Convert everything from the talloc API to the ralloc API.
[mesa.git] / src / glsl / ast_to_hir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file ast_to_hir.c
26 * Convert abstract syntax to to high-level intermediate reprensentation (HIR).
27 *
28 * During the conversion to HIR, the majority of the symantic checking is
29 * preformed on the program. This includes:
30 *
31 * * Symbol table management
32 * * Type checking
33 * * Function binding
34 *
35 * The majority of this work could be done during parsing, and the parser could
36 * probably generate HIR directly. However, this results in frequent changes
37 * to the parser code. Since we do not assume that every system this complier
38 * is built on will have Flex and Bison installed, we have to store the code
39 * generated by these tools in our version control system. In other parts of
40 * the system we've seen problems where a parser was changed but the generated
41 * code was not committed, merge conflicts where created because two developers
42 * had slightly different versions of Bison installed, etc.
43 *
44 * I have also noticed that running Bison generated parsers in GDB is very
45 * irritating. When you get a segfault on '$$ = $1->foo', you can't very
46 * well 'print $1' in GDB.
47 *
48 * As a result, my preference is to put as little C code as possible in the
49 * parser (and lexer) sources.
50 */
51
52 #include "main/core.h" /* for struct gl_extensions */
53 #include "glsl_symbol_table.h"
54 #include "glsl_parser_extras.h"
55 #include "ast.h"
56 #include "glsl_types.h"
57 #include "ir.h"
58
59 void
60 _mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
61 {
62 _mesa_glsl_initialize_variables(instructions, state);
63 _mesa_glsl_initialize_functions(state);
64
65 state->symbols->language_version = state->language_version;
66
67 state->current_function = NULL;
68
69 /* Section 4.2 of the GLSL 1.20 specification states:
70 * "The built-in functions are scoped in a scope outside the global scope
71 * users declare global variables in. That is, a shader's global scope,
72 * available for user-defined functions and global variables, is nested
73 * inside the scope containing the built-in functions."
74 *
75 * Since built-in functions like ftransform() access built-in variables,
76 * it follows that those must be in the outer scope as well.
77 *
78 * We push scope here to create this nesting effect...but don't pop.
79 * This way, a shader's globals are still in the symbol table for use
80 * by the linker.
81 */
82 state->symbols->push_scope();
83
84 foreach_list_typed (ast_node, ast, link, & state->translation_unit)
85 ast->hir(instructions, state);
86 }
87
88
89 /**
90 * If a conversion is available, convert one operand to a different type
91 *
92 * The \c from \c ir_rvalue is converted "in place".
93 *
94 * \param to Type that the operand it to be converted to
95 * \param from Operand that is being converted
96 * \param state GLSL compiler state
97 *
98 * \return
99 * If a conversion is possible (or unnecessary), \c true is returned.
100 * Otherwise \c false is returned.
101 */
102 bool
103 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
104 struct _mesa_glsl_parse_state *state)
105 {
106 void *ctx = state;
107 if (to->base_type == from->type->base_type)
108 return true;
109
110 /* This conversion was added in GLSL 1.20. If the compilation mode is
111 * GLSL 1.10, the conversion is skipped.
112 */
113 if (state->language_version < 120)
114 return false;
115
116 /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
117 *
118 * "There are no implicit array or structure conversions. For
119 * example, an array of int cannot be implicitly converted to an
120 * array of float. There are no implicit conversions between
121 * signed and unsigned integers."
122 */
123 /* FINISHME: The above comment is partially a lie. There is int/uint
124 * FINISHME: conversion for immediate constants.
125 */
126 if (!to->is_float() || !from->type->is_numeric())
127 return false;
128
129 /* Convert to a floating point type with the same number of components
130 * as the original type - i.e. int to float, not int to vec4.
131 */
132 to = glsl_type::get_instance(GLSL_TYPE_FLOAT, from->type->vector_elements,
133 from->type->matrix_columns);
134
135 switch (from->type->base_type) {
136 case GLSL_TYPE_INT:
137 from = new(ctx) ir_expression(ir_unop_i2f, to, from, NULL);
138 break;
139 case GLSL_TYPE_UINT:
140 from = new(ctx) ir_expression(ir_unop_u2f, to, from, NULL);
141 break;
142 case GLSL_TYPE_BOOL:
143 from = new(ctx) ir_expression(ir_unop_b2f, to, from, NULL);
144 break;
145 default:
146 assert(0);
147 }
148
149 return true;
150 }
151
152
153 static const struct glsl_type *
154 arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
155 bool multiply,
156 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
157 {
158 const glsl_type *type_a = value_a->type;
159 const glsl_type *type_b = value_b->type;
160
161 /* From GLSL 1.50 spec, page 56:
162 *
163 * "The arithmetic binary operators add (+), subtract (-),
164 * multiply (*), and divide (/) operate on integer and
165 * floating-point scalars, vectors, and matrices."
166 */
167 if (!type_a->is_numeric() || !type_b->is_numeric()) {
168 _mesa_glsl_error(loc, state,
169 "Operands to arithmetic operators must be numeric");
170 return glsl_type::error_type;
171 }
172
173
174 /* "If one operand is floating-point based and the other is
175 * not, then the conversions from Section 4.1.10 "Implicit
176 * Conversions" are applied to the non-floating-point-based operand."
177 */
178 if (!apply_implicit_conversion(type_a, value_b, state)
179 && !apply_implicit_conversion(type_b, value_a, state)) {
180 _mesa_glsl_error(loc, state,
181 "Could not implicitly convert operands to "
182 "arithmetic operator");
183 return glsl_type::error_type;
184 }
185 type_a = value_a->type;
186 type_b = value_b->type;
187
188 /* "If the operands are integer types, they must both be signed or
189 * both be unsigned."
190 *
191 * From this rule and the preceeding conversion it can be inferred that
192 * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
193 * The is_numeric check above already filtered out the case where either
194 * type is not one of these, so now the base types need only be tested for
195 * equality.
196 */
197 if (type_a->base_type != type_b->base_type) {
198 _mesa_glsl_error(loc, state,
199 "base type mismatch for arithmetic operator");
200 return glsl_type::error_type;
201 }
202
203 /* "All arithmetic binary operators result in the same fundamental type
204 * (signed integer, unsigned integer, or floating-point) as the
205 * operands they operate on, after operand type conversion. After
206 * conversion, the following cases are valid
207 *
208 * * The two operands are scalars. In this case the operation is
209 * applied, resulting in a scalar."
210 */
211 if (type_a->is_scalar() && type_b->is_scalar())
212 return type_a;
213
214 /* "* One operand is a scalar, and the other is a vector or matrix.
215 * In this case, the scalar operation is applied independently to each
216 * component of the vector or matrix, resulting in the same size
217 * vector or matrix."
218 */
219 if (type_a->is_scalar()) {
220 if (!type_b->is_scalar())
221 return type_b;
222 } else if (type_b->is_scalar()) {
223 return type_a;
224 }
225
226 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
227 * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
228 * handled.
229 */
230 assert(!type_a->is_scalar());
231 assert(!type_b->is_scalar());
232
233 /* "* The two operands are vectors of the same size. In this case, the
234 * operation is done component-wise resulting in the same size
235 * vector."
236 */
237 if (type_a->is_vector() && type_b->is_vector()) {
238 if (type_a == type_b) {
239 return type_a;
240 } else {
241 _mesa_glsl_error(loc, state,
242 "vector size mismatch for arithmetic operator");
243 return glsl_type::error_type;
244 }
245 }
246
247 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
248 * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
249 * <vector, vector> have been handled. At least one of the operands must
250 * be matrix. Further, since there are no integer matrix types, the base
251 * type of both operands must be float.
252 */
253 assert(type_a->is_matrix() || type_b->is_matrix());
254 assert(type_a->base_type == GLSL_TYPE_FLOAT);
255 assert(type_b->base_type == GLSL_TYPE_FLOAT);
256
257 /* "* The operator is add (+), subtract (-), or divide (/), and the
258 * operands are matrices with the same number of rows and the same
259 * number of columns. In this case, the operation is done component-
260 * wise resulting in the same size matrix."
261 * * The operator is multiply (*), where both operands are matrices or
262 * one operand is a vector and the other a matrix. A right vector
263 * operand is treated as a column vector and a left vector operand as a
264 * row vector. In all these cases, it is required that the number of
265 * columns of the left operand is equal to the number of rows of the
266 * right operand. Then, the multiply (*) operation does a linear
267 * algebraic multiply, yielding an object that has the same number of
268 * rows as the left operand and the same number of columns as the right
269 * operand. Section 5.10 "Vector and Matrix Operations" explains in
270 * more detail how vectors and matrices are operated on."
271 */
272 if (! multiply) {
273 if (type_a == type_b)
274 return type_a;
275 } else {
276 if (type_a->is_matrix() && type_b->is_matrix()) {
277 /* Matrix multiply. The columns of A must match the rows of B. Given
278 * the other previously tested constraints, this means the vector type
279 * of a row from A must be the same as the vector type of a column from
280 * B.
281 */
282 if (type_a->row_type() == type_b->column_type()) {
283 /* The resulting matrix has the number of columns of matrix B and
284 * the number of rows of matrix A. We get the row count of A by
285 * looking at the size of a vector that makes up a column. The
286 * transpose (size of a row) is done for B.
287 */
288 const glsl_type *const type =
289 glsl_type::get_instance(type_a->base_type,
290 type_a->column_type()->vector_elements,
291 type_b->row_type()->vector_elements);
292 assert(type != glsl_type::error_type);
293
294 return type;
295 }
296 } else if (type_a->is_matrix()) {
297 /* A is a matrix and B is a column vector. Columns of A must match
298 * rows of B. Given the other previously tested constraints, this
299 * means the vector type of a row from A must be the same as the
300 * vector the type of B.
301 */
302 if (type_a->row_type() == type_b) {
303 /* The resulting vector has a number of elements equal to
304 * the number of rows of matrix A. */
305 const glsl_type *const type =
306 glsl_type::get_instance(type_a->base_type,
307 type_a->column_type()->vector_elements,
308 1);
309 assert(type != glsl_type::error_type);
310
311 return type;
312 }
313 } else {
314 assert(type_b->is_matrix());
315
316 /* A is a row vector and B is a matrix. Columns of A must match rows
317 * of B. Given the other previously tested constraints, this means
318 * the type of A must be the same as the vector type of a column from
319 * B.
320 */
321 if (type_a == type_b->column_type()) {
322 /* The resulting vector has a number of elements equal to
323 * the number of columns of matrix B. */
324 const glsl_type *const type =
325 glsl_type::get_instance(type_a->base_type,
326 type_b->row_type()->vector_elements,
327 1);
328 assert(type != glsl_type::error_type);
329
330 return type;
331 }
332 }
333
334 _mesa_glsl_error(loc, state, "size mismatch for matrix multiplication");
335 return glsl_type::error_type;
336 }
337
338
339 /* "All other cases are illegal."
340 */
341 _mesa_glsl_error(loc, state, "type mismatch");
342 return glsl_type::error_type;
343 }
344
345
346 static const struct glsl_type *
347 unary_arithmetic_result_type(const struct glsl_type *type,
348 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
349 {
350 /* From GLSL 1.50 spec, page 57:
351 *
352 * "The arithmetic unary operators negate (-), post- and pre-increment
353 * and decrement (-- and ++) operate on integer or floating-point
354 * values (including vectors and matrices). All unary operators work
355 * component-wise on their operands. These result with the same type
356 * they operated on."
357 */
358 if (!type->is_numeric()) {
359 _mesa_glsl_error(loc, state,
360 "Operands to arithmetic operators must be numeric");
361 return glsl_type::error_type;
362 }
363
364 return type;
365 }
366
367 /**
368 * \brief Return the result type of a bit-logic operation.
369 *
370 * If the given types to the bit-logic operator are invalid, return
371 * glsl_type::error_type.
372 *
373 * \param type_a Type of LHS of bit-logic op
374 * \param type_b Type of RHS of bit-logic op
375 */
376 static const struct glsl_type *
377 bit_logic_result_type(const struct glsl_type *type_a,
378 const struct glsl_type *type_b,
379 ast_operators op,
380 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
381 {
382 if (state->language_version < 130) {
383 _mesa_glsl_error(loc, state, "bit operations require GLSL 1.30");
384 return glsl_type::error_type;
385 }
386
387 /* From page 50 (page 56 of PDF) of GLSL 1.30 spec:
388 *
389 * "The bitwise operators and (&), exclusive-or (^), and inclusive-or
390 * (|). The operands must be of type signed or unsigned integers or
391 * integer vectors."
392 */
393 if (!type_a->is_integer()) {
394 _mesa_glsl_error(loc, state, "LHS of `%s' must be an integer",
395 ast_expression::operator_string(op));
396 return glsl_type::error_type;
397 }
398 if (!type_b->is_integer()) {
399 _mesa_glsl_error(loc, state, "RHS of `%s' must be an integer",
400 ast_expression::operator_string(op));
401 return glsl_type::error_type;
402 }
403
404 /* "The fundamental types of the operands (signed or unsigned) must
405 * match,"
406 */
407 if (type_a->base_type != type_b->base_type) {
408 _mesa_glsl_error(loc, state, "operands of `%s' must have the same "
409 "base type", ast_expression::operator_string(op));
410 return glsl_type::error_type;
411 }
412
413 /* "The operands cannot be vectors of differing size." */
414 if (type_a->is_vector() &&
415 type_b->is_vector() &&
416 type_a->vector_elements != type_b->vector_elements) {
417 _mesa_glsl_error(loc, state, "operands of `%s' cannot be vectors of "
418 "different sizes", ast_expression::operator_string(op));
419 return glsl_type::error_type;
420 }
421
422 /* "If one operand is a scalar and the other a vector, the scalar is
423 * applied component-wise to the vector, resulting in the same type as
424 * the vector. The fundamental types of the operands [...] will be the
425 * resulting fundamental type."
426 */
427 if (type_a->is_scalar())
428 return type_b;
429 else
430 return type_a;
431 }
432
433 static const struct glsl_type *
434 modulus_result_type(const struct glsl_type *type_a,
435 const struct glsl_type *type_b,
436 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
437 {
438 /* From GLSL 1.50 spec, page 56:
439 * "The operator modulus (%) operates on signed or unsigned integers or
440 * integer vectors. The operand types must both be signed or both be
441 * unsigned."
442 */
443 if (!type_a->is_integer() || !type_b->is_integer()
444 || (type_a->base_type != type_b->base_type)) {
445 _mesa_glsl_error(loc, state, "type mismatch");
446 return glsl_type::error_type;
447 }
448
449 /* "The operands cannot be vectors of differing size. If one operand is
450 * a scalar and the other vector, then the scalar is applied component-
451 * wise to the vector, resulting in the same type as the vector. If both
452 * are vectors of the same size, the result is computed component-wise."
453 */
454 if (type_a->is_vector()) {
455 if (!type_b->is_vector()
456 || (type_a->vector_elements == type_b->vector_elements))
457 return type_a;
458 } else
459 return type_b;
460
461 /* "The operator modulus (%) is not defined for any other data types
462 * (non-integer types)."
