glsl: Give a warning, not an error, for UBO qualifiers on non-matrices.
[mesa.git] / src / glsl / ast_to_hir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file ast_to_hir.c
26 * Convert abstract syntax to to high-level intermediate reprensentation (HIR).
27 *
28 * During the conversion to HIR, the majority of the symantic checking is
29 * preformed on the program. This includes:
30 *
31 * * Symbol table management
32 * * Type checking
33 * * Function binding
34 *
35 * The majority of this work could be done during parsing, and the parser could
36 * probably generate HIR directly. However, this results in frequent changes
37 * to the parser code. Since we do not assume that every system this complier
38 * is built on will have Flex and Bison installed, we have to store the code
39 * generated by these tools in our version control system. In other parts of
40 * the system we've seen problems where a parser was changed but the generated
41 * code was not committed, merge conflicts where created because two developers
42 * had slightly different versions of Bison installed, etc.
43 *
44 * I have also noticed that running Bison generated parsers in GDB is very
45 * irritating. When you get a segfault on '$$ = $1->foo', you can't very
46 * well 'print $1' in GDB.
47 *
48 * As a result, my preference is to put as little C code as possible in the
49 * parser (and lexer) sources.
50 */
51
52 #include "main/core.h" /* for struct gl_extensions */
53 #include "glsl_symbol_table.h"
54 #include "glsl_parser_extras.h"
55 #include "ast.h"
56 #include "glsl_types.h"
57 #include "program/hash_table.h"
58 #include "ir.h"
59
60 static void
61 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
62 exec_list *instructions);
63
64 void
65 _mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
66 {
67 _mesa_glsl_initialize_variables(instructions, state);
68
69 state->symbols->separate_function_namespace = state->language_version == 110;
70
71 state->current_function = NULL;
72
73 state->toplevel_ir = instructions;
74
75 state->gs_input_prim_type_specified = false;
76
77 /* Section 4.2 of the GLSL 1.20 specification states:
78 * "The built-in functions are scoped in a scope outside the global scope
79 * users declare global variables in. That is, a shader's global scope,
80 * available for user-defined functions and global variables, is nested
81 * inside the scope containing the built-in functions."
82 *
83 * Since built-in functions like ftransform() access built-in variables,
84 * it follows that those must be in the outer scope as well.
85 *
86 * We push scope here to create this nesting effect...but don't pop.
87 * This way, a shader's globals are still in the symbol table for use
88 * by the linker.
89 */
90 state->symbols->push_scope();
91
92 foreach_list_typed (ast_node, ast, link, & state->translation_unit)
93 ast->hir(instructions, state);
94
95 detect_recursion_unlinked(state, instructions);
96 detect_conflicting_assignments(state, instructions);
97
98 state->toplevel_ir = NULL;
99
100 /* Move all of the variable declarations to the front of the IR list, and
101 * reverse the order. This has the (intended!) side effect that vertex
102 * shader inputs and fragment shader outputs will appear in the IR in the
103 * same order that they appeared in the shader code. This results in the
104 * locations being assigned in the declared order. Many (arguably buggy)
105 * applications depend on this behavior, and it matches what nearly all
106 * other drivers do.
107 */
108 foreach_list_safe(node, instructions) {
109 ir_variable *const var = ((ir_instruction *) node)->as_variable();
110
111 if (var == NULL)
112 continue;
113
114 var->remove();
115 instructions->push_head(var);
116 }
117 }
118
119
120 /**
121 * If a conversion is available, convert one operand to a different type
122 *
123 * The \c from \c ir_rvalue is converted "in place".
124 *
125 * \param to Type that the operand it to be converted to
126 * \param from Operand that is being converted
127 * \param state GLSL compiler state
128 *
129 * \return
130 * If a conversion is possible (or unnecessary), \c true is returned.
131 * Otherwise \c false is returned.
132 */
133 bool
134 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
135 struct _mesa_glsl_parse_state *state)
136 {
137 void *ctx = state;
138 if (to->base_type == from->type->base_type)
139 return true;
140
141 /* This conversion was added in GLSL 1.20. If the compilation mode is
142 * GLSL 1.10, the conversion is skipped.
143 */
144 if (!state->is_version(120, 0))
145 return false;
146
147 /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
148 *
149 * "There are no implicit array or structure conversions. For
150 * example, an array of int cannot be implicitly converted to an
151 * array of float. There are no implicit conversions between
152 * signed and unsigned integers."
153 */
154 /* FINISHME: The above comment is partially a lie. There is int/uint
155 * FINISHME: conversion for immediate constants.
156 */
157 if (!to->is_float() || !from->type->is_numeric())
158 return false;
159
160 /* Convert to a floating point type with the same number of components
161 * as the original type - i.e. int to float, not int to vec4.
162 */
163 to = glsl_type::get_instance(GLSL_TYPE_FLOAT, from->type->vector_elements,
164 from->type->matrix_columns);
165
166 switch (from->type->base_type) {
167 case GLSL_TYPE_INT:
168 from = new(ctx) ir_expression(ir_unop_i2f, to, from, NULL);
169 break;
170 case GLSL_TYPE_UINT:
171 from = new(ctx) ir_expression(ir_unop_u2f, to, from, NULL);
172 break;
173 case GLSL_TYPE_BOOL:
174 from = new(ctx) ir_expression(ir_unop_b2f, to, from, NULL);
175 break;
176 default:
177 assert(0);
178 }
179
180 return true;
181 }
182
183
184 static const struct glsl_type *
185 arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
186 bool multiply,
187 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
188 {
189 const glsl_type *type_a = value_a->type;
190 const glsl_type *type_b = value_b->type;
191
192 /* From GLSL 1.50 spec, page 56:
193 *
194 * "The arithmetic binary operators add (+), subtract (-),
195 * multiply (*), and divide (/) operate on integer and
196 * floating-point scalars, vectors, and matrices."
197 */
198 if (!type_a->is_numeric() || !type_b->is_numeric()) {
199 _mesa_glsl_error(loc, state,
200 "operands to arithmetic operators must be numeric");
201 return glsl_type::error_type;
202 }
203
204
205 /* "If one operand is floating-point based and the other is
206 * not, then the conversions from Section 4.1.10 "Implicit
207 * Conversions" are applied to the non-floating-point-based operand."
208 */
209 if (!apply_implicit_conversion(type_a, value_b, state)
210 && !apply_implicit_conversion(type_b, value_a, state)) {
211 _mesa_glsl_error(loc, state,
212 "could not implicitly convert operands to "
213 "arithmetic operator");
214 return glsl_type::error_type;
215 }
216 type_a = value_a->type;
217 type_b = value_b->type;
218
219 /* "If the operands are integer types, they must both be signed or
220 * both be unsigned."
221 *
222 * From this rule and the preceeding conversion it can be inferred that
223 * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
224 * The is_numeric check above already filtered out the case where either
225 * type is not one of these, so now the base types need only be tested for
226 * equality.
227 */
228 if (type_a->base_type != type_b->base_type) {
229 _mesa_glsl_error(loc, state,
230 "base type mismatch for arithmetic operator");
231 return glsl_type::error_type;
232 }
233
234 /* "All arithmetic binary operators result in the same fundamental type
235 * (signed integer, unsigned integer, or floating-point) as the
236 * operands they operate on, after operand type conversion. After
237 * conversion, the following cases are valid
238 *
239 * * The two operands are scalars. In this case the operation is
240 * applied, resulting in a scalar."
241 */
242 if (type_a->is_scalar() && type_b->is_scalar())
243 return type_a;
244
245 /* "* One operand is a scalar, and the other is a vector or matrix.
246 * In this case, the scalar operation is applied independently to each
247 * component of the vector or matrix, resulting in the same size
248 * vector or matrix."
249 */
250 if (type_a->is_scalar()) {
251 if (!type_b->is_scalar())
252 return type_b;
253 } else if (type_b->is_scalar()) {
254 return type_a;
255 }
256
257 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
258 * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
259 * handled.
260 */
261 assert(!type_a->is_scalar());
262 assert(!type_b->is_scalar());
263
264 /* "* The two operands are vectors of the same size. In this case, the
265 * operation is done component-wise resulting in the same size
266 * vector."
267 */
268 if (type_a->is_vector() && type_b->is_vector()) {
269 if (type_a == type_b) {
270 return type_a;
271 } else {
272 _mesa_glsl_error(loc, state,
273 "vector size mismatch for arithmetic operator");
274 return glsl_type::error_type;
275 }
276 }
277
278 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
279 * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
280 * <vector, vector> have been handled. At least one of the operands must
281 * be matrix. Further, since there are no integer matrix types, the base
282 * type of both operands must be float.
283 */
284 assert(type_a->is_matrix() || type_b->is_matrix());
285 assert(type_a->base_type == GLSL_TYPE_FLOAT);
286 assert(type_b->base_type == GLSL_TYPE_FLOAT);
287
288 /* "* The operator is add (+), subtract (-), or divide (/), and the
289 * operands are matrices with the same number of rows and the same
290 * number of columns. In this case, the operation is done component-
291 * wise resulting in the same size matrix."
292 * * The operator is multiply (*), where both operands are matrices or
293 * one operand is a vector and the other a matrix. A right vector
294 * operand is treated as a column vector and a left vector operand as a
295 * row vector. In all these cases, it is required that the number of
296 * columns of the left operand is equal to the number of rows of the
297 * right operand. Then, the multiply (*) operation does a linear
298 * algebraic multiply, yielding an object that has the same number of
299 * rows as the left operand and the same number of columns as the right
300 * operand. Section 5.10 "Vector and Matrix Operations" explains in
301 * more detail how vectors and matrices are operated on."
302 */
303 if (! multiply) {
304 if (type_a == type_b)
305 return type_a;
306 } else {
307 if (type_a->is_matrix() && type_b->is_matrix()) {
308 /* Matrix multiply. The columns of A must match the rows of B. Given
309 * the other previously tested constraints, this means the vector type
310 * of a row from A must be the same as the vector type of a column from
311 * B.
312 */
313 if (type_a->row_type() == type_b->column_type()) {
314 /* The resulting matrix has the number of columns of matrix B and
315 * the number of rows of matrix A. We get the row count of A by
316 * looking at the size of a vector that makes up a column. The
317 * transpose (size of a row) is done for B.
318 */
319 const glsl_type *const type =
320 glsl_type::get_instance(type_a->base_type,
321 type_a->column_type()->vector_elements,
322 type_b->row_type()->vector_elements);
323 assert(type != glsl_type::error_type);
324
325 return type;
326 }
327 } else if (type_a->is_matrix()) {
328 /* A is a matrix and B is a column vector. Columns of A must match
329 * rows of B. Given the other previously tested constraints, this
330 * means the vector type of a row from A must be the same as the
331 * vector the type of B.
332 */
333 if (type_a->row_type() == type_b) {
334 /* The resulting vector has a number of elements equal to
335 * the number of rows of matrix A. */
336 const glsl_type *const type =
337 glsl_type::get_instance(type_a->base_type,
338 type_a->column_type()->vector_elements,
339 1);
340 assert(type != glsl_type::error_type);
341
342 return type;
343 }
344 } else {
345 assert(type_b->is_matrix());
346
347 /* A is a row vector and B is a matrix. Columns of A must match rows
348 * of B. Given the other previously tested constraints, this means
349 * the type of A must be the same as the vector type of a column from
350 * B.
351 */
352 if (type_a == type_b->column_type()) {
353 /* The resulting vector has a number of elements equal to
354 * the number of columns of matrix B. */
355 const glsl_type *const type =
356 glsl_type::get_instance(type_a->base_type,
357 type_b->row_type()->vector_elements,
358 1);
359 assert(type != glsl_type::error_type);
360
361 return type;
362 }
363 }
364
365 _mesa_glsl_error(loc, state, "size mismatch for matrix multiplication");
366 return glsl_type::error_type;
367 }
368
369
370 /* "All other cases are illegal."
371 */
372 _mesa_glsl_error(loc, state, "type mismatch");
373 return glsl_type::error_type;
374 }
375
376
377 static const struct glsl_type *
378 unary_arithmetic_result_type(const struct glsl_type *type,
379 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
380 {
381 /* From GLSL 1.50 spec, page 57:
382 *
383 * "The arithmetic unary operators negate (-), post- and pre-increment
384 * and decrement (-- and ++) operate on integer or floating-point
385 * values (including vectors and matrices). All unary operators work
386 * component-wise on their operands. These result with the same type
387 * they operated on."
388 */
389 if (!type->is_numeric()) {
390 _mesa_glsl_error(loc, state,
391 "operands to arithmetic operators must be numeric");
392 return glsl_type::error_type;
393 }
394
395 return type;
396 }
397
398 /**
399 * \brief Return the result type of a bit-logic operation.
400 *
401 * If the given types to the bit-logic operator are invalid, return
402 * glsl_type::error_type.
403 *
404 * \param type_a Type of LHS of bit-logic op
405 * \param type_b Type of RHS of bit-logic op
406 */
407 static const struct glsl_type *
408 bit_logic_result_type(const struct glsl_type *type_a,
409 const struct glsl_type *type_b,
410 ast_operators op,
411 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
412 {
413 if (!state->check_bitwise_operations_allowed(loc)) {
414 return glsl_type::error_type;
415 }
416
417 /* From page 50 (page 56 of PDF) of GLSL 1.30 spec:
418 *
419 * "The bitwise operators and (&), exclusive-or (^), and inclusive-or
420 * (|). The operands must be of type signed or unsigned integers or
421 * integer vectors."
422 */
423 if (!type_a->is_integer()) {
424 _mesa_glsl_error(loc, state, "LHS of `%s' must be an integer",
425 ast_expression::operator_string(op));
426 return glsl_type::error_type;
427 }
428 if (!type_b->is_integer()) {
429 _mesa_glsl_error(loc, state, "RHS of `%s' must be an integer",
430 ast_expression::operator_string(op));
431 return glsl_type::error_type;
432 }
433
434 /* "The fundamental types of the operands (signed or unsigned) must
435 * match,"
436 */
437 if (type_a->base_type != type_b->base_type) {
438 _mesa_glsl_error(loc, state, "operands of `%s' must have the same "
439 "base type", ast_expression::operator_string(op));
440 return glsl_type::error_type;
441 }
442
443 /* "The operands cannot be vectors of differing size." */
444 if (type_a->is_vector() &&
445 type_b->is_vector() &&
446 type_a->vector_elements != type_b->vector_elements) {
447 _mesa_glsl_error(loc, state, "operands of `%s' cannot be vectors of "
448 "different sizes", ast_expression::operator_string(op));
449 return glsl_type::error_type;
450 }
451
452 /* "If one operand is a scalar and the other a vector, the scalar is
453 * applied component-wise to the vector, resulting in the same type as
454 * the vector. The fundamental types of the operands [...] will be the
455 * resulting fundamental type."
456 */
457 if (type_a->is_scalar())
458 return type_b;
459 else
460 return type_a;
461 }
462
463 static const struct glsl_type *
464 modulus_result_type(const struct glsl_type *type_a,
465 const struct glsl_type *type_b,
466 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
467 {
468 if (!state->check_version(130, 300, loc, "operator '%%' is reserved")) {
469 return glsl_type::error_type;
470 }
471
472 /* From GLSL 1.50 spec, page 56:
473 * "The operator modulus (%) operates on signed or unsigned integers or
474 * integer vectors. The operand types must both be signed or both be
475 * unsigned."
476 */
477 if (!type_a->is_integer()) {
478 _mesa_glsl_error(loc, state, "LHS of operator %% must be an integer");
479 return glsl_type::error_type;
480 }
481 if (!type_b->is_integer()) {
482 _mesa_glsl_error(loc, state, "RHS of operator %% must be an integer");
483 return glsl_type::error_type;
484 }
485 if (type_a->base_type != type_b->base_type) {
486 _mesa_glsl_error(loc, state,
487 "operands of %% must have the same base type");
488 return glsl_type::error_type;
489 }
490
491 /* "The operands cannot be vectors of differing size. If one operand is
492 * a scalar and the other vector, then the scalar is applied component-
493 * wise to the vector, resulting in the same type as the vector. If both
494 * are vectors of the same size, the result is computed component-wise."
495 */
496 if (type_a->is_vector()) {
497 if (!type_b->is_vector()
498 || (type_a->vector_elements == type_b->vector_elements))
499 return type_a;
500 } else
501 return type_b;
502
503 /* "The operator modulus (%) is not defined for any other data types
504 * (non-integer types)."
505 */
506 _mesa_glsl_error(loc, state, "type mismatch");
507 return glsl_type::error_type;
508 }
509
510
511 static const struct glsl_type *
512 relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
513 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
514 {
515 const glsl_type *type_a = value_a->type;
516 const glsl_type *type_b = value_b->type;
517
518 /* From GLSL 1.50 spec, page 56:
519 * "The relational operators greater than (>), less than (<), greater
520 * than or equal (>=), and less than or equal (<=) operate only on
521 * scalar integer and scalar floating-point expressions."
522 */
523 if (!type_a->is_numeric()
524 || !type_b->is_numeric()
525 || !type_a->is_scalar()
526 || !type_b->is_scalar()) {
527 _mesa_glsl_error(loc, state,
528 "operands to relational operators must be scalar and "
529 "numeric");
530 return glsl_type::error_type;
531 }
532
533 /* "Either the operands' types must match, or the conversions from
534 * Section 4.1.10 "Implicit Conversions" will be applied to the integer
535 * operand, after which the types must match."
536 */
537 if (!apply_implicit_conversion(type_a, value_b, state)
538 && !apply_implicit_conversion(type_b, value_a, state)) {
539 _mesa_glsl_error(loc, state,
540 "could not implicitly convert operands to "
541 "relational operator");
542 return glsl_type::error_type;
543 }
544 type_a = value_a->type;
545 type_b = value_b->type;
546
547 if (type_a->base_type != type_b->base_type) {
548 _mesa_glsl_error(loc, state, "base type mismatch");
549 return glsl_type::error_type;
550 }
551
552 /* "The result is scalar Boolean."
553 */
554 return glsl_type::bool_type;
555 }
556
557 /**
558 * \brief Return the result type of a bit-shift operation.
559 *
560 * If the given types to the bit-shift operator are invalid, return
561 * glsl_type::error_type.
562 *
563 * \param type_a Type of LHS of bit-shift op
564 * \param type_b Type of RHS of bit-shift op
565 */
566 static const struct glsl_type *
567 shift_result_type(const struct glsl_type *type_a,
568 const struct glsl_type *type_b,
569 ast_operators op,
570 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
571 {
572 if (!state->check_bitwise_operations_allowed(loc)) {
573 return glsl_type::error_type;
574 }
575
576 /* From page 50 (page 56 of the PDF) of the GLSL 1.30 spec:
577 *
578 * "The shift operators (<<) and (>>). For both operators, the operands
579 * must be signed or unsigned integers or integer vectors. One operand
580 * can be signed while the other is unsigned."
581 */
582 if (!type_a->is_integer()) {
583 _mesa_glsl_error(loc, state, "LHS of operator %s must be an integer or "
584 "integer vector", ast_expression::operator_string(op));
585 return glsl_type::error_type;
586
587 }
588 if (!type_b->is_integer()) {
589 _mesa_glsl_error(loc, state, "RHS of operator %s must be an integer or "
590 "integer vector", ast_expression::operator_string(op));
591 return glsl_type::error_type;
592 }
593
594 /* "If the first operand is a scalar, the second operand has to be
595 * a scalar as well."
596 */
597 if (type_a->is_scalar() && !type_b->is_scalar()) {
598 _mesa_glsl_error(loc, state, "if the first operand of %s is scalar, the "
599 "second must be scalar as well",
600 ast_expression::operator_string(op));
601 return glsl_type::error_type;
602 }
603
604 /* If both operands are vectors, check that they have same number of
605 * elements.
606 */
607 if (type_a->is_vector() &&
608 type_b->is_vector() &&
609 type_a->vector_elements != type_b->vector_elements) {
610 _mesa_glsl_error(loc, state, "vector operands to operator %s must "
611 "have same number of elements",
612 ast_expression::operator_string(op));
613 return glsl_type::error_type;
614 }
615
616 /* "In all cases, the resulting type will be the same type as the left
617 * operand."
618 */
619 return type_a;
620 }
621
622 /**
623 * Validates that a value can be assigned to a location with a specified type
624 *
625 * Validates that \c rhs can be assigned to some location. If the types are
626 * not an exact match but an automatic conversion is possible, \c rhs will be
627 * converted.
628 *
629 * \return
630 * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
631 * Otherwise the actual RHS to be assigned will be returned. This may be
632 * \c rhs, or it may be \c rhs after some type conversion.
633 *
634 * \note
635 * In addition to being used for assignments, this function is used to
636 * type-check return values.
637 */
638 ir_rvalue *
639 validate_assignment(struct _mesa_glsl_parse_state *state,
640 const glsl_type *lhs_type, ir_rvalue *rhs,
641 bool is_initializer)
642 {
643 /* If there is already some error in the RHS, just return it. Anything
644 * else will lead to an avalanche of error message back to the user.
645 */
646 if (rhs->type->is_error())
647 return rhs;
648
649 /* If the types are identical, the assignment can trivially proceed.
650 */
651 if (rhs->type == lhs_type)
652 return rhs;
653
654 /* If the array element types are the same and the size of the LHS is zero,
655 * the assignment is okay for initializers embedded in variable
656 * declarations.
657 *
658 * Note: Whole-array assignments are not permitted in GLSL 1.10, but this
659 * is handled by ir_dereference::is_lvalue.
