_is_gl_id = is_gl_identifier(var->name);
4652
4653 ir_variable *earlier =
4654 get_variable_being_redeclared(var, decl->get_location(), state,
4655 false /* allow_all_redeclarations */);
4656 if (earlier != NULL) {
4657 if (var_is_gl_id &&
4658 earlier->data.how_declared == ir_var_declared_in_block) {
4659 _mesa_glsl_error(&loc, state,
4660 "`%s' has already been redeclared using "
4661 "gl_PerVertex", earlier->name);
4662 }
4663 earlier->data.how_declared = ir_var_declared_normally;
4664 }
4665
4666 if (decl->initializer != NULL) {
4667 result = process_initializer((earlier == NULL) ? var : earlier,
4668 decl, this->type,
4669 &initializer_instructions, state);
4670 } else {
4671 validate_array_dimensions(var_type, state, &loc);
4672 }
4673
4674 /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
4675 *
4676 * "It is an error to write to a const variable outside of
4677 * its declaration, so they must be initialized when
4678 * declared."
4679 */
4680 if (this->type->qualifier.flags.q.constant && decl->initializer == NULL) {
4681 _mesa_glsl_error(& loc, state,
4682 "const declaration of `%s' must be initialized",
4683 decl->identifier);
4684 }
4685
4686 if (state->es_shader) {
4687 const glsl_type *const t = (earlier == NULL)
4688 ? var->type : earlier->type;
4689
4690 if (t->is_unsized_array())
4691 /* Section 10.17 of the GLSL ES 1.00 specification states that
4692 * unsized array declarations have been removed from the language.
4693 * Arrays that are sized using an initializer are still explicitly
4694 * sized. However, GLSL ES 1.00 does not allow array
4695 * initializers. That is only allowed in GLSL ES 3.00.
4696 *
4697 * Section 4.1.9 (Arrays) of the GLSL ES 3.00 spec says:
4698 *
4699 * "An array type can also be formed without specifying a size
4700 * if the definition includes an initializer:
4701 *
4702 * float x[] = float[2] (1.0, 2.0); // declares an array of size 2
4703 * float y[] = float[] (1.0, 2.0, 3.0); // declares an array of size 3
4704 *
4705 * float a[5];
4706 * float b[] = a;"
4707 */
4708 _mesa_glsl_error(& loc, state,
4709 "unsized array declarations are not allowed in "
4710 "GLSL ES");
4711 }
4712
4713 /* If the declaration is not a redeclaration, there are a few additional
4714 * semantic checks that must be applied. In addition, variable that was
4715 * created for the declaration should be added to the IR stream.
4716 */
4717 if (earlier == NULL) {
4718 validate_identifier(decl->identifier, loc, state);
4719
4720 /* Add the variable to the symbol table. Note that the initializer's
4721 * IR was already processed earlier (though it hasn't been emitted
4722 * yet), without the variable in scope.
4723 *
4724 * This differs from most C-like languages, but it follows the GLSL
4725 * specification. From page 28 (page 34 of the PDF) of the GLSL 1.50
4726 * spec:
4727 *
4728 * "Within a declaration, the scope of a name starts immediately
4729 * after the initializer if present or immediately after the name
4730 * being declared if not."
4731 */
4732 if (!state->symbols->add_variable(var)) {
4733 YYLTYPE loc = this->get_location();
4734 _mesa_glsl_error(&loc, state, "name `%s' already taken in the "
4735 "current scope", decl->identifier);
4736 continue;
4737 }
4738
4739 /* Push the variable declaration to the top. It means that all the
4740 * variable declarations will appear in a funny last-to-first order,
4741 * but otherwise we run into trouble if a function is prototyped, a
4742 * global var is decled, then the function is defined with usage of
4743 * the global var. See glslparsertest's CorrectModule.frag.
4744 */
4745 instructions->push_head(var);
4746 }
4747
4748 instructions->append_list(&initializer_instructions);
4749 }
4750
4751
4752 /* Generally, variable declarations do not have r-values. However,
4753 * one is used for the declaration in
4754 *
4755 * while (bool b = some_condition()) {
4756 * ...
4757 * }
4758 *
4759 * so we return the rvalue from the last seen declaration here.
4760 */
4761 return result;
4762 }
4763
4764
4765 ir_rvalue *
4766 ast_parameter_declarator::hir(exec_list *instructions,
4767 struct _mesa_glsl_parse_state *state)
4768 {
4769 void *ctx = state;
4770 const struct glsl_type *type;
4771 const char *name = NULL;
4772 YYLTYPE loc = this->get_location();
4773
4774 type = this->type->glsl_type(& name, state);
4775
4776 if (type == NULL) {
4777 if (name != NULL) {
4778 _mesa_glsl_error(& loc, state,
4779 "invalid type `%s' in declaration of `%s'",
4780 name, this->identifier);
4781 } else {
4782 _mesa_glsl_error(& loc, state,
4783 "invalid type in declaration of `%s'",
4784 this->identifier);
4785 }
4786
4787 type = glsl_type::error_type;
4788 }
4789
4790 /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
4791 *
4792 * "Functions that accept no input arguments need not use void in the
4793 * argument list because prototypes (or definitions) are required and
4794 * therefore there is no ambiguity when an empty argument list "( )" is
4795 * declared. The idiom "(void)" as a parameter list is provided for
4796 * convenience."
4797 *
4798 * Placing this check here prevents a void parameter being set up
4799 * for a function, which avoids tripping up checks for main taking
4800 * parameters and lookups of an unnamed symbol.
4801 */
4802 if (type->is_void()) {
4803 if (this->identifier != NULL)
4804 _mesa_glsl_error(& loc, state,
4805 "named parameter cannot have type `void'");
4806
4807 is_void = true;
4808 return NULL;
4809 }
4810
4811 if (formal_parameter && (this->identifier == NULL)) {
4812 _mesa_glsl_error(& loc, state, "formal parameter lacks a name");
4813 return NULL;
4814 }
4815
4816 /* This only handles "vec4 foo[..]". The earlier specifier->glsl_type(...)
4817 * call already handled the "vec4[..] foo" case.
4818 */
4819 type = process_array_type(&loc, type, this->array_specifier, state);
4820
4821 if (!type->is_error() && type->is_unsized_array()) {
4822 _mesa_glsl_error(&loc, state, "arrays passed as parameters must have "
4823 "a declared size");
4824 type = glsl_type::error_type;
4825 }
4826
4827 is_void = false;
4828 ir_variable *var = new(ctx)
4829 ir_variable(type, this->identifier, ir_var_function_in);
4830
4831 /* Apply any specified qualifiers to the parameter declaration. Note that
4832 * for function parameters the default mode is 'in'.
4833 */
4834 apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc,
4835 true);
4836
4837 /* From section 4.1.7 of the GLSL 4.40 spec:
4838 *
4839 * "Opaque variables cannot be treated as l-values; hence cannot
4840 * be used as out or inout function parameters, nor can they be
4841 * assigned into."
4842 */
4843 if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
4844 && type->contains_opaque()) {
4845 _mesa_glsl_error(&loc, state, "out and inout parameters cannot "
4846 "contain opaque variables");
4847 type = glsl_type::error_type;
4848 }
4849
4850 /* From page 39 (page 45 of the PDF) of the GLSL 1.10 spec:
4851 *
4852 * "When calling a function, expressions that do not evaluate to
4853 * l-values cannot be passed to parameters declared as out or inout."
4854 *
4855 * From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
4856 *
4857 * "Other binary or unary expressions, non-dereferenced arrays,
4858 * function names, swizzles with repeated fields, and constants
4859 * cannot be l-values."
4860 *
4861 * So for GLSL 1.10, passing an array as an out or inout parameter is not
4862 * allowed. This restriction is removed in GLSL 1.20, and in GLSL ES.
4863 */
4864 if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
4865 && type->is_array()
4866 && !state->check_version(120, 100, &loc,
4867 "arrays cannot be out or inout parameters")) {
4868 type = glsl_type::error_type;
4869 }
4870
4871 instructions->push_tail(var);
4872
4873 /* Parameter declarations do not have r-values.
4874 */
4875 return NULL;
4876 }
4877
4878
4879 void
4880 ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters,
4881 bool formal,
4882 exec_list *ir_parameters,
4883 _mesa_glsl_parse_state *state)
4884 {
4885 ast_parameter_declarator *void_param = NULL;
4886 unsigned count = 0;
4887
4888 foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) {
4889 param->formal_parameter = formal;
4890 param->hir(ir_parameters, state);
4891
4892 if (param->is_void)
4893 void_param = param;
4894
4895 count++;
4896 }
4897
4898 if ((void_param != NULL) && (count > 1)) {
4899 YYLTYPE loc = void_param->get_location();
4900
4901 _mesa_glsl_error(& loc, state,
4902 "`void' parameter must be only parameter");
4903 }
4904 }
4905
4906
4907 void
4908 emit_function(_mesa_glsl_parse_state *state, ir_function *f)
4909 {
4910 /* IR invariants disallow function declarations or definitions
4911 * nested within other function definitions. But there is no
4912 * requirement about the relative order of function declarations
4913 * and definitions with respect to one another. So simply insert
4914 * the new ir_function block at the end of the toplevel instruction
4915 * list.
4916 */
4917 state->toplevel_ir->push_tail(f);
4918 }
4919
4920
4921 ir_rvalue *
4922 ast_function::hir(exec_list *instructions,
4923 struct _mesa_glsl_parse_state *state)
4924 {
4925 void *ctx = state;
4926 ir_function *f = NULL;
4927 ir_function_signature *sig = NULL;
4928 exec_list hir_parameters;
4929 YYLTYPE loc = this->get_location();
4930
4931 const char *const name = identifier;
4932
4933 /* New functions are always added to the top-level IR instruction stream,
4934 * so this instruction list pointer is ignored. See also emit_function
4935 * (called below).
4936 */
4937 (void) instructions;
4938
4939 /* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec,
4940 *
4941 * "Function declarations (prototypes) cannot occur inside of functions;
4942 * they must be at global scope, or for the built-in functions, outside
4943 * the global scope."
4944 *
4945 * From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec,
4946 *
4947 * "User defined functions may only be defined within the global scope."
4948 *
4949 * Note that this language does not appear in GLSL 1.10.
4950 */
4951 if ((state->current_function != NULL) &&
4952 state->is_version(120, 100)) {
4953 YYLTYPE loc = this->get_location();
4954 _mesa_glsl_error(&loc, state,
4955 "declaration of function `%s' not allowed within "
4956 "function body", name);
4957 }
4958
4959 validate_identifier(name, this->get_location(), state);
4960
4961 /* Convert the list of function parameters to HIR now so that they can be
4962 * used below to compare this function's signature with previously seen
4963 * signatures for functions with the same name.
4964 */
4965 ast_parameter_declarator::parameters_to_hir(& this->parameters,
4966 is_definition,
4967 & hir_parameters, state);
4968
4969 const char *return_type_name;
4970 const glsl_type *return_type =
4971 this->return_type->glsl_type(& return_type_name, state);
4972
4973 if (!return_type) {
4974 YYLTYPE loc = this->get_location();
4975 _mesa_glsl_error(&loc, state,
4976 "function `%s' has undeclared return type `%s'",
4977 name, return_type_name);
4978 return_type = glsl_type::error_type;
4979 }
4980
4981 /* ARB_shader_subroutine states:
4982 * "Subroutine declarations cannot be prototyped. It is an error to prepend
4983 * subroutine(...) to a function declaration."
4984 */
4985 if (this->return_type->qualifier.flags.q.subroutine_def && !is_definition) {
4986 YYLTYPE loc = this->get_location();
4987 _mesa_glsl_error(&loc, state,
4988 "function declaration `%s' cannot have subroutine prepended",
4989 name);
4990 }
4991
4992 /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec:
4993 * "No qualifier is allowed on the return type of a function."
4994 */
4995 if (this->return_type->has_qualifiers()) {
4996 YYLTYPE loc = this->get_location();
4997 _mesa_glsl_error(& loc, state,
4998 "function `%s' return type has qualifiers", name);
4999 }
5000
5001 /* Section 6.1 (Function Definitions) of the GLSL 1.20 spec says:
5002 *
5003 * "Arrays are allowed as arguments and as the return type. In both
5004 * cases, the array must be explicitly sized."