463 */
464 _mesa_glsl_error(loc, state, "type mismatch");
465 return glsl_type::error_type;
466 }
467
468
469 static const struct glsl_type *
470 relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
471 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
472 {
473 const glsl_type *type_a = value_a->type;
474 const glsl_type *type_b = value_b->type;
475
476 /* From GLSL 1.50 spec, page 56:
477 * "The relational operators greater than (>), less than (<), greater
478 * than or equal (>=), and less than or equal (<=) operate only on
479 * scalar integer and scalar floating-point expressions."
480 */
481 if (!type_a->is_numeric()
482 || !type_b->is_numeric()
483 || !type_a->is_scalar()
484 || !type_b->is_scalar()) {
485 _mesa_glsl_error(loc, state,
486 "Operands to relational operators must be scalar and "
487 "numeric");
488 return glsl_type::error_type;
489 }
490
491 /* "Either the operands' types must match, or the conversions from
492 * Section 4.1.10 "Implicit Conversions" will be applied to the integer
493 * operand, after which the types must match."
494 */
495 if (!apply_implicit_conversion(type_a, value_b, state)
496 && !apply_implicit_conversion(type_b, value_a, state)) {
497 _mesa_glsl_error(loc, state,
498 "Could not implicitly convert operands to "
499 "relational operator");
500 return glsl_type::error_type;
501 }
502 type_a = value_a->type;
503 type_b = value_b->type;
504
505 if (type_a->base_type != type_b->base_type) {
506 _mesa_glsl_error(loc, state, "base type mismatch");
507 return glsl_type::error_type;
508 }
509
510 /* "The result is scalar Boolean."
511 */
512 return glsl_type::bool_type;
513 }
514
515 /**
516 * \brief Return the result type of a bit-shift operation.
517 *
518 * If the given types to the bit-shift operator are invalid, return
519 * glsl_type::error_type.
520 *
521 * \param type_a Type of LHS of bit-shift op
522 * \param type_b Type of RHS of bit-shift op
523 */
524 static const struct glsl_type *
525 shift_result_type(const struct glsl_type *type_a,
526 const struct glsl_type *type_b,
527 ast_operators op,
528 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
529 {
530 if (state->language_version < 130) {
531 _mesa_glsl_error(loc, state, "bit operations require GLSL 1.30");
532 return glsl_type::error_type;
533 }
534
535 /* From page 50 (page 56 of the PDF) of the GLSL 1.30 spec:
536 *
537 * "The shift operators (<<) and (>>). For both operators, the operands
538 * must be signed or unsigned integers or integer vectors. One operand
539 * can be signed while the other is unsigned."
540 */
541 if (!type_a->is_integer()) {
542 _mesa_glsl_error(loc, state, "LHS of operator %s must be an integer or "
543 "integer vector", ast_expression::operator_string(op));
544 return glsl_type::error_type;
545
546 }
547 if (!type_b->is_integer()) {
548 _mesa_glsl_error(loc, state, "RHS of operator %s must be an integer or "
549 "integer vector", ast_expression::operator_string(op));
550 return glsl_type::error_type;
551 }
552
553 /* "If the first operand is a scalar, the second operand has to be
554 * a scalar as well."
555 */
556 if (type_a->is_scalar() && !type_b->is_scalar()) {
557 _mesa_glsl_error(loc, state, "If the first operand of %s is scalar, the "
558 "second must be scalar as well",
559 ast_expression::operator_string(op));
560 return glsl_type::error_type;
561 }
562
563 /* If both operands are vectors, check that they have same number of
564 * elements.
565 */
566 if (type_a->is_vector() &&
567 type_b->is_vector() &&
568 type_a->vector_elements != type_b->vector_elements) {
569 _mesa_glsl_error(loc, state, "Vector operands to operator %s must "
570 "have same number of elements",
571 ast_expression::operator_string(op));
572 return glsl_type::error_type;
573 }
574
575 /* "In all cases, the resulting type will be the same type as the left
576 * operand."
577 */
578 return type_a;
579 }
580
581 /**
582 * Validates that a value can be assigned to a location with a specified type
583 *
584 * Validates that \c rhs can be assigned to some location. If the types are
585 * not an exact match but an automatic conversion is possible, \c rhs will be
586 * converted.
587 *
588 * \return
589 * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
590 * Otherwise the actual RHS to be assigned will be returned. This may be
591 * \c rhs, or it may be \c rhs after some type conversion.
592 *
593 * \note
594 * In addition to being used for assignments, this function is used to
595 * type-check return values.
596 */
597 ir_rvalue *
598 validate_assignment(struct _mesa_glsl_parse_state *state,
599 const glsl_type *lhs_type, ir_rvalue *rhs)
600 {
601 /* If there is already some error in the RHS, just return it. Anything
602 * else will lead to an avalanche of error message back to the user.
603 */
604 if (rhs->type->is_error())
605 return rhs;
606
607 /* If the types are identical, the assignment can trivially proceed.
608 */
609 if (rhs->type == lhs_type)
610 return rhs;
611
612 /* If the array element types are the same and the size of the LHS is zero,
613 * the assignment is okay.
614 *
615 * Note: Whole-array assignments are not permitted in GLSL 1.10, but this
616 * is handled by ir_dereference::is_lvalue.
617 */
618 if (lhs_type->is_array() && rhs->type->is_array()
619 && (lhs_type->element_type() == rhs->type->element_type())
620 && (lhs_type->array_size() == 0)) {
621 return rhs;
622 }
623
624 /* Check for implicit conversion in GLSL 1.20 */
625 if (apply_implicit_conversion(lhs_type, rhs, state)) {
626 if (rhs->type == lhs_type)
627 return rhs;
628 }
629
630 return NULL;
631 }
632
633 ir_rvalue *
634 do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state,
635 ir_rvalue *lhs, ir_rvalue *rhs,
636 YYLTYPE lhs_loc)
637 {
638 void *ctx = state;
639 bool error_emitted = (lhs->type->is_error() || rhs->type->is_error());
640
641 if (!error_emitted) {
642 if (lhs->variable_referenced() != NULL
643 && lhs->variable_referenced()->read_only) {
644 _mesa_glsl_error(&lhs_loc, state,
645 "assignment to read-only variable '%s'",
646 lhs->variable_referenced()->name);
647 error_emitted = true;
648
649 } else if (!lhs->is_lvalue()) {
650 _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment");
651 error_emitted = true;
652 }
653
654 if (state->es_shader && lhs->type->is_array()) {
655 _mesa_glsl_error(&lhs_loc, state, "whole array assignment is not "
656 "allowed in GLSL ES 1.00.");
657 error_emitted = true;
658 }
659 }
660
661 ir_rvalue *new_rhs = validate_assignment(state, lhs->type, rhs);
662 if (new_rhs == NULL) {
663 _mesa_glsl_error(& lhs_loc, state, "type mismatch");
664 } else {
665 rhs = new_rhs;
666
667 /* If the LHS array was not declared with a size, it takes it size from
668 * the RHS. If the LHS is an l-value and a whole array, it must be a
669 * dereference of a variable. Any other case would require that the LHS
670 * is either not an l-value or not a whole array.
671 */
672 if (lhs->type->array_size() == 0) {
673 ir_dereference *const d = lhs->as_dereference();
674
675 assert(d != NULL);
676
677 ir_variable *const var = d->variable_referenced();
678
679 assert(var != NULL);
680
681 if (var->max_array_access >= unsigned(rhs->type->array_size())) {
682 /* FINISHME: This should actually log the location of the RHS. */
683 _mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to "
684 "previous access",
685 var->max_array_access);
686 }
687
688 var->type = glsl_type::get_array_instance(lhs->type->element_type(),
689 rhs->type->array_size());
690 d->type = var->type;
691 }
692 }
693
694 /* Most callers of do_assignment (assign, add_assign, pre_inc/dec,
695 * but not post_inc) need the converted assigned value as an rvalue
696 * to handle things like:
697 *
698 * i = j += 1;
699 *
700 * So we always just store the computed value being assigned to a
701 * temporary and return a deref of that temporary. If the rvalue
702 * ends up not being used, the temp will get copy-propagated out.
703 */
704 ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp",
705 ir_var_temporary);
706 ir_dereference_variable *deref_var = new(ctx) ir_dereference_variable(var);
707 instructions->push_tail(var);
708 instructions->push_tail(new(ctx) ir_assignment(deref_var,
709 rhs,
710 NULL));
711 deref_var = new(ctx) ir_dereference_variable(var);
712
713 if (!error_emitted)
714 instructions->push_tail(new(ctx) ir_assignment(lhs, deref_var, NULL));
715
716 return new(ctx) ir_dereference_variable(var);
717 }
718
719 static ir_rvalue *
720 get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue)
721 {
722 void *ctx = ralloc_parent(lvalue);
723 ir_variable *var;
724
725 var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp",
726 ir_var_temporary);
727 instructions->push_tail(var);
728 var->mode = ir_var_auto;
729
730 instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
731 lvalue, NULL));
732
733 /* Once we've created this temporary, mark it read only so it's no
734 * longer considered an lvalue.
735 */
736 var->read_only = true;
737
738 return new(ctx) ir_dereference_variable(var);
739 }
740
741
742 ir_rvalue *
743 ast_node::hir(exec_list *instructions,
744 struct _mesa_glsl_parse_state *state)
745 {
746 (void) instructions;
747 (void) state;
748
749 return NULL;
750 }
751
752 static void
753 mark_whole_array_access(ir_rvalue *access)
754 {
755 ir_dereference_variable *deref = access->as_dereference_variable();
756
757 if (deref) {
758 deref->var->max_array_access = deref->type->length - 1;
759 }
760 }
761
762 static ir_rvalue *
763 do_comparison(void *mem_ctx, int operation, ir_rvalue *op0, ir_rvalue *op1)
764 {
765 int join_op;
766 ir_rvalue *cmp = NULL;
767
768 if (operation == ir_binop_all_equal)
769 join_op = ir_binop_logic_and;
770 else
771 join_op = ir_binop_logic_or;
772
773 switch (op0->type->base_type) {
774 case GLSL_TYPE_FLOAT:
775 case GLSL_TYPE_UINT:
776 case GLSL_TYPE_INT:
777 case GLSL_TYPE_BOOL:
778 return new(mem_ctx) ir_expression(operation, op0, op1);
779
780 case GLSL_TYPE_ARRAY: {
781 for (unsigned int i = 0; i < op0->type->length; i++) {
782 ir_rvalue *e0, *e1, *result;
783
784 e0 = new(mem_ctx) ir_dereference_array(op0->clone(mem_ctx, NULL),
785 new(mem_ctx) ir_constant(i));
786 e1 = new(mem_ctx) ir_dereference_array(op1->clone(mem_ctx, NULL),
787 new(mem_ctx) ir_constant(i));
788 result = do_comparison(mem_ctx, operation, e0, e1);
789
790 if (cmp) {
791 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
792 } else {
793 cmp = result;
794 }
795 }
796
797 mark_whole_array_access(op0);
798 mark_whole_array_access(op1);
799 break;
800 }
801
802 case GLSL_TYPE_STRUCT: {
803 for (unsigned int i = 0; i < op0->type->length; i++) {
804 ir_rvalue *e0, *e1, *result;
805 const char *field_name = op0->type->fields.structure[i].name;
806
807 e0 = new(mem_ctx) ir_dereference_record(op0->clone(mem_ctx, NULL),
808 field_name);
809 e1 = new(mem_ctx) ir_dereference_record(op1->clone(mem_ctx, NULL),
810 field_name);
811 result = do_comparison(mem_ctx, operation, e0, e1);
812
813 if (cmp) {
814 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
815 } else {
816 cmp = result;
817 }
818 }
819 break;
820 }
821
822 case GLSL_TYPE_ERROR:
823 case GLSL_TYPE_VOID:
824 case GLSL_TYPE_SAMPLER:
825 /* I assume a comparison of a struct containing a sampler just
826 * ignores the sampler present in the type.
827 */
828 break;
829
830 default:
831 assert(!"Should not get here.");
832 break;
833 }
834
835 if (cmp == NULL)
836 cmp = new(mem_ctx) ir_constant(true);
837
838 return cmp;
839 }
840
841 ir_rvalue *
842 ast_expression::hir(exec_list *instructions,
843 struct _mesa_glsl_parse_state *state)
844 {
845 void *ctx = state;
846 static const int operations[AST_NUM_OPERATORS] = {
847 -1, /* ast_assign doesn't convert to ir_expression. */
848 -1, /* ast_plus doesn't convert to ir_expression. */
849 ir_unop_neg,
850 ir_binop_add,
851 ir_binop_sub,
852 ir_binop_mul,
853 ir_binop_div,
854 ir_binop_mod,
855 ir_binop_lshift,
856 ir_binop_rshift,
857 ir_binop_less,
858 ir_binop_greater,
859 ir_binop_lequal,
860 ir_binop_gequal,
861 ir_binop_all_equal,
862 ir_binop_any_nequal,
863 ir_binop_bit_and,
864 ir_binop_bit_xor,
865 ir_binop_bit_or,
866 ir_unop_bit_not,
867 ir_binop_logic_and,
868 ir_binop_logic_xor,
869 ir_binop_logic_or,
870 ir_unop_logic_not,
871
872 /* Note: The following block of expression types actually convert
873 * to multiple IR instructions.