660 */
661 if (is_initializer && lhs_type->is_array() && rhs->type->is_array()
662 && (lhs_type->element_type() == rhs->type->element_type())
663 && (lhs_type->array_size() == 0)) {
664 return rhs;
665 }
666
667 /* Check for implicit conversion in GLSL 1.20 */
668 if (apply_implicit_conversion(lhs_type, rhs, state)) {
669 if (rhs->type == lhs_type)
670 return rhs;
671 }
672
673 return NULL;
674 }
675
676 static void
677 mark_whole_array_access(ir_rvalue *access)
678 {
679 ir_dereference_variable *deref = access->as_dereference_variable();
680
681 if (deref && deref->var) {
682 deref->var->max_array_access = deref->type->length - 1;
683 }
684 }
685
686 ir_rvalue *
687 do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state,
688 const char *non_lvalue_description,
689 ir_rvalue *lhs, ir_rvalue *rhs, bool is_initializer,
690 YYLTYPE lhs_loc)
691 {
692 void *ctx = state;
693 bool error_emitted = (lhs->type->is_error() || rhs->type->is_error());
694
695 /* If the assignment LHS comes back as an ir_binop_vector_extract
696 * expression, move it to the RHS as an ir_triop_vector_insert.
697 */
698 if (lhs->ir_type == ir_type_expression) {
699 ir_expression *const expr = lhs->as_expression();
700
701 if (unlikely(expr->operation == ir_binop_vector_extract)) {
702 ir_rvalue *new_rhs =
703 validate_assignment(state, lhs->type, rhs, is_initializer);
704
705 if (new_rhs == NULL) {
706 _mesa_glsl_error(& lhs_loc, state, "type mismatch");
707 return lhs;
708 } else {
709 rhs = new(ctx) ir_expression(ir_triop_vector_insert,
710 expr->operands[0]->type,
711 expr->operands[0],
712 new_rhs,
713 expr->operands[1]);
714 lhs = expr->operands[0]->clone(ctx, NULL);
715 }
716 }
717 }
718
719 ir_variable *lhs_var = lhs->variable_referenced();
720 if (lhs_var)
721 lhs_var->assigned = true;
722
723 if (!error_emitted) {
724 if (non_lvalue_description != NULL) {
725 _mesa_glsl_error(&lhs_loc, state,
726 "assignment to %s",
727 non_lvalue_description);
728 error_emitted = true;
729 } else if (lhs->variable_referenced() != NULL
730 && lhs->variable_referenced()->read_only) {
731 _mesa_glsl_error(&lhs_loc, state,
732 "assignment to read-only variable '%s'",
733 lhs->variable_referenced()->name);
734 error_emitted = true;
735
736 } else if (lhs->type->is_array() &&
737 !state->check_version(120, 300, &lhs_loc,
738 "whole array assignment forbidden")) {
739 /* From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
740 *
741 * "Other binary or unary expressions, non-dereferenced
742 * arrays, function names, swizzles with repeated fields,
743 * and constants cannot be l-values."
744 *
745 * The restriction on arrays is lifted in GLSL 1.20 and GLSL ES 3.00.
746 */
747 error_emitted = true;
748 } else if (!lhs->is_lvalue()) {
749 _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment");
750 error_emitted = true;
751 }
752 }
753
754 ir_rvalue *new_rhs =
755 validate_assignment(state, lhs->type, rhs, is_initializer);
756 if (new_rhs == NULL) {
757 _mesa_glsl_error(& lhs_loc, state, "type mismatch");
758 } else {
759 rhs = new_rhs;
760
761 /* If the LHS array was not declared with a size, it takes it size from
762 * the RHS. If the LHS is an l-value and a whole array, it must be a
763 * dereference of a variable. Any other case would require that the LHS
764 * is either not an l-value or not a whole array.
765 */
766 if (lhs->type->array_size() == 0) {
767 ir_dereference *const d = lhs->as_dereference();
768
769 assert(d != NULL);
770
771 ir_variable *const var = d->variable_referenced();
772
773 assert(var != NULL);
774
775 if (var->max_array_access >= unsigned(rhs->type->array_size())) {
776 /* FINISHME: This should actually log the location of the RHS. */
777 _mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to "
778 "previous access",
779 var->max_array_access);
780 }
781
782 var->type = glsl_type::get_array_instance(lhs->type->element_type(),
783 rhs->type->array_size());
784 d->type = var->type;
785 }
786 mark_whole_array_access(rhs);
787 mark_whole_array_access(lhs);
788 }
789
790 /* Most callers of do_assignment (assign, add_assign, pre_inc/dec,
791 * but not post_inc) need the converted assigned value as an rvalue
792 * to handle things like:
793 *
794 * i = j += 1;
795 *
796 * So we always just store the computed value being assigned to a
797 * temporary and return a deref of that temporary. If the rvalue
798 * ends up not being used, the temp will get copy-propagated out.
799 */
800 ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp",
801 ir_var_temporary);
802 ir_dereference_variable *deref_var = new(ctx) ir_dereference_variable(var);
803 instructions->push_tail(var);
804 instructions->push_tail(new(ctx) ir_assignment(deref_var, rhs));
805 deref_var = new(ctx) ir_dereference_variable(var);
806
807 if (!error_emitted)
808 instructions->push_tail(new(ctx) ir_assignment(lhs, deref_var));
809
810 return new(ctx) ir_dereference_variable(var);
811 }
812
813 static ir_rvalue *
814 get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue)
815 {
816 void *ctx = ralloc_parent(lvalue);
817 ir_variable *var;
818
819 var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp",
820 ir_var_temporary);
821 instructions->push_tail(var);
822 var->mode = ir_var_auto;
823
824 instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
825 lvalue));
826
827 return new(ctx) ir_dereference_variable(var);
828 }
829
830
831 ir_rvalue *
832 ast_node::hir(exec_list *instructions,
833 struct _mesa_glsl_parse_state *state)
834 {
835 (void) instructions;
836 (void) state;
837
838 return NULL;
839 }
840
841 static ir_rvalue *
842 do_comparison(void *mem_ctx, int operation, ir_rvalue *op0, ir_rvalue *op1)
843 {
844 int join_op;
845 ir_rvalue *cmp = NULL;
846
847 if (operation == ir_binop_all_equal)
848 join_op = ir_binop_logic_and;
849 else
850 join_op = ir_binop_logic_or;
851
852 switch (op0->type->base_type) {
853 case GLSL_TYPE_FLOAT:
854 case GLSL_TYPE_UINT:
855 case GLSL_TYPE_INT:
856 case GLSL_TYPE_BOOL:
857 return new(mem_ctx) ir_expression(operation, op0, op1);
858
859 case GLSL_TYPE_ARRAY: {
860 for (unsigned int i = 0; i < op0->type->length; i++) {
861 ir_rvalue *e0, *e1, *result;
862
863 e0 = new(mem_ctx) ir_dereference_array(op0->clone(mem_ctx, NULL),
864 new(mem_ctx) ir_constant(i));
865 e1 = new(mem_ctx) ir_dereference_array(op1->clone(mem_ctx, NULL),
866 new(mem_ctx) ir_constant(i));
867 result = do_comparison(mem_ctx, operation, e0, e1);
868
869 if (cmp) {
870 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
871 } else {
872 cmp = result;
873 }
874 }
875
876 mark_whole_array_access(op0);
877 mark_whole_array_access(op1);
878 break;
879 }
880
881 case GLSL_TYPE_STRUCT: {
882 for (unsigned int i = 0; i < op0->type->length; i++) {
883 ir_rvalue *e0, *e1, *result;
884 const char *field_name = op0->type->fields.structure[i].name;
885
886 e0 = new(mem_ctx) ir_dereference_record(op0->clone(mem_ctx, NULL),
887 field_name);
888 e1 = new(mem_ctx) ir_dereference_record(op1->clone(mem_ctx, NULL),
889 field_name);
890 result = do_comparison(mem_ctx, operation, e0, e1);
891
892 if (cmp) {
893 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
894 } else {
895 cmp = result;
896 }
897 }
898 break;
899 }
900
901 case GLSL_TYPE_ERROR:
902 case GLSL_TYPE_VOID:
903 case GLSL_TYPE_SAMPLER:
904 case GLSL_TYPE_INTERFACE:
905 /* I assume a comparison of a struct containing a sampler just
906 * ignores the sampler present in the type.
907 */
908 break;
909 }
910
911 if (cmp == NULL)
912 cmp = new(mem_ctx) ir_constant(true);
913
914 return cmp;
915 }
916
917 /* For logical operations, we want to ensure that the operands are
918 * scalar booleans. If it isn't, emit an error and return a constant
919 * boolean to avoid triggering cascading error messages.
920 */
921 ir_rvalue *
922 get_scalar_boolean_operand(exec_list *instructions,
923 struct _mesa_glsl_parse_state *state,
924 ast_expression *parent_expr,
925 int operand,
926 const char *operand_name,
927 bool *error_emitted)
928 {
929 ast_expression *expr = parent_expr->subexpressions[operand];
930 void *ctx = state;
931 ir_rvalue *val = expr->hir(instructions, state);
932
933 if (val->type->is_boolean() && val->type->is_scalar())
934 return val;
935
936 if (!*error_emitted) {
937 YYLTYPE loc = expr->get_location();
938 _mesa_glsl_error(&loc, state, "%s of `%s' must be scalar boolean",
939 operand_name,
940 parent_expr->operator_string(parent_expr->oper));
941 *error_emitted = true;
942 }
943
944 return new(ctx) ir_constant(true);
945 }
946
947 /**
948 * If name refers to a builtin array whose maximum allowed size is less than
949 * size, report an error and return true. Otherwise return false.
950 */
951 void
952 check_builtin_array_max_size(const char *name, unsigned size,
953 YYLTYPE loc, struct _mesa_glsl_parse_state *state)
954 {
955 if ((strcmp("gl_TexCoord", name) == 0)
956 && (size > state->Const.MaxTextureCoords)) {
957 /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec:
958 *
959 * "The size [of gl_TexCoord] can be at most
960 * gl_MaxTextureCoords."
961 */
962 _mesa_glsl_error(&loc, state, "`gl_TexCoord' array size cannot "
963 "be larger than gl_MaxTextureCoords (%u)",
964 state->Const.MaxTextureCoords);
965 } else if (strcmp("gl_ClipDistance", name) == 0
966 && size > state->Const.MaxClipPlanes) {
967 /* From section 7.1 (Vertex Shader Special Variables) of the
968 * GLSL 1.30 spec:
969 *
970 * "The gl_ClipDistance array is predeclared as unsized and
971 * must be sized by the shader either redeclaring it with a
972 * size or indexing it only with integral constant
973 * expressions. ... The size can be at most
974 * gl_MaxClipDistances."
975 */
976 _mesa_glsl_error(&loc, state, "`gl_ClipDistance' array size cannot "
977 "be larger than gl_MaxClipDistances (%u)",
978 state->Const.MaxClipPlanes);
979 }
980 }
981
982 /**
983 * Create the constant 1, of a which is appropriate for incrementing and
984 * decrementing values of the given GLSL type. For example, if type is vec4,
985 * this creates a constant value of 1.0 having type float.
986 *
987 * If the given type is invalid for increment and decrement operators, return
988 * a floating point 1--the error will be detected later.
989 */
990 static ir_rvalue *
991 constant_one_for_inc_dec(void *ctx, const glsl_type *type)
992 {
993 switch (type->base_type) {
994 case GLSL_TYPE_UINT:
995 return new(ctx) ir_constant((unsigned) 1);
996 case GLSL_TYPE_INT:
997 return new(ctx) ir_constant(1);
998 default:
999 case GLSL_TYPE_FLOAT:
1000 return new(ctx) ir_constant(1.0f);
1001 }
1002 }
1003
1004 ir_rvalue *
1005 ast_expression::hir(exec_list *instructions,
1006 struct _mesa_glsl_parse_state *state)
1007 {
1008 void *ctx = state;
1009 static const int operations[AST_NUM_OPERATORS] = {
1010 -1, /* ast_assign doesn't convert to ir_expression. */
1011 -1, /* ast_plus doesn't convert to ir_expression. */
1012 ir_unop_neg,
1013 ir_binop_add,
1014 ir_binop_sub,
1015 ir_binop_mul,
1016 ir_binop_div,
1017 ir_binop_mod,
1018 ir_binop_lshift,
1019 ir_binop_rshift,
1020 ir_binop_less,
1021 ir_binop_greater,
1022 ir_binop_lequal,
1023 ir_binop_gequal,
1024 ir_binop_all_equal,
1025 ir_binop_any_nequal,
1026 ir_binop_bit_and,
1027 ir_binop_bit_xor,
1028 ir_binop_bit_or,
1029 ir_unop_bit_not,
1030 ir_binop_logic_and,
1031 ir_binop_logic_xor,
1032 ir_binop_logic_or,
1033 ir_unop_logic_not,
1034
1035 /* Note: The following block of expression types actually convert
1036 * to multiple IR instructions.
1037 */
1038 ir_binop_mul, /* ast_mul_assign */
1039 ir_binop_div, /* ast_div_assign */
1040 ir_binop_mod, /* ast_mod_assign */
1041 ir_binop_add, /* ast_add_assign */
1042 ir_binop_sub, /* ast_sub_assign */
1043 ir_binop_lshift, /* ast_ls_assign */
1044 ir_binop_rshift, /* ast_rs_assign */
1045 ir_binop_bit_and, /* ast_and_assign */
1046 ir_binop_bit_xor, /* ast_xor_assign */
1047 ir_binop_bit_or, /* ast_or_assign */
1048
1049 -1, /* ast_conditional doesn't convert to ir_expression. */
1050 ir_binop_add, /* ast_pre_inc. */
1051 ir_binop_sub, /* ast_pre_dec. */
1052 ir_binop_add, /* ast_post_inc. */
1053 ir_binop_sub, /* ast_post_dec. */
1054 -1, /* ast_field_selection doesn't conv to ir_expression. */
1055 -1, /* ast_array_index doesn't convert to ir_expression. */
1056 -1, /* ast_function_call doesn't conv to ir_expression. */
1057 -1, /* ast_identifier doesn't convert to ir_expression. */
1058 -1, /* ast_int_constant doesn't convert to ir_expression. */
1059 -1, /* ast_uint_constant doesn't conv to ir_expression. */
1060 -1, /* ast_float_constant doesn't conv to ir_expression. */
1061 -1, /* ast_bool_constant doesn't conv to ir_expression. */
1062 -1, /* ast_sequence doesn't convert to ir_expression. */
1063 };
1064 ir_rvalue *result = NULL;
1065 ir_rvalue *op[3];
1066 const struct glsl_type *type; /* a temporary variable for switch cases */
1067 bool error_emitted = false;
1068 YYLTYPE loc;
1069
1070 loc = this->get_location();
1071
1072 switch (this->oper) {
1073 case ast_aggregate:
1074 assert(!"ast_aggregate: Should never get here.");
1075 break;
1076
1077 case ast_assign: {
1078 op[0] = this->subexpressions[0]->hir(instructions, state);
1079 op[1] = this->subexpressions[1]->hir(instructions, state);
1080
1081 result = do_assignment(instructions, state,
1082 this->subexpressions[0]->non_lvalue_description,
1083 op[0], op[1], false,
1084 this->subexpressions[0]->get_location());
1085 error_emitted = result->type->is_error();
1086 break;
1087 }
1088
1089 case ast_plus:
1090 op[0] = this->subexpressions[0]->hir(instructions, state);
1091
1092 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1093
1094 error_emitted = type->is_error();
1095
1096 result = op[0];
1097 break;
1098
1099 case ast_neg:
1100 op[0] = this->subexpressions[0]->hir(instructions, state);
1101
1102 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1103
1104 error_emitted = type->is_error();
1105
1106 result = new(ctx) ir_expression(operations[this->oper], type,
1107 op[0], NULL);
1108 break;
1109
1110 case ast_add:
1111 case ast_sub:
1112 case ast_mul:
1113 case ast_div:
1114 op[0] = this->subexpressions[0]->hir(instructions, state);
1115 op[1] = this->subexpressions[1]->hir(instructions, state);
1116
1117 type = arithmetic_result_type(op[0], op[1],
1118 (this->oper == ast_mul),
1119 state, & loc);
1120 error_emitted = type->is_error();
1121
1122 result = new(ctx) ir_expression(operations[this->oper], type,
1123 op[0], op[1]);
1124 break;
1125
1126 case ast_mod:
1127 op[0] = this->subexpressions[0]->hir(instructions, state);
1128 op[1] = this->subexpressions[1]->hir(instructions, state);
1129
1130 type = modulus_result_type(op[0]->type, op[1]->type, state, & loc);
1131
1132 assert(operations[this->oper] == ir_binop_mod);
1133
1134 result = new(ctx) ir_expression(operations[this->oper], type,
1135 op[0], op[1]);
1136 error_emitted = type->is_error();
1137 break;
1138
1139 case ast_lshift:
1140 case ast_rshift:
1141 if (!state->check_bitwise_operations_allowed(&loc)) {
1142 error_emitted = true;
1143 }
1144
1145 op[0] = this->subexpressions[0]->hir(instructions, state);
1146 op[1] = this->subexpressions[1]->hir(instructions, state);
1147 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1148 &loc);
1149 result = new(ctx) ir_expression(operations[this->oper], type,
1150 op[0], op[1]);
1151 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1152 break;
1153
1154 case ast_less:
1155 case ast_greater:
1156 case ast_lequal:
1157 case ast_gequal:
1158 op[0] = this->subexpressions[0]->hir(instructions, state);
1159 op[1] = this->subexpressions[1]->hir(instructions, state);
1160
1161 type = relational_result_type(op[0], op[1], state, & loc);
1162
1163 /* The relational operators must either generate an error or result
1164 * in a scalar boolean. See page 57 of the GLSL 1.50 spec.
1165 */
1166 assert(type->is_error()
1167 || ((type->base_type == GLSL_TYPE_BOOL)
1168 && type->is_scalar()));
1169
1170 result = new(ctx) ir_expression(operations[this->oper], type,
1171 op[0], op[1]);
1172 error_emitted = type->is_error();
1173 break;
1174
1175 case ast_nequal:
1176 case ast_equal:
1177 op[0] = this->subexpressions[0]->hir(instructions, state);
1178 op[1] = this->subexpressions[1]->hir(instructions, state);
1179
1180 /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
1181 *
1182 * "The equality operators equal (==), and not equal (!=)
1183 * operate on all types. They result in a scalar Boolean. If
1184 * the operand types do not match, then there must be a
1185 * conversion from Section 4.1.10 "Implicit Conversions"
1186 * applied to one operand that can make them match, in which
1187 * case this conversion is done."
1188 */
1189 if ((!apply_implicit_conversion(op[0]->type, op[1], state)
1190 && !apply_implicit_conversion(op[1]->type, op[0], state))
1191 || (op[0]->type != op[1]->type)) {
1192 _mesa_glsl_error(& loc, state, "operands of `%s' must have the same "
1193 "type", (this->oper == ast_equal) ? "==" : "!=");
1194 error_emitted = true;
1195 } else if ((op[0]->type->is_array() || op[1]->type->is_array()) &&
1196 !state->check_version(120, 300, &loc,
1197 "array comparisons forbidden")) {
1198 error_emitted = true;
1199 }
1200
1201 if (error_emitted) {
1202 result = new(ctx) ir_constant(false);
1203 } else {
1204 result = do_comparison(ctx, operations[this->oper], op[0], op[1]);
1205 assert(result->type == glsl_type::bool_type);
1206 }
1207 break;
1208
1209 case ast_bit_and:
1210 case ast_bit_xor:
1211 case ast_bit_or:
1212 op[0] = this->subexpressions[0]->hir(instructions, state);
1213 op[1] = this->subexpressions[1]->hir(instructions, state);
1214 type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
1215 state, &loc);
1216 result = new(ctx) ir_expression(operations[this->oper], type,
1217 op[0], op[1]);
1218 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1219 break;
1220
1221 case ast_bit_not:
1222 op[0] = this->subexpressions[0]->hir(instructions, state);
1223
1224 if (!state->check_bitwise_operations_allowed(&loc)) {
1225 error_emitted = true;
1226 }
1227
1228 if (!op[0]->type->is_integer()) {
1229 _mesa_glsl_error(&loc, state, "operand of `~' must be an integer");
1230 error_emitted = true;
1231 }
1232
1233 type = error_emitted ? glsl_type::error_type : op[0]->type;
1234 result = new(ctx) ir_expression(ir_unop_bit_not, type, op[0], NULL);
1235 break;
1236
1237 case ast_logic_and: {
1238 exec_list rhs_instructions;
1239 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1240 "LHS", &error_emitted);
1241 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1242 "RHS", &error_emitted);
1243
1244 if (rhs_instructions.is_empty()) {
1245 result = new(ctx) ir_expression(ir_binop_logic_and, op[0], op[1]);
1246 type = result->type;
1247 } else {
1248 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1249 "and_tmp",
1250 ir_var_temporary);
1251 instructions->push_tail(tmp);
1252
1253 ir_if *const stmt = new(ctx) ir_if(op[0]);
1254 instructions->push_tail(stmt);
1255
1256 stmt->then_instructions.append_list(&rhs_instructions);
1257 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1258 ir_assignment *const then_assign =
1259 new(ctx) ir_assignment(then_deref, op[1]);
1260 stmt->then_instructions.push_tail(then_assign);
1261
1262 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1263 ir_assignment *const else_assign =
1264 new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false));
1265 stmt->else_instructions.push_tail(else_assign);
1266
1267 result = new(ctx) ir_dereference_variable(tmp);
1268 type = tmp->type;
1269 }
1270 break;
1271 }
1272
1273 case ast_logic_or: {
1274 exec_list rhs_instructions;
1275 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1276 "LHS", &error_emitted);
1277 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1278 "RHS", &error_emitted);
1279
1280 if (rhs_instructions.is_empty()) {
1281 result = new(ctx) ir_expression(ir_binop_logic_or, op[0], op[1]);
1282 type = result->type;
1283 } else {
1284 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1285 "or_tmp",
1286 ir_var_temporary);
1287 instructions->push_tail(tmp);
1288
1289 ir_if *const stmt = new(ctx) ir_if(op[0]);
1290 instructions->push_tail(stmt);
1291
1292 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1293 ir_assignment *const then_assign =
1294 new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true));
1295 stmt->then_instructions.push_tail(then_assign);
1296
1297 stmt->else_instructions.append_list(&rhs_instructions);
1298 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1299 ir_assignment *const else_assign =
1300 new(ctx) ir_assignment(else_deref, op[1]);
1301 stmt->else_instructions.push_tail(else_assign);
1302
1303 result = new(ctx) ir_dereference_variable(tmp);
1304 type = tmp->type;
1305 }
1306 break;
1307 }
1308
1309 case ast_logic_xor:
1310 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1311 *
1312 * "The logical binary operators and (&&), or ( | | ), and
1313 * exclusive or (^^). They operate only on two Boolean
1314 * expressions and result in a Boolean expression."