5005 */
5006 if (return_type->is_unsized_array()) {
5007 YYLTYPE loc = this->get_location();
5008 _mesa_glsl_error(& loc, state,
5009 "function `%s' return type array must be explicitly "
5010 "sized", name);
5011 }
5012
5013 /* From section 4.1.7 of the GLSL 4.40 spec:
5014 *
5015 * "[Opaque types] can only be declared as function parameters
5016 * or uniform-qualified variables."
5017 */
5018 if (return_type->contains_opaque()) {
5019 YYLTYPE loc = this->get_location();
5020 _mesa_glsl_error(&loc, state,
5021 "function `%s' return type can't contain an opaque type",
5022 name);
5023 }
5024
5025 /* Create an ir_function if one doesn't already exist. */
5026 f = state->symbols->get_function(name);
5027 if (f == NULL) {
5028 f = new(ctx) ir_function(name);
5029 if (!this->return_type->qualifier.flags.q.subroutine) {
5030 if (!state->symbols->add_function(f)) {
5031 /* This function name shadows a non-function use of the same name. */
5032 YYLTYPE loc = this->get_location();
5033 _mesa_glsl_error(&loc, state, "function name `%s' conflicts with "
5034 "non-function", name);
5035 return NULL;
5036 }
5037 }
5038 emit_function(state, f);
5039 }
5040
5041 /* From GLSL ES 3.0 spec, chapter 6.1 "Function Definitions", page 71:
5042 *
5043 * "A shader cannot redefine or overload built-in functions."
5044 *
5045 * While in GLSL ES 1.0 specification, chapter 8 "Built-in Functions":
5046 *
5047 * "User code can overload the built-in functions but cannot redefine
5048 * them."
5049 */
5050 if (state->es_shader && state->language_version >= 300) {
5051 /* Local shader has no exact candidates; check the built-ins. */
5052 _mesa_glsl_initialize_builtin_functions();
5053 if (_mesa_glsl_find_builtin_function_by_name(name)) {
5054 YYLTYPE loc = this->get_location();
5055 _mesa_glsl_error(& loc, state,
5056 "A shader cannot redefine or overload built-in "
5057 "function `%s' in GLSL ES 3.00", name);
5058 return NULL;
5059 }
5060 }
5061
5062 /* Verify that this function's signature either doesn't match a previously
5063 * seen signature for a function with the same name, or, if a match is found,
5064 * that the previously seen signature does not have an associated definition.
5065 */
5066 if (state->es_shader || f->has_user_signature()) {
5067 sig = f->exact_matching_signature(state, &hir_parameters);
5068 if (sig != NULL) {
5069 const char *badvar = sig->qualifiers_match(&hir_parameters);
5070 if (badvar != NULL) {
5071 YYLTYPE loc = this->get_location();
5072
5073 _mesa_glsl_error(&loc, state, "function `%s' parameter `%s' "
5074 "qualifiers don't match prototype", name, badvar);
5075 }
5076
5077 if (sig->return_type != return_type) {
5078 YYLTYPE loc = this->get_location();
5079
5080 _mesa_glsl_error(&loc, state, "function `%s' return type doesn't "
5081 "match prototype", name);
5082 }
5083
5084 if (sig->is_defined) {
5085 if (is_definition) {
5086 YYLTYPE loc = this->get_location();
5087 _mesa_glsl_error(& loc, state, "function `%s' redefined", name);
5088 } else {
5089 /* We just encountered a prototype that exactly matches a
5090 * function that's already been defined. This is redundant,
5091 * and we should ignore it.
5092 */
5093 return NULL;
5094 }
5095 }
5096 }
5097 }
5098
5099 /* Verify the return type of main() */
5100 if (strcmp(name, "main") == 0) {
5101 if (! return_type->is_void()) {
5102 YYLTYPE loc = this->get_location();
5103
5104 _mesa_glsl_error(& loc, state, "main() must return void");
5105 }
5106
5107 if (!hir_parameters.is_empty()) {
5108 YYLTYPE loc = this->get_location();
5109
5110 _mesa_glsl_error(& loc, state, "main() must not take any parameters");
5111 }
5112 }
5113
5114 /* Finish storing the information about this new function in its signature.
5115 */
5116 if (sig == NULL) {
5117 sig = new(ctx) ir_function_signature(return_type);
5118 f->add_signature(sig);
5119 }
5120
5121 sig->replace_parameters(&hir_parameters);
5122 signature = sig;
5123
5124 if (this->return_type->qualifier.flags.q.subroutine_def) {
5125 int idx;
5126
5127 f->num_subroutine_types = this->return_type->qualifier.subroutine_list->declarations.length();
5128 f->subroutine_types = ralloc_array(state, const struct glsl_type *,
5129 f->num_subroutine_types);
5130 idx = 0;
5131 foreach_list_typed(ast_declaration, decl, link, &this->return_type->qualifier.subroutine_list->declarations) {
5132 const struct glsl_type *type;
5133 /* the subroutine type must be already declared */
5134 type = state->symbols->get_type(decl->identifier);
5135 if (!type) {
5136 _mesa_glsl_error(& loc, state, "unknown type '%s' in subroutine function definition", decl->identifier);
5137 }
5138 f->subroutine_types[idx++] = type;
5139 }
5140 state->subroutines = (ir_function **)reralloc(state, state->subroutines,
5141 ir_function *,
5142 state->num_subroutines + 1);
5143 state->subroutines[state->num_subroutines] = f;
5144 state->num_subroutines++;
5145
5146 }
5147
5148 if (this->return_type->qualifier.flags.q.subroutine) {
5149 if (!state->symbols->add_type(this->identifier, glsl_type::get_subroutine_instance(this->identifier))) {
5150 _mesa_glsl_error(& loc, state, "type '%s' previously defined", this->identifier);
5151 return NULL;
5152 }
5153 state->subroutine_types = (ir_function **)reralloc(state, state->subroutine_types,
5154 ir_function *,
5155 state->num_subroutine_types + 1);
5156 state->subroutine_types[state->num_subroutine_types] = f;
5157 state->num_subroutine_types++;
5158
5159 f->is_subroutine = true;
5160 }
5161
5162 /* Function declarations (prototypes) do not have r-values.
5163 */
5164 return NULL;
5165 }
5166
5167
5168 ir_rvalue *
5169 ast_function_definition::hir(exec_list *instructions,
5170 struct _mesa_glsl_parse_state *state)
5171 {
5172 prototype->is_definition = true;
5173 prototype->hir(instructions, state);
5174
5175 ir_function_signature *signature = prototype->signature;
5176 if (signature == NULL)
5177 return NULL;
5178
5179 assert(state->current_function == NULL);
5180 state->current_function = signature;
5181 state->found_return = false;
5182
5183 /* Duplicate parameters declared in the prototype as concrete variables.
5184 * Add these to the symbol table.
5185 */
5186 state->symbols->push_scope();
5187 foreach_in_list(ir_variable, var, &signature->parameters) {
5188 assert(var->as_variable() != NULL);
5189
5190 /* The only way a parameter would "exist" is if two parameters have
5191 * the same name.
5192 */
5193 if (state->symbols->name_declared_this_scope(var->name)) {
5194 YYLTYPE loc = this->get_location();
5195
5196 _mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name);
5197 } else {
5198 state->symbols->add_variable(var);
5199 }
5200 }
5201
5202 /* Convert the body of the function to HIR. */
5203 this->body->hir(&signature->body, state);
5204 signature->is_defined = true;
5205
5206 state->symbols->pop_scope();
5207
5208 assert(state->current_function == signature);
5209 state->current_function = NULL;
5210
5211 if (!signature->return_type->is_void() && !state->found_return) {
5212 YYLTYPE loc = this->get_location();
5213 _mesa_glsl_error(& loc, state, "function `%s' has non-void return type "
5214 "%s, but no return statement",
5215 signature->function_name(),
5216 signature->return_type->name);
5217 }
5218
5219 /* Function definitions do not have r-values.
5220 */
5221 return NULL;
5222 }
5223
5224
5225 ir_rvalue *
5226 ast_jump_statement::hir(exec_list *instructions,
5227 struct _mesa_glsl_parse_state *state)
5228 {
5229 void *ctx = state;
5230
5231 switch (mode) {
5232 case ast_return: {
5233 ir_return *inst;
5234 assert(state->current_function);
5235
5236 if (opt_return_value) {
5237 ir_rvalue *ret = opt_return_value->hir(instructions, state);
5238
5239 /* The value of the return type can be NULL if the shader says
5240 * 'return foo();' and foo() is a function that returns void.
5241 *
5242 * NOTE: The GLSL spec doesn't say that this is an error. The type
5243 * of the return value is void. If the return type of the function is
5244 * also void, then this should compile without error. Seriously.
5245 */
5246 const glsl_type *const ret_type =
5247 (ret == NULL) ? glsl_type::void_type : ret->type;
5248
5249 /* Implicit conversions are not allowed for return values prior to
5250 * ARB_shading_language_420pack.
5251 */
5252 if (state->current_function->return_type != ret_type) {
5253 YYLTYPE loc = this->get_location();
5254
5255 if (state->ARB_shading_language_420pack_enable) {
5256 if (!apply_implicit_conversion(state->current_function->return_type,
5257 ret, state)) {
5258 _mesa_glsl_error(& loc, state,
5259 "could not implicitly convert return value "
5260 "to %s, in function `%s'",
5261 state->current_function->return_type->name,
5262 state->current_function->function_name());
5263 }
5264 } else {
5265 _mesa_glsl_error(& loc, state,
5266 "`return' with wrong type %s, in function `%s' "
5267 "returning %s",
5268 ret_type->name,
5269 state->current_function->function_name(),
5270 state->current_function->return_type->name);
5271 }
5272 } else if (state->current_function->return_type->base_type ==
5273 GLSL_TYPE_VOID) {
5274 YYLTYPE loc = this->get_location();
5275
5276 /* The ARB_shading_language_420pack, GLSL ES 3.0, and GLSL 4.20
5277 * specs add a clarification:
5278 *
5279 * "A void function can only use return without a return argument, even if
5280 * the return argument has void type. Return statements only accept values:
5281 *
5282 * void func1() { }
5283 * void func2() { return func1(); } // illegal return statement"
5284 */
5285 _mesa_glsl_error(& loc, state,
5286 "void functions can only use `return' without a "
5287 "return argument");
5288 }
5289
5290 inst = new(ctx) ir_return(ret);
5291 } else {
5292 if (state->current_function->return_type->base_type !=
5293 GLSL_TYPE_VOID) {
5294 YYLTYPE loc = this->get_location();
5295
5296 _mesa_glsl_error(& loc, state,
5297 "`return' with no value, in function %s returning "
5298 "non-void",
5299 state->current_function->function_name());
5300 }
5301 inst = new(ctx) ir_return;
5302 }
5303
5304 state->found_return = true;
5305 instructions->push_tail(inst);
5306 break;
5307 }
5308
5309 case ast_discard:
5310 if (state->stage != MESA_SHADER_FRAGMENT) {
5311 YYLTYPE loc = this->get_location();
5312
5313 _mesa_glsl_error(& loc, state,
5314 "`discard' may only appear in a fragment shader");
5315 }
5316 instructions->push_tail(new(ctx) ir_discard);
5317 break;
5318
5319 case ast_break:
5320 case ast_continue:
5321 if (mode == ast_continue &&
5322 state->loop_nesting_ast == NULL) {
5323 YYLTYPE loc = this->get_location();
5324
5325 _mesa_glsl_error(& loc, state, "continue may only appear in a loop");
5326 } else if (mode == ast_break &&
5327 state->loop_nesting_ast == NULL &&
5328 state->switch_state.switch_nesting_ast == NULL) {
5329 YYLTYPE loc = this->get_location();
5330
5331 _mesa_glsl_error(& loc, state,
5332 "break may only appear in a loop or a switch");
5333 } else {
5334 /* For a loop, inline the for loop expression again, since we don't
5335 * know where near the end of the loop body the normal copy of it is
5336 * going to be placed. Same goes for the condition for a do-while
5337 * loop.
