glsl: Add type predicate to check whether a type contains any opaque types.
[mesa.git] / src / glsl / ast_to_hir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file ast_to_hir.c
26 * Convert abstract syntax to to high-level intermediate reprensentation (HIR).
27 *
28 * During the conversion to HIR, the majority of the symantic checking is
29 * preformed on the program. This includes:
30 *
31 * * Symbol table management
32 * * Type checking
33 * * Function binding
34 *
35 * The majority of this work could be done during parsing, and the parser could
36 * probably generate HIR directly. However, this results in frequent changes
37 * to the parser code. Since we do not assume that every system this complier
38 * is built on will have Flex and Bison installed, we have to store the code
39 * generated by these tools in our version control system. In other parts of
40 * the system we've seen problems where a parser was changed but the generated
41 * code was not committed, merge conflicts where created because two developers
42 * had slightly different versions of Bison installed, etc.
43 *
44 * I have also noticed that running Bison generated parsers in GDB is very
45 * irritating. When you get a segfault on '$$ = $1->foo', you can't very
46 * well 'print $1' in GDB.
47 *
48 * As a result, my preference is to put as little C code as possible in the
49 * parser (and lexer) sources.
50 */
51
52 #include "main/core.h" /* for struct gl_extensions */
53 #include "glsl_symbol_table.h"
54 #include "glsl_parser_extras.h"
55 #include "ast.h"
56 #include "glsl_types.h"
57 #include "program/hash_table.h"
58 #include "ir.h"
59
60 static void
61 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
62 exec_list *instructions);
63 static void
64 remove_per_vertex_blocks(exec_list *instructions,
65 _mesa_glsl_parse_state *state, ir_variable_mode mode);
66
67
68 void
69 _mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
70 {
71 _mesa_glsl_initialize_variables(instructions, state);
72
73 state->symbols->separate_function_namespace = state->language_version == 110;
74
75 state->current_function = NULL;
76
77 state->toplevel_ir = instructions;
78
79 state->gs_input_prim_type_specified = false;
80
81 /* Section 4.2 of the GLSL 1.20 specification states:
82 * "The built-in functions are scoped in a scope outside the global scope
83 * users declare global variables in. That is, a shader's global scope,
84 * available for user-defined functions and global variables, is nested
85 * inside the scope containing the built-in functions."
86 *
87 * Since built-in functions like ftransform() access built-in variables,
88 * it follows that those must be in the outer scope as well.
89 *
90 * We push scope here to create this nesting effect...but don't pop.
91 * This way, a shader's globals are still in the symbol table for use
92 * by the linker.
93 */
94 state->symbols->push_scope();
95
96 foreach_list_typed (ast_node, ast, link, & state->translation_unit)
97 ast->hir(instructions, state);
98
99 detect_recursion_unlinked(state, instructions);
100 detect_conflicting_assignments(state, instructions);
101
102 state->toplevel_ir = NULL;
103
104 /* Move all of the variable declarations to the front of the IR list, and
105 * reverse the order. This has the (intended!) side effect that vertex
106 * shader inputs and fragment shader outputs will appear in the IR in the
107 * same order that they appeared in the shader code. This results in the
108 * locations being assigned in the declared order. Many (arguably buggy)
109 * applications depend on this behavior, and it matches what nearly all
110 * other drivers do.
111 */
112 foreach_list_safe(node, instructions) {
113 ir_variable *const var = ((ir_instruction *) node)->as_variable();
114
115 if (var == NULL)
116 continue;
117
118 var->remove();
119 instructions->push_head(var);
120 }
121
122 /* From section 7.1 (Built-In Language Variables) of the GLSL 4.10 spec:
123 *
124 * If multiple shaders using members of a built-in block belonging to
125 * the same interface are linked together in the same program, they
126 * must all redeclare the built-in block in the same way, as described
127 * in section 4.3.7 "Interface Blocks" for interface block matching, or
128 * a link error will result.
129 *
130 * The phrase "using members of a built-in block" implies that if two
131 * shaders are linked together and one of them *does not use* any members
132 * of the built-in block, then that shader does not need to have a matching
133 * redeclaration of the built-in block.
134 *
135 * This appears to be a clarification to the behaviour established for
136 * gl_PerVertex by GLSL 1.50, therefore implement it regardless of GLSL
137 * version.
138 *
139 * The definition of "interface" in section 4.3.7 that applies here is as
140 * follows:
141 *
142 * The boundary between adjacent programmable pipeline stages: This
143 * spans all the outputs in all compilation units of the first stage
144 * and all the inputs in all compilation units of the second stage.
145 *
146 * Therefore this rule applies to both inter- and intra-stage linking.
147 *
148 * The easiest way to implement this is to check whether the shader uses
149 * gl_PerVertex right after ast-to-ir conversion, and if it doesn't, simply
150 * remove all the relevant variable declaration from the IR, so that the
151 * linker won't see them and complain about mismatches.
152 */
153 remove_per_vertex_blocks(instructions, state, ir_var_shader_in);
154 remove_per_vertex_blocks(instructions, state, ir_var_shader_out);
155 }
156
157
158 /**
159 * If a conversion is available, convert one operand to a different type
160 *
161 * The \c from \c ir_rvalue is converted "in place".
162 *
163 * \param to Type that the operand it to be converted to
164 * \param from Operand that is being converted
165 * \param state GLSL compiler state
166 *
167 * \return
168 * If a conversion is possible (or unnecessary), \c true is returned.
169 * Otherwise \c false is returned.
170 */
171 bool
172 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
173 struct _mesa_glsl_parse_state *state)
174 {
175 void *ctx = state;
176 if (to->base_type == from->type->base_type)
177 return true;
178
179 /* This conversion was added in GLSL 1.20. If the compilation mode is
180 * GLSL 1.10, the conversion is skipped.
181 */
182 if (!state->is_version(120, 0))
183 return false;
184
185 /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
186 *
187 * "There are no implicit array or structure conversions. For
188 * example, an array of int cannot be implicitly converted to an
189 * array of float. There are no implicit conversions between
190 * signed and unsigned integers."
191 */
192 /* FINISHME: The above comment is partially a lie. There is int/uint
193 * FINISHME: conversion for immediate constants.
194 */
195 if (!to->is_float() || !from->type->is_numeric())
196 return false;
197
198 /* Convert to a floating point type with the same number of components
199 * as the original type - i.e. int to float, not int to vec4.
200 */
201 to = glsl_type::get_instance(GLSL_TYPE_FLOAT, from->type->vector_elements,
202 from->type->matrix_columns);
203
204 switch (from->type->base_type) {
205 case GLSL_TYPE_INT:
206 from = new(ctx) ir_expression(ir_unop_i2f, to, from, NULL);
207 break;
208 case GLSL_TYPE_UINT:
209 from = new(ctx) ir_expression(ir_unop_u2f, to, from, NULL);
210 break;
211 case GLSL_TYPE_BOOL:
212 from = new(ctx) ir_expression(ir_unop_b2f, to, from, NULL);
213 break;
214 default:
215 assert(0);
216 }
217
218 return true;
219 }
220
221
222 static const struct glsl_type *
223 arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
224 bool multiply,
225 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
226 {
227 const glsl_type *type_a = value_a->type;
228 const glsl_type *type_b = value_b->type;
229
230 /* From GLSL 1.50 spec, page 56:
231 *
232 * "The arithmetic binary operators add (+), subtract (-),
233 * multiply (*), and divide (/) operate on integer and
234 * floating-point scalars, vectors, and matrices."
235 */
236 if (!type_a->is_numeric() || !type_b->is_numeric()) {
237 _mesa_glsl_error(loc, state,
238 "operands to arithmetic operators must be numeric");
239 return glsl_type::error_type;
240 }
241
242
243 /* "If one operand is floating-point based and the other is
244 * not, then the conversions from Section 4.1.10 "Implicit
245 * Conversions" are applied to the non-floating-point-based operand."
246 */
247 if (!apply_implicit_conversion(type_a, value_b, state)
248 && !apply_implicit_conversion(type_b, value_a, state)) {
249 _mesa_glsl_error(loc, state,
250 "could not implicitly convert operands to "
251 "arithmetic operator");
252 return glsl_type::error_type;
253 }
254 type_a = value_a->type;
255 type_b = value_b->type;
256
257 /* "If the operands are integer types, they must both be signed or
258 * both be unsigned."
259 *
260 * From this rule and the preceeding conversion it can be inferred that
261 * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
262 * The is_numeric check above already filtered out the case where either
263 * type is not one of these, so now the base types need only be tested for
264 * equality.
265 */
266 if (type_a->base_type != type_b->base_type) {
267 _mesa_glsl_error(loc, state,
268 "base type mismatch for arithmetic operator");
269 return glsl_type::error_type;
270 }
271
272 /* "All arithmetic binary operators result in the same fundamental type
273 * (signed integer, unsigned integer, or floating-point) as the
274 * operands they operate on, after operand type conversion. After
275 * conversion, the following cases are valid
276 *
277 * * The two operands are scalars. In this case the operation is
278 * applied, resulting in a scalar."
279 */
280 if (type_a->is_scalar() && type_b->is_scalar())
281 return type_a;
282
283 /* "* One operand is a scalar, and the other is a vector or matrix.
284 * In this case, the scalar operation is applied independently to each
285 * component of the vector or matrix, resulting in the same size
286 * vector or matrix."
287 */
288 if (type_a->is_scalar()) {
289 if (!type_b->is_scalar())
290 return type_b;
291 } else if (type_b->is_scalar()) {
292 return type_a;
293 }
294
295 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
296 * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
297 * handled.
298 */
299 assert(!type_a->is_scalar());
300 assert(!type_b->is_scalar());
301
302 /* "* The two operands are vectors of the same size. In this case, the
303 * operation is done component-wise resulting in the same size
304 * vector."
305 */
306 if (type_a->is_vector() && type_b->is_vector()) {
307 if (type_a == type_b) {
308 return type_a;
309 } else {
310 _mesa_glsl_error(loc, state,
311 "vector size mismatch for arithmetic operator");
312 return glsl_type::error_type;
313 }
314 }
315
316 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
317 * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
318 * <vector, vector> have been handled. At least one of the operands must
319 * be matrix. Further, since there are no integer matrix types, the base
320 * type of both operands must be float.
321 */
322 assert(type_a->is_matrix() || type_b->is_matrix());
323 assert(type_a->base_type == GLSL_TYPE_FLOAT);
324 assert(type_b->base_type == GLSL_TYPE_FLOAT);
325
326 /* "* The operator is add (+), subtract (-), or divide (/), and the
327 * operands are matrices with the same number of rows and the same
328 * number of columns. In this case, the operation is done component-
329 * wise resulting in the same size matrix."
330 * * The operator is multiply (*), where both operands are matrices or
331 * one operand is a vector and the other a matrix. A right vector
332 * operand is treated as a column vector and a left vector operand as a
333 * row vector. In all these cases, it is required that the number of
334 * columns of the left operand is equal to the number of rows of the
335 * right operand. Then, the multiply (*) operation does a linear
336 * algebraic multiply, yielding an object that has the same number of
337 * rows as the left operand and the same number of columns as the right
338 * operand. Section 5.10 "Vector and Matrix Operations" explains in
339 * more detail how vectors and matrices are operated on."
340 */
341 if (! multiply) {
342 if (type_a == type_b)
343 return type_a;
344 } else {
345 if (type_a->is_matrix() && type_b->is_matrix()) {
346 /* Matrix multiply. The columns of A must match the rows of B. Given
347 * the other previously tested constraints, this means the vector type
348 * of a row from A must be the same as the vector type of a column from
349 * B.
350 */
351 if (type_a->row_type() == type_b->column_type()) {
352 /* The resulting matrix has the number of columns of matrix B and
353 * the number of rows of matrix A. We get the row count of A by
354 * looking at the size of a vector that makes up a column. The
355 * transpose (size of a row) is done for B.
356 */
357 const glsl_type *const type =
358 glsl_type::get_instance(type_a->base_type,
359 type_a->column_type()->vector_elements,
360 type_b->row_type()->vector_elements);
361 assert(type != glsl_type::error_type);
362
363 return type;
364 }
365 } else if (type_a->is_matrix()) {
366 /* A is a matrix and B is a column vector. Columns of A must match
367 * rows of B. Given the other previously tested constraints, this
368 * means the vector type of a row from A must be the same as the
369 * vector the type of B.
370 */
371 if (type_a->row_type() == type_b) {
372 /* The resulting vector has a number of elements equal to
373 * the number of rows of matrix A. */
374 const glsl_type *const type =
375 glsl_type::get_instance(type_a->base_type,
376 type_a->column_type()->vector_elements,
377 1);
378 assert(type != glsl_type::error_type);
379
380 return type;
381 }
382 } else {
383 assert(type_b->is_matrix());
384
385 /* A is a row vector and B is a matrix. Columns of A must match rows
386 * of B. Given the other previously tested constraints, this means
387 * the type of A must be the same as the vector type of a column from
388 * B.
389 */
390 if (type_a == type_b->column_type()) {
391 /* The resulting vector has a number of elements equal to
392 * the number of columns of matrix B. */
393 const glsl_type *const type =
394 glsl_type::get_instance(type_a->base_type,
395 type_b->row_type()->vector_elements,
396 1);
397 assert(type != glsl_type::error_type);
398
399 return type;
400 }
401 }
402
403 _mesa_glsl_error(loc, state, "size mismatch for matrix multiplication");
404 return glsl_type::error_type;
405 }
406
407
408 /* "All other cases are illegal."
409 */
410 _mesa_glsl_error(loc, state, "type mismatch");
411 return glsl_type::error_type;
412 }
413
414
415 static const struct glsl_type *
416 unary_arithmetic_result_type(const struct glsl_type *type,
417 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
418 {
419 /* From GLSL 1.50 spec, page 57:
420 *
421 * "The arithmetic unary operators negate (-), post- and pre-increment
422 * and decrement (-- and ++) operate on integer or floating-point
423 * values (including vectors and matrices). All unary operators work
424 * component-wise on their operands. These result with the same type
425 * they operated on."
426 */
427 if (!type->is_numeric()) {
428 _mesa_glsl_error(loc, state,
429 "operands to arithmetic operators must be numeric");
430 return glsl_type::error_type;
431 }
432
433 return type;
434 }
435
436 /**
437 * \brief Return the result type of a bit-logic operation.
438 *
439 * If the given types to the bit-logic operator are invalid, return
440 * glsl_type::error_type.
441 *
442 * \param type_a Type of LHS of bit-logic op
443 * \param type_b Type of RHS of bit-logic op
444 */
445 static const struct glsl_type *
446 bit_logic_result_type(const struct glsl_type *type_a,
447 const struct glsl_type *type_b,
448 ast_operators op,
449 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
450 {
451 if (!state->check_bitwise_operations_allowed(loc)) {
452 return glsl_type::error_type;
453 }
454
455 /* From page 50 (page 56 of PDF) of GLSL 1.30 spec:
456 *
457 * "The bitwise operators and (&), exclusive-or (^), and inclusive-or
458 * (|). The operands must be of type signed or unsigned integers or
459 * integer vectors."
460 */
461 if (!type_a->is_integer()) {
462 _mesa_glsl_error(loc, state, "LHS of `%s' must be an integer",
463 ast_expression::operator_string(op));
464 return glsl_type::error_type;
465 }
466 if (!type_b->is_integer()) {
467 _mesa_glsl_error(loc, state, "RHS of `%s' must be an integer",
468 ast_expression::operator_string(op));
469 return glsl_type::error_type;
470 }
471
472 /* "The fundamental types of the operands (signed or unsigned) must
473 * match,"
474 */
475 if (type_a->base_type != type_b->base_type) {
476 _mesa_glsl_error(loc, state, "operands of `%s' must have the same "
477 "base type", ast_expression::operator_string(op));
478 return glsl_type::error_type;
479 }
480
481 /* "The operands cannot be vectors of differing size." */
482 if (type_a->is_vector() &&
483 type_b->is_vector() &&
484 type_a->vector_elements != type_b->vector_elements) {
485 _mesa_glsl_error(loc, state, "operands of `%s' cannot be vectors of "
486 "different sizes", ast_expression::operator_string(op));
487 return glsl_type::error_type;
488 }
489
490 /* "If one operand is a scalar and the other a vector, the scalar is
491 * applied component-wise to the vector, resulting in the same type as
492 * the vector. The fundamental types of the operands [...] will be the
493 * resulting fundamental type."
494 */
495 if (type_a->is_scalar())
496 return type_b;
497 else
498 return type_a;
499 }
500
501 static const struct glsl_type *
502 modulus_result_type(const struct glsl_type *type_a,
503 const struct glsl_type *type_b,
504 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
505 {
506 if (!state->check_version(130, 300, loc, "operator '%%' is reserved")) {
507 return glsl_type::error_type;
508 }
509
510 /* From GLSL 1.50 spec, page 56:
511 * "The operator modulus (%) operates on signed or unsigned integers or
512 * integer vectors. The operand types must both be signed or both be
513 * unsigned."
514 */
515 if (!type_a->is_integer()) {
516 _mesa_glsl_error(loc, state, "LHS of operator %% must be an integer");
517 return glsl_type::error_type;
518 }
519 if (!type_b->is_integer()) {
520 _mesa_glsl_error(loc, state, "RHS of operator %% must be an integer");
521 return glsl_type::error_type;
522 }
523 if (type_a->base_type != type_b->base_type) {
524 _mesa_glsl_error(loc, state,
525 "operands of %% must have the same base type");
526 return glsl_type::error_type;
527 }
528
529 /* "The operands cannot be vectors of differing size. If one operand is
530 * a scalar and the other vector, then the scalar is applied component-
531 * wise to the vector, resulting in the same type as the vector. If both
532 * are vectors of the same size, the result is computed component-wise."
533 */
534 if (type_a->is_vector()) {
535 if (!type_b->is_vector()
536 || (type_a->vector_elements == type_b->vector_elements))
537 return type_a;
538 } else
539 return type_b;
540
541 /* "The operator modulus (%) is not defined for any other data types
542 * (non-integer types)."
543 */
544 _mesa_glsl_error(loc, state, "type mismatch");
545 return glsl_type::error_type;
546 }
547
548
549 static const struct glsl_type *
550 relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
551 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
552 {
553 const glsl_type *type_a = value_a->type;
554 const glsl_type *type_b = value_b->type;
555
556 /* From GLSL 1.50 spec, page 56:
557 * "The relational operators greater than (>), less than (<), greater
558 * than or equal (>=), and less than or equal (<=) operate only on
559 * scalar integer and scalar floating-point expressions."
560 */
561 if (!type_a->is_numeric()
562 || !type_b->is_numeric()
563 || !type_a->is_scalar()
564 || !type_b->is_scalar()) {
565 _mesa_glsl_error(loc, state,
566 "operands to relational operators must be scalar and "
567 "numeric");
568 return glsl_type::error_type;
569 }
570
571 /* "Either the operands' types must match, or the conversions from
572 * Section 4.1.10 "Implicit Conversions" will be applied to the integer
573 * operand, after which the types must match."
574 */
575 if (!apply_implicit_conversion(type_a, value_b, state)
576 && !apply_implicit_conversion(type_b, value_a, state)) {
577 _mesa_glsl_error(loc, state,
578 "could not implicitly convert operands to "
579 "relational operator");
580 return glsl_type::error_type;
581 }
582 type_a = value_a->type;
583 type_b = value_b->type;
584
585 if (type_a->base_type != type_b->base_type) {
586 _mesa_glsl_error(loc, state, "base type mismatch");
587 return glsl_type::error_type;
588 }
589
590 /* "The result is scalar Boolean."
591 */
592 return glsl_type::bool_type;
593 }
594
595 /**
596 * \brief Return the result type of a bit-shift operation.
597 *
598 * If the given types to the bit-shift operator are invalid, return
599 * glsl_type::error_type.
600 *
601 * \param type_a Type of LHS of bit-shift op
602 * \param type_b Type of RHS of bit-shift op
603 */
604 static const struct glsl_type *
605 shift_result_type(const struct glsl_type *type_a,
606 const struct glsl_type *type_b,
607 ast_operators op,
608 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
609 {
610 if (!state->check_bitwise_operations_allowed(loc)) {
611 return glsl_type::error_type;
612 }
613
614 /* From page 50 (page 56 of the PDF) of the GLSL 1.30 spec:
615 *
616 * "The shift operators (<<) and (>>). For both operators, the operands
617 * must be signed or unsigned integers or integer vectors. One operand
618 * can be signed while the other is unsigned."
619 */
620 if (!type_a->is_integer()) {
621 _mesa_glsl_error(loc, state, "LHS of operator %s must be an integer or "
622 "integer vector", ast_expression::operator_string(op));
623 return glsl_type::error_type;
624
625 }
626 if (!type_b->is_integer()) {
627 _mesa_glsl_error(loc, state, "RHS of operator %s must be an integer or "
628 "integer vector", ast_expression::operator_string(op));
629 return glsl_type::error_type;
630 }
631
632 /* "If the first operand is a scalar, the second operand has to be
633 * a scalar as well."
634 */
635 if (type_a->is_scalar() && !type_b->is_scalar()) {
636 _mesa_glsl_error(loc, state, "if the first operand of %s is scalar, the "
637 "second must be scalar as well",
638 ast_expression::operator_string(op));
639 return glsl_type::error_type;
640 }
641
642 /* If both operands are vectors, check that they have same number of
643 * elements.
644 */
645 if (type_a->is_vector() &&
646 type_b->is_vector() &&
647 type_a->vector_elements != type_b->vector_elements) {
648 _mesa_glsl_error(loc, state, "vector operands to operator %s must "
649 "have same number of elements",
650 ast_expression::operator_string(op));
651 return glsl_type::error_type;
652 }
653
654 /* "In all cases, the resulting type will be the same type as the left
655 * operand."
656 */
657 return type_a;
658 }
659
660 /**
661 * Validates that a value can be assigned to a location with a specified type
662 *
663 * Validates that \c rhs can be assigned to some location. If the types are
664 * not an exact match but an automatic conversion is possible, \c rhs will be
665 * converted.
666 *
667 * \return
668 * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
669 * Otherwise the actual RHS to be assigned will be returned. This may be
670 * \c rhs, or it may be \c rhs after some type conversion.
671 *
672 * \note
673 * In addition to being used for assignments, this function is used to
674 * type-check return values.
675 */
676 ir_rvalue *
677 validate_assignment(struct _mesa_glsl_parse_state *state,
678 YYLTYPE loc, const glsl_type *lhs_type,
679 ir_rvalue *rhs, bool is_initializer)
680 {
681 /* If there is already some error in the RHS, just return it. Anything
682 * else will lead to an avalanche of error message back to the user.
683 */
684 if (rhs->type->is_error())
685 return rhs;
686
687 /* If the types are identical, the assignment can trivially proceed.
688 */
689 if (rhs->type == lhs_type)
690 return rhs;
691
692 /* If the array element types are the same and the LHS is unsized,
693 * the assignment is okay for initializers embedded in variable
694 * declarations.
695 *
696 * Note: Whole-array assignments are not permitted in GLSL 1.10, but this
697 * is handled by ir_dereference::is_lvalue.
