glsl: move location layout qualifier validation
[mesa.git] / src / glsl / ast_to_hir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file ast_to_hir.c
26 * Convert abstract syntax to to high-level intermediate reprensentation (HIR).
27 *
28 * During the conversion to HIR, the majority of the symantic checking is
29 * preformed on the program. This includes:
30 *
31 * * Symbol table management
32 * * Type checking
33 * * Function binding
34 *
35 * The majority of this work could be done during parsing, and the parser could
36 * probably generate HIR directly. However, this results in frequent changes
37 * to the parser code. Since we do not assume that every system this complier
38 * is built on will have Flex and Bison installed, we have to store the code
39 * generated by these tools in our version control system. In other parts of
40 * the system we've seen problems where a parser was changed but the generated
41 * code was not committed, merge conflicts where created because two developers
42 * had slightly different versions of Bison installed, etc.
43 *
44 * I have also noticed that running Bison generated parsers in GDB is very
45 * irritating. When you get a segfault on '$$ = $1->foo', you can't very
46 * well 'print $1' in GDB.
47 *
48 * As a result, my preference is to put as little C code as possible in the
49 * parser (and lexer) sources.
50 */
51
52 #include "glsl_symbol_table.h"
53 #include "glsl_parser_extras.h"
54 #include "ast.h"
55 #include "glsl_types.h"
56 #include "program/hash_table.h"
57 #include "main/shaderobj.h"
58 #include "ir.h"
59 #include "ir_builder.h"
60
61 using namespace ir_builder;
62
63 static void
64 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
65 exec_list *instructions);
66 static void
67 remove_per_vertex_blocks(exec_list *instructions,
68 _mesa_glsl_parse_state *state, ir_variable_mode mode);
69
70 /**
71 * Visitor class that finds the first instance of any write-only variable that
72 * is ever read, if any
73 */
74 class read_from_write_only_variable_visitor : public ir_hierarchical_visitor
75 {
76 public:
77 read_from_write_only_variable_visitor() : found(NULL)
78 {
79 }
80
81 virtual ir_visitor_status visit(ir_dereference_variable *ir)
82 {
83 if (this->in_assignee)
84 return visit_continue;
85
86 ir_variable *var = ir->variable_referenced();
87 /* We can have image_write_only set on both images and buffer variables,
88 * but in the former there is a distinction between reads from
89 * the variable itself (write_only) and from the memory they point to
90 * (image_write_only), while in the case of buffer variables there is
91 * no such distinction, that is why this check here is limited to
92 * buffer variables alone.
93 */
94 if (!var || var->data.mode != ir_var_shader_storage)
95 return visit_continue;
96
97 if (var->data.image_write_only) {
98 found = var;
99 return visit_stop;
100 }
101
102 return visit_continue;
103 }
104
105 ir_variable *get_variable() {
106 return found;
107 }
108
109 private:
110 ir_variable *found;
111 };
112
113 void
114 _mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
115 {
116 _mesa_glsl_initialize_variables(instructions, state);
117
118 state->symbols->separate_function_namespace = state->language_version == 110;
119
120 state->current_function = NULL;
121
122 state->toplevel_ir = instructions;
123
124 state->gs_input_prim_type_specified = false;
125 state->tcs_output_vertices_specified = false;
126 state->cs_input_local_size_specified = false;
127
128 /* Section 4.2 of the GLSL 1.20 specification states:
129 * "The built-in functions are scoped in a scope outside the global scope
130 * users declare global variables in. That is, a shader's global scope,
131 * available for user-defined functions and global variables, is nested
132 * inside the scope containing the built-in functions."
133 *
134 * Since built-in functions like ftransform() access built-in variables,
135 * it follows that those must be in the outer scope as well.
136 *
137 * We push scope here to create this nesting effect...but don't pop.
138 * This way, a shader's globals are still in the symbol table for use
139 * by the linker.
140 */
141 state->symbols->push_scope();
142
143 foreach_list_typed (ast_node, ast, link, & state->translation_unit)
144 ast->hir(instructions, state);
145
146 detect_recursion_unlinked(state, instructions);
147 detect_conflicting_assignments(state, instructions);
148
149 state->toplevel_ir = NULL;
150
151 /* Move all of the variable declarations to the front of the IR list, and
152 * reverse the order. This has the (intended!) side effect that vertex
153 * shader inputs and fragment shader outputs will appear in the IR in the
154 * same order that they appeared in the shader code. This results in the
155 * locations being assigned in the declared order. Many (arguably buggy)
156 * applications depend on this behavior, and it matches what nearly all
157 * other drivers do.
158 */
159 foreach_in_list_safe(ir_instruction, node, instructions) {
160 ir_variable *const var = node->as_variable();
161
162 if (var == NULL)
163 continue;
164
165 var->remove();
166 instructions->push_head(var);
167 }
168
169 /* Figure out if gl_FragCoord is actually used in fragment shader */
170 ir_variable *const var = state->symbols->get_variable("gl_FragCoord");
171 if (var != NULL)
172 state->fs_uses_gl_fragcoord = var->data.used;
173
174 /* From section 7.1 (Built-In Language Variables) of the GLSL 4.10 spec:
175 *
176 * If multiple shaders using members of a built-in block belonging to
177 * the same interface are linked together in the same program, they
178 * must all redeclare the built-in block in the same way, as described
179 * in section 4.3.7 "Interface Blocks" for interface block matching, or
180 * a link error will result.
181 *
182 * The phrase "using members of a built-in block" implies that if two
183 * shaders are linked together and one of them *does not use* any members
184 * of the built-in block, then that shader does not need to have a matching
185 * redeclaration of the built-in block.
186 *
187 * This appears to be a clarification to the behaviour established for
188 * gl_PerVertex by GLSL 1.50, therefore implement it regardless of GLSL
189 * version.
190 *
191 * The definition of "interface" in section 4.3.7 that applies here is as
192 * follows:
193 *
194 * The boundary between adjacent programmable pipeline stages: This
195 * spans all the outputs in all compilation units of the first stage
196 * and all the inputs in all compilation units of the second stage.
197 *
198 * Therefore this rule applies to both inter- and intra-stage linking.
199 *
200 * The easiest way to implement this is to check whether the shader uses
201 * gl_PerVertex right after ast-to-ir conversion, and if it doesn't, simply
202 * remove all the relevant variable declaration from the IR, so that the
203 * linker won't see them and complain about mismatches.
204 */
205 remove_per_vertex_blocks(instructions, state, ir_var_shader_in);
206 remove_per_vertex_blocks(instructions, state, ir_var_shader_out);
207
208 /* Check that we don't have reads from write-only variables */
209 read_from_write_only_variable_visitor v;
210 v.run(instructions);
211 ir_variable *error_var = v.get_variable();
212 if (error_var) {
213 /* It would be nice to have proper location information, but for that
214 * we would need to check this as we process each kind of AST node
215 */
216 YYLTYPE loc;
217 memset(&loc, 0, sizeof(loc));
218 _mesa_glsl_error(&loc, state, "Read from write-only variable `%s'",
219 error_var->name);
220 }
221 }
222
223
224 static ir_expression_operation
225 get_conversion_operation(const glsl_type *to, const glsl_type *from,
226 struct _mesa_glsl_parse_state *state)
227 {
228 switch (to->base_type) {
229 case GLSL_TYPE_FLOAT:
230 switch (from->base_type) {
231 case GLSL_TYPE_INT: return ir_unop_i2f;
232 case GLSL_TYPE_UINT: return ir_unop_u2f;
233 case GLSL_TYPE_DOUBLE: return ir_unop_d2f;
234 default: return (ir_expression_operation)0;
235 }
236
237 case GLSL_TYPE_UINT:
238 if (!state->is_version(400, 0) && !state->ARB_gpu_shader5_enable)
239 return (ir_expression_operation)0;
240 switch (from->base_type) {
241 case GLSL_TYPE_INT: return ir_unop_i2u;
242 default: return (ir_expression_operation)0;
243 }
244
245 case GLSL_TYPE_DOUBLE:
246 if (!state->has_double())
247 return (ir_expression_operation)0;
248 switch (from->base_type) {
249 case GLSL_TYPE_INT: return ir_unop_i2d;
250 case GLSL_TYPE_UINT: return ir_unop_u2d;
251 case GLSL_TYPE_FLOAT: return ir_unop_f2d;
252 default: return (ir_expression_operation)0;
253 }
254
255 default: return (ir_expression_operation)0;
256 }
257 }
258
259
260 /**
261 * If a conversion is available, convert one operand to a different type
262 *
263 * The \c from \c ir_rvalue is converted "in place".
264 *
265 * \param to Type that the operand it to be converted to
266 * \param from Operand that is being converted
267 * \param state GLSL compiler state
268 *
269 * \return
270 * If a conversion is possible (or unnecessary), \c true is returned.
271 * Otherwise \c false is returned.
272 */
273 bool
274 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
275 struct _mesa_glsl_parse_state *state)
276 {
277 void *ctx = state;
278 if (to->base_type == from->type->base_type)
279 return true;
280
281 /* Prior to GLSL 1.20, there are no implicit conversions */
282 if (!state->is_version(120, 0))
283 return false;
284
285 /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
286 *
287 * "There are no implicit array or structure conversions. For
288 * example, an array of int cannot be implicitly converted to an
289 * array of float.
290 */
291 if (!to->is_numeric() || !from->type->is_numeric())
292 return false;
293
294 /* We don't actually want the specific type `to`, we want a type
295 * with the same base type as `to`, but the same vector width as
296 * `from`.
297 */
298 to = glsl_type::get_instance(to->base_type, from->type->vector_elements,
299 from->type->matrix_columns);
300
301 ir_expression_operation op = get_conversion_operation(to, from->type, state);
302 if (op) {
303 from = new(ctx) ir_expression(op, to, from, NULL);
304 return true;
305 } else {
306 return false;
307 }
308 }
309
310
311 static const struct glsl_type *
312 arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
313 bool multiply,
314 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
315 {
316 const glsl_type *type_a = value_a->type;
317 const glsl_type *type_b = value_b->type;
318
319 /* From GLSL 1.50 spec, page 56:
320 *
321 * "The arithmetic binary operators add (+), subtract (-),
322 * multiply (*), and divide (/) operate on integer and
323 * floating-point scalars, vectors, and matrices."
324 */
325 if (!type_a->is_numeric() || !type_b->is_numeric()) {
326 _mesa_glsl_error(loc, state,
327 "operands to arithmetic operators must be numeric");
328 return glsl_type::error_type;
329 }
330
331
332 /* "If one operand is floating-point based and the other is
333 * not, then the conversions from Section 4.1.10 "Implicit
334 * Conversions" are applied to the non-floating-point-based operand."
335 */
336 if (!apply_implicit_conversion(type_a, value_b, state)
337 && !apply_implicit_conversion(type_b, value_a, state)) {
338 _mesa_glsl_error(loc, state,
339 "could not implicitly convert operands to "
340 "arithmetic operator");
341 return glsl_type::error_type;
342 }
343 type_a = value_a->type;
344 type_b = value_b->type;
345
346 /* "If the operands are integer types, they must both be signed or
347 * both be unsigned."
348 *
349 * From this rule and the preceeding conversion it can be inferred that
350 * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
351 * The is_numeric check above already filtered out the case where either
352 * type is not one of these, so now the base types need only be tested for
353 * equality.
354 */
355 if (type_a->base_type != type_b->base_type) {
356 _mesa_glsl_error(loc, state,
357 "base type mismatch for arithmetic operator");
358 return glsl_type::error_type;
359 }
360
361 /* "All arithmetic binary operators result in the same fundamental type
362 * (signed integer, unsigned integer, or floating-point) as the
363 * operands they operate on, after operand type conversion. After
364 * conversion, the following cases are valid
365 *
366 * * The two operands are scalars. In this case the operation is
367 * applied, resulting in a scalar."
368 */
369 if (type_a->is_scalar() && type_b->is_scalar())
370 return type_a;
371
372 /* "* One operand is a scalar, and the other is a vector or matrix.
373 * In this case, the scalar operation is applied independently to each
374 * component of the vector or matrix, resulting in the same size
375 * vector or matrix."
376 */
377 if (type_a->is_scalar()) {
378 if (!type_b->is_scalar())
379 return type_b;
380 } else if (type_b->is_scalar()) {
381 return type_a;
382 }
383
384 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
385 * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
386 * handled.
387 */
388 assert(!type_a->is_scalar());
389 assert(!type_b->is_scalar());
390
391 /* "* The two operands are vectors of the same size. In this case, the
392 * operation is done component-wise resulting in the same size
393 * vector."
394 */
395 if (type_a->is_vector() && type_b->is_vector()) {
396 if (type_a == type_b) {
397 return type_a;
398 } else {
399 _mesa_glsl_error(loc, state,
400 "vector size mismatch for arithmetic operator");
401 return glsl_type::error_type;
402 }
403 }
404
405 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
406 * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
407 * <vector, vector> have been handled. At least one of the operands must
408 * be matrix. Further, since there are no integer matrix types, the base
409 * type of both operands must be float.
410 */
411 assert(type_a->is_matrix() || type_b->is_matrix());
412 assert(type_a->base_type == GLSL_TYPE_FLOAT ||
413 type_a->base_type == GLSL_TYPE_DOUBLE);
414 assert(type_b->base_type == GLSL_TYPE_FLOAT ||
415 type_b->base_type == GLSL_TYPE_DOUBLE);
416
417 /* "* The operator is add (+), subtract (-), or divide (/), and the
418 * operands are matrices with the same number of rows and the same
419 * number of columns. In this case, the operation is done component-
420 * wise resulting in the same size matrix."
421 * * The operator is multiply (*), where both operands are matrices or
422 * one operand is a vector and the other a matrix. A right vector
423 * operand is treated as a column vector and a left vector operand as a
424 * row vector. In all these cases, it is required that the number of
425 * columns of the left operand is equal to the number of rows of the
426 * right operand. Then, the multiply (*) operation does a linear
427 * algebraic multiply, yielding an object that has the same number of
428 * rows as the left operand and the same number of columns as the right
429 * operand. Section 5.10 "Vector and Matrix Operations" explains in
430 * more detail how vectors and matrices are operated on."
431 */
432 if (! multiply) {
433 if (type_a == type_b)
434 return type_a;
435 } else {
436 const glsl_type *type = glsl_type::get_mul_type(type_a, type_b);
437
438 if (type == glsl_type::error_type) {
439 _mesa_glsl_error(loc, state,
440 "size mismatch for matrix multiplication");
441 }
442
443 return type;
444 }
445
446
447 /* "All other cases are illegal."
448 */
449 _mesa_glsl_error(loc, state, "type mismatch");
450 return glsl_type::error_type;
451 }
452
453
454 static const struct glsl_type *
455 unary_arithmetic_result_type(const struct glsl_type *type,
456 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
457 {
458 /* From GLSL 1.50 spec, page 57:
459 *
460 * "The arithmetic unary operators negate (-), post- and pre-increment
461 * and decrement (-- and ++) operate on integer or floating-point
462 * values (including vectors and matrices). All unary operators work
463 * component-wise on their operands. These result with the same type
464 * they operated on."
465 */
466 if (!type->is_numeric()) {
467 _mesa_glsl_error(loc, state,
468 "operands to arithmetic operators must be numeric");
469 return glsl_type::error_type;
470 }
471
472 return type;
473 }
474
475 /**
476 * \brief Return the result type of a bit-logic operation.
477 *
478 * If the given types to the bit-logic operator are invalid, return
479 * glsl_type::error_type.
480 *
481 * \param type_a Type of LHS of bit-logic op
482 * \param type_b Type of RHS of bit-logic op
483 */
484 static const struct glsl_type *
485 bit_logic_result_type(const struct glsl_type *type_a,
486 const struct glsl_type *type_b,
487 ast_operators op,
488 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
489 {
490 if (!state->check_bitwise_operations_allowed(loc)) {
491 return glsl_type::error_type;
492 }
493
494 /* From page 50 (page 56 of PDF) of GLSL 1.30 spec:
495 *
496 * "The bitwise operators and (&), exclusive-or (^), and inclusive-or
497 * (|). The operands must be of type signed or unsigned integers or
498 * integer vectors."
499 */
500 if (!type_a->is_integer()) {
501 _mesa_glsl_error(loc, state, "LHS of `%s' must be an integer",
502 ast_expression::operator_string(op));
503 return glsl_type::error_type;
504 }
505 if (!type_b->is_integer()) {
506 _mesa_glsl_error(loc, state, "RHS of `%s' must be an integer",
507 ast_expression::operator_string(op));
508 return glsl_type::error_type;
509 }
510
511 /* "The fundamental types of the operands (signed or unsigned) must
512 * match,"
513 */
514 if (type_a->base_type != type_b->base_type) {
515 _mesa_glsl_error(loc, state, "operands of `%s' must have the same "
516 "base type", ast_expression::operator_string(op));
517 return glsl_type::error_type;
518 }
519
520 /* "The operands cannot be vectors of differing size." */
521 if (type_a->is_vector() &&
522 type_b->is_vector() &&
523 type_a->vector_elements != type_b->vector_elements) {
524 _mesa_glsl_error(loc, state, "operands of `%s' cannot be vectors of "
525 "different sizes", ast_expression::operator_string(op));
526 return glsl_type::error_type;
527 }
528
529 /* "If one operand is a scalar and the other a vector, the scalar is
530 * applied component-wise to the vector, resulting in the same type as
531 * the vector. The fundamental types of the operands [...] will be the
532 * resulting fundamental type."
533 */
534 if (type_a->is_scalar())
535 return type_b;
536 else
537 return type_a;
538 }
539
540 static const struct glsl_type *
541 modulus_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
542 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
543 {
544 const glsl_type *type_a = value_a->type;
545 const glsl_type *type_b = value_b->type;
546
547 if (!state->check_version(130, 300, loc, "operator '%%' is reserved")) {
548 return glsl_type::error_type;
549 }
550
551 /* Section 5.9 (Expressions) of the GLSL 4.00 specification says:
552 *
553 * "The operator modulus (%) operates on signed or unsigned integers or
554 * integer vectors."
555 */
556 if (!type_a->is_integer()) {
557 _mesa_glsl_error(loc, state, "LHS of operator %% must be an integer");
558 return glsl_type::error_type;
559 }
560 if (!type_b->is_integer()) {
561 _mesa_glsl_error(loc, state, "RHS of operator %% must be an integer");
562 return glsl_type::error_type;
563 }
564
565 /* "If the fundamental types in the operands do not match, then the
566 * conversions from section 4.1.10 "Implicit Conversions" are applied
567 * to create matching types."
568 *
569 * Note that GLSL 4.00 (and GL_ARB_gpu_shader5) introduced implicit
570 * int -> uint conversion rules. Prior to that, there were no implicit
571 * conversions. So it's harmless to apply them universally - no implicit
572 * conversions will exist. If the types don't match, we'll receive false,
573 * and raise an error, satisfying the GLSL 1.50 spec, page 56:
574 *
575 * "The operand types must both be signed or unsigned."
576 */
577 if (!apply_implicit_conversion(type_a, value_b, state) &&
578 !apply_implicit_conversion(type_b, value_a, state)) {
579 _mesa_glsl_error(loc, state,
580 "could not implicitly convert operands to "
581 "modulus (%%) operator");
582 return glsl_type::error_type;
583 }
584 type_a = value_a->type;
585 type_b = value_b->type;
586
587 /* "The operands cannot be vectors of differing size. If one operand is
588 * a scalar and the other vector, then the scalar is applied component-
589 * wise to the vector, resulting in the same type as the vector. If both
590 * are vectors of the same size, the result is computed component-wise."
591 */
592 if (type_a->is_vector()) {
593 if (!type_b->is_vector()
594 || (type_a->vector_elements == type_b->vector_elements))
595 return type_a;
596 } else
597 return type_b;
598
599 /* "The operator modulus (%) is not defined for any other data types
600 * (non-integer types)."
601 */
602 _mesa_glsl_error(loc, state, "type mismatch");
603 return glsl_type::error_type;
604 }
605
606
607 static const struct glsl_type *
608 relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
609 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
610 {
611 const glsl_type *type_a = value_a->type;
612 const glsl_type *type_b = value_b->type;
613
614 /* From GLSL 1.50 spec, page 56:
615 * "The relational operators greater than (>), less than (<), greater
616 * than or equal (>=), and less than or equal (<=) operate only on
617 * scalar integer and scalar floating-point expressions."
618 */
619 if (!type_a->is_numeric()
620 || !type_b->is_numeric()
621 || !type_a->is_scalar()
622 || !type_b->is_scalar()) {
623 _mesa_glsl_error(loc, state,
624 "operands to relational operators must be scalar and "
625 "numeric");
626 return glsl_type::error_type;
627 }
628
629 /* "Either the operands' types must match, or the conversions from
630 * Section 4.1.10 "Implicit Conversions" will be applied to the integer
631 * operand, after which the types must match."
632 */
633 if (!apply_implicit_conversion(type_a, value_b, state)
634 && !apply_implicit_conversion(type_b, value_a, state)) {
635 _mesa_glsl_error(loc, state,
636 "could not implicitly convert operands to "
637 "relational operator");
638 return glsl_type::error_type;
639 }
640 type_a = value_a->type;
641 type_b = value_b->type;
642
643 if (type_a->base_type != type_b->base_type) {
644 _mesa_glsl_error(loc, state, "base type mismatch");
645 return glsl_type::error_type;
646 }
647
648 /* "The result is scalar Boolean."
649 */
650 return glsl_type::bool_type;
651 }
652
653 /**
654 * \brief Return the result type of a bit-shift operation.
655 *
656 * If the given types to the bit-shift operator are invalid, return
657 * glsl_type::error_type.
658 *
659 * \param type_a Type of LHS of bit-shift op
660 * \param type_b Type of RHS of bit-shift op
661 */
662 static const struct glsl_type *
663 shift_result_type(const struct glsl_type *type_a,
664 const struct glsl_type *type_b,
665 ast_operators op,
666 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
667 {
668 if (!state->check_bitwise_operations_allowed(loc)) {
669 return glsl_type::error_type;
670 }
671
672 /* From page 50 (page 56 of the PDF) of the GLSL 1.30 spec:
673 *
674 * "The shift operators (<<) and (>>). For both operators, the operands
675 * must be signed or unsigned integers or integer vectors. One operand
676 * can be signed while the other is unsigned."
677 */
678 if (!type_a->is_integer()) {
679 _mesa_glsl_error(loc, state, "LHS of operator %s must be an integer or "
680 "integer vector", ast_expression::operator_string(op));
681 return glsl_type::error_type;
682
683 }
684 if (!type_b->is_integer()) {
685 _mesa_glsl_error(loc, state, "RHS of operator %s must be an integer or "
686 "integer vector", ast_expression::operator_string(op));
687 return glsl_type::error_type;
688 }
689
690 /* "If the first operand is a scalar, the second operand has to be
691 * a scalar as well."
692 */
693 if (type_a->is_scalar() && !type_b->is_scalar()) {
694 _mesa_glsl_error(loc, state, "if the first operand of %s is scalar, the "
695 "second must be scalar as well",
696 ast_expression::operator_string(op));
697 return glsl_type::error_type;
698 }
699
700 /* If both operands are vectors, check that they have same number of
701 * elements.
702 */
703 if (type_a->is_vector() &&
704 type_b->is_vector() &&
705 type_a->vector_elements != type_b->vector_elements) {
706 _mesa_glsl_error(loc, state, "vector operands to operator %s must "
707 "have same number of elements",
708 ast_expression::operator_string(op));
709 return glsl_type::error_type;
710 }
711
712 /* "In all cases, the resulting type will be the same type as the left
713 * operand."
714 */
715 return type_a;
716 }
717
718 /**
719 * Returns the innermost array index expression in an rvalue tree.
720 * This is the largest indexing level -- if an array of blocks, then
721 * it is the block index rather than an indexing expression for an
722 * array-typed member of an array of blocks.
723 */
724 static ir_rvalue *
725 find_innermost_array_index(ir_rvalue *rv)
726 {
727 ir_dereference_array *last = NULL;
728 while (rv) {
729 if (rv->as_dereference_array()) {
730 last = rv->as_dereference_array();
731 rv = last->array;
732 } else if (rv->as_dereference_record())
733 rv = rv->as_dereference_record()->record;
734 else if (rv->as_swizzle())
735 rv = rv->as_swizzle()->val;
736 else
737 rv = NULL;
738 }
739
740 if (last)
741 return last->array_index;
742
743 return NULL;
744 }
745
746 /**
747 * Validates that a value can be assigned to a location with a specified type
748 *
749 * Validates that \c rhs can be assigned to some location. If the types are
750 * not an exact match but an automatic conversion is possible, \c rhs will be
751 * converted.
752 *
753 * \return
754 * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
755 * Otherwise the actual RHS to be assigned will be returned. This may be
756 * \c rhs, or it may be \c rhs after some type conversion.
757 *
758 * \note
759 * In addition to being used for assignments, this function is used to
760 * type-check return values.
761 */
762 static ir_rvalue *
763 validate_assignment(struct _mesa_glsl_parse_state *state,
764 YYLTYPE loc, ir_rvalue *lhs,
765 ir_rvalue *rhs, bool is_initializer)
766 {
767 /* If there is already some error in the RHS, just return it. Anything
768 * else will lead to an avalanche of error message back to the user.
769 */
770 if (rhs->type->is_error())
771 return rhs;
772
773 /* In the Tessellation Control Shader:
774 * If a per-vertex output variable is used as an l-value, it is an error
775 * if the expression indicating the vertex number is not the identifier
776 * `gl_InvocationID`.
777 */
778 if (state->stage == MESA_SHADER_TESS_CTRL) {
779 ir_variable *var = lhs->variable_referenced();
780 if (var->data.mode == ir_var_shader_out && !var->data.patch) {
781 ir_rvalue *index = find_innermost_array_index(lhs);
782 ir_variable *index_var = index ? index->variable_referenced() : NULL;
783 if (!index_var || strcmp(index_var->name, "gl_InvocationID") != 0) {
784 _mesa_glsl_error(&loc, state,
785 "Tessellation control shader outputs can only "
786 "be indexed by gl_InvocationID");
787 return NULL;
788 }
789 }
790 }
791
792 /* If the types are identical, the assignment can trivially proceed.
793 */
794 if (rhs->type == lhs->type)
795 return rhs;
796
797 /* If the array element types are the same and the LHS is unsized,
798 * the assignment is okay for initializers embedded in variable
799 * declarations.
800 *
801 * Note: Whole-array assignments are not permitted in GLSL 1.10, but this
802 * is handled by ir_dereference::is_lvalue.
803 */
804 const glsl_type *lhs_t = lhs->type;
805 const glsl_type *rhs_t = rhs->type;
806 bool unsized_array = false;
807 while(lhs_t->is_array()) {
808 if (rhs_t == lhs_t)
809 break; /* the rest of the inner arrays match so break out early */
810 if (!rhs_t->is_array()) {
811 unsized_array = false;
812 break; /* number of dimensions mismatch */
813 }
814 if (lhs_t->length == rhs_t->length) {
815 lhs_t = lhs_t->fields.array;
816 rhs_t = rhs_t->fields.array;
817 continue;
818 } else if (lhs_t->is_unsized_array()) {
819 unsized_array = true;
820 } else {
821 unsized_array = false;
822 break; /* sized array mismatch */
823 }
824 lhs_t = lhs_t->fields.array;
825 rhs_t = rhs_t->fields.array;
826 }
827 if (unsized_array) {
828 if (is_initializer) {
829 return rhs;
830 } else {
831 _mesa_glsl_error(&loc, state,
832 "implicitly sized arrays cannot be assigned");
833 return NULL;
834 }
835 }
836
837 /* Check for implicit conversion in GLSL 1.20 */
838 if (apply_implicit_conversion(lhs->type, rhs, state)) {
839 if (rhs->type == lhs->type)
840 return rhs;
841 }
842
843 _mesa_glsl_error(&loc, state,
844 "%s of type %s cannot be assigned to "
845 "variable of type %s",
846 is_initializer ? "initializer" : "value",
847 rhs->type->name, lhs->type->name);
848
849 return NULL;
850 }
851
852 static void
853 mark_whole_array_access(ir_rvalue *access)
854 {
855 ir_dereference_variable *deref = access->as_dereference_variable();
856
857 if (deref && deref->var) {
858 deref->var->data.max_array_access = deref->type->length - 1;
859 }
860 }
861
862 static bool
863 do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state,
864 const char *non_lvalue_description,
865 ir_rvalue *lhs, ir_rvalue *rhs,
866 ir_rvalue **out_rvalue, bool needs_rvalue,
867 bool is_initializer,
868 YYLTYPE lhs_loc)
869 {
870 void *ctx = state;
871 bool error_emitted = (lhs->type->is_error() || rhs->type->is_error());
872
873 ir_variable *lhs_var = lhs->variable_referenced();
874 if (lhs_var)
875 lhs_var->data.assigned = true;
876
877 if (!error_emitted) {
878 if (non_lvalue_description != NULL) {
879 _mesa_glsl_error(&lhs_loc, state,
880 "assignment to %s",
881 non_lvalue_description);
882 error_emitted = true;
883 } else if (lhs_var != NULL && (lhs_var->data.read_only ||
884 (lhs_var->data.mode == ir_var_shader_storage &&
885 lhs_var->data.image_read_only))) {
886 /* We can have image_read_only set on both images and buffer variables,
887 * but in the former there is a distinction between assignments to
888 * the variable itself (read_only) and to the memory they point to
889 * (image_read_only), while in the case of buffer variables there is
890 * no such distinction, that is why this check here is limited to
891 * buffer variables alone.
892 */
893 _mesa_glsl_error(&lhs_loc, state,
894 "assignment to read-only variable '%s'",
895 lhs_var->name);
896 error_emitted = true;
897 } else if (lhs->type->is_array() &&
898 !state->check_version(120, 300, &lhs_loc,
899 "whole array assignment forbidden")) {
900 /* From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
901 *
902 * "Other binary or unary expressions, non-dereferenced
903 * arrays, function names, swizzles with repeated fields,
904 * and constants cannot be l-values."
905 *
906 * The restriction on arrays is lifted in GLSL 1.20 and GLSL ES 3.00.
907 */
908 error_emitted = true;
909 } else if (!lhs->is_lvalue()) {
910 _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment");
911 error_emitted = true;
912 }
913 }
914
915 ir_rvalue *new_rhs =
916 validate_assignment(state, lhs_loc, lhs, rhs, is_initializer);
917 if (new_rhs != NULL) {
918 rhs = new_rhs;
919
920 /* If the LHS array was not declared with a size, it takes it size from
921 * the RHS. If the LHS is an l-value and a whole array, it must be a
922 * dereference of a variable. Any other case would require that the LHS
923 * is either not an l-value or not a whole array.
924 */
925 if (lhs->type->is_unsized_array()) {
926 ir_dereference *const d = lhs->as_dereference();
927
928 assert(d != NULL);
929
930 ir_variable *const var = d->variable_referenced();
931
932 assert(var != NULL);
933
934 if (var->data.max_array_access >= unsigned(rhs->type->array_size())) {
935 /* FINISHME: This should actually log the location of the RHS. */
936 _mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to "
937 "previous access",
938 var->data.max_array_access);
939 }
940
941 var->type = glsl_type::get_array_instance(lhs->type->fields.array,
942 rhs->type->array_size());
943 d->type = var->type;
944 }
945 if (lhs->type->is_array()) {
946 mark_whole_array_access(rhs);
947 mark_whole_array_access(lhs);
948 }
949 }
950
951 /* Most callers of do_assignment (assign, add_assign, pre_inc/dec,
952 * but not post_inc) need the converted assigned value as an rvalue
953 * to handle things like:
954 *
955 * i = j += 1;
956 */
957 if (needs_rvalue) {
958 ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp",
959 ir_var_temporary);
960 instructions->push_tail(var);
961 instructions->push_tail(assign(var, rhs));
962
963 if (!error_emitted) {
964 ir_dereference_variable *deref_var = new(ctx) ir_dereference_variable(var);
965 instructions->push_tail(new(ctx) ir_assignment(lhs, deref_var));
966 }
967 ir_rvalue *rvalue = new(ctx) ir_dereference_variable(var);
968
969 *out_rvalue = rvalue;
970 } else {
971 if (!error_emitted)
972 instructions->push_tail(new(ctx) ir_assignment(lhs, rhs));
973 *out_rvalue = NULL;
974 }
975
976 return error_emitted;
977 }
978
979 static ir_rvalue *
980 get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue)
981 {
982 void *ctx = ralloc_parent(lvalue);
983 ir_variable *var;
984
985 var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp",
986 ir_var_temporary);
987 instructions->push_tail(var);
988
989 instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
990 lvalue));
991
992 return new(ctx) ir_dereference_variable(var);
993 }
994
995
996 ir_rvalue *
997 ast_node::hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
998 {
999 (void) instructions;
1000 (void) state;
1001
1002 return NULL;
1003 }
1004
1005 bool
1006 ast_node::has_sequence_subexpression() const
1007 {
1008 return false;
1009 }
1010
1011 void
1012 ast_function_expression::hir_no_rvalue(exec_list *instructions,
1013 struct _mesa_glsl_parse_state *state)
1014 {
1015 (void)hir(instructions, state);
1016 }
1017
1018 void
1019 ast_aggregate_initializer::hir_no_rvalue(exec_list *instructions,
1020 struct _mesa_glsl_parse_state *state)
1021 {
1022 (void)hir(instructions, state);
1023 }
1024
1025 static ir_rvalue *
1026 do_comparison(void *mem_ctx, int operation, ir_rvalue *op0, ir_rvalue *op1)
1027 {
1028 int join_op;
1029 ir_rvalue *cmp = NULL;
1030
1031 if (operation == ir_binop_all_equal)
1032 join_op = ir_binop_logic_and;
1033 else
1034 join_op = ir_binop_logic_or;
1035
1036 switch (op0->type->base_type) {
1037 case GLSL_TYPE_FLOAT:
1038 case GLSL_TYPE_UINT:
1039 case GLSL_TYPE_INT:
1040 case GLSL_TYPE_BOOL:
1041 case GLSL_TYPE_DOUBLE:
1042 return new(mem_ctx) ir_expression(operation, op0, op1);
1043
1044 case GLSL_TYPE_ARRAY: {
1045 for (unsigned int i = 0; i < op0->type->length; i++) {
1046 ir_rvalue *e0, *e1, *result;
1047
1048 e0 = new(mem_ctx) ir_dereference_array(op0->clone(mem_ctx, NULL),
1049 new(mem_ctx) ir_constant(i));
1050 e1 = new(mem_ctx) ir_dereference_array(op1->clone(mem_ctx, NULL),
1051 new(mem_ctx) ir_constant(i));
1052 result = do_comparison(mem_ctx, operation, e0, e1);
1053
1054 if (cmp) {
1055 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
1056 } else {
1057 cmp = result;
1058 }
1059 }
1060
1061 mark_whole_array_access(op0);
1062 mark_whole_array_access(op1);
1063 break;
1064 }
1065
1066 case GLSL_TYPE_STRUCT: {
1067 for (unsigned int i = 0; i < op0->type->length; i++) {
1068 ir_rvalue *e0, *e1, *result;
1069 const char *field_name = op0->type->fields.structure[i].name;
1070
1071 e0 = new(mem_ctx) ir_dereference_record(op0->clone(mem_ctx, NULL),
1072 field_name);
1073 e1 = new(mem_ctx) ir_dereference_record(op1->clone(mem_ctx, NULL),
1074 field_name);
1075 result = do_comparison(mem_ctx, operation, e0, e1);
1076
1077 if (cmp) {
1078 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
1079 } else {
1080 cmp = result;
1081 }
1082 }
1083 break;
1084 }
1085
1086 case GLSL_TYPE_ERROR:
1087 case GLSL_TYPE_VOID:
1088 case GLSL_TYPE_SAMPLER:
1089 case GLSL_TYPE_IMAGE:
1090 case GLSL_TYPE_INTERFACE:
1091 case GLSL_TYPE_ATOMIC_UINT:
1092 case GLSL_TYPE_SUBROUTINE:
1093 /* I assume a comparison of a struct containing a sampler just
1094 * ignores the sampler present in the type.