5338 */
5339 if (state->loop_nesting_ast != NULL &&
5340 mode == ast_continue && !state->switch_state.is_switch_innermost) {
5341 if (state->loop_nesting_ast->rest_expression) {
5342 state->loop_nesting_ast->rest_expression->hir(instructions,
5343 state);
5344 }
5345 if (state->loop_nesting_ast->mode ==
5346 ast_iteration_statement::ast_do_while) {
5347 state->loop_nesting_ast->condition_to_hir(instructions, state);
5348 }
5349 }
5350
5351 if (state->switch_state.is_switch_innermost &&
5352 mode == ast_continue) {
5353 /* Set 'continue_inside' to true. */
5354 ir_rvalue *const true_val = new (ctx) ir_constant(true);
5355 ir_dereference_variable *deref_continue_inside_var =
5356 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
5357 instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
5358 true_val));
5359
5360 /* Break out from the switch, continue for the loop will
5361 * be called right after switch. */
5362 ir_loop_jump *const jump =
5363 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
5364 instructions->push_tail(jump);
5365
5366 } else if (state->switch_state.is_switch_innermost &&
5367 mode == ast_break) {
5368 /* Force break out of switch by inserting a break. */
5369 ir_loop_jump *const jump =
5370 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
5371 instructions->push_tail(jump);
5372 } else {
5373 ir_loop_jump *const jump =
5374 new(ctx) ir_loop_jump((mode == ast_break)
5375 ? ir_loop_jump::jump_break
5376 : ir_loop_jump::jump_continue);
5377 instructions->push_tail(jump);
5378 }
5379 }
5380
5381 break;
5382 }
5383
5384 /* Jump instructions do not have r-values.
5385 */
5386 return NULL;
5387 }
5388
5389
5390 ir_rvalue *
5391 ast_selection_statement::hir(exec_list *instructions,
5392 struct _mesa_glsl_parse_state *state)
5393 {
5394 void *ctx = state;
5395
5396 ir_rvalue *const condition = this->condition->hir(instructions, state);
5397
5398 /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
5399 *
5400 * "Any expression whose type evaluates to a Boolean can be used as the
5401 * conditional expression bool-expression. Vector types are not accepted
5402 * as the expression to if."
5403 *
5404 * The checks are separated so that higher quality diagnostics can be
5405 * generated for cases where both rules are violated.
5406 */
5407 if (!condition->type->is_boolean() || !condition->type->is_scalar()) {
5408 YYLTYPE loc = this->condition->get_location();
5409
5410 _mesa_glsl_error(& loc, state, "if-statement condition must be scalar "
5411 "boolean");
5412 }
5413
5414 ir_if *const stmt = new(ctx) ir_if(condition);
5415
5416 if (then_statement != NULL) {
5417 state->symbols->push_scope();
5418 then_statement->hir(& stmt->then_instructions, state);
5419 state->symbols->pop_scope();
5420 }
5421
5422 if (else_statement != NULL) {
5423 state->symbols->push_scope();
5424 else_statement->hir(& stmt->else_instructions, state);
5425 state->symbols->pop_scope();
5426 }
5427
5428 instructions->push_tail(stmt);
5429
5430 /* if-statements do not have r-values.
5431 */
5432 return NULL;
5433 }
5434
5435
5436 ir_rvalue *
5437 ast_switch_statement::hir(exec_list *instructions,
5438 struct _mesa_glsl_parse_state *state)
5439 {
5440 void *ctx = state;
5441
5442 ir_rvalue *const test_expression =
5443 this->test_expression->hir(instructions, state);
5444
5445 /* From page 66 (page 55 of the PDF) of the GLSL 1.50 spec:
5446 *
5447 * "The type of init-expression in a switch statement must be a
5448 * scalar integer."
5449 */
5450 if (!test_expression->type->is_scalar() ||
5451 !test_expression->type->is_integer()) {
5452 YYLTYPE loc = this->test_expression->get_location();
5453
5454 _mesa_glsl_error(& loc,
5455 state,
5456 "switch-statement expression must be scalar "
5457 "integer");
5458 }
5459
5460 /* Track the switch-statement nesting in a stack-like manner.
5461 */
5462 struct glsl_switch_state saved = state->switch_state;
5463
5464 state->switch_state.is_switch_innermost = true;
5465 state->switch_state.switch_nesting_ast = this;
5466 state->switch_state.labels_ht = hash_table_ctor(0, hash_table_pointer_hash,
5467 hash_table_pointer_compare);
5468 state->switch_state.previous_default = NULL;
5469
5470 /* Initalize is_fallthru state to false.
5471 */
5472 ir_rvalue *const is_fallthru_val = new (ctx) ir_constant(false);
5473 state->switch_state.is_fallthru_var =
5474 new(ctx) ir_variable(glsl_type::bool_type,
5475 "switch_is_fallthru_tmp",
5476 ir_var_temporary);
5477 instructions->push_tail(state->switch_state.is_fallthru_var);
5478
5479 ir_dereference_variable *deref_is_fallthru_var =
5480 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
5481 instructions->push_tail(new(ctx) ir_assignment(deref_is_fallthru_var,
5482 is_fallthru_val));
5483
5484 /* Initialize continue_inside state to false.
5485 */
5486 state->switch_state.continue_inside =
5487 new(ctx) ir_variable(glsl_type::bool_type,
5488 "continue_inside_tmp",
5489 ir_var_temporary);
5490 instructions->push_tail(state->switch_state.continue_inside);
5491
5492 ir_rvalue *const false_val = new (ctx) ir_constant(false);
5493 ir_dereference_variable *deref_continue_inside_var =
5494 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
5495 instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
5496 false_val));
5497
5498 state->switch_state.run_default =
5499 new(ctx) ir_variable(glsl_type::bool_type,
5500 "run_default_tmp",
5501 ir_var_temporary);
5502 instructions->push_tail(state->switch_state.run_default);
5503
5504 /* Loop around the switch is used for flow control. */
5505 ir_loop * loop = new(ctx) ir_loop();
5506 instructions->push_tail(loop);
5507
5508 /* Cache test expression.
5509 */
5510 test_to_hir(&loop->body_instructions, state);
5511
5512 /* Emit code for body of switch stmt.
5513 */
5514 body->hir(&loop->body_instructions, state);
5515
5516 /* Insert a break at the end to exit loop. */
5517 ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
5518 loop->body_instructions.push_tail(jump);
5519
5520 /* If we are inside loop, check if continue got called inside switch. */
5521 if (state->loop_nesting_ast != NULL) {
5522 ir_dereference_variable *deref_continue_inside =
5523 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
5524 ir_if *irif = new(ctx) ir_if(deref_continue_inside);
5525 ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_continue);
5526
5527 if (state->loop_nesting_ast != NULL) {
5528 if (state->loop_nesting_ast->rest_expression) {
5529 state->loop_nesting_ast->rest_expression->hir(&irif->then_instructions,
5530 state);
5531 }
5532 if (state->loop_nesting_ast->mode ==
5533 ast_iteration_statement::ast_do_while) {
5534 state->loop_nesting_ast->condition_to_hir(&irif->then_instructions, state);
5535 }
5536 }
5537 irif->then_instructions.push_tail(jump);
5538 instructions->push_tail(irif);
5539 }
5540
5541 hash_table_dtor(state->switch_state.labels_ht);
5542
5543 state->switch_state = saved;
5544
5545 /* Switch statements do not have r-values. */
5546 return NULL;
5547 }
5548
5549
5550 void
5551 ast_switch_statement::test_to_hir(exec_list *instructions,
5552 struct _mesa_glsl_parse_state *state)
5553 {
5554 void *ctx = state;
5555
5556 /* Cache value of test expression. */
5557 ir_rvalue *const test_val =
5558 test_expression->hir(instructions,
5559 state);
5560
5561 state->switch_state.test_var = new(ctx) ir_variable(test_val->type,
5562 "switch_test_tmp",
5563 ir_var_temporary);
5564 ir_dereference_variable *deref_test_var =
5565 new(ctx) ir_dereference_variable(state->switch_state.test_var);
5566
5567 instructions->push_tail(state->switch_state.test_var);
5568 instructions->push_tail(new(ctx) ir_assignment(deref_test_var, test_val));
5569 }
5570
5571
5572 ir_rvalue *
5573 ast_switch_body::hir(exec_list *instructions,
5574 struct _mesa_glsl_parse_state *state)
5575 {
5576 if (stmts != NULL)
5577 stmts->hir(instructions, state);
5578
5579 /* Switch bodies do not have r-values. */
5580 return NULL;
5581 }
5582
5583 ir_rvalue *
5584 ast_case_statement_list::hir(exec_list *instructions,
5585 struct _mesa_glsl_parse_state *state)
5586 {
5587 exec_list default_case, after_default, tmp;
5588
5589 foreach_list_typed (ast_case_statement, case_stmt, link, & this->cases) {
5590 case_stmt->hir(&tmp, state);
5591
5592 /* Default case. */
5593 if (state->switch_state.previous_default && default_case.is_empty()) {
5594 default_case.append_list(&tmp);
5595 continue;
5596 }
5597
5598 /* If default case found, append 'after_default' list. */
5599 if (!default_case.is_empty())
5600 after_default.append_list(&tmp);
5601 else
5602 instructions->append_list(&tmp);
5603 }
5604
5605 /* Handle the default case. This is done here because default might not be
5606 * the last case. We need to add checks against following cases first to see
5607 * if default should be chosen or not.
5608 */
5609 if (!default_case.is_empty()) {
5610
5611 ir_rvalue *const true_val = new (state) ir_constant(true);
5612 ir_dereference_variable *deref_run_default_var =
5613 new(state) ir_dereference_variable(state->switch_state.run_default);
5614
5615 /* Choose to run default case initially, following conditional
5616 * assignments might change this.
5617 */
5618 ir_assignment *const init_var =
5619 new(state) ir_assignment(deref_run_default_var, true_val);
5620 instructions->push_tail(init_var);
5621
5622 /* Default case was the last one, no checks required. */
5623 if (after_default.is_empty()) {
5624 instructions->append_list(&default_case);
5625 return NULL;
5626 }
5627
5628 foreach_in_list(ir_instruction, ir, &after_default) {
5629 ir_assignment *assign = ir->as_assignment();
5630
5631 if (!assign)
5632 continue;
5633
5634 /* Clone the check between case label and init expression. */
5635 ir_expression *exp = (ir_expression*) assign->condition;
5636 ir_expression *clone = exp->clone(state, NULL);
5637
5638 ir_dereference_variable *deref_var =
5639 new(state) ir_dereference_variable(state->switch_state.run_default);
5640 ir_rvalue *const false_val = new (state) ir_constant(false);
5641
5642 ir_assignment *const set_false =
5643 new(state) ir_assignment(deref_var, false_val, clone);
5644
5645 instructions->push_tail(set_false);
5646 }
5647
5648 /* Append default case and all cases after it. */
5649 instructions->append_list(&default_case);
5650 instructions->append_list(&after_default);
5651 }
5652
5653 /* Case statements do not have r-values. */
5654 return NULL;
5655 }
5656
5657 ir_rvalue *
5658 ast_case_statement::hir(exec_list *instructions,
5659 struct _mesa_glsl_parse_state *state)
5660 {
5661 labels->hir(instructions, state);
5662
5663 /* Guard case statements depending on fallthru state. */
5664 ir_dereference_variable *const deref_fallthru_guard =
5665 new(state) ir_dereference_variable(state->switch_state.is_fallthru_var);
5666 ir_if *const test_fallthru = new(state) ir_if(deref_fallthru_guard);
5667
5668 foreach_list_typed (ast_node, stmt, link, & this->stmts)
5669 stmt->hir(& test_fallthru->then_instructions, state);
5670
5671 instructions->push_tail(test_fallthru);
5672
5673 /* Case statements do not have r-values. */
5674 return NULL;
5675 }
5676
5677
5678 ir_rvalue *
5679 ast_case_label_list::hir(exec_list *instructions,
5680 struct _mesa_glsl_parse_state *state)
5681 {
5682 foreach_list_typed (ast_case_label, label, link, & this->labels)
5683 label->hir(instructions, state);
5684
5685 /* Case labels do not have r-values. */
5686 return NULL;
5687 }
5688
5689 ir_rvalue *
5690 ast_case_label::hir(exec_list *instructions,
5691 struct _mesa_glsl_parse_state *state)
5692 {
5693 void *ctx = state;
5694
5695 ir_dereference_variable *deref_fallthru_var =
5696 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
5697
5698 ir_rvalue *const true_val = new(ctx) ir_constant(true);
5699
5700 /* If not default case, ... */
5701 if (this->test_value != NULL) {
5702 /* Conditionally set fallthru state based on
5703 * comparison of cached test expression value to case label.