698 */
699 if (is_initializer && lhs_type->is_unsized_array() && rhs->type->is_array()
700 && (lhs_type->element_type() == rhs->type->element_type())) {
701 return rhs;
702 }
703
704 /* Check for implicit conversion in GLSL 1.20 */
705 if (apply_implicit_conversion(lhs_type, rhs, state)) {
706 if (rhs->type == lhs_type)
707 return rhs;
708 }
709
710 _mesa_glsl_error(&loc, state,
711 "%s of type %s cannot be assigned to "
712 "variable of type %s",
713 is_initializer ? "initializer" : "value",
714 rhs->type->name, lhs_type->name);
715
716 return NULL;
717 }
718
719 static void
720 mark_whole_array_access(ir_rvalue *access)
721 {
722 ir_dereference_variable *deref = access->as_dereference_variable();
723
724 if (deref && deref->var) {
725 deref->var->max_array_access = deref->type->length - 1;
726 }
727 }
728
729 ir_rvalue *
730 do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state,
731 const char *non_lvalue_description,
732 ir_rvalue *lhs, ir_rvalue *rhs, bool is_initializer,
733 YYLTYPE lhs_loc)
734 {
735 void *ctx = state;
736 bool error_emitted = (lhs->type->is_error() || rhs->type->is_error());
737
738 /* If the assignment LHS comes back as an ir_binop_vector_extract
739 * expression, move it to the RHS as an ir_triop_vector_insert.
740 */
741 if (lhs->ir_type == ir_type_expression) {
742 ir_expression *const expr = lhs->as_expression();
743
744 if (unlikely(expr->operation == ir_binop_vector_extract)) {
745 ir_rvalue *new_rhs =
746 validate_assignment(state, lhs_loc, lhs->type,
747 rhs, is_initializer);
748
749 if (new_rhs == NULL) {
750 return lhs;
751 } else {
752 rhs = new(ctx) ir_expression(ir_triop_vector_insert,
753 expr->operands[0]->type,
754 expr->operands[0],
755 new_rhs,
756 expr->operands[1]);
757 lhs = expr->operands[0]->clone(ctx, NULL);
758 }
759 }
760 }
761
762 ir_variable *lhs_var = lhs->variable_referenced();
763 if (lhs_var)
764 lhs_var->assigned = true;
765
766 if (!error_emitted) {
767 if (non_lvalue_description != NULL) {
768 _mesa_glsl_error(&lhs_loc, state,
769 "assignment to %s",
770 non_lvalue_description);
771 error_emitted = true;
772 } else if (lhs->variable_referenced() != NULL
773 && lhs->variable_referenced()->read_only) {
774 _mesa_glsl_error(&lhs_loc, state,
775 "assignment to read-only variable '%s'",
776 lhs->variable_referenced()->name);
777 error_emitted = true;
778
779 } else if (lhs->type->is_array() &&
780 !state->check_version(120, 300, &lhs_loc,
781 "whole array assignment forbidden")) {
782 /* From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
783 *
784 * "Other binary or unary expressions, non-dereferenced
785 * arrays, function names, swizzles with repeated fields,
786 * and constants cannot be l-values."
787 *
788 * The restriction on arrays is lifted in GLSL 1.20 and GLSL ES 3.00.
789 */
790 error_emitted = true;
791 } else if (!lhs->is_lvalue()) {
792 _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment");
793 error_emitted = true;
794 }
795 }
796
797 ir_rvalue *new_rhs =
798 validate_assignment(state, lhs_loc, lhs->type, rhs, is_initializer);
799 if (new_rhs != NULL) {
800 rhs = new_rhs;
801
802 /* If the LHS array was not declared with a size, it takes it size from
803 * the RHS. If the LHS is an l-value and a whole array, it must be a
804 * dereference of a variable. Any other case would require that the LHS
805 * is either not an l-value or not a whole array.
806 */
807 if (lhs->type->is_unsized_array()) {
808 ir_dereference *const d = lhs->as_dereference();
809
810 assert(d != NULL);
811
812 ir_variable *const var = d->variable_referenced();
813
814 assert(var != NULL);
815
816 if (var->max_array_access >= unsigned(rhs->type->array_size())) {
817 /* FINISHME: This should actually log the location of the RHS. */
818 _mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to "
819 "previous access",
820 var->max_array_access);
821 }
822
823 var->type = glsl_type::get_array_instance(lhs->type->element_type(),
824 rhs->type->array_size());
825 d->type = var->type;
826 }
827 mark_whole_array_access(rhs);
828 mark_whole_array_access(lhs);
829 }
830
831 /* Most callers of do_assignment (assign, add_assign, pre_inc/dec,
832 * but not post_inc) need the converted assigned value as an rvalue
833 * to handle things like:
834 *
835 * i = j += 1;
836 *
837 * So we always just store the computed value being assigned to a
838 * temporary and return a deref of that temporary. If the rvalue
839 * ends up not being used, the temp will get copy-propagated out.
840 */
841 ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp",
842 ir_var_temporary);
843 ir_dereference_variable *deref_var = new(ctx) ir_dereference_variable(var);
844 instructions->push_tail(var);
845 instructions->push_tail(new(ctx) ir_assignment(deref_var, rhs));
846 deref_var = new(ctx) ir_dereference_variable(var);
847
848 if (!error_emitted)
849 instructions->push_tail(new(ctx) ir_assignment(lhs, deref_var));
850
851 return new(ctx) ir_dereference_variable(var);
852 }
853
854 static ir_rvalue *
855 get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue)
856 {
857 void *ctx = ralloc_parent(lvalue);
858 ir_variable *var;
859
860 var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp",
861 ir_var_temporary);
862 instructions->push_tail(var);
863 var->mode = ir_var_auto;
864
865 instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
866 lvalue));
867
868 return new(ctx) ir_dereference_variable(var);
869 }
870
871
872 ir_rvalue *
873 ast_node::hir(exec_list *instructions,
874 struct _mesa_glsl_parse_state *state)
875 {
876 (void) instructions;
877 (void) state;
878
879 return NULL;
880 }
881
882 static ir_rvalue *
883 do_comparison(void *mem_ctx, int operation, ir_rvalue *op0, ir_rvalue *op1)
884 {
885 int join_op;
886 ir_rvalue *cmp = NULL;
887
888 if (operation == ir_binop_all_equal)
889 join_op = ir_binop_logic_and;
890 else
891 join_op = ir_binop_logic_or;
892
893 switch (op0->type->base_type) {
894 case GLSL_TYPE_FLOAT:
895 case GLSL_TYPE_UINT:
896 case GLSL_TYPE_INT:
897 case GLSL_TYPE_BOOL:
898 return new(mem_ctx) ir_expression(operation, op0, op1);
899
900 case GLSL_TYPE_ARRAY: {
901 for (unsigned int i = 0; i < op0->type->length; i++) {
902 ir_rvalue *e0, *e1, *result;
903
904 e0 = new(mem_ctx) ir_dereference_array(op0->clone(mem_ctx, NULL),
905 new(mem_ctx) ir_constant(i));
906 e1 = new(mem_ctx) ir_dereference_array(op1->clone(mem_ctx, NULL),
907 new(mem_ctx) ir_constant(i));
908 result = do_comparison(mem_ctx, operation, e0, e1);
909
910 if (cmp) {
911 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
912 } else {
913 cmp = result;
914 }
915 }
916
917 mark_whole_array_access(op0);
918 mark_whole_array_access(op1);
919 break;
920 }
921
922 case GLSL_TYPE_STRUCT: {
923 for (unsigned int i = 0; i < op0->type->length; i++) {
924 ir_rvalue *e0, *e1, *result;
925 const char *field_name = op0->type->fields.structure[i].name;
926
927 e0 = new(mem_ctx) ir_dereference_record(op0->clone(mem_ctx, NULL),
928 field_name);
929 e1 = new(mem_ctx) ir_dereference_record(op1->clone(mem_ctx, NULL),
930 field_name);
931 result = do_comparison(mem_ctx, operation, e0, e1);
932
933 if (cmp) {
934 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
935 } else {
936 cmp = result;
937 }
938 }
939 break;
940 }
941
942 case GLSL_TYPE_ERROR:
943 case GLSL_TYPE_VOID:
944 case GLSL_TYPE_SAMPLER:
945 case GLSL_TYPE_INTERFACE:
946 case GLSL_TYPE_ATOMIC_UINT:
947 /* I assume a comparison of a struct containing a sampler just
948 * ignores the sampler present in the type.
949 */
950 break;
951 }
952
953 if (cmp == NULL)
954 cmp = new(mem_ctx) ir_constant(true);
955
956 return cmp;
957 }
958
959 /* For logical operations, we want to ensure that the operands are
960 * scalar booleans. If it isn't, emit an error and return a constant
961 * boolean to avoid triggering cascading error messages.
962 */
963 ir_rvalue *
964 get_scalar_boolean_operand(exec_list *instructions,
965 struct _mesa_glsl_parse_state *state,
966 ast_expression *parent_expr,
967 int operand,
968 const char *operand_name,
969 bool *error_emitted)
970 {
971 ast_expression *expr = parent_expr->subexpressions[operand];
972 void *ctx = state;
973 ir_rvalue *val = expr->hir(instructions, state);
974
975 if (val->type->is_boolean() && val->type->is_scalar())
976 return val;
977
978 if (!*error_emitted) {
979 YYLTYPE loc = expr->get_location();
980 _mesa_glsl_error(&loc, state, "%s of `%s' must be scalar boolean",
981 operand_name,
982 parent_expr->operator_string(parent_expr->oper));
983 *error_emitted = true;
984 }
985
986 return new(ctx) ir_constant(true);
987 }
988
989 /**
990 * If name refers to a builtin array whose maximum allowed size is less than
991 * size, report an error and return true. Otherwise return false.
992 */
993 void
994 check_builtin_array_max_size(const char *name, unsigned size,
995 YYLTYPE loc, struct _mesa_glsl_parse_state *state)
996 {
997 if ((strcmp("gl_TexCoord", name) == 0)
998 && (size > state->Const.MaxTextureCoords)) {
999 /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec:
1000 *
1001 * "The size [of gl_TexCoord] can be at most
1002 * gl_MaxTextureCoords."
1003 */
1004 _mesa_glsl_error(&loc, state, "`gl_TexCoord' array size cannot "
1005 "be larger than gl_MaxTextureCoords (%u)",
1006 state->Const.MaxTextureCoords);
1007 } else if (strcmp("gl_ClipDistance", name) == 0
1008 && size > state->Const.MaxClipPlanes) {
1009 /* From section 7.1 (Vertex Shader Special Variables) of the
1010 * GLSL 1.30 spec:
1011 *
1012 * "The gl_ClipDistance array is predeclared as unsized and
1013 * must be sized by the shader either redeclaring it with a
1014 * size or indexing it only with integral constant
1015 * expressions. ... The size can be at most
1016 * gl_MaxClipDistances."
1017 */
1018 _mesa_glsl_error(&loc, state, "`gl_ClipDistance' array size cannot "
1019 "be larger than gl_MaxClipDistances (%u)",
1020 state->Const.MaxClipPlanes);
1021 }
1022 }
1023
1024 /**
1025 * Create the constant 1, of a which is appropriate for incrementing and
1026 * decrementing values of the given GLSL type. For example, if type is vec4,
1027 * this creates a constant value of 1.0 having type float.
1028 *
1029 * If the given type is invalid for increment and decrement operators, return
1030 * a floating point 1--the error will be detected later.
1031 */
1032 static ir_rvalue *
1033 constant_one_for_inc_dec(void *ctx, const glsl_type *type)
1034 {
1035 switch (type->base_type) {
1036 case GLSL_TYPE_UINT:
1037 return new(ctx) ir_constant((unsigned) 1);
1038 case GLSL_TYPE_INT:
1039 return new(ctx) ir_constant(1);
1040 default:
1041 case GLSL_TYPE_FLOAT:
1042 return new(ctx) ir_constant(1.0f);
1043 }
1044 }
1045
1046 ir_rvalue *
1047 ast_expression::hir(exec_list *instructions,
1048 struct _mesa_glsl_parse_state *state)
1049 {
1050 void *ctx = state;
1051 static const int operations[AST_NUM_OPERATORS] = {
1052 -1, /* ast_assign doesn't convert to ir_expression. */
1053 -1, /* ast_plus doesn't convert to ir_expression. */
1054 ir_unop_neg,
1055 ir_binop_add,
1056 ir_binop_sub,
1057 ir_binop_mul,
1058 ir_binop_div,
1059 ir_binop_mod,
1060 ir_binop_lshift,
1061 ir_binop_rshift,
1062 ir_binop_less,
1063 ir_binop_greater,
1064 ir_binop_lequal,
1065 ir_binop_gequal,
1066 ir_binop_all_equal,
1067 ir_binop_any_nequal,
1068 ir_binop_bit_and,
1069 ir_binop_bit_xor,
1070 ir_binop_bit_or,
1071 ir_unop_bit_not,
1072 ir_binop_logic_and,
1073 ir_binop_logic_xor,
1074 ir_binop_logic_or,
1075 ir_unop_logic_not,
1076
1077 /* Note: The following block of expression types actually convert
1078 * to multiple IR instructions.
1079 */
1080 ir_binop_mul, /* ast_mul_assign */
1081 ir_binop_div, /* ast_div_assign */
1082 ir_binop_mod, /* ast_mod_assign */
1083 ir_binop_add, /* ast_add_assign */
1084 ir_binop_sub, /* ast_sub_assign */
1085 ir_binop_lshift, /* ast_ls_assign */
1086 ir_binop_rshift, /* ast_rs_assign */
1087 ir_binop_bit_and, /* ast_and_assign */
1088 ir_binop_bit_xor, /* ast_xor_assign */
1089 ir_binop_bit_or, /* ast_or_assign */
1090
1091 -1, /* ast_conditional doesn't convert to ir_expression. */
1092 ir_binop_add, /* ast_pre_inc. */
1093 ir_binop_sub, /* ast_pre_dec. */
1094 ir_binop_add, /* ast_post_inc. */
1095 ir_binop_sub, /* ast_post_dec. */
1096 -1, /* ast_field_selection doesn't conv to ir_expression. */
1097 -1, /* ast_array_index doesn't convert to ir_expression. */
1098 -1, /* ast_function_call doesn't conv to ir_expression. */
1099 -1, /* ast_identifier doesn't convert to ir_expression. */
1100 -1, /* ast_int_constant doesn't convert to ir_expression. */
1101 -1, /* ast_uint_constant doesn't conv to ir_expression. */
1102 -1, /* ast_float_constant doesn't conv to ir_expression. */
1103 -1, /* ast_bool_constant doesn't conv to ir_expression. */
1104 -1, /* ast_sequence doesn't convert to ir_expression. */
1105 };
1106 ir_rvalue *result = NULL;
1107 ir_rvalue *op[3];
1108 const struct glsl_type *type; /* a temporary variable for switch cases */
1109 bool error_emitted = false;
1110 YYLTYPE loc;
1111
1112 loc = this->get_location();
1113
1114 switch (this->oper) {
1115 case ast_aggregate:
1116 assert(!"ast_aggregate: Should never get here.");
1117 break;
1118
1119 case ast_assign: {
1120 op[0] = this->subexpressions[0]->hir(instructions, state);
1121 op[1] = this->subexpressions[1]->hir(instructions, state);
1122
1123 result = do_assignment(instructions, state,
1124 this->subexpressions[0]->non_lvalue_description,
1125 op[0], op[1], false,
1126 this->subexpressions[0]->get_location());
1127 error_emitted = result->type->is_error();
1128 break;
1129 }
1130
1131 case ast_plus:
1132 op[0] = this->subexpressions[0]->hir(instructions, state);
1133
1134 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1135
1136 error_emitted = type->is_error();
1137
1138 result = op[0];
1139 break;
1140
1141 case ast_neg:
1142 op[0] = this->subexpressions[0]->hir(instructions, state);
1143
1144 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1145
1146 error_emitted = type->is_error();
1147
1148 result = new(ctx) ir_expression(operations[this->oper], type,
1149 op[0], NULL);
1150 break;
1151
1152 case ast_add:
1153 case ast_sub:
1154 case ast_mul:
1155 case ast_div:
1156 op[0] = this->subexpressions[0]->hir(instructions, state);
1157 op[1] = this->subexpressions[1]->hir(instructions, state);
1158
1159 type = arithmetic_result_type(op[0], op[1],
1160 (this->oper == ast_mul),
1161 state, & loc);
1162 error_emitted = type->is_error();
1163
1164 result = new(ctx) ir_expression(operations[this->oper], type,
1165 op[0], op[1]);
1166 break;
1167
1168 case ast_mod:
1169 op[0] = this->subexpressions[0]->hir(instructions, state);
1170 op[1] = this->subexpressions[1]->hir(instructions, state);
1171
1172 type = modulus_result_type(op[0]->type, op[1]->type, state, & loc);
1173
1174 assert(operations[this->oper] == ir_binop_mod);
1175
1176 result = new(ctx) ir_expression(operations[this->oper], type,
1177 op[0], op[1]);
1178 error_emitted = type->is_error();
1179 break;
1180
1181 case ast_lshift:
1182 case ast_rshift:
1183 if (!state->check_bitwise_operations_allowed(&loc)) {
1184 error_emitted = true;
1185 }
1186
1187 op[0] = this->subexpressions[0]->hir(instructions, state);
1188 op[1] = this->subexpressions[1]->hir(instructions, state);
1189 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1190 &loc);
1191 result = new(ctx) ir_expression(operations[this->oper], type,
1192 op[0], op[1]);
1193 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1194 break;
1195
1196 case ast_less:
1197 case ast_greater:
1198 case ast_lequal:
1199 case ast_gequal:
1200 op[0] = this->subexpressions[0]->hir(instructions, state);
1201 op[1] = this->subexpressions[1]->hir(instructions, state);
1202
1203 type = relational_result_type(op[0], op[1], state, & loc);
1204
1205 /* The relational operators must either generate an error or result
1206 * in a scalar boolean. See page 57 of the GLSL 1.50 spec.
1207 */
1208 assert(type->is_error()
1209 || ((type->base_type == GLSL_TYPE_BOOL)
1210 && type->is_scalar()));
1211
1212 result = new(ctx) ir_expression(operations[this->oper], type,
1213 op[0], op[1]);
1214 error_emitted = type->is_error();
1215 break;
1216
1217 case ast_nequal:
1218 case ast_equal:
1219 op[0] = this->subexpressions[0]->hir(instructions, state);
1220 op[1] = this->subexpressions[1]->hir(instructions, state);
1221
1222 /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
1223 *
1224 * "The equality operators equal (==), and not equal (!=)
1225 * operate on all types. They result in a scalar Boolean. If
1226 * the operand types do not match, then there must be a
1227 * conversion from Section 4.1.10 "Implicit Conversions"
1228 * applied to one operand that can make them match, in which
1229 * case this conversion is done."
1230 */
1231 if ((!apply_implicit_conversion(op[0]->type, op[1], state)
1232 && !apply_implicit_conversion(op[1]->type, op[0], state))
1233 || (op[0]->type != op[1]->type)) {
1234 _mesa_glsl_error(& loc, state, "operands of `%s' must have the same "
1235 "type", (this->oper == ast_equal) ? "==" : "!=");
1236 error_emitted = true;
1237 } else if ((op[0]->type->is_array() || op[1]->type->is_array()) &&
1238 !state->check_version(120, 300, &loc,
1239 "array comparisons forbidden")) {
1240 error_emitted = true;
1241 } else if ((op[0]->type->contains_opaque() ||
1242 op[1]->type->contains_opaque())) {
1243 _mesa_glsl_error(&loc, state, "opaque type comparisons forbidden");
1244 error_emitted = true;
1245 }
1246
1247 if (error_emitted) {
1248 result = new(ctx) ir_constant(false);
1249 } else {
1250 result = do_comparison(ctx, operations[this->oper], op[0], op[1]);
1251 assert(result->type == glsl_type::bool_type);
1252 }
1253 break;
1254
1255 case ast_bit_and:
1256 case ast_bit_xor:
1257 case ast_bit_or:
1258 op[0] = this->subexpressions[0]->hir(instructions, state);
1259 op[1] = this->subexpressions[1]->hir(instructions, state);
1260 type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
1261 state, &loc);
1262 result = new(ctx) ir_expression(operations[this->oper], type,
1263 op[0], op[1]);
1264 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1265 break;
1266
1267 case ast_bit_not:
1268 op[0] = this->subexpressions[0]->hir(instructions, state);
1269
1270 if (!state->check_bitwise_operations_allowed(&loc)) {
1271 error_emitted = true;
1272 }
1273
1274 if (!op[0]->type->is_integer()) {
1275 _mesa_glsl_error(&loc, state, "operand of `~' must be an integer");
1276 error_emitted = true;
1277 }
1278
1279 type = error_emitted ? glsl_type::error_type : op[0]->type;
1280 result = new(ctx) ir_expression(ir_unop_bit_not, type, op[0], NULL);
1281 break;
1282
1283 case ast_logic_and: {
1284 exec_list rhs_instructions;
1285 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1286 "LHS", &error_emitted);
1287 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1288 "RHS", &error_emitted);
1289
1290 if (rhs_instructions.is_empty()) {
1291 result = new(ctx) ir_expression(ir_binop_logic_and, op[0], op[1]);
1292 type = result->type;
1293 } else {
1294 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1295 "and_tmp",
1296 ir_var_temporary);
1297 instructions->push_tail(tmp);
1298
1299 ir_if *const stmt = new(ctx) ir_if(op[0]);
1300 instructions->push_tail(stmt);
1301
1302 stmt->then_instructions.append_list(&rhs_instructions);
1303 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1304 ir_assignment *const then_assign =
1305 new(ctx) ir_assignment(then_deref, op[1]);
1306 stmt->then_instructions.push_tail(then_assign);
1307
1308 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1309 ir_assignment *const else_assign =
1310 new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false));
1311 stmt->else_instructions.push_tail(else_assign);
1312
1313 result = new(ctx) ir_dereference_variable(tmp);
1314 type = tmp->type;
1315 }
1316 break;
1317 }
1318
1319 case ast_logic_or: {
1320 exec_list rhs_instructions;
1321 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1322 "LHS", &error_emitted);
1323 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1324 "RHS", &error_emitted);
1325
1326 if (rhs_instructions.is_empty()) {
1327 result = new(ctx) ir_expression(ir_binop_logic_or, op[0], op[1]);
1328 type = result->type;
1329 } else {
1330 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1331 "or_tmp",
1332 ir_var_temporary);
1333 instructions->push_tail(tmp);
1334
1335 ir_if *const stmt = new(ctx) ir_if(op[0]);
1336 instructions->push_tail(stmt);
1337
1338 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1339 ir_assignment *const then_assign =
1340 new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true));
1341 stmt->then_instructions.push_tail(then_assign);
1342
1343 stmt->else_instructions.append_list(&rhs_instructions);
1344 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1345 ir_assignment *const else_assign =
1346 new(ctx) ir_assignment(else_deref, op[1]);
1347 stmt->else_instructions.push_tail(else_assign);
1348
1349 result = new(ctx) ir_dereference_variable(tmp);
1350 type = tmp->type;
1351 }
1352 break;
1353 }
1354
1355 case ast_logic_xor:
1356 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1357 *
1358 * "The logical binary operators and (&&), or ( | | ), and
1359 * exclusive or (^^). They operate only on two Boolean
1360 * expressions and result in a Boolean expression."