1095 */
1096 break;
1097 }
1098
1099 if (cmp == NULL)
1100 cmp = new(mem_ctx) ir_constant(true);
1101
1102 return cmp;
1103 }
1104
1105 /* For logical operations, we want to ensure that the operands are
1106 * scalar booleans. If it isn't, emit an error and return a constant
1107 * boolean to avoid triggering cascading error messages.
1108 */
1109 ir_rvalue *
1110 get_scalar_boolean_operand(exec_list *instructions,
1111 struct _mesa_glsl_parse_state *state,
1112 ast_expression *parent_expr,
1113 int operand,
1114 const char *operand_name,
1115 bool *error_emitted)
1116 {
1117 ast_expression *expr = parent_expr->subexpressions[operand];
1118 void *ctx = state;
1119 ir_rvalue *val = expr->hir(instructions, state);
1120
1121 if (val->type->is_boolean() && val->type->is_scalar())
1122 return val;
1123
1124 if (!*error_emitted) {
1125 YYLTYPE loc = expr->get_location();
1126 _mesa_glsl_error(&loc, state, "%s of `%s' must be scalar boolean",
1127 operand_name,
1128 parent_expr->operator_string(parent_expr->oper));
1129 *error_emitted = true;
1130 }
1131
1132 return new(ctx) ir_constant(true);
1133 }
1134
1135 /**
1136 * If name refers to a builtin array whose maximum allowed size is less than
1137 * size, report an error and return true. Otherwise return false.
1138 */
1139 void
1140 check_builtin_array_max_size(const char *name, unsigned size,
1141 YYLTYPE loc, struct _mesa_glsl_parse_state *state)
1142 {
1143 if ((strcmp("gl_TexCoord", name) == 0)
1144 && (size > state->Const.MaxTextureCoords)) {
1145 /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec:
1146 *
1147 * "The size [of gl_TexCoord] can be at most
1148 * gl_MaxTextureCoords."
1149 */
1150 _mesa_glsl_error(&loc, state, "`gl_TexCoord' array size cannot "
1151 "be larger than gl_MaxTextureCoords (%u)",
1152 state->Const.MaxTextureCoords);
1153 } else if (strcmp("gl_ClipDistance", name) == 0
1154 && size > state->Const.MaxClipPlanes) {
1155 /* From section 7.1 (Vertex Shader Special Variables) of the
1156 * GLSL 1.30 spec:
1157 *
1158 * "The gl_ClipDistance array is predeclared as unsized and
1159 * must be sized by the shader either redeclaring it with a
1160 * size or indexing it only with integral constant
1161 * expressions. ... The size can be at most
1162 * gl_MaxClipDistances."
1163 */
1164 _mesa_glsl_error(&loc, state, "`gl_ClipDistance' array size cannot "
1165 "be larger than gl_MaxClipDistances (%u)",
1166 state->Const.MaxClipPlanes);
1167 }
1168 }
1169
1170 /**
1171 * Create the constant 1, of a which is appropriate for incrementing and
1172 * decrementing values of the given GLSL type. For example, if type is vec4,
1173 * this creates a constant value of 1.0 having type float.
1174 *
1175 * If the given type is invalid for increment and decrement operators, return
1176 * a floating point 1--the error will be detected later.
1177 */
1178 static ir_rvalue *
1179 constant_one_for_inc_dec(void *ctx, const glsl_type *type)
1180 {
1181 switch (type->base_type) {
1182 case GLSL_TYPE_UINT:
1183 return new(ctx) ir_constant((unsigned) 1);
1184 case GLSL_TYPE_INT:
1185 return new(ctx) ir_constant(1);
1186 default:
1187 case GLSL_TYPE_FLOAT:
1188 return new(ctx) ir_constant(1.0f);
1189 }
1190 }
1191
1192 ir_rvalue *
1193 ast_expression::hir(exec_list *instructions,
1194 struct _mesa_glsl_parse_state *state)
1195 {
1196 return do_hir(instructions, state, true);
1197 }
1198
1199 void
1200 ast_expression::hir_no_rvalue(exec_list *instructions,
1201 struct _mesa_glsl_parse_state *state)
1202 {
1203 do_hir(instructions, state, false);
1204 }
1205
1206 ir_rvalue *
1207 ast_expression::do_hir(exec_list *instructions,
1208 struct _mesa_glsl_parse_state *state,
1209 bool needs_rvalue)
1210 {
1211 void *ctx = state;
1212 static const int operations[AST_NUM_OPERATORS] = {
1213 -1, /* ast_assign doesn't convert to ir_expression. */
1214 -1, /* ast_plus doesn't convert to ir_expression. */
1215 ir_unop_neg,
1216 ir_binop_add,
1217 ir_binop_sub,
1218 ir_binop_mul,
1219 ir_binop_div,
1220 ir_binop_mod,
1221 ir_binop_lshift,
1222 ir_binop_rshift,
1223 ir_binop_less,
1224 ir_binop_greater,
1225 ir_binop_lequal,
1226 ir_binop_gequal,
1227 ir_binop_all_equal,
1228 ir_binop_any_nequal,
1229 ir_binop_bit_and,
1230 ir_binop_bit_xor,
1231 ir_binop_bit_or,
1232 ir_unop_bit_not,
1233 ir_binop_logic_and,
1234 ir_binop_logic_xor,
1235 ir_binop_logic_or,
1236 ir_unop_logic_not,
1237
1238 /* Note: The following block of expression types actually convert
1239 * to multiple IR instructions.
1240 */
1241 ir_binop_mul, /* ast_mul_assign */
1242 ir_binop_div, /* ast_div_assign */
1243 ir_binop_mod, /* ast_mod_assign */
1244 ir_binop_add, /* ast_add_assign */
1245 ir_binop_sub, /* ast_sub_assign */
1246 ir_binop_lshift, /* ast_ls_assign */
1247 ir_binop_rshift, /* ast_rs_assign */
1248 ir_binop_bit_and, /* ast_and_assign */
1249 ir_binop_bit_xor, /* ast_xor_assign */
1250 ir_binop_bit_or, /* ast_or_assign */
1251
1252 -1, /* ast_conditional doesn't convert to ir_expression. */
1253 ir_binop_add, /* ast_pre_inc. */
1254 ir_binop_sub, /* ast_pre_dec. */
1255 ir_binop_add, /* ast_post_inc. */
1256 ir_binop_sub, /* ast_post_dec. */
1257 -1, /* ast_field_selection doesn't conv to ir_expression. */
1258 -1, /* ast_array_index doesn't convert to ir_expression. */
1259 -1, /* ast_function_call doesn't conv to ir_expression. */
1260 -1, /* ast_identifier doesn't convert to ir_expression. */
1261 -1, /* ast_int_constant doesn't convert to ir_expression. */
1262 -1, /* ast_uint_constant doesn't conv to ir_expression. */
1263 -1, /* ast_float_constant doesn't conv to ir_expression. */
1264 -1, /* ast_bool_constant doesn't conv to ir_expression. */
1265 -1, /* ast_sequence doesn't convert to ir_expression. */
1266 };
1267 ir_rvalue *result = NULL;
1268 ir_rvalue *op[3];
1269 const struct glsl_type *type; /* a temporary variable for switch cases */
1270 bool error_emitted = false;
1271 YYLTYPE loc;
1272
1273 loc = this->get_location();
1274
1275 switch (this->oper) {
1276 case ast_aggregate:
1277 assert(!"ast_aggregate: Should never get here.");
1278 break;
1279
1280 case ast_assign: {
1281 op[0] = this->subexpressions[0]->hir(instructions, state);
1282 op[1] = this->subexpressions[1]->hir(instructions, state);
1283
1284 error_emitted =
1285 do_assignment(instructions, state,
1286 this->subexpressions[0]->non_lvalue_description,
1287 op[0], op[1], &result, needs_rvalue, false,
1288 this->subexpressions[0]->get_location());
1289 break;
1290 }
1291
1292 case ast_plus:
1293 op[0] = this->subexpressions[0]->hir(instructions, state);
1294
1295 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1296
1297 error_emitted = type->is_error();
1298
1299 result = op[0];
1300 break;
1301
1302 case ast_neg:
1303 op[0] = this->subexpressions[0]->hir(instructions, state);
1304
1305 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1306
1307 error_emitted = type->is_error();
1308
1309 result = new(ctx) ir_expression(operations[this->oper], type,
1310 op[0], NULL);
1311 break;
1312
1313 case ast_add:
1314 case ast_sub:
1315 case ast_mul:
1316 case ast_div:
1317 op[0] = this->subexpressions[0]->hir(instructions, state);
1318 op[1] = this->subexpressions[1]->hir(instructions, state);
1319
1320 type = arithmetic_result_type(op[0], op[1],
1321 (this->oper == ast_mul),
1322 state, & loc);
1323 error_emitted = type->is_error();
1324
1325 result = new(ctx) ir_expression(operations[this->oper], type,
1326 op[0], op[1]);
1327 break;
1328
1329 case ast_mod:
1330 op[0] = this->subexpressions[0]->hir(instructions, state);
1331 op[1] = this->subexpressions[1]->hir(instructions, state);
1332
1333 type = modulus_result_type(op[0], op[1], state, &loc);
1334
1335 assert(operations[this->oper] == ir_binop_mod);
1336
1337 result = new(ctx) ir_expression(operations[this->oper], type,
1338 op[0], op[1]);
1339 error_emitted = type->is_error();
1340 break;
1341
1342 case ast_lshift:
1343 case ast_rshift:
1344 if (!state->check_bitwise_operations_allowed(&loc)) {
1345 error_emitted = true;
1346 }
1347
1348 op[0] = this->subexpressions[0]->hir(instructions, state);
1349 op[1] = this->subexpressions[1]->hir(instructions, state);
1350 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1351 &loc);
1352 result = new(ctx) ir_expression(operations[this->oper], type,
1353 op[0], op[1]);
1354 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1355 break;
1356
1357 case ast_less:
1358 case ast_greater:
1359 case ast_lequal:
1360 case ast_gequal:
1361 op[0] = this->subexpressions[0]->hir(instructions, state);
1362 op[1] = this->subexpressions[1]->hir(instructions, state);
1363
1364 type = relational_result_type(op[0], op[1], state, & loc);
1365
1366 /* The relational operators must either generate an error or result
1367 * in a scalar boolean. See page 57 of the GLSL 1.50 spec.
1368 */
1369 assert(type->is_error()
1370 || ((type->base_type == GLSL_TYPE_BOOL)
1371 && type->is_scalar()));
1372
1373 result = new(ctx) ir_expression(operations[this->oper], type,
1374 op[0], op[1]);
1375 error_emitted = type->is_error();
1376 break;
1377
1378 case ast_nequal:
1379 case ast_equal:
1380 op[0] = this->subexpressions[0]->hir(instructions, state);
1381 op[1] = this->subexpressions[1]->hir(instructions, state);
1382
1383 /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
1384 *
1385 * "The equality operators equal (==), and not equal (!=)
1386 * operate on all types. They result in a scalar Boolean. If
1387 * the operand types do not match, then there must be a
1388 * conversion from Section 4.1.10 "Implicit Conversions"
1389 * applied to one operand that can make them match, in which
1390 * case this conversion is done."
1391 */
1392
1393 if (op[0]->type == glsl_type::void_type || op[1]->type == glsl_type::void_type) {
1394 _mesa_glsl_error(& loc, state, "`%s': wrong operand types: "
1395 "no operation `%1$s' exists that takes a left-hand "
1396 "operand of type 'void' or a right operand of type "
1397 "'void'", (this->oper == ast_equal) ? "==" : "!=");
1398 error_emitted = true;
1399 } else if ((!apply_implicit_conversion(op[0]->type, op[1], state)
1400 && !apply_implicit_conversion(op[1]->type, op[0], state))
1401 || (op[0]->type != op[1]->type)) {
1402 _mesa_glsl_error(& loc, state, "operands of `%s' must have the same "
1403 "type", (this->oper == ast_equal) ? "==" : "!=");
1404 error_emitted = true;
1405 } else if ((op[0]->type->is_array() || op[1]->type->is_array()) &&
1406 !state->check_version(120, 300, &loc,
1407 "array comparisons forbidden")) {
1408 error_emitted = true;
1409 } else if ((op[0]->type->contains_opaque() ||
1410 op[1]->type->contains_opaque())) {
1411 _mesa_glsl_error(&loc, state, "opaque type comparisons forbidden");
1412 error_emitted = true;
1413 }
1414
1415 if (error_emitted) {
1416 result = new(ctx) ir_constant(false);
1417 } else {
1418 result = do_comparison(ctx, operations[this->oper], op[0], op[1]);
1419 assert(result->type == glsl_type::bool_type);
1420 }
1421 break;
1422
1423 case ast_bit_and:
1424 case ast_bit_xor:
1425 case ast_bit_or:
1426 op[0] = this->subexpressions[0]->hir(instructions, state);
1427 op[1] = this->subexpressions[1]->hir(instructions, state);
1428 type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
1429 state, &loc);
1430 result = new(ctx) ir_expression(operations[this->oper], type,
1431 op[0], op[1]);
1432 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1433 break;
1434
1435 case ast_bit_not:
1436 op[0] = this->subexpressions[0]->hir(instructions, state);
1437
1438 if (!state->check_bitwise_operations_allowed(&loc)) {
1439 error_emitted = true;
1440 }
1441
1442 if (!op[0]->type->is_integer()) {
1443 _mesa_glsl_error(&loc, state, "operand of `~' must be an integer");
1444 error_emitted = true;
1445 }
1446
1447 type = error_emitted ? glsl_type::error_type : op[0]->type;
1448 result = new(ctx) ir_expression(ir_unop_bit_not, type, op[0], NULL);
1449 break;
1450
1451 case ast_logic_and: {
1452 exec_list rhs_instructions;
1453 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1454 "LHS", &error_emitted);
1455 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1456 "RHS", &error_emitted);
1457
1458 if (rhs_instructions.is_empty()) {
1459 result = new(ctx) ir_expression(ir_binop_logic_and, op[0], op[1]);
1460 type = result->type;
1461 } else {
1462 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1463 "and_tmp",
1464 ir_var_temporary);
1465 instructions->push_tail(tmp);
1466
1467 ir_if *const stmt = new(ctx) ir_if(op[0]);
1468 instructions->push_tail(stmt);
1469
1470 stmt->then_instructions.append_list(&rhs_instructions);
1471 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1472 ir_assignment *const then_assign =
1473 new(ctx) ir_assignment(then_deref, op[1]);
1474 stmt->then_instructions.push_tail(then_assign);
1475
1476 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1477 ir_assignment *const else_assign =
1478 new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false));
1479 stmt->else_instructions.push_tail(else_assign);
1480
1481 result = new(ctx) ir_dereference_variable(tmp);
1482 type = tmp->type;
1483 }
1484 break;
1485 }
1486
1487 case ast_logic_or: {
1488 exec_list rhs_instructions;
1489 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1490 "LHS", &error_emitted);
1491 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1492 "RHS", &error_emitted);
1493
1494 if (rhs_instructions.is_empty()) {
1495 result = new(ctx) ir_expression(ir_binop_logic_or, op[0], op[1]);
1496 type = result->type;
1497 } else {
1498 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1499 "or_tmp",
1500 ir_var_temporary);
1501 instructions->push_tail(tmp);
1502
1503 ir_if *const stmt = new(ctx) ir_if(op[0]);
1504 instructions->push_tail(stmt);
1505
1506 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1507 ir_assignment *const then_assign =
1508 new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true));
1509 stmt->then_instructions.push_tail(then_assign);
1510
1511 stmt->else_instructions.append_list(&rhs_instructions);
1512 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1513 ir_assignment *const else_assign =
1514 new(ctx) ir_assignment(else_deref, op[1]);
1515 stmt->else_instructions.push_tail(else_assign);
1516
1517 result = new(ctx) ir_dereference_variable(tmp);
1518 type = tmp->type;
1519 }
1520 break;
1521 }
1522
1523 case ast_logic_xor:
1524 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1525 *
1526 * "The logical binary operators and (&&), or ( | | ), and
1527 * exclusive or (^^). They operate only on two Boolean
1528 * expressions and result in a Boolean expression."
1529 */
1530 op[0] = get_scalar_boolean_operand(instructions, state, this, 0, "LHS",
1531 &error_emitted);
1532 op[1] = get_scalar_boolean_operand(instructions, state, this, 1, "RHS",
1533 &error_emitted);
1534
1535 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1536 op[0], op[1]);
1537 break;
1538
1539 case ast_logic_not:
1540 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1541 "operand", &error_emitted);
1542
1543 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1544 op[0], NULL);
1545 break;
1546
1547 case ast_mul_assign:
1548 case ast_div_assign:
1549 case ast_add_assign:
1550 case ast_sub_assign: {
1551 op[0] = this->subexpressions[0]->hir(instructions, state);
1552 op[1] = this->subexpressions[1]->hir(instructions, state);
1553
1554 type = arithmetic_result_type(op[0], op[1],
1555 (this->oper == ast_mul_assign),
1556 state, & loc);
1557
1558 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1559 op[0], op[1]);
1560
1561 error_emitted =
1562 do_assignment(instructions, state,
1563 this->subexpressions[0]->non_lvalue_description,
1564 op[0]->clone(ctx, NULL), temp_rhs,
1565 &result, needs_rvalue, false,
1566 this->subexpressions[0]->get_location());
1567
1568 /* GLSL 1.10 does not allow array assignment. However, we don't have to
1569 * explicitly test for this because none of the binary expression
1570 * operators allow array operands either.
1571 */
1572
1573 break;
1574 }
1575
1576 case ast_mod_assign: {
1577 op[0] = this->subexpressions[0]->hir(instructions, state);
1578 op[1] = this->subexpressions[1]->hir(instructions, state);
1579
1580 type = modulus_result_type(op[0], op[1], state, &loc);
1581
1582 assert(operations[this->oper] == ir_binop_mod);
1583
1584 ir_rvalue *temp_rhs;
1585 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1586 op[0], op[1]);
1587
1588 error_emitted =
1589 do_assignment(instructions, state,
1590 this->subexpressions[0]->non_lvalue_description,
1591 op[0]->clone(ctx, NULL), temp_rhs,
1592 &result, needs_rvalue, false,
1593 this->subexpressions[0]->get_location());
1594 break;
1595 }
1596
1597 case ast_ls_assign:
1598 case ast_rs_assign: {
1599 op[0] = this->subexpressions[0]->hir(instructions, state);
1600 op[1] = this->subexpressions[1]->hir(instructions, state);
1601 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1602 &loc);
1603 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1604 type, op[0], op[1]);
1605 error_emitted =
1606 do_assignment(instructions, state,
1607 this->subexpressions[0]->non_lvalue_description,
1608 op[0]->clone(ctx, NULL), temp_rhs,
1609 &result, needs_rvalue, false,
1610 this->subexpressions[0]->get_location());
1611 break;
1612 }
1613
1614 case ast_and_assign:
1615 case ast_xor_assign:
1616 case ast_or_assign: {
1617 op[0] = this->subexpressions[0]->hir(instructions, state);
1618 op[1] = this->subexpressions[1]->hir(instructions, state);
1619 type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
1620 state, &loc);
1621 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1622 type, op[0], op[1]);
1623 error_emitted =
1624 do_assignment(instructions, state,
1625 this->subexpressions[0]->non_lvalue_description,
1626 op[0]->clone(ctx, NULL), temp_rhs,
1627 &result, needs_rvalue, false,
1628 this->subexpressions[0]->get_location());
1629 break;
1630 }
1631
1632 case ast_conditional: {
1633 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1634 *
1635 * "The ternary selection operator (?:). It operates on three
1636 * expressions (exp1 ? exp2 : exp3). This operator evaluates the
1637 * first expression, which must result in a scalar Boolean."
1638 */
1639 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1640 "condition", &error_emitted);
1641
1642 /* The :? operator is implemented by generating an anonymous temporary
1643 * followed by an if-statement. The last instruction in each branch of
1644 * the if-statement assigns a value to the anonymous temporary. This
1645 * temporary is the r-value of the expression.
1646 */
1647 exec_list then_instructions;
1648 exec_list else_instructions;
1649
1650 op[1] = this->subexpressions[1]->hir(&then_instructions, state);
1651 op[2] = this->subexpressions[2]->hir(&else_instructions, state);
1652
1653 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1654 *
1655 * "The second and third expressions can be any type, as
1656 * long their types match, or there is a conversion in
1657 * Section 4.1.10 "Implicit Conversions" that can be applied
1658 * to one of the expressions to make their types match. This
1659 * resulting matching type is the type of the entire
1660 * expression."
1661 */
1662 if ((!apply_implicit_conversion(op[1]->type, op[2], state)
1663 && !apply_implicit_conversion(op[2]->type, op[1], state))
1664 || (op[1]->type != op[2]->type)) {
1665 YYLTYPE loc = this->subexpressions[1]->get_location();
1666
1667 _mesa_glsl_error(& loc, state, "second and third operands of ?: "
1668 "operator must have matching types");
1669 error_emitted = true;
1670 type = glsl_type::error_type;
1671 } else {
1672 type = op[1]->type;
1673 }
1674
1675 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1676 *
1677 * "The second and third expressions must be the same type, but can
1678 * be of any type other than an array."
1679 */
1680 if (type->is_array() &&
1681 !state->check_version(120, 300, &loc,
1682 "second and third operands of ?: operator "
1683 "cannot be arrays")) {
1684 error_emitted = true;
1685 }
1686
1687 /* From section 4.1.7 of the GLSL 4.50 spec (Opaque Types):
1688 *
1689 * "Except for array indexing, structure member selection, and
1690 * parentheses, opaque variables are not allowed to be operands in
1691 * expressions; such use results in a compile-time error."
1692 */
1693 if (type->contains_opaque()) {
1694 _mesa_glsl_error(&loc, state, "opaque variables cannot be operands "
1695 "of the ?: operator");
1696 error_emitted = true;
1697 }
1698
1699 ir_constant *cond_val = op[0]->constant_expression_value();
1700
1701 if (then_instructions.is_empty()
1702 && else_instructions.is_empty()
1703 && cond_val != NULL) {
1704 result = cond_val->value.b[0] ? op[1] : op[2];
1705 } else {
1706 /* The copy to conditional_tmp reads the whole array. */
1707 if (type->is_array()) {
1708 mark_whole_array_access(op[1]);
1709 mark_whole_array_access(op[2]);
1710 }
1711
1712 ir_variable *const tmp =
1713 new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary);
1714 instructions->push_tail(tmp);
1715
1716 ir_if *const stmt = new(ctx) ir_if(op[0]);
1717 instructions->push_tail(stmt);
1718
1719 then_instructions.move_nodes_to(& stmt->then_instructions);
1720 ir_dereference *const then_deref =
1721 new(ctx) ir_dereference_variable(tmp);
1722 ir_assignment *const then_assign =
1723 new(ctx) ir_assignment(then_deref, op[1]);
1724 stmt->then_instructions.push_tail(then_assign);
1725
1726 else_instructions.move_nodes_to(& stmt->else_instructions);
1727 ir_dereference *const else_deref =
1728 new(ctx) ir_dereference_variable(tmp);
1729 ir_assignment *const else_assign =
1730 new(ctx) ir_assignment(else_deref, op[2]);
1731 stmt->else_instructions.push_tail(else_assign);
1732
1733 result = new(ctx) ir_dereference_variable(tmp);
1734 }
1735 break;
1736 }
1737
1738 case ast_pre_inc:
1739 case ast_pre_dec: {
1740 this->non_lvalue_description = (this->oper == ast_pre_inc)
1741 ? "pre-increment operation" : "pre-decrement operation";
1742
1743 op[0] = this->subexpressions[0]->hir(instructions, state);
1744 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1745
1746 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1747
1748 ir_rvalue *temp_rhs;
1749 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1750 op[0], op[1]);
1751
1752 error_emitted =
1753 do_assignment(instructions, state,
1754 this->subexpressions[0]->non_lvalue_description,
1755 op[0]->clone(ctx, NULL), temp_rhs,
1756 &result, needs_rvalue, false,
1757 this->subexpressions[0]->get_location());
1758 break;
1759 }
1760
1761 case ast_post_inc:
1762 case ast_post_dec: {
1763 this->non_lvalue_description = (this->oper == ast_post_inc)
1764 ? "post-increment operation" : "post-decrement operation";
1765 op[0] = this->subexpressions[0]->hir(instructions, state);
1766 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1767
1768 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1769
1770 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1771
1772 ir_rvalue *temp_rhs;
1773 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1774 op[0], op[1]);
1775
1776 /* Get a temporary of a copy of the lvalue before it's modified.
1777 * This may get thrown away later.
1778 */
1779 result = get_lvalue_copy(instructions, op[0]->clone(ctx, NULL));
1780
1781 ir_rvalue *junk_rvalue;
1782 error_emitted =
1783 do_assignment(instructions, state,
1784 this->subexpressions[0]->non_lvalue_description,
1785 op[0]->clone(ctx, NULL), temp_rhs,
1786 &junk_rvalue, false, false,
1787 this->subexpressions[0]->get_location());
1788
1789 break;
1790 }
1791
1792 case ast_field_selection:
1793 result = _mesa_ast_field_selection_to_hir(this, instructions, state);
1794 break;
1795
1796 case ast_array_index: {
1797 YYLTYPE index_loc = subexpressions[1]->get_location();
1798
1799 op[0] = subexpressions[0]->hir(instructions, state);
1800 op[1] = subexpressions[1]->hir(instructions, state);
1801
1802 result = _mesa_ast_array_index_to_hir(ctx, state, op[0], op[1],
1803 loc, index_loc);
1804
1805 if (result->type->is_error())
1806 error_emitted = true;
1807
1808 break;
1809 }
1810
1811 case ast_unsized_array_dim:
1812 assert(!"ast_unsized_array_dim: Should never get here.");
1813 break;
1814
1815 case ast_function_call:
1816 /* Should *NEVER* get here. ast_function_call should always be handled
1817 * by ast_function_expression::hir.
1818 */
1819 assert(0);
1820 break;
1821
1822 case ast_identifier: {
1823 /* ast_identifier can appear several places in a full abstract syntax
1824 * tree. This particular use must be at location specified in the grammar
1825 * as 'variable_identifier'.
1826 */
1827 ir_variable *var =
1828 state->symbols->get_variable(this->primary_expression.identifier);
1829
1830 if (var != NULL) {
1831 var->data.used = true;
1832 result = new(ctx) ir_dereference_variable(var);
1833 } else {
1834 _mesa_glsl_error(& loc, state, "`%s' undeclared",
1835 this->primary_expression.identifier);
1836
1837 result = ir_rvalue::error_value(ctx);
1838 error_emitted = true;
1839 }
1840 break;
1841 }
1842
1843 case ast_int_constant:
1844 result = new(ctx) ir_constant(this->primary_expression.int_constant);
1845 break;
1846
1847 case ast_uint_constant:
1848 result = new(ctx) ir_constant(this->primary_expression.uint_constant);
1849 break;
1850
1851 case ast_float_constant:
1852 result = new(ctx) ir_constant(this->primary_expression.float_constant);
1853 break;
1854
1855 case ast_bool_constant:
1856 result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant));
1857 break;
1858
1859 case ast_double_constant:
1860 result = new(ctx) ir_constant(this->primary_expression.double_constant);
1861 break;
1862
1863 case ast_sequence: {
1864 /* It should not be possible to generate a sequence in the AST without
1865 * any expressions in it.
1866 */
1867 assert(!this->expressions.is_empty());
1868
1869 /* The r-value of a sequence is the last expression in the sequence. If
1870 * the other expressions in the sequence do not have side-effects (and
1871 * therefore add instructions to the instruction list), they get dropped
1872 * on the floor.
1873 */
1874 exec_node *previous_tail_pred = NULL;
1875 YYLTYPE previous_operand_loc = loc;
1876
1877 foreach_list_typed (ast_node, ast, link, &this->expressions) {
1878 /* If one of the operands of comma operator does not generate any
1879 * code, we want to emit a warning. At each pass through the loop
1880 * previous_tail_pred will point to the last instruction in the
1881 * stream *before* processing the previous operand. Naturally,
1882 * instructions->tail_pred will point to the last instruction in the
1883 * stream *after* processing the previous operand. If the two
1884 * pointers match, then the previous operand had no effect.
1885 *
1886 * The warning behavior here differs slightly from GCC. GCC will
1887 * only emit a warning if none of the left-hand operands have an
1888 * effect. However, it will emit a warning for each. I believe that
1889 * there are some cases in C (especially with GCC extensions) where
1890 * it is useful to have an intermediate step in a sequence have no
1891 * effect, but I don't think these cases exist in GLSL. Either way,
1892 * it would be a giant hassle to replicate that behavior.
1893 */
1894 if (previous_tail_pred == instructions->tail_pred) {
1895 _mesa_glsl_warning(&previous_operand_loc, state,
1896 "left-hand operand of comma expression has "
1897 "no effect");
1898 }
1899
1900 /* tail_pred is directly accessed instead of using the get_tail()
1901 * method for performance reasons. get_tail() has extra code to
1902 * return NULL when the list is empty. We don't care about that
1903 * here, so using tail_pred directly is fine.
1904 */
1905 previous_tail_pred = instructions->tail_pred;
1906 previous_operand_loc = ast->get_location();
1907
1908 result = ast->hir(instructions, state);
1909 }
1910
1911 /* Any errors should have already been emitted in the loop above.
1912 */
1913 error_emitted = true;
1914 break;
1915 }
1916 }
1917 type = NULL; /* use result->type, not type. */
1918 assert(result != NULL || !needs_rvalue);
1919
1920 if (result && result->type->is_error() && !error_emitted)
1921 _mesa_glsl_error(& loc, state, "type mismatch");
1922
1923 return result;
1924 }
1925
1926 bool
1927 ast_expression::has_sequence_subexpression() const
1928 {
1929 switch (this->oper) {
1930 case ast_plus:
1931 case ast_neg:
1932 case ast_bit_not:
1933 case ast_logic_not:
1934 case ast_pre_inc:
1935 case ast_pre_dec:
1936 case ast_post_inc:
1937 case ast_post_dec:
1938 return this->subexpressions[0]->has_sequence_subexpression();
1939
1940 case ast_assign:
1941 case ast_add:
1942 case ast_sub:
1943 case ast_mul:
1944 case ast_div:
1945 case ast_mod:
1946 case ast_lshift:
1947 case ast_rshift:
1948 case ast_less:
1949 case ast_greater:
1950 case ast_lequal:
1951 case ast_gequal:
1952 case ast_nequal:
1953 case ast_equal:
1954 case ast_bit_and:
1955 case ast_bit_xor:
1956 case ast_bit_or:
1957 case ast_logic_and:
1958 case ast_logic_or:
1959 case ast_logic_xor:
1960 case ast_array_index:
1961 case ast_mul_assign:
1962 case ast_div_assign:
1963 case ast_add_assign:
1964 case ast_sub_assign:
1965 case ast_mod_assign:
1966 case ast_ls_assign:
1967 case ast_rs_assign:
1968 case ast_and_assign:
1969 case ast_xor_assign:
1970 case ast_or_assign:
1971 return this->subexpressions[0]->has_sequence_subexpression() ||
1972 this->subexpressions[1]->has_sequence_subexpression();
1973
1974 case ast_conditional:
1975 return this->subexpressions[0]->has_sequence_subexpression() ||
1976 this->subexpressions[1]->has_sequence_subexpression() ||
1977 this->subexpressions[2]->has_sequence_subexpression();
1978
1979 case ast_sequence:
1980 return true;
1981
1982 case ast_field_selection:
1983 case ast_identifier:
1984 case ast_int_constant:
1985 case ast_uint_constant:
1986 case ast_float_constant:
1987 case ast_bool_constant:
1988 case ast_double_constant:
1989 return false;
1990
1991 case ast_aggregate:
1992 unreachable("ast_aggregate: Should never get here.");
1993
1994 case ast_function_call:
1995 unreachable("should be handled by ast_function_expression::hir");
1996
1997 case ast_unsized_array_dim:
1998 unreachable("ast_unsized_array_dim: Should never get here.");
1999 }
2000
2001 return false;
2002 }
2003
2004 ir_rvalue *
2005 ast_expression_statement::hir(exec_list *instructions,
2006 struct _mesa_glsl_parse_state *state)
2007 {
2008 /* It is possible to have expression statements that don't have an
2009 * expression. This is the solitary semicolon:
2010 *
2011 * for (i = 0; i < 5; i++)
2012 * ;
2013 *
2014 * In this case the expression will be NULL. Test for NULL and don't do
2015 * anything in that case.