874 */
875 ir_binop_mul, /* ast_mul_assign */
876 ir_binop_div, /* ast_div_assign */
877 ir_binop_mod, /* ast_mod_assign */
878 ir_binop_add, /* ast_add_assign */
879 ir_binop_sub, /* ast_sub_assign */
880 ir_binop_lshift, /* ast_ls_assign */
881 ir_binop_rshift, /* ast_rs_assign */
882 ir_binop_bit_and, /* ast_and_assign */
883 ir_binop_bit_xor, /* ast_xor_assign */
884 ir_binop_bit_or, /* ast_or_assign */
885
886 -1, /* ast_conditional doesn't convert to ir_expression. */
887 ir_binop_add, /* ast_pre_inc. */
888 ir_binop_sub, /* ast_pre_dec. */
889 ir_binop_add, /* ast_post_inc. */
890 ir_binop_sub, /* ast_post_dec. */
891 -1, /* ast_field_selection doesn't conv to ir_expression. */
892 -1, /* ast_array_index doesn't convert to ir_expression. */
893 -1, /* ast_function_call doesn't conv to ir_expression. */
894 -1, /* ast_identifier doesn't convert to ir_expression. */
895 -1, /* ast_int_constant doesn't convert to ir_expression. */
896 -1, /* ast_uint_constant doesn't conv to ir_expression. */
897 -1, /* ast_float_constant doesn't conv to ir_expression. */
898 -1, /* ast_bool_constant doesn't conv to ir_expression. */
899 -1, /* ast_sequence doesn't convert to ir_expression. */
900 };
901 ir_rvalue *result = NULL;
902 ir_rvalue *op[3];
903 const struct glsl_type *type = glsl_type::error_type;
904 bool error_emitted = false;
905 YYLTYPE loc;
906
907 loc = this->get_location();
908
909 switch (this->oper) {
910 case ast_assign: {
911 op[0] = this->subexpressions[0]->hir(instructions, state);
912 op[1] = this->subexpressions[1]->hir(instructions, state);
913
914 result = do_assignment(instructions, state, op[0], op[1],
915 this->subexpressions[0]->get_location());
916 error_emitted = result->type->is_error();
917 type = result->type;
918 break;
919 }
920
921 case ast_plus:
922 op[0] = this->subexpressions[0]->hir(instructions, state);
923
924 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
925
926 error_emitted = type->is_error();
927
928 result = op[0];
929 break;
930
931 case ast_neg:
932 op[0] = this->subexpressions[0]->hir(instructions, state);
933
934 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
935
936 error_emitted = type->is_error();
937
938 result = new(ctx) ir_expression(operations[this->oper], type,
939 op[0], NULL);
940 break;
941
942 case ast_add:
943 case ast_sub:
944 case ast_mul:
945 case ast_div:
946 op[0] = this->subexpressions[0]->hir(instructions, state);
947 op[1] = this->subexpressions[1]->hir(instructions, state);
948
949 type = arithmetic_result_type(op[0], op[1],
950 (this->oper == ast_mul),
951 state, & loc);
952 error_emitted = type->is_error();
953
954 result = new(ctx) ir_expression(operations[this->oper], type,
955 op[0], op[1]);
956 break;
957
958 case ast_mod:
959 op[0] = this->subexpressions[0]->hir(instructions, state);
960 op[1] = this->subexpressions[1]->hir(instructions, state);
961
962 type = modulus_result_type(op[0]->type, op[1]->type, state, & loc);
963
964 assert(operations[this->oper] == ir_binop_mod);
965
966 result = new(ctx) ir_expression(operations[this->oper], type,
967 op[0], op[1]);
968 error_emitted = type->is_error();
969 break;
970
971 case ast_lshift:
972 case ast_rshift:
973 if (state->language_version < 130) {
974 _mesa_glsl_error(&loc, state, "operator %s requires GLSL 1.30",
975 operator_string(this->oper));
976 error_emitted = true;
977 }
978
979 op[0] = this->subexpressions[0]->hir(instructions, state);
980 op[1] = this->subexpressions[1]->hir(instructions, state);
981 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
982 &loc);
983 result = new(ctx) ir_expression(operations[this->oper], type,
984 op[0], op[1]);
985 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
986 break;
987
988 case ast_less:
989 case ast_greater:
990 case ast_lequal:
991 case ast_gequal:
992 op[0] = this->subexpressions[0]->hir(instructions, state);
993 op[1] = this->subexpressions[1]->hir(instructions, state);
994
995 type = relational_result_type(op[0], op[1], state, & loc);
996
997 /* The relational operators must either generate an error or result
998 * in a scalar boolean. See page 57 of the GLSL 1.50 spec.
999 */
1000 assert(type->is_error()
1001 || ((type->base_type == GLSL_TYPE_BOOL)
1002 && type->is_scalar()));
1003
1004 result = new(ctx) ir_expression(operations[this->oper], type,
1005 op[0], op[1]);
1006 error_emitted = type->is_error();
1007 break;
1008
1009 case ast_nequal:
1010 case ast_equal:
1011 op[0] = this->subexpressions[0]->hir(instructions, state);
1012 op[1] = this->subexpressions[1]->hir(instructions, state);
1013
1014 /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
1015 *
1016 * "The equality operators equal (==), and not equal (!=)
1017 * operate on all types. They result in a scalar Boolean. If
1018 * the operand types do not match, then there must be a
1019 * conversion from Section 4.1.10 "Implicit Conversions"
1020 * applied to one operand that can make them match, in which
1021 * case this conversion is done."
1022 */
1023 if ((!apply_implicit_conversion(op[0]->type, op[1], state)
1024 && !apply_implicit_conversion(op[1]->type, op[0], state))
1025 || (op[0]->type != op[1]->type)) {
1026 _mesa_glsl_error(& loc, state, "operands of `%s' must have the same "
1027 "type", (this->oper == ast_equal) ? "==" : "!=");
1028 error_emitted = true;
1029 } else if ((state->language_version <= 110)
1030 && (op[0]->type->is_array() || op[1]->type->is_array())) {
1031 _mesa_glsl_error(& loc, state, "array comparisons forbidden in "
1032 "GLSL 1.10");
1033 error_emitted = true;
1034 }
1035
1036 result = do_comparison(ctx, operations[this->oper], op[0], op[1]);
1037 type = glsl_type::bool_type;
1038
1039 assert(error_emitted || (result->type == glsl_type::bool_type));
1040 break;
1041
1042 case ast_bit_and:
1043 case ast_bit_xor:
1044 case ast_bit_or:
1045 op[0] = this->subexpressions[0]->hir(instructions, state);
1046 op[1] = this->subexpressions[1]->hir(instructions, state);
1047 type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
1048 state, &loc);
1049 result = new(ctx) ir_expression(operations[this->oper], type,
1050 op[0], op[1]);
1051 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1052 break;
1053
1054 case ast_bit_not:
1055 op[0] = this->subexpressions[0]->hir(instructions, state);
1056
1057 if (state->language_version < 130) {
1058 _mesa_glsl_error(&loc, state, "bit-wise operations require GLSL 1.30");
1059 error_emitted = true;
1060 }
1061
1062 if (!op[0]->type->is_integer()) {
1063 _mesa_glsl_error(&loc, state, "operand of `~' must be an integer");
1064 error_emitted = true;
1065 }
1066
1067 type = op[0]->type;
1068 result = new(ctx) ir_expression(ir_unop_bit_not, type, op[0], NULL);
1069 break;
1070
1071 case ast_logic_and: {
1072 op[0] = this->subexpressions[0]->hir(instructions, state);
1073
1074 if (!op[0]->type->is_boolean() || !op[0]->type->is_scalar()) {
1075 YYLTYPE loc = this->subexpressions[0]->get_location();
1076
1077 _mesa_glsl_error(& loc, state, "LHS of `%s' must be scalar boolean",
1078 operator_string(this->oper));
1079 error_emitted = true;
1080 }
1081
1082 ir_constant *op0_const = op[0]->constant_expression_value();
1083 if (op0_const) {
1084 if (op0_const->value.b[0]) {
1085 op[1] = this->subexpressions[1]->hir(instructions, state);
1086
1087 if (!op[1]->type->is_boolean() || !op[1]->type->is_scalar()) {
1088 YYLTYPE loc = this->subexpressions[1]->get_location();
1089
1090 _mesa_glsl_error(& loc, state,
1091 "RHS of `%s' must be scalar boolean",
1092 operator_string(this->oper));
1093 error_emitted = true;
1094 }
1095 result = op[1];
1096 } else {
1097 result = op0_const;
1098 }
1099 type = glsl_type::bool_type;
1100 } else {
1101 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1102 "and_tmp",
1103 ir_var_temporary);
1104 instructions->push_tail(tmp);
1105
1106 ir_if *const stmt = new(ctx) ir_if(op[0]);
1107 instructions->push_tail(stmt);
1108
1109 op[1] = this->subexpressions[1]->hir(&stmt->then_instructions, state);
1110
1111 if (!op[1]->type->is_boolean() || !op[1]->type->is_scalar()) {
1112 YYLTYPE loc = this->subexpressions[1]->get_location();
1113
1114 _mesa_glsl_error(& loc, state,
1115 "RHS of `%s' must be scalar boolean",
1116 operator_string(this->oper));
1117 error_emitted = true;
1118 }
1119
1120 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1121 ir_assignment *const then_assign =
1122 new(ctx) ir_assignment(then_deref, op[1], NULL);
1123 stmt->then_instructions.push_tail(then_assign);
1124
1125 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1126 ir_assignment *const else_assign =
1127 new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false), NULL);
1128 stmt->else_instructions.push_tail(else_assign);
1129
1130 result = new(ctx) ir_dereference_variable(tmp);
1131 type = tmp->type;
1132 }
1133 break;
1134 }
1135
1136 case ast_logic_or: {
1137 op[0] = this->subexpressions[0]->hir(instructions, state);
1138
1139 if (!op[0]->type->is_boolean() || !op[0]->type->is_scalar()) {
1140 YYLTYPE loc = this->subexpressions[0]->get_location();
1141
1142 _mesa_glsl_error(& loc, state, "LHS of `%s' must be scalar boolean",
1143 operator_string(this->oper));
1144 error_emitted = true;
1145 }
1146
1147 ir_constant *op0_const = op[0]->constant_expression_value();
1148 if (op0_const) {
1149 if (op0_const->value.b[0]) {
1150 result = op0_const;
1151 } else {
1152 op[1] = this->subexpressions[1]->hir(instructions, state);
1153
1154 if (!op[1]->type->is_boolean() || !op[1]->type->is_scalar()) {
1155 YYLTYPE loc = this->subexpressions[1]->get_location();
1156
1157 _mesa_glsl_error(& loc, state,
1158 "RHS of `%s' must be scalar boolean",
1159 operator_string(this->oper));
1160 error_emitted = true;
1161 }
1162 result = op[1];
1163 }
1164 type = glsl_type::bool_type;
1165 } else {
1166 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1167 "or_tmp",
1168 ir_var_temporary);
1169 instructions->push_tail(tmp);
1170
1171 ir_if *const stmt = new(ctx) ir_if(op[0]);
1172 instructions->push_tail(stmt);
1173
1174 op[1] = this->subexpressions[1]->hir(&stmt->else_instructions, state);
1175
1176 if (!op[1]->type->is_boolean() || !op[1]->type->is_scalar()) {
1177 YYLTYPE loc = this->subexpressions[1]->get_location();
1178
1179 _mesa_glsl_error(& loc, state, "RHS of `%s' must be scalar boolean",
1180 operator_string(this->oper));
1181 error_emitted = true;
1182 }
1183
1184 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1185 ir_assignment *const then_assign =
1186 new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true), NULL);
1187 stmt->then_instructions.push_tail(then_assign);
1188
1189 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1190 ir_assignment *const else_assign =
1191 new(ctx) ir_assignment(else_deref, op[1], NULL);
1192 stmt->else_instructions.push_tail(else_assign);
1193
1194 result = new(ctx) ir_dereference_variable(tmp);
1195 type = tmp->type;
1196 }
1197 break;
1198 }
1199
1200 case ast_logic_xor:
1201 op[0] = this->subexpressions[0]->hir(instructions, state);
1202 op[1] = this->subexpressions[1]->hir(instructions, state);
1203
1204
1205 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1206 op[0], op[1]);
1207 type = glsl_type::bool_type;
1208 break;
1209
1210 case ast_logic_not:
1211 op[0] = this->subexpressions[0]->hir(instructions, state);
1212
1213 if (!op[0]->type->is_boolean() || !op[0]->type->is_scalar()) {
1214 YYLTYPE loc = this->subexpressions[0]->get_location();
1215
1216 _mesa_glsl_error(& loc, state,
1217 "operand of `!' must be scalar boolean");
1218 error_emitted = true;
1219 }
1220
1221 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1222 op[0], NULL);
1223 type = glsl_type::bool_type;
1224 break;
1225
1226 case ast_mul_assign:
1227 case ast_div_assign:
1228 case ast_add_assign:
1229 case ast_sub_assign: {
1230 op[0] = this->subexpressions[0]->hir(instructions, state);
1231 op[1] = this->subexpressions[1]->hir(instructions, state);
1232
1233 type = arithmetic_result_type(op[0], op[1],
1234 (this->oper == ast_mul_assign),
1235 state, & loc);
1236
1237 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1238 op[0], op[1]);
1239
1240 result = do_assignment(instructions, state,
1241 op[0]->clone(ctx, NULL), temp_rhs,
1242 this->subexpressions[0]->get_location());
1243 type = result->type;
1244 error_emitted = (op[0]->type->is_error());
1245
1246 /* GLSL 1.10 does not allow array assignment. However, we don't have to
1247 * explicitly test for this because none of the binary expression
1248 * operators allow array operands either.
1249 */
1250
1251 break;
1252 }
1253
1254 case ast_mod_assign: {
1255 op[0] = this->subexpressions[0]->hir(instructions, state);
1256 op[1] = this->subexpressions[1]->hir(instructions, state);
1257
1258 type = modulus_result_type(op[0]->type, op[1]->type, state, & loc);
1259
1260 assert(operations[this->oper] == ir_binop_mod);
1261
1262 ir_rvalue *temp_rhs;
1263 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1264 op[0], op[1]);
1265
1266 result = do_assignment(instructions, state,
1267 op[0]->clone(ctx, NULL), temp_rhs,
1268 this->subexpressions[0]->get_location());
1269 type = result->type;
1270 error_emitted = type->is_error();
1271 break;
1272 }
1273
1274 case ast_ls_assign:
1275 case ast_rs_assign: {
1276 op[0] = this->subexpressions[0]->hir(instructions, state);
1277 op[1] = this->subexpressions[1]->hir(instructions, state);
1278 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1279 &loc);
1280 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1281 type, op[0], op[1]);
1282 result = do_assignment(instructions, state, op[0]->clone(ctx, NULL),
1283 temp_rhs,
1284 this->subexpressions[0]->get_location());
1285 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1286 break;
1287 }
1288
1289 case ast_and_assign:
1290 case ast_xor_assign:
1291 case ast_or_assign: {
1292 op[0] = this->subexpressions[0]->hir(instructions, state);
1293 op[1] = this->subexpressions[1]->hir(instructions, state);
1294 type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
1295 state, &loc);
1296 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1297 type, op[0], op[1]);
1298 result = do_assignment(instructions, state, op[0]->clone(ctx, NULL),
1299 temp_rhs,
1300 this->subexpressions[0]->get_location());
1301 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1302 break;
1303 }
1304
1305 case ast_conditional: {
1306 op[0] = this->subexpressions[0]->hir(instructions, state);
1307
1308 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1309 *
1310 * "The ternary selection operator (?:). It operates on three
1311 * expressions (exp1 ? exp2 : exp3). This operator evaluates the
1312 * first expression, which must result in a scalar Boolean."
1313 */
1314 if (!op[0]->type->is_boolean() || !op[0]->type->is_scalar()) {
1315 YYLTYPE loc = this->subexpressions[0]->get_location();
1316
1317 _mesa_glsl_error(& loc, state, "?: condition must be scalar boolean");
1318 error_emitted = true;
1319 }
1320
1321 /* The :? operator is implemented by generating an anonymous temporary
1322 * followed by an if-statement. The last instruction in each branch of
1323 * the if-statement assigns a value to the anonymous temporary. This
1324 * temporary is the r-value of the expression.