1361 */
1362 op[0] = get_scalar_boolean_operand(instructions, state, this, 0, "LHS",
1363 &error_emitted);
1364 op[1] = get_scalar_boolean_operand(instructions, state, this, 1, "RHS",
1365 &error_emitted);
1366
1367 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1368 op[0], op[1]);
1369 break;
1370
1371 case ast_logic_not:
1372 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1373 "operand", &error_emitted);
1374
1375 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1376 op[0], NULL);
1377 break;
1378
1379 case ast_mul_assign:
1380 case ast_div_assign:
1381 case ast_add_assign:
1382 case ast_sub_assign: {
1383 op[0] = this->subexpressions[0]->hir(instructions, state);
1384 op[1] = this->subexpressions[1]->hir(instructions, state);
1385
1386 type = arithmetic_result_type(op[0], op[1],
1387 (this->oper == ast_mul_assign),
1388 state, & loc);
1389
1390 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1391 op[0], op[1]);
1392
1393 result = do_assignment(instructions, state,
1394 this->subexpressions[0]->non_lvalue_description,
1395 op[0]->clone(ctx, NULL), temp_rhs, false,
1396 this->subexpressions[0]->get_location());
1397 error_emitted = (op[0]->type->is_error());
1398
1399 /* GLSL 1.10 does not allow array assignment. However, we don't have to
1400 * explicitly test for this because none of the binary expression
1401 * operators allow array operands either.
1402 */
1403
1404 break;
1405 }
1406
1407 case ast_mod_assign: {
1408 op[0] = this->subexpressions[0]->hir(instructions, state);
1409 op[1] = this->subexpressions[1]->hir(instructions, state);
1410
1411 type = modulus_result_type(op[0]->type, op[1]->type, state, & loc);
1412
1413 assert(operations[this->oper] == ir_binop_mod);
1414
1415 ir_rvalue *temp_rhs;
1416 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1417 op[0], op[1]);
1418
1419 result = do_assignment(instructions, state,
1420 this->subexpressions[0]->non_lvalue_description,
1421 op[0]->clone(ctx, NULL), temp_rhs, false,
1422 this->subexpressions[0]->get_location());
1423 error_emitted = type->is_error();
1424 break;
1425 }
1426
1427 case ast_ls_assign:
1428 case ast_rs_assign: {
1429 op[0] = this->subexpressions[0]->hir(instructions, state);
1430 op[1] = this->subexpressions[1]->hir(instructions, state);
1431 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1432 &loc);
1433 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1434 type, op[0], op[1]);
1435 result = do_assignment(instructions, state,
1436 this->subexpressions[0]->non_lvalue_description,
1437 op[0]->clone(ctx, NULL), temp_rhs, false,
1438 this->subexpressions[0]->get_location());
1439 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1440 break;
1441 }
1442
1443 case ast_and_assign:
1444 case ast_xor_assign:
1445 case ast_or_assign: {
1446 op[0] = this->subexpressions[0]->hir(instructions, state);
1447 op[1] = this->subexpressions[1]->hir(instructions, state);
1448 type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
1449 state, &loc);
1450 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1451 type, op[0], op[1]);
1452 result = do_assignment(instructions, state,
1453 this->subexpressions[0]->non_lvalue_description,
1454 op[0]->clone(ctx, NULL), temp_rhs, false,
1455 this->subexpressions[0]->get_location());
1456 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1457 break;
1458 }
1459
1460 case ast_conditional: {
1461 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1462 *
1463 * "The ternary selection operator (?:). It operates on three
1464 * expressions (exp1 ? exp2 : exp3). This operator evaluates the
1465 * first expression, which must result in a scalar Boolean."
1466 */
1467 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1468 "condition", &error_emitted);
1469
1470 /* The :? operator is implemented by generating an anonymous temporary
1471 * followed by an if-statement. The last instruction in each branch of
1472 * the if-statement assigns a value to the anonymous temporary. This
1473 * temporary is the r-value of the expression.
1474 */
1475 exec_list then_instructions;
1476 exec_list else_instructions;
1477
1478 op[1] = this->subexpressions[1]->hir(&then_instructions, state);
1479 op[2] = this->subexpressions[2]->hir(&else_instructions, state);
1480
1481 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1482 *
1483 * "The second and third expressions can be any type, as
1484 * long their types match, or there is a conversion in
1485 * Section 4.1.10 "Implicit Conversions" that can be applied
1486 * to one of the expressions to make their types match. This
1487 * resulting matching type is the type of the entire
1488 * expression."
1489 */
1490 if ((!apply_implicit_conversion(op[1]->type, op[2], state)
1491 && !apply_implicit_conversion(op[2]->type, op[1], state))
1492 || (op[1]->type != op[2]->type)) {
1493 YYLTYPE loc = this->subexpressions[1]->get_location();
1494
1495 _mesa_glsl_error(& loc, state, "second and third operands of ?: "
1496 "operator must have matching types");
1497 error_emitted = true;
1498 type = glsl_type::error_type;
1499 } else {
1500 type = op[1]->type;
1501 }
1502
1503 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1504 *
1505 * "The second and third expressions must be the same type, but can
1506 * be of any type other than an array."
1507 */
1508 if (type->is_array() &&
1509 !state->check_version(120, 300, &loc,
1510 "second and third operands of ?: operator "
1511 "cannot be arrays")) {
1512 error_emitted = true;
1513 }
1514
1515 ir_constant *cond_val = op[0]->constant_expression_value();
1516 ir_constant *then_val = op[1]->constant_expression_value();
1517 ir_constant *else_val = op[2]->constant_expression_value();
1518
1519 if (then_instructions.is_empty()
1520 && else_instructions.is_empty()
1521 && (cond_val != NULL) && (then_val != NULL) && (else_val != NULL)) {
1522 result = (cond_val->value.b[0]) ? then_val : else_val;
1523 } else {
1524 ir_variable *const tmp =
1525 new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary);
1526 instructions->push_tail(tmp);
1527
1528 ir_if *const stmt = new(ctx) ir_if(op[0]);
1529 instructions->push_tail(stmt);
1530
1531 then_instructions.move_nodes_to(& stmt->then_instructions);
1532 ir_dereference *const then_deref =
1533 new(ctx) ir_dereference_variable(tmp);
1534 ir_assignment *const then_assign =
1535 new(ctx) ir_assignment(then_deref, op[1]);
1536 stmt->then_instructions.push_tail(then_assign);
1537
1538 else_instructions.move_nodes_to(& stmt->else_instructions);
1539 ir_dereference *const else_deref =
1540 new(ctx) ir_dereference_variable(tmp);
1541 ir_assignment *const else_assign =
1542 new(ctx) ir_assignment(else_deref, op[2]);
1543 stmt->else_instructions.push_tail(else_assign);
1544
1545 result = new(ctx) ir_dereference_variable(tmp);
1546 }
1547 break;
1548 }
1549
1550 case ast_pre_inc:
1551 case ast_pre_dec: {
1552 this->non_lvalue_description = (this->oper == ast_pre_inc)
1553 ? "pre-increment operation" : "pre-decrement operation";
1554
1555 op[0] = this->subexpressions[0]->hir(instructions, state);
1556 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1557
1558 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1559
1560 ir_rvalue *temp_rhs;
1561 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1562 op[0], op[1]);
1563
1564 result = do_assignment(instructions, state,
1565 this->subexpressions[0]->non_lvalue_description,
1566 op[0]->clone(ctx, NULL), temp_rhs, false,
1567 this->subexpressions[0]->get_location());
1568 error_emitted = op[0]->type->is_error();
1569 break;
1570 }
1571
1572 case ast_post_inc:
1573 case ast_post_dec: {
1574 this->non_lvalue_description = (this->oper == ast_post_inc)
1575 ? "post-increment operation" : "post-decrement operation";
1576 op[0] = this->subexpressions[0]->hir(instructions, state);
1577 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1578
1579 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1580
1581 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1582
1583 ir_rvalue *temp_rhs;
1584 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1585 op[0], op[1]);
1586
1587 /* Get a temporary of a copy of the lvalue before it's modified.
1588 * This may get thrown away later.
1589 */
1590 result = get_lvalue_copy(instructions, op[0]->clone(ctx, NULL));
1591
1592 (void)do_assignment(instructions, state,
1593 this->subexpressions[0]->non_lvalue_description,
1594 op[0]->clone(ctx, NULL), temp_rhs, false,
1595 this->subexpressions[0]->get_location());
1596
1597 error_emitted = op[0]->type->is_error();
1598 break;
1599 }
1600
1601 case ast_field_selection:
1602 result = _mesa_ast_field_selection_to_hir(this, instructions, state);
1603 break;
1604
1605 case ast_array_index: {
1606 YYLTYPE index_loc = subexpressions[1]->get_location();
1607
1608 op[0] = subexpressions[0]->hir(instructions, state);
1609 op[1] = subexpressions[1]->hir(instructions, state);
1610
1611 result = _mesa_ast_array_index_to_hir(ctx, state, op[0], op[1],
1612 loc, index_loc);
1613
1614 if (result->type->is_error())
1615 error_emitted = true;
1616
1617 break;
1618 }
1619
1620 case ast_function_call:
1621 /* Should *NEVER* get here. ast_function_call should always be handled
1622 * by ast_function_expression::hir.
1623 */
1624 assert(0);
1625 break;
1626
1627 case ast_identifier: {
1628 /* ast_identifier can appear several places in a full abstract syntax
1629 * tree. This particular use must be at location specified in the grammar
1630 * as 'variable_identifier'.
1631 */
1632 ir_variable *var =
1633 state->symbols->get_variable(this->primary_expression.identifier);
1634
1635 if (var != NULL) {
1636 var->used = true;
1637 result = new(ctx) ir_dereference_variable(var);
1638 } else {
1639 _mesa_glsl_error(& loc, state, "`%s' undeclared",
1640 this->primary_expression.identifier);
1641
1642 result = ir_rvalue::error_value(ctx);
1643 error_emitted = true;
1644 }
1645 break;
1646 }
1647
1648 case ast_int_constant:
1649 result = new(ctx) ir_constant(this->primary_expression.int_constant);
1650 break;
1651
1652 case ast_uint_constant:
1653 result = new(ctx) ir_constant(this->primary_expression.uint_constant);
1654 break;
1655
1656 case ast_float_constant:
1657 result = new(ctx) ir_constant(this->primary_expression.float_constant);
1658 break;
1659
1660 case ast_bool_constant:
1661 result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant));
1662 break;
1663
1664 case ast_sequence: {
1665 /* It should not be possible to generate a sequence in the AST without
1666 * any expressions in it.
1667 */
1668 assert(!this->expressions.is_empty());
1669
1670 /* The r-value of a sequence is the last expression in the sequence. If
1671 * the other expressions in the sequence do not have side-effects (and
1672 * therefore add instructions to the instruction list), they get dropped
1673 * on the floor.
1674 */
1675 exec_node *previous_tail_pred = NULL;
1676 YYLTYPE previous_operand_loc = loc;
1677
1678 foreach_list_typed (ast_node, ast, link, &this->expressions) {
1679 /* If one of the operands of comma operator does not generate any
1680 * code, we want to emit a warning. At each pass through the loop
1681 * previous_tail_pred will point to the last instruction in the
1682 * stream *before* processing the previous operand. Naturally,
1683 * instructions->tail_pred will point to the last instruction in the
1684 * stream *after* processing the previous operand. If the two
1685 * pointers match, then the previous operand had no effect.
1686 *
1687 * The warning behavior here differs slightly from GCC. GCC will
1688 * only emit a warning if none of the left-hand operands have an
1689 * effect. However, it will emit a warning for each. I believe that
1690 * there are some cases in C (especially with GCC extensions) where
1691 * it is useful to have an intermediate step in a sequence have no
1692 * effect, but I don't think these cases exist in GLSL. Either way,
1693 * it would be a giant hassle to replicate that behavior.
1694 */
1695 if (previous_tail_pred == instructions->tail_pred) {
1696 _mesa_glsl_warning(&previous_operand_loc, state,
1697 "left-hand operand of comma expression has "
1698 "no effect");
1699 }
1700
1701 /* tail_pred is directly accessed instead of using the get_tail()
1702 * method for performance reasons. get_tail() has extra code to
1703 * return NULL when the list is empty. We don't care about that
1704 * here, so using tail_pred directly is fine.
1705 */
1706 previous_tail_pred = instructions->tail_pred;
1707 previous_operand_loc = ast->get_location();
1708
1709 result = ast->hir(instructions, state);
1710 }
1711
1712 /* Any errors should have already been emitted in the loop above.
1713 */
1714 error_emitted = true;
1715 break;
1716 }
1717 }
1718 type = NULL; /* use result->type, not type. */
1719 assert(result != NULL);
1720
1721 if (result->type->is_error() && !error_emitted)
1722 _mesa_glsl_error(& loc, state, "type mismatch");
1723
1724 return result;
1725 }
1726
1727
1728 ir_rvalue *
1729 ast_expression_statement::hir(exec_list *instructions,
1730 struct _mesa_glsl_parse_state *state)
1731 {
1732 /* It is possible to have expression statements that don't have an
1733 * expression. This is the solitary semicolon:
1734 *
1735 * for (i = 0; i < 5; i++)
1736 * ;
1737 *
1738 * In this case the expression will be NULL. Test for NULL and don't do
1739 * anything in that case.
1740 */
1741 if (expression != NULL)
1742 expression->hir(instructions, state);
1743
1744 /* Statements do not have r-values.
1745 */
1746 return NULL;
1747 }
1748
1749
1750 ir_rvalue *
1751 ast_compound_statement::hir(exec_list *instructions,
1752 struct _mesa_glsl_parse_state *state)
1753 {
1754 if (new_scope)
1755 state->symbols->push_scope();
1756
1757 foreach_list_typed (ast_node, ast, link, &this->statements)
1758 ast->hir(instructions, state);
1759
1760 if (new_scope)
1761 state->symbols->pop_scope();
1762
1763 /* Compound statements do not have r-values.
1764 */
1765 return NULL;
1766 }
1767
1768
1769 static const glsl_type *
1770 process_array_type(YYLTYPE *loc, const glsl_type *base, ast_node *array_size,
1771 struct _mesa_glsl_parse_state *state)
1772 {
1773 unsigned length = 0;
1774
1775 if (base == NULL)
1776 return glsl_type::error_type;
1777
1778 /* From page 19 (page 25) of the GLSL 1.20 spec:
1779 *
1780 * "Only one-dimensional arrays may be declared."
1781 */
1782 if (base->is_array()) {
1783 _mesa_glsl_error(loc, state,
1784 "invalid array of `%s' (only one-dimensional arrays "
1785 "may be declared)",
1786 base->name);
1787 return glsl_type::error_type;
1788 }
1789
1790 if (array_size != NULL) {
1791 exec_list dummy_instructions;
1792 ir_rvalue *const ir = array_size->hir(& dummy_instructions, state);
1793 YYLTYPE loc = array_size->get_location();
1794
1795 if (ir != NULL) {
1796 if (!ir->type->is_integer()) {
1797 _mesa_glsl_error(& loc, state, "array size must be integer type");
1798 } else if (!ir->type->is_scalar()) {
1799 _mesa_glsl_error(& loc, state, "array size must be scalar type");
1800 } else {
1801 ir_constant *const size = ir->constant_expression_value();
1802
1803 if (size == NULL) {
1804 _mesa_glsl_error(& loc, state, "array size must be a "
1805 "constant valued expression");
1806 } else if (size->value.i[0] <= 0) {
1807 _mesa_glsl_error(& loc, state, "array size must be > 0");
1808 } else {
1809 assert(size->type == ir->type);
1810 length = size->value.u[0];
1811
1812 /* If the array size is const (and we've verified that
1813 * it is) then no instructions should have been emitted
1814 * when we converted it to HIR. If they were emitted,
1815 * then either the array size isn't const after all, or
1816 * we are emitting unnecessary instructions.
1817 */
1818 assert(dummy_instructions.is_empty());
1819 }
1820 }
1821 }
1822 }
1823
1824 const glsl_type *array_type = glsl_type::get_array_instance(base, length);
1825 return array_type != NULL ? array_type : glsl_type::error_type;
1826 }
1827
1828
1829 const glsl_type *
1830 ast_type_specifier::glsl_type(const char **name,
1831 struct _mesa_glsl_parse_state *state) const
1832 {
1833 const struct glsl_type *type;
1834
1835 type = state->symbols->get_type(this->type_name);
1836 *name = this->type_name;
1837
1838 if (this->is_array) {
1839 YYLTYPE loc = this->get_location();
1840 type = process_array_type(&loc, type, this->array_size, state);
1841 }
1842
1843 return type;
1844 }
1845
1846 const glsl_type *
1847 ast_fully_specified_type::glsl_type(const char **name,
1848 struct _mesa_glsl_parse_state *state) const
1849 {
1850 const struct glsl_type *type = this->specifier->glsl_type(name, state);
1851
1852 if (type == NULL)
1853 return NULL;
1854
1855 if (type->base_type == GLSL_TYPE_FLOAT
1856 && state->es_shader
1857 && state->target == fragment_shader
1858 && this->qualifier.precision == ast_precision_none
1859 && state->symbols->get_variable("#default precision") == NULL) {
1860 YYLTYPE loc = this->get_location();
1861 _mesa_glsl_error(&loc, state,
1862 "no precision specified this scope for type `%s'",
1863 type->name);
1864 }
1865
1866 return type;
1867 }
1868
1869 /**
1870 * Determine whether a toplevel variable declaration declares a varying. This
1871 * function operates by examining the variable's mode and the shader target,
1872 * so it correctly identifies linkage variables regardless of whether they are
1873 * declared using the deprecated "varying" syntax or the new "in/out" syntax.
1874 *
1875 * Passing a non-toplevel variable declaration (e.g. a function parameter) to
1876 * this function will produce undefined results.
1877 */
1878 static bool
1879 is_varying_var(ir_variable *var, _mesa_glsl_parser_targets target)
1880 {
1881 switch (target) {
1882 case vertex_shader:
1883 return var->mode == ir_var_shader_out;
1884 case fragment_shader:
1885 return var->mode == ir_var_shader_in;
1886 default:
1887 return var->mode == ir_var_shader_out || var->mode == ir_var_shader_in;
1888 }
1889 }
1890
1891
1892 /**
1893 * Matrix layout qualifiers are only allowed on certain types
1894 */
1895 static void
1896 validate_matrix_layout_for_type(struct _mesa_glsl_parse_state *state,
1897 YYLTYPE *loc,
1898 const glsl_type *type,
1899 ir_variable *var)
1900 {
1901 if (var && !var->is_in_uniform_block()) {
1902 /* Layout qualifiers may only apply to interface blocks and fields in
1903 * them.
1904 */
1905 _mesa_glsl_error(loc, state,
1906 "uniform block layout qualifiers row_major and "
1907 "column_major may not be applied to variables "
1908 "outside of uniform blocks");
1909 } else if (!type->is_matrix()) {
1910 /* The OpenGL ES 3.0 conformance tests did not originally allow
1911 * matrix layout qualifiers on non-matrices. However, the OpenGL
1912 * 4.4 and OpenGL ES 3.0 (revision TBD) specifications were
1913 * amended to specifically allow these layouts on all types. Emit
1914 * a warning so that people know their code may not be portable.
1915 */
1916 _mesa_glsl_warning(loc, state,
1917 "uniform block layout qualifiers row_major and "
1918 "column_major applied to non-matrix types may "
1919 "be rejected by older compilers");
1920 } else if (type->is_record()) {
1921 /* We allow 'layout(row_major)' on structure types because it's the only
1922 * way to get row-major layouts on matrices contained in structures.
1923 */
1924 _mesa_glsl_warning(loc, state,
1925 "uniform block layout qualifiers row_major and "
1926 "column_major applied to structure types is not "
1927 "strictly conformant and may be rejected by other "
1928 "compilers");
1929 }
1930 }
1931
1932 static bool
1933 validate_binding_qualifier(struct _mesa_glsl_parse_state *state,
1934 YYLTYPE *loc,
1935 ir_variable *var,
1936 const ast_type_qualifier *qual)
1937 {
1938 if (var->mode != ir_var_uniform) {
1939 _mesa_glsl_error(loc, state,
1940 "the \"binding\" qualifier only applies to uniforms");
1941 return false;
1942 }
1943
1944 if (qual->binding < 0) {
1945 _mesa_glsl_error(loc, state, "binding values must be >= 0");
1946 return false;
1947 }
1948
1949 const struct gl_context *const ctx = state->ctx;
1950 unsigned elements = var->type->is_array() ? var->type->length : 1;
1951 unsigned max_index = qual->binding + elements - 1;
1952
1953 if (var->type->is_interface()) {
1954 /* UBOs. From page 60 of the GLSL 4.20 specification:
1955 * "If the binding point for any uniform block instance is less than zero,
1956 * or greater than or equal to the implementation-dependent maximum
1957 * number of uniform buffer bindings, a compilation error will occur.
1958 * When the binding identifier is used with a uniform block instanced as
1959 * an array of size N, all elements of the array from binding through
1960 * binding + N – 1 must be within this range."
1961 *
1962 * The implementation-dependent maximum is GL_MAX_UNIFORM_BUFFER_BINDINGS.
1963 */
1964 if (max_index >= ctx->Const.MaxUniformBufferBindings) {
1965 _mesa_glsl_error(loc, state, "layout(binding = %d) for %d UBOs exceeds "
1966 "the maximum number of UBO binding points (%d)",
1967 qual->binding, elements,
1968 ctx->Const.MaxUniformBufferBindings);
1969 return false;
1970 }
1971 } else if (var->type->is_sampler() ||
1972 (var->type->is_array() && var->type->fields.array->is_sampler())) {
1973 /* Samplers. From page 63 of the GLSL 4.20 specification:
1974 * "If the binding is less than zero, or greater than or equal to the
1975 * implementation-dependent maximum supported number of units, a
1976 * compilation error will occur. When the binding identifier is used
1977 * with an array of size N, all elements of the array from binding
1978 * through binding + N - 1 must be within this range."