5704 */
5705 ir_rvalue *const label_rval = this->test_value->hir(instructions, state);
5706 ir_constant *label_const = label_rval->constant_expression_value();
5707
5708 if (!label_const) {
5709 YYLTYPE loc = this->test_value->get_location();
5710
5711 _mesa_glsl_error(& loc, state,
5712 "switch statement case label must be a "
5713 "constant expression");
5714
5715 /* Stuff a dummy value in to allow processing to continue. */
5716 label_const = new(ctx) ir_constant(0);
5717 } else {
5718 ast_expression *previous_label = (ast_expression *)
5719 hash_table_find(state->switch_state.labels_ht,
5720 (void *)(uintptr_t)label_const->value.u[0]);
5721
5722 if (previous_label) {
5723 YYLTYPE loc = this->test_value->get_location();
5724 _mesa_glsl_error(& loc, state, "duplicate case value");
5725
5726 loc = previous_label->get_location();
5727 _mesa_glsl_error(& loc, state, "this is the previous case label");
5728 } else {
5729 hash_table_insert(state->switch_state.labels_ht,
5730 this->test_value,
5731 (void *)(uintptr_t)label_const->value.u[0]);
5732 }
5733 }
5734
5735 ir_dereference_variable *deref_test_var =
5736 new(ctx) ir_dereference_variable(state->switch_state.test_var);
5737
5738 ir_expression *test_cond = new(ctx) ir_expression(ir_binop_all_equal,
5739 label_const,
5740 deref_test_var);
5741
5742 /*
5743 * From GLSL 4.40 specification section 6.2 ("Selection"):
5744 *
5745 * "The type of the init-expression value in a switch statement must
5746 * be a scalar int or uint. The type of the constant-expression value
5747 * in a case label also must be a scalar int or uint. When any pair
5748 * of these values is tested for "equal value" and the types do not
5749 * match, an implicit conversion will be done to convert the int to a
5750 * uint (see section 4.1.10 “Implicit Conversions”) before the compare
5751 * is done."
5752 */
5753 if (label_const->type != state->switch_state.test_var->type) {
5754 YYLTYPE loc = this->test_value->get_location();
5755
5756 const glsl_type *type_a = label_const->type;
5757 const glsl_type *type_b = state->switch_state.test_var->type;
5758
5759 /* Check if int->uint implicit conversion is supported. */
5760 bool integer_conversion_supported =
5761 glsl_type::int_type->can_implicitly_convert_to(glsl_type::uint_type,
5762 state);
5763
5764 if ((!type_a->is_integer() || !type_b->is_integer()) ||
5765 !integer_conversion_supported) {
5766 _mesa_glsl_error(&loc, state, "type mismatch with switch "
5767 "init-expression and case label (%s != %s)",
5768 type_a->name, type_b->name);
5769 } else {
5770 /* Conversion of the case label. */
5771 if (type_a->base_type == GLSL_TYPE_INT) {
5772 if (!apply_implicit_conversion(glsl_type::uint_type,
5773 test_cond->operands[0], state))
5774 _mesa_glsl_error(&loc, state, "implicit type conversion error");
5775 } else {
5776 /* Conversion of the init-expression value. */
5777 if (!apply_implicit_conversion(glsl_type::uint_type,
5778 test_cond->operands[1], state))
5779 _mesa_glsl_error(&loc, state, "implicit type conversion error");
5780 }
5781 }
5782 }
5783
5784 ir_assignment *set_fallthru_on_test =
5785 new(ctx) ir_assignment(deref_fallthru_var, true_val, test_cond);
5786
5787 instructions->push_tail(set_fallthru_on_test);
5788 } else { /* default case */
5789 if (state->switch_state.previous_default) {
5790 YYLTYPE loc = this->get_location();
5791 _mesa_glsl_error(& loc, state,
5792 "multiple default labels in one switch");
5793
5794 loc = state->switch_state.previous_default->get_location();
5795 _mesa_glsl_error(& loc, state, "this is the first default label");
5796 }
5797 state->switch_state.previous_default = this;
5798
5799 /* Set fallthru condition on 'run_default' bool. */
5800 ir_dereference_variable *deref_run_default =
5801 new(ctx) ir_dereference_variable(state->switch_state.run_default);
5802 ir_rvalue *const cond_true = new(ctx) ir_constant(true);
5803 ir_expression *test_cond = new(ctx) ir_expression(ir_binop_all_equal,
5804 cond_true,
5805 deref_run_default);
5806
5807 /* Set falltrhu state. */
5808 ir_assignment *set_fallthru =
5809 new(ctx) ir_assignment(deref_fallthru_var, true_val, test_cond);
5810
5811 instructions->push_tail(set_fallthru);
5812 }
5813
5814 /* Case statements do not have r-values. */
5815 return NULL;
5816 }
5817
5818 void
5819 ast_iteration_statement::condition_to_hir(exec_list *instructions,
5820 struct _mesa_glsl_parse_state *state)
5821 {
5822 void *ctx = state;
5823
5824 if (condition != NULL) {
5825 ir_rvalue *const cond =
5826 condition->hir(instructions, state);
5827
5828 if ((cond == NULL)
5829 || !cond->type->is_boolean() || !cond->type->is_scalar()) {
5830 YYLTYPE loc = condition->get_location();
5831
5832 _mesa_glsl_error(& loc, state,
5833 "loop condition must be scalar boolean");
5834 } else {
5835 /* As the first code in the loop body, generate a block that looks
5836 * like 'if (!condition) break;' as the loop termination condition.
5837 */
5838 ir_rvalue *const not_cond =
5839 new(ctx) ir_expression(ir_unop_logic_not, cond);
5840
5841 ir_if *const if_stmt = new(ctx) ir_if(not_cond);
5842
5843 ir_jump *const break_stmt =
5844 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
5845
5846 if_stmt->then_instructions.push_tail(break_stmt);
5847 instructions->push_tail(if_stmt);
5848 }
5849 }
5850 }
5851
5852
5853 ir_rvalue *
5854 ast_iteration_statement::hir(exec_list *instructions,
5855 struct _mesa_glsl_parse_state *state)
5856 {
5857 void *ctx = state;
5858
5859 /* For-loops and while-loops start a new scope, but do-while loops do not.
5860 */
5861 if (mode != ast_do_while)
5862 state->symbols->push_scope();
5863
5864 if (init_statement != NULL)
5865 init_statement->hir(instructions, state);
5866
5867 ir_loop *const stmt = new(ctx) ir_loop();
5868 instructions->push_tail(stmt);
5869
5870 /* Track the current loop nesting. */
5871 ast_iteration_statement *nesting_ast = state->loop_nesting_ast;
5872
5873 state->loop_nesting_ast = this;
5874
5875 /* Likewise, indicate that following code is closest to a loop,
5876 * NOT closest to a switch.
5877 */
5878 bool saved_is_switch_innermost = state->switch_state.is_switch_innermost;
5879 state->switch_state.is_switch_innermost = false;
5880
5881 if (mode != ast_do_while)
5882 condition_to_hir(&stmt->body_instructions, state);
5883
5884 if (body != NULL)
5885 body->hir(& stmt->body_instructions, state);
5886
5887 if (rest_expression != NULL)
5888 rest_expression->hir(& stmt->body_instructions, state);
5889
5890 if (mode == ast_do_while)
5891 condition_to_hir(&stmt->body_instructions, state);
5892
5893 if (mode != ast_do_while)
5894 state->symbols->pop_scope();
5895
5896 /* Restore previous nesting before returning. */
5897 state->loop_nesting_ast = nesting_ast;
5898 state->switch_state.is_switch_innermost = saved_is_switch_innermost;
5899
5900 /* Loops do not have r-values.
5901 */
5902 return NULL;
5903 }
5904
5905
5906 /**
5907 * Determine if the given type is valid for establishing a default precision
5908 * qualifier.
5909 *
5910 * From GLSL ES 3.00 section 4.5.4 ("Default Precision Qualifiers"):
5911 *
5912 * "The precision statement
5913 *
5914 * precision precision-qualifier type;
5915 *
5916 * can be used to establish a default precision qualifier. The type field
5917 * can be either int or float or any of the sampler types, and the
5918 * precision-qualifier can be lowp, mediump, or highp."
5919 *
5920 * GLSL ES 1.00 has similar language. GLSL 1.30 doesn't allow precision
5921 * qualifiers on sampler types, but this seems like an oversight (since the
5922 * intention of including these in GLSL 1.30 is to allow compatibility with ES
5923 * shaders). So we allow int, float, and all sampler types regardless of GLSL
5924 * version.
5925 */
5926 static bool
5927 is_valid_default_precision_type(const struct glsl_type *const type)
5928 {
5929 if (type == NULL)
5930 return false;
5931
5932 switch (type->base_type) {
5933 case GLSL_TYPE_INT:
5934 case GLSL_TYPE_FLOAT:
5935 /* "int" and "float" are valid, but vectors and matrices are not. */
5936 return type->vector_elements == 1 && type->matrix_columns == 1;
5937 case GLSL_TYPE_SAMPLER:
5938 case GLSL_TYPE_IMAGE:
5939 case GLSL_TYPE_ATOMIC_UINT:
5940 return true;
5941 default:
5942 return false;
5943 }
5944 }
5945
5946
5947 ir_rvalue *
5948 ast_type_specifier::hir(exec_list *instructions,
5949 struct _mesa_glsl_parse_state *state)
5950 {
5951 if (this->default_precision == ast_precision_none && this->structure == NULL)
5952 return NULL;
5953
5954 YYLTYPE loc = this->get_location();
5955
5956 /* If this is a precision statement, check that the type to which it is
5957 * applied is either float or int.
5958 *
5959 * From section 4.5.3 of the GLSL 1.30 spec:
5960 * "The precision statement
5961 * precision precision-qualifier type;
5962 * can be used to establish a default precision qualifier. The type
5963 * field can be either int or float [...]. Any other types or
5964 * qualifiers will result in an error.
5965 */
5966 if (this->default_precision != ast_precision_none) {
5967 if (!state->check_precision_qualifiers_allowed(&loc))
5968 return NULL;
5969
5970 if (this->structure != NULL) {
5971 _mesa_glsl_error(&loc, state,
5972 "precision qualifiers do not apply to structures");
5973 return NULL;
5974 }
5975
5976 if (this->array_specifier != NULL) {
5977 _mesa_glsl_error(&loc, state,
5978 "default precision statements do not apply to "
5979 "arrays");
5980 return NULL;
5981 }
5982
5983 const struct glsl_type *const type =
5984 state->symbols->get_type(this->type_name);
5985 if (!is_valid_default_precision_type(type)) {
5986 _mesa_glsl_error(&loc, state,
5987 "default precision statements apply only to "
5988 "float, int, and opaque types");
5989 return NULL;
5990 }
5991
5992 if (state->es_shader) {
5993 /* Section 4.5.3 (Default Precision Qualifiers) of the GLSL ES 1.00
5994 * spec says:
5995 *
5996 * "Non-precision qualified declarations will use the precision
5997 * qualifier specified in the most recent precision statement
5998 * that is still in scope. The precision statement has the same
5999 * scoping rules as variable declarations. If it is declared
6000 * inside a compound statement, its effect stops at the end of
6001 * the innermost statement it was declared in. Precision
6002 * statements in nested scopes override precision statements in
6003 * outer scopes. Multiple precision statements for the same basic
6004 * type can appear inside the same scope, with later statements
6005 * overriding earlier statements within that scope."
6006 *
6007 * Default precision specifications follow the same scope rules as
6008 * variables. So, we can track the state of the default precision
6009 * qualifiers in the symbol table, and the rules will just work. This
6010 * is a slight abuse of the symbol table, but it has the semantics
6011 * that we want.
6012 */
6013 state->symbols->add_default_precision_qualifier(this->type_name,
6014 this->default_precision);
6015 }
6016
6017 /* FINISHME: Translate precision statements into IR. */
6018 return NULL;
6019 }
6020
6021 /* _mesa_ast_set_aggregate_type() sets the <structure> field so that
6022 * process_record_constructor() can do type-checking on C-style initializer
6023 * expressions of structs, but ast_struct_specifier should only be translated
6024 * to HIR if it is declaring the type of a structure.
