glsl: Propagate explicit binding information from AST to IR.
[mesa.git] / src / glsl / ast_to_hir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file ast_to_hir.c
26 * Convert abstract syntax to to high-level intermediate reprensentation (HIR).
27 *
28 * During the conversion to HIR, the majority of the symantic checking is
29 * preformed on the program. This includes:
30 *
31 * * Symbol table management
32 * * Type checking
33 * * Function binding
34 *
35 * The majority of this work could be done during parsing, and the parser could
36 * probably generate HIR directly. However, this results in frequent changes
37 * to the parser code. Since we do not assume that every system this complier
38 * is built on will have Flex and Bison installed, we have to store the code
39 * generated by these tools in our version control system. In other parts of
40 * the system we've seen problems where a parser was changed but the generated
41 * code was not committed, merge conflicts where created because two developers
42 * had slightly different versions of Bison installed, etc.
43 *
44 * I have also noticed that running Bison generated parsers in GDB is very
45 * irritating. When you get a segfault on '$$ = $1->foo', you can't very
46 * well 'print $1' in GDB.
47 *
48 * As a result, my preference is to put as little C code as possible in the
49 * parser (and lexer) sources.
50 */
51
52 #include "main/core.h" /* for struct gl_extensions */
53 #include "glsl_symbol_table.h"
54 #include "glsl_parser_extras.h"
55 #include "ast.h"
56 #include "glsl_types.h"
57 #include "program/hash_table.h"
58 #include "ir.h"
59
60 static void
61 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
62 exec_list *instructions);
63
64 void
65 _mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
66 {
67 _mesa_glsl_initialize_variables(instructions, state);
68
69 state->symbols->separate_function_namespace = state->language_version == 110;
70
71 state->current_function = NULL;
72
73 state->toplevel_ir = instructions;
74
75 /* Section 4.2 of the GLSL 1.20 specification states:
76 * "The built-in functions are scoped in a scope outside the global scope
77 * users declare global variables in. That is, a shader's global scope,
78 * available for user-defined functions and global variables, is nested
79 * inside the scope containing the built-in functions."
80 *
81 * Since built-in functions like ftransform() access built-in variables,
82 * it follows that those must be in the outer scope as well.
83 *
84 * We push scope here to create this nesting effect...but don't pop.
85 * This way, a shader's globals are still in the symbol table for use
86 * by the linker.
87 */
88 state->symbols->push_scope();
89
90 foreach_list_typed (ast_node, ast, link, & state->translation_unit)
91 ast->hir(instructions, state);
92
93 detect_recursion_unlinked(state, instructions);
94 detect_conflicting_assignments(state, instructions);
95
96 state->toplevel_ir = NULL;
97
98 /* Move all of the variable declarations to the front of the IR list, and
99 * reverse the order. This has the (intended!) side effect that vertex
100 * shader inputs and fragment shader outputs will appear in the IR in the
101 * same order that they appeared in the shader code. This results in the
102 * locations being assigned in the declared order. Many (arguably buggy)
103 * applications depend on this behavior, and it matches what nearly all
104 * other drivers do.
105 */
106 foreach_list_safe(node, instructions) {
107 ir_variable *const var = ((ir_instruction *) node)->as_variable();
108
109 if (var == NULL)
110 continue;
111
112 var->remove();
113 instructions->push_head(var);
114 }
115 }
116
117
118 /**
119 * If a conversion is available, convert one operand to a different type
120 *
121 * The \c from \c ir_rvalue is converted "in place".
122 *
123 * \param to Type that the operand it to be converted to
124 * \param from Operand that is being converted
125 * \param state GLSL compiler state
126 *
127 * \return
128 * If a conversion is possible (or unnecessary), \c true is returned.
129 * Otherwise \c false is returned.
130 */
131 bool
132 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
133 struct _mesa_glsl_parse_state *state)
134 {
135 void *ctx = state;
136 if (to->base_type == from->type->base_type)
137 return true;
138
139 /* This conversion was added in GLSL 1.20. If the compilation mode is
140 * GLSL 1.10, the conversion is skipped.
141 */
142 if (!state->is_version(120, 0))
143 return false;
144
145 /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
146 *
147 * "There are no implicit array or structure conversions. For
148 * example, an array of int cannot be implicitly converted to an
149 * array of float. There are no implicit conversions between
150 * signed and unsigned integers."
151 */
152 /* FINISHME: The above comment is partially a lie. There is int/uint
153 * FINISHME: conversion for immediate constants.
154 */
155 if (!to->is_float() || !from->type->is_numeric())
156 return false;
157
158 /* Convert to a floating point type with the same number of components
159 * as the original type - i.e. int to float, not int to vec4.
160 */
161 to = glsl_type::get_instance(GLSL_TYPE_FLOAT, from->type->vector_elements,
162 from->type->matrix_columns);
163
164 switch (from->type->base_type) {
165 case GLSL_TYPE_INT:
166 from = new(ctx) ir_expression(ir_unop_i2f, to, from, NULL);
167 break;
168 case GLSL_TYPE_UINT:
169 from = new(ctx) ir_expression(ir_unop_u2f, to, from, NULL);
170 break;
171 case GLSL_TYPE_BOOL:
172 from = new(ctx) ir_expression(ir_unop_b2f, to, from, NULL);
173 break;
174 default:
175 assert(0);
176 }
177
178 return true;
179 }
180
181
182 static const struct glsl_type *
183 arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
184 bool multiply,
185 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
186 {
187 const glsl_type *type_a = value_a->type;
188 const glsl_type *type_b = value_b->type;
189
190 /* From GLSL 1.50 spec, page 56:
191 *
192 * "The arithmetic binary operators add (+), subtract (-),
193 * multiply (*), and divide (/) operate on integer and
194 * floating-point scalars, vectors, and matrices."
195 */
196 if (!type_a->is_numeric() || !type_b->is_numeric()) {
197 _mesa_glsl_error(loc, state,
198 "Operands to arithmetic operators must be numeric");
199 return glsl_type::error_type;
200 }
201
202
203 /* "If one operand is floating-point based and the other is
204 * not, then the conversions from Section 4.1.10 "Implicit
205 * Conversions" are applied to the non-floating-point-based operand."
206 */
207 if (!apply_implicit_conversion(type_a, value_b, state)
208 && !apply_implicit_conversion(type_b, value_a, state)) {
209 _mesa_glsl_error(loc, state,
210 "Could not implicitly convert operands to "
211 "arithmetic operator");
212 return glsl_type::error_type;
213 }
214 type_a = value_a->type;
215 type_b = value_b->type;
216
217 /* "If the operands are integer types, they must both be signed or
218 * both be unsigned."
219 *
220 * From this rule and the preceeding conversion it can be inferred that
221 * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
222 * The is_numeric check above already filtered out the case where either
223 * type is not one of these, so now the base types need only be tested for
224 * equality.
225 */
226 if (type_a->base_type != type_b->base_type) {
227 _mesa_glsl_error(loc, state,
228 "base type mismatch for arithmetic operator");
229 return glsl_type::error_type;
230 }
231
232 /* "All arithmetic binary operators result in the same fundamental type
233 * (signed integer, unsigned integer, or floating-point) as the
234 * operands they operate on, after operand type conversion. After
235 * conversion, the following cases are valid
236 *
237 * * The two operands are scalars. In this case the operation is
238 * applied, resulting in a scalar."
239 */
240 if (type_a->is_scalar() && type_b->is_scalar())
241 return type_a;
242
243 /* "* One operand is a scalar, and the other is a vector or matrix.
244 * In this case, the scalar operation is applied independently to each
245 * component of the vector or matrix, resulting in the same size
246 * vector or matrix."
247 */
248 if (type_a->is_scalar()) {
249 if (!type_b->is_scalar())
250 return type_b;
251 } else if (type_b->is_scalar()) {
252 return type_a;
253 }
254
255 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
256 * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
257 * handled.
258 */
259 assert(!type_a->is_scalar());
260 assert(!type_b->is_scalar());
261
262 /* "* The two operands are vectors of the same size. In this case, the
263 * operation is done component-wise resulting in the same size
264 * vector."
265 */
266 if (type_a->is_vector() && type_b->is_vector()) {
267 if (type_a == type_b) {
268 return type_a;
269 } else {
270 _mesa_glsl_error(loc, state,
271 "vector size mismatch for arithmetic operator");
272 return glsl_type::error_type;
273 }
274 }
275
276 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
277 * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
278 * <vector, vector> have been handled. At least one of the operands must
279 * be matrix. Further, since there are no integer matrix types, the base
280 * type of both operands must be float.
281 */
282 assert(type_a->is_matrix() || type_b->is_matrix());
283 assert(type_a->base_type == GLSL_TYPE_FLOAT);
284 assert(type_b->base_type == GLSL_TYPE_FLOAT);
285
286 /* "* The operator is add (+), subtract (-), or divide (/), and the
287 * operands are matrices with the same number of rows and the same
288 * number of columns. In this case, the operation is done component-
289 * wise resulting in the same size matrix."
290 * * The operator is multiply (*), where both operands are matrices or
291 * one operand is a vector and the other a matrix. A right vector
292 * operand is treated as a column vector and a left vector operand as a
293 * row vector. In all these cases, it is required that the number of
294 * columns of the left operand is equal to the number of rows of the
295 * right operand. Then, the multiply (*) operation does a linear
296 * algebraic multiply, yielding an object that has the same number of
297 * rows as the left operand and the same number of columns as the right
298 * operand. Section 5.10 "Vector and Matrix Operations" explains in
299 * more detail how vectors and matrices are operated on."
300 */
301 if (! multiply) {
302 if (type_a == type_b)
303 return type_a;
304 } else {
305 if (type_a->is_matrix() && type_b->is_matrix()) {
306 /* Matrix multiply. The columns of A must match the rows of B. Given
307 * the other previously tested constraints, this means the vector type
308 * of a row from A must be the same as the vector type of a column from
309 * B.
310 */
311 if (type_a->row_type() == type_b->column_type()) {
312 /* The resulting matrix has the number of columns of matrix B and
313 * the number of rows of matrix A. We get the row count of A by
314 * looking at the size of a vector that makes up a column. The
315 * transpose (size of a row) is done for B.
316 */
317 const glsl_type *const type =
318 glsl_type::get_instance(type_a->base_type,
319 type_a->column_type()->vector_elements,
320 type_b->row_type()->vector_elements);
321 assert(type != glsl_type::error_type);
322
323 return type;
324 }
325 } else if (type_a->is_matrix()) {
326 /* A is a matrix and B is a column vector. Columns of A must match
327 * rows of B. Given the other previously tested constraints, this
328 * means the vector type of a row from A must be the same as the
329 * vector the type of B.
330 */
331 if (type_a->row_type() == type_b) {
332 /* The resulting vector has a number of elements equal to
333 * the number of rows of matrix A. */
334 const glsl_type *const type =
335 glsl_type::get_instance(type_a->base_type,
336 type_a->column_type()->vector_elements,
337 1);
338 assert(type != glsl_type::error_type);
339
340 return type;
341 }
342 } else {
343 assert(type_b->is_matrix());
344
345 /* A is a row vector and B is a matrix. Columns of A must match rows
346 * of B. Given the other previously tested constraints, this means
347 * the type of A must be the same as the vector type of a column from
348 * B.
349 */
350 if (type_a == type_b->column_type()) {
351 /* The resulting vector has a number of elements equal to
352 * the number of columns of matrix B. */
353 const glsl_type *const type =
354 glsl_type::get_instance(type_a->base_type,
355 type_b->row_type()->vector_elements,
356 1);
357 assert(type != glsl_type::error_type);
358
359 return type;
360 }
361 }
362
363 _mesa_glsl_error(loc, state, "size mismatch for matrix multiplication");
364 return glsl_type::error_type;
365 }
366
367
368 /* "All other cases are illegal."
369 */
370 _mesa_glsl_error(loc, state, "type mismatch");
371 return glsl_type::error_type;
372 }
373
374
375 static const struct glsl_type *
376 unary_arithmetic_result_type(const struct glsl_type *type,
377 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
378 {
379 /* From GLSL 1.50 spec, page 57:
380 *
381 * "The arithmetic unary operators negate (-), post- and pre-increment
382 * and decrement (-- and ++) operate on integer or floating-point
383 * values (including vectors and matrices). All unary operators work
384 * component-wise on their operands. These result with the same type
385 * they operated on."
386 */
387 if (!type->is_numeric()) {
388 _mesa_glsl_error(loc, state,
389 "Operands to arithmetic operators must be numeric");
390 return glsl_type::error_type;
391 }
392
393 return type;
394 }
395
396 /**
397 * \brief Return the result type of a bit-logic operation.
398 *
399 * If the given types to the bit-logic operator are invalid, return
400 * glsl_type::error_type.
401 *
402 * \param type_a Type of LHS of bit-logic op
403 * \param type_b Type of RHS of bit-logic op
404 */
405 static const struct glsl_type *
406 bit_logic_result_type(const struct glsl_type *type_a,
407 const struct glsl_type *type_b,
408 ast_operators op,
409 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
410 {
411 if (!state->check_bitwise_operations_allowed(loc)) {
412 return glsl_type::error_type;
413 }
414
415 /* From page 50 (page 56 of PDF) of GLSL 1.30 spec:
416 *
417 * "The bitwise operators and (&), exclusive-or (^), and inclusive-or
418 * (|). The operands must be of type signed or unsigned integers or
419 * integer vectors."
420 */
421 if (!type_a->is_integer()) {
422 _mesa_glsl_error(loc, state, "LHS of `%s' must be an integer",
423 ast_expression::operator_string(op));
424 return glsl_type::error_type;
425 }
426 if (!type_b->is_integer()) {
427 _mesa_glsl_error(loc, state, "RHS of `%s' must be an integer",
428 ast_expression::operator_string(op));
429 return glsl_type::error_type;
430 }
431
432 /* "The fundamental types of the operands (signed or unsigned) must
433 * match,"
434 */
435 if (type_a->base_type != type_b->base_type) {
436 _mesa_glsl_error(loc, state, "operands of `%s' must have the same "
437 "base type", ast_expression::operator_string(op));
438 return glsl_type::error_type;
439 }
440
441 /* "The operands cannot be vectors of differing size." */
442 if (type_a->is_vector() &&
443 type_b->is_vector() &&
444 type_a->vector_elements != type_b->vector_elements) {
445 _mesa_glsl_error(loc, state, "operands of `%s' cannot be vectors of "
446 "different sizes", ast_expression::operator_string(op));
447 return glsl_type::error_type;
448 }
449
450 /* "If one operand is a scalar and the other a vector, the scalar is
451 * applied component-wise to the vector, resulting in the same type as
452 * the vector. The fundamental types of the operands [...] will be the
453 * resulting fundamental type."
454 */
455 if (type_a->is_scalar())
456 return type_b;
457 else
458 return type_a;
459 }
460
461 static const struct glsl_type *
462 modulus_result_type(const struct glsl_type *type_a,
463 const struct glsl_type *type_b,
464 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
465 {
466 if (!state->check_version(130, 300, loc, "operator '%%' is reserved")) {
467 return glsl_type::error_type;
468 }
469
470 /* From GLSL 1.50 spec, page 56:
471 * "The operator modulus (%) operates on signed or unsigned integers or
472 * integer vectors. The operand types must both be signed or both be
473 * unsigned."
474 */
475 if (!type_a->is_integer()) {
476 _mesa_glsl_error(loc, state, "LHS of operator %% must be an integer.");
477 return glsl_type::error_type;
478 }
479 if (!type_b->is_integer()) {
480 _mesa_glsl_error(loc, state, "RHS of operator %% must be an integer.");
481 return glsl_type::error_type;
482 }
483 if (type_a->base_type != type_b->base_type) {
484 _mesa_glsl_error(loc, state,
485 "operands of %% must have the same base type");
486 return glsl_type::error_type;
487 }
488
489 /* "The operands cannot be vectors of differing size. If one operand is
490 * a scalar and the other vector, then the scalar is applied component-
491 * wise to the vector, resulting in the same type as the vector. If both
492 * are vectors of the same size, the result is computed component-wise."
493 */
494 if (type_a->is_vector()) {
495 if (!type_b->is_vector()
496 || (type_a->vector_elements == type_b->vector_elements))
497 return type_a;
498 } else
499 return type_b;
500
501 /* "The operator modulus (%) is not defined for any other data types
502 * (non-integer types)."
503 */
504 _mesa_glsl_error(loc, state, "type mismatch");
505 return glsl_type::error_type;
506 }
507
508
509 static const struct glsl_type *
510 relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
511 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
512 {
513 const glsl_type *type_a = value_a->type;
514 const glsl_type *type_b = value_b->type;
515
516 /* From GLSL 1.50 spec, page 56:
517 * "The relational operators greater than (>), less than (<), greater
518 * than or equal (>=), and less than or equal (<=) operate only on
519 * scalar integer and scalar floating-point expressions."
520 */
521 if (!type_a->is_numeric()
522 || !type_b->is_numeric()
523 || !type_a->is_scalar()
524 || !type_b->is_scalar()) {
525 _mesa_glsl_error(loc, state,
526 "Operands to relational operators must be scalar and "
527 "numeric");
528 return glsl_type::error_type;
529 }
530
531 /* "Either the operands' types must match, or the conversions from
532 * Section 4.1.10 "Implicit Conversions" will be applied to the integer
533 * operand, after which the types must match."
534 */
535 if (!apply_implicit_conversion(type_a, value_b, state)
536 && !apply_implicit_conversion(type_b, value_a, state)) {
537 _mesa_glsl_error(loc, state,
538 "Could not implicitly convert operands to "
539 "relational operator");
540 return glsl_type::error_type;
541 }
542 type_a = value_a->type;
543 type_b = value_b->type;
544
545 if (type_a->base_type != type_b->base_type) {
546 _mesa_glsl_error(loc, state, "base type mismatch");
547 return glsl_type::error_type;
548 }
549
550 /* "The result is scalar Boolean."
551 */
552 return glsl_type::bool_type;
553 }
554
555 /**
556 * \brief Return the result type of a bit-shift operation.
557 *
558 * If the given types to the bit-shift operator are invalid, return
559 * glsl_type::error_type.
560 *
561 * \param type_a Type of LHS of bit-shift op
562 * \param type_b Type of RHS of bit-shift op
563 */
564 static const struct glsl_type *
565 shift_result_type(const struct glsl_type *type_a,
566 const struct glsl_type *type_b,
567 ast_operators op,
568 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
569 {
570 if (!state->check_bitwise_operations_allowed(loc)) {
571 return glsl_type::error_type;
572 }
573
574 /* From page 50 (page 56 of the PDF) of the GLSL 1.30 spec:
575 *
576 * "The shift operators (<<) and (>>). For both operators, the operands
577 * must be signed or unsigned integers or integer vectors. One operand
578 * can be signed while the other is unsigned."
579 */
580 if (!type_a->is_integer()) {
581 _mesa_glsl_error(loc, state, "LHS of operator %s must be an integer or "
582 "integer vector", ast_expression::operator_string(op));
583 return glsl_type::error_type;
584
585 }
586 if (!type_b->is_integer()) {
587 _mesa_glsl_error(loc, state, "RHS of operator %s must be an integer or "
588 "integer vector", ast_expression::operator_string(op));
589 return glsl_type::error_type;
590 }
591
592 /* "If the first operand is a scalar, the second operand has to be
593 * a scalar as well."
594 */
595 if (type_a->is_scalar() && !type_b->is_scalar()) {
596 _mesa_glsl_error(loc, state, "If the first operand of %s is scalar, the "
597 "second must be scalar as well",
598 ast_expression::operator_string(op));
599 return glsl_type::error_type;
600 }
601
602 /* If both operands are vectors, check that they have same number of
603 * elements.