1979 */
1980 unsigned limit = 0;
1981 switch (state->target) {
1982 case vertex_shader:
1983 limit = ctx->Const.VertexProgram.MaxTextureImageUnits;
1984 break;
1985 case geometry_shader:
1986 limit = ctx->Const.GeometryProgram.MaxTextureImageUnits;
1987 break;
1988 case fragment_shader:
1989 limit = ctx->Const.FragmentProgram.MaxTextureImageUnits;
1990 break;
1991 }
1992
1993 if (max_index >= limit) {
1994 _mesa_glsl_error(loc, state, "layout(binding = %d) for %d samplers "
1995 "exceeds the maximum number of texture image units "
1996 "(%d)", qual->binding, elements, limit);
1997
1998 return false;
1999 }
2000 } else {
2001 _mesa_glsl_error(loc, state,
2002 "the \"binding\" qualifier only applies to uniform "
2003 "blocks, samplers, or arrays of samplers");
2004 return false;
2005 }
2006
2007 return true;
2008 }
2009
2010
2011 static glsl_interp_qualifier
2012 interpret_interpolation_qualifier(const struct ast_type_qualifier *qual,
2013 ir_variable_mode mode,
2014 struct _mesa_glsl_parse_state *state,
2015 YYLTYPE *loc)
2016 {
2017 glsl_interp_qualifier interpolation;
2018 if (qual->flags.q.flat)
2019 interpolation = INTERP_QUALIFIER_FLAT;
2020 else if (qual->flags.q.noperspective)
2021 interpolation = INTERP_QUALIFIER_NOPERSPECTIVE;
2022 else if (qual->flags.q.smooth)
2023 interpolation = INTERP_QUALIFIER_SMOOTH;
2024 else
2025 interpolation = INTERP_QUALIFIER_NONE;
2026
2027 if (interpolation != INTERP_QUALIFIER_NONE) {
2028 if (mode != ir_var_shader_in && mode != ir_var_shader_out) {
2029 _mesa_glsl_error(loc, state,
2030 "interpolation qualifier `%s' can only be applied to "
2031 "shader inputs or outputs.",
2032 interpolation_string(interpolation));
2033
2034 }
2035
2036 if ((state->target == vertex_shader && mode == ir_var_shader_in) ||
2037 (state->target == fragment_shader && mode == ir_var_shader_out)) {
2038 _mesa_glsl_error(loc, state,
2039 "interpolation qualifier `%s' cannot be applied to "
2040 "vertex shader inputs or fragment shader outputs",
2041 interpolation_string(interpolation));
2042 }
2043 }
2044
2045 return interpolation;
2046 }
2047
2048
2049 static void
2050 apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
2051 ir_variable *var,
2052 struct _mesa_glsl_parse_state *state,
2053 YYLTYPE *loc,
2054 bool is_parameter)
2055 {
2056 STATIC_ASSERT(sizeof(qual->flags.q) <= sizeof(qual->flags.i));
2057
2058 if (qual->flags.q.invariant) {
2059 if (var->used) {
2060 _mesa_glsl_error(loc, state,
2061 "variable `%s' may not be redeclared "
2062 "`invariant' after being used",
2063 var->name);
2064 } else {
2065 var->invariant = 1;
2066 }
2067 }
2068
2069 if (qual->flags.q.constant || qual->flags.q.attribute
2070 || qual->flags.q.uniform
2071 || (qual->flags.q.varying && (state->target == fragment_shader)))
2072 var->read_only = 1;
2073
2074 if (qual->flags.q.centroid)
2075 var->centroid = 1;
2076
2077 if (qual->flags.q.attribute && state->target != vertex_shader) {
2078 var->type = glsl_type::error_type;
2079 _mesa_glsl_error(loc, state,
2080 "`attribute' variables may not be declared in the "
2081 "%s shader",
2082 _mesa_glsl_shader_target_name(state->target));
2083 }
2084
2085 /* Section 6.1.1 (Function Calling Conventions) of the GLSL 1.10 spec says:
2086 *
2087 * "However, the const qualifier cannot be used with out or inout."
2088 *
2089 * The same section of the GLSL 4.40 spec further clarifies this saying:
2090 *
2091 * "The const qualifier cannot be used with out or inout, or a
2092 * compile-time error results."
2093 */
2094 if (is_parameter && qual->flags.q.constant && qual->flags.q.out) {
2095 _mesa_glsl_error(loc, state,
2096 "`const' may not be applied to `out' or `inout' "
2097 "function parameters");
2098 }
2099
2100 /* If there is no qualifier that changes the mode of the variable, leave
2101 * the setting alone.
2102 */
2103 if (qual->flags.q.in && qual->flags.q.out)
2104 var->mode = ir_var_function_inout;
2105 else if (qual->flags.q.in)
2106 var->mode = is_parameter ? ir_var_function_in : ir_var_shader_in;
2107 else if (qual->flags.q.attribute
2108 || (qual->flags.q.varying && (state->target == fragment_shader)))
2109 var->mode = ir_var_shader_in;
2110 else if (qual->flags.q.out)
2111 var->mode = is_parameter ? ir_var_function_out : ir_var_shader_out;
2112 else if (qual->flags.q.varying && (state->target == vertex_shader))
2113 var->mode = ir_var_shader_out;
2114 else if (qual->flags.q.uniform)
2115 var->mode = ir_var_uniform;
2116
2117 if (!is_parameter && is_varying_var(var, state->target)) {
2118 /* This variable is being used to link data between shader stages (in
2119 * pre-glsl-1.30 parlance, it's a "varying"). Check that it has a type
2120 * that is allowed for such purposes.
2121 *
2122 * From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
2123 *
2124 * "The varying qualifier can be used only with the data types
2125 * float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
2126 * these."
2127 *
2128 * This was relaxed in GLSL version 1.30 and GLSL ES version 3.00. From
2129 * page 31 (page 37 of the PDF) of the GLSL 1.30 spec:
2130 *
2131 * "Fragment inputs can only be signed and unsigned integers and
2132 * integer vectors, float, floating-point vectors, matrices, or
2133 * arrays of these. Structures cannot be input.
2134 *
2135 * Similar text exists in the section on vertex shader outputs.
2136 *
2137 * Similar text exists in the GLSL ES 3.00 spec, except that the GLSL ES
2138 * 3.00 spec allows structs as well. Varying structs are also allowed
2139 * in GLSL 1.50.
2140 */
2141 switch (var->type->get_scalar_type()->base_type) {
2142 case GLSL_TYPE_FLOAT:
2143 /* Ok in all GLSL versions */
2144 break;
2145 case GLSL_TYPE_UINT:
2146 case GLSL_TYPE_INT:
2147 if (state->is_version(130, 300))
2148 break;
2149 _mesa_glsl_error(loc, state,
2150 "varying variables must be of base type float in %s",
2151 state->get_version_string());
2152 break;
2153 case GLSL_TYPE_STRUCT:
2154 if (state->is_version(150, 300))
2155 break;
2156 _mesa_glsl_error(loc, state,
2157 "varying variables may not be of type struct");
2158 break;
2159 default:
2160 _mesa_glsl_error(loc, state, "illegal type for a varying variable");
2161 break;
2162 }
2163 }
2164
2165 if (state->all_invariant && (state->current_function == NULL)) {
2166 switch (state->target) {
2167 case vertex_shader:
2168 if (var->mode == ir_var_shader_out)
2169 var->invariant = true;
2170 break;
2171 case geometry_shader:
2172 if ((var->mode == ir_var_shader_in)
2173 || (var->mode == ir_var_shader_out))
2174 var->invariant = true;
2175 break;
2176 case fragment_shader:
2177 if (var->mode == ir_var_shader_in)
2178 var->invariant = true;
2179 break;
2180 }
2181 }
2182
2183 var->interpolation =
2184 interpret_interpolation_qualifier(qual, (ir_variable_mode) var->mode,
2185 state, loc);
2186
2187 var->pixel_center_integer = qual->flags.q.pixel_center_integer;
2188 var->origin_upper_left = qual->flags.q.origin_upper_left;
2189 if ((qual->flags.q.origin_upper_left || qual->flags.q.pixel_center_integer)
2190 && (strcmp(var->name, "gl_FragCoord") != 0)) {
2191 const char *const qual_string = (qual->flags.q.origin_upper_left)
2192 ? "origin_upper_left" : "pixel_center_integer";
2193
2194 _mesa_glsl_error(loc, state,
2195 "layout qualifier `%s' can only be applied to "
2196 "fragment shader input `gl_FragCoord'",
2197 qual_string);
2198 }
2199
2200 if (qual->flags.q.explicit_location) {
2201 const bool global_scope = (state->current_function == NULL);
2202 bool fail = false;
2203 const char *string = "";
2204
2205 /* In the vertex shader only shader inputs can be given explicit
2206 * locations.
2207 *
2208 * In the fragment shader only shader outputs can be given explicit
2209 * locations.
2210 */
2211 switch (state->target) {
2212 case vertex_shader:
2213 if (!global_scope || (var->mode != ir_var_shader_in)) {
2214 fail = true;
2215 string = "input";
2216 }
2217 break;
2218
2219 case geometry_shader:
2220 _mesa_glsl_error(loc, state,
2221 "geometry shader variables cannot be given "
2222 "explicit locations");
2223 break;
2224
2225 case fragment_shader:
2226 if (!global_scope || (var->mode != ir_var_shader_out)) {
2227 fail = true;
2228 string = "output";
2229 }
2230 break;
2231 };
2232
2233 if (fail) {
2234 _mesa_glsl_error(loc, state,
2235 "only %s shader %s variables can be given an "
2236 "explicit location",
2237 _mesa_glsl_shader_target_name(state->target),
2238 string);
2239 } else {
2240 var->explicit_location = true;
2241
2242 /* This bit of silliness is needed because invalid explicit locations
2243 * are supposed to be flagged during linking. Small negative values
2244 * biased by VERT_ATTRIB_GENERIC0 or FRAG_RESULT_DATA0 could alias
2245 * built-in values (e.g., -16+VERT_ATTRIB_GENERIC0 = VERT_ATTRIB_POS).
2246 * The linker needs to be able to differentiate these cases. This
2247 * ensures that negative values stay negative.
2248 */
2249 if (qual->location >= 0) {
2250 var->location = (state->target == vertex_shader)
2251 ? (qual->location + VERT_ATTRIB_GENERIC0)
2252 : (qual->location + FRAG_RESULT_DATA0);
2253 } else {
2254 var->location = qual->location;
2255 }
2256
2257 if (qual->flags.q.explicit_index) {
2258 /* From the GLSL 4.30 specification, section 4.4.2 (Output
2259 * Layout Qualifiers):
2260 *
2261 * "It is also a compile-time error if a fragment shader
2262 * sets a layout index to less than 0 or greater than 1."
2263 *
2264 * Older specifications don't mandate a behavior; we take
2265 * this as a clarification and always generate the error.
2266 */
2267 if (qual->index < 0 || qual->index > 1) {
2268 _mesa_glsl_error(loc, state,
2269 "explicit index may only be 0 or 1");
2270 } else {
2271 var->explicit_index = true;
2272 var->index = qual->index;
2273 }
2274 }
2275 }
2276 } else if (qual->flags.q.explicit_index) {
2277 _mesa_glsl_error(loc, state,
2278 "explicit index requires explicit location");
2279 }
2280
2281 if (qual->flags.q.explicit_binding &&
2282 validate_binding_qualifier(state, loc, var, qual)) {
2283 var->explicit_binding = true;
2284 var->binding = qual->binding;
2285 }
2286
2287 /* Does the declaration use the deprecated 'attribute' or 'varying'
2288 * keywords?
2289 */
2290 const bool uses_deprecated_qualifier = qual->flags.q.attribute
2291 || qual->flags.q.varying;
2292
2293 /* Is the 'layout' keyword used with parameters that allow relaxed checking.
2294 * Many implementations of GL_ARB_fragment_coord_conventions_enable and some
2295 * implementations (only Mesa?) GL_ARB_explicit_attrib_location_enable
2296 * allowed the layout qualifier to be used with 'varying' and 'attribute'.
2297 * These extensions and all following extensions that add the 'layout'
2298 * keyword have been modified to require the use of 'in' or 'out'.
2299 *
2300 * The following extension do not allow the deprecated keywords:
2301 *
2302 * GL_AMD_conservative_depth
2303 * GL_ARB_conservative_depth
2304 * GL_ARB_gpu_shader5
2305 * GL_ARB_separate_shader_objects
2306 * GL_ARB_tesselation_shader
2307 * GL_ARB_transform_feedback3
2308 * GL_ARB_uniform_buffer_object
2309 *
2310 * It is unknown whether GL_EXT_shader_image_load_store or GL_NV_gpu_shader5
2311 * allow layout with the deprecated keywords.
2312 */
2313 const bool relaxed_layout_qualifier_checking =
2314 state->ARB_fragment_coord_conventions_enable;
2315
2316 if (qual->has_layout() && uses_deprecated_qualifier) {
2317 if (relaxed_layout_qualifier_checking) {
2318 _mesa_glsl_warning(loc, state,
2319 "`layout' qualifier may not be used with "
2320 "`attribute' or `varying'");
2321 } else {
2322 _mesa_glsl_error(loc, state,
2323 "`layout' qualifier may not be used with "
2324 "`attribute' or `varying'");
2325 }
2326 }
2327
2328 /* Layout qualifiers for gl_FragDepth, which are enabled by extension
2329 * AMD_conservative_depth.
2330 */
2331 int depth_layout_count = qual->flags.q.depth_any
2332 + qual->flags.q.depth_greater
2333 + qual->flags.q.depth_less
2334 + qual->flags.q.depth_unchanged;
2335 if (depth_layout_count > 0
2336 && !state->AMD_conservative_depth_enable
2337 && !state->ARB_conservative_depth_enable) {
2338 _mesa_glsl_error(loc, state,
2339 "extension GL_AMD_conservative_depth or "
2340 "GL_ARB_conservative_depth must be enabled "
2341 "to use depth layout qualifiers");
2342 } else if (depth_layout_count > 0
2343 && strcmp(var->name, "gl_FragDepth") != 0) {
2344 _mesa_glsl_error(loc, state,
2345 "depth layout qualifiers can be applied only to "
2346 "gl_FragDepth");
2347 } else if (depth_layout_count > 1
2348 && strcmp(var->name, "gl_FragDepth") == 0) {
2349 _mesa_glsl_error(loc, state,
2350 "at most one depth layout qualifier can be applied to "
2351 "gl_FragDepth");
2352 }
2353 if (qual->flags.q.depth_any)
2354 var->depth_layout = ir_depth_layout_any;
2355 else if (qual->flags.q.depth_greater)
2356 var->depth_layout = ir_depth_layout_greater;
2357 else if (qual->flags.q.depth_less)
2358 var->depth_layout = ir_depth_layout_less;
2359 else if (qual->flags.q.depth_unchanged)
2360 var->depth_layout = ir_depth_layout_unchanged;
2361 else
2362 var->depth_layout = ir_depth_layout_none;
2363
2364 if (qual->flags.q.std140 ||
2365 qual->flags.q.packed ||
2366 qual->flags.q.shared) {
2367 _mesa_glsl_error(loc, state,
2368 "uniform block layout qualifiers std140, packed, and "
2369 "shared can only be applied to uniform blocks, not "
2370 "members");
2371 }
2372
2373 if (qual->flags.q.row_major || qual->flags.q.column_major) {
2374 validate_matrix_layout_for_type(state, loc, var->type, var);
2375 }
2376 }
2377
2378 /**
2379 * Get the variable that is being redeclared by this declaration
2380 *
2381 * Semantic checks to verify the validity of the redeclaration are also
2382 * performed. If semantic checks fail, compilation error will be emitted via
2383 * \c _mesa_glsl_error, but a non-\c NULL pointer will still be returned.
2384 *
2385 * \returns
2386 * A pointer to an existing variable in the current scope if the declaration
2387 * is a redeclaration, \c NULL otherwise.
2388 */
2389 static ir_variable *
2390 get_variable_being_redeclared(ir_variable *var, YYLTYPE loc,
2391 struct _mesa_glsl_parse_state *state,
2392 bool allow_all_redeclarations)
2393 {
2394 /* Check if this declaration is actually a re-declaration, either to
2395 * resize an array or add qualifiers to an existing variable.
2396 *
2397 * This is allowed for variables in the current scope, or when at
2398 * global scope (for built-ins in the implicit outer scope).
2399 */
2400 ir_variable *earlier = state->symbols->get_variable(var->name);
2401 if (earlier == NULL ||
2402 (state->current_function != NULL &&
2403 !state->symbols->name_declared_this_scope(var->name))) {
2404 return NULL;
2405 }
2406
2407
2408 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
2409 *
2410 * "It is legal to declare an array without a size and then
2411 * later re-declare the same name as an array of the same
2412 * type and specify a size."
2413 */
2414 if (earlier->type->is_unsized_array() && var->type->is_array()
2415 && (var->type->element_type() == earlier->type->element_type())) {
2416 /* FINISHME: This doesn't match the qualifiers on the two
2417 * FINISHME: declarations. It's not 100% clear whether this is
2418 * FINISHME: required or not.
2419 */
2420
2421 const unsigned size = unsigned(var->type->array_size());
2422 check_builtin_array_max_size(var->name, size, loc, state);
2423 if ((size > 0) && (size <= earlier->max_array_access)) {
2424 _mesa_glsl_error(& loc, state, "array size must be > %u due to "
2425 "previous access",
2426 earlier->max_array_access);
2427 }
2428
2429 earlier->type = var->type;
2430 delete var;
2431 var = NULL;
2432 } else if ((state->ARB_fragment_coord_conventions_enable ||
2433 state->is_version(150, 0))
2434 && strcmp(var->name, "gl_FragCoord") == 0
2435 && earlier->type == var->type
2436 && earlier->mode == var->mode) {
2437 /* Allow redeclaration of gl_FragCoord for ARB_fcc layout
2438 * qualifiers.
2439 */
2440 earlier->origin_upper_left = var->origin_upper_left;
2441 earlier->pixel_center_integer = var->pixel_center_integer;
2442
2443 /* According to section 4.3.7 of the GLSL 1.30 spec,
2444 * the following built-in varaibles can be redeclared with an
2445 * interpolation qualifier:
2446 * * gl_FrontColor
2447 * * gl_BackColor
2448 * * gl_FrontSecondaryColor
2449 * * gl_BackSecondaryColor
2450 * * gl_Color
2451 * * gl_SecondaryColor
2452 */
2453 } else if (state->is_version(130, 0)
2454 && (strcmp(var->name, "gl_FrontColor") == 0
2455 || strcmp(var->name, "gl_BackColor") == 0
2456 || strcmp(var->name, "gl_FrontSecondaryColor") == 0
2457 || strcmp(var->name, "gl_BackSecondaryColor") == 0
2458 || strcmp(var->name, "gl_Color") == 0
2459 || strcmp(var->name, "gl_SecondaryColor") == 0)
2460 && earlier->type == var->type
2461 && earlier->mode == var->mode) {
2462 earlier->interpolation = var->interpolation;
2463
2464 /* Layout qualifiers for gl_FragDepth. */
2465 } else if ((state->AMD_conservative_depth_enable ||
2466 state->ARB_conservative_depth_enable)
2467 && strcmp(var->name, "gl_FragDepth") == 0
2468 && earlier->type == var->type
2469 && earlier->mode == var->mode) {
2470
2471 /** From the AMD_conservative_depth spec:
2472 * Within any shader, the first redeclarations of gl_FragDepth
2473 * must appear before any use of gl_FragDepth.
2474 */
2475 if (earlier->used) {
2476 _mesa_glsl_error(&loc, state,
2477 "the first redeclaration of gl_FragDepth "
2478 "must appear before any use of gl_FragDepth");
2479 }
2480
2481 /* Prevent inconsistent redeclaration of depth layout qualifier. */
2482 if (earlier->depth_layout != ir_depth_layout_none
2483 && earlier->depth_layout != var->depth_layout) {
2484 _mesa_glsl_error(&loc, state,
2485 "gl_FragDepth: depth layout is declared here "
2486 "as '%s, but it was previously declared as "
2487 "'%s'",
2488 depth_layout_string(var->depth_layout),
2489 depth_layout_string(earlier->depth_layout));
2490 }
2491
2492 earlier->depth_layout = var->depth_layout;
2493
2494 } else if (allow_all_redeclarations) {
2495 if (earlier->mode != var->mode) {
2496 _mesa_glsl_error(&loc, state,
2497 "redeclaration of `%s' with incorrect qualifiers",
2498 var->name);
2499 } else if (earlier->type != var->type) {
2500 _mesa_glsl_error(&loc, state,
2501 "redeclaration of `%s' has incorrect type",
2502 var->name);
2503 }
2504 } else {
2505 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
2506 }
2507
2508 return earlier;
2509 }
2510
2511 /**
2512 * Generate the IR for an initializer in a variable declaration
2513 */
2514 ir_rvalue *
2515 process_initializer(ir_variable *var, ast_declaration *decl,
2516 ast_fully_specified_type *type,
2517 exec_list *initializer_instructions,
2518 struct _mesa_glsl_parse_state *state)
2519 {
2520 ir_rvalue *result = NULL;
2521
2522 YYLTYPE initializer_loc = decl->initializer->get_location();
2523
2524 /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
2525 *
2526 * "All uniform variables are read-only and are initialized either
2527 * directly by an application via API commands, or indirectly by
2528 * OpenGL."
2529 */
2530 if (var->mode == ir_var_uniform) {
2531 state->check_version(120, 0, &initializer_loc,
2532 "cannot initialize uniforms");
2533 }
2534
2535 if (var->type->is_sampler()) {
2536 _mesa_glsl_error(& initializer_loc, state,
2537 "cannot initialize samplers");
2538 }
2539
2540 if ((var->mode == ir_var_shader_in) && (state->current_function == NULL)) {
2541 _mesa_glsl_error(& initializer_loc, state,
2542 "cannot initialize %s shader input / %s",
2543 _mesa_glsl_shader_target_name(state->target),
2544 (state->target == vertex_shader)
2545 ? "attribute" : "varying");
2546 }
2547
2548 ir_dereference *const lhs = new(state) ir_dereference_variable(var);
2549 ir_rvalue *rhs = decl->initializer->hir(initializer_instructions,
2550 state);
2551
2552 /* Calculate the constant value if this is a const or uniform
2553 * declaration.
2554 */
2555 if (type->qualifier.flags.q.constant
2556 || type->qualifier.flags.q.uniform) {
2557 ir_rvalue *new_rhs = validate_assignment(state, initializer_loc,
2558 var->type, rhs, true);
2559 if (new_rhs != NULL) {
2560 rhs = new_rhs;
2561
2562 ir_constant *constant_value = rhs->constant_expression_value();
2563 if (!constant_value) {
2564 /* If ARB_shading_language_420pack is enabled, initializers of
2565 * const-qualified local variables do not have to be constant
2566 * expressions. Const-qualified global variables must still be
2567 * initialized with constant expressions.
2568 */
2569 if (!state->ARB_shading_language_420pack_enable
2570 || state->current_function == NULL) {
2571 _mesa_glsl_error(& initializer_loc, state,
2572 "initializer of %s variable `%s' must be a "
2573 "constant expression",
2574 (type->qualifier.flags.q.constant)
2575 ? "const" : "uniform",
2576 decl->identifier);
2577 if (var->type->is_numeric()) {
2578 /* Reduce cascading errors. */
2579 var->constant_value = ir_constant::zero(state, var->type);
2580 }
2581 }
2582 } else {
2583 rhs = constant_value;
2584 var->constant_value = constant_value;
2585 }
2586 } else {
2587 if (var->type->is_numeric()) {
2588 /* Reduce cascading errors. */
2589 var->constant_value = ir_constant::zero(state, var->type);
2590 }
2591 }
2592 }
2593
2594 if (rhs && !rhs->type->is_error()) {
2595 bool temp = var->read_only;
2596 if (type->qualifier.flags.q.constant)
2597 var->read_only = false;
2598
2599 /* Never emit code to initialize a uniform.
2600 */
2601 const glsl_type *initializer_type;
2602 if (!type->qualifier.flags.q.uniform) {
2603 result = do_assignment(initializer_instructions, state,
2604 NULL,
2605 lhs, rhs, true,
2606 type->get_location());
2607 initializer_type = result->type;
2608 } else
2609 initializer_type = rhs->type;
2610
2611 var->constant_initializer = rhs->constant_expression_value();
2612 var->has_initializer = true;
2613
2614 /* If the declared variable is an unsized array, it must inherrit
2615 * its full type from the initializer. A declaration such as
2616 *
2617 * uniform float a[] = float[](1.0, 2.0, 3.0, 3.0);
2618 *
2619 * becomes
2620 *
2621 * uniform float a[4] = float[](1.0, 2.0, 3.0, 3.0);
2622 *
2623 * The assignment generated in the if-statement (below) will also
2624 * automatically handle this case for non-uniforms.