6025 *
6026 * The ->is_declaration field is false for initializers of variables
6027 * declared separately from the struct's type definition.
6028 *
6029 * struct S { ... }; (is_declaration = true)
6030 * struct T { ... } t = { ... }; (is_declaration = true)
6031 * S s = { ... }; (is_declaration = false)
6032 */
6033 if (this->structure != NULL && this->structure->is_declaration)
6034 return this->structure->hir(instructions, state);
6035
6036 return NULL;
6037 }
6038
6039
6040 /**
6041 * Process a structure or interface block tree into an array of structure fields
6042 *
6043 * After parsing, where there are some syntax differnces, structures and
6044 * interface blocks are almost identical. They are similar enough that the
6045 * AST for each can be processed the same way into a set of
6046 * \c glsl_struct_field to describe the members.
6047 *
6048 * If we're processing an interface block, var_mode should be the type of the
6049 * interface block (ir_var_shader_in, ir_var_shader_out, ir_var_uniform or
6050 * ir_var_shader_storage). If we're processing a structure, var_mode should be
6051 * ir_var_auto.
6052 *
6053 * \return
6054 * The number of fields processed. A pointer to the array structure fields is
6055 * stored in \c *fields_ret.
6056 */
6057 unsigned
6058 ast_process_struct_or_iface_block_members(exec_list *instructions,
6059 struct _mesa_glsl_parse_state *state,
6060 exec_list *declarations,
6061 YYLTYPE &loc,
6062 glsl_struct_field **fields_ret,
6063 bool is_interface,
6064 enum glsl_matrix_layout matrix_layout,
6065 bool allow_reserved_names,
6066 ir_variable_mode var_mode,
6067 ast_type_qualifier *layout)
6068 {
6069 unsigned decl_count = 0;
6070
6071 /* Make an initial pass over the list of fields to determine how
6072 * many there are. Each element in this list is an ast_declarator_list.
6073 * This means that we actually need to count the number of elements in the
6074 * 'declarations' list in each of the elements.
6075 */
6076 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
6077 decl_count += decl_list->declarations.length();
6078 }
6079
6080 /* Allocate storage for the fields and process the field
6081 * declarations. As the declarations are processed, try to also convert
6082 * the types to HIR. This ensures that structure definitions embedded in
6083 * other structure definitions or in interface blocks are processed.
6084 */
6085 glsl_struct_field *const fields = ralloc_array(state, glsl_struct_field,
6086 decl_count);
6087
6088 unsigned i = 0;
6089 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
6090 const char *type_name;
6091
6092 decl_list->type->specifier->hir(instructions, state);
6093
6094 /* Section 10.9 of the GLSL ES 1.00 specification states that
6095 * embedded structure definitions have been removed from the language.
6096 */
6097 if (state->es_shader && decl_list->type->specifier->structure != NULL) {
6098 _mesa_glsl_error(&loc, state, "embedded structure definitions are "
6099 "not allowed in GLSL ES 1.00");
6100 }
6101
6102 const glsl_type *decl_type =
6103 decl_list->type->glsl_type(& type_name, state);
6104
6105 const struct ast_type_qualifier *const qual =
6106 &decl_list->type->qualifier;
6107
6108 /* From section 4.3.9 of the GLSL 4.40 spec:
6109 *
6110 * "[In interface blocks] opaque types are not allowed."
6111 *
6112 * It should be impossible for decl_type to be NULL here. Cases that
6113 * might naturally lead to decl_type being NULL, especially for the
6114 * is_interface case, will have resulted in compilation having
6115 * already halted due to a syntax error.
6116 */
6117 assert(decl_type);
6118
6119 if (is_interface && decl_type->contains_opaque()) {
6120 YYLTYPE loc = decl_list->get_location();
6121 _mesa_glsl_error(&loc, state,
6122 "uniform/buffer in non-default interface block contains "
6123 "opaque variable");
6124 }
6125
6126 if (decl_type->contains_atomic()) {
6127 /* From section 4.1.7.3 of the GLSL 4.40 spec:
6128 *
6129 * "Members of structures cannot be declared as atomic counter
6130 * types."
6131 */
6132 YYLTYPE loc = decl_list->get_location();
6133 _mesa_glsl_error(&loc, state, "atomic counter in structure, "
6134 "shader storage block or uniform block");
6135 }
6136
6137 if (decl_type->contains_image()) {
6138 /* FINISHME: Same problem as with atomic counters.
6139 * FINISHME: Request clarification from Khronos and add
6140 * FINISHME: spec quotation here.
6141 */
6142 YYLTYPE loc = decl_list->get_location();
6143 _mesa_glsl_error(&loc, state,
6144 "image in structure, shader storage block or "
6145 "uniform block");
6146 }
6147
6148 if (qual->flags.q.explicit_binding)
6149 validate_binding_qualifier(state, &loc, decl_type, qual);
6150
6151 if (qual->flags.q.std140 ||
6152 qual->flags.q.std430 ||
6153 qual->flags.q.packed ||
6154 qual->flags.q.shared) {
6155 _mesa_glsl_error(&loc, state,
6156 "uniform/shader storage block layout qualifiers "
6157 "std140, std430, packed, and shared can only be "
6158 "applied to uniform/shader storage blocks, not "
6159 "members");
6160 }
6161
6162 if (qual->flags.q.constant) {
6163 YYLTYPE loc = decl_list->get_location();
6164 _mesa_glsl_error(&loc, state,
6165 "const storage qualifier cannot be applied "
6166 "to struct or interface block members");
6167 }
6168
6169 /* From Section 4.4.2.3 (Geometry Outputs) of the GLSL 4.50 spec:
6170 *
6171 * "A block member may be declared with a stream identifier, but
6172 * the specified stream must match the stream associated with the
6173 * containing block."
6174 */
6175 if (qual->flags.q.explicit_stream &&
6176 qual->stream != layout->stream) {
6177 _mesa_glsl_error(&loc, state, "stream layout qualifier on interface "
6178 "block member does not match the interface block "
6179 "(%d vs %d)", qual->stream, layout->stream);
6180 }
6181
6182 if (qual->flags.q.uniform && qual->has_interpolation()) {
6183 _mesa_glsl_error(&loc, state,
6184 "interpolation qualifiers cannot be used "
6185 "with uniform interface blocks");
6186 }
6187
6188 if ((qual->flags.q.uniform || !is_interface) &&
6189 qual->has_auxiliary_storage()) {
6190 _mesa_glsl_error(&loc, state,
6191 "auxiliary storage qualifiers cannot be used "
6192 "in uniform blocks or structures.");
6193 }
6194
6195 if (qual->flags.q.row_major || qual->flags.q.column_major) {
6196 if (!qual->flags.q.uniform && !qual->flags.q.buffer) {
6197 _mesa_glsl_error(&loc, state,
6198 "row_major and column_major can only be "
6199 "applied to interface blocks");
6200 } else
6201 validate_matrix_layout_for_type(state, &loc, decl_type, NULL);
6202 }
6203
6204 if (qual->flags.q.read_only && qual->flags.q.write_only) {
6205 _mesa_glsl_error(&loc, state, "buffer variable can't be both "
6206 "readonly and writeonly.");
6207 }
6208
6209 foreach_list_typed (ast_declaration, decl, link,
6210 &decl_list->declarations) {
6211 if (!allow_reserved_names)
6212 validate_identifier(decl->identifier, loc, state);
6213
6214 const struct glsl_type *field_type =
6215 process_array_type(&loc, decl_type, decl->array_specifier, state);
6216 validate_array_dimensions(field_type, state, &loc);
6217 fields[i].type = field_type;
6218 fields[i].name = decl->identifier;
6219 fields[i].location = -1;
6220 fields[i].interpolation =
6221 interpret_interpolation_qualifier(qual, var_mode, state, &loc);
6222 fields[i].centroid = qual->flags.q.centroid ? 1 : 0;
6223 fields[i].sample = qual->flags.q.sample ? 1 : 0;
6224 fields[i].patch = qual->flags.q.patch ? 1 : 0;
6225 fields[i].precision = qual->precision;
6226
6227 /* Propogate row- / column-major information down the fields of the
6228 * structure or interface block. Structures need this data because
6229 * the structure may contain a structure that contains ... a matrix
6230 * that need the proper layout.
6231 */
6232 if (field_type->without_array()->is_matrix()
6233 || field_type->without_array()->is_record()) {
6234 /* If no layout is specified for the field, inherit the layout
6235 * from the block.
6236 */
6237 fields[i].matrix_layout = matrix_layout;
6238
6239 if (qual->flags.q.row_major)
6240 fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
6241 else if (qual->flags.q.column_major)
6242 fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
6243
6244 /* If we're processing an interface block, the matrix layout must
6245 * be decided by this point.
6246 */
6247 assert(!is_interface
6248 || fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR
6249 || fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_COLUMN_MAJOR);
6250 }
6251
6252 /* Image qualifiers are allowed on buffer variables, which can only
6253 * be defined inside shader storage buffer objects
6254 */
6255 if (layout && var_mode == ir_var_shader_storage) {
6256 /* For readonly and writeonly qualifiers the field definition,
6257 * if set, overwrites the layout qualifier.
6258 */
6259 bool read_only = layout->flags.q.read_only;
6260 bool write_only = layout->flags.q.write_only;
6261
6262 if (qual->flags.q.read_only) {
6263 read_only = true;
6264 write_only = false;
6265 } else if (qual->flags.q.write_only) {
6266 read_only = false;
6267 write_only = true;
6268 }
6269
6270 fields[i].image_read_only = read_only;
6271 fields[i].image_write_only = write_only;
6272
6273 /* For other qualifiers, we set the flag if either the layout
6274 * qualifier or the field qualifier are set
6275 */
6276 fields[i].image_coherent = qual->flags.q.coherent ||
6277 layout->flags.q.coherent;
6278 fields[i].image_volatile = qual->flags.q._volatile ||
6279 layout->flags.q._volatile;
6280 fields[i].image_restrict = qual->flags.q.restrict_flag ||
6281 layout->flags.q.restrict_flag;
6282 }
6283
6284 i++;
6285 }
6286 }
6287
6288 assert(i == decl_count);
6289
6290 *fields_ret = fields;
6291 return decl_count;
6292 }
6293
6294
6295 ir_rvalue *
6296 ast_struct_specifier::hir(exec_list *instructions,
6297 struct _mesa_glsl_parse_state *state)
6298 {
6299 YYLTYPE loc = this->get_location();
6300
6301 /* Section 4.1.8 (Structures) of the GLSL 1.10 spec says:
6302 *
6303 * "Anonymous structures are not supported; so embedded structures must
6304 * have a declarator. A name given to an embedded struct is scoped at
6305 * the same level as the struct it is embedded in."
6306 *
6307 * The same section of the GLSL 1.20 spec says:
6308 *
6309 * "Anonymous structures are not supported. Embedded structures are not
6310 * supported.
6311 *
6312 * struct S { float f; };
6313 * struct T {
6314 * S; // Error: anonymous structures disallowed
6315 * struct { ... }; // Error: embedded structures disallowed
6316 * S s; // Okay: nested structures with name are allowed
6317 * };"
6318 *
6319 * The GLSL ES 1.00 and 3.00 specs have similar langauge and examples. So,
6320 * we allow embedded structures in 1.10 only.
6321 */
6322 if (state->language_version != 110 && state->struct_specifier_depth != 0)
6323 _mesa_glsl_error(&loc, state,
6324 "embedded structure declarations are not allowed");
6325
6326 state->struct_specifier_depth++;
6327
6328 glsl_struct_field *fields;
6329 unsigned decl_count =
6330 ast_process_struct_or_iface_block_members(instructions,
6331 state,
6332 &this->declarations,
6333 loc,
6334 &fields,
6335 false,
6336 GLSL_MATRIX_LAYOUT_INHERITED,
6337 false /* allow_reserved_names */,
6338 ir_var_auto,
6339 NULL);
6340
6341 validate_identifier(this->name, loc, state);
6342
6343 const glsl_type *t =
6344 glsl_type::get_record_instance(fields, decl_count, this->name);
6345
6346 if (!state->symbols->add_type(name, t)) {
6347 _mesa_glsl_error(& loc, state, "struct `%s' previously defined", name);
6348 } else {
6349 const glsl_type **s = reralloc(state, state->user_structures,
6350 const glsl_type *,
6351 state->num_user_structures + 1);
6352 if (s != NULL) {
6353 s[state->num_user_structures] = t;
6354 state->user_structures = s;
6355 state->num_user_structures++;
6356 }
6357 }
6358
6359 state->struct_specifier_depth--;
6360
6361 /* Structure type definitions do not have r-values.