1325 */
1326 exec_list then_instructions;
1327 exec_list else_instructions;
1328
1329 op[1] = this->subexpressions[1]->hir(&then_instructions, state);
1330 op[2] = this->subexpressions[2]->hir(&else_instructions, state);
1331
1332 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1333 *
1334 * "The second and third expressions can be any type, as
1335 * long their types match, or there is a conversion in
1336 * Section 4.1.10 "Implicit Conversions" that can be applied
1337 * to one of the expressions to make their types match. This
1338 * resulting matching type is the type of the entire
1339 * expression."
1340 */
1341 if ((!apply_implicit_conversion(op[1]->type, op[2], state)
1342 && !apply_implicit_conversion(op[2]->type, op[1], state))
1343 || (op[1]->type != op[2]->type)) {
1344 YYLTYPE loc = this->subexpressions[1]->get_location();
1345
1346 _mesa_glsl_error(& loc, state, "Second and third operands of ?: "
1347 "operator must have matching types.");
1348 error_emitted = true;
1349 type = glsl_type::error_type;
1350 } else {
1351 type = op[1]->type;
1352 }
1353
1354 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1355 *
1356 * "The second and third expressions must be the same type, but can
1357 * be of any type other than an array."
1358 */
1359 if ((state->language_version <= 110) && type->is_array()) {
1360 _mesa_glsl_error(& loc, state, "Second and third operands of ?: "
1361 "operator must not be arrays.");
1362 error_emitted = true;
1363 }
1364
1365 ir_constant *cond_val = op[0]->constant_expression_value();
1366 ir_constant *then_val = op[1]->constant_expression_value();
1367 ir_constant *else_val = op[2]->constant_expression_value();
1368
1369 if (then_instructions.is_empty()
1370 && else_instructions.is_empty()
1371 && (cond_val != NULL) && (then_val != NULL) && (else_val != NULL)) {
1372 result = (cond_val->value.b[0]) ? then_val : else_val;
1373 } else {
1374 ir_variable *const tmp =
1375 new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary);
1376 instructions->push_tail(tmp);
1377
1378 ir_if *const stmt = new(ctx) ir_if(op[0]);
1379 instructions->push_tail(stmt);
1380
1381 then_instructions.move_nodes_to(& stmt->then_instructions);
1382 ir_dereference *const then_deref =
1383 new(ctx) ir_dereference_variable(tmp);
1384 ir_assignment *const then_assign =
1385 new(ctx) ir_assignment(then_deref, op[1], NULL);
1386 stmt->then_instructions.push_tail(then_assign);
1387
1388 else_instructions.move_nodes_to(& stmt->else_instructions);
1389 ir_dereference *const else_deref =
1390 new(ctx) ir_dereference_variable(tmp);
1391 ir_assignment *const else_assign =
1392 new(ctx) ir_assignment(else_deref, op[2], NULL);
1393 stmt->else_instructions.push_tail(else_assign);
1394
1395 result = new(ctx) ir_dereference_variable(tmp);
1396 }
1397 break;
1398 }
1399
1400 case ast_pre_inc:
1401 case ast_pre_dec: {
1402 op[0] = this->subexpressions[0]->hir(instructions, state);
1403 if (op[0]->type->base_type == GLSL_TYPE_FLOAT)
1404 op[1] = new(ctx) ir_constant(1.0f);
1405 else
1406 op[1] = new(ctx) ir_constant(1);
1407
1408 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1409
1410 ir_rvalue *temp_rhs;
1411 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1412 op[0], op[1]);
1413
1414 result = do_assignment(instructions, state,
1415 op[0]->clone(ctx, NULL), temp_rhs,
1416 this->subexpressions[0]->get_location());
1417 type = result->type;
1418 error_emitted = op[0]->type->is_error();
1419 break;
1420 }
1421
1422 case ast_post_inc:
1423 case ast_post_dec: {
1424 op[0] = this->subexpressions[0]->hir(instructions, state);
1425 if (op[0]->type->base_type == GLSL_TYPE_FLOAT)
1426 op[1] = new(ctx) ir_constant(1.0f);
1427 else
1428 op[1] = new(ctx) ir_constant(1);
1429
1430 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1431
1432 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1433
1434 ir_rvalue *temp_rhs;
1435 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1436 op[0], op[1]);
1437
1438 /* Get a temporary of a copy of the lvalue before it's modified.
1439 * This may get thrown away later.
1440 */
1441 result = get_lvalue_copy(instructions, op[0]->clone(ctx, NULL));
1442
1443 (void)do_assignment(instructions, state,
1444 op[0]->clone(ctx, NULL), temp_rhs,
1445 this->subexpressions[0]->get_location());
1446
1447 type = result->type;
1448 error_emitted = op[0]->type->is_error();
1449 break;
1450 }
1451
1452 case ast_field_selection:
1453 result = _mesa_ast_field_selection_to_hir(this, instructions, state);
1454 type = result->type;
1455 break;
1456
1457 case ast_array_index: {
1458 YYLTYPE index_loc = subexpressions[1]->get_location();
1459
1460 op[0] = subexpressions[0]->hir(instructions, state);
1461 op[1] = subexpressions[1]->hir(instructions, state);
1462
1463 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1464
1465 ir_rvalue *const array = op[0];
1466
1467 result = new(ctx) ir_dereference_array(op[0], op[1]);
1468
1469 /* Do not use op[0] after this point. Use array.
1470 */
1471 op[0] = NULL;
1472
1473
1474 if (error_emitted)
1475 break;
1476
1477 if (!array->type->is_array()
1478 && !array->type->is_matrix()
1479 && !array->type->is_vector()) {
1480 _mesa_glsl_error(& index_loc, state,
1481 "cannot dereference non-array / non-matrix / "
1482 "non-vector");
1483 error_emitted = true;
1484 }
1485
1486 if (!op[1]->type->is_integer()) {
1487 _mesa_glsl_error(& index_loc, state,
1488 "array index must be integer type");
1489 error_emitted = true;
1490 } else if (!op[1]->type->is_scalar()) {
1491 _mesa_glsl_error(& index_loc, state,
1492 "array index must be scalar");
1493 error_emitted = true;
1494 }
1495
1496 /* If the array index is a constant expression and the array has a
1497 * declared size, ensure that the access is in-bounds. If the array
1498 * index is not a constant expression, ensure that the array has a
1499 * declared size.
1500 */
1501 ir_constant *const const_index = op[1]->constant_expression_value();
1502 if (const_index != NULL) {
1503 const int idx = const_index->value.i[0];
1504 const char *type_name;
1505 unsigned bound = 0;
1506
1507 if (array->type->is_matrix()) {
1508 type_name = "matrix";
1509 } else if (array->type->is_vector()) {
1510 type_name = "vector";
1511 } else {
1512 type_name = "array";
1513 }
1514
1515 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec:
1516 *
1517 * "It is illegal to declare an array with a size, and then
1518 * later (in the same shader) index the same array with an
1519 * integral constant expression greater than or equal to the
1520 * declared size. It is also illegal to index an array with a
1521 * negative constant expression."
1522 */
1523 if (array->type->is_matrix()) {
1524 if (array->type->row_type()->vector_elements <= idx) {
1525 bound = array->type->row_type()->vector_elements;
1526 }
1527 } else if (array->type->is_vector()) {
1528 if (array->type->vector_elements <= idx) {
1529 bound = array->type->vector_elements;
1530 }
1531 } else {
1532 if ((array->type->array_size() > 0)
1533 && (array->type->array_size() <= idx)) {
1534 bound = array->type->array_size();
1535 }
1536 }
1537
1538 if (bound > 0) {
1539 _mesa_glsl_error(& loc, state, "%s index must be < %u",
1540 type_name, bound);
1541 error_emitted = true;
1542 } else if (idx < 0) {
1543 _mesa_glsl_error(& loc, state, "%s index must be >= 0",
1544 type_name);
1545 error_emitted = true;
1546 }
1547
1548 if (array->type->is_array()) {
1549 /* If the array is a variable dereference, it dereferences the
1550 * whole array, by definition. Use this to get the variable.
1551 *
1552 * FINISHME: Should some methods for getting / setting / testing
1553 * FINISHME: array access limits be added to ir_dereference?
1554 */
1555 ir_variable *const v = array->whole_variable_referenced();
1556 if ((v != NULL) && (unsigned(idx) > v->max_array_access))
1557 v->max_array_access = idx;
1558 }
1559 } else if (array->type->array_size() == 0) {
1560 _mesa_glsl_error(&loc, state, "unsized array index must be constant");
1561 } else {
1562 if (array->type->is_array()) {
1563 /* whole_variable_referenced can return NULL if the array is a
1564 * member of a structure. In this case it is safe to not update
1565 * the max_array_access field because it is never used for fields
1566 * of structures.
1567 */
1568 ir_variable *v = array->whole_variable_referenced();
1569 if (v != NULL)
1570 v->max_array_access = array->type->array_size();
1571 }
1572 }
1573
1574 /* From page 23 (29 of the PDF) of the GLSL 1.30 spec:
1575 *
1576 * "Samplers aggregated into arrays within a shader (using square
1577 * brackets [ ]) can only be indexed with integral constant
1578 * expressions [...]."
1579 *
1580 * This restriction was added in GLSL 1.30. Shaders using earlier version
1581 * of the language should not be rejected by the compiler front-end for
1582 * using this construct. This allows useful things such as using a loop
1583 * counter as the index to an array of samplers. If the loop in unrolled,
1584 * the code should compile correctly. Instead, emit a warning.
1585 */
1586 if (array->type->is_array() &&
1587 array->type->element_type()->is_sampler() &&
1588 const_index == NULL) {
1589
1590 if (state->language_version == 100) {
1591 _mesa_glsl_warning(&loc, state,
1592 "sampler arrays indexed with non-constant "
1593 "expressions is optional in GLSL ES 1.00");
1594 } else if (state->language_version < 130) {
1595 _mesa_glsl_warning(&loc, state,
1596 "sampler arrays indexed with non-constant "
1597 "expressions is forbidden in GLSL 1.30 and "
1598 "later");
1599 } else {
1600 _mesa_glsl_error(&loc, state,
1601 "sampler arrays indexed with non-constant "
1602 "expressions is forbidden in GLSL 1.30 and "
1603 "later");
1604 error_emitted = true;
1605 }
1606 }
1607
1608 if (error_emitted)
1609 result->type = glsl_type::error_type;
1610
1611 type = result->type;
1612 break;
1613 }
1614
1615 case ast_function_call:
1616 /* Should *NEVER* get here. ast_function_call should always be handled
1617 * by ast_function_expression::hir.
1618 */
1619 assert(0);
1620 break;
1621
1622 case ast_identifier: {
1623 /* ast_identifier can appear several places in a full abstract syntax
1624 * tree. This particular use must be at location specified in the grammar
1625 * as 'variable_identifier'.
1626 */
1627 ir_variable *var =
1628 state->symbols->get_variable(this->primary_expression.identifier);
1629
1630 result = new(ctx) ir_dereference_variable(var);
1631
1632 if (var != NULL) {
1633 var->used = true;
1634 type = result->type;
1635 } else {
1636 _mesa_glsl_error(& loc, state, "`%s' undeclared",
1637 this->primary_expression.identifier);
1638
1639 error_emitted = true;
1640 }
1641 break;
1642 }
1643
1644 case ast_int_constant:
1645 type = glsl_type::int_type;
1646 result = new(ctx) ir_constant(this->primary_expression.int_constant);
1647 break;
1648
1649 case ast_uint_constant:
1650 type = glsl_type::uint_type;
1651 result = new(ctx) ir_constant(this->primary_expression.uint_constant);
1652 break;
1653
1654 case ast_float_constant:
1655 type = glsl_type::float_type;
1656 result = new(ctx) ir_constant(this->primary_expression.float_constant);
1657 break;
1658
1659 case ast_bool_constant:
1660 type = glsl_type::bool_type;
1661 result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant));
1662 break;
1663
1664 case ast_sequence: {
1665 /* It should not be possible to generate a sequence in the AST without
1666 * any expressions in it.
1667 */
1668 assert(!this->expressions.is_empty());
1669
1670 /* The r-value of a sequence is the last expression in the sequence. If
1671 * the other expressions in the sequence do not have side-effects (and
1672 * therefore add instructions to the instruction list), they get dropped
1673 * on the floor.
1674 */
1675 foreach_list_typed (ast_node, ast, link, &this->expressions)
1676 result = ast->hir(instructions, state);
1677
1678 type = result->type;
1679
1680 /* Any errors should have already been emitted in the loop above.
1681 */
1682 error_emitted = true;
1683 break;
1684 }
1685 }
1686
1687 if (type->is_error() && !error_emitted)
1688 _mesa_glsl_error(& loc, state, "type mismatch");
1689
1690 return result;
1691 }
1692
1693
1694 ir_rvalue *
1695 ast_expression_statement::hir(exec_list *instructions,
1696 struct _mesa_glsl_parse_state *state)
1697 {
1698 /* It is possible to have expression statements that don't have an
1699 * expression. This is the solitary semicolon:
1700 *
1701 * for (i = 0; i < 5; i++)
1702 * ;
1703 *
1704 * In this case the expression will be NULL. Test for NULL and don't do
1705 * anything in that case.
1706 */
1707 if (expression != NULL)
1708 expression->hir(instructions, state);
1709
1710 /* Statements do not have r-values.
1711 */
1712 return NULL;
1713 }
1714
1715
1716 ir_rvalue *
1717 ast_compound_statement::hir(exec_list *instructions,
1718 struct _mesa_glsl_parse_state *state)
1719 {
1720 if (new_scope)
1721 state->symbols->push_scope();
1722
1723 foreach_list_typed (ast_node, ast, link, &this->statements)
1724 ast->hir(instructions, state);
1725
1726 if (new_scope)
1727 state->symbols->pop_scope();
1728
1729 /* Compound statements do not have r-values.
1730 */
1731 return NULL;
1732 }
1733
1734
1735 static const glsl_type *
1736 process_array_type(YYLTYPE *loc, const glsl_type *base, ast_node *array_size,
1737 struct _mesa_glsl_parse_state *state)
1738 {
1739 unsigned length = 0;
1740
1741 /* FINISHME: Reject delcarations of multidimensional arrays. */
1742
1743 if (array_size != NULL) {
1744 exec_list dummy_instructions;
1745 ir_rvalue *const ir = array_size->hir(& dummy_instructions, state);
1746 YYLTYPE loc = array_size->get_location();
1747
1748 /* FINISHME: Verify that the grammar forbids side-effects in array
1749 * FINISHME: sizes. i.e., 'vec4 [x = 12] data'
1750 */
1751 assert(dummy_instructions.is_empty());
1752
1753 if (ir != NULL) {
1754 if (!ir->type->is_integer()) {
1755 _mesa_glsl_error(& loc, state, "array size must be integer type");
1756 } else if (!ir->type->is_scalar()) {
1757 _mesa_glsl_error(& loc, state, "array size must be scalar type");
1758 } else {
1759 ir_constant *const size = ir->constant_expression_value();
1760
1761 if (size == NULL) {
1762 _mesa_glsl_error(& loc, state, "array size must be a "
1763 "constant valued expression");
1764 } else if (size->value.i[0] <= 0) {
1765 _mesa_glsl_error(& loc, state, "array size must be > 0");
1766 } else {
1767 assert(size->type == ir->type);
1768 length = size->value.u[0];
1769 }
1770 }
1771 }
1772 } else if (state->es_shader) {
1773 /* Section 10.17 of the GLSL ES 1.00 specification states that unsized
1774 * array declarations have been removed from the language.