2625 *
2626 * If the declared variable is not an array, the types must
2627 * already match exactly. As a result, the type assignment
2628 * here can be done unconditionally. For non-uniforms the call
2629 * to do_assignment can change the type of the initializer (via
2630 * the implicit conversion rules). For uniforms the initializer
2631 * must be a constant expression, and the type of that expression
2632 * was validated above.
2633 */
2634 var->type = initializer_type;
2635
2636 var->read_only = temp;
2637 }
2638
2639 return result;
2640 }
2641
2642
2643 /**
2644 * Do additional processing necessary for geometry shader input declarations
2645 * (this covers both interface blocks arrays and bare input variables).
2646 */
2647 static void
2648 handle_geometry_shader_input_decl(struct _mesa_glsl_parse_state *state,
2649 YYLTYPE loc, ir_variable *var)
2650 {
2651 unsigned num_vertices = 0;
2652 if (state->gs_input_prim_type_specified) {
2653 num_vertices = vertices_per_prim(state->gs_input_prim_type);
2654 }
2655
2656 /* Geometry shader input variables must be arrays. Caller should have
2657 * reported an error for this.
2658 */
2659 if (!var->type->is_array()) {
2660 assert(state->error);
2661
2662 /* To avoid cascading failures, short circuit the checks below. */
2663 return;
2664 }
2665
2666 if (var->type->is_unsized_array()) {
2667 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec says:
2668 *
2669 * All geometry shader input unsized array declarations will be
2670 * sized by an earlier input layout qualifier, when present, as per
2671 * the following table.
2672 *
2673 * Followed by a table mapping each allowed input layout qualifier to
2674 * the corresponding input length.
2675 */
2676 if (num_vertices != 0)
2677 var->type = glsl_type::get_array_instance(var->type->fields.array,
2678 num_vertices);
2679 } else {
2680 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec
2681 * includes the following examples of compile-time errors:
2682 *
2683 * // code sequence within one shader...
2684 * in vec4 Color1[]; // size unknown
2685 * ...Color1.length()...// illegal, length() unknown
2686 * in vec4 Color2[2]; // size is 2
2687 * ...Color1.length()...// illegal, Color1 still has no size
2688 * in vec4 Color3[3]; // illegal, input sizes are inconsistent
2689 * layout(lines) in; // legal, input size is 2, matching
2690 * in vec4 Color4[3]; // illegal, contradicts layout
2691 * ...
2692 *
2693 * To detect the case illustrated by Color3, we verify that the size of
2694 * an explicitly-sized array matches the size of any previously declared
2695 * explicitly-sized array. To detect the case illustrated by Color4, we
2696 * verify that the size of an explicitly-sized array is consistent with
2697 * any previously declared input layout.
2698 */
2699 if (num_vertices != 0 && var->type->length != num_vertices) {
2700 _mesa_glsl_error(&loc, state,
2701 "geometry shader input size contradicts previously"
2702 " declared layout (size is %u, but layout requires a"
2703 " size of %u)", var->type->length, num_vertices);
2704 } else if (state->gs_input_size != 0 &&
2705 var->type->length != state->gs_input_size) {
2706 _mesa_glsl_error(&loc, state,
2707 "geometry shader input sizes are "
2708 "inconsistent (size is %u, but a previous "
2709 "declaration has size %u)",
2710 var->type->length, state->gs_input_size);
2711 } else {
2712 state->gs_input_size = var->type->length;
2713 }
2714 }
2715 }
2716
2717
2718 void
2719 validate_identifier(const char *identifier, YYLTYPE loc,
2720 struct _mesa_glsl_parse_state *state)
2721 {
2722 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
2723 *
2724 * "Identifiers starting with "gl_" are reserved for use by
2725 * OpenGL, and may not be declared in a shader as either a
2726 * variable or a function."
2727 */
2728 if (strncmp(identifier, "gl_", 3) == 0) {
2729 _mesa_glsl_error(&loc, state,
2730 "identifier `%s' uses reserved `gl_' prefix",
2731 identifier);
2732 } else if (strstr(identifier, "__")) {
2733 /* From page 14 (page 20 of the PDF) of the GLSL 1.10
2734 * spec:
2735 *
2736 * "In addition, all identifiers containing two
2737 * consecutive underscores (__) are reserved as
2738 * possible future keywords."
2739 */
2740 _mesa_glsl_error(&loc, state,
2741 "identifier `%s' uses reserved `__' string",
2742 identifier);
2743 }
2744 }
2745
2746
2747 ir_rvalue *
2748 ast_declarator_list::hir(exec_list *instructions,
2749 struct _mesa_glsl_parse_state *state)
2750 {
2751 void *ctx = state;
2752 const struct glsl_type *decl_type;
2753 const char *type_name = NULL;
2754 ir_rvalue *result = NULL;
2755 YYLTYPE loc = this->get_location();
2756
2757 /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec:
2758 *
2759 * "To ensure that a particular output variable is invariant, it is
2760 * necessary to use the invariant qualifier. It can either be used to
2761 * qualify a previously declared variable as being invariant
2762 *
2763 * invariant gl_Position; // make existing gl_Position be invariant"
2764 *
2765 * In these cases the parser will set the 'invariant' flag in the declarator
2766 * list, and the type will be NULL.
2767 */
2768 if (this->invariant) {
2769 assert(this->type == NULL);
2770
2771 if (state->current_function != NULL) {
2772 _mesa_glsl_error(& loc, state,
2773 "all uses of `invariant' keyword must be at global "
2774 "scope");
2775 }
2776
2777 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
2778 assert(!decl->is_array);
2779 assert(decl->array_size == NULL);
2780 assert(decl->initializer == NULL);
2781
2782 ir_variable *const earlier =
2783 state->symbols->get_variable(decl->identifier);
2784 if (earlier == NULL) {
2785 _mesa_glsl_error(& loc, state,
2786 "undeclared variable `%s' cannot be marked "
2787 "invariant", decl->identifier);
2788 } else if ((state->target == vertex_shader)
2789 && (earlier->mode != ir_var_shader_out)) {
2790 _mesa_glsl_error(& loc, state,
2791 "`%s' cannot be marked invariant, vertex shader "
2792 "outputs only", decl->identifier);
2793 } else if ((state->target == fragment_shader)
2794 && (earlier->mode != ir_var_shader_in)) {
2795 _mesa_glsl_error(& loc, state,
2796 "`%s' cannot be marked invariant, fragment shader "
2797 "inputs only", decl->identifier);
2798 } else if (earlier->used) {
2799 _mesa_glsl_error(& loc, state,
2800 "variable `%s' may not be redeclared "
2801 "`invariant' after being used",
2802 earlier->name);
2803 } else {
2804 earlier->invariant = true;
2805 }
2806 }
2807
2808 /* Invariant redeclarations do not have r-values.
2809 */
2810 return NULL;
2811 }
2812
2813 assert(this->type != NULL);
2814 assert(!this->invariant);
2815
2816 /* The type specifier may contain a structure definition. Process that
2817 * before any of the variable declarations.
2818 */
2819 (void) this->type->specifier->hir(instructions, state);
2820
2821 decl_type = this->type->glsl_type(& type_name, state);
2822 if (this->declarations.is_empty()) {
2823 /* If there is no structure involved in the program text, there are two
2824 * possible scenarios:
2825 *
2826 * - The program text contained something like 'vec4;'. This is an
2827 * empty declaration. It is valid but weird. Emit a warning.
2828 *
2829 * - The program text contained something like 'S;' and 'S' is not the
2830 * name of a known structure type. This is both invalid and weird.
2831 * Emit an error.
2832 *
2833 * - The program text contained something like 'mediump float;'
2834 * when the programmer probably meant 'precision mediump
2835 * float;' Emit a warning with a description of what they
2836 * probably meant to do.
2837 *
2838 * Note that if decl_type is NULL and there is a structure involved,
2839 * there must have been some sort of error with the structure. In this
2840 * case we assume that an error was already generated on this line of
2841 * code for the structure. There is no need to generate an additional,
2842 * confusing error.
2843 */
2844 assert(this->type->specifier->structure == NULL || decl_type != NULL
2845 || state->error);
2846
2847 if (decl_type == NULL) {
2848 _mesa_glsl_error(&loc, state,
2849 "invalid type `%s' in empty declaration",
2850 type_name);
2851 } else if (this->type->qualifier.precision != ast_precision_none) {
2852 if (this->type->specifier->structure != NULL) {
2853 _mesa_glsl_error(&loc, state,
2854 "precision qualifiers can't be applied "
2855 "to structures");
2856 } else {
2857 static const char *const precision_names[] = {
2858 "highp",
2859 "highp",
2860 "mediump",
2861 "lowp"
2862 };
2863
2864 _mesa_glsl_warning(&loc, state,
2865 "empty declaration with precision qualifier, "
2866 "to set the default precision, use "
2867 "`precision %s %s;'",
2868 precision_names[this->type->qualifier.precision],
2869 type_name);
2870 }
2871 } else {
2872 _mesa_glsl_warning(&loc, state, "empty declaration");
2873 }
2874 }
2875
2876 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
2877 const struct glsl_type *var_type;
2878 ir_variable *var;
2879
2880 /* FINISHME: Emit a warning if a variable declaration shadows a
2881 * FINISHME: declaration at a higher scope.
2882 */
2883
2884 if ((decl_type == NULL) || decl_type->is_void()) {
2885 if (type_name != NULL) {
2886 _mesa_glsl_error(& loc, state,
2887 "invalid type `%s' in declaration of `%s'",
2888 type_name, decl->identifier);
2889 } else {
2890 _mesa_glsl_error(& loc, state,
2891 "invalid type in declaration of `%s'",
2892 decl->identifier);
2893 }
2894 continue;
2895 }
2896
2897 if (decl->is_array) {
2898 var_type = process_array_type(&loc, decl_type, decl->array_size,
2899 state);
2900 if (var_type->is_error())
2901 continue;
2902 } else {
2903 var_type = decl_type;
2904 }
2905
2906 var = new(ctx) ir_variable(var_type, decl->identifier, ir_var_auto);
2907
2908 /* The 'varying in' and 'varying out' qualifiers can only be used with
2909 * ARB_geometry_shader4 and EXT_geometry_shader4, which we don't support
2910 * yet.
2911 */
2912 if (this->type->qualifier.flags.q.varying) {
2913 if (this->type->qualifier.flags.q.in) {
2914 _mesa_glsl_error(& loc, state,
2915 "`varying in' qualifier in declaration of "
2916 "`%s' only valid for geometry shaders using "
2917 "ARB_geometry_shader4 or EXT_geometry_shader4",
2918 decl->identifier);
2919 } else if (this->type->qualifier.flags.q.out) {
2920 _mesa_glsl_error(& loc, state,
2921 "`varying out' qualifier in declaration of "
2922 "`%s' only valid for geometry shaders using "
2923 "ARB_geometry_shader4 or EXT_geometry_shader4",
2924 decl->identifier);
2925 }
2926 }
2927
2928 /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
2929 *
2930 * "Global variables can only use the qualifiers const,
2931 * attribute, uni form, or varying. Only one may be
2932 * specified.
2933 *
2934 * Local variables can only use the qualifier const."
2935 *
2936 * This is relaxed in GLSL 1.30 and GLSL ES 3.00. It is also relaxed by
2937 * any extension that adds the 'layout' keyword.
2938 */
2939 if (!state->is_version(130, 300)
2940 && !state->has_explicit_attrib_location()
2941 && !state->ARB_fragment_coord_conventions_enable) {
2942 if (this->type->qualifier.flags.q.out) {
2943 _mesa_glsl_error(& loc, state,
2944 "`out' qualifier in declaration of `%s' "
2945 "only valid for function parameters in %s",
2946 decl->identifier, state->get_version_string());
2947 }
2948 if (this->type->qualifier.flags.q.in) {
2949 _mesa_glsl_error(& loc, state,
2950 "`in' qualifier in declaration of `%s' "
2951 "only valid for function parameters in %s",
2952 decl->identifier, state->get_version_string());
2953 }
2954 /* FINISHME: Test for other invalid qualifiers. */
2955 }
2956
2957 apply_type_qualifier_to_variable(& this->type->qualifier, var, state,
2958 & loc, false);
2959
2960 if (this->type->qualifier.flags.q.invariant) {
2961 if ((state->target == vertex_shader) &&
2962 var->mode != ir_var_shader_out) {
2963 _mesa_glsl_error(& loc, state,
2964 "`%s' cannot be marked invariant, vertex shader "
2965 "outputs only", var->name);
2966 } else if ((state->target == fragment_shader) &&
2967 var->mode != ir_var_shader_in) {
2968 /* FINISHME: Note that this doesn't work for invariant on
2969 * a function signature inval
2970 */
2971 _mesa_glsl_error(& loc, state,
2972 "`%s' cannot be marked invariant, fragment shader "
2973 "inputs only", var->name);
2974 }
2975 }
2976
2977 if (state->current_function != NULL) {
2978 const char *mode = NULL;
2979 const char *extra = "";
2980
2981 /* There is no need to check for 'inout' here because the parser will
2982 * only allow that in function parameter lists.
2983 */
2984 if (this->type->qualifier.flags.q.attribute) {
2985 mode = "attribute";
2986 } else if (this->type->qualifier.flags.q.uniform) {
2987 mode = "uniform";
2988 } else if (this->type->qualifier.flags.q.varying) {
2989 mode = "varying";
2990 } else if (this->type->qualifier.flags.q.in) {
2991 mode = "in";
2992 extra = " or in function parameter list";
2993 } else if (this->type->qualifier.flags.q.out) {
2994 mode = "out";
2995 extra = " or in function parameter list";
2996 }
2997
2998 if (mode) {
2999 _mesa_glsl_error(& loc, state,
3000 "%s variable `%s' must be declared at "
3001 "global scope%s",
3002 mode, var->name, extra);
3003 }
3004 } else if (var->mode == ir_var_shader_in) {
3005 var->read_only = true;
3006
3007 if (state->target == vertex_shader) {
3008 bool error_emitted = false;
3009
3010 /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
3011 *
3012 * "Vertex shader inputs can only be float, floating-point
3013 * vectors, matrices, signed and unsigned integers and integer
3014 * vectors. Vertex shader inputs can also form arrays of these
3015 * types, but not structures."
3016 *
3017 * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
3018 *
3019 * "Vertex shader inputs can only be float, floating-point
3020 * vectors, matrices, signed and unsigned integers and integer
3021 * vectors. They cannot be arrays or structures."
3022 *
3023 * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
3024 *
3025 * "The attribute qualifier can be used only with float,
3026 * floating-point vectors, and matrices. Attribute variables
3027 * cannot be declared as arrays or structures."
3028 *
3029 * From page 33 (page 39 of the PDF) of the GLSL ES 3.00 spec:
3030 *
3031 * "Vertex shader inputs can only be float, floating-point
3032 * vectors, matrices, signed and unsigned integers and integer
3033 * vectors. Vertex shader inputs cannot be arrays or
3034 * structures."
3035 */
3036 const glsl_type *check_type = var->type->is_array()
3037 ? var->type->fields.array : var->type;
3038
3039 switch (check_type->base_type) {
3040 case GLSL_TYPE_FLOAT:
3041 break;
3042 case GLSL_TYPE_UINT:
3043 case GLSL_TYPE_INT:
3044 if (state->is_version(120, 300))
3045 break;
3046 /* FALLTHROUGH */
3047 default:
3048 _mesa_glsl_error(& loc, state,
3049 "vertex shader input / attribute cannot have "
3050 "type %s`%s'",
3051 var->type->is_array() ? "array of " : "",
3052 check_type->name);
3053 error_emitted = true;
3054 }
3055
3056 if (!error_emitted && var->type->is_array() &&
3057 !state->check_version(150, 0, &loc,
3058 "vertex shader input / attribute "
3059 "cannot have array type")) {
3060 error_emitted = true;
3061 }
3062 } else if (state->target == geometry_shader) {
3063 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
3064 *
3065 * Geometry shader input variables get the per-vertex values
3066 * written out by vertex shader output variables of the same
3067 * names. Since a geometry shader operates on a set of
3068 * vertices, each input varying variable (or input block, see
3069 * interface blocks below) needs to be declared as an array.
3070 */
3071 if (!var->type->is_array()) {
3072 _mesa_glsl_error(&loc, state,
3073 "geometry shader inputs must be arrays");
3074 }
3075
3076 handle_geometry_shader_input_decl(state, loc, var);
3077 }
3078 }
3079
3080 /* Integer fragment inputs must be qualified with 'flat'. In GLSL ES,
3081 * so must integer vertex outputs.
3082 *
3083 * From section 4.3.4 ("Inputs") of the GLSL 1.50 spec:
3084 * "Fragment shader inputs that are signed or unsigned integers or
3085 * integer vectors must be qualified with the interpolation qualifier
3086 * flat."
3087 *
3088 * From section 4.3.4 ("Input Variables") of the GLSL 3.00 ES spec:
3089 * "Fragment shader inputs that are, or contain, signed or unsigned
3090 * integers or integer vectors must be qualified with the
3091 * interpolation qualifier flat."
3092 *
3093 * From section 4.3.6 ("Output Variables") of the GLSL 3.00 ES spec:
3094 * "Vertex shader outputs that are, or contain, signed or unsigned
3095 * integers or integer vectors must be qualified with the
3096 * interpolation qualifier flat."
3097 *
3098 * Note that prior to GLSL 1.50, this requirement applied to vertex
3099 * outputs rather than fragment inputs. That creates problems in the
3100 * presence of geometry shaders, so we adopt the GLSL 1.50 rule for all
3101 * desktop GL shaders. For GLSL ES shaders, we follow the spec and
3102 * apply the restriction to both vertex outputs and fragment inputs.
3103 *
3104 * Note also that the desktop GLSL specs are missing the text "or
3105 * contain"; this is presumably an oversight, since there is no
3106 * reasonable way to interpolate a fragment shader input that contains
3107 * an integer.
3108 */
3109 if (state->is_version(130, 300) &&
3110 var->type->contains_integer() &&
3111 var->interpolation != INTERP_QUALIFIER_FLAT &&
3112 ((state->target == fragment_shader && var->mode == ir_var_shader_in)
3113 || (state->target == vertex_shader && var->mode == ir_var_shader_out
3114 && state->es_shader))) {
3115 const char *var_type = (state->target == vertex_shader) ?
3116 "vertex output" : "fragment input";
3117 _mesa_glsl_error(&loc, state, "if a %s is (or contains) "
3118 "an integer, then it must be qualified with 'flat'",
3119 var_type);
3120 }
3121
3122
3123 /* Interpolation qualifiers cannot be applied to 'centroid' and
3124 * 'centroid varying'.
3125 *
3126 * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
3127 * "interpolation qualifiers may only precede the qualifiers in,
3128 * centroid in, out, or centroid out in a declaration. They do not apply
3129 * to the deprecated storage qualifiers varying or centroid varying."
3130 *
3131 * These deprecated storage qualifiers do not exist in GLSL ES 3.00.
3132 */
3133 if (state->is_version(130, 0)
3134 && this->type->qualifier.has_interpolation()
3135 && this->type->qualifier.flags.q.varying) {
3136
3137 const char *i = this->type->qualifier.interpolation_string();
3138 assert(i != NULL);
3139 const char *s;
3140 if (this->type->qualifier.flags.q.centroid)
3141 s = "centroid varying";
3142 else
3143 s = "varying";
3144
3145 _mesa_glsl_error(&loc, state,
3146 "qualifier '%s' cannot be applied to the "
3147 "deprecated storage qualifier '%s'", i, s);
3148 }
3149
3150
3151 /* Interpolation qualifiers can only apply to vertex shader outputs and
3152 * fragment shader inputs.
3153 *
3154 * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
3155 * "Outputs from a vertex shader (out) and inputs to a fragment
3156 * shader (in) can be further qualified with one or more of these
3157 * interpolation qualifiers"
3158 *
3159 * From page 31 (page 37 of the PDF) of the GLSL ES 3.00 spec:
3160 * "These interpolation qualifiers may only precede the qualifiers
3161 * in, centroid in, out, or centroid out in a declaration. They do
3162 * not apply to inputs into a vertex shader or outputs from a
3163 * fragment shader."
3164 */
3165 if (state->is_version(130, 300)
3166 && this->type->qualifier.has_interpolation()) {
3167
3168 const char *i = this->type->qualifier.interpolation_string();
3169 assert(i != NULL);
3170
3171 switch (state->target) {
3172 case vertex_shader:
3173 if (this->type->qualifier.flags.q.in) {
3174 _mesa_glsl_error(&loc, state,
3175 "qualifier '%s' cannot be applied to vertex "
3176 "shader inputs", i);
3177 }
3178 break;
3179 case fragment_shader:
3180 if (this->type->qualifier.flags.q.out) {
3181 _mesa_glsl_error(&loc, state,
3182 "qualifier '%s' cannot be applied to fragment "
3183 "shader outputs", i);
3184 }
3185 break;
3186 default:
3187 break;
3188 }
3189 }
3190
3191
3192 /* From section 4.3.4 of the GLSL 1.30 spec:
3193 * "It is an error to use centroid in in a vertex shader."
3194 *
3195 * From section 4.3.4 of the GLSL ES 3.00 spec:
3196 * "It is an error to use centroid in or interpolation qualifiers in
3197 * a vertex shader input."
3198 */
3199 if (state->is_version(130, 300)
3200 && this->type->qualifier.flags.q.centroid
3201 && this->type->qualifier.flags.q.in
3202 && state->target == vertex_shader) {
3203
3204 _mesa_glsl_error(&loc, state,
3205 "'centroid in' cannot be used in a vertex shader");
3206 }
3207
3208 /* Section 4.3.6 of the GLSL 1.30 specification states:
3209 * "It is an error to use centroid out in a fragment shader."
3210 *
3211 * The GL_ARB_shading_language_420pack extension specification states:
3212 * "It is an error to use auxiliary storage qualifiers or interpolation
3213 * qualifiers on an output in a fragment shader."
3214 */
3215 if (state->target == fragment_shader &&
3216 this->type->qualifier.flags.q.out &&
3217 this->type->qualifier.has_auxiliary_storage()) {
3218 _mesa_glsl_error(&loc, state,
3219 "auxiliary storage qualifiers cannot be used on "
3220 "fragment shader outputs");
3221 }
3222
3223 /* Precision qualifiers exists only in GLSL versions 1.00 and >= 1.30.
3224 */
3225 if (this->type->qualifier.precision != ast_precision_none) {
3226 state->check_precision_qualifiers_allowed(&loc);
3227 }
3228
3229
3230 /* Precision qualifiers apply to floating point, integer and sampler
3231 * types.
3232 *
3233 * Section 4.5.2 (Precision Qualifiers) of the GLSL 1.30 spec says:
3234 * "Any floating point or any integer declaration can have the type
3235 * preceded by one of these precision qualifiers [...] Literal
3236 * constants do not have precision qualifiers. Neither do Boolean
3237 * variables.
3238 *
3239 * Section 4.5 (Precision and Precision Qualifiers) of the GLSL 1.30
3240 * spec also says:
3241 *
3242 * "Precision qualifiers are added for code portability with OpenGL
3243 * ES, not for functionality. They have the same syntax as in OpenGL
3244 * ES."
3245 *
3246 * Section 8 (Built-In Functions) of the GLSL ES 1.00 spec says:
3247 *
3248 * "uniform lowp sampler2D sampler;
3249 * highp vec2 coord;
3250 * ...
3251 * lowp vec4 col = texture2D (sampler, coord);
3252 * // texture2D returns lowp"
3253 *
3254 * From this, we infer that GLSL 1.30 (and later) should allow precision
3255 * qualifiers on sampler types just like float and integer types.