604 */
605 if (type_a->is_vector() &&
606 type_b->is_vector() &&
607 type_a->vector_elements != type_b->vector_elements) {
608 _mesa_glsl_error(loc, state, "Vector operands to operator %s must "
609 "have same number of elements",
610 ast_expression::operator_string(op));
611 return glsl_type::error_type;
612 }
613
614 /* "In all cases, the resulting type will be the same type as the left
615 * operand."
616 */
617 return type_a;
618 }
619
620 /**
621 * Validates that a value can be assigned to a location with a specified type
622 *
623 * Validates that \c rhs can be assigned to some location. If the types are
624 * not an exact match but an automatic conversion is possible, \c rhs will be
625 * converted.
626 *
627 * \return
628 * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
629 * Otherwise the actual RHS to be assigned will be returned. This may be
630 * \c rhs, or it may be \c rhs after some type conversion.
631 *
632 * \note
633 * In addition to being used for assignments, this function is used to
634 * type-check return values.
635 */
636 ir_rvalue *
637 validate_assignment(struct _mesa_glsl_parse_state *state,
638 const glsl_type *lhs_type, ir_rvalue *rhs,
639 bool is_initializer)
640 {
641 /* If there is already some error in the RHS, just return it. Anything
642 * else will lead to an avalanche of error message back to the user.
643 */
644 if (rhs->type->is_error())
645 return rhs;
646
647 /* If the types are identical, the assignment can trivially proceed.
648 */
649 if (rhs->type == lhs_type)
650 return rhs;
651
652 /* If the array element types are the same and the size of the LHS is zero,
653 * the assignment is okay for initializers embedded in variable
654 * declarations.
655 *
656 * Note: Whole-array assignments are not permitted in GLSL 1.10, but this
657 * is handled by ir_dereference::is_lvalue.
658 */
659 if (is_initializer && lhs_type->is_array() && rhs->type->is_array()
660 && (lhs_type->element_type() == rhs->type->element_type())
661 && (lhs_type->array_size() == 0)) {
662 return rhs;
663 }
664
665 /* Check for implicit conversion in GLSL 1.20 */
666 if (apply_implicit_conversion(lhs_type, rhs, state)) {
667 if (rhs->type == lhs_type)
668 return rhs;
669 }
670
671 return NULL;
672 }
673
674 static void
675 mark_whole_array_access(ir_rvalue *access)
676 {
677 ir_dereference_variable *deref = access->as_dereference_variable();
678
679 if (deref && deref->var) {
680 deref->var->max_array_access = deref->type->length - 1;
681 }
682 }
683
684 ir_rvalue *
685 do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state,
686 const char *non_lvalue_description,
687 ir_rvalue *lhs, ir_rvalue *rhs, bool is_initializer,
688 YYLTYPE lhs_loc)
689 {
690 void *ctx = state;
691 bool error_emitted = (lhs->type->is_error() || rhs->type->is_error());
692
693 /* If the assignment LHS comes back as an ir_binop_vector_extract
694 * expression, move it to the RHS as an ir_triop_vector_insert.
695 */
696 if (lhs->ir_type == ir_type_expression) {
697 ir_expression *const expr = lhs->as_expression();
698
699 if (unlikely(expr->operation == ir_binop_vector_extract)) {
700 ir_rvalue *new_rhs =
701 validate_assignment(state, lhs->type, rhs, is_initializer);
702
703 if (new_rhs == NULL) {
704 _mesa_glsl_error(& lhs_loc, state, "type mismatch");
705 return lhs;
706 } else {
707 rhs = new(ctx) ir_expression(ir_triop_vector_insert,
708 expr->operands[0]->type,
709 expr->operands[0],
710 new_rhs,
711 expr->operands[1]);
712 lhs = expr->operands[0]->clone(ctx, NULL);
713 }
714 }
715 }
716
717 ir_variable *lhs_var = lhs->variable_referenced();
718 if (lhs_var)
719 lhs_var->assigned = true;
720
721 if (!error_emitted) {
722 if (non_lvalue_description != NULL) {
723 _mesa_glsl_error(&lhs_loc, state,
724 "assignment to %s",
725 non_lvalue_description);
726 error_emitted = true;
727 } else if (lhs->variable_referenced() != NULL
728 && lhs->variable_referenced()->read_only) {
729 _mesa_glsl_error(&lhs_loc, state,
730 "assignment to read-only variable '%s'",
731 lhs->variable_referenced()->name);
732 error_emitted = true;
733
734 } else if (lhs->type->is_array() &&
735 !state->check_version(120, 300, &lhs_loc,
736 "whole array assignment forbidden")) {
737 /* From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
738 *
739 * "Other binary or unary expressions, non-dereferenced
740 * arrays, function names, swizzles with repeated fields,
741 * and constants cannot be l-values."
742 *
743 * The restriction on arrays is lifted in GLSL 1.20 and GLSL ES 3.00.
744 */
745 error_emitted = true;
746 } else if (!lhs->is_lvalue()) {
747 _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment");
748 error_emitted = true;
749 }
750 }
751
752 ir_rvalue *new_rhs =
753 validate_assignment(state, lhs->type, rhs, is_initializer);
754 if (new_rhs == NULL) {
755 _mesa_glsl_error(& lhs_loc, state, "type mismatch");
756 } else {
757 rhs = new_rhs;
758
759 /* If the LHS array was not declared with a size, it takes it size from
760 * the RHS. If the LHS is an l-value and a whole array, it must be a
761 * dereference of a variable. Any other case would require that the LHS
762 * is either not an l-value or not a whole array.
763 */
764 if (lhs->type->array_size() == 0) {
765 ir_dereference *const d = lhs->as_dereference();
766
767 assert(d != NULL);
768
769 ir_variable *const var = d->variable_referenced();
770
771 assert(var != NULL);
772
773 if (var->max_array_access >= unsigned(rhs->type->array_size())) {
774 /* FINISHME: This should actually log the location of the RHS. */
775 _mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to "
776 "previous access",
777 var->max_array_access);
778 }
779
780 var->type = glsl_type::get_array_instance(lhs->type->element_type(),
781 rhs->type->array_size());
782 d->type = var->type;
783 }
784 mark_whole_array_access(rhs);
785 mark_whole_array_access(lhs);
786 }
787
788 /* Most callers of do_assignment (assign, add_assign, pre_inc/dec,
789 * but not post_inc) need the converted assigned value as an rvalue
790 * to handle things like:
791 *
792 * i = j += 1;
793 *
794 * So we always just store the computed value being assigned to a
795 * temporary and return a deref of that temporary. If the rvalue
796 * ends up not being used, the temp will get copy-propagated out.
797 */
798 ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp",
799 ir_var_temporary);
800 ir_dereference_variable *deref_var = new(ctx) ir_dereference_variable(var);
801 instructions->push_tail(var);
802 instructions->push_tail(new(ctx) ir_assignment(deref_var, rhs));
803 deref_var = new(ctx) ir_dereference_variable(var);
804
805 if (!error_emitted)
806 instructions->push_tail(new(ctx) ir_assignment(lhs, deref_var));
807
808 return new(ctx) ir_dereference_variable(var);
809 }
810
811 static ir_rvalue *
812 get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue)
813 {
814 void *ctx = ralloc_parent(lvalue);
815 ir_variable *var;
816
817 var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp",
818 ir_var_temporary);
819 instructions->push_tail(var);
820 var->mode = ir_var_auto;
821
822 instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
823 lvalue));
824
825 return new(ctx) ir_dereference_variable(var);
826 }
827
828
829 ir_rvalue *
830 ast_node::hir(exec_list *instructions,
831 struct _mesa_glsl_parse_state *state)
832 {
833 (void) instructions;
834 (void) state;
835
836 return NULL;
837 }
838
839 static ir_rvalue *
840 do_comparison(void *mem_ctx, int operation, ir_rvalue *op0, ir_rvalue *op1)
841 {
842 int join_op;
843 ir_rvalue *cmp = NULL;
844
845 if (operation == ir_binop_all_equal)
846 join_op = ir_binop_logic_and;
847 else
848 join_op = ir_binop_logic_or;
849
850 switch (op0->type->base_type) {
851 case GLSL_TYPE_FLOAT:
852 case GLSL_TYPE_UINT:
853 case GLSL_TYPE_INT:
854 case GLSL_TYPE_BOOL:
855 return new(mem_ctx) ir_expression(operation, op0, op1);
856
857 case GLSL_TYPE_ARRAY: {
858 for (unsigned int i = 0; i < op0->type->length; i++) {
859 ir_rvalue *e0, *e1, *result;
860
861 e0 = new(mem_ctx) ir_dereference_array(op0->clone(mem_ctx, NULL),
862 new(mem_ctx) ir_constant(i));
863 e1 = new(mem_ctx) ir_dereference_array(op1->clone(mem_ctx, NULL),
864 new(mem_ctx) ir_constant(i));
865 result = do_comparison(mem_ctx, operation, e0, e1);
866
867 if (cmp) {
868 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
869 } else {
870 cmp = result;
871 }
872 }
873
874 mark_whole_array_access(op0);
875 mark_whole_array_access(op1);
876 break;
877 }
878
879 case GLSL_TYPE_STRUCT: {
880 for (unsigned int i = 0; i < op0->type->length; i++) {
881 ir_rvalue *e0, *e1, *result;
882 const char *field_name = op0->type->fields.structure[i].name;
883
884 e0 = new(mem_ctx) ir_dereference_record(op0->clone(mem_ctx, NULL),
885 field_name);
886 e1 = new(mem_ctx) ir_dereference_record(op1->clone(mem_ctx, NULL),
887 field_name);
888 result = do_comparison(mem_ctx, operation, e0, e1);
889
890 if (cmp) {
891 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
892 } else {
893 cmp = result;
894 }
895 }
896 break;
897 }
898
899 case GLSL_TYPE_ERROR:
900 case GLSL_TYPE_VOID:
901 case GLSL_TYPE_SAMPLER:
902 case GLSL_TYPE_INTERFACE:
903 /* I assume a comparison of a struct containing a sampler just
904 * ignores the sampler present in the type.
905 */
906 break;
907 }
908
909 if (cmp == NULL)
910 cmp = new(mem_ctx) ir_constant(true);
911
912 return cmp;
913 }
914
915 /* For logical operations, we want to ensure that the operands are
916 * scalar booleans. If it isn't, emit an error and return a constant
917 * boolean to avoid triggering cascading error messages.
918 */
919 ir_rvalue *
920 get_scalar_boolean_operand(exec_list *instructions,
921 struct _mesa_glsl_parse_state *state,
922 ast_expression *parent_expr,
923 int operand,
924 const char *operand_name,
925 bool *error_emitted)
926 {
927 ast_expression *expr = parent_expr->subexpressions[operand];
928 void *ctx = state;
929 ir_rvalue *val = expr->hir(instructions, state);
930
931 if (val->type->is_boolean() && val->type->is_scalar())
932 return val;
933
934 if (!*error_emitted) {
935 YYLTYPE loc = expr->get_location();
936 _mesa_glsl_error(&loc, state, "%s of `%s' must be scalar boolean",
937 operand_name,
938 parent_expr->operator_string(parent_expr->oper));
939 *error_emitted = true;
940 }
941
942 return new(ctx) ir_constant(true);
943 }
944
945 /**
946 * If name refers to a builtin array whose maximum allowed size is less than
947 * size, report an error and return true. Otherwise return false.
948 */
949 void
950 check_builtin_array_max_size(const char *name, unsigned size,
951 YYLTYPE loc, struct _mesa_glsl_parse_state *state)
952 {
953 if ((strcmp("gl_TexCoord", name) == 0)
954 && (size > state->Const.MaxTextureCoords)) {
955 /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec:
956 *
957 * "The size [of gl_TexCoord] can be at most
958 * gl_MaxTextureCoords."
959 */
960 _mesa_glsl_error(&loc, state, "`gl_TexCoord' array size cannot "
961 "be larger than gl_MaxTextureCoords (%u)\n",
962 state->Const.MaxTextureCoords);
963 } else if (strcmp("gl_ClipDistance", name) == 0
964 && size > state->Const.MaxClipPlanes) {
965 /* From section 7.1 (Vertex Shader Special Variables) of the
966 * GLSL 1.30 spec:
967 *
968 * "The gl_ClipDistance array is predeclared as unsized and
969 * must be sized by the shader either redeclaring it with a
970 * size or indexing it only with integral constant
971 * expressions. ... The size can be at most
972 * gl_MaxClipDistances."
973 */
974 _mesa_glsl_error(&loc, state, "`gl_ClipDistance' array size cannot "
975 "be larger than gl_MaxClipDistances (%u)\n",
976 state->Const.MaxClipPlanes);
977 }
978 }
979
980 /**
981 * Create the constant 1, of a which is appropriate for incrementing and
982 * decrementing values of the given GLSL type. For example, if type is vec4,
983 * this creates a constant value of 1.0 having type float.
984 *
985 * If the given type is invalid for increment and decrement operators, return
986 * a floating point 1--the error will be detected later.
987 */
988 static ir_rvalue *
989 constant_one_for_inc_dec(void *ctx, const glsl_type *type)
990 {
991 switch (type->base_type) {
992 case GLSL_TYPE_UINT:
993 return new(ctx) ir_constant((unsigned) 1);
994 case GLSL_TYPE_INT:
995 return new(ctx) ir_constant(1);
996 default:
997 case GLSL_TYPE_FLOAT:
998 return new(ctx) ir_constant(1.0f);
999 }
1000 }
1001
1002 ir_rvalue *
1003 ast_expression::hir(exec_list *instructions,
1004 struct _mesa_glsl_parse_state *state)
1005 {
1006 void *ctx = state;
1007 static const int operations[AST_NUM_OPERATORS] = {
1008 -1, /* ast_assign doesn't convert to ir_expression. */
1009 -1, /* ast_plus doesn't convert to ir_expression. */
1010 ir_unop_neg,
1011 ir_binop_add,
1012 ir_binop_sub,
1013 ir_binop_mul,
1014 ir_binop_div,
1015 ir_binop_mod,
1016 ir_binop_lshift,
1017 ir_binop_rshift,
1018 ir_binop_less,
1019 ir_binop_greater,
1020 ir_binop_lequal,
1021 ir_binop_gequal,
1022 ir_binop_all_equal,
1023 ir_binop_any_nequal,
1024 ir_binop_bit_and,
1025 ir_binop_bit_xor,
1026 ir_binop_bit_or,
1027 ir_unop_bit_not,
1028 ir_binop_logic_and,
1029 ir_binop_logic_xor,
1030 ir_binop_logic_or,
1031 ir_unop_logic_not,
1032
1033 /* Note: The following block of expression types actually convert
1034 * to multiple IR instructions.
1035 */
1036 ir_binop_mul, /* ast_mul_assign */
1037 ir_binop_div, /* ast_div_assign */
1038 ir_binop_mod, /* ast_mod_assign */
1039 ir_binop_add, /* ast_add_assign */
1040 ir_binop_sub, /* ast_sub_assign */
1041 ir_binop_lshift, /* ast_ls_assign */
1042 ir_binop_rshift, /* ast_rs_assign */
1043 ir_binop_bit_and, /* ast_and_assign */
1044 ir_binop_bit_xor, /* ast_xor_assign */
1045 ir_binop_bit_or, /* ast_or_assign */
1046
1047 -1, /* ast_conditional doesn't convert to ir_expression. */
1048 ir_binop_add, /* ast_pre_inc. */
1049 ir_binop_sub, /* ast_pre_dec. */
1050 ir_binop_add, /* ast_post_inc. */
1051 ir_binop_sub, /* ast_post_dec. */
1052 -1, /* ast_field_selection doesn't conv to ir_expression. */
1053 -1, /* ast_array_index doesn't convert to ir_expression. */
1054 -1, /* ast_function_call doesn't conv to ir_expression. */
1055 -1, /* ast_identifier doesn't convert to ir_expression. */
1056 -1, /* ast_int_constant doesn't convert to ir_expression. */
1057 -1, /* ast_uint_constant doesn't conv to ir_expression. */
1058 -1, /* ast_float_constant doesn't conv to ir_expression. */
1059 -1, /* ast_bool_constant doesn't conv to ir_expression. */
1060 -1, /* ast_sequence doesn't convert to ir_expression. */
1061 };
1062 ir_rvalue *result = NULL;
1063 ir_rvalue *op[3];
1064 const struct glsl_type *type; /* a temporary variable for switch cases */
1065 bool error_emitted = false;
1066 YYLTYPE loc;
1067
1068 loc = this->get_location();
1069
1070 switch (this->oper) {
1071 case ast_aggregate:
1072 assert(!"ast_aggregate: Should never get here.");
1073 break;
1074
1075 case ast_assign: {
1076 op[0] = this->subexpressions[0]->hir(instructions, state);
1077 op[1] = this->subexpressions[1]->hir(instructions, state);
1078
1079 result = do_assignment(instructions, state,
1080 this->subexpressions[0]->non_lvalue_description,
1081 op[0], op[1], false,
1082 this->subexpressions[0]->get_location());
1083 error_emitted = result->type->is_error();
1084 break;
1085 }
1086
1087 case ast_plus:
1088 op[0] = this->subexpressions[0]->hir(instructions, state);
1089
1090 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1091
1092 error_emitted = type->is_error();
1093
1094 result = op[0];
1095 break;
1096
1097 case ast_neg:
1098 op[0] = this->subexpressions[0]->hir(instructions, state);
1099
1100 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1101
1102 error_emitted = type->is_error();
1103
1104 result = new(ctx) ir_expression(operations[this->oper], type,
1105 op[0], NULL);
1106 break;
1107
1108 case ast_add:
1109 case ast_sub:
1110 case ast_mul:
1111 case ast_div:
1112 op[0] = this->subexpressions[0]->hir(instructions, state);
1113 op[1] = this->subexpressions[1]->hir(instructions, state);
1114
1115 type = arithmetic_result_type(op[0], op[1],
1116 (this->oper == ast_mul),
1117 state, & loc);
1118 error_emitted = type->is_error();
1119
1120 result = new(ctx) ir_expression(operations[this->oper], type,
1121 op[0], op[1]);
1122 break;
1123
1124 case ast_mod:
1125 op[0] = this->subexpressions[0]->hir(instructions, state);
1126 op[1] = this->subexpressions[1]->hir(instructions, state);
1127
1128 type = modulus_result_type(op[0]->type, op[1]->type, state, & loc);
1129
1130 assert(operations[this->oper] == ir_binop_mod);
1131
1132 result = new(ctx) ir_expression(operations[this->oper], type,
1133 op[0], op[1]);
1134 error_emitted = type->is_error();
1135 break;
1136
1137 case ast_lshift:
1138 case ast_rshift:
1139 if (!state->check_bitwise_operations_allowed(&loc)) {
1140 error_emitted = true;
1141 }
1142
1143 op[0] = this->subexpressions[0]->hir(instructions, state);
1144 op[1] = this->subexpressions[1]->hir(instructions, state);
1145 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1146 &loc);
1147 result = new(ctx) ir_expression(operations[this->oper], type,
1148 op[0], op[1]);
1149 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1150 break;
1151
1152 case ast_less:
1153 case ast_greater:
1154 case ast_lequal:
1155 case ast_gequal:
1156 op[0] = this->subexpressions[0]->hir(instructions, state);
1157 op[1] = this->subexpressions[1]->hir(instructions, state);
1158
1159 type = relational_result_type(op[0], op[1], state, & loc);
1160
1161 /* The relational operators must either generate an error or result
1162 * in a scalar boolean. See page 57 of the GLSL 1.50 spec.