1775 */
1776 _mesa_glsl_error(loc, state, "unsized array declarations are not "
1777 "allowed in GLSL ES 1.00.");
1778 }
1779
1780 return glsl_type::get_array_instance(base, length);
1781 }
1782
1783
1784 const glsl_type *
1785 ast_type_specifier::glsl_type(const char **name,
1786 struct _mesa_glsl_parse_state *state) const
1787 {
1788 const struct glsl_type *type;
1789
1790 type = state->symbols->get_type(this->type_name);
1791 *name = this->type_name;
1792
1793 if (this->is_array) {
1794 YYLTYPE loc = this->get_location();
1795 type = process_array_type(&loc, type, this->array_size, state);
1796 }
1797
1798 return type;
1799 }
1800
1801
1802 static void
1803 apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
1804 ir_variable *var,
1805 struct _mesa_glsl_parse_state *state,
1806 YYLTYPE *loc)
1807 {
1808 if (qual->flags.q.invariant) {
1809 if (var->used) {
1810 _mesa_glsl_error(loc, state,
1811 "variable `%s' may not be redeclared "
1812 "`invariant' after being used",
1813 var->name);
1814 } else {
1815 var->invariant = 1;
1816 }
1817 }
1818
1819 if (qual->flags.q.constant || qual->flags.q.attribute
1820 || qual->flags.q.uniform
1821 || (qual->flags.q.varying && (state->target == fragment_shader)))
1822 var->read_only = 1;
1823
1824 if (qual->flags.q.centroid)
1825 var->centroid = 1;
1826
1827 if (qual->flags.q.attribute && state->target != vertex_shader) {
1828 var->type = glsl_type::error_type;
1829 _mesa_glsl_error(loc, state,
1830 "`attribute' variables may not be declared in the "
1831 "%s shader",
1832 _mesa_glsl_shader_target_name(state->target));
1833 }
1834
1835 /* From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
1836 *
1837 * "The varying qualifier can be used only with the data types
1838 * float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
1839 * these."
1840 */
1841 if (qual->flags.q.varying) {
1842 const glsl_type *non_array_type;
1843
1844 if (var->type && var->type->is_array())
1845 non_array_type = var->type->fields.array;
1846 else
1847 non_array_type = var->type;
1848
1849 if (non_array_type && non_array_type->base_type != GLSL_TYPE_FLOAT) {
1850 var->type = glsl_type::error_type;
1851 _mesa_glsl_error(loc, state,
1852 "varying variables must be of base type float");
1853 }
1854 }
1855
1856 /* If there is no qualifier that changes the mode of the variable, leave
1857 * the setting alone.
1858 */
1859 if (qual->flags.q.in && qual->flags.q.out)
1860 var->mode = ir_var_inout;
1861 else if (qual->flags.q.attribute || qual->flags.q.in
1862 || (qual->flags.q.varying && (state->target == fragment_shader)))
1863 var->mode = ir_var_in;
1864 else if (qual->flags.q.out
1865 || (qual->flags.q.varying && (state->target == vertex_shader)))
1866 var->mode = ir_var_out;
1867 else if (qual->flags.q.uniform)
1868 var->mode = ir_var_uniform;
1869
1870 if (state->all_invariant && (state->current_function == NULL)) {
1871 switch (state->target) {
1872 case vertex_shader:
1873 if (var->mode == ir_var_out)
1874 var->invariant = true;
1875 break;
1876 case geometry_shader:
1877 if ((var->mode == ir_var_in) || (var->mode == ir_var_out))
1878 var->invariant = true;
1879 break;
1880 case fragment_shader:
1881 if (var->mode == ir_var_in)
1882 var->invariant = true;
1883 break;
1884 }
1885 }
1886
1887 if (qual->flags.q.flat)
1888 var->interpolation = ir_var_flat;
1889 else if (qual->flags.q.noperspective)
1890 var->interpolation = ir_var_noperspective;
1891 else
1892 var->interpolation = ir_var_smooth;
1893
1894 var->pixel_center_integer = qual->flags.q.pixel_center_integer;
1895 var->origin_upper_left = qual->flags.q.origin_upper_left;
1896 if ((qual->flags.q.origin_upper_left || qual->flags.q.pixel_center_integer)
1897 && (strcmp(var->name, "gl_FragCoord") != 0)) {
1898 const char *const qual_string = (qual->flags.q.origin_upper_left)
1899 ? "origin_upper_left" : "pixel_center_integer";
1900
1901 _mesa_glsl_error(loc, state,
1902 "layout qualifier `%s' can only be applied to "
1903 "fragment shader input `gl_FragCoord'",
1904 qual_string);
1905 }
1906
1907 if (qual->flags.q.explicit_location) {
1908 const bool global_scope = (state->current_function == NULL);
1909 bool fail = false;
1910 const char *string = "";
1911
1912 /* In the vertex shader only shader inputs can be given explicit
1913 * locations.
1914 *
1915 * In the fragment shader only shader outputs can be given explicit
1916 * locations.
1917 */
1918 switch (state->target) {
1919 case vertex_shader:
1920 if (!global_scope || (var->mode != ir_var_in)) {
1921 fail = true;
1922 string = "input";
1923 }
1924 break;
1925
1926 case geometry_shader:
1927 _mesa_glsl_error(loc, state,
1928 "geometry shader variables cannot be given "
1929 "explicit locations\n");
1930 break;
1931
1932 case fragment_shader:
1933 if (!global_scope || (var->mode != ir_var_in)) {
1934 fail = true;
1935 string = "output";
1936 }
1937 break;
1938 };
1939
1940 if (fail) {
1941 _mesa_glsl_error(loc, state,
1942 "only %s shader %s variables can be given an "
1943 "explicit location\n",
1944 _mesa_glsl_shader_target_name(state->target),
1945 string);
1946 } else {
1947 var->explicit_location = true;
1948
1949 /* This bit of silliness is needed because invalid explicit locations
1950 * are supposed to be flagged during linking. Small negative values
1951 * biased by VERT_ATTRIB_GENERIC0 or FRAG_RESULT_DATA0 could alias
1952 * built-in values (e.g., -16+VERT_ATTRIB_GENERIC0 = VERT_ATTRIB_POS).
1953 * The linker needs to be able to differentiate these cases. This
1954 * ensures that negative values stay negative.
1955 */
1956 if (qual->location >= 0) {
1957 var->location = (state->target == vertex_shader)
1958 ? (qual->location + VERT_ATTRIB_GENERIC0)
1959 : (qual->location + FRAG_RESULT_DATA0);
1960 } else {
1961 var->location = qual->location;
1962 }
1963 }
1964 }
1965
1966 /* Does the declaration use the 'layout' keyword?
1967 */
1968 const bool uses_layout = qual->flags.q.pixel_center_integer
1969 || qual->flags.q.origin_upper_left
1970 || qual->flags.q.explicit_location;
1971
1972 /* Does the declaration use the deprecated 'attribute' or 'varying'
1973 * keywords?
1974 */
1975 const bool uses_deprecated_qualifier = qual->flags.q.attribute
1976 || qual->flags.q.varying;
1977
1978 /* Is the 'layout' keyword used with parameters that allow relaxed checking.
1979 * Many implementations of GL_ARB_fragment_coord_conventions_enable and some
1980 * implementations (only Mesa?) GL_ARB_explicit_attrib_location_enable
1981 * allowed the layout qualifier to be used with 'varying' and 'attribute'.
1982 * These extensions and all following extensions that add the 'layout'
1983 * keyword have been modified to require the use of 'in' or 'out'.
1984 *
1985 * The following extension do not allow the deprecated keywords:
1986 *
1987 * GL_AMD_conservative_depth
1988 * GL_ARB_gpu_shader5
1989 * GL_ARB_separate_shader_objects
1990 * GL_ARB_tesselation_shader
1991 * GL_ARB_transform_feedback3
1992 * GL_ARB_uniform_buffer_object
1993 *
1994 * It is unknown whether GL_EXT_shader_image_load_store or GL_NV_gpu_shader5
1995 * allow layout with the deprecated keywords.
1996 */
1997 const bool relaxed_layout_qualifier_checking =
1998 state->ARB_fragment_coord_conventions_enable;
1999
2000 if (uses_layout && uses_deprecated_qualifier) {
2001 if (relaxed_layout_qualifier_checking) {
2002 _mesa_glsl_warning(loc, state,
2003 "`layout' qualifier may not be used with "
2004 "`attribute' or `varying'");
2005 } else {
2006 _mesa_glsl_error(loc, state,
2007 "`layout' qualifier may not be used with "
2008 "`attribute' or `varying'");
2009 }
2010 }
2011
2012 /* Layout qualifiers for gl_FragDepth, which are enabled by extension
2013 * AMD_conservative_depth.
2014 */
2015 int depth_layout_count = qual->flags.q.depth_any
2016 + qual->flags.q.depth_greater
2017 + qual->flags.q.depth_less
2018 + qual->flags.q.depth_unchanged;
2019 if (depth_layout_count > 0
2020 && !state->AMD_conservative_depth_enable) {
2021 _mesa_glsl_error(loc, state,
2022 "extension GL_AMD_conservative_depth must be enabled "
2023 "to use depth layout qualifiers");
2024 } else if (depth_layout_count > 0
2025 && strcmp(var->name, "gl_FragDepth") != 0) {
2026 _mesa_glsl_error(loc, state,
2027 "depth layout qualifiers can be applied only to "
2028 "gl_FragDepth");
2029 } else if (depth_layout_count > 1
2030 && strcmp(var->name, "gl_FragDepth") == 0) {
2031 _mesa_glsl_error(loc, state,
2032 "at most one depth layout qualifier can be applied to "
2033 "gl_FragDepth");
2034 }
2035 if (qual->flags.q.depth_any)
2036 var->depth_layout = ir_depth_layout_any;
2037 else if (qual->flags.q.depth_greater)
2038 var->depth_layout = ir_depth_layout_greater;
2039 else if (qual->flags.q.depth_less)
2040 var->depth_layout = ir_depth_layout_less;
2041 else if (qual->flags.q.depth_unchanged)
2042 var->depth_layout = ir_depth_layout_unchanged;
2043 else
2044 var->depth_layout = ir_depth_layout_none;
2045
2046 if (var->type->is_array() && state->language_version != 110) {
2047 var->array_lvalue = true;
2048 }
2049 }
2050
2051
2052 ir_rvalue *
2053 ast_declarator_list::hir(exec_list *instructions,
2054 struct _mesa_glsl_parse_state *state)
2055 {
2056 void *ctx = state;
2057 const struct glsl_type *decl_type;
2058 const char *type_name = NULL;
2059 ir_rvalue *result = NULL;
2060 YYLTYPE loc = this->get_location();
2061
2062 /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec:
2063 *
2064 * "To ensure that a particular output variable is invariant, it is
2065 * necessary to use the invariant qualifier. It can either be used to
2066 * qualify a previously declared variable as being invariant
2067 *
2068 * invariant gl_Position; // make existing gl_Position be invariant"
2069 *
2070 * In these cases the parser will set the 'invariant' flag in the declarator
2071 * list, and the type will be NULL.
2072 */
2073 if (this->invariant) {
2074 assert(this->type == NULL);
2075
2076 if (state->current_function != NULL) {
2077 _mesa_glsl_error(& loc, state,
2078 "All uses of `invariant' keyword must be at global "
2079 "scope\n");
2080 }
2081
2082 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
2083 assert(!decl->is_array);
2084 assert(decl->array_size == NULL);
2085 assert(decl->initializer == NULL);
2086
2087 ir_variable *const earlier =
2088 state->symbols->get_variable(decl->identifier);
2089 if (earlier == NULL) {
2090 _mesa_glsl_error(& loc, state,
2091 "Undeclared variable `%s' cannot be marked "
2092 "invariant\n", decl->identifier);
2093 } else if ((state->target == vertex_shader)
2094 && (earlier->mode != ir_var_out)) {
2095 _mesa_glsl_error(& loc, state,
2096 "`%s' cannot be marked invariant, vertex shader "
2097 "outputs only\n", decl->identifier);
2098 } else if ((state->target == fragment_shader)
2099 && (earlier->mode != ir_var_in)) {
2100 _mesa_glsl_error(& loc, state,
2101 "`%s' cannot be marked invariant, fragment shader "
2102 "inputs only\n", decl->identifier);
2103 } else if (earlier->used) {
2104 _mesa_glsl_error(& loc, state,
2105 "variable `%s' may not be redeclared "
2106 "`invariant' after being used",
2107 earlier->name);
2108 } else {
2109 earlier->invariant = true;
2110 }
2111 }
2112
2113 /* Invariant redeclarations do not have r-values.
2114 */
2115 return NULL;
2116 }
2117
2118 assert(this->type != NULL);
2119 assert(!this->invariant);
2120
2121 /* The type specifier may contain a structure definition. Process that
2122 * before any of the variable declarations.
2123 */
2124 (void) this->type->specifier->hir(instructions, state);
2125
2126 decl_type = this->type->specifier->glsl_type(& type_name, state);
2127 if (this->declarations.is_empty()) {
2128 /* The only valid case where the declaration list can be empty is when
2129 * the declaration is setting the default precision of a built-in type
2130 * (e.g., 'precision highp vec4;').
2131 */
2132
2133 if (decl_type != NULL) {
2134 } else {
2135 _mesa_glsl_error(& loc, state, "incomplete declaration");
2136 }
2137 }
2138
2139 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
2140 const struct glsl_type *var_type;
2141 ir_variable *var;
2142
2143 /* FINISHME: Emit a warning if a variable declaration shadows a
2144 * FINISHME: declaration at a higher scope.
2145 */
2146
2147 if ((decl_type == NULL) || decl_type->is_void()) {
2148 if (type_name != NULL) {
2149 _mesa_glsl_error(& loc, state,
2150 "invalid type `%s' in declaration of `%s'",
2151 type_name, decl->identifier);
2152 } else {
2153 _mesa_glsl_error(& loc, state,
2154 "invalid type in declaration of `%s'",
2155 decl->identifier);
2156 }
2157 continue;
2158 }
2159
2160 if (decl->is_array) {
2161 var_type = process_array_type(&loc, decl_type, decl->array_size,
2162 state);
2163 } else {
2164 var_type = decl_type;
2165 }
2166
2167 var = new(ctx) ir_variable(var_type, decl->identifier, ir_var_auto);
2168
2169 /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
2170 *
2171 * "Global variables can only use the qualifiers const,
2172 * attribute, uni form, or varying. Only one may be
2173 * specified.
2174 *
2175 * Local variables can only use the qualifier const."