3256 */
3257 if (this->type->qualifier.precision != ast_precision_none
3258 && !var->type->is_float()
3259 && !var->type->is_integer()
3260 && !var->type->is_record()
3261 && !var->type->is_sampler()
3262 && !(var->type->is_array()
3263 && (var->type->fields.array->is_float()
3264 || var->type->fields.array->is_integer()))) {
3265
3266 _mesa_glsl_error(&loc, state,
3267 "precision qualifiers apply only to floating point"
3268 ", integer and sampler types");
3269 }
3270
3271 /* From page 17 (page 23 of the PDF) of the GLSL 1.20 spec:
3272 *
3273 * "[Sampler types] can only be declared as function
3274 * parameters or uniform variables (see Section 4.3.5
3275 * "Uniform")".
3276 */
3277 if (var_type->contains_sampler() &&
3278 !this->type->qualifier.flags.q.uniform) {
3279 _mesa_glsl_error(&loc, state, "samplers must be declared uniform");
3280 }
3281
3282 /* Process the initializer and add its instructions to a temporary
3283 * list. This list will be added to the instruction stream (below) after
3284 * the declaration is added. This is done because in some cases (such as
3285 * redeclarations) the declaration may not actually be added to the
3286 * instruction stream.
3287 */
3288 exec_list initializer_instructions;
3289 ir_variable *earlier =
3290 get_variable_being_redeclared(var, decl->get_location(), state,
3291 false /* allow_all_redeclarations */);
3292
3293 if (decl->initializer != NULL) {
3294 result = process_initializer((earlier == NULL) ? var : earlier,
3295 decl, this->type,
3296 &initializer_instructions, state);
3297 }
3298
3299 /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
3300 *
3301 * "It is an error to write to a const variable outside of
3302 * its declaration, so they must be initialized when
3303 * declared."
3304 */
3305 if (this->type->qualifier.flags.q.constant && decl->initializer == NULL) {
3306 _mesa_glsl_error(& loc, state,
3307 "const declaration of `%s' must be initialized",
3308 decl->identifier);
3309 }
3310
3311 if (state->es_shader) {
3312 const glsl_type *const t = (earlier == NULL)
3313 ? var->type : earlier->type;
3314
3315 if (t->is_unsized_array())
3316 /* Section 10.17 of the GLSL ES 1.00 specification states that
3317 * unsized array declarations have been removed from the language.
3318 * Arrays that are sized using an initializer are still explicitly
3319 * sized. However, GLSL ES 1.00 does not allow array
3320 * initializers. That is only allowed in GLSL ES 3.00.
3321 *
3322 * Section 4.1.9 (Arrays) of the GLSL ES 3.00 spec says:
3323 *
3324 * "An array type can also be formed without specifying a size
3325 * if the definition includes an initializer:
3326 *
3327 * float x[] = float[2] (1.0, 2.0); // declares an array of size 2
3328 * float y[] = float[] (1.0, 2.0, 3.0); // declares an array of size 3
3329 *
3330 * float a[5];
3331 * float b[] = a;"
3332 */
3333 _mesa_glsl_error(& loc, state,
3334 "unsized array declarations are not allowed in "
3335 "GLSL ES");
3336 }
3337
3338 /* If the declaration is not a redeclaration, there are a few additional
3339 * semantic checks that must be applied. In addition, variable that was
3340 * created for the declaration should be added to the IR stream.
3341 */
3342 if (earlier == NULL) {
3343 validate_identifier(decl->identifier, loc, state);
3344
3345 /* Add the variable to the symbol table. Note that the initializer's
3346 * IR was already processed earlier (though it hasn't been emitted
3347 * yet), without the variable in scope.
3348 *
3349 * This differs from most C-like languages, but it follows the GLSL
3350 * specification. From page 28 (page 34 of the PDF) of the GLSL 1.50
3351 * spec:
3352 *
3353 * "Within a declaration, the scope of a name starts immediately
3354 * after the initializer if present or immediately after the name
3355 * being declared if not."
3356 */
3357 if (!state->symbols->add_variable(var)) {
3358 YYLTYPE loc = this->get_location();
3359 _mesa_glsl_error(&loc, state, "name `%s' already taken in the "
3360 "current scope", decl->identifier);
3361 continue;
3362 }
3363
3364 /* Push the variable declaration to the top. It means that all the
3365 * variable declarations will appear in a funny last-to-first order,
3366 * but otherwise we run into trouble if a function is prototyped, a
3367 * global var is decled, then the function is defined with usage of
3368 * the global var. See glslparsertest's CorrectModule.frag.
3369 */
3370 instructions->push_head(var);
3371 }
3372
3373 instructions->append_list(&initializer_instructions);
3374 }
3375
3376
3377 /* Generally, variable declarations do not have r-values. However,
3378 * one is used for the declaration in
3379 *
3380 * while (bool b = some_condition()) {
3381 * ...
3382 * }
3383 *
3384 * so we return the rvalue from the last seen declaration here.
3385 */
3386 return result;
3387 }
3388
3389
3390 ir_rvalue *
3391 ast_parameter_declarator::hir(exec_list *instructions,
3392 struct _mesa_glsl_parse_state *state)
3393 {
3394 void *ctx = state;
3395 const struct glsl_type *type;
3396 const char *name = NULL;
3397 YYLTYPE loc = this->get_location();
3398
3399 type = this->type->glsl_type(& name, state);
3400
3401 if (type == NULL) {
3402 if (name != NULL) {
3403 _mesa_glsl_error(& loc, state,
3404 "invalid type `%s' in declaration of `%s'",
3405 name, this->identifier);
3406 } else {
3407 _mesa_glsl_error(& loc, state,
3408 "invalid type in declaration of `%s'",
3409 this->identifier);
3410 }
3411
3412 type = glsl_type::error_type;
3413 }
3414
3415 /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
3416 *
3417 * "Functions that accept no input arguments need not use void in the
3418 * argument list because prototypes (or definitions) are required and
3419 * therefore there is no ambiguity when an empty argument list "( )" is
3420 * declared. The idiom "(void)" as a parameter list is provided for
3421 * convenience."
3422 *
3423 * Placing this check here prevents a void parameter being set up
3424 * for a function, which avoids tripping up checks for main taking
3425 * parameters and lookups of an unnamed symbol.
3426 */
3427 if (type->is_void()) {
3428 if (this->identifier != NULL)
3429 _mesa_glsl_error(& loc, state,
3430 "named parameter cannot have type `void'");
3431
3432 is_void = true;
3433 return NULL;
3434 }
3435
3436 if (formal_parameter && (this->identifier == NULL)) {
3437 _mesa_glsl_error(& loc, state, "formal parameter lacks a name");
3438 return NULL;
3439 }
3440
3441 /* This only handles "vec4 foo[..]". The earlier specifier->glsl_type(...)
3442 * call already handled the "vec4[..] foo" case.
3443 */
3444 if (this->is_array) {
3445 type = process_array_type(&loc, type, this->array_size, state);
3446 }
3447
3448 if (!type->is_error() && type->is_unsized_array()) {
3449 _mesa_glsl_error(&loc, state, "arrays passed as parameters must have "
3450 "a declared size");
3451 type = glsl_type::error_type;
3452 }
3453
3454 is_void = false;
3455 ir_variable *var = new(ctx)
3456 ir_variable(type, this->identifier, ir_var_function_in);
3457
3458 /* Apply any specified qualifiers to the parameter declaration. Note that
3459 * for function parameters the default mode is 'in'.
3460 */
3461 apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc,
3462 true);
3463
3464 /* From page 17 (page 23 of the PDF) of the GLSL 1.20 spec:
3465 *
3466 * "Samplers cannot be treated as l-values; hence cannot be used
3467 * as out or inout function parameters, nor can they be assigned
3468 * into."
3469 */
3470 if ((var->mode == ir_var_function_inout || var->mode == ir_var_function_out)
3471 && type->contains_sampler()) {
3472 _mesa_glsl_error(&loc, state, "out and inout parameters cannot contain samplers");
3473 type = glsl_type::error_type;
3474 }
3475
3476 /* From page 39 (page 45 of the PDF) of the GLSL 1.10 spec:
3477 *
3478 * "When calling a function, expressions that do not evaluate to
3479 * l-values cannot be passed to parameters declared as out or inout."
3480 *
3481 * From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
3482 *
3483 * "Other binary or unary expressions, non-dereferenced arrays,
3484 * function names, swizzles with repeated fields, and constants
3485 * cannot be l-values."
3486 *
3487 * So for GLSL 1.10, passing an array as an out or inout parameter is not
3488 * allowed. This restriction is removed in GLSL 1.20, and in GLSL ES.
3489 */
3490 if ((var->mode == ir_var_function_inout || var->mode == ir_var_function_out)
3491 && type->is_array()
3492 && !state->check_version(120, 100, &loc,
3493 "arrays cannot be out or inout parameters")) {
3494 type = glsl_type::error_type;
3495 }
3496
3497 instructions->push_tail(var);
3498
3499 /* Parameter declarations do not have r-values.
3500 */
3501 return NULL;
3502 }
3503
3504
3505 void
3506 ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters,
3507 bool formal,
3508 exec_list *ir_parameters,
3509 _mesa_glsl_parse_state *state)
3510 {
3511 ast_parameter_declarator *void_param = NULL;
3512 unsigned count = 0;
3513
3514 foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) {
3515 param->formal_parameter = formal;
3516 param->hir(ir_parameters, state);
3517
3518 if (param->is_void)
3519 void_param = param;
3520
3521 count++;
3522 }
3523
3524 if ((void_param != NULL) && (count > 1)) {
3525 YYLTYPE loc = void_param->get_location();
3526
3527 _mesa_glsl_error(& loc, state,
3528 "`void' parameter must be only parameter");
3529 }
3530 }
3531
3532
3533 void
3534 emit_function(_mesa_glsl_parse_state *state, ir_function *f)
3535 {
3536 /* IR invariants disallow function declarations or definitions
3537 * nested within other function definitions. But there is no
3538 * requirement about the relative order of function declarations
3539 * and definitions with respect to one another. So simply insert
3540 * the new ir_function block at the end of the toplevel instruction
3541 * list.
3542 */
3543 state->toplevel_ir->push_tail(f);
3544 }
3545
3546
3547 ir_rvalue *
3548 ast_function::hir(exec_list *instructions,
3549 struct _mesa_glsl_parse_state *state)
3550 {
3551 void *ctx = state;
3552 ir_function *f = NULL;
3553 ir_function_signature *sig = NULL;
3554 exec_list hir_parameters;
3555
3556 const char *const name = identifier;
3557
3558 /* New functions are always added to the top-level IR instruction stream,
3559 * so this instruction list pointer is ignored. See also emit_function
3560 * (called below).
3561 */
3562 (void) instructions;
3563
3564 /* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec,
3565 *
3566 * "Function declarations (prototypes) cannot occur inside of functions;
3567 * they must be at global scope, or for the built-in functions, outside
3568 * the global scope."
3569 *
3570 * From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec,
3571 *
3572 * "User defined functions may only be defined within the global scope."
3573 *
3574 * Note that this language does not appear in GLSL 1.10.
3575 */
3576 if ((state->current_function != NULL) &&
3577 state->is_version(120, 100)) {
3578 YYLTYPE loc = this->get_location();
3579 _mesa_glsl_error(&loc, state,
3580 "declaration of function `%s' not allowed within "
3581 "function body", name);
3582 }
3583
3584 validate_identifier(name, this->get_location(), state);
3585
3586 /* Convert the list of function parameters to HIR now so that they can be
3587 * used below to compare this function's signature with previously seen
3588 * signatures for functions with the same name.
3589 */
3590 ast_parameter_declarator::parameters_to_hir(& this->parameters,
3591 is_definition,
3592 & hir_parameters, state);
3593
3594 const char *return_type_name;
3595 const glsl_type *return_type =
3596 this->return_type->glsl_type(& return_type_name, state);
3597
3598 if (!return_type) {
3599 YYLTYPE loc = this->get_location();
3600 _mesa_glsl_error(&loc, state,
3601 "function `%s' has undeclared return type `%s'",
3602 name, return_type_name);
3603 return_type = glsl_type::error_type;
3604 }
3605
3606 /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec:
3607 * "No qualifier is allowed on the return type of a function."
3608 */
3609 if (this->return_type->has_qualifiers()) {
3610 YYLTYPE loc = this->get_location();
3611 _mesa_glsl_error(& loc, state,
3612 "function `%s' return type has qualifiers", name);
3613 }
3614
3615 /* Section 6.1 (Function Definitions) of the GLSL 1.20 spec says:
3616 *
3617 * "Arrays are allowed as arguments and as the return type. In both
3618 * cases, the array must be explicitly sized."
3619 */
3620 if (return_type->is_unsized_array()) {
3621 YYLTYPE loc = this->get_location();
3622 _mesa_glsl_error(& loc, state,
3623 "function `%s' return type array must be explicitly "
3624 "sized", name);
3625 }
3626
3627 /* From page 17 (page 23 of the PDF) of the GLSL 1.20 spec:
3628 *
3629 * "[Sampler types] can only be declared as function parameters
3630 * or uniform variables (see Section 4.3.5 "Uniform")".
3631 */
3632 if (return_type->contains_sampler()) {
3633 YYLTYPE loc = this->get_location();
3634 _mesa_glsl_error(&loc, state,
3635 "function `%s' return type can't contain a sampler",
3636 name);
3637 }
3638
3639 /* Verify that this function's signature either doesn't match a previously
3640 * seen signature for a function with the same name, or, if a match is found,
3641 * that the previously seen signature does not have an associated definition.
3642 */
3643 f = state->symbols->get_function(name);
3644 if (f != NULL && (state->es_shader || f->has_user_signature())) {
3645 sig = f->exact_matching_signature(state, &hir_parameters);
3646 if (sig != NULL) {
3647 const char *badvar = sig->qualifiers_match(&hir_parameters);
3648 if (badvar != NULL) {
3649 YYLTYPE loc = this->get_location();
3650
3651 _mesa_glsl_error(&loc, state, "function `%s' parameter `%s' "
3652 "qualifiers don't match prototype", name, badvar);
3653 }
3654
3655 if (sig->return_type != return_type) {
3656 YYLTYPE loc = this->get_location();
3657
3658 _mesa_glsl_error(&loc, state, "function `%s' return type doesn't "
3659 "match prototype", name);
3660 }
3661
3662 if (sig->is_defined) {
3663 if (is_definition) {
3664 YYLTYPE loc = this->get_location();
3665 _mesa_glsl_error(& loc, state, "function `%s' redefined", name);
3666 } else {
3667 /* We just encountered a prototype that exactly matches a
3668 * function that's already been defined. This is redundant,
3669 * and we should ignore it.
3670 */
3671 return NULL;
3672 }
3673 }
3674 }
3675 } else {
3676 f = new(ctx) ir_function(name);
3677 if (!state->symbols->add_function(f)) {
3678 /* This function name shadows a non-function use of the same name. */
3679 YYLTYPE loc = this->get_location();
3680
3681 _mesa_glsl_error(&loc, state, "function name `%s' conflicts with "
3682 "non-function", name);
3683 return NULL;
3684 }
3685
3686 emit_function(state, f);
3687 }
3688
3689 /* Verify the return type of main() */
3690 if (strcmp(name, "main") == 0) {
3691 if (! return_type->is_void()) {
3692 YYLTYPE loc = this->get_location();
3693
3694 _mesa_glsl_error(& loc, state, "main() must return void");
3695 }
3696
3697 if (!hir_parameters.is_empty()) {
3698 YYLTYPE loc = this->get_location();
3699
3700 _mesa_glsl_error(& loc, state, "main() must not take any parameters");
3701 }
3702 }
3703
3704 /* Finish storing the information about this new function in its signature.
3705 */
3706 if (sig == NULL) {
3707 sig = new(ctx) ir_function_signature(return_type);
3708 f->add_signature(sig);
3709 }
3710
3711 sig->replace_parameters(&hir_parameters);
3712 signature = sig;
3713
3714 /* Function declarations (prototypes) do not have r-values.
3715 */
3716 return NULL;
3717 }
3718
3719
3720 ir_rvalue *
3721 ast_function_definition::hir(exec_list *instructions,
3722 struct _mesa_glsl_parse_state *state)
3723 {
3724 prototype->is_definition = true;
3725 prototype->hir(instructions, state);
3726
3727 ir_function_signature *signature = prototype->signature;
3728 if (signature == NULL)
3729 return NULL;
3730
3731 assert(state->current_function == NULL);
3732 state->current_function = signature;
3733 state->found_return = false;
3734
3735 /* Duplicate parameters declared in the prototype as concrete variables.
3736 * Add these to the symbol table.
3737 */
3738 state->symbols->push_scope();
3739 foreach_iter(exec_list_iterator, iter, signature->parameters) {
3740 ir_variable *const var = ((ir_instruction *) iter.get())->as_variable();
3741
3742 assert(var != NULL);
3743
3744 /* The only way a parameter would "exist" is if two parameters have
3745 * the same name.
3746 */
3747 if (state->symbols->name_declared_this_scope(var->name)) {
3748 YYLTYPE loc = this->get_location();
3749
3750 _mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name);
3751 } else {
3752 state->symbols->add_variable(var);
3753 }
3754 }
3755
3756 /* Convert the body of the function to HIR. */
3757 this->body->hir(&signature->body, state);
3758 signature->is_defined = true;
3759
3760 state->symbols->pop_scope();
3761
3762 assert(state->current_function == signature);
3763 state->current_function = NULL;
3764
3765 if (!signature->return_type->is_void() && !state->found_return) {
3766 YYLTYPE loc = this->get_location();
3767 _mesa_glsl_error(& loc, state, "function `%s' has non-void return type "
3768 "%s, but no return statement",
3769 signature->function_name(),
3770 signature->return_type->name);
3771 }
3772
3773 /* Function definitions do not have r-values.
3774 */
3775 return NULL;
3776 }
3777
3778
3779 ir_rvalue *
3780 ast_jump_statement::hir(exec_list *instructions,
3781 struct _mesa_glsl_parse_state *state)
3782 {
3783 void *ctx = state;
3784
3785 switch (mode) {
3786 case ast_return: {
3787 ir_return *inst;
3788 assert(state->current_function);
3789
3790 if (opt_return_value) {
3791 ir_rvalue *ret = opt_return_value->hir(instructions, state);
3792
3793 /* The value of the return type can be NULL if the shader says
3794 * 'return foo();' and foo() is a function that returns void.
3795 *
3796 * NOTE: The GLSL spec doesn't say that this is an error. The type
3797 * of the return value is void. If the return type of the function is
3798 * also void, then this should compile without error. Seriously.
3799 */
3800 const glsl_type *const ret_type =
3801 (ret == NULL) ? glsl_type::void_type : ret->type;
3802
3803 /* Implicit conversions are not allowed for return values prior to
3804 * ARB_shading_language_420pack.
3805 */
3806 if (state->current_function->return_type != ret_type) {
3807 YYLTYPE loc = this->get_location();
3808
3809 if (state->ARB_shading_language_420pack_enable) {
3810 if (!apply_implicit_conversion(state->current_function->return_type,
3811 ret, state)) {
3812 _mesa_glsl_error(& loc, state,
3813 "could not implicitly convert return value "
3814 "to %s, in function `%s'",
3815 state->current_function->return_type->name,
3816 state->current_function->function_name());
3817 }
3818 } else {
3819 _mesa_glsl_error(& loc, state,
3820 "`return' with wrong type %s, in function `%s' "
3821 "returning %s",
3822 ret_type->name,
3823 state->current_function->function_name(),
3824 state->current_function->return_type->name);
3825 }
3826 } else if (state->current_function->return_type->base_type ==
3827 GLSL_TYPE_VOID) {
3828 YYLTYPE loc = this->get_location();
3829
3830 /* The ARB_shading_language_420pack, GLSL ES 3.0, and GLSL 4.20
3831 * specs add a clarification:
3832 *
3833 * "A void function can only use return without a return argument, even if
3834 * the return argument has void type. Return statements only accept values:
3835 *
3836 * void func1() { }
3837 * void func2() { return func1(); } // illegal return statement"
3838 */
3839 _mesa_glsl_error(& loc, state,
3840 "void functions can only use `return' without a "
3841 "return argument");
3842 }
3843
3844 inst = new(ctx) ir_return(ret);
3845 } else {
3846 if (state->current_function->return_type->base_type !=
3847 GLSL_TYPE_VOID) {
3848 YYLTYPE loc = this->get_location();
3849
3850 _mesa_glsl_error(& loc, state,
3851 "`return' with no value, in function %s returning "
3852 "non-void",
3853 state->current_function->function_name());
3854 }
3855 inst = new(ctx) ir_return;
3856 }
3857
3858 state->found_return = true;
3859 instructions->push_tail(inst);
3860 break;
3861 }
3862
3863 case ast_discard:
3864 if (state->target != fragment_shader) {
3865 YYLTYPE loc = this->get_location();
3866
3867 _mesa_glsl_error(& loc, state,
3868 "`discard' may only appear in a fragment shader");
3869 }
3870 instructions->push_tail(new(ctx) ir_discard);
3871 break;
3872
3873 case ast_break:
3874 case ast_continue:
3875 if (mode == ast_continue &&
3876 state->loop_nesting_ast == NULL) {
3877 YYLTYPE loc = this->get_location();
3878
3879 _mesa_glsl_error(& loc, state,
3880 "continue may only appear in a loop");
3881 } else if (mode == ast_break &&
3882 state->loop_nesting_ast == NULL &&
3883 state->switch_state.switch_nesting_ast == NULL) {
3884 YYLTYPE loc = this->get_location();
3885
3886 _mesa_glsl_error(& loc, state,
3887 "break may only appear in a loop or a switch");
3888 } else {
3889 /* For a loop, inline the for loop expression again,
3890 * since we don't know where near the end of
3891 * the loop body the normal copy of it
3892 * is going to be placed.
3893 */
3894 if (state->loop_nesting_ast != NULL &&
3895 mode == ast_continue &&
3896 state->loop_nesting_ast->rest_expression) {
3897 state->loop_nesting_ast->rest_expression->hir(instructions,
3898 state);
3899 }
3900
3901 if (state->switch_state.is_switch_innermost &&
3902 mode == ast_break) {
3903 /* Force break out of switch by setting is_break switch state.
3904 */
3905 ir_variable *const is_break_var = state->switch_state.is_break_var;
3906 ir_dereference_variable *const deref_is_break_var =
3907 new(ctx) ir_dereference_variable(is_break_var);
3908 ir_constant *const true_val = new(ctx) ir_constant(true);
3909 ir_assignment *const set_break_var =
3910 new(ctx) ir_assignment(deref_is_break_var, true_val);
3911
3912 instructions->push_tail(set_break_var);
3913 }
3914 else {
3915 ir_loop_jump *const jump =
3916 new(ctx) ir_loop_jump((mode == ast_break)
3917 ? ir_loop_jump::jump_break
3918 : ir_loop_jump::jump_continue);
3919 instructions->push_tail(jump);
3920 }
3921 }
3922
3923 break;
3924 }
3925
3926 /* Jump instructions do not have r-values.