1315 */
1316 op[0] = get_scalar_boolean_operand(instructions, state, this, 0, "LHS",
1317 &error_emitted);
1318 op[1] = get_scalar_boolean_operand(instructions, state, this, 1, "RHS",
1319 &error_emitted);
1320
1321 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1322 op[0], op[1]);
1323 break;
1324
1325 case ast_logic_not:
1326 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1327 "operand", &error_emitted);
1328
1329 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1330 op[0], NULL);
1331 break;
1332
1333 case ast_mul_assign:
1334 case ast_div_assign:
1335 case ast_add_assign:
1336 case ast_sub_assign: {
1337 op[0] = this->subexpressions[0]->hir(instructions, state);
1338 op[1] = this->subexpressions[1]->hir(instructions, state);
1339
1340 type = arithmetic_result_type(op[0], op[1],
1341 (this->oper == ast_mul_assign),
1342 state, & loc);
1343
1344 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1345 op[0], op[1]);
1346
1347 result = do_assignment(instructions, state,
1348 this->subexpressions[0]->non_lvalue_description,
1349 op[0]->clone(ctx, NULL), temp_rhs, false,
1350 this->subexpressions[0]->get_location());
1351 error_emitted = (op[0]->type->is_error());
1352
1353 /* GLSL 1.10 does not allow array assignment. However, we don't have to
1354 * explicitly test for this because none of the binary expression
1355 * operators allow array operands either.
1356 */
1357
1358 break;
1359 }
1360
1361 case ast_mod_assign: {
1362 op[0] = this->subexpressions[0]->hir(instructions, state);
1363 op[1] = this->subexpressions[1]->hir(instructions, state);
1364
1365 type = modulus_result_type(op[0]->type, op[1]->type, state, & loc);
1366
1367 assert(operations[this->oper] == ir_binop_mod);
1368
1369 ir_rvalue *temp_rhs;
1370 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1371 op[0], op[1]);
1372
1373 result = do_assignment(instructions, state,
1374 this->subexpressions[0]->non_lvalue_description,
1375 op[0]->clone(ctx, NULL), temp_rhs, false,
1376 this->subexpressions[0]->get_location());
1377 error_emitted = type->is_error();
1378 break;
1379 }
1380
1381 case ast_ls_assign:
1382 case ast_rs_assign: {
1383 op[0] = this->subexpressions[0]->hir(instructions, state);
1384 op[1] = this->subexpressions[1]->hir(instructions, state);
1385 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1386 &loc);
1387 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1388 type, op[0], op[1]);
1389 result = do_assignment(instructions, state,
1390 this->subexpressions[0]->non_lvalue_description,
1391 op[0]->clone(ctx, NULL), temp_rhs, false,
1392 this->subexpressions[0]->get_location());
1393 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1394 break;
1395 }
1396
1397 case ast_and_assign:
1398 case ast_xor_assign:
1399 case ast_or_assign: {
1400 op[0] = this->subexpressions[0]->hir(instructions, state);
1401 op[1] = this->subexpressions[1]->hir(instructions, state);
1402 type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
1403 state, &loc);
1404 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1405 type, op[0], op[1]);
1406 result = do_assignment(instructions, state,
1407 this->subexpressions[0]->non_lvalue_description,
1408 op[0]->clone(ctx, NULL), temp_rhs, false,
1409 this->subexpressions[0]->get_location());
1410 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1411 break;
1412 }
1413
1414 case ast_conditional: {
1415 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1416 *
1417 * "The ternary selection operator (?:). It operates on three
1418 * expressions (exp1 ? exp2 : exp3). This operator evaluates the
1419 * first expression, which must result in a scalar Boolean."
1420 */
1421 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1422 "condition", &error_emitted);
1423
1424 /* The :? operator is implemented by generating an anonymous temporary
1425 * followed by an if-statement. The last instruction in each branch of
1426 * the if-statement assigns a value to the anonymous temporary. This
1427 * temporary is the r-value of the expression.
1428 */
1429 exec_list then_instructions;
1430 exec_list else_instructions;
1431
1432 op[1] = this->subexpressions[1]->hir(&then_instructions, state);
1433 op[2] = this->subexpressions[2]->hir(&else_instructions, state);
1434
1435 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1436 *
1437 * "The second and third expressions can be any type, as
1438 * long their types match, or there is a conversion in
1439 * Section 4.1.10 "Implicit Conversions" that can be applied
1440 * to one of the expressions to make their types match. This
1441 * resulting matching type is the type of the entire
1442 * expression."
1443 */
1444 if ((!apply_implicit_conversion(op[1]->type, op[2], state)
1445 && !apply_implicit_conversion(op[2]->type, op[1], state))
1446 || (op[1]->type != op[2]->type)) {
1447 YYLTYPE loc = this->subexpressions[1]->get_location();
1448
1449 _mesa_glsl_error(& loc, state, "second and third operands of ?: "
1450 "operator must have matching types");
1451 error_emitted = true;
1452 type = glsl_type::error_type;
1453 } else {
1454 type = op[1]->type;
1455 }
1456
1457 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1458 *
1459 * "The second and third expressions must be the same type, but can
1460 * be of any type other than an array."
1461 */
1462 if (type->is_array() &&
1463 !state->check_version(120, 300, &loc,
1464 "second and third operands of ?: operator "
1465 "cannot be arrays")) {
1466 error_emitted = true;
1467 }
1468
1469 ir_constant *cond_val = op[0]->constant_expression_value();
1470 ir_constant *then_val = op[1]->constant_expression_value();
1471 ir_constant *else_val = op[2]->constant_expression_value();
1472
1473 if (then_instructions.is_empty()
1474 && else_instructions.is_empty()
1475 && (cond_val != NULL) && (then_val != NULL) && (else_val != NULL)) {
1476 result = (cond_val->value.b[0]) ? then_val : else_val;
1477 } else {
1478 ir_variable *const tmp =
1479 new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary);
1480 instructions->push_tail(tmp);
1481
1482 ir_if *const stmt = new(ctx) ir_if(op[0]);
1483 instructions->push_tail(stmt);
1484
1485 then_instructions.move_nodes_to(& stmt->then_instructions);
1486 ir_dereference *const then_deref =
1487 new(ctx) ir_dereference_variable(tmp);
1488 ir_assignment *const then_assign =
1489 new(ctx) ir_assignment(then_deref, op[1]);
1490 stmt->then_instructions.push_tail(then_assign);
1491
1492 else_instructions.move_nodes_to(& stmt->else_instructions);
1493 ir_dereference *const else_deref =
1494 new(ctx) ir_dereference_variable(tmp);
1495 ir_assignment *const else_assign =
1496 new(ctx) ir_assignment(else_deref, op[2]);
1497 stmt->else_instructions.push_tail(else_assign);
1498
1499 result = new(ctx) ir_dereference_variable(tmp);
1500 }
1501 break;
1502 }
1503
1504 case ast_pre_inc:
1505 case ast_pre_dec: {
1506 this->non_lvalue_description = (this->oper == ast_pre_inc)
1507 ? "pre-increment operation" : "pre-decrement operation";
1508
1509 op[0] = this->subexpressions[0]->hir(instructions, state);
1510 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1511
1512 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1513
1514 ir_rvalue *temp_rhs;
1515 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1516 op[0], op[1]);
1517
1518 result = do_assignment(instructions, state,
1519 this->subexpressions[0]->non_lvalue_description,
1520 op[0]->clone(ctx, NULL), temp_rhs, false,
1521 this->subexpressions[0]->get_location());
1522 error_emitted = op[0]->type->is_error();
1523 break;
1524 }
1525
1526 case ast_post_inc:
1527 case ast_post_dec: {
1528 this->non_lvalue_description = (this->oper == ast_post_inc)
1529 ? "post-increment operation" : "post-decrement operation";
1530 op[0] = this->subexpressions[0]->hir(instructions, state);
1531 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1532
1533 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1534
1535 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1536
1537 ir_rvalue *temp_rhs;
1538 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1539 op[0], op[1]);
1540
1541 /* Get a temporary of a copy of the lvalue before it's modified.
1542 * This may get thrown away later.
1543 */
1544 result = get_lvalue_copy(instructions, op[0]->clone(ctx, NULL));
1545
1546 (void)do_assignment(instructions, state,
1547 this->subexpressions[0]->non_lvalue_description,
1548 op[0]->clone(ctx, NULL), temp_rhs, false,
1549 this->subexpressions[0]->get_location());
1550
1551 error_emitted = op[0]->type->is_error();
1552 break;
1553 }
1554
1555 case ast_field_selection:
1556 result = _mesa_ast_field_selection_to_hir(this, instructions, state);
1557 break;
1558
1559 case ast_array_index: {
1560 YYLTYPE index_loc = subexpressions[1]->get_location();
1561
1562 op[0] = subexpressions[0]->hir(instructions, state);
1563 op[1] = subexpressions[1]->hir(instructions, state);
1564
1565 result = _mesa_ast_array_index_to_hir(ctx, state, op[0], op[1],
1566 loc, index_loc);
1567
1568 if (result->type->is_error())
1569 error_emitted = true;
1570
1571 break;
1572 }
1573
1574 case ast_function_call:
1575 /* Should *NEVER* get here. ast_function_call should always be handled
1576 * by ast_function_expression::hir.
1577 */
1578 assert(0);
1579 break;
1580
1581 case ast_identifier: {
1582 /* ast_identifier can appear several places in a full abstract syntax
1583 * tree. This particular use must be at location specified in the grammar
1584 * as 'variable_identifier'.
1585 */
1586 ir_variable *var =
1587 state->symbols->get_variable(this->primary_expression.identifier);
1588
1589 if (var != NULL) {
1590 var->used = true;
1591 result = new(ctx) ir_dereference_variable(var);
1592 } else {
1593 _mesa_glsl_error(& loc, state, "`%s' undeclared",
1594 this->primary_expression.identifier);
1595
1596 result = ir_rvalue::error_value(ctx);
1597 error_emitted = true;
1598 }
1599 break;
1600 }
1601
1602 case ast_int_constant:
1603 result = new(ctx) ir_constant(this->primary_expression.int_constant);
1604 break;
1605
1606 case ast_uint_constant:
1607 result = new(ctx) ir_constant(this->primary_expression.uint_constant);
1608 break;
1609
1610 case ast_float_constant:
1611 result = new(ctx) ir_constant(this->primary_expression.float_constant);
1612 break;
1613
1614 case ast_bool_constant:
1615 result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant));
1616 break;
1617
1618 case ast_sequence: {
1619 /* It should not be possible to generate a sequence in the AST without
1620 * any expressions in it.
1621 */
1622 assert(!this->expressions.is_empty());
1623
1624 /* The r-value of a sequence is the last expression in the sequence. If
1625 * the other expressions in the sequence do not have side-effects (and
1626 * therefore add instructions to the instruction list), they get dropped
1627 * on the floor.
1628 */
1629 exec_node *previous_tail_pred = NULL;
1630 YYLTYPE previous_operand_loc = loc;
1631
1632 foreach_list_typed (ast_node, ast, link, &this->expressions) {
1633 /* If one of the operands of comma operator does not generate any
1634 * code, we want to emit a warning. At each pass through the loop
1635 * previous_tail_pred will point to the last instruction in the
1636 * stream *before* processing the previous operand. Naturally,
1637 * instructions->tail_pred will point to the last instruction in the
1638 * stream *after* processing the previous operand. If the two
1639 * pointers match, then the previous operand had no effect.
1640 *
1641 * The warning behavior here differs slightly from GCC. GCC will
1642 * only emit a warning if none of the left-hand operands have an
1643 * effect. However, it will emit a warning for each. I believe that
1644 * there are some cases in C (especially with GCC extensions) where
1645 * it is useful to have an intermediate step in a sequence have no
1646 * effect, but I don't think these cases exist in GLSL. Either way,
1647 * it would be a giant hassle to replicate that behavior.
1648 */
1649 if (previous_tail_pred == instructions->tail_pred) {
1650 _mesa_glsl_warning(&previous_operand_loc, state,
1651 "left-hand operand of comma expression has "
1652 "no effect");
1653 }
1654
1655 /* tail_pred is directly accessed instead of using the get_tail()
1656 * method for performance reasons. get_tail() has extra code to
1657 * return NULL when the list is empty. We don't care about that
1658 * here, so using tail_pred directly is fine.
1659 */
1660 previous_tail_pred = instructions->tail_pred;
1661 previous_operand_loc = ast->get_location();
1662
1663 result = ast->hir(instructions, state);
1664 }
1665
1666 /* Any errors should have already been emitted in the loop above.
1667 */
1668 error_emitted = true;
1669 break;
1670 }
1671 }
1672 type = NULL; /* use result->type, not type. */
1673 assert(result != NULL);
1674
1675 if (result->type->is_error() && !error_emitted)
1676 _mesa_glsl_error(& loc, state, "type mismatch");
1677
1678 return result;
1679 }
1680
1681
1682 ir_rvalue *
1683 ast_expression_statement::hir(exec_list *instructions,
1684 struct _mesa_glsl_parse_state *state)
1685 {
1686 /* It is possible to have expression statements that don't have an
1687 * expression. This is the solitary semicolon:
1688 *
1689 * for (i = 0; i < 5; i++)
1690 * ;
1691 *
1692 * In this case the expression will be NULL. Test for NULL and don't do
1693 * anything in that case.
1694 */
1695 if (expression != NULL)
1696 expression->hir(instructions, state);
1697
1698 /* Statements do not have r-values.
1699 */
1700 return NULL;
1701 }
1702
1703
1704 ir_rvalue *
1705 ast_compound_statement::hir(exec_list *instructions,
1706 struct _mesa_glsl_parse_state *state)
1707 {
1708 if (new_scope)
1709 state->symbols->push_scope();
1710
1711 foreach_list_typed (ast_node, ast, link, &this->statements)
1712 ast->hir(instructions, state);
1713
1714 if (new_scope)
1715 state->symbols->pop_scope();
1716
1717 /* Compound statements do not have r-values.
1718 */
1719 return NULL;
1720 }
1721
1722
1723 static const glsl_type *
1724 process_array_type(YYLTYPE *loc, const glsl_type *base, ast_node *array_size,
1725 struct _mesa_glsl_parse_state *state)
1726 {
1727 unsigned length = 0;
1728
1729 if (base == NULL)
1730 return glsl_type::error_type;
1731
1732 /* From page 19 (page 25) of the GLSL 1.20 spec:
1733 *
1734 * "Only one-dimensional arrays may be declared."
1735 */
1736 if (base->is_array()) {
1737 _mesa_glsl_error(loc, state,
1738 "invalid array of `%s' (only one-dimensional arrays "
1739 "may be declared)",
1740 base->name);
1741 return glsl_type::error_type;
1742 }
1743
1744 if (array_size != NULL) {
1745 exec_list dummy_instructions;
1746 ir_rvalue *const ir = array_size->hir(& dummy_instructions, state);
1747 YYLTYPE loc = array_size->get_location();
1748
1749 if (ir != NULL) {
1750 if (!ir->type->is_integer()) {
1751 _mesa_glsl_error(& loc, state, "array size must be integer type");
1752 } else if (!ir->type->is_scalar()) {
1753 _mesa_glsl_error(& loc, state, "array size must be scalar type");
1754 } else {
1755 ir_constant *const size = ir->constant_expression_value();
1756
1757 if (size == NULL) {
1758 _mesa_glsl_error(& loc, state, "array size must be a "
1759 "constant valued expression");
1760 } else if (size->value.i[0] <= 0) {
1761 _mesa_glsl_error(& loc, state, "array size must be > 0");
1762 } else {
1763 assert(size->type == ir->type);
1764 length = size->value.u[0];
1765
1766 /* If the array size is const (and we've verified that
1767 * it is) then no instructions should have been emitted
1768 * when we converted it to HIR. If they were emitted,
1769 * then either the array size isn't const after all, or
1770 * we are emitting unnecessary instructions.
1771 */
1772 assert(dummy_instructions.is_empty());
1773 }
1774 }
1775 }
1776 }
1777
1778 const glsl_type *array_type = glsl_type::get_array_instance(base, length);
1779 return array_type != NULL ? array_type : glsl_type::error_type;
1780 }
1781
1782
1783 const glsl_type *
1784 ast_type_specifier::glsl_type(const char **name,
1785 struct _mesa_glsl_parse_state *state) const
1786 {
1787 const struct glsl_type *type;
1788
1789 type = state->symbols->get_type(this->type_name);
1790 *name = this->type_name;
1791
1792 if (this->is_array) {
1793 YYLTYPE loc = this->get_location();
1794 type = process_array_type(&loc, type, this->array_size, state);
1795 }
1796
1797 return type;
1798 }
1799
1800 const glsl_type *
1801 ast_fully_specified_type::glsl_type(const char **name,
1802 struct _mesa_glsl_parse_state *state) const
1803 {
1804 const struct glsl_type *type = this->specifier->glsl_type(name, state);
1805
1806 if (type == NULL)
1807 return NULL;
1808
1809 if (type->base_type == GLSL_TYPE_FLOAT
1810 && state->es_shader
1811 && state->target == fragment_shader
1812 && this->qualifier.precision == ast_precision_none
1813 && state->symbols->get_variable("#default precision") == NULL) {
1814 YYLTYPE loc = this->get_location();
1815 _mesa_glsl_error(&loc, state,
1816 "no precision specified this scope for type `%s'",
1817 type->name);
1818 }
1819
1820 return type;
1821 }
1822
1823 /**
1824 * Determine whether a toplevel variable declaration declares a varying. This
1825 * function operates by examining the variable's mode and the shader target,
1826 * so it correctly identifies linkage variables regardless of whether they are
1827 * declared using the deprecated "varying" syntax or the new "in/out" syntax.
1828 *
1829 * Passing a non-toplevel variable declaration (e.g. a function parameter) to
1830 * this function will produce undefined results.
1831 */
1832 static bool
1833 is_varying_var(ir_variable *var, _mesa_glsl_parser_targets target)
1834 {
1835 switch (target) {
1836 case vertex_shader:
1837 return var->mode == ir_var_shader_out;
1838 case fragment_shader:
1839 return var->mode == ir_var_shader_in;
1840 default:
1841 return var->mode == ir_var_shader_out || var->mode == ir_var_shader_in;
1842 }
1843 }
1844
1845
1846 /**
1847 * Matrix layout qualifiers are only allowed on certain types
1848 */
1849 static void
1850 validate_matrix_layout_for_type(struct _mesa_glsl_parse_state *state,
1851 YYLTYPE *loc,
1852 const glsl_type *type)
1853 {
1854 if (!type->is_matrix()) {
1855 /* The OpenGL ES 3.0 conformance tests did not originally allow
1856 * matrix layout qualifiers on non-matrices. However, the OpenGL
1857 * 4.4 and OpenGL ES 3.0 (revision TBD) specifications were
1858 * amended to specifically allow these layouts on all types. Emit
1859 * a warning so that people know their code may not be portable.
1860 */
1861 _mesa_glsl_warning(loc, state,
1862 "uniform block layout qualifiers row_major and "
1863 "column_major applied to non-matrix types may "
1864 "be rejected by older compilers");
1865 } else if (type->is_record()) {
1866 /* We allow 'layout(row_major)' on structure types because it's the only
1867 * way to get row-major layouts on matrices contained in structures.
1868 */
1869 _mesa_glsl_warning(loc, state,
1870 "uniform block layout qualifiers row_major and "
1871 "column_major applied to structure types is not "
1872 "strictly conformant and may be rejected by other "
1873 "compilers");
1874 }
1875 }
1876
1877 static bool
1878 validate_binding_qualifier(struct _mesa_glsl_parse_state *state,
1879 YYLTYPE *loc,
1880 ir_variable *var,
1881 const ast_type_qualifier *qual)
1882 {
1883 if (var->mode != ir_var_uniform) {
1884 _mesa_glsl_error(loc, state,
1885 "the \"binding\" qualifier only applies to uniforms");
1886 return false;
1887 }
1888
1889 if (qual->binding < 0) {
1890 _mesa_glsl_error(loc, state, "binding values must be >= 0");
1891 return false;
1892 }
1893
1894 const struct gl_context *const ctx = state->ctx;
1895 unsigned elements = var->type->is_array() ? var->type->length : 1;
1896 unsigned max_index = qual->binding + elements - 1;
1897
1898 if (var->type->is_interface()) {
1899 /* UBOs. From page 60 of the GLSL 4.20 specification:
1900 * "If the binding point for any uniform block instance is less than zero,
1901 * or greater than or equal to the implementation-dependent maximum
1902 * number of uniform buffer bindings, a compilation error will occur.