6362 */
6363 return NULL;
6364 }
6365
6366
6367 /**
6368 * Visitor class which detects whether a given interface block has been used.
6369 */
6370 class interface_block_usage_visitor : public ir_hierarchical_visitor
6371 {
6372 public:
6373 interface_block_usage_visitor(ir_variable_mode mode, const glsl_type *block)
6374 : mode(mode), block(block), found(false)
6375 {
6376 }
6377
6378 virtual ir_visitor_status visit(ir_dereference_variable *ir)
6379 {
6380 if (ir->var->data.mode == mode && ir->var->get_interface_type() == block) {
6381 found = true;
6382 return visit_stop;
6383 }
6384 return visit_continue;
6385 }
6386
6387 bool usage_found() const
6388 {
6389 return this->found;
6390 }
6391
6392 private:
6393 ir_variable_mode mode;
6394 const glsl_type *block;
6395 bool found;
6396 };
6397
6398 static bool
6399 is_unsized_array_last_element(ir_variable *v)
6400 {
6401 const glsl_type *interface_type = v->get_interface_type();
6402 int length = interface_type->length;
6403
6404 assert(v->type->is_unsized_array());
6405
6406 /* Check if it is the last element of the interface */
6407 if (strcmp(interface_type->fields.structure[length-1].name, v->name) == 0)
6408 return true;
6409 return false;
6410 }
6411
6412 ir_rvalue *
6413 ast_interface_block::hir(exec_list *instructions,
6414 struct _mesa_glsl_parse_state *state)
6415 {
6416 YYLTYPE loc = this->get_location();
6417
6418 /* Interface blocks must be declared at global scope */
6419 if (state->current_function != NULL) {
6420 _mesa_glsl_error(&loc, state,
6421 "Interface block `%s' must be declared "
6422 "at global scope",
6423 this->block_name);
6424 }
6425
6426 if (!this->layout.flags.q.buffer &&
6427 this->layout.flags.q.std430) {
6428 _mesa_glsl_error(&loc, state,
6429 "std430 storage block layout qualifier is supported "
6430 "only for shader storage blocks");
6431 }
6432
6433 /* The ast_interface_block has a list of ast_declarator_lists. We
6434 * need to turn those into ir_variables with an association
6435 * with this uniform block.
6436 */
6437 enum glsl_interface_packing packing;
6438 if (this->layout.flags.q.shared) {
6439 packing = GLSL_INTERFACE_PACKING_SHARED;
6440 } else if (this->layout.flags.q.packed) {
6441 packing = GLSL_INTERFACE_PACKING_PACKED;
6442 } else if (this->layout.flags.q.std430) {
6443 packing = GLSL_INTERFACE_PACKING_STD430;
6444 } else {
6445 /* The default layout is std140.
6446 */
6447 packing = GLSL_INTERFACE_PACKING_STD140;
6448 }
6449
6450 ir_variable_mode var_mode;
6451 const char *iface_type_name;
6452 if (this->layout.flags.q.in) {
6453 var_mode = ir_var_shader_in;
6454 iface_type_name = "in";
6455 } else if (this->layout.flags.q.out) {
6456 var_mode = ir_var_shader_out;
6457 iface_type_name = "out";
6458 } else if (this->layout.flags.q.uniform) {
6459 var_mode = ir_var_uniform;
6460 iface_type_name = "uniform";
6461 } else if (this->layout.flags.q.buffer) {
6462 var_mode = ir_var_shader_storage;
6463 iface_type_name = "buffer";
6464 } else {
6465 var_mode = ir_var_auto;
6466 iface_type_name = "UNKNOWN";
6467 assert(!"interface block layout qualifier not found!");
6468 }
6469
6470 enum glsl_matrix_layout matrix_layout = GLSL_MATRIX_LAYOUT_INHERITED;
6471 if (this->layout.flags.q.row_major)
6472 matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
6473 else if (this->layout.flags.q.column_major)
6474 matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
6475
6476 bool redeclaring_per_vertex = strcmp(this->block_name, "gl_PerVertex") == 0;
6477 exec_list declared_variables;
6478 glsl_struct_field *fields;
6479
6480 /* Treat an interface block as one level of nesting, so that embedded struct
6481 * specifiers will be disallowed.
6482 */
6483 state->struct_specifier_depth++;
6484
6485 /* For blocks that accept memory qualifiers (i.e. shader storage), verify
6486 * that we don't have incompatible qualifiers
6487 */
6488 if (this->layout.flags.q.read_only && this->layout.flags.q.write_only) {
6489 _mesa_glsl_error(&loc, state,
6490 "Interface block sets both readonly and writeonly");
6491 }
6492
6493 unsigned int num_variables =
6494 ast_process_struct_or_iface_block_members(&declared_variables,
6495 state,
6496 &this->declarations,
6497 loc,
6498 &fields,
6499 true,
6500 matrix_layout,
6501 redeclaring_per_vertex,
6502 var_mode,
6503 &this->layout);
6504
6505 state->struct_specifier_depth--;
6506
6507 if (!redeclaring_per_vertex) {
6508 validate_identifier(this->block_name, loc, state);
6509
6510 /* From section 4.3.9 ("Interface Blocks") of the GLSL 4.50 spec:
6511 *
6512 * "Block names have no other use within a shader beyond interface
6513 * matching; it is a compile-time error to use a block name at global
6514 * scope for anything other than as a block name."
6515 */
6516 ir_variable *var = state->symbols->get_variable(this->block_name);
6517 if (var && !var->type->is_interface()) {
6518 _mesa_glsl_error(&loc, state, "Block name `%s' is "
6519 "already used in the scope.",
6520 this->block_name);
6521 }
6522 }
6523
6524 const glsl_type *earlier_per_vertex = NULL;
6525 if (redeclaring_per_vertex) {
6526 /* Find the previous declaration of gl_PerVertex. If we're redeclaring
6527 * the named interface block gl_in, we can find it by looking at the
6528 * previous declaration of gl_in. Otherwise we can find it by looking
6529 * at the previous decalartion of any of the built-in outputs,
6530 * e.g. gl_Position.
6531 *
6532 * Also check that the instance name and array-ness of the redeclaration
6533 * are correct.
6534 */
6535 switch (var_mode) {
6536 case ir_var_shader_in:
6537 if (ir_variable *earlier_gl_in =
6538 state->symbols->get_variable("gl_in")) {
6539 earlier_per_vertex = earlier_gl_in->get_interface_type();
6540 } else {
6541 _mesa_glsl_error(&loc, state,
6542 "redeclaration of gl_PerVertex input not allowed "
6543 "in the %s shader",
6544 _mesa_shader_stage_to_string(state->stage));
6545 }
6546 if (this->instance_name == NULL ||
6547 strcmp(this->instance_name, "gl_in") != 0 || this->array_specifier == NULL ||
6548 !this->array_specifier->is_single_dimension()) {
6549 _mesa_glsl_error(&loc, state,
6550 "gl_PerVertex input must be redeclared as "
6551 "gl_in[]");
6552 }
6553 break;
6554 case ir_var_shader_out:
6555 if (ir_variable *earlier_gl_Position =
6556 state->symbols->get_variable("gl_Position")) {
6557 earlier_per_vertex = earlier_gl_Position->get_interface_type();
6558 } else if (ir_variable *earlier_gl_out =
6559 state->symbols->get_variable("gl_out")) {
6560 earlier_per_vertex = earlier_gl_out->get_interface_type();
6561 } else {
6562 _mesa_glsl_error(&loc, state,
6563 "redeclaration of gl_PerVertex output not "
6564 "allowed in the %s shader",
6565 _mesa_shader_stage_to_string(state->stage));
6566 }
6567 if (state->stage == MESA_SHADER_TESS_CTRL) {
6568 if (this->instance_name == NULL ||
6569 strcmp(this->instance_name, "gl_out") != 0 || this->array_specifier == NULL) {
6570 _mesa_glsl_error(&loc, state,
6571 "gl_PerVertex output must be redeclared as "
6572 "gl_out[]");
6573 }
6574 } else {
6575 if (this->instance_name != NULL) {
6576 _mesa_glsl_error(&loc, state,
6577 "gl_PerVertex output may not be redeclared with "
6578 "an instance name");
6579 }
6580 }
6581 break;
6582 default:
6583 _mesa_glsl_error(&loc, state,
6584 "gl_PerVertex must be declared as an input or an "
6585 "output");
6586 break;
6587 }
6588
6589 if (earlier_per_vertex == NULL) {
6590 /* An error has already been reported. Bail out to avoid null
6591 * dereferences later in this function.
6592 */
6593 return NULL;
6594 }
6595
6596 /* Copy locations from the old gl_PerVertex interface block. */
6597 for (unsigned i = 0; i < num_variables; i++) {
6598 int j = earlier_per_vertex->field_index(fields[i].name);
6599 if (j == -1) {
6600 _mesa_glsl_error(&loc, state,
6601 "redeclaration of gl_PerVertex must be a subset "
6602 "of the built-in members of gl_PerVertex");
6603 } else {
6604 fields[i].location =
6605 earlier_per_vertex->fields.structure[j].location;
6606 fields[i].interpolation =
6607 earlier_per_vertex->fields.structure[j].interpolation;
6608 fields[i].centroid =
6609 earlier_per_vertex->fields.structure[j].centroid;
6610 fields[i].sample =
6611 earlier_per_vertex->fields.structure[j].sample;
6612 fields[i].patch =
6613 earlier_per_vertex->fields.structure[j].patch;
6614 fields[i].precision =
6615 earlier_per_vertex->fields.structure[j].precision;
6616 }
6617 }
6618
6619 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10
6620 * spec:
6621 *
6622 * If a built-in interface block is redeclared, it must appear in
6623 * the shader before any use of any member included in the built-in
6624 * declaration, or a compilation error will result.
6625 *
6626 * This appears to be a clarification to the behaviour established for
6627 * gl_PerVertex by GLSL 1.50, therefore we implement this behaviour
6628 * regardless of GLSL version.
6629 */
6630 interface_block_usage_visitor v(var_mode, earlier_per_vertex);
6631 v.run(instructions);
6632 if (v.usage_found()) {
6633 _mesa_glsl_error(&loc, state,
6634 "redeclaration of a built-in interface block must "
6635 "appear before any use of any member of the "
6636 "interface block");
6637 }
6638 }
6639
6640 const glsl_type *block_type =
6641 glsl_type::get_interface_instance(fields,
6642 num_variables,
6643 packing,
6644 this->block_name);
6645 if (this->layout.flags.q.explicit_binding)
6646 validate_binding_qualifier(state, &loc, block_type, &this->layout);
6647
6648 if (!state->symbols->add_interface(block_type->name, block_type, var_mode)) {
6649 YYLTYPE loc = this->get_location();
6650 _mesa_glsl_error(&loc, state, "interface block `%s' with type `%s' "
6651 "already taken in the current scope",
6652 this->block_name, iface_type_name);
6653 }
6654
6655 /* Since interface blocks cannot contain statements, it should be
6656 * impossible for the block to generate any instructions.
6657 */
6658 assert(declared_variables.is_empty());
6659
6660 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
6661 *
6662 * Geometry shader input variables get the per-vertex values written
6663 * out by vertex shader output variables of the same names. Since a
6664 * geometry shader operates on a set of vertices, each input varying
6665 * variable (or input block, see interface blocks below) needs to be
6666 * declared as an array.
6667 */
6668 if (state->stage == MESA_SHADER_GEOMETRY && this->array_specifier == NULL &&
6669 var_mode == ir_var_shader_in) {
6670 _mesa_glsl_error(&loc, state, "geometry shader inputs must be arrays");
6671 } else if ((state->stage == MESA_SHADER_TESS_CTRL ||
6672 state->stage == MESA_SHADER_TESS_EVAL) &&
6673 this->array_specifier == NULL &&
6674 var_mode == ir_var_shader_in) {
6675 _mesa_glsl_error(&loc, state, "per-vertex tessellation shader inputs must be arrays");
6676 } else if (state->stage == MESA_SHADER_TESS_CTRL &&
6677 this->array_specifier == NULL &&
6678 var_mode == ir_var_shader_out) {
6679 _mesa_glsl_error(&loc, state, "tessellation control shader outputs must be arrays");
6680 }
6681
6682
6683 /* Page 39 (page 45 of the PDF) of section 4.3.7 in the GLSL ES 3.00 spec
6684 * says:
6685 *
6686 * "If an instance name (instance-name) is used, then it puts all the
6687 * members inside a scope within its own name space, accessed with the
6688 * field selector ( . ) operator (analogously to structures)."