2016 */
2017 if (expression != NULL)
2018 expression->hir_no_rvalue(instructions, state);
2019
2020 /* Statements do not have r-values.
2021 */
2022 return NULL;
2023 }
2024
2025
2026 ir_rvalue *
2027 ast_compound_statement::hir(exec_list *instructions,
2028 struct _mesa_glsl_parse_state *state)
2029 {
2030 if (new_scope)
2031 state->symbols->push_scope();
2032
2033 foreach_list_typed (ast_node, ast, link, &this->statements)
2034 ast->hir(instructions, state);
2035
2036 if (new_scope)
2037 state->symbols->pop_scope();
2038
2039 /* Compound statements do not have r-values.
2040 */
2041 return NULL;
2042 }
2043
2044 /**
2045 * Evaluate the given exec_node (which should be an ast_node representing
2046 * a single array dimension) and return its integer value.
2047 */
2048 static unsigned
2049 process_array_size(exec_node *node,
2050 struct _mesa_glsl_parse_state *state)
2051 {
2052 exec_list dummy_instructions;
2053
2054 ast_node *array_size = exec_node_data(ast_node, node, link);
2055
2056 /**
2057 * Dimensions other than the outermost dimension can by unsized if they
2058 * are immediately sized by a constructor or initializer.
2059 */
2060 if (((ast_expression*)array_size)->oper == ast_unsized_array_dim)
2061 return 0;
2062
2063 ir_rvalue *const ir = array_size->hir(& dummy_instructions, state);
2064 YYLTYPE loc = array_size->get_location();
2065
2066 if (ir == NULL) {
2067 _mesa_glsl_error(& loc, state,
2068 "array size could not be resolved");
2069 return 0;
2070 }
2071
2072 if (!ir->type->is_integer()) {
2073 _mesa_glsl_error(& loc, state,
2074 "array size must be integer type");
2075 return 0;
2076 }
2077
2078 if (!ir->type->is_scalar()) {
2079 _mesa_glsl_error(& loc, state,
2080 "array size must be scalar type");
2081 return 0;
2082 }
2083
2084 ir_constant *const size = ir->constant_expression_value();
2085 if (size == NULL || array_size->has_sequence_subexpression()) {
2086 _mesa_glsl_error(& loc, state, "array size must be a "
2087 "constant valued expression");
2088 return 0;
2089 }
2090
2091 if (size->value.i[0] <= 0) {
2092 _mesa_glsl_error(& loc, state, "array size must be > 0");
2093 return 0;
2094 }
2095
2096 assert(size->type == ir->type);
2097
2098 /* If the array size is const (and we've verified that
2099 * it is) then no instructions should have been emitted
2100 * when we converted it to HIR. If they were emitted,
2101 * then either the array size isn't const after all, or
2102 * we are emitting unnecessary instructions.
2103 */
2104 assert(dummy_instructions.is_empty());
2105
2106 return size->value.u[0];
2107 }
2108
2109 static const glsl_type *
2110 process_array_type(YYLTYPE *loc, const glsl_type *base,
2111 ast_array_specifier *array_specifier,
2112 struct _mesa_glsl_parse_state *state)
2113 {
2114 const glsl_type *array_type = base;
2115
2116 if (array_specifier != NULL) {
2117 if (base->is_array()) {
2118
2119 /* From page 19 (page 25) of the GLSL 1.20 spec:
2120 *
2121 * "Only one-dimensional arrays may be declared."
2122 */
2123 if (!state->check_arrays_of_arrays_allowed(loc)) {
2124 return glsl_type::error_type;
2125 }
2126 }
2127
2128 for (exec_node *node = array_specifier->array_dimensions.tail_pred;
2129 !node->is_head_sentinel(); node = node->prev) {
2130 unsigned array_size = process_array_size(node, state);
2131 array_type = glsl_type::get_array_instance(array_type, array_size);
2132 }
2133 }
2134
2135 return array_type;
2136 }
2137
2138 static bool
2139 precision_qualifier_allowed(const glsl_type *type)
2140 {
2141 /* Precision qualifiers apply to floating point, integer and opaque
2142 * types.
2143 *
2144 * Section 4.5.2 (Precision Qualifiers) of the GLSL 1.30 spec says:
2145 * "Any floating point or any integer declaration can have the type
2146 * preceded by one of these precision qualifiers [...] Literal
2147 * constants do not have precision qualifiers. Neither do Boolean
2148 * variables.
2149 *
2150 * Section 4.5 (Precision and Precision Qualifiers) of the GLSL 1.30
2151 * spec also says:
2152 *
2153 * "Precision qualifiers are added for code portability with OpenGL
2154 * ES, not for functionality. They have the same syntax as in OpenGL
2155 * ES."
2156 *
2157 * Section 8 (Built-In Functions) of the GLSL ES 1.00 spec says:
2158 *
2159 * "uniform lowp sampler2D sampler;
2160 * highp vec2 coord;
2161 * ...
2162 * lowp vec4 col = texture2D (sampler, coord);
2163 * // texture2D returns lowp"
2164 *
2165 * From this, we infer that GLSL 1.30 (and later) should allow precision
2166 * qualifiers on sampler types just like float and integer types.
2167 */
2168 return (type->is_float()
2169 || type->is_integer()
2170 || type->contains_opaque())
2171 && !type->without_array()->is_record();
2172 }
2173
2174 const glsl_type *
2175 ast_type_specifier::glsl_type(const char **name,
2176 struct _mesa_glsl_parse_state *state) const
2177 {
2178 const struct glsl_type *type;
2179
2180 type = state->symbols->get_type(this->type_name);
2181 *name = this->type_name;
2182
2183 YYLTYPE loc = this->get_location();
2184 type = process_array_type(&loc, type, this->array_specifier, state);
2185
2186 return type;
2187 }
2188
2189 /**
2190 * From the OpenGL ES 3.0 spec, 4.5.4 Default Precision Qualifiers:
2191 *
2192 * "The precision statement
2193 *
2194 * precision precision-qualifier type;
2195 *
2196 * can be used to establish a default precision qualifier. The type field can
2197 * be either int or float or any of the sampler types, (...) If type is float,
2198 * the directive applies to non-precision-qualified floating point type
2199 * (scalar, vector, and matrix) declarations. If type is int, the directive
2200 * applies to all non-precision-qualified integer type (scalar, vector, signed,
2201 * and unsigned) declarations."
2202 *
2203 * We use the symbol table to keep the values of the default precisions for
2204 * each 'type' in each scope and we use the 'type' string from the precision
2205 * statement as key in the symbol table. When we want to retrieve the default
2206 * precision associated with a given glsl_type we need to know the type string
2207 * associated with it. This is what this function returns.
2208 */
2209 static const char *
2210 get_type_name_for_precision_qualifier(const glsl_type *type)
2211 {
2212 switch (type->base_type) {
2213 case GLSL_TYPE_FLOAT:
2214 return "float";
2215 case GLSL_TYPE_UINT:
2216 case GLSL_TYPE_INT:
2217 return "int";
2218 case GLSL_TYPE_ATOMIC_UINT:
2219 return "atomic_uint";
2220 case GLSL_TYPE_IMAGE:
2221 /* fallthrough */
2222 case GLSL_TYPE_SAMPLER: {
2223 const unsigned type_idx =
2224 type->sampler_array + 2 * type->sampler_shadow;
2225 const unsigned offset = type->base_type == GLSL_TYPE_SAMPLER ? 0 : 4;
2226 assert(type_idx < 4);
2227 switch (type->sampler_type) {
2228 case GLSL_TYPE_FLOAT:
2229 switch (type->sampler_dimensionality) {
2230 case GLSL_SAMPLER_DIM_1D: {
2231 assert(type->base_type == GLSL_TYPE_SAMPLER);
2232 static const char *const names[4] = {
2233 "sampler1D", "sampler1DArray",
2234 "sampler1DShadow", "sampler1DArrayShadow"
2235 };
2236 return names[type_idx];
2237 }
2238 case GLSL_SAMPLER_DIM_2D: {
2239 static const char *const names[8] = {
2240 "sampler2D", "sampler2DArray",
2241 "sampler2DShadow", "sampler2DArrayShadow",
2242 "image2D", "image2DArray", NULL, NULL
2243 };
2244 return names[offset + type_idx];
2245 }
2246 case GLSL_SAMPLER_DIM_3D: {
2247 static const char *const names[8] = {
2248 "sampler3D", NULL, NULL, NULL,
2249 "image3D", NULL, NULL, NULL
2250 };
2251 return names[offset + type_idx];
2252 }
2253 case GLSL_SAMPLER_DIM_CUBE: {
2254 static const char *const names[8] = {
2255 "samplerCube", "samplerCubeArray",
2256 "samplerCubeShadow", "samplerCubeArrayShadow",
2257 "imageCube", NULL, NULL, NULL
2258 };
2259 return names[offset + type_idx];
2260 }
2261 case GLSL_SAMPLER_DIM_MS: {
2262 assert(type->base_type == GLSL_TYPE_SAMPLER);
2263 static const char *const names[4] = {
2264 "sampler2DMS", "sampler2DMSArray", NULL, NULL
2265 };
2266 return names[type_idx];
2267 }
2268 case GLSL_SAMPLER_DIM_RECT: {
2269 assert(type->base_type == GLSL_TYPE_SAMPLER);
2270 static const char *const names[4] = {
2271 "samplerRect", NULL, "samplerRectShadow", NULL
2272 };
2273 return names[type_idx];
2274 }
2275 case GLSL_SAMPLER_DIM_BUF: {
2276 assert(type->base_type == GLSL_TYPE_SAMPLER);
2277 static const char *const names[4] = {
2278 "samplerBuffer", NULL, NULL, NULL
2279 };
2280 return names[type_idx];
2281 }
2282 case GLSL_SAMPLER_DIM_EXTERNAL: {
2283 assert(type->base_type == GLSL_TYPE_SAMPLER);
2284 static const char *const names[4] = {
2285 "samplerExternalOES", NULL, NULL, NULL
2286 };
2287 return names[type_idx];
2288 }
2289 default:
2290 unreachable("Unsupported sampler/image dimensionality");
2291 } /* sampler/image float dimensionality */
2292 break;
2293 case GLSL_TYPE_INT:
2294 switch (type->sampler_dimensionality) {
2295 case GLSL_SAMPLER_DIM_1D: {
2296 assert(type->base_type == GLSL_TYPE_SAMPLER);
2297 static const char *const names[4] = {
2298 "isampler1D", "isampler1DArray", NULL, NULL
2299 };
2300 return names[type_idx];
2301 }
2302 case GLSL_SAMPLER_DIM_2D: {
2303 static const char *const names[8] = {
2304 "isampler2D", "isampler2DArray", NULL, NULL,
2305 "iimage2D", "iimage2DArray", NULL, NULL
2306 };
2307 return names[offset + type_idx];
2308 }
2309 case GLSL_SAMPLER_DIM_3D: {
2310 static const char *const names[8] = {
2311 "isampler3D", NULL, NULL, NULL,
2312 "iimage3D", NULL, NULL, NULL
2313 };
2314 return names[offset + type_idx];
2315 }
2316 case GLSL_SAMPLER_DIM_CUBE: {
2317 static const char *const names[8] = {
2318 "isamplerCube", "isamplerCubeArray", NULL, NULL,
2319 "iimageCube", NULL, NULL, NULL
2320 };
2321 return names[offset + type_idx];
2322 }
2323 case GLSL_SAMPLER_DIM_MS: {
2324 assert(type->base_type == GLSL_TYPE_SAMPLER);
2325 static const char *const names[4] = {
2326 "isampler2DMS", "isampler2DMSArray", NULL, NULL
2327 };
2328 return names[type_idx];
2329 }
2330 case GLSL_SAMPLER_DIM_RECT: {
2331 assert(type->base_type == GLSL_TYPE_SAMPLER);
2332 static const char *const names[4] = {
2333 "isamplerRect", NULL, "isamplerRectShadow", NULL
2334 };
2335 return names[type_idx];
2336 }
2337 case GLSL_SAMPLER_DIM_BUF: {
2338 assert(type->base_type == GLSL_TYPE_SAMPLER);
2339 static const char *const names[4] = {
2340 "isamplerBuffer", NULL, NULL, NULL
2341 };
2342 return names[type_idx];
2343 }
2344 default:
2345 unreachable("Unsupported isampler/iimage dimensionality");
2346 } /* sampler/image int dimensionality */
2347 break;
2348 case GLSL_TYPE_UINT:
2349 switch (type->sampler_dimensionality) {
2350 case GLSL_SAMPLER_DIM_1D: {
2351 assert(type->base_type == GLSL_TYPE_SAMPLER);
2352 static const char *const names[4] = {
2353 "usampler1D", "usampler1DArray", NULL, NULL
2354 };
2355 return names[type_idx];
2356 }
2357 case GLSL_SAMPLER_DIM_2D: {
2358 static const char *const names[8] = {
2359 "usampler2D", "usampler2DArray", NULL, NULL,
2360 "uimage2D", "uimage2DArray", NULL, NULL
2361 };
2362 return names[offset + type_idx];
2363 }
2364 case GLSL_SAMPLER_DIM_3D: {
2365 static const char *const names[8] = {
2366 "usampler3D", NULL, NULL, NULL,
2367 "uimage3D", NULL, NULL, NULL
2368 };
2369 return names[offset + type_idx];
2370 }
2371 case GLSL_SAMPLER_DIM_CUBE: {
2372 static const char *const names[8] = {
2373 "usamplerCube", "usamplerCubeArray", NULL, NULL,
2374 "uimageCube", NULL, NULL, NULL
2375 };
2376 return names[offset + type_idx];
2377 }
2378 case GLSL_SAMPLER_DIM_MS: {
2379 assert(type->base_type == GLSL_TYPE_SAMPLER);
2380 static const char *const names[4] = {
2381 "usampler2DMS", "usampler2DMSArray", NULL, NULL
2382 };
2383 return names[type_idx];
2384 }
2385 case GLSL_SAMPLER_DIM_RECT: {
2386 assert(type->base_type == GLSL_TYPE_SAMPLER);
2387 static const char *const names[4] = {
2388 "usamplerRect", NULL, "usamplerRectShadow", NULL
2389 };
2390 return names[type_idx];
2391 }
2392 case GLSL_SAMPLER_DIM_BUF: {
2393 assert(type->base_type == GLSL_TYPE_SAMPLER);
2394 static const char *const names[4] = {
2395 "usamplerBuffer", NULL, NULL, NULL
2396 };
2397 return names[type_idx];
2398 }
2399 default:
2400 unreachable("Unsupported usampler/uimage dimensionality");
2401 } /* sampler/image uint dimensionality */
2402 break;
2403 default:
2404 unreachable("Unsupported sampler/image type");
2405 } /* sampler/image type */
2406 break;
2407 } /* GLSL_TYPE_SAMPLER/GLSL_TYPE_IMAGE */
2408 break;
2409 default:
2410 unreachable("Unsupported type");
2411 } /* base type */
2412 }
2413
2414 static unsigned
2415 select_gles_precision(unsigned qual_precision,
2416 const glsl_type *type,
2417 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
2418 {
2419 /* Precision qualifiers do not have any meaning in Desktop GLSL.
2420 * In GLES we take the precision from the type qualifier if present,
2421 * otherwise, if the type of the variable allows precision qualifiers at
2422 * all, we look for the default precision qualifier for that type in the
2423 * current scope.
2424 */
2425 assert(state->es_shader);
2426
2427 unsigned precision = GLSL_PRECISION_NONE;
2428 if (qual_precision) {
2429 precision = qual_precision;
2430 } else if (precision_qualifier_allowed(type)) {
2431 const char *type_name =
2432 get_type_name_for_precision_qualifier(type->without_array());
2433 assert(type_name != NULL);
2434
2435 precision =
2436 state->symbols->get_default_precision_qualifier(type_name);
2437 if (precision == ast_precision_none) {
2438 _mesa_glsl_error(loc, state,
2439 "No precision specified in this scope for type `%s'",
2440 type->name);
2441 }
2442 }
2443 return precision;
2444 }
2445
2446 const glsl_type *
2447 ast_fully_specified_type::glsl_type(const char **name,
2448 struct _mesa_glsl_parse_state *state) const
2449 {
2450 return this->specifier->glsl_type(name, state);
2451 }
2452
2453 /**
2454 * Determine whether a toplevel variable declaration declares a varying. This
2455 * function operates by examining the variable's mode and the shader target,
2456 * so it correctly identifies linkage variables regardless of whether they are
2457 * declared using the deprecated "varying" syntax or the new "in/out" syntax.
2458 *
2459 * Passing a non-toplevel variable declaration (e.g. a function parameter) to
2460 * this function will produce undefined results.
2461 */
2462 static bool
2463 is_varying_var(ir_variable *var, gl_shader_stage target)
2464 {
2465 switch (target) {
2466 case MESA_SHADER_VERTEX:
2467 return var->data.mode == ir_var_shader_out;
2468 case MESA_SHADER_FRAGMENT:
2469 return var->data.mode == ir_var_shader_in;
2470 default:
2471 return var->data.mode == ir_var_shader_out || var->data.mode == ir_var_shader_in;
2472 }
2473 }
2474
2475
2476 /**
2477 * Matrix layout qualifiers are only allowed on certain types
2478 */
2479 static void
2480 validate_matrix_layout_for_type(struct _mesa_glsl_parse_state *state,
2481 YYLTYPE *loc,
2482 const glsl_type *type,
2483 ir_variable *var)
2484 {
2485 if (var && !var->is_in_buffer_block()) {
2486 /* Layout qualifiers may only apply to interface blocks and fields in
2487 * them.
2488 */
2489 _mesa_glsl_error(loc, state,
2490 "uniform block layout qualifiers row_major and "
2491 "column_major may not be applied to variables "
2492 "outside of uniform blocks");
2493 } else if (!type->without_array()->is_matrix()) {
2494 /* The OpenGL ES 3.0 conformance tests did not originally allow
2495 * matrix layout qualifiers on non-matrices. However, the OpenGL
2496 * 4.4 and OpenGL ES 3.0 (revision TBD) specifications were
2497 * amended to specifically allow these layouts on all types. Emit
2498 * a warning so that people know their code may not be portable.
2499 */
2500 _mesa_glsl_warning(loc, state,
2501 "uniform block layout qualifiers row_major and "
2502 "column_major applied to non-matrix types may "
2503 "be rejected by older compilers");
2504 }
2505 }
2506
2507 static bool
2508 process_qualifier_constant(struct _mesa_glsl_parse_state *state,
2509 YYLTYPE *loc,
2510 const char *qual_indentifier,
2511 int qual_value,
2512 unsigned *value)
2513 {
2514 if (qual_value < 0) {
2515 _mesa_glsl_error(loc, state, "%s layout qualifier is invalid (%d < 0)",
2516 qual_indentifier, qual_value);
2517 return false;
2518 }
2519
2520 *value = (unsigned) qual_value;
2521 return true;
2522 }
2523
2524 static bool
2525 validate_binding_qualifier(struct _mesa_glsl_parse_state *state,
2526 YYLTYPE *loc,
2527 const glsl_type *type,
2528 const ast_type_qualifier *qual)
2529 {
2530 if (!qual->flags.q.uniform && !qual->flags.q.buffer) {
2531 _mesa_glsl_error(loc, state,
2532 "the \"binding\" qualifier only applies to uniforms and "
2533 "shader storage buffer objects");
2534 return false;
2535 }
2536
2537 if (qual->binding < 0) {
2538 _mesa_glsl_error(loc, state, "binding values must be >= 0");
2539 return false;
2540 }
2541
2542 const struct gl_context *const ctx = state->ctx;
2543 unsigned elements = type->is_array() ? type->arrays_of_arrays_size() : 1;
2544 unsigned max_index = qual->binding + elements - 1;
2545 const glsl_type *base_type = type->without_array();
2546
2547 if (base_type->is_interface()) {
2548 /* UBOs. From page 60 of the GLSL 4.20 specification:
2549 * "If the binding point for any uniform block instance is less than zero,
2550 * or greater than or equal to the implementation-dependent maximum
2551 * number of uniform buffer bindings, a compilation error will occur.
2552 * When the binding identifier is used with a uniform block instanced as
2553 * an array of size N, all elements of the array from binding through
2554 * binding + N – 1 must be within this range."
2555 *
2556 * The implementation-dependent maximum is GL_MAX_UNIFORM_BUFFER_BINDINGS.
2557 */
2558 if (qual->flags.q.uniform &&
2559 max_index >= ctx->Const.MaxUniformBufferBindings) {
2560 _mesa_glsl_error(loc, state, "layout(binding = %d) for %d UBOs exceeds "
2561 "the maximum number of UBO binding points (%d)",
2562 qual->binding, elements,
2563 ctx->Const.MaxUniformBufferBindings);
2564 return false;
2565 }
2566
2567 /* SSBOs. From page 67 of the GLSL 4.30 specification:
2568 * "If the binding point for any uniform or shader storage block instance
2569 * is less than zero, or greater than or equal to the
2570 * implementation-dependent maximum number of uniform buffer bindings, a
2571 * compile-time error will occur. When the binding identifier is used
2572 * with a uniform or shader storage block instanced as an array of size
2573 * N, all elements of the array from binding through binding + N – 1 must
2574 * be within this range."
2575 */
2576 if (qual->flags.q.buffer &&
2577 max_index >= ctx->Const.MaxShaderStorageBufferBindings) {
2578 _mesa_glsl_error(loc, state, "layout(binding = %d) for %d SSBOs exceeds "
2579 "the maximum number of SSBO binding points (%d)",
2580 qual->binding, elements,
2581 ctx->Const.MaxShaderStorageBufferBindings);
2582 return false;
2583 }
2584 } else if (base_type->is_sampler()) {
2585 /* Samplers. From page 63 of the GLSL 4.20 specification:
2586 * "If the binding is less than zero, or greater than or equal to the
2587 * implementation-dependent maximum supported number of units, a
2588 * compilation error will occur. When the binding identifier is used
2589 * with an array of size N, all elements of the array from binding
2590 * through binding + N - 1 must be within this range."
2591 */
2592 unsigned limit = ctx->Const.MaxCombinedTextureImageUnits;
2593
2594 if (max_index >= limit) {
2595 _mesa_glsl_error(loc, state, "layout(binding = %d) for %d samplers "
2596 "exceeds the maximum number of texture image units "
2597 "(%d)", qual->binding, elements, limit);
2598
2599 return false;
2600 }
2601 } else if (base_type->contains_atomic()) {
2602 assert(ctx->Const.MaxAtomicBufferBindings <= MAX_COMBINED_ATOMIC_BUFFERS);
2603 if (unsigned(qual->binding) >= ctx->Const.MaxAtomicBufferBindings) {
2604 _mesa_glsl_error(loc, state, "layout(binding = %d) exceeds the "
2605 " maximum number of atomic counter buffer bindings"
2606 "(%d)", qual->binding,
2607 ctx->Const.MaxAtomicBufferBindings);
2608
2609 return false;
2610 }
2611 } else if (state->is_version(420, 310) && base_type->is_image()) {
2612 assert(ctx->Const.MaxImageUnits <= MAX_IMAGE_UNITS);
2613 if (max_index >= ctx->Const.MaxImageUnits) {
2614 _mesa_glsl_error(loc, state, "Image binding %d exceeds the "
2615 " maximum number of image units (%d)", max_index,
2616 ctx->Const.MaxImageUnits);
2617 return false;
2618 }
2619
2620 } else {
2621 _mesa_glsl_error(loc, state,
2622 "the \"binding\" qualifier only applies to uniform "
2623 "blocks, opaque variables, or arrays thereof");
2624 return false;
2625 }
2626
2627 return true;
2628 }
2629
2630
2631 static glsl_interp_qualifier
2632 interpret_interpolation_qualifier(const struct ast_type_qualifier *qual,
2633 ir_variable_mode mode,
2634 struct _mesa_glsl_parse_state *state,
2635 YYLTYPE *loc)
2636 {
2637 glsl_interp_qualifier interpolation;
2638 if (qual->flags.q.flat)
2639 interpolation = INTERP_QUALIFIER_FLAT;
2640 else if (qual->flags.q.noperspective)
2641 interpolation = INTERP_QUALIFIER_NOPERSPECTIVE;
2642 else if (qual->flags.q.smooth)
2643 interpolation = INTERP_QUALIFIER_SMOOTH;
2644 else
2645 interpolation = INTERP_QUALIFIER_NONE;
2646
2647 if (interpolation != INTERP_QUALIFIER_NONE) {
2648 if (mode != ir_var_shader_in && mode != ir_var_shader_out) {
2649 _mesa_glsl_error(loc, state,
2650 "interpolation qualifier `%s' can only be applied to "
2651 "shader inputs or outputs.",
2652 interpolation_string(interpolation));
2653
2654 }
2655
2656 if ((state->stage == MESA_SHADER_VERTEX && mode == ir_var_shader_in) ||
2657 (state->stage == MESA_SHADER_FRAGMENT && mode == ir_var_shader_out)) {
2658 _mesa_glsl_error(loc, state,
2659 "interpolation qualifier `%s' cannot be applied to "
2660 "vertex shader inputs or fragment shader outputs",
2661 interpolation_string(interpolation));
2662 }
2663 }
2664
2665 return interpolation;
2666 }
2667
2668
2669 static void
2670 apply_explicit_location(const struct ast_type_qualifier *qual,
2671 ir_variable *var,
2672 struct _mesa_glsl_parse_state *state,
2673 YYLTYPE *loc)
2674 {
2675 bool fail = false;
2676
2677 unsigned qual_location;
2678 if (!process_qualifier_constant(state, loc, "location", qual->location,
2679 &qual_location)) {
2680 return;
2681 }
2682
2683 /* Checks for GL_ARB_explicit_uniform_location. */
2684 if (qual->flags.q.uniform) {
2685 if (!state->check_explicit_uniform_location_allowed(loc, var))
2686 return;
2687
2688 const struct gl_context *const ctx = state->ctx;
2689 unsigned max_loc = qual_location + var->type->uniform_locations() - 1;
2690
2691 if (max_loc >= ctx->Const.MaxUserAssignableUniformLocations) {
2692 _mesa_glsl_error(loc, state, "location(s) consumed by uniform %s "
2693 ">= MAX_UNIFORM_LOCATIONS (%u)", var->name,
2694 ctx->Const.MaxUserAssignableUniformLocations);
2695 return;
2696 }
2697
2698 var->data.explicit_location = true;
2699 var->data.location = qual_location;
2700 return;
2701 }
2702
2703 /* Between GL_ARB_explicit_attrib_location an
2704 * GL_ARB_separate_shader_objects, the inputs and outputs of any shader
2705 * stage can be assigned explicit locations. The checking here associates
2706 * the correct extension with the correct stage's input / output:
2707 *
2708 * input output
2709 * ----- ------
2710 * vertex explicit_loc sso
2711 * tess control sso sso
2712 * tess eval sso sso
2713 * geometry sso sso
2714 * fragment sso explicit_loc
2715 */
2716 switch (state->stage) {
2717 case MESA_SHADER_VERTEX:
2718 if (var->data.mode == ir_var_shader_in) {
2719 if (!state->check_explicit_attrib_location_allowed(loc, var))
2720 return;
2721
2722 break;
2723 }
2724
2725 if (var->data.mode == ir_var_shader_out) {
2726 if (!state->check_separate_shader_objects_allowed(loc, var))
2727 return;
2728
2729 break;
2730 }
2731
2732 fail = true;
2733 break;
2734
2735 case MESA_SHADER_TESS_CTRL:
2736 case MESA_SHADER_TESS_EVAL:
2737 case MESA_SHADER_GEOMETRY:
2738 if (var->data.mode == ir_var_shader_in || var->data.mode == ir_var_shader_out) {
2739 if (!state->check_separate_shader_objects_allowed(loc, var))
2740 return;
2741
2742 break;
2743 }
2744
2745 fail = true;
2746 break;
2747
2748 case MESA_SHADER_FRAGMENT:
2749 if (var->data.mode == ir_var_shader_in) {
2750 if (!state->check_separate_shader_objects_allowed(loc, var))
2751 return;
2752
2753 break;
2754 }
2755
2756 if (var->data.mode == ir_var_shader_out) {
2757 if (!state->check_explicit_attrib_location_allowed(loc, var))
2758 return;
2759
2760 break;
2761 }
2762
2763 fail = true;
2764 break;
2765
2766 case MESA_SHADER_COMPUTE:
2767 _mesa_glsl_error(loc, state,
2768 "compute shader variables cannot be given "
2769 "explicit locations");
2770 return;
2771 };
2772
2773 if (fail) {
2774 _mesa_glsl_error(loc, state,
2775 "%s cannot be given an explicit location in %s shader",
2776 mode_string(var),
2777 _mesa_shader_stage_to_string(state->stage));
2778 } else {
2779 var->data.explicit_location = true;
2780
2781 switch (state->stage) {
2782 case MESA_SHADER_VERTEX:
2783 var->data.location = (var->data.mode == ir_var_shader_in)
2784 ? (qual_location + VERT_ATTRIB_GENERIC0)
2785 : (qual_location + VARYING_SLOT_VAR0);
2786 break;
2787
2788 case MESA_SHADER_TESS_CTRL:
2789 case MESA_SHADER_TESS_EVAL:
2790 case MESA_SHADER_GEOMETRY:
2791 if (var->data.patch)
2792 var->data.location = qual_location + VARYING_SLOT_PATCH0;
2793 else
2794 var->data.location = qual_location + VARYING_SLOT_VAR0;
2795 break;
2796
2797 case MESA_SHADER_FRAGMENT:
2798 var->data.location = (var->data.mode == ir_var_shader_out)
2799 ? (qual_location + FRAG_RESULT_DATA0)
2800 : (qual_location + VARYING_SLOT_VAR0);
2801 break;
2802 case MESA_SHADER_COMPUTE:
2803 assert(!"Unexpected shader type");
2804 break;
2805 }
2806
2807 if (qual->flags.q.explicit_index) {
2808 /* From the GLSL 4.30 specification, section 4.4.2 (Output
2809 * Layout Qualifiers):
2810 *
2811 * "It is also a compile-time error if a fragment shader
2812 * sets a layout index to less than 0 or greater than 1."
2813 *
2814 * Older specifications don't mandate a behavior; we take
2815 * this as a clarification and always generate the error.
2816 */
2817 if (qual->index < 0 || qual->index > 1) {
2818 _mesa_glsl_error(loc, state,
2819 "explicit index may only be 0 or 1");
2820 } else {
2821 var->data.explicit_index = true;
2822 var->data.index = qual->index;
2823 }
2824 }
2825 }
2826 }
2827
2828 static void
2829 apply_image_qualifier_to_variable(const struct ast_type_qualifier *qual,
2830 ir_variable *var,
2831 struct _mesa_glsl_parse_state *state,
2832 YYLTYPE *loc)
2833 {
2834 const glsl_type *base_type = var->type->without_array();
2835
2836 if (base_type->is_image()) {
2837 if (var->data.mode != ir_var_uniform &&
2838 var->data.mode != ir_var_function_in) {
2839 _mesa_glsl_error(loc, state, "image variables may only be declared as "
2840 "function parameters or uniform-qualified "
2841 "global variables");
2842 }
2843
2844 var->data.image_read_only |= qual->flags.q.read_only;
2845 var->data.image_write_only |= qual->flags.q.write_only;
2846 var->data.image_coherent |= qual->flags.q.coherent;
2847 var->data.image_volatile |= qual->flags.q._volatile;
2848 var->data.image_restrict |= qual->flags.q.restrict_flag;
2849 var->data.read_only = true;
2850
2851 if (qual->flags.q.explicit_image_format) {
2852 if (var->data.mode == ir_var_function_in) {
2853 _mesa_glsl_error(loc, state, "format qualifiers cannot be "
2854 "used on image function parameters");
2855 }
2856
2857 if (qual->image_base_type != base_type->sampler_type) {
2858 _mesa_glsl_error(loc, state, "format qualifier doesn't match the "
2859 "base data type of the image");
2860 }
2861
2862 var->data.image_format = qual->image_format;
2863 } else {
2864 if (var->data.mode == ir_var_uniform) {
2865 if (state->es_shader) {
2866 _mesa_glsl_error(loc, state, "all image uniforms "
2867 "must have a format layout qualifier");
2868
2869 } else if (!qual->flags.q.write_only) {
2870 _mesa_glsl_error(loc, state, "image uniforms not qualified with "
2871 "`writeonly' must have a format layout "
2872 "qualifier");
2873 }
2874 }
2875
2876 var->data.image_format = GL_NONE;
2877 }
2878
2879 /* From page 70 of the GLSL ES 3.1 specification:
2880 *
2881 * "Except for image variables qualified with the format qualifiers
2882 * r32f, r32i, and r32ui, image variables must specify either memory
2883 * qualifier readonly or the memory qualifier writeonly."