3927 */
3928 return NULL;
3929 }
3930
3931
3932 ir_rvalue *
3933 ast_selection_statement::hir(exec_list *instructions,
3934 struct _mesa_glsl_parse_state *state)
3935 {
3936 void *ctx = state;
3937
3938 ir_rvalue *const condition = this->condition->hir(instructions, state);
3939
3940 /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
3941 *
3942 * "Any expression whose type evaluates to a Boolean can be used as the
3943 * conditional expression bool-expression. Vector types are not accepted
3944 * as the expression to if."
3945 *
3946 * The checks are separated so that higher quality diagnostics can be
3947 * generated for cases where both rules are violated.
3948 */
3949 if (!condition->type->is_boolean() || !condition->type->is_scalar()) {
3950 YYLTYPE loc = this->condition->get_location();
3951
3952 _mesa_glsl_error(& loc, state, "if-statement condition must be scalar "
3953 "boolean");
3954 }
3955
3956 ir_if *const stmt = new(ctx) ir_if(condition);
3957
3958 if (then_statement != NULL) {
3959 state->symbols->push_scope();
3960 then_statement->hir(& stmt->then_instructions, state);
3961 state->symbols->pop_scope();
3962 }
3963
3964 if (else_statement != NULL) {
3965 state->symbols->push_scope();
3966 else_statement->hir(& stmt->else_instructions, state);
3967 state->symbols->pop_scope();
3968 }
3969
3970 instructions->push_tail(stmt);
3971
3972 /* if-statements do not have r-values.
3973 */
3974 return NULL;
3975 }
3976
3977
3978 ir_rvalue *
3979 ast_switch_statement::hir(exec_list *instructions,
3980 struct _mesa_glsl_parse_state *state)
3981 {
3982 void *ctx = state;
3983
3984 ir_rvalue *const test_expression =
3985 this->test_expression->hir(instructions, state);
3986
3987 /* From page 66 (page 55 of the PDF) of the GLSL 1.50 spec:
3988 *
3989 * "The type of init-expression in a switch statement must be a
3990 * scalar integer."
3991 */
3992 if (!test_expression->type->is_scalar() ||
3993 !test_expression->type->is_integer()) {
3994 YYLTYPE loc = this->test_expression->get_location();
3995
3996 _mesa_glsl_error(& loc,
3997 state,
3998 "switch-statement expression must be scalar "
3999 "integer");
4000 }
4001
4002 /* Track the switch-statement nesting in a stack-like manner.
4003 */
4004 struct glsl_switch_state saved = state->switch_state;
4005
4006 state->switch_state.is_switch_innermost = true;
4007 state->switch_state.switch_nesting_ast = this;
4008 state->switch_state.labels_ht = hash_table_ctor(0, hash_table_pointer_hash,
4009 hash_table_pointer_compare);
4010 state->switch_state.previous_default = NULL;
4011
4012 /* Initalize is_fallthru state to false.
4013 */
4014 ir_rvalue *const is_fallthru_val = new (ctx) ir_constant(false);
4015 state->switch_state.is_fallthru_var =
4016 new(ctx) ir_variable(glsl_type::bool_type,
4017 "switch_is_fallthru_tmp",
4018 ir_var_temporary);
4019 instructions->push_tail(state->switch_state.is_fallthru_var);
4020
4021 ir_dereference_variable *deref_is_fallthru_var =
4022 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
4023 instructions->push_tail(new(ctx) ir_assignment(deref_is_fallthru_var,
4024 is_fallthru_val));
4025
4026 /* Initalize is_break state to false.
4027 */
4028 ir_rvalue *const is_break_val = new (ctx) ir_constant(false);
4029 state->switch_state.is_break_var = new(ctx) ir_variable(glsl_type::bool_type,
4030 "switch_is_break_tmp",
4031 ir_var_temporary);
4032 instructions->push_tail(state->switch_state.is_break_var);
4033
4034 ir_dereference_variable *deref_is_break_var =
4035 new(ctx) ir_dereference_variable(state->switch_state.is_break_var);
4036 instructions->push_tail(new(ctx) ir_assignment(deref_is_break_var,
4037 is_break_val));
4038
4039 /* Cache test expression.
4040 */
4041 test_to_hir(instructions, state);
4042
4043 /* Emit code for body of switch stmt.
4044 */
4045 body->hir(instructions, state);
4046
4047 hash_table_dtor(state->switch_state.labels_ht);
4048
4049 state->switch_state = saved;
4050
4051 /* Switch statements do not have r-values. */
4052 return NULL;
4053 }
4054
4055
4056 void
4057 ast_switch_statement::test_to_hir(exec_list *instructions,
4058 struct _mesa_glsl_parse_state *state)
4059 {
4060 void *ctx = state;
4061
4062 /* Cache value of test expression. */
4063 ir_rvalue *const test_val =
4064 test_expression->hir(instructions,
4065 state);
4066
4067 state->switch_state.test_var = new(ctx) ir_variable(test_val->type,
4068 "switch_test_tmp",
4069 ir_var_temporary);
4070 ir_dereference_variable *deref_test_var =
4071 new(ctx) ir_dereference_variable(state->switch_state.test_var);
4072
4073 instructions->push_tail(state->switch_state.test_var);
4074 instructions->push_tail(new(ctx) ir_assignment(deref_test_var, test_val));
4075 }
4076
4077
4078 ir_rvalue *
4079 ast_switch_body::hir(exec_list *instructions,
4080 struct _mesa_glsl_parse_state *state)
4081 {
4082 if (stmts != NULL)
4083 stmts->hir(instructions, state);
4084
4085 /* Switch bodies do not have r-values. */
4086 return NULL;
4087 }
4088
4089 ir_rvalue *
4090 ast_case_statement_list::hir(exec_list *instructions,
4091 struct _mesa_glsl_parse_state *state)
4092 {
4093 foreach_list_typed (ast_case_statement, case_stmt, link, & this->cases)
4094 case_stmt->hir(instructions, state);
4095
4096 /* Case statements do not have r-values. */
4097 return NULL;
4098 }
4099
4100 ir_rvalue *
4101 ast_case_statement::hir(exec_list *instructions,
4102 struct _mesa_glsl_parse_state *state)
4103 {
4104 labels->hir(instructions, state);
4105
4106 /* Conditionally set fallthru state based on break state. */
4107 ir_constant *const false_val = new(state) ir_constant(false);
4108 ir_dereference_variable *const deref_is_fallthru_var =
4109 new(state) ir_dereference_variable(state->switch_state.is_fallthru_var);
4110 ir_dereference_variable *const deref_is_break_var =
4111 new(state) ir_dereference_variable(state->switch_state.is_break_var);
4112 ir_assignment *const reset_fallthru_on_break =
4113 new(state) ir_assignment(deref_is_fallthru_var,
4114 false_val,
4115 deref_is_break_var);
4116 instructions->push_tail(reset_fallthru_on_break);
4117
4118 /* Guard case statements depending on fallthru state. */
4119 ir_dereference_variable *const deref_fallthru_guard =
4120 new(state) ir_dereference_variable(state->switch_state.is_fallthru_var);
4121 ir_if *const test_fallthru = new(state) ir_if(deref_fallthru_guard);
4122
4123 foreach_list_typed (ast_node, stmt, link, & this->stmts)
4124 stmt->hir(& test_fallthru->then_instructions, state);
4125
4126 instructions->push_tail(test_fallthru);
4127
4128 /* Case statements do not have r-values. */
4129 return NULL;
4130 }
4131
4132
4133 ir_rvalue *
4134 ast_case_label_list::hir(exec_list *instructions,
4135 struct _mesa_glsl_parse_state *state)
4136 {
4137 foreach_list_typed (ast_case_label, label, link, & this->labels)
4138 label->hir(instructions, state);
4139
4140 /* Case labels do not have r-values. */
4141 return NULL;
4142 }
4143
4144 ir_rvalue *
4145 ast_case_label::hir(exec_list *instructions,
4146 struct _mesa_glsl_parse_state *state)
4147 {
4148 void *ctx = state;
4149
4150 ir_dereference_variable *deref_fallthru_var =
4151 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
4152
4153 ir_rvalue *const true_val = new(ctx) ir_constant(true);
4154
4155 /* If not default case, ... */
4156 if (this->test_value != NULL) {
4157 /* Conditionally set fallthru state based on
4158 * comparison of cached test expression value to case label.
4159 */
4160 ir_rvalue *const label_rval = this->test_value->hir(instructions, state);
4161 ir_constant *label_const = label_rval->constant_expression_value();
4162
4163 if (!label_const) {
4164 YYLTYPE loc = this->test_value->get_location();
4165
4166 _mesa_glsl_error(& loc, state,
4167 "switch statement case label must be a "
4168 "constant expression");
4169
4170 /* Stuff a dummy value in to allow processing to continue. */
4171 label_const = new(ctx) ir_constant(0);
4172 } else {
4173 ast_expression *previous_label = (ast_expression *)
4174 hash_table_find(state->switch_state.labels_ht,
4175 (void *)(uintptr_t)label_const->value.u[0]);
4176
4177 if (previous_label) {
4178 YYLTYPE loc = this->test_value->get_location();
4179 _mesa_glsl_error(& loc, state,
4180 "duplicate case value");
4181
4182 loc = previous_label->get_location();
4183 _mesa_glsl_error(& loc, state,
4184 "this is the previous case label");
4185 } else {
4186 hash_table_insert(state->switch_state.labels_ht,
4187 this->test_value,
4188 (void *)(uintptr_t)label_const->value.u[0]);
4189 }
4190 }
4191
4192 ir_dereference_variable *deref_test_var =
4193 new(ctx) ir_dereference_variable(state->switch_state.test_var);
4194
4195 ir_rvalue *const test_cond = new(ctx) ir_expression(ir_binop_all_equal,
4196 label_const,
4197 deref_test_var);
4198
4199 ir_assignment *set_fallthru_on_test =
4200 new(ctx) ir_assignment(deref_fallthru_var,
4201 true_val,
4202 test_cond);
4203
4204 instructions->push_tail(set_fallthru_on_test);
4205 } else { /* default case */
4206 if (state->switch_state.previous_default) {
4207 YYLTYPE loc = this->get_location();
4208 _mesa_glsl_error(& loc, state,
4209 "multiple default labels in one switch");
4210
4211 loc = state->switch_state.previous_default->get_location();
4212 _mesa_glsl_error(& loc, state,
4213 "this is the first default label");
4214 }
4215 state->switch_state.previous_default = this;
4216
4217 /* Set falltrhu state. */
4218 ir_assignment *set_fallthru =
4219 new(ctx) ir_assignment(deref_fallthru_var, true_val);
4220
4221 instructions->push_tail(set_fallthru);
4222 }
4223
4224 /* Case statements do not have r-values. */
4225 return NULL;
4226 }
4227
4228 void
4229 ast_iteration_statement::condition_to_hir(ir_loop *stmt,
4230 struct _mesa_glsl_parse_state *state)
4231 {
4232 void *ctx = state;
4233
4234 if (condition != NULL) {
4235 ir_rvalue *const cond =
4236 condition->hir(& stmt->body_instructions, state);
4237
4238 if ((cond == NULL)
4239 || !cond->type->is_boolean() || !cond->type->is_scalar()) {
4240 YYLTYPE loc = condition->get_location();
4241
4242 _mesa_glsl_error(& loc, state,
4243 "loop condition must be scalar boolean");
4244 } else {
4245 /* As the first code in the loop body, generate a block that looks
4246 * like 'if (!condition) break;' as the loop termination condition.
4247 */
4248 ir_rvalue *const not_cond =
4249 new(ctx) ir_expression(ir_unop_logic_not, cond);
4250
4251 ir_if *const if_stmt = new(ctx) ir_if(not_cond);
4252
4253 ir_jump *const break_stmt =
4254 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
4255
4256 if_stmt->then_instructions.push_tail(break_stmt);
4257 stmt->body_instructions.push_tail(if_stmt);
4258 }
4259 }
4260 }
4261
4262
4263 ir_rvalue *
4264 ast_iteration_statement::hir(exec_list *instructions,
4265 struct _mesa_glsl_parse_state *state)
4266 {
4267 void *ctx = state;
4268
4269 /* For-loops and while-loops start a new scope, but do-while loops do not.
4270 */
4271 if (mode != ast_do_while)
4272 state->symbols->push_scope();
4273
4274 if (init_statement != NULL)
4275 init_statement->hir(instructions, state);
4276
4277 ir_loop *const stmt = new(ctx) ir_loop();
4278 instructions->push_tail(stmt);
4279
4280 /* Track the current loop nesting. */
4281 ast_iteration_statement *nesting_ast = state->loop_nesting_ast;
4282
4283 state->loop_nesting_ast = this;
4284
4285 /* Likewise, indicate that following code is closest to a loop,
4286 * NOT closest to a switch.
4287 */
4288 bool saved_is_switch_innermost = state->switch_state.is_switch_innermost;
4289 state->switch_state.is_switch_innermost = false;
4290
4291 if (mode != ast_do_while)
4292 condition_to_hir(stmt, state);
4293
4294 if (body != NULL)
4295 body->hir(& stmt->body_instructions, state);
4296
4297 if (rest_expression != NULL)
4298 rest_expression->hir(& stmt->body_instructions, state);
4299
4300 if (mode == ast_do_while)
4301 condition_to_hir(stmt, state);
4302
4303 if (mode != ast_do_while)
4304 state->symbols->pop_scope();
4305
4306 /* Restore previous nesting before returning. */
4307 state->loop_nesting_ast = nesting_ast;
4308 state->switch_state.is_switch_innermost = saved_is_switch_innermost;
4309
4310 /* Loops do not have r-values.
4311 */
4312 return NULL;
4313 }
4314
4315
4316 /**
4317 * Determine if the given type is valid for establishing a default precision
4318 * qualifier.
4319 *
4320 * From GLSL ES 3.00 section 4.5.4 ("Default Precision Qualifiers"):
4321 *
4322 * "The precision statement
4323 *
4324 * precision precision-qualifier type;
4325 *
4326 * can be used to establish a default precision qualifier. The type field
4327 * can be either int or float or any of the sampler types, and the
4328 * precision-qualifier can be lowp, mediump, or highp."
4329 *
4330 * GLSL ES 1.00 has similar language. GLSL 1.30 doesn't allow precision
4331 * qualifiers on sampler types, but this seems like an oversight (since the
4332 * intention of including these in GLSL 1.30 is to allow compatibility with ES
4333 * shaders). So we allow int, float, and all sampler types regardless of GLSL
4334 * version.
4335 */
4336 static bool
4337 is_valid_default_precision_type(const struct glsl_type *const type)
4338 {
4339 if (type == NULL)
4340 return false;
4341
4342 switch (type->base_type) {
4343 case GLSL_TYPE_INT:
4344 case GLSL_TYPE_FLOAT:
4345 /* "int" and "float" are valid, but vectors and matrices are not. */
4346 return type->vector_elements == 1 && type->matrix_columns == 1;
4347 case GLSL_TYPE_SAMPLER:
4348 return true;
4349 default:
4350 return false;
4351 }
4352 }
4353
4354
4355 ir_rvalue *
4356 ast_type_specifier::hir(exec_list *instructions,
4357 struct _mesa_glsl_parse_state *state)
4358 {
4359 if (this->default_precision == ast_precision_none && this->structure == NULL)
4360 return NULL;
4361
4362 YYLTYPE loc = this->get_location();
4363
4364 /* If this is a precision statement, check that the type to which it is
4365 * applied is either float or int.
4366 *
4367 * From section 4.5.3 of the GLSL 1.30 spec:
4368 * "The precision statement
4369 * precision precision-qualifier type;
4370 * can be used to establish a default precision qualifier. The type
4371 * field can be either int or float [...]. Any other types or
4372 * qualifiers will result in an error.
4373 */
4374 if (this->default_precision != ast_precision_none) {
4375 if (!state->check_precision_qualifiers_allowed(&loc))
4376 return NULL;
4377
4378 if (this->structure != NULL) {
4379 _mesa_glsl_error(&loc, state,
4380 "precision qualifiers do not apply to structures");
4381 return NULL;
4382 }
4383
4384 if (this->is_array) {
4385 _mesa_glsl_error(&loc, state,
4386 "default precision statements do not apply to "
4387 "arrays");
4388 return NULL;
4389 }
4390
4391 const struct glsl_type *const type =
4392 state->symbols->get_type(this->type_name);
4393 if (!is_valid_default_precision_type(type)) {
4394 _mesa_glsl_error(&loc, state,
4395 "default precision statements apply only to "
4396 "float, int, and sampler types");
4397 return NULL;
4398 }
4399
4400 if (type->base_type == GLSL_TYPE_FLOAT
4401 && state->es_shader
4402 && state->target == fragment_shader) {
4403 /* Section 4.5.3 (Default Precision Qualifiers) of the GLSL ES 1.00
4404 * spec says:
4405 *
4406 * "The fragment language has no default precision qualifier for
4407 * floating point types."
4408 *
4409 * As a result, we have to track whether or not default precision has
4410 * been specified for float in GLSL ES fragment shaders.
4411 *
4412 * Earlier in that same section, the spec says:
4413 *
4414 * "Non-precision qualified declarations will use the precision
4415 * qualifier specified in the most recent precision statement
4416 * that is still in scope. The precision statement has the same
4417 * scoping rules as variable declarations. If it is declared
4418 * inside a compound statement, its effect stops at the end of
4419 * the innermost statement it was declared in. Precision
4420 * statements in nested scopes override precision statements in
4421 * outer scopes. Multiple precision statements for the same basic
4422 * type can appear inside the same scope, with later statements
4423 * overriding earlier statements within that scope."
4424 *
4425 * Default precision specifications follow the same scope rules as
4426 * variables. So, we can track the state of the default float
4427 * precision in the symbol table, and the rules will just work. This
4428 * is a slight abuse of the symbol table, but it has the semantics
4429 * that we want.
4430 */
4431 ir_variable *const junk =
4432 new(state) ir_variable(type, "#default precision",
4433 ir_var_temporary);
4434
4435 state->symbols->add_variable(junk);
4436 }
4437
4438 /* FINISHME: Translate precision statements into IR. */
4439 return NULL;
4440 }
4441
4442 /* _mesa_ast_set_aggregate_type() sets the <structure> field so that
4443 * process_record_constructor() can do type-checking on C-style initializer
4444 * expressions of structs, but ast_struct_specifier should only be translated
4445 * to HIR if it is declaring the type of a structure.
4446 *
4447 * The ->is_declaration field is false for initializers of variables
4448 * declared separately from the struct's type definition.
4449 *
4450 * struct S { ... }; (is_declaration = true)
4451 * struct T { ... } t = { ... }; (is_declaration = true)
4452 * S s = { ... }; (is_declaration = false)
4453 */
4454 if (this->structure != NULL && this->structure->is_declaration)
4455 return this->structure->hir(instructions, state);
4456
4457 return NULL;
4458 }
4459
4460
4461 /**
4462 * Process a structure or interface block tree into an array of structure fields
4463 *
4464 * After parsing, where there are some syntax differnces, structures and
4465 * interface blocks are almost identical. They are similar enough that the
4466 * AST for each can be processed the same way into a set of
4467 * \c glsl_struct_field to describe the members.
4468 *
4469 * If we're processing an interface block, var_mode should be the type of the
4470 * interface block (ir_var_shader_in, ir_var_shader_out, or ir_var_uniform).
4471 * If we're processing a structure, var_mode should be ir_var_auto.
4472 *
4473 * \return
4474 * The number of fields processed. A pointer to the array structure fields is
4475 * stored in \c *fields_ret.
4476 */
4477 unsigned
4478 ast_process_structure_or_interface_block(exec_list *instructions,
4479 struct _mesa_glsl_parse_state *state,
4480 exec_list *declarations,
4481 YYLTYPE &loc,
4482 glsl_struct_field **fields_ret,
4483 bool is_interface,
4484 bool block_row_major,
4485 bool allow_reserved_names,
4486 ir_variable_mode var_mode)
4487 {
4488 unsigned decl_count = 0;
4489
4490 /* Make an initial pass over the list of fields to determine how
4491 * many there are. Each element in this list is an ast_declarator_list.
4492 * This means that we actually need to count the number of elements in the
4493 * 'declarations' list in each of the elements.
4494 */
4495 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
4496 foreach_list_const (decl_ptr, & decl_list->declarations) {
4497 decl_count++;
4498 }
4499 }
4500
4501 /* Allocate storage for the fields and process the field
4502 * declarations. As the declarations are processed, try to also convert
4503 * the types to HIR. This ensures that structure definitions embedded in
4504 * other structure definitions or in interface blocks are processed.
4505 */
4506 glsl_struct_field *const fields = ralloc_array(state, glsl_struct_field,
4507 decl_count);
4508
4509 unsigned i = 0;
4510 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
4511 const char *type_name;
4512
4513 decl_list->type->specifier->hir(instructions, state);
4514
4515 /* Section 10.9 of the GLSL ES 1.00 specification states that
4516 * embedded structure definitions have been removed from the language.
4517 */
4518 if (state->es_shader && decl_list->type->specifier->structure != NULL) {
4519 _mesa_glsl_error(&loc, state, "embedded structure definitions are "
4520 "not allowed in GLSL ES 1.00");
4521 }
4522
4523 const glsl_type *decl_type =
4524 decl_list->type->glsl_type(& type_name, state);
4525
4526 foreach_list_typed (ast_declaration, decl, link,
4527 &decl_list->declarations) {
4528 if (!allow_reserved_names)
4529 validate_identifier(decl->identifier, loc, state);
4530
4531 /* From the GL_ARB_uniform_buffer_object spec:
4532 *
4533 * "Sampler types are not allowed inside of uniform
4534 * blocks. All other types, arrays, and structures
4535 * allowed for uniforms are allowed within a uniform
4536 * block."
4537 *
4538 * It should be impossible for decl_type to be NULL here. Cases that
4539 * might naturally lead to decl_type being NULL, especially for the
4540 * is_interface case, will have resulted in compilation having
4541 * already halted due to a syntax error.
4542 */
4543 const struct glsl_type *field_type =
4544 decl_type != NULL ? decl_type : glsl_type::error_type;
4545
4546 if (is_interface && field_type->contains_sampler()) {
4547 YYLTYPE loc = decl_list->get_location();
4548 _mesa_glsl_error(&loc, state,
4549 "uniform in non-default uniform block contains sampler");
4550 }
4551
4552 const struct ast_type_qualifier *const qual =
4553 & decl_list->type->qualifier;
4554 if (qual->flags.q.std140 ||
4555 qual->flags.q.packed ||
4556 qual->flags.q.shared) {
4557 _mesa_glsl_error(&loc, state,
4558 "uniform block layout qualifiers std140, packed, and "
4559 "shared can only be applied to uniform blocks, not "
4560 "members");
4561 }
4562
4563 if (decl->is_array) {
4564 field_type = process_array_type(&loc, decl_type, decl->array_size,
4565 state);
4566 }
4567 fields[i].type = field_type;
4568 fields[i].name = decl->identifier;
4569 fields[i].location = -1;
4570 fields[i].interpolation =
4571 interpret_interpolation_qualifier(qual, var_mode, state, &loc);
4572 fields[i].centroid = qual->flags.q.centroid ? 1 : 0;
4573
4574 if (qual->flags.q.row_major || qual->flags.q.column_major) {
4575 if (!qual->flags.q.uniform) {
4576 _mesa_glsl_error(&loc, state,
4577 "row_major and column_major can only be "
4578 "applied to uniform interface blocks");
4579 } else
4580 validate_matrix_layout_for_type(state, &loc, field_type, NULL);
4581 }
4582
4583 if (qual->flags.q.uniform && qual->has_interpolation()) {
4584 _mesa_glsl_error(&loc, state,
4585 "interpolation qualifiers cannot be used "
4586 "with uniform interface blocks");
4587 }
4588
4589 if (field_type->is_matrix() ||
4590 (field_type->is_array() && field_type->fields.array->is_matrix())) {
4591 fields[i].row_major = block_row_major;
4592 if (qual->flags.q.row_major)
4593 fields[i].row_major = true;
4594 else if (qual->flags.q.column_major)
4595 fields[i].row_major = false;
4596 }
4597
4598 i++;
4599 }
4600 }
4601
4602 assert(i == decl_count);
4603
4604 *fields_ret = fields;
4605 return decl_count;
4606 }
4607
4608
4609 ir_rvalue *
4610 ast_struct_specifier::hir(exec_list *instructions,
4611 struct _mesa_glsl_parse_state *state)
4612 {
4613 YYLTYPE loc = this->get_location();
4614
4615 /* Section 4.1.8 (Structures) of the GLSL 1.10 spec says:
4616 *
4617 * "Anonymous structures are not supported; so embedded structures must
4618 * have a declarator. A name given to an embedded struct is scoped at
4619 * the same level as the struct it is embedded in."