1163 */
1164 assert(type->is_error()
1165 || ((type->base_type == GLSL_TYPE_BOOL)
1166 && type->is_scalar()));
1167
1168 result = new(ctx) ir_expression(operations[this->oper], type,
1169 op[0], op[1]);
1170 error_emitted = type->is_error();
1171 break;
1172
1173 case ast_nequal:
1174 case ast_equal:
1175 op[0] = this->subexpressions[0]->hir(instructions, state);
1176 op[1] = this->subexpressions[1]->hir(instructions, state);
1177
1178 /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
1179 *
1180 * "The equality operators equal (==), and not equal (!=)
1181 * operate on all types. They result in a scalar Boolean. If
1182 * the operand types do not match, then there must be a
1183 * conversion from Section 4.1.10 "Implicit Conversions"
1184 * applied to one operand that can make them match, in which
1185 * case this conversion is done."
1186 */
1187 if ((!apply_implicit_conversion(op[0]->type, op[1], state)
1188 && !apply_implicit_conversion(op[1]->type, op[0], state))
1189 || (op[0]->type != op[1]->type)) {
1190 _mesa_glsl_error(& loc, state, "operands of `%s' must have the same "
1191 "type", (this->oper == ast_equal) ? "==" : "!=");
1192 error_emitted = true;
1193 } else if ((op[0]->type->is_array() || op[1]->type->is_array()) &&
1194 !state->check_version(120, 300, &loc,
1195 "array comparisons forbidden")) {
1196 error_emitted = true;
1197 }
1198
1199 if (error_emitted) {
1200 result = new(ctx) ir_constant(false);
1201 } else {
1202 result = do_comparison(ctx, operations[this->oper], op[0], op[1]);
1203 assert(result->type == glsl_type::bool_type);
1204 }
1205 break;
1206
1207 case ast_bit_and:
1208 case ast_bit_xor:
1209 case ast_bit_or:
1210 op[0] = this->subexpressions[0]->hir(instructions, state);
1211 op[1] = this->subexpressions[1]->hir(instructions, state);
1212 type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
1213 state, &loc);
1214 result = new(ctx) ir_expression(operations[this->oper], type,
1215 op[0], op[1]);
1216 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1217 break;
1218
1219 case ast_bit_not:
1220 op[0] = this->subexpressions[0]->hir(instructions, state);
1221
1222 if (!state->check_bitwise_operations_allowed(&loc)) {
1223 error_emitted = true;
1224 }
1225
1226 if (!op[0]->type->is_integer()) {
1227 _mesa_glsl_error(&loc, state, "operand of `~' must be an integer");
1228 error_emitted = true;
1229 }
1230
1231 type = error_emitted ? glsl_type::error_type : op[0]->type;
1232 result = new(ctx) ir_expression(ir_unop_bit_not, type, op[0], NULL);
1233 break;
1234
1235 case ast_logic_and: {
1236 exec_list rhs_instructions;
1237 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1238 "LHS", &error_emitted);
1239 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1240 "RHS", &error_emitted);
1241
1242 if (rhs_instructions.is_empty()) {
1243 result = new(ctx) ir_expression(ir_binop_logic_and, op[0], op[1]);
1244 type = result->type;
1245 } else {
1246 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1247 "and_tmp",
1248 ir_var_temporary);
1249 instructions->push_tail(tmp);
1250
1251 ir_if *const stmt = new(ctx) ir_if(op[0]);
1252 instructions->push_tail(stmt);
1253
1254 stmt->then_instructions.append_list(&rhs_instructions);
1255 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1256 ir_assignment *const then_assign =
1257 new(ctx) ir_assignment(then_deref, op[1]);
1258 stmt->then_instructions.push_tail(then_assign);
1259
1260 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1261 ir_assignment *const else_assign =
1262 new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false));
1263 stmt->else_instructions.push_tail(else_assign);
1264
1265 result = new(ctx) ir_dereference_variable(tmp);
1266 type = tmp->type;
1267 }
1268 break;
1269 }
1270
1271 case ast_logic_or: {
1272 exec_list rhs_instructions;
1273 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1274 "LHS", &error_emitted);
1275 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1276 "RHS", &error_emitted);
1277
1278 if (rhs_instructions.is_empty()) {
1279 result = new(ctx) ir_expression(ir_binop_logic_or, op[0], op[1]);
1280 type = result->type;
1281 } else {
1282 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1283 "or_tmp",
1284 ir_var_temporary);
1285 instructions->push_tail(tmp);
1286
1287 ir_if *const stmt = new(ctx) ir_if(op[0]);
1288 instructions->push_tail(stmt);
1289
1290 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1291 ir_assignment *const then_assign =
1292 new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true));
1293 stmt->then_instructions.push_tail(then_assign);
1294
1295 stmt->else_instructions.append_list(&rhs_instructions);
1296 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1297 ir_assignment *const else_assign =
1298 new(ctx) ir_assignment(else_deref, op[1]);
1299 stmt->else_instructions.push_tail(else_assign);
1300
1301 result = new(ctx) ir_dereference_variable(tmp);
1302 type = tmp->type;
1303 }
1304 break;
1305 }
1306
1307 case ast_logic_xor:
1308 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1309 *
1310 * "The logical binary operators and (&&), or ( | | ), and
1311 * exclusive or (^^). They operate only on two Boolean
1312 * expressions and result in a Boolean expression."
1313 */
1314 op[0] = get_scalar_boolean_operand(instructions, state, this, 0, "LHS",
1315 &error_emitted);
1316 op[1] = get_scalar_boolean_operand(instructions, state, this, 1, "RHS",
1317 &error_emitted);
1318
1319 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1320 op[0], op[1]);
1321 break;
1322
1323 case ast_logic_not:
1324 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1325 "operand", &error_emitted);
1326
1327 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1328 op[0], NULL);
1329 break;
1330
1331 case ast_mul_assign:
1332 case ast_div_assign:
1333 case ast_add_assign:
1334 case ast_sub_assign: {
1335 op[0] = this->subexpressions[0]->hir(instructions, state);
1336 op[1] = this->subexpressions[1]->hir(instructions, state);
1337
1338 type = arithmetic_result_type(op[0], op[1],
1339 (this->oper == ast_mul_assign),
1340 state, & loc);
1341
1342 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1343 op[0], op[1]);
1344
1345 result = do_assignment(instructions, state,
1346 this->subexpressions[0]->non_lvalue_description,
1347 op[0]->clone(ctx, NULL), temp_rhs, false,
1348 this->subexpressions[0]->get_location());
1349 error_emitted = (op[0]->type->is_error());
1350
1351 /* GLSL 1.10 does not allow array assignment. However, we don't have to
1352 * explicitly test for this because none of the binary expression
1353 * operators allow array operands either.
1354 */
1355
1356 break;
1357 }
1358
1359 case ast_mod_assign: {
1360 op[0] = this->subexpressions[0]->hir(instructions, state);
1361 op[1] = this->subexpressions[1]->hir(instructions, state);
1362
1363 type = modulus_result_type(op[0]->type, op[1]->type, state, & loc);
1364
1365 assert(operations[this->oper] == ir_binop_mod);
1366
1367 ir_rvalue *temp_rhs;
1368 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1369 op[0], op[1]);
1370
1371 result = do_assignment(instructions, state,
1372 this->subexpressions[0]->non_lvalue_description,
1373 op[0]->clone(ctx, NULL), temp_rhs, false,
1374 this->subexpressions[0]->get_location());
1375 error_emitted = type->is_error();
1376 break;
1377 }
1378
1379 case ast_ls_assign:
1380 case ast_rs_assign: {
1381 op[0] = this->subexpressions[0]->hir(instructions, state);
1382 op[1] = this->subexpressions[1]->hir(instructions, state);
1383 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1384 &loc);
1385 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1386 type, op[0], op[1]);
1387 result = do_assignment(instructions, state,
1388 this->subexpressions[0]->non_lvalue_description,
1389 op[0]->clone(ctx, NULL), temp_rhs, false,
1390 this->subexpressions[0]->get_location());
1391 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1392 break;
1393 }
1394
1395 case ast_and_assign:
1396 case ast_xor_assign:
1397 case ast_or_assign: {
1398 op[0] = this->subexpressions[0]->hir(instructions, state);
1399 op[1] = this->subexpressions[1]->hir(instructions, state);
1400 type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
1401 state, &loc);
1402 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1403 type, op[0], op[1]);
1404 result = do_assignment(instructions, state,
1405 this->subexpressions[0]->non_lvalue_description,
1406 op[0]->clone(ctx, NULL), temp_rhs, false,
1407 this->subexpressions[0]->get_location());
1408 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1409 break;
1410 }
1411
1412 case ast_conditional: {
1413 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1414 *
1415 * "The ternary selection operator (?:). It operates on three
1416 * expressions (exp1 ? exp2 : exp3). This operator evaluates the
1417 * first expression, which must result in a scalar Boolean."
1418 */
1419 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1420 "condition", &error_emitted);
1421
1422 /* The :? operator is implemented by generating an anonymous temporary
1423 * followed by an if-statement. The last instruction in each branch of
1424 * the if-statement assigns a value to the anonymous temporary. This
1425 * temporary is the r-value of the expression.
1426 */
1427 exec_list then_instructions;
1428 exec_list else_instructions;
1429
1430 op[1] = this->subexpressions[1]->hir(&then_instructions, state);
1431 op[2] = this->subexpressions[2]->hir(&else_instructions, state);
1432
1433 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1434 *
1435 * "The second and third expressions can be any type, as
1436 * long their types match, or there is a conversion in
1437 * Section 4.1.10 "Implicit Conversions" that can be applied
1438 * to one of the expressions to make their types match. This
1439 * resulting matching type is the type of the entire
1440 * expression."
1441 */
1442 if ((!apply_implicit_conversion(op[1]->type, op[2], state)
1443 && !apply_implicit_conversion(op[2]->type, op[1], state))
1444 || (op[1]->type != op[2]->type)) {
1445 YYLTYPE loc = this->subexpressions[1]->get_location();
1446
1447 _mesa_glsl_error(& loc, state, "Second and third operands of ?: "
1448 "operator must have matching types.");
1449 error_emitted = true;
1450 type = glsl_type::error_type;
1451 } else {
1452 type = op[1]->type;
1453 }
1454
1455 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1456 *
1457 * "The second and third expressions must be the same type, but can
1458 * be of any type other than an array."
1459 */
1460 if (type->is_array() &&
1461 !state->check_version(120, 300, &loc,
1462 "Second and third operands of ?: operator "
1463 "cannot be arrays")) {
1464 error_emitted = true;
1465 }
1466
1467 ir_constant *cond_val = op[0]->constant_expression_value();
1468 ir_constant *then_val = op[1]->constant_expression_value();
1469 ir_constant *else_val = op[2]->constant_expression_value();
1470
1471 if (then_instructions.is_empty()
1472 && else_instructions.is_empty()
1473 && (cond_val != NULL) && (then_val != NULL) && (else_val != NULL)) {
1474 result = (cond_val->value.b[0]) ? then_val : else_val;
1475 } else {
1476 ir_variable *const tmp =
1477 new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary);
1478 instructions->push_tail(tmp);
1479
1480 ir_if *const stmt = new(ctx) ir_if(op[0]);
1481 instructions->push_tail(stmt);
1482
1483 then_instructions.move_nodes_to(& stmt->then_instructions);
1484 ir_dereference *const then_deref =
1485 new(ctx) ir_dereference_variable(tmp);
1486 ir_assignment *const then_assign =
1487 new(ctx) ir_assignment(then_deref, op[1]);
1488 stmt->then_instructions.push_tail(then_assign);
1489
1490 else_instructions.move_nodes_to(& stmt->else_instructions);
1491 ir_dereference *const else_deref =
1492 new(ctx) ir_dereference_variable(tmp);
1493 ir_assignment *const else_assign =
1494 new(ctx) ir_assignment(else_deref, op[2]);
1495 stmt->else_instructions.push_tail(else_assign);
1496
1497 result = new(ctx) ir_dereference_variable(tmp);
1498 }
1499 break;
1500 }
1501
1502 case ast_pre_inc:
1503 case ast_pre_dec: {
1504 this->non_lvalue_description = (this->oper == ast_pre_inc)
1505 ? "pre-increment operation" : "pre-decrement operation";
1506
1507 op[0] = this->subexpressions[0]->hir(instructions, state);
1508 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1509
1510 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1511
1512 ir_rvalue *temp_rhs;
1513 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1514 op[0], op[1]);
1515
1516 result = do_assignment(instructions, state,
1517 this->subexpressions[0]->non_lvalue_description,
1518 op[0]->clone(ctx, NULL), temp_rhs, false,
1519 this->subexpressions[0]->get_location());
1520 error_emitted = op[0]->type->is_error();
1521 break;
1522 }
1523
1524 case ast_post_inc:
1525 case ast_post_dec: {
1526 this->non_lvalue_description = (this->oper == ast_post_inc)
1527 ? "post-increment operation" : "post-decrement operation";
1528 op[0] = this->subexpressions[0]->hir(instructions, state);
1529 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1530
1531 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1532
1533 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1534
1535 ir_rvalue *temp_rhs;
1536 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1537 op[0], op[1]);
1538
1539 /* Get a temporary of a copy of the lvalue before it's modified.
1540 * This may get thrown away later.
1541 */
1542 result = get_lvalue_copy(instructions, op[0]->clone(ctx, NULL));
1543
1544 (void)do_assignment(instructions, state,
1545 this->subexpressions[0]->non_lvalue_description,
1546 op[0]->clone(ctx, NULL), temp_rhs, false,
1547 this->subexpressions[0]->get_location());
1548
1549 error_emitted = op[0]->type->is_error();
1550 break;
1551 }
1552
1553 case ast_field_selection:
1554 result = _mesa_ast_field_selection_to_hir(this, instructions, state);
1555 break;
1556
1557 case ast_array_index: {
1558 YYLTYPE index_loc = subexpressions[1]->get_location();
1559
1560 op[0] = subexpressions[0]->hir(instructions, state);
1561 op[1] = subexpressions[1]->hir(instructions, state);
1562
1563 result = _mesa_ast_array_index_to_hir(ctx, state, op[0], op[1],
1564 loc, index_loc);
1565
1566 if (result->type->is_error())
1567 error_emitted = true;
1568
1569 break;
1570 }
1571
1572 case ast_function_call:
1573 /* Should *NEVER* get here. ast_function_call should always be handled
1574 * by ast_function_expression::hir.
1575 */
1576 assert(0);
1577 break;
1578
1579 case ast_identifier: {
1580 /* ast_identifier can appear several places in a full abstract syntax
1581 * tree. This particular use must be at location specified in the grammar
1582 * as 'variable_identifier'.
1583 */
1584 ir_variable *var =
1585 state->symbols->get_variable(this->primary_expression.identifier);
1586
1587 if (var != NULL) {
1588 var->used = true;
1589 result = new(ctx) ir_dereference_variable(var);
1590 } else {
1591 _mesa_glsl_error(& loc, state, "`%s' undeclared",
1592 this->primary_expression.identifier);
1593
1594 result = ir_rvalue::error_value(ctx);
1595 error_emitted = true;
1596 }
1597 break;
1598 }
1599
1600 case ast_int_constant:
1601 result = new(ctx) ir_constant(this->primary_expression.int_constant);
1602 break;
1603
1604 case ast_uint_constant:
1605 result = new(ctx) ir_constant(this->primary_expression.uint_constant);
1606 break;
1607
1608 case ast_float_constant:
1609 result = new(ctx) ir_constant(this->primary_expression.float_constant);
1610 break;
1611
1612 case ast_bool_constant:
1613 result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant));
1614 break;
1615
1616 case ast_sequence: {
1617 /* It should not be possible to generate a sequence in the AST without
1618 * any expressions in it.
1619 */
1620 assert(!this->expressions.is_empty());
1621
1622 /* The r-value of a sequence is the last expression in the sequence. If
1623 * the other expressions in the sequence do not have side-effects (and
1624 * therefore add instructions to the instruction list), they get dropped
1625 * on the floor.
1626 */
1627 exec_node *previous_tail_pred = NULL;
1628 YYLTYPE previous_operand_loc = loc;
1629
1630 foreach_list_typed (ast_node, ast, link, &this->expressions) {
1631 /* If one of the operands of comma operator does not generate any
1632 * code, we want to emit a warning. At each pass through the loop
1633 * previous_tail_pred will point to the last instruction in the
1634 * stream *before* processing the previous operand. Naturally,
1635 * instructions->tail_pred will point to the last instruction in the
1636 * stream *after* processing the previous operand. If the two
1637 * pointers match, then the previous operand had no effect.
1638 *
1639 * The warning behavior here differs slightly from GCC. GCC will
1640 * only emit a warning if none of the left-hand operands have an
1641 * effect. However, it will emit a warning for each. I believe that
1642 * there are some cases in C (especially with GCC extensions) where
1643 * it is useful to have an intermediate step in a sequence have no
1644 * effect, but I don't think these cases exist in GLSL. Either way,
1645 * it would be a giant hassle to replicate that behavior.
1646 */
1647 if (previous_tail_pred == instructions->tail_pred) {
1648 _mesa_glsl_warning(&previous_operand_loc, state,
1649 "left-hand operand of comma expression has "
1650 "no effect");
1651 }
1652
1653 /* tail_pred is directly accessed instead of using the get_tail()
1654 * method for performance reasons. get_tail() has extra code to
1655 * return NULL when the list is empty. We don't care about that
1656 * here, so using tail_pred directly is fine.
1657 */
1658 previous_tail_pred = instructions->tail_pred;
1659 previous_operand_loc = ast->get_location();
1660
1661 result = ast->hir(instructions, state);
1662 }
1663
1664 /* Any errors should have already been emitted in the loop above.
1665 */
1666 error_emitted = true;
1667 break;
1668 }
1669 }
1670 type = NULL; /* use result->type, not type. */
1671 assert(result != NULL);
1672
1673 if (result->type->is_error() && !error_emitted)
1674 _mesa_glsl_error(& loc, state, "type mismatch");
1675
1676 return result;
1677 }
1678
1679
1680 ir_rvalue *
1681 ast_expression_statement::hir(exec_list *instructions,
1682 struct _mesa_glsl_parse_state *state)
1683 {
1684 /* It is possible to have expression statements that don't have an
1685 * expression. This is the solitary semicolon:
1686 *
1687 * for (i = 0; i < 5; i++)
1688 * ;
1689 *
1690 * In this case the expression will be NULL. Test for NULL and don't do
1691 * anything in that case.
1692 */
1693 if (expression != NULL)
1694 expression->hir(instructions, state);
1695
1696 /* Statements do not have r-values.
1697 */
1698 return NULL;
1699 }
1700
1701
1702 ir_rvalue *
1703 ast_compound_statement::hir(exec_list *instructions,
1704 struct _mesa_glsl_parse_state *state)
1705 {
1706 if (new_scope)
1707 state->symbols->push_scope();
1708
1709 foreach_list_typed (ast_node, ast, link, &this->statements)
1710 ast->hir(instructions, state);
1711
1712 if (new_scope)
1713 state->symbols->pop_scope();
1714
1715 /* Compound statements do not have r-values.
1716 */
1717 return NULL;
1718 }
1719
1720
1721 static const glsl_type *
1722 process_array_type(YYLTYPE *loc, const glsl_type *base, ast_node *array_size,
1723 struct _mesa_glsl_parse_state *state)
1724 {
1725 unsigned length = 0;
1726
1727 if (base == NULL)
1728 return glsl_type::error_type;
1729
1730 /* From page 19 (page 25) of the GLSL 1.20 spec:
1731 *
1732 * "Only one-dimensional arrays may be declared."