2884 */
2885 if (state->es_shader &&
2886 var->data.image_format != GL_R32F &&
2887 var->data.image_format != GL_R32I &&
2888 var->data.image_format != GL_R32UI &&
2889 !var->data.image_read_only &&
2890 !var->data.image_write_only) {
2891 _mesa_glsl_error(loc, state, "image variables of format other than "
2892 "r32f, r32i or r32ui must be qualified `readonly' or "
2893 "`writeonly'");
2894 }
2895
2896 } else if (qual->flags.q.read_only ||
2897 qual->flags.q.write_only ||
2898 qual->flags.q.coherent ||
2899 qual->flags.q._volatile ||
2900 qual->flags.q.restrict_flag ||
2901 qual->flags.q.explicit_image_format) {
2902 _mesa_glsl_error(loc, state, "memory qualifiers may only be applied to "
2903 "images");
2904 }
2905 }
2906
2907 static inline const char*
2908 get_layout_qualifier_string(bool origin_upper_left, bool pixel_center_integer)
2909 {
2910 if (origin_upper_left && pixel_center_integer)
2911 return "origin_upper_left, pixel_center_integer";
2912 else if (origin_upper_left)
2913 return "origin_upper_left";
2914 else if (pixel_center_integer)
2915 return "pixel_center_integer";
2916 else
2917 return " ";
2918 }
2919
2920 static inline bool
2921 is_conflicting_fragcoord_redeclaration(struct _mesa_glsl_parse_state *state,
2922 const struct ast_type_qualifier *qual)
2923 {
2924 /* If gl_FragCoord was previously declared, and the qualifiers were
2925 * different in any way, return true.
2926 */
2927 if (state->fs_redeclares_gl_fragcoord) {
2928 return (state->fs_pixel_center_integer != qual->flags.q.pixel_center_integer
2929 || state->fs_origin_upper_left != qual->flags.q.origin_upper_left);
2930 }
2931
2932 return false;
2933 }
2934
2935 static inline void
2936 validate_array_dimensions(const glsl_type *t,
2937 struct _mesa_glsl_parse_state *state,
2938 YYLTYPE *loc) {
2939 if (t->is_array()) {
2940 t = t->fields.array;
2941 while (t->is_array()) {
2942 if (t->is_unsized_array()) {
2943 _mesa_glsl_error(loc, state,
2944 "only the outermost array dimension can "
2945 "be unsized",
2946 t->name);
2947 break;
2948 }
2949 t = t->fields.array;
2950 }
2951 }
2952 }
2953
2954 static void
2955 apply_layout_qualifier_to_variable(const struct ast_type_qualifier *qual,
2956 ir_variable *var,
2957 struct _mesa_glsl_parse_state *state,
2958 YYLTYPE *loc)
2959 {
2960 if (var->name != NULL && strcmp(var->name, "gl_FragCoord") == 0) {
2961
2962 /* Section 4.3.8.1, page 39 of GLSL 1.50 spec says:
2963 *
2964 * "Within any shader, the first redeclarations of gl_FragCoord
2965 * must appear before any use of gl_FragCoord."
2966 *
2967 * Generate a compiler error if above condition is not met by the
2968 * fragment shader.
2969 */
2970 ir_variable *earlier = state->symbols->get_variable("gl_FragCoord");
2971 if (earlier != NULL &&
2972 earlier->data.used &&
2973 !state->fs_redeclares_gl_fragcoord) {
2974 _mesa_glsl_error(loc, state,
2975 "gl_FragCoord used before its first redeclaration "
2976 "in fragment shader");
2977 }
2978
2979 /* Make sure all gl_FragCoord redeclarations specify the same layout
2980 * qualifiers.
2981 */
2982 if (is_conflicting_fragcoord_redeclaration(state, qual)) {
2983 const char *const qual_string =
2984 get_layout_qualifier_string(qual->flags.q.origin_upper_left,
2985 qual->flags.q.pixel_center_integer);
2986
2987 const char *const state_string =
2988 get_layout_qualifier_string(state->fs_origin_upper_left,
2989 state->fs_pixel_center_integer);
2990
2991 _mesa_glsl_error(loc, state,
2992 "gl_FragCoord redeclared with different layout "
2993 "qualifiers (%s) and (%s) ",
2994 state_string,
2995 qual_string);
2996 }
2997 state->fs_origin_upper_left = qual->flags.q.origin_upper_left;
2998 state->fs_pixel_center_integer = qual->flags.q.pixel_center_integer;
2999 state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers =
3000 !qual->flags.q.origin_upper_left && !qual->flags.q.pixel_center_integer;
3001 state->fs_redeclares_gl_fragcoord =
3002 state->fs_origin_upper_left ||
3003 state->fs_pixel_center_integer ||
3004 state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers;
3005 }
3006
3007 var->data.pixel_center_integer = qual->flags.q.pixel_center_integer;
3008 var->data.origin_upper_left = qual->flags.q.origin_upper_left;
3009 if ((qual->flags.q.origin_upper_left || qual->flags.q.pixel_center_integer)
3010 && (strcmp(var->name, "gl_FragCoord") != 0)) {
3011 const char *const qual_string = (qual->flags.q.origin_upper_left)
3012 ? "origin_upper_left" : "pixel_center_integer";
3013
3014 _mesa_glsl_error(loc, state,
3015 "layout qualifier `%s' can only be applied to "
3016 "fragment shader input `gl_FragCoord'",
3017 qual_string);
3018 }
3019
3020 if (qual->flags.q.explicit_location) {
3021 apply_explicit_location(qual, var, state, loc);
3022 } else if (qual->flags.q.explicit_index) {
3023 _mesa_glsl_error(loc, state, "explicit index requires explicit location");
3024 }
3025
3026 if (qual->flags.q.explicit_binding &&
3027 validate_binding_qualifier(state, loc, var->type, qual)) {
3028 var->data.explicit_binding = true;
3029 var->data.binding = qual->binding;
3030 }
3031
3032 if (state->stage == MESA_SHADER_GEOMETRY &&
3033 qual->flags.q.out && qual->flags.q.stream) {
3034 var->data.stream = qual->stream;
3035 }
3036
3037 if (var->type->contains_atomic()) {
3038 if (var->data.mode == ir_var_uniform) {
3039 if (var->data.explicit_binding) {
3040 unsigned *offset =
3041 &state->atomic_counter_offsets[var->data.binding];
3042
3043 if (*offset % ATOMIC_COUNTER_SIZE)
3044 _mesa_glsl_error(loc, state,
3045 "misaligned atomic counter offset");
3046
3047 var->data.atomic.offset = *offset;
3048 *offset += var->type->atomic_size();
3049
3050 } else {
3051 _mesa_glsl_error(loc, state,
3052 "atomic counters require explicit binding point");
3053 }
3054 } else if (var->data.mode != ir_var_function_in) {
3055 _mesa_glsl_error(loc, state, "atomic counters may only be declared as "
3056 "function parameters or uniform-qualified "
3057 "global variables");
3058 }
3059 }
3060
3061 /* Is the 'layout' keyword used with parameters that allow relaxed checking.
3062 * Many implementations of GL_ARB_fragment_coord_conventions_enable and some
3063 * implementations (only Mesa?) GL_ARB_explicit_attrib_location_enable
3064 * allowed the layout qualifier to be used with 'varying' and 'attribute'.
3065 * These extensions and all following extensions that add the 'layout'
3066 * keyword have been modified to require the use of 'in' or 'out'.
3067 *
3068 * The following extension do not allow the deprecated keywords:
3069 *
3070 * GL_AMD_conservative_depth
3071 * GL_ARB_conservative_depth
3072 * GL_ARB_gpu_shader5
3073 * GL_ARB_separate_shader_objects
3074 * GL_ARB_tessellation_shader
3075 * GL_ARB_transform_feedback3
3076 * GL_ARB_uniform_buffer_object
3077 *
3078 * It is unknown whether GL_EXT_shader_image_load_store or GL_NV_gpu_shader5
3079 * allow layout with the deprecated keywords.
3080 */
3081 const bool relaxed_layout_qualifier_checking =
3082 state->ARB_fragment_coord_conventions_enable;
3083
3084 const bool uses_deprecated_qualifier = qual->flags.q.attribute
3085 || qual->flags.q.varying;
3086 if (qual->has_layout() && uses_deprecated_qualifier) {
3087 if (relaxed_layout_qualifier_checking) {
3088 _mesa_glsl_warning(loc, state,
3089 "`layout' qualifier may not be used with "
3090 "`attribute' or `varying'");
3091 } else {
3092 _mesa_glsl_error(loc, state,
3093 "`layout' qualifier may not be used with "
3094 "`attribute' or `varying'");
3095 }
3096 }
3097
3098 /* Layout qualifiers for gl_FragDepth, which are enabled by extension
3099 * AMD_conservative_depth.
3100 */
3101 int depth_layout_count = qual->flags.q.depth_any
3102 + qual->flags.q.depth_greater
3103 + qual->flags.q.depth_less
3104 + qual->flags.q.depth_unchanged;
3105 if (depth_layout_count > 0
3106 && !state->AMD_conservative_depth_enable
3107 && !state->ARB_conservative_depth_enable) {
3108 _mesa_glsl_error(loc, state,
3109 "extension GL_AMD_conservative_depth or "
3110 "GL_ARB_conservative_depth must be enabled "
3111 "to use depth layout qualifiers");
3112 } else if (depth_layout_count > 0
3113 && strcmp(var->name, "gl_FragDepth") != 0) {
3114 _mesa_glsl_error(loc, state,
3115 "depth layout qualifiers can be applied only to "
3116 "gl_FragDepth");
3117 } else if (depth_layout_count > 1
3118 && strcmp(var->name, "gl_FragDepth") == 0) {
3119 _mesa_glsl_error(loc, state,
3120 "at most one depth layout qualifier can be applied to "
3121 "gl_FragDepth");
3122 }
3123 if (qual->flags.q.depth_any)
3124 var->data.depth_layout = ir_depth_layout_any;
3125 else if (qual->flags.q.depth_greater)
3126 var->data.depth_layout = ir_depth_layout_greater;
3127 else if (qual->flags.q.depth_less)
3128 var->data.depth_layout = ir_depth_layout_less;
3129 else if (qual->flags.q.depth_unchanged)
3130 var->data.depth_layout = ir_depth_layout_unchanged;
3131 else
3132 var->data.depth_layout = ir_depth_layout_none;
3133
3134 if (qual->flags.q.std140 ||
3135 qual->flags.q.std430 ||
3136 qual->flags.q.packed ||
3137 qual->flags.q.shared) {
3138 _mesa_glsl_error(loc, state,
3139 "uniform and shader storage block layout qualifiers "
3140 "std140, std430, packed, and shared can only be "
3141 "applied to uniform or shader storage blocks, not "
3142 "members");
3143 }
3144
3145 if (qual->flags.q.row_major || qual->flags.q.column_major) {
3146 validate_matrix_layout_for_type(state, loc, var->type, var);
3147 }
3148
3149 /* From section 4.4.1.3 of the GLSL 4.50 specification (Fragment Shader
3150 * Inputs):
3151 *
3152 * "Fragment shaders also allow the following layout qualifier on in only
3153 * (not with variable declarations)
3154 * layout-qualifier-id
3155 * early_fragment_tests
3156 * [...]"
3157 */
3158 if (qual->flags.q.early_fragment_tests) {
3159 _mesa_glsl_error(loc, state, "early_fragment_tests layout qualifier only "
3160 "valid in fragment shader input layout declaration.");
3161 }
3162 }
3163
3164 static void
3165 apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
3166 ir_variable *var,
3167 struct _mesa_glsl_parse_state *state,
3168 YYLTYPE *loc,
3169 bool is_parameter)
3170 {
3171 STATIC_ASSERT(sizeof(qual->flags.q) <= sizeof(qual->flags.i));
3172
3173 if (qual->flags.q.invariant) {
3174 if (var->data.used) {
3175 _mesa_glsl_error(loc, state,
3176 "variable `%s' may not be redeclared "
3177 "`invariant' after being used",
3178 var->name);
3179 } else {
3180 var->data.invariant = 1;
3181 }
3182 }
3183
3184 if (qual->flags.q.precise) {
3185 if (var->data.used) {
3186 _mesa_glsl_error(loc, state,
3187 "variable `%s' may not be redeclared "
3188 "`precise' after being used",
3189 var->name);
3190 } else {
3191 var->data.precise = 1;
3192 }
3193 }
3194
3195 if (qual->flags.q.subroutine && !qual->flags.q.uniform) {
3196 _mesa_glsl_error(loc, state,
3197 "`subroutine' may only be applied to uniforms, "
3198 "subroutine type declarations, or function definitions");
3199 }
3200
3201 if (qual->flags.q.constant || qual->flags.q.attribute
3202 || qual->flags.q.uniform
3203 || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
3204 var->data.read_only = 1;
3205
3206 if (qual->flags.q.centroid)
3207 var->data.centroid = 1;
3208
3209 if (qual->flags.q.sample)
3210 var->data.sample = 1;
3211
3212 /* Precision qualifiers do not hold any meaning in Desktop GLSL */
3213 if (state->es_shader) {
3214 var->data.precision =
3215 select_gles_precision(qual->precision, var->type, state, loc);
3216 }
3217
3218 if (qual->flags.q.patch)
3219 var->data.patch = 1;
3220
3221 if (qual->flags.q.attribute && state->stage != MESA_SHADER_VERTEX) {
3222 var->type = glsl_type::error_type;
3223 _mesa_glsl_error(loc, state,
3224 "`attribute' variables may not be declared in the "
3225 "%s shader",
3226 _mesa_shader_stage_to_string(state->stage));
3227 }
3228
3229 /* Disallow layout qualifiers which may only appear on layout declarations. */
3230 if (qual->flags.q.prim_type) {
3231 _mesa_glsl_error(loc, state,
3232 "Primitive type may only be specified on GS input or output "
3233 "layout declaration, not on variables.");
3234 }
3235
3236 /* Section 6.1.1 (Function Calling Conventions) of the GLSL 1.10 spec says:
3237 *
3238 * "However, the const qualifier cannot be used with out or inout."
3239 *
3240 * The same section of the GLSL 4.40 spec further clarifies this saying:
3241 *
3242 * "The const qualifier cannot be used with out or inout, or a
3243 * compile-time error results."
3244 */
3245 if (is_parameter && qual->flags.q.constant && qual->flags.q.out) {
3246 _mesa_glsl_error(loc, state,
3247 "`const' may not be applied to `out' or `inout' "
3248 "function parameters");
3249 }
3250
3251 /* If there is no qualifier that changes the mode of the variable, leave
3252 * the setting alone.
3253 */
3254 assert(var->data.mode != ir_var_temporary);
3255 if (qual->flags.q.in && qual->flags.q.out)
3256 var->data.mode = ir_var_function_inout;
3257 else if (qual->flags.q.in)
3258 var->data.mode = is_parameter ? ir_var_function_in : ir_var_shader_in;
3259 else if (qual->flags.q.attribute
3260 || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
3261 var->data.mode = ir_var_shader_in;
3262 else if (qual->flags.q.out)
3263 var->data.mode = is_parameter ? ir_var_function_out : ir_var_shader_out;
3264 else if (qual->flags.q.varying && (state->stage == MESA_SHADER_VERTEX))
3265 var->data.mode = ir_var_shader_out;
3266 else if (qual->flags.q.uniform)
3267 var->data.mode = ir_var_uniform;
3268 else if (qual->flags.q.buffer)
3269 var->data.mode = ir_var_shader_storage;
3270 else if (qual->flags.q.shared_storage)
3271 var->data.mode = ir_var_shader_shared;
3272
3273 if (!is_parameter && is_varying_var(var, state->stage)) {
3274 /* User-defined ins/outs are not permitted in compute shaders. */
3275 if (state->stage == MESA_SHADER_COMPUTE) {
3276 _mesa_glsl_error(loc, state,
3277 "user-defined input and output variables are not "
3278 "permitted in compute shaders");
3279 }
3280
3281 /* This variable is being used to link data between shader stages (in
3282 * pre-glsl-1.30 parlance, it's a "varying"). Check that it has a type
3283 * that is allowed for such purposes.
3284 *
3285 * From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
3286 *
3287 * "The varying qualifier can be used only with the data types
3288 * float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
3289 * these."
3290 *
3291 * This was relaxed in GLSL version 1.30 and GLSL ES version 3.00. From
3292 * page 31 (page 37 of the PDF) of the GLSL 1.30 spec:
3293 *
3294 * "Fragment inputs can only be signed and unsigned integers and
3295 * integer vectors, float, floating-point vectors, matrices, or
3296 * arrays of these. Structures cannot be input.
3297 *
3298 * Similar text exists in the section on vertex shader outputs.
3299 *
3300 * Similar text exists in the GLSL ES 3.00 spec, except that the GLSL ES
3301 * 3.00 spec allows structs as well. Varying structs are also allowed
3302 * in GLSL 1.50.
3303 */
3304 switch (var->type->get_scalar_type()->base_type) {
3305 case GLSL_TYPE_FLOAT:
3306 /* Ok in all GLSL versions */
3307 break;
3308 case GLSL_TYPE_UINT:
3309 case GLSL_TYPE_INT:
3310 if (state->is_version(130, 300))
3311 break;
3312 _mesa_glsl_error(loc, state,
3313 "varying variables must be of base type float in %s",
3314 state->get_version_string());
3315 break;
3316 case GLSL_TYPE_STRUCT:
3317 if (state->is_version(150, 300))
3318 break;
3319 _mesa_glsl_error(loc, state,
3320 "varying variables may not be of type struct");
3321 break;
3322 case GLSL_TYPE_DOUBLE:
3323 break;
3324 default:
3325 _mesa_glsl_error(loc, state, "illegal type for a varying variable");
3326 break;
3327 }
3328 }
3329
3330 if (state->all_invariant && (state->current_function == NULL)) {
3331 switch (state->stage) {
3332 case MESA_SHADER_VERTEX:
3333 if (var->data.mode == ir_var_shader_out)
3334 var->data.invariant = true;
3335 break;
3336 case MESA_SHADER_TESS_CTRL:
3337 case MESA_SHADER_TESS_EVAL:
3338 case MESA_SHADER_GEOMETRY:
3339 if ((var->data.mode == ir_var_shader_in)
3340 || (var->data.mode == ir_var_shader_out))
3341 var->data.invariant = true;
3342 break;
3343 case MESA_SHADER_FRAGMENT:
3344 if (var->data.mode == ir_var_shader_in)
3345 var->data.invariant = true;
3346 break;
3347 case MESA_SHADER_COMPUTE:
3348 /* Invariance isn't meaningful in compute shaders. */
3349 break;
3350 }
3351 }
3352
3353 var->data.interpolation =
3354 interpret_interpolation_qualifier(qual, (ir_variable_mode) var->data.mode,
3355 state, loc);
3356
3357 /* Does the declaration use the deprecated 'attribute' or 'varying'
3358 * keywords?
3359 */
3360 const bool uses_deprecated_qualifier = qual->flags.q.attribute
3361 || qual->flags.q.varying;
3362
3363
3364 /* Validate auxiliary storage qualifiers */
3365
3366 /* From section 4.3.4 of the GLSL 1.30 spec:
3367 * "It is an error to use centroid in in a vertex shader."
3368 *
3369 * From section 4.3.4 of the GLSL ES 3.00 spec:
3370 * "It is an error to use centroid in or interpolation qualifiers in
3371 * a vertex shader input."
3372 */
3373
3374 /* Section 4.3.6 of the GLSL 1.30 specification states:
3375 * "It is an error to use centroid out in a fragment shader."
3376 *
3377 * The GL_ARB_shading_language_420pack extension specification states:
3378 * "It is an error to use auxiliary storage qualifiers or interpolation
3379 * qualifiers on an output in a fragment shader."
3380 */
3381 if (qual->flags.q.sample && (!is_varying_var(var, state->stage) || uses_deprecated_qualifier)) {
3382 _mesa_glsl_error(loc, state,
3383 "sample qualifier may only be used on `in` or `out` "
3384 "variables between shader stages");
3385 }
3386 if (qual->flags.q.centroid && !is_varying_var(var, state->stage)) {
3387 _mesa_glsl_error(loc, state,
3388 "centroid qualifier may only be used with `in', "
3389 "`out' or `varying' variables between shader stages");
3390 }
3391
3392 if (qual->flags.q.shared_storage && state->stage != MESA_SHADER_COMPUTE) {
3393 _mesa_glsl_error(loc, state,
3394 "the shared storage qualifiers can only be used with "
3395 "compute shaders");
3396 }
3397
3398 apply_image_qualifier_to_variable(qual, var, state, loc);
3399 }
3400
3401 /**
3402 * Get the variable that is being redeclared by this declaration
3403 *
3404 * Semantic checks to verify the validity of the redeclaration are also
3405 * performed. If semantic checks fail, compilation error will be emitted via
3406 * \c _mesa_glsl_error, but a non-\c NULL pointer will still be returned.
3407 *
3408 * \returns
3409 * A pointer to an existing variable in the current scope if the declaration
3410 * is a redeclaration, \c NULL otherwise.
3411 */
3412 static ir_variable *
3413 get_variable_being_redeclared(ir_variable *var, YYLTYPE loc,
3414 struct _mesa_glsl_parse_state *state,
3415 bool allow_all_redeclarations)
3416 {
3417 /* Check if this declaration is actually a re-declaration, either to
3418 * resize an array or add qualifiers to an existing variable.
3419 *
3420 * This is allowed for variables in the current scope, or when at
3421 * global scope (for built-ins in the implicit outer scope).
3422 */
3423 ir_variable *earlier = state->symbols->get_variable(var->name);
3424 if (earlier == NULL ||
3425 (state->current_function != NULL &&
3426 !state->symbols->name_declared_this_scope(var->name))) {
3427 return NULL;
3428 }
3429
3430
3431 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
3432 *
3433 * "It is legal to declare an array without a size and then
3434 * later re-declare the same name as an array of the same
3435 * type and specify a size."
3436 */
3437 if (earlier->type->is_unsized_array() && var->type->is_array()
3438 && (var->type->fields.array == earlier->type->fields.array)) {
3439 /* FINISHME: This doesn't match the qualifiers on the two
3440 * FINISHME: declarations. It's not 100% clear whether this is
3441 * FINISHME: required or not.
3442 */
3443
3444 const unsigned size = unsigned(var->type->array_size());
3445 check_builtin_array_max_size(var->name, size, loc, state);
3446 if ((size > 0) && (size <= earlier->data.max_array_access)) {
3447 _mesa_glsl_error(& loc, state, "array size must be > %u due to "
3448 "previous access",
3449 earlier->data.max_array_access);
3450 }
3451
3452 earlier->type = var->type;
3453 delete var;
3454 var = NULL;
3455 } else if ((state->ARB_fragment_coord_conventions_enable ||
3456 state->is_version(150, 0))
3457 && strcmp(var->name, "gl_FragCoord") == 0
3458 && earlier->type == var->type
3459 && earlier->data.mode == var->data.mode) {
3460 /* Allow redeclaration of gl_FragCoord for ARB_fcc layout
3461 * qualifiers.
3462 */
3463 earlier->data.origin_upper_left = var->data.origin_upper_left;
3464 earlier->data.pixel_center_integer = var->data.pixel_center_integer;
3465
3466 /* According to section 4.3.7 of the GLSL 1.30 spec,
3467 * the following built-in varaibles can be redeclared with an
3468 * interpolation qualifier:
3469 * * gl_FrontColor
3470 * * gl_BackColor
3471 * * gl_FrontSecondaryColor
3472 * * gl_BackSecondaryColor
3473 * * gl_Color
3474 * * gl_SecondaryColor
3475 */
3476 } else if (state->is_version(130, 0)
3477 && (strcmp(var->name, "gl_FrontColor") == 0
3478 || strcmp(var->name, "gl_BackColor") == 0
3479 || strcmp(var->name, "gl_FrontSecondaryColor") == 0
3480 || strcmp(var->name, "gl_BackSecondaryColor") == 0
3481 || strcmp(var->name, "gl_Color") == 0
3482 || strcmp(var->name, "gl_SecondaryColor") == 0)
3483 && earlier->type == var->type
3484 && earlier->data.mode == var->data.mode) {
3485 earlier->data.interpolation = var->data.interpolation;
3486
3487 /* Layout qualifiers for gl_FragDepth. */
3488 } else if ((state->AMD_conservative_depth_enable ||
3489 state->ARB_conservative_depth_enable)
3490 && strcmp(var->name, "gl_FragDepth") == 0
3491 && earlier->type == var->type
3492 && earlier->data.mode == var->data.mode) {
3493
3494 /** From the AMD_conservative_depth spec:
3495 * Within any shader, the first redeclarations of gl_FragDepth
3496 * must appear before any use of gl_FragDepth.
3497 */
3498 if (earlier->data.used) {
3499 _mesa_glsl_error(&loc, state,
3500 "the first redeclaration of gl_FragDepth "
3501 "must appear before any use of gl_FragDepth");
3502 }
3503
3504 /* Prevent inconsistent redeclaration of depth layout qualifier. */
3505 if (earlier->data.depth_layout != ir_depth_layout_none
3506 && earlier->data.depth_layout != var->data.depth_layout) {
3507 _mesa_glsl_error(&loc, state,
3508 "gl_FragDepth: depth layout is declared here "
3509 "as '%s, but it was previously declared as "
3510 "'%s'",
3511 depth_layout_string(var->data.depth_layout),
3512 depth_layout_string(earlier->data.depth_layout));
3513 }
3514
3515 earlier->data.depth_layout = var->data.depth_layout;
3516
3517 } else if (allow_all_redeclarations) {
3518 if (earlier->data.mode != var->data.mode) {
3519 _mesa_glsl_error(&loc, state,
3520 "redeclaration of `%s' with incorrect qualifiers",
3521 var->name);
3522 } else if (earlier->type != var->type) {
3523 _mesa_glsl_error(&loc, state,
3524 "redeclaration of `%s' has incorrect type",
3525 var->name);
3526 }
3527 } else {
3528 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
3529 }
3530
3531 return earlier;
3532 }
3533
3534 /**
3535 * Generate the IR for an initializer in a variable declaration
3536 */
3537 ir_rvalue *
3538 process_initializer(ir_variable *var, ast_declaration *decl,
3539 ast_fully_specified_type *type,
3540 exec_list *initializer_instructions,
3541 struct _mesa_glsl_parse_state *state)
3542 {
3543 ir_rvalue *result = NULL;
3544
3545 YYLTYPE initializer_loc = decl->initializer->get_location();
3546
3547 /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
3548 *
3549 * "All uniform variables are read-only and are initialized either
3550 * directly by an application via API commands, or indirectly by
3551 * OpenGL."
3552 */
3553 if (var->data.mode == ir_var_uniform) {
3554 state->check_version(120, 0, &initializer_loc,
3555 "cannot initialize uniform %s",
3556 var->name);
3557 }
3558
3559 /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec:
3560 *
3561 * "Buffer variables cannot have initializers."
3562 */
3563 if (var->data.mode == ir_var_shader_storage) {
3564 _mesa_glsl_error(&initializer_loc, state,
3565 "cannot initialize buffer variable %s",
3566 var->name);
3567 }
3568
3569 /* From section 4.1.7 of the GLSL 4.40 spec:
3570 *
3571 * "Opaque variables [...] are initialized only through the
3572 * OpenGL API; they cannot be declared with an initializer in a
3573 * shader."
3574 */
3575 if (var->type->contains_opaque()) {
3576 _mesa_glsl_error(&initializer_loc, state,
3577 "cannot initialize opaque variable %s",
3578 var->name);
3579 }
3580
3581 if ((var->data.mode == ir_var_shader_in) && (state->current_function == NULL)) {
3582 _mesa_glsl_error(&initializer_loc, state,
3583 "cannot initialize %s shader input / %s %s",
3584 _mesa_shader_stage_to_string(state->stage),
3585 (state->stage == MESA_SHADER_VERTEX)
3586 ? "attribute" : "varying",
3587 var->name);
3588 }
3589
3590 if (var->data.mode == ir_var_shader_out && state->current_function == NULL) {
3591 _mesa_glsl_error(&initializer_loc, state,
3592 "cannot initialize %s shader output %s",
3593 _mesa_shader_stage_to_string(state->stage),
3594 var->name);
3595 }
3596
3597 /* If the initializer is an ast_aggregate_initializer, recursively store
3598 * type information from the LHS into it, so that its hir() function can do
3599 * type checking.
3600 */
3601 if (decl->initializer->oper == ast_aggregate)
3602 _mesa_ast_set_aggregate_type(var->type, decl->initializer);
3603
3604 ir_dereference *const lhs = new(state) ir_dereference_variable(var);
3605 ir_rvalue *rhs = decl->initializer->hir(initializer_instructions, state);
3606
3607 /* Calculate the constant value if this is a const or uniform
3608 * declaration.
3609 *
3610 * Section 4.3 (Storage Qualifiers) of the GLSL ES 1.00.17 spec says:
3611 *
3612 * "Declarations of globals without a storage qualifier, or with
3613 * just the const qualifier, may include initializers, in which case
3614 * they will be initialized before the first line of main() is
3615 * executed. Such initializers must be a constant expression."
3616 *
3617 * The same section of the GLSL ES 3.00.4 spec has similar language.
3618 */
3619 if (type->qualifier.flags.q.constant
3620 || type->qualifier.flags.q.uniform
3621 || (state->es_shader && state->current_function == NULL)) {
3622 ir_rvalue *new_rhs = validate_assignment(state, initializer_loc,
3623 lhs, rhs, true);
3624 if (new_rhs != NULL) {
3625 rhs = new_rhs;
3626
3627 /* Section 4.3.3 (Constant Expressions) of the GLSL ES 3.00.4 spec
3628 * says:
3629 *
3630 * "A constant expression is one of
3631 *
3632 * ...
3633 *
3634 * - an expression formed by an operator on operands that are
3635 * all constant expressions, including getting an element of
3636 * a constant array, or a field of a constant structure, or
3637 * components of a constant vector. However, the sequence
3638 * operator ( , ) and the assignment operators ( =, +=, ...)
3639 * are not included in the operators that can create a
3640 * constant expression."
3641 *
3642 * Section 12.43 (Sequence operator and constant expressions) says:
3643 *
3644 * "Should the following construct be allowed?
3645 *
3646 * float a[2,3];
3647 *
3648 * The expression within the brackets uses the sequence operator
3649 * (',') and returns the integer 3 so the construct is declaring
3650 * a single-dimensional array of size 3. In some languages, the
3651 * construct declares a two-dimensional array. It would be
3652 * preferable to make this construct illegal to avoid confusion.
3653 *
3654 * One possibility is to change the definition of the sequence
3655 * operator so that it does not return a constant-expression and
3656 * hence cannot be used to declare an array size.
3657 *
3658 * RESOLUTION: The result of a sequence operator is not a
3659 * constant-expression."
3660 *
3661 * Section 4.3.3 (Constant Expressions) of the GLSL 4.30.9 spec
3662 * contains language almost identical to the section 4.3.3 in the
3663 * GLSL ES 3.00.4 spec. This is a new limitation for these GLSL
3664 * versions.
3665 */
3666 ir_constant *constant_value = rhs->constant_expression_value();
3667 if (!constant_value ||
3668 (state->is_version(430, 300) &&
3669 decl->initializer->has_sequence_subexpression())) {
3670 const char *const variable_mode =
3671 (type->qualifier.flags.q.constant)
3672 ? "const"
3673 : ((type->qualifier.flags.q.uniform) ? "uniform" : "global");
3674
3675 /* If ARB_shading_language_420pack is enabled, initializers of
3676 * const-qualified local variables do not have to be constant
3677 * expressions. Const-qualified global variables must still be
3678 * initialized with constant expressions.
3679 */
3680 if (!state->ARB_shading_language_420pack_enable
3681 || state->current_function == NULL) {
3682 _mesa_glsl_error(& initializer_loc, state,
3683 "initializer of %s variable `%s' must be a "
3684 "constant expression",
3685 variable_mode,
3686 decl->identifier);
3687 if (var->type->is_numeric()) {
3688 /* Reduce cascading errors. */
3689 var->constant_value = type->qualifier.flags.q.constant
3690 ? ir_constant::zero(state, var->type) : NULL;
3691 }
3692 }
3693 } else {
3694 rhs = constant_value;
3695 var->constant_value = type->qualifier.flags.q.constant
3696 ? constant_value : NULL;
3697 }
3698 } else {
3699 if (var->type->is_numeric()) {
3700 /* Reduce cascading errors. */
3701 var->constant_value = type->qualifier.flags.q.constant
3702 ? ir_constant::zero(state, var->type) : NULL;
3703 }
3704 }
3705 }
3706
3707 if (rhs && !rhs->type->is_error()) {
3708 bool temp = var->data.read_only;
3709 if (type->qualifier.flags.q.constant)
3710 var->data.read_only = false;
3711
3712 /* Never emit code to initialize a uniform.