4620 *
4621 * The same section of the GLSL 1.20 spec says:
4622 *
4623 * "Anonymous structures are not supported. Embedded structures are not
4624 * supported.
4625 *
4626 * struct S { float f; };
4627 * struct T {
4628 * S; // Error: anonymous structures disallowed
4629 * struct { ... }; // Error: embedded structures disallowed
4630 * S s; // Okay: nested structures with name are allowed
4631 * };"
4632 *
4633 * The GLSL ES 1.00 and 3.00 specs have similar langauge and examples. So,
4634 * we allow embedded structures in 1.10 only.
4635 */
4636 if (state->language_version != 110 && state->struct_specifier_depth != 0)
4637 _mesa_glsl_error(&loc, state,
4638 "embedded structure declartions are not allowed");
4639
4640 state->struct_specifier_depth++;
4641
4642 glsl_struct_field *fields;
4643 unsigned decl_count =
4644 ast_process_structure_or_interface_block(instructions,
4645 state,
4646 &this->declarations,
4647 loc,
4648 &fields,
4649 false,
4650 false,
4651 false /* allow_reserved_names */,
4652 ir_var_auto);
4653
4654 validate_identifier(this->name, loc, state);
4655
4656 const glsl_type *t =
4657 glsl_type::get_record_instance(fields, decl_count, this->name);
4658
4659 if (!state->symbols->add_type(name, t)) {
4660 _mesa_glsl_error(& loc, state, "struct `%s' previously defined", name);
4661 } else {
4662 const glsl_type **s = reralloc(state, state->user_structures,
4663 const glsl_type *,
4664 state->num_user_structures + 1);
4665 if (s != NULL) {
4666 s[state->num_user_structures] = t;
4667 state->user_structures = s;
4668 state->num_user_structures++;
4669 }
4670 }
4671
4672 state->struct_specifier_depth--;
4673
4674 /* Structure type definitions do not have r-values.
4675 */
4676 return NULL;
4677 }
4678
4679
4680 /**
4681 * Visitor class which detects whether a given interface block has been used.
4682 */
4683 class interface_block_usage_visitor : public ir_hierarchical_visitor
4684 {
4685 public:
4686 interface_block_usage_visitor(ir_variable_mode mode, const glsl_type *block)
4687 : mode(mode), block(block), found(false)
4688 {
4689 }
4690
4691 virtual ir_visitor_status visit(ir_dereference_variable *ir)
4692 {
4693 if (ir->var->mode == mode && ir->var->get_interface_type() == block) {
4694 found = true;
4695 return visit_stop;
4696 }
4697 return visit_continue;
4698 }
4699
4700 bool usage_found() const
4701 {
4702 return this->found;
4703 }
4704
4705 private:
4706 ir_variable_mode mode;
4707 const glsl_type *block;
4708 bool found;
4709 };
4710
4711
4712 ir_rvalue *
4713 ast_interface_block::hir(exec_list *instructions,
4714 struct _mesa_glsl_parse_state *state)
4715 {
4716 YYLTYPE loc = this->get_location();
4717
4718 /* The ast_interface_block has a list of ast_declarator_lists. We
4719 * need to turn those into ir_variables with an association
4720 * with this uniform block.
4721 */
4722 enum glsl_interface_packing packing;
4723 if (this->layout.flags.q.shared) {
4724 packing = GLSL_INTERFACE_PACKING_SHARED;
4725 } else if (this->layout.flags.q.packed) {
4726 packing = GLSL_INTERFACE_PACKING_PACKED;
4727 } else {
4728 /* The default layout is std140.
4729 */
4730 packing = GLSL_INTERFACE_PACKING_STD140;
4731 }
4732
4733 ir_variable_mode var_mode;
4734 const char *iface_type_name;
4735 if (this->layout.flags.q.in) {
4736 var_mode = ir_var_shader_in;
4737 iface_type_name = "in";
4738 } else if (this->layout.flags.q.out) {
4739 var_mode = ir_var_shader_out;
4740 iface_type_name = "out";
4741 } else if (this->layout.flags.q.uniform) {
4742 var_mode = ir_var_uniform;
4743 iface_type_name = "uniform";
4744 } else {
4745 var_mode = ir_var_auto;
4746 iface_type_name = "UNKNOWN";
4747 assert(!"interface block layout qualifier not found!");
4748 }
4749
4750 bool redeclaring_per_vertex = strcmp(this->block_name, "gl_PerVertex") == 0;
4751 bool block_row_major = this->layout.flags.q.row_major;
4752 exec_list declared_variables;
4753 glsl_struct_field *fields;
4754 unsigned int num_variables =
4755 ast_process_structure_or_interface_block(&declared_variables,
4756 state,
4757 &this->declarations,
4758 loc,
4759 &fields,
4760 true,
4761 block_row_major,
4762 redeclaring_per_vertex,
4763 var_mode);
4764
4765 if (!redeclaring_per_vertex)
4766 validate_identifier(this->block_name, loc, state);
4767
4768 const glsl_type *earlier_per_vertex = NULL;
4769 if (redeclaring_per_vertex) {
4770 /* Find the previous declaration of gl_PerVertex. If we're redeclaring
4771 * the named interface block gl_in, we can find it by looking at the
4772 * previous declaration of gl_in. Otherwise we can find it by looking
4773 * at the previous decalartion of any of the built-in outputs,
4774 * e.g. gl_Position.
4775 *
4776 * Also check that the instance name and array-ness of the redeclaration
4777 * are correct.
4778 */
4779 switch (var_mode) {
4780 case ir_var_shader_in:
4781 if (ir_variable *earlier_gl_in =
4782 state->symbols->get_variable("gl_in")) {
4783 earlier_per_vertex = earlier_gl_in->get_interface_type();
4784 } else {
4785 _mesa_glsl_error(&loc, state,
4786 "redeclaration of gl_PerVertex input not allowed "
4787 "in the %s shader",
4788 _mesa_glsl_shader_target_name(state->target));
4789 }
4790 if (this->instance_name == NULL ||
4791 strcmp(this->instance_name, "gl_in") != 0 || !this->is_array) {
4792 _mesa_glsl_error(&loc, state,
4793 "gl_PerVertex input must be redeclared as "
4794 "gl_in[]");
4795 }
4796 break;
4797 case ir_var_shader_out:
4798 if (ir_variable *earlier_gl_Position =
4799 state->symbols->get_variable("gl_Position")) {
4800 earlier_per_vertex = earlier_gl_Position->get_interface_type();
4801 } else {
4802 _mesa_glsl_error(&loc, state,
4803 "redeclaration of gl_PerVertex output not "
4804 "allowed in the %s shader",
4805 _mesa_glsl_shader_target_name(state->target));
4806 }
4807 if (this->instance_name != NULL) {
4808 _mesa_glsl_error(&loc, state,
4809 "gl_PerVertex input may not be redeclared with "
4810 "an instance name");
4811 }
4812 break;
4813 default:
4814 _mesa_glsl_error(&loc, state,
4815 "gl_PerVertex must be declared as an input or an "
4816 "output");
4817 break;
4818 }
4819
4820 if (earlier_per_vertex == NULL) {
4821 /* An error has already been reported. Bail out to avoid null
4822 * dereferences later in this function.
4823 */
4824 return NULL;
4825 }
4826
4827 /* Copy locations from the old gl_PerVertex interface block. */
4828 for (unsigned i = 0; i < num_variables; i++) {
4829 int j = earlier_per_vertex->field_index(fields[i].name);
4830 if (j == -1) {
4831 _mesa_glsl_error(&loc, state,
4832 "redeclaration of gl_PerVertex must be a subset "
4833 "of the built-in members of gl_PerVertex");
4834 } else {
4835 fields[i].location =
4836 earlier_per_vertex->fields.structure[j].location;
4837 fields[i].interpolation =
4838 earlier_per_vertex->fields.structure[j].interpolation;
4839 fields[i].centroid =
4840 earlier_per_vertex->fields.structure[j].centroid;
4841 }
4842 }
4843
4844 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10
4845 * spec:
4846 *
4847 * If a built-in interface block is redeclared, it must appear in
4848 * the shader before any use of any member included in the built-in
4849 * declaration, or a compilation error will result.
4850 *
4851 * This appears to be a clarification to the behaviour established for
4852 * gl_PerVertex by GLSL 1.50, therefore we implement this behaviour
4853 * regardless of GLSL version.
4854 */
4855 interface_block_usage_visitor v(var_mode, earlier_per_vertex);
4856 v.run(instructions);
4857 if (v.usage_found()) {
4858 _mesa_glsl_error(&loc, state,
4859 "redeclaration of a built-in interface block must "
4860 "appear before any use of any member of the "
4861 "interface block");
4862 }
4863 }
4864
4865 const glsl_type *block_type =
4866 glsl_type::get_interface_instance(fields,
4867 num_variables,
4868 packing,
4869 this->block_name);
4870
4871 if (!state->symbols->add_interface(block_type->name, block_type, var_mode)) {
4872 YYLTYPE loc = this->get_location();
4873 _mesa_glsl_error(&loc, state, "interface block `%s' with type `%s' "
4874 "already taken in the current scope",
4875 this->block_name, iface_type_name);
4876 }
4877
4878 /* Since interface blocks cannot contain statements, it should be
4879 * impossible for the block to generate any instructions.
4880 */
4881 assert(declared_variables.is_empty());
4882
4883 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
4884 *
4885 * Geometry shader input variables get the per-vertex values written
4886 * out by vertex shader output variables of the same names. Since a
4887 * geometry shader operates on a set of vertices, each input varying
4888 * variable (or input block, see interface blocks below) needs to be
4889 * declared as an array.
4890 */
4891 if (state->target == geometry_shader && !this->is_array &&
4892 var_mode == ir_var_shader_in) {
4893 _mesa_glsl_error(&loc, state, "geometry shader inputs must be arrays");
4894 }
4895
4896 /* Page 39 (page 45 of the PDF) of section 4.3.7 in the GLSL ES 3.00 spec
4897 * says:
4898 *
4899 * "If an instance name (instance-name) is used, then it puts all the
4900 * members inside a scope within its own name space, accessed with the
4901 * field selector ( . ) operator (analogously to structures)."
4902 */
4903 if (this->instance_name) {
4904 if (redeclaring_per_vertex) {
4905 /* When a built-in in an unnamed interface block is redeclared,
4906 * get_variable_being_redeclared() calls
4907 * check_builtin_array_max_size() to make sure that built-in array
4908 * variables aren't redeclared to illegal sizes. But we're looking
4909 * at a redeclaration of a named built-in interface block. So we
4910 * have to manually call check_builtin_array_max_size() for all parts
4911 * of the interface that are arrays.
4912 */
4913 for (unsigned i = 0; i < num_variables; i++) {
4914 if (fields[i].type->is_array()) {
4915 const unsigned size = fields[i].type->array_size();
4916 check_builtin_array_max_size(fields[i].name, size, loc, state);
4917 }
4918 }
4919 } else {
4920 validate_identifier(this->instance_name, loc, state);
4921 }
4922
4923 ir_variable *var;
4924
4925 if (this->is_array) {
4926 /* Section 4.3.7 (Interface Blocks) of the GLSL 1.50 spec says:
4927 *
4928 * For uniform blocks declared an array, each individual array
4929 * element corresponds to a separate buffer object backing one
4930 * instance of the block. As the array size indicates the number
4931 * of buffer objects needed, uniform block array declarations
4932 * must specify an array size.
4933 *
4934 * And a few paragraphs later:
4935 *
4936 * Geometry shader input blocks must be declared as arrays and
4937 * follow the array declaration and linking rules for all
4938 * geometry shader inputs. All other input and output block
4939 * arrays must specify an array size.
4940 *
4941 * The upshot of this is that the only circumstance where an
4942 * interface array size *doesn't* need to be specified is on a
4943 * geometry shader input.
4944 */
4945 if (this->array_size == NULL &&
4946 (state->target != geometry_shader || !this->layout.flags.q.in)) {
4947 _mesa_glsl_error(&loc, state,
4948 "only geometry shader inputs may be unsized "
4949 "instance block arrays");
4950
4951 }
4952
4953 const glsl_type *block_array_type =
4954 process_array_type(&loc, block_type, this->array_size, state);
4955
4956 var = new(state) ir_variable(block_array_type,
4957 this->instance_name,
4958 var_mode);
4959 } else {
4960 var = new(state) ir_variable(block_type,
4961 this->instance_name,
4962 var_mode);
4963 }
4964
4965 if (state->target == geometry_shader && var_mode == ir_var_shader_in)
4966 handle_geometry_shader_input_decl(state, loc, var);
4967
4968 if (ir_variable *earlier =
4969 state->symbols->get_variable(this->instance_name)) {
4970 if (!redeclaring_per_vertex) {
4971 _mesa_glsl_error(&loc, state, "`%s' redeclared",
4972 this->instance_name);
4973 }
4974 earlier->type = var->type;
4975 earlier->reinit_interface_type(block_type);
4976 delete var;
4977 } else {
4978 state->symbols->add_variable(var);
4979 instructions->push_tail(var);
4980 }
4981 } else {
4982 /* In order to have an array size, the block must also be declared with
4983 * an instane name.
4984 */
4985 assert(!this->is_array);
4986
4987 for (unsigned i = 0; i < num_variables; i++) {
4988 ir_variable *var =
4989 new(state) ir_variable(fields[i].type,
4990 ralloc_strdup(state, fields[i].name),
4991 var_mode);
4992 var->interpolation = fields[i].interpolation;
4993 var->centroid = fields[i].centroid;
4994 var->init_interface_type(block_type);
4995
4996 if (redeclaring_per_vertex) {
4997 ir_variable *earlier =
4998 get_variable_being_redeclared(var, loc, state,
4999 true /* allow_all_redeclarations */);
5000 if (strncmp(var->name, "gl_", 3) != 0 || earlier == NULL) {
5001 _mesa_glsl_error(&loc, state,
5002 "redeclaration of gl_PerVertex can only "
5003 "include built-in variables");
5004 } else {
5005 earlier->reinit_interface_type(block_type);
5006 }
5007 continue;
5008 }
5009
5010 if (state->symbols->get_variable(var->name) != NULL)
5011 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
5012
5013 /* Propagate the "binding" keyword into this UBO's fields;
5014 * the UBO declaration itself doesn't get an ir_variable unless it
5015 * has an instance name. This is ugly.
5016 */
5017 var->explicit_binding = this->layout.flags.q.explicit_binding;
5018 var->binding = this->layout.binding;
5019
5020 state->symbols->add_variable(var);
5021 instructions->push_tail(var);
5022 }
5023
5024 if (redeclaring_per_vertex && block_type != earlier_per_vertex) {
5025 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10 spec:
5026 *
5027 * It is also a compilation error ... to redeclare a built-in
5028 * block and then use a member from that built-in block that was
5029 * not included in the redeclaration.
5030 *
5031 * This appears to be a clarification to the behaviour established
5032 * for gl_PerVertex by GLSL 1.50, therefore we implement this
5033 * behaviour regardless of GLSL version.
5034 *
5035 * To prevent the shader from using a member that was not included in
5036 * the redeclaration, we disable any ir_variables that are still
5037 * associated with the old declaration of gl_PerVertex (since we've
5038 * already updated all of the variables contained in the new
5039 * gl_PerVertex to point to it).
5040 *
5041 * As a side effect this will prevent
5042 * validate_intrastage_interface_blocks() from getting confused and
5043 * thinking there are conflicting definitions of gl_PerVertex in the
5044 * shader.
5045 */
5046 foreach_list_safe(node, instructions) {
5047 ir_variable *const var = ((ir_instruction *) node)->as_variable();
5048 if (var != NULL &&
5049 var->get_interface_type() == earlier_per_vertex &&
5050 var->mode == var_mode) {
5051 state->symbols->disable_variable(var->name);
5052 var->remove();
5053 }
5054 }
5055 }
5056 }
5057
5058 return NULL;
5059 }
5060
5061
5062 ir_rvalue *
5063 ast_gs_input_layout::hir(exec_list *instructions,
5064 struct _mesa_glsl_parse_state *state)
5065 {
5066 YYLTYPE loc = this->get_location();
5067
5068 /* If any geometry input layout declaration preceded this one, make sure it
5069 * was consistent with this one.
5070 */
5071 if (state->gs_input_prim_type_specified &&
5072 state->gs_input_prim_type != this->prim_type) {
5073 _mesa_glsl_error(&loc, state,
5074 "geometry shader input layout does not match"
5075 " previous declaration");
5076 return NULL;
5077 }
5078
5079 /* If any shader inputs occurred before this declaration and specified an
5080 * array size, make sure the size they specified is consistent with the
5081 * primitive type.
5082 */
5083 unsigned num_vertices = vertices_per_prim(this->prim_type);
5084 if (state->gs_input_size != 0 && state->gs_input_size != num_vertices) {
5085 _mesa_glsl_error(&loc, state,
5086 "this geometry shader input layout implies %u vertices"
5087 " per primitive, but a previous input is declared"
5088 " with size %u", num_vertices, state->gs_input_size);
5089 return NULL;
5090 }
5091
5092 state->gs_input_prim_type_specified = true;
5093 state->gs_input_prim_type = this->prim_type;
5094
5095 /* If any shader inputs occurred before this declaration and did not
5096 * specify an array size, their size is determined now.
5097 */
5098 foreach_list (node, instructions) {
5099 ir_variable *var = ((ir_instruction *) node)->as_variable();
5100 if (var == NULL || var->mode != ir_var_shader_in)
5101 continue;
5102
5103 /* Note: gl_PrimitiveIDIn has mode ir_var_shader_in, but it's not an
5104 * array; skip it.
5105 */
5106
5107 if (var->type->is_unsized_array()) {
5108 if (var->max_array_access >= num_vertices) {
5109 _mesa_glsl_error(&loc, state,
5110 "this geometry shader input layout implies %u"
5111 " vertices, but an access to element %u of input"
5112 " `%s' already exists", num_vertices,
5113 var->max_array_access, var->name);
5114 } else {
5115 var->type = glsl_type::get_array_instance(var->type->fields.array,
5116 num_vertices);
5117 }
5118 }
5119 }
5120
5121 return NULL;
5122 }
5123
5124
5125 static void
5126 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
5127 exec_list *instructions)
5128 {
5129 bool gl_FragColor_assigned = false;
5130 bool gl_FragData_assigned = false;
5131 bool user_defined_fs_output_assigned = false;
5132 ir_variable *user_defined_fs_output = NULL;
5133
5134 /* It would be nice to have proper location information. */
5135 YYLTYPE loc;
5136 memset(&loc, 0, sizeof(loc));
5137
5138 foreach_list(node, instructions) {
5139 ir_variable *var = ((ir_instruction *)node)->as_variable();
5140
5141 if (!var || !var->assigned)
5142 continue;
5143
5144 if (strcmp(var->name, "gl_FragColor") == 0)
5145 gl_FragColor_assigned = true;
5146 else if (strcmp(var->name, "gl_FragData") == 0)
5147 gl_FragData_assigned = true;
5148 else if (strncmp(var->name, "gl_", 3) != 0) {
5149 if (state->target == fragment_shader &&
5150 var->mode == ir_var_shader_out) {
5151 user_defined_fs_output_assigned = true;
5152 user_defined_fs_output = var;
5153 }
5154 }
5155 }
5156
5157 /* From the GLSL 1.30 spec:
5158 *
5159 * "If a shader statically assigns a value to gl_FragColor, it
5160 * may not assign a value to any element of gl_FragData. If a
5161 * shader statically writes a value to any element of
5162 * gl_FragData, it may not assign a value to
5163 * gl_FragColor. That is, a shader may assign values to either
5164 * gl_FragColor or gl_FragData, but not both. Multiple shaders
5165 * linked together must also consistently write just one of
5166 * these variables. Similarly, if user declared output
5167 * variables are in use (statically assigned to), then the
5168 * built-in variables gl_FragColor and gl_FragData may not be
5169 * assigned to. These incorrect usages all generate compile
5170 * time errors."
5171 */
5172 if (gl_FragColor_assigned && gl_FragData_assigned) {
5173 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
5174 "`gl_FragColor' and `gl_FragData'");
5175 } else if (gl_FragColor_assigned && user_defined_fs_output_assigned) {
5176 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
5177 "`gl_FragColor' and `%s'",
5178 user_defined_fs_output->name);
5179 } else if (gl_FragData_assigned && user_defined_fs_output_assigned) {
5180 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
5181 "`gl_FragData' and `%s'",
5182 user_defined_fs_output->name);
5183 }
5184 }
5185
5186
5187 static void
5188 remove_per_vertex_blocks(exec_list *instructions,
5189 _mesa_glsl_parse_state *state, ir_variable_mode mode)
5190 {
5191 /* Find the gl_PerVertex interface block of the appropriate (in/out) mode,
5192 * if it exists in this shader type.
5193 */
5194 const glsl_type *per_vertex = NULL;
5195 switch (mode) {
5196 case ir_var_shader_in:
5197 if (ir_variable *gl_in = state->symbols->get_variable("gl_in"))
5198 per_vertex = gl_in->get_interface_type();
5199 break;
5200 case ir_var_shader_out:
5201 if (ir_variable *gl_Position =
5202 state->symbols->get_variable("gl_Position")) {
5203 per_vertex = gl_Position->get_interface_type();
5204 }
5205 break;
5206 default:
5207 assert(!"Unexpected mode");
5208 break;
5209 }
5210
5211 /* If we didn't find a built-in gl_PerVertex interface block, then we don't
5212 * need to do anything.
5213 */
5214 if (per_vertex == NULL)
5215 return;
5216
5217 /* If the interface block is used by the shader, then we don't need to do
5218 * anything.
5219 */
5220 interface_block_usage_visitor v(mode, per_vertex);
5221 v.run(instructions);
5222 if (v.usage_found())
5223 return;
5224
5225 /* Remove any ir_variable declarations that refer to the interface block
5226 * we're removing.
5227 */
5228 foreach_list_safe(node, instructions) {
5229 ir_variable *const var = ((ir_instruction *) node)->as_variable();
5230 if (var != NULL && var->get_interface_type() == per_vertex &&
5231 var->mode == mode) {
5232 state->symbols->disable_variable(var->name);
5233 var->remove();
5234 }
5235 }
5236 }