1903 * When the binding identifier is used with a uniform block instanced as
1904 * an array of size N, all elements of the array from binding through
1905 * binding + N – 1 must be within this range."
1906 *
1907 * The implementation-dependent maximum is GL_MAX_UNIFORM_BUFFER_BINDINGS.
1908 */
1909 if (max_index >= ctx->Const.MaxUniformBufferBindings) {
1910 _mesa_glsl_error(loc, state, "layout(binding = %d) for %d UBOs exceeds "
1911 "the maximum number of UBO binding points (%d)",
1912 qual->binding, elements,
1913 ctx->Const.MaxUniformBufferBindings);
1914 return false;
1915 }
1916 } else if (var->type->is_sampler() ||
1917 (var->type->is_array() && var->type->fields.array->is_sampler())) {
1918 /* Samplers. From page 63 of the GLSL 4.20 specification:
1919 * "If the binding is less than zero, or greater than or equal to the
1920 * implementation-dependent maximum supported number of units, a
1921 * compilation error will occur. When the binding identifier is used
1922 * with an array of size N, all elements of the array from binding
1923 * through binding + N - 1 must be within this range."
1924 */
1925 unsigned limit;
1926 switch (state->target) {
1927 case vertex_shader:
1928 limit = ctx->Const.VertexProgram.MaxTextureImageUnits;
1929 break;
1930 case geometry_shader:
1931 limit = ctx->Const.GeometryProgram.MaxTextureImageUnits;
1932 break;
1933 case fragment_shader:
1934 limit = ctx->Const.FragmentProgram.MaxTextureImageUnits;
1935 break;
1936 }
1937
1938 if (max_index >= limit) {
1939 _mesa_glsl_error(loc, state, "layout(binding = %d) for %d samplers "
1940 "exceeds the maximum number of texture image units "
1941 "(%d)", qual->binding, elements, limit);
1942
1943 return false;
1944 }
1945 } else {
1946 _mesa_glsl_error(loc, state,
1947 "the \"binding\" qualifier only applies to uniform "
1948 "blocks, samplers, or arrays of samplers");
1949 return false;
1950 }
1951
1952 return true;
1953 }
1954
1955 static void
1956 apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
1957 ir_variable *var,
1958 struct _mesa_glsl_parse_state *state,
1959 YYLTYPE *loc,
1960 bool is_parameter)
1961 {
1962 STATIC_ASSERT(sizeof(qual->flags.q) <= sizeof(qual->flags.i));
1963
1964 if (qual->flags.q.invariant) {
1965 if (var->used) {
1966 _mesa_glsl_error(loc, state,
1967 "variable `%s' may not be redeclared "
1968 "`invariant' after being used",
1969 var->name);
1970 } else {
1971 var->invariant = 1;
1972 }
1973 }
1974
1975 if (qual->flags.q.constant || qual->flags.q.attribute
1976 || qual->flags.q.uniform
1977 || (qual->flags.q.varying && (state->target == fragment_shader)))
1978 var->read_only = 1;
1979
1980 if (qual->flags.q.centroid)
1981 var->centroid = 1;
1982
1983 if (qual->flags.q.attribute && state->target != vertex_shader) {
1984 var->type = glsl_type::error_type;
1985 _mesa_glsl_error(loc, state,
1986 "`attribute' variables may not be declared in the "
1987 "%s shader",
1988 _mesa_glsl_shader_target_name(state->target));
1989 }
1990
1991 /* Section 6.1.1 (Function Calling Conventions) of the GLSL 1.10 spec says:
1992 *
1993 * "However, the const qualifier cannot be used with out or inout."
1994 *
1995 * The same section of the GLSL 4.40 spec further clarifies this saying:
1996 *
1997 * "The const qualifier cannot be used with out or inout, or a
1998 * compile-time error results."
1999 */
2000 if (is_parameter && qual->flags.q.constant && qual->flags.q.out) {
2001 _mesa_glsl_error(loc, state,
2002 "`const' may not be applied to `out' or `inout' "
2003 "function parameters");
2004 }
2005
2006 /* If there is no qualifier that changes the mode of the variable, leave
2007 * the setting alone.
2008 */
2009 if (qual->flags.q.in && qual->flags.q.out)
2010 var->mode = ir_var_function_inout;
2011 else if (qual->flags.q.in)
2012 var->mode = is_parameter ? ir_var_function_in : ir_var_shader_in;
2013 else if (qual->flags.q.attribute
2014 || (qual->flags.q.varying && (state->target == fragment_shader)))
2015 var->mode = ir_var_shader_in;
2016 else if (qual->flags.q.out)
2017 var->mode = is_parameter ? ir_var_function_out : ir_var_shader_out;
2018 else if (qual->flags.q.varying && (state->target == vertex_shader))
2019 var->mode = ir_var_shader_out;
2020 else if (qual->flags.q.uniform)
2021 var->mode = ir_var_uniform;
2022
2023 if (!is_parameter && is_varying_var(var, state->target)) {
2024 /* This variable is being used to link data between shader stages (in
2025 * pre-glsl-1.30 parlance, it's a "varying"). Check that it has a type
2026 * that is allowed for such purposes.
2027 *
2028 * From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
2029 *
2030 * "The varying qualifier can be used only with the data types
2031 * float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
2032 * these."
2033 *
2034 * This was relaxed in GLSL version 1.30 and GLSL ES version 3.00. From
2035 * page 31 (page 37 of the PDF) of the GLSL 1.30 spec:
2036 *
2037 * "Fragment inputs can only be signed and unsigned integers and
2038 * integer vectors, float, floating-point vectors, matrices, or
2039 * arrays of these. Structures cannot be input.
2040 *
2041 * Similar text exists in the section on vertex shader outputs.
2042 *
2043 * Similar text exists in the GLSL ES 3.00 spec, except that the GLSL ES
2044 * 3.00 spec allows structs as well. Varying structs are also allowed
2045 * in GLSL 1.50.
2046 */
2047 switch (var->type->get_scalar_type()->base_type) {
2048 case GLSL_TYPE_FLOAT:
2049 /* Ok in all GLSL versions */
2050 break;
2051 case GLSL_TYPE_UINT:
2052 case GLSL_TYPE_INT:
2053 if (state->is_version(130, 300))
2054 break;
2055 _mesa_glsl_error(loc, state,
2056 "varying variables must be of base type float in %s",
2057 state->get_version_string());
2058 break;
2059 case GLSL_TYPE_STRUCT:
2060 if (state->is_version(150, 300))
2061 break;
2062 _mesa_glsl_error(loc, state,
2063 "varying variables may not be of type struct");
2064 break;
2065 default:
2066 _mesa_glsl_error(loc, state, "illegal type for a varying variable");
2067 break;
2068 }
2069 }
2070
2071 if (state->all_invariant && (state->current_function == NULL)) {
2072 switch (state->target) {
2073 case vertex_shader:
2074 if (var->mode == ir_var_shader_out)
2075 var->invariant = true;
2076 break;
2077 case geometry_shader:
2078 if ((var->mode == ir_var_shader_in)
2079 || (var->mode == ir_var_shader_out))
2080 var->invariant = true;
2081 break;
2082 case fragment_shader:
2083 if (var->mode == ir_var_shader_in)
2084 var->invariant = true;
2085 break;
2086 }
2087 }
2088
2089 if (qual->flags.q.flat)
2090 var->interpolation = INTERP_QUALIFIER_FLAT;
2091 else if (qual->flags.q.noperspective)
2092 var->interpolation = INTERP_QUALIFIER_NOPERSPECTIVE;
2093 else if (qual->flags.q.smooth)
2094 var->interpolation = INTERP_QUALIFIER_SMOOTH;
2095 else
2096 var->interpolation = INTERP_QUALIFIER_NONE;
2097
2098 if (var->interpolation != INTERP_QUALIFIER_NONE) {
2099 ir_variable_mode mode = (ir_variable_mode) var->mode;
2100
2101 if (mode != ir_var_shader_in && mode != ir_var_shader_out) {
2102 _mesa_glsl_error(loc, state,
2103 "interpolation qualifier `%s' can only be applied to "
2104 "shader inputs or outputs.",
2105 var->interpolation_string());
2106
2107 }
2108
2109 if ((state->target == vertex_shader && mode == ir_var_shader_in) ||
2110 (state->target == fragment_shader && mode == ir_var_shader_out)) {
2111 _mesa_glsl_error(loc, state,
2112 "interpolation qualifier `%s' cannot be applied to "
2113 "vertex shader inputs or fragment shader outputs",
2114 var->interpolation_string());
2115 }
2116 }
2117
2118 var->pixel_center_integer = qual->flags.q.pixel_center_integer;
2119 var->origin_upper_left = qual->flags.q.origin_upper_left;
2120 if ((qual->flags.q.origin_upper_left || qual->flags.q.pixel_center_integer)
2121 && (strcmp(var->name, "gl_FragCoord") != 0)) {
2122 const char *const qual_string = (qual->flags.q.origin_upper_left)
2123 ? "origin_upper_left" : "pixel_center_integer";
2124
2125 _mesa_glsl_error(loc, state,
2126 "layout qualifier `%s' can only be applied to "
2127 "fragment shader input `gl_FragCoord'",
2128 qual_string);
2129 }
2130
2131 if (qual->flags.q.explicit_location) {
2132 const bool global_scope = (state->current_function == NULL);
2133 bool fail = false;
2134 const char *string = "";
2135
2136 /* In the vertex shader only shader inputs can be given explicit
2137 * locations.
2138 *
2139 * In the fragment shader only shader outputs can be given explicit
2140 * locations.
2141 */
2142 switch (state->target) {
2143 case vertex_shader:
2144 if (!global_scope || (var->mode != ir_var_shader_in)) {
2145 fail = true;
2146 string = "input";
2147 }
2148 break;
2149
2150 case geometry_shader:
2151 _mesa_glsl_error(loc, state,
2152 "geometry shader variables cannot be given "
2153 "explicit locations");
2154 break;
2155
2156 case fragment_shader:
2157 if (!global_scope || (var->mode != ir_var_shader_out)) {
2158 fail = true;
2159 string = "output";
2160 }
2161 break;
2162 };
2163
2164 if (fail) {
2165 _mesa_glsl_error(loc, state,
2166 "only %s shader %s variables can be given an "
2167 "explicit location",
2168 _mesa_glsl_shader_target_name(state->target),
2169 string);
2170 } else {
2171 var->explicit_location = true;
2172
2173 /* This bit of silliness is needed because invalid explicit locations
2174 * are supposed to be flagged during linking. Small negative values
2175 * biased by VERT_ATTRIB_GENERIC0 or FRAG_RESULT_DATA0 could alias
2176 * built-in values (e.g., -16+VERT_ATTRIB_GENERIC0 = VERT_ATTRIB_POS).
2177 * The linker needs to be able to differentiate these cases. This
2178 * ensures that negative values stay negative.
2179 */
2180 if (qual->location >= 0) {
2181 var->location = (state->target == vertex_shader)
2182 ? (qual->location + VERT_ATTRIB_GENERIC0)
2183 : (qual->location + FRAG_RESULT_DATA0);
2184 } else {
2185 var->location = qual->location;
2186 }
2187
2188 if (qual->flags.q.explicit_index) {
2189 /* From the GLSL 4.30 specification, section 4.4.2 (Output
2190 * Layout Qualifiers):
2191 *
2192 * "It is also a compile-time error if a fragment shader
2193 * sets a layout index to less than 0 or greater than 1."
2194 *
2195 * Older specifications don't mandate a behavior; we take
2196 * this as a clarification and always generate the error.
2197 */
2198 if (qual->index < 0 || qual->index > 1) {
2199 _mesa_glsl_error(loc, state,
2200 "explicit index may only be 0 or 1");
2201 } else {
2202 var->explicit_index = true;
2203 var->index = qual->index;
2204 }
2205 }
2206 }
2207 } else if (qual->flags.q.explicit_index) {
2208 _mesa_glsl_error(loc, state,
2209 "explicit index requires explicit location");
2210 }
2211
2212 if (qual->flags.q.explicit_binding &&
2213 validate_binding_qualifier(state, loc, var, qual)) {
2214 var->explicit_binding = true;
2215 var->binding = qual->binding;
2216 }
2217
2218 /* Does the declaration use the deprecated 'attribute' or 'varying'
2219 * keywords?
2220 */
2221 const bool uses_deprecated_qualifier = qual->flags.q.attribute
2222 || qual->flags.q.varying;
2223
2224 /* Is the 'layout' keyword used with parameters that allow relaxed checking.
2225 * Many implementations of GL_ARB_fragment_coord_conventions_enable and some
2226 * implementations (only Mesa?) GL_ARB_explicit_attrib_location_enable
2227 * allowed the layout qualifier to be used with 'varying' and 'attribute'.
2228 * These extensions and all following extensions that add the 'layout'
2229 * keyword have been modified to require the use of 'in' or 'out'.
2230 *
2231 * The following extension do not allow the deprecated keywords:
2232 *
2233 * GL_AMD_conservative_depth
2234 * GL_ARB_conservative_depth
2235 * GL_ARB_gpu_shader5
2236 * GL_ARB_separate_shader_objects
2237 * GL_ARB_tesselation_shader
2238 * GL_ARB_transform_feedback3
2239 * GL_ARB_uniform_buffer_object
2240 *
2241 * It is unknown whether GL_EXT_shader_image_load_store or GL_NV_gpu_shader5
2242 * allow layout with the deprecated keywords.
2243 */
2244 const bool relaxed_layout_qualifier_checking =
2245 state->ARB_fragment_coord_conventions_enable;
2246
2247 if (qual->has_layout() && uses_deprecated_qualifier) {
2248 if (relaxed_layout_qualifier_checking) {
2249 _mesa_glsl_warning(loc, state,
2250 "`layout' qualifier may not be used with "
2251 "`attribute' or `varying'");
2252 } else {
2253 _mesa_glsl_error(loc, state,
2254 "`layout' qualifier may not be used with "
2255 "`attribute' or `varying'");
2256 }
2257 }
2258
2259 /* Layout qualifiers for gl_FragDepth, which are enabled by extension
2260 * AMD_conservative_depth.
2261 */
2262 int depth_layout_count = qual->flags.q.depth_any
2263 + qual->flags.q.depth_greater
2264 + qual->flags.q.depth_less
2265 + qual->flags.q.depth_unchanged;
2266 if (depth_layout_count > 0
2267 && !state->AMD_conservative_depth_enable
2268 && !state->ARB_conservative_depth_enable) {
2269 _mesa_glsl_error(loc, state,
2270 "extension GL_AMD_conservative_depth or "
2271 "GL_ARB_conservative_depth must be enabled "
2272 "to use depth layout qualifiers");
2273 } else if (depth_layout_count > 0
2274 && strcmp(var->name, "gl_FragDepth") != 0) {
2275 _mesa_glsl_error(loc, state,
2276 "depth layout qualifiers can be applied only to "
2277 "gl_FragDepth");
2278 } else if (depth_layout_count > 1
2279 && strcmp(var->name, "gl_FragDepth") == 0) {
2280 _mesa_glsl_error(loc, state,
2281 "at most one depth layout qualifier can be applied to "
2282 "gl_FragDepth");
2283 }
2284 if (qual->flags.q.depth_any)
2285 var->depth_layout = ir_depth_layout_any;
2286 else if (qual->flags.q.depth_greater)
2287 var->depth_layout = ir_depth_layout_greater;
2288 else if (qual->flags.q.depth_less)
2289 var->depth_layout = ir_depth_layout_less;
2290 else if (qual->flags.q.depth_unchanged)
2291 var->depth_layout = ir_depth_layout_unchanged;
2292 else
2293 var->depth_layout = ir_depth_layout_none;
2294
2295 if (qual->flags.q.std140 ||
2296 qual->flags.q.packed ||
2297 qual->flags.q.shared) {
2298 _mesa_glsl_error(loc, state,
2299 "uniform block layout qualifiers std140, packed, and "
2300 "shared can only be applied to uniform blocks, not "
2301 "members");
2302 }
2303
2304 if (qual->flags.q.row_major || qual->flags.q.column_major) {
2305 validate_matrix_layout_for_type(state, loc, var->type);
2306 }
2307 }
2308
2309 /**
2310 * Get the variable that is being redeclared by this declaration
2311 *
2312 * Semantic checks to verify the validity of the redeclaration are also
2313 * performed. If semantic checks fail, compilation error will be emitted via
2314 * \c _mesa_glsl_error, but a non-\c NULL pointer will still be returned.
2315 *
2316 * \returns
2317 * A pointer to an existing variable in the current scope if the declaration
2318 * is a redeclaration, \c NULL otherwise.
2319 */
2320 ir_variable *
2321 get_variable_being_redeclared(ir_variable *var, ast_declaration *decl,
2322 struct _mesa_glsl_parse_state *state)
2323 {
2324 /* Check if this declaration is actually a re-declaration, either to
2325 * resize an array or add qualifiers to an existing variable.
2326 *
2327 * This is allowed for variables in the current scope, or when at
2328 * global scope (for built-ins in the implicit outer scope).
2329 */
2330 ir_variable *earlier = state->symbols->get_variable(decl->identifier);
2331 if (earlier == NULL ||
2332 (state->current_function != NULL &&
2333 !state->symbols->name_declared_this_scope(decl->identifier))) {
2334 return NULL;
2335 }
2336
2337
2338 YYLTYPE loc = decl->get_location();
2339
2340 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
2341 *
2342 * "It is legal to declare an array without a size and then
2343 * later re-declare the same name as an array of the same
2344 * type and specify a size."
2345 */
2346 if ((earlier->type->array_size() == 0)
2347 && var->type->is_array()
2348 && (var->type->element_type() == earlier->type->element_type())) {
2349 /* FINISHME: This doesn't match the qualifiers on the two
2350 * FINISHME: declarations. It's not 100% clear whether this is
2351 * FINISHME: required or not.
2352 */
2353
2354 const unsigned size = unsigned(var->type->array_size());
2355 check_builtin_array_max_size(var->name, size, loc, state);
2356 if ((size > 0) && (size <= earlier->max_array_access)) {
2357 _mesa_glsl_error(& loc, state, "array size must be > %u due to "
2358 "previous access",
2359 earlier->max_array_access);
2360 }
2361
2362 earlier->type = var->type;
2363 delete var;
2364 var = NULL;
2365 } else if ((state->ARB_fragment_coord_conventions_enable ||
2366 state->is_version(150, 0))
2367 && strcmp(var->name, "gl_FragCoord") == 0
2368 && earlier->type == var->type
2369 && earlier->mode == var->mode) {
2370 /* Allow redeclaration of gl_FragCoord for ARB_fcc layout
2371 * qualifiers.
2372 */
2373 earlier->origin_upper_left = var->origin_upper_left;
2374 earlier->pixel_center_integer = var->pixel_center_integer;
2375
2376 /* According to section 4.3.7 of the GLSL 1.30 spec,
2377 * the following built-in varaibles can be redeclared with an
2378 * interpolation qualifier:
2379 * * gl_FrontColor
2380 * * gl_BackColor
2381 * * gl_FrontSecondaryColor
2382 * * gl_BackSecondaryColor
2383 * * gl_Color
2384 * * gl_SecondaryColor
2385 */
2386 } else if (state->is_version(130, 0)
2387 && (strcmp(var->name, "gl_FrontColor") == 0
2388 || strcmp(var->name, "gl_BackColor") == 0
2389 || strcmp(var->name, "gl_FrontSecondaryColor") == 0
2390 || strcmp(var->name, "gl_BackSecondaryColor") == 0
2391 || strcmp(var->name, "gl_Color") == 0
2392 || strcmp(var->name, "gl_SecondaryColor") == 0)
2393 && earlier->type == var->type
2394 && earlier->mode == var->mode) {
2395 earlier->interpolation = var->interpolation;
2396
2397 /* Layout qualifiers for gl_FragDepth. */
2398 } else if ((state->AMD_conservative_depth_enable ||
2399 state->ARB_conservative_depth_enable)
2400 && strcmp(var->name, "gl_FragDepth") == 0
2401 && earlier->type == var->type
2402 && earlier->mode == var->mode) {
2403
2404 /** From the AMD_conservative_depth spec:
2405 * Within any shader, the first redeclarations of gl_FragDepth
2406 * must appear before any use of gl_FragDepth.
2407 */
2408 if (earlier->used) {
2409 _mesa_glsl_error(&loc, state,
2410 "the first redeclaration of gl_FragDepth "
2411 "must appear before any use of gl_FragDepth");
2412 }
2413
2414 /* Prevent inconsistent redeclaration of depth layout qualifier. */
2415 if (earlier->depth_layout != ir_depth_layout_none
2416 && earlier->depth_layout != var->depth_layout) {
2417 _mesa_glsl_error(&loc, state,
2418 "gl_FragDepth: depth layout is declared here "
2419 "as '%s, but it was previously declared as "
2420 "'%s'",
2421 depth_layout_string(var->depth_layout),
2422 depth_layout_string(earlier->depth_layout));
2423 }
2424
2425 earlier->depth_layout = var->depth_layout;
2426
2427 } else {
2428 _mesa_glsl_error(&loc, state, "`%s' redeclared", decl->identifier);
2429 }
2430
2431 return earlier;
2432 }
2433
2434 /**
2435 * Generate the IR for an initializer in a variable declaration
2436 */
2437 ir_rvalue *
2438 process_initializer(ir_variable *var, ast_declaration *decl,
2439 ast_fully_specified_type *type,
2440 exec_list *initializer_instructions,
2441 struct _mesa_glsl_parse_state *state)
2442 {
2443 ir_rvalue *result = NULL;
2444
2445 YYLTYPE initializer_loc = decl->initializer->get_location();
2446
2447 /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
2448 *
2449 * "All uniform variables are read-only and are initialized either
2450 * directly by an application via API commands, or indirectly by
2451 * OpenGL."