3713 */
3714 const glsl_type *initializer_type;
3715 if (!type->qualifier.flags.q.uniform) {
3716 do_assignment(initializer_instructions, state,
3717 NULL,
3718 lhs, rhs,
3719 &result, true,
3720 true,
3721 type->get_location());
3722 initializer_type = result->type;
3723 } else
3724 initializer_type = rhs->type;
3725
3726 var->constant_initializer = rhs->constant_expression_value();
3727 var->data.has_initializer = true;
3728
3729 /* If the declared variable is an unsized array, it must inherrit
3730 * its full type from the initializer. A declaration such as
3731 *
3732 * uniform float a[] = float[](1.0, 2.0, 3.0, 3.0);
3733 *
3734 * becomes
3735 *
3736 * uniform float a[4] = float[](1.0, 2.0, 3.0, 3.0);
3737 *
3738 * The assignment generated in the if-statement (below) will also
3739 * automatically handle this case for non-uniforms.
3740 *
3741 * If the declared variable is not an array, the types must
3742 * already match exactly. As a result, the type assignment
3743 * here can be done unconditionally. For non-uniforms the call
3744 * to do_assignment can change the type of the initializer (via
3745 * the implicit conversion rules). For uniforms the initializer
3746 * must be a constant expression, and the type of that expression
3747 * was validated above.
3748 */
3749 var->type = initializer_type;
3750
3751 var->data.read_only = temp;
3752 }
3753
3754 return result;
3755 }
3756
3757 static void
3758 validate_layout_qualifier_vertex_count(struct _mesa_glsl_parse_state *state,
3759 YYLTYPE loc, ir_variable *var,
3760 unsigned num_vertices,
3761 unsigned *size,
3762 const char *var_category)
3763 {
3764 if (var->type->is_unsized_array()) {
3765 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec says:
3766 *
3767 * All geometry shader input unsized array declarations will be
3768 * sized by an earlier input layout qualifier, when present, as per
3769 * the following table.
3770 *
3771 * Followed by a table mapping each allowed input layout qualifier to
3772 * the corresponding input length.
3773 *
3774 * Similarly for tessellation control shader outputs.
3775 */
3776 if (num_vertices != 0)
3777 var->type = glsl_type::get_array_instance(var->type->fields.array,
3778 num_vertices);
3779 } else {
3780 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec
3781 * includes the following examples of compile-time errors:
3782 *
3783 * // code sequence within one shader...
3784 * in vec4 Color1[]; // size unknown
3785 * ...Color1.length()...// illegal, length() unknown
3786 * in vec4 Color2[2]; // size is 2
3787 * ...Color1.length()...// illegal, Color1 still has no size
3788 * in vec4 Color3[3]; // illegal, input sizes are inconsistent
3789 * layout(lines) in; // legal, input size is 2, matching
3790 * in vec4 Color4[3]; // illegal, contradicts layout
3791 * ...
3792 *
3793 * To detect the case illustrated by Color3, we verify that the size of
3794 * an explicitly-sized array matches the size of any previously declared
3795 * explicitly-sized array. To detect the case illustrated by Color4, we
3796 * verify that the size of an explicitly-sized array is consistent with
3797 * any previously declared input layout.
3798 */
3799 if (num_vertices != 0 && var->type->length != num_vertices) {
3800 _mesa_glsl_error(&loc, state,
3801 "%s size contradicts previously declared layout "
3802 "(size is %u, but layout requires a size of %u)",
3803 var_category, var->type->length, num_vertices);
3804 } else if (*size != 0 && var->type->length != *size) {
3805 _mesa_glsl_error(&loc, state,
3806 "%s sizes are inconsistent (size is %u, but a "
3807 "previous declaration has size %u)",
3808 var_category, var->type->length, *size);
3809 } else {
3810 *size = var->type->length;
3811 }
3812 }
3813 }
3814
3815 static void
3816 handle_tess_ctrl_shader_output_decl(struct _mesa_glsl_parse_state *state,
3817 YYLTYPE loc, ir_variable *var)
3818 {
3819 unsigned num_vertices = 0;
3820
3821 if (state->tcs_output_vertices_specified) {
3822 num_vertices = state->out_qualifier->vertices;
3823 }
3824
3825 if (!var->type->is_array() && !var->data.patch) {
3826 _mesa_glsl_error(&loc, state,
3827 "tessellation control shader outputs must be arrays");
3828
3829 /* To avoid cascading failures, short circuit the checks below. */
3830 return;
3831 }
3832
3833 if (var->data.patch)
3834 return;
3835
3836 validate_layout_qualifier_vertex_count(state, loc, var, num_vertices,
3837 &state->tcs_output_size,
3838 "tessellation control shader output");
3839 }
3840
3841 /**
3842 * Do additional processing necessary for tessellation control/evaluation shader
3843 * input declarations. This covers both interface block arrays and bare input
3844 * variables.
3845 */
3846 static void
3847 handle_tess_shader_input_decl(struct _mesa_glsl_parse_state *state,
3848 YYLTYPE loc, ir_variable *var)
3849 {
3850 if (!var->type->is_array() && !var->data.patch) {
3851 _mesa_glsl_error(&loc, state,
3852 "per-vertex tessellation shader inputs must be arrays");
3853 /* Avoid cascading failures. */
3854 return;
3855 }
3856
3857 if (var->data.patch)
3858 return;
3859
3860 /* Unsized arrays are implicitly sized to gl_MaxPatchVertices. */
3861 if (var->type->is_unsized_array()) {
3862 var->type = glsl_type::get_array_instance(var->type->fields.array,
3863 state->Const.MaxPatchVertices);
3864 }
3865 }
3866
3867
3868 /**
3869 * Do additional processing necessary for geometry shader input declarations
3870 * (this covers both interface blocks arrays and bare input variables).
3871 */
3872 static void
3873 handle_geometry_shader_input_decl(struct _mesa_glsl_parse_state *state,
3874 YYLTYPE loc, ir_variable *var)
3875 {
3876 unsigned num_vertices = 0;
3877
3878 if (state->gs_input_prim_type_specified) {
3879 num_vertices = vertices_per_prim(state->in_qualifier->prim_type);
3880 }
3881
3882 /* Geometry shader input variables must be arrays. Caller should have
3883 * reported an error for this.
3884 */
3885 if (!var->type->is_array()) {
3886 assert(state->error);
3887
3888 /* To avoid cascading failures, short circuit the checks below. */
3889 return;
3890 }
3891
3892 validate_layout_qualifier_vertex_count(state, loc, var, num_vertices,
3893 &state->gs_input_size,
3894 "geometry shader input");
3895 }
3896
3897 void
3898 validate_identifier(const char *identifier, YYLTYPE loc,
3899 struct _mesa_glsl_parse_state *state)
3900 {
3901 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
3902 *
3903 * "Identifiers starting with "gl_" are reserved for use by
3904 * OpenGL, and may not be declared in a shader as either a
3905 * variable or a function."
3906 */
3907 if (is_gl_identifier(identifier)) {
3908 _mesa_glsl_error(&loc, state,
3909 "identifier `%s' uses reserved `gl_' prefix",
3910 identifier);
3911 } else if (strstr(identifier, "__")) {
3912 /* From page 14 (page 20 of the PDF) of the GLSL 1.10
3913 * spec:
3914 *
3915 * "In addition, all identifiers containing two
3916 * consecutive underscores (__) are reserved as
3917 * possible future keywords."
3918 *
3919 * The intention is that names containing __ are reserved for internal
3920 * use by the implementation, and names prefixed with GL_ are reserved
3921 * for use by Khronos. Names simply containing __ are dangerous to use,
3922 * but should be allowed.
3923 *
3924 * A future version of the GLSL specification will clarify this.
3925 */
3926 _mesa_glsl_warning(&loc, state,
3927 "identifier `%s' uses reserved `__' string",
3928 identifier);
3929 }
3930 }
3931
3932 ir_rvalue *
3933 ast_declarator_list::hir(exec_list *instructions,
3934 struct _mesa_glsl_parse_state *state)
3935 {
3936 void *ctx = state;
3937 const struct glsl_type *decl_type;
3938 const char *type_name = NULL;
3939 ir_rvalue *result = NULL;
3940 YYLTYPE loc = this->get_location();
3941
3942 /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec:
3943 *
3944 * "To ensure that a particular output variable is invariant, it is
3945 * necessary to use the invariant qualifier. It can either be used to
3946 * qualify a previously declared variable as being invariant
3947 *
3948 * invariant gl_Position; // make existing gl_Position be invariant"
3949 *
3950 * In these cases the parser will set the 'invariant' flag in the declarator
3951 * list, and the type will be NULL.
3952 */
3953 if (this->invariant) {
3954 assert(this->type == NULL);
3955
3956 if (state->current_function != NULL) {
3957 _mesa_glsl_error(& loc, state,
3958 "all uses of `invariant' keyword must be at global "
3959 "scope");
3960 }
3961
3962 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
3963 assert(decl->array_specifier == NULL);
3964 assert(decl->initializer == NULL);
3965
3966 ir_variable *const earlier =
3967 state->symbols->get_variable(decl->identifier);
3968 if (earlier == NULL) {
3969 _mesa_glsl_error(& loc, state,
3970 "undeclared variable `%s' cannot be marked "
3971 "invariant", decl->identifier);
3972 } else if (!is_varying_var(earlier, state->stage)) {
3973 _mesa_glsl_error(&loc, state,
3974 "`%s' cannot be marked invariant; interfaces between "
3975 "shader stages only.", decl->identifier);
3976 } else if (earlier->data.used) {
3977 _mesa_glsl_error(& loc, state,
3978 "variable `%s' may not be redeclared "
3979 "`invariant' after being used",
3980 earlier->name);
3981 } else {
3982 earlier->data.invariant = true;
3983 }
3984 }
3985
3986 /* Invariant redeclarations do not have r-values.
3987 */
3988 return NULL;
3989 }
3990
3991 if (this->precise) {
3992 assert(this->type == NULL);
3993
3994 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
3995 assert(decl->array_specifier == NULL);
3996 assert(decl->initializer == NULL);
3997
3998 ir_variable *const earlier =
3999 state->symbols->get_variable(decl->identifier);
4000 if (earlier == NULL) {
4001 _mesa_glsl_error(& loc, state,
4002 "undeclared variable `%s' cannot be marked "
4003 "precise", decl->identifier);
4004 } else if (state->current_function != NULL &&
4005 !state->symbols->name_declared_this_scope(decl->identifier)) {
4006 /* Note: we have to check if we're in a function, since
4007 * builtins are treated as having come from another scope.
4008 */
4009 _mesa_glsl_error(& loc, state,
4010 "variable `%s' from an outer scope may not be "
4011 "redeclared `precise' in this scope",
4012 earlier->name);
4013 } else if (earlier->data.used) {
4014 _mesa_glsl_error(& loc, state,
4015 "variable `%s' may not be redeclared "
4016 "`precise' after being used",
4017 earlier->name);
4018 } else {
4019 earlier->data.precise = true;
4020 }
4021 }
4022
4023 /* Precise redeclarations do not have r-values either. */
4024 return NULL;
4025 }
4026
4027 assert(this->type != NULL);
4028 assert(!this->invariant);
4029 assert(!this->precise);
4030
4031 /* The type specifier may contain a structure definition. Process that
4032 * before any of the variable declarations.
4033 */
4034 (void) this->type->specifier->hir(instructions, state);
4035
4036 decl_type = this->type->glsl_type(& type_name, state);
4037
4038 /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec:
4039 * "Buffer variables may only be declared inside interface blocks
4040 * (section 4.3.9 “Interface Blocks”), which are then referred to as
4041 * shader storage blocks. It is a compile-time error to declare buffer
4042 * variables at global scope (outside a block)."
4043 */
4044 if (type->qualifier.flags.q.buffer && !decl_type->is_interface()) {
4045 _mesa_glsl_error(&loc, state,
4046 "buffer variables cannot be declared outside "
4047 "interface blocks");
4048 }
4049
4050 /* An offset-qualified atomic counter declaration sets the default
4051 * offset for the next declaration within the same atomic counter
4052 * buffer.
4053 */
4054 if (decl_type && decl_type->contains_atomic()) {
4055 if (type->qualifier.flags.q.explicit_binding &&
4056 type->qualifier.flags.q.explicit_offset)
4057 state->atomic_counter_offsets[type->qualifier.binding] =
4058 type->qualifier.offset;
4059 }
4060
4061 if (this->declarations.is_empty()) {
4062 /* If there is no structure involved in the program text, there are two
4063 * possible scenarios:
4064 *
4065 * - The program text contained something like 'vec4;'. This is an
4066 * empty declaration. It is valid but weird. Emit a warning.
4067 *
4068 * - The program text contained something like 'S;' and 'S' is not the
4069 * name of a known structure type. This is both invalid and weird.
4070 * Emit an error.
4071 *
4072 * - The program text contained something like 'mediump float;'
4073 * when the programmer probably meant 'precision mediump
4074 * float;' Emit a warning with a description of what they
4075 * probably meant to do.
4076 *
4077 * Note that if decl_type is NULL and there is a structure involved,
4078 * there must have been some sort of error with the structure. In this
4079 * case we assume that an error was already generated on this line of
4080 * code for the structure. There is no need to generate an additional,
4081 * confusing error.
4082 */
4083 assert(this->type->specifier->structure == NULL || decl_type != NULL
4084 || state->error);
4085
4086 if (decl_type == NULL) {
4087 _mesa_glsl_error(&loc, state,
4088 "invalid type `%s' in empty declaration",
4089 type_name);
4090 } else if (decl_type->base_type == GLSL_TYPE_ATOMIC_UINT) {
4091 /* Empty atomic counter declarations are allowed and useful
4092 * to set the default offset qualifier.
4093 */
4094 return NULL;
4095 } else if (this->type->qualifier.precision != ast_precision_none) {
4096 if (this->type->specifier->structure != NULL) {
4097 _mesa_glsl_error(&loc, state,
4098 "precision qualifiers can't be applied "
4099 "to structures");
4100 } else {
4101 static const char *const precision_names[] = {
4102 "highp",
4103 "highp",
4104 "mediump",
4105 "lowp"
4106 };
4107
4108 _mesa_glsl_warning(&loc, state,
4109 "empty declaration with precision qualifier, "
4110 "to set the default precision, use "
4111 "`precision %s %s;'",
4112 precision_names[this->type->qualifier.precision],
4113 type_name);
4114 }
4115 } else if (this->type->specifier->structure == NULL) {
4116 _mesa_glsl_warning(&loc, state, "empty declaration");
4117 }
4118 }
4119
4120 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4121 const struct glsl_type *var_type;
4122 ir_variable *var;
4123 const char *identifier = decl->identifier;
4124 /* FINISHME: Emit a warning if a variable declaration shadows a
4125 * FINISHME: declaration at a higher scope.
4126 */
4127
4128 if ((decl_type == NULL) || decl_type->is_void()) {
4129 if (type_name != NULL) {
4130 _mesa_glsl_error(& loc, state,
4131 "invalid type `%s' in declaration of `%s'",
4132 type_name, decl->identifier);
4133 } else {
4134 _mesa_glsl_error(& loc, state,
4135 "invalid type in declaration of `%s'",
4136 decl->identifier);
4137 }
4138 continue;
4139 }
4140
4141 if (this->type->qualifier.flags.q.subroutine) {
4142 const glsl_type *t;
4143 const char *name;
4144
4145 t = state->symbols->get_type(this->type->specifier->type_name);
4146 if (!t)
4147 _mesa_glsl_error(& loc, state,
4148 "invalid type in declaration of `%s'",
4149 decl->identifier);
4150 name = ralloc_asprintf(ctx, "%s_%s", _mesa_shader_stage_to_subroutine_prefix(state->stage), decl->identifier);
4151
4152 identifier = name;
4153
4154 }
4155 var_type = process_array_type(&loc, decl_type, decl->array_specifier,
4156 state);
4157
4158 var = new(ctx) ir_variable(var_type, identifier, ir_var_auto);
4159
4160 /* The 'varying in' and 'varying out' qualifiers can only be used with
4161 * ARB_geometry_shader4 and EXT_geometry_shader4, which we don't support
4162 * yet.
4163 */
4164 if (this->type->qualifier.flags.q.varying) {
4165 if (this->type->qualifier.flags.q.in) {
4166 _mesa_glsl_error(& loc, state,
4167 "`varying in' qualifier in declaration of "
4168 "`%s' only valid for geometry shaders using "
4169 "ARB_geometry_shader4 or EXT_geometry_shader4",
4170 decl->identifier);
4171 } else if (this->type->qualifier.flags.q.out) {
4172 _mesa_glsl_error(& loc, state,
4173 "`varying out' qualifier in declaration of "
4174 "`%s' only valid for geometry shaders using "
4175 "ARB_geometry_shader4 or EXT_geometry_shader4",
4176 decl->identifier);
4177 }
4178 }
4179
4180 /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
4181 *
4182 * "Global variables can only use the qualifiers const,
4183 * attribute, uniform, or varying. Only one may be
4184 * specified.
4185 *
4186 * Local variables can only use the qualifier const."
4187 *
4188 * This is relaxed in GLSL 1.30 and GLSL ES 3.00. It is also relaxed by
4189 * any extension that adds the 'layout' keyword.
4190 */
4191 if (!state->is_version(130, 300)
4192 && !state->has_explicit_attrib_location()
4193 && !state->has_separate_shader_objects()
4194 && !state->ARB_fragment_coord_conventions_enable) {
4195 if (this->type->qualifier.flags.q.out) {
4196 _mesa_glsl_error(& loc, state,
4197 "`out' qualifier in declaration of `%s' "
4198 "only valid for function parameters in %s",
4199 decl->identifier, state->get_version_string());
4200 }
4201 if (this->type->qualifier.flags.q.in) {
4202 _mesa_glsl_error(& loc, state,
4203 "`in' qualifier in declaration of `%s' "
4204 "only valid for function parameters in %s",
4205 decl->identifier, state->get_version_string());
4206 }
4207 /* FINISHME: Test for other invalid qualifiers. */
4208 }
4209
4210 apply_type_qualifier_to_variable(& this->type->qualifier, var, state,
4211 & loc, false);
4212 apply_layout_qualifier_to_variable(&this->type->qualifier, var, state,
4213 &loc);
4214
4215 if (this->type->qualifier.flags.q.invariant) {
4216 if (!is_varying_var(var, state->stage)) {
4217 _mesa_glsl_error(&loc, state,
4218 "`%s' cannot be marked invariant; interfaces between "
4219 "shader stages only", var->name);
4220 }
4221 }
4222
4223 if (state->current_function != NULL) {
4224 const char *mode = NULL;
4225 const char *extra = "";
4226
4227 /* There is no need to check for 'inout' here because the parser will
4228 * only allow that in function parameter lists.
4229 */
4230 if (this->type->qualifier.flags.q.attribute) {
4231 mode = "attribute";
4232 } else if (this->type->qualifier.flags.q.subroutine) {
4233 mode = "subroutine uniform";
4234 } else if (this->type->qualifier.flags.q.uniform) {
4235 mode = "uniform";
4236 } else if (this->type->qualifier.flags.q.varying) {
4237 mode = "varying";
4238 } else if (this->type->qualifier.flags.q.in) {
4239 mode = "in";
4240 extra = " or in function parameter list";
4241 } else if (this->type->qualifier.flags.q.out) {
4242 mode = "out";
4243 extra = " or in function parameter list";
4244 }
4245
4246 if (mode) {
4247 _mesa_glsl_error(& loc, state,
4248 "%s variable `%s' must be declared at "
4249 "global scope%s",
4250 mode, var->name, extra);
4251 }
4252 } else if (var->data.mode == ir_var_shader_in) {
4253 var->data.read_only = true;
4254
4255 if (state->stage == MESA_SHADER_VERTEX) {
4256 bool error_emitted = false;
4257
4258 /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
4259 *
4260 * "Vertex shader inputs can only be float, floating-point
4261 * vectors, matrices, signed and unsigned integers and integer
4262 * vectors. Vertex shader inputs can also form arrays of these
4263 * types, but not structures."
4264 *
4265 * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
4266 *
4267 * "Vertex shader inputs can only be float, floating-point
4268 * vectors, matrices, signed and unsigned integers and integer
4269 * vectors. They cannot be arrays or structures."
4270 *
4271 * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
4272 *
4273 * "The attribute qualifier can be used only with float,
4274 * floating-point vectors, and matrices. Attribute variables
4275 * cannot be declared as arrays or structures."
4276 *
4277 * From page 33 (page 39 of the PDF) of the GLSL ES 3.00 spec:
4278 *
4279 * "Vertex shader inputs can only be float, floating-point
4280 * vectors, matrices, signed and unsigned integers and integer
4281 * vectors. Vertex shader inputs cannot be arrays or
4282 * structures."
4283 */
4284 const glsl_type *check_type = var->type->without_array();
4285
4286 switch (check_type->base_type) {
4287 case GLSL_TYPE_FLOAT:
4288 break;
4289 case GLSL_TYPE_UINT:
4290 case GLSL_TYPE_INT:
4291 if (state->is_version(120, 300))
4292 break;
4293 case GLSL_TYPE_DOUBLE:
4294 if (check_type->base_type == GLSL_TYPE_DOUBLE && (state->is_version(410, 0) || state->ARB_vertex_attrib_64bit_enable))
4295 break;
4296 /* FALLTHROUGH */
4297 default:
4298 _mesa_glsl_error(& loc, state,
4299 "vertex shader input / attribute cannot have "
4300 "type %s`%s'",
4301 var->type->is_array() ? "array of " : "",
4302 check_type->name);
4303 error_emitted = true;
4304 }
4305
4306 if (!error_emitted && var->type->is_array() &&
4307 !state->check_version(150, 0, &loc,
4308 "vertex shader input / attribute "
4309 "cannot have array type")) {
4310 error_emitted = true;
4311 }
4312 } else if (state->stage == MESA_SHADER_GEOMETRY) {
4313 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
4314 *
4315 * Geometry shader input variables get the per-vertex values
4316 * written out by vertex shader output variables of the same
4317 * names. Since a geometry shader operates on a set of
4318 * vertices, each input varying variable (or input block, see
4319 * interface blocks below) needs to be declared as an array.
4320 */
4321 if (!var->type->is_array()) {
4322 _mesa_glsl_error(&loc, state,
4323 "geometry shader inputs must be arrays");
4324 }
4325
4326 handle_geometry_shader_input_decl(state, loc, var);
4327 } else if (state->stage == MESA_SHADER_FRAGMENT) {
4328 /* From section 4.3.4 (Input Variables) of the GLSL ES 3.10 spec:
4329 *
4330 * It is a compile-time error to declare a fragment shader
4331 * input with, or that contains, any of the following types:
4332 *
4333 * * A boolean type
4334 * * An opaque type
4335 * * An array of arrays
4336 * * An array of structures
4337 * * A structure containing an array
4338 * * A structure containing a structure
4339 */
4340 if (state->es_shader) {
4341 const glsl_type *check_type = var->type->without_array();
4342 if (check_type->is_boolean() ||
4343 check_type->contains_opaque()) {
4344 _mesa_glsl_error(&loc, state,
4345 "fragment shader input cannot have type %s",
4346 check_type->name);
4347 }
4348 if (var->type->is_array() &&
4349 var->type->fields.array->is_array()) {
4350 _mesa_glsl_error(&loc, state,
4351 "%s shader output "
4352 "cannot have an array of arrays",
4353 _mesa_shader_stage_to_string(state->stage));
4354 }
4355 if (var->type->is_array() &&
4356 var->type->fields.array->is_record()) {
4357 _mesa_glsl_error(&loc, state,
4358 "fragment shader input "
4359 "cannot have an array of structs");
4360 }
4361 if (var->type->is_record()) {
4362 for (unsigned i = 0; i < var->type->length; i++) {
4363 if (var->type->fields.structure[i].type->is_array() ||
4364 var->type->fields.structure[i].type->is_record())
4365 _mesa_glsl_error(&loc, state,
4366 "fragement shader input cannot have "
4367 "a struct that contains an "
4368 "array or struct");
4369 }
4370 }
4371 }
4372 } else if (state->stage == MESA_SHADER_TESS_CTRL ||
4373 state->stage == MESA_SHADER_TESS_EVAL) {
4374 handle_tess_shader_input_decl(state, loc, var);
4375 }
4376 } else if (var->data.mode == ir_var_shader_out) {
4377 const glsl_type *check_type = var->type->without_array();
4378
4379 /* From section 4.3.6 (Output variables) of the GLSL 4.40 spec:
4380 *
4381 * It is a compile-time error to declare a vertex, tessellation
4382 * evaluation, tessellation control, or geometry shader output
4383 * that contains any of the following:
4384 *
4385 * * A Boolean type (bool, bvec2 ...)
4386 * * An opaque type
4387 */
4388 if (check_type->is_boolean() || check_type->contains_opaque())
4389 _mesa_glsl_error(&loc, state,
4390 "%s shader output cannot have type %s",
4391 _mesa_shader_stage_to_string(state->stage),
4392 check_type->name);
4393
4394 /* From section 4.3.6 (Output variables) of the GLSL 4.40 spec:
4395 *
4396 * It is a compile-time error to declare a fragment shader output
4397 * that contains any of the following:
4398 *
4399 * * A Boolean type (bool, bvec2 ...)
4400 * * A double-precision scalar or vector (double, dvec2 ...)
4401 * * An opaque type
4402 * * Any matrix type
4403 * * A structure
4404 */
4405 if (state->stage == MESA_SHADER_FRAGMENT) {
4406 if (check_type->is_record() || check_type->is_matrix())
4407 _mesa_glsl_error(&loc, state,
4408 "fragment shader output "
4409 "cannot have struct or matrix type");
4410 switch (check_type->base_type) {
4411 case GLSL_TYPE_UINT:
4412 case GLSL_TYPE_INT:
4413 case GLSL_TYPE_FLOAT:
4414 break;
4415 default:
4416 _mesa_glsl_error(&loc, state,
4417 "fragment shader output cannot have "
4418 "type %s", check_type->name);
4419 }
4420 }
4421
4422 /* From section 4.3.6 (Output Variables) of the GLSL ES 3.10 spec:
4423 *
4424 * It is a compile-time error to declare a vertex shader output
4425 * with, or that contains, any of the following types:
4426 *
4427 * * A boolean type
4428 * * An opaque type
4429 * * An array of arrays
4430 * * An array of structures
4431 * * A structure containing an array
4432 * * A structure containing a structure
4433 *
4434 * It is a compile-time error to declare a fragment shader output
4435 * with, or that contains, any of the following types:
4436 *
4437 * * A boolean type
4438 * * An opaque type
4439 * * A matrix
4440 * * A structure
4441 * * An array of array
4442 */
4443 if (state->es_shader) {
4444 if (var->type->is_array() &&
4445 var->type->fields.array->is_array()) {
4446 _mesa_glsl_error(&loc, state,
4447 "%s shader output "
4448 "cannot have an array of arrays",
4449 _mesa_shader_stage_to_string(state->stage));
4450 }
4451 if (state->stage == MESA_SHADER_VERTEX) {
4452 if (var->type->is_array() &&
4453 var->type->fields.array->is_record()) {
4454 _mesa_glsl_error(&loc, state,
4455 "vertex shader output "
4456 "cannot have an array of structs");
4457 }
4458 if (var->type->is_record()) {
4459 for (unsigned i = 0; i < var->type->length; i++) {
4460 if (var->type->fields.structure[i].type->is_array() ||
4461 var->type->fields.structure[i].type->is_record())
4462 _mesa_glsl_error(&loc, state,
4463 "vertex shader output cannot have a "
4464 "struct that contains an "
4465 "array or struct");
4466 }
4467 }
4468 }
4469 }
4470
4471 if (state->stage == MESA_SHADER_TESS_CTRL) {
4472 handle_tess_ctrl_shader_output_decl(state, loc, var);
4473 }
4474 } else if (var->type->contains_subroutine()) {
4475 /* declare subroutine uniforms as hidden */
4476 var->data.how_declared = ir_var_hidden;
4477 }
4478
4479 /* Integer fragment inputs must be qualified with 'flat'. In GLSL ES,
4480 * so must integer vertex outputs.
4481 *
4482 * From section 4.3.4 ("Inputs") of the GLSL 1.50 spec:
4483 * "Fragment shader inputs that are signed or unsigned integers or
4484 * integer vectors must be qualified with the interpolation qualifier
4485 * flat."
4486 *
4487 * From section 4.3.4 ("Input Variables") of the GLSL 3.00 ES spec:
4488 * "Fragment shader inputs that are, or contain, signed or unsigned
4489 * integers or integer vectors must be qualified with the
4490 * interpolation qualifier flat."
4491 *
4492 * From section 4.3.6 ("Output Variables") of the GLSL 3.00 ES spec:
4493 * "Vertex shader outputs that are, or contain, signed or unsigned
4494 * integers or integer vectors must be qualified with the
4495 * interpolation qualifier flat."
4496 *
4497 * Note that prior to GLSL 1.50, this requirement applied to vertex
4498 * outputs rather than fragment inputs. That creates problems in the
4499 * presence of geometry shaders, so we adopt the GLSL 1.50 rule for all
4500 * desktop GL shaders. For GLSL ES shaders, we follow the spec and
4501 * apply the restriction to both vertex outputs and fragment inputs.
4502 *
4503 * Note also that the desktop GLSL specs are missing the text "or
4504 * contain"; this is presumably an oversight, since there is no
4505 * reasonable way to interpolate a fragment shader input that contains
4506 * an integer.
4507 */
4508 if (state->is_version(130, 300) &&
4509 var->type->contains_integer() &&
4510 var->data.interpolation != INTERP_QUALIFIER_FLAT &&
4511 ((state->stage == MESA_SHADER_FRAGMENT && var->data.mode == ir_var_shader_in)
4512 || (state->stage == MESA_SHADER_VERTEX && var->data.mode == ir_var_shader_out
4513 && state->es_shader))) {
4514 const char *var_type = (state->stage == MESA_SHADER_VERTEX) ?
4515 "vertex output" : "fragment input";
4516 _mesa_glsl_error(&loc, state, "if a %s is (or contains) "
4517 "an integer, then it must be qualified with 'flat'",
4518 var_type);
4519 }
4520
4521 /* Double fragment inputs must be qualified with 'flat'. */
4522 if (var->type->contains_double() &&
4523 var->data.interpolation != INTERP_QUALIFIER_FLAT &&
4524 state->stage == MESA_SHADER_FRAGMENT &&
4525 var->data.mode == ir_var_shader_in) {
4526 _mesa_glsl_error(&loc, state, "if a fragment input is (or contains) "
4527 "a double, then it must be qualified with 'flat'",
4528 var_type);
4529 }
4530
4531 /* Interpolation qualifiers cannot be applied to 'centroid' and
4532 * 'centroid varying'.
4533 *
4534 * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
4535 * "interpolation qualifiers may only precede the qualifiers in,
4536 * centroid in, out, or centroid out in a declaration. They do not apply
4537 * to the deprecated storage qualifiers varying or centroid varying."
4538 *
4539 * These deprecated storage qualifiers do not exist in GLSL ES 3.00.
4540 */
4541 if (state->is_version(130, 0)
4542 && this->type->qualifier.has_interpolation()
4543 && this->type->qualifier.flags.q.varying) {
4544
4545 const char *i = this->type->qualifier.interpolation_string();
4546 assert(i != NULL);
4547 const char *s;
4548 if (this->type->qualifier.flags.q.centroid)
4549 s = "centroid varying";
4550 else
4551 s = "varying";
4552
4553 _mesa_glsl_error(&loc, state,
4554 "qualifier '%s' cannot be applied to the "
4555 "deprecated storage qualifier '%s'", i, s);
4556 }
4557
4558
4559 /* Interpolation qualifiers can only apply to vertex shader outputs and
4560 * fragment shader inputs.
4561 *
4562 * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
4563 * "Outputs from a vertex shader (out) and inputs to a fragment
4564 * shader (in) can be further qualified with one or more of these
4565 * interpolation qualifiers"
4566 *
4567 * From page 31 (page 37 of the PDF) of the GLSL ES 3.00 spec:
4568 * "These interpolation qualifiers may only precede the qualifiers
4569 * in, centroid in, out, or centroid out in a declaration. They do
4570 * not apply to inputs into a vertex shader or outputs from a
4571 * fragment shader."
4572 */
4573 if (state->is_version(130, 300)
4574 && this->type->qualifier.has_interpolation()) {
4575
4576 const char *i = this->type->qualifier.interpolation_string();
4577 assert(i != NULL);
4578
4579 switch (state->stage) {
4580 case MESA_SHADER_VERTEX:
4581 if (this->type->qualifier.flags.q.in) {
4582 _mesa_glsl_error(&loc, state,
4583 "qualifier '%s' cannot be applied to vertex "
4584 "shader inputs", i);
4585 }
4586 break;
4587 case MESA_SHADER_FRAGMENT:
4588 if (this->type->qualifier.flags.q.out) {
4589 _mesa_glsl_error(&loc, state,
4590 "qualifier '%s' cannot be applied to fragment "
4591 "shader outputs", i);
4592 }
4593 break;
4594 default:
4595 break;
4596 }
4597 }
4598
4599
4600 /* From section 4.3.4 of the GLSL 4.00 spec:
4601 * "Input variables may not be declared using the patch in qualifier
4602 * in tessellation control or geometry shaders."