2176 *
2177 * This is relaxed in GLSL 1.30. It is also relaxed by any extension
2178 * that adds the 'layout' keyword.
2179 */
2180 if ((state->language_version < 130)
2181 && !state->ARB_explicit_attrib_location_enable
2182 && !state->ARB_fragment_coord_conventions_enable) {
2183 if (this->type->qualifier.flags.q.out) {
2184 _mesa_glsl_error(& loc, state,
2185 "`out' qualifier in declaration of `%s' "
2186 "only valid for function parameters in %s.",
2187 decl->identifier, state->version_string);
2188 }
2189 if (this->type->qualifier.flags.q.in) {
2190 _mesa_glsl_error(& loc, state,
2191 "`in' qualifier in declaration of `%s' "
2192 "only valid for function parameters in %s.",
2193 decl->identifier, state->version_string);
2194 }
2195 /* FINISHME: Test for other invalid qualifiers. */
2196 }
2197
2198 apply_type_qualifier_to_variable(& this->type->qualifier, var, state,
2199 & loc);
2200
2201 if (this->type->qualifier.flags.q.invariant) {
2202 if ((state->target == vertex_shader) && !(var->mode == ir_var_out ||
2203 var->mode == ir_var_inout)) {
2204 /* FINISHME: Note that this doesn't work for invariant on
2205 * a function signature outval
2206 */
2207 _mesa_glsl_error(& loc, state,
2208 "`%s' cannot be marked invariant, vertex shader "
2209 "outputs only\n", var->name);
2210 } else if ((state->target == fragment_shader) &&
2211 !(var->mode == ir_var_in || var->mode == ir_var_inout)) {
2212 /* FINISHME: Note that this doesn't work for invariant on
2213 * a function signature inval
2214 */
2215 _mesa_glsl_error(& loc, state,
2216 "`%s' cannot be marked invariant, fragment shader "
2217 "inputs only\n", var->name);
2218 }
2219 }
2220
2221 if (state->current_function != NULL) {
2222 const char *mode = NULL;
2223 const char *extra = "";
2224
2225 /* There is no need to check for 'inout' here because the parser will
2226 * only allow that in function parameter lists.
2227 */
2228 if (this->type->qualifier.flags.q.attribute) {
2229 mode = "attribute";
2230 } else if (this->type->qualifier.flags.q.uniform) {
2231 mode = "uniform";
2232 } else if (this->type->qualifier.flags.q.varying) {
2233 mode = "varying";
2234 } else if (this->type->qualifier.flags.q.in) {
2235 mode = "in";
2236 extra = " or in function parameter list";
2237 } else if (this->type->qualifier.flags.q.out) {
2238 mode = "out";
2239 extra = " or in function parameter list";
2240 }
2241
2242 if (mode) {
2243 _mesa_glsl_error(& loc, state,
2244 "%s variable `%s' must be declared at "
2245 "global scope%s",
2246 mode, var->name, extra);
2247 }
2248 } else if (var->mode == ir_var_in) {
2249 var->read_only = true;
2250
2251 if (state->target == vertex_shader) {
2252 bool error_emitted = false;
2253
2254 /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
2255 *
2256 * "Vertex shader inputs can only be float, floating-point
2257 * vectors, matrices, signed and unsigned integers and integer
2258 * vectors. Vertex shader inputs can also form arrays of these
2259 * types, but not structures."
2260 *
2261 * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
2262 *
2263 * "Vertex shader inputs can only be float, floating-point
2264 * vectors, matrices, signed and unsigned integers and integer
2265 * vectors. They cannot be arrays or structures."
2266 *
2267 * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
2268 *
2269 * "The attribute qualifier can be used only with float,
2270 * floating-point vectors, and matrices. Attribute variables
2271 * cannot be declared as arrays or structures."
2272 */
2273 const glsl_type *check_type = var->type->is_array()
2274 ? var->type->fields.array : var->type;
2275
2276 switch (check_type->base_type) {
2277 case GLSL_TYPE_FLOAT:
2278 break;
2279 case GLSL_TYPE_UINT:
2280 case GLSL_TYPE_INT:
2281 if (state->language_version > 120)
2282 break;
2283 /* FALLTHROUGH */
2284 default:
2285 _mesa_glsl_error(& loc, state,
2286 "vertex shader input / attribute cannot have "
2287 "type %s`%s'",
2288 var->type->is_array() ? "array of " : "",
2289 check_type->name);
2290 error_emitted = true;
2291 }
2292
2293 if (!error_emitted && (state->language_version <= 130)
2294 && var->type->is_array()) {
2295 _mesa_glsl_error(& loc, state,
2296 "vertex shader input / attribute cannot have "
2297 "array type");
2298 error_emitted = true;
2299 }
2300 }
2301 }
2302
2303 /* Integer vertex outputs must be qualified with 'flat'.
2304 *
2305 * From section 4.3.6 of the GLSL 1.30 spec:
2306 * "If a vertex output is a signed or unsigned integer or integer
2307 * vector, then it must be qualified with the interpolation qualifier
2308 * flat."
2309 */
2310 if (state->language_version >= 130
2311 && state->target == vertex_shader
2312 && state->current_function == NULL
2313 && var->type->is_integer()
2314 && var->mode == ir_var_out
2315 && var->interpolation != ir_var_flat) {
2316
2317 _mesa_glsl_error(&loc, state, "If a vertex output is an integer, "
2318 "then it must be qualified with 'flat'");
2319 }
2320
2321
2322 /* Interpolation qualifiers cannot be applied to 'centroid' and
2323 * 'centroid varying'.
2324 *
2325 * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
2326 * "interpolation qualifiers may only precede the qualifiers in,
2327 * centroid in, out, or centroid out in a declaration. They do not apply
2328 * to the deprecated storage qualifiers varying or centroid varying."
2329 */
2330 if (state->language_version >= 130
2331 && this->type->qualifier.has_interpolation()
2332 && this->type->qualifier.flags.q.varying) {
2333
2334 const char *i = this->type->qualifier.interpolation_string();
2335 assert(i != NULL);
2336 const char *s;
2337 if (this->type->qualifier.flags.q.centroid)
2338 s = "centroid varying";
2339 else
2340 s = "varying";
2341
2342 _mesa_glsl_error(&loc, state,
2343 "qualifier '%s' cannot be applied to the "
2344 "deprecated storage qualifier '%s'", i, s);
2345 }
2346
2347
2348 /* Interpolation qualifiers can only apply to vertex shader outputs and
2349 * fragment shader inputs.
2350 *
2351 * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
2352 * "Outputs from a vertex shader (out) and inputs to a fragment
2353 * shader (in) can be further qualified with one or more of these
2354 * interpolation qualifiers"
2355 */
2356 if (state->language_version >= 130
2357 && this->type->qualifier.has_interpolation()) {
2358
2359 const char *i = this->type->qualifier.interpolation_string();
2360 assert(i != NULL);
2361
2362 switch (state->target) {
2363 case vertex_shader:
2364 if (this->type->qualifier.flags.q.in) {
2365 _mesa_glsl_error(&loc, state,
2366 "qualifier '%s' cannot be applied to vertex "
2367 "shader inputs", i);
2368 }
2369 break;
2370 case fragment_shader:
2371 if (this->type->qualifier.flags.q.out) {
2372 _mesa_glsl_error(&loc, state,
2373 "qualifier '%s' cannot be applied to fragment "
2374 "shader outputs", i);
2375 }
2376 break;
2377 default:
2378 assert(0);
2379 }
2380 }
2381
2382
2383 /* From section 4.3.4 of the GLSL 1.30 spec:
2384 * "It is an error to use centroid in in a vertex shader."
2385 */
2386 if (state->language_version >= 130
2387 && this->type->qualifier.flags.q.centroid
2388 && this->type->qualifier.flags.q.in
2389 && state->target == vertex_shader) {
2390
2391 _mesa_glsl_error(&loc, state,
2392 "'centroid in' cannot be used in a vertex shader");
2393 }
2394
2395
2396 /* Precision qualifiers exists only in GLSL versions 1.00 and >= 1.30.
2397 */
2398 if (this->type->specifier->precision != ast_precision_none
2399 && state->language_version != 100
2400 && state->language_version < 130) {
2401
2402 _mesa_glsl_error(&loc, state,
2403 "precision qualifiers are supported only in GLSL ES "
2404 "1.00, and GLSL 1.30 and later");
2405 }
2406
2407
2408 /* Precision qualifiers only apply to floating point and integer types.
2409 *
2410 * From section 4.5.2 of the GLSL 1.30 spec:
2411 * "Any floating point or any integer declaration can have the type
2412 * preceded by one of these precision qualifiers [...] Literal
2413 * constants do not have precision qualifiers. Neither do Boolean
2414 * variables.
2415 */
2416 if (this->type->specifier->precision != ast_precision_none
2417 && !var->type->is_float()
2418 && !var->type->is_integer()
2419 && !(var->type->is_array()
2420 && (var->type->fields.array->is_float()
2421 || var->type->fields.array->is_integer()))) {
2422
2423 _mesa_glsl_error(&loc, state,
2424 "precision qualifiers apply only to floating point "
2425 "and integer types");
2426 }
2427
2428 /* Process the initializer and add its instructions to a temporary
2429 * list. This list will be added to the instruction stream (below) after
2430 * the declaration is added. This is done because in some cases (such as
2431 * redeclarations) the declaration may not actually be added to the
2432 * instruction stream.
2433 */
2434 exec_list initializer_instructions;
2435 if (decl->initializer != NULL) {
2436 YYLTYPE initializer_loc = decl->initializer->get_location();
2437
2438 /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
2439 *
2440 * "All uniform variables are read-only and are initialized either
2441 * directly by an application via API commands, or indirectly by
2442 * OpenGL."
2443 */
2444 if ((state->language_version <= 110)
2445 && (var->mode == ir_var_uniform)) {
2446 _mesa_glsl_error(& initializer_loc, state,
2447 "cannot initialize uniforms in GLSL 1.10");
2448 }
2449
2450 if (var->type->is_sampler()) {
2451 _mesa_glsl_error(& initializer_loc, state,
2452 "cannot initialize samplers");
2453 }
2454
2455 if ((var->mode == ir_var_in) && (state->current_function == NULL)) {
2456 _mesa_glsl_error(& initializer_loc, state,
2457 "cannot initialize %s shader input / %s",
2458 _mesa_glsl_shader_target_name(state->target),
2459 (state->target == vertex_shader)
2460 ? "attribute" : "varying");
2461 }
2462
2463 ir_dereference *const lhs = new(ctx) ir_dereference_variable(var);
2464 ir_rvalue *rhs = decl->initializer->hir(&initializer_instructions,
2465 state);
2466
2467 /* Calculate the constant value if this is a const or uniform
2468 * declaration.
2469 */
2470 if (this->type->qualifier.flags.q.constant
2471 || this->type->qualifier.flags.q.uniform) {
2472 ir_rvalue *new_rhs = validate_assignment(state, var->type, rhs);
2473 if (new_rhs != NULL) {
2474 rhs = new_rhs;
2475
2476 ir_constant *constant_value = rhs->constant_expression_value();
2477 if (!constant_value) {
2478 _mesa_glsl_error(& initializer_loc, state,
2479 "initializer of %s variable `%s' must be a "
2480 "constant expression",
2481 (this->type->qualifier.flags.q.constant)
2482 ? "const" : "uniform",
2483 decl->identifier);
2484 if (var->type->is_numeric()) {
2485 /* Reduce cascading errors. */
2486 var->constant_value = ir_constant::zero(ctx, var->type);
2487 }
2488 } else {
2489 rhs = constant_value;
2490 var->constant_value = constant_value;
2491 }
2492 } else {
2493 _mesa_glsl_error(&initializer_loc, state,
2494 "initializer of type %s cannot be assigned to "
2495 "variable of type %s",
2496 rhs->type->name, var->type->name);
2497 if (var->type->is_numeric()) {
2498 /* Reduce cascading errors. */
2499 var->constant_value = ir_constant::zero(ctx, var->type);
2500 }
2501 }
2502 }
2503
2504 if (rhs && !rhs->type->is_error()) {
2505 bool temp = var->read_only;
2506 if (this->type->qualifier.flags.q.constant)
2507 var->read_only = false;
2508
2509 /* Never emit code to initialize a uniform.
2510 */
2511 const glsl_type *initializer_type;
2512 if (!this->type->qualifier.flags.q.uniform) {
2513 result = do_assignment(&initializer_instructions, state,
2514 lhs, rhs,
2515 this->get_location());
2516 initializer_type = result->type;
2517 } else
2518 initializer_type = rhs->type;
2519
2520 /* If the declared variable is an unsized array, it must inherrit
2521 * its full type from the initializer. A declaration such as
2522 *
2523 * uniform float a[] = float[](1.0, 2.0, 3.0, 3.0);
2524 *
2525 * becomes
2526 *
2527 * uniform float a[4] = float[](1.0, 2.0, 3.0, 3.0);
2528 *
2529 * The assignment generated in the if-statement (below) will also
2530 * automatically handle this case for non-uniforms.
2531 *
2532 * If the declared variable is not an array, the types must
2533 * already match exactly. As a result, the type assignment
2534 * here can be done unconditionally. For non-uniforms the call
2535 * to do_assignment can change the type of the initializer (via
2536 * the implicit conversion rules). For uniforms the initializer
2537 * must be a constant expression, and the type of that expression
2538 * was validated above.
2539 */
2540 var->type = initializer_type;
2541
2542 var->read_only = temp;
2543 }
2544 }
2545
2546 /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
2547 *
2548 * "It is an error to write to a const variable outside of
2549 * its declaration, so they must be initialized when
2550 * declared."
2551 */
2552 if (this->type->qualifier.flags.q.constant && decl->initializer == NULL) {
2553 _mesa_glsl_error(& loc, state,
2554 "const declaration of `%s' must be initialized",
2555 decl->identifier);
2556 }
2557
2558 /* Check if this declaration is actually a re-declaration, either to
2559 * resize an array or add qualifiers to an existing variable.
2560 *
2561 * This is allowed for variables in the current scope, or when at
2562 * global scope (for built-ins in the implicit outer scope).
2563 */
2564 ir_variable *earlier = state->symbols->get_variable(decl->identifier);
2565 if (earlier != NULL && (state->current_function == NULL ||
2566 state->symbols->name_declared_this_scope(decl->identifier))) {
2567
2568 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
2569 *
2570 * "It is legal to declare an array without a size and then
2571 * later re-declare the same name as an array of the same
2572 * type and specify a size."
2573 */
2574 if ((earlier->type->array_size() == 0)
2575 && var->type->is_array()
2576 && (var->type->element_type() == earlier->type->element_type())) {
2577 /* FINISHME: This doesn't match the qualifiers on the two
2578 * FINISHME: declarations. It's not 100% clear whether this is
2579 * FINISHME: required or not.
2580 */
2581
2582 /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec:
2583 *
2584 * "The size [of gl_TexCoord] can be at most
2585 * gl_MaxTextureCoords."