1733 */
1734 if (base->is_array()) {
1735 _mesa_glsl_error(loc, state,
1736 "invalid array of `%s' (only one-dimensional arrays "
1737 "may be declared)",
1738 base->name);
1739 return glsl_type::error_type;
1740 }
1741
1742 if (array_size != NULL) {
1743 exec_list dummy_instructions;
1744 ir_rvalue *const ir = array_size->hir(& dummy_instructions, state);
1745 YYLTYPE loc = array_size->get_location();
1746
1747 if (ir != NULL) {
1748 if (!ir->type->is_integer()) {
1749 _mesa_glsl_error(& loc, state, "array size must be integer type");
1750 } else if (!ir->type->is_scalar()) {
1751 _mesa_glsl_error(& loc, state, "array size must be scalar type");
1752 } else {
1753 ir_constant *const size = ir->constant_expression_value();
1754
1755 if (size == NULL) {
1756 _mesa_glsl_error(& loc, state, "array size must be a "
1757 "constant valued expression");
1758 } else if (size->value.i[0] <= 0) {
1759 _mesa_glsl_error(& loc, state, "array size must be > 0");
1760 } else {
1761 assert(size->type == ir->type);
1762 length = size->value.u[0];
1763
1764 /* If the array size is const (and we've verified that
1765 * it is) then no instructions should have been emitted
1766 * when we converted it to HIR. If they were emitted,
1767 * then either the array size isn't const after all, or
1768 * we are emitting unnecessary instructions.
1769 */
1770 assert(dummy_instructions.is_empty());
1771 }
1772 }
1773 }
1774 } else if (state->es_shader) {
1775 /* Section 10.17 of the GLSL ES 1.00 specification states that unsized
1776 * array declarations have been removed from the language.
1777 */
1778 _mesa_glsl_error(loc, state, "unsized array declarations are not "
1779 "allowed in GLSL ES 1.00.");
1780 }
1781
1782 const glsl_type *array_type = glsl_type::get_array_instance(base, length);
1783 return array_type != NULL ? array_type : glsl_type::error_type;
1784 }
1785
1786
1787 const glsl_type *
1788 ast_type_specifier::glsl_type(const char **name,
1789 struct _mesa_glsl_parse_state *state) const
1790 {
1791 const struct glsl_type *type;
1792
1793 type = state->symbols->get_type(this->type_name);
1794 *name = this->type_name;
1795
1796 if (this->is_array) {
1797 YYLTYPE loc = this->get_location();
1798 type = process_array_type(&loc, type, this->array_size, state);
1799 }
1800
1801 return type;
1802 }
1803
1804
1805 /**
1806 * Determine whether a toplevel variable declaration declares a varying. This
1807 * function operates by examining the variable's mode and the shader target,
1808 * so it correctly identifies linkage variables regardless of whether they are
1809 * declared using the deprecated "varying" syntax or the new "in/out" syntax.
1810 *
1811 * Passing a non-toplevel variable declaration (e.g. a function parameter) to
1812 * this function will produce undefined results.
1813 */
1814 static bool
1815 is_varying_var(ir_variable *var, _mesa_glsl_parser_targets target)
1816 {
1817 switch (target) {
1818 case vertex_shader:
1819 return var->mode == ir_var_shader_out;
1820 case fragment_shader:
1821 return var->mode == ir_var_shader_in;
1822 default:
1823 return var->mode == ir_var_shader_out || var->mode == ir_var_shader_in;
1824 }
1825 }
1826
1827
1828 /**
1829 * Matrix layout qualifiers are only allowed on certain types
1830 */
1831 static void
1832 validate_matrix_layout_for_type(struct _mesa_glsl_parse_state *state,
1833 YYLTYPE *loc,
1834 const glsl_type *type)
1835 {
1836 if (!type->is_matrix() && !type->is_record()) {
1837 _mesa_glsl_error(loc, state,
1838 "uniform block layout qualifiers row_major and "
1839 "column_major can only be applied to matrix and "
1840 "structure types");
1841 } else if (type->is_record()) {
1842 /* We allow 'layout(row_major)' on structure types because it's the only
1843 * way to get row-major layouts on matrices contained in structures.
1844 */
1845 _mesa_glsl_warning(loc, state,
1846 "uniform block layout qualifiers row_major and "
1847 "column_major applied to structure types is not "
1848 "strictly conformant and my be rejected by other "
1849 "compilers");
1850 }
1851 }
1852
1853 static bool
1854 validate_binding_qualifier(struct _mesa_glsl_parse_state *state,
1855 YYLTYPE *loc,
1856 ir_variable *var,
1857 const ast_type_qualifier *qual)
1858 {
1859 if (var->mode != ir_var_uniform) {
1860 _mesa_glsl_error(loc, state,
1861 "the \"binding\" qualifier only applies to uniforms.\n");
1862 return false;
1863 }
1864
1865 if (qual->binding < 0) {
1866 _mesa_glsl_error(loc, state, "binding values must be >= 0.\n");
1867 return false;
1868 }
1869
1870 const struct gl_context *const ctx = state->ctx;
1871 unsigned elements = var->type->is_array() ? var->type->length : 1;
1872 unsigned max_index = qual->binding + elements - 1;
1873
1874 if (var->type->is_interface()) {
1875 /* UBOs. From page 60 of the GLSL 4.20 specification:
1876 * "If the binding point for any uniform block instance is less than zero,
1877 * or greater than or equal to the implementation-dependent maximum
1878 * number of uniform buffer bindings, a compilation error will occur.
1879 * When the binding identifier is used with a uniform block instanced as
1880 * an array of size N, all elements of the array from binding through
1881 * binding + N – 1 must be within this range."
1882 *
1883 * The implementation-dependent maximum is GL_MAX_UNIFORM_BUFFER_BINDINGS.
1884 */
1885 if (max_index >= ctx->Const.MaxUniformBufferBindings) {
1886 _mesa_glsl_error(loc, state, "layout(binding = %d) for %d UBOs exceeds "
1887 "the maximum number of UBO binding points (%d).\n",
1888 qual->binding, elements,
1889 ctx->Const.MaxUniformBufferBindings);
1890 return false;
1891 }
1892 } else if (var->type->is_sampler() ||
1893 (var->type->is_array() && var->type->fields.array->is_sampler())) {
1894 /* Samplers. From page 63 of the GLSL 4.20 specification:
1895 * "If the binding is less than zero, or greater than or equal to the
1896 * implementation-dependent maximum supported number of units, a
1897 * compilation error will occur. When the binding identifier is used
1898 * with an array of size N, all elements of the array from binding
1899 * through binding + N - 1 must be within this range."
1900 */
1901 unsigned limit;
1902 switch (state->target) {
1903 case vertex_shader:
1904 limit = ctx->Const.VertexProgram.MaxTextureImageUnits;
1905 break;
1906 case geometry_shader:
1907 limit = ctx->Const.GeometryProgram.MaxTextureImageUnits;
1908 break;
1909 case fragment_shader:
1910 limit = ctx->Const.FragmentProgram.MaxTextureImageUnits;
1911 break;
1912 }
1913
1914 if (max_index >= limit) {
1915 _mesa_glsl_error(loc, state, "layout(binding = %d) for %d samplers "
1916 "exceeds the maximum number of texture image units "
1917 "(%d).\n", qual->binding, elements, limit);
1918
1919 return false;
1920 }
1921 } else {
1922 _mesa_glsl_error(loc, state,
1923 "the \"binding\" qualifier only applies to uniform "
1924 "blocks, samplers, or arrays of samplers.\n");
1925 return false;
1926 }
1927
1928 return true;
1929 }
1930
1931 static void
1932 apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
1933 ir_variable *var,
1934 struct _mesa_glsl_parse_state *state,
1935 YYLTYPE *loc,
1936 bool ubo_qualifiers_valid,
1937 bool is_parameter)
1938 {
1939 if (qual->flags.q.invariant) {
1940 if (var->used) {
1941 _mesa_glsl_error(loc, state,
1942 "variable `%s' may not be redeclared "
1943 "`invariant' after being used",
1944 var->name);
1945 } else {
1946 var->invariant = 1;
1947 }
1948 }
1949
1950 if (qual->flags.q.constant || qual->flags.q.attribute
1951 || qual->flags.q.uniform
1952 || (qual->flags.q.varying && (state->target == fragment_shader)))
1953 var->read_only = 1;
1954
1955 if (qual->flags.q.centroid)
1956 var->centroid = 1;
1957
1958 if (qual->flags.q.attribute && state->target != vertex_shader) {
1959 var->type = glsl_type::error_type;
1960 _mesa_glsl_error(loc, state,
1961 "`attribute' variables may not be declared in the "
1962 "%s shader",
1963 _mesa_glsl_shader_target_name(state->target));
1964 }
1965
1966 /* If there is no qualifier that changes the mode of the variable, leave
1967 * the setting alone.
1968 */
1969 if (qual->flags.q.in && qual->flags.q.out)
1970 var->mode = ir_var_function_inout;
1971 else if (qual->flags.q.in)
1972 var->mode = is_parameter ? ir_var_function_in : ir_var_shader_in;
1973 else if (qual->flags.q.attribute
1974 || (qual->flags.q.varying && (state->target == fragment_shader)))
1975 var->mode = ir_var_shader_in;
1976 else if (qual->flags.q.out)
1977 var->mode = is_parameter ? ir_var_function_out : ir_var_shader_out;
1978 else if (qual->flags.q.varying && (state->target == vertex_shader))
1979 var->mode = ir_var_shader_out;
1980 else if (qual->flags.q.uniform)
1981 var->mode = ir_var_uniform;
1982
1983 if (!is_parameter && is_varying_var(var, state->target)) {
1984 /* This variable is being used to link data between shader stages (in
1985 * pre-glsl-1.30 parlance, it's a "varying"). Check that it has a type
1986 * that is allowed for such purposes.
1987 *
1988 * From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
1989 *
1990 * "The varying qualifier can be used only with the data types
1991 * float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
1992 * these."
1993 *
1994 * This was relaxed in GLSL version 1.30 and GLSL ES version 3.00. From
1995 * page 31 (page 37 of the PDF) of the GLSL 1.30 spec:
1996 *
1997 * "Fragment inputs can only be signed and unsigned integers and
1998 * integer vectors, float, floating-point vectors, matrices, or
1999 * arrays of these. Structures cannot be input.
2000 *
2001 * Similar text exists in the section on vertex shader outputs.
2002 *
2003 * Similar text exists in the GLSL ES 3.00 spec, except that the GLSL ES
2004 * 3.00 spec allows structs as well. Varying structs are also allowed
2005 * in GLSL 1.50.
2006 */
2007 switch (var->type->get_scalar_type()->base_type) {
2008 case GLSL_TYPE_FLOAT:
2009 /* Ok in all GLSL versions */
2010 break;
2011 case GLSL_TYPE_UINT:
2012 case GLSL_TYPE_INT:
2013 if (state->is_version(130, 300))
2014 break;
2015 _mesa_glsl_error(loc, state,
2016 "varying variables must be of base type float in %s",
2017 state->get_version_string());
2018 break;
2019 case GLSL_TYPE_STRUCT:
2020 if (state->is_version(150, 300))
2021 break;
2022 _mesa_glsl_error(loc, state,
2023 "varying variables may not be of type struct");
2024 break;
2025 default:
2026 _mesa_glsl_error(loc, state, "illegal type for a varying variable");
2027 break;
2028 }
2029 }
2030
2031 if (state->all_invariant && (state->current_function == NULL)) {
2032 switch (state->target) {
2033 case vertex_shader:
2034 if (var->mode == ir_var_shader_out)
2035 var->invariant = true;
2036 break;
2037 case geometry_shader:
2038 if ((var->mode == ir_var_shader_in)
2039 || (var->mode == ir_var_shader_out))
2040 var->invariant = true;
2041 break;
2042 case fragment_shader:
2043 if (var->mode == ir_var_shader_in)
2044 var->invariant = true;
2045 break;
2046 }
2047 }
2048
2049 if (qual->flags.q.flat)
2050 var->interpolation = INTERP_QUALIFIER_FLAT;
2051 else if (qual->flags.q.noperspective)
2052 var->interpolation = INTERP_QUALIFIER_NOPERSPECTIVE;
2053 else if (qual->flags.q.smooth)
2054 var->interpolation = INTERP_QUALIFIER_SMOOTH;
2055 else
2056 var->interpolation = INTERP_QUALIFIER_NONE;
2057
2058 if (var->interpolation != INTERP_QUALIFIER_NONE &&
2059 !(state->target == vertex_shader && var->mode == ir_var_shader_out) &&
2060 !(state->target == fragment_shader && var->mode == ir_var_shader_in)) {
2061 _mesa_glsl_error(loc, state,
2062 "interpolation qualifier `%s' can only be applied to "
2063 "vertex shader outputs and fragment shader inputs.",
2064 var->interpolation_string());
2065 }
2066
2067 var->pixel_center_integer = qual->flags.q.pixel_center_integer;
2068 var->origin_upper_left = qual->flags.q.origin_upper_left;
2069 if ((qual->flags.q.origin_upper_left || qual->flags.q.pixel_center_integer)
2070 && (strcmp(var->name, "gl_FragCoord") != 0)) {
2071 const char *const qual_string = (qual->flags.q.origin_upper_left)
2072 ? "origin_upper_left" : "pixel_center_integer";
2073
2074 _mesa_glsl_error(loc, state,
2075 "layout qualifier `%s' can only be applied to "
2076 "fragment shader input `gl_FragCoord'",
2077 qual_string);
2078 }
2079
2080 if (qual->flags.q.explicit_location) {
2081 const bool global_scope = (state->current_function == NULL);
2082 bool fail = false;
2083 const char *string = "";
2084
2085 /* In the vertex shader only shader inputs can be given explicit
2086 * locations.
2087 *
2088 * In the fragment shader only shader outputs can be given explicit
2089 * locations.
2090 */
2091 switch (state->target) {
2092 case vertex_shader:
2093 if (!global_scope || (var->mode != ir_var_shader_in)) {
2094 fail = true;
2095 string = "input";
2096 }
2097 break;
2098
2099 case geometry_shader:
2100 _mesa_glsl_error(loc, state,
2101 "geometry shader variables cannot be given "
2102 "explicit locations\n");
2103 break;
2104
2105 case fragment_shader:
2106 if (!global_scope || (var->mode != ir_var_shader_out)) {
2107 fail = true;
2108 string = "output";
2109 }
2110 break;
2111 };
2112
2113 if (fail) {
2114 _mesa_glsl_error(loc, state,
2115 "only %s shader %s variables can be given an "
2116 "explicit location\n",
2117 _mesa_glsl_shader_target_name(state->target),
2118 string);
2119 } else {
2120 var->explicit_location = true;
2121
2122 /* This bit of silliness is needed because invalid explicit locations
2123 * are supposed to be flagged during linking. Small negative values
2124 * biased by VERT_ATTRIB_GENERIC0 or FRAG_RESULT_DATA0 could alias
2125 * built-in values (e.g., -16+VERT_ATTRIB_GENERIC0 = VERT_ATTRIB_POS).
2126 * The linker needs to be able to differentiate these cases. This
2127 * ensures that negative values stay negative.
2128 */
2129 if (qual->location >= 0) {
2130 var->location = (state->target == vertex_shader)
2131 ? (qual->location + VERT_ATTRIB_GENERIC0)
2132 : (qual->location + FRAG_RESULT_DATA0);
2133 } else {
2134 var->location = qual->location;
2135 }
2136
2137 if (qual->flags.q.explicit_index) {
2138 /* From the GLSL 4.30 specification, section 4.4.2 (Output
2139 * Layout Qualifiers):
2140 *
2141 * "It is also a compile-time error if a fragment shader
2142 * sets a layout index to less than 0 or greater than 1."
2143 *
2144 * Older specifications don't mandate a behavior; we take
2145 * this as a clarification and always generate the error.
2146 */
2147 if (qual->index < 0 || qual->index > 1) {
2148 _mesa_glsl_error(loc, state,
2149 "explicit index may only be 0 or 1\n");
2150 } else {
2151 var->explicit_index = true;
2152 var->index = qual->index;
2153 }
2154 }
2155 }
2156 } else if (qual->flags.q.explicit_index) {
2157 _mesa_glsl_error(loc, state,
2158 "explicit index requires explicit location\n");
2159 }
2160
2161 if (qual->flags.q.explicit_binding &&
2162 validate_binding_qualifier(state, loc, var, qual)) {
2163 var->explicit_binding = true;
2164 var->binding = qual->binding;
2165 }
2166
2167 /* Does the declaration use the deprecated 'attribute' or 'varying'
2168 * keywords?
2169 */
2170 const bool uses_deprecated_qualifier = qual->flags.q.attribute
2171 || qual->flags.q.varying;
2172
2173 /* Is the 'layout' keyword used with parameters that allow relaxed checking.
2174 * Many implementations of GL_ARB_fragment_coord_conventions_enable and some
2175 * implementations (only Mesa?) GL_ARB_explicit_attrib_location_enable
2176 * allowed the layout qualifier to be used with 'varying' and 'attribute'.
2177 * These extensions and all following extensions that add the 'layout'
2178 * keyword have been modified to require the use of 'in' or 'out'.
2179 *
2180 * The following extension do not allow the deprecated keywords:
2181 *
2182 * GL_AMD_conservative_depth
2183 * GL_ARB_conservative_depth
2184 * GL_ARB_gpu_shader5
2185 * GL_ARB_separate_shader_objects
2186 * GL_ARB_tesselation_shader
2187 * GL_ARB_transform_feedback3
2188 * GL_ARB_uniform_buffer_object
2189 *
2190 * It is unknown whether GL_EXT_shader_image_load_store or GL_NV_gpu_shader5
2191 * allow layout with the deprecated keywords.
2192 */
2193 const bool relaxed_layout_qualifier_checking =
2194 state->ARB_fragment_coord_conventions_enable;
2195
2196 if (qual->has_layout() && uses_deprecated_qualifier) {
2197 if (relaxed_layout_qualifier_checking) {
2198 _mesa_glsl_warning(loc, state,
2199 "`layout' qualifier may not be used with "
2200 "`attribute' or `varying'");
2201 } else {
2202 _mesa_glsl_error(loc, state,
2203 "`layout' qualifier may not be used with "
2204 "`attribute' or `varying'");
2205 }
2206 }
2207
2208 /* Layout qualifiers for gl_FragDepth, which are enabled by extension
2209 * AMD_conservative_depth.
2210 */
2211 int depth_layout_count = qual->flags.q.depth_any
2212 + qual->flags.q.depth_greater
2213 + qual->flags.q.depth_less
2214 + qual->flags.q.depth_unchanged;
2215 if (depth_layout_count > 0
2216 && !state->AMD_conservative_depth_enable
2217 && !state->ARB_conservative_depth_enable) {
2218 _mesa_glsl_error(loc, state,
2219 "extension GL_AMD_conservative_depth or "
2220 "GL_ARB_conservative_depth must be enabled "
2221 "to use depth layout qualifiers");
2222 } else if (depth_layout_count > 0
2223 && strcmp(var->name, "gl_FragDepth") != 0) {
2224 _mesa_glsl_error(loc, state,
2225 "depth layout qualifiers can be applied only to "
2226 "gl_FragDepth");
2227 } else if (depth_layout_count > 1
2228 && strcmp(var->name, "gl_FragDepth") == 0) {
2229 _mesa_glsl_error(loc, state,
2230 "at most one depth layout qualifier can be applied to "
2231 "gl_FragDepth");
2232 }
2233 if (qual->flags.q.depth_any)
2234 var->depth_layout = ir_depth_layout_any;
2235 else if (qual->flags.q.depth_greater)
2236 var->depth_layout = ir_depth_layout_greater;
2237 else if (qual->flags.q.depth_less)
2238 var->depth_layout = ir_depth_layout_less;
2239 else if (qual->flags.q.depth_unchanged)
2240 var->depth_layout = ir_depth_layout_unchanged;
2241 else
2242 var->depth_layout = ir_depth_layout_none;
2243
2244 if (qual->flags.q.std140 ||
2245 qual->flags.q.packed ||
2246 qual->flags.q.shared) {
2247 _mesa_glsl_error(loc, state,
2248 "uniform block layout qualifiers std140, packed, and "
2249 "shared can only be applied to uniform blocks, not "
2250 "members");
2251 }
2252
2253 if (qual->flags.q.row_major || qual->flags.q.column_major) {
2254 if (!ubo_qualifiers_valid) {
2255 _mesa_glsl_error(loc, state,
2256 "uniform block layout qualifiers row_major and "
2257 "column_major can only be applied to uniform block "
2258 "members");
2259 } else
2260 validate_matrix_layout_for_type(state, loc, var->type);
2261 }
2262 }
2263
2264 /**
2265 * Get the variable that is being redeclared by this declaration
2266 *
2267 * Semantic checks to verify the validity of the redeclaration are also
2268 * performed. If semantic checks fail, compilation error will be emitted via
2269 * \c _mesa_glsl_error, but a non-\c NULL pointer will still be returned.