4603 *
4604 * From section 4.3.6 of the GLSL 4.00 spec:
4605 * "It is an error to use patch out in a vertex, tessellation
4606 * evaluation, or geometry shader."
4607 *
4608 * This doesn't explicitly forbid using them in a fragment shader, but
4609 * that's probably just an oversight.
4610 */
4611 if (state->stage != MESA_SHADER_TESS_EVAL
4612 && this->type->qualifier.flags.q.patch
4613 && this->type->qualifier.flags.q.in) {
4614
4615 _mesa_glsl_error(&loc, state, "'patch in' can only be used in a "
4616 "tessellation evaluation shader");
4617 }
4618
4619 if (state->stage != MESA_SHADER_TESS_CTRL
4620 && this->type->qualifier.flags.q.patch
4621 && this->type->qualifier.flags.q.out) {
4622
4623 _mesa_glsl_error(&loc, state, "'patch out' can only be used in a "
4624 "tessellation control shader");
4625 }
4626
4627 /* Precision qualifiers exists only in GLSL versions 1.00 and >= 1.30.
4628 */
4629 if (this->type->qualifier.precision != ast_precision_none) {
4630 state->check_precision_qualifiers_allowed(&loc);
4631 }
4632
4633
4634 /* If a precision qualifier is allowed on a type, it is allowed on
4635 * an array of that type.
4636 */
4637 if (!(this->type->qualifier.precision == ast_precision_none
4638 || precision_qualifier_allowed(var->type->without_array()))) {
4639
4640 _mesa_glsl_error(&loc, state,
4641 "precision qualifiers apply only to floating point"
4642 ", integer and opaque types");
4643 }
4644
4645 /* From section 4.1.7 of the GLSL 4.40 spec:
4646 *
4647 * "[Opaque types] can only be declared as function
4648 * parameters or uniform-qualified variables."
4649 */
4650 if (var_type->contains_opaque() &&
4651 !this->type->qualifier.flags.q.uniform) {
4652 _mesa_glsl_error(&loc, state,
4653 "opaque variables must be declared uniform");
4654 }
4655
4656 /* Process the initializer and add its instructions to a temporary
4657 * list. This list will be added to the instruction stream (below) after
4658 * the declaration is added. This is done because in some cases (such as
4659 * redeclarations) the declaration may not actually be added to the
4660 * instruction stream.
4661 */
4662 exec_list initializer_instructions;
4663
4664 /* Examine var name here since var may get deleted in the next call */
4665 bool var_is_gl_id = is_gl_identifier(var->name);
4666
4667 ir_variable *earlier =
4668 get_variable_being_redeclared(var, decl->get_location(), state,
4669 false /* allow_all_redeclarations */);
4670 if (earlier != NULL) {
4671 if (var_is_gl_id &&
4672 earlier->data.how_declared == ir_var_declared_in_block) {
4673 _mesa_glsl_error(&loc, state,
4674 "`%s' has already been redeclared using "
4675 "gl_PerVertex", earlier->name);
4676 }
4677 earlier->data.how_declared = ir_var_declared_normally;
4678 }
4679
4680 if (decl->initializer != NULL) {
4681 result = process_initializer((earlier == NULL) ? var : earlier,
4682 decl, this->type,
4683 &initializer_instructions, state);
4684 } else {
4685 validate_array_dimensions(var_type, state, &loc);
4686 }
4687
4688 /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
4689 *
4690 * "It is an error to write to a const variable outside of
4691 * its declaration, so they must be initialized when
4692 * declared."
4693 */
4694 if (this->type->qualifier.flags.q.constant && decl->initializer == NULL) {
4695 _mesa_glsl_error(& loc, state,
4696 "const declaration of `%s' must be initialized",
4697 decl->identifier);
4698 }
4699
4700 if (state->es_shader) {
4701 const glsl_type *const t = (earlier == NULL)
4702 ? var->type : earlier->type;
4703
4704 if (t->is_unsized_array())
4705 /* Section 10.17 of the GLSL ES 1.00 specification states that
4706 * unsized array declarations have been removed from the language.
4707 * Arrays that are sized using an initializer are still explicitly
4708 * sized. However, GLSL ES 1.00 does not allow array
4709 * initializers. That is only allowed in GLSL ES 3.00.
4710 *
4711 * Section 4.1.9 (Arrays) of the GLSL ES 3.00 spec says:
4712 *
4713 * "An array type can also be formed without specifying a size
4714 * if the definition includes an initializer:
4715 *
4716 * float x[] = float[2] (1.0, 2.0); // declares an array of size 2
4717 * float y[] = float[] (1.0, 2.0, 3.0); // declares an array of size 3
4718 *
4719 * float a[5];
4720 * float b[] = a;"
4721 */
4722 _mesa_glsl_error(& loc, state,
4723 "unsized array declarations are not allowed in "
4724 "GLSL ES");
4725 }
4726
4727 /* If the declaration is not a redeclaration, there are a few additional
4728 * semantic checks that must be applied. In addition, variable that was
4729 * created for the declaration should be added to the IR stream.
4730 */
4731 if (earlier == NULL) {
4732 validate_identifier(decl->identifier, loc, state);
4733
4734 /* Add the variable to the symbol table. Note that the initializer's
4735 * IR was already processed earlier (though it hasn't been emitted
4736 * yet), without the variable in scope.
4737 *
4738 * This differs from most C-like languages, but it follows the GLSL
4739 * specification. From page 28 (page 34 of the PDF) of the GLSL 1.50
4740 * spec:
4741 *
4742 * "Within a declaration, the scope of a name starts immediately
4743 * after the initializer if present or immediately after the name
4744 * being declared if not."
4745 */
4746 if (!state->symbols->add_variable(var)) {
4747 YYLTYPE loc = this->get_location();
4748 _mesa_glsl_error(&loc, state, "name `%s' already taken in the "
4749 "current scope", decl->identifier);
4750 continue;
4751 }
4752
4753 /* Push the variable declaration to the top. It means that all the
4754 * variable declarations will appear in a funny last-to-first order,
4755 * but otherwise we run into trouble if a function is prototyped, a
4756 * global var is decled, then the function is defined with usage of
4757 * the global var. See glslparsertest's CorrectModule.frag.
4758 */
4759 instructions->push_head(var);
4760 }
4761
4762 instructions->append_list(&initializer_instructions);
4763 }
4764
4765
4766 /* Generally, variable declarations do not have r-values. However,
4767 * one is used for the declaration in
4768 *
4769 * while (bool b = some_condition()) {
4770 * ...
4771 * }
4772 *
4773 * so we return the rvalue from the last seen declaration here.
4774 */
4775 return result;
4776 }
4777
4778
4779 ir_rvalue *
4780 ast_parameter_declarator::hir(exec_list *instructions,
4781 struct _mesa_glsl_parse_state *state)
4782 {
4783 void *ctx = state;
4784 const struct glsl_type *type;
4785 const char *name = NULL;
4786 YYLTYPE loc = this->get_location();
4787
4788 type = this->type->glsl_type(& name, state);
4789
4790 if (type == NULL) {
4791 if (name != NULL) {
4792 _mesa_glsl_error(& loc, state,
4793 "invalid type `%s' in declaration of `%s'",
4794 name, this->identifier);
4795 } else {
4796 _mesa_glsl_error(& loc, state,
4797 "invalid type in declaration of `%s'",
4798 this->identifier);
4799 }
4800
4801 type = glsl_type::error_type;
4802 }
4803
4804 /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
4805 *
4806 * "Functions that accept no input arguments need not use void in the
4807 * argument list because prototypes (or definitions) are required and
4808 * therefore there is no ambiguity when an empty argument list "( )" is
4809 * declared. The idiom "(void)" as a parameter list is provided for
4810 * convenience."
4811 *
4812 * Placing this check here prevents a void parameter being set up
4813 * for a function, which avoids tripping up checks for main taking
4814 * parameters and lookups of an unnamed symbol.
4815 */
4816 if (type->is_void()) {
4817 if (this->identifier != NULL)
4818 _mesa_glsl_error(& loc, state,
4819 "named parameter cannot have type `void'");
4820
4821 is_void = true;
4822 return NULL;
4823 }
4824
4825 if (formal_parameter && (this->identifier == NULL)) {
4826 _mesa_glsl_error(& loc, state, "formal parameter lacks a name");
4827 return NULL;
4828 }
4829
4830 /* This only handles "vec4 foo[..]". The earlier specifier->glsl_type(...)
4831 * call already handled the "vec4[..] foo" case.
4832 */
4833 type = process_array_type(&loc, type, this->array_specifier, state);
4834
4835 if (!type->is_error() && type->is_unsized_array()) {
4836 _mesa_glsl_error(&loc, state, "arrays passed as parameters must have "
4837 "a declared size");
4838 type = glsl_type::error_type;
4839 }
4840
4841 is_void = false;
4842 ir_variable *var = new(ctx)
4843 ir_variable(type, this->identifier, ir_var_function_in);
4844
4845 /* Apply any specified qualifiers to the parameter declaration. Note that
4846 * for function parameters the default mode is 'in'.
4847 */
4848 apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc,
4849 true);
4850
4851 /* From section 4.1.7 of the GLSL 4.40 spec:
4852 *
4853 * "Opaque variables cannot be treated as l-values; hence cannot
4854 * be used as out or inout function parameters, nor can they be
4855 * assigned into."
4856 */
4857 if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
4858 && type->contains_opaque()) {
4859 _mesa_glsl_error(&loc, state, "out and inout parameters cannot "
4860 "contain opaque variables");
4861 type = glsl_type::error_type;
4862 }
4863
4864 /* From page 39 (page 45 of the PDF) of the GLSL 1.10 spec:
4865 *
4866 * "When calling a function, expressions that do not evaluate to
4867 * l-values cannot be passed to parameters declared as out or inout."
4868 *
4869 * From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
4870 *
4871 * "Other binary or unary expressions, non-dereferenced arrays,
4872 * function names, swizzles with repeated fields, and constants
4873 * cannot be l-values."
4874 *
4875 * So for GLSL 1.10, passing an array as an out or inout parameter is not
4876 * allowed. This restriction is removed in GLSL 1.20, and in GLSL ES.
4877 */
4878 if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
4879 && type->is_array()
4880 && !state->check_version(120, 100, &loc,
4881 "arrays cannot be out or inout parameters")) {
4882 type = glsl_type::error_type;
4883 }
4884
4885 instructions->push_tail(var);
4886
4887 /* Parameter declarations do not have r-values.
4888 */
4889 return NULL;
4890 }
4891
4892
4893 void
4894 ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters,
4895 bool formal,
4896 exec_list *ir_parameters,
4897 _mesa_glsl_parse_state *state)
4898 {
4899 ast_parameter_declarator *void_param = NULL;
4900 unsigned count = 0;
4901
4902 foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) {
4903 param->formal_parameter = formal;
4904 param->hir(ir_parameters, state);
4905
4906 if (param->is_void)
4907 void_param = param;
4908
4909 count++;
4910 }
4911
4912 if ((void_param != NULL) && (count > 1)) {
4913 YYLTYPE loc = void_param->get_location();
4914
4915 _mesa_glsl_error(& loc, state,
4916 "`void' parameter must be only parameter");
4917 }
4918 }
4919
4920
4921 void
4922 emit_function(_mesa_glsl_parse_state *state, ir_function *f)
4923 {
4924 /* IR invariants disallow function declarations or definitions
4925 * nested within other function definitions. But there is no
4926 * requirement about the relative order of function declarations
4927 * and definitions with respect to one another. So simply insert
4928 * the new ir_function block at the end of the toplevel instruction
4929 * list.
4930 */
4931 state->toplevel_ir->push_tail(f);
4932 }
4933
4934
4935 ir_rvalue *
4936 ast_function::hir(exec_list *instructions,
4937 struct _mesa_glsl_parse_state *state)
4938 {
4939 void *ctx = state;
4940 ir_function *f = NULL;
4941 ir_function_signature *sig = NULL;
4942 exec_list hir_parameters;
4943 YYLTYPE loc = this->get_location();
4944
4945 const char *const name = identifier;
4946
4947 /* New functions are always added to the top-level IR instruction stream,
4948 * so this instruction list pointer is ignored. See also emit_function
4949 * (called below).
4950 */
4951 (void) instructions;
4952
4953 /* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec,
4954 *
4955 * "Function declarations (prototypes) cannot occur inside of functions;
4956 * they must be at global scope, or for the built-in functions, outside
4957 * the global scope."
4958 *
4959 * From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec,
4960 *
4961 * "User defined functions may only be defined within the global scope."
4962 *
4963 * Note that this language does not appear in GLSL 1.10.
4964 */
4965 if ((state->current_function != NULL) &&
4966 state->is_version(120, 100)) {
4967 YYLTYPE loc = this->get_location();
4968 _mesa_glsl_error(&loc, state,
4969 "declaration of function `%s' not allowed within "
4970 "function body", name);
4971 }
4972
4973 validate_identifier(name, this->get_location(), state);
4974
4975 /* Convert the list of function parameters to HIR now so that they can be
4976 * used below to compare this function's signature with previously seen
4977 * signatures for functions with the same name.
4978 */
4979 ast_parameter_declarator::parameters_to_hir(& this->parameters,
4980 is_definition,
4981 & hir_parameters, state);
4982
4983 const char *return_type_name;
4984 const glsl_type *return_type =
4985 this->return_type->glsl_type(& return_type_name, state);
4986
4987 if (!return_type) {
4988 YYLTYPE loc = this->get_location();
4989 _mesa_glsl_error(&loc, state,
4990 "function `%s' has undeclared return type `%s'",
4991 name, return_type_name);
4992 return_type = glsl_type::error_type;
4993 }
4994
4995 /* ARB_shader_subroutine states:
4996 * "Subroutine declarations cannot be prototyped. It is an error to prepend
4997 * subroutine(...) to a function declaration."
4998 */
4999 if (this->return_type->qualifier.flags.q.subroutine_def && !is_definition) {
5000 YYLTYPE loc = this->get_location();
5001 _mesa_glsl_error(&loc, state,
5002 "function declaration `%s' cannot have subroutine prepended",
5003 name);
5004 }
5005
5006 /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec:
5007 * "No qualifier is allowed on the return type of a function."
5008 */
5009 if (this->return_type->has_qualifiers()) {
5010 YYLTYPE loc = this->get_location();
5011 _mesa_glsl_error(& loc, state,
5012 "function `%s' return type has qualifiers", name);
5013 }
5014
5015 /* Section 6.1 (Function Definitions) of the GLSL 1.20 spec says:
5016 *
5017 * "Arrays are allowed as arguments and as the return type. In both
5018 * cases, the array must be explicitly sized."
5019 */
5020 if (return_type->is_unsized_array()) {
5021 YYLTYPE loc = this->get_location();
5022 _mesa_glsl_error(& loc, state,
5023 "function `%s' return type array must be explicitly "
5024 "sized", name);
5025 }
5026
5027 /* From section 4.1.7 of the GLSL 4.40 spec:
5028 *
5029 * "[Opaque types] can only be declared as function parameters
5030 * or uniform-qualified variables."
5031 */
5032 if (return_type->contains_opaque()) {
5033 YYLTYPE loc = this->get_location();
5034 _mesa_glsl_error(&loc, state,
5035 "function `%s' return type can't contain an opaque type",
5036 name);
5037 }
5038
5039 /* Create an ir_function if one doesn't already exist. */
5040 f = state->symbols->get_function(name);
5041 if (f == NULL) {
5042 f = new(ctx) ir_function(name);
5043 if (!this->return_type->qualifier.flags.q.subroutine) {
5044 if (!state->symbols->add_function(f)) {
5045 /* This function name shadows a non-function use of the same name. */
5046 YYLTYPE loc = this->get_location();
5047 _mesa_glsl_error(&loc, state, "function name `%s' conflicts with "
5048 "non-function", name);
5049 return NULL;
5050 }
5051 }
5052 emit_function(state, f);
5053 }
5054
5055 /* From GLSL ES 3.0 spec, chapter 6.1 "Function Definitions", page 71:
5056 *
5057 * "A shader cannot redefine or overload built-in functions."
5058 *
5059 * While in GLSL ES 1.0 specification, chapter 8 "Built-in Functions":
5060 *
5061 * "User code can overload the built-in functions but cannot redefine
5062 * them."
5063 */
5064 if (state->es_shader && state->language_version >= 300) {
5065 /* Local shader has no exact candidates; check the built-ins. */
5066 _mesa_glsl_initialize_builtin_functions();
5067 if (_mesa_glsl_find_builtin_function_by_name(name)) {
5068 YYLTYPE loc = this->get_location();
5069 _mesa_glsl_error(& loc, state,
5070 "A shader cannot redefine or overload built-in "
5071 "function `%s' in GLSL ES 3.00", name);
5072 return NULL;
5073 }
5074 }
5075
5076 /* Verify that this function's signature either doesn't match a previously
5077 * seen signature for a function with the same name, or, if a match is found,
5078 * that the previously seen signature does not have an associated definition.
5079 */
5080 if (state->es_shader || f->has_user_signature()) {
5081 sig = f->exact_matching_signature(state, &hir_parameters);
5082 if (sig != NULL) {
5083 const char *badvar = sig->qualifiers_match(&hir_parameters);
5084 if (badvar != NULL) {
5085 YYLTYPE loc = this->get_location();
5086
5087 _mesa_glsl_error(&loc, state, "function `%s' parameter `%s' "
5088 "qualifiers don't match prototype", name, badvar);
5089 }
5090
5091 if (sig->return_type != return_type) {
5092 YYLTYPE loc = this->get_location();
5093
5094 _mesa_glsl_error(&loc, state, "function `%s' return type doesn't "
5095 "match prototype", name);
5096 }
5097
5098 if (sig->is_defined) {
5099 if (is_definition) {
5100 YYLTYPE loc = this->get_location();
5101 _mesa_glsl_error(& loc, state, "function `%s' redefined", name);
5102 } else {
5103 /* We just encountered a prototype that exactly matches a
5104 * function that's already been defined. This is redundant,
5105 * and we should ignore it.
5106 */
5107 return NULL;
5108 }
5109 }
5110 }
5111 }
5112
5113 /* Verify the return type of main() */
5114 if (strcmp(name, "main") == 0) {
5115 if (! return_type->is_void()) {
5116 YYLTYPE loc = this->get_location();
5117
5118 _mesa_glsl_error(& loc, state, "main() must return void");
5119 }
5120
5121 if (!hir_parameters.is_empty()) {
5122 YYLTYPE loc = this->get_location();
5123
5124 _mesa_glsl_error(& loc, state, "main() must not take any parameters");
5125 }
5126 }
5127
5128 /* Finish storing the information about this new function in its signature.
5129 */
5130 if (sig == NULL) {
5131 sig = new(ctx) ir_function_signature(return_type);
5132 f->add_signature(sig);
5133 }
5134
5135 sig->replace_parameters(&hir_parameters);
5136 signature = sig;
5137
5138 if (this->return_type->qualifier.flags.q.subroutine_def) {
5139 int idx;
5140
5141 f->num_subroutine_types = this->return_type->qualifier.subroutine_list->declarations.length();
5142 f->subroutine_types = ralloc_array(state, const struct glsl_type *,
5143 f->num_subroutine_types);
5144 idx = 0;
5145 foreach_list_typed(ast_declaration, decl, link, &this->return_type->qualifier.subroutine_list->declarations) {
5146 const struct glsl_type *type;
5147 /* the subroutine type must be already declared */
5148 type = state->symbols->get_type(decl->identifier);
5149 if (!type) {
5150 _mesa_glsl_error(& loc, state, "unknown type '%s' in subroutine function definition", decl->identifier);
5151 }
5152 f->subroutine_types[idx++] = type;
5153 }
5154 state->subroutines = (ir_function **)reralloc(state, state->subroutines,
5155 ir_function *,
5156 state->num_subroutines + 1);
5157 state->subroutines[state->num_subroutines] = f;
5158 state->num_subroutines++;
5159
5160 }
5161
5162 if (this->return_type->qualifier.flags.q.subroutine) {
5163 if (!state->symbols->add_type(this->identifier, glsl_type::get_subroutine_instance(this->identifier))) {
5164 _mesa_glsl_error(& loc, state, "type '%s' previously defined", this->identifier);
5165 return NULL;
5166 }
5167 state->subroutine_types = (ir_function **)reralloc(state, state->subroutine_types,
5168 ir_function *,
5169 state->num_subroutine_types + 1);
5170 state->subroutine_types[state->num_subroutine_types] = f;
5171 state->num_subroutine_types++;
5172
5173 f->is_subroutine = true;
5174 }
5175
5176 /* Function declarations (prototypes) do not have r-values.
5177 */
5178 return NULL;
5179 }
5180
5181
5182 ir_rvalue *
5183 ast_function_definition::hir(exec_list *instructions,
5184 struct _mesa_glsl_parse_state *state)
5185 {
5186 prototype->is_definition = true;
5187 prototype->hir(instructions, state);
5188
5189 ir_function_signature *signature = prototype->signature;
5190 if (signature == NULL)
5191 return NULL;
5192
5193 assert(state->current_function == NULL);
5194 state->current_function = signature;
5195 state->found_return = false;
5196
5197 /* Duplicate parameters declared in the prototype as concrete variables.
5198 * Add these to the symbol table.
5199 */
5200 state->symbols->push_scope();
5201 foreach_in_list(ir_variable, var, &signature->parameters) {
5202 assert(var->as_variable() != NULL);
5203
5204 /* The only way a parameter would "exist" is if two parameters have
5205 * the same name.
5206 */
5207 if (state->symbols->name_declared_this_scope(var->name)) {
5208 YYLTYPE loc = this->get_location();
5209
5210 _mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name);
5211 } else {
5212 state->symbols->add_variable(var);
5213 }
5214 }
5215
5216 /* Convert the body of the function to HIR. */
5217 this->body->hir(&signature->body, state);
5218 signature->is_defined = true;
5219
5220 state->symbols->pop_scope();
5221
5222 assert(state->current_function == signature);
5223 state->current_function = NULL;
5224
5225 if (!signature->return_type->is_void() && !state->found_return) {
5226 YYLTYPE loc = this->get_location();
5227 _mesa_glsl_error(& loc, state, "function `%s' has non-void return type "
5228 "%s, but no return statement",
5229 signature->function_name(),
5230 signature->return_type->name);
5231 }
5232
5233 /* Function definitions do not have r-values.
5234 */
5235 return NULL;
5236 }
5237
5238
5239 ir_rvalue *
5240 ast_jump_statement::hir(exec_list *instructions,
5241 struct _mesa_glsl_parse_state *state)
5242 {
5243 void *ctx = state;
5244
5245 switch (mode) {
5246 case ast_return: {
5247 ir_return *inst;
5248 assert(state->current_function);
5249
5250 if (opt_return_value) {
5251 ir_rvalue *ret = opt_return_value->hir(instructions, state);
5252
5253 /* The value of the return type can be NULL if the shader says
5254 * 'return foo();' and foo() is a function that returns void.
5255 *
5256 * NOTE: The GLSL spec doesn't say that this is an error. The type
5257 * of the return value is void. If the return type of the function is
5258 * also void, then this should compile without error. Seriously.
5259 */
5260 const glsl_type *const ret_type =
5261 (ret == NULL) ? glsl_type::void_type : ret->type;
5262
5263 /* Implicit conversions are not allowed for return values prior to
5264 * ARB_shading_language_420pack.
5265 */
5266 if (state->current_function->return_type != ret_type) {
5267 YYLTYPE loc = this->get_location();
5268
5269 if (state->ARB_shading_language_420pack_enable) {
5270 if (!apply_implicit_conversion(state->current_function->return_type,
5271 ret, state)) {
5272 _mesa_glsl_error(& loc, state,
5273 "could not implicitly convert return value "
5274 "to %s, in function `%s'",
5275 state->current_function->return_type->name,
5276 state->current_function->function_name());
5277 }
5278 } else {
5279 _mesa_glsl_error(& loc, state,
5280 "`return' with wrong type %s, in function `%s' "
5281 "returning %s",
5282 ret_type->name,
5283 state->current_function->function_name(),
5284 state->current_function->return_type->name);
5285 }
5286 } else if (state->current_function->return_type->base_type ==
5287 GLSL_TYPE_VOID) {
5288 YYLTYPE loc = this->get_location();
5289
5290 /* The ARB_shading_language_420pack, GLSL ES 3.0, and GLSL 4.20
5291 * specs add a clarification:
5292 *
5293 * "A void function can only use return without a return argument, even if
5294 * the return argument has void type. Return statements only accept values:
5295 *
5296 * void func1() { }
5297 * void func2() { return func1(); } // illegal return statement"
5298 */
5299 _mesa_glsl_error(& loc, state,
5300 "void functions can only use `return' without a "
5301 "return argument");
5302 }
5303
5304 inst = new(ctx) ir_return(ret);
5305 } else {
5306 if (state->current_function->return_type->base_type !=
5307 GLSL_TYPE_VOID) {
5308 YYLTYPE loc = this->get_location();
5309
5310 _mesa_glsl_error(& loc, state,
5311 "`return' with no value, in function %s returning "
5312 "non-void",
5313 state->current_function->function_name());
5314 }
5315 inst = new(ctx) ir_return;
5316 }
5317
5318 state->found_return = true;
5319 instructions->push_tail(inst);
5320 break;
5321 }
5322
5323 case ast_discard:
5324 if (state->stage != MESA_SHADER_FRAGMENT) {
5325 YYLTYPE loc = this->get_location();
5326
5327 _mesa_glsl_error(& loc, state,
5328 "`discard' may only appear in a fragment shader");
5329 }
5330 instructions->push_tail(new(ctx) ir_discard);
5331 break;
5332
5333 case ast_break:
5334 case ast_continue:
5335 if (mode == ast_continue &&
5336 state->loop_nesting_ast == NULL) {
5337 YYLTYPE loc = this->get_location();
5338
5339 _mesa_glsl_error(& loc, state, "continue may only appear in a loop");
5340 } else if (mode == ast_break &&
5341 state->loop_nesting_ast == NULL &&
5342 state->switch_state.switch_nesting_ast == NULL) {
5343 YYLTYPE loc = this->get_location();
5344
5345 _mesa_glsl_error(& loc, state,
5346 "break may only appear in a loop or a switch");
5347 } else {
5348 /* For a loop, inline the for loop expression again, since we don't
5349 * know where near the end of the loop body the normal copy of it is
5350 * going to be placed. Same goes for the condition for a do-while
5351 * loop.
5352 */
5353 if (state->loop_nesting_ast != NULL &&
5354 mode == ast_continue && !state->switch_state.is_switch_innermost) {
5355 if (state->loop_nesting_ast->rest_expression) {
5356 state->loop_nesting_ast->rest_expression->hir(instructions,
5357 state);
5358 }
5359 if (state->loop_nesting_ast->mode ==
5360 ast_iteration_statement::ast_do_while) {
5361 state->loop_nesting_ast->condition_to_hir(instructions, state);
5362 }
5363 }
5364
5365 if (state->switch_state.is_switch_innermost &&
5366 mode == ast_continue) {
5367 /* Set 'continue_inside' to true. */
5368 ir_rvalue *const true_val = new (ctx) ir_constant(true);
5369 ir_dereference_variable *deref_continue_inside_var =
5370 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
5371 instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
5372 true_val));
5373
5374 /* Break out from the switch, continue for the loop will
5375 * be called right after switch. */
5376 ir_loop_jump *const jump =
5377 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
5378 instructions->push_tail(jump);
5379
5380 } else if (state->switch_state.is_switch_innermost &&
5381 mode == ast_break) {
5382 /* Force break out of switch by inserting a break. */
5383 ir_loop_jump *const jump =
5384 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
5385 instructions->push_tail(jump);
5386 } else {
5387 ir_loop_jump *const jump =
5388 new(ctx) ir_loop_jump((mode == ast_break)
5389 ? ir_loop_jump::jump_break
5390 : ir_loop_jump::jump_continue);
5391 instructions->push_tail(jump);
5392 }
5393 }
5394
5395 break;
5396 }
5397
5398 /* Jump instructions do not have r-values.
5399 */
5400 return NULL;
5401 }
5402
5403
5404 ir_rvalue *
5405 ast_selection_statement::hir(exec_list *instructions,
5406 struct _mesa_glsl_parse_state *state)
5407 {
5408 void *ctx = state;
5409
5410 ir_rvalue *const condition = this->condition->hir(instructions, state);
5411
5412 /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
5413 *
5414 * "Any expression whose type evaluates to a Boolean can be used as the
5415 * conditional expression bool-expression. Vector types are not accepted
5416 * as the expression to if."
5417 *
5418 * The checks are separated so that higher quality diagnostics can be
5419 * generated for cases where both rules are violated.
5420 */
5421 if (!condition->type->is_boolean() || !condition->type->is_scalar()) {
5422 YYLTYPE loc = this->condition->get_location();
5423
5424 _mesa_glsl_error(& loc, state, "if-statement condition must be scalar "
5425 "boolean");
5426 }
5427
5428 ir_if *const stmt = new(ctx) ir_if(condition);
5429
5430 if (then_statement != NULL) {
5431 state->symbols->push_scope();
5432 then_statement->hir(& stmt->then_instructions, state);
5433 state->symbols->pop_scope();
5434 }
5435
5436 if (else_statement != NULL) {
5437 state->symbols->push_scope();
5438 else_statement->hir(& stmt->else_instructions, state);
5439 state->symbols->pop_scope();
5440 }
5441
5442 instructions->push_tail(stmt);
5443
5444 /* if-statements do not have r-values.
5445 */
5446 return NULL;
5447 }
5448
5449
5450 ir_rvalue *
5451 ast_switch_statement::hir(exec_list *instructions,
5452 struct _mesa_glsl_parse_state *state)
5453 {
5454 void *ctx = state;
5455
5456 ir_rvalue *const test_expression =
5457 this->test_expression->hir(instructions, state);
5458
5459 /* From page 66 (page 55 of the PDF) of the GLSL 1.50 spec:
5460 *
5461 * "The type of init-expression in a switch statement must be a
5462 * scalar integer."
5463 */
5464 if (!test_expression->type->is_scalar() ||
5465 !test_expression->type->is_integer()) {
5466 YYLTYPE loc = this->test_expression->get_location();
5467
5468 _mesa_glsl_error(& loc,
5469 state,
5470 "switch-statement expression must be scalar "
5471 "integer");
5472 }
5473
5474 /* Track the switch-statement nesting in a stack-like manner.
5475 */
5476 struct glsl_switch_state saved = state->switch_state;
5477
5478 state->switch_state.is_switch_innermost = true;
5479 state->switch_state.switch_nesting_ast = this;
5480 state->switch_state.labels_ht = hash_table_ctor(0, hash_table_pointer_hash,
5481 hash_table_pointer_compare);
5482 state->switch_state.previous_default = NULL;
5483
5484 /* Initalize is_fallthru state to false.
5485 */
5486 ir_rvalue *const is_fallthru_val = new (ctx) ir_constant(false);
5487 state->switch_state.is_fallthru_var =
5488 new(ctx) ir_variable(glsl_type::bool_type,
5489 "switch_is_fallthru_tmp",
5490 ir_var_temporary);
5491 instructions->push_tail(state->switch_state.is_fallthru_var);
5492
5493 ir_dereference_variable *deref_is_fallthru_var =
5494 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
5495 instructions->push_tail(new(ctx) ir_assignment(deref_is_fallthru_var,
5496 is_fallthru_val));
5497
5498 /* Initialize continue_inside state to false.
5499 */
5500 state->switch_state.continue_inside =
5501 new(ctx) ir_variable(glsl_type::bool_type,
5502 "continue_inside_tmp",
5503 ir_var_temporary);
5504 instructions->push_tail(state->switch_state.continue_inside);
5505
5506 ir_rvalue *const false_val = new (ctx) ir_constant(false);
5507 ir_dereference_variable *deref_continue_inside_var =
5508 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
5509 instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
5510 false_val));
5511
5512 state->switch_state.run_default =
5513 new(ctx) ir_variable(glsl_type::bool_type,
5514 "run_default_tmp",
5515 ir_var_temporary);
5516 instructions->push_tail(state->switch_state.run_default);
5517
5518 /* Loop around the switch is used for flow control. */
5519 ir_loop * loop = new(ctx) ir_loop();
5520 instructions->push_tail(loop);
5521
5522 /* Cache test expression.
5523 */
5524 test_to_hir(&loop->body_instructions, state);
5525
5526 /* Emit code for body of switch stmt.