2452 */
2453 if (var->mode == ir_var_uniform) {
2454 state->check_version(120, 0, &initializer_loc,
2455 "cannot initialize uniforms");
2456 }
2457
2458 if (var->type->is_sampler()) {
2459 _mesa_glsl_error(& initializer_loc, state,
2460 "cannot initialize samplers");
2461 }
2462
2463 if ((var->mode == ir_var_shader_in) && (state->current_function == NULL)) {
2464 _mesa_glsl_error(& initializer_loc, state,
2465 "cannot initialize %s shader input / %s",
2466 _mesa_glsl_shader_target_name(state->target),
2467 (state->target == vertex_shader)
2468 ? "attribute" : "varying");
2469 }
2470
2471 ir_dereference *const lhs = new(state) ir_dereference_variable(var);
2472 ir_rvalue *rhs = decl->initializer->hir(initializer_instructions,
2473 state);
2474
2475 /* Calculate the constant value if this is a const or uniform
2476 * declaration.
2477 */
2478 if (type->qualifier.flags.q.constant
2479 || type->qualifier.flags.q.uniform) {
2480 ir_rvalue *new_rhs = validate_assignment(state, var->type, rhs, true);
2481 if (new_rhs != NULL) {
2482 rhs = new_rhs;
2483
2484 ir_constant *constant_value = rhs->constant_expression_value();
2485 if (!constant_value) {
2486 /* If ARB_shading_language_420pack is enabled, initializers of
2487 * const-qualified local variables do not have to be constant
2488 * expressions. Const-qualified global variables must still be
2489 * initialized with constant expressions.
2490 */
2491 if (!state->ARB_shading_language_420pack_enable
2492 || state->current_function == NULL) {
2493 _mesa_glsl_error(& initializer_loc, state,
2494 "initializer of %s variable `%s' must be a "
2495 "constant expression",
2496 (type->qualifier.flags.q.constant)
2497 ? "const" : "uniform",
2498 decl->identifier);
2499 if (var->type->is_numeric()) {
2500 /* Reduce cascading errors. */
2501 var->constant_value = ir_constant::zero(state, var->type);
2502 }
2503 }
2504 } else {
2505 rhs = constant_value;
2506 var->constant_value = constant_value;
2507 }
2508 } else {
2509 _mesa_glsl_error(&initializer_loc, state,
2510 "initializer of type %s cannot be assigned to "
2511 "variable of type %s",
2512 rhs->type->name, var->type->name);
2513 if (var->type->is_numeric()) {
2514 /* Reduce cascading errors. */
2515 var->constant_value = ir_constant::zero(state, var->type);
2516 }
2517 }
2518 }
2519
2520 if (rhs && !rhs->type->is_error()) {
2521 bool temp = var->read_only;
2522 if (type->qualifier.flags.q.constant)
2523 var->read_only = false;
2524
2525 /* Never emit code to initialize a uniform.
2526 */
2527 const glsl_type *initializer_type;
2528 if (!type->qualifier.flags.q.uniform) {
2529 result = do_assignment(initializer_instructions, state,
2530 NULL,
2531 lhs, rhs, true,
2532 type->get_location());
2533 initializer_type = result->type;
2534 } else
2535 initializer_type = rhs->type;
2536
2537 var->constant_initializer = rhs->constant_expression_value();
2538 var->has_initializer = true;
2539
2540 /* If the declared variable is an unsized array, it must inherrit
2541 * its full type from the initializer. A declaration such as
2542 *
2543 * uniform float a[] = float[](1.0, 2.0, 3.0, 3.0);
2544 *
2545 * becomes
2546 *
2547 * uniform float a[4] = float[](1.0, 2.0, 3.0, 3.0);
2548 *
2549 * The assignment generated in the if-statement (below) will also
2550 * automatically handle this case for non-uniforms.
2551 *
2552 * If the declared variable is not an array, the types must
2553 * already match exactly. As a result, the type assignment
2554 * here can be done unconditionally. For non-uniforms the call
2555 * to do_assignment can change the type of the initializer (via
2556 * the implicit conversion rules). For uniforms the initializer
2557 * must be a constant expression, and the type of that expression
2558 * was validated above.
2559 */
2560 var->type = initializer_type;
2561
2562 var->read_only = temp;
2563 }
2564
2565 return result;
2566 }
2567
2568
2569 /**
2570 * Do additional processing necessary for geometry shader input declarations
2571 * (this covers both interface blocks arrays and bare input variables).
2572 */
2573 static void
2574 handle_geometry_shader_input_decl(struct _mesa_glsl_parse_state *state,
2575 YYLTYPE loc, ir_variable *var)
2576 {
2577 unsigned num_vertices = 0;
2578 if (state->gs_input_prim_type_specified) {
2579 num_vertices = vertices_per_prim(state->gs_input_prim_type);
2580 }
2581
2582 /* Geometry shader input variables must be arrays. Caller should have
2583 * reported an error for this.
2584 */
2585 if (!var->type->is_array()) {
2586 assert(state->error);
2587
2588 /* To avoid cascading failures, short circuit the checks below. */
2589 return;
2590 }
2591
2592 if (var->type->length == 0) {
2593 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec says:
2594 *
2595 * All geometry shader input unsized array declarations will be
2596 * sized by an earlier input layout qualifier, when present, as per
2597 * the following table.
2598 *
2599 * Followed by a table mapping each allowed input layout qualifier to
2600 * the corresponding input length.
2601 */
2602 if (num_vertices != 0)
2603 var->type = glsl_type::get_array_instance(var->type->fields.array,
2604 num_vertices);
2605 } else {
2606 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec
2607 * includes the following examples of compile-time errors:
2608 *
2609 * // code sequence within one shader...
2610 * in vec4 Color1[]; // size unknown
2611 * ...Color1.length()...// illegal, length() unknown
2612 * in vec4 Color2[2]; // size is 2
2613 * ...Color1.length()...// illegal, Color1 still has no size
2614 * in vec4 Color3[3]; // illegal, input sizes are inconsistent
2615 * layout(lines) in; // legal, input size is 2, matching
2616 * in vec4 Color4[3]; // illegal, contradicts layout
2617 * ...
2618 *
2619 * To detect the case illustrated by Color3, we verify that the size of
2620 * an explicitly-sized array matches the size of any previously declared
2621 * explicitly-sized array. To detect the case illustrated by Color4, we
2622 * verify that the size of an explicitly-sized array is consistent with
2623 * any previously declared input layout.
2624 */
2625 if (num_vertices != 0 && var->type->length != num_vertices) {
2626 _mesa_glsl_error(&loc, state,
2627 "geometry shader input size contradicts previously"
2628 " declared layout (size is %u, but layout requires a"
2629 " size of %u)", var->type->length, num_vertices);
2630 } else if (state->gs_input_size != 0 &&
2631 var->type->length != state->gs_input_size) {
2632 _mesa_glsl_error(&loc, state,
2633 "geometry shader input sizes are "
2634 "inconsistent (size is %u, but a previous "
2635 "declaration has size %u)",
2636 var->type->length, state->gs_input_size);
2637 } else {
2638 state->gs_input_size = var->type->length;
2639 }
2640 }
2641 }
2642
2643 ir_rvalue *
2644 ast_declarator_list::hir(exec_list *instructions,
2645 struct _mesa_glsl_parse_state *state)
2646 {
2647 void *ctx = state;
2648 const struct glsl_type *decl_type;
2649 const char *type_name = NULL;
2650 ir_rvalue *result = NULL;
2651 YYLTYPE loc = this->get_location();
2652
2653 /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec:
2654 *
2655 * "To ensure that a particular output variable is invariant, it is
2656 * necessary to use the invariant qualifier. It can either be used to
2657 * qualify a previously declared variable as being invariant
2658 *
2659 * invariant gl_Position; // make existing gl_Position be invariant"
2660 *
2661 * In these cases the parser will set the 'invariant' flag in the declarator
2662 * list, and the type will be NULL.
2663 */
2664 if (this->invariant) {
2665 assert(this->type == NULL);
2666
2667 if (state->current_function != NULL) {
2668 _mesa_glsl_error(& loc, state,
2669 "all uses of `invariant' keyword must be at global "
2670 "scope");
2671 }
2672
2673 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
2674 assert(!decl->is_array);
2675 assert(decl->array_size == NULL);
2676 assert(decl->initializer == NULL);
2677
2678 ir_variable *const earlier =
2679 state->symbols->get_variable(decl->identifier);
2680 if (earlier == NULL) {
2681 _mesa_glsl_error(& loc, state,
2682 "undeclared variable `%s' cannot be marked "
2683 "invariant", decl->identifier);
2684 } else if ((state->target == vertex_shader)
2685 && (earlier->mode != ir_var_shader_out)) {
2686 _mesa_glsl_error(& loc, state,
2687 "`%s' cannot be marked invariant, vertex shader "
2688 "outputs only", decl->identifier);
2689 } else if ((state->target == fragment_shader)
2690 && (earlier->mode != ir_var_shader_in)) {
2691 _mesa_glsl_error(& loc, state,
2692 "`%s' cannot be marked invariant, fragment shader "
2693 "inputs only", decl->identifier);
2694 } else if (earlier->used) {
2695 _mesa_glsl_error(& loc, state,
2696 "variable `%s' may not be redeclared "
2697 "`invariant' after being used",
2698 earlier->name);
2699 } else {
2700 earlier->invariant = true;
2701 }
2702 }
2703
2704 /* Invariant redeclarations do not have r-values.
2705 */
2706 return NULL;
2707 }
2708
2709 assert(this->type != NULL);
2710 assert(!this->invariant);
2711
2712 /* The type specifier may contain a structure definition. Process that
2713 * before any of the variable declarations.
2714 */
2715 (void) this->type->specifier->hir(instructions, state);
2716
2717 decl_type = this->type->glsl_type(& type_name, state);
2718 if (this->declarations.is_empty()) {
2719 /* If there is no structure involved in the program text, there are two
2720 * possible scenarios:
2721 *
2722 * - The program text contained something like 'vec4;'. This is an
2723 * empty declaration. It is valid but weird. Emit a warning.
2724 *
2725 * - The program text contained something like 'S;' and 'S' is not the
2726 * name of a known structure type. This is both invalid and weird.
2727 * Emit an error.
2728 *
2729 * - The program text contained something like 'mediump float;'
2730 * when the programmer probably meant 'precision mediump
2731 * float;' Emit a warning with a description of what they
2732 * probably meant to do.
2733 *
2734 * Note that if decl_type is NULL and there is a structure involved,
2735 * there must have been some sort of error with the structure. In this
2736 * case we assume that an error was already generated on this line of
2737 * code for the structure. There is no need to generate an additional,
2738 * confusing error.
2739 */
2740 assert(this->type->specifier->structure == NULL || decl_type != NULL
2741 || state->error);
2742
2743 if (decl_type == NULL) {
2744 _mesa_glsl_error(&loc, state,
2745 "invalid type `%s' in empty declaration",
2746 type_name);
2747 } else if (this->type->qualifier.precision != ast_precision_none) {
2748 if (this->type->specifier->structure != NULL) {
2749 _mesa_glsl_error(&loc, state,
2750 "precision qualifiers can't be applied "
2751 "to structures");
2752 } else {
2753 static const char *const precision_names[] = {
2754 "highp",
2755 "highp",
2756 "mediump",
2757 "lowp"
2758 };
2759
2760 _mesa_glsl_warning(&loc, state,
2761 "empty declaration with precision qualifier, "
2762 "to set the default precision, use "
2763 "`precision %s %s;'",
2764 precision_names[this->type->qualifier.precision],
2765 type_name);
2766 }
2767 } else {
2768 _mesa_glsl_warning(&loc, state, "empty declaration");
2769 }
2770 }
2771
2772 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
2773 const struct glsl_type *var_type;
2774 ir_variable *var;
2775
2776 /* FINISHME: Emit a warning if a variable declaration shadows a
2777 * FINISHME: declaration at a higher scope.
2778 */
2779
2780 if ((decl_type == NULL) || decl_type->is_void()) {
2781 if (type_name != NULL) {
2782 _mesa_glsl_error(& loc, state,
2783 "invalid type `%s' in declaration of `%s'",
2784 type_name, decl->identifier);
2785 } else {
2786 _mesa_glsl_error(& loc, state,
2787 "invalid type in declaration of `%s'",
2788 decl->identifier);
2789 }
2790 continue;
2791 }
2792
2793 if (decl->is_array) {
2794 var_type = process_array_type(&loc, decl_type, decl->array_size,
2795 state);
2796 if (var_type->is_error())
2797 continue;
2798 } else {
2799 var_type = decl_type;
2800 }
2801
2802 var = new(ctx) ir_variable(var_type, decl->identifier, ir_var_auto);
2803
2804 /* The 'varying in' and 'varying out' qualifiers can only be used with
2805 * ARB_geometry_shader4 and EXT_geometry_shader4, which we don't support
2806 * yet.
2807 */
2808 if (this->type->qualifier.flags.q.varying) {
2809 if (this->type->qualifier.flags.q.in) {
2810 _mesa_glsl_error(& loc, state,
2811 "`varying in' qualifier in declaration of "
2812 "`%s' only valid for geometry shaders using "
2813 "ARB_geometry_shader4 or EXT_geometry_shader4",
2814 decl->identifier);
2815 } else if (this->type->qualifier.flags.q.out) {
2816 _mesa_glsl_error(& loc, state,
2817 "`varying out' qualifier in declaration of "
2818 "`%s' only valid for geometry shaders using "
2819 "ARB_geometry_shader4 or EXT_geometry_shader4",
2820 decl->identifier);
2821 }
2822 }
2823
2824 /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
2825 *
2826 * "Global variables can only use the qualifiers const,
2827 * attribute, uni form, or varying. Only one may be
2828 * specified.
2829 *
2830 * Local variables can only use the qualifier const."
2831 *
2832 * This is relaxed in GLSL 1.30 and GLSL ES 3.00. It is also relaxed by
2833 * any extension that adds the 'layout' keyword.
2834 */
2835 if (!state->is_version(130, 300)
2836 && !state->ARB_explicit_attrib_location_enable
2837 && !state->ARB_fragment_coord_conventions_enable) {
2838 if (this->type->qualifier.flags.q.out) {
2839 _mesa_glsl_error(& loc, state,
2840 "`out' qualifier in declaration of `%s' "
2841 "only valid for function parameters in %s",
2842 decl->identifier, state->get_version_string());
2843 }
2844 if (this->type->qualifier.flags.q.in) {
2845 _mesa_glsl_error(& loc, state,
2846 "`in' qualifier in declaration of `%s' "
2847 "only valid for function parameters in %s",
2848 decl->identifier, state->get_version_string());
2849 }
2850 /* FINISHME: Test for other invalid qualifiers. */
2851 }
2852
2853 apply_type_qualifier_to_variable(& this->type->qualifier, var, state,
2854 & loc, false);
2855
2856 if (this->type->qualifier.flags.q.invariant) {
2857 if ((state->target == vertex_shader) &&
2858 var->mode != ir_var_shader_out) {
2859 _mesa_glsl_error(& loc, state,
2860 "`%s' cannot be marked invariant, vertex shader "
2861 "outputs only", var->name);
2862 } else if ((state->target == fragment_shader) &&
2863 var->mode != ir_var_shader_in) {
2864 /* FINISHME: Note that this doesn't work for invariant on
2865 * a function signature inval
2866 */
2867 _mesa_glsl_error(& loc, state,
2868 "`%s' cannot be marked invariant, fragment shader "
2869 "inputs only", var->name);
2870 }
2871 }
2872
2873 if (state->current_function != NULL) {
2874 const char *mode = NULL;
2875 const char *extra = "";
2876
2877 /* There is no need to check for 'inout' here because the parser will
2878 * only allow that in function parameter lists.
2879 */
2880 if (this->type->qualifier.flags.q.attribute) {
2881 mode = "attribute";
2882 } else if (this->type->qualifier.flags.q.uniform) {
2883 mode = "uniform";
2884 } else if (this->type->qualifier.flags.q.varying) {
2885 mode = "varying";
2886 } else if (this->type->qualifier.flags.q.in) {
2887 mode = "in";
2888 extra = " or in function parameter list";
2889 } else if (this->type->qualifier.flags.q.out) {
2890 mode = "out";
2891 extra = " or in function parameter list";
2892 }
2893
2894 if (mode) {
2895 _mesa_glsl_error(& loc, state,
2896 "%s variable `%s' must be declared at "
2897 "global scope%s",
2898 mode, var->name, extra);
2899 }
2900 } else if (var->mode == ir_var_shader_in) {
2901 var->read_only = true;
2902
2903 if (state->target == vertex_shader) {
2904 bool error_emitted = false;
2905
2906 /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
2907 *
2908 * "Vertex shader inputs can only be float, floating-point
2909 * vectors, matrices, signed and unsigned integers and integer
2910 * vectors. Vertex shader inputs can also form arrays of these
2911 * types, but not structures."
2912 *
2913 * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
2914 *
2915 * "Vertex shader inputs can only be float, floating-point
2916 * vectors, matrices, signed and unsigned integers and integer
2917 * vectors. They cannot be arrays or structures."
2918 *
2919 * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
2920 *
2921 * "The attribute qualifier can be used only with float,
2922 * floating-point vectors, and matrices. Attribute variables
2923 * cannot be declared as arrays or structures."
2924 *
2925 * From page 33 (page 39 of the PDF) of the GLSL ES 3.00 spec:
2926 *
2927 * "Vertex shader inputs can only be float, floating-point
2928 * vectors, matrices, signed and unsigned integers and integer
2929 * vectors. Vertex shader inputs cannot be arrays or
2930 * structures."
2931 */
2932 const glsl_type *check_type = var->type->is_array()
2933 ? var->type->fields.array : var->type;
2934
2935 switch (check_type->base_type) {
2936 case GLSL_TYPE_FLOAT:
2937 break;
2938 case GLSL_TYPE_UINT:
2939 case GLSL_TYPE_INT:
2940 if (state->is_version(120, 300))
2941 break;
2942 /* FALLTHROUGH */
2943 default:
2944 _mesa_glsl_error(& loc, state,
2945 "vertex shader input / attribute cannot have "
2946 "type %s`%s'",
2947 var->type->is_array() ? "array of " : "",
2948 check_type->name);
2949 error_emitted = true;
2950 }
2951
2952 if (!error_emitted && var->type->is_array() &&
2953 !state->check_version(150, 0, &loc,
2954 "vertex shader input / attribute "
2955 "cannot have array type")) {
2956 error_emitted = true;
2957 }
2958 } else if (state->target == geometry_shader) {
2959 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
2960 *
2961 * Geometry shader input variables get the per-vertex values
2962 * written out by vertex shader output variables of the same
2963 * names. Since a geometry shader operates on a set of
2964 * vertices, each input varying variable (or input block, see
2965 * interface blocks below) needs to be declared as an array.
2966 */
2967 if (!var->type->is_array()) {
2968 _mesa_glsl_error(&loc, state,
2969 "geometry shader inputs must be arrays");
2970 }
2971
2972 handle_geometry_shader_input_decl(state, loc, var);
2973 }
2974 }
2975
2976 /* Integer fragment inputs must be qualified with 'flat'. In GLSL ES,
2977 * so must integer vertex outputs.
2978 *
2979 * From section 4.3.4 ("Inputs") of the GLSL 1.50 spec:
2980 * "Fragment shader inputs that are signed or unsigned integers or
2981 * integer vectors must be qualified with the interpolation qualifier
2982 * flat."
2983 *
2984 * From section 4.3.4 ("Input Variables") of the GLSL 3.00 ES spec:
2985 * "Fragment shader inputs that are, or contain, signed or unsigned
2986 * integers or integer vectors must be qualified with the
2987 * interpolation qualifier flat."
2988 *
2989 * From section 4.3.6 ("Output Variables") of the GLSL 3.00 ES spec:
2990 * "Vertex shader outputs that are, or contain, signed or unsigned
2991 * integers or integer vectors must be qualified with the
2992 * interpolation qualifier flat."
2993 *
2994 * Note that prior to GLSL 1.50, this requirement applied to vertex
2995 * outputs rather than fragment inputs. That creates problems in the
2996 * presence of geometry shaders, so we adopt the GLSL 1.50 rule for all
2997 * desktop GL shaders. For GLSL ES shaders, we follow the spec and
2998 * apply the restriction to both vertex outputs and fragment inputs.
2999 *
3000 * Note also that the desktop GLSL specs are missing the text "or
3001 * contain"; this is presumably an oversight, since there is no
3002 * reasonable way to interpolate a fragment shader input that contains
3003 * an integer.
3004 */
3005 if (state->is_version(130, 300) &&
3006 var->type->contains_integer() &&
3007 var->interpolation != INTERP_QUALIFIER_FLAT &&
3008 ((state->target == fragment_shader && var->mode == ir_var_shader_in)
3009 || (state->target == vertex_shader && var->mode == ir_var_shader_out
3010 && state->es_shader))) {
3011 const char *var_type = (state->target == vertex_shader) ?
3012 "vertex output" : "fragment input";
3013 _mesa_glsl_error(&loc, state, "if a %s is (or contains) "
3014 "an integer, then it must be qualified with 'flat'",
3015 var_type);
3016 }
3017
3018
3019 /* Interpolation qualifiers cannot be applied to 'centroid' and
3020 * 'centroid varying'.
3021 *
3022 * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
3023 * "interpolation qualifiers may only precede the qualifiers in,
3024 * centroid in, out, or centroid out in a declaration. They do not apply
3025 * to the deprecated storage qualifiers varying or centroid varying."
3026 *
3027 * These deprecated storage qualifiers do not exist in GLSL ES 3.00.