6689 */
6690 if (this->instance_name) {
6691 if (redeclaring_per_vertex) {
6692 /* When a built-in in an unnamed interface block is redeclared,
6693 * get_variable_being_redeclared() calls
6694 * check_builtin_array_max_size() to make sure that built-in array
6695 * variables aren't redeclared to illegal sizes. But we're looking
6696 * at a redeclaration of a named built-in interface block. So we
6697 * have to manually call check_builtin_array_max_size() for all parts
6698 * of the interface that are arrays.
6699 */
6700 for (unsigned i = 0; i < num_variables; i++) {
6701 if (fields[i].type->is_array()) {
6702 const unsigned size = fields[i].type->array_size();
6703 check_builtin_array_max_size(fields[i].name, size, loc, state);
6704 }
6705 }
6706 } else {
6707 validate_identifier(this->instance_name, loc, state);
6708 }
6709
6710 ir_variable *var;
6711
6712 if (this->array_specifier != NULL) {
6713 const glsl_type *block_array_type =
6714 process_array_type(&loc, block_type, this->array_specifier, state);
6715
6716 /* Section 4.3.7 (Interface Blocks) of the GLSL 1.50 spec says:
6717 *
6718 * For uniform blocks declared an array, each individual array
6719 * element corresponds to a separate buffer object backing one
6720 * instance of the block. As the array size indicates the number
6721 * of buffer objects needed, uniform block array declarations
6722 * must specify an array size.
6723 *
6724 * And a few paragraphs later:
6725 *
6726 * Geometry shader input blocks must be declared as arrays and
6727 * follow the array declaration and linking rules for all
6728 * geometry shader inputs. All other input and output block
6729 * arrays must specify an array size.
6730 *
6731 * The same applies to tessellation shaders.
6732 *
6733 * The upshot of this is that the only circumstance where an
6734 * interface array size *doesn't* need to be specified is on a
6735 * geometry shader input, tessellation control shader input,
6736 * tessellation control shader output, and tessellation evaluation
6737 * shader input.
6738 */
6739 if (block_array_type->is_unsized_array()) {
6740 bool allow_inputs = state->stage == MESA_SHADER_GEOMETRY ||
6741 state->stage == MESA_SHADER_TESS_CTRL ||
6742 state->stage == MESA_SHADER_TESS_EVAL;
6743 bool allow_outputs = state->stage == MESA_SHADER_TESS_CTRL;
6744
6745 if (this->layout.flags.q.in) {
6746 if (!allow_inputs)
6747 _mesa_glsl_error(&loc, state,
6748 "unsized input block arrays not allowed in "
6749 "%s shader",
6750 _mesa_shader_stage_to_string(state->stage));
6751 } else if (this->layout.flags.q.out) {
6752 if (!allow_outputs)
6753 _mesa_glsl_error(&loc, state,
6754 "unsized output block arrays not allowed in "
6755 "%s shader",
6756 _mesa_shader_stage_to_string(state->stage));
6757 } else {
6758 /* by elimination, this is a uniform block array */
6759 _mesa_glsl_error(&loc, state,
6760 "unsized uniform block arrays not allowed in "
6761 "%s shader",
6762 _mesa_shader_stage_to_string(state->stage));
6763 }
6764 }
6765
6766 /* From section 4.3.9 (Interface Blocks) of the GLSL ES 3.10 spec:
6767 *
6768 * * Arrays of arrays of blocks are not allowed
6769 */
6770 if (state->es_shader && block_array_type->is_array() &&
6771 block_array_type->fields.array->is_array()) {
6772 _mesa_glsl_error(&loc, state,
6773 "arrays of arrays interface blocks are "
6774 "not allowed");
6775 }
6776
6777 if (this->layout.flags.q.explicit_binding)
6778 validate_binding_qualifier(state, &loc, block_array_type,
6779 &this->layout);
6780
6781 var = new(state) ir_variable(block_array_type,
6782 this->instance_name,
6783 var_mode);
6784 } else {
6785 var = new(state) ir_variable(block_type,
6786 this->instance_name,
6787 var_mode);
6788 }
6789
6790 var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
6791 ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
6792
6793 if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
6794 var->data.read_only = true;
6795
6796 if (state->stage == MESA_SHADER_GEOMETRY && var_mode == ir_var_shader_in)
6797 handle_geometry_shader_input_decl(state, loc, var);
6798 else if ((state->stage == MESA_SHADER_TESS_CTRL ||
6799 state->stage == MESA_SHADER_TESS_EVAL) && var_mode == ir_var_shader_in)
6800 handle_tess_shader_input_decl(state, loc, var);
6801 else if (state->stage == MESA_SHADER_TESS_CTRL && var_mode == ir_var_shader_out)
6802 handle_tess_ctrl_shader_output_decl(state, loc, var);
6803
6804 for (unsigned i = 0; i < num_variables; i++) {
6805 if (fields[i].type->is_unsized_array()) {
6806 if (var_mode == ir_var_shader_storage) {
6807 if (i != (num_variables - 1)) {
6808 _mesa_glsl_error(&loc, state, "unsized array `%s' definition: "
6809 "only last member of a shader storage block "
6810 "can be defined as unsized array",
6811 fields[i].name);
6812 }
6813 } else {
6814 /* From GLSL ES 3.10 spec, section 4.1.9 "Arrays":
6815 *
6816 * "If an array is declared as the last member of a shader storage
6817 * block and the size is not specified at compile-time, it is
6818 * sized at run-time. In all other cases, arrays are sized only
6819 * at compile-time."
6820 */
6821 if (state->es_shader) {
6822 _mesa_glsl_error(&loc, state, "unsized array `%s' definition: "
6823 "only last member of a shader storage block "
6824 "can be defined as unsized array",
6825 fields[i].name);
6826 }
6827 }
6828 }
6829 }
6830
6831 if (ir_variable *earlier =
6832 state->symbols->get_variable(this->instance_name)) {
6833 if (!redeclaring_per_vertex) {
6834 _mesa_glsl_error(&loc, state, "`%s' redeclared",
6835 this->instance_name);
6836 }
6837 earlier->data.how_declared = ir_var_declared_normally;
6838 earlier->type = var->type;
6839 earlier->reinit_interface_type(block_type);
6840 delete var;
6841 } else {
6842 /* Propagate the "binding" keyword into this UBO's fields;
6843 * the UBO declaration itself doesn't get an ir_variable unless it
6844 * has an instance name. This is ugly.
6845 */
6846 var->data.explicit_binding = this->layout.flags.q.explicit_binding;
6847 var->data.binding = this->layout.binding;
6848
6849 var->data.stream = this->layout.stream;
6850
6851 state->symbols->add_variable(var);
6852 instructions->push_tail(var);
6853 }
6854 } else {
6855 /* In order to have an array size, the block must also be declared with
6856 * an instance name.
6857 */
6858 assert(this->array_specifier == NULL);
6859
6860 for (unsigned i = 0; i < num_variables; i++) {
6861 ir_variable *var =
6862 new(state) ir_variable(fields[i].type,
6863 ralloc_strdup(state, fields[i].name),
6864 var_mode);
6865 var->data.interpolation = fields[i].interpolation;
6866 var->data.centroid = fields[i].centroid;
6867 var->data.sample = fields[i].sample;
6868 var->data.patch = fields[i].patch;
6869 var->data.stream = this->layout.stream;
6870 var->init_interface_type(block_type);
6871
6872 if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
6873 var->data.read_only = true;
6874
6875 /* Precision qualifiers do not have any meaning in Desktop GLSL */
6876 if (state->es_shader) {
6877 var->data.precision =
6878 select_gles_precision(fields[i].precision, fields[i].type,
6879 state, &loc);
6880 }
6881
6882 if (fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED) {
6883 var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
6884 ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
6885 } else {
6886 var->data.matrix_layout = fields[i].matrix_layout;
6887 }
6888
6889 if (var->data.mode == ir_var_shader_storage) {
6890 var->data.image_read_only = fields[i].image_read_only;
6891 var->data.image_write_only = fields[i].image_write_only;
6892 var->data.image_coherent = fields[i].image_coherent;
6893 var->data.image_volatile = fields[i].image_volatile;
6894 var->data.image_restrict = fields[i].image_restrict;
6895 }
6896
6897 /* Examine var name here since var may get deleted in the next call */
6898 bool var_is_gl_id = is_gl_identifier(var->name);
6899
6900 if (redeclaring_per_vertex) {
6901 ir_variable *earlier =
6902 get_variable_being_redeclared(var, loc, state,
6903 true /* allow_all_redeclarations */);
6904 if (!var_is_gl_id || earlier == NULL) {
6905 _mesa_glsl_error(&loc, state,
6906 "redeclaration of gl_PerVertex can only "
6907 "include built-in variables");
6908 } else if (earlier->data.how_declared == ir_var_declared_normally) {
6909 _mesa_glsl_error(&loc, state,
6910 "`%s' has already been redeclared",
6911 earlier->name);
6912 } else {
6913 earlier->data.how_declared = ir_var_declared_in_block;
6914 earlier->reinit_interface_type(block_type);
6915 }
6916 continue;
6917 }
6918
6919 if (state->symbols->get_variable(var->name) != NULL)
6920 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
6921
6922 /* Propagate the "binding" keyword into this UBO/SSBO's fields.
6923 * The UBO declaration itself doesn't get an ir_variable unless it
6924 * has an instance name. This is ugly.
6925 */
6926 var->data.explicit_binding = this->layout.flags.q.explicit_binding;
6927 var->data.binding = this->layout.binding;
6928
6929 if (var->type->is_unsized_array()) {
6930 if (var->is_in_shader_storage_block()) {
6931 if (!is_unsized_array_last_element(var)) {
6932 _mesa_glsl_error(&loc, state, "unsized array `%s' definition: "
6933 "only last member of a shader storage block "
6934 "can be defined as unsized array",
6935 var->name);
6936 }
6937 var->data.from_ssbo_unsized_array = true;
6938 } else {
6939 /* From GLSL ES 3.10 spec, section 4.1.9 "Arrays":
6940 *
6941 * "If an array is declared as the last member of a shader storage
6942 * block and the size is not specified at compile-time, it is
6943 * sized at run-time. In all other cases, arrays are sized only
6944 * at compile-time."
6945 */
6946 if (state->es_shader) {
6947 _mesa_glsl_error(&loc, state, "unsized array `%s' definition: "
6948 "only last member of a shader storage block "
6949 "can be defined as unsized array",
6950 var->name);
6951 }
6952 }
6953 }
6954
6955 state->symbols->add_variable(var);
6956 instructions->push_tail(var);
6957 }
6958
6959 if (redeclaring_per_vertex && block_type != earlier_per_vertex) {
6960 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10 spec:
6961 *
6962 * It is also a compilation error ... to redeclare a built-in
6963 * block and then use a member from that built-in block that was
6964 * not included in the redeclaration.
6965 *
6966 * This appears to be a clarification to the behaviour established
6967 * for gl_PerVertex by GLSL 1.50, therefore we implement this
6968 * behaviour regardless of GLSL version.
6969 *
6970 * To prevent the shader from using a member that was not included in
6971 * the redeclaration, we disable any ir_variables that are still
6972 * associated with the old declaration of gl_PerVertex (since we've
6973 * already updated all of the variables contained in the new
6974 * gl_PerVertex to point to it).
6975 *
6976 * As a side effect this will prevent
6977 * validate_intrastage_interface_blocks() from getting confused and
6978 * thinking there are conflicting definitions of gl_PerVertex in the
6979 * shader.