5527 */
5528 body->hir(&loop->body_instructions, state);
5529
5530 /* Insert a break at the end to exit loop. */
5531 ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
5532 loop->body_instructions.push_tail(jump);
5533
5534 /* If we are inside loop, check if continue got called inside switch. */
5535 if (state->loop_nesting_ast != NULL) {
5536 ir_dereference_variable *deref_continue_inside =
5537 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
5538 ir_if *irif = new(ctx) ir_if(deref_continue_inside);
5539 ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_continue);
5540
5541 if (state->loop_nesting_ast != NULL) {
5542 if (state->loop_nesting_ast->rest_expression) {
5543 state->loop_nesting_ast->rest_expression->hir(&irif->then_instructions,
5544 state);
5545 }
5546 if (state->loop_nesting_ast->mode ==
5547 ast_iteration_statement::ast_do_while) {
5548 state->loop_nesting_ast->condition_to_hir(&irif->then_instructions, state);
5549 }
5550 }
5551 irif->then_instructions.push_tail(jump);
5552 instructions->push_tail(irif);
5553 }
5554
5555 hash_table_dtor(state->switch_state.labels_ht);
5556
5557 state->switch_state = saved;
5558
5559 /* Switch statements do not have r-values. */
5560 return NULL;
5561 }
5562
5563
5564 void
5565 ast_switch_statement::test_to_hir(exec_list *instructions,
5566 struct _mesa_glsl_parse_state *state)
5567 {
5568 void *ctx = state;
5569
5570 /* Cache value of test expression. */
5571 ir_rvalue *const test_val =
5572 test_expression->hir(instructions,
5573 state);
5574
5575 state->switch_state.test_var = new(ctx) ir_variable(test_val->type,
5576 "switch_test_tmp",
5577 ir_var_temporary);
5578 ir_dereference_variable *deref_test_var =
5579 new(ctx) ir_dereference_variable(state->switch_state.test_var);
5580
5581 instructions->push_tail(state->switch_state.test_var);
5582 instructions->push_tail(new(ctx) ir_assignment(deref_test_var, test_val));
5583 }
5584
5585
5586 ir_rvalue *
5587 ast_switch_body::hir(exec_list *instructions,
5588 struct _mesa_glsl_parse_state *state)
5589 {
5590 if (stmts != NULL)
5591 stmts->hir(instructions, state);
5592
5593 /* Switch bodies do not have r-values. */
5594 return NULL;
5595 }
5596
5597 ir_rvalue *
5598 ast_case_statement_list::hir(exec_list *instructions,
5599 struct _mesa_glsl_parse_state *state)
5600 {
5601 exec_list default_case, after_default, tmp;
5602
5603 foreach_list_typed (ast_case_statement, case_stmt, link, & this->cases) {
5604 case_stmt->hir(&tmp, state);
5605
5606 /* Default case. */
5607 if (state->switch_state.previous_default && default_case.is_empty()) {
5608 default_case.append_list(&tmp);
5609 continue;
5610 }
5611
5612 /* If default case found, append 'after_default' list. */
5613 if (!default_case.is_empty())
5614 after_default.append_list(&tmp);
5615 else
5616 instructions->append_list(&tmp);
5617 }
5618
5619 /* Handle the default case. This is done here because default might not be
5620 * the last case. We need to add checks against following cases first to see
5621 * if default should be chosen or not.
5622 */
5623 if (!default_case.is_empty()) {
5624
5625 ir_rvalue *const true_val = new (state) ir_constant(true);
5626 ir_dereference_variable *deref_run_default_var =
5627 new(state) ir_dereference_variable(state->switch_state.run_default);
5628
5629 /* Choose to run default case initially, following conditional
5630 * assignments might change this.
5631 */
5632 ir_assignment *const init_var =
5633 new(state) ir_assignment(deref_run_default_var, true_val);
5634 instructions->push_tail(init_var);
5635
5636 /* Default case was the last one, no checks required. */
5637 if (after_default.is_empty()) {
5638 instructions->append_list(&default_case);
5639 return NULL;
5640 }
5641
5642 foreach_in_list(ir_instruction, ir, &after_default) {
5643 ir_assignment *assign = ir->as_assignment();
5644
5645 if (!assign)
5646 continue;
5647
5648 /* Clone the check between case label and init expression. */
5649 ir_expression *exp = (ir_expression*) assign->condition;
5650 ir_expression *clone = exp->clone(state, NULL);
5651
5652 ir_dereference_variable *deref_var =
5653 new(state) ir_dereference_variable(state->switch_state.run_default);
5654 ir_rvalue *const false_val = new (state) ir_constant(false);
5655
5656 ir_assignment *const set_false =
5657 new(state) ir_assignment(deref_var, false_val, clone);
5658
5659 instructions->push_tail(set_false);
5660 }
5661
5662 /* Append default case and all cases after it. */
5663 instructions->append_list(&default_case);
5664 instructions->append_list(&after_default);
5665 }
5666
5667 /* Case statements do not have r-values. */
5668 return NULL;
5669 }
5670
5671 ir_rvalue *
5672 ast_case_statement::hir(exec_list *instructions,
5673 struct _mesa_glsl_parse_state *state)
5674 {
5675 labels->hir(instructions, state);
5676
5677 /* Guard case statements depending on fallthru state. */
5678 ir_dereference_variable *const deref_fallthru_guard =
5679 new(state) ir_dereference_variable(state->switch_state.is_fallthru_var);
5680 ir_if *const test_fallthru = new(state) ir_if(deref_fallthru_guard);
5681
5682 foreach_list_typed (ast_node, stmt, link, & this->stmts)
5683 stmt->hir(& test_fallthru->then_instructions, state);
5684
5685 instructions->push_tail(test_fallthru);
5686
5687 /* Case statements do not have r-values. */
5688 return NULL;
5689 }
5690
5691
5692 ir_rvalue *
5693 ast_case_label_list::hir(exec_list *instructions,
5694 struct _mesa_glsl_parse_state *state)
5695 {
5696 foreach_list_typed (ast_case_label, label, link, & this->labels)
5697 label->hir(instructions, state);
5698
5699 /* Case labels do not have r-values. */
5700 return NULL;
5701 }
5702
5703 ir_rvalue *
5704 ast_case_label::hir(exec_list *instructions,
5705 struct _mesa_glsl_parse_state *state)
5706 {
5707 void *ctx = state;
5708
5709 ir_dereference_variable *deref_fallthru_var =
5710 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
5711
5712 ir_rvalue *const true_val = new(ctx) ir_constant(true);
5713
5714 /* If not default case, ... */
5715 if (this->test_value != NULL) {
5716 /* Conditionally set fallthru state based on
5717 * comparison of cached test expression value to case label.
5718 */
5719 ir_rvalue *const label_rval = this->test_value->hir(instructions, state);
5720 ir_constant *label_const = label_rval->constant_expression_value();
5721
5722 if (!label_const) {
5723 YYLTYPE loc = this->test_value->get_location();
5724
5725 _mesa_glsl_error(& loc, state,
5726 "switch statement case label must be a "
5727 "constant expression");
5728
5729 /* Stuff a dummy value in to allow processing to continue. */
5730 label_const = new(ctx) ir_constant(0);
5731 } else {
5732 ast_expression *previous_label = (ast_expression *)
5733 hash_table_find(state->switch_state.labels_ht,
5734 (void *)(uintptr_t)label_const->value.u[0]);
5735
5736 if (previous_label) {
5737 YYLTYPE loc = this->test_value->get_location();
5738 _mesa_glsl_error(& loc, state, "duplicate case value");
5739
5740 loc = previous_label->get_location();
5741 _mesa_glsl_error(& loc, state, "this is the previous case label");
5742 } else {
5743 hash_table_insert(state->switch_state.labels_ht,
5744 this->test_value,
5745 (void *)(uintptr_t)label_const->value.u[0]);
5746 }
5747 }
5748
5749 ir_dereference_variable *deref_test_var =
5750 new(ctx) ir_dereference_variable(state->switch_state.test_var);
5751
5752 ir_expression *test_cond = new(ctx) ir_expression(ir_binop_all_equal,
5753 label_const,
5754 deref_test_var);
5755
5756 /*
5757 * From GLSL 4.40 specification section 6.2 ("Selection"):
5758 *
5759 * "The type of the init-expression value in a switch statement must
5760 * be a scalar int or uint. The type of the constant-expression value
5761 * in a case label also must be a scalar int or uint. When any pair
5762 * of these values is tested for "equal value" and the types do not
5763 * match, an implicit conversion will be done to convert the int to a
5764 * uint (see section 4.1.10 “Implicit Conversions”) before the compare
5765 * is done."
5766 */
5767 if (label_const->type != state->switch_state.test_var->type) {
5768 YYLTYPE loc = this->test_value->get_location();
5769
5770 const glsl_type *type_a = label_const->type;
5771 const glsl_type *type_b = state->switch_state.test_var->type;
5772
5773 /* Check if int->uint implicit conversion is supported. */
5774 bool integer_conversion_supported =
5775 glsl_type::int_type->can_implicitly_convert_to(glsl_type::uint_type,
5776 state);
5777
5778 if ((!type_a->is_integer() || !type_b->is_integer()) ||
5779 !integer_conversion_supported) {
5780 _mesa_glsl_error(&loc, state, "type mismatch with switch "
5781 "init-expression and case label (%s != %s)",
5782 type_a->name, type_b->name);
5783 } else {
5784 /* Conversion of the case label. */
5785 if (type_a->base_type == GLSL_TYPE_INT) {
5786 if (!apply_implicit_conversion(glsl_type::uint_type,
5787 test_cond->operands[0], state))
5788 _mesa_glsl_error(&loc, state, "implicit type conversion error");
5789 } else {
5790 /* Conversion of the init-expression value. */
5791 if (!apply_implicit_conversion(glsl_type::uint_type,
5792 test_cond->operands[1], state))
5793 _mesa_glsl_error(&loc, state, "implicit type conversion error");
5794 }
5795 }
5796 }
5797
5798 ir_assignment *set_fallthru_on_test =
5799 new(ctx) ir_assignment(deref_fallthru_var, true_val, test_cond);
5800
5801 instructions->push_tail(set_fallthru_on_test);
5802 } else { /* default case */
5803 if (state->switch_state.previous_default) {
5804 YYLTYPE loc = this->get_location();
5805 _mesa_glsl_error(& loc, state,
5806 "multiple default labels in one switch");
5807
5808 loc = state->switch_state.previous_default->get_location();
5809 _mesa_glsl_error(& loc, state, "this is the first default label");
5810 }
5811 state->switch_state.previous_default = this;
5812
5813 /* Set fallthru condition on 'run_default' bool. */
5814 ir_dereference_variable *deref_run_default =
5815 new(ctx) ir_dereference_variable(state->switch_state.run_default);
5816 ir_rvalue *const cond_true = new(ctx) ir_constant(true);
5817 ir_expression *test_cond = new(ctx) ir_expression(ir_binop_all_equal,
5818 cond_true,
5819 deref_run_default);
5820
5821 /* Set falltrhu state. */
5822 ir_assignment *set_fallthru =
5823 new(ctx) ir_assignment(deref_fallthru_var, true_val, test_cond);
5824
5825 instructions->push_tail(set_fallthru);
5826 }
5827
5828 /* Case statements do not have r-values. */
5829 return NULL;
5830 }
5831
5832 void
5833 ast_iteration_statement::condition_to_hir(exec_list *instructions,
5834 struct _mesa_glsl_parse_state *state)
5835 {
5836 void *ctx = state;
5837
5838 if (condition != NULL) {
5839 ir_rvalue *const cond =
5840 condition->hir(instructions, state);
5841
5842 if ((cond == NULL)
5843 || !cond->type->is_boolean() || !cond->type->is_scalar()) {
5844 YYLTYPE loc = condition->get_location();
5845
5846 _mesa_glsl_error(& loc, state,
5847 "loop condition must be scalar boolean");
5848 } else {
5849 /* As the first code in the loop body, generate a block that looks
5850 * like 'if (!condition) break;' as the loop termination condition.
5851 */
5852 ir_rvalue *const not_cond =
5853 new(ctx) ir_expression(ir_unop_logic_not, cond);
5854
5855 ir_if *const if_stmt = new(ctx) ir_if(not_cond);
5856
5857 ir_jump *const break_stmt =
5858 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
5859
5860 if_stmt->then_instructions.push_tail(break_stmt);
5861 instructions->push_tail(if_stmt);
5862 }
5863 }
5864 }
5865
5866
5867 ir_rvalue *
5868 ast_iteration_statement::hir(exec_list *instructions,
5869 struct _mesa_glsl_parse_state *state)
5870 {
5871 void *ctx = state;
5872
5873 /* For-loops and while-loops start a new scope, but do-while loops do not.
5874 */
5875 if (mode != ast_do_while)
5876 state->symbols->push_scope();
5877
5878 if (init_statement != NULL)
5879 init_statement->hir(instructions, state);
5880
5881 ir_loop *const stmt = new(ctx) ir_loop();
5882 instructions->push_tail(stmt);
5883
5884 /* Track the current loop nesting. */
5885 ast_iteration_statement *nesting_ast = state->loop_nesting_ast;
5886
5887 state->loop_nesting_ast = this;
5888
5889 /* Likewise, indicate that following code is closest to a loop,
5890 * NOT closest to a switch.
5891 */
5892 bool saved_is_switch_innermost = state->switch_state.is_switch_innermost;
5893 state->switch_state.is_switch_innermost = false;
5894
5895 if (mode != ast_do_while)
5896 condition_to_hir(&stmt->body_instructions, state);
5897
5898 if (body != NULL)
5899 body->hir(& stmt->body_instructions, state);
5900
5901 if (rest_expression != NULL)
5902 rest_expression->hir(& stmt->body_instructions, state);
5903
5904 if (mode == ast_do_while)
5905 condition_to_hir(&stmt->body_instructions, state);
5906
5907 if (mode != ast_do_while)
5908 state->symbols->pop_scope();
5909
5910 /* Restore previous nesting before returning. */
5911 state->loop_nesting_ast = nesting_ast;
5912 state->switch_state.is_switch_innermost = saved_is_switch_innermost;
5913
5914 /* Loops do not have r-values.
5915 */
5916 return NULL;
5917 }
5918
5919
5920 /**
5921 * Determine if the given type is valid for establishing a default precision
5922 * qualifier.
5923 *
5924 * From GLSL ES 3.00 section 4.5.4 ("Default Precision Qualifiers"):
5925 *
5926 * "The precision statement
5927 *
5928 * precision precision-qualifier type;
5929 *
5930 * can be used to establish a default precision qualifier. The type field
5931 * can be either int or float or any of the sampler types, and the
5932 * precision-qualifier can be lowp, mediump, or highp."
5933 *
5934 * GLSL ES 1.00 has similar language. GLSL 1.30 doesn't allow precision
5935 * qualifiers on sampler types, but this seems like an oversight (since the
5936 * intention of including these in GLSL 1.30 is to allow compatibility with ES
5937 * shaders). So we allow int, float, and all sampler types regardless of GLSL
5938 * version.
5939 */
5940 static bool
5941 is_valid_default_precision_type(const struct glsl_type *const type)
5942 {
5943 if (type == NULL)
5944 return false;
5945
5946 switch (type->base_type) {
5947 case GLSL_TYPE_INT:
5948 case GLSL_TYPE_FLOAT:
5949 /* "int" and "float" are valid, but vectors and matrices are not. */
5950 return type->vector_elements == 1 && type->matrix_columns == 1;
5951 case GLSL_TYPE_SAMPLER:
5952 case GLSL_TYPE_IMAGE:
5953 case GLSL_TYPE_ATOMIC_UINT:
5954 return true;
5955 default:
5956 return false;
5957 }
5958 }
5959
5960
5961 ir_rvalue *
5962 ast_type_specifier::hir(exec_list *instructions,
5963 struct _mesa_glsl_parse_state *state)
5964 {
5965 if (this->default_precision == ast_precision_none && this->structure == NULL)
5966 return NULL;
5967
5968 YYLTYPE loc = this->get_location();
5969
5970 /* If this is a precision statement, check that the type to which it is
5971 * applied is either float or int.
5972 *
5973 * From section 4.5.3 of the GLSL 1.30 spec:
5974 * "The precision statement
5975 * precision precision-qualifier type;
5976 * can be used to establish a default precision qualifier. The type
5977 * field can be either int or float [...]. Any other types or
5978 * qualifiers will result in an error.
5979 */
5980 if (this->default_precision != ast_precision_none) {
5981 if (!state->check_precision_qualifiers_allowed(&loc))
5982 return NULL;
5983
5984 if (this->structure != NULL) {
5985 _mesa_glsl_error(&loc, state,
5986 "precision qualifiers do not apply to structures");
5987 return NULL;
5988 }
5989
5990 if (this->array_specifier != NULL) {
5991 _mesa_glsl_error(&loc, state,
5992 "default precision statements do not apply to "
5993 "arrays");
5994 return NULL;
5995 }
5996
5997 const struct glsl_type *const type =
5998 state->symbols->get_type(this->type_name);
5999 if (!is_valid_default_precision_type(type)) {
6000 _mesa_glsl_error(&loc, state,
6001 "default precision statements apply only to "
6002 "float, int, and opaque types");
6003 return NULL;
6004 }
6005
6006 if (state->es_shader) {
6007 /* Section 4.5.3 (Default Precision Qualifiers) of the GLSL ES 1.00
6008 * spec says:
6009 *
6010 * "Non-precision qualified declarations will use the precision
6011 * qualifier specified in the most recent precision statement
6012 * that is still in scope. The precision statement has the same
6013 * scoping rules as variable declarations. If it is declared
6014 * inside a compound statement, its effect stops at the end of
6015 * the innermost statement it was declared in. Precision
6016 * statements in nested scopes override precision statements in
6017 * outer scopes. Multiple precision statements for the same basic
6018 * type can appear inside the same scope, with later statements
6019 * overriding earlier statements within that scope."
6020 *
6021 * Default precision specifications follow the same scope rules as
6022 * variables. So, we can track the state of the default precision
6023 * qualifiers in the symbol table, and the rules will just work. This
6024 * is a slight abuse of the symbol table, but it has the semantics
6025 * that we want.
6026 */
6027 state->symbols->add_default_precision_qualifier(this->type_name,
6028 this->default_precision);
6029 }
6030
6031 /* FINISHME: Translate precision statements into IR. */
6032 return NULL;
6033 }
6034
6035 /* _mesa_ast_set_aggregate_type() sets the <structure> field so that
6036 * process_record_constructor() can do type-checking on C-style initializer
6037 * expressions of structs, but ast_struct_specifier should only be translated
6038 * to HIR if it is declaring the type of a structure.
6039 *
6040 * The ->is_declaration field is false for initializers of variables
6041 * declared separately from the struct's type definition.
6042 *
6043 * struct S { ... }; (is_declaration = true)
6044 * struct T { ... } t = { ... }; (is_declaration = true)
6045 * S s = { ... }; (is_declaration = false)
6046 */
6047 if (this->structure != NULL && this->structure->is_declaration)
6048 return this->structure->hir(instructions, state);
6049
6050 return NULL;
6051 }
6052
6053
6054 /**
6055 * Process a structure or interface block tree into an array of structure fields
6056 *
6057 * After parsing, where there are some syntax differnces, structures and
6058 * interface blocks are almost identical. They are similar enough that the
6059 * AST for each can be processed the same way into a set of
6060 * \c glsl_struct_field to describe the members.
6061 *
6062 * If we're processing an interface block, var_mode should be the type of the
6063 * interface block (ir_var_shader_in, ir_var_shader_out, ir_var_uniform or
6064 * ir_var_shader_storage). If we're processing a structure, var_mode should be
6065 * ir_var_auto.
6066 *
6067 * \return
6068 * The number of fields processed. A pointer to the array structure fields is
6069 * stored in \c *fields_ret.
6070 */
6071 unsigned
6072 ast_process_struct_or_iface_block_members(exec_list *instructions,
6073 struct _mesa_glsl_parse_state *state,
6074 exec_list *declarations,
6075 glsl_struct_field **fields_ret,
6076 bool is_interface,
6077 enum glsl_matrix_layout matrix_layout,
6078 bool allow_reserved_names,
6079 ir_variable_mode var_mode,
6080 ast_type_qualifier *layout)
6081 {
6082 unsigned decl_count = 0;
6083
6084 /* Make an initial pass over the list of fields to determine how
6085 * many there are. Each element in this list is an ast_declarator_list.
6086 * This means that we actually need to count the number of elements in the
6087 * 'declarations' list in each of the elements.
6088 */
6089 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
6090 decl_count += decl_list->declarations.length();
6091 }
6092
6093 /* Allocate storage for the fields and process the field
6094 * declarations. As the declarations are processed, try to also convert
6095 * the types to HIR. This ensures that structure definitions embedded in
6096 * other structure definitions or in interface blocks are processed.
6097 */
6098 glsl_struct_field *const fields = ralloc_array(state, glsl_struct_field,
6099 decl_count);
6100
6101 unsigned i = 0;
6102 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
6103 const char *type_name;
6104 YYLTYPE loc = decl_list->get_location();
6105
6106 decl_list->type->specifier->hir(instructions, state);
6107
6108 /* Section 10.9 of the GLSL ES 1.00 specification states that
6109 * embedded structure definitions have been removed from the language.
6110 */
6111 if (state->es_shader && decl_list->type->specifier->structure != NULL) {
6112 _mesa_glsl_error(&loc, state, "embedded structure definitions are "
6113 "not allowed in GLSL ES 1.00");
6114 }
6115
6116 const glsl_type *decl_type =
6117 decl_list->type->glsl_type(& type_name, state);
6118
6119 const struct ast_type_qualifier *const qual =
6120 &decl_list->type->qualifier;
6121
6122 /* From section 4.3.9 of the GLSL 4.40 spec:
6123 *
6124 * "[In interface blocks] opaque types are not allowed."
6125 *
6126 * It should be impossible for decl_type to be NULL here. Cases that
6127 * might naturally lead to decl_type being NULL, especially for the
6128 * is_interface case, will have resulted in compilation having
6129 * already halted due to a syntax error.
6130 */
6131 assert(decl_type);
6132
6133 if (is_interface && decl_type->contains_opaque()) {
6134 _mesa_glsl_error(&loc, state,
6135 "uniform/buffer in non-default interface block contains "
6136 "opaque variable");
6137 }
6138
6139 if (decl_type->contains_atomic()) {
6140 /* From section 4.1.7.3 of the GLSL 4.40 spec:
6141 *
6142 * "Members of structures cannot be declared as atomic counter
6143 * types."
6144 */
6145 _mesa_glsl_error(&loc, state, "atomic counter in structure, "
6146 "shader storage block or uniform block");
6147 }
6148
6149 if (decl_type->contains_image()) {
6150 /* FINISHME: Same problem as with atomic counters.
6151 * FINISHME: Request clarification from Khronos and add
6152 * FINISHME: spec quotation here.
6153 */
6154 _mesa_glsl_error(&loc, state,
6155 "image in structure, shader storage block or "
6156 "uniform block");
6157 }
6158
6159 if (qual->flags.q.explicit_binding) {
6160 _mesa_glsl_error(&loc, state,
6161 "binding layout qualifier cannot be applied "
6162 "to struct or interface block members");
6163 }
6164
6165 if (qual->flags.q.std140 ||
6166 qual->flags.q.std430 ||
6167 qual->flags.q.packed ||
6168 qual->flags.q.shared) {
6169 _mesa_glsl_error(&loc, state,
6170 "uniform/shader storage block layout qualifiers "
6171 "std140, std430, packed, and shared can only be "
6172 "applied to uniform/shader storage blocks, not "
6173 "members");
6174 }
6175
6176 if (qual->flags.q.constant) {
6177 _mesa_glsl_error(&loc, state,
6178 "const storage qualifier cannot be applied "
6179 "to struct or interface block members");
6180 }
6181
6182 /* From Section 4.4.2.3 (Geometry Outputs) of the GLSL 4.50 spec:
6183 *
6184 * "A block member may be declared with a stream identifier, but
6185 * the specified stream must match the stream associated with the
6186 * containing block."
6187 */
6188 if (qual->flags.q.explicit_stream &&
6189 qual->stream != layout->stream) {
6190 _mesa_glsl_error(&loc, state, "stream layout qualifier on interface "
6191 "block member does not match the interface block "
6192 "(%d vs %d)", qual->stream, layout->stream);
6193 }
6194
6195 if (qual->flags.q.uniform && qual->has_interpolation()) {
6196 _mesa_glsl_error(&loc, state,
6197 "interpolation qualifiers cannot be used "
6198 "with uniform interface blocks");
6199 }
6200
6201 if ((qual->flags.q.uniform || !is_interface) &&
6202 qual->has_auxiliary_storage()) {
6203 _mesa_glsl_error(&loc, state,
6204 "auxiliary storage qualifiers cannot be used "
6205 "in uniform blocks or structures.");
6206 }
6207
6208 if (qual->flags.q.row_major || qual->flags.q.column_major) {
6209 if (!qual->flags.q.uniform && !qual->flags.q.buffer) {
6210 _mesa_glsl_error(&loc, state,
6211 "row_major and column_major can only be "
6212 "applied to interface blocks");
6213 } else
6214 validate_matrix_layout_for_type(state, &loc, decl_type, NULL);
6215 }
6216
6217 if (qual->flags.q.read_only && qual->flags.q.write_only) {
6218 _mesa_glsl_error(&loc, state, "buffer variable can't be both "
6219 "readonly and writeonly.");
6220 }
6221
6222 foreach_list_typed (ast_declaration, decl, link,
6223 &decl_list->declarations) {
6224 YYLTYPE loc = decl->get_location();
6225
6226 if (!allow_reserved_names)
6227 validate_identifier(decl->identifier, loc, state);
6228
6229 const struct glsl_type *field_type =
6230 process_array_type(&loc, decl_type, decl->array_specifier, state);
6231 validate_array_dimensions(field_type, state, &loc);
6232 fields[i].type = field_type;
6233 fields[i].name = decl->identifier;
6234 fields[i].location = -1;
6235 fields[i].interpolation =
6236 interpret_interpolation_qualifier(qual, var_mode, state, &loc);
6237 fields[i].centroid = qual->flags.q.centroid ? 1 : 0;
6238 fields[i].sample = qual->flags.q.sample ? 1 : 0;
6239 fields[i].patch = qual->flags.q.patch ? 1 : 0;
6240 fields[i].precision = qual->precision;
6241
6242 /* Propogate row- / column-major information down the fields of the
6243 * structure or interface block. Structures need this data because
6244 * the structure may contain a structure that contains ... a matrix
6245 * that need the proper layout.
6246 */
6247 if (field_type->without_array()->is_matrix()
6248 || field_type->without_array()->is_record()) {
6249 /* If no layout is specified for the field, inherit the layout
6250 * from the block.
6251 */
6252 fields[i].matrix_layout = matrix_layout;
6253
6254 if (qual->flags.q.row_major)
6255 fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
6256 else if (qual->flags.q.column_major)
6257 fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
6258
6259 /* If we're processing an interface block, the matrix layout must
6260 * be decided by this point.
6261 */
6262 assert(!is_interface
6263 || fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR
6264 || fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_COLUMN_MAJOR);
6265 }
6266
6267 /* Image qualifiers are allowed on buffer variables, which can only
6268 * be defined inside shader storage buffer objects
6269 */
6270 if (layout && var_mode == ir_var_shader_storage) {
6271 /* For readonly and writeonly qualifiers the field definition,
6272 * if set, overwrites the layout qualifier.
6273 */
6274 if (qual->flags.q.read_only) {
6275 fields[i].image_read_only = true;
6276 fields[i].image_write_only = false;
6277 } else if (qual->flags.q.write_only) {
6278 fields[i].image_read_only = false;
6279 fields[i].image_write_only = true;
6280 } else {
6281 fields[i].image_read_only = layout->flags.q.read_only;
6282 fields[i].image_write_only = layout->flags.q.write_only;
6283 }
6284
6285 /* For other qualifiers, we set the flag if either the layout
6286 * qualifier or the field qualifier are set
6287 */
6288 fields[i].image_coherent = qual->flags.q.coherent ||
6289 layout->flags.q.coherent;
6290 fields[i].image_volatile = qual->flags.q._volatile ||
6291 layout->flags.q._volatile;
6292 fields[i].image_restrict = qual->flags.q.restrict_flag ||
6293 layout->flags.q.restrict_flag;
6294 }
6295
6296 i++;
6297 }
6298 }
6299
6300 assert(i == decl_count);
6301
6302 *fields_ret = fields;
6303 return decl_count;
6304 }
6305
6306
6307 ir_rvalue *
6308 ast_struct_specifier::hir(exec_list *instructions,
6309 struct _mesa_glsl_parse_state *state)
6310 {
6311 YYLTYPE loc = this->get_location();
6312
6313 /* Section 4.1.8 (Structures) of the GLSL 1.10 spec says:
6314 *
6315 * "Anonymous structures are not supported; so embedded structures must
6316 * have a declarator. A name given to an embedded struct is scoped at
6317 * the same level as the struct it is embedded in."
6318 *
6319 * The same section of the GLSL 1.20 spec says:
6320 *
6321 * "Anonymous structures are not supported. Embedded structures are not
6322 * supported.
6323 *
6324 * struct S { float f; };
6325 * struct T {
6326 * S; // Error: anonymous structures disallowed
6327 * struct { ... }; // Error: embedded structures disallowed
6328 * S s; // Okay: nested structures with name are allowed
6329 * };"
6330 *
6331 * The GLSL ES 1.00 and 3.00 specs have similar langauge and examples. So,
6332 * we allow embedded structures in 1.10 only.
6333 */
6334 if (state->language_version != 110 && state->struct_specifier_depth != 0)
6335 _mesa_glsl_error(&loc, state,
6336 "embedded structure declarations are not allowed");
6337
6338 state->struct_specifier_depth++;
6339
6340 glsl_struct_field *fields;
6341 unsigned decl_count =
6342 ast_process_struct_or_iface_block_members(instructions,
6343 state,
6344 &this->declarations,
6345 &fields,
6346 false,
6347 GLSL_MATRIX_LAYOUT_INHERITED,
6348 false /* allow_reserved_names */,
6349 ir_var_auto,
6350 NULL);
6351
6352 validate_identifier(this->name, loc, state);
6353
6354 const glsl_type *t =
6355 glsl_type::get_record_instance(fields, decl_count, this->name);
6356
6357 if (!state->symbols->add_type(name, t)) {
6358 _mesa_glsl_error(& loc, state, "struct `%s' previously defined", name);
6359 } else {
6360 const glsl_type **s = reralloc(state, state->user_structures,
6361 const glsl_type *,
6362 state->num_user_structures + 1);
6363 if (s != NULL) {
6364 s[state->num_user_structures] = t;
6365 state->user_structures = s;
6366 state->num_user_structures++;
6367 }
6368 }
6369
6370 state->struct_specifier_depth--;
6371
6372 /* Structure type definitions do not have r-values.
6373 */
6374 return NULL;
6375 }
6376
6377
6378 /**
6379 * Visitor class which detects whether a given interface block has been used.
6380 */
6381 class interface_block_usage_visitor : public ir_hierarchical_visitor
6382 {
6383 public:
6384 interface_block_usage_visitor(ir_variable_mode mode, const glsl_type *block)
6385 : mode(mode), block(block), found(false)
6386 {
6387 }
6388
6389 virtual ir_visitor_status visit(ir_dereference_variable *ir)
6390 {
6391 if (ir->var->data.mode == mode && ir->var->get_interface_type() == block) {
6392 found = true;
6393 return visit_stop;
6394 }
6395 return visit_continue;
6396 }
6397
6398 bool usage_found() const
6399 {
6400 return this->found;
6401 }
6402
6403 private:
6404 ir_variable_mode mode;
6405 const glsl_type *block;
6406 bool found;
6407 };
6408
6409 static bool
6410 is_unsized_array_last_element(ir_variable *v)
6411 {
6412 const glsl_type *interface_type = v->get_interface_type();
6413 int length = interface_type->length;
6414
6415 assert(v->type->is_unsized_array());
6416
6417 /* Check if it is the last element of the interface */
6418 if (strcmp(interface_type->fields.structure[length-1].name, v->name) == 0)
6419 return true;
6420 return false;
6421 }
6422
6423 ir_rvalue *
6424 ast_interface_block::hir(exec_list *instructions,
6425 struct _mesa_glsl_parse_state *state)
6426 {
6427 YYLTYPE loc = this->get_location();
6428
6429 /* Interface blocks must be declared at global scope */
6430 if (state->current_function != NULL) {
6431 _mesa_glsl_error(&loc, state,
6432 "Interface block `%s' must be declared "
6433 "at global scope",
6434 this->block_name);
6435 }
6436
6437 if (!this->layout.flags.q.buffer &&
6438 this->layout.flags.q.std430) {
6439 _mesa_glsl_error(&loc, state,
6440 "std430 storage block layout qualifier is supported "
6441 "only for shader storage blocks");
6442 }
6443
6444 /* The ast_interface_block has a list of ast_declarator_lists. We
6445 * need to turn those into ir_variables with an association
6446 * with this uniform block.
6447 */
6448 enum glsl_interface_packing packing;
6449 if (this->layout.flags.q.shared) {
6450 packing = GLSL_INTERFACE_PACKING_SHARED;
6451 } else if (this->layout.flags.q.packed) {
6452 packing = GLSL_INTERFACE_PACKING_PACKED;
6453 } else if (this->layout.flags.q.std430) {
6454 packing = GLSL_INTERFACE_PACKING_STD430;
6455 } else {
6456 /* The default layout is std140.
6457 */
6458 packing = GLSL_INTERFACE_PACKING_STD140;
6459 }
6460
6461 ir_variable_mode var_mode;
6462 const char *iface_type_name;
6463 if (this->layout.flags.q.in) {
6464 var_mode = ir_var_shader_in;
6465 iface_type_name = "in";
6466 } else if (this->layout.flags.q.out) {
6467 var_mode = ir_var_shader_out;
6468 iface_type_name = "out";
6469 } else if (this->layout.flags.q.uniform) {
6470 var_mode = ir_var_uniform;
6471 iface_type_name = "uniform";
6472 } else if (this->layout.flags.q.buffer) {
6473 var_mode = ir_var_shader_storage;
6474 iface_type_name = "buffer";
6475 } else {
6476 var_mode = ir_var_auto;
6477 iface_type_name = "UNKNOWN";
6478 assert(!"interface block layout qualifier not found!");
6479 }
6480
6481 enum glsl_matrix_layout matrix_layout = GLSL_MATRIX_LAYOUT_INHERITED;
6482 if (this->layout.flags.q.row_major)
6483 matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
6484 else if (this->layout.flags.q.column_major)
6485 matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
6486
6487 bool redeclaring_per_vertex = strcmp(this->block_name, "gl_PerVertex") == 0;
6488 exec_list declared_variables;
6489 glsl_struct_field *fields;
6490
6491 /* Treat an interface block as one level of nesting, so that embedded struct
6492 * specifiers will be disallowed.