2586 */
2587 const unsigned size = unsigned(var->type->array_size());
2588 if ((strcmp("gl_TexCoord", var->name) == 0)
2589 && (size > state->Const.MaxTextureCoords)) {
2590 YYLTYPE loc = this->get_location();
2591
2592 _mesa_glsl_error(& loc, state, "`gl_TexCoord' array size cannot "
2593 "be larger than gl_MaxTextureCoords (%u)\n",
2594 state->Const.MaxTextureCoords);
2595 } else if ((size > 0) && (size <= earlier->max_array_access)) {
2596 YYLTYPE loc = this->get_location();
2597
2598 _mesa_glsl_error(& loc, state, "array size must be > %u due to "
2599 "previous access",
2600 earlier->max_array_access);
2601 }
2602
2603 earlier->type = var->type;
2604 delete var;
2605 var = NULL;
2606 } else if (state->ARB_fragment_coord_conventions_enable
2607 && strcmp(var->name, "gl_FragCoord") == 0
2608 && earlier->type == var->type
2609 && earlier->mode == var->mode) {
2610 /* Allow redeclaration of gl_FragCoord for ARB_fcc layout
2611 * qualifiers.
2612 */
2613 earlier->origin_upper_left = var->origin_upper_left;
2614 earlier->pixel_center_integer = var->pixel_center_integer;
2615
2616 /* According to section 4.3.7 of the GLSL 1.30 spec,
2617 * the following built-in varaibles can be redeclared with an
2618 * interpolation qualifier:
2619 * * gl_FrontColor
2620 * * gl_BackColor
2621 * * gl_FrontSecondaryColor
2622 * * gl_BackSecondaryColor
2623 * * gl_Color
2624 * * gl_SecondaryColor
2625 */
2626 } else if (state->language_version >= 130
2627 && (strcmp(var->name, "gl_FrontColor") == 0
2628 || strcmp(var->name, "gl_BackColor") == 0
2629 || strcmp(var->name, "gl_FrontSecondaryColor") == 0
2630 || strcmp(var->name, "gl_BackSecondaryColor") == 0
2631 || strcmp(var->name, "gl_Color") == 0
2632 || strcmp(var->name, "gl_SecondaryColor") == 0)
2633 && earlier->type == var->type
2634 && earlier->mode == var->mode) {
2635 earlier->interpolation = var->interpolation;
2636
2637 /* Layout qualifiers for gl_FragDepth. */
2638 } else if (state->AMD_conservative_depth_enable
2639 && strcmp(var->name, "gl_FragDepth") == 0
2640 && earlier->type == var->type
2641 && earlier->mode == var->mode) {
2642
2643 /** From the AMD_conservative_depth spec:
2644 * Within any shader, the first redeclarations of gl_FragDepth
2645 * must appear before any use of gl_FragDepth.
2646 */
2647 if (earlier->used) {
2648 _mesa_glsl_error(&loc, state,
2649 "the first redeclaration of gl_FragDepth "
2650 "must appear before any use of gl_FragDepth");
2651 }
2652
2653 /* Prevent inconsistent redeclaration of depth layout qualifier. */
2654 if (earlier->depth_layout != ir_depth_layout_none
2655 && earlier->depth_layout != var->depth_layout) {
2656 _mesa_glsl_error(&loc, state,
2657 "gl_FragDepth: depth layout is declared here "
2658 "as '%s, but it was previously declared as "
2659 "'%s'",
2660 depth_layout_string(var->depth_layout),
2661 depth_layout_string(earlier->depth_layout));
2662 }
2663
2664 earlier->depth_layout = var->depth_layout;
2665
2666 } else {
2667 YYLTYPE loc = this->get_location();
2668 _mesa_glsl_error(&loc, state, "`%s' redeclared", decl->identifier);
2669 }
2670
2671 continue;
2672 }
2673
2674 /* By now, we know it's a new variable declaration (we didn't hit the
2675 * above "continue").
2676 *
2677 * From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
2678 *
2679 * "Identifiers starting with "gl_" are reserved for use by
2680 * OpenGL, and may not be declared in a shader as either a
2681 * variable or a function."
2682 */
2683 if (strncmp(decl->identifier, "gl_", 3) == 0)
2684 _mesa_glsl_error(& loc, state,
2685 "identifier `%s' uses reserved `gl_' prefix",
2686 decl->identifier);
2687
2688 /* Add the variable to the symbol table. Note that the initializer's
2689 * IR was already processed earlier (though it hasn't been emitted yet),
2690 * without the variable in scope.
2691 *
2692 * This differs from most C-like languages, but it follows the GLSL
2693 * specification. From page 28 (page 34 of the PDF) of the GLSL 1.50
2694 * spec:
2695 *
2696 * "Within a declaration, the scope of a name starts immediately
2697 * after the initializer if present or immediately after the name
2698 * being declared if not."
2699 */
2700 if (!state->symbols->add_variable(var)) {
2701 YYLTYPE loc = this->get_location();
2702 _mesa_glsl_error(&loc, state, "name `%s' already taken in the "
2703 "current scope", decl->identifier);
2704 continue;
2705 }
2706
2707 /* Push the variable declaration to the top. It means that all
2708 * the variable declarations will appear in a funny
2709 * last-to-first order, but otherwise we run into trouble if a
2710 * function is prototyped, a global var is decled, then the
2711 * function is defined with usage of the global var. See
2712 * glslparsertest's CorrectModule.frag.
2713 */
2714 instructions->push_head(var);
2715 instructions->append_list(&initializer_instructions);
2716 }
2717
2718
2719 /* Generally, variable declarations do not have r-values. However,
2720 * one is used for the declaration in
2721 *
2722 * while (bool b = some_condition()) {
2723 * ...
2724 * }
2725 *
2726 * so we return the rvalue from the last seen declaration here.
2727 */
2728 return result;
2729 }
2730
2731
2732 ir_rvalue *
2733 ast_parameter_declarator::hir(exec_list *instructions,
2734 struct _mesa_glsl_parse_state *state)
2735 {
2736 void *ctx = state;
2737 const struct glsl_type *type;
2738 const char *name = NULL;
2739 YYLTYPE loc = this->get_location();
2740
2741 type = this->type->specifier->glsl_type(& name, state);
2742
2743 if (type == NULL) {
2744 if (name != NULL) {
2745 _mesa_glsl_error(& loc, state,
2746 "invalid type `%s' in declaration of `%s'",
2747 name, this->identifier);
2748 } else {
2749 _mesa_glsl_error(& loc, state,
2750 "invalid type in declaration of `%s'",
2751 this->identifier);
2752 }
2753
2754 type = glsl_type::error_type;
2755 }
2756
2757 /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
2758 *
2759 * "Functions that accept no input arguments need not use void in the
2760 * argument list because prototypes (or definitions) are required and
2761 * therefore there is no ambiguity when an empty argument list "( )" is
2762 * declared. The idiom "(void)" as a parameter list is provided for
2763 * convenience."
2764 *
2765 * Placing this check here prevents a void parameter being set up
2766 * for a function, which avoids tripping up checks for main taking
2767 * parameters and lookups of an unnamed symbol.
2768 */
2769 if (type->is_void()) {
2770 if (this->identifier != NULL)
2771 _mesa_glsl_error(& loc, state,
2772 "named parameter cannot have type `void'");
2773
2774 is_void = true;
2775 return NULL;
2776 }
2777
2778 if (formal_parameter && (this->identifier == NULL)) {
2779 _mesa_glsl_error(& loc, state, "formal parameter lacks a name");
2780 return NULL;
2781 }
2782
2783 /* This only handles "vec4 foo[..]". The earlier specifier->glsl_type(...)
2784 * call already handled the "vec4[..] foo" case.
2785 */
2786 if (this->is_array) {
2787 type = process_array_type(&loc, type, this->array_size, state);
2788 }
2789
2790 if (type->array_size() == 0) {
2791 _mesa_glsl_error(&loc, state, "arrays passed as parameters must have "
2792 "a declared size.");
2793 type = glsl_type::error_type;
2794 }
2795
2796 is_void = false;
2797 ir_variable *var = new(ctx) ir_variable(type, this->identifier, ir_var_in);
2798
2799 /* Apply any specified qualifiers to the parameter declaration. Note that
2800 * for function parameters the default mode is 'in'.
2801 */
2802 apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc);
2803
2804 instructions->push_tail(var);
2805
2806 /* Parameter declarations do not have r-values.
2807 */
2808 return NULL;
2809 }
2810
2811
2812 void
2813 ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters,
2814 bool formal,
2815 exec_list *ir_parameters,
2816 _mesa_glsl_parse_state *state)
2817 {
2818 ast_parameter_declarator *void_param = NULL;
2819 unsigned count = 0;
2820
2821 foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) {
2822 param->formal_parameter = formal;
2823 param->hir(ir_parameters, state);
2824
2825 if (param->is_void)
2826 void_param = param;
2827
2828 count++;
2829 }
2830
2831 if ((void_param != NULL) && (count > 1)) {
2832 YYLTYPE loc = void_param->get_location();
2833
2834 _mesa_glsl_error(& loc, state,
2835 "`void' parameter must be only parameter");
2836 }
2837 }
2838
2839
2840 void
2841 emit_function(_mesa_glsl_parse_state *state, exec_list *instructions,
2842 ir_function *f)
2843 {
2844 /* Emit the new function header */
2845 if (state->current_function == NULL) {
2846 instructions->push_tail(f);
2847 } else {
2848 /* IR invariants disallow function declarations or definitions nested
2849 * within other function definitions. Insert the new ir_function
2850 * block in the instruction sequence before the ir_function block
2851 * containing the current ir_function_signature.
2852 */
2853 ir_function *const curr =
2854 const_cast<ir_function *>(state->current_function->function());
2855
2856 curr->insert_before(f);
2857 }
2858 }
2859
2860
2861 ir_rvalue *
2862 ast_function::hir(exec_list *instructions,
2863 struct _mesa_glsl_parse_state *state)
2864 {
2865 void *ctx = state;
2866 ir_function *f = NULL;
2867 ir_function_signature *sig = NULL;
2868 exec_list hir_parameters;
2869
2870 const char *const name = identifier;
2871
2872 /* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec,
2873 *
2874 * "Function declarations (prototypes) cannot occur inside of functions;
2875 * they must be at global scope, or for the built-in functions, outside
2876 * the global scope."
2877 *
2878 * From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec,
2879 *
2880 * "User defined functions may only be defined within the global scope."
2881 *
2882 * Note that this language does not appear in GLSL 1.10.
2883 */
2884 if ((state->current_function != NULL) && (state->language_version != 110)) {
2885 YYLTYPE loc = this->get_location();
2886 _mesa_glsl_error(&loc, state,
2887 "declaration of function `%s' not allowed within "
2888 "function body", name);
2889 }
2890
2891 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
2892 *
2893 * "Identifiers starting with "gl_" are reserved for use by
2894 * OpenGL, and may not be declared in a shader as either a
2895 * variable or a function."
2896 */
2897 if (strncmp(name, "gl_", 3) == 0) {
2898 YYLTYPE loc = this->get_location();
2899 _mesa_glsl_error(&loc, state,
2900 "identifier `%s' uses reserved `gl_' prefix", name);
2901 }
2902
2903 /* Convert the list of function parameters to HIR now so that they can be
2904 * used below to compare this function's signature with previously seen
2905 * signatures for functions with the same name.
2906 */
2907 ast_parameter_declarator::parameters_to_hir(& this->parameters,
2908 is_definition,
2909 & hir_parameters, state);
2910
2911 const char *return_type_name;
2912 const glsl_type *return_type =
2913 this->return_type->specifier->glsl_type(& return_type_name, state);
2914
2915 if (!return_type) {
2916 YYLTYPE loc = this->get_location();
2917 _mesa_glsl_error(&loc, state,
2918 "function `%s' has undeclared return type `%s'",
2919 name, return_type_name);
2920 return_type = glsl_type::error_type;
2921 }
2922
2923 /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec:
2924 * "No qualifier is allowed on the return type of a function."
2925 */
2926 if (this->return_type->has_qualifiers()) {
2927 YYLTYPE loc = this->get_location();
2928 _mesa_glsl_error(& loc, state,
2929 "function `%s' return type has qualifiers", name);
2930 }
2931
2932 /* Verify that this function's signature either doesn't match a previously
2933 * seen signature for a function with the same name, or, if a match is found,
2934 * that the previously seen signature does not have an associated definition.
2935 */
2936 f = state->symbols->get_function(name);
2937 if (f != NULL && (state->es_shader || f->has_user_signature())) {
2938 sig = f->exact_matching_signature(&hir_parameters);
2939 if (sig != NULL) {
2940 const char *badvar = sig->qualifiers_match(&hir_parameters);
2941 if (badvar != NULL) {
2942 YYLTYPE loc = this->get_location();
2943
2944 _mesa_glsl_error(&loc, state, "function `%s' parameter `%s' "
2945 "qualifiers don't match prototype", name, badvar);
2946 }
2947
2948 if (sig->return_type != return_type) {
2949 YYLTYPE loc = this->get_location();
2950
2951 _mesa_glsl_error(&loc, state, "function `%s' return type doesn't "
2952 "match prototype", name);
2953 }
2954
2955 if (is_definition && sig->is_defined) {
2956 YYLTYPE loc = this->get_location();
2957
2958 _mesa_glsl_error(& loc, state, "function `%s' redefined", name);
2959 }
2960 }
2961 } else {
2962 f = new(ctx) ir_function(name);
2963 if (!state->symbols->add_function(f)) {
2964 /* This function name shadows a non-function use of the same name. */
2965 YYLTYPE loc = this->get_location();
2966
2967 _mesa_glsl_error(&loc, state, "function name `%s' conflicts with "
2968 "non-function", name);
2969 return NULL;
2970 }
2971
2972 emit_function(state, instructions, f);
2973 }
2974
2975 /* Verify the return type of main() */
2976 if (strcmp(name, "main") == 0) {
2977 if (! return_type->is_void()) {
2978 YYLTYPE loc = this->get_location();
2979
2980 _mesa_glsl_error(& loc, state, "main() must return void");
2981 }
2982
2983 if (!hir_parameters.is_empty()) {
2984 YYLTYPE loc = this->get_location();
2985
2986 _mesa_glsl_error(& loc, state, "main() must not take any parameters");
2987 }
2988 }
2989
2990 /* Finish storing the information about this new function in its signature.
2991 */
2992 if (sig == NULL) {
2993 sig = new(ctx) ir_function_signature(return_type);
2994 f->add_signature(sig);
2995 }
2996
2997 sig->replace_parameters(&hir_parameters);
2998 signature = sig;
2999
3000 /* Function declarations (prototypes) do not have r-values.