3028 */
3029 if (state->is_version(130, 0)
3030 && this->type->qualifier.has_interpolation()
3031 && this->type->qualifier.flags.q.varying) {
3032
3033 const char *i = this->type->qualifier.interpolation_string();
3034 assert(i != NULL);
3035 const char *s;
3036 if (this->type->qualifier.flags.q.centroid)
3037 s = "centroid varying";
3038 else
3039 s = "varying";
3040
3041 _mesa_glsl_error(&loc, state,
3042 "qualifier '%s' cannot be applied to the "
3043 "deprecated storage qualifier '%s'", i, s);
3044 }
3045
3046
3047 /* Interpolation qualifiers can only apply to vertex shader outputs and
3048 * fragment shader inputs.
3049 *
3050 * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
3051 * "Outputs from a vertex shader (out) and inputs to a fragment
3052 * shader (in) can be further qualified with one or more of these
3053 * interpolation qualifiers"
3054 *
3055 * From page 31 (page 37 of the PDF) of the GLSL ES 3.00 spec:
3056 * "These interpolation qualifiers may only precede the qualifiers
3057 * in, centroid in, out, or centroid out in a declaration. They do
3058 * not apply to inputs into a vertex shader or outputs from a
3059 * fragment shader."
3060 */
3061 if (state->is_version(130, 300)
3062 && this->type->qualifier.has_interpolation()) {
3063
3064 const char *i = this->type->qualifier.interpolation_string();
3065 assert(i != NULL);
3066
3067 switch (state->target) {
3068 case vertex_shader:
3069 if (this->type->qualifier.flags.q.in) {
3070 _mesa_glsl_error(&loc, state,
3071 "qualifier '%s' cannot be applied to vertex "
3072 "shader inputs", i);
3073 }
3074 break;
3075 case fragment_shader:
3076 if (this->type->qualifier.flags.q.out) {
3077 _mesa_glsl_error(&loc, state,
3078 "qualifier '%s' cannot be applied to fragment "
3079 "shader outputs", i);
3080 }
3081 break;
3082 default:
3083 break;
3084 }
3085 }
3086
3087
3088 /* From section 4.3.4 of the GLSL 1.30 spec:
3089 * "It is an error to use centroid in in a vertex shader."
3090 *
3091 * From section 4.3.4 of the GLSL ES 3.00 spec:
3092 * "It is an error to use centroid in or interpolation qualifiers in
3093 * a vertex shader input."
3094 */
3095 if (state->is_version(130, 300)
3096 && this->type->qualifier.flags.q.centroid
3097 && this->type->qualifier.flags.q.in
3098 && state->target == vertex_shader) {
3099
3100 _mesa_glsl_error(&loc, state,
3101 "'centroid in' cannot be used in a vertex shader");
3102 }
3103
3104 /* Section 4.3.6 of the GLSL 1.30 specification states:
3105 * "It is an error to use centroid out in a fragment shader."
3106 *
3107 * The GL_ARB_shading_language_420pack extension specification states:
3108 * "It is an error to use auxiliary storage qualifiers or interpolation
3109 * qualifiers on an output in a fragment shader."
3110 */
3111 if (state->target == fragment_shader &&
3112 this->type->qualifier.flags.q.out &&
3113 this->type->qualifier.has_auxiliary_storage()) {
3114 _mesa_glsl_error(&loc, state,
3115 "auxiliary storage qualifiers cannot be used on "
3116 "fragment shader outputs");
3117 }
3118
3119 /* Precision qualifiers exists only in GLSL versions 1.00 and >= 1.30.
3120 */
3121 if (this->type->qualifier.precision != ast_precision_none) {
3122 state->check_precision_qualifiers_allowed(&loc);
3123 }
3124
3125
3126 /* Precision qualifiers only apply to floating point and integer types.
3127 *
3128 * From section 4.5.2 of the GLSL 1.30 spec:
3129 * "Any floating point or any integer declaration can have the type
3130 * preceded by one of these precision qualifiers [...] Literal
3131 * constants do not have precision qualifiers. Neither do Boolean
3132 * variables.
3133 *
3134 * In GLSL ES, sampler types are also allowed.
3135 *
3136 * From page 87 of the GLSL ES spec:
3137 * "RESOLUTION: Allow sampler types to take a precision qualifier."
3138 */
3139 if (this->type->qualifier.precision != ast_precision_none
3140 && !var->type->is_float()
3141 && !var->type->is_integer()
3142 && !var->type->is_record()
3143 && !(var->type->is_sampler() && state->es_shader)
3144 && !(var->type->is_array()
3145 && (var->type->fields.array->is_float()
3146 || var->type->fields.array->is_integer()))) {
3147
3148 _mesa_glsl_error(&loc, state,
3149 "precision qualifiers apply only to floating point"
3150 "%s types", state->es_shader ? ", integer, and sampler"
3151 : "and integer");
3152 }
3153
3154 /* From page 17 (page 23 of the PDF) of the GLSL 1.20 spec:
3155 *
3156 * "[Sampler types] can only be declared as function
3157 * parameters or uniform variables (see Section 4.3.5
3158 * "Uniform")".
3159 */
3160 if (var_type->contains_sampler() &&
3161 !this->type->qualifier.flags.q.uniform) {
3162 _mesa_glsl_error(&loc, state, "samplers must be declared uniform");
3163 }
3164
3165 /* Process the initializer and add its instructions to a temporary
3166 * list. This list will be added to the instruction stream (below) after
3167 * the declaration is added. This is done because in some cases (such as
3168 * redeclarations) the declaration may not actually be added to the
3169 * instruction stream.
3170 */
3171 exec_list initializer_instructions;
3172 ir_variable *earlier = get_variable_being_redeclared(var, decl, state);
3173
3174 if (decl->initializer != NULL) {
3175 result = process_initializer((earlier == NULL) ? var : earlier,
3176 decl, this->type,
3177 &initializer_instructions, state);
3178 }
3179
3180 /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
3181 *
3182 * "It is an error to write to a const variable outside of
3183 * its declaration, so they must be initialized when
3184 * declared."
3185 */
3186 if (this->type->qualifier.flags.q.constant && decl->initializer == NULL) {
3187 _mesa_glsl_error(& loc, state,
3188 "const declaration of `%s' must be initialized",
3189 decl->identifier);
3190 }
3191
3192 if (state->es_shader) {
3193 const glsl_type *const t = (earlier == NULL)
3194 ? var->type : earlier->type;
3195
3196 if (t->is_array() && t->length == 0)
3197 /* Section 10.17 of the GLSL ES 1.00 specification states that
3198 * unsized array declarations have been removed from the language.
3199 * Arrays that are sized using an initializer are still explicitly
3200 * sized. However, GLSL ES 1.00 does not allow array
3201 * initializers. That is only allowed in GLSL ES 3.00.
3202 *
3203 * Section 4.1.9 (Arrays) of the GLSL ES 3.00 spec says:
3204 *
3205 * "An array type can also be formed without specifying a size
3206 * if the definition includes an initializer:
3207 *
3208 * float x[] = float[2] (1.0, 2.0); // declares an array of size 2
3209 * float y[] = float[] (1.0, 2.0, 3.0); // declares an array of size 3
3210 *
3211 * float a[5];
3212 * float b[] = a;"
3213 */
3214 _mesa_glsl_error(& loc, state,
3215 "unsized array declarations are not allowed in "
3216 "GLSL ES");
3217 }
3218
3219 /* If the declaration is not a redeclaration, there are a few additional
3220 * semantic checks that must be applied. In addition, variable that was
3221 * created for the declaration should be added to the IR stream.
3222 */
3223 if (earlier == NULL) {
3224 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
3225 *
3226 * "Identifiers starting with "gl_" are reserved for use by
3227 * OpenGL, and may not be declared in a shader as either a
3228 * variable or a function."
3229 */
3230 if (strncmp(decl->identifier, "gl_", 3) == 0)
3231 _mesa_glsl_error(& loc, state,
3232 "identifier `%s' uses reserved `gl_' prefix",
3233 decl->identifier);
3234 else if (strstr(decl->identifier, "__")) {
3235 /* From page 14 (page 20 of the PDF) of the GLSL 1.10
3236 * spec:
3237 *
3238 * "In addition, all identifiers containing two
3239 * consecutive underscores (__) are reserved as
3240 * possible future keywords."
3241 */
3242 _mesa_glsl_error(& loc, state,
3243 "identifier `%s' uses reserved `__' string",
3244 decl->identifier);
3245 }
3246
3247 /* Add the variable to the symbol table. Note that the initializer's
3248 * IR was already processed earlier (though it hasn't been emitted
3249 * yet), without the variable in scope.
3250 *
3251 * This differs from most C-like languages, but it follows the GLSL
3252 * specification. From page 28 (page 34 of the PDF) of the GLSL 1.50
3253 * spec:
3254 *
3255 * "Within a declaration, the scope of a name starts immediately
3256 * after the initializer if present or immediately after the name
3257 * being declared if not."
3258 */
3259 if (!state->symbols->add_variable(var)) {
3260 YYLTYPE loc = this->get_location();
3261 _mesa_glsl_error(&loc, state, "name `%s' already taken in the "
3262 "current scope", decl->identifier);
3263 continue;
3264 }
3265
3266 /* Push the variable declaration to the top. It means that all the
3267 * variable declarations will appear in a funny last-to-first order,
3268 * but otherwise we run into trouble if a function is prototyped, a
3269 * global var is decled, then the function is defined with usage of
3270 * the global var. See glslparsertest's CorrectModule.frag.
3271 */
3272 instructions->push_head(var);
3273 }
3274
3275 instructions->append_list(&initializer_instructions);
3276 }
3277
3278
3279 /* Generally, variable declarations do not have r-values. However,
3280 * one is used for the declaration in
3281 *
3282 * while (bool b = some_condition()) {
3283 * ...
3284 * }
3285 *
3286 * so we return the rvalue from the last seen declaration here.
3287 */
3288 return result;
3289 }
3290
3291
3292 ir_rvalue *
3293 ast_parameter_declarator::hir(exec_list *instructions,
3294 struct _mesa_glsl_parse_state *state)
3295 {
3296 void *ctx = state;
3297 const struct glsl_type *type;
3298 const char *name = NULL;
3299 YYLTYPE loc = this->get_location();
3300
3301 type = this->type->glsl_type(& name, state);
3302
3303 if (type == NULL) {
3304 if (name != NULL) {
3305 _mesa_glsl_error(& loc, state,
3306 "invalid type `%s' in declaration of `%s'",
3307 name, this->identifier);
3308 } else {
3309 _mesa_glsl_error(& loc, state,
3310 "invalid type in declaration of `%s'",
3311 this->identifier);
3312 }
3313
3314 type = glsl_type::error_type;
3315 }
3316
3317 /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
3318 *
3319 * "Functions that accept no input arguments need not use void in the
3320 * argument list because prototypes (or definitions) are required and
3321 * therefore there is no ambiguity when an empty argument list "( )" is
3322 * declared. The idiom "(void)" as a parameter list is provided for
3323 * convenience."
3324 *
3325 * Placing this check here prevents a void parameter being set up
3326 * for a function, which avoids tripping up checks for main taking
3327 * parameters and lookups of an unnamed symbol.
3328 */
3329 if (type->is_void()) {
3330 if (this->identifier != NULL)
3331 _mesa_glsl_error(& loc, state,
3332 "named parameter cannot have type `void'");
3333
3334 is_void = true;
3335 return NULL;
3336 }
3337
3338 if (formal_parameter && (this->identifier == NULL)) {
3339 _mesa_glsl_error(& loc, state, "formal parameter lacks a name");
3340 return NULL;
3341 }
3342
3343 /* This only handles "vec4 foo[..]". The earlier specifier->glsl_type(...)
3344 * call already handled the "vec4[..] foo" case.
3345 */
3346 if (this->is_array) {
3347 type = process_array_type(&loc, type, this->array_size, state);
3348 }
3349
3350 if (!type->is_error() && type->array_size() == 0) {
3351 _mesa_glsl_error(&loc, state, "arrays passed as parameters must have "
3352 "a declared size");
3353 type = glsl_type::error_type;
3354 }
3355
3356 is_void = false;
3357 ir_variable *var = new(ctx)
3358 ir_variable(type, this->identifier, ir_var_function_in);
3359
3360 /* Apply any specified qualifiers to the parameter declaration. Note that
3361 * for function parameters the default mode is 'in'.
3362 */
3363 apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc,
3364 true);
3365
3366 /* From page 17 (page 23 of the PDF) of the GLSL 1.20 spec:
3367 *
3368 * "Samplers cannot be treated as l-values; hence cannot be used
3369 * as out or inout function parameters, nor can they be assigned
3370 * into."
3371 */
3372 if ((var->mode == ir_var_function_inout || var->mode == ir_var_function_out)
3373 && type->contains_sampler()) {
3374 _mesa_glsl_error(&loc, state, "out and inout parameters cannot contain samplers");
3375 type = glsl_type::error_type;
3376 }
3377
3378 /* From page 39 (page 45 of the PDF) of the GLSL 1.10 spec:
3379 *
3380 * "When calling a function, expressions that do not evaluate to
3381 * l-values cannot be passed to parameters declared as out or inout."
3382 *
3383 * From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
3384 *
3385 * "Other binary or unary expressions, non-dereferenced arrays,
3386 * function names, swizzles with repeated fields, and constants
3387 * cannot be l-values."
3388 *
3389 * So for GLSL 1.10, passing an array as an out or inout parameter is not
3390 * allowed. This restriction is removed in GLSL 1.20, and in GLSL ES.
3391 */
3392 if ((var->mode == ir_var_function_inout || var->mode == ir_var_function_out)
3393 && type->is_array()
3394 && !state->check_version(120, 100, &loc,
3395 "arrays cannot be out or inout parameters")) {
3396 type = glsl_type::error_type;
3397 }
3398
3399 instructions->push_tail(var);
3400
3401 /* Parameter declarations do not have r-values.
3402 */
3403 return NULL;
3404 }
3405
3406
3407 void
3408 ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters,
3409 bool formal,
3410 exec_list *ir_parameters,
3411 _mesa_glsl_parse_state *state)
3412 {
3413 ast_parameter_declarator *void_param = NULL;
3414 unsigned count = 0;
3415
3416 foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) {
3417 param->formal_parameter = formal;
3418 param->hir(ir_parameters, state);
3419
3420 if (param->is_void)
3421 void_param = param;
3422
3423 count++;
3424 }
3425
3426 if ((void_param != NULL) && (count > 1)) {
3427 YYLTYPE loc = void_param->get_location();
3428
3429 _mesa_glsl_error(& loc, state,
3430 "`void' parameter must be only parameter");
3431 }
3432 }
3433
3434
3435 void
3436 emit_function(_mesa_glsl_parse_state *state, ir_function *f)
3437 {
3438 /* IR invariants disallow function declarations or definitions
3439 * nested within other function definitions. But there is no
3440 * requirement about the relative order of function declarations
3441 * and definitions with respect to one another. So simply insert
3442 * the new ir_function block at the end of the toplevel instruction
3443 * list.
3444 */
3445 state->toplevel_ir->push_tail(f);
3446 }
3447
3448
3449 ir_rvalue *
3450 ast_function::hir(exec_list *instructions,
3451 struct _mesa_glsl_parse_state *state)
3452 {
3453 void *ctx = state;
3454 ir_function *f = NULL;
3455 ir_function_signature *sig = NULL;
3456 exec_list hir_parameters;
3457
3458 const char *const name = identifier;
3459
3460 /* New functions are always added to the top-level IR instruction stream,
3461 * so this instruction list pointer is ignored. See also emit_function
3462 * (called below).
3463 */
3464 (void) instructions;
3465
3466 /* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec,
3467 *
3468 * "Function declarations (prototypes) cannot occur inside of functions;
3469 * they must be at global scope, or for the built-in functions, outside
3470 * the global scope."
3471 *
3472 * From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec,
3473 *
3474 * "User defined functions may only be defined within the global scope."
3475 *
3476 * Note that this language does not appear in GLSL 1.10.
3477 */
3478 if ((state->current_function != NULL) &&
3479 state->is_version(120, 100)) {
3480 YYLTYPE loc = this->get_location();
3481 _mesa_glsl_error(&loc, state,
3482 "declaration of function `%s' not allowed within "
3483 "function body", name);
3484 }
3485
3486 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
3487 *
3488 * "Identifiers starting with "gl_" are reserved for use by
3489 * OpenGL, and may not be declared in a shader as either a
3490 * variable or a function."
3491 */
3492 if (strncmp(name, "gl_", 3) == 0) {
3493 YYLTYPE loc = this->get_location();
3494 _mesa_glsl_error(&loc, state,
3495 "identifier `%s' uses reserved `gl_' prefix", name);
3496 }
3497
3498 /* Convert the list of function parameters to HIR now so that they can be
3499 * used below to compare this function's signature with previously seen
3500 * signatures for functions with the same name.
3501 */
3502 ast_parameter_declarator::parameters_to_hir(& this->parameters,
3503 is_definition,
3504 & hir_parameters, state);
3505
3506 const char *return_type_name;
3507 const glsl_type *return_type =
3508 this->return_type->glsl_type(& return_type_name, state);
3509
3510 if (!return_type) {
3511 YYLTYPE loc = this->get_location();
3512 _mesa_glsl_error(&loc, state,
3513 "function `%s' has undeclared return type `%s'",
3514 name, return_type_name);
3515 return_type = glsl_type::error_type;
3516 }
3517
3518 /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec:
3519 * "No qualifier is allowed on the return type of a function."
3520 */
3521 if (this->return_type->has_qualifiers()) {
3522 YYLTYPE loc = this->get_location();
3523 _mesa_glsl_error(& loc, state,
3524 "function `%s' return type has qualifiers", name);
3525 }
3526
3527 /* Section 6.1 (Function Definitions) of the GLSL 1.20 spec says:
3528 *
3529 * "Arrays are allowed as arguments and as the return type. In both
3530 * cases, the array must be explicitly sized."
3531 */
3532 if (return_type->is_array() && return_type->length == 0) {
3533 YYLTYPE loc = this->get_location();
3534 _mesa_glsl_error(& loc, state,
3535 "function `%s' return type array must be explicitly "
3536 "sized", name);
3537 }
3538
3539 /* From page 17 (page 23 of the PDF) of the GLSL 1.20 spec:
3540 *
3541 * "[Sampler types] can only be declared as function parameters
3542 * or uniform variables (see Section 4.3.5 "Uniform")".
3543 */
3544 if (return_type->contains_sampler()) {
3545 YYLTYPE loc = this->get_location();
3546 _mesa_glsl_error(&loc, state,
3547 "function `%s' return type can't contain a sampler",
3548 name);
3549 }
3550
3551 /* Verify that this function's signature either doesn't match a previously
3552 * seen signature for a function with the same name, or, if a match is found,
3553 * that the previously seen signature does not have an associated definition.
3554 */
3555 f = state->symbols->get_function(name);
3556 if (f != NULL && (state->es_shader || f->has_user_signature())) {
3557 sig = f->exact_matching_signature(&hir_parameters);
3558 if (sig != NULL) {
3559 const char *badvar = sig->qualifiers_match(&hir_parameters);
3560 if (badvar != NULL) {
3561 YYLTYPE loc = this->get_location();
3562
3563 _mesa_glsl_error(&loc, state, "function `%s' parameter `%s' "
3564 "qualifiers don't match prototype", name, badvar);
3565 }
3566
3567 if (sig->return_type != return_type) {
3568 YYLTYPE loc = this->get_location();
3569
3570 _mesa_glsl_error(&loc, state, "function `%s' return type doesn't "
3571 "match prototype", name);
3572 }
3573
3574 if (sig->is_defined) {
3575 if (is_definition) {
3576 YYLTYPE loc = this->get_location();
3577 _mesa_glsl_error(& loc, state, "function `%s' redefined", name);
3578 } else {
3579 /* We just encountered a prototype that exactly matches a
3580 * function that's already been defined. This is redundant,
3581 * and we should ignore it.
3582 */
3583 return NULL;
3584 }
3585 }
3586 }
3587 } else {
3588 f = new(ctx) ir_function(name);
3589 if (!state->symbols->add_function(f)) {
3590 /* This function name shadows a non-function use of the same name. */
3591 YYLTYPE loc = this->get_location();
3592
3593 _mesa_glsl_error(&loc, state, "function name `%s' conflicts with "
3594 "non-function", name);
3595 return NULL;
3596 }
3597
3598 emit_function(state, f);
3599 }
3600
3601 /* Verify the return type of main() */
3602 if (strcmp(name, "main") == 0) {
3603 if (! return_type->is_void()) {
3604 YYLTYPE loc = this->get_location();
3605
3606 _mesa_glsl_error(& loc, state, "main() must return void");
3607 }
3608
3609 if (!hir_parameters.is_empty()) {
3610 YYLTYPE loc = this->get_location();
3611
3612 _mesa_glsl_error(& loc, state, "main() must not take any parameters");
3613 }
3614 }
3615
3616 /* Finish storing the information about this new function in its signature.
3617 */
3618 if (sig == NULL) {
3619 sig = new(ctx) ir_function_signature(return_type);
3620 f->add_signature(sig);
3621 }
3622
3623 sig->replace_parameters(&hir_parameters);
3624 signature = sig;
3625
3626 /* Function declarations (prototypes) do not have r-values.
3627 */
3628 return NULL;
3629 }
3630
3631
3632 ir_rvalue *
3633 ast_function_definition::hir(exec_list *instructions,
3634 struct _mesa_glsl_parse_state *state)
3635 {
3636 prototype->is_definition = true;
3637 prototype->hir(instructions, state);
3638
3639 ir_function_signature *signature = prototype->signature;
3640 if (signature == NULL)
3641 return NULL;
3642
3643 assert(state->current_function == NULL);
3644 state->current_function = signature;
3645 state->found_return = false;
3646
3647 /* Duplicate parameters declared in the prototype as concrete variables.