6980 */
6981 foreach_in_list_safe(ir_instruction, node, instructions) {
6982 ir_variable *const var = node->as_variable();
6983 if (var != NULL &&
6984 var->get_interface_type() == earlier_per_vertex &&
6985 var->data.mode == var_mode) {
6986 if (var->data.how_declared == ir_var_declared_normally) {
6987 _mesa_glsl_error(&loc, state,
6988 "redeclaration of gl_PerVertex cannot "
6989 "follow a redeclaration of `%s'",
6990 var->name);
6991 }
6992 state->symbols->disable_variable(var->name);
6993 var->remove();
6994 }
6995 }
6996 }
6997 }
6998
6999 return NULL;
7000 }
7001
7002
7003 ir_rvalue *
7004 ast_tcs_output_layout::hir(exec_list *instructions,
7005 struct _mesa_glsl_parse_state *state)
7006 {
7007 YYLTYPE loc = this->get_location();
7008
7009 /* If any tessellation control output layout declaration preceded this
7010 * one, make sure it was consistent with this one.
7011 */
7012 if (state->tcs_output_vertices_specified &&
7013 state->out_qualifier->vertices != this->vertices) {
7014 _mesa_glsl_error(&loc, state,
7015 "tessellation control shader output layout does not "
7016 "match previous declaration");
7017 return NULL;
7018 }
7019
7020 /* If any shader outputs occurred before this declaration and specified an
7021 * array size, make sure the size they specified is consistent with the
7022 * primitive type.
7023 */
7024 unsigned num_vertices = this->vertices;
7025 if (state->tcs_output_size != 0 && state->tcs_output_size != num_vertices) {
7026 _mesa_glsl_error(&loc, state,
7027 "this tessellation control shader output layout "
7028 "specifies %u vertices, but a previous output "
7029 "is declared with size %u",
7030 num_vertices, state->tcs_output_size);
7031 return NULL;
7032 }
7033
7034 state->tcs_output_vertices_specified = true;
7035
7036 /* If any shader outputs occurred before this declaration and did not
7037 * specify an array size, their size is determined now.
7038 */
7039 foreach_in_list (ir_instruction, node, instructions) {
7040 ir_variable *var = node->as_variable();
7041 if (var == NULL || var->data.mode != ir_var_shader_out)
7042 continue;
7043
7044 /* Note: Not all tessellation control shader output are arrays. */
7045 if (!var->type->is_unsized_array() || var->data.patch)
7046 continue;
7047
7048 if (var->data.max_array_access >= num_vertices) {
7049 _mesa_glsl_error(&loc, state,
7050 "this tessellation control shader output layout "
7051 "specifies %u vertices, but an access to element "
7052 "%u of output `%s' already exists", num_vertices,
7053 var->data.max_array_access, var->name);
7054 } else {
7055 var->type = glsl_type::get_array_instance(var->type->fields.array,
7056 num_vertices);
7057 }
7058 }
7059
7060 return NULL;
7061 }
7062
7063
7064 ir_rvalue *
7065 ast_gs_input_layout::hir(exec_list *instructions,
7066 struct _mesa_glsl_parse_state *state)
7067 {
7068 YYLTYPE loc = this->get_location();
7069
7070 /* If any geometry input layout declaration preceded this one, make sure it
7071 * was consistent with this one.
7072 */
7073 if (state->gs_input_prim_type_specified &&
7074 state->in_qualifier->prim_type != this->prim_type) {
7075 _mesa_glsl_error(&loc, state,
7076 "geometry shader input layout does not match"
7077 " previous declaration");
7078 return NULL;
7079 }
7080
7081 /* If any shader inputs occurred before this declaration and specified an
7082 * array size, make sure the size they specified is consistent with the
7083 * primitive type.
7084 */
7085 unsigned num_vertices = vertices_per_prim(this->prim_type);
7086 if (state->gs_input_size != 0 && state->gs_input_size != num_vertices) {
7087 _mesa_glsl_error(&loc, state,
7088 "this geometry shader input layout implies %u vertices"
7089 " per primitive, but a previous input is declared"
7090 " with size %u", num_vertices, state->gs_input_size);
7091 return NULL;
7092 }
7093
7094 state->gs_input_prim_type_specified = true;
7095
7096 /* If any shader inputs occurred before this declaration and did not
7097 * specify an array size, their size is determined now.
7098 */
7099 foreach_in_list(ir_instruction, node, instructions) {
7100 ir_variable *var = node->as_variable();
7101 if (var == NULL || var->data.mode != ir_var_shader_in)
7102 continue;
7103
7104 /* Note: gl_PrimitiveIDIn has mode ir_var_shader_in, but it's not an
7105 * array; skip it.
7106 */
7107
7108 if (var->type->is_unsized_array()) {
7109 if (var->data.max_array_access >= num_vertices) {
7110 _mesa_glsl_error(&loc, state,
7111 "this geometry shader input layout implies %u"
7112 " vertices, but an access to element %u of input"
7113 " `%s' already exists", num_vertices,
7114 var->data.max_array_access, var->name);
7115 } else {
7116 var->type = glsl_type::get_array_instance(var->type->fields.array,
7117 num_vertices);
7118 }
7119 }
7120 }
7121
7122 return NULL;
7123 }
7124
7125
7126 ir_rvalue *
7127 ast_cs_input_layout::hir(exec_list *instructions,
7128 struct _mesa_glsl_parse_state *state)
7129 {
7130 YYLTYPE loc = this->get_location();
7131
7132 /* If any compute input layout declaration preceded this one, make sure it
7133 * was consistent with this one.
7134 */
7135 if (state->cs_input_local_size_specified) {
7136 for (int i = 0; i < 3; i++) {
7137 if (state->cs_input_local_size[i] != this->local_size[i]) {
7138 _mesa_glsl_error(&loc, state,
7139 "compute shader input layout does not match"
7140 " previous declaration");
7141 return NULL;
7142 }
7143 }
7144 }
7145
7146 /* From the ARB_compute_shader specification:
7147 *
7148 * If the local size of the shader in any dimension is greater
7149 * than the maximum size supported by the implementation for that
7150 * dimension, a compile-time error results.
7151 *
7152 * It is not clear from the spec how the error should be reported if
7153 * the total size of the work group exceeds
7154 * MAX_COMPUTE_WORK_GROUP_INVOCATIONS, but it seems reasonable to
7155 * report it at compile time as well.
7156 */
7157 GLuint64 total_invocations = 1;
7158 for (int i = 0; i < 3; i++) {
7159 if (this->local_size[i] > state->ctx->Const.MaxComputeWorkGroupSize[i]) {
7160 _mesa_glsl_error(&loc, state,
7161 "local_size_%c exceeds MAX_COMPUTE_WORK_GROUP_SIZE"
7162 " (%d)", 'x' + i,
7163 state->ctx->Const.MaxComputeWorkGroupSize[i]);
7164 break;
7165 }
7166 total_invocations *= this->local_size[i];
7167 if (total_invocations >
7168 state->ctx->Const.MaxComputeWorkGroupInvocations) {
7169 _mesa_glsl_error(&loc, state,
7170 "product of local_sizes exceeds "
7171 "MAX_COMPUTE_WORK_GROUP_INVOCATIONS (%d)",
7172 state->ctx->Const.MaxComputeWorkGroupInvocations);
7173 break;
7174 }
7175 }
7176
7177 state->cs_input_local_size_specified = true;
7178 for (int i = 0; i < 3; i++)
7179 state->cs_input_local_size[i] = this->local_size[i];
7180
7181 /* We may now declare the built-in constant gl_WorkGroupSize (see
7182 * builtin_variable_generator::generate_constants() for why we didn't
7183 * declare it earlier).
7184 */
7185 ir_variable *var = new(state->symbols)
7186 ir_variable(glsl_type::uvec3_type, "gl_WorkGroupSize", ir_var_auto);
7187 var->data.how_declared = ir_var_declared_implicitly;
7188 var->data.read_only = true;
7189 instructions->push_tail(var);
7190 state->symbols->add_variable(var);
7191 ir_constant_data data;
7192 memset(&data, 0, sizeof(data));
7193 for (int i = 0; i < 3; i++)
7194 data.u[i] = this->local_size[i];
7195 var->constant_value = new(var) ir_constant(glsl_type::uvec3_type, &data);
7196 var->constant_initializer =
7197 new(var) ir_constant(glsl_type::uvec3_type, &data);
7198 var->data.has_initializer = true;
7199
7200 return NULL;
7201 }
7202
7203
7204 static void
7205 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
7206 exec_list *instructions)
7207 {
7208 bool gl_FragColor_assigned = false;
7209 bool gl_FragData_assigned = false;
7210 bool user_defined_fs_output_assigned = false;
7211 ir_variable *user_defined_fs_output = NULL;
7212
7213 /* It would be nice to have proper location information. */
7214 YYLTYPE loc;
7215 memset(&loc, 0, sizeof(loc));
7216
7217 foreach_in_list(ir_instruction, node, instructions) {
7218 ir_variable *var = node->as_variable();
7219
7220 if (!var || !var->data.assigned)
7221 continue;
7222
7223 if (strcmp(var->name, "gl_FragColor") == 0)
7224 gl_FragColor_assigned = true;
7225 else if (strcmp(var->name, "gl_FragData") == 0)
7226 gl_FragData_assigned = true;
7227 else if (!is_gl_identifier(var->name)) {
7228 if (state->stage == MESA_SHADER_FRAGMENT &&
7229 var->data.mode == ir_var_shader_out) {
7230 user_defined_fs_output_assigned = true;
7231 user_defined_fs_output = var;
7232 }
7233 }
7234 }
7235
7236 /* From the GLSL 1.30 spec:
7237 *
7238 * "If a shader statically assigns a value to gl_FragColor, it
7239 * may not assign a value to any element of gl_FragData. If a
7240 * shader statically writes a value to any element of
7241 * gl_FragData, it may not assign a value to
7242 * gl_FragColor. That is, a shader may assign values to either
7243 * gl_FragColor or gl_FragData, but not both. Multiple shaders
7244 * linked together must also consistently write just one of
7245 * these variables. Similarly, if user declared output
7246 * variables are in use (statically assigned to), then the
7247 * built-in variables gl_FragColor and gl_FragData may not be
7248 * assigned to. These incorrect usages all generate compile
7249 * time errors."
7250 */
7251 if (gl_FragColor_assigned && gl_FragData_assigned) {
7252 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7253 "`gl_FragColor' and `gl_FragData'");
7254 } else if (gl_FragColor_assigned && user_defined_fs_output_assigned) {
7255 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7256 "`gl_FragColor' and `%s'",
7257 user_defined_fs_output->name);
7258 } else if (gl_FragData_assigned && user_defined_fs_output_assigned) {
7259 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7260 "`gl_FragData' and `%s'",
7261 user_defined_fs_output->name);
7262 }
7263 }
7264
7265
7266 static void
7267 remove_per_vertex_blocks(exec_list *instructions,
7268 _mesa_glsl_parse_state *state, ir_variable_mode mode)
7269 {
7270 /* Find the gl_PerVertex interface block of the appropriate (in/out) mode,
7271 * if it exists in this shader type.
7272 */
7273 const glsl_type *per_vertex = NULL;
7274 switch (mode) {
7275 case ir_var_shader_in:
7276 if (ir_variable *gl_in = state->symbols->get_variable("gl_in"))
7277 per_vertex = gl_in->get_interface_type();
7278 break;
7279 case ir_var_shader_out:
7280 if (ir_variable *gl_Position =
7281 state->symbols->get_variable("gl_Position")) {
7282 per_vertex = gl_Position->get_interface_type();
7283 }
7284 break;
7285 default:
7286 assert(!"Unexpected mode");
7287 break;
7288 }
7289
7290 /* If we didn't find a built-in gl_PerVertex interface block, then we don't
7291 * need to do anything.
7292 */
7293 if (per_vertex == NULL)
7294 return;
7295
7296 /* If the interface block is used by the shader, then we don't need to do
7297 * anything.
7298 */
7299 interface_block_usage_visitor v(mode, per_vertex);
7300 v.run(instructions);
7301 if (v.usage_found())
7302 return;
7303
7304 /* Remove any ir_variable declarations that refer to the interface block
7305 * we're removing.
7306 */
7307 foreach_in_list_safe(ir_instruction, node, instructions) {
7308 ir_variable *const var = node->as_variable();
7309 if (var != NULL && var->get_interface_type() == per_vertex &&
7310 var->data.mode == mode) {
7311 state->symbols->disable_variable(var->name);
7312 var->remove();
7313 }
7314 }
7315 }