2270 *
2271 * \returns
2272 * A pointer to an existing variable in the current scope if the declaration
2273 * is a redeclaration, \c NULL otherwise.
2274 */
2275 ir_variable *
2276 get_variable_being_redeclared(ir_variable *var, ast_declaration *decl,
2277 struct _mesa_glsl_parse_state *state)
2278 {
2279 /* Check if this declaration is actually a re-declaration, either to
2280 * resize an array or add qualifiers to an existing variable.
2281 *
2282 * This is allowed for variables in the current scope, or when at
2283 * global scope (for built-ins in the implicit outer scope).
2284 */
2285 ir_variable *earlier = state->symbols->get_variable(decl->identifier);
2286 if (earlier == NULL ||
2287 (state->current_function != NULL &&
2288 !state->symbols->name_declared_this_scope(decl->identifier))) {
2289 return NULL;
2290 }
2291
2292
2293 YYLTYPE loc = decl->get_location();
2294
2295 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
2296 *
2297 * "It is legal to declare an array without a size and then
2298 * later re-declare the same name as an array of the same
2299 * type and specify a size."
2300 */
2301 if ((earlier->type->array_size() == 0)
2302 && var->type->is_array()
2303 && (var->type->element_type() == earlier->type->element_type())) {
2304 /* FINISHME: This doesn't match the qualifiers on the two
2305 * FINISHME: declarations. It's not 100% clear whether this is
2306 * FINISHME: required or not.
2307 */
2308
2309 const unsigned size = unsigned(var->type->array_size());
2310 check_builtin_array_max_size(var->name, size, loc, state);
2311 if ((size > 0) && (size <= earlier->max_array_access)) {
2312 _mesa_glsl_error(& loc, state, "array size must be > %u due to "
2313 "previous access",
2314 earlier->max_array_access);
2315 }
2316
2317 earlier->type = var->type;
2318 delete var;
2319 var = NULL;
2320 } else if (state->ARB_fragment_coord_conventions_enable
2321 && strcmp(var->name, "gl_FragCoord") == 0
2322 && earlier->type == var->type
2323 && earlier->mode == var->mode) {
2324 /* Allow redeclaration of gl_FragCoord for ARB_fcc layout
2325 * qualifiers.
2326 */
2327 earlier->origin_upper_left = var->origin_upper_left;
2328 earlier->pixel_center_integer = var->pixel_center_integer;
2329
2330 /* According to section 4.3.7 of the GLSL 1.30 spec,
2331 * the following built-in varaibles can be redeclared with an
2332 * interpolation qualifier:
2333 * * gl_FrontColor
2334 * * gl_BackColor
2335 * * gl_FrontSecondaryColor
2336 * * gl_BackSecondaryColor
2337 * * gl_Color
2338 * * gl_SecondaryColor
2339 */
2340 } else if (state->is_version(130, 0)
2341 && (strcmp(var->name, "gl_FrontColor") == 0
2342 || strcmp(var->name, "gl_BackColor") == 0
2343 || strcmp(var->name, "gl_FrontSecondaryColor") == 0
2344 || strcmp(var->name, "gl_BackSecondaryColor") == 0
2345 || strcmp(var->name, "gl_Color") == 0
2346 || strcmp(var->name, "gl_SecondaryColor") == 0)
2347 && earlier->type == var->type
2348 && earlier->mode == var->mode) {
2349 earlier->interpolation = var->interpolation;
2350
2351 /* Layout qualifiers for gl_FragDepth. */
2352 } else if ((state->AMD_conservative_depth_enable ||
2353 state->ARB_conservative_depth_enable)
2354 && strcmp(var->name, "gl_FragDepth") == 0
2355 && earlier->type == var->type
2356 && earlier->mode == var->mode) {
2357
2358 /** From the AMD_conservative_depth spec:
2359 * Within any shader, the first redeclarations of gl_FragDepth
2360 * must appear before any use of gl_FragDepth.
2361 */
2362 if (earlier->used) {
2363 _mesa_glsl_error(&loc, state,
2364 "the first redeclaration of gl_FragDepth "
2365 "must appear before any use of gl_FragDepth");
2366 }
2367
2368 /* Prevent inconsistent redeclaration of depth layout qualifier. */
2369 if (earlier->depth_layout != ir_depth_layout_none
2370 && earlier->depth_layout != var->depth_layout) {
2371 _mesa_glsl_error(&loc, state,
2372 "gl_FragDepth: depth layout is declared here "
2373 "as '%s, but it was previously declared as "
2374 "'%s'",
2375 depth_layout_string(var->depth_layout),
2376 depth_layout_string(earlier->depth_layout));
2377 }
2378
2379 earlier->depth_layout = var->depth_layout;
2380
2381 } else {
2382 _mesa_glsl_error(&loc, state, "`%s' redeclared", decl->identifier);
2383 }
2384
2385 return earlier;
2386 }
2387
2388 /**
2389 * Generate the IR for an initializer in a variable declaration
2390 */
2391 ir_rvalue *
2392 process_initializer(ir_variable *var, ast_declaration *decl,
2393 ast_fully_specified_type *type,
2394 exec_list *initializer_instructions,
2395 struct _mesa_glsl_parse_state *state)
2396 {
2397 ir_rvalue *result = NULL;
2398
2399 YYLTYPE initializer_loc = decl->initializer->get_location();
2400
2401 /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
2402 *
2403 * "All uniform variables are read-only and are initialized either
2404 * directly by an application via API commands, or indirectly by
2405 * OpenGL."
2406 */
2407 if (var->mode == ir_var_uniform) {
2408 state->check_version(120, 0, &initializer_loc,
2409 "cannot initialize uniforms");
2410 }
2411
2412 if (var->type->is_sampler()) {
2413 _mesa_glsl_error(& initializer_loc, state,
2414 "cannot initialize samplers");
2415 }
2416
2417 if ((var->mode == ir_var_shader_in) && (state->current_function == NULL)) {
2418 _mesa_glsl_error(& initializer_loc, state,
2419 "cannot initialize %s shader input / %s",
2420 _mesa_glsl_shader_target_name(state->target),
2421 (state->target == vertex_shader)
2422 ? "attribute" : "varying");
2423 }
2424
2425 ir_dereference *const lhs = new(state) ir_dereference_variable(var);
2426 ir_rvalue *rhs = decl->initializer->hir(initializer_instructions,
2427 state);
2428
2429 /* Calculate the constant value if this is a const or uniform
2430 * declaration.
2431 */
2432 if (type->qualifier.flags.q.constant
2433 || type->qualifier.flags.q.uniform) {
2434 ir_rvalue *new_rhs = validate_assignment(state, var->type, rhs, true);
2435 if (new_rhs != NULL) {
2436 rhs = new_rhs;
2437
2438 ir_constant *constant_value = rhs->constant_expression_value();
2439 if (!constant_value) {
2440 /* If ARB_shading_language_420pack is enabled, initializers of
2441 * const-qualified local variables do not have to be constant
2442 * expressions. Const-qualified global variables must still be
2443 * initialized with constant expressions.
2444 */
2445 if (!state->ARB_shading_language_420pack_enable
2446 || state->current_function == NULL) {
2447 _mesa_glsl_error(& initializer_loc, state,
2448 "initializer of %s variable `%s' must be a "
2449 "constant expression",
2450 (type->qualifier.flags.q.constant)
2451 ? "const" : "uniform",
2452 decl->identifier);
2453 if (var->type->is_numeric()) {
2454 /* Reduce cascading errors. */
2455 var->constant_value = ir_constant::zero(state, var->type);
2456 }
2457 }
2458 } else {
2459 rhs = constant_value;
2460 var->constant_value = constant_value;
2461 }
2462 } else {
2463 _mesa_glsl_error(&initializer_loc, state,
2464 "initializer of type %s cannot be assigned to "
2465 "variable of type %s",
2466 rhs->type->name, var->type->name);
2467 if (var->type->is_numeric()) {
2468 /* Reduce cascading errors. */
2469 var->constant_value = ir_constant::zero(state, var->type);
2470 }
2471 }
2472 }
2473
2474 if (rhs && !rhs->type->is_error()) {
2475 bool temp = var->read_only;
2476 if (type->qualifier.flags.q.constant)
2477 var->read_only = false;
2478
2479 /* Never emit code to initialize a uniform.
2480 */
2481 const glsl_type *initializer_type;
2482 if (!type->qualifier.flags.q.uniform) {
2483 result = do_assignment(initializer_instructions, state,
2484 NULL,
2485 lhs, rhs, true,
2486 type->get_location());
2487 initializer_type = result->type;
2488 } else
2489 initializer_type = rhs->type;
2490
2491 var->constant_initializer = rhs->constant_expression_value();
2492 var->has_initializer = true;
2493
2494 /* If the declared variable is an unsized array, it must inherrit
2495 * its full type from the initializer. A declaration such as
2496 *
2497 * uniform float a[] = float[](1.0, 2.0, 3.0, 3.0);
2498 *
2499 * becomes
2500 *
2501 * uniform float a[4] = float[](1.0, 2.0, 3.0, 3.0);
2502 *
2503 * The assignment generated in the if-statement (below) will also
2504 * automatically handle this case for non-uniforms.
2505 *
2506 * If the declared variable is not an array, the types must
2507 * already match exactly. As a result, the type assignment
2508 * here can be done unconditionally. For non-uniforms the call
2509 * to do_assignment can change the type of the initializer (via
2510 * the implicit conversion rules). For uniforms the initializer
2511 * must be a constant expression, and the type of that expression
2512 * was validated above.
2513 */
2514 var->type = initializer_type;
2515
2516 var->read_only = temp;
2517 }
2518
2519 return result;
2520 }
2521
2522 ir_rvalue *
2523 ast_declarator_list::hir(exec_list *instructions,
2524 struct _mesa_glsl_parse_state *state)
2525 {
2526 void *ctx = state;
2527 const struct glsl_type *decl_type;
2528 const char *type_name = NULL;
2529 ir_rvalue *result = NULL;
2530 YYLTYPE loc = this->get_location();
2531
2532 /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec:
2533 *
2534 * "To ensure that a particular output variable is invariant, it is
2535 * necessary to use the invariant qualifier. It can either be used to
2536 * qualify a previously declared variable as being invariant
2537 *
2538 * invariant gl_Position; // make existing gl_Position be invariant"
2539 *
2540 * In these cases the parser will set the 'invariant' flag in the declarator
2541 * list, and the type will be NULL.
2542 */
2543 if (this->invariant) {
2544 assert(this->type == NULL);
2545
2546 if (state->current_function != NULL) {
2547 _mesa_glsl_error(& loc, state,
2548 "All uses of `invariant' keyword must be at global "
2549 "scope\n");
2550 }
2551
2552 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
2553 assert(!decl->is_array);
2554 assert(decl->array_size == NULL);
2555 assert(decl->initializer == NULL);
2556
2557 ir_variable *const earlier =
2558 state->symbols->get_variable(decl->identifier);
2559 if (earlier == NULL) {
2560 _mesa_glsl_error(& loc, state,
2561 "Undeclared variable `%s' cannot be marked "
2562 "invariant\n", decl->identifier);
2563 } else if ((state->target == vertex_shader)
2564 && (earlier->mode != ir_var_shader_out)) {
2565 _mesa_glsl_error(& loc, state,
2566 "`%s' cannot be marked invariant, vertex shader "
2567 "outputs only\n", decl->identifier);
2568 } else if ((state->target == fragment_shader)
2569 && (earlier->mode != ir_var_shader_in)) {
2570 _mesa_glsl_error(& loc, state,
2571 "`%s' cannot be marked invariant, fragment shader "
2572 "inputs only\n", decl->identifier);
2573 } else if (earlier->used) {
2574 _mesa_glsl_error(& loc, state,
2575 "variable `%s' may not be redeclared "
2576 "`invariant' after being used",
2577 earlier->name);
2578 } else {
2579 earlier->invariant = true;
2580 }
2581 }
2582
2583 /* Invariant redeclarations do not have r-values.
2584 */
2585 return NULL;
2586 }
2587
2588 assert(this->type != NULL);
2589 assert(!this->invariant);
2590
2591 /* The type specifier may contain a structure definition. Process that
2592 * before any of the variable declarations.
2593 */
2594 (void) this->type->specifier->hir(instructions, state);
2595
2596 decl_type = this->type->specifier->glsl_type(& type_name, state);
2597 if (this->declarations.is_empty()) {
2598 /* If there is no structure involved in the program text, there are two
2599 * possible scenarios:
2600 *
2601 * - The program text contained something like 'vec4;'. This is an
2602 * empty declaration. It is valid but weird. Emit a warning.
2603 *
2604 * - The program text contained something like 'S;' and 'S' is not the
2605 * name of a known structure type. This is both invalid and weird.
2606 * Emit an error.
2607 *
2608 * Note that if decl_type is NULL and there is a structure involved,
2609 * there must have been some sort of error with the structure. In this
2610 * case we assume that an error was already generated on this line of
2611 * code for the structure. There is no need to generate an additional,
2612 * confusing error.
2613 */
2614 assert(this->type->specifier->structure == NULL || decl_type != NULL
2615 || state->error);
2616 if (this->type->specifier->structure == NULL) {
2617 if (decl_type != NULL) {
2618 _mesa_glsl_warning(&loc, state, "empty declaration");
2619 } else {
2620 _mesa_glsl_error(&loc, state,
2621 "invalid type `%s' in empty declaration",
2622 type_name);
2623 }
2624 }
2625
2626 if (this->type->qualifier.precision != ast_precision_none &&
2627 this->type->specifier->structure != NULL) {
2628 _mesa_glsl_error(&loc, state, "Precision qualifiers can't be applied "
2629 "to structures.\n");
2630 }
2631 }
2632
2633 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
2634 const struct glsl_type *var_type;
2635 ir_variable *var;
2636
2637 /* FINISHME: Emit a warning if a variable declaration shadows a
2638 * FINISHME: declaration at a higher scope.
2639 */
2640
2641 if ((decl_type == NULL) || decl_type->is_void()) {
2642 if (type_name != NULL) {
2643 _mesa_glsl_error(& loc, state,
2644 "invalid type `%s' in declaration of `%s'",
2645 type_name, decl->identifier);
2646 } else {
2647 _mesa_glsl_error(& loc, state,
2648 "invalid type in declaration of `%s'",
2649 decl->identifier);
2650 }
2651 continue;
2652 }
2653
2654 if (decl->is_array) {
2655 var_type = process_array_type(&loc, decl_type, decl->array_size,
2656 state);
2657 if (var_type->is_error())
2658 continue;
2659 } else {
2660 var_type = decl_type;
2661 }
2662
2663 var = new(ctx) ir_variable(var_type, decl->identifier, ir_var_auto);
2664
2665 /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
2666 *
2667 * "Global variables can only use the qualifiers const,
2668 * attribute, uni form, or varying. Only one may be
2669 * specified.
2670 *
2671 * Local variables can only use the qualifier const."
2672 *
2673 * This is relaxed in GLSL 1.30 and GLSL ES 3.00. It is also relaxed by
2674 * any extension that adds the 'layout' keyword.
2675 */
2676 if (!state->is_version(130, 300)
2677 && !state->ARB_explicit_attrib_location_enable
2678 && !state->ARB_fragment_coord_conventions_enable) {
2679 if (this->type->qualifier.flags.q.out) {
2680 _mesa_glsl_error(& loc, state,
2681 "`out' qualifier in declaration of `%s' "
2682 "only valid for function parameters in %s.",
2683 decl->identifier, state->get_version_string());
2684 }
2685 if (this->type->qualifier.flags.q.in) {
2686 _mesa_glsl_error(& loc, state,
2687 "`in' qualifier in declaration of `%s' "
2688 "only valid for function parameters in %s.",
2689 decl->identifier, state->get_version_string());
2690 }
2691 /* FINISHME: Test for other invalid qualifiers. */
2692 }
2693
2694 apply_type_qualifier_to_variable(& this->type->qualifier, var, state,
2695 & loc, this->ubo_qualifiers_valid, false);
2696
2697 if (this->type->qualifier.flags.q.invariant) {
2698 if ((state->target == vertex_shader) &&
2699 var->mode != ir_var_shader_out) {
2700 _mesa_glsl_error(& loc, state,
2701 "`%s' cannot be marked invariant, vertex shader "
2702 "outputs only\n", var->name);
2703 } else if ((state->target == fragment_shader) &&
2704 var->mode != ir_var_shader_in) {
2705 /* FINISHME: Note that this doesn't work for invariant on
2706 * a function signature inval
2707 */
2708 _mesa_glsl_error(& loc, state,
2709 "`%s' cannot be marked invariant, fragment shader "
2710 "inputs only\n", var->name);
2711 }
2712 }
2713
2714 if (state->current_function != NULL) {
2715 const char *mode = NULL;
2716 const char *extra = "";
2717
2718 /* There is no need to check for 'inout' here because the parser will
2719 * only allow that in function parameter lists.
2720 */
2721 if (this->type->qualifier.flags.q.attribute) {
2722 mode = "attribute";
2723 } else if (this->type->qualifier.flags.q.uniform) {
2724 mode = "uniform";
2725 } else if (this->type->qualifier.flags.q.varying) {
2726 mode = "varying";
2727 } else if (this->type->qualifier.flags.q.in) {
2728 mode = "in";
2729 extra = " or in function parameter list";
2730 } else if (this->type->qualifier.flags.q.out) {
2731 mode = "out";
2732 extra = " or in function parameter list";
2733 }
2734
2735 if (mode) {
2736 _mesa_glsl_error(& loc, state,
2737 "%s variable `%s' must be declared at "
2738 "global scope%s",
2739 mode, var->name, extra);
2740 }
2741 } else if (var->mode == ir_var_shader_in) {
2742 var->read_only = true;
2743
2744 if (state->target == vertex_shader) {
2745 bool error_emitted = false;
2746
2747 /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
2748 *
2749 * "Vertex shader inputs can only be float, floating-point
2750 * vectors, matrices, signed and unsigned integers and integer
2751 * vectors. Vertex shader inputs can also form arrays of these
2752 * types, but not structures."
2753 *
2754 * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
2755 *
2756 * "Vertex shader inputs can only be float, floating-point
2757 * vectors, matrices, signed and unsigned integers and integer
2758 * vectors. They cannot be arrays or structures."
2759 *
2760 * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
2761 *
2762 * "The attribute qualifier can be used only with float,
2763 * floating-point vectors, and matrices. Attribute variables
2764 * cannot be declared as arrays or structures."
2765 *
2766 * From page 33 (page 39 of the PDF) of the GLSL ES 3.00 spec:
2767 *
2768 * "Vertex shader inputs can only be float, floating-point
2769 * vectors, matrices, signed and unsigned integers and integer
2770 * vectors. Vertex shader inputs cannot be arrays or
2771 * structures."