3648 * Add these to the symbol table.
3649 */
3650 state->symbols->push_scope();
3651 foreach_iter(exec_list_iterator, iter, signature->parameters) {
3652 ir_variable *const var = ((ir_instruction *) iter.get())->as_variable();
3653
3654 assert(var != NULL);
3655
3656 /* The only way a parameter would "exist" is if two parameters have
3657 * the same name.
3658 */
3659 if (state->symbols->name_declared_this_scope(var->name)) {
3660 YYLTYPE loc = this->get_location();
3661
3662 _mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name);
3663 } else {
3664 state->symbols->add_variable(var);
3665 }
3666 }
3667
3668 /* Convert the body of the function to HIR. */
3669 this->body->hir(&signature->body, state);
3670 signature->is_defined = true;
3671
3672 state->symbols->pop_scope();
3673
3674 assert(state->current_function == signature);
3675 state->current_function = NULL;
3676
3677 if (!signature->return_type->is_void() && !state->found_return) {
3678 YYLTYPE loc = this->get_location();
3679 _mesa_glsl_error(& loc, state, "function `%s' has non-void return type "
3680 "%s, but no return statement",
3681 signature->function_name(),
3682 signature->return_type->name);
3683 }
3684
3685 /* Function definitions do not have r-values.
3686 */
3687 return NULL;
3688 }
3689
3690
3691 ir_rvalue *
3692 ast_jump_statement::hir(exec_list *instructions,
3693 struct _mesa_glsl_parse_state *state)
3694 {
3695 void *ctx = state;
3696
3697 switch (mode) {
3698 case ast_return: {
3699 ir_return *inst;
3700 assert(state->current_function);
3701
3702 if (opt_return_value) {
3703 ir_rvalue *ret = opt_return_value->hir(instructions, state);
3704
3705 /* The value of the return type can be NULL if the shader says
3706 * 'return foo();' and foo() is a function that returns void.
3707 *
3708 * NOTE: The GLSL spec doesn't say that this is an error. The type
3709 * of the return value is void. If the return type of the function is
3710 * also void, then this should compile without error. Seriously.
3711 */
3712 const glsl_type *const ret_type =
3713 (ret == NULL) ? glsl_type::void_type : ret->type;
3714
3715 /* Implicit conversions are not allowed for return values prior to
3716 * ARB_shading_language_420pack.
3717 */
3718 if (state->current_function->return_type != ret_type) {
3719 YYLTYPE loc = this->get_location();
3720
3721 if (state->ARB_shading_language_420pack_enable) {
3722 if (!apply_implicit_conversion(state->current_function->return_type,
3723 ret, state)) {
3724 _mesa_glsl_error(& loc, state,
3725 "could not implicitly convert return value "
3726 "to %s, in function `%s'",
3727 state->current_function->return_type->name,
3728 state->current_function->function_name());
3729 }
3730 } else {
3731 _mesa_glsl_error(& loc, state,
3732 "`return' with wrong type %s, in function `%s' "
3733 "returning %s",
3734 ret_type->name,
3735 state->current_function->function_name(),
3736 state->current_function->return_type->name);
3737 }
3738 } else if (state->current_function->return_type->base_type ==
3739 GLSL_TYPE_VOID) {
3740 YYLTYPE loc = this->get_location();
3741
3742 /* The ARB_shading_language_420pack, GLSL ES 3.0, and GLSL 4.20
3743 * specs add a clarification:
3744 *
3745 * "A void function can only use return without a return argument, even if
3746 * the return argument has void type. Return statements only accept values:
3747 *
3748 * void func1() { }
3749 * void func2() { return func1(); } // illegal return statement"
3750 */
3751 _mesa_glsl_error(& loc, state,
3752 "void functions can only use `return' without a "
3753 "return argument");
3754 }
3755
3756 inst = new(ctx) ir_return(ret);
3757 } else {
3758 if (state->current_function->return_type->base_type !=
3759 GLSL_TYPE_VOID) {
3760 YYLTYPE loc = this->get_location();
3761
3762 _mesa_glsl_error(& loc, state,
3763 "`return' with no value, in function %s returning "
3764 "non-void",
3765 state->current_function->function_name());
3766 }
3767 inst = new(ctx) ir_return;
3768 }
3769
3770 state->found_return = true;
3771 instructions->push_tail(inst);
3772 break;
3773 }
3774
3775 case ast_discard:
3776 if (state->target != fragment_shader) {
3777 YYLTYPE loc = this->get_location();
3778
3779 _mesa_glsl_error(& loc, state,
3780 "`discard' may only appear in a fragment shader");
3781 }
3782 instructions->push_tail(new(ctx) ir_discard);
3783 break;
3784
3785 case ast_break:
3786 case ast_continue:
3787 if (mode == ast_continue &&
3788 state->loop_nesting_ast == NULL) {
3789 YYLTYPE loc = this->get_location();
3790
3791 _mesa_glsl_error(& loc, state,
3792 "continue may only appear in a loop");
3793 } else if (mode == ast_break &&
3794 state->loop_nesting_ast == NULL &&
3795 state->switch_state.switch_nesting_ast == NULL) {
3796 YYLTYPE loc = this->get_location();
3797
3798 _mesa_glsl_error(& loc, state,
3799 "break may only appear in a loop or a switch");
3800 } else {
3801 /* For a loop, inline the for loop expression again,
3802 * since we don't know where near the end of
3803 * the loop body the normal copy of it
3804 * is going to be placed.
3805 */
3806 if (state->loop_nesting_ast != NULL &&
3807 mode == ast_continue &&
3808 state->loop_nesting_ast->rest_expression) {
3809 state->loop_nesting_ast->rest_expression->hir(instructions,
3810 state);
3811 }
3812
3813 if (state->switch_state.is_switch_innermost &&
3814 mode == ast_break) {
3815 /* Force break out of switch by setting is_break switch state.
3816 */
3817 ir_variable *const is_break_var = state->switch_state.is_break_var;
3818 ir_dereference_variable *const deref_is_break_var =
3819 new(ctx) ir_dereference_variable(is_break_var);
3820 ir_constant *const true_val = new(ctx) ir_constant(true);
3821 ir_assignment *const set_break_var =
3822 new(ctx) ir_assignment(deref_is_break_var, true_val);
3823
3824 instructions->push_tail(set_break_var);
3825 }
3826 else {
3827 ir_loop_jump *const jump =
3828 new(ctx) ir_loop_jump((mode == ast_break)
3829 ? ir_loop_jump::jump_break
3830 : ir_loop_jump::jump_continue);
3831 instructions->push_tail(jump);
3832 }
3833 }
3834
3835 break;
3836 }
3837
3838 /* Jump instructions do not have r-values.
3839 */
3840 return NULL;
3841 }
3842
3843
3844 ir_rvalue *
3845 ast_selection_statement::hir(exec_list *instructions,
3846 struct _mesa_glsl_parse_state *state)
3847 {
3848 void *ctx = state;
3849
3850 ir_rvalue *const condition = this->condition->hir(instructions, state);
3851
3852 /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
3853 *
3854 * "Any expression whose type evaluates to a Boolean can be used as the
3855 * conditional expression bool-expression. Vector types are not accepted
3856 * as the expression to if."
3857 *
3858 * The checks are separated so that higher quality diagnostics can be
3859 * generated for cases where both rules are violated.
3860 */
3861 if (!condition->type->is_boolean() || !condition->type->is_scalar()) {
3862 YYLTYPE loc = this->condition->get_location();
3863
3864 _mesa_glsl_error(& loc, state, "if-statement condition must be scalar "
3865 "boolean");
3866 }
3867
3868 ir_if *const stmt = new(ctx) ir_if(condition);
3869
3870 if (then_statement != NULL) {
3871 state->symbols->push_scope();
3872 then_statement->hir(& stmt->then_instructions, state);
3873 state->symbols->pop_scope();
3874 }
3875
3876 if (else_statement != NULL) {
3877 state->symbols->push_scope();
3878 else_statement->hir(& stmt->else_instructions, state);
3879 state->symbols->pop_scope();
3880 }
3881
3882 instructions->push_tail(stmt);
3883
3884 /* if-statements do not have r-values.
3885 */
3886 return NULL;
3887 }
3888
3889
3890 ir_rvalue *
3891 ast_switch_statement::hir(exec_list *instructions,
3892 struct _mesa_glsl_parse_state *state)
3893 {
3894 void *ctx = state;
3895
3896 ir_rvalue *const test_expression =
3897 this->test_expression->hir(instructions, state);
3898
3899 /* From page 66 (page 55 of the PDF) of the GLSL 1.50 spec:
3900 *
3901 * "The type of init-expression in a switch statement must be a
3902 * scalar integer."
3903 */
3904 if (!test_expression->type->is_scalar() ||
3905 !test_expression->type->is_integer()) {
3906 YYLTYPE loc = this->test_expression->get_location();
3907
3908 _mesa_glsl_error(& loc,
3909 state,
3910 "switch-statement expression must be scalar "
3911 "integer");
3912 }
3913
3914 /* Track the switch-statement nesting in a stack-like manner.
3915 */
3916 struct glsl_switch_state saved = state->switch_state;
3917
3918 state->switch_state.is_switch_innermost = true;
3919 state->switch_state.switch_nesting_ast = this;
3920 state->switch_state.labels_ht = hash_table_ctor(0, hash_table_pointer_hash,
3921 hash_table_pointer_compare);
3922 state->switch_state.previous_default = NULL;
3923
3924 /* Initalize is_fallthru state to false.
3925 */
3926 ir_rvalue *const is_fallthru_val = new (ctx) ir_constant(false);
3927 state->switch_state.is_fallthru_var =
3928 new(ctx) ir_variable(glsl_type::bool_type,
3929 "switch_is_fallthru_tmp",
3930 ir_var_temporary);
3931 instructions->push_tail(state->switch_state.is_fallthru_var);
3932
3933 ir_dereference_variable *deref_is_fallthru_var =
3934 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
3935 instructions->push_tail(new(ctx) ir_assignment(deref_is_fallthru_var,
3936 is_fallthru_val));
3937
3938 /* Initalize is_break state to false.
3939 */
3940 ir_rvalue *const is_break_val = new (ctx) ir_constant(false);
3941 state->switch_state.is_break_var = new(ctx) ir_variable(glsl_type::bool_type,
3942 "switch_is_break_tmp",
3943 ir_var_temporary);
3944 instructions->push_tail(state->switch_state.is_break_var);
3945
3946 ir_dereference_variable *deref_is_break_var =
3947 new(ctx) ir_dereference_variable(state->switch_state.is_break_var);
3948 instructions->push_tail(new(ctx) ir_assignment(deref_is_break_var,
3949 is_break_val));
3950
3951 /* Cache test expression.
3952 */
3953 test_to_hir(instructions, state);
3954
3955 /* Emit code for body of switch stmt.
3956 */
3957 body->hir(instructions, state);
3958
3959 hash_table_dtor(state->switch_state.labels_ht);
3960
3961 state->switch_state = saved;
3962
3963 /* Switch statements do not have r-values. */
3964 return NULL;
3965 }
3966
3967
3968 void
3969 ast_switch_statement::test_to_hir(exec_list *instructions,
3970 struct _mesa_glsl_parse_state *state)
3971 {
3972 void *ctx = state;
3973
3974 /* Cache value of test expression. */
3975 ir_rvalue *const test_val =
3976 test_expression->hir(instructions,
3977 state);
3978
3979 state->switch_state.test_var = new(ctx) ir_variable(test_val->type,
3980 "switch_test_tmp",
3981 ir_var_temporary);
3982 ir_dereference_variable *deref_test_var =
3983 new(ctx) ir_dereference_variable(state->switch_state.test_var);
3984
3985 instructions->push_tail(state->switch_state.test_var);
3986 instructions->push_tail(new(ctx) ir_assignment(deref_test_var, test_val));
3987 }
3988
3989
3990 ir_rvalue *
3991 ast_switch_body::hir(exec_list *instructions,
3992 struct _mesa_glsl_parse_state *state)
3993 {
3994 if (stmts != NULL)
3995 stmts->hir(instructions, state);
3996
3997 /* Switch bodies do not have r-values. */
3998 return NULL;
3999 }
4000
4001 ir_rvalue *
4002 ast_case_statement_list::hir(exec_list *instructions,
4003 struct _mesa_glsl_parse_state *state)
4004 {
4005 foreach_list_typed (ast_case_statement, case_stmt, link, & this->cases)
4006 case_stmt->hir(instructions, state);
4007
4008 /* Case statements do not have r-values. */
4009 return NULL;
4010 }
4011
4012 ir_rvalue *
4013 ast_case_statement::hir(exec_list *instructions,
4014 struct _mesa_glsl_parse_state *state)
4015 {
4016 labels->hir(instructions, state);
4017
4018 /* Conditionally set fallthru state based on break state. */
4019 ir_constant *const false_val = new(state) ir_constant(false);
4020 ir_dereference_variable *const deref_is_fallthru_var =
4021 new(state) ir_dereference_variable(state->switch_state.is_fallthru_var);
4022 ir_dereference_variable *const deref_is_break_var =
4023 new(state) ir_dereference_variable(state->switch_state.is_break_var);
4024 ir_assignment *const reset_fallthru_on_break =
4025 new(state) ir_assignment(deref_is_fallthru_var,
4026 false_val,
4027 deref_is_break_var);
4028 instructions->push_tail(reset_fallthru_on_break);
4029
4030 /* Guard case statements depending on fallthru state. */
4031 ir_dereference_variable *const deref_fallthru_guard =
4032 new(state) ir_dereference_variable(state->switch_state.is_fallthru_var);
4033 ir_if *const test_fallthru = new(state) ir_if(deref_fallthru_guard);
4034
4035 foreach_list_typed (ast_node, stmt, link, & this->stmts)
4036 stmt->hir(& test_fallthru->then_instructions, state);
4037
4038 instructions->push_tail(test_fallthru);
4039
4040 /* Case statements do not have r-values. */
4041 return NULL;
4042 }
4043
4044
4045 ir_rvalue *
4046 ast_case_label_list::hir(exec_list *instructions,
4047 struct _mesa_glsl_parse_state *state)
4048 {
4049 foreach_list_typed (ast_case_label, label, link, & this->labels)
4050 label->hir(instructions, state);
4051
4052 /* Case labels do not have r-values. */
4053 return NULL;
4054 }
4055
4056 ir_rvalue *
4057 ast_case_label::hir(exec_list *instructions,
4058 struct _mesa_glsl_parse_state *state)
4059 {
4060 void *ctx = state;
4061
4062 ir_dereference_variable *deref_fallthru_var =
4063 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
4064
4065 ir_rvalue *const true_val = new(ctx) ir_constant(true);
4066
4067 /* If not default case, ... */
4068 if (this->test_value != NULL) {
4069 /* Conditionally set fallthru state based on
4070 * comparison of cached test expression value to case label.
4071 */
4072 ir_rvalue *const label_rval = this->test_value->hir(instructions, state);
4073 ir_constant *label_const = label_rval->constant_expression_value();
4074
4075 if (!label_const) {
4076 YYLTYPE loc = this->test_value->get_location();
4077
4078 _mesa_glsl_error(& loc, state,
4079 "switch statement case label must be a "
4080 "constant expression");
4081
4082 /* Stuff a dummy value in to allow processing to continue. */
4083 label_const = new(ctx) ir_constant(0);
4084 } else {
4085 ast_expression *previous_label = (ast_expression *)
4086 hash_table_find(state->switch_state.labels_ht,
4087 (void *)(uintptr_t)label_const->value.u[0]);
4088
4089 if (previous_label) {
4090 YYLTYPE loc = this->test_value->get_location();
4091 _mesa_glsl_error(& loc, state,
4092 "duplicate case value");
4093
4094 loc = previous_label->get_location();
4095 _mesa_glsl_error(& loc, state,
4096 "this is the previous case label");
4097 } else {
4098 hash_table_insert(state->switch_state.labels_ht,
4099 this->test_value,
4100 (void *)(uintptr_t)label_const->value.u[0]);
4101 }
4102 }
4103
4104 ir_dereference_variable *deref_test_var =
4105 new(ctx) ir_dereference_variable(state->switch_state.test_var);
4106
4107 ir_rvalue *const test_cond = new(ctx) ir_expression(ir_binop_all_equal,
4108 label_const,
4109 deref_test_var);
4110
4111 ir_assignment *set_fallthru_on_test =
4112 new(ctx) ir_assignment(deref_fallthru_var,
4113 true_val,
4114 test_cond);
4115
4116 instructions->push_tail(set_fallthru_on_test);
4117 } else { /* default case */
4118 if (state->switch_state.previous_default) {
4119 YYLTYPE loc = this->get_location();
4120 _mesa_glsl_error(& loc, state,
4121 "multiple default labels in one switch");
4122
4123 loc = state->switch_state.previous_default->get_location();
4124 _mesa_glsl_error(& loc, state,
4125 "this is the first default label");
4126 }
4127 state->switch_state.previous_default = this;
4128
4129 /* Set falltrhu state. */
4130 ir_assignment *set_fallthru =
4131 new(ctx) ir_assignment(deref_fallthru_var, true_val);
4132
4133 instructions->push_tail(set_fallthru);
4134 }
4135
4136 /* Case statements do not have r-values. */
4137 return NULL;
4138 }
4139
4140 void
4141 ast_iteration_statement::condition_to_hir(ir_loop *stmt,
4142 struct _mesa_glsl_parse_state *state)
4143 {
4144 void *ctx = state;
4145
4146 if (condition != NULL) {
4147 ir_rvalue *const cond =
4148 condition->hir(& stmt->body_instructions, state);
4149
4150 if ((cond == NULL)
4151 || !cond->type->is_boolean() || !cond->type->is_scalar()) {
4152 YYLTYPE loc = condition->get_location();
4153
4154 _mesa_glsl_error(& loc, state,
4155 "loop condition must be scalar boolean");
4156 } else {
4157 /* As the first code in the loop body, generate a block that looks
4158 * like 'if (!condition) break;' as the loop termination condition.
4159 */
4160 ir_rvalue *const not_cond =
4161 new(ctx) ir_expression(ir_unop_logic_not, cond);
4162
4163 ir_if *const if_stmt = new(ctx) ir_if(not_cond);
4164
4165 ir_jump *const break_stmt =
4166 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
4167
4168 if_stmt->then_instructions.push_tail(break_stmt);
4169 stmt->body_instructions.push_tail(if_stmt);
4170 }
4171 }
4172 }
4173
4174
4175 ir_rvalue *
4176 ast_iteration_statement::hir(exec_list *instructions,
4177 struct _mesa_glsl_parse_state *state)
4178 {
4179 void *ctx = state;
4180
4181 /* For-loops and while-loops start a new scope, but do-while loops do not.
4182 */
4183 if (mode != ast_do_while)
4184 state->symbols->push_scope();
4185
4186 if (init_statement != NULL)
4187 init_statement->hir(instructions, state);
4188
4189 ir_loop *const stmt = new(ctx) ir_loop();
4190 instructions->push_tail(stmt);
4191
4192 /* Track the current loop nesting. */
4193 ast_iteration_statement *nesting_ast = state->loop_nesting_ast;
4194
4195 state->loop_nesting_ast = this;
4196
4197 /* Likewise, indicate that following code is closest to a loop,
4198 * NOT closest to a switch.
4199 */
4200 bool saved_is_switch_innermost = state->switch_state.is_switch_innermost;
4201 state->switch_state.is_switch_innermost = false;
4202
4203 if (mode != ast_do_while)
4204 condition_to_hir(stmt, state);
4205
4206 if (body != NULL)
4207 body->hir(& stmt->body_instructions, state);
4208
4209 if (rest_expression != NULL)
4210 rest_expression->hir(& stmt->body_instructions, state);
4211
4212 if (mode == ast_do_while)
4213 condition_to_hir(stmt, state);
4214
4215 if (mode != ast_do_while)
4216 state->symbols->pop_scope();
4217
4218 /* Restore previous nesting before returning. */
4219 state->loop_nesting_ast = nesting_ast;
4220 state->switch_state.is_switch_innermost = saved_is_switch_innermost;
4221
4222 /* Loops do not have r-values.
4223 */
4224 return NULL;
4225 }
4226
4227
4228 /**
4229 * Determine if the given type is valid for establishing a default precision
4230 * qualifier.
4231 *
4232 * From GLSL ES 3.00 section 4.5.4 ("Default Precision Qualifiers"):
4233 *
4234 * "The precision statement
4235 *
4236 * precision precision-qualifier type;
4237 *
4238 * can be used to establish a default precision qualifier. The type field
4239 * can be either int or float or any of the sampler types, and the
4240 * precision-qualifier can be lowp, mediump, or highp."
4241 *
4242 * GLSL ES 1.00 has similar language. GLSL 1.30 doesn't allow precision
4243 * qualifiers on sampler types, but this seems like an oversight (since the
4244 * intention of including these in GLSL 1.30 is to allow compatibility with ES
4245 * shaders). So we allow int, float, and all sampler types regardless of GLSL
4246 * version.