3001 */
3002 return NULL;
3003 }
3004
3005
3006 ir_rvalue *
3007 ast_function_definition::hir(exec_list *instructions,
3008 struct _mesa_glsl_parse_state *state)
3009 {
3010 prototype->is_definition = true;
3011 prototype->hir(instructions, state);
3012
3013 ir_function_signature *signature = prototype->signature;
3014 if (signature == NULL)
3015 return NULL;
3016
3017 assert(state->current_function == NULL);
3018 state->current_function = signature;
3019 state->found_return = false;
3020
3021 /* Duplicate parameters declared in the prototype as concrete variables.
3022 * Add these to the symbol table.
3023 */
3024 state->symbols->push_scope();
3025 foreach_iter(exec_list_iterator, iter, signature->parameters) {
3026 ir_variable *const var = ((ir_instruction *) iter.get())->as_variable();
3027
3028 assert(var != NULL);
3029
3030 /* The only way a parameter would "exist" is if two parameters have
3031 * the same name.
3032 */
3033 if (state->symbols->name_declared_this_scope(var->name)) {
3034 YYLTYPE loc = this->get_location();
3035
3036 _mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name);
3037 } else {
3038 state->symbols->add_variable(var);
3039 }
3040 }
3041
3042 /* Convert the body of the function to HIR. */
3043 this->body->hir(&signature->body, state);
3044 signature->is_defined = true;
3045
3046 state->symbols->pop_scope();
3047
3048 assert(state->current_function == signature);
3049 state->current_function = NULL;
3050
3051 if (!signature->return_type->is_void() && !state->found_return) {
3052 YYLTYPE loc = this->get_location();
3053 _mesa_glsl_error(& loc, state, "function `%s' has non-void return type "
3054 "%s, but no return statement",
3055 signature->function_name(),
3056 signature->return_type->name);
3057 }
3058
3059 /* Function definitions do not have r-values.
3060 */
3061 return NULL;
3062 }
3063
3064
3065 ir_rvalue *
3066 ast_jump_statement::hir(exec_list *instructions,
3067 struct _mesa_glsl_parse_state *state)
3068 {
3069 void *ctx = state;
3070
3071 switch (mode) {
3072 case ast_return: {
3073 ir_return *inst;
3074 assert(state->current_function);
3075
3076 if (opt_return_value) {
3077 ir_rvalue *const ret = opt_return_value->hir(instructions, state);
3078
3079 /* The value of the return type can be NULL if the shader says
3080 * 'return foo();' and foo() is a function that returns void.
3081 *
3082 * NOTE: The GLSL spec doesn't say that this is an error. The type
3083 * of the return value is void. If the return type of the function is
3084 * also void, then this should compile without error. Seriously.
3085 */
3086 const glsl_type *const ret_type =
3087 (ret == NULL) ? glsl_type::void_type : ret->type;
3088
3089 /* Implicit conversions are not allowed for return values. */
3090 if (state->current_function->return_type != ret_type) {
3091 YYLTYPE loc = this->get_location();
3092
3093 _mesa_glsl_error(& loc, state,
3094 "`return' with wrong type %s, in function `%s' "
3095 "returning %s",
3096 ret_type->name,
3097 state->current_function->function_name(),
3098 state->current_function->return_type->name);
3099 }
3100
3101 inst = new(ctx) ir_return(ret);
3102 } else {
3103 if (state->current_function->return_type->base_type !=
3104 GLSL_TYPE_VOID) {
3105 YYLTYPE loc = this->get_location();
3106
3107 _mesa_glsl_error(& loc, state,
3108 "`return' with no value, in function %s returning "
3109 "non-void",
3110 state->current_function->function_name());
3111 }
3112 inst = new(ctx) ir_return;
3113 }
3114
3115 state->found_return = true;
3116 instructions->push_tail(inst);
3117 break;
3118 }
3119
3120 case ast_discard:
3121 if (state->target != fragment_shader) {
3122 YYLTYPE loc = this->get_location();
3123
3124 _mesa_glsl_error(& loc, state,
3125 "`discard' may only appear in a fragment shader");
3126 }
3127 instructions->push_tail(new(ctx) ir_discard);
3128 break;
3129
3130 case ast_break:
3131 case ast_continue:
3132 /* FINISHME: Handle switch-statements. They cannot contain 'continue',
3133 * FINISHME: and they use a different IR instruction for 'break'.
3134 */
3135 /* FINISHME: Correctly handle the nesting. If a switch-statement is
3136 * FINISHME: inside a loop, a 'continue' is valid and will bind to the
3137 * FINISHME: loop.
3138 */
3139 if (state->loop_or_switch_nesting == NULL) {
3140 YYLTYPE loc = this->get_location();
3141
3142 _mesa_glsl_error(& loc, state,
3143 "`%s' may only appear in a loop",
3144 (mode == ast_break) ? "break" : "continue");
3145 } else {
3146 ir_loop *const loop = state->loop_or_switch_nesting->as_loop();
3147
3148 /* Inline the for loop expression again, since we don't know
3149 * where near the end of the loop body the normal copy of it
3150 * is going to be placed.
3151 */
3152 if (mode == ast_continue &&
3153 state->loop_or_switch_nesting_ast->rest_expression) {
3154 state->loop_or_switch_nesting_ast->rest_expression->hir(instructions,
3155 state);
3156 }
3157
3158 if (loop != NULL) {
3159 ir_loop_jump *const jump =
3160 new(ctx) ir_loop_jump((mode == ast_break)
3161 ? ir_loop_jump::jump_break
3162 : ir_loop_jump::jump_continue);
3163 instructions->push_tail(jump);
3164 }
3165 }
3166
3167 break;
3168 }
3169
3170 /* Jump instructions do not have r-values.
3171 */
3172 return NULL;
3173 }
3174
3175
3176 ir_rvalue *
3177 ast_selection_statement::hir(exec_list *instructions,
3178 struct _mesa_glsl_parse_state *state)
3179 {
3180 void *ctx = state;
3181
3182 ir_rvalue *const condition = this->condition->hir(instructions, state);
3183
3184 /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
3185 *
3186 * "Any expression whose type evaluates to a Boolean can be used as the
3187 * conditional expression bool-expression. Vector types are not accepted
3188 * as the expression to if."
3189 *
3190 * The checks are separated so that higher quality diagnostics can be
3191 * generated for cases where both rules are violated.
3192 */
3193 if (!condition->type->is_boolean() || !condition->type->is_scalar()) {
3194 YYLTYPE loc = this->condition->get_location();
3195
3196 _mesa_glsl_error(& loc, state, "if-statement condition must be scalar "
3197 "boolean");
3198 }
3199
3200 ir_if *const stmt = new(ctx) ir_if(condition);
3201
3202 if (then_statement != NULL) {
3203 state->symbols->push_scope();
3204 then_statement->hir(& stmt->then_instructions, state);
3205 state->symbols->pop_scope();
3206 }
3207
3208 if (else_statement != NULL) {
3209 state->symbols->push_scope();
3210 else_statement->hir(& stmt->else_instructions, state);
3211 state->symbols->pop_scope();
3212 }
3213
3214 instructions->push_tail(stmt);
3215
3216 /* if-statements do not have r-values.
3217 */
3218 return NULL;
3219 }
3220
3221
3222 void
3223 ast_iteration_statement::condition_to_hir(ir_loop *stmt,
3224 struct _mesa_glsl_parse_state *state)
3225 {
3226 void *ctx = state;
3227
3228 if (condition != NULL) {
3229 ir_rvalue *const cond =
3230 condition->hir(& stmt->body_instructions, state);
3231
3232 if ((cond == NULL)
3233 || !cond->type->is_boolean() || !cond->type->is_scalar()) {
3234 YYLTYPE loc = condition->get_location();
3235
3236 _mesa_glsl_error(& loc, state,
3237 "loop condition must be scalar boolean");
3238 } else {
3239 /* As the first code in the loop body, generate a block that looks
3240 * like 'if (!condition) break;' as the loop termination condition.
3241 */
3242 ir_rvalue *const not_cond =
3243 new(ctx) ir_expression(ir_unop_logic_not, glsl_type::bool_type, cond,
3244 NULL);
3245
3246 ir_if *const if_stmt = new(ctx) ir_if(not_cond);
3247
3248 ir_jump *const break_stmt =
3249 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
3250
3251 if_stmt->then_instructions.push_tail(break_stmt);
3252 stmt->body_instructions.push_tail(if_stmt);
3253 }
3254 }
3255 }
3256
3257
3258 ir_rvalue *
3259 ast_iteration_statement::hir(exec_list *instructions,
3260 struct _mesa_glsl_parse_state *state)
3261 {
3262 void *ctx = state;
3263
3264 /* For-loops and while-loops start a new scope, but do-while loops do not.
3265 */
3266 if (mode != ast_do_while)
3267 state->symbols->push_scope();
3268
3269 if (init_statement != NULL)
3270 init_statement->hir(instructions, state);
3271
3272 ir_loop *const stmt = new(ctx) ir_loop();
3273 instructions->push_tail(stmt);
3274
3275 /* Track the current loop and / or switch-statement nesting.
3276 */
3277 ir_instruction *const nesting = state->loop_or_switch_nesting;
3278 ast_iteration_statement *nesting_ast = state->loop_or_switch_nesting_ast;
3279
3280 state->loop_or_switch_nesting = stmt;
3281 state->loop_or_switch_nesting_ast = this;
3282
3283 if (mode != ast_do_while)
3284 condition_to_hir(stmt, state);
3285
3286 if (body != NULL)
3287 body->hir(& stmt->body_instructions, state);
3288
3289 if (rest_expression != NULL)
3290 rest_expression->hir(& stmt->body_instructions, state);
3291
3292 if (mode == ast_do_while)
3293 condition_to_hir(stmt, state);
3294
3295 if (mode != ast_do_while)
3296 state->symbols->pop_scope();
3297
3298 /* Restore previous nesting before returning.
3299 */
3300 state->loop_or_switch_nesting = nesting;
3301 state->loop_or_switch_nesting_ast = nesting_ast;
3302
3303 /* Loops do not have r-values.
3304 */
3305 return NULL;
3306 }
3307
3308
3309 ir_rvalue *
3310 ast_type_specifier::hir(exec_list *instructions,
3311 struct _mesa_glsl_parse_state *state)
3312 {
3313 if (!this->is_precision_statement && this->structure == NULL)
3314 return NULL;
3315
3316 YYLTYPE loc = this->get_location();
3317
3318 if (this->precision != ast_precision_none
3319 && state->language_version != 100
3320 && state->language_version < 130) {
3321 _mesa_glsl_error(&loc, state,
3322 "precision qualifiers exist only in "
3323 "GLSL ES 1.00, and GLSL 1.30 and later");
3324 return NULL;
3325 }
3326 if (this->precision != ast_precision_none
3327 && this->structure != NULL) {
3328 _mesa_glsl_error(&loc, state,
3329 "precision qualifiers do not apply to structures");
3330 return NULL;
3331 }
3332
3333 /* If this is a precision statement, check that the type to which it is
3334 * applied is either float or int.
3335 *
3336 * From section 4.5.3 of the GLSL 1.30 spec:
3337 * "The precision statement
3338 * precision precision-qualifier type;
3339 * can be used to establish a default precision qualifier. The type
3340 * field can be either int or float [...]. Any other types or
3341 * qualifiers will result in an error.
3342 */
3343 if (this->is_precision_statement) {
3344 assert(this->precision != ast_precision_none);
3345 assert(this->structure == NULL); /* The check for structures was
3346 * performed above. */
3347 if (this->is_array) {
3348 _mesa_glsl_error(&loc, state,
3349 "default precision statements do not apply to "
3350 "arrays");
3351 return NULL;
3352 }
3353 if (this->type_specifier != ast_float
3354 && this->type_specifier != ast_int) {
3355 _mesa_glsl_error(&loc, state,
3356 "default precision statements apply only to types "
3357 "float and int");
3358 return NULL;
3359 }
3360
3361 /* FINISHME: Translate precision statements into IR. */
3362 return NULL;
3363 }
3364
3365 if (this->structure != NULL)
3366 return this->structure->hir(instructions, state);
3367
3368 return NULL;
3369 }
3370
3371
3372 ir_rvalue *
3373 ast_struct_specifier::hir(exec_list *instructions,
3374 struct _mesa_glsl_parse_state *state)
3375 {
3376 unsigned decl_count = 0;
3377
3378 /* Make an initial pass over the list of structure fields to determine how
3379 * many there are. Each element in this list is an ast_declarator_list.
3380 * This means that we actually need to count the number of elements in the
3381 * 'declarations' list in each of the elements.
3382 */
3383 foreach_list_typed (ast_declarator_list, decl_list, link,
3384 &this->declarations) {
3385 foreach_list_const (decl_ptr, & decl_list->declarations) {
3386 decl_count++;
3387 }
3388 }
3389
3390 /* Allocate storage for the structure fields and process the field
3391 * declarations. As the declarations are processed, try to also convert
3392 * the types to HIR. This ensures that structure definitions embedded in
3393 * other structure definitions are processed.
3394 */
3395 glsl_struct_field *const fields = ralloc_array(state, glsl_struct_field,
3396 decl_count);
3397
3398 unsigned i = 0;
3399 foreach_list_typed (ast_declarator_list, decl_list, link,
3400 &this->declarations) {
3401 const char *type_name;
3402
3403 decl_list->type->specifier->hir(instructions, state);
3404
3405 /* Section 10.9 of the GLSL ES 1.00 specification states that
3406 * embedded structure definitions have been removed from the language.
3407 */
3408 if (state->es_shader && decl_list->type->specifier->structure != NULL) {
3409 YYLTYPE loc = this->get_location();
3410 _mesa_glsl_error(&loc, state, "Embedded structure definitions are "
3411 "not allowed in GLSL ES 1.00.");
3412 }
3413
3414 const glsl_type *decl_type =
3415 decl_list->type->specifier->glsl_type(& type_name, state);
3416
3417 foreach_list_typed (ast_declaration, decl, link,
3418 &decl_list->declarations) {
3419 const struct glsl_type *field_type = decl_type;
3420 if (decl->is_array) {
3421 YYLTYPE loc = decl->get_location();
3422 field_type = process_array_type(&loc, decl_type, decl->array_size,
3423 state);
3424 }
3425 fields[i].type = (field_type != NULL)
3426 ? field_type : glsl_type::error_type;
3427 fields[i].name = decl->identifier;
3428 i++;
3429 }
3430 }
3431
3432 assert(i == decl_count);
3433
3434 const glsl_type *t =
3435 glsl_type::get_record_instance(fields, decl_count, this->name);
3436
3437 YYLTYPE loc = this->get_location();
3438 if (!state->symbols->add_type(name, t)) {
3439 _mesa_glsl_error(& loc, state, "struct `%s' previously defined", name);
3440 } else {
3441
3442 const glsl_type **s = (const glsl_type **)
3443 realloc(state->user_structures,
3444 sizeof(state->user_structures[0]) *
3445 (state->num_user_structures + 1));
3446 if (s != NULL) {
3447 s[state->num_user_structures] = t;
3448 state->user_structures = s;
3449 state->num_user_structures++;
3450 }
3451 }
3452
3453 /* Structure type definitions do not have r-values.
3454 */
3455 return NULL;
3456 }