6493 */
6494 state->struct_specifier_depth++;
6495
6496 /* For blocks that accept memory qualifiers (i.e. shader storage), verify
6497 * that we don't have incompatible qualifiers
6498 */
6499 if (this->layout.flags.q.read_only && this->layout.flags.q.write_only) {
6500 _mesa_glsl_error(&loc, state,
6501 "Interface block sets both readonly and writeonly");
6502 }
6503
6504 unsigned int num_variables =
6505 ast_process_struct_or_iface_block_members(&declared_variables,
6506 state,
6507 &this->declarations,
6508 &fields,
6509 true,
6510 matrix_layout,
6511 redeclaring_per_vertex,
6512 var_mode,
6513 &this->layout);
6514
6515 state->struct_specifier_depth--;
6516
6517 if (!redeclaring_per_vertex) {
6518 validate_identifier(this->block_name, loc, state);
6519
6520 /* From section 4.3.9 ("Interface Blocks") of the GLSL 4.50 spec:
6521 *
6522 * "Block names have no other use within a shader beyond interface
6523 * matching; it is a compile-time error to use a block name at global
6524 * scope for anything other than as a block name."
6525 */
6526 ir_variable *var = state->symbols->get_variable(this->block_name);
6527 if (var && !var->type->is_interface()) {
6528 _mesa_glsl_error(&loc, state, "Block name `%s' is "
6529 "already used in the scope.",
6530 this->block_name);
6531 }
6532 }
6533
6534 const glsl_type *earlier_per_vertex = NULL;
6535 if (redeclaring_per_vertex) {
6536 /* Find the previous declaration of gl_PerVertex. If we're redeclaring
6537 * the named interface block gl_in, we can find it by looking at the
6538 * previous declaration of gl_in. Otherwise we can find it by looking
6539 * at the previous decalartion of any of the built-in outputs,
6540 * e.g. gl_Position.
6541 *
6542 * Also check that the instance name and array-ness of the redeclaration
6543 * are correct.
6544 */
6545 switch (var_mode) {
6546 case ir_var_shader_in:
6547 if (ir_variable *earlier_gl_in =
6548 state->symbols->get_variable("gl_in")) {
6549 earlier_per_vertex = earlier_gl_in->get_interface_type();
6550 } else {
6551 _mesa_glsl_error(&loc, state,
6552 "redeclaration of gl_PerVertex input not allowed "
6553 "in the %s shader",
6554 _mesa_shader_stage_to_string(state->stage));
6555 }
6556 if (this->instance_name == NULL ||
6557 strcmp(this->instance_name, "gl_in") != 0 || this->array_specifier == NULL ||
6558 !this->array_specifier->is_single_dimension()) {
6559 _mesa_glsl_error(&loc, state,
6560 "gl_PerVertex input must be redeclared as "
6561 "gl_in[]");
6562 }
6563 break;
6564 case ir_var_shader_out:
6565 if (ir_variable *earlier_gl_Position =
6566 state->symbols->get_variable("gl_Position")) {
6567 earlier_per_vertex = earlier_gl_Position->get_interface_type();
6568 } else if (ir_variable *earlier_gl_out =
6569 state->symbols->get_variable("gl_out")) {
6570 earlier_per_vertex = earlier_gl_out->get_interface_type();
6571 } else {
6572 _mesa_glsl_error(&loc, state,
6573 "redeclaration of gl_PerVertex output not "
6574 "allowed in the %s shader",
6575 _mesa_shader_stage_to_string(state->stage));
6576 }
6577 if (state->stage == MESA_SHADER_TESS_CTRL) {
6578 if (this->instance_name == NULL ||
6579 strcmp(this->instance_name, "gl_out") != 0 || this->array_specifier == NULL) {
6580 _mesa_glsl_error(&loc, state,
6581 "gl_PerVertex output must be redeclared as "
6582 "gl_out[]");
6583 }
6584 } else {
6585 if (this->instance_name != NULL) {
6586 _mesa_glsl_error(&loc, state,
6587 "gl_PerVertex output may not be redeclared with "
6588 "an instance name");
6589 }
6590 }
6591 break;
6592 default:
6593 _mesa_glsl_error(&loc, state,
6594 "gl_PerVertex must be declared as an input or an "
6595 "output");
6596 break;
6597 }
6598
6599 if (earlier_per_vertex == NULL) {
6600 /* An error has already been reported. Bail out to avoid null
6601 * dereferences later in this function.
6602 */
6603 return NULL;
6604 }
6605
6606 /* Copy locations from the old gl_PerVertex interface block. */
6607 for (unsigned i = 0; i < num_variables; i++) {
6608 int j = earlier_per_vertex->field_index(fields[i].name);
6609 if (j == -1) {
6610 _mesa_glsl_error(&loc, state,
6611 "redeclaration of gl_PerVertex must be a subset "
6612 "of the built-in members of gl_PerVertex");
6613 } else {
6614 fields[i].location =
6615 earlier_per_vertex->fields.structure[j].location;
6616 fields[i].interpolation =
6617 earlier_per_vertex->fields.structure[j].interpolation;
6618 fields[i].centroid =
6619 earlier_per_vertex->fields.structure[j].centroid;
6620 fields[i].sample =
6621 earlier_per_vertex->fields.structure[j].sample;
6622 fields[i].patch =
6623 earlier_per_vertex->fields.structure[j].patch;
6624 fields[i].precision =
6625 earlier_per_vertex->fields.structure[j].precision;
6626 }
6627 }
6628
6629 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10
6630 * spec:
6631 *
6632 * If a built-in interface block is redeclared, it must appear in
6633 * the shader before any use of any member included in the built-in
6634 * declaration, or a compilation error will result.
6635 *
6636 * This appears to be a clarification to the behaviour established for
6637 * gl_PerVertex by GLSL 1.50, therefore we implement this behaviour
6638 * regardless of GLSL version.
6639 */
6640 interface_block_usage_visitor v(var_mode, earlier_per_vertex);
6641 v.run(instructions);
6642 if (v.usage_found()) {
6643 _mesa_glsl_error(&loc, state,
6644 "redeclaration of a built-in interface block must "
6645 "appear before any use of any member of the "
6646 "interface block");
6647 }
6648 }
6649
6650 const glsl_type *block_type =
6651 glsl_type::get_interface_instance(fields,
6652 num_variables,
6653 packing,
6654 this->block_name);
6655 if (this->layout.flags.q.explicit_binding)
6656 validate_binding_qualifier(state, &loc, block_type, &this->layout);
6657
6658 if (!state->symbols->add_interface(block_type->name, block_type, var_mode)) {
6659 YYLTYPE loc = this->get_location();
6660 _mesa_glsl_error(&loc, state, "interface block `%s' with type `%s' "
6661 "already taken in the current scope",
6662 this->block_name, iface_type_name);
6663 }
6664
6665 /* Since interface blocks cannot contain statements, it should be
6666 * impossible for the block to generate any instructions.
6667 */
6668 assert(declared_variables.is_empty());
6669
6670 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
6671 *
6672 * Geometry shader input variables get the per-vertex values written
6673 * out by vertex shader output variables of the same names. Since a
6674 * geometry shader operates on a set of vertices, each input varying
6675 * variable (or input block, see interface blocks below) needs to be
6676 * declared as an array.
6677 */
6678 if (state->stage == MESA_SHADER_GEOMETRY && this->array_specifier == NULL &&
6679 var_mode == ir_var_shader_in) {
6680 _mesa_glsl_error(&loc, state, "geometry shader inputs must be arrays");
6681 } else if ((state->stage == MESA_SHADER_TESS_CTRL ||
6682 state->stage == MESA_SHADER_TESS_EVAL) &&
6683 this->array_specifier == NULL &&
6684 var_mode == ir_var_shader_in) {
6685 _mesa_glsl_error(&loc, state, "per-vertex tessellation shader inputs must be arrays");
6686 } else if (state->stage == MESA_SHADER_TESS_CTRL &&
6687 this->array_specifier == NULL &&
6688 var_mode == ir_var_shader_out) {
6689 _mesa_glsl_error(&loc, state, "tessellation control shader outputs must be arrays");
6690 }
6691
6692
6693 /* Page 39 (page 45 of the PDF) of section 4.3.7 in the GLSL ES 3.00 spec
6694 * says:
6695 *
6696 * "If an instance name (instance-name) is used, then it puts all the
6697 * members inside a scope within its own name space, accessed with the
6698 * field selector ( . ) operator (analogously to structures)."
6699 */
6700 if (this->instance_name) {
6701 if (redeclaring_per_vertex) {
6702 /* When a built-in in an unnamed interface block is redeclared,
6703 * get_variable_being_redeclared() calls
6704 * check_builtin_array_max_size() to make sure that built-in array
6705 * variables aren't redeclared to illegal sizes. But we're looking
6706 * at a redeclaration of a named built-in interface block. So we
6707 * have to manually call check_builtin_array_max_size() for all parts
6708 * of the interface that are arrays.
6709 */
6710 for (unsigned i = 0; i < num_variables; i++) {
6711 if (fields[i].type->is_array()) {
6712 const unsigned size = fields[i].type->array_size();
6713 check_builtin_array_max_size(fields[i].name, size, loc, state);
6714 }
6715 }
6716 } else {
6717 validate_identifier(this->instance_name, loc, state);
6718 }
6719
6720 ir_variable *var;
6721
6722 if (this->array_specifier != NULL) {
6723 const glsl_type *block_array_type =
6724 process_array_type(&loc, block_type, this->array_specifier, state);
6725
6726 /* Section 4.3.7 (Interface Blocks) of the GLSL 1.50 spec says:
6727 *
6728 * For uniform blocks declared an array, each individual array
6729 * element corresponds to a separate buffer object backing one
6730 * instance of the block. As the array size indicates the number
6731 * of buffer objects needed, uniform block array declarations
6732 * must specify an array size.
6733 *
6734 * And a few paragraphs later:
6735 *
6736 * Geometry shader input blocks must be declared as arrays and
6737 * follow the array declaration and linking rules for all
6738 * geometry shader inputs. All other input and output block
6739 * arrays must specify an array size.
6740 *
6741 * The same applies to tessellation shaders.
6742 *
6743 * The upshot of this is that the only circumstance where an
6744 * interface array size *doesn't* need to be specified is on a
6745 * geometry shader input, tessellation control shader input,
6746 * tessellation control shader output, and tessellation evaluation
6747 * shader input.
6748 */
6749 if (block_array_type->is_unsized_array()) {
6750 bool allow_inputs = state->stage == MESA_SHADER_GEOMETRY ||
6751 state->stage == MESA_SHADER_TESS_CTRL ||
6752 state->stage == MESA_SHADER_TESS_EVAL;
6753 bool allow_outputs = state->stage == MESA_SHADER_TESS_CTRL;
6754
6755 if (this->layout.flags.q.in) {
6756 if (!allow_inputs)
6757 _mesa_glsl_error(&loc, state,
6758 "unsized input block arrays not allowed in "
6759 "%s shader",
6760 _mesa_shader_stage_to_string(state->stage));
6761 } else if (this->layout.flags.q.out) {
6762 if (!allow_outputs)
6763 _mesa_glsl_error(&loc, state,
6764 "unsized output block arrays not allowed in "
6765 "%s shader",
6766 _mesa_shader_stage_to_string(state->stage));
6767 } else {
6768 /* by elimination, this is a uniform block array */
6769 _mesa_glsl_error(&loc, state,
6770 "unsized uniform block arrays not allowed in "
6771 "%s shader",
6772 _mesa_shader_stage_to_string(state->stage));
6773 }
6774 }
6775
6776 /* From section 4.3.9 (Interface Blocks) of the GLSL ES 3.10 spec:
6777 *
6778 * * Arrays of arrays of blocks are not allowed
6779 */
6780 if (state->es_shader && block_array_type->is_array() &&
6781 block_array_type->fields.array->is_array()) {
6782 _mesa_glsl_error(&loc, state,
6783 "arrays of arrays interface blocks are "
6784 "not allowed");
6785 }
6786
6787 if (this->layout.flags.q.explicit_binding)
6788 validate_binding_qualifier(state, &loc, block_array_type,
6789 &this->layout);
6790
6791 var = new(state) ir_variable(block_array_type,
6792 this->instance_name,
6793 var_mode);
6794 } else {
6795 var = new(state) ir_variable(block_type,
6796 this->instance_name,
6797 var_mode);
6798 }
6799
6800 var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
6801 ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
6802
6803 if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
6804 var->data.read_only = true;
6805
6806 if (state->stage == MESA_SHADER_GEOMETRY && var_mode == ir_var_shader_in)
6807 handle_geometry_shader_input_decl(state, loc, var);
6808 else if ((state->stage == MESA_SHADER_TESS_CTRL ||
6809 state->stage == MESA_SHADER_TESS_EVAL) && var_mode == ir_var_shader_in)
6810 handle_tess_shader_input_decl(state, loc, var);
6811 else if (state->stage == MESA_SHADER_TESS_CTRL && var_mode == ir_var_shader_out)
6812 handle_tess_ctrl_shader_output_decl(state, loc, var);
6813
6814 for (unsigned i = 0; i < num_variables; i++) {
6815 if (fields[i].type->is_unsized_array()) {
6816 if (var_mode == ir_var_shader_storage) {
6817 if (i != (num_variables - 1)) {
6818 _mesa_glsl_error(&loc, state, "unsized array `%s' definition: "
6819 "only last member of a shader storage block "
6820 "can be defined as unsized array",
6821 fields[i].name);
6822 }
6823 } else {
6824 /* From GLSL ES 3.10 spec, section 4.1.9 "Arrays":
6825 *
6826 * "If an array is declared as the last member of a shader storage
6827 * block and the size is not specified at compile-time, it is
6828 * sized at run-time. In all other cases, arrays are sized only
6829 * at compile-time."
6830 */
6831 if (state->es_shader) {
6832 _mesa_glsl_error(&loc, state, "unsized array `%s' definition: "
6833 "only last member of a shader storage block "
6834 "can be defined as unsized array",
6835 fields[i].name);
6836 }
6837 }
6838 }
6839 }
6840
6841 if (ir_variable *earlier =
6842 state->symbols->get_variable(this->instance_name)) {
6843 if (!redeclaring_per_vertex) {
6844 _mesa_glsl_error(&loc, state, "`%s' redeclared",
6845 this->instance_name);
6846 }
6847 earlier->data.how_declared = ir_var_declared_normally;
6848 earlier->type = var->type;
6849 earlier->reinit_interface_type(block_type);
6850 delete var;
6851 } else {
6852 /* Propagate the "binding" keyword into this UBO's fields;
6853 * the UBO declaration itself doesn't get an ir_variable unless it
6854 * has an instance name. This is ugly.
6855 */
6856 var->data.explicit_binding = this->layout.flags.q.explicit_binding;
6857 var->data.binding = this->layout.binding;
6858
6859 var->data.stream = this->layout.stream;
6860
6861 state->symbols->add_variable(var);
6862 instructions->push_tail(var);
6863 }
6864 } else {
6865 /* In order to have an array size, the block must also be declared with
6866 * an instance name.
6867 */
6868 assert(this->array_specifier == NULL);
6869
6870 for (unsigned i = 0; i < num_variables; i++) {
6871 ir_variable *var =
6872 new(state) ir_variable(fields[i].type,
6873 ralloc_strdup(state, fields[i].name),
6874 var_mode);
6875 var->data.interpolation = fields[i].interpolation;
6876 var->data.centroid = fields[i].centroid;
6877 var->data.sample = fields[i].sample;
6878 var->data.patch = fields[i].patch;
6879 var->data.stream = this->layout.stream;
6880 var->init_interface_type(block_type);
6881
6882 if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
6883 var->data.read_only = true;
6884
6885 /* Precision qualifiers do not have any meaning in Desktop GLSL */
6886 if (state->es_shader) {
6887 var->data.precision =
6888 select_gles_precision(fields[i].precision, fields[i].type,
6889 state, &loc);
6890 }
6891
6892 if (fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED) {
6893 var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
6894 ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
6895 } else {
6896 var->data.matrix_layout = fields[i].matrix_layout;
6897 }
6898
6899 if (var->data.mode == ir_var_shader_storage) {
6900 var->data.image_read_only = fields[i].image_read_only;
6901 var->data.image_write_only = fields[i].image_write_only;
6902 var->data.image_coherent = fields[i].image_coherent;
6903 var->data.image_volatile = fields[i].image_volatile;
6904 var->data.image_restrict = fields[i].image_restrict;
6905 }
6906
6907 /* Examine var name here since var may get deleted in the next call */
6908 bool var_is_gl_id = is_gl_identifier(var->name);
6909
6910 if (redeclaring_per_vertex) {
6911 ir_variable *earlier =
6912 get_variable_being_redeclared(var, loc, state,
6913 true /* allow_all_redeclarations */);
6914 if (!var_is_gl_id || earlier == NULL) {
6915 _mesa_glsl_error(&loc, state,
6916 "redeclaration of gl_PerVertex can only "
6917 "include built-in variables");
6918 } else if (earlier->data.how_declared == ir_var_declared_normally) {
6919 _mesa_glsl_error(&loc, state,
6920 "`%s' has already been redeclared",
6921 earlier->name);
6922 } else {
6923 earlier->data.how_declared = ir_var_declared_in_block;
6924 earlier->reinit_interface_type(block_type);
6925 }
6926 continue;
6927 }
6928
6929 if (state->symbols->get_variable(var->name) != NULL)
6930 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
6931
6932 /* Propagate the "binding" keyword into this UBO/SSBO's fields.
6933 * The UBO declaration itself doesn't get an ir_variable unless it
6934 * has an instance name. This is ugly.
6935 */
6936 var->data.explicit_binding = this->layout.flags.q.explicit_binding;
6937 var->data.binding = this->layout.binding;
6938
6939 if (var->type->is_unsized_array()) {
6940 if (var->is_in_shader_storage_block()) {
6941 if (!is_unsized_array_last_element(var)) {
6942 _mesa_glsl_error(&loc, state, "unsized array `%s' definition: "
6943 "only last member of a shader storage block "
6944 "can be defined as unsized array",
6945 var->name);
6946 }
6947 var->data.from_ssbo_unsized_array = true;
6948 } else {
6949 /* From GLSL ES 3.10 spec, section 4.1.9 "Arrays":
6950 *
6951 * "If an array is declared as the last member of a shader storage
6952 * block and the size is not specified at compile-time, it is
6953 * sized at run-time. In all other cases, arrays are sized only
6954 * at compile-time."
6955 */
6956 if (state->es_shader) {
6957 _mesa_glsl_error(&loc, state, "unsized array `%s' definition: "
6958 "only last member of a shader storage block "
6959 "can be defined as unsized array",
6960 var->name);
6961 }
6962 }
6963 }
6964
6965 state->symbols->add_variable(var);
6966 instructions->push_tail(var);
6967 }
6968
6969 if (redeclaring_per_vertex && block_type != earlier_per_vertex) {
6970 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10 spec:
6971 *
6972 * It is also a compilation error ... to redeclare a built-in
6973 * block and then use a member from that built-in block that was
6974 * not included in the redeclaration.
6975 *
6976 * This appears to be a clarification to the behaviour established
6977 * for gl_PerVertex by GLSL 1.50, therefore we implement this
6978 * behaviour regardless of GLSL version.
6979 *
6980 * To prevent the shader from using a member that was not included in
6981 * the redeclaration, we disable any ir_variables that are still
6982 * associated with the old declaration of gl_PerVertex (since we've
6983 * already updated all of the variables contained in the new
6984 * gl_PerVertex to point to it).
6985 *
6986 * As a side effect this will prevent
6987 * validate_intrastage_interface_blocks() from getting confused and
6988 * thinking there are conflicting definitions of gl_PerVertex in the
6989 * shader.
6990 */
6991 foreach_in_list_safe(ir_instruction, node, instructions) {
6992 ir_variable *const var = node->as_variable();
6993 if (var != NULL &&
6994 var->get_interface_type() == earlier_per_vertex &&
6995 var->data.mode == var_mode) {
6996 if (var->data.how_declared == ir_var_declared_normally) {
6997 _mesa_glsl_error(&loc, state,
6998 "redeclaration of gl_PerVertex cannot "
6999 "follow a redeclaration of `%s'",
7000 var->name);
7001 }
7002 state->symbols->disable_variable(var->name);
7003 var->remove();
7004 }
7005 }
7006 }
7007 }
7008
7009 return NULL;
7010 }
7011
7012
7013 ir_rvalue *
7014 ast_tcs_output_layout::hir(exec_list *instructions,
7015 struct _mesa_glsl_parse_state *state)
7016 {
7017 YYLTYPE loc = this->get_location();
7018
7019 /* If any tessellation control output layout declaration preceded this
7020 * one, make sure it was consistent with this one.
7021 */
7022 if (state->tcs_output_vertices_specified &&
7023 state->out_qualifier->vertices != this->vertices) {
7024 _mesa_glsl_error(&loc, state,
7025 "tessellation control shader output layout does not "
7026 "match previous declaration");
7027 return NULL;
7028 }
7029
7030 /* If any shader outputs occurred before this declaration and specified an
7031 * array size, make sure the size they specified is consistent with the
7032 * primitive type.
7033 */
7034 unsigned num_vertices = this->vertices;
7035 if (state->tcs_output_size != 0 && state->tcs_output_size != num_vertices) {
7036 _mesa_glsl_error(&loc, state,
7037 "this tessellation control shader output layout "
7038 "specifies %u vertices, but a previous output "
7039 "is declared with size %u",
7040 num_vertices, state->tcs_output_size);
7041 return NULL;
7042 }
7043
7044 state->tcs_output_vertices_specified = true;
7045
7046 /* If any shader outputs occurred before this declaration and did not
7047 * specify an array size, their size is determined now.
7048 */
7049 foreach_in_list (ir_instruction, node, instructions) {
7050 ir_variable *var = node->as_variable();
7051 if (var == NULL || var->data.mode != ir_var_shader_out)
7052 continue;
7053
7054 /* Note: Not all tessellation control shader output are arrays. */
7055 if (!var->type->is_unsized_array() || var->data.patch)
7056 continue;
7057
7058 if (var->data.max_array_access >= num_vertices) {
7059 _mesa_glsl_error(&loc, state,
7060 "this tessellation control shader output layout "
7061 "specifies %u vertices, but an access to element "
7062 "%u of output `%s' already exists", num_vertices,
7063 var->data.max_array_access, var->name);
7064 } else {
7065 var->type = glsl_type::get_array_instance(var->type->fields.array,
7066 num_vertices);
7067 }
7068 }
7069
7070 return NULL;
7071 }
7072
7073
7074 ir_rvalue *
7075 ast_gs_input_layout::hir(exec_list *instructions,
7076 struct _mesa_glsl_parse_state *state)
7077 {
7078 YYLTYPE loc = this->get_location();
7079
7080 /* If any geometry input layout declaration preceded this one, make sure it
7081 * was consistent with this one.
7082 */
7083 if (state->gs_input_prim_type_specified &&
7084 state->in_qualifier->prim_type != this->prim_type) {
7085 _mesa_glsl_error(&loc, state,
7086 "geometry shader input layout does not match"
7087 " previous declaration");
7088 return NULL;
7089 }
7090
7091 /* If any shader inputs occurred before this declaration and specified an
7092 * array size, make sure the size they specified is consistent with the
7093 * primitive type.
7094 */
7095 unsigned num_vertices = vertices_per_prim(this->prim_type);
7096 if (state->gs_input_size != 0 && state->gs_input_size != num_vertices) {
7097 _mesa_glsl_error(&loc, state,
7098 "this geometry shader input layout implies %u vertices"
7099 " per primitive, but a previous input is declared"
7100 " with size %u", num_vertices, state->gs_input_size);
7101 return NULL;
7102 }
7103
7104 state->gs_input_prim_type_specified = true;
7105
7106 /* If any shader inputs occurred before this declaration and did not
7107 * specify an array size, their size is determined now.
7108 */
7109 foreach_in_list(ir_instruction, node, instructions) {
7110 ir_variable *var = node->as_variable();
7111 if (var == NULL || var->data.mode != ir_var_shader_in)
7112 continue;
7113
7114 /* Note: gl_PrimitiveIDIn has mode ir_var_shader_in, but it's not an
7115 * array; skip it.
7116 */
7117
7118 if (var->type->is_unsized_array()) {
7119 if (var->data.max_array_access >= num_vertices) {
7120 _mesa_glsl_error(&loc, state,
7121 "this geometry shader input layout implies %u"
7122 " vertices, but an access to element %u of input"
7123 " `%s' already exists", num_vertices,
7124 var->data.max_array_access, var->name);
7125 } else {
7126 var->type = glsl_type::get_array_instance(var->type->fields.array,
7127 num_vertices);
7128 }
7129 }
7130 }
7131
7132 return NULL;
7133 }
7134
7135
7136 ir_rvalue *
7137 ast_cs_input_layout::hir(exec_list *instructions,
7138 struct _mesa_glsl_parse_state *state)
7139 {
7140 YYLTYPE loc = this->get_location();
7141
7142 /* If any compute input layout declaration preceded this one, make sure it
7143 * was consistent with this one.
7144 */
7145 if (state->cs_input_local_size_specified) {
7146 for (int i = 0; i < 3; i++) {
7147 if (state->cs_input_local_size[i] != this->local_size[i]) {
7148 _mesa_glsl_error(&loc, state,
7149 "compute shader input layout does not match"
7150 " previous declaration");
7151 return NULL;
7152 }
7153 }
7154 }
7155
7156 /* From the ARB_compute_shader specification:
7157 *
7158 * If the local size of the shader in any dimension is greater
7159 * than the maximum size supported by the implementation for that
7160 * dimension, a compile-time error results.
7161 *
7162 * It is not clear from the spec how the error should be reported if
7163 * the total size of the work group exceeds
7164 * MAX_COMPUTE_WORK_GROUP_INVOCATIONS, but it seems reasonable to
7165 * report it at compile time as well.
7166 */
7167 GLuint64 total_invocations = 1;
7168 for (int i = 0; i < 3; i++) {
7169 if (this->local_size[i] > state->ctx->Const.MaxComputeWorkGroupSize[i]) {
7170 _mesa_glsl_error(&loc, state,
7171 "local_size_%c exceeds MAX_COMPUTE_WORK_GROUP_SIZE"
7172 " (%d)", 'x' + i,
7173 state->ctx->Const.MaxComputeWorkGroupSize[i]);
7174 break;
7175 }
7176 total_invocations *= this->local_size[i];
7177 if (total_invocations >
7178 state->ctx->Const.MaxComputeWorkGroupInvocations) {
7179 _mesa_glsl_error(&loc, state,
7180 "product of local_sizes exceeds "
7181 "MAX_COMPUTE_WORK_GROUP_INVOCATIONS (%d)",
7182 state->ctx->Const.MaxComputeWorkGroupInvocations);
7183 break;
7184 }
7185 }
7186
7187 state->cs_input_local_size_specified = true;
7188 for (int i = 0; i < 3; i++)
7189 state->cs_input_local_size[i] = this->local_size[i];
7190
7191 /* We may now declare the built-in constant gl_WorkGroupSize (see
7192 * builtin_variable_generator::generate_constants() for why we didn't
7193 * declare it earlier).
7194 */
7195 ir_variable *var = new(state->symbols)
7196 ir_variable(glsl_type::uvec3_type, "gl_WorkGroupSize", ir_var_auto);
7197 var->data.how_declared = ir_var_declared_implicitly;
7198 var->data.read_only = true;
7199 instructions->push_tail(var);
7200 state->symbols->add_variable(var);
7201 ir_constant_data data;
7202 memset(&data, 0, sizeof(data));
7203 for (int i = 0; i < 3; i++)
7204 data.u[i] = this->local_size[i];
7205 var->constant_value = new(var) ir_constant(glsl_type::uvec3_type, &data);
7206 var->constant_initializer =
7207 new(var) ir_constant(glsl_type::uvec3_type, &data);
7208 var->data.has_initializer = true;
7209
7210 return NULL;
7211 }
7212
7213
7214 static void
7215 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
7216 exec_list *instructions)
7217 {
7218 bool gl_FragColor_assigned = false;
7219 bool gl_FragData_assigned = false;
7220 bool gl_FragSecondaryColor_assigned = false;
7221 bool gl_FragSecondaryData_assigned = false;
7222 bool user_defined_fs_output_assigned = false;
7223 ir_variable *user_defined_fs_output = NULL;
7224
7225 /* It would be nice to have proper location information. */
7226 YYLTYPE loc;
7227 memset(&loc, 0, sizeof(loc));
7228
7229 foreach_in_list(ir_instruction, node, instructions) {
7230 ir_variable *var = node->as_variable();
7231
7232 if (!var || !var->data.assigned)
7233 continue;
7234
7235 if (strcmp(var->name, "gl_FragColor") == 0)
7236 gl_FragColor_assigned = true;
7237 else if (strcmp(var->name, "gl_FragData") == 0)
7238 gl_FragData_assigned = true;
7239 else if (strcmp(var->name, "gl_SecondaryFragColorEXT") == 0)
7240 gl_FragSecondaryColor_assigned = true;
7241 else if (strcmp(var->name, "gl_SecondaryFragDataEXT") == 0)
7242 gl_FragSecondaryData_assigned = true;
7243 else if (!is_gl_identifier(var->name)) {
7244 if (state->stage == MESA_SHADER_FRAGMENT &&
7245 var->data.mode == ir_var_shader_out) {
7246 user_defined_fs_output_assigned = true;
7247 user_defined_fs_output = var;
7248 }
7249 }
7250 }
7251
7252 /* From the GLSL 1.30 spec:
7253 *
7254 * "If a shader statically assigns a value to gl_FragColor, it
7255 * may not assign a value to any element of gl_FragData. If a
7256 * shader statically writes a value to any element of
7257 * gl_FragData, it may not assign a value to
7258 * gl_FragColor. That is, a shader may assign values to either
7259 * gl_FragColor or gl_FragData, but not both. Multiple shaders
7260 * linked together must also consistently write just one of
7261 * these variables. Similarly, if user declared output
7262 * variables are in use (statically assigned to), then the
7263 * built-in variables gl_FragColor and gl_FragData may not be
7264 * assigned to. These incorrect usages all generate compile
7265 * time errors."
7266 */
7267 if (gl_FragColor_assigned && gl_FragData_assigned) {
7268 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7269 "`gl_FragColor' and `gl_FragData'");
7270 } else if (gl_FragColor_assigned && user_defined_fs_output_assigned) {
7271 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7272 "`gl_FragColor' and `%s'",
7273 user_defined_fs_output->name);
7274 } else if (gl_FragSecondaryColor_assigned && gl_FragSecondaryData_assigned) {
7275 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7276 "`gl_FragSecondaryColorEXT' and"
7277 " `gl_FragSecondaryDataEXT'");
7278 } else if (gl_FragColor_assigned && gl_FragSecondaryData_assigned) {
7279 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7280 "`gl_FragColor' and"
7281 " `gl_FragSecondaryDataEXT'");
7282 } else if (gl_FragData_assigned && gl_FragSecondaryColor_assigned) {
7283 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7284 "`gl_FragData' and"
7285 " `gl_FragSecondaryColorEXT'");
7286 } else if (gl_FragData_assigned && user_defined_fs_output_assigned) {
7287 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7288 "`gl_FragData' and `%s'",
7289 user_defined_fs_output->name);
7290 }
7291
7292 if ((gl_FragSecondaryColor_assigned || gl_FragSecondaryData_assigned) &&
7293 !state->EXT_blend_func_extended_enable) {
7294 _mesa_glsl_error(&loc, state,
7295 "Dual source blending requires EXT_blend_func_extended");
7296 }
7297 }
7298
7299
7300 static void
7301 remove_per_vertex_blocks(exec_list *instructions,
7302 _mesa_glsl_parse_state *state, ir_variable_mode mode)
7303 {
7304 /* Find the gl_PerVertex interface block of the appropriate (in/out) mode,
7305 * if it exists in this shader type.
7306 */
7307 const glsl_type *per_vertex = NULL;
7308 switch (mode) {
7309 case ir_var_shader_in:
7310 if (ir_variable *gl_in = state->symbols->get_variable("gl_in"))
7311 per_vertex = gl_in->get_interface_type();
7312 break;
7313 case ir_var_shader_out:
7314 if (ir_variable *gl_Position =
7315 state->symbols->get_variable("gl_Position")) {
7316 per_vertex = gl_Position->get_interface_type();
7317 }
7318 break;
7319 default:
7320 assert(!"Unexpected mode");
7321 break;
7322 }
7323
7324 /* If we didn't find a built-in gl_PerVertex interface block, then we don't
7325 * need to do anything.
7326 */
7327 if (per_vertex == NULL)
7328 return;
7329
7330 /* If the interface block is used by the shader, then we don't need to do
7331 * anything.
7332 */
7333 interface_block_usage_visitor v(mode, per_vertex);
7334 v.run(instructions);
7335 if (v.usage_found())
7336 return;
7337
7338 /* Remove any ir_variable declarations that refer to the interface block
7339 * we're removing.
7340 */
7341 foreach_in_list_safe(ir_instruction, node, instructions) {
7342 ir_variable *const var = node->as_variable();
7343 if (var != NULL && var->get_interface_type() == per_vertex &&
7344 var->data.mode == mode) {
7345 state->symbols->disable_variable(var->name);
7346 var->remove();
7347 }
7348 }
7349 }