4247 */
4248 static bool
4249 is_valid_default_precision_type(const struct glsl_type *const type)
4250 {
4251 if (type == NULL)
4252 return false;
4253
4254 switch (type->base_type) {
4255 case GLSL_TYPE_INT:
4256 case GLSL_TYPE_FLOAT:
4257 /* "int" and "float" are valid, but vectors and matrices are not. */
4258 return type->vector_elements == 1 && type->matrix_columns == 1;
4259 case GLSL_TYPE_SAMPLER:
4260 return true;
4261 default:
4262 return false;
4263 }
4264 }
4265
4266
4267 ir_rvalue *
4268 ast_type_specifier::hir(exec_list *instructions,
4269 struct _mesa_glsl_parse_state *state)
4270 {
4271 if (this->default_precision == ast_precision_none && this->structure == NULL)
4272 return NULL;
4273
4274 YYLTYPE loc = this->get_location();
4275
4276 /* If this is a precision statement, check that the type to which it is
4277 * applied is either float or int.
4278 *
4279 * From section 4.5.3 of the GLSL 1.30 spec:
4280 * "The precision statement
4281 * precision precision-qualifier type;
4282 * can be used to establish a default precision qualifier. The type
4283 * field can be either int or float [...]. Any other types or
4284 * qualifiers will result in an error.
4285 */
4286 if (this->default_precision != ast_precision_none) {
4287 if (!state->check_precision_qualifiers_allowed(&loc))
4288 return NULL;
4289
4290 if (this->structure != NULL) {
4291 _mesa_glsl_error(&loc, state,
4292 "precision qualifiers do not apply to structures");
4293 return NULL;
4294 }
4295
4296 if (this->is_array) {
4297 _mesa_glsl_error(&loc, state,
4298 "default precision statements do not apply to "
4299 "arrays");
4300 return NULL;
4301 }
4302
4303 const struct glsl_type *const type =
4304 state->symbols->get_type(this->type_name);
4305 if (!is_valid_default_precision_type(type)) {
4306 _mesa_glsl_error(&loc, state,
4307 "default precision statements apply only to "
4308 "float, int, and sampler types");
4309 return NULL;
4310 }
4311
4312 if (type->base_type == GLSL_TYPE_FLOAT
4313 && state->es_shader
4314 && state->target == fragment_shader) {
4315 /* Section 4.5.3 (Default Precision Qualifiers) of the GLSL ES 1.00
4316 * spec says:
4317 *
4318 * "The fragment language has no default precision qualifier for
4319 * floating point types."
4320 *
4321 * As a result, we have to track whether or not default precision has
4322 * been specified for float in GLSL ES fragment shaders.
4323 *
4324 * Earlier in that same section, the spec says:
4325 *
4326 * "Non-precision qualified declarations will use the precision
4327 * qualifier specified in the most recent precision statement
4328 * that is still in scope. The precision statement has the same
4329 * scoping rules as variable declarations. If it is declared
4330 * inside a compound statement, its effect stops at the end of
4331 * the innermost statement it was declared in. Precision
4332 * statements in nested scopes override precision statements in
4333 * outer scopes. Multiple precision statements for the same basic
4334 * type can appear inside the same scope, with later statements
4335 * overriding earlier statements within that scope."
4336 *
4337 * Default precision specifications follow the same scope rules as
4338 * variables. So, we can track the state of the default float
4339 * precision in the symbol table, and the rules will just work. This
4340 * is a slight abuse of the symbol table, but it has the semantics
4341 * that we want.
4342 */
4343 ir_variable *const junk =
4344 new(state) ir_variable(type, "#default precision",
4345 ir_var_temporary);
4346
4347 state->symbols->add_variable(junk);
4348 }
4349
4350 /* FINISHME: Translate precision statements into IR. */
4351 return NULL;
4352 }
4353
4354 /* _mesa_ast_set_aggregate_type() sets the <structure> field so that
4355 * process_record_constructor() can do type-checking on C-style initializer
4356 * expressions of structs, but ast_struct_specifier should only be translated
4357 * to HIR if it is declaring the type of a structure.
4358 *
4359 * The ->is_declaration field is false for initializers of variables
4360 * declared separately from the struct's type definition.
4361 *
4362 * struct S { ... }; (is_declaration = true)
4363 * struct T { ... } t = { ... }; (is_declaration = true)
4364 * S s = { ... }; (is_declaration = false)
4365 */
4366 if (this->structure != NULL && this->structure->is_declaration)
4367 return this->structure->hir(instructions, state);
4368
4369 return NULL;
4370 }
4371
4372
4373 /**
4374 * Process a structure or interface block tree into an array of structure fields
4375 *
4376 * After parsing, where there are some syntax differnces, structures and
4377 * interface blocks are almost identical. They are similar enough that the
4378 * AST for each can be processed the same way into a set of
4379 * \c glsl_struct_field to describe the members.
4380 *
4381 * \return
4382 * The number of fields processed. A pointer to the array structure fields is
4383 * stored in \c *fields_ret.
4384 */
4385 unsigned
4386 ast_process_structure_or_interface_block(exec_list *instructions,
4387 struct _mesa_glsl_parse_state *state,
4388 exec_list *declarations,
4389 YYLTYPE &loc,
4390 glsl_struct_field **fields_ret,
4391 bool is_interface,
4392 bool block_row_major)
4393 {
4394 unsigned decl_count = 0;
4395
4396 /* Make an initial pass over the list of fields to determine how
4397 * many there are. Each element in this list is an ast_declarator_list.
4398 * This means that we actually need to count the number of elements in the
4399 * 'declarations' list in each of the elements.
4400 */
4401 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
4402 foreach_list_const (decl_ptr, & decl_list->declarations) {
4403 decl_count++;
4404 }
4405 }
4406
4407 /* Allocate storage for the fields and process the field
4408 * declarations. As the declarations are processed, try to also convert
4409 * the types to HIR. This ensures that structure definitions embedded in
4410 * other structure definitions or in interface blocks are processed.
4411 */
4412 glsl_struct_field *const fields = ralloc_array(state, glsl_struct_field,
4413 decl_count);
4414
4415 unsigned i = 0;
4416 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
4417 const char *type_name;
4418
4419 decl_list->type->specifier->hir(instructions, state);
4420
4421 /* Section 10.9 of the GLSL ES 1.00 specification states that
4422 * embedded structure definitions have been removed from the language.
4423 */
4424 if (state->es_shader && decl_list->type->specifier->structure != NULL) {
4425 _mesa_glsl_error(&loc, state, "embedded structure definitions are "
4426 "not allowed in GLSL ES 1.00");
4427 }
4428
4429 const glsl_type *decl_type =
4430 decl_list->type->glsl_type(& type_name, state);
4431
4432 foreach_list_typed (ast_declaration, decl, link,
4433 &decl_list->declarations) {
4434 /* From the GL_ARB_uniform_buffer_object spec:
4435 *
4436 * "Sampler types are not allowed inside of uniform
4437 * blocks. All other types, arrays, and structures
4438 * allowed for uniforms are allowed within a uniform
4439 * block."
4440 *
4441 * It should be impossible for decl_type to be NULL here. Cases that
4442 * might naturally lead to decl_type being NULL, especially for the
4443 * is_interface case, will have resulted in compilation having
4444 * already halted due to a syntax error.
4445 */
4446 const struct glsl_type *field_type =
4447 decl_type != NULL ? decl_type : glsl_type::error_type;
4448
4449 if (is_interface && field_type->contains_sampler()) {
4450 YYLTYPE loc = decl_list->get_location();
4451 _mesa_glsl_error(&loc, state,
4452 "uniform in non-default uniform block contains sampler");
4453 }
4454
4455 const struct ast_type_qualifier *const qual =
4456 & decl_list->type->qualifier;
4457 if (qual->flags.q.std140 ||
4458 qual->flags.q.packed ||
4459 qual->flags.q.shared) {
4460 _mesa_glsl_error(&loc, state,
4461 "uniform block layout qualifiers std140, packed, and "
4462 "shared can only be applied to uniform blocks, not "
4463 "members");
4464 }
4465
4466 if (decl->is_array) {
4467 field_type = process_array_type(&loc, decl_type, decl->array_size,
4468 state);
4469 }
4470 fields[i].type = field_type;
4471 fields[i].name = decl->identifier;
4472
4473 if (qual->flags.q.row_major || qual->flags.q.column_major) {
4474 if (!qual->flags.q.uniform) {
4475 _mesa_glsl_error(&loc, state,
4476 "row_major and column_major can only be "
4477 "applied to uniform interface blocks");
4478 } else
4479 validate_matrix_layout_for_type(state, &loc, field_type);
4480 }
4481
4482 if (qual->flags.q.uniform && qual->has_interpolation()) {
4483 _mesa_glsl_error(&loc, state,
4484 "interpolation qualifiers cannot be used "
4485 "with uniform interface blocks");
4486 }
4487
4488 if (field_type->is_matrix() ||
4489 (field_type->is_array() && field_type->fields.array->is_matrix())) {
4490 fields[i].row_major = block_row_major;
4491 if (qual->flags.q.row_major)
4492 fields[i].row_major = true;
4493 else if (qual->flags.q.column_major)
4494 fields[i].row_major = false;
4495 }
4496
4497 i++;
4498 }
4499 }
4500
4501 assert(i == decl_count);
4502
4503 *fields_ret = fields;
4504 return decl_count;
4505 }
4506
4507
4508 ir_rvalue *
4509 ast_struct_specifier::hir(exec_list *instructions,
4510 struct _mesa_glsl_parse_state *state)
4511 {
4512 YYLTYPE loc = this->get_location();
4513
4514 /* Section 4.1.8 (Structures) of the GLSL 1.10 spec says:
4515 *
4516 * "Anonymous structures are not supported; so embedded structures must
4517 * have a declarator. A name given to an embedded struct is scoped at
4518 * the same level as the struct it is embedded in."
4519 *
4520 * The same section of the GLSL 1.20 spec says:
4521 *
4522 * "Anonymous structures are not supported. Embedded structures are not
4523 * supported.
4524 *
4525 * struct S { float f; };
4526 * struct T {
4527 * S; // Error: anonymous structures disallowed
4528 * struct { ... }; // Error: embedded structures disallowed
4529 * S s; // Okay: nested structures with name are allowed
4530 * };"
4531 *
4532 * The GLSL ES 1.00 and 3.00 specs have similar langauge and examples. So,
4533 * we allow embedded structures in 1.10 only.
4534 */
4535 if (state->language_version != 110 && state->struct_specifier_depth != 0)
4536 _mesa_glsl_error(&loc, state,
4537 "embedded structure declartions are not allowed");
4538
4539 state->struct_specifier_depth++;
4540
4541 glsl_struct_field *fields;
4542 unsigned decl_count =
4543 ast_process_structure_or_interface_block(instructions,
4544 state,
4545 &this->declarations,
4546 loc,
4547 &fields,
4548 false,
4549 false);
4550
4551 const glsl_type *t =
4552 glsl_type::get_record_instance(fields, decl_count, this->name);
4553
4554 if (!state->symbols->add_type(name, t)) {
4555 _mesa_glsl_error(& loc, state, "struct `%s' previously defined", name);
4556 } else {
4557 const glsl_type **s = reralloc(state, state->user_structures,
4558 const glsl_type *,
4559 state->num_user_structures + 1);
4560 if (s != NULL) {
4561 s[state->num_user_structures] = t;
4562 state->user_structures = s;
4563 state->num_user_structures++;
4564 }
4565 }
4566
4567 state->struct_specifier_depth--;
4568
4569 /* Structure type definitions do not have r-values.
4570 */
4571 return NULL;
4572 }
4573
4574 ir_rvalue *
4575 ast_interface_block::hir(exec_list *instructions,
4576 struct _mesa_glsl_parse_state *state)
4577 {
4578 YYLTYPE loc = this->get_location();
4579
4580 /* The ast_interface_block has a list of ast_declarator_lists. We
4581 * need to turn those into ir_variables with an association
4582 * with this uniform block.
4583 */
4584 enum glsl_interface_packing packing;
4585 if (this->layout.flags.q.shared) {
4586 packing = GLSL_INTERFACE_PACKING_SHARED;
4587 } else if (this->layout.flags.q.packed) {
4588 packing = GLSL_INTERFACE_PACKING_PACKED;
4589 } else {
4590 /* The default layout is std140.
4591 */
4592 packing = GLSL_INTERFACE_PACKING_STD140;
4593 }
4594
4595 bool block_row_major = this->layout.flags.q.row_major;
4596 exec_list declared_variables;
4597 glsl_struct_field *fields;
4598 unsigned int num_variables =
4599 ast_process_structure_or_interface_block(&declared_variables,
4600 state,
4601 &this->declarations,
4602 loc,
4603 &fields,
4604 true,
4605 block_row_major);
4606
4607 ir_variable_mode var_mode;
4608 const char *iface_type_name;
4609 if (this->layout.flags.q.in) {
4610 var_mode = ir_var_shader_in;
4611 iface_type_name = "in";
4612 } else if (this->layout.flags.q.out) {
4613 var_mode = ir_var_shader_out;
4614 iface_type_name = "out";
4615 } else if (this->layout.flags.q.uniform) {
4616 var_mode = ir_var_uniform;
4617 iface_type_name = "uniform";
4618 } else {
4619 var_mode = ir_var_auto;
4620 iface_type_name = "UNKNOWN";
4621 assert(!"interface block layout qualifier not found!");
4622 }
4623
4624 const glsl_type *block_type =
4625 glsl_type::get_interface_instance(fields,
4626 num_variables,
4627 packing,
4628 this->block_name);
4629
4630 if (!state->symbols->add_interface(block_type->name, block_type, var_mode)) {
4631 YYLTYPE loc = this->get_location();
4632 _mesa_glsl_error(&loc, state, "interface block `%s' with type `%s' "
4633 "already taken in the current scope",
4634 this->block_name, iface_type_name);
4635 }
4636
4637 /* Since interface blocks cannot contain statements, it should be
4638 * impossible for the block to generate any instructions.
4639 */
4640 assert(declared_variables.is_empty());
4641
4642 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
4643 *
4644 * Geometry shader input variables get the per-vertex values written
4645 * out by vertex shader output variables of the same names. Since a
4646 * geometry shader operates on a set of vertices, each input varying
4647 * variable (or input block, see interface blocks below) needs to be
4648 * declared as an array.
4649 */
4650 if (state->target == geometry_shader && !this->is_array &&
4651 var_mode == ir_var_shader_in) {
4652 _mesa_glsl_error(&loc, state, "geometry shader inputs must be arrays");
4653 }
4654
4655 /* Page 39 (page 45 of the PDF) of section 4.3.7 in the GLSL ES 3.00 spec
4656 * says:
4657 *
4658 * "If an instance name (instance-name) is used, then it puts all the
4659 * members inside a scope within its own name space, accessed with the
4660 * field selector ( . ) operator (analogously to structures)."
4661 */
4662 if (this->instance_name) {
4663 ir_variable *var;
4664
4665 if (this->is_array) {
4666 /* Section 4.3.7 (Interface Blocks) of the GLSL 1.50 spec says:
4667 *
4668 * For uniform blocks declared an array, each individual array
4669 * element corresponds to a separate buffer object backing one
4670 * instance of the block. As the array size indicates the number
4671 * of buffer objects needed, uniform block array declarations
4672 * must specify an array size.
4673 *
4674 * And a few paragraphs later:
4675 *
4676 * Geometry shader input blocks must be declared as arrays and
4677 * follow the array declaration and linking rules for all
4678 * geometry shader inputs. All other input and output block
4679 * arrays must specify an array size.
4680 *
4681 * The upshot of this is that the only circumstance where an
4682 * interface array size *doesn't* need to be specified is on a
4683 * geometry shader input.
4684 */
4685 if (this->array_size == NULL &&
4686 (state->target != geometry_shader || !this->layout.flags.q.in)) {
4687 _mesa_glsl_error(&loc, state,
4688 "only geometry shader inputs may be unsized "
4689 "instance block arrays");
4690
4691 }
4692
4693 const glsl_type *block_array_type =
4694 process_array_type(&loc, block_type, this->array_size, state);
4695
4696 var = new(state) ir_variable(block_array_type,
4697 this->instance_name,
4698 var_mode);
4699 } else {
4700 var = new(state) ir_variable(block_type,
4701 this->instance_name,
4702 var_mode);
4703 }
4704
4705 var->interface_type = block_type;
4706 if (state->target == geometry_shader && var_mode == ir_var_shader_in)
4707 handle_geometry_shader_input_decl(state, loc, var);
4708 state->symbols->add_variable(var);
4709 instructions->push_tail(var);
4710 } else {
4711 /* In order to have an array size, the block must also be declared with
4712 * an instane name.
4713 */
4714 assert(!this->is_array);
4715
4716 for (unsigned i = 0; i < num_variables; i++) {
4717 ir_variable *var =
4718 new(state) ir_variable(fields[i].type,
4719 ralloc_strdup(state, fields[i].name),
4720 var_mode);
4721 var->interface_type = block_type;
4722
4723 /* Propagate the "binding" keyword into this UBO's fields;
4724 * the UBO declaration itself doesn't get an ir_variable unless it
4725 * has an instance name. This is ugly.
4726 */
4727 var->explicit_binding = this->layout.flags.q.explicit_binding;
4728 var->binding = this->layout.binding;
4729
4730 state->symbols->add_variable(var);
4731 instructions->push_tail(var);
4732 }
4733 }
4734
4735 return NULL;
4736 }
4737
4738
4739 ir_rvalue *
4740 ast_gs_input_layout::hir(exec_list *instructions,
4741 struct _mesa_glsl_parse_state *state)
4742 {
4743 YYLTYPE loc = this->get_location();
4744
4745 /* If any geometry input layout declaration preceded this one, make sure it
4746 * was consistent with this one.
4747 */
4748 if (state->gs_input_prim_type_specified &&
4749 state->gs_input_prim_type != this->prim_type) {
4750 _mesa_glsl_error(&loc, state,
4751 "geometry shader input layout does not match"
4752 " previous declaration");
4753 return NULL;
4754 }
4755
4756 /* If any shader inputs occurred before this declaration and specified an
4757 * array size, make sure the size they specified is consistent with the
4758 * primitive type.
4759 */
4760 unsigned num_vertices = vertices_per_prim(this->prim_type);
4761 if (state->gs_input_size != 0 && state->gs_input_size != num_vertices) {
4762 _mesa_glsl_error(&loc, state,
4763 "this geometry shader input layout implies %u vertices"
4764 " per primitive, but a previous input is declared"
4765 " with size %u", num_vertices, state->gs_input_size);
4766 return NULL;
4767 }
4768
4769 state->gs_input_prim_type_specified = true;
4770 state->gs_input_prim_type = this->prim_type;
4771
4772 /* If any shader inputs occurred before this declaration and did not
4773 * specify an array size, their size is determined now.
4774 */
4775 foreach_list (node, instructions) {
4776 ir_variable *var = ((ir_instruction *) node)->as_variable();
4777 if (var == NULL || var->mode != ir_var_shader_in)
4778 continue;
4779
4780 /* Note: gl_PrimitiveIDIn has mode ir_var_shader_in, but it's not an
4781 * array; skip it.
4782 */
4783 if (!var->type->is_array())
4784 continue;
4785
4786 if (var->type->length == 0) {
4787 if (var->max_array_access >= num_vertices) {
4788 _mesa_glsl_error(&loc, state,
4789 "this geometry shader input layout implies %u"
4790 " vertices, but an access to element %u of input"
4791 " `%s' already exists", num_vertices,
4792 var->max_array_access, var->name);
4793 } else {
4794 var->type = glsl_type::get_array_instance(var->type->fields.array,
4795 num_vertices);
4796 }
4797 }
4798 }
4799
4800 return NULL;
4801 }
4802
4803
4804 static void
4805 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
4806 exec_list *instructions)
4807 {
4808 bool gl_FragColor_assigned = false;
4809 bool gl_FragData_assigned = false;
4810 bool user_defined_fs_output_assigned = false;
4811 ir_variable *user_defined_fs_output = NULL;
4812
4813 /* It would be nice to have proper location information. */
4814 YYLTYPE loc;
4815 memset(&loc, 0, sizeof(loc));
4816
4817 foreach_list(node, instructions) {
4818 ir_variable *var = ((ir_instruction *)node)->as_variable();
4819
4820 if (!var || !var->assigned)
4821 continue;
4822
4823 if (strcmp(var->name, "gl_FragColor") == 0)
4824 gl_FragColor_assigned = true;
4825 else if (strcmp(var->name, "gl_FragData") == 0)
4826 gl_FragData_assigned = true;
4827 else if (strncmp(var->name, "gl_", 3) != 0) {
4828 if (state->target == fragment_shader &&
4829 var->mode == ir_var_shader_out) {
4830 user_defined_fs_output_assigned = true;
4831 user_defined_fs_output = var;
4832 }
4833 }
4834 }
4835
4836 /* From the GLSL 1.30 spec:
4837 *
4838 * "If a shader statically assigns a value to gl_FragColor, it
4839 * may not assign a value to any element of gl_FragData. If a
4840 * shader statically writes a value to any element of
4841 * gl_FragData, it may not assign a value to
4842 * gl_FragColor. That is, a shader may assign values to either
4843 * gl_FragColor or gl_FragData, but not both. Multiple shaders
4844 * linked together must also consistently write just one of
4845 * these variables. Similarly, if user declared output
4846 * variables are in use (statically assigned to), then the
4847 * built-in variables gl_FragColor and gl_FragData may not be
4848 * assigned to. These incorrect usages all generate compile
4849 * time errors."
4850 */
4851 if (gl_FragColor_assigned && gl_FragData_assigned) {
4852 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
4853 "`gl_FragColor' and `gl_FragData'");
4854 } else if (gl_FragColor_assigned && user_defined_fs_output_assigned) {
4855 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
4856 "`gl_FragColor' and `%s'",
4857 user_defined_fs_output->name);
4858 } else if (gl_FragData_assigned && user_defined_fs_output_assigned) {
4859 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
4860 "`gl_FragData' and `%s'",
4861 user_defined_fs_output->name);
4862 }
4863 }