2772 */
2773 const glsl_type *check_type = var->type->is_array()
2774 ? var->type->fields.array : var->type;
2775
2776 switch (check_type->base_type) {
2777 case GLSL_TYPE_FLOAT:
2778 break;
2779 case GLSL_TYPE_UINT:
2780 case GLSL_TYPE_INT:
2781 if (state->is_version(120, 300))
2782 break;
2783 /* FALLTHROUGH */
2784 default:
2785 _mesa_glsl_error(& loc, state,
2786 "vertex shader input / attribute cannot have "
2787 "type %s`%s'",
2788 var->type->is_array() ? "array of " : "",
2789 check_type->name);
2790 error_emitted = true;
2791 }
2792
2793 if (!error_emitted && var->type->is_array() &&
2794 !state->check_version(150, 0, &loc,
2795 "vertex shader input / attribute "
2796 "cannot have array type")) {
2797 error_emitted = true;
2798 }
2799 }
2800 }
2801
2802 /* Integer fragment inputs must be qualified with 'flat'. In GLSL ES,
2803 * so must integer vertex outputs.
2804 *
2805 * From section 4.3.4 ("Inputs") of the GLSL 1.50 spec:
2806 * "Fragment shader inputs that are signed or unsigned integers or
2807 * integer vectors must be qualified with the interpolation qualifier
2808 * flat."
2809 *
2810 * From section 4.3.4 ("Input Variables") of the GLSL 3.00 ES spec:
2811 * "Fragment shader inputs that are, or contain, signed or unsigned
2812 * integers or integer vectors must be qualified with the
2813 * interpolation qualifier flat."
2814 *
2815 * From section 4.3.6 ("Output Variables") of the GLSL 3.00 ES spec:
2816 * "Vertex shader outputs that are, or contain, signed or unsigned
2817 * integers or integer vectors must be qualified with the
2818 * interpolation qualifier flat."
2819 *
2820 * Note that prior to GLSL 1.50, this requirement applied to vertex
2821 * outputs rather than fragment inputs. That creates problems in the
2822 * presence of geometry shaders, so we adopt the GLSL 1.50 rule for all
2823 * desktop GL shaders. For GLSL ES shaders, we follow the spec and
2824 * apply the restriction to both vertex outputs and fragment inputs.
2825 *
2826 * Note also that the desktop GLSL specs are missing the text "or
2827 * contain"; this is presumably an oversight, since there is no
2828 * reasonable way to interpolate a fragment shader input that contains
2829 * an integer.
2830 */
2831 if (state->is_version(130, 300) &&
2832 var->type->contains_integer() &&
2833 var->interpolation != INTERP_QUALIFIER_FLAT &&
2834 ((state->target == fragment_shader && var->mode == ir_var_shader_in)
2835 || (state->target == vertex_shader && var->mode == ir_var_shader_out
2836 && state->es_shader))) {
2837 const char *var_type = (state->target == vertex_shader) ?
2838 "vertex output" : "fragment input";
2839 _mesa_glsl_error(&loc, state, "If a %s is (or contains) "
2840 "an integer, then it must be qualified with 'flat'",
2841 var_type);
2842 }
2843
2844
2845 /* Interpolation qualifiers cannot be applied to 'centroid' and
2846 * 'centroid varying'.
2847 *
2848 * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
2849 * "interpolation qualifiers may only precede the qualifiers in,
2850 * centroid in, out, or centroid out in a declaration. They do not apply
2851 * to the deprecated storage qualifiers varying or centroid varying."
2852 *
2853 * These deprecated storage qualifiers do not exist in GLSL ES 3.00.
2854 */
2855 if (state->is_version(130, 0)
2856 && this->type->qualifier.has_interpolation()
2857 && this->type->qualifier.flags.q.varying) {
2858
2859 const char *i = this->type->qualifier.interpolation_string();
2860 assert(i != NULL);
2861 const char *s;
2862 if (this->type->qualifier.flags.q.centroid)
2863 s = "centroid varying";
2864 else
2865 s = "varying";
2866
2867 _mesa_glsl_error(&loc, state,
2868 "qualifier '%s' cannot be applied to the "
2869 "deprecated storage qualifier '%s'", i, s);
2870 }
2871
2872
2873 /* Interpolation qualifiers can only apply to vertex shader outputs and
2874 * fragment shader inputs.
2875 *
2876 * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
2877 * "Outputs from a vertex shader (out) and inputs to a fragment
2878 * shader (in) can be further qualified with one or more of these
2879 * interpolation qualifiers"
2880 *
2881 * From page 31 (page 37 of the PDF) of the GLSL ES 3.00 spec:
2882 * "These interpolation qualifiers may only precede the qualifiers
2883 * in, centroid in, out, or centroid out in a declaration. They do
2884 * not apply to inputs into a vertex shader or outputs from a
2885 * fragment shader."
2886 */
2887 if (state->is_version(130, 300)
2888 && this->type->qualifier.has_interpolation()) {
2889
2890 const char *i = this->type->qualifier.interpolation_string();
2891 assert(i != NULL);
2892
2893 switch (state->target) {
2894 case vertex_shader:
2895 if (this->type->qualifier.flags.q.in) {
2896 _mesa_glsl_error(&loc, state,
2897 "qualifier '%s' cannot be applied to vertex "
2898 "shader inputs", i);
2899 }
2900 break;
2901 case fragment_shader:
2902 if (this->type->qualifier.flags.q.out) {
2903 _mesa_glsl_error(&loc, state,
2904 "qualifier '%s' cannot be applied to fragment "
2905 "shader outputs", i);
2906 }
2907 break;
2908 default:
2909 assert(0);
2910 }
2911 }
2912
2913
2914 /* From section 4.3.4 of the GLSL 1.30 spec:
2915 * "It is an error to use centroid in in a vertex shader."
2916 *
2917 * From section 4.3.4 of the GLSL ES 3.00 spec:
2918 * "It is an error to use centroid in or interpolation qualifiers in
2919 * a vertex shader input."
2920 */
2921 if (state->is_version(130, 300)
2922 && this->type->qualifier.flags.q.centroid
2923 && this->type->qualifier.flags.q.in
2924 && state->target == vertex_shader) {
2925
2926 _mesa_glsl_error(&loc, state,
2927 "'centroid in' cannot be used in a vertex shader");
2928 }
2929
2930
2931 /* Precision qualifiers exists only in GLSL versions 1.00 and >= 1.30.
2932 */
2933 if (this->type->qualifier.precision != ast_precision_none) {
2934 state->check_precision_qualifiers_allowed(&loc);
2935 }
2936
2937
2938 /* Precision qualifiers only apply to floating point and integer types.
2939 *
2940 * From section 4.5.2 of the GLSL 1.30 spec:
2941 * "Any floating point or any integer declaration can have the type
2942 * preceded by one of these precision qualifiers [...] Literal
2943 * constants do not have precision qualifiers. Neither do Boolean
2944 * variables.
2945 *
2946 * In GLSL ES, sampler types are also allowed.
2947 *
2948 * From page 87 of the GLSL ES spec:
2949 * "RESOLUTION: Allow sampler types to take a precision qualifier."
2950 */
2951 if (this->type->qualifier.precision != ast_precision_none
2952 && !var->type->is_float()
2953 && !var->type->is_integer()
2954 && !var->type->is_record()
2955 && !(var->type->is_sampler() && state->es_shader)
2956 && !(var->type->is_array()
2957 && (var->type->fields.array->is_float()
2958 || var->type->fields.array->is_integer()))) {
2959
2960 _mesa_glsl_error(&loc, state,
2961 "precision qualifiers apply only to floating point"
2962 "%s types", state->es_shader ? ", integer, and sampler"
2963 : "and integer");
2964 }
2965
2966 /* From page 17 (page 23 of the PDF) of the GLSL 1.20 spec:
2967 *
2968 * "[Sampler types] can only be declared as function
2969 * parameters or uniform variables (see Section 4.3.5
2970 * "Uniform")".
2971 */
2972 if (var_type->contains_sampler() &&
2973 !this->type->qualifier.flags.q.uniform) {
2974 _mesa_glsl_error(&loc, state, "samplers must be declared uniform");
2975 }
2976
2977 /* Process the initializer and add its instructions to a temporary
2978 * list. This list will be added to the instruction stream (below) after
2979 * the declaration is added. This is done because in some cases (such as
2980 * redeclarations) the declaration may not actually be added to the
2981 * instruction stream.
2982 */
2983 exec_list initializer_instructions;
2984 ir_variable *earlier = get_variable_being_redeclared(var, decl, state);
2985
2986 if (decl->initializer != NULL) {
2987 result = process_initializer((earlier == NULL) ? var : earlier,
2988 decl, this->type,
2989 &initializer_instructions, state);
2990 }
2991
2992 /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
2993 *
2994 * "It is an error to write to a const variable outside of
2995 * its declaration, so they must be initialized when
2996 * declared."
2997 */
2998 if (this->type->qualifier.flags.q.constant && decl->initializer == NULL) {
2999 _mesa_glsl_error(& loc, state,
3000 "const declaration of `%s' must be initialized",
3001 decl->identifier);
3002 }
3003
3004 /* If the declaration is not a redeclaration, there are a few additional
3005 * semantic checks that must be applied. In addition, variable that was
3006 * created for the declaration should be added to the IR stream.
3007 */
3008 if (earlier == NULL) {
3009 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
3010 *
3011 * "Identifiers starting with "gl_" are reserved for use by
3012 * OpenGL, and may not be declared in a shader as either a
3013 * variable or a function."
3014 */
3015 if (strncmp(decl->identifier, "gl_", 3) == 0)
3016 _mesa_glsl_error(& loc, state,
3017 "identifier `%s' uses reserved `gl_' prefix",
3018 decl->identifier);
3019 else if (strstr(decl->identifier, "__")) {
3020 /* From page 14 (page 20 of the PDF) of the GLSL 1.10
3021 * spec:
3022 *
3023 * "In addition, all identifiers containing two
3024 * consecutive underscores (__) are reserved as
3025 * possible future keywords."
3026 */
3027 _mesa_glsl_error(& loc, state,
3028 "identifier `%s' uses reserved `__' string",
3029 decl->identifier);
3030 }
3031
3032 /* Add the variable to the symbol table. Note that the initializer's
3033 * IR was already processed earlier (though it hasn't been emitted
3034 * yet), without the variable in scope.
3035 *
3036 * This differs from most C-like languages, but it follows the GLSL
3037 * specification. From page 28 (page 34 of the PDF) of the GLSL 1.50
3038 * spec:
3039 *
3040 * "Within a declaration, the scope of a name starts immediately
3041 * after the initializer if present or immediately after the name
3042 * being declared if not."
3043 */
3044 if (!state->symbols->add_variable(var)) {
3045 YYLTYPE loc = this->get_location();
3046 _mesa_glsl_error(&loc, state, "name `%s' already taken in the "
3047 "current scope", decl->identifier);
3048 continue;
3049 }
3050
3051 /* Push the variable declaration to the top. It means that all the
3052 * variable declarations will appear in a funny last-to-first order,
3053 * but otherwise we run into trouble if a function is prototyped, a
3054 * global var is decled, then the function is defined with usage of
3055 * the global var. See glslparsertest's CorrectModule.frag.
3056 */
3057 instructions->push_head(var);
3058 }
3059
3060 instructions->append_list(&initializer_instructions);
3061 }
3062
3063
3064 /* Generally, variable declarations do not have r-values. However,
3065 * one is used for the declaration in
3066 *
3067 * while (bool b = some_condition()) {
3068 * ...
3069 * }
3070 *
3071 * so we return the rvalue from the last seen declaration here.
3072 */
3073 return result;
3074 }
3075
3076
3077 ir_rvalue *
3078 ast_parameter_declarator::hir(exec_list *instructions,
3079 struct _mesa_glsl_parse_state *state)
3080 {
3081 void *ctx = state;
3082 const struct glsl_type *type;
3083 const char *name = NULL;
3084 YYLTYPE loc = this->get_location();
3085
3086 type = this->type->specifier->glsl_type(& name, state);
3087
3088 if (type == NULL) {
3089 if (name != NULL) {
3090 _mesa_glsl_error(& loc, state,
3091 "invalid type `%s' in declaration of `%s'",
3092 name, this->identifier);
3093 } else {
3094 _mesa_glsl_error(& loc, state,
3095 "invalid type in declaration of `%s'",
3096 this->identifier);
3097 }
3098
3099 type = glsl_type::error_type;
3100 }
3101
3102 /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
3103 *
3104 * "Functions that accept no input arguments need not use void in the
3105 * argument list because prototypes (or definitions) are required and
3106 * therefore there is no ambiguity when an empty argument list "( )" is
3107 * declared. The idiom "(void)" as a parameter list is provided for
3108 * convenience."
3109 *
3110 * Placing this check here prevents a void parameter being set up
3111 * for a function, which avoids tripping up checks for main taking
3112 * parameters and lookups of an unnamed symbol.
3113 */
3114 if (type->is_void()) {
3115 if (this->identifier != NULL)
3116 _mesa_glsl_error(& loc, state,
3117 "named parameter cannot have type `void'");
3118
3119 is_void = true;
3120 return NULL;
3121 }
3122
3123 if (formal_parameter && (this->identifier == NULL)) {
3124 _mesa_glsl_error(& loc, state, "formal parameter lacks a name");
3125 return NULL;
3126 }
3127
3128 /* This only handles "vec4 foo[..]". The earlier specifier->glsl_type(...)
3129 * call already handled the "vec4[..] foo" case.
3130 */
3131 if (this->is_array) {
3132 type = process_array_type(&loc, type, this->array_size, state);
3133 }
3134
3135 if (!type->is_error() && type->array_size() == 0) {
3136 _mesa_glsl_error(&loc, state, "arrays passed as parameters must have "
3137 "a declared size.");
3138 type = glsl_type::error_type;
3139 }
3140
3141 is_void = false;
3142 ir_variable *var = new(ctx)
3143 ir_variable(type, this->identifier, ir_var_function_in);
3144
3145 /* Apply any specified qualifiers to the parameter declaration. Note that
3146 * for function parameters the default mode is 'in'.
3147 */
3148 apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc,
3149 false, true);
3150
3151 /* From page 17 (page 23 of the PDF) of the GLSL 1.20 spec:
3152 *
3153 * "Samplers cannot be treated as l-values; hence cannot be used
3154 * as out or inout function parameters, nor can they be assigned
3155 * into."
3156 */
3157 if ((var->mode == ir_var_function_inout || var->mode == ir_var_function_out)
3158 && type->contains_sampler()) {
3159 _mesa_glsl_error(&loc, state, "out and inout parameters cannot contain samplers");
3160 type = glsl_type::error_type;
3161 }
3162
3163 /* From page 39 (page 45 of the PDF) of the GLSL 1.10 spec:
3164 *
3165 * "When calling a function, expressions that do not evaluate to
3166 * l-values cannot be passed to parameters declared as out or inout."
3167 *
3168 * From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
3169 *
3170 * "Other binary or unary expressions, non-dereferenced arrays,
3171 * function names, swizzles with repeated fields, and constants
3172 * cannot be l-values."
3173 *
3174 * So for GLSL 1.10, passing an array as an out or inout parameter is not
3175 * allowed. This restriction is removed in GLSL 1.20, and in GLSL ES.
3176 */
3177 if ((var->mode == ir_var_function_inout || var->mode == ir_var_function_out)
3178 && type->is_array()
3179 && !state->check_version(120, 100, &loc,
3180 "Arrays cannot be out or inout parameters")) {
3181 type = glsl_type::error_type;
3182 }
3183
3184 instructions->push_tail(var);
3185
3186 /* Parameter declarations do not have r-values.
3187 */
3188 return NULL;
3189 }
3190
3191
3192 void
3193 ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters,
3194 bool formal,
3195 exec_list *ir_parameters,
3196 _mesa_glsl_parse_state *state)
3197 {
3198 ast_parameter_declarator *void_param = NULL;
3199 unsigned count = 0;
3200
3201 foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) {
3202 param->formal_parameter = formal;
3203 param->hir(ir_parameters, state);
3204
3205 if (param->is_void)
3206 void_param = param;
3207
3208 count++;
3209 }
3210
3211 if ((void_param != NULL) && (count > 1)) {
3212 YYLTYPE loc = void_param->get_location();
3213
3214 _mesa_glsl_error(& loc, state,
3215 "`void' parameter must be only parameter");
3216 }
3217 }
3218
3219
3220 void
3221 emit_function(_mesa_glsl_parse_state *state, ir_function *f)
3222 {
3223 /* IR invariants disallow function declarations or definitions
3224 * nested within other function definitions. But there is no
3225 * requirement about the relative order of function declarations
3226 * and definitions with respect to one another. So simply insert
3227 * the new ir_function block at the end of the toplevel instruction
3228 * list.
3229 */
3230 state->toplevel_ir->push_tail(f);
3231 }
3232
3233
3234 ir_rvalue *
3235 ast_function::hir(exec_list *instructions,
3236 struct _mesa_glsl_parse_state *state)
3237 {
3238 void *ctx = state;
3239 ir_function *f = NULL;
3240 ir_function_signature *sig = NULL;
3241 exec_list hir_parameters;
3242
3243 const char *const name = identifier;
3244
3245 /* New functions are always added to the top-level IR instruction stream,
3246 * so this instruction list pointer is ignored. See also emit_function
3247 * (called below).
3248 */
3249 (void) instructions;
3250
3251 /* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec,
3252 *
3253 * "Function declarations (prototypes) cannot occur inside of functions;
3254 * they must be at global scope, or for the built-in functions, outside
3255 * the global scope."
3256 *
3257 * From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec,
3258 *
3259 * "User defined functions may only be defined within the global scope."
3260 *
3261 * Note that this language does not appear in GLSL 1.10.
3262 */
3263 if ((state->current_function != NULL) &&
3264 state->is_version(120, 100)) {
3265 YYLTYPE loc = this->get_location();
3266 _mesa_glsl_error(&loc, state,
3267 "declaration of function `%s' not allowed within "
3268 "function body", name);
3269 }
3270
3271 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
3272 *
3273 * "Identifiers starting with "gl_" are reserved for use by
3274 * OpenGL, and may not be declared in a shader as either a
3275 * variable or a function."
3276 */
3277 if (strncmp(name, "gl_", 3) == 0) {
3278 YYLTYPE loc = this->get_location();
3279 _mesa_glsl_error(&loc, state,
3280 "identifier `%s' uses reserved `gl_' prefix", name);
3281 }
3282
3283 /* Convert the list of function parameters to HIR now so that they can be
3284 * used below to compare this function's signature with previously seen
3285 * signatures for functions with the same name.
3286 */
3287 ast_parameter_declarator::parameters_to_hir(& this->parameters,
3288 is_definition,
3289 & hir_parameters, state);
3290
3291 const char *return_type_name;
3292 const glsl_type *return_type =
3293 this->return_type->specifier->glsl_type(& return_type_name, state);
3294
3295 if (!return_type) {
3296 YYLTYPE loc = this->get_location();
3297 _mesa_glsl_error(&loc, state,
3298 "function `%s' has undeclared return type `%s'",
3299 name, return_type_name);
3300 return_type = glsl_type::error_type;
3301 }
3302
3303 /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec:
3304 * "No qualifier is allowed on the return type of a function."
3305 */
3306 if (this->return_type->has_qualifiers()) {
3307 YYLTYPE loc = this->get_location();
3308 _mesa_glsl_error(& loc, state,
3309 "function `%s' return type has qualifiers", name);
3310 }
3311
3312 /* From page 17 (page 23 of the PDF) of the GLSL 1.20 spec:
3313 *
3314 * "[Sampler types] can only be declared as function parameters
3315 * or uniform variables (see Section 4.3.5 "Uniform")".
3316 */
3317 if (return_type->contains_sampler()) {
3318 YYLTYPE loc = this->get_location();
3319 _mesa_glsl_error(&loc, state,
3320 "function `%s' return type can't contain a sampler",
3321 name);
3322 }
3323
3324 /* Verify that this function's signature either doesn't match a previously
3325 * seen signature for a function with the same name, or, if a match is found,
3326 * that the previously seen signature does not have an associated definition.
3327 */
3328 f = state->symbols->get_function(name);
3329 if (f != NULL && (state->es_shader || f->has_user_signature())) {
3330 sig = f->exact_matching_signature(&hir_parameters);
3331 if (sig != NULL) {
3332 const char *badvar = sig->qualifiers_match(&hir_parameters);
3333 if (badvar != NULL) {
3334 YYLTYPE loc = this->get_location();
3335
3336 _mesa_glsl_error(&loc, state, "function `%s' parameter `%s' "
3337 "qualifiers don't match prototype", name, badvar);
3338 }
3339
3340 if (sig->return_type != return_type) {
3341 YYLTYPE loc = this->get_location();
3342
3343 _mesa_glsl_error(&loc, state, "function `%s' return type doesn't "
3344 "match prototype", name);
3345 }
3346
3347 if (sig->is_defined) {
3348 if (is_definition) {
3349 YYLTYPE loc = this->get_location();
3350 _mesa_glsl_error(& loc, state, "function `%s' redefined", name);
3351 } else {
3352 /* We just encountered a prototype that exactly matches a
3353 * function that's already been defined. This is redundant,
3354 * and we should ignore it.
3355 */
3356 return NULL;
3357 }
3358 }
3359 }
3360 } else {
3361 f = new(ctx) ir_function(name);
3362 if (!state->symbols->add_function(f)) {
3363 /* This function name shadows a non-function use of the same name. */
3364 YYLTYPE loc = this->get_location();
3365
3366 _mesa_glsl_error(&loc, state, "function name `%s' conflicts with "
3367 "non-function", name);
3368 return NULL;
3369 }
3370
3371 emit_function(state, f);
3372 }
3373
3374 /* Verify the return type of main() */
3375 if (strcmp(name, "main") == 0) {
3376 if (! return_type->is_void()) {
3377 YYLTYPE loc = this->get_location();
3378
3379 _mesa_glsl_error(& loc, state, "main() must return void");
3380 }
3381
3382 if (!hir_parameters.is_empty()) {
3383 YYLTYPE loc = this->get_location();
3384
3385 _mesa_glsl_error(& loc, state, "main() must not take any parameters");
3386 }
3387 }
3388
3389 /* Finish storing the information about this new function in its signature.
3390 */
3391 if (sig == NULL) {
3392 sig = new(ctx) ir_function_signature(return_type);
3393 f->add_signature(sig);
3394 }
3395
3396 sig->replace_parameters(&hir_parameters);
3397 signature = sig;
3398
3399 /* Function declarations (prototypes) do not have r-values.
3400 */
3401 return NULL;
3402 }
3403
3404
3405 ir_rvalue *
3406 ast_function_definition::hir(exec_list *instructions,
3407 struct _mesa_glsl_parse_state *state)
3408 {
3409 prototype->is_definition = true;
3410 prototype->hir(instructions, state);
3411
3412 ir_function_signature *signature = prototype->signature;
3413 if (signature == NULL)
3414 return NULL;
3415
3416 assert(state->current_function == NULL);
3417 state->current_function = signature;
3418 state->found_return = false;
3419
3420 /* Duplicate parameters declared in the prototype as concrete variables.
3421 * Add these to the symbol table.
3422 */
3423 state->symbols->push_scope();
3424 foreach_iter(exec_list_iterator, iter, signature->parameters) {
3425 ir_variable *const var = ((ir_instruction *) iter.get())->as_variable();
3426
3427 assert(var != NULL);
3428
3429 /* The only way a parameter would "exist" is if two parameters have
3430 * the same name.
3431 */
3432 if (state->symbols->name_declared_this_scope(var->name)) {
3433 YYLTYPE loc = this->get_location();
3434
3435 _mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name);
3436 } else {
3437 state->symbols->add_variable(var);
3438 }
3439 }
3440
3441 /* Convert the body of the function to HIR. */
3442 this->body->hir(&signature->body, state);
3443 signature->is_defined = true;
3444
3445 state->symbols->pop_scope();
3446
3447 assert(state->current_function == signature);
3448 state->current_function = NULL;
3449
3450 if (!signature->return_type->is_void() && !state->found_return) {
3451 YYLTYPE loc = this->get_location();
3452 _mesa_glsl_error(& loc, state, "function `%s' has non-void return type "
3453 "%s, but no return statement",
3454 signature->function_name(),
3455 signature->return_type->name);
3456 }
3457
3458 /* Function definitions do not have r-values.
3459 */
3460 return NULL;
3461 }
3462
3463
3464 ir_rvalue *
3465 ast_jump_statement::hir(exec_list *instructions,
3466 struct _mesa_glsl_parse_state *state)
3467 {
3468 void *ctx = state;
3469
3470 switch (mode) {
3471 case ast_return: {
3472 ir_return *inst;
3473 assert(state->current_function);
3474
3475 if (opt_return_value) {
3476 ir_rvalue *ret = opt_return_value->hir(instructions, state);
3477
3478 /* The value of the return type can be NULL if the shader says
3479 * 'return foo();' and foo() is a function that returns void.
3480 *
3481 * NOTE: The GLSL spec doesn't say that this is an error. The type
3482 * of the return value is void. If the return type of the function is
3483 * also void, then this should compile without error. Seriously.
3484 */
3485 const glsl_type *const ret_type =
3486 (ret == NULL) ? glsl_type::void_type : ret->type;
3487
3488 /* Implicit conversions are not allowed for return values prior to
3489 * ARB_shading_language_420pack.
3490 */
3491 if (state->current_function->return_type != ret_type) {
3492 YYLTYPE loc = this->get_location();
3493
3494 if (state->ARB_shading_language_420pack_enable) {
3495 if (!apply_implicit_conversion(state->current_function->return_type,
3496 ret, state)) {
3497 _mesa_glsl_error(& loc, state,
3498 "Could not implicitly convert return value "
3499 "to %s, in function `%s'",
3500 state->current_function->return_type->name,
3501 state->current_function->function_name());
3502 }
3503 } else {
3504 _mesa_glsl_error(& loc, state,
3505 "`return' with wrong type %s, in function `%s' "
3506 "returning %s",
3507 ret_type->name,
3508 state->current_function->function_name(),
3509 state->current_function->return_type->name);
3510 }
3511 } else if (state->current_function->return_type->base_type ==
3512 GLSL_TYPE_VOID) {
3513 YYLTYPE loc = this->get_location();
3514
3515 /* The ARB_shading_language_420pack, GLSL ES 3.0, and GLSL 4.20
3516 * specs add a clarification:
3517 *
3518 * "A void function can only use return without a return argument, even if
3519 * the return argument has void type. Return statements only accept values:
3520 *
3521 * void func1() { }
3522 * void func2() { return func1(); } // illegal return statement"
3523 */
3524 _mesa_glsl_error(& loc, state,
3525 "void functions can only use `return' without a "
3526 "return argument");
3527 }
3528
3529 inst = new(ctx) ir_return(ret);
3530 } else {
3531 if (state->current_function->return_type->base_type !=
3532 GLSL_TYPE_VOID) {
3533 YYLTYPE loc = this->get_location();
3534
3535 _mesa_glsl_error(& loc, state,
3536 "`return' with no value, in function %s returning "
3537 "non-void",
3538 state->current_function->function_name());
3539 }
3540 inst = new(ctx) ir_return;
3541 }
3542
3543 state->found_return = true;
3544 instructions->push_tail(inst);
3545 break;
3546 }
3547
3548 case ast_discard:
3549 if (state->target != fragment_shader) {
3550 YYLTYPE loc = this->get_location();
3551
3552 _mesa_glsl_error(& loc, state,
3553 "`discard' may only appear in a fragment shader");
3554 }
3555 instructions->push_tail(new(ctx) ir_discard);
3556 break;
3557
3558 case ast_break:
3559 case ast_continue:
3560 if (mode == ast_continue &&
3561 state->loop_nesting_ast == NULL) {
3562 YYLTYPE loc = this->get_location();
3563
3564 _mesa_glsl_error(& loc, state,
3565 "continue may only appear in a loop");
3566 } else if (mode == ast_break &&
3567 state->loop_nesting_ast == NULL &&
3568 state->switch_state.switch_nesting_ast == NULL) {
3569 YYLTYPE loc = this->get_location();
3570
3571 _mesa_glsl_error(& loc, state,
3572 "break may only appear in a loop or a switch");
3573 } else {
3574 /* For a loop, inline the for loop expression again,
3575 * since we don't know where near the end of
3576 * the loop body the normal copy of it
3577 * is going to be placed.
3578 */
3579 if (state->loop_nesting_ast != NULL &&
3580 mode == ast_continue &&
3581 state->loop_nesting_ast->rest_expression) {
3582 state->loop_nesting_ast->rest_expression->hir(instructions,
3583 state);
3584 }
3585
3586 if (state->switch_state.is_switch_innermost &&
3587 mode == ast_break) {
3588 /* Force break out of switch by setting is_break switch state.
3589 */
3590 ir_variable *const is_break_var = state->switch_state.is_break_var;
3591 ir_dereference_variable *const deref_is_break_var =
3592 new(ctx) ir_dereference_variable(is_break_var);
3593 ir_constant *const true_val = new(ctx) ir_constant(true);
3594 ir_assignment *const set_break_var =
3595 new(ctx) ir_assignment(deref_is_break_var, true_val);
3596
3597 instructions->push_tail(set_break_var);
3598 }
3599 else {
3600 ir_loop_jump *const jump =
3601 new(ctx) ir_loop_jump((mode == ast_break)
3602 ? ir_loop_jump::jump_break
3603 : ir_loop_jump::jump_continue);
3604 instructions->push_tail(jump);
3605 }
3606 }
3607
3608 break;
3609 }
3610
3611 /* Jump instructions do not have r-values.
3612 */
3613 return NULL;
3614 }
3615
3616
3617 ir_rvalue *
3618 ast_selection_statement::hir(exec_list *instructions,
3619 struct _mesa_glsl_parse_state *state)
3620 {
3621 void *ctx = state;
3622
3623 ir_rvalue *const condition = this->condition->hir(instructions, state);
3624
3625 /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
3626 *
3627 * "Any expression whose type evaluates to a Boolean can be used as the
3628 * conditional expression bool-expression. Vector types are not accepted
3629 * as the expression to if."
3630 *
3631 * The checks are separated so that higher quality diagnostics can be
3632 * generated for cases where both rules are violated.
3633 */
3634 if (!condition->type->is_boolean() || !condition->type->is_scalar()) {
3635 YYLTYPE loc = this->condition->get_location();
3636
3637 _mesa_glsl_error(& loc, state, "if-statement condition must be scalar "
3638 "boolean");
3639 }
3640
3641 ir_if *const stmt = new(ctx) ir_if(condition);
3642
3643 if (then_statement != NULL) {
3644 state->symbols->push_scope();
3645 then_statement->hir(& stmt->then_instructions, state);
3646 state->symbols->pop_scope();
3647 }
3648
3649 if (else_statement != NULL) {
3650 state->symbols->push_scope();
3651 else_statement->hir(& stmt->else_instructions, state);
3652 state->symbols->pop_scope();
3653 }
3654
3655 instructions->push_tail(stmt);
3656
3657 /* if-statements do not have r-values.
3658 */
3659 return NULL;
3660 }
3661
3662
3663 ir_rvalue *
3664 ast_switch_statement::hir(exec_list *instructions,
3665 struct _mesa_glsl_parse_state *state)
3666 {
3667 void *ctx = state;
3668
3669 ir_rvalue *const test_expression =
3670 this->test_expression->hir(instructions, state);
3671
3672 /* From page 66 (page 55 of the PDF) of the GLSL 1.50 spec:
3673 *
3674 * "The type of init-expression in a switch statement must be a
3675 * scalar integer."
3676 */
3677 if (!test_expression->type->is_scalar() ||
3678 !test_expression->type->is_integer()) {
3679 YYLTYPE loc = this->test_expression->get_location();
3680
3681 _mesa_glsl_error(& loc,
3682 state,
3683 "switch-statement expression must be scalar "
3684 "integer");
3685 }
3686
3687 /* Track the switch-statement nesting in a stack-like manner.
3688 */
3689 struct glsl_switch_state saved = state->switch_state;
3690
3691 state->switch_state.is_switch_innermost = true;
3692 state->switch_state.switch_nesting_ast = this;
3693 state->switch_state.labels_ht = hash_table_ctor(0, hash_table_pointer_hash,
3694 hash_table_pointer_compare);
3695 state->switch_state.previous_default = NULL;
3696
3697 /* Initalize is_fallthru state to false.
3698 */
3699 ir_rvalue *const is_fallthru_val = new (ctx) ir_constant(false);
3700 state->switch_state.is_fallthru_var =
3701 new(ctx) ir_variable(glsl_type::bool_type,
3702 "switch_is_fallthru_tmp",
3703 ir_var_temporary);
3704 instructions->push_tail(state->switch_state.is_fallthru_var);
3705
3706 ir_dereference_variable *deref_is_fallthru_var =
3707 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
3708 instructions->push_tail(new(ctx) ir_assignment(deref_is_fallthru_var,
3709 is_fallthru_val));
3710
3711 /* Initalize is_break state to false.
3712 */
3713 ir_rvalue *const is_break_val = new (ctx) ir_constant(false);
3714 state->switch_state.is_break_var = new(ctx) ir_variable(glsl_type::bool_type,
3715 "switch_is_break_tmp",
3716 ir_var_temporary);
3717 instructions->push_tail(state->switch_state.is_break_var);
3718
3719 ir_dereference_variable *deref_is_break_var =
3720 new(ctx) ir_dereference_variable(state->switch_state.is_break_var);
3721 instructions->push_tail(new(ctx) ir_assignment(deref_is_break_var,
3722 is_break_val));
3723
3724 /* Cache test expression.
3725 */
3726 test_to_hir(instructions, state);
3727
3728 /* Emit code for body of switch stmt.
3729 */
3730 body->hir(instructions, state);
3731
3732 hash_table_dtor(state->switch_state.labels_ht);
3733
3734 state->switch_state = saved;
3735
3736 /* Switch statements do not have r-values. */
3737 return NULL;
3738 }
3739
3740
3741 void
3742 ast_switch_statement::test_to_hir(exec_list *instructions,
3743 struct _mesa_glsl_parse_state *state)
3744 {
3745 void *ctx = state;
3746
3747 /* Cache value of test expression. */
3748 ir_rvalue *const test_val =
3749 test_expression->hir(instructions,
3750 state);
3751
3752 state->switch_state.test_var = new(ctx) ir_variable(test_val->type,
3753 "switch_test_tmp",
3754 ir_var_temporary);
3755 ir_dereference_variable *deref_test_var =
3756 new(ctx) ir_dereference_variable(state->switch_state.test_var);
3757
3758 instructions->push_tail(state->switch_state.test_var);
3759 instructions->push_tail(new(ctx) ir_assignment(deref_test_var, test_val));
3760 }
3761
3762
3763 ir_rvalue *
3764 ast_switch_body::hir(exec_list *instructions,
3765 struct _mesa_glsl_parse_state *state)
3766 {
3767 if (stmts != NULL)
3768 stmts->hir(instructions, state);
3769
3770 /* Switch bodies do not have r-values. */
3771 return NULL;
3772 }
3773
3774 ir_rvalue *
3775 ast_case_statement_list::hir(exec_list *instructions,
3776 struct _mesa_glsl_parse_state *state)
3777 {
3778 foreach_list_typed (ast_case_statement, case_stmt, link, & this->cases)
3779 case_stmt->hir(instructions, state);
3780
3781 /* Case statements do not have r-values. */
3782 return NULL;
3783 }
3784
3785 ir_rvalue *
3786 ast_case_statement::hir(exec_list *instructions,
3787 struct _mesa_glsl_parse_state *state)
3788 {
3789 labels->hir(instructions, state);
3790
3791 /* Conditionally set fallthru state based on break state. */
3792 ir_constant *const false_val = new(state) ir_constant(false);
3793 ir_dereference_variable *const deref_is_fallthru_var =
3794 new(state) ir_dereference_variable(state->switch_state.is_fallthru_var);
3795 ir_dereference_variable *const deref_is_break_var =
3796 new(state) ir_dereference_variable(state->switch_state.is_break_var);
3797 ir_assignment *const reset_fallthru_on_break =
3798 new(state) ir_assignment(deref_is_fallthru_var,
3799 false_val,
3800 deref_is_break_var);
3801 instructions->push_tail(reset_fallthru_on_break);
3802
3803 /* Guard case statements depending on fallthru state. */
3804 ir_dereference_variable *const deref_fallthru_guard =
3805 new(state) ir_dereference_variable(state->switch_state.is_fallthru_var);
3806 ir_if *const test_fallthru = new(state) ir_if(deref_fallthru_guard);
3807
3808 foreach_list_typed (ast_node, stmt, link, & this->stmts)
3809 stmt->hir(& test_fallthru->then_instructions, state);
3810
3811 instructions->push_tail(test_fallthru);
3812
3813 /* Case statements do not have r-values. */
3814 return NULL;
3815 }
3816
3817
3818 ir_rvalue *
3819 ast_case_label_list::hir(exec_list *instructions,
3820 struct _mesa_glsl_parse_state *state)
3821 {
3822 foreach_list_typed (ast_case_label, label, link, & this->labels)
3823 label->hir(instructions, state);
3824
3825 /* Case labels do not have r-values. */
3826 return NULL;
3827 }
3828
3829 ir_rvalue *
3830 ast_case_label::hir(exec_list *instructions,
3831 struct _mesa_glsl_parse_state *state)
3832 {
3833 void *ctx = state;
3834
3835 ir_dereference_variable *deref_fallthru_var =
3836 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
3837
3838 ir_rvalue *const true_val = new(ctx) ir_constant(true);
3839
3840 /* If not default case, ... */
3841 if (this->test_value != NULL) {
3842 /* Conditionally set fallthru state based on
3843 * comparison of cached test expression value to case label.
3844 */
3845 ir_rvalue *const label_rval = this->test_value->hir(instructions, state);
3846 ir_constant *label_const = label_rval->constant_expression_value();
3847
3848 if (!label_const) {
3849 YYLTYPE loc = this->test_value->get_location();
3850
3851 _mesa_glsl_error(& loc, state,
3852 "switch statement case label must be a "
3853 "constant expression");
3854
3855 /* Stuff a dummy value in to allow processing to continue. */
3856 label_const = new(ctx) ir_constant(0);
3857 } else {
3858 ast_expression *previous_label = (ast_expression *)
3859 hash_table_find(state->switch_state.labels_ht,
3860 (void *)(uintptr_t)label_const->value.u[0]);
3861
3862 if (previous_label) {
3863 YYLTYPE loc = this->test_value->get_location();
3864 _mesa_glsl_error(& loc, state,
3865 "duplicate case value");
3866
3867 loc = previous_label->get_location();
3868 _mesa_glsl_error(& loc, state,
3869 "this is the previous case label");
3870 } else {
3871 hash_table_insert(state->switch_state.labels_ht,
3872 this->test_value,
3873 (void *)(uintptr_t)label_const->value.u[0]);
3874 }
3875 }
3876
3877 ir_dereference_variable *deref_test_var =
3878 new(ctx) ir_dereference_variable(state->switch_state.test_var);
3879
3880 ir_rvalue *const test_cond = new(ctx) ir_expression(ir_binop_all_equal,
3881 label_const,
3882 deref_test_var);
3883
3884 ir_assignment *set_fallthru_on_test =
3885 new(ctx) ir_assignment(deref_fallthru_var,
3886 true_val,
3887 test_cond);
3888
3889 instructions->push_tail(set_fallthru_on_test);
3890 } else { /* default case */
3891 if (state->switch_state.previous_default) {
3892 YYLTYPE loc = this->get_location();
3893 _mesa_glsl_error(& loc, state,
3894 "multiple default labels in one switch");
3895
3896 loc = state->switch_state.previous_default->get_location();
3897 _mesa_glsl_error(& loc, state,
3898 "this is the first default label");
3899 }
3900 state->switch_state.previous_default = this;
3901
3902 /* Set falltrhu state. */
3903 ir_assignment *set_fallthru =
3904 new(ctx) ir_assignment(deref_fallthru_var, true_val);
3905
3906 instructions->push_tail(set_fallthru);
3907 }
3908
3909 /* Case statements do not have r-values. */
3910 return NULL;
3911 }
3912
3913 void
3914 ast_iteration_statement::condition_to_hir(ir_loop *stmt,
3915 struct _mesa_glsl_parse_state *state)
3916 {
3917 void *ctx = state;
3918
3919 if (condition != NULL) {
3920 ir_rvalue *const cond =
3921 condition->hir(& stmt->body_instructions, state);
3922
3923 if ((cond == NULL)
3924 || !cond->type->is_boolean() || !cond->type->is_scalar()) {
3925 YYLTYPE loc = condition->get_location();
3926
3927 _mesa_glsl_error(& loc, state,
3928 "loop condition must be scalar boolean");
3929 } else {
3930 /* As the first code in the loop body, generate a block that looks
3931 * like 'if (!condition) break;' as the loop termination condition.
3932 */
3933 ir_rvalue *const not_cond =
3934 new(ctx) ir_expression(ir_unop_logic_not, cond);
3935
3936 ir_if *const if_stmt = new(ctx) ir_if(not_cond);
3937
3938 ir_jump *const break_stmt =
3939 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
3940
3941 if_stmt->then_instructions.push_tail(break_stmt);
3942 stmt->body_instructions.push_tail(if_stmt);
3943 }
3944 }
3945 }
3946
3947
3948 ir_rvalue *
3949 ast_iteration_statement::hir(exec_list *instructions,
3950 struct _mesa_glsl_parse_state *state)
3951 {
3952 void *ctx = state;
3953
3954 /* For-loops and while-loops start a new scope, but do-while loops do not.
3955 */
3956 if (mode != ast_do_while)
3957 state->symbols->push_scope();
3958
3959 if (init_statement != NULL)
3960 init_statement->hir(instructions, state);
3961
3962 ir_loop *const stmt = new(ctx) ir_loop();
3963 instructions->push_tail(stmt);
3964
3965 /* Track the current loop nesting. */
3966 ast_iteration_statement *nesting_ast = state->loop_nesting_ast;
3967
3968 state->loop_nesting_ast = this;
3969
3970 /* Likewise, indicate that following code is closest to a loop,
3971 * NOT closest to a switch.
3972 */
3973 bool saved_is_switch_innermost = state->switch_state.is_switch_innermost;
3974 state->switch_state.is_switch_innermost = false;
3975
3976 if (mode != ast_do_while)
3977 condition_to_hir(stmt, state);
3978
3979 if (body != NULL)
3980 body->hir(& stmt->body_instructions, state);
3981
3982 if (rest_expression != NULL)
3983 rest_expression->hir(& stmt->body_instructions, state);
3984
3985 if (mode == ast_do_while)
3986 condition_to_hir(stmt, state);
3987
3988 if (mode != ast_do_while)
3989 state->symbols->pop_scope();
3990
3991 /* Restore previous nesting before returning. */
3992 state->loop_nesting_ast = nesting_ast;
3993 state->switch_state.is_switch_innermost = saved_is_switch_innermost;
3994
3995 /* Loops do not have r-values.
3996 */
3997 return NULL;
3998 }
3999
4000
4001 /**
4002 * Determine if the given type is valid for establishing a default precision
4003 * qualifier.
4004 *
4005 * From GLSL ES 3.00 section 4.5.4 ("Default Precision Qualifiers"):
4006 *
4007 * "The precision statement
4008 *
4009 * precision precision-qualifier type;
4010 *
4011 * can be used to establish a default precision qualifier. The type field
4012 * can be either int or float or any of the sampler types, and the
4013 * precision-qualifier can be lowp, mediump, or highp."
4014 *
4015 * GLSL ES 1.00 has similar language. GLSL 1.30 doesn't allow precision
4016 * qualifiers on sampler types, but this seems like an oversight (since the
4017 * intention of including these in GLSL 1.30 is to allow compatibility with ES
4018 * shaders). So we allow int, float, and all sampler types regardless of GLSL
4019 * version.
4020 */
4021 static bool
4022 is_valid_default_precision_type(const struct _mesa_glsl_parse_state *state,
4023 const char *type_name)
4024 {
4025 const struct glsl_type *type = state->symbols->get_type(type_name);
4026 if (type == NULL)
4027 return false;
4028
4029 switch (type->base_type) {
4030 case GLSL_TYPE_INT:
4031 case GLSL_TYPE_FLOAT:
4032 /* "int" and "float" are valid, but vectors and matrices are not. */
4033 return type->vector_elements == 1 && type->matrix_columns == 1;
4034 case GLSL_TYPE_SAMPLER:
4035 return true;
4036 default:
4037 return false;
4038 }
4039 }
4040
4041
4042 ir_rvalue *
4043 ast_type_specifier::hir(exec_list *instructions,
4044 struct _mesa_glsl_parse_state *state)
4045 {
4046 if (this->default_precision == ast_precision_none && this->structure == NULL)
4047 return NULL;
4048
4049 YYLTYPE loc = this->get_location();
4050
4051 /* If this is a precision statement, check that the type to which it is
4052 * applied is either float or int.
4053 *
4054 * From section 4.5.3 of the GLSL 1.30 spec:
4055 * "The precision statement
4056 * precision precision-qualifier type;
4057 * can be used to establish a default precision qualifier. The type
4058 * field can be either int or float [...]. Any other types or
4059 * qualifiers will result in an error.
4060 */
4061 if (this->default_precision != ast_precision_none) {
4062 if (!state->check_precision_qualifiers_allowed(&loc))
4063 return NULL;
4064
4065 if (this->structure != NULL) {
4066 _mesa_glsl_error(&loc, state,
4067 "precision qualifiers do not apply to structures");
4068 return NULL;
4069 }
4070
4071 if (this->is_array) {
4072 _mesa_glsl_error(&loc, state,
4073 "default precision statements do not apply to "
4074 "arrays");
4075 return NULL;
4076 }
4077 if (!is_valid_default_precision_type(state, this->type_name)) {
4078 _mesa_glsl_error(&loc, state,
4079 "default precision statements apply only to types "
4080 "float, int, and sampler types");
4081 return NULL;
4082 }
4083
4084 /* FINISHME: Translate precision statements into IR. */
4085 return NULL;
4086 }
4087
4088 /* _mesa_ast_set_aggregate_type() sets the <structure> field so that
4089 * process_record_constructor() can do type-checking on C-style initializer
4090 * expressions of structs, but ast_struct_specifier should only be translated
4091 * to HIR if it is declaring the type of a structure.
4092 *
4093 * The ->is_declaration field is false for initializers of variables
4094 * declared separately from the struct's type definition.
4095 *
4096 * struct S { ... }; (is_declaration = true)
4097 * struct T { ... } t = { ... }; (is_declaration = true)
4098 * S s = { ... }; (is_declaration = false)
4099 */
4100 if (this->structure != NULL && this->structure->is_declaration)
4101 return this->structure->hir(instructions, state);
4102
4103 return NULL;
4104 }
4105
4106
4107 /**
4108 * Process a structure or interface block tree into an array of structure fields
4109 *
4110 * After parsing, where there are some syntax differnces, structures and
4111 * interface blocks are almost identical. They are similar enough that the
4112 * AST for each can be processed the same way into a set of
4113 * \c glsl_struct_field to describe the members.
4114 *
4115 * \return
4116 * The number of fields processed. A pointer to the array structure fields is
4117 * stored in \c *fields_ret.
4118 */
4119 unsigned
4120 ast_process_structure_or_interface_block(exec_list *instructions,
4121 struct _mesa_glsl_parse_state *state,
4122 exec_list *declarations,
4123 YYLTYPE &loc,
4124 glsl_struct_field **fields_ret,
4125 bool is_interface,
4126 bool block_row_major)
4127 {
4128 unsigned decl_count = 0;
4129
4130 /* Make an initial pass over the list of fields to determine how
4131 * many there are. Each element in this list is an ast_declarator_list.
4132 * This means that we actually need to count the number of elements in the
4133 * 'declarations' list in each of the elements.
4134 */
4135 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
4136 foreach_list_const (decl_ptr, & decl_list->declarations) {
4137 decl_count++;
4138 }
4139 }
4140
4141 /* Allocate storage for the fields and process the field
4142 * declarations. As the declarations are processed, try to also convert
4143 * the types to HIR. This ensures that structure definitions embedded in
4144 * other structure definitions or in interface blocks are processed.
4145 */
4146 glsl_struct_field *const fields = ralloc_array(state, glsl_struct_field,
4147 decl_count);
4148
4149 unsigned i = 0;
4150 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
4151 const char *type_name;
4152
4153 decl_list->type->specifier->hir(instructions, state);
4154
4155 /* Section 10.9 of the GLSL ES 1.00 specification states that
4156 * embedded structure definitions have been removed from the language.
4157 */
4158 if (state->es_shader && decl_list->type->specifier->structure != NULL) {
4159 _mesa_glsl_error(&loc, state, "Embedded structure definitions are "
4160 "not allowed in GLSL ES 1.00.");
4161 }
4162
4163 const glsl_type *decl_type =
4164 decl_list->type->specifier->glsl_type(& type_name, state);
4165
4166 foreach_list_typed (ast_declaration, decl, link,
4167 &decl_list->declarations) {
4168 /* From the GL_ARB_uniform_buffer_object spec:
4169 *
4170 * "Sampler types are not allowed inside of uniform
4171 * blocks. All other types, arrays, and structures
4172 * allowed for uniforms are allowed within a uniform
4173 * block."
4174 *
4175 * It should be impossible for decl_type to be NULL here. Cases that
4176 * might naturally lead to decl_type being NULL, especially for the
4177 * is_interface case, will have resulted in compilation having
4178 * already halted due to a syntax error.
4179 */
4180 const struct glsl_type *field_type =
4181 decl_type != NULL ? decl_type : glsl_type::error_type;
4182
4183 if (is_interface && field_type->contains_sampler()) {
4184 YYLTYPE loc = decl_list->get_location();
4185 _mesa_glsl_error(&loc, state,
4186 "Uniform in non-default uniform block contains sampler\n");
4187 }
4188
4189 const struct ast_type_qualifier *const qual =
4190 & decl_list->type->qualifier;
4191 if (qual->flags.q.std140 ||
4192 qual->flags.q.packed ||
4193 qual->flags.q.shared) {
4194 _mesa_glsl_error(&loc, state,
4195 "uniform block layout qualifiers std140, packed, and "
4196 "shared can only be applied to uniform blocks, not "
4197 "members");
4198 }
4199
4200 if (decl->is_array) {
4201 field_type = process_array_type(&loc, decl_type, decl->array_size,
4202 state);
4203 }
4204 fields[i].type = field_type;
4205 fields[i].name = decl->identifier;
4206
4207 if (qual->flags.q.row_major || qual->flags.q.column_major) {
4208 if (!qual->flags.q.uniform) {
4209 _mesa_glsl_error(&loc, state,
4210 "row_major and column_major can only be "
4211 "applied to uniform interface blocks.");
4212 } else if (!field_type->is_matrix() && !field_type->is_record()) {
4213 _mesa_glsl_error(&loc, state,
4214 "uniform block layout qualifiers row_major and "
4215 "column_major can only be applied to matrix and "
4216 "structure types");
4217 } else
4218 validate_matrix_layout_for_type(state, &loc, field_type);
4219 }
4220
4221 if (qual->flags.q.uniform && qual->has_interpolation()) {
4222 _mesa_glsl_error(&loc, state,
4223 "interpolation qualifiers cannot be used "
4224 "with uniform interface blocks");
4225 }
4226
4227 if (field_type->is_matrix() ||
4228 (field_type->is_array() && field_type->fields.array->is_matrix())) {
4229 fields[i].row_major = block_row_major;
4230 if (qual->flags.q.row_major)
4231 fields[i].row_major = true;
4232 else if (qual->flags.q.column_major)
4233 fields[i].row_major = false;
4234 }
4235
4236 i++;
4237 }
4238 }
4239
4240 assert(i == decl_count);
4241
4242 *fields_ret = fields;
4243 return decl_count;
4244 }
4245
4246
4247 ir_rvalue *
4248 ast_struct_specifier::hir(exec_list *instructions,
4249 struct _mesa_glsl_parse_state *state)
4250 {
4251 YYLTYPE loc = this->get_location();
4252 glsl_struct_field *fields;
4253 unsigned decl_count =
4254 ast_process_structure_or_interface_block(instructions,
4255 state,
4256 &this->declarations,
4257 loc,
4258 &fields,
4259 false,
4260 false);
4261
4262 const glsl_type *t =
4263 glsl_type::get_record_instance(fields, decl_count, this->name);
4264
4265 if (!state->symbols->add_type(name, t)) {
4266 _mesa_glsl_error(& loc, state, "struct `%s' previously defined", name);
4267 } else {
4268 const glsl_type **s = reralloc(state, state->user_structures,
4269 const glsl_type *,
4270 state->num_user_structures + 1);
4271 if (s != NULL) {
4272 s[state->num_user_structures] = t;
4273 state->user_structures = s;
4274 state->num_user_structures++;
4275 }
4276 }
4277
4278 /* Structure type definitions do not have r-values.
4279 */
4280 return NULL;
4281 }
4282
4283 ir_rvalue *
4284 ast_interface_block::hir(exec_list *instructions,
4285 struct _mesa_glsl_parse_state *state)
4286 {
4287 YYLTYPE loc = this->get_location();
4288
4289 /* The ast_interface_block has a list of ast_declarator_lists. We
4290 * need to turn those into ir_variables with an association
4291 * with this uniform block.
4292 */
4293 enum glsl_interface_packing packing;
4294 if (this->layout.flags.q.shared) {
4295 packing = GLSL_INTERFACE_PACKING_SHARED;
4296 } else if (this->layout.flags.q.packed) {
4297 packing = GLSL_INTERFACE_PACKING_PACKED;
4298 } else {
4299 /* The default layout is std140.
4300 */
4301 packing = GLSL_INTERFACE_PACKING_STD140;
4302 }
4303
4304 bool block_row_major = this->layout.flags.q.row_major;
4305 exec_list declared_variables;
4306 glsl_struct_field *fields;
4307 unsigned int num_variables =
4308 ast_process_structure_or_interface_block(&declared_variables,
4309 state,
4310 &this->declarations,
4311 loc,
4312 &fields,
4313 true,
4314 block_row_major);
4315
4316 ir_variable_mode var_mode;
4317 const char *iface_type_name;
4318 if (this->layout.flags.q.in) {
4319 var_mode = ir_var_shader_in;
4320 iface_type_name = "in";
4321 } else if (this->layout.flags.q.out) {
4322 var_mode = ir_var_shader_out;
4323 iface_type_name = "out";
4324 } else if (this->layout.flags.q.uniform) {
4325 var_mode = ir_var_uniform;
4326 iface_type_name = "uniform";
4327 } else {
4328 var_mode = ir_var_auto;
4329 iface_type_name = "UNKNOWN";
4330 assert(!"interface block layout qualifier not found!");
4331 }
4332
4333 const glsl_type *block_type =
4334 glsl_type::get_interface_instance(fields,
4335 num_variables,
4336 packing,
4337 this->block_name);
4338
4339 if (!state->symbols->add_interface(block_type->name, block_type, var_mode)) {
4340 YYLTYPE loc = this->get_location();
4341 _mesa_glsl_error(&loc, state, "Interface block `%s' with type `%s' "
4342 "already taken in the current scope.\n",
4343 this->block_name, iface_type_name);
4344 }
4345
4346 /* Since interface blocks cannot contain statements, it should be
4347 * impossible for the block to generate any instructions.
4348 */
4349 assert(declared_variables.is_empty());
4350
4351 /* Page 39 (page 45 of the PDF) of section 4.3.7 in the GLSL ES 3.00 spec
4352 * says:
4353 *
4354 * "If an instance name (instance-name) is used, then it puts all the
4355 * members inside a scope within its own name space, accessed with the
4356 * field selector ( . ) operator (analogously to structures)."
4357 */
4358 if (this->instance_name) {
4359 ir_variable *var;
4360
4361 if (this->array_size != NULL) {
4362 const glsl_type *block_array_type =
4363 process_array_type(&loc, block_type, this->array_size, state);
4364
4365 var = new(state) ir_variable(block_array_type,
4366 this->instance_name,
4367 var_mode);
4368 } else {
4369 var = new(state) ir_variable(block_type,
4370 this->instance_name,
4371 var_mode);
4372 }
4373
4374 var->interface_type = block_type;
4375 state->symbols->add_variable(var);
4376 instructions->push_tail(var);
4377 } else {
4378 /* In order to have an array size, the block must also be declared with
4379 * an instane name.
4380 */
4381 assert(this->array_size == NULL);
4382
4383 for (unsigned i = 0; i < num_variables; i++) {
4384 ir_variable *var =
4385 new(state) ir_variable(fields[i].type,
4386 ralloc_strdup(state, fields[i].name),
4387 var_mode);
4388 var->interface_type = block_type;
4389
4390 state->symbols->add_variable(var);
4391 instructions->push_tail(var);
4392 }
4393 }
4394
4395 return NULL;
4396 }
4397
4398 static void
4399 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
4400 exec_list *instructions)
4401 {
4402 bool gl_FragColor_assigned = false;
4403 bool gl_FragData_assigned = false;
4404 bool user_defined_fs_output_assigned = false;
4405 ir_variable *user_defined_fs_output = NULL;
4406
4407 /* It would be nice to have proper location information. */
4408 YYLTYPE loc;
4409 memset(&loc, 0, sizeof(loc));
4410
4411 foreach_list(node, instructions) {
4412 ir_variable *var = ((ir_instruction *)node)->as_variable();
4413
4414 if (!var || !var->assigned)
4415 continue;
4416
4417 if (strcmp(var->name, "gl_FragColor") == 0)
4418 gl_FragColor_assigned = true;
4419 else if (strcmp(var->name, "gl_FragData") == 0)
4420 gl_FragData_assigned = true;
4421 else if (strncmp(var->name, "gl_", 3) != 0) {
4422 if (state->target == fragment_shader &&
4423 var->mode == ir_var_shader_out) {
4424 user_defined_fs_output_assigned = true;
4425 user_defined_fs_output = var;
4426 }
4427 }
4428 }
4429
4430 /* From the GLSL 1.30 spec:
4431 *
4432 * "If a shader statically assigns a value to gl_FragColor, it
4433 * may not assign a value to any element of gl_FragData. If a
4434 * shader statically writes a value to any element of
4435 * gl_FragData, it may not assign a value to
4436 * gl_FragColor. That is, a shader may assign values to either
4437 * gl_FragColor or gl_FragData, but not both. Multiple shaders
4438 * linked together must also consistently write just one of
4439 * these variables. Similarly, if user declared output
4440 * variables are in use (statically assigned to), then the
4441 * built-in variables gl_FragColor and gl_FragData may not be
4442 * assigned to. These incorrect usages all generate compile
4443 * time errors."
4444 */
4445 if (gl_FragColor_assigned && gl_FragData_assigned) {
4446 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
4447 "`gl_FragColor' and `gl_FragData'\n");
4448 } else if (gl_FragColor_assigned && user_defined_fs_output_assigned) {
4449 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
4450 "`gl_FragColor' and `%s'\n",
4451 user_defined_fs_output->name);
4452 } else if (gl_FragData_assigned && user_defined_fs_output_assigned) {
4453 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
4454 "`gl_FragData' and `%s'\n",
4455 user_defined_fs_output->name);
4456 }